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Abstract. We consider a prototypical nonlinear reaction-diffusion sys-
tem arising in reversible chemistry. Based on recent existence results of
global weak and classical solutions derived from entropy-decay related a-
priori estimates and duality methods, we prove exponential convergence
of these solutions towards equilibrium with explicit rates in all space
dimensions.

The key step of the proof establishes an entropy entropy-dissipation
estimate, which relies only on natural a-priori estimates provided by
mass-conservation laws and the decay of an entropy functional.
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1 Introduction

Reaction-Diffusion Systems for Reversible Chemistry

The evolution of a mixture of diffusive species A;,7 = 1,2,...,¢q, undergoing a
reversible reaction of the type

a1A1+-~-+anq:‘ﬁlAl—F"'—i—ﬁqu, a;, i €N,

is modelled using mass-action kinetics (see e.g. [3-5,9] for a derivation from basic
principles) in the following way:

q q
Btai - dl A"Lal = (ﬁ, — Oéi) (l H a?j —k H afj ) y (1)
j=1 j=1
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where a; := a;(t,z) > 0 denotes the concentration at time ¢ and point x of the
species A; and d; > 0 are positive and constant diffusion coefficients.

We suppose that x € 2, where (2 is a bounded domain of RYN (N > 1) with
sufficiently smooth (e.g. C?*% « > 0) boundary 942, and complement system
(1) by homogeneous Neumann boundary conditions:

n(x)-Vea;(t,z) =0, YVt >0, x € 082, (2)

where n(z) is the outer normal unit vector at point x of 9f2.

The particular case A; + Ay = As + Ay (that is, when ¢ = 4 with a; =
ag=1,03=01=1, a3 = a4 =0 and B; = [z = 0) has lately received a lot
of attention as a prototypical model system featuring quadratic nonlinearities,
see e.g. [7,12,17]. For the sake of readability, we shall set | = 1 = k (the general
case can be treated without any additional difficulty) and assume that 2 is
normalised (i.e. |£2| = 1). We then consider the particular case of system (1),
which writes as

a1 — dy Azay = azag — ay az,
Oraz — dy Azaz = azaq — a1 az,
Oraz — d3 Azaz = a1 az — az aq,
Oray — dy Azag = ay az — az ay,

3)

together with the homogeneous Neumann boundary conditions (2).

It was first proven by Goudon and Vasseur in [17] based on an intricate use
of De Giorgi’s method that whenever di, do, d3, dys > 0, there exists a global
smooth solution for dimensions N = 1,2. For higher space dimensions the exis-
tence of classical solutions constitutes an open problem, for which the Hausdorff
dimension of possible singularities was characterised in [17]. The (technical) crit-
icality of quadratic nonlinearities was underlined by Caputo and Vasseur in [§],
where smooth solutions were shown to exist in any dimension for systems with
a nonlinearity of power law type which is strictly subquadratic, see also e.g. [1].

A further related result by Hollis and Morgan [20] showed that if blow-up
(here that is a concentration phenomena since the total mass is conserved) occurs
in one concentration a;(t, x) at some time ¢ and position z, then at least one more
concentration has to blow-up (i.e. concentrate) at the same time and position.
A proof of these results is based on a duality argument.

In [12], a duality argument in terms of entropy density variables was used to
prove in an elegant way the existence of global L?-weak solutions in any space
dimension. Recently in [7], a nice improvement of the duality methods allows
to show global classical solutions in 2D of the prototypical system (3)—(2) in a
significantly shorter and less technical way than via De Giorgi’s method.

In the present work, we shall show that exponential convergence (with explicit
rates) towards the unique constant equilibrium still holds for any dimension N
(see Theorem 1 below) when one considers L2-weak solutions. The proof of Theo-
rem 1 is based on an approach, where a quantitative entropy entropy-dissipation
estimate is established, which uses only natural a-priori bounds of the system,
and thus significantly improves the results of [11] and related previous results
like [10,15,16,18].
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The paper is organized as follows: We start in Sect. 2 by presenting a-priori
bounds for our system and by overviewing the available analytical tools. Next,
in Sect. 3, we prove Theorem 1 stating exponential convergence to equilibrium.

2 A Priori Estimates and Analytical Tools

2.1 Mass Conservation Laws

The conservation of the number of atoms implies (at first for all smooth solutions
(@i)i=1,..4 of (3) with Neumann condition (2)) that for all ¢ > 0,

M = [, (a1(t,2) +as(t, 2)) dz = [, (a1(0,2) + a3(0, z)) dz,
My = [, (a1(t,z) + ay(t,z)) doe = [, (a1(0,2) + as(0, z)) dz, 0
Mas = [, (as(t,z) + as(t,z)) doz = [, (a2(0,z) + as(0, z)) dz,
Moy = [, (ag(t,x) + as(t,x)) dz = [, (a2(0,z) 4+ as(0,z)) du.

Note that only three of the above four conservation laws are linearly independent.

2.2 Entropy Functional and Entropy Dissipation

A second set of a-priori estimates stems from the nonnegative entropy (free
energy) functional E((a;)i=1,..4) and the entropy dissipation D((a;)i=1,.4) =
— 424 E((a;)i=1,...4) associated to (3):

E(a;(t,z) Z/ a;(t,x)log(a;(t,z)) — a;(t,x) + 1) dx (5)

D(a;(t,x)i=1,. Z/4d \Vovai(t,z)|* de (6)

ay az

+/ (a1 a2 — az aq)log < > (t,z)dx.
Q as aq

It is easy to verify that the following entropy dissipation law holds (still for
sufficiently regular solutions (a;);=1... 4 of (3) with (2)) for all ¢ > 0

E(a;(t,z)i=1,.4) —l—/o D(a;(s,x)i=1,..4)ds = E(a;(0,2)i=1,.4) - (7)

The entropy decay estimate (7) implies as a first a-priori estimate that
a; € L([0, +oo; Llog L(2)),  Yi=1,.,4. (8)

Considering in (7) that the time integral of the entropy dissipation (6) is uni-
formly bounded-in-time, its first component provides the estimate

Va; € L*([0, 4-o0[; HY(£2)), Vi=1,..,4, (9)
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Finally, the second component of the time integral of the entropy dissipation
(6) ensures that, provided that azas € Lj,,([0,400[x{2), then also ajay €
L}, ([0, +00[x (2). This comes out of the following classical inequality (cf. [14]),

which holds for any x > 1,

1
aias < Kasas + (a1 a2 — az ay) log (al a2>. (10)
log k

as a4

Note that by letting x be as large as necessary, this inequality also allows to
prove that an approximating sequence af a3 is (locally in time) weakly compact
in L' if the sequence a} a} is also weakly compact in L' (and when estimate (7)
holds uniformly with respect to n).

Remark 1. We remark (see [12]), that as a consequence of the first two entropy
related a-priori estimates (8)—(9), global classical solutions of system (3)—(2)
can be constructed only in 1D. In 2D, global L?-weak solutions can be deduced
by using Trudinger’s inequality. In any higher space dimension, renormalised
solution can be obtained from all three a-priori estimate (8)—(10).

2.3 Entropy Structure and Duality Methods

The system (3)—(2) can also be rewritten in terms of the entropy density variables
z; := a;log(a;) — a;. By introducing the sum z := Z?:l z;, it holds that

Oz — Ay (Az) <0, n(x)-Vyzi(t,x) =0,
Aty 2) = Btz e [ min {d;}, max {d}] (11)
’ iz i=1,..4" =1 A

Then, by a duality argument (see e.g. [12,20,21] and the references therein), the
parabolic problem (11) satisfies for all 7' > 0 and £2r = (0,7 x §2 and for all
space dimensions N > 1 the following a-priori estimate

Z aio(log(aio) — 1)

i=1

Izl L2 (2ry < C(1+T)V? L di=1,.,4, (12)

L2()

where C' is a constant independent of T', see [7,12]. Thus, given (a;0)i=1,.4 €
L?*(log L)?(£2), we have (a;)i=1,..4 € L*(log L)*(27) and the quadratic nonlin-
earities on the right hand side of (3) are uniformly integrable, which allows to
prove the existence of global L2-weak solutions in all space dimensions N > 1
[12]. Moreover, in 2D and in higher space dimension under the assumption
of sufficiently “similar” diffusion coefficients (i.e. max{d;} — min{d;} is suf-
ficiently small), an improved duality estimate allows to show global classical
solutions [7].
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2.4 Equilibrium

We observe that when all the diffusivity constants (d;)i=1,.4 > 0 are posi-
tive, there exists a unique constant equilibrium state (a;oc)i=1,...4 (for which
the entropy dissipation vanishes). It is defined by the unique positive constants
balancing the reversible reaction aj o @2,00 = 03,00 G4,00 and satisfying the con-
servation laws a; oo + ai,00 = My, for (j,k) € ({1,2},{3,4}), that is:

My3 M Mz M M3 M.
{al,oo: 1}%\/[ 12 a3,oo:M13_ 1?\/[ 14 — 15,\4 23

Moz Moy
M »

)

MisMiy _ Mig Moy
M b

(13)
(400 = Mg — =571 =

a2 oo

where M denotes the total initial mass M = M3 + Moy = My + Mos.

2.5 Logarithmic Sobolev Inequality

Finally, we introduce a lemma which is known to hold, but somehow without
reference. We therefore follow an argument of Strook [22], which shows that
Sobolev and Poincaré inequality imply the logarithmic Sobolev inequality with-
out confining potential on a bounded domain.

Lemma 1 (Logarithmic Sobolev inequality on bounded domains). Let
2 be a bounded domain in IR such that the Poincaré (-Wirtinger) and Sobolev
iequalities

¢ — fn¢d$||2L2(Q) < P(£2) ||Vac</>H2L2(Q) ) (14)
161300 < CL(2) Vb3 (o) + Coa(DISl320)»  2=3—%, (15)
hold. Then, the logarithmic Sobolev inequality
¢? 2
[ 08 (155 ) o < L@ 192010 (16)

holds (for some constant L(£2,N) > 0).

Proof (of Lemmal). Assume firstly that ||¢||3 = 1. Then, using Jensen’s inequal-
ity for the measure ¢? dz, we estimate
2
log ( / X dx)
—9 o

= L5 log (I6113) < 5 (19l - 1)

[ ¢ tog(e?) do = = [ 1og (67°?) (¢%d) <
n q—2Jp

using the elementary inequality logz < x — 1. Hence, we have for general ¢,

/¢k%(wm> L (12 - lol3)

q
<7 2
S C1 || Vadllz +

p— (Cy = 1) 1913,
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using the Sobolev inequality (15). Now, in case when [,¢dx = 0, inequalit
g y 2 Y

(16) follows directly from Poincaré inequality (14). Otherwise, considering b=
¢ — [,¢dx, alengthy calculation [13] shows that

‘1 d 2] d 2 7112
L °g<|¢||2> L 0g<”¢”2> 7+ 293

and the inequaltiy (16) follows from Poincaré inequality (14).

Remark 2. On convexr domains {2, an alternative proof of (16) consists in
building a limiting procedure with a sequence of logarithmic Sobolev inequalities
on RN (see e.g. [2,6]) with a convex confining potential, which is made constant
inside the bounded domain (by using the Holley-Strook perturbation lemma [19])
and tends to infinity outside of the bounded domain.

3 Exponential Convergence to Equilibrium
via the Entropy Method

In this section, we prove exponential convergence towards equilibrium (with
explicit rates) for weak solutions of system (3) (and thus also for classical solution
whenever they are known to exist) in all space dimensions N > 1:

Theorem 1. Let 2 be a bounded domain with sufficiently smooth boundary (e.g.
22 € C**, a > 0) such that Lemma 1 holds. Let (d;)i=1,.4 > 0 be posi-
tive diffusion coefficients. Let the initial data (a;0)i=1,..4 be nonnegative func-
tions of L? (log L)?(§2) with positive masses (Mji)(j kye({1,2},{3,43) > 0 (see (4)).
Then, the global solution a; of (3)—(2) (weak or classical as shown to exist in
[7,12]) decay exponentially towards the positive equilibrium state (a; o0 )i=1,..4 >
0 defined by (13):

4
D llas(t, ) = aiooll7i () < Ca <E((az‘,0)i—1,».,4) - E((az‘,oo)i—l,..,4)> e,
=1

for allt > 0 and for constants Cy and Cs, which can be explicitly computed.

Remark 3. The above Theorem generalises to all space dimensions the conver-
gence result obtained in [11]. It avoids a slowly growing L*°-bound (available
only in 1D and maybe 2D) by using the logarithmic Sobolev inequality (16) to
control the relative entropy of the concentrations a; w.r.t. their spatial averages
a; = [,a;dx (recall that |2| = 1), which themself are controlled by the mass
conservation laws (4). The remaining part of the proof follows then from [11].

Note also that exponential decay towards equilibrium in LP(§2) with 1 < p < 2
follows by interpolation the L?(§2)-bounds (12).
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Proof (of Theorem1). The proof is based on an entropy method, where the
entropy dissipation D((ai)i=17_474) = —%E((ai)i:17..74) = —%(E((ai)izlwA) -
E((@i,00)i=1,..,4)) is controlled from below in terms of the relative entropy with
respect to equilibrium. That is, we look for an estimate like

D((ai)i=1,...4) = C (E((a;)i=1,..4) — E((@i,00)i=1,..,4)) (17)

4
a;

=C g /Q {ai log (ai OO) — (a; — ai,oo)} dz,
i=1 ,

for a constant C provided that all the conservation laws (4) are observed. Then, a
simple Gronwall lemma yields exponential convergence in relative entropy to the
equilibrium (a; o0 )i=1,..,4. Furthermore, convergence in L' as stated in Theorem 1
follows from a Cziszar-Kullback type inequality [11, Proposition 4.1].

In order to establish the entropy-entropy dissipation estimate (17), we firstly
split the relative entropy

E((ai)i=1,.4) — E((ai,00)i=1,..4) = E((a;)i=1,..4) — E((@7)i=1,...4)
+E((@)i=1,...4) — E((¢i,00)i=1,...4) s

into — roughly speaking — the relative entropy of the concentrations a; w.r.t. their
averages a; and the relative entropy of the averages @; w.r.t. the equilibrium a; .

The first term can be estimated thanks to the logarithmic Sobolev inequality
(16) (recall the conservation laws (4)) by

E((ai)iz1,. 4) — E(@)iz1..4) = z::/ga log (Z) da

4
<u@) Y [ Weval i,
=1

which is clearly bounded by the entropy dissipation D((a;);=1,...4) in (6).
On the other hand, estimating the second relative entropy can be done in
the following way: We define

_al@/y) —(@—y) _
o(z,y) = r—vi) = ¢(z/y,1),

which is a continuous function on (0, c0)

x (0,00). Note that thanks to the
conservation laws (4), we have ¢(a@; /i 00, 1) <

o,
C(M). We can then write

B(@)im1,.0) = Bl(a1)ims) = 3 favtos () = - ai.0)|

A 00
4

4
S Zqﬁ(aiiaai,m) ‘\/i_ \/ai7oo|2 S C(M)Z ’\/a:z_ \/ai,oo|2-

i=1 i=1
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Finally, the expression Z?:l ‘\/a:z — Vi oo ‘2 is bounded in terms of equation
(47) in [11, Lemma 3.2], which itself is bounded by the entropy dissipation
D((a;)i=1,..4) in (6) with a constant, which can be explicitly estimated. This
finishes the proof of the entropy entropy-dissipation estimate (17), which implies
explicit exponential convergence to equilibrium in relative entropy.

The proof of Theorem 1 follows then by recalling the Cziszar-Kullback type

inequality [11, Proposition 4.1].
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