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Abstract. This paper considers the optimal control of two small stochas-
tic models of the Slovenian economy applying the OPTCON algorithm.
OPTCON determines approximate numerical solutions to optimum con-
trolproblems fornonlinear stochastic systemsand isparticularlyapplicable
to econometricmodels.We compare the results of applying theOPTCON2
version of the algorithm to the nonlinear model SLOVNL and the linear
modelSLOVL.Theresults forbothmodelsare similar,withopen-loop feed-
back controls giving better results on average but withmore ‘outliers’ than
open-loop controls.
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1 Introduction

Optimum control theory has been applied in many areas of science, from engi-
neering to economics. An algorithm that provides (approximate) solutions to
optimum control problems for nonlinear dynamic systems with different kinds of
stochastics is OPTCON, which was first introduced in [3]. An extension has been
developed in [2], which includes passive learning or open-loop feedback control
policies.

OPTCON was implemented in MATLAB and can deliver numerical solutions
to problems with real economic data. Two such applications are described and
analyzed in this paper. We develop two macroeconomic models of the Slovenian
economy, a nonlinear model called SLOVNL and a (comparable) linear model
called SLOVL. The algorithm with both open-loop and open-loop feedback
strategies is applied to these models and the influence of the control scheme
and the nonlinearity of the model on the optimum solution is investigated in
some optimization experiments.

2 The Problem

The OPTCON algorithm is designed to provide approximate solutions to opti-
mum control problems with a quadratic objective function (a loss function to
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be minimized) and a nonlinear multivariate discrete-time dynamic system under
additive and parameter uncertainties. The intertemporal objective function is
formulated in quadratic tracking form, which is quite often used in applications
of optimum control theory to econometric models. It can be written as

J = E

[
T∑

t=1

Lt(xt, ut)

]
, (1)

with

Lt(xt, ut) =
1
2

(
xt − x̃t

ut − ũt

)′
Wt

(
xt − x̃t

ut − ũt

)
. (2)

xt is an n-dimensional vector of state variables that describes the state of the
economic system at any point in time t. ut is an m-dimensional vector of control
variables, x̃t ∈ Rn and ũt ∈ Rm are given ‘ideal’ (desired, target) levels of the
state and control variables respectively. T denotes the terminal time period of
the finite planning horizon. Wt is an ((n + m) × (n + m)) matrix, specifying the
relative weights of the state and control variables in the objective function. Wt

(or W ) is symmetric.
The dynamic system of nonlinear difference equations has the form

xt = f(xt−1, xt, ut, θ, zt) + εt, t = 1, ..., T, (3)

where θ is a p-dimensional vector of parameters the values of which are assumed
to be constant but unknown to the decision maker (parameter uncertainty),
zt denotes an l-dimensional vector of non-controlled exogenous variables, and
εt is an n-dimensional vector of additive disturbances (system error). θ and εt

are assumed to be independent random vectors with expectations θ̂ and On

respectively and covariance matrices Σθθ and Σεε respectively. f is a vector-
valued function fulfilling some differentiability assumptions, f i(.....), is the i-th
component of f(.....), i = 1, ..., n.

3 The Optimum Control Algorithm

The OPTCON1 algorithm [3] determines policies belonging to the class of open-
loop controls. It either ignores the stochastics of the system altogether or assumes
the stochastics to be given once and for all at the beginning of the planning
horizon. The nonlinearity problem is tackled iteratively, starting with a tentative
path of state and control variables. The tentative path of the control variables is
given for the first iteration. In order to find the corresponding tentative path for
the state variables, the nonlinear system is solved numerically. After the tentative
path is found, the iterative approximation of the optimal solution starts. The
solution is sought from one time path to another until the algorithm converges
or the maximal number of iterations is reached. During this search the system
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is linearized around the previous iteration’s result as a tentative path and the
problem is solved for the resulting time-varying linearized system. The criterion
for convergence demands that the difference between the values of current and
previous iterations be smaller than a pre-specified number. The approximately
optimal solution of the problem for the linearized system is then used as the
tentative path for the next iteration, starting off the procedure all over again.

The more recent version OPTCON2 [2] incorporates both open-loop and
open-loop feedback (passive-learning) controls. The idea of passive learning cor-
responds to actual practice in applied econometrics: at the end of each time
period, the model builder (the control agent) observes what has happened, that
is, the current values of state variables, and uses this information to re-estimate
the model and hence improve his/her knowledge of the system.

The passive-learning strategy implies observing current information and using
it in order to adjust the optimization procedure. For the purpose of comparing
open-loop and open-loop feedback results, it is not possible to observe current
and true values, so one has to resort to Monte Carlo simulations. Large numbers
of random time paths for the additive and multiplicative errors are generated,
representing what new information could look like in reality. In this way ‘quasi-
real’ observations are created and both types of controls, open-loop and passive-
learning (open-loop feedback), are compared.

4 The SLOVNL Model

We estimated two simple macroeconometric models for Slovenia, one nonlinear
(SLOVNL) and one linear (SLOVL). The SLOVNL model (SLOVenian model,
Non-Linear version) is a small nonlinear econometric model of the Slovenian econ-
omy consisting of 8 equations, 4 behavioral equations and 4 identities. SLOVNL
includes 8 state variables, 3 control variables, 4 exogenous non-controlled vari-
ables and 16 unknown (estimated) parameters. We used quarterly data for the
time periods 1995:1 to 2006:4; this data base with 48 observations admits a full-
information maximum likelihood (FIML) estimation of the expected values and
the covariance matrices for the parameters and the system errors. The starting
period for the optimization is 2004:1; the terminal period is 2006:4 (12 periods).

Model variables used in SLOVNL:

Endogenous (state) variables:

x[1] CR real private consumption

x[2] INV R real investment

x[3] IMPR real imports of goods and services

x[4] STIRLN short term interest rate

x[5] GDPR real gross domestic product

x[6] V R real total aggregate demand

x[7] PV general price level

x[8] Pi4 rate of inflation

Control variables:

u[1] TaxRate net tax rate
u[2] GR real public consumption
u[3] M3N money stock, nominal

Exogenous non-controlled variables:

z[1] EXR real exports of goods and services

z[2] IMPDEF import price level

z[3] GDPDEF domestic price level

z[4] SITEUR nominal exchange rate SIT/EUR
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Model equations:
Standard deviations are given in brackets.

CRt = 240.9398 + 0.740333 CRt−1 + 0.111727 GDPRt (1− TaxRatet
100

)
(189.7449) (0.1115) (0.0330)
− 1.007353 (STIRLNt − Pi4t) − 4.773533 Pi4t

(2.5848) (2.4966)

INV Rt = 75.41731 + 0.932211 INV Rt−1 + 0.264523 (V Rt − V Rt−1)
(176.8549) (0.1423) (0.0924)
− 0.455511 (STIRLNt − Pi4t) − 2.981241 Pi4t

(6.9044) (3.1277)

IMPRt = IMPRt−1 + 0.826449 (V Rt − V Rt−1) − 38.14954 SITEURt

(0.0724) (18.9336)

STIRLNt = 0.811606 STIRLNt−1 − 0.000877 (M3N)t
PVt

· 100
(0.1375) (0.0008)
+ 0.002746 GDPRt

(0.0026)

GDPRt = CRt + INV Rt + GRt + EXRt − IMPRt

V Rt = GDPRt + IMPRt

PVt =
GDPRt
V Rt

·GDPDEFt +
IMPRt
V Rt

· IMPDEFt

Pi4t =
PVt−PVt−4

PVt−4
· 100

The objective function penalizes deviations of objective variables from their
‘ideal’ (desired, target) values. The ‘ideal’ values of the state and control variables
(x̃t and ũt respectively) are chosen as shown in Table 1. The ‘ideal’ values for
most variables are defined in terms of growth rates (denoted by % in Table 1)
starting from the last given observation (2003:4). For Pi4 and TaxRate, constant
‘ideal’ values are used; for STIRLN , a linear decrease of 0.25 per quarter is
assumed to be the goal.

Table 1. ‘Ideal’ values of objective variables, SLOVNL

The weights for the variables, i.e. the constant matrix W in the objective
function, are first chosen as shown in Table 2a (‘raw’ weights) to reflect the
relative importance of the respective variable in the (hypothetical) policy maker’s
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Table 2. Weights of objective variables, SLOVNL

objective function. These ‘raw’ weights have to be scaled or normalized according
to the levels of the respective variables to make the weights comparable. The
normalized (‘correct’) weights are shown in Table 2b.

5 The SLOVL Model

To analyse the impact of the nonlinearity of the system we developed a linear pen-
dant to the SLOVNL model. This ‘sister model’ is called SLOVL (SLOVenian
model, Linear version) and consists of 6 equations, 4 of them behavioral and 2
identities. The model includes 6 state variables, 3 exogenous non-controlled vari-
ables, 3 control variables, and 15 unknown (estimated) parameters. We used the
same data base as for SLOVNL and a specification as close as possible to that of
SLOVNL in order to make comparisons between the results of the algorithm for
a linear and a nonlinear model. Again, we used full-information maximum likeli-
hood (FIML) to estimate the expected values and the covariance matrices for the
parameters and the system errors. The starting and the terminal period for the
optimization are again 2004:1 and 2006:4.

Model variables used in SLOVL:

Endogenous (state) variables:

x[1] CR real private consumption

x[2] INV R real investment

x[3] IMPR real imports of goods and services

x[4] STIRLN short term interest rate

x[5] GDPR real gross domestic product

x[6] V R real total aggregate demand

Control variables:

u[1] Taxes tax revenue
u[2] GR real public consumption
u[3] M3R money stock, real

Exogenous non-controlled variables:

z[1] EXR real exports of goods and services

z[2] SITEUR nominal exchange rate SIT/EUR

z[3] Pi4 rate of inflation
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Model equations:
Standard deviations are given in brackets.
CRt = 231.582776 + 0.744522 CRt−1 + 0.111736 (GDPRt − Taxest)

(191.99) (0.11) (0.03)
− 0.855137 (STIRLN − Pi4) −4.657411 Pi4

(2.63) (2.50)

INV Rt = 69.965212 + 0.936305 INV Rt−1 + 0.265119 (V Rt − V Rt−1)
(176.51) (0.14) (0.09)
− 0.292918 (STIRLNt − Pi4t) − 2.869522 Pi4t

(6.90) (3.11)

IMPRt = IMPRt−1 + 0.826648 (V Rt − V Rt−1) − 38.158117 SITEURt

(0.07) (18.86)

STIRLNt = 0.811458 STIRLNt−1 − 0.000877 (M3R)t
(0.14) (0.0008)
+ 0.002748 GDPRt

(0.0026)

GDPRt = CRt + INV Rt + GRt + EXRt − IMPRt

V Rt = GDPRt + IMPRt

The objective function is analogous as for SLOVNL, where the ‘ideal’ values
of the state and control variables (x̃t and ũt respectively) are chosen as shown
in Table 3. For the weights for the variables, Table 4a shows the ‘raw’ weights
and Table 4b gives the normalized weights.

Table 3. ‘Ideal’ values of objective variables, SLOVL

Table 4. Weights of objective variables, SLOVL
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6 Optimization Experiments

The OPTCON2 algorithm is applied to the two econometric models SLOVNL
and SLOVL. Two different experiments are run for both models: in experiment
1, two open-loop solutions are compared, a deterministic one where the variances
and covariances of the parameters are ignored, and a stochastic one where the
estimated parameter covariance matrix is taken into account. In experiment
2, the properties of the open-loop and the open-loop feedback solutions are
compared. Furthermore, by comparing the results for the SLOVNL and the
SLOVL models we want to analyze the impact of nonlinearity on the properties
of the optimal solution.

6.1 Experiment 1: Open-Loop Optimal Policies

For experiment 1, two different open-loop solutions are calculated: a determinis-
tic and a stochastic one. The deterministic solution assumes that all parameters
of the model are known with certainty and are equal to the estimated values.
In the stochastic case, the covariance matrix of the parameters as estimated by
FIML is used but no updating of information occurs during the optimization
process.

The results (for details, see [1,2]) show that both the deterministic and the
stochastic solutions follow the ‘ideal’ values fairly well but fiscal policies are less
expansionary and hence real GDP is mostly below its ‘ideal’ values. The values of
the objective function show a considerable improvement in system performance
obtained by optimization and only moderate costs of uncertainty.

An interesting result is that the deterministic and the stochastic open-loop
solutions are very similar. Furthermore, one can see that the SLOVL model
is a good ‘linear approximation’ of the nonlinear SLOVNL model because the
results for both models are nearly identical. This fact can be used for isolating
the impact of nonlinearity on finding the optimum control solution, especially
for the case of open-loop feedback policies.

6.2 Experiment 2: Open-Loop Feedback Optimal Policies

The aim of experiment 2 consists in comparing open-loop (OL) and open-loop
feedback (OLF) optimal stochastic controls. Figures 1 and 2 show the results of
a representative Monte Carlo simulation, displaying the value of the objective
function arising from applying OPTCON2 to the SLOVNL and the SLOVL
models respectively, under 1000 independent random Monte Carlo runs. The
graphs plot the values of the objective function for OL policies (x-axis) and
OLF policies (y-axis) against each other. In the ‘zoom in’ panels of the figures,
we cut the axes so as to show the mass of the points and omitting ‘outliers’, i.e.
results where the value of the objective function becomes extremely large.

One can see that in most cases the values of the objective function for the
open-loop feedback solution are smaller than the values of the open-loop solution,
indicated by a greater mass of dots below the 45 degree line. This means that
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Fig. 1. OL and OLF control, value of objective function; SLOVNL; 1000 Monte Carlo
runs; left: ‘normal’, right: ‘zoom in’

Fig. 2. OL and OLF control, value of objective function; SLOVL; 1000 Monte Carlo
runs; left: ‘normal’, right: ‘zoom in’

open-loop feedback controls give better results (lower values of the cost function)
in the majority of the cases investigated. For the SLOVNL model, the OLF policy
gives better results than the OL policy in 66.4 % of the cases, for the SLOVL
model in 65.4 % of the cases considered here.

However, one can also see from these figures (especially in the left-hand panels
with a ‘normal’ view) that there are many cases where either control scheme
results in very high losses, indicated by dots which are significantly distant from
the main mass of the dots. These cases are called ‘outliers’ and can be seen even
more clearly in Fig. 3. This figure shows the same results of the 1000 independent
Monte Carlo runs for each model (SLOVNL and SLOVL) separately, but for each
Monte Carlo run. The OLF and OL objective function values are plotted in Fig. 3
together on the y-axis in each Monte Carlo run, the number of which is shown on
the x-axis. Diamonds represent open-loop feedback results and squares represent
open-loop results.

The results mean that (passive) learning does not necessarily improve the
quality of the final results; it may even worsen them. One reason for this is the
presence of the two types of stochastic disturbances: additive (random system
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Fig. 3. Open-loop vs. open-loop feedback control, value of objective function (1000
Monte Carlo runs) (left: SLOVNL, right: SLOVL)

error) and multiplicative error (‘structural’ error in the parameters). The decision
maker cannot distinguish between realizations of errors in the parameters and
in the equations as he just observes the resulting state vector. Based on this
information, he learns about the values of the parameter vector, but he may be
driven away from the ‘true’ parameter vector due to the presence of the random
system error.

6.3 On the Impact of Nonlinearity

In the previous section we saw that there is a severe problem of what we called
‘outliers’ - cases with very high losses or values of the objective function. In
a similar framework of optimum stochastic control, [4] investigated numerical
reasons for outliers. It was not possible to confirm that the sources of the problem
found by these authors were decisive for the outlier problem in our framework.
We suspect that there are other reasons for the outliers. One possible reason is
the stochastics of the dynamic system itself. In our SLOVNL and SLOVL models
all the parameters (including all the intercepts) are considered to be stochastic,
which may make this reason more likely to work.

The second possible reason is based on the nonlinear nature of the models
for which the OPTCON algorithm was created. The SLOVL model was created
mainly in order to test this possibility. The graphical results in the previous
section show that the outliers occur in the linear as well as in the nonlinear
model version. Moreover, in some of the experiments with 1000 Monte Carlo runs
for the SLOVNL model, it turned out that the algorithm did not converge in
some runs. In these cases, the algorithm starts to diverge and results in some non-
reasonable or even complex numbers for some variables. In the 1000 Monte Carlo
runs experiment considered above this happened six times. On the contrary,
under the SLOVL model, not one single case of non-convergence out of the 1000
Monte Carlo runs occurred. Thus we arrive at the conclusion that nonlinearity
is not the reason for the ‘outliers’, but it can worsen the problem.
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7 Conclusion

A comparison of open-loop control (without learning) and open-loop feedback
control (with passive learning) shows that open-loop feedback control outper-
forms open-loop control in the majority of the cases investigated for the two
small econometric models of Slovenia. But it suffers from a problem of ‘outliers’
which is present for both policy schemes. When comparing the results for the
nonlinear SLOVNL model and the linear SLOVL model, we found that the non-
linearity of the system is not responsible for the ‘outliers’ but may worsen their
influence in some cases.
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