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Abstract. In this paper we study the stochastic maximum principle
for a control problem in infinite dimensions. This problem is governed
by a fully coupled forward-backward doubly stochastic differential equa-
tion (FBDSDE) driven by two cylindrical Wiener processes on separable
Hilbert spaces and a Poisson random measure. We allow the control vari-
able to enter in all coefficients appearing in this system.

Existence and uniqueness of the solutions of FBDSDEs and an extended
martingale representation theorem are provided as well.
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1 Introduction

Backward stochastic differential equations in infinite dimensions (BSDEs) were
studied by Hu and Peng in [6], Tessitore in [17] and Al-Hussein in [3]. Al-Hussein
proved in [3] the existence and uniqueness of the solutions to BSDEs in infinite
dimensions driven by genuine @ - Wiener processes (and also cylindrical Wiener
processes) on separable Hilbert spaces. He gave also a representation of the
solution of a system of semi-linear parabolic PDEs and found viscosity solutions
to such PDEs. In [4] sufficient conditions of optimality for backward stochastic
evolution equations on Hilbert spaces are derived. Several references in these
directions are recorded in [4]. These works give a motivational base to study the
maximum principle for optimality of forward-backward stochastic differential
equations (FBSDESs) in infinite dimensions. In fact, Yin and Wang [19], proved
the existence and uniqueness of the solutions of FBSDEs with Poisson jumps in
Hilbert space and with bounded random terminal times. Their work relies on
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those in [16] and the method of continuation given in [7]. Developing applications
to such FBSDEs as for example in [3] are not yet well studied.

Let us now talk about more general equations. In finite dimensions, a fully
coupled forward-backward doubly stochastic differential equation (FBDSDE)
was introduced by Peng and Shi in [12]. Such equations are generalizations of
stochastic Hamilton systems. Al-Hussein and Gherbal in [5] studied a stochastic
control problem governed by a fully coupled multi-dimensional FBDSDE with
Poisson jumps.

In the present work, we shall work in infinite dimensions and try to derive
the stochastic maximum principle for optimal control of fully coupled FBDSDEs
with jumps; see (1) below. Moreover, existence and uniqueness of the solutions to
infinite dimensional FBDSDESs along with an extended martingale representation
theorem will be provided as well.

Applications of such equations can be gleaned from [5]. Our formulation of
these equations as well as cost functionals are given in abstract forms to allow the
possibility to work directly in the case of partial information on one hand and on
the other hand to cover most of the applications available in the literature. For
instance, a linear quadratic case can be given as a concrete and useful example.
For more details of this example, we refer the reader to [15] or [18]. In fact,
many applications of FBDSDE either in finance or to stochastic PDEs can be
developed in parallel to those provided in the literature.

Our results here can be generalized easily to the case of a stochastic relaxed
control problem governed by a nonlinear fully coupled FBDSDE with Poisson
jumps, which involves relaxed controls. We refer the reader to Ahmed et al. [1],
in this respect.

The paper is organized as follows. Notation and an extended martingale
representation theorem are recorded in Sect. 2. Section 3 is devoted to stating the
stochastic optimal control problem, which is governed by FBDSDE (1). Existence
and uniqueness of the solutions of FBDSDEs are included in Sect. 4. Finally, in
Sect. 5 we establish the stochastic maximum principle of our control problem.

2 Notation and an Extended Martingale Representation
Theorem

Let (£2,F,P) be a complete probability space. Let H; and Hs be two separa-
ble Hilbert spaces. Assume that (W;)¢cjo, 7] and (Bt)ieo, 1) are two cylindrical
Wiener processes on H; and Hs respectively, where T is a fixed positive number.
Let 1 be a Poisson point process with values in a measurable space (0, B(0)).
We denote by v(df) to the characteristic measure of 1, which is assumed to be
a o-finite measure on (0, B(0)), by N(df,dt) to the Poisson counting measure
induced by 7 with compensator v(df)dt, and by N(df, dt) = N(d, dt) — v(d6)dt
to the compensation of the jump measure N(-,-) of . We assume that the three
processes B, W and 7 are mutually independent.
For each t € [0, 7], define

Fo=F"VvFlpvF,
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where
FV =o{lW,): 0<s<tlc H}VN,
Fop=0o{l(B;) —U(By): t<r <T,l€H;}
Fli=o0{ns: 0<s<t} VN,
and N is the collection of all P-null sets of F.

Note that {F; }+c(o,7] does not constitute a filtration because it is not increas-
ing nor decreasing.

Let us set the following spaces of solutions.

For a separable Hilbert space E, let M?(0,T; E) denote the set of jointly
measurable processes {);,t € [0,T]} taking values in E, and satisfy: ), is Fy-
measurable for a.e. ¢t € [0, 7], and

T
E[/ Vi3 dt] < oo
0

Let L2(E) be the set of B(6©)-measurable mapping k with values in K such
that

[N

< 00.

11 = [ [ 6@ v(a0)]

Denote by V2(0,T; E) to the set of processes {f, ¢ € [0,T]} that take their
values in L2(K) and satisfy: & is F;-measurable for a.e. t € [0,7], and

T
]E[/ / 18(0)1% v(d0)dt] < oo.
0o Je
Finally, fixing a fixed separable Hilbert space K, we set
M? := M2 (0,T; K) x M?(0,T; K) xM?(0,T; Ly(Hy, K))
XM2 (OvTaLQ(Hvi)) X VZ (OvTaK) .

Here Lo(E, K) denotes the space of all Hilbert-Schmidt operators from E into
K, for E = Hy, Hy, with inner product dented by || - [|. Then M? is a Hilbert
space with respect to the norm |||y given, for A. = (z.,Y.,2.,2.,€), by

2
1A N[y

T T T T T
~B[ [ lalatr [ WP [ a1z [l
0 0 0 0 0

We close this section by providing an extended martingale representation
theorem.

Theorem 1. Let p and g be elements of L*(2,Fr,P;K) and M?3(0,T;
Ly(Hy, K)), respectively. If M is the martingale

T —
M(t>=E[p+/ g(t)dBy|&], 0 <t <T,
0



4 A. Al-Hussein and B. Gherbal

where & = FV \/.7:75 V F/!, then there exist unique elements (¢, k) of M?(0,T;
Ly(Hy, K)) x V2 (0,T; K) such that

M(t) :M(O)+/0tgz5des+/Ot/@/<cs(9)N(d9,ds).

Here the integral with respect to dB is a backward Tto integral, while the
integral with respect to dW is a standard forward Ito integral.

This result is known in finite dimensions (i.e. when all Hilbert spaces are
Euclidean spaces), as it can be seen easily by combining the well known martin-
gale representation theorem for Brownian motions and Poisson random measure
(e.g. see [10, Lemma 4.2] or [8]) and [11, Proposition 1.2]. The proof of this
infinite dimensional version can be gleaned by mimicking the ideas of proofs in
[11, Proposition 1.2], [2, Theorem 3.1] and [10, Lemma 4.2].

Such a theorem is in fact essential for finding solutions to BDSDEs and
decoupled (or coupled) FBDSDEsS; see e.g. [9] for using martingale representation
theorem to show the existence of solutions to FBSDEs in continuous situations.

3 Statement of the Control Problem

Let O be a separable Hilbert space and U be a nonempty convex of O. We say
that v. : [0,7] x 2 — O is admissible if v. € M?*(0,T;0) and v; € U a.e. t, a.s.
The set of admissible controls will be denoted by U,q. Consider the following
controlled K-valued fully coupled FBDSDE with jumps:

dxy = B(t, x¢, Yz, 2, Zt, &, vp)dt + X(t, x4, Yy, 20, Zty ey 01) AWy
+ qﬁ(t,xt,yt,zt,Zt,gt,vt,e)N(de,dt);thE?t,
dYy = —F(t,xy, Yz, 2, Zt, &, vp)dt — G(t, x4, Ya, 2t, Zt, &t v )d By
+Z,dWy + [ &(O)N(dO, dt),

(1)

ro=me K, Yr= h(xT), te (O7T),
where the coefficients

B,F:0Q2x[0,T] x K x K x Ly(Ha; K) x Ly(H1; K) x L2(K) x O — K,
X,G:2x[0,T] x K x K x Ly(Ho; K) X Lo(Hy; K) x L(K) x O — Lo(Hy; K),
D:02x[0,T] x K x K X Ly(Ho; K) X Lo (H1; K) x LA(K) x O x @ — K,
h:2xK— K,

are measurable and v. € U,q. More conditions will be assumed in Sect. 3. The
mapping h is defined, for (w,z) € 2 x K, by h(w,z) := cx + ((w), where ¢ # 0
is a constant and ( is a fixed arbitrary element of L?(£2, Fr,P; K).

Definition 1. A solution of (1) is a quintuple (z,Y, z, Z, &) of stochastic processes
such that (z,Y,2,7,€) belongs to M? and satisfies the following two integral
equations:
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Ty =T+ fg B(s, s, Y5, 25, Zs, s, Vs )ds + fg Y(s,5,Ys, 25, Zs, §s, 05 ) AW
~ “—
"_f(;5 f@ D(s, 5, Ys, 25, Zs, &s, 05, )N (dO, ds) — f(f 25dBs,

Y: = h(zr) + ftT F(s,15,Ys, 25, Zs, 5,05 )ds
-
+ftT (s xs,l@7z8,Zs7§5,vs)st
— [ Zoaw, — [T [, €,(0)N(dO, ds), t € [0,T].

In Sect. 4 we shall discuss the existence and uniqueness of (1).

Let us now introduce a cost functional:

T
J(”U) = ]E[/ é(taxtanazt; Ztaftavt)dt + QD(‘TT) + w(YO)]v V. € Z/ladv (2)
0
with
o, H—R,
0:02x[0,T] x K x K x Ly(Hy; K) x Lo(Hy; K) x L2(K) x O — R,

being measurable functions such that (2) is defined. See assumption (A3) below
for precise assumptions.

The control problem of system (1) is to minimize J over Uyq. Thus an admis-
sible control u. is called an optimal control if

J(u.)= inf J(v.). (3)

v.EUqq

In this case we shall say that (z,Y] z, Z, £, u.) is an optimal solution of the control
problem (1)—(3).

Further details on this control problem will be the main purpose of Sect. 5.
We discuss next the existence and uniqueness of (1).

4 Forward-Backward Doubly Stochastic Differential
Equations

We shall be interested here in the existence and uniqueness of the solution to
FBDSDE (1). Keeping the notations in Sect. 3 denote

A(t, X,v) = (=F,B,—G, X, D)(t, X,v)
and
(A, X) == (2, F) i + Y, B) x = (2,G) 1, (ma55) T (% 2) 15k (&P 12 k) 5

for X = (2,Y,2,2,§) € K x K x Ly(Ho; K) x Lo(Hy; K) x L2(K) and (t,v
[0,T] x O. The following three assumptions on the coefficients of system (1) and
(2) are our main assumptions.
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(A1) VX = (2,Y,2,2,6),X = (2,Y,2,Z,§) € K x K x Ly(Hy; K) x
LQ(Hl,K) X Lz([()7 Vit e [0,71}7 VRS O,

(A(t, X, 0) = A(t, X, 0), X — X) < =Mz — 2 + |[Y - V|2
_ =112 =112
+llz - Z||2L2(H2;K) +1Z - ZHLQ(Hl;K) +le - §HL§(K))’

and
c>0,

or (Al)’

(A(t, X, 0) = A(t, X,0), X — X) = Mo — 2l + |Y — Y3
+z — Z||2L2(HQ;K) +|Z - Z||2LQ(H1;K) + € - g”ig(x))v
and
c <0,

for some A > 0.

(A2) For each X € K x K x La(Ho; K) x Lo(Hy; K) x L2(K) and v € O,
we have A(-, X,v) € M2.

(A3) We have

(i) F,B,G,X,®,¢ are continuously differentiable with respect to (z,Y, 2, Z,&),
also ¢ and 9 are continuously differentiable with respect to  and Y,
respectively,

(#4) the derivatives of F, B, G, X, ® with respect to the above arguments are
bounded,

(32) the derivatives of £ are bounded by C(1 + |z| + Y| + ||lzI| + |1 Z] + |l€ll]),

(v) vz and 9y are bounded by C (1 + |z|) and C (1 + |Y|), respectively,

for some constant C' > 0.

Remark 1. The condition ¢ > 0 in (Al) guarantees the following monotonicity
condition of the mapping h:

(h(z) — W(Z),z — T) e > clz — 7|k, Va,7€K.
A similar thing happens also for the case ¢ < 0 in (A1)’.

Theorem 2. If (A1)-(A3) (or (A1), (A2)-(A3)) hold, then there exists a
unique solution (x,Y,z,Z,£) of the FBDSDE (1).

By making use of the extended martingale representation theorem (Theorem 1),
the proof is standard and can be achieved directly by following the outline of
the proofs in [13,14]. So we omit it.

This theorem in its infinite dimensional setting is new. In fact, as far as
know, this is the first appearance of such an infinite dimensional result as well
as Theorem 1.
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5 Stochastic Maximum Principle

To derive the maximum principle we define the Hamiltonian H from [0,T] x
2 x K x K x Ly(Hay; K) X Lo(H1; K) x L2(K) x O x K x K x Ly(Ho; K) %
Lo(Hy; K) x L2(K) to R by the formula:

H(t,fﬂ,KZ,Z,f,U,p,P,q,Q,T) = <P7F(taan72»Zaf,’U)>K
+ <P7B(ta$aKZ7Za§7v)>K - <q7G(ta$aKZ7Za§7v)>L2(H2;K)
+<Q7E(tux7KZ7Za€7v)>L2(H1;K) —|—€(t7x’Yv7z7Z7f7v)

+ /@ (1(@).9(t.2.Y.2.2.6.0.0) >L§(K) v(d). @)

Theorem 3. Let v. be an arbitrary element of Uyq. Assume (A1)-(A3). Let
{(yt, Ye, 2, Zy, ke), t € [0, T} be the corresponding solution of (1). Then there
exists a unique solution (p, P,q,Q,T) of the following adjoint equations of (1):

dp, = —Hy (t)dt — HyzdW, — qidBy — [, He(t)N(d6, dt),

Ve e
AP, = —H,(t)dt — M. (t)dB; + Q:dW; + [, T1(0)N(db, dt), (5)
po = =y (Yo), Pr = —cpr + ¢z (27),

where H,(t) is the gradient V, H(t,x,Ys, z¢, Zt, &, vt pt, Py e, Qe 13) € K, ...
etc.

Proof. Thanks to assumptions (A1)-(A3) this linear FBDSDE satisfy (Al)’,
(A2) and (A3). In fact the monotonicity condition follows from the definition of
Géateaux derivatives (as limits) and the fact that the corresponding mappings
satisfy originally the monotonicity condition in (A1). Hence the result follows
from Theorem 2.

We are now ready to state the stochastic maximum principle for the optimal
control problem (1)—(3).

Theorem 4. Suppose that (A1)-(A3) hold. Given u. € Uggq, let (™, Y™, 2%,
Z% &™) and (p*, P*,q", Q" ,T") be the corresponding solutions of FBDSDEs
(1) and (5), respectively. Assume that the following assumptions hold.

(i) ¢ and ) are convex;

1§ convex;
(iii) We have
H(ta'r?H}/tu}Zg‘vZygu}fgl7utap?].7PtuAaqzll}Q?laTtu‘)
= 516157_((257%1&“.)}/15”.)2?.7Ztu.afzt.av7p:“7Ptu-aqf'7Qtu.7Ttu-)a (6)

for a.e. t, P-a.s.
Then (z¥,Y¥ 2% Z% &% w.) is an optimal solution of the control problem

(1)~(3)-
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Proof. Let v. be an arbitrary element of U, 4. With the help of assumptions (A1)—
(A3) let, by using of Theorem 2, (zV YV, 2%, Z%, &%) be the corresponding
solution of FBDSDE (1). Applying (2), the convexity of ¢ and v, the adjoint
equations (5) and system (1) it follows that

J() = J(u) > E[(Pp +cpp,ap —aop) ] —E[{py, Yy —¥5") ]
T
—I—E[/ (E(t,xf‘,th‘,zf‘,Zf‘,ff',vt) —f(t,axff',Yt“',zf',Zf',gf‘,ut))dt].(ﬂ
0
Next, by applying a suitable It&’s formula for infinite dimensional SDEs driven by
Wiener processes on Hilbert spaces and Poisson measures to compute

(i, Y =Y") e and (P, )" — 2} ) i , we derive with the help of assumptions
(A2) and (A3) that

E[(Py,a" —op) | —E[{pg, Ys" —Y") | = —E[(pr, Y7 —Y7')]
T

_E[/ <ptu'7F(t7x§'7ytv-7zg'vzf'7£f'7Ut) —F(t,xt“',Yt“',zf',Zf',ff',ut))dt]
OT

SR [ (ot Y 206 B Q)Y — Y i
OT

_E[/ (qf',G(t,xf',Yf‘,zf',Zf',gf',vt)—G(t,x?‘,Y}“‘,z;",Zt“',gf',ut))dt]
OT

+E[/O <HZ(t,xf',Y;u',zf',Zf',{f‘,utvpf',Pt“',qf',Q;“,Tt“'),Z;"—Z?')dt]

T
+E [/o /@<H5(t7$?'aytu'7zf',Zf',§§",ut7pt“',Pt“-,qf-,Qg-jtu%
& (0) — &' (0))v(df)dt]
—I—E[/OT<Pt“',B(t,xf‘,Y;”',zf-7Zf-7§g-7vt)
— Btz Y, 2, 21 & uy))dt

T
+E[/ <Hm(t7mgaY:tuaZzLaZZL?§;L7ut7ptu7PtuaQ;fan?7Ttu)7mg —$?>dt]
0
T
+E[/ <Hz(t,xf,Ytu,z;‘,Zf,ff,ut,pf,Pf,qZ‘,Q;‘,Tt“),zf 7Z216L>dt]
0
T
+E[/ <Q,tu“72(t7xtv.a}/tv.azzj.7Zfﬁ&?a”t)_Z(tax,tu‘.ax/tu.?z;u“aZf.7€?.7ut)>dt}
0

T
+E] / / (T (0), Bt a0 Y 20 Z0 €0 v, )
0 e

=Dty Y 2 2, 68wy, 0))v(d)dt].  (8)
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On the hand, from the formula hA(w,z) := cx + {(w),x € K, one gets easily
the cancelation:

B[ (epf o5 — o)) — B[, Y3 —¥3)] =0, ©)

Therefore, by applying (8) and (9) in (7), using the formula of H in (4) and then
the convexity of H in condition (ii) we obtain

J(w.) — J(u.)
T
Z E[/ <Hv(t;x?-7Y',‘,u-7Z;‘/U“7Z;L-7§;u“7ut7pg-aPtu.7q?-aQ?.7Ttu.)avt - ut>0dt:|
0
(10)
But the minimum condition (iii) yields
<Hv(tﬂ :Z:?',Ytu',ZZL',Ztu',ff',ut,pg',Ptu',qf‘,Qf',Ttu'),vt - ut>o Z 0.
Consequently (10) becomes
J(v.) = J(u.) > 0.

Since v. is an arbitrary element of U4, then u. is an optimal control, and so the
proof is complete.

Remark 2. Condition (Al) assumed in Theorem 4 is only needed to guarantee
the existence and uniqueness of the solutions of (1) and (5), and so if one can
get such solutions without assuming (A1) there will not any necessity to assume
it in advance in this theorem.
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