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Preface

Every 2 years, the International Federation for Information Processing Technical
Committee 7 (IFIP TC 7)—System Modeling and Optimization—arranges highly
regarded conferences on several topics of Applied Optimization, such as Optimal
Control of Ordinary and Partial Differential Equations, Modeling and Simulation,
Inverse Problems, Nonlinear, Discrete, and Stochastic Optimization, as well as
Industrial Applications.

The collection in your hands contains selected papers presented at the 26th IFIP TC
7 Conference held at the Alpen-Adria-Universität Klagenfurt, Austria during Sep-
tember 8–13, 2013,

http://ifip2013.uni-klu.ac.at
The conference was organized by the local Institute of Mathematics. Preceding

conferences in this series were held in Berlin, Germany (2011), Buenos Aires,
Argentina (2009), Cracow, Poland (2007), and Turin, Italy (2005). The scientific
program of the 2013 event consisted of 10 plenary talks, 33 minisymposia (from 4–12
invited talks each), and 5 contributed sessions. In total, this resulted in 235 talks.
Altogether 268 participants from 32 countries came to the conference, the largest
groups with respect to country of origin were Germany (80), Austria (66), Poland (21),
France (15), UK (11), USA (11), Romania (10), Russia (10), Italy (8), Belgium (5), and
the Czech Republic (5).

The 34 refereed contributions to these proceedings cover the latest progress in a
wide range of topics discussed at the meeting.

Acknowledgments: We are grateful to the sponsors, namely the European Science
Foundation (ESF), Europäisches Patentamt, Die Kärntner Sparkasse, the Land Kärnten,
and the city of Klagenfurt.

Finally, we would like to thank our referees.

July 2014 Christian Pötzsche
Clemens Heuberger

Barbara Kaltenbacher
Franz Rendl

http://ifip2013.uni-klu.ac.at
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Stochastic Maximum Principle for Hilbert Space
Valued Forward-Backward Doubly SDEs

with Poisson Jumps

AbdulRahman Al-Hussein1(B) and Boulakhras Gherbal2

1 Department of Mathematics, College of Science, Qassim University,
P.O. Box 6644, Buraydah 51452, Saudi Arabia
alhusseinqu@hotmail.com, hsien@qu.edu.sa

2 Laboratory of Applied Mathematics, University of Mohamed Khider,
P.O. Box 145, 07000 Biskra, Algeria

Abstract. In this paper we study the stochastic maximum principle
for a control problem in infinite dimensions. This problem is governed
by a fully coupled forward-backward doubly stochastic differential equa-
tion (FBDSDE) driven by two cylindrical Wiener processes on separable
Hilbert spaces and a Poisson random measure. We allow the control vari-
able to enter in all coefficients appearing in this system.

Existence anduniqueness of the solutions of FBDSDEs and an extended
martingale representation theorem are provided as well.

Keywords: Wiener process · Poisson process · Forward-backward dou-
bly stochastic differential equation · Maximum principle

1 Introduction

Backward stochastic differential equations in infinite dimensions (BSDEs) were
studied by Hu and Peng in [6], Tessitore in [17] and Al-Hussein in [3]. Al-Hussein
proved in [3] the existence and uniqueness of the solutions to BSDEs in infinite
dimensions driven by genuine Q - Wiener processes (and also cylindrical Wiener
processes) on separable Hilbert spaces. He gave also a representation of the
solution of a system of semi-linear parabolic PDEs and found viscosity solutions
to such PDEs. In [4] sufficient conditions of optimality for backward stochastic
evolution equations on Hilbert spaces are derived. Several references in these
directions are recorded in [4]. These works give a motivational base to study the
maximum principle for optimality of forward-backward stochastic differential
equations (FBSDEs) in infinite dimensions. In fact, Yin and Wang [19], proved
the existence and uniqueness of the solutions of FBSDEs with Poisson jumps in
Hilbert space and with bounded random terminal times. Their work relies on

A. Al-Hussein—This work is supported by the Science College Research Center at
Qassim University, project no. SR-D-012-1958.
B. Gherbal—It is also supported by the Algerian PNR project no. 8/u 07/857.

c© IFIP International Federation for Information Processing 2014
C. Pötzsche et al. (Eds.): CSMO 2013, IFIP AICT 443, pp. 1–10, 2014.
DOI: 10.1007/978-3-662-45504-3 1



2 A. Al-Hussein and B. Gherbal

those in [16] and the method of continuation given in [7]. Developing applications
to such FBSDEs as for example in [3] are not yet well studied.

Let us now talk about more general equations. In finite dimensions, a fully
coupled forward-backward doubly stochastic differential equation (FBDSDE)
was introduced by Peng and Shi in [12]. Such equations are generalizations of
stochastic Hamilton systems. Al-Hussein and Gherbal in [5] studied a stochastic
control problem governed by a fully coupled multi-dimensional FBDSDE with
Poisson jumps.

In the present work, we shall work in infinite dimensions and try to derive
the stochastic maximum principle for optimal control of fully coupled FBDSDEs
with jumps; see (1) below. Moreover, existence and uniqueness of the solutions to
infinite dimensional FBDSDEs along with an extended martingale representation
theorem will be provided as well.

Applications of such equations can be gleaned from [5]. Our formulation of
these equations as well as cost functionals are given in abstract forms to allow the
possibility to work directly in the case of partial information on one hand and on
the other hand to cover most of the applications available in the literature. For
instance, a linear quadratic case can be given as a concrete and useful example.
For more details of this example, we refer the reader to [15] or [18]. In fact,
many applications of FBDSDE either in finance or to stochastic PDEs can be
developed in parallel to those provided in the literature.

Our results here can be generalized easily to the case of a stochastic relaxed
control problem governed by a nonlinear fully coupled FBDSDE with Poisson
jumps, which involves relaxed controls. We refer the reader to Ahmed et al. [1],
in this respect.

The paper is organized as follows. Notation and an extended martingale
representation theorem are recorded in Sect. 2. Section 3 is devoted to stating the
stochastic optimal control problem, which is governed by FBDSDE (1). Existence
and uniqueness of the solutions of FBDSDEs are included in Sect. 4. Finally, in
Sect. 5 we establish the stochastic maximum principle of our control problem.

2 Notation and an Extended Martingale Representation
Theorem

Let (Ω,F ,P) be a complete probability space. Let H1 and H2 be two separa-
ble Hilbert spaces. Assume that (Wt)t∈[0,T ] and (Bt)t∈[0,T ] are two cylindrical
Wiener processes on H1 and H2 respectively, where T is a fixed positive number.
Let η be a Poisson point process with values in a measurable space (Θ,B(Θ)).
We denote by ν(dθ) to the characteristic measure of η, which is assumed to be
a σ-finite measure on (Θ,B(Θ)), by N(dθ, dt) to the Poisson counting measure
induced by η with compensator ν(dθ)dt, and by Ñ(dθ, dt) = N(dθ, dt)−ν(dθ)dt
to the compensation of the jump measure N(·, ·) of η. We assume that the three
processes B,W and η are mutually independent.

For each t ∈ [0, T ], define

Ft := FW
t ∨ FB

t,T ∨ Fη
t ,
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where
FW

t := σ{l(Ws) : 0 ≤ s ≤ t, l ∈ H∗
1} ∨ N ,

FB
t,T := σ{l(Br) − l(Bt) : t ≤ r ≤ T, l ∈ H∗

2},

Fη
t := σ{ηs : 0 ≤ s ≤ t} ∨ N ,

and N is the collection of all P-null sets of F .
Note that {Ft}t∈[0,T ] does not constitute a filtration because it is not increas-

ing nor decreasing.

Let us set the following spaces of solutions.
For a separable Hilbert space E, let M2(0, T ;E) denote the set of jointly

measurable processes {Yt, t ∈ [0, T ]} taking values in E, and satisfy: Yt is Ft-
measurable for a.e. t ∈ [0, T ], and

E
[ ∫ T

0

|Yt|2E dt
]

< ∞.

Let L2
ν(E) be the set of B(Θ)-measurable mapping k with values in K such

that
|‖k‖| :=

[ ∫

Θ

|k(θ)|2E ν(dθ)
] 1

2 < ∞.

Denote by V2
η (0, T ;E) to the set of processes {Kt, t ∈ [0, T ]} that take their

values in L2
ν(K) and satisfy: Kt is Ft-measurable for a.e. t ∈ [0, T ], and

E
[∫ T

0

∫

Θ

|Kt(θ)|2E ν(dθ)dt
]

< ∞.

Finally, fixing a fixed separable Hilbert space K, we set

M
2 := M2 (0, T ;K) × M2 (0, T ;K) ×M2 (0, T ;L2(H2,K))

×M2 (0, T ;L2(H1,K)) × V2
η (0, T ;K) .

Here L2(E,K) denotes the space of all Hilbert-Schmidt operators from E into
K, for E = H1,H2, with inner product dented by || · ||. Then M

2 is a Hilbert
space with respect to the norm ‖·‖

M2 given, for Λ· = (x·, Y·, z·, Z·, ξ·) , by

‖Λ·‖2
M2

:= E
[ ∫ T

0

|xt|2 dt +

∫ T

0

|Yt|2 dt +

∫ T

0

‖zt‖2 dt +

∫ T

0

‖Zt‖2 dt +

∫ T

0

|‖ξt‖|2 dt
]
.

We close this section by providing an extended martingale representation
theorem.

Theorem 1. Let ρ and g be elements of L2(Ω,FT ,P;K) and M2(0, T ;
L2(H1,K)), respectively. If M is the martingale

M(t) = E [ ρ +
∫ T

0

g(t)
←−
dBt | Et ], 0 ≤ t ≤ T,
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where Et := FW
t ∨ FB

T ∨ Fη
t , then there exist unique elements (φ, κ) of M2(0, T ;

L2(H2,K)) × V2
η (0, T ;K) such that

M(t) = M(0) +
∫ t

0

φs dWs +
∫ t

0

∫

Θ

κs(θ)Ñ(dθ, ds).

Here the integral with respect to
←−
dB is a backward Itô integral, while the

integral with respect to dW is a standard forward Itô integral.
This result is known in finite dimensions (i.e. when all Hilbert spaces are

Euclidean spaces), as it can be seen easily by combining the well known martin-
gale representation theorem for Brownian motions and Poisson random measure
(e.g. see [10, Lemma 4.2] or [8]) and [11, Proposition 1.2]. The proof of this
infinite dimensional version can be gleaned by mimicking the ideas of proofs in
[11, Proposition 1.2], [2, Theorem 3.1] and [10, Lemma 4.2].

Such a theorem is in fact essential for finding solutions to BDSDEs and
decoupled (or coupled) FBDSDEs; see e.g. [9] for using martingale representation
theorem to show the existence of solutions to FBSDEs in continuous situations.

3 Statement of the Control Problem

Let O be a separable Hilbert space and U be a nonempty convex of O. We say
that v· : [0, T ]×Ω → O is admissible if v· ∈ M2(0, T ;O) and vt ∈ U a.e. t, a.s.
The set of admissible controls will be denoted by Uad. Consider the following
controlled K-valued fully coupled FBDSDE with jumps:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dxt = B(t, xt, Yt, zt, Zt, ξt, vt)dt + Σ(t, xt, Yt, zt, Zt, ξt, vt)dWt

+
∫

Θ
Φ(t, xt, Yt, zt, Zt, ξt, vt, θ)Ñ(dθ, dt) − zt

←−
dBt,

dYt = −F (t, xt, Yt, zt, Zt, ξt, vt)dt − G(t, xt, Yt, zt, Zt, ξt, vt)
←−
dBt

+ZtdWt +
∫

Θ
ξt(θ)Ñ(dθ, dt),

x0 = π ∈ K,YT = h(xT ), t ∈ (0, T ),
(1)

where the coefficients

B, F : Ω × [0, T ] × K × K × L2(H2; K) × L2(H1; K) × L2
ν(K) × O → K,

Σ, G : Ω × [0, T ] × K × K × L2(H2; K) × L2(H1; K) × L2
ν(K) × O → L2(H1; K),

Φ : Ω × [0, T ] × K × K × L2(H2; K) × L2(H1; K) × L2
ν(K) × O × Θ → K,

h : Ω × K → K,

are measurable and v· ∈ Uad. More conditions will be assumed in Sect. 3. The
mapping h is defined, for (ω, x) ∈ Ω × K, by h(ω, x) := c x + ζ(ω), where c 	= 0
is a constant and ζ is a fixed arbitrary element of L2(Ω,FT ,P;K).

Definition 1. A solution of (1) is a quintuple (x, Y, z, Z, ξ) of stochastic processes
such that (x, Y, z, Z, ξ) belongs to M

2 and satisfies the following two integral
equations:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

xt = π +
∫ t

0
B(s, xs, Ys, zs, Zs, ξs, vs)ds +

∫ t

0
Σ(s, xs, Ys, zs, Zs, ξs, vs)dWs

+
∫ t

0

∫
Θ

Φ(s, xs, Ys, zs, Zs, ξs, vs, θ)Ñ(dθ, ds) − ∫ t

0
zs

←−
dBs,

Yt = h(xT ) +
∫ T

t
F (s, xs, Ys, zs, Zs, ξs, vs)ds

+
∫ T

t
G(s, xs, Ys, zs, Zs, ξs, vs)

←−
dBs

− ∫ T

t
ZsdWs − ∫ T

t

∫
Θ

ξs(θ)Ñ(dθ, ds), t ∈ [0, T ].

In Sect. 4 we shall discuss the existence and uniqueness of (1).
Let us now introduce a cost functional :

J(v·) := E
[ ∫ T

0

�(t, xt, Yt, zt, Zt, ξt, vt)dt + ϕ(xT ) + ψ(Y0)
]
, v· ∈ Uad, (2)

with

ϕ,ψ : H → R,

� : Ω × [0, T ] × K × K × L2(H2;K) × L2(H1;K) × L2
ν(K) × O → R,

being measurable functions such that (2) is defined. See assumption (A3) below
for precise assumptions.

The control problem of system (1) is to minimize J over Uad. Thus an admis-
sible control u· is called an optimal control if

J(u·) = inf
v·∈Uad

J(v·). (3)

In this case we shall say that (x, Y, z, Z, ξ, u·) is an optimal solution of the control
problem (1)–(3).

Further details on this control problem will be the main purpose of Sect. 5.
We discuss next the existence and uniqueness of (1).

4 Forward-Backward Doubly Stochastic Differential
Equations

We shall be interested here in the existence and uniqueness of the solution to
FBDSDE (1). Keeping the notations in Sect. 3 denote

A(t,X, v) = (−F,B,−G,Σ,Φ)(t,X, v)

and

〈A,X〉 = −〈x, F 〉K + 〈Y,B〉K − 〈z,G〉L2(H2;K) + 〈Z,Σ〉L2(H1;K) + 〈ξ, Φ〉L2
ν(K) ,

for X = (x, Y, z, Z, ξ) ∈ K × K × L2(H2;K) × L2(H1;K) × L2
ν(K) and (t, v) ∈

[0, T ]×O. The following three assumptions on the coefficients of system (1) and
(2) are our main assumptions.
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(A1) ∀X = (x, Y, z, Z, ξ), X̄ = (x̄, Ȳ , z̄, Z̄, ξ̄) ∈ K × K × L2(H2;K) ×
L2(H1;K) × L2

ν(K), ∀ t ∈ [0, T ], ∀ v ∈ O,

〈
A(t,X, v) − A(t, X̄, v),X − X̄

〉 ≤ −λ(|x − x̄|2K +
∣
∣Y − Ȳ

∣
∣2
K

+‖z − z̄‖2L2(H2;K) +
∥
∥Z − Z̄

∥
∥2

L2(H1;K)
+

∥
∥ξ − ξ̄

∥
∥2

L2
ν(K)

),

and
c > 0,

or
(A1)’

〈
A(t,X, v) − A(t, X̄, v),X − X̄

〉 ≥ λ(|x − x̄|2K +
∣
∣Y − Ȳ

∣
∣2
K

+‖z − z̄‖2L2(H2;K) +
∥
∥Z − Z̄

∥
∥2

L2(H1;K)
+

∥
∥ξ − ξ̄

∥
∥2

L2
ν(K)

),

and

c < 0,

for some λ > 0.
(A2) For each X ∈ K × K × L2(H2;K) × L2(H1;K) × L2

ν(K) and v ∈ O,
we have A(·,X, v) ∈ M

2.
(A3) We have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) F, B, G, Σ, Φ, � are continuously differentiable with respect to (x, Y, z, Z, ξ),

also ϕ and ψ are continuously differentiable with respect to x and Y,

respectively,

(ii) the derivatives of F, B, G, Σ, Φ with respect to the above arguments are

bounded,

(iii) the derivatives of � are bounded by C(1 + |x| + |Y | + ‖z‖ + ‖Z‖ + |‖ξ‖|),
(iv)ϕx and ψY are bounded by C (1 + |x|) and C (1 + |Y |), respectively,

for some constant C > 0.

Remark 1. The condition c > 0 in (A1) guarantees the following monotonicity
condition of the mapping h:

〈h(x) − h(x̄), x − x̄〉K ≥ c |x − x̄|2K , ∀ x, x̄ ∈ K.

A similar thing happens also for the case c < 0 in (A1)’.

Theorem 2. If (A1)–(A3) (or (A1)’, (A2)–(A3)) hold, then there exists a
unique solution (x, Y, z, Z, ξ) of the FBDSDE (1).

By making use of the extended martingale representation theorem (Theorem 1),
the proof is standard and can be achieved directly by following the outline of
the proofs in [13,14]. So we omit it.

This theorem in its infinite dimensional setting is new. In fact, as far as
know, this is the first appearance of such an infinite dimensional result as well
as Theorem 1.
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5 Stochastic Maximum Principle

To derive the maximum principle we define the Hamiltonian H from [0, T ] ×
Ω × K × K × L2(H2;K) × L2(H1;K) × L2

ν(K) × O × K × K × L2(H2;K) ×
L2(H1;K) × L2

ν(K) to R by the formula:

H(t, x, Y, z, Z, ξ, v, p, P, q,Q, Υ ) := −〈p, F (t, x, Y, z, Z, ξ, v)〉K

+ 〈P,B(t, x, Y, z, Z, ξ, v)〉K − 〈q,G(t, x, Y, z, Z, ξ, v)〉L2(H2;K)

+ 〈Q,Σ(t, x, Y, z, Z, ξ, v)〉L2(H1;K) + �(t, x, Y, z, Z, ξ, v)

+
∫

Θ

〈
Υ (θ̂), Φ(t, x, Y, z, Z, ξ, v, θ̂)

〉

L2
ν(K)

ν(dθ̂). (4)

Theorem 3. Let v· be an arbitrary element of Uad. Assume (A1)–(A3). Let
{(yt, Yt, zt, Zt, kt), t ∈ [0, T ]} be the corresponding solution of (1). Then there
exists a unique solution (p, P, q,Q, Υ ) of the following adjoint equations of (1):

⎧
⎪⎨

⎪⎩

dpt = −HY (t)dt − HZdWt − qt
←−
dBt − ∫

Θ
Hξ(t)Ñ(dθ, dt),

dPt = −Hx(t)dt − Hz(t)
←−
dBt + QtdWt +

∫
Θ

Υt(θ)Ñ(dθ, dt),
p0 = −ψY (Y0), PT = − c pT + ϕx(xT ),

(5)

where Hx(t) is the gradient ∇xH(t, x, Yt, zt, Zt, ξt, vt, pt, Pt, qt, Qt, Υt) ∈ K, . . .
etc.

Proof. Thanks to assumptions (A1)–(A3) this linear FBDSDE satisfy (A1)’,
(A2) and (A3). In fact the monotonicity condition follows from the definition of
Gâteaux derivatives (as limits) and the fact that the corresponding mappings
satisfy originally the monotonicity condition in (A1). Hence the result follows
from Theorem 2.

We are now ready to state the stochastic maximum principle for the optimal
control problem (1)–(3).

Theorem 4. Suppose that (A1)–(A3) hold. Given u· ∈ Uad, let (xu· , Y u· , zu· ,
Zu· , ξu·) and (pu· , Pu· , qu· , Qu· , Υu·) be the corresponding solutions of FBDSDEs
(1) and (5), respectively. Assume that the following assumptions hold.
(i) ϕ and ψ are convex;
(ii) For all t ∈ [0, T ], P - a.s., the function H(t, ·, ·, ·, ·, ·, ·, pu· , Pu· , qu· , Qu· , Υu·)
is convex;
(iii) We have

H(t, xu·
t , Y u·

t , zu·
t , Zu·

t , ξu·
t , ut, p

u·
t , Pu·

t , qu·
t , Qu·

t , Υu·
t )

= inf
v∈U

H(t, xu·
t , Y u·

t , zu·
t , Zu·

t , ξu·
t , v, pu·

t , Pu·
t , qu·

t , Qu·
t , Υu·

t ), (6)

for a.e. t, P - a.s.
Then (xu· , Y u· , zu· , Zu· , ξu· , u·) is an optimal solution of the control problem

(1)–(3).
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Proof. Let v· be an arbitrary element of Uad. With the help of assumptions (A1)–
(A3) let, by using of Theorem 2, (xv· , Y v· , zv· , Zv· , ξv·) be the corresponding
solution of FBDSDE (1). Applying (2), the convexity of ϕ and ψ, the adjoint
equations (5) and system (1) it follows that

J(v·) − J(u·) ≥ E
[ 〈Pu·

T + c pu·
T , xv·

T − xu·
T 〉 ] − E

[ 〈pu·
0 , Y v·

0 − Y u·
0 〉 ]

+E
[ ∫ T

0

(
�(t, xv·

t , Y v·
t , zv·

t , Zv·
t , ξv·

t , vt) − �(t, xu·
t , Y u·

t , zu·
t , Zu·

t , ξu·
t , ut)

)
dt

]
.(7)

Next, by applying a suitable Itô’s formula for infinite dimensional SDEs driven by
Wiener processes on Hilbert spaces and Poisson measures to compute
〈pu·

t , Y v·
t − Y u·

t 〉K and 〈Pu·
t , xv·

t − xu·
t 〉K , we derive with the help of assumptions

(A2) and (A3) that

E
[ 〈Pu·

T , xv· − xu·
T 〉 ] − E

[ 〈pu·
0 , Y v·

0 − Y u·
0 〉 ]

= −E
[ 〈pu·

T , Y v·
T − Y u·

T 〉 ]

− E
[ ∫ T

0

〈pu·
t , F (t, xv·

t , Y v·
t , zv·

t , Zv·
t , ξv·

t , vt) − F (t, xu·
t , Y u·

t , zu·
t , Zu·

t , ξu·
t , ut)〉 dt

]

+ E
[ ∫ T

0

〈HY (t, xu·
t , Y u·

t , zu·
t , Zu·

t , ξu·
t , ut, p

u·
t , Pu·

t , qu·
t , Qu·

t , Υu·
t ), Y v·

t − Y u·
t 〉 dt

]

− E
[ ∫ T

0

〈qu·
t , G(t, xv·

t , Y v·
t , zv·

t , Zv·
t , ξv·

t , vt) − G(t, xu·
t , Y u·

t , zu·
t , Zu·

t , ξu·
t , ut)〉 dt

]

+ E
[ ∫ T

0

〈HZ(t, xu·
t , Y u·

t , zu·
t , Zu·

t , ξu·
t , ut, p

u·
t , Pu·

t , qu·
t , Qu·

t , Υu·
t ), Zv·

t − Zu·
t 〉 dt

]

+ E
[ ∫ T

0

∫

Θ

〈Hξ(t, xu·
t , Y u·

t , zu·
t , Zu·

t , ξu·
t , ut, p

u·
t , Pu·

t , qu·
t , Qu·

t , Υu·
t ),

ξv·
t (θ) − ξu·

t (θ)〉ν(dθ)dt
]

+ E
[ ∫ T

0

〈Pu·
t , B(t, xv·

t , Y v·
t , zv·

t , Zv·
t , ξv·

t , vt)

−B(t, xu·
t , Y u·

t , zu·
t , Zu·

t , ξu·
t , ut)〉dt

]

+E
[ ∫ T

0

〈Hx(t, xu·
t , Y u·

t , zu·
t , Zu·

t , ξu·
t , ut, p

u·
t , Pu·

t , qu·
t , Qu·

t , Υu·
t ), xv·

t − xu·
t 〉 dt

]

+E
[ ∫ T

0

〈Hz(t, xu·
t , Y u·

t , zu·
t , Zu·

t , ξu·
t , ut, p

u·
t , Pu·

t , qu·
t , Qu·

t , Υu·
t ), zv·

t − zu·
t 〉 dt

]

+E
[ ∫ T

0

〈Qu·
t , Σ(t, xv·

t , Y v·
t , zv·

t , Zv·
t , ξv·

t , vt) − Σ(t, xu·
t , Y u·

t , zu·
t , Zu·

t , ξu·
t , ut)〉 dt

]

+E
[ ∫ T

0

∫

Θ

〈Υu·
t (θ), Φ(t, xv·

t , Y v·
t , zv·

t , Zv·
t , ξv·

t , vt, θ)

−Φ(t, xu·
t , Y u·

t , zu·
t , Zu·

t , ξu·
t , ut, θ)〉ν(dθ)dt

]
. (8)
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On the hand, from the formula h(ω, x) := c x + ξ(ω), x ∈ K, one gets easily
the cancelation:

E
[ 〈c pu·

T , xv·
T − xu·

T 〉 ] − E
[ 〈pu·

T , Y v·
T − Y u·

T 〉 ]
= 0. (9)

Therefore, by applying (8) and (9) in (7), using the formula of H in (4) and then
the convexity of H in condition (ii) we obtain

J(v·) − J(u·)

≥ E
[ ∫ T

0

〈Hv(t, xu·
t , Y u·

t , zu·
t , Zu·

t , ξu·
t , ut, p

u·
t , Pu·

t , qu·
t , Qu·

t , Υu·
t ), vt − ut〉O dt

]
.

(10)

But the minimum condition (iii) yields

〈Hv(t, xu·
t , Y u·

t , zu·
t , Zu·

t , ξu·
t , ut, p

u·
t , Pu·

t , qu·
t , Qu·

t , Υu·
t ), vt − ut〉O ≥ 0.

Consequently (10) becomes

J(v·) − J(u·) ≥ 0.

Since v· is an arbitrary element of Uad, then u· is an optimal control, and so the
proof is complete.

Remark 2. Condition (A1) assumed in Theorem 4 is only needed to guarantee
the existence and uniqueness of the solutions of (1) and (5), and so if one can
get such solutions without assuming (A1) there will not any necessity to assume
it in advance in this theorem.
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Abstract. This article introduces a block preconditioner to solve large-
scale block structured saddle point systems using a Krylov-based method.
Such saddle point systems arise, e.g., in the Riccati-based feedback stabi-
lization approach for multi-field flow problems as discussed in [2]. Combin-
ing well known approximation methods like a least-squares commutator
approach for the Navier-Stokes Schur complement, an algebraic multigrid
method, and a Chebyshev-Semi-Iteration, an efficient preconditioner is
derived and tested for different parameter sets by using a simplified reactor
model that describes the spread concentration of a reactive species forced
by an incompressible velocity field.

Keywords: Coupled flow control · Large-scale saddle point systems ·
Preconditioned GMRES · Least-squares commutator approach · Alge-
braic multigrid · Chebyshev-Semi-Iteration

1 Introduction

In this paper we investigate the solution of large-scale saddle point systems aris-
ing in control problems for coupled partial differential equations (PDEs). The
starting points are recent publications concerning the boundary feedback stabi-
lization of non-coupled flows like the linear Stokes flow in [3] and the non-linear
Navier-Stokes flow in [1]. The analytic approach for this feedback stabilization
is given by Raymond in, e.g., [13].

Using the projection idea proposed by Heinkenschloss et al. [8], Benner et al.
[1,3] show that the solution of certain saddle point systems is the key ingredient
to ensure that the numerical solution lies on the correct solution manifold, i.e.,
the space of discretely divergence-free velocity fields, without performing an
explicit projection.

Applying these ideas to a coupled flow problem, namely the Navier-Stokes
equations combined with a diffusion-convection equation, leads to saddle point
systems with a more complicated block structure [2]. Solving these systems effi-
ciently requires the use of appropriate preconditioners. This paper investigates
c© IFIP International Federation for Information Processing 2014
C. Pötzsche et al. (Eds.): CSMO 2013, IFIP AICT 443, pp. 11–20, 2014.
DOI: 10.1007/978-3-662-45504-3 2
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an efficient iterative solution strategy via the use of preconditioned Krylov sub-
space methods based on the framework derived in [3]. Here we consider the
full feedback system for the coupled multi-field flow problem, while in [3], only
the linear Stokes case was treated without coupling to another field equation.
Moreover, this paper complements [2] in the sense that there, we have focused
on presenting results on the convergence of the Newton-ADI method for solv-
ing the algebraic Riccati equation determining the stabilizing feedback control
for the coupled system, where the saddle point problems in the innermost step
of the Newton-ADI iteration were solved by sparse direct methods, while here,
we study preconditioned iterative solvers for this step.

The remainder of this paper is organized as follows. Section 2 briefly recalls
the feedback stabilization approach for multi-field flow problems from [2] that
leads to large-scale saddle point systems. Afterwards, we discuss properties of
these saddle point systems to derive a suitable preconditioner in Sect. 3. Section 4
shows numerical results before we conclude the paper and give a short outlook
to further investigations in Sect. 5.

2 Derivation of Saddle Point Systems

The derivation of the block structured saddle point systems in [2] starts with
the linearized coupled flow problem defined for t ∈ [0,∞) and x ∈ Ω ⊂ R

2. The
linearized Navier-Stokes equations that describe, up to first order, the difference
between actual and desired velocity and pressure are given as

∂

∂t
z − 1

Re
Δz + (w · ∇)z + (z · ∇)w + ∇p = f l,

div z = 0,
on [0,∞) × Ω. (1)

They are then coupled via the velocity field z(t,x) with the linearized diffusion-
convection equation

∂

∂t
cz − 1

ReSc
Δcz + (w · ∇)cz + (z · ∇)cw = 0, on [0,∞) × Ω (2)

that describes the concentration of a reactive species denoted by cz(t,x). The
stationary linearization points w(x) for the velocity and cw(x) for the concen-
tration are assumed to be given. The equations are scaled with the Reynolds
number Re and the Schmidt number Sc. Using the mixed Taylor-Hood finite
elements [9] for the velocity and pressure in Eq. (1) as well as linear ansatz
functions for the concentration in Eq. (2), we end up with a system of discrete
differential-algebraic equations (DAE) that can be written as the control system:

⎡

⎣
Mz 0 0
0 0 0
0 0 Mc

⎤

⎦ d

dt

⎡

⎣
z
p
c

⎤

⎦ =

⎡

⎣
Az G 0
GT 0 0

−R 0 Ac

⎤

⎦

⎡

⎣
z
p
c

⎤

⎦ +

⎡

⎣
Bz

0
0

⎤

⎦u, (3a)

y =
[
0 0 Cc

]
⎡

⎣
z
p
c

⎤

⎦ (3b)
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with the first block row for velocity (of dimension nz), the second row for pressure
(of dimension np), and the third row for concentration (of dimension nc) [2].

The matrix pencil
( ⎡

⎣
Az G 0
GT 0 0

−R 0 Ac

⎤

⎦

︸ ︷︷ ︸
A

,

⎡

⎣
Mz 0 0
0 0 0
0 0 Mc

⎤

⎦

︸ ︷︷ ︸
M

)

is of dimension n×n with n = nz +nc +np and has 2np infinite eigenvalues [5].
In [2], a linear-quadratic regulator (LQR) approach is applied to system (3)

for determining the stabilizing control function u. The solution of this LQR
problem is a linear feedback control u(t) = K(z(t),p(t), c(t)), determined via
the solution of an algebraic Riccati equation (ARE) defined on the subspace of
discretely divergence-free vector fields. The resulting ARE is then solved using a
Newton-ADI algorithm. This method yields a threefold nested iteration. In the
innermost loop, saddle point systems of the form

⎡

⎣
AT

z + qiMz G −RT

GT 0 0
0 0 AT

c + qiMc

⎤

⎦

︸ ︷︷ ︸
=AT+qiM=:Fi

⎡

⎣
Λz

Λp

Λc

⎤

⎦

︸ ︷︷ ︸
Λ

=

⎡

⎣
Ỹz

0
Ỹc

⎤

⎦ .

︸ ︷︷ ︸
Y

(4)

have to be solved for certain ADI shifts qi ∈ C
− and a block right hand side Y.

The whole nested iteration is given in [2, Algorithm 1] and is omitted here due
to space constraints.

3 Preconditioned Iterative Solvers for Block Structured
Saddle Point Systems

The use of direct solvers in (4) is only suitable for moderate problem sizes and
two-dimensional problems. Although iterative methods can handle much larger
systems, their performance will deteriorate if the mesh-size decreases. To avoid
this, a suitable preconditioner Pi ∈ C

n×n is introduced such that

P−1
i FiΛ = P−1

i Y

is solved instead of (4) (see [7,16]). Before we derive a suitable preconditioner Pi

we need to describe the properties of the saddle point system and their influence
on the chosen preconditioner.

3.1 Properties

The matrices Mz,Mc are symmetric and positive definite, G,R are of full rank,
and the ADI shift qi ∈ C

− is contained in the convex hull of the finite spectrum of
(A,M). The shifted system matrix Fi is indefinite ∀qi ∈ C

−. Due to the different
qi, the matrix Fi changes in each ADI step and, therefore, the preconditioner has
to be adapted in each ADI step as well. Nevertheless, for the remainder of this
section we assume a fixed ADI shift qi = q to omit the index i if it is obvious.
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3.2 Derivation of Block Preconditioner

Adapting the ideas from [3, Sect. 3.2] we consider

F =

⎡

⎣
Fz G −RT

GT 0 0
0 0 Fc

⎤

⎦ =
[
FNSE −R̃T

0 Fc

]
with

Fz := AT
z + qMz,

Fc := AT
c + qMc,

R̃ :=
[
R 0

]
,

(5)

and FNSE as the saddle point system for the non-coupled Navier-Stokes flow
as it is used in [1]. Using the preconditioner PNSE from [3], we define a block
preconditioner for the use with GMRES [17] to solve with the block structured
saddle point system (5) as follows:

P =
[
PNSE −R̃T

0 Pc

]
=

⎡

⎣
Pz 0 −RT

GT −PSC 0
0 0 Pc

⎤

⎦

⇒ P−1 =

⎡

⎣
P−1

z 0 P−1
z RTP−1

c

P−1
SCGTP−1

z −P−1
SC P−1

SCGTP−1
z RTP−1

c

0 0 P−1
c

⎤

⎦ .

In contrast to the preconditioner derived in [3], we cannot achieve a block lower
triangular matrix due to the coupling matrix R. Applying P−1 to F yields

P−1F =[ P−1
z Fz P−1

z G −P−1
z RT + P−1

z RTP−1
c Fc

P−1
SCGTP−1

z Fz − P−1
SCGT P−1

SCGTP−1
z G −P−1

SCGTP−1
z RT + P−1

SCGTP−1
z RTP−1

c Fc

0 0 P−1
c Fc

]

(6)

If one assumes Pz = Fz, Pc = Fc, and PSC = GTF−1
z G as ideal approximations

in (6), this leads to
⎡

⎣
Iz F−1

z G −F−1
z RT + F−1

z RT

P−1
SCGT − P−1

SCGT P−1
SCGTF−1

z G −P−1
SCGTF−1

z RT + P−1
SCGTF−1

z RT

0 0 Ic

⎤

⎦

=

⎡

⎣
Iz ∗ 0
0 Ip 0
0 0 Ic

⎤

⎦

and our iterative method would converge within one step. The goal is to find
good approximations for Pz, Pc, and PSC that can be evaluated fast and still
cluster the eigenvalues in a suitable way such that our iterative solver shows fast
convergence [7]. Instead of calculating the inverse P−1 to apply the precondi-
tioner P, we consider the solution of a linear system

⎡

⎣
Pz 0 −RT

GT −PSC 0
0 0 Pc

⎤

⎦

⎡

⎣
xz

xp

xc

⎤

⎦ =

⎡

⎣
bz
bp
bc

⎤

⎦ (7)
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that can be solved in three steps:

Step I: xc = P−1
c bc, (8a)

Step II: xz = P−1
z (RTxc + bz), (8b)

Step III: xp = P−1
SC(GTxz − bp). (8c)

In conclusion, the coupling matrix R only leads to a matrix-vector multiplication.
In steps I and II, one needs to solve with the shifted velocity and concentration
system matrices as defined in (5). For both steps, an algebraic multigrid (AMG)
method can be used as it is described below. But first, we discuss the more
challenging step III that is handled as follows.

3.3 Approximation Methods

Schur Complement Approximation. PSC is an approximation of the Navier-
Stokes Schur complement SC := GTF−1

z G ∈ R
np×np . Unfortunately, the matrix

SC would be a dense matrix that includes the inverse of Fz. To avoid the use of
this matrix, we follow the approach in [3,18] and use a slightly modified variant
of the least squares commutator approach as it is described in [7, Sect. 8.2].
Namely, we consider the shifted Oseen operator in the velocity space

Fz = − 1
Re

∇2 + w · ∇ + qI.

Note that it is common practice to omit the reaction term (z ·∇)w that appears
in the linearized Navier-Stokes equations to derive preconditioners [7, Sect. 8].
Similar to [7, Sect. 8.2] and [6], we suppose that there exists an analogous oper-
ator on the pressure space defined as

Fp = (− 1
Re

∇2 + w · ∇ + qI)p.

The least squares commutator of the shifted Oseen operator with the gradient
operator is defined as

E = (F)∇ − ∇(Fp)

and is supposed to become small in some sense [7]. Using the discrete versions
of the operators, we end up with

E = (M−1
z Fz)M−1

z G − M−1
z G(M−1

p Fp)

with Mp the mass matrix and Fp = AT
p + qMp the shifted system matrix, both

defined on the pressure space. Premultiplying this by GTF−1
z Mz and postmul-

tiplying by F−1
p Mp yields [3]

GTM−1
z GF−1

p Mp ≈ GTF−1
z G = SC.
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The large and dense matrix GTM−1
z G cannot be used explicitly, but it is shown

in [7, Sect. 5.5.1] that this matrix is spectrally equivalent to the Laplacian Sp

defined on the pressure space for an inf-sup stable discretization and an inflow-
outflow problem [7, Sect. 8.2], as it is considered in this paper. Finally, we obtain

PSC ≈ SpF−1
p Mp ⇒ P−1

SC ≈ M−1
p FpS−1

p .

In [4] the authors use a similar approach for the Navier-Stokes equations. In
summary, the application of P−1

SC requires to solve with Sp (step IIIa), multiply
with Fp (step IIIb), and solve with Mp (step IIIc). The step IIIa can be solved
with an AMG method, similar to the steps I and II.

Algebraic Multigrid. As it is described above, the steps I (8a), II (8b) and IIIa
are solved using an AMG method [14]. Due to the possibly complex ADI shifts
q in (8a) and (8b), we use the AGMG package developed by the group of Y.
Notay [10–12]. In all three cases we use the MATLAB R©-based implementation
to solve systems of the form

Fx = b

with a sparse matrix F ∈ {Fz, Fc, Sp}. Details about the used parameters for the
function agmg are discussed in Subsect. 4.2. For more details about the internally
used methods and the implemented syntax we refer the reader to [11]. Although
the AGMG method can handle complex arithmetic, it needs significantly more
steps to converge to the desired tolerance. Additionally, we note that agmg is a
non-linear function, such that one should use a flexible iterative method, e.g.,
FGMRES [15]. However, our numerical experiments do not show any drawbacks
using a standard GMRES implementation.

Chebyshev-Semi-Iteration. Although the solution of step IIIc with the symmetric
positive definite mass matrix Mp is relatively cheap, this can still be accelerated
by using the Chebyshev-Semi-Iteration as it is described, e.g., in [18]. Numerical
tests showed that one needs only 4−6 steps to obtain a suitable result for the
preconditioner, which results in a speedup that is shown in Subsect. 4.2.

The next section depicts selected results to show the performance of the
preconditioned iterative method.

4 Numerical Examples

To test the efficiency of the preconditioned iterative method, the same data and
configurations as in [2] are used. After refining the initial triangulation of the
reactor model in Fig. 1, we end up with the variable dimensions as depicted in
Table 1b. Furthermore, we define five parameter sets for different combinations
of Reynolds and Schmidt numbers as shown in Table 1a. We use the MATLAB
implementation of GMRES [17] to solve the saddle point systems (4) for selected
ADI shifts qi that appear during the Newton-ADI iteration. Each qi is used for
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Fig. 1. Initial triangulation of the reactor model with coordinates and boundary con-
ditions [2].

Table 1. Test parameter settings.

Set Re Sc

I 1 1
II 1 10
III 10 1
IV 1 100
V 10 10

(a) Different parameter settings.

Variable Dimension

nz 9 092
np 1 276
nc 1 187

n 11 555

(b) Different dimensions of FE space.

three ADI steps with four right hand sides every time. Thereby, the number of
GMRES steps and the CPU times are measured and arithmetically averaged.
The preconditioner P is evaluated as a MATLAB function handle that solves
the linear system (7) using the steps (8). The GMRES tolerance is set to 10−10

to ensure the same convergence of the ADI iteration that a direct solve would
imply [3]. Although a few complex ADI-shifts qi appear for each parameter set
during the Newton-ADI process, the pictures only show the real parts of qi.

All computations were executed in MATLAB R2012a on a 64-bit server with
2×Intel R© Xeon R© X5650 @2.67 GHz, 12 Cores (6 Cores per CPU) and 48 GB
main memory available.

4.1 Influence of ADI Shifts and Reynolds and Schmidt Numbers

The influence of the variation of the Reynolds and Schmidt numbers as given in
Table 1 is depicted in Fig. 2. To obtain the best approximations for the precon-
ditioning steps (8a)–(8c), a direct solver is used to solve with Fz, Fc, and Sp.
It can be observed that for ADI shifts −105 < Re (qi) < −101, between 20–25
GMRES steps are needed. As soon as the absolute value of qi gets smaller then
10 the number of steps increases. This is a natural behavior, because the influ-
ence of the mass matrices Mz and Mp vanishes. Nevertheless, GMRES converges
within at most 40–80 steps for all parameter configurations. An empirical test to
set: qi = −10 ∀|qi| < 10, during the Newton-ADI process showed similar ADI
convergence behavior as for the original shift selection, without the drawback of
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Fig. 2. Average number of GMRES steps for a representative selection of ADI shifts
from the Newton-ADI iteration for the configuration sets in Table 1a.

higher GMRES cost for certain shifts. In summary, the derived preconditioner is
suitable concerning different Reynolds and Schmidt numbers, as well as different
ADI shifts.

4.2 Approximations Using AMG and Chebyshev-Semi-Iteration

As described in Subsect. 3.3, the different preconditioning steps should be solved
by an easy to evaluate approximation that is accurate enough to ensure the
convergence of GMRES, but avoids the use of sparse factorizations of large-scale
sparse matrices. We exchanged the direct solver by its approximation step by
step and depict the results in Fig. 3. At first, we use the MATLAB based function
agmg [11] to solve with Fz and Fc in (8b) and (8a) with an accuracy of 10−10.
Depending on the used ADI shift, the function agmg needed 1–30 steps. Thus, the
times to solve the whole saddle point system with the same number of GMRES
steps increased a little bit compared to the direct solver. At second, we approx-
imately solved with Sp in step IIIa using agmg as a preconditioner. This was
sufficient enough to achieve the GMRES accuracy and, furthermore, decreased
the time. Finally, we applied a Chebyshev-Semi-Iteration to approximately solve
with Mp in step IIIc. The obtained speedup finally decreased the times below
the time used by the direct solver in each step without the loss of any accuracy
in GMRES. Due to the above addressed problems with complex ADI shifts in
agmg, we restrict our comparison in Fig. 3 to a selection of real ADI shifts. The
selection has been performed such that the span of all ADI shifts appearing in
the entire Newton-ADI process is covered. Where those shifts clustered we only
chose one representative per cluster.

At the end of this section it should be noted that the suggested preconditioned
GMRES method for the considered class of saddle point problems would show
its full strength in comparison to a direct solver when using finer discretizations,
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Fig. 3. Average time to solve Eq. (4) with GMRES for a representative selection of
real ADI shifts from the Newton-ADI iteration for different approximations of the
preconditioning steps (8).

leading to larger dimensions, and in particular when moving to 3D problems.
This will be addressed in future work.

5 Conclusions and Outlook

We have recalled the formation of block structured saddle point systems as
they arise within the Riccati-based feedback stabilization approach for coupled
flow problems that avoids any explicit projection [2]. We were able to extend
the results from [3], developed for uncoupled Stokes flow, to the coupled flow
described by incompressible Navier-Stokes and a diffusion-convection equation.
For that reason, the least-squares commutator approach in [7] has been modi-
fied to approximate the shifted Navier-Stokes Schur complement. Exploiting the
block structure of the arising preconditioner guarantees a fast evaluation within
GMRESĖach of the blocks can either be approximated by an AMG method
or a Chebyshev-Semi-Iteration. Several numerical experiments showed that the
derived preconditioning method is able to solve the arising saddle point systems
efficiently independent of the different parameter settings. Only the use of com-
plex ADI shifts during the Newton-ADI process is not yet optimally covered by
this approach and will be investigated in the future.
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1. Bänsch, E., Benner, P., Saak, J., Weichelt, H.K.: Riccati-based boundary feedback
stabilization of incompressible Navier-Stokes flow. Preprint SPP1253-154, DFG-
SPP1253 (2013)

2. Bänsch, E., Benner, P., Saak, J., Weichelt, H.K.: Optimal control-based feedback
stabilization of multi-field flow problems. In: Leugering, G., Benner, P., Engell, S.,
Griewank, A., Harbrecht, H., Hinze, M., Rannacher, R., Ulbrich, S. (eds.) Trends
in PDE Constrained Optimization. International Series of Numerical Mathematics.
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Abstract. This paper considers the optimal control of two small stochas-
tic models of the Slovenian economy applying the OPTCON algorithm.
OPTCON determines approximate numerical solutions to optimum con-
trolproblems fornonlinear stochastic systemsand isparticularlyapplicable
to econometricmodels.We compare the results of applying theOPTCON2
version of the algorithm to the nonlinear model SLOVNL and the linear
modelSLOVL.Theresults forbothmodelsare similar,withopen-loop feed-
back controls giving better results on average but withmore ‘outliers’ than
open-loop controls.

Keywords: Optimal control · Stochastic control · Algorithms · Policy
applications · Nonlinear models

1 Introduction

Optimum control theory has been applied in many areas of science, from engi-
neering to economics. An algorithm that provides (approximate) solutions to
optimum control problems for nonlinear dynamic systems with different kinds of
stochastics is OPTCON, which was first introduced in [3]. An extension has been
developed in [2], which includes passive learning or open-loop feedback control
policies.

OPTCON was implemented in MATLAB and can deliver numerical solutions
to problems with real economic data. Two such applications are described and
analyzed in this paper. We develop two macroeconomic models of the Slovenian
economy, a nonlinear model called SLOVNL and a (comparable) linear model
called SLOVL. The algorithm with both open-loop and open-loop feedback
strategies is applied to these models and the influence of the control scheme
and the nonlinearity of the model on the optimum solution is investigated in
some optimization experiments.

2 The Problem

The OPTCON algorithm is designed to provide approximate solutions to opti-
mum control problems with a quadratic objective function (a loss function to
c© IFIP International Federation for Information Processing 2014
C. Pötzsche et al. (Eds.): CSMO 2013, IFIP AICT 443, pp. 21–30, 2014.
DOI: 10.1007/978-3-662-45504-3 3
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be minimized) and a nonlinear multivariate discrete-time dynamic system under
additive and parameter uncertainties. The intertemporal objective function is
formulated in quadratic tracking form, which is quite often used in applications
of optimum control theory to econometric models. It can be written as

J = E

[
T∑

t=1

Lt(xt, ut)

]

, (1)

with

Lt(xt, ut) =
1
2

(
xt − x̃t

ut − ũt

)′
Wt

(
xt − x̃t

ut − ũt

)
. (2)

xt is an n-dimensional vector of state variables that describes the state of the
economic system at any point in time t. ut is an m-dimensional vector of control
variables, x̃t ∈ Rn and ũt ∈ Rm are given ‘ideal’ (desired, target) levels of the
state and control variables respectively. T denotes the terminal time period of
the finite planning horizon. Wt is an ((n + m) × (n + m)) matrix, specifying the
relative weights of the state and control variables in the objective function. Wt

(or W ) is symmetric.
The dynamic system of nonlinear difference equations has the form

xt = f(xt−1, xt, ut, θ, zt) + εt, t = 1, ..., T, (3)

where θ is a p-dimensional vector of parameters the values of which are assumed
to be constant but unknown to the decision maker (parameter uncertainty),
zt denotes an l-dimensional vector of non-controlled exogenous variables, and
εt is an n-dimensional vector of additive disturbances (system error). θ and εt

are assumed to be independent random vectors with expectations θ̂ and On

respectively and covariance matrices Σθθ and Σεε respectively. f is a vector-
valued function fulfilling some differentiability assumptions, f i(.....), is the i-th
component of f(.....), i = 1, ..., n.

3 The Optimum Control Algorithm

The OPTCON1 algorithm [3] determines policies belonging to the class of open-
loop controls. It either ignores the stochastics of the system altogether or assumes
the stochastics to be given once and for all at the beginning of the planning
horizon. The nonlinearity problem is tackled iteratively, starting with a tentative
path of state and control variables. The tentative path of the control variables is
given for the first iteration. In order to find the corresponding tentative path for
the state variables, the nonlinear system is solved numerically. After the tentative
path is found, the iterative approximation of the optimal solution starts. The
solution is sought from one time path to another until the algorithm converges
or the maximal number of iterations is reached. During this search the system
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is linearized around the previous iteration’s result as a tentative path and the
problem is solved for the resulting time-varying linearized system. The criterion
for convergence demands that the difference between the values of current and
previous iterations be smaller than a pre-specified number. The approximately
optimal solution of the problem for the linearized system is then used as the
tentative path for the next iteration, starting off the procedure all over again.

The more recent version OPTCON2 [2] incorporates both open-loop and
open-loop feedback (passive-learning) controls. The idea of passive learning cor-
responds to actual practice in applied econometrics: at the end of each time
period, the model builder (the control agent) observes what has happened, that
is, the current values of state variables, and uses this information to re-estimate
the model and hence improve his/her knowledge of the system.

The passive-learning strategy implies observing current information and using
it in order to adjust the optimization procedure. For the purpose of comparing
open-loop and open-loop feedback results, it is not possible to observe current
and true values, so one has to resort to Monte Carlo simulations. Large numbers
of random time paths for the additive and multiplicative errors are generated,
representing what new information could look like in reality. In this way ‘quasi-
real’ observations are created and both types of controls, open-loop and passive-
learning (open-loop feedback), are compared.

4 The SLOVNL Model

We estimated two simple macroeconometric models for Slovenia, one nonlinear
(SLOVNL) and one linear (SLOVL). The SLOVNL model (SLOVenian model,
Non-Linear version) is a small nonlinear econometric model of the Slovenian econ-
omy consisting of 8 equations, 4 behavioral equations and 4 identities. SLOVNL
includes 8 state variables, 3 control variables, 4 exogenous non-controlled vari-
ables and 16 unknown (estimated) parameters. We used quarterly data for the
time periods 1995:1 to 2006:4; this data base with 48 observations admits a full-
information maximum likelihood (FIML) estimation of the expected values and
the covariance matrices for the parameters and the system errors. The starting
period for the optimization is 2004:1; the terminal period is 2006:4 (12 periods).

Model variables used in SLOVNL:

Endogenous (state) variables:

x[1] CR real private consumption

x[2] INV R real investment

x[3] IMPR real imports of goods and services

x[4] STIRLN short term interest rate

x[5] GDPR real gross domestic product

x[6] V R real total aggregate demand

x[7] PV general price level

x[8] Pi4 rate of inflation

Control variables:

u[1] TaxRate net tax rate
u[2] GR real public consumption
u[3] M3N money stock, nominal

Exogenous non-controlled variables:

z[1] EXR real exports of goods and services

z[2] IMPDEF import price level

z[3] GDPDEF domestic price level

z[4] SITEUR nominal exchange rate SIT/EUR
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Model equations:
Standard deviations are given in brackets.

CRt = 240.9398 + 0.740333 CRt−1 + 0.111727 GDPRt (1− TaxRatet
100

)
(189.7449) (0.1115) (0.0330)
− 1.007353 (STIRLNt − Pi4t) − 4.773533 Pi4t

(2.5848) (2.4966)

INV Rt = 75.41731 + 0.932211 INV Rt−1 + 0.264523 (V Rt − V Rt−1)
(176.8549) (0.1423) (0.0924)
− 0.455511 (STIRLNt − Pi4t) − 2.981241 Pi4t

(6.9044) (3.1277)

IMPRt = IMPRt−1 + 0.826449 (V Rt − V Rt−1) − 38.14954 SITEURt

(0.0724) (18.9336)

STIRLNt = 0.811606 STIRLNt−1 − 0.000877 (M3N)t
PVt

· 100
(0.1375) (0.0008)
+ 0.002746 GDPRt

(0.0026)

GDPRt = CRt + INV Rt + GRt + EXRt − IMPRt

V Rt = GDPRt + IMPRt

PVt =
GDPRt
V Rt

·GDPDEFt +
IMPRt
V Rt

· IMPDEFt

Pi4t =
PVt−PVt−4

PVt−4
· 100

The objective function penalizes deviations of objective variables from their
‘ideal’ (desired, target) values. The ‘ideal’ values of the state and control variables
(x̃t and ũt respectively) are chosen as shown in Table 1. The ‘ideal’ values for
most variables are defined in terms of growth rates (denoted by % in Table 1)
starting from the last given observation (2003:4). For Pi4 and TaxRate, constant
‘ideal’ values are used; for STIRLN , a linear decrease of 0.25 per quarter is
assumed to be the goal.

Table 1. ‘Ideal’ values of objective variables, SLOVNL

The weights for the variables, i.e. the constant matrix W in the objective
function, are first chosen as shown in Table 2a (‘raw’ weights) to reflect the
relative importance of the respective variable in the (hypothetical) policy maker’s
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Table 2. Weights of objective variables, SLOVNL

objective function. These ‘raw’ weights have to be scaled or normalized according
to the levels of the respective variables to make the weights comparable. The
normalized (‘correct’) weights are shown in Table 2b.

5 The SLOVL Model

To analyse the impact of the nonlinearity of the system we developed a linear pen-
dant to the SLOVNL model. This ‘sister model’ is called SLOVL (SLOVenian
model, Linear version) and consists of 6 equations, 4 of them behavioral and 2
identities. The model includes 6 state variables, 3 exogenous non-controlled vari-
ables, 3 control variables, and 15 unknown (estimated) parameters. We used the
same data base as for SLOVNL and a specification as close as possible to that of
SLOVNL in order to make comparisons between the results of the algorithm for
a linear and a nonlinear model. Again, we used full-information maximum likeli-
hood (FIML) to estimate the expected values and the covariance matrices for the
parameters and the system errors. The starting and the terminal period for the
optimization are again 2004:1 and 2006:4.

Model variables used in SLOVL:

Endogenous (state) variables:

x[1] CR real private consumption

x[2] INV R real investment

x[3] IMPR real imports of goods and services

x[4] STIRLN short term interest rate

x[5] GDPR real gross domestic product

x[6] V R real total aggregate demand

Control variables:

u[1] Taxes tax revenue
u[2] GR real public consumption
u[3] M3R money stock, real

Exogenous non-controlled variables:

z[1] EXR real exports of goods and services

z[2] SITEUR nominal exchange rate SIT/EUR

z[3] Pi4 rate of inflation
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Model equations:
Standard deviations are given in brackets.
CRt = 231.582776 + 0.744522 CRt−1 + 0.111736 (GDPRt − Taxest)

(191.99) (0.11) (0.03)
− 0.855137 (STIRLN − Pi4) −4.657411 Pi4

(2.63) (2.50)

INV Rt = 69.965212 + 0.936305 INV Rt−1 + 0.265119 (V Rt − V Rt−1)
(176.51) (0.14) (0.09)
− 0.292918 (STIRLNt − Pi4t) − 2.869522 Pi4t

(6.90) (3.11)

IMPRt = IMPRt−1 + 0.826648 (V Rt − V Rt−1) − 38.158117 SITEURt

(0.07) (18.86)

STIRLNt = 0.811458 STIRLNt−1 − 0.000877 (M3R)t
(0.14) (0.0008)
+ 0.002748 GDPRt

(0.0026)

GDPRt = CRt + INV Rt + GRt + EXRt − IMPRt

V Rt = GDPRt + IMPRt

The objective function is analogous as for SLOVNL, where the ‘ideal’ values
of the state and control variables (x̃t and ũt respectively) are chosen as shown
in Table 3. For the weights for the variables, Table 4a shows the ‘raw’ weights
and Table 4b gives the normalized weights.

Table 3. ‘Ideal’ values of objective variables, SLOVL

Table 4. Weights of objective variables, SLOVL
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6 Optimization Experiments

The OPTCON2 algorithm is applied to the two econometric models SLOVNL
and SLOVL. Two different experiments are run for both models: in experiment
1, two open-loop solutions are compared, a deterministic one where the variances
and covariances of the parameters are ignored, and a stochastic one where the
estimated parameter covariance matrix is taken into account. In experiment
2, the properties of the open-loop and the open-loop feedback solutions are
compared. Furthermore, by comparing the results for the SLOVNL and the
SLOVL models we want to analyze the impact of nonlinearity on the properties
of the optimal solution.

6.1 Experiment 1: Open-Loop Optimal Policies

For experiment 1, two different open-loop solutions are calculated: a determinis-
tic and a stochastic one. The deterministic solution assumes that all parameters
of the model are known with certainty and are equal to the estimated values.
In the stochastic case, the covariance matrix of the parameters as estimated by
FIML is used but no updating of information occurs during the optimization
process.

The results (for details, see [1,2]) show that both the deterministic and the
stochastic solutions follow the ‘ideal’ values fairly well but fiscal policies are less
expansionary and hence real GDP is mostly below its ‘ideal’ values. The values of
the objective function show a considerable improvement in system performance
obtained by optimization and only moderate costs of uncertainty.

An interesting result is that the deterministic and the stochastic open-loop
solutions are very similar. Furthermore, one can see that the SLOVL model
is a good ‘linear approximation’ of the nonlinear SLOVNL model because the
results for both models are nearly identical. This fact can be used for isolating
the impact of nonlinearity on finding the optimum control solution, especially
for the case of open-loop feedback policies.

6.2 Experiment 2: Open-Loop Feedback Optimal Policies

The aim of experiment 2 consists in comparing open-loop (OL) and open-loop
feedback (OLF) optimal stochastic controls. Figures 1 and 2 show the results of
a representative Monte Carlo simulation, displaying the value of the objective
function arising from applying OPTCON2 to the SLOVNL and the SLOVL
models respectively, under 1000 independent random Monte Carlo runs. The
graphs plot the values of the objective function for OL policies (x-axis) and
OLF policies (y-axis) against each other. In the ‘zoom in’ panels of the figures,
we cut the axes so as to show the mass of the points and omitting ‘outliers’, i.e.
results where the value of the objective function becomes extremely large.

One can see that in most cases the values of the objective function for the
open-loop feedback solution are smaller than the values of the open-loop solution,
indicated by a greater mass of dots below the 45 degree line. This means that
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Fig. 1. OL and OLF control, value of objective function; SLOVNL; 1000 Monte Carlo
runs; left: ‘normal’, right: ‘zoom in’

Fig. 2. OL and OLF control, value of objective function; SLOVL; 1000 Monte Carlo
runs; left: ‘normal’, right: ‘zoom in’

open-loop feedback controls give better results (lower values of the cost function)
in the majority of the cases investigated. For the SLOVNL model, the OLF policy
gives better results than the OL policy in 66.4 % of the cases, for the SLOVL
model in 65.4 % of the cases considered here.

However, one can also see from these figures (especially in the left-hand panels
with a ‘normal’ view) that there are many cases where either control scheme
results in very high losses, indicated by dots which are significantly distant from
the main mass of the dots. These cases are called ‘outliers’ and can be seen even
more clearly in Fig. 3. This figure shows the same results of the 1000 independent
Monte Carlo runs for each model (SLOVNL and SLOVL) separately, but for each
Monte Carlo run. The OLF and OL objective function values are plotted in Fig. 3
together on the y-axis in each Monte Carlo run, the number of which is shown on
the x-axis. Diamonds represent open-loop feedback results and squares represent
open-loop results.

The results mean that (passive) learning does not necessarily improve the
quality of the final results; it may even worsen them. One reason for this is the
presence of the two types of stochastic disturbances: additive (random system



Stochastic Control of Econometric Models for Slovenia 29

Fig. 3. Open-loop vs. open-loop feedback control, value of objective function (1000
Monte Carlo runs) (left: SLOVNL, right: SLOVL)

error) and multiplicative error (‘structural’ error in the parameters). The decision
maker cannot distinguish between realizations of errors in the parameters and
in the equations as he just observes the resulting state vector. Based on this
information, he learns about the values of the parameter vector, but he may be
driven away from the ‘true’ parameter vector due to the presence of the random
system error.

6.3 On the Impact of Nonlinearity

In the previous section we saw that there is a severe problem of what we called
‘outliers’ - cases with very high losses or values of the objective function. In
a similar framework of optimum stochastic control, [4] investigated numerical
reasons for outliers. It was not possible to confirm that the sources of the problem
found by these authors were decisive for the outlier problem in our framework.
We suspect that there are other reasons for the outliers. One possible reason is
the stochastics of the dynamic system itself. In our SLOVNL and SLOVL models
all the parameters (including all the intercepts) are considered to be stochastic,
which may make this reason more likely to work.

The second possible reason is based on the nonlinear nature of the models
for which the OPTCON algorithm was created. The SLOVL model was created
mainly in order to test this possibility. The graphical results in the previous
section show that the outliers occur in the linear as well as in the nonlinear
model version. Moreover, in some of the experiments with 1000 Monte Carlo runs
for the SLOVNL model, it turned out that the algorithm did not converge in
some runs. In these cases, the algorithm starts to diverge and results in some non-
reasonable or even complex numbers for some variables. In the 1000 Monte Carlo
runs experiment considered above this happened six times. On the contrary,
under the SLOVL model, not one single case of non-convergence out of the 1000
Monte Carlo runs occurred. Thus we arrive at the conclusion that nonlinearity
is not the reason for the ‘outliers’, but it can worsen the problem.



30 D. Blueschke et al.

7 Conclusion

A comparison of open-loop control (without learning) and open-loop feedback
control (with passive learning) shows that open-loop feedback control outper-
forms open-loop control in the majority of the cases investigated for the two
small econometric models of Slovenia. But it suffers from a problem of ‘outliers’
which is present for both policy schemes. When comparing the results for the
nonlinear SLOVNL model and the linear SLOVL model, we found that the non-
linearity of the system is not responsible for the ‘outliers’ but may worsen their
influence in some cases.
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Abstract. The work is devoted to the construction and justification of
the mathematical model of the competitive behaviour of cellular commu-
nication in the form of a system of nonlinear differential equations with
delay time describing the dynamics of changes in the subscriber base of
cellular operators competing for shared resources.

Keywords: Mathematical model · Differential equations with lag · Opti-
mal control · Identification of parameters · Principal of pontryagins max-
imum

Competition is essential and most important in many actual processes. Mathe-
matical modeling is a basic way to control the agents of competition. It allows
to consider the different factors influencing their interaction dynamics. Actual
agent competitive behavior modeling widely uses nonlinear differential equations
with retarded argument which provides more complex structure dynamic models.
That is why the development of bundled software based on efficient numerical
methods aimed to solve nonlinear dynamics and control problems is an essential
scientific task.

There are many works on nonlinear object control. But the task to determine
optimal control has not been studied for enterprise development dynamic models
with a phase variable lag. The urgent objective here is to find efficient algorithms
of optimal control solutions in such systems as well as to develop the adequate
software. Thus the management of enterprises will be provided with Decision
Support Systems aimed to develop the communication service tariff policy.

There are three cellular operators in Russia. They are: MTS, Beeline and
Megafon. There are also many smaller cellular enterprises. The 2004–2010 data of
user base and tariff policy have been used for our model parameter identification.
The research has been carried out based on the interaction of two economic
agents. We divide all the operators into two unequal groups. The first economic
agent (EA1) is one of the leading cellular enterprises. The other economic agent
(EA2) includes all the rival enterprises summing the number of their users in
the actual market.
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Assume with no competition the number of customers for each economic
agent grows exponentially, with increment rate εi. Considering the saturation
effect in the cellular service market as well as competition we describe the devel-
opment dynamics for the two agents user base through the system of differential
equations

(1)

The time lag is to be considered in interaction of economic agents as the time
difference between the moment of managerial decision and the actual changes of
market situation. The user base general dynamics can be expressed through the
system of nonlinear differential equations with retarded argument

(2)

To model the cellular enterprise behavior control we introduce an intensity
brackets 2 thus describing the average minute cost at moment t and
satisfying the restriction

(3)

Thus the controllable model of two economic agent interaction in the condi-
tions of competition for cellular service users can be described through Lotka-
Volterra logistic model with retarded argument

(4)

There is a lower boundary of user base volume providing normal operation,
as well as an upper boundary determined by the network performance specifica-
tions. The above are presented through phase variable restrictions

(5)

The number of cellular Operator I users at the initial interval [−τ, 0] is deter-
mined by the functions

(6)

Parameter identification for the system of differential equations is an impor-
tant procedure in modeling and solution of optimal control problem. Based on
the method of model setting to the experimentally obtained data, the approach
to the simultaneous identification of system parameters and the value of the lag
is the subject of our research. The parameters are set to minimize the functionals
characterizing the quality of model settings.
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This approach implies multiple monitoring of the dynamic process, consid-
erably exceeding the dimensionality of the system.

In course of economic agent interaction a company may face different man-
agerial goals expressed in corresponding quality criteria (7) (9). According to the
first economic agents (EA1) development priorities we find the optimal control
solution for each objective functional:

1. user base growth

(7)

2. reaching the aimed user base

(8)

where M – planning value of the subscriber base EA1;
3. EA1 income growth

(9)

The problems set above can be classified as optimal control fixed lag prob-
lems. To solve them, in this research we have used Pontryagin’s maximum prin-
ciple for fixed-lag systems. We suggested that the cost value of one EA2 minute
is fixed and can be evaluated by the previous tariff policy dynamics.

The optimal control problem is characterized by: Nonlinearity of the differ-
ential equation system describing the user base dynamics for the two economical
agents; constant lag in the controlled systems state vector. Considering the above
features we obtained the optimality conditions. We based the solution numerical
algorithm on that. The control restrictions in the problem have been considered
due to the gradient projection method, given an arbitrary choice of control initial
approximation.

The use of one numerical method is not always enough to find the solution for
the optimal control problem with the required precision. That is why different
algorithms can be used in the process of solution. One of the approximate meth-
ods used to solve nonlinear object optimal control problems was suggested by
L.I. Shatrovsky. Its based on linearization of a set non-linear system and further
iterative procedure solving a linear problem at each step so approximating the
initial task. As a result we get a control close enough to the optimal. To improve
the calculation reliability solving the optimal control problems we suggest a com-
bined method. It implies the choice of Shatrovsky method allowable control as
the initial approximation in the gradient projection method. This approach to
the choice of control initial approximation allows to avoid the functional in the
local extremum.
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Our methods and algorithms have served as the basis for bundled software
aimed at the search of numerical solution for an optimal control problem, two
economical agents competing for communication users. This software finds the
index values for the parameters and lag by the user base statistics data and
the previous tariff policy. It also proves helpful for communication enterprise
managerial strategies according to development priorities.

Computing experiments have been carried out to examine the efficiency of
the suggested models and algorithms for the major communication operators in
the Russian market.

The conclusion has been made that the introduction of control and lag in
the cellular communication enterprise model improves the values of the objective
functional which substantiates the choice of the controlled system (9)

The established relation is efficient approximating the experimental data,
the difference between calculation data and experimental data being 6,5%. User
base and tariff policy updates are followed up by parameter identification which
enhances modelling precision.

Based on the gradient projection method and combined method we determine
the optimal decision for each objective functional as well as find the correspond-
ing values.

Comparative analysis shows that the control achieved with the use of the
suggested combined method is more efficient to increase the EA1 user base.

The EA1 user base values have been calculated for each objective functional
at the end of 30 month forecasting interval. A significant growth of EA1 user
base by this moment proves the efficiency of suggested combined method for
solution of cellular communication enterprise interaction.

Values x1(T ), Values objective functional,
obtained with the use of: obtained ith the use of:
Gradient Combined Gradient Combined
projection method, projection method,
method, million users method, million users

million users million users
User
base 30.768 31.146 127.02 142.35

growth (J1(u1))
Reaching the
aimed user 31.281 31.331 0.169 0.158

base (J2(u1))
Income
growth 30.989 31.002 8.78 9.31
(J3(u1))
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Our bundled software has been used by Orenburg branch of ROSTELECOM
controlling their tariff policy.

The developed models and algorithms can be modified for any economical
agents practical problems in their competitive activity, such as web-site user
base or radio listener base control or TV channel rating etc.
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Abstract. It is known that the Hamiltonian of the eikonal equation for
an anisotropic medium may be nonconvex, which excludes the appli-
cation of Fermat’s minimum-time principle related to minimum-time
control problems. The idea proposed in this paper consists in finding
a conflict control problem (differential game) whose Hamiltonian coin-
cides with the Hamiltonian of the eikonal equation. It turns out that this
is always possible due to Krasovskii’s unification technique. Having such
a differential game allows us to apply dynamic programming methods to
computing the value function of the game, and therefore to describe the
propagation of wave fronts. This method is very appropriate for the sim-
ulation of wave patterns in surface acoustic wave biosensors. Numerical
computations given in this paper prove the feasibility of the approach
proposed.

Keywords: WKB-approximation · Hamilton-Jacobi equations ·
Viscosity solutions · Differential game · Unification

1 Introduction

The paper concerns the development of methods for modeling the propagation
of acoustic waves in anisotropic media. This investigation is very important for
many applications such as acoustic sensors whose operating principle is based
on the excitation and detection of acoustic waves of very high frequency in
piezoelectric crystals.

For anisotropic media, the WKB (Wentzel-Kramers-Brillouin) approxima-
tion yields eikonal equations whose Hamiltonians are neither convex nor con-
cave in the impulse variable. Therefore, the well-known Fermat principle of
wave propagation fails in this case. Moreover, the propagation occurs in such
a way as if an antagonistic opponent aims to slow down the movement of the
wave fronts. Thus, we arrive at the idea to use methods of differential games
in the analysis of wave propagation. If the negative of the Hamiltonian of a
c© IFIP International Federation for Information Processing 2014
C. Pötzsche et al. (Eds.): CSMO 2013, IFIP AICT 443, pp. 36–51, 2014.
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differential game approximates the Hamiltonian of the eikonal equation, then
the value function of the game approximates the phase function satisfying the
eikonal equation. The authors have developed effective and precise algorithms for
solving Hamilton-Jacobi equations arising from differential games, which yields
an effective tool for the numerical investigation of eikonal equations.

If a differential game is chosen appropriately, the level sets of its value
function represent the wave fronts, and optimal trajectories are associated with
the propagation of rays. Thus, it makes possible to describe very complicated
behavior of rays using game-theoretic classification of the so-called singular sur-
faces that can attract, repulse, and break the trajectories. For example, the
caustic-like behavior of rays can be interpreted as the attraction of neighbor-
ing optimal trajectories to a singular surface. The monograph [1] extends the
classical method of characteristics by introducing the so-called generalized char-
acteristics that are related to the above mentioned trajectories and singular
surfaces.

The main objective of this paper is the numerical simulation of propagation of
bulk and surface acoustic waves in anisotropic monocrystals and multi-layered
structures used in surface acoustic wave sensors. It is demonstrated that the
propagation fronts can be found very precisely even in the case of very compli-
cated geometry of wave emitters. Numerical results are presented for the case of
bulk and surface waves characterized by non-convex slowness surfaces.

This investigation is inspired by the cooperation with professor A. A. Melikyan
(deceased) from the Institute for Problems in Mechanics, Moscow, Russia.

2 Wave Velocity in Piezoelectric Crystals
and Eikonal Equation

Assume that the indexes i, j, k, l run from 1 to 3 and use the summation
convention over the repeated indexes. Let u1, u2, and u3 be the displacements in
x1, x2, and x3 directions, respectively; ϕ is the electric potential such that the
electric field Ei is given by the relation Ei = ∂ϕ/∂xi. Electro-elasticity equations
for a piezoelectric anisotropic crystal read:

ρuitt − Cijkl
∂2ul

∂xj∂xk
+ ekij

∂2φ

∂xk∂xj
= 0, (1)

εij
∂2φ

∂xi∂xj
+ eikl

∂2ul

∂xi∂xk
= 0 . (2)

where ρ, εij , eikl, and Cijkl denote the density, the material dielectric tensor,
the stress piezoelectric tensor, and the elastic stiffness tensor, respectively.

The WKB (high frequency) approximation (see e.g. [2]) uses the ansatz

uj = u0
j (t, x) · εeıS(t,x)/ε, φ = φ0(t, x) · εeıS(t,x)/ε, (3)

where ε = ω−1 is a small parameter (ω is the frequency), S(t, x) is the phase
function, and u0

j (t, x) and φ0(t, x) are functions defining the wave polarization.
The symbol ı in the exponent denotes the imaginary unit.
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Substitution of (3) into (1) and (2) and collection of the terms of order 1/ε
yield the equations

(
− ρS2

t δil + Cijkl
∂S

∂xj

∂S

∂xk

)
u0

l − ekij
∂S

∂xk

∂S

∂xj
φ0 = 0, (4)

−eikl
∂S

∂xi

∂S

∂xk
u0

l − εij
∂S

∂xi

∂S

∂xj
φ0 = 0 . (5)

The condition of nontrivial solvability of the system (4) and (5) leads to the
eikonal equation

det

⎡

⎢
⎢
⎢
⎢
⎣

1
ρ

⎛

⎜
⎜
⎜
⎜
⎝

Cijkl
∂S

∂xj

∂S

∂xk
−ekij

∂S

∂xk

∂S

∂xj

−eikl
∂S

∂xi

∂S

∂xk
−εij

∂S

∂xi

∂S

∂xj

⎞

⎟
⎟
⎟
⎟
⎠

−
(

δil 03×1

01×3 0

)
S2

t

⎤

⎥
⎥
⎥
⎥
⎦

= 0,

which can be rewritten as

St − |∇S|cα

( ∇S

|∇S|
)

= 0, (6)

where cα(n), α = 1, 2, 3, are eigenvalues of the problem

det

⎡

⎣1
ρ

⎛

⎝
Cijklnjnk −ekijnknj

−eiklnink −εijninj

⎞

⎠ −
(

δil 03×1

01×3 0

)

c2

⎤

⎦ = 0.

Here, n1, n2, n3, |n| = 1, are components of the normalized wave vector
(the direction of propagation). Therefore, for each vector n, there are three
types of waves propagating in this direction. Each of them has its own velocity
cα and the corresponding nontrivial solutions, u0

l and ϕ0, of (4) and (5) defining
the wave polarization.

Figure 1a shows the phase velocity surface for LiTaO3 piezoelectric crystals.
This surface is obtained as the set of points of the form cα(n) · n, where n
belongs to a grid on the surface of the unit sphere. The index α corresponds to a
quasi shear wave where the displacements are near orthogonal to the propagation
direction. Figure 1b presents the so-called slowness surface consisting of points of
the form c−1

α (n) ·n. It is easy to prove that the slowness surface can be described
as {p ∈ R3 : cα(p/|p|)|p| = 1}. The nonconvexity of the slowness surface shows
that the Hamiltonian, cα(p/|p|)|p|, of Eq. (6) is non-convex in p.
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(b)(a)

Fig. 1. Characteristic surfaces for lithium tantalate (LiTaO3): (a) Phase velocity sur-
face; (b) Slowness surface. The coordinate frames show the crystalline axes X, Y ,
and Z.

3 Surface Acoustic Wave Biosensors

Biosensors serve for the measurement of small amounts of biological substances
in liquids. Usually a biosensor can be considered as a multi-layered structure
(see Fig. 2) whose bottom layer is the ST-cut of piezoelectric α-quartz. Acoustic
shear waves are excited here by means of a high-frequency voltage applied to
electrodes placed on the ST-cut surface. The waves are transmitted into an
isotropic guiding layer deposited on the top of the quartz substrate. The top
gold layer is covered by DNA or RNA molecules, aptamers, that are able to
specifically bind protein molecules from the contacting liquid. Binding protein
molecules results in additional mass loading, which causes a phase shift in the
electric signal measured by the output electrodes.

Fig. 2. Structure of acoustic biosensor: (a) Spatial representation; (b) Vertical cross-
section with thicknesses of the layers.

A high sensitivity regarding to the added mass is achieved due to the usage
of shear horizontally polarized guided waves (Love waves) because of their low
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interaction with the contacting fluid. The input and output electrodes are located
between the substrate and the guiding layer. To obtain purely shear polarized
modes, the direction of the wave propagation is chosen to be orthogonal to the
crystalline X-axis (see Fig. 3).

Fig. 3. Piezoelectric α-quartz crystal: (a) Direction of crystalline axes; (b) Orientation
of ST-cut.

The next three subsections consider a mathematical model of the biosensor
and two methods of numerical investigation of acoustic Love waves including
their phase velocity, decay with depth, polarization, etc.

3.1 Mathematical Model of Biosensor

The governing equations for the displacements and the electric potential in the
quartz substrate are given by formulae (1) and (2).

The gold layer is conductor so that there is no electric field inside it. The
electric field inside the guiding layer is also neglected because of its low dielectric
permeability. Therefore, the electric potential vanishes, and the gold and guiding
layers are described by the equation of the form

�̄ui tt − C̄ijkl
∂2ul

∂xj∂xk
= 0 . (7)

In the fluid layer, the Stokes and mass conservation equations hold:

�0vi t − νΔvi − (ζ +
ν

3
)

∂

∂xi
div v +

∂

∂xi
P = 0, (8)

γPt +
∂

∂xi
vi = 0,

where vi are components of the velocity, P is the pressure, �0 is the fluid density
at a reference pressure P0, ν and ζ are the dynamic and volume viscosities of

the fluid, respectively, and γ =
1
�0

∂�

∂P
∣
∣
∣
P0

is the compressibility of the fluid.



Simulation of Acoustic Wave Propagation in Anisotropic Media 41

A special homogenization technique developed in [3] is used to treat the
aptamer-fluid structure. This bristle structure is replaced by an averaged mate-
rial whose properties are derived as the number of bristles goes to infinity, their
thickness tends to zero, and the height remains constant. The resulting new layer
whose thickness is equal to the height of the aptamer emulates the aptamer-fluid
structure. The governing equation for this layer is given by the relation (see [3,4])

�̂ui tt − Ĉijkl
∂2ul

∂xj∂xk
− P̂ijkl

∂2ult

∂xj∂xk
= 0, (9)

where the term containing the tensor P̂ describes the viscous damping
coming from the liquid part of the aptamer-fluid structure. The term containing
Ĉ represents elastic stresses. The density �̂ is a weighted combination of the
densities of the fluid and the aptamer. The tensors P̂ and Ĉ are computed with
FE-method using an analytical representation of solutions of the so-called cell
equation arising in homogenization theory.

The conditions on the interfaces between the layers are carefully considered
in [5,6]. Briefly, the continuity of the displacements and the equilibrium of the
normal pressures must hold on the interface between every two neighboring
solid layers (the averaged aptamer-fluid layer is considered as solid). Moreover,
the electric displacement and the tangent component of the electric field in the
substrate must be zero on the interface between the quartz substrate and the
guiding layer. The conditions on the interface between the aptamer layer and
the fluid include the no-slip assumption and the equilibrium of the pressures.

3.2 Finite Element Modeling

The FE-model extends the above described basic model by accounting for two
alternated groups of electrodes (see Fig. 2a) and a damping area around the side
and bottom faces to suppress the wave reflection thereon.

The electrodes are typically made of gold. Therefore, they can be accounted
for by the linear elasticity equation of type (7).

Accounting for the damping is done by adding the term −div(β(x)∇ui t) to
Eqs. (2), (7), and (9), where β(x) is a piecewise-linear function which is equal to
zero outside of the damping region and grows up to some value β0 > 0 towards
the side and bottom faces.

The FE-approach provides accurate results because of accounting for the
exact parameters of the sensor such as the shape of the electrodes, their posi-
tion, mass, electro-conductivity properties. This allows us to estimate important
characteristics of the biosensor and effects caused by scattering of waves (see [5,6]
for simulation results).

The main difficulty of this approach is very high resource-consuming because
of a very small wavelength. A large number of finite elements in x1-direction is
required to resolve the wave structure. The number of degrees of freedom lies in
the range of 106–107, which makes impossible, e.g. to compute the phase wave
surface with appropriate accuracy.
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3.3 Harmonic Analysis (Dispersion Relations)

The approach related to the harmonic analysis is developed in [4] and provides a
method for the construction of travelling wave solutions feasible in the biosensor
structure under the assumption of its unboundedness in the lateral and down-
ward directions. This assumption is very realistic because real biosensor chips
are imbedded up to the surface in very viscous damping media that suppresses
the reflection of waves on the side and bottom faces.

The algorithm is described here quite briefly (see [4,7] for more details).
It is assumed that all the layers are infinite in x1 and x2 directions, the (top)
fluid layer and the (bottom) substrate layer are semi-infinite in x3 direction.
The electrodes are not taken into account.

We are looking for solutions describing plain waves propagating in x1 direc-
tion. This means that the displacements in the solid layers, the velocities in the
fluid, and the electric potential in the substrate are of the form:

ui(x1, x3) = ai(x3) cos(κx1 − ωt) + bi(x3) sin(κx1 − ωt), (10)

vi(x1, x3) = ci(x3) cos(κx1 − ωt) + di(x3) sin(κx1 − ωt), (11)

ϕ(x1, x3) = f(x3) cos(κx1 − ωt) + g(x3) sin(κx1 − ωt), (12)

where κ is the wave number, and ω is the circular frequency which is equal
to the frequency of the voltage applied to the input electrodes in our case.
Substitute (10) and (12) into (1) and (2) for the substrate; (10) into (7) and
(9) for non-piezoelectric layers and for the aptamer layer; and (11) into (8)
for the fluid layer. Collecting all coefficients of cos and sin yields a system of
ordinary linear differential equations for the coefficients ai, bi, ci, di, f , g in each
layer. Solving these systems for every layer, we obtain the representation of the
functions ai, bi, ci, di, f , g in the following form (only the expression for the
function a = (a1, a2, a3) is given here because the form of the other functions is
similar):

a(x3) =
∑

j

Djhjeλjκx3 , (13)

where Dj are arbitrary coefficients, λj and hj are eigenvalues and eigenvectors
of the matrix of the corresponding system of differential equations. For the semi-
infinite fluid and substrate layers, only terms decreasing towards x3 for the fluid
and towards −x3 for the substrate, i.e. terms with negative Reλj for the fluid
and positive Reλj for the substrate, are kept.

Every layer has its own set of coefficients Dj , eigenvalues λj , and eigenvectors
hj . To find any particular travelling wave solution in the whole structure we
need to determine the coefficients Dj for each layer, which is being done by
substituting the expressions of the form (13) for the functions ai, bi, ci, di,
f , g into (10)–(12) and then the resulting functions ui, vi, ϕ into the interface
conditions outlined at the end of Subsect. 3.1 (see [6] for exact description of the
interface conditions). Since all of the interface conditions are linear relations, the
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computation yields a homogeneous system of linear equations for the unknown
coefficients Dj . Denote by G(ω, κ) the matrix of this system. Fix the circular
frequency ω and denote the unknown phase velocity by V = ω/κ to consider G
as a function of V . The phase velocity is feasible if and only if the system has
a nontrivial solution, which is equivalent to the condition det

∣
∣
∣G

T
(V )G(V )

∣
∣
∣ =

0, where G
T
(V ) the conjugate transpose of G(V ). The last equation can be

easily solved because the computation of the left-hand-side runs very quickly
even on an ordinary computer. Usually, there are several roots corresponding to
different types of waves propagating with different phase velocities. Concerning
the biosensor, the root corresponding to a shear wave, i.e. only u2 �= 0, is to be
chosen.

Figure 4a shows the computed phase velocity contour for surface acoustic
waves exited in the biosensor structure using the excitation frequency of 96 MHz.
Figure 4b presents the slowness contour scaled by 103. It is seen that the slowness
contour is not convex (see remark at the end of Sect. 2).

Fig. 4. Characteristic contours for surface acoustic waves: (a) Phase velocity contour;
(b) Slowness contour.

4 Description of Wave Propagation

This section addresses the question how to describe the propagation of waves if
the velocity surface (contour in the case of surface waves) is known. Let us first
recall the classification of surfaces related to the wave propagation. Then, the
applicability of Fermat’s minimum time principle and the direct usage of eikonal
equations will be discussed.

4.1 Characteristic Surfaces

In acoustics, three characteristic surfaces are used to characterize the wave prop-
agation (see [8,9]).
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Wave surface. The wave surface (or the group velocity surface) describes the
propagation of acoustic energy. This surface is involved in the formulation of
minimum time principles, e.g. Fermat’s law. The wave surface is the locus of
points traced by the energy velocity vector Ve, drawn from a fixed point O, as
the propagation direction varies. The propagation direction n (the normalized
wave vector) is orthogonal to the wave surface (see Fig. 5a). It should be noticed
that Ve is as a rule not collinear to the wave vector in the case of anisotropic
media.

Phase velocity surface. The phase velocity surface (see Figs. 1a and 4a)
describes the propagation of wave fronts. It defines the Hamiltonian of the eikonal
equation. The phase velocity surface is obtained from the wave surface by pro-
jecting the vector Ve onto the wave propagation direction n (see Fig. 5b) so that
the phase velocity vector V is given by V = (Ve · n)n. It should be noticed that
the phase velocity surface can be constructed independently on Ve, e.g. as shown
in Sect. 2 and Subsect. 3.3, and the wave surface can then be defined through
the phase velocity surface.

Slowness surface. The slowness surface (see Figs. 1b and 4b) indicates the local
convexity/concavity properties of the Hamiltonian of the eikonal equation. The
slowness surface is related to the phase velocity surface by the inversion through
the origin (see Fig. 5c), i.e. m = n/|V |. The energy velocity, Ve, is normal to
the slowness surface at all points. Local concavities on the slowness surface can
cause formation of cusps (“swallow tails”) on the wave surface as it is shown in
Fig. 5c: The arc (acb) is mapped into a “swallow tail” on the wave surface. This
points out to the intersection of characteristics of the eikonal equation.

4.2 Fermat’s Principle

The Fermat principle describes how a ray, trajectory orthogonal to the wave
front at all time instants, propagates from point A to point B. The principle
says that the propagation time should be minimal. To express this, consider the
minimization problem

T =
∫ B

A

dt =
∫ B

A

ds

|Ve| → min,

where the integrals are computed along rays. Let x(τ) be the parametrization of
rays. Accounting for the relation ds = |ẋ|dτ yields

T =
∫ τ1

τ0

|ẋ|
|Ve(x, ẋ/|ẋ|)|dτ =:

∫ τ1

τ0

L(x, ẋ)dτ → min .

Thus, feasible rays are solutions of the Euler equation

Lx − d

dτ
Lẋ = 0 .
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Fig. 5. Schematic explanation to characteristic surfaces: (a) Wave surface; (b) Phase
velocity surface; (c) Slowness surface.

This approach works well if the wave velocity Ve(x, n) is well-defined for all
directions n. It holds if the slowness surface is convex, which is as a rule violated
in the case of anisotropic media. The next subsection discusses the method of
direct solving eikonal equations.

4.3 Eikonal and Hamilton-Jacobi Equations

Let c(x, n) be the phase velocity depending on the spatial position x and the
propagation direction n, |n| = 1, Let S(t, x) be the phase function that shows
the phase of the wave at the time instant t and at the point x. According to the
results of Sect. 2, cf. Eq. (6), the eikonal equation reads

St − |∇S|c
(

x,
∇S

|∇S|
)

= 0. (14)

If the Hamiltonian c(x, p/|p|)|p| is convex in p, the method of characteristics
can be used for solving Eq. (14) in the case of convex wave emitter. Under these
conditions, the characteristics representing the rays do not intersect each other.
If the convexity property is violated, Eq. (14) may not have classical solutions.
Nevertheless, it is always uniquely solvable in the sense of viscous solutions (see
[10,11]). Moreover, a unique viscous solution of (14) is the valid phase func-
tion. Thus, we arrive at the idea to use numerical methods of finding viscosity
solutions of Hamilton-Jacobi equations. It should be noticed that common Lax-
Friedrichs methods (see e.g. [12]) are not applicable in this case because they
smooth solutions very strong. On the other hand, the authors have developed
numerical methods that do not contain any smoothing (see e.g. [13,14]). These
methods assume that the Hamilton-Jacobi equations arise from conflict control
problems (differential games). Therefore, their application requires solving the
following problem: Given an eikonal equation, it is required to construct a dif-
ferential game whose Hamiltonian coincides (up to the sign) with that of the
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eikonal equation. The next section shows how to do that using an unification
technique proposed in [15].

5 Usage of Differential Games

Assume that a set M ⊂ Rd, d = 2 or 3, represents the shape of the acoustic
wave emitter. For example, M is a ball in the case of bulk crystal, and M is
the two dimensional area of the input electrodes in the case of biosensor. Let
the game dynamics be described by the following system of ordinary differential
equations:

ẋ = f(x, u, v), x ∈ Rd, t ∈ (−∞, 0], u ∈ P ⊂ Ra, v ∈ Q ⊂ Rb, (15)

where u and v are control parameters of the first and second players, respectively.
Introduce the signed distance, σ, to the set M as follows: σ(x) = dist(x,M) if
x �∈ M , and σ(x) = −dist(x,Rd\M) if x ∈ M . Consider the objective functional,
γ, defined on the trajectories of (15) as follows:

γ(x(·)) = min
τ∈[t,0]

σ(x(τ)). (16)

The game is formalized using the concept of feedback strategies (see [16]).
The value function is defined by the relation

Ψ(t, x) = max
V

min
x(·)∈X(t,x,V)

γ(x(·)),

where V is a feedback strategy of the second player, and the set X(t, x,V)
expresses the actions of the first player. This set consists of all limits of Euler
trajectories of (15) which are obtained when the second player chooses v ≡
V(ti, x(ti)) on each interval [ti, ti+1) of partitions of [t, 0], and the first player
uses admissible controls u(ξ), ξ ∈ [t, 0]. In doing that, all possible partitions
whose diameter tends to zero and all admissible controls of the first player are
exhausted. All Euler trajectories start at t from the initial state x.

The value function is locally bounded and Lipschitzian (see e.g. [11]).

Define the Hamiltonian

H(x, p) = max
v∈Q

min
u∈P

〈p, f(x, u, v)〉, p ∈ Rd, (17)

and consider the Hamilton-Jacobi-Bellman-Isaacs equation

Ψt + H(x, Ψx) = 0, Ψ(0, x) = σ(x). (18)

It is proven in [13] that the value function of the game (15) with the objective
functional (16) is a viscosity solution of (18). Therefore, the following proposition
holds:
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Proposition 1. Let c
(
x, p/|p|) |p| be the Hamiltonian of the eikonal equation. If

H(x, p) = −c
(
x, p/|p|) |p|, p ∈ Rd,

then the wave front at any time instant t ≥ 0 is given by the relation

{x : Ψ(-t, x) = 0}.

This proposition opens the way to use numerical methods of finding viscosity
solutions of Hamilton-Jacobi equations. The only question consists in construct-
ing an appropriate differential game whose Hamiltonian satisfies the condition
of Proposition 1. The next subsection discusses this task.

5.1 Unification

Denote E(x, p) = −c
(
x, p/|p|) |p|, p ∈ Rd. To find a differential game whose

Hamiltonian coincides with E, the technique of unification (see [15]) can be
used. Consider the following conflict control system

ẋ = E(x, p)p + q, x, p, q ∈ Rd, |p| = 1, |q| = λ, 〈p, q〉 ≥ 0. (19)

Here, q is the control parameter of the first player who strives to minimize the
objective functional (16), whereas p is the control parameter of the second player
who maximizes the objective functional. The parameter λ is a constant which is
greater than the Lipschitz constant of the function E in p.

Proposition 2. If |E(x, p1) − E(x, p2)| < λ|p1 − p2|, p1, p2 ∈ Rd, |p1| = 1,
|p2| = 1, then the Hamiltonian of the game (19) satisfies the relation

H(19)(x, s) := max
|p|=1

min
|q| = λ,
〈p, q〉 ≥ 0

〈E(x, p)p + q, s〉 = E(x, s),

and, therefore, (19) is the required differential game.

It should be noticed that the proof of this proposition essentially uses the
positive homogeneity of the function p → E(·, p). Therefore, the unification
procedure cannot be applied in the case of absence of positive homogeneity.

Assume now that |p| = 1, then E(x, p)p = −c(x, p)p. Taking into account
that the points c(x, p)p exhaust the phase velocity surface Vsurf(x) when varying
p, the game (19) can be rewritten as

ẋ = −p + q, p ∈ Vsurf(x), |q| = λ, 〈p, q〉 ≥ 0.

Assuming that only the velocity magnitude depends on the spatial position yields
the game

ẋ = −a(x)p + q, p ∈ Vsurf, |q| = λ, 〈p, q〉 ≥ 0, (20)

where the phase velocity surface Vsurf does not depend on x. Notice that the
coefficient a(x) is necessary to take into account the damping area of the biosen-
sor, the phase velocity is strongly reduced there. Therefore, a(x) ≡ 1 outside the
damping area, and a(x) → 0 towards the outer boundary.
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Numerical methods developed by the authors (see [13,14]) provide an
effective tool for finding the value function of the game (20) with the objec-
tive functional (16). The next section uses these methods and demonstrates a
good reconstruction of wave patterns.

6 Simulation of Wave Propagation Using the Unified
Differential Game

Now, the differential game (20) with the objective functional (16) is used for
the computation of wave fronts. First, consider waves in LiTaO3 piezoelectric
crystals. Assume that the wave emitter, the set M , is a ball of radius 0.1, and
a(x) ≡ 1, i.e. there is no damping area. The phase velocity surface is shown in
Fig. 1a. Thus, all data required for the formulation of the differential game (16)
and (20) are available. Application of a finite difference upwind scheme described
in [13] yields an approximation, Ψ̃ , of the value function of the game. According
to Proposition 1, the wave front at any time instant t ≥ 0 is given by the relation
{x ∈ R3 : Ψ̃(−t, x) = 0}. Figure 6 shows the wave front at t = 0.25, 1, and 2 ms.

Fig. 6. Wave fronts in lithium tantalate LiTaO3 piezoelectric crystal (quasi shear
wave): (a) t = 0.25 ms; (b) t = 1 ms; (c) t = 2 ms.

Consider now wave fronts for surface shear waves in the biosensor structure
(see Sect. 3). The phase velocity contour is shown in Fig. 4a. Figure 7 shows the
position of the wave front for a time sequence with a small sample time. The
wave emitter and the damping area are easily recognizable in this figure.

Figures 8 and 9 show the case of two wave emitters. Figure 10 shows the wave
propagation in the presence of a hole. The hole is interpreted as an obstacle such
that the trajectories of the game (20) can not penetrate therein. This case is
numerically processed using a method for finding value functions in games with
state constraints (see [14]).
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Fig. 7. Surface wave fronts in the biosensor structure. The wave emitter is an unclosed
ring.

Fig. 8. Surface wve fronts in the biosensor structure with two emitters: a half-ring and
a ring.

Fig. 9. Surface wave fronts in the biosensor structure with two half-rings as the
emitters.
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Fig. 10. Surface wave fronts in the biosensor structure in the presence of a round hole.
The wave emitter is a half-ring.

7 Conclusion

The technique presented in this paper is also appropriate for the numerical
treatment of arbitrary Hamilton-Jacobi equations with positive homogeneous
Hamiltonians. As it was seen, the unification procedure described in Sect. 5.1
does not use any specific features of the Hamiltonian with the exception of the
positive homogeneity which is necessary for the proof of Proposition 2. This
opens new possibilities of investigation of physical processes related to optimal-
ity principles involving non-convex Lagrangians and Hamiltonians.
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Abstract. We propose a novel approach to handle cardinality in port-
folio selection, by means of a biobjective cardinality/mean-variance
problem, allowing the investor to analyze the efficient tradeoff between
return-risk and number of active positions. Recent progress in multiob-
jective optimization without derivatives allow us to robustly compute
(in-sample) the whole cardinality/mean-variance efficient frontier, for a
variety of data sets and mean-variance models. Our results show that a
significant number of efficient cardinality/mean-variance portfolios can
overcome (out-of-sample) the naive strategy, while keeping transaction
costs relatively low.

Keywords: Portfolio selection · Cardinality · Sparse portfolios · Multi-
objective optimization · Efficient frontier · Derivative-free optimization

1 Introduction

One knows since the pioneer work of Markowitz [19] that a rational investor has
typically two goals in mind: to maximize the portfolio return (given, e.g., by the
portfolio expected return) and to minimize the portfolio risk (described, e.g., by
the portfolio variance). Traditionally, the Markowitz mean-variance optimization
model is taken as a quadratic program(QP), intended tominimize the portfolio risk
(variance) for a given level of expected return, over a set of feasible portfolios. By
varying the level of expected return, the Markowitz model determines the so-called
efficient frontier, as the set of nondominated portfolios regarding the two goals
(variance and mean of the return). The rational investor can thus make choices, by
analyzing the tradeoff between expected return and variability of the investment,
over a set of appropriate portfolios.

Several modifications to the classical Markowitz model or alternative method-
ologies have since then been proposed. One resulting from a simple observation
was suggested in an article by DeMiguel, Garlappi, and Uppal [14]. These authors
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analyzed a number of methodologies inspired on the classic model of Markowitz
and showed that none were able to significantly and consistently overcome the
naive strategy, that is to say, the one in which the available investor’s wealth
is divided equally among the available securities. One possible explanation is
related to the ill conditioning of the objective function of the Markowitz model
(given by the variance of the return).

One of the important issues to consider in portfolio selection is how to handle
transaction costs. There are well known modifications that can be made in the
Markowitz model to incorporate transaction costs, such as to bound the turnover,
which basically amount to further linear constraints in the QP. A recent tech-
nique to keep transaction costs low consists of selecting sparse portfolios, i.e.,
portfolios with few active positions, by imposing a cardinality constraint. Such
a constraint, however, changes the classical QP into a MIQP (mixed-integer
quadratic programming), which can no longer be solved in polynomial time.

In this paper, we suggest an alternative approach to the cardinality con-
strained Markowitz mean-variance optimization model, reformulating it directly
as a biobjective problem, allowing the investor to analyze the tradeoff between
cardinality and mean-variance, in a general scenario where short-selling is per-
mitted. Such an approach allows us to find the set of nondominated points of
biobjective problems in which an objective is smooth and combines mean and
variance and the other is nonsmooth (the cardinality or �0 norm of the vector
of portfolio positions). The mean-variance objective function can take a num-
ber of forms. A parameter free possibility is given by profit per unity of risk (a
nonlinear function obtained by dividing the expected return by its variance).

Given the lack of derivatives of the cardinality function, we decided then to
apply a directional derivative-free algorithm for the solution of the biobjective
optimization problem. Such methods do not require derivatives, although their
convergence results typically assume some weak form of smoothness such as Lip-
schitz continuity. Direct multisearch is a derivative-free multiobjective method-
ology for which one can show some type of convergence in the discontinuous
case. More importantly, it exhibited excellent numerical performance on a com-
parison to a number of other multiobjective optimization solvers. We applied
direct multisearch to determine (in-sample) the set of efficient or nondominated
cardinality/mean-variance portfolios.

To illustrate our approach, we gathered several data sets from the FTSE 100
index (for returns of single securities) and from the Fama/French benchmark
collection (for returns of portfolios), computed the efficient cardinality/mean-
variance portfolios using (in-sample) optimization, and measured their out-of-
sample performance using a rolling-sample approach. We found that a large
number of sparse portfolios for the FTSE 100 data sets, among the efficient
cardinality/mean-variance ones, consistently overcome the naive strategy
in terms of out-of-sample performance measured by the Sharpe ratio. This effect
is also clearly visible for the FF data sets, where the performance of a large
portion of the cardinality/mean-variance efficient frontier outperforms, in most
of the instances, the naive strategy. The transactions costs are shown to be
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relatively low for all efficient cardinality/mean-variance portfolios, with a mod-
erate increase with cardinality.

The organization of our paper is as follows. In the next section, we formulate
the classical Markowitz model for portfolio selection, describe the naive strategy,
and formulate the problem with cardinality constraint. In Sect. 3, we reformulate
the cardinality constrained Markowitz mean-variance optimization model as a
biobjective problem for application of multiobjective optimization. In Sect. 4, we
present the empirical results. Finally, in Sect. 5 we summarize our findings and
discuss future research.

2 Portfolio Selection Models

2.1 The Classical Markowitz Mean-Variance Model

Portfolios consist of securities (shares or bonds, for example, or classes or indices
of the same). Suppose the investor has a certain wealth to invest in a set of N
securities. The return of each security i is described by a random variable Ri,
whose average can be computed (from estimation based on historical data). Let
μi = E(Ri), i = 1, . . . , N , denote the expected returns of the securities. Let also
wi, i = 1, . . . , N , represent the proportions of the total investment to allocate in
the individual securities. The portfolio return is assumed linear in w1, . . . , wN ,
and thus the portfolio expected return can be written as

E(R) = E(wiR1 + · · · + wNRN ) = w1μ1 + · · · + wNμN = μ�w

with
μ = (μ1, . . . , μN )� and w = (w1, . . . , wN )�.

The portfolio variance, in turn, is calculated by

V (R) = E

([ N∑

i=1

wiRi − E

( N∑

i=1

wiRi

)]2)
.

So,

V (R) =
N∑

i=1

N∑

j=1

E[(Ri − μi)(Rj − μj)]wiwj .

Representing each entry i, j of the covariance matrix Q by

σij = E[(Ri − μi)(Rj − μj)],

one has
V (R) = w�Qw,

where Q is symmetric and positive semi-definite (and typically assumed positive
definite). As said before, a portfolio is defined by an N × 1 vector w of weights
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representing the proportion of the total funds invested in the N securities. This
vector of weights is thus required to satisfy the constraint

N∑

i=1

wi = e�w = 1,

where e is the N × 1 vector of entries equal to 1. Lower bounds on the variables,
of the form wi ≥ 0, i = 1, . . . , n, can be also considered if short selling is
undesirable. In general, we will say that Li ≤ wi ≤ Ui, i = 1, . . . , N , for given
lower Li and upper Ui bounds on the variables.

Markowitz’s model [19,20] is based on the formulation of a mean-variance
optimization problem. By solving this problem, we identify a portfolio of mini-
mum variance among all which provide an expected return not below a certain
target value r. The aim is thus to minimize the risk from a given level of return.
The formulation of this problem can be described as:

min
w∈RN

w�Qw

subject to μ�w ≥ r,
e�w = 1,
Li ≤ wi ≤ Ui, i = 1, . . . , N.

(1)

Problem (1) is a convex quadratic programming problem (QP), for which the first
order necessary conditions are also sufficient for (global) optimality. See [12,21]
for a survey of portfolio optimization. The classical Markowitz mean-variance
model can be seen as way of solving the biobjective problem which consists
of simultaneously minimizing the portfolio risk (variance) and maximizing the
portfolio profit (expected return)

min
w∈RN

w�Qw

max
w∈RN

μ�w

subject to e�w = 1,
Li ≤ wi ≤ Ui, i = 1, . . . , N.

(2)

In fact, it is easy to prove that a solution of (1) is nondominated, efficient or
Pareto optimal for (2). Efficient portfolios are thus the ones which have the
minimum variance among all that provide at least a certain expected return, or,
alternatively, those that have the maximal expected return among all up to a
certain variance. The efficient frontier (or Pareto front) is typically represented
as a 2-dimensional curve, where the axes correspond to the expected return and
the standard deviation of the return of an efficient portfolio.

2.2 The Naive Strategy 1/N

The naive strategy is the one in which the available investor’s wealth is divided
equally among the securities available

wi =
1
N

, i = 1, . . . , N.
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This strategy has diversification as its main goal, it does not involve optimization,
and it completely ignores the data.

Although a number of theoretical models have been developed in the last
years, many investors pursuing diversification revert to the use of the naive
strategy to allocate their wealth (see [4]). DeMiguel, Garlappi, and Uppal [14]
evaluated fourteen models across seven empirical data sets and showed that none
is consistently better than the naive strategy. A possible explanation for this phe-
nomenon lies on the fact that the naive strategy does not involve estimation and
promotes ‘optimal’ diversification. The naive strategy is therefore an excellent
benchmarking strategy.

2.3 The Cardinality Constrained Markowitz Mean-Variance Model

Since the appearance of the classical Markowitz mean-variance model, a number
of methodologies have been proposed to render it more realistic. The classical
Markowitz model assumes a perfect market without transaction costs or taxes,
but such costs are an important issue to consider as far as the portfolio selec-
tion is concerned, especially for small investors. Recently, it has been studied
the addition of a constraint that sets an upper bound on the number of active
positions taken in the portfolio, in an attempt to improve performance and
reduce transactions costs. Such a cardinality constraint is defined by limiting
card(x) = |{i ∈ {1, ..., N} : xi �= 0}| and leads to cardinality constrained port-
folio selection problems. In particular, the cardinality constrained Markowitz
mean-variance optimization problem has the form:

min
w∈RN

w�Qw

subject to μ�w ≥ r,
card(w) ≤ K,
e�w = 1,
Li ≤ wi ≤ Ui, i = 1, . . . , N,

(3)

where K ∈ {1, . . . , N}. Although card(x) is not a norm, it is frequently called
the �0 norm in the literature, ‖x‖0 = card(x). By introducing binary variables,
one can rewrite the problem as a mixed-integer quadratic programming (MIQP)
problem:

min
w,y∈RN

w�Qw

subject to μ�w ≥ r,
e�y ≤ K,
e�w = 1,
Liyi ≤ wi ≤ Uiyi, i = 1, . . . , N,
yi ∈ {0, 1}, i = 1, . . . , N.

(4)

However such MIQPs are known to be hard combinatorial problems. The number
of sparsity patterns in w (i.e., number of different possibilities of having K nonze-
ros entries) is

(
N
K

)
= N !/[(N − K)!K!]. Although there are exact algorithms for

the solution of MIQPs (see [5–7,25]), many researchers and portfolio managers
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prefer to use heuristics approaches (see [3,9,11,15,17,26]). Some of these heuris-
tics vary among evolutionary algorithms, tabu search, and simulated annealing
(see [15,26]).

Promotion of sparsity is also used in the field of signal and imaging processing,
where a new technique called compressed sensing has been intensively studied
in the recent years. Essentially one aims at recovering a desired signal or image
with the least possible amount of basis components. The major developments in
compressed sensing have been achieved by replacing the �0 norm by the �1 one,
the latter being a convex relation of the former and known to also promote spar-
sity. The use of the �1 norm leads to recovering optimization problems solvable
in polynomial time (in most of the cases equivalent to linear programs), and a
number of sparse optimization techniques have been developed for the numerical
solution of such problems. These ideas have already been used in portfolio selec-
tion primarily to promote regularization of ill conditioning (of the estimation of
data or of the variance of the return itself). DeMiguel et al. [13] constrained the
Markowitz classical model by imposing a bound on the �1 norm of the vector of
portfolio positions, among other possibilities. Brodie et al. [8] focus on a modi-
fication to the Markowitz mean-variance classical model by the incorporation of
a term involving a multiple of the �1 norm of the vector of portfolio positions.
Inspired by sparse reconstruction (see, for instance, [7]), they also proposed an
heuristic for the solution of the problem.

3 The Cardinality/Mean-Variance Biobjective Model

Although the cardinality constrained Markowitz mean-variance model described
in (3) provides an alternative to the classical Markowitz model in the sense of
realistically limiting the number of active positions in a portfolio, it is dependent
on the parameter K, the maximum number of such positions. Thus, one has to
vary K to obtain various levels of cardinality or sparsity, and for each value of K
solve an MIQP of the form (4).

The alternative suggested in this paper is to consider the cardinality function
as an objective function itself. At a first glance, one could see the problem as
a triobjective optimization problem by minimizing the variance of the return,
maximizing the expected return, and minimizing the cardinality over the set
of feasible portfolios. Such a framework was taken into account in the studies
[1,2,10,18]. However, these authors did not investigate the effects of cardinality
constraints on portfolio models in terms of out-of-sample performance, a subject
still poorly analyzed in the literature. On the other hand, investors may find it
useful to directly analyze the tradeoff between cardinality and mean-variance.
A parameter-free possibility is to consider a Sharpe ratio type objective function,
by maximizing expected return per variance and minimizing the cardinality,
over the set of feasible portfolios. In this case, the cardinality/mean-variance
biobjective optimization problem is posed as
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min
w∈RN

− μ�w
w�Qw

min
w∈RN

card(w)

subject to e�w = 1,
Li ≤ wi ≤ Ui, i = 1, . . . , N.

(5)

By solving (5), we identify a cardinality/mean-variance efficient frontier. A port-
folio in this frontier is such that there exists no other feasible one which simulta-
neously presents a lower cardinality and a lower mean-variance measure. Given
such an efficient frontier and a mean-variance target, an investor may directly
find the answers to the questions of what is the optimal (lowest) cardinality
level that can be chosen and what are the portfolios leading to such a cardi-
nality level. Problem (5) has two objective functions and linear constraints. The
first objective f1(w) = −μ�w/w�Qw is nonlinear but smooth. However, the
second objective function f2(w) = card(w) = |{i ∈ {1, ..., N} : wi �= 0}| is piece-
wise linear discontinuous, consequently nonlinear and nonsmooth. We have thus
decided to solve the biobjective optimization problem (5) using a derivative-free
solver, based on direct multisearch.

4 Empirical Performance of Efficient Cardinality/Mean-
Variance Portfolios

Now we report a number of experiments made to numerically determine and
assess the efficient cardinality/mean-variance frontier. We applied direct mul-
tisearch to determine the Pareto front or efficient frontier of the biobjective
optimization problem (5) (according to AppendixA). We tested three data sets
collected from the FTSE 100 index and three others from the Fama/French
benchmark collection (see Subsect. 4.1). The efficient frontiers obtained by the
initial in-sample optimization are given in Subsect. 4.2.

The out-of-sample performance of the cardinality/mean-variance efficient
portfolios, measured by a rolling-sample approach, is described in Subsect. 4.3.
In Subsect. 4.4 we measure the out-of-sample performance by the Sharpe ratio, in
Subsubsect. 4.5 we report the proportional transaction costs, and in Subsect. 4.6
we measure the out-of-sample performance by the Sharpe ratio of returns net of
transaction costs, all of this for each cardinality/mean-variance efficient portfo-
lio. To better assess the robustness of our results, we also considered, using the
FTSE 100 data, a sample including the financial crisis years 2008–2010, and the
corresponding results are reported in Subsect. 4.7. The section is ended with a
discussion of the overall obtained results.

4.1 Data Sets

For the first three data sets we collected daily data for securities from the FTSE
100 index, from 01/2003 to 12/2007 (five years). Such data is public and avail-
able from the site http://www.bolsapt.com. The three data sets are referred

http://www.bolsapt.com
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to as DTS1, DTS2, and DTS3, and are formed by 12, 24, and 48 securities,
respectively. The composition of these data sets is given in Table 1. We used the
daily continuous returns for the in-sample optimization (estimation of Q and μ)
and the daily discrete returns for the out-of-sample analysis. We also included
in our experiments three data sets from the Fama/French benchmark collection
(FF10, FF17, and FF48, with cardinalities 10, 17, and 48), using the monthly
returns from 07/1971 to 06/2011 (forty years) given there for a number of indus-
try security sectors. More information on these security sectors (or portfolios of
securities) can be found in http://mba.tuck.dartmouth.edu/pages/faculty/ken.
french/data library.html.

Table 1. Composition of the three data sets from the FTSE 100 index. In brackets we
indicate the data set to which each security belongs to.

SECURITIES

3 I GROUP (1,2,3) JOHNSON MATTHEY P (3)

AMEC (1,2,3) LEGAL &GENERAL (3)

ANGLO AMERICAN (1,2,3) LLOIDS BANKING GR (3)

ANTOFAGASTA (1,2,3) LONMIN (3)

ASSOCIAT BRIT FOO (1,2,3) MARKS &SPENCER (3)

ASTRAZENECA (1,2,3) MORRINSON SUPERMKT (3)

AVIVA (1,2,3) NEXT (3)

B SKY B GROUP (1,2,3) OLD MUTUAL (3)

BAE SYSTEMS (1,2,3) PEARSON (3)

BARCLAYS (1,2,3) PRUDENTIAL (3)

BG GROUP (1,2,3) REED ELSEVIER PLC (3)

BHP BILLITON (1,2,3) RENTOKIL INITIAL (3)

BP (2,3) REXAM (3)

BRIT AMER TOBACCO (2,3) RIO TINTO (3)

BRIT LAND CO REIT (2,3) ROYAL BK SCOTL GR (3)

BRITISH AIRWAYS (2,3) RSA INSUR GRP (3)

CAB &WIRE WRLD (2,3) SABMILLER (3)

CAPITA GRP (2,3) SAGE GRP (3)

COBHAM (2,3) SAINSBURY (3)

DIAGEO (2,3) SCHRODERS (3)

HAMMERSON REIT (2,3) SEVERN TRENT (3)

IMPERIAL TOBACCO (2,3) SHIRE (3)

INTERNATIONAL POW (2,3) UNITED UTILITIES (3)

INVENSYS (2,3) VODAFONE GRP (3)

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html


60 R.P. Brito and L.N. Vicente

Fig. 1. Efficient frontier of the
biobjective cardinality/mean-variance
problem for DTS1. � Naive �
Markowitz mean per variance �
Markowitz minimum variance •
cardinality/mean-variance � cardi-
nality constrained minimum variance
(Color figure online)

Fig. 2. Efficient frontier of the
biobjective cardinality/mean-variance
problem for DTS2. See the caption of
Fig. 1 for an explanation of the various
symbols.

Fig. 3. Efficient frontier of the
biobjective cardinality/mean-variance
problem for DTS3. See the caption of
Fig. 1 for an explanation of the various
symbols.

Fig. 4. Efficient frontier of the biobjecti-
ve cardinality/mean-variance problem
for FF10. � Naive � Markowitz mean
per variance � Markowitz minimum vari-
ance � cardinality/mean-variance � car-
dinality constrained minimum variance
(Color figure online)

4.2 In-Sample Optimization

We then applied the solver dms (version 0.2) to compute the efficient frontier (or
Pareto front) of the cardinality/mean-variance biobjective optimization prob-
lem (5). A few modifications to (5) were made before applying the solver as well
as a few changes to the solver default parameters (the details are described in
AppendixA). We present results for the initial in-sample optimization. For the
FTSE 100 data sets this sample is from 01/2003 to 12/2006 and for the FF data
sets is from 07/1971 to 06/1996. Figures 1, 2, 3, 4, 5, and 6 contain the plots
of the efficient frontiers calculated for, respectively, the FTSE 100 and FF data
sets. In all these plots we also marked three other portfolios. The first one is
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Fig. 5. Efficient frontier of the
biobjective cardinality/mean-variance
problem for FF17. See the caption of
Fig. 4 for an explanation of the various
symbols.

Fig. 6. Efficient frontier of the
biobjective cardinality/mean-variance
problem for FF48. See the caption of
Fig. 4 for an explanation of the various
symbols.

Fig. 7. Out-of-sample performance for
DTS1 measured by the Sharpe ratio
over all the out-of-sample periods. - -
Naive — Markowitz mean per vari-
ance -.- Markowitz minimum variance
• cardinality/mean-variance � cardi-
nality constrained minimum variance
(Color figure online)

Fig. 8. Out-of-sample performance for
DTS2 measured by the Sharpe ratio
over all the out-of-sample periods. See
the caption of Fig. 7 for an explanation
of the various symbols and lines.

the 1/N portfolio corresponding to the naive strategy. A second one is obtained
maximizing expected return per variance.

min
w∈RN

− μ�w
w�Qw

subject to e�w = 1.
(6)

This portfolio corresponds to the extreme point (of maximum cardinality) of the
efficient frontier (or Pareto front) of the cardinality/mean-variance biobjective
optimization problem (5). The third one is a classical Markowitz related portfolio
and is obtained by minimizing variance under no short-selling

min
w∈RN

w�Qw

subject to e�w = 1,
w ≥ 0.

(7)
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Fig. 9. Out-of-sample performance for
DTS3 measured by the Sharpe ratio
over all the out-of-sample periods. See
the caption of Fig. 7 for an explanation
of the various symbols and lines.

Fig. 10. Out-of-sample performance
for FF10 measured by the Sharpe ratio
over all the out-of-sample periods. - -
Naive — Markowitz mean per vari-
ance -.- Markowitz minimum variance
• cardinality/mean-variance � cardi-
nality constrained minimum variance
(Color figure online)

Fig. 11. Out-of-sample performance
for FF17 measured by the Sharpe ratio
over all the out-of-sample periods. See
the caption of Fig. 10 for an explana-
tion of the various symbols and lines.

Fig. 12. Out-of-sample performance
for FF48 measured by the Sharpe ratio
over all the out-of-sample periods. See
the caption of Fig. 10 for an explana-
tion of the various symbols and lines.

This instance was solved using the quadprog function from the MATLAB [24]
Optimization Toolbox. Regarding problem (7), it is known that not allowing
short-sale has a regularizing effect on minimum-variance Markowitz portfolio
selection (see [16]) and leads to portfolios of low cardinality.

Since we know that minimum variance portfolios outperform mean-variance
portfolios (the estimate error of the expected returns is eliminated, see [16]),
we considered the following cardinality constrained minimum variance model
(instead of the one introduced in Sect. 2.3)

min
w∈RN

w�Qw

subject to card(w) ≤ K,
e�w = 1,
Li ≤ wi ≤ Ui, i = 1, . . . , N.
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Fig. 13. Transaction costs of the effi-
cient cardinality/mean-variance port-
folios for DTS1. — Markowitz mean
per variance -.- Markowitz minimum
variance • cardinality/mean-variance �
cardinality constrained minimum vari-
ance (Color figure online)

Fig. 14. Transaction costs of the effi-
cient cardinality/mean-variance port-
folios for DTS2. See the caption of
Fig. 13 for an explanation of the vari-
ous symbols and lines.

Fig. 15. Transaction costs of the effi-
cient cardinality/mean-variance port-
folios for DTS3. See the caption of
Fig. 13 for an explanation of the vari-
ous symbols and lines.

Fig. 16. Transaction costs of the effi-
cient cardinality/mean-variance port-
folios for FF10. — Markowitz mean
per variance -.- Markowitz minimum
variance • cardinality/mean-variance
� cardinality constrained minimum
variance (Color figure online)

By introducing binary variables, one can rewrite this problem as a mixed-integer
quadratic programming (MIQP) problem:

min
w,y∈RN

w�Qw

subject to e�y ≤ K,
e�w = 1,
Liyi ≤ wi ≤ Uiyi, i = 1, . . . , N,
yi ∈ {0, 1}, i = 1, . . . , N.

(8)

We also mark in the plots the portfolios that result from solving problem (8) for
each value of K ∈ [1, N ]. For this purpose we used the solver cplexmiqp from
ILOG IBM CPLEX for MATLAB [22].
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Fig. 17. Transaction costs of the effi-
cient cardinality/mean-variance port-
folios for FF17. See the caption of
Fig. 16 for an explanation of the vari-
ous symbols and lines.

Fig. 18. Transaction costs of the effi-
cient cardinality/mean-variance port-
folios for FF48. See the caption of
Fig. 16 for an explanation of the vari-
ous symbols and lines.

Fig. 19. Out-of-sample performance
for DTS1 measured by the Sharpe ratio
over all the out-of-sample periods. - -
Naive — Markowitz mean per vari-
ance -.- Markowitz minimum variance
• cardinality/mean-variance � cardi-
nality constrained minimum variance
(Color figure online)

Fig. 20. Out-of-sample performance
for DTS2 measured by the Sharpe ratio
of returns net of transaction costs over
all the out-of-sample periods.See the
caption of Fig. 19 for an explanation of
the various symbols and lines.

4.3 Out-of-sample Performance

The analysis of out-of-sample performance relies on a rolling-sample approach.
For the FTSE 100 data sets we considered 12 periods (months) of evalua-
tion. We begin by computing the efficient frontier (or Pareto front) of the
cardinality/mean-variance biobjective optimization problem (5) for the in-sample
time window from 01/2003 to 12/2006 (see Subsect. 4.2). We then held fixed
each portfolio and observed its returns over the next period (January 2007).
Then we discarded January 2003 and brought January 2007 into the sample.
We repeated this process until exhausting the 12 months of 2007. We applied
the same rolling-sample approach to the FF data sets, considering an initial in-
sample time window from 07/1971 to 06/1996 (see Subsect. 4.2) and 15 periods
of evaluation (the 15 next years).
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Fig. 21. Out-of-sample performance
for DTS3 measured by the Sharpe ratio
of returns net of transaction costs over
all the out-of-sample periods.See the
caption of Fig. 19 for an explanation of
the various symbols and lines.

Fig. 22. Out-of-sample performance
for FF10 measured by the Sharpe ratio
of returns net of transaction costs
over all the out-of-sample periods. - -
Naive — Markowitz mean per vari-
ance -.- Markowitz minimum variance
• cardinality/mean-variance � cardi-
nality constrained minimum variance
(Color figure online)

Fig. 23. Out-of-sample performance
for FF17 measured by the Sharpe ratio
of returns net of transaction costs over
all the out-of-sample periods. See the
caption of Fig. 22 for an explanation of
the various symbols and lines.

Fig. 24. Out-of-sample performance
for FF48 measured by the Sharpe ratio
of returns net of transaction costs over
all the out-of-sample periods. See the
caption of Fig. 22 for an explanation of
the various symbols and lines.

4.4 Out-of-sample Performance Measured by the Sharpe Ratio

In each period of evaluation, the out-of-sample performance was then measured
by the Sharpe ratio

S =
m − rf

σ
,

where m is the mean return, rf is the return of the risk-free asset1, and σ is
the standard deviation. The results (over all the periods of evaluation) are given
1 For the FTSE 100 data sets we used the 3month Treasury-Bills UK. Such data

is public and made available by the Bank of England, at the site http://www.
bankofengland.co.uk. For the FF data sets we used the 90-day Treasury-Bills US.
Such data is public and made available by the Federal Reserve, at the site http://
www.federalreserve.gov.

http://www.bankofengland.co.uk
http://www.bankofengland.co.uk
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Fig. 25. Out-of-sample performance
for DTS1, including the financial cri-
sis years 2008–2010, measured by the
Sharpe ratio over all the out-of-sample
periods. - - Naive — Markowitz mean
per variance -.- Markowitz minimum
variance • cardinality/mean-variance
� cardinality constrained minimum
variance (Color figure online)

Fig. 26. Out-of-sample performance
for DTS2, including the financial cri-
sis years 2008–2010, measured by the
Sharpe ratio over all the out-of-sample
periods. See the caption of Fig. 25 for
an explanation of the various symbols
and lines.

Fig. 27. Out-of-sample performance
for DTS3, including the financial cri-
sis years 2008–2010, measured by the
Sharpe ratio over all the out-of-sample
periods. See the caption of Fig. 25 for
an explanation of the various symbols
and lines.

Fig. 28. Transaction costs of the
efficient cardinality/mean-variance
portfolios for DTS1, including the
financial crisis years 2008–2010.
— Markowitz mean per variance
-.- Markowitz minimum variance •
cardinality/mean-variance � cardi-
nality constrained minimum variance
(Color figure online)

in Figs. 7, 8 and 9 for the FTSE 100 portfolios and in Figs. 10, 11 and 12 for
the FF ones. Using IBM SPSS Statistics [23] we calculated the p-values for the
statistical significance of the difference between Sharpe ratios of the benchmark
naive portfolio and all the others computed portfolios. We did not report them
here because they are not statistically significant.

http://www.federalreserve.gov
http://www.federalreserve.gov
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Fig. 29. Transaction costs of the effi-
cient cardinality/mean-variance port-
folios for DTS2, including the financial
crisis years 2008–2010. See the caption
of Fig. 28 for an explanation of the var-
ious symbols and lines.

Fig. 30. Transaction costs of the effi-
cient cardinality/mean-variance port-
folios for DTS3, including the financial
crisis years 2008–2010. See the caption
of Fig. 28 for an explanation of the var-
ious symbols and lines.

Fig. 31. Out-of-sample performance
for DTS1, including the financial cri-
sis years 2008–2010, measured by the
Sharpe ratio of returns net of trans-
action costs over all the out-of-sample
periods. - - Naive — Markowitz mean
per variance -.- Markowitz minimum
variance • cardinality/mean-variance
� cardinality constrained minimum
variance (Color figure online)

Fig. 32. Out-of-sample performance
for DTS2, including the financial cri-
sis years 2008–2010, measured by the
Sharpe ratio of returns net of trans-
action costs over all the out-of-sample
periods. See the caption of Fig. 31 for
an explanation of the various symbols
and lines.

4.5 Transaction Costs

Since one is rebalancing portfolios for each out-of-sample period, one can com-
pute the transaction costs of such a trade. We set the proportional transaction
cost equal to 50 basis points per transaction (as usually assumed in the litera-
ture). Thus the cost of a trade over all assets is given by

TC =
T−1∑

t=1

0.5%
N∑

i=1

| wi,t+1 − wi,t |, (9)
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Fig. 33. Out-of-sample performance
for DTS3, including the financial cri-
sis years 2008–2010, measured by the
Sharpe ratio of returns net of trans-
action costs over all the out-of-sample
periods. See the caption of Fig. 31 for
an explanation of the various symbols
and lines.

Fig. 34. Efficient frontier of the
biobjective cardinality/mean-variance
problem for FF100.

with T = 12 for the FTSE 100 data sets and T = 15 for the FF data sets.
The results are given in Figs. 13, 14 and 15 for the FTSE 100 portfolios and in
Figs. 16, 17 and 18 for the FF ones.

4.6 Out-of-sample Performance Measured by the Sharpe Ratio
of Returns Net of Transaction Costs

In the presence of transaction costs we calculated the Sharpe ratio of returns
net of transaction costs

SR =
m − TC − rf

σ
,

where m is the mean return, TC is the proportional transaction cost in (9), rf

is the return of the risk-free asset, and σ is the standard deviation. The out-of-
sample performance was then measured by the Sharpe ratio of returns net of
transaction costs. The results are given in Figs. 19, 20 and 21 for the FTSE 100
portfolios and in Figs. 22, 23 and 24 for the FF ones.

4.7 Results Including the Financial Crisis Years 2008–2010

The FTSE 100 data set used covered the period 2003–2007. With the aim of
testing the robustness of the results, we also tried a FTSE 100 data set that
covers the time window 2003–2010 (including thus the financial crisis years
2008–2010). The data sets were formed as described in Sect. 4.1, but excluding
British Airways (see Table 1) due to missing data during the period considered,
and including Wolseley (following an arbitrary alphabetic order). We performed
an out-of-sample analysis as described in Sect. 4.3. We used daily periods of
evaluation. We began by computing the efficient frontier (or Pareto front) of
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the cardinality/mean-variance biobjective optimization problem (5) for the in-
sample time window from 01/2003 to 12/2010 (using daily data). We then held
fixed each portfolio and observed its returns over the next period (first trading
day of January 2011). Then we discarded this first trading day of January 2011
and brought this into the sample. We repeated this process until exhausting the
firsts 15 trading days of 2011.

The results of the out-of-sample performance measured by the Sharpe ratio2

are given in Figs. 25, 26 and 27. The results of the proportional transaction costs,
are given in Figs. 28, 29 and 30. The results of the out-of-sample performance
measured by the Sharpe ratio of returns net of transaction costs, are given in
Figs. 31, 32 and 33.

4.8 Discussion of the Results

Contrary to one could think, given the intractability of f2(w) = card(w) and
the fact that no derivatives are being used for f1(w) = −μ�w/w�Qw, direct
multisearch (the solver dms) was capable of quickly determining (in-sample)
the efficient frontier for the biobjective optimization problem (5). For instance,
for the data sets of roughly 50 assets, a regular laptop takes a few dozens of
seconds to produce the efficient frontiers. We have a direct way of dealing with
sparsity, which offers a complete determination of an efficient frontier for all
cardinalities. According to a priori preferences, one could choose (in-sample)
the desired cardinality. For the portfolios constructed using the FTSE 100 index
data (portfolios of individual securities), a large number of our sparse portfolios,
among the efficient cardinality/mean-variance ones, consistently overcame the
naive strategy and at least one of the two related classical Markowitz models, in
terms of out-of-sample performance measured by the Sharpe ratio. This effect
has even happened for the largest data set (DTS3 with 48 securities), where the
demand for sparsity is more relevant. For the portfolios constructed using the
Fama/French benchmark collection (where securities are portfolios rather than
individual securities), the scenario is different since the behavior of the naive
strategy is even more difficult to outperform. Still, a large number of sparse
efficient cardinality/mean-variance portfolios consistently overcame the naive
strategy.

In both cases, FTSE 100 and FF data, the transaction costs of the effi-
cient cardinality/mean-variance portfolios are lower than the mean per variance
portfolio (solution of problem (6)) and higher than the minimum-variance port-
folio (solution of problem (7)). Note that the minimum-variance portfolio does
not allow short-selling, and so the weights at the outset are much more lim-
ited, thus leading to better results. Evaluating the performance out-of-sample
by the Sharpe ratio of returns net of transaction costs (take into account the
transaction costs), the efficient cardinality/mean-variance portfolios do not over-
came the naive strategy for FTSE 100 data, but for FF data a large number of
2 We used as a risk-free asset the daily startling certificate of deposit interest rate.

Such data is public and made available by the Bank of England, at the site http://
www.bankofengland.co.uk.

http://www.bankofengland.co.uk
http://www.bankofengland.co.uk
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sparse efficient cardinality/mean-variance portfolios still consistently overcame
the naive strategy. When we compare the performance results between the effi-
cient cardinality/mean-variance portfolios and the cardinality constrained min-
imum variance portfolios (solution of (8)), without considering the transaction
costs, we observed better results for the FTSE 100 and worse for the FF. The
MIQP performed better in terms of Sharpe ratio of returns net of transaction
costs since the cost of transaction costs are lower, one possible explanation for
this is the fact of not taking into account the estimation of the expected returns.
Moreover, our cardinality/mean-variance portfolios are truly efficient whereas
the cardinality constrained minimum variance do not necessarily exhibit Pareto
efficiency. For the FTSE 100 data set, the analysis including the financial crisis
years 2008–2010 shows that the results are robust. Finally, we also computed the
cardinality/mean-variance efficient frontier for the data set FF100, where port-
folios are formed on size and book-to-market (see Fig. 34). (This time we needed
a budget of the order of 107 function evaluations, see AppendixA.) We remark
that FF48 and FF100 are the data sets also used in [8]. In this paper, as we said
before, the authors focus on a modification to the Markowitz classical model by
the incorporation of a term involving a multiple of the �1 norm of the vector
of portfolio positions. Despite the different sparse-oriented techniques and dif-
ferent strategies for evaluating out-of-sample performance, in both approaches
(theirs and ours), sparse portfolios are found overcoming the naive strategy.
In our approach one computes sparse portfolios satisfying an efficient or non-
dominant property and one does it directly and in single run, whereas in [8],
there is a need to vary a tunable parameter and select the portfolios accord-
ing to some criterion to be met (for example, sparsity). It is unclear what sort
of efficient or nondominant property their portfolios satisfy. Moreover, we pro-
vide results for all cardinality values (from 1 to 48 in FF48 and from 1 to 100
in FF100), while in [8] the authors report results for cardinality values from 4
and 48 (FF48) and from 3 to 60 (FF100). We therefore claim to have a more
direct way of dealing with sparsity, which offers a complete determination of an
efficient frontier for all cardinalities.

5 Conclusions and Perspectives for Future Work

In this paper we have developed a new methodology to deal with the compu-
tation of mean-variance Markowitz portfolios with pre-specified cardinalities.
Instead of imposing a bound on the maximum cardinality or including a penal-
ization or regularization term into the objective function (in classical Markowitz
mean-variance models), we took the more direct approach of explicitly consider-
ing the cardinality as a separate goal. This led us to a cardinality/mean-variance
biobjective optimization problem (5) whose solution is given in the form of an effi-
cient frontier or Pareto front, thus allowing the investor to tradeoff among these
two goals when having transaction costs and portfolio management in mind. In
addition, and surprisingly, a significant portion of the efficient cardinality/mean-
variance portfolios (with cardinality values considerably lower than the num-
ber N of securities) have exhibited superior out-of-sample performance (under
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reasonably low transaction costs that only increase moderately with cardinality).
We solved the biobjective optimization problem (5) using a derivative-free solver
running direct multisearch. Direct-search methods based on polling are known in
general to be slow but extremely robust due their directional properties. Such a
feature is crucial given the difficulty of the problem (one discontinuous objective
function, the cardinality, and discontinuous Pareto fronts). We have observed
the robustness of direct multisearch, in other words, its capability of successfully
solving a vast majority of the instances (all in our case) even if at the expense of a
large budget of function evaluations. Direct multisearch was applied off-the-shelf
to determine the cardinality/mean-variance efficient frontier. The structure of
problem (5), or of its practical counterpart (10), was essentially ignored. One can
use the fact that the first objective function is smooth and of known derivatives
to speed up the optimization and reduce even further the budget of function
evaluations. Moreover, we also point out that it is trivial to run the poll step of
direct multisearch in a parallel mode.

The use of derivative-free single or multiobjective optimization opens the
research range of future work in sparse or dense portfolio selection. In fact,
since derivative-free algorithms only rely on zero order information, they are
applicable to any objective function of black-box type. One can thus use any
measure to quantify the profit and risk of a portfolio. The classical Markowitz
model assumes that the return of a portfolio is a linear combination of the returns
of the individual securities. Also, it implicitly assumes a Gaussian distribution for
the return, letting its variance be a natural measure of risk. However, it is known
from the analysis of stylized facts that the distribution for the return of securities
exhibits tails which are fatter than the Gaussian ones. Practitioners consider
other measures of risk and profit better tailored to reality. Our approach to
compute the cardinality/mean-variance efficient frontier is ready for application
in such general scenarios.

A Using Direct Multisearch to Determine Efficient
Cardinality/Mean-Variance Portfolios

A few modifications to problem (5) were required to make it solvable by a mul-
tiobjective derivative-free solver, in particular by a direct multisearch one. In
practice the first modification to (5) consisted of approximating the true cardi-
nality, by introducing a tolerance ε,

min
w∈RN

− μ�w
w�Qw

min
w∈RN

∑N
i=1 11{|wi|>ε}

subject to e�w = 1,
Li ≤ wi ≤ Ui, i = 1, . . . , N.

chosen as ε = 10−8 (11 represents the indicator function). Secondly, we selected
symmetric bounds on the variables Li = −b and Ui = b,
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min
w∈RN

− μ�w
w�Qw

min
w∈RN

∑N
i=1 11{|wi|>ε}

subject to e�w = 1,
−b ≤ wi ≤ b, i = 1, . . . , N,

setting b = 10. Finally, we eliminated the constraint e�w = 1 since direct search
methods do not cope well with equality constraints. The version fed to the dms
solver was then

min
w(1:N−1)∈RN−1

− μ�w
w�Qw

min
w(1:N−1)∈RN−1

∑N−1
i=1 11{|wi|>ε}

subject to −b ≤ wi ≤ b, i = 1, . . . , N − 1,

−b ≤ 1 − ∑N−1
i=1 wi ≤ b,

(10)

where wN in −μ�w/w�Qw was replaced by 1 − ∑N−1
i=1 wi.

We used a ll the default parameters of dms (version 0.2) with the following
four exceptions. First, we needed to increase the maximum number of function
evaluations allowed (from 20000 to 2000000 for N(= n) up to 50) given the
dimension of our portfolios, as well as to require more accuracy by reducing the
step size tolerance from 10−3 to 10−7. Then we turned off the use of the cache of
previously evaluated points to make the runs faster (the default version of dms
keeps such a list to avoid evaluating points too close to those already evaluated).
Lastly, we realized that initializing the list of feasible nondominated points with
a singleton led to better results than initializing it with a set of roughly N points
as it happens by default. Thus, we set the option list of dms to zero, which,
given the bounds on the variables, assigns the origin to the initial list.
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Abstract. In this paper we apply the Fast Iterative Method (FIM) for
solving general Hamilton–Jacobi–Bellman (HJB) equations and we com-
pare the results with an accelerated version of the Fast Sweeping Method
(FSM). We find that FIM can be indeed used to solve HJB equations
with no relevant modifications with respect to the original algorithm pro-
posed for the eikonal equation, and that it overcomes FSM in many cases.
Observing the evolution of the active list of nodes for FIM, we recover
another numerical validation of the arguments recently discussed in [1]
about the impossibility of creating local single-pass methods for HJB
equations.

Keywords: Single-pass methods · Fast iterative method · Fast sweeping
method · Fast marching method

1 Introduction

The study of Hamilton–Jacobi (HJ) equations arises in several contexts, includ-
ing classical mechanics, front propagation, control problems and differential
games. In particular, for optimal control problems, the value function can be
characterized as the unique viscosity solution of a Hamilton–Jacobi–Bellman
(HJB) equation. Unfortunately, solving numerically the HJB equation can be
rather expensive from the computational point of view. This is the reason why
in the last years an increasing number of efficient techniques have been proposed,
see, e.g., [1] for a brief review.

Basically, these algorithms are divided in two main classes: single-pass and
iterative. An algorithm is said to be single-pass if one can fix a priori a (small)
number r which depends only on the equation and on the mesh structure (not on
the number of mesh points) such that each mesh point is re-computed at most r
times. Single-pass algorithms usually divide the numerical grid in, at least, three
time-varying subsets: Accepted (ACC), Considered (CONS), and Far (FAR).

This research was supported by the following grants: AFOSR Grant FA9550-10-1-
0029, ITN-Marie Curie Grant 264735-SADCO.

c© IFIP International Federation for Information Processing 2014
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Nodes in ACC are definitively computed, nodes in CONS are computed but
their values are not yet final, and nodes in FAR are not yet computed. We say
that a single-pass algorithm is local if the computation at any mesh point involves
only the values of first neighboring nodes, the region CONS is 1-cell-thick and
no information coming from FAR region is used. The methods which are not
single-pass are iterative.

Among fast methods, the prototype algorithm for the local single-pass class
is the Fast Marching Method (FMM) [9,12], while that for the iterative class
is the Fast Sweeping Method (FSM) [7,8,11,13]. Another interesting method is
the Fast Iterative Method (FIM) [4–6], which shares some features with both
iterative and single-pass methods. Recently, Cacace et al. [1] have shown that
it is not possible to create a local single-pass algorithm for solving general HJB
equations. This motivates the efforts to develop new techniques, particularly in
the class of iterative methods.

In this paper, we focus on the following minimum time HJB equation

sup
a∈B1

{−f(x, a) · ∇T (x)} = 1, x ∈ R
d\T (1)

where d is the space dimension, T is a closed nonempty target set in R
d,

f : Rd × B1 → R
d is a given vector-valued Lipschitz continuous function, and

B1 is the unit ball in R
d centered in the origin, representing the set of the

admissible controls. We complement the equation with homogeneous Dirichlet
condition T = 0 on T . Let us note that if f(x, a) = c(x)a, Eq. (1) becomes the
eikonal equation c(x)|∇T (x)| = 1. To simplify the notations, we restrict the dis-
cussion to the case d = 2. Generalizations of the considered algorithms to any
space dimension is straightforward, although the implementation is not trivial.

The goal of this paper is twofold: First, we investigate the possibility of
applying a semi-Lagrangian version of the FIM to Eq. (1). To our knowledge,
FIM was only used for solving the eikonal equation [5] and a special class of HJ
equations [6], although there is no particular constraint to apply it in a more
general framework. The algorithm indeed does not rely on the special form and
features of the eikonal equation. In addition, we measure the degree of “itera-
tiveness” of FIM, keeping track of how many times each grid node is inserted
into the list of nodes which are actually computed at each step. Interestingly,
the results indirectly confirm the findings of [1], showing that general HJB equa-
tions require the nodes to be visited an (a priori) unknown number of times, i.e.
single-pass methods do not apply.

Second, we propose a new acceleration technique for the FSM, which is effec-
tive when (1) is discretized by means of a semi-Lagrangian scheme (see [3] for a
comprehensive introduction). It reduces the CPU load for the sup search in (1),
neglecting the control directions which are downwind with respect to the current
sweep. The new method results to be remarkably faster, although (in general)
the number of iterations needed for convergence increases.
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2 Semi-Lagrangian Approximation

Let us introduce a structured grid G and denote its nodes by xi, i = 1, . . . , N .
The space step is assumed to be uniform and equal to Δx > 0. Standard argu-
ments [3] lead to the following discrete version of Eq. (1):

T (xi) ≈ T̂ (xi) = min
a∈B1

{
T̂ (x̃i,a) +

|xi − x̃i,a|
|f(xi, a)|

}
, xi ∈ G (2)

where x̃i,a is a non-mesh point, obtained by integrating, until a certain final
time τ , the ordinary differential equation

{
ẏ(t) = f(y, a), t ∈ [0, τ ]
y(0) = xi

(3)

and then setting x̃i,a = y(τ). To make the scheme fully discrete, the set of
admissible controls B1 is discretized with Nc points and we denote by a∗ the
optimal control achieving the minimum. Note that we can get different versions
of the semi-Lagrangian (SL) scheme (2) varying τ , the method used to solve (3),
and the interpolation method used to compute T̂ (x̃i,a). Moreover, we remark
that, in any single-pass method, the computation of T̂ (xi) cannot involve the
value T̂ (xi) itself, because this self-dependency would make the method iterative.
Here we use a 3-point scheme: Eq. (3) is solved by an explicit forward Euler
scheme until the solution is at distance Δx from xi, where it falls inside the
triangle of vertices xi,1, xi,2, and xi,3, to be chosen among the first neighbors
of xi. The value T̂ (xi) is computed by a two-dimensional linear interpolation of
the values T̂ (xi,1), T̂ (xi,2) and T̂ (xi,3) (see [1] for details).

3 Limits of Local Single-Pass Methods

In this section we briefly recall the main result of [1]. From the numerical point
of view, it is meaningful to divide HJB equations into four classes. For any given
mesh, we have:

(ISO) Equations whose characteristic curves coincide or lie in the same sim-
plex of the gradient curves of their solutions.

(¬ISO) Equations for which there exists at least a grid node where the char-
acteristic curve and the gradient curve of the solution do not lie in the
same simplex.

(REG) Equations with non-crossing (regular) characteristic curves. Charac-
teristics spread from the target T to the rest of the domain without
intersecting.

(¬REG) Equations with crossing characteristic curves. Characteristics start
from the target T and then meet in finite time, creating shocks. As
a result, the solution T is not differentiable at shocks.
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Let us summarize here the main remarks on single-pass methods:
• FMM works for equations of type ISO and fails for equations of type ¬ISO
(see [10] for further details and explanations), while FSM can be successfully
applied in any case.
• Handling ¬ISO case requires CONS not to follow the level sets of the solution
itself. Indeed, if CONS turns out to be an approximation of the level sets of
the solution, it means that the solution is computed in an increasing order, thus
following the gradient curve rather than the characteristic curve.
• Handling ¬REG case requires CONS to be an approximation of the level sets
of the solution. Let us clarify this point. Consider the ¬REG case and let x
be a point belonging to a shock, i.e. where the solution is not differentiable.
By definition, the value T (x) is carried by two or more characteristic curves
reaching x at the same time. Similarly, let xi be a grid node Δx-close to the
shock. In order to mimic the continuous case, xi has to be approached by the
ACC region approximately at the same time from the directions corresponding to
the characteristic curves. In this case, the value T (xi) is correct (no matter which
upwind direction is chosen) and, more important, the characteristic information
stops at xi and it is no longer propagated, getting stuck by the ACC region.
As a consequence, the shock is localized properly. On the other hand, if CONS
region is not an approximation of a level set of the solution a node xi close to a
shock can be reached by ACC at different times. When ACC reaches xi for the
first time, it is impossible to detect the presence of the shock by using only local
information. Indeed, only a global view of the solution allows one to know that
another characteristic curve will reach xi at a later time. As a consequence, the
algorithm continues the enlargement of CONS and ACC, thus making an error
that cannot be corrected by the following iterations.

In conclusion, we get that local single-pass methods cannot handle equations
¬ISO &¬REG. In this situation, one has to add non local information regarding
the location of the shock, or going back to nodes in ACC at later time, breaking
the single-pass property. This motivates the investigation of new techniques,
especially iterative methods, as the ones described in the next sections.

4 Fast Iterative Method

In this section we briefly recall the construction of FIM [4–6]. As in FMM, the
main idea of FIM is to update only few grid nodes at each step. These nodes are
stored in a separated list, called active list. During each step, the list of active
nodes is modified, and the band thickens or expands to include all nodes that
could be affected by the current updates. A node can be removed from the active
list when its value is up to date with respect to its neighbors (i.e., it has reached
convergence) and can be appended to the list (relisted) whenever any upwind
neighbor’s value has changed.

FIM is formally an iterative method, since the number of times a grid node
is visited depends on the dynamics and on the grid size. On the other hand, the
active list resembles the set CONS of FMM, and in some special cases FIM is in



78 S. Cacace et al.

fact a single-pass algorithm, see Sect. 6. Nevertheless, the active list and CONS
differ for some important features. The first is that the active list is not kept
ordered, and then the causality relationship among grid nodes is lost. The second
is that the active list can be more than 1-node-thick, i.e. it can approximate a
two-dimensional set. Finally, grid nodes removed from the active list can re-enter
at a later time. This is the price to pay for loosing the causality.

The FIM algorithm consists of two parts, the initialization and the updating.
In the initialization step, one has to set the boundary conditions and set the
values of the rest of the grid nodes to infinity (or some very large value). Next,
the adjacent neighbors of the source nodes (i.e. the target) are added to the active
list. In the updating step, for every point in the list, one computes the new value
and checks if the value at the node has converged by comparing the old and the
new value at the considered point. If it has converged, one removes the node from
the list and append to the list any non active adjacent node such that its updated
value is less than the current one. The algorithm runs until the list is empty.

FIM was introduced for solving a special class of HJ equations [5,6]. Neverthe-
less, in Sect. 6 we show that FIM based on a SL discretization can be successfully
applied to general HJB equations with no modifications.

5 An Optimized Fast Sweeping Method

FSM is another popular method for solving HJ equations [7,8,11,13]. The main
advantage of the method is its implementation, which is extremely easy (easier
than that of FMM and FIM). FSM is basically the classical iterative (fixed-point)
method, since each node is visited in a predefined order, until convergence is
reached. Here, the visiting directions (sweeps) are alternated in order to follow all
possible characteristic directions, trying to exploit causality. In two-dimensional
problems, the grid is visited sweeping in four directions: S → N & W → E,
S → N & E → W , N → S & E → W and N → S & W → E.
The key point is the Gauss-Seidel-like update of grid nodes, which allows one to
compute in a cascade fashion a relevant part of the grid nodes in only one sweep.
Indeed it is well known that in the case of eikonal equations FSM converges in
only four sweeps [13].

Here we propose an easy modification of the FSM based on a SL discretiza-
tion, aiming at saving CPU time for each sweep. Let us explain the idea in
the case of a dynamics of the form c(x, a)a, with c > 0. It is clear that dur-
ing the sweep S → N &W → E the algorithm cannot exploit the power of the
Gauss-Seidel cascade for the information coming from NE. Indeed, even if a node
actually depends on its NE neighbor, that information flows upwind and it is
not propagated to other nodes during the current sweep. Then, we propose to
remove downwind discrete controls from the minimum search in the SL scheme
(2), since they have small or no effect in the update of the nodes, see Fig. 1.
The assumption c > 0 is needed to preserve the order of the quadrants between
the control a and the resulting dynamics c(x, a)a. Otherwise, the choice of con-
trols to be removed should be adapted according to the sign of c.



Two Semi-Lagrangian Fast Methods for HJB Equations 79

Fig. 1. Downwind controls with respect to the four sweeps: dashed arcs identify the
directions to be removed

Note that the control set B1 is reduced to a upwind 3/4 of ball. Then, let us
denote by Upwind Fast Sweeping Method 3/4 (UFSM3/4) the classical FSM
with this control reduction. An additional speedup, that we expect to work only
in case where the characteristics are essentially straight, consists in reducing
further the control ball to a upwind 1/4 of ball (UFSM1/4).

6 Numerical Experiments

In this section we compare the performance of FSM, FIM, UFSM1/4 and
UFSM3/4 on the following equations:

Equation Dynamics Class

HJB-1 f(x, y, a) = a ISO& REG

HJB-2 f(x, y, a) = (1 + 4χ{x>1}) a ISO&¬REG

HJB-3 f(x, y, a) = mλ,μ(a) a ¬ISO& REG

HJB-4 f(x, y, a) = F2(x, y)mp(x,y),q(x,y)(a) a ¬ISO&¬REG

HJB-5 f(x, y, a) = (1 + |x + y|)mλ,μ(a) a ¬ISO&¬REG

where we defined mλ,μ(a) = (1 + (λ a1 + μ a2)2)− 1
2 for λ, μ ∈ R and we denoted

by χS the characteristic function of a set S. Moreover, for c1, c2, c3, c4 > 0, we
defined

C(x) = c1 sin
(

c2πx

c3
+ c4

)
,

(
F1(x, y), F2(x, y)

)
=

{
(0.5, 1) if y ≤ C(x)
(2, 3) otherwise ,

M(x, y) =

√√
√
√

F 2
2 (x,y)

F 2
1 (x,y)

− 1

1 + C ′2(x)
, p(x, y) = M(x, y)C ′(x), q(x, y) = −M(x, y) .

In all the following tests we set Ω = [−2, 2]2 (except Test 4), the target T = (0, 0)
and the number of discrete controls Nc = 32. Regarding FIM, we keep track of
the history of the active list by counting the number Ii of times the node xi enters
the active list. The number Imax := maxi Ii gives a measure of the “iterativeness”
of the method.
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Fig. 2. FIM for HJB-1: active nodes at different steps

Test 1. Here we solve equation HJB-1. Figure 2 shows the evolution of FIM’s
active list. Differently from FMM, where the CONS set expands from the target
following concentric circles (i.e. the level sets of the solution), here the active
set moves following concentric squares (cf. the behavior of the CONS region
of the safe method studied in [1]). As one can expect Imax = 1, meaning that
FIM behaves like a single-pass method. Table 1 compares CPU times of the
methods on different grids and the number of sweeps needed by sweeping meth-
ods to reach convergence. FSM converges in 4 sweeps for this equation, the
additional sweep reported in Table 1 is the one required by the algorithm to
check convergence. All the methods compute the same solution. In particular we
see that FIM is slightly slower than FSM, as noted in [5]. On the other hand,
UFSM methods (both 1/4 and 3/4) still converge in 5 sweeps, thus overcoming
FSM.

Test 2. Here we solve equation HJB-2. Figure 3 shows the optimal vector field
f(x, a∗) and the history of active nodes (in grey scale, where black corresponds
to Imax and white to 0). The maximal number of re-activation is Imax = 3 and
re-activation of nodes appears for the first time close to the shock line, see Fig. 3-
center. This depends on the fact that the active list is not an approximation of

0

3

Fig. 3. FIM for HJB-2: Optimal controls (left), re-activation history at an intermediate
step (center), re-activation history and level sets of the solution (right)
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a level set of the solution and the equation HJB-2 falls in the ¬REG class.
Then FIM is not able to capture the shock properly (see Sect. 3) in a single-pass
fashion, but has to come back to recompute wrong values. Table 1 compares the
methods. Results are similar to those of the previous test.

Test 3. Here we solve equation HJB-3 for λ = 10 and μ = 5, namely the
anisotropic eikonal equation, a well known example where FMM fails in com-
puting the correct solution, due to the fact that characteristics do not coincide
with gradient curves of the solution, see [10]. In this case FIM let evolve the
active list as for the eikonal equation (Test 1, Fig. 2) and produces a maximal
number of re-activation Imax = 1. Again, this means that equation HJB-3 can
be successfully solved by a local single-pass method, as the safe method intro-
duced in [1] for the class REG. We refer to Table 1 for a comparison of the
methods.

Test 4. Here we solve equation HJB-4 in Ω = [−0.5, 0.5]2 for c1 = 0.1225,
c2 = 2, c3 = 0.5 and c4 = 0, an example of class ¬ISO & ¬REG coming from
seismic imaging. It is a inhomogeneous anisotropic eikonal equation on a domain
with two layers separated by a sinusoidal profile C(x), with different constant
anisotropy coefficients in each layer (given by the pairs (F1, F2) = (0.5, 1) and
(F1, F2) = (2, 3)).

All the methods compute the same solution, meaning that FIM can work for
equations with substantial anisotropy and inhomogeneities (see also next test).
Unexpectedly, also UFSM1/4 is able to correctly follow quite curved characteris-
tics, see Fig. 4-left). Results in Table 1 show that sweeping methods need a large
number of sweeps to reach convergence (even more for UFSMs, due to the control
set reduction). This makes FIM be the fastest method. The maximal number of
re-activation for the active list is Imax = 7 and Fig. 4-center/right shows that
re-activation of nodes appears both close to the shocks and where the optimal
field exhibits rapid changes of direction.

0

7

Fig. 4. FIM for HJB-4: Optimal controls (left), re-activation history at an intermediate
step (center), re-activation history and level sets of the solution (right)
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Test 5. Here we solve HJB-5 for λ = 10 and μ = 5. This is the hardest example of
class ¬ISO & ¬REG presented in [1], where the shock (see the cubic-like curve in
Fig. 5-left/center) and a strong anisotropy region meet at the target. Sweeping
methods FSM and UFSM3/4 require much more sweeps with respect to the
previous tests, while UFSM1/4 fails in computing the correct solution, confirming
that the control set reduction to 1/4 of ball cannot be applied in any case.

The maximal number of re-activation for FIM is Imax = 30 (see Fig. 5-right),
whereas the evolution of the active list is extremely complicated and also pro-
duces regions of dimension two (see Fig. 6). Nevertheless, results in Table 1 shows
that, as the grid increases, FIM is still the fastest method. The presence of a
two-dimensional active list clearly proves that local single-pass methods can-
not be applied since the enlargement of CONS is required (cf. the buffered fast
marching method [2]).

0

30

Fig. 5. FIM for HJB-5: Optimal controls (left), level sets of the solution (center), re-
activation history (right)

Fig. 6. FIM for HJB-5: active nodes at different steps
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Table 1. CPU times (seconds) and number of sweeps. Fastest method in bold

Equation Grid Δx FSM FIM UFSM1/4 UFSM3/4

(sweeps) (sweeps) (sweeps)

HJB-1 101 0.04 0.13 (5) 0.17 0.04 (5) 0.10 (5)

HJB-1 201 0.02 0.51 (5) 0.72 0.15 (5) 0.40 (5)

HJB-1 401 0.01 2.04 (5) 3.21 0.58 (5) 1.51 (5)

HJB-2 101 0.04 0.16 (5) 0.21 0.04 (5) 0.12 (5)

HJB-2 201 0.02 0.63 (5) 0.87 0.19 (5) 0.46 (5)

HJB-2 401 0.01 2.46 (5) 3.80 0.70 (5) 1.84 (5)

HJB-3 101 0.04 0.31 (5) 0.38 0.09 (5) 0.23 (5)

HJB-3 201 0.02 1.23 (5) 1.56 0.35 (5) 0.88 (5)

HJB-3 401 0.01 4.88 (5) 6.57 1.38 (5) 3.53 (5)

HJB-4 101 0.01 5.72 (25) 1.93 2.18 (34) 5.62 (34)

HJB-4 201 0.005 22.70 (25) 7.68 8.66 (34) 19.58 (30)

HJB-4 401 0.0025 99.38 (28) 29.36 34.07 (34) 77.14 (30)

HJB-5 101 0.04 3.23 (53) 5.30 - 2.38 (53)

HJB-5 201 0.02 13.30 (55) 3.32 - 9.78 (55)

HJB-5 401 0.01 52.93 (55) 14.53 - 39.16 (55)

7 Conclusions

Tests performed in Sect. 6 show that FIM can be successfully used for solving
general HJB equations with no modifications with respect to the original algo-
rithm. Moreover, FIM appears to be the fastest method in case of complicated
¬ISO &¬REG equations because of the large number of iterations needed by the
sweeping methods. Considering that the implementation of FIM is not harder
than that of FSM, we think that, overall, FIM is the best method among the
tested ones.

UFSM3/4 is always preferable to FSM, since the larger number of iterations
needed for convergence are widely counterbalanced by the speedup for each single
sweep. UFSM1/4 is instead not safely applicable for general equations.

Finally, the results of this paper confirm those of [1]. Complicated ¬ISO &
¬REG equations require to pass through some nodes more than one time
(cf., e.g., Fig. 5-right and [1, Fig. 7]), and exhibit two-dimensional regions in
which every node depends on each other.
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Abstract. We consider the bilevel optimisation approach proposed in
[5] for learning the optimal parameters in a Total Variation (TV) denois-
ing model featuring for multiple noise distributions. In applications, the
use of databases (dictionaries) allows an accurate estimation of the para-
meters, but reflects in high computational costs due to the size of the
databases and to the nonsmooth nature of the PDE constraints. To over-
come this computational barrier we propose an optimisation algorithm
that, by sampling dynamically from the set of constraints and using a
quasi-Newton method, solves the problem accurately and in an efficient
way.

1 Introduction

Most images in the real world suffer from noise. In photography noisy images
occur when taking a photograph under bad lighting conditions, for instance.
Medical imaging applications, such as Magnetic Resonance Imaging (MRI) and
Positron Electron Tomography (PET), produce under-sampled and noisy image
data. In general, the quality of images obtained from imaging devices in the real
world, in the sciences and medicine, is limited by the hardware and the limited
time available to measure the image data. Hence, one of the most important tasks
in image processing is the reduction of noise in images, called image denoising.

A common challenge in image denoising is the setup of a suitable denoising
model. The model depends on the noise distribution and the class of images
the denoised solution should belong to. In [5] a bilevel optimisation approach
to learn the correct setup for a TV denoising model from a set of noisy and
clean test images is proposed. There, optimal parameters λi ∈ R, i = 1, . . . , d
are determined by solving the following optimisation problem:
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min
λi≥0, i=1,...,d

1
2N

N∑

k=1

‖ûk − uk‖2L2(Ω) (1.1)

subject to the set of nonsmooth constraints:

ûk = argminu∈BV (Ω)∩A

(

|Du|(Ω) +
d∑

i=1

λi

∫

Ω

φi(u, fk) dx

)

, k = 1, . . . , N.

(1.2)
In (1.1)–(1.2) Ω ⊂ R

2 is the image domain, |Du|(Ω) is the Total Variation
(TV) of u in Ω and BV (Ω) is the space of functions of bounded variation (see
[1]). For each k, the pair (uk, fk) is an element of a set of N pairs of clean and
noisy test images, respectively, whereas ûk is the TV-denoised version of fk.
For i = 1, . . . , d the terms φi represent the different data fidelities, each one
modelling one particular type of noise weighted by a parameter λi. Examples of
φ are φ(u, fk) = (u − fk)2 for noise with Gaussian distribution and φ(u, fk) =
|u−fk| for the case of impulse noise. The set A is the set of admissible functions
such that the data fidelity terms are well defined.

In this paper, we use a simulated database of clean and noisy images. This
is not uncommon. Even in real world applications such as MRI, simulated data-
bases are used to tune image retrieval systems, see for instance [7]. Alternatively,
we can imagine the retrieval of such a test set for a specific application using
phantoms and their noisy acquisitions. Ideally, we would like to consider a very
rich database (i.e. N � 1) in order to get a more robust estimation of the para-
meters, thus dealing with a very large set of constraints (1.2) that would need to
be solved in each iteration of an optimisation algorithm applied to (1.1)–(1.2).
The computational solution of such an optimisation problem renders expensive
and therefore challenging due to the large-scale nature of the problem (1.1)–(1.2)
and due to the nonsmooth nature of each constraint.

In order to deal with such large-scale problems various stochastic optimisa-
tion approaches have been presented in literature. They are based on the com-
mon idea of solving not all the constraints, but just a sample of them, whose size
varies according to the approach one intends to use. In this paper we focus on a
stochastic approximation method proposed by Byrd et al. [3,4] called dynamic
sample size method. The main idea of this method is to consider an initial, small,
training sample of the dictionary to start the algorithm with and dynamically
increasing its size, if needed, throughout the different steps of the optimisa-
tion process. The criterion to decide whether or not the sample size has to be
increased is a check on the sample variance estimates on the batch gradient. The
desired trade-off between efficiency and accuracy is then obtained by starting
with a small sample and gradually increasing its size till reaching the requested
level of accuracy. Let us mention that the method of Byrd et al. is one among
various stochastic optimisation methods, compare for instance [2,6,8–10].

Our work extends the work of [4] in two directions: firstly, in [4] the linearity of
the solution map is required which is not fulfilled for our problem (1.1)–(1.2). We
are going to show that the strategy of Byrd et al. can be modified for nonlinear
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solution maps as the one we are considering. Secondly, in [4] the optimization
algorithm is of gradient-descent type. Using a BFGS method to solve (1.1)–(1.2)
we extend their approach incorporating also second order information in form
of an approximation of the Hessian by evaluations of the sample gradient in the
iterations of the optimisation algorithm.

Organisation of the paper. In the following Sect. 2 we present the Dynamic
Sampling algorithm adapted to the nonlinear framework of problem (1.1)–(1.2),
specifying the variance condition on the batch gradient used in our optimisation
algorithm. In Sect. 3 we present the numerical results obtained for the estimation
of the optimal parameters in the case of single and mixed noise estimation for
the model (1.1)–(1.2) showing significant improvements in efficiency.

Preliminaries. We denote the vector of parameters we aim to estimate by
λ = (λ1, . . . , λd) ∈ R

d
≥0. We also define by S the solution map that, for each

constraint k = 1, . . . , N of (1.2), associates to λ and to the noisy image fk the
corresponding Total Variation denoised solution ûk, that is S(λ, fk) = ûk. Let
us then define the reduced cost functional J(λ) as

J(λ) :=
1

2N

N∑

k=1

‖S(λ, fk) − uk‖2L2(Ω) . (1.3)

We also define:

l(λ, fk) := ‖S(λ, fk) − uk‖2L2(Ω) , k = 1, . . . , N (1.4)

as the loss functions of the functional J defined in (1.3) for each k = 1, . . . , N . For
every sample S ⊂ {1, . . . , N} of the database, we introduce the batch objective
function:

JS(λ) :=
1

2|S|
∑

k∈S

l(λ, fk). (1.5)

2 Dynamic Sampling Schemes for Solving (1.1)–(1.2)

To design the optimisation algorithm solving (1.1)–(1.2) we follow the approach
used in [5]. There, a quasi-Newton method (namely, the Broyden-Fletcher -
Goldfarb-Shanno algorithm BFGS) is considered together with an Armijo back-
tracking linesearch rule. We combine such algorithm with a modified version
of the Dynamic Sampling algorithm presented in [4, Sect. 3]. In order to com-
pare our algorithm with the Newton-Conjugate Gradient method presented in
[4, Sect. 5], we highlight that in our optimisation algorithm the Hessian matrix
is never computed, but approximated efficiently by the BFGS matrix.

Our algorithm starts by selecting from the whole dataset a sample S whose
size |S| is small compared to the original size N . In the following iterations, if
the approximation computed produces an improvement in the cost functional J ,
then the sample size is kept unchanged and the optimisation process continues
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selecting in the next iteration a new sample of the same size. Otherwise, if the
approximation computed is not a good one, a new, larger, sample size is selected
and a new sample S of this new size is used to compute the new step. By starting
with small sample sizes it is hoped that in the early stages of the algorithm
the solution can be computed efficiently in each iteration. The key point in
this procedure is clearly the rule that checks throughout the progression of the
algorithm, whether the approximation we are performing is good enough, i.e. the
sample size is big enough, or has to be increased. Because of this systematic check
on the quality of approximation in each step of the algorithm, such sampling
strategy is called dynamic.

As in [4], we consider a condition on the batch gradient ∇JS which imposes
at every stage of the optimisation that the direction −∇JS is a descent direction
for J at λ if the following condition holds:

‖∇JS(λ) − ∇J(λ)‖L2(Ω) ≤ θ ‖∇JS(λ)‖L2(Ω) , θ ∈ [0, 1). (2.6)

The computation of ∇J may be very expensive for applications involving
large databases and nonlinear constraints, so we rewrite (2.6) as an estimate
of the variance of the random vector ∇JS(λ). In order to do that, recalling
definitions (1.4) and (1.5) we observe that

∇JS(λ) =
1

2|S|
∑

k∈S

∇l(λ, fk). (2.7)

We can compute (2.7) in correspondence to an optimal solution λ̂ by using [5,
Remark 3.4] where a characterisation of ∇J is given in terms of the adjoint states
pk (see Sect. 3 for details). By linearity and extending to the multiple-constrained
case, we get:

∇JS(λ̂) =
∑

k∈S

d∑

i=1

∫

Ω

φ′
i(ûk, fk) pk dx. (2.8)

Thanks to this characterisation, we now extend the dynamic sampling algorithm
in [4] to the case where the solution map S is nonlinear: by taking (2.8) into
account and following [4, Sect. 3] we can rewrite (2.6) as a condition on the
variance of the batch gradient that reads as

‖V ark∈S(∇l(λ, fk))‖L1(Ω)

|S|
N − |S|
N − 1

≤ θ2 ‖∇JS(λ)‖2L2(Ω) . (2.9)

For a detailed derivation of (2.9), see [4]. Condition (2.9) is the responsible for
possible changes in the sample size in the optimisation algorithm and has to
be checked in every iteration. If inequality (2.9) is not satisfied, a larger sample
Ŝ whose size satisfies the descent condition (2.9) needs to be considered. By
assuming that the change in the sample size is gradual enough such that, for
any given λ:

∥
∥V ark∈Ŝ(∇l(λ, fk))

∥
∥

L1(Ω)
≈ ‖V ark∈S(∇l(λ, fk))‖L1(Ω) ,

∥
∥∇JŜ(λ)

∥
∥

L2(Ω)
≈ ‖∇JS(λ)‖L2(Ω) ,
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we see that condition (2.9) is satisfied whenever we choose |Ŝ| such that

|Ŝ| ≥
⌈

N − ‖V ark∈S(∇l(λ, fk))‖L1(Ω)

‖V ark∈S(∇l(λ, fk))‖L1(Ω) + θ2(N − 1) ‖∇JS(λ)‖2L2(Ω)

⌉

. (2.10)

Conditions (2.9) and (2.10) are the key points in the optimisation algorithm
we are going to present: by checking the former, one can control whether the
sampling approximation is accurate enough and if this is not the case at any stage
of the algorithm, by imposing the latter a new larger sample size is determined.

We remark that these two conditions force the direction −∇JS to be a descent
direction. Steepest descent methods are known to be slowly convergent. Algo-
rithms incorporating information coming from the Hessian are generally more
efficient. However, normally the computation of the Hessian is very expensive,
so Hessian-approximating methods are commonly used. In [4] a Newton-CG
method is employed. There, an approximation of the Hessian matrix ∇2JS is
computed only on a subsample H of S such that |H| 
 |S|. As the sample S is
dynamically changing, the subsample H will change as well (with a fixed, con-
stant ratio) and the computation of the new conjugate gradient direction can be
performed efficiently. In this work, in order to compute an approximation of the
Hessian we consider the well-known BFGS method which has been extensively
used in the last years because of its efficiency and low computational costs.

Before giving a full description of the resulting algorithm solving (1.1)–(1.2),
we briefly comment on the linesearch rule that is employed in the update of the
BFGS matrix. We choose an Armijo backtracking line search rule with curva-
ture verification: the BFGS matrix is updated only if the curvature condition is
satisfied. The Armijo criterion is:

JS(λk + αkdk) − JS(λk) ≤ αkη∇JS(λk)�dk (2.11)

where the value η will be specified in Sect. 3, dk is the descent direction of the
quasi-Newton step, αk is the length of the quasi-Newton step and ∇JS(λk) is
defined in (2.7). The positivity of the parameters is always preserved along the
iterations.

We present now the BFGS optimisation with Dynamic sampling for solving
(1.1)–(1.2): compared to [4, Algorithm 5.2] we stress once more that the gain
in efficiency is obtained thanks to the use of BFGS instead of the Newton-CG
sampling method.

3 Numerical Results

In this section we present the numerical results of the Dynamic Sampling Algo-
rithm 1 applied to compute the numerical solution of (1.1)–(1.2). In our numer-
ical computations we fix the parameter values as follows:
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Algorithm 1. Dynamic Sampling BFGS for solving (1.1)-(1.2)
1: Initialize: λ0, sample S0 with |S0| � N and model parameter θ, k = 0.
2: while BFGS not converging, k ≥ 0
3: sample |Sk| PDE constraints to solve;
4: update of the BFGS matrix;
5: compute direction dk by BFGS and steplength αk by Armijo cond. (2.11);
6: define new iterate: λk+1 = λk + αkdk;
7: if condition (2.9) then
8: maintain the sample size: |Sk+1| = |Sk|;
9: else augment Sk such that condition (2.10) is verified.

10: end

– We consider images of size 150 × 150. We approximate the differential opera-
tors by discretising with finite difference schemes with mesh step size h = 1/
(number of pixels in the x-direction). We use forward difference for the
discretisation of the divergence operator and backward differences for the
gradient. The Laplace operator is discretised by using the usual five point
formula.

– The TV constraints in (1.2) are solved by means of SemiSmooth Newton
(SSN) algorithms whose form depends on the φ’s in (1.2) (cf. [5, Sect. 4])
solving regularised problems which stop if either the difference between two
consecutive iterates is small enough or if the maximum number of iterations
maxiter = 35 is reached.

– In the Armijo condition (2.11) the value η is chosen to be γ = 10−4.

Single noise estimation. As a toy example, we start by considering the case
when the noise in the images is normally distributed. In (1.1)–(1.2), this reflects
in the estimation of just one parameter λ that weights the fidelity term φ(u, fk) =
(u−fk)2 in each constraint. Considering the training database {(uk, fk)}k=1,...,N

of clean and noisy images, the problem reduces to:

min
λ≥0

1
2N

N∑

k=1

‖ûk − uk‖2L2(Ω) (3.1)

where, for each k, ûk is the solution of the regularised PDE

− εΔûk − div
(
hγ(∇ûk)

)
+ λ(ûk − fk) = 0, k = 1, . . . , N. (3.2)

In (3.2) hγ arises from a Huber-type regularisation of the subdifferential of |Dûk|
with parameter γ � 1 and the ε term is an artificial diffusion term that sets up
the problem in the Hilbert space H1

0 (Ω) (see [5, Sect. 3] for details).
As shown in [5, Theorem 3.5] the adjoint states pk can be computed for each

constraint as the solution of the following equation

ε(Dpk,Dv)L2+(h′
γ(Dûk)∗Dpk,Dv)L2 (3.3)

+
∫

Ω

λ pk v dx = −(ûk − fk, v)L2 , ∀v ∈ H1
0 (Ω).
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Recalling also Eqs. (2.7)–(2.8) needed for the computation of the gradient,
we can now apply Algorithm 1 to solve (3.1)–(3.2).

For the following numerical tests, the parameters of this model are chosen as
follows: ε = 10−12, γ = 100. The noise in the images has distribution N (0, 0.05).
The parameter θ of the Algorithm 1, is chosen to be θ = 0.5. We will comment
on the sensitivity of the method to θ later on.

Table 1 shows the numerical value of the optimal parameter λ̂ when vary-
ing the size of the dictionary. We measure the efficiency of the algorithms used
in terms of the number of nonlinear PDEs solved during the BFGS optimisa-
tion and we compare the efficiency of solving (3.1)–(3.2) without and with the
Dynamic Sampling strategy. We observe a clear improvement in efficiency when
using Dynamic Sampling: the number of PDEs solved in the optimisation process
is very much reduced. We note that this corresponds to an increasing number
of BFGS iterations which does not appear to be an issue as BFGS iterations
are themselves very fast. For the sake of computational efficiency, what really
matters is the number of PDEs that need to be solved in each iteration of BFGS.
Moreover, thanks to modern parallel computing methods and to the decoupled
nature of the constraints in each BFGS iteration, solving such a reduced amount
of PDEs makes the computational efforts very reasonable. In fact, we note that
the size of the sample is generally maintained very small in comparison to N
or just slightly increased. Computing also the relative error between the opti-
mal parameter computed by solving all the PDEs and the one computed with

Table 1. N is the size of the database, λ̂ is the optimal parameter for (3.1)–(3.2)
obtained by solving all the N constraints, whereas λ̂S is the one computed by solving
the problem with Algorithm 1. The initial size S0 is chosen to be |S0| = 20%N . |Send| of
the sample at the end of the optimisation algorithm. The efficiency of the algorithms is
measured in terms of the PDEs solved. We compare the accuracy of the approximation

in terms of the difference
∥∥
∥λ̂S − λ̂

∥∥
∥
1
/ ‖λS |‖1.

N λ̂ λ̂S |S0| |Send| Eff. Eff. Dyn.S. BFGS its. BFGS its. Diff.

Dyn.S.

10 3334.5 3427.7 2 3 140 84 7 21 2.7 %

20 3437.0 3475.1 4 4 240 120 7 15 1.1 %

30 3436.5 3478.2 6 6 420 180 7 15 1.2 %

40 3431.5 3358.3 8 9 560 272 7 16 2.1 %

50 3425.8 3306.4 10 10 700 220 7 11 3.5 %

60 3426.0 3543.4 12 12 840 264 7 11 3.3 %

70 3419.7 3457.7 14 14 980 336 7 12 1.1 %

80 3418.1 3379.3 16 16 1120 480 7 15 <1 %

90 3416.6 3353.5 18 18 1260 648 7 18 2.3 %

100 3413.6 3479.0 20 20 1400 520 7 13 1.9 %
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Dynamic Sampling method, we note a good level of accuracy: the difference
between the two values remains below 5%.

Figure 1 shows an example of database of brain images1 together with the
optimal denoised version obtained by Algorithm 1 for single Gaussian noise
estimation.

Fig. 1. Sample of 5 images of a MRI brain database: original images (upper row), noisy
images (middle row) and optimal denoised images (bottom row), λ̂S = 3280.5.

Multiple noise estimation. We consider now a more interesting application
of (1.1)–(1.2) where the image is corrupted by noises with different distrib-
utions. We consider the case where a combination of Gaussian and impulse
noise is present. The fidelity term for the impulse distributed component is
φ1(u, fk) = |u − fk|, whereas, as above, for the Gaussian noise we consider
the fidelity φ2(u, fk) = (u − fk)2, for every k. Each fidelity term is weighted by
a parameter λi, i = 1, 2. Thus, we aim to solve:

min
(λ1,λ2), λi≥0

1
2N

N∑

k=1

‖ûk − uk‖2L2(Ω) (3.4)

where, for each k, ûk is now the solution of the regularised PDE:

−εΔûk −div(hγ(∇ûk))+λ1h
1
γ(ûk −fk)+λ2(ûk −fk) = 0, k = 1, . . . , N. (3.5)

In (3.5) the first and the second terms are as before while the third one cor-
responds to the Huber-type regularisation of sgn(ûk − fk). The adjoint state is
computed as in [5], in a similar manner as (3.3). By taking also into account
equations (2.7)–(2.8), we solve (3.4)–(3.5) with ε = 10−12, γ = 100 by means of
Algorithm 1.
1 OASIS online database.
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We take as example slices of the brain database shown in Fig. 1 corrupted
with both Gaussian noise distributed as N (0, 0.005) and impulse noise with
fraction of missing pixels d = 5%, and again solve (1.1)–(1.2) by solving the
PDE constraints all at once and by using Dynamic Sampling for different N . In
Table 2 we report the results for the estimation of λ1 and λ2.

Table 2. λ̂1S and λ̂2S are the optimal weights for (3.4)–(3.5) estimated with Dynamic
Sampling. We observe again a clear improvement in efficiency (i.e. number of PDEs
solved). As above, |S0| = 20 %N and θ = 0.5.

N λ̂1S λ̂2S |S0| |Send| Eff. Eff. Dyn.S. Diff.

10 86.31 28.43 2 7 180 70 5.2 %

20 90.61 26.96 4 6 920 180 5.3 %

30 94.36 29.04 6 7 2100 314 5.6 %

40 88.88 31.56 8 8 880 496 1.2 %

50 88.92 29.81 10 10 2200 560 <1 %

60 89.64 28.36 12 12 1920 336 1.9 %

70 86.09 28.09 14 14 2940 532 3.3 %

80 87.68 29.97 16 16 3520 448 <1 %

Convergence and sensitivity. Figure 2 shows two features of Algorithm 1
applied to solve problem (3.1)–(3.2). On the left we represent the evolution of
the cost functional along the BFGS iterations. Because of the sampling strategy,
in the early iterations of BFGS the problem considered varies quite a lot, thus
showing oscillations. Once evolving the process, the convergence is superlinear.
On the right we represent the sensitivity with respect to the accuracy para-
meter θ (cf. (2.9)): smaller values of θ penalise larger variances on ∇JS , thus
favouring larger samples. Larger values of θ allow larger variances on ∇JS and,
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Fig. 2. Left : evolution of BFGS with Dynamic Sampling along the iterations. Right :
samples size changes in Algorithm 1 for different values of θ. For each value of θ, the
result is plotted till convergence. For this example N = 20, |S0| = 2.
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consequently, smaller sample sizes. In this case, efficiency improves, but accuracy
might suffer as shown in Table 3.

Table 3. As θ increases we observe improvements upon the efficiency as smaller samples
are allowed. However, the relative difference with the value estimated without sampling
shows that accuracy suffers.

θ Efficiency Difference

0.1 516 0.07 %

0.3 246 4.3 %

0.5 92 5.9 %

0.7 68 15%

4 Conclusions

In this paper, we propose an efficient and competitive technique to solve numer-
ically the constrained optimisation problem (1.1)–(1.2) designed for learning the
noise model in a TV denoising framework accounting for different types of noise.
The set of nonsmooth PDE constraints resembles a large-size training database
of clean and noisy images that allows a more robust estimation of parameters.
To solve the problem, we use Dynamic Sampling methods, proposed in [4] for
linear constrained problems. The idea consists in selecting just a small sample
of the PDEs that need to be solved over the whole database and then, during
the progression of the algorithm, verify whether such a size produces approx-
imations that are accurate enough. Extended to our nonlinear framework, the
results show a remarkable improvement in efficiency, which reflects in reduced
computational times for both single noise estimations as well as for mixed ones.
Further directions for future research are an accurate analysis of convergence
properties of such a scheme as well as the design of a similar algorithm for the
case of a L1-regularisation on the parameter vector.
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Abstract. We consider a prototypical nonlinear reaction-diffusion sys-
tem arising in reversible chemistry. Based on recent existence results of
global weak and classical solutions derived from entropy-decay related a-
priori estimates and duality methods, we prove exponential convergence
of these solutions towards equilibrium with explicit rates in all space
dimensions.

The key step of the proof establishes an entropy entropy-dissipation
estimate, which relies only on natural a-priori estimates provided by
mass-conservation laws and the decay of an entropy functional.

Keywords: Reaction-diffusion equations · Entropy method · Duality
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1 Introduction

Reaction-Diffusion Systems for Reversible Chemistry

The evolution of a mixture of diffusive species Ai, i = 1, 2, . . . , q, undergoing a
reversible reaction of the type

α1A1 + · · · + αqAq � β1A1 + · · · + βqAq, αi, βi ∈ N,

is modelled using mass-action kinetics (see e.g. [3–5,9] for a derivation from basic
principles) in the following way:

∂tai − di Δxai = (βi − αi)
(

l

q∏

j=1

a
αj

j − k

q∏

j=1

a
βj

j

)
, (1)
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where ai := ai(t, x) ≥ 0 denotes the concentration at time t and point x of the
species Ai and di > 0 are positive and constant diffusion coefficients.

We suppose that x ∈ Ω, where Ω is a bounded domain of IRN (N ≥ 1) with
sufficiently smooth (e.g. C2+α, α > 0) boundary ∂Ω, and complement system
(1) by homogeneous Neumann boundary conditions:

n(x)·∇xai(t, x) = 0 , ∀t ≥ 0, x ∈ ∂Ω, (2)

where n(x) is the outer normal unit vector at point x of ∂Ω.
The particular case A1 + A2 � A3 + A4 (that is, when q = 4 with α1 =

α2 = 1, β3 = β4 = 1, α3 = α4 = 0 and β1 = β2 = 0) has lately received a lot
of attention as a prototypical model system featuring quadratic nonlinearities,
see e.g. [7,12,17]. For the sake of readability, we shall set l = 1 = k (the general
case can be treated without any additional difficulty) and assume that Ω is
normalised (i.e. |Ω| = 1). We then consider the particular case of system (1),
which writes as ⎧

⎪⎪⎨

⎪⎪⎩

∂ta1 − d1 Δxa1 = a3 a4 − a1 a2,
∂ta2 − d2 Δxa2 = a3 a4 − a1 a2,
∂ta3 − d3 Δxa3 = a1 a2 − a3 a4,
∂ta4 − d4 Δxa4 = a1 a2 − a3 a4,

(3)

together with the homogeneous Neumann boundary conditions (2).
It was first proven by Goudon and Vasseur in [17] based on an intricate use

of De Giorgi’s method that whenever d1, d2, d3, d4 > 0, there exists a global
smooth solution for dimensions N = 1, 2. For higher space dimensions the exis-
tence of classical solutions constitutes an open problem, for which the Hausdorff
dimension of possible singularities was characterised in [17]. The (technical) crit-
icality of quadratic nonlinearities was underlined by Caputo and Vasseur in [8],
where smooth solutions were shown to exist in any dimension for systems with
a nonlinearity of power law type which is strictly subquadratic, see also e.g. [1].

A further related result by Hollis and Morgan [20] showed that if blow-up
(here that is a concentration phenomena since the total mass is conserved) occurs
in one concentration ai(t, x) at some time t and position x, then at least one more
concentration has to blow-up (i.e. concentrate) at the same time and position.
A proof of these results is based on a duality argument.

In [12], a duality argument in terms of entropy density variables was used to
prove in an elegant way the existence of global L2-weak solutions in any space
dimension. Recently in [7], a nice improvement of the duality methods allows
to show global classical solutions in 2D of the prototypical system (3)–(2) in a
significantly shorter and less technical way than via De Giorgi’s method.

In the present work, we shall show that exponential convergence (with explicit
rates) towards the unique constant equilibrium still holds for any dimension N
(see Theorem 1 below) when one considers L2-weak solutions. The proof of Theo-
rem 1 is based on an approach, where a quantitative entropy entropy-dissipation
estimate is established, which uses only natural a-priori bounds of the system,
and thus significantly improves the results of [11] and related previous results
like [10,15,16,18].
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The paper is organized as follows: We start in Sect. 2 by presenting a-priori
bounds for our system and by overviewing the available analytical tools. Next,
in Sect. 3, we prove Theorem 1 stating exponential convergence to equilibrium.

2 A Priori Estimates and Analytical Tools

2.1 Mass Conservation Laws

The conservation of the number of atoms implies (at first for all smooth solutions
(ai)i=1,..,4 of (3) with Neumann condition (2)) that for all t ≥ 0,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

M13 :=
∫

Ω
(a1(t, x) + a3(t, x)) dx =

∫
Ω

(a1(0, x) + a3(0, x)) dx,

M14 :=
∫

Ω
(a1(t, x) + a4(t, x)) dx =

∫
Ω

(a1(0, x) + a4(0, x)) dx,

M23 :=
∫

Ω
(a2(t, x) + a3(t, x)) dx =

∫
Ω

(a2(0, x) + a3(0, x)) dx,

M24 :=
∫

Ω
(a2(t, x) + a4(t, x)) dx =

∫
Ω

(a2(0, x) + a4(0, x)) dx.

(4)

Note that only three of the above four conservation laws are linearly independent.

2.2 Entropy Functional and Entropy Dissipation

A second set of a-priori estimates stems from the nonnegative entropy (free
energy) functional E((ai)i=1,..,4) and the entropy dissipation D((ai)i=1,..,4) =
− d

dtE((ai)i=1,..,4) associated to (3):

E(ai(t, x)i=1,..,4) =
4∑

i=1

∫

Ω

(
ai(t, x) log(ai(t, x)) − ai(t, x) + 1

)
dx, (5)

D(ai(t, x)i=1,..,4) =
4∑

i=1

∫

Ω

4 di |∇x

√
ai(t, x)|2 dx (6)

+
∫

Ω

(a1 a2 − a3 a4) log
(

a1 a2

a3 a4

)
(t, x) dx.

It is easy to verify that the following entropy dissipation law holds (still for
sufficiently regular solutions (ai)i=1,..,4 of (3) with (2)) for all t ≥ 0

E(ai(t, x)i=1,..,4) +
∫ t

0

D(ai(s, x)i=1,..,4) ds = E(ai(0, x)i=1,..,4) . (7)

The entropy decay estimate (7) implies as a first a-priori estimate that

ai ∈ L∞([0,+∞[;L log L(Ω)), ∀i = 1, .., 4 . (8)

Considering in (7) that the time integral of the entropy dissipation (6) is uni-
formly bounded-in-time, its first component provides the estimate

√
ai ∈ L2([0,+∞[;H1(Ω)), ∀i = 1, .., 4, (9)
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Finally, the second component of the time integral of the entropy dissipation
(6) ensures that, provided that a3 a4 ∈ L1

loc([0,+∞[×Ω̄), then also a1 a2 ∈
L1

loc([0,+∞[×Ω̄). This comes out of the following classical inequality (cf. [14]),
which holds for any κ > 1,

a1 a2 ≤ κ a3 a4 +
1

log κ
(a1 a2 − a3 a4) log

(
a1 a2

a3 a4

)
. (10)

Note that by letting κ be as large as necessary, this inequality also allows to
prove that an approximating sequence an

1 an
2 is (locally in time) weakly compact

in L1 if the sequence an
3 an

4 is also weakly compact in L1 (and when estimate (7)
holds uniformly with respect to n).

Remark 1. We remark (see [12]), that as a consequence of the first two entropy
related a-priori estimates (8)–(9), global classical solutions of system (3)–(2)
can be constructed only in 1D. In 2D, global L2-weak solutions can be deduced
by using Trudinger’s inequality. In any higher space dimension, renormalised
solution can be obtained from all three a-priori estimate (8)–(10).

2.3 Entropy Structure and Duality Methods

The system (3)–(2) can also be rewritten in terms of the entropy density variables
zi := ai log(ai) − ai. By introducing the sum z :=

∑4
i=1 zi, it holds that

⎧
⎨

⎩

∂tz − Δx (Az) ≤ 0, n(x)·∇xzi(t, x) = 0,

A(t, x) :=
∑4

i=1 di zi∑4
i=1 zi

∈
[

min
i=1,..,4

{di}, max
i=1,..,4

{di}
]
,

(11)

Then, by a duality argument (see e.g. [12,20,21] and the references therein), the
parabolic problem (11) satisfies for all T > 0 and ΩT = (0, T ) × Ω and for all
space dimensions N ≥ 1 the following a-priori estimate

‖zi‖L2(ΩT ) ≤ C(1 + T )1/2

∥
∥
∥
∥

4∑

i=1

ai0(log(ai0) − 1)
∥
∥
∥
∥

L2(Ω)

, i = 1, .., 4, (12)

where C is a constant independent of T , see [7,12]. Thus, given (ai0)i=1,..,4 ∈
L2(log L)2(Ω), we have (ai)i=1,..,4 ∈ L2(log L)2(ΩT ) and the quadratic nonlin-
earities on the right hand side of (3) are uniformly integrable, which allows to
prove the existence of global L2-weak solutions in all space dimensions N ≥ 1
[12]. Moreover, in 2D and in higher space dimension under the assumption
of sufficiently “similar” diffusion coefficients (i.e. max{di} − min{di} is suf-
ficiently small), an improved duality estimate allows to show global classical
solutions [7].
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2.4 Equilibrium

We observe that when all the diffusivity constants (di)i=1,..,4 > 0 are posi-
tive, there exists a unique constant equilibrium state (ai,∞)i=1,..,4 (for which
the entropy dissipation vanishes). It is defined by the unique positive constants
balancing the reversible reaction a1,∞ a2,∞ = a3,∞ a4,∞ and satisfying the con-
servation laws aj,∞ + ak,∞ = Mjk for (j, k) ∈ ({1, 2}, {3, 4}), that is:

{
a1,∞ = M13M14

M , a3,∞ = M13 − M13M14
M = M13M23

M ,

a2,∞ = M23M24
M , a4,∞ = M14 − M13M14

M = M14M24
M ,

(13)

where M denotes the total initial mass M = M13 + M24 = M14 + M23.

2.5 Logarithmic Sobolev Inequality

Finally, we introduce a lemma which is known to hold, but somehow without
reference. We therefore follow an argument of Strook [22], which shows that
Sobolev and Poincaré inequality imply the logarithmic Sobolev inequality with-
out confining potential on a bounded domain.

Lemma 1 (Logarithmic Sobolev inequality on bounded domains). Let
Ω be a bounded domain in IRN such that the Poincaré (-Wirtinger) and Sobolev
inequalities

‖φ − ∫
Ω

φ dx‖2L2(Ω) ≤ P (Ω) ‖∇xφ‖2L2(Ω) , (14)

‖φ‖2Lq(Ω) ≤ C1(Ω) ‖∇xφ‖2L2(Ω) + C2(Ω) ‖φ‖2L2(Ω) , 1
q = 1

2 − 1
N , (15)

hold. Then, the logarithmic Sobolev inequality
∫

Ω

φ2 log
(

φ2

‖φ‖22

)
dx ≤ L(Ω,N) ‖∇xφ‖2L2(Ω) (16)

holds (for some constant L(Ω,N) > 0).

Proof (of Lemma 1). Assume firstly that ‖φ‖22 = 1. Then, using Jensen’s inequal-
ity for the measure φ2 dx, we estimate

∫

Ω

φ2 log(φ2) dx =
2

q − 2

∫

Ω

log
(
φq−2

)
(φ2dx) ≤ 2

q − 2
log

(∫

Ω

φq dx

)

=
q

q − 2
log

(‖φ‖2q
) ≤ q

q − 2
(‖φ‖2q − 1

)
,

using the elementary inequality log x ≤ x − 1. Hence, we have for general φ,
∫

Ω

φ2 log
(

φ2

‖φ‖22

)
dx ≤ q

q − 2
(‖φ‖2q − ‖φ‖22

)

≤ q

q − 2
C1 ‖∇xφ‖22 +

q

q − 2
(C2 − 1) ‖φ‖22,
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using the Sobolev inequality (15). Now, in case when
∫

Ω
φ dx = 0, inequality

(16) follows directly from Poincaré inequality (14). Otherwise, considering φ̃ =
φ − ∫

Ω
φ dx, a lengthy calculation [13] shows that

∫

Ω

φ2 log
(

φ2

‖φ‖22

)
dx ≤

∫

Ω

φ̃2 log

(
φ̃2

‖φ̃‖22

)

dx + 2 ‖φ̃‖22 ,

and the inequaltiy (16) follows from Poincaré inequality (14).

Remark 2. On convex domains Ω, an alternative proof of (16) consists in
building a limiting procedure with a sequence of logarithmic Sobolev inequalities
on IRN (see e.g. [2,6]) with a convex confining potential, which is made constant
inside the bounded domain (by using the Holley-Strook perturbation lemma [19])
and tends to infinity outside of the bounded domain.

3 Exponential Convergence to Equilibrium
via the Entropy Method

In this section, we prove exponential convergence towards equilibrium (with
explicit rates) for weak solutions of system (3) (and thus also for classical solution
whenever they are known to exist) in all space dimensions N ≥ 1:

Theorem 1. Let Ω be a bounded domain with sufficiently smooth boundary (e.g.
∂Ω ∈ C2+α, α > 0) such that Lemma 1 holds. Let (di)i=1,..,4 > 0 be posi-
tive diffusion coefficients. Let the initial data (ai,0)i=1,..,4 be nonnegative func-
tions of L2 (log L)2(Ω) with positive masses (Mjk)(j,k)∈({1,2},{3,4}) > 0 (see (4)).
Then, the global solution ai of (3)–(2) (weak or classical as shown to exist in
[7,12]) decay exponentially towards the positive equilibrium state (ai,∞)i=1,..,4 >
0 defined by (13):

4∑

i=1

‖ai(t, ·) − ai,∞‖2L1(Ω) ≤ C1

(
E((ai,0)i=1,..,4) − E((ai,∞)i=1,..,4)

)
e−C2 t,

for all t ≥ 0 and for constants C1 and C2, which can be explicitly computed.

Remark 3. The above Theorem generalises to all space dimensions the conver-
gence result obtained in [11]. It avoids a slowly growing L∞-bound (available
only in 1D and maybe 2D) by using the logarithmic Sobolev inequality (16) to
control the relative entropy of the concentrations ai w.r.t. their spatial averages
ai =

∫
Ω

ai dx (recall that |Ω| = 1), which themself are controlled by the mass
conservation laws (4). The remaining part of the proof follows then from [11].

Note also that exponential decay towards equilibrium in Lp(Ω) with 1 < p < 2
follows by interpolation the L2(Ω)-bounds (12).



102 L. Desvillettes and K. Fellner

Proof (of Theorem 1). The proof is based on an entropy method, where the
entropy dissipation D((ai)i=1,..,4) = − d

dtE((ai)i=1,..,4) = − d
dt (E((ai)i=1,..,4) −

E((ai,∞)i=1,..,4)) is controlled from below in terms of the relative entropy with
respect to equilibrium. That is, we look for an estimate like

D((ai)i=1,..,4) ≥ C (E((ai)i=1,..,4) − E((ai,∞)i=1,..,4)) (17)

= C
4∑

i=1

∫

Ω

[
ai log

(
ai

ai,∞

)
− (ai − ai,∞)

]
dx,

for a constant C provided that all the conservation laws (4) are observed. Then, a
simple Gronwall lemma yields exponential convergence in relative entropy to the
equilibrium (ai,∞)i=1,..,4. Furthermore, convergence in L1 as stated in Theorem 1
follows from a Cziszar-Kullback type inequality [11, Proposition 4.1].

In order to establish the entropy-entropy dissipation estimate (17), we firstly
split the relative entropy

E((ai)i=1,..,4) − E((ai,∞)i=1,..,4) = E((ai)i=1,..,4) − E((ai)i=1,..,4)
+E((ai)i=1,..,4) − E((ai,∞)i=1,..,4) ,

into – roughly speaking – the relative entropy of the concentrations ai w.r.t. their
averages ai and the relative entropy of the averages ai w.r.t. the equilibrium ai,∞.

The first term can be estimated thanks to the logarithmic Sobolev inequality
(16) (recall the conservation laws (4)) by

E((ai)i=1,..,4) − E((ai)i=1,..,4) =
4∑

i=1

∫

Ω

ai log
(

ai

ai

)
dx

≤ L(Ω)
4∑

i=1

∫

Ω

|∇x
√

ai|2 dx ,

which is clearly bounded by the entropy dissipation D((ai)i=1,..,4) in (6).
On the other hand, estimating the second relative entropy can be done in

the following way: We define

φ(x, y) =
x ln(x/y) − (x − y)

(
√

x − √
y)2

= φ(x/y, 1),

which is a continuous function on (0,∞) × (0,∞). Note that thanks to the
conservation laws (4), we have φ(ai/ai,∞, 1) ≤ C(M). We can then write

E((ai)i=1,..,4) − E((ai,∞)i=1,..,4) =
4∑

i=1

[
ai log

(
ai

ai,∞

)
− (ai − ai,∞)

]

≤
4∑

i=1

φ(ai, ai,∞)
∣
∣√ai − √

ai,∞
∣
∣2 ≤ C(M)

4∑

i=1

∣
∣√ai − √

ai,∞
∣
∣2 .
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Finally, the expression
∑4

i=1

∣
∣√ai − √

ai,∞
∣
∣2 is bounded in terms of equation

(47) in [11, Lemma 3.2], which itself is bounded by the entropy dissipation
D((ai)i=1,..,4) in (6) with a constant, which can be explicitly estimated. This
finishes the proof of the entropy entropy-dissipation estimate (17), which implies
explicit exponential convergence to equilibrium in relative entropy.

The proof of Theorem1 follows then by recalling the Cziszar-Kullback type
inequality [11, Proposition 4.1].
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Abstract. We present a numerical scheme for the approximation of
Hamilton-Jacobi-Isaacs equations related to optimal control problems
and differential games. In the first case, the Hamiltonian is convex with
respect to the gradient of the solution, whereas the second case cor-
responds to a non convex (minmax) operator. We introduce a scheme
based on the combination of semi-Lagrangian time discretization with a
high-order finite volume spatial reconstruction. The high-order character
of the scheme provides an efficient way towards accurate approximations
with coarse grids. We assess the performance of the scheme with a set of
problems arising in minimum time optimal control and pursuit-evasion
games.

Keywords: Hamilton-Jacobi-Isaacs equations · High-order schemes ·
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Differential games

1 Introduction

The numerical approximation of Hamilton-Jacobi-Isaacs (henceforth HJI) equa-
tions appears as a crucial step in many fields of applications, including optimal con-
trol, image processing, fluid dynamics, robotics and geophysics. In general, these
equationsdonothave regular solutions even if thedataand the coefficients are regu-
lar, and thereforemanyeffortshavebeendevoted to thedevelopmentand theanaly-
sis of approximation schemes for such problems. The convergence of the schemes is
understood in the sense of viscosity solutions; it is well known (see e.g. [5,20]) that
viscosity solutions are typically Lipschitz continuous, and therefore the main diffi-
culty is to have a good resolution around the singularities, and a good accuracy in
the parts of the domain where the solution is regular.
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The theory of approximation schemes for viscosity solutions has been devel-
oped starting from the huge literature existing for the numerical solution of
conservation laws in one dimension, exploiting the relation between entropy
solutions and viscosity solutions. More precisely, the viscosity solution can be
written as the space integral of the corresponding entropy solution and this rela-
tion can be also applied to the construction of numerical schemes, by simply
integrating in space the schemes for conservation laws. At the very beginning,
these techniques were successfully applied to the study of the class of monotone
schemes; in this framework, the rate of convergence is limited to first order. Some
of these schemes, like finite differences for instance, are used over structured
grids and are strictly related to the above mentioned methods for conservation
laws. Other approximation schemes, like the Finite Volume Method and semi-
Lagrangian schemes, can easily work on unstructured grids and are based on
different ideas, e.g. on the Hopf-Lax representation formula. In all these cases,
the role of monotonicity is important to guarantee the convergence to the vis-
cosity solution, and a general result for monotone schemes applied to second
order fully nonlinear equations has been proved by Barles and Souganidis in
[6]. Although a complete list of the contributions to numerical methods for HJI
equations goes beyond the scopes of this paper, let us quote the application of
Godunov/central schemes [1,2], antidissipative and SuperBee/UltraBee [10,11],
MUSCL [26], and WENO schemes [12,29].

A natural way to overcome the limitations of monotone schemes is by the
application of high-order approximations. For a given accuracy, these methods
can achieve acceptable error levels in coarser grids, with a considerably reduced
number of nodes in comparison with low-order, monotone schemes. This can
be a crucial point when the dimension of the problem is high or when complex
computations are required at every grid node; both situations naturally arise
in the context of HJI equations stemming from optimal control and differential
games. In this paper we propose the coupling between a semi-Lagrangian (SL)
time discretization with a finite volume reconstruction in space. High-order SL
schemes for HJI equations have been first considered for a semi-discretization
in time in [18], and for the fully discrete scheme in [19]. A convergence analysis
based on the condition Δx = O(Δt2) is carried out in [21]. The adaptation
of the theory to weighted ENO reconstructions is presented in [14], along with
a number of numerical tests comparing the various high-order versions of the
scheme. Other numerical tests, mostly in higher dimension and concerned with
applications to front propagation and optimal control, are presented in [13]. Let
us mention that a first convergence result for a class of motonone Finite Volume
schemes has been proved in [27].

The paper is organized as follows.
In Sect. 2, we illustrate our ideas with a setting related to minimum time

optimal control and differential games, leading to stationary HJI equation. In
Sect. 3, we deal with a high-order approximation scheme based on a coupling
between a semi-Lagrangian discretization in time and a Finite Volume spatial
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reconstruction. Finally, in Sect. 4 we present some numerical experiments assess-
ing the performance and accuracy of the proposed scheme.

2 HJI Equations Arising in Optimal Control
and Differential Games

As we mentioned in the introduction, HJI equations often arise in optimal control
and differential games; whenever a feedback controller is sought, the application
of the Dynamic Programming Principle (DPP) leads to HJI equations, which
can be time-dependent or stationary. Among a wide class of problems, in this
section we illustrate our ideas by means of minimum time optimal control and
pursuit-evasion games.

Let us start by considering consider system dynamics of the form
{

ẏ(t) = f(y, α(t)) for t > 0 ,

y(0) = x ,
(1)

where y ∈ R
n is the state, α : [0,+∞) → A is the control and f : Rn × A →

R
n is the controlled vector field. To get a unique trajectory for every initial

condition and a given control function, we will always assume that f is continuous
with respect to both variables, and Lipschitz continuous with respect to the
state space (uniformly in α). Moreover, we will assume that the controls are
measurable functions of time so that we can apply the Carathéodory theorem
for the Cauchy problem (1).

In the minimum time optimal control problem, we want to minimize the time
of arrival to a given target T . The cost will be given by

t(x, α) :=

{
inf{t : yx(t;α) ∈ T }
+∞ if yx(t;α) /∈ T ∀t.

(2)

By the application of the DPP one can prove that the minimum time function

T (x) := inf
α∈A

t(x, α)

satisfies the Bellman equation

max
a∈A

{−f(x, a) · DT} = 1 ,

in the domain where T is finite (the so-called reachable set). Introducing the
change of variable

v(x) :=

{
1/μ if tx(a, b) = +∞ ,

1/μ(1 − e−μtx(a,b)) elsewhere ,
(3)
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where μ is a free positive parameter to be suitably chosen, one can characterize
T as the unique viscosity solution of the following Dirichlet problem

{
μv(x) + max

a∈A
{−f(x, a) · Dv} = 1 for x ∈ R

n \ T ,

v(x) = 0 for x ∈ ∂T .
(4)

Another interesting example comes from the DPP approximation of the
Hamilton-Jacobi-Isaacs equations related to pursuit-evasion games (see [5] for
more details). Player-a (the pursuer) wants to catch player-b (the evader) who is
escaping, and the controlled dynamics for each player are known. To simplify the
notations, we will denote by y(t) = (yP (t), yE(t)) the state of the system, where
yP (t) and yE(t) are the positions at time t of the pursuer and of the evader, both
belonging to R

n, and by f : R2n × A × B → R
2n the dynamics of the system

(clearly, here the dynamics depend on the controls for both players). The payoff
is defined as the time of capture but, in order to have a fair game, we need to
restrict the strategies of the players to the so-called non-anticipating strategies
(i.e. they cannot exploit the knowledge of the future strategy of the opponent).
These strategies will be denoted respectively by α and β. Given the strategies
α(·) and β(·) for the first and the second player, we can define the corresponding
time of capture as

tx(α[β], β) = inf
{
t > 0 : yP (t) = yE(t)

}
.

If there is no capture for those strategies we set tx(α[β], β) = +∞. Then we
can define the lower time of capture as

T (x) = inf
α∈A

sup
β∈B

tx(α[β], β),

and again T can be infinite if there is no way to catch the evader from the
initial position of the system x. In order to get a fixed point problem and to deal
with finite values, it is useful to scale time by the change of variable (3), which
corresponds to the payoff

Jx(α, β) =
∫ tx(α,β)

0

e−μtdt

The rescaled minimal time will be given by

v(x) = inf
α∈A

sup
b∈B

Jx(α[β], β).

Assuming v to be continuous, the application of the DPP leads to the fol-
lowing characterization of the value function

{
v + min

b∈B
max
a∈A

{−Dv · f(x, a, b)} = 1 on R
n \ T ,

v(x) = 0 on ∂T .
(5)

Note that the equation is complemented by the natural homogeneous bound-
ary condition on the target T (x) = v(x) = 0. If v( · ) is continuous, then v is a
viscosity solution in R

n \ T of the Dirichlet problem (5).
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3 Semi-Lagrangian Schemes for HJI Equations

In this section we introduce the main building blocks for the construction of
semi-Lagrangian/finite volume schemes for HJI equations of the form (4)–(5).
The general procedure is decomposed into a time discretization step, and a space
discretization procedure. In the time discretization step, the system dynamics
(1) are approximated by a suitable integration rule, and the DPP is applied on
its discrete-time version. In the space discretization procedure, the resulting HJI
equation is then approximated over a finite set of elements. The same procedure
holds for all the problems presented in the previous section, however, for the sake
of simplicity, this section is illustrated by means of the minimum time problem
and its associated HJB Eq. (4) (which is also a particular case of (5) for a single
player setting).

Time Discretization

For the implementation of a time disretization procedure, we follow the ideas
presented in [18]. The first step towards the construction of a high-order scheme
for the equations (4)–(5) is to consider discrete time approximation of the system
dynamics (1) of the form

yn+1 = yn + h Φ(yn, An, h) , for n > 0 , (6)
y0 = x ,

where h > 0 corresponds to a time discretization parameter, Φ = Φ(yn, An, h) is
the Henrici function of a one-step approximation of the dynamical system, and
An stands for a multidimensional control defined accordingly to the order q of
the numerical integrator,

An = (a0
n, a1

n, . . . , aq
n) , An ∈ Aq+1 , q ≥ 0.

Particular cases of the aforementioned setting are

(i) Explicit Euler’s method: Φ(yn, An, h) = f(yn, an), with An = a0
n.

(ii) Midpoint rule: Φ(yn, An, h) = f(yn +hf(yn, a0
n)/2, a1

n), with An = (a0
n, a1

n).
(iii) Fourth-order Runge-Kutta scheme:

Φ(yn, An, h) =
1

6
(K0 + 2K1 + 2K2 + K3) , An = (a0

n, a1
n, a2

n, a3
n) ,

K0 = f(yn, a0
n) , K1 = f(yn + h

K0

2
, a1

n) , K2 = f(yn + h
K1

2
, a2

n) , K3 = f(yn + hK2, a3
n).

The application of the DPP for the discrete-time dynamics leads to an
approximation of Eq. (4) of the form

{
vh(x) = min

An∈Aq
{βvh(x + hΦ(x,An, h))} + 1 − β for x ∈ R

n \ T ,

v(x) = 0 for x ∈ ∂T ,
(7)
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where β = e−h appears as a consequence of the application of the Kruzkhov
transform (3) to the discrete version of the minimum time solution (in this case
with μ = 1).

Note that, despite having introduced an approximation in time for Eq. (4),
the resulting semi-discrete version (7) is still continuously defined over the state
space. In order to implement a fully-discrete computational scheme, it is neces-
sary to realize this expression in a bounded domain with a finite set of elements.
Classical schemes for HJI equations of this form are based upon finite difference
discretizations, where the domain Ω ⊂ R

n over which the solution is sought, is
discretized into a set of grid points, and the approximation is understood in a
pointwise sense. A natural problem in this setting arises from the fact that the
r.h.s. of Eq. (7) requires the evaluation of vh at the arrival points x+hΦ(x,An, h),
which are not necessarily part of the grid. In the low-order version of the SL
scheme, this evaluation is performed via piecewise linear interpolation from the
grid values, whereas in this work we focus on a high-order definition of such an
operation. We follow an approach based on a Finite Volume approximation of
the problem. For a given mesh parameter k, and a set of central nodes {xi}N

i=1,
the domain is discretized into a set of cells Ωi = [xi − k/2, xi + k/2]. Instead of
considering pointwise nodal values of vh, the solution will be represented by a
set of cell-averaged values V := {vi}N

i=1 defined as

vi :=
1
k

∫ xi+k/2

xi−k/2

vh(x) dx , i = 1, . . . , N.

Its is straightforward to see that the exact expression for the averaged values
of the solution of (7) is given by

vi = Tk,i(vh) for i = 1, . . . , N ,

Tk,i(vh) : =
1
k

∫ xi+k/2

xi−k/2

{
min

An∈Aq
{βvh(x + hΦ(x,An, h))} + 1 − β

}
dx , (8)

v(x) = 0 for x ∈ ∂T .

A first approximation is introduced when the integral in (8) is replaced by a
suitable Gaussian quadrature rule

Tk,i(vh) ≈ 1
k

∑

i

wi

{
min

An∈Aq
{βvh(xi + hΦ(xi, An, h))} + 1 − β

}
, (9)

where xi and wi are Gauss points and weights inside the i−th cell, respectively.
This expression requires the evaluation of the exact vh at a set of arrival points,
which is not available. Analogously to the grid-based schemes, we approximate
this evaluation with an interpolation operator I = I[V ] defined upon the set of
cell averages, i.e.

vh(xi + hΦ(xi, An, h)) ≈ I[V ](xi + hΦ(xi, An, h)).
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where I : R
N →→ Sk corresponds to a WENO (weighted essentially

non-oscillatory) interpolation routine performed over the averaged dataset V .
The WENO reconstruction procedure and related numerical schemes date back
to the work of [25], in the context of numerical methods for conservation laws, as
a way of circumventing Godunov’s barrier theorem by considering nonlinear (on
the data) reconstruction procedures for the implementation of high-order accu-
rate schemes. As it has been shown in [21], the use of a WENO interpolation
procedure can be considered as a building block in high-order, semi-Lagrangian
schemes for time-dependent HJB equations, whereas here we introduce an appli-
cation to static HJI equations. We now briefly describe the main ideas for a 1D
WENO reconstruction.

From a set of cell values V and a polynomial degree r, the WENO reconstruc-
tion procedure yields a set of polynomials P = {pi(x)}N

i=1 of degree r, holding
standard interpolation properties

vi =
1
k

∫

Ωi

pi(x) dx , v(x) = pi(x) + o(Δxr) , ∀x ∈ Ωi, (10)

and an essentially non-oscillatory condition [24]; in general, such an interpolant
is built by considering a set of stencils per cell, and weighting them according to
a smoothness indicator. Several variations of this procedure can be found in the
literature; for illustration purposes, we restrict ourselves to the reconstruction
procedure presented in [4], on its 1D version, and reconstruction degree 2. In
this case, given a set of averaged values V , the reconstruction procedure seeks,
for every cell, a local quadratic expansion upon a linear combination of Legendre
polynomials rescaled in local coordinates ξ = [−1/2, 1/2], expressed in the form

p(ξ) = v0 + vξp1(ξ) + vξξp2(ξ),

with
p1(ξ) = ξ , p2(ξ) = ξ2 − 1

12
.

We assign the subscript “0” to the cell where we compute the coefficients,
other values indicating location and direction with respect to v0 (note that the
notation is coherent with the fact that the first coefficient in the expansion v0,
holds v0 = vi, i.e., the centered value). Next, for this particular problem we
define three stencils

S1 = {v−2, v−1, v0} , S2 = {v−1, v0, v1} , S3 = {v0, v1, v2} ,

and in every stencil we compute a polynomial of the form

v(i)(ξ) = v
(i)
0 + v

(i)
ξ p1(ξ) + v

(i)
ξξ p2(ξ) i = 1, 2, 3.

Imposing the conservation condition (10), the coefficients are given by

S1 : v
(1)
ξ = −2v−1 + v−2/2 + 3v0/2, v

(1)
ξξ = (v−2 − 2v−1 + v0)/2 ,

S2 : v
(2)
ξ = (v1 − v−1)/2, v

(2)
ξξ = (v−1 − 2v0 + v1)/2 ,

S3 : v
(3)
ξ = −3v0/2 + 2v1 − v2/2, v

(3)
ξξ = (v0 − 2v−1 + v2)/2.
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For every polynomial we calculate a smoothness indicator defined as

IS(i) =
r∑

l=1

∫

Ω0

k2l−1

(
∂lp(i)

∂xl

)2

dx ,

where r is the polynomial reconstruction degree (in our case r = 2), and which
in our case yields to

IS(i) =
(
p
(i)
ξ

)2

+
13
3

(
p
(i)
ξξ

)2

.

This leads to the following WENO weights:

ω(i) =
α(i)

∑3
i=1 α(i)

, α(i) =
λ(i)

(ε + IS(i))r
,

where ε is a parameter introduced in order to avoid division by zero; usually
ε = 10−12. The scheme is rather insensitive to the parameter r, which we set
r = 5. The parameter λ is usually computed in an optimal way to increase the
accuracy of the reconstruction at certain points; we opt for a centered approach
instead, thus λ(1) = λ(3) = 1, while λ(2) = 100. Finally, the expression for the
1D reconstructed polynomial at the i − th cell is given by

pi(ξ) = ω(1)p(1)(ξ) + ω(2)p(2)(ξ) + ω(3)p(3)(ξ).

Having defined all the buildings blocks for a fully-discrete, high-order approx-
imation of Eq. (4), we need to solve the following nonlinear system

vi = [Tk,i(V )]i for i = 1, . . . , N , (11)

[Tk,i(V )]i : =
1
k

∑

i

wi

{
min

An∈Aq
{βI[V ](xi + hΦ(xi, An, h))} + 1 − β

}
,

v(x) = 0 for x ∈ T ,

v(x) = 1 for x ∈ ∂Ωc\T .

Note that we added an additional boundary condition related to the external
part of the computational domain which is not the target, computationally equiv-
alent to setting a high value which is neglected in the minimization procedure
for the interior elements. The computational domain must be set accordingly
to this condition, in order to generate a consistent result. With respect to the
solution of the nonlinear system (11), the approach which we follow is motivated
by the standard approach undertaken in the low-order setting, which is to solve
the system by some variation of a fixed point iteration

V n+1 = T (V n) , (12)

which, in the low-order monotone scheme, is well-justified since T is a contraction
mapping. A key point is the fact that the corresponding linear interpolation
operator is monotone, which is lost in the high-order scheme. However, it is
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still possible to develop a convergence theory for interpolation operators that
are not monotone but have additional properties such as the WENO operator.
In [21], a convergence framework has been developed for time-dependent HJB
equations, and recently in [8], convergence results have been obtained for the
stationary case. One of the advantages of this setting is the vast amount of
available literature dealing with acceleration techniques for HJI iterative solvers
(we refer the reader to [3] and references therein for a recent update on such
methods).

4 Numerical Examples

We now present two numerical examples assessing the performance of the pro-
posed scheme. We recall that, although we will present examples dealing with
minimum time optimal control and pursuit-evasion games, the presented ideas
can be applied in a straightforward manner to infinite/finite horizon optimal
control, reachability analysis and differential games.

A Two-Dimensional Minimum Time Problem

We begin by considering a two-dimensional minimum time problem. In this first
example, system dynamics are given by

f(x, y, (a1, a2)) =
(

a1

a2

)
,

the domain is Ω =] − 1, 1[2, the target is T = ∂Ω, h = 0.8k and A =
{(1, 0), (0, 1), (−1, 0), (0,−1)} is the set of 4 directions pointing to the facets
of the unit square. The exact solution for this problem is the distance function
to the unit square. As the characteristic curves for this problem correspond to
straight lines moving towards the boundary, integration in time can be achieved
exactly with a solver of any order. We consider then a Euler discretization in
time, and a two-dimensional WENO reconstruction of order 2 in space. The mul-
tidimensional WENO reconstruction is based on a product of unidimensional
reconstructions along every direction (we refer the reader to [4] for the specific
version used in this test). Convergence rates and errors are shown in Table 1.
Note that the second order of the space interpolation is achieved for the ‖ · ‖1
norm, while a lower order is observed for the ‖ · ‖∞ norm. This is expected from
the fact that the solution is not differentiable across the kinks of the solution.
Note that if error computation is performed over a restricted zone excluding
non-differentiable points, as in Table 2, higher order of accuracy and conver-
gence are achieved for both norms, as it is generally expected for WENO-based
schemes. However, this might not be the case for any high-order scheme. As an
example, in Fig. 1, it can be seen that if a generic quadratic interpolation is used
to build a similar scheme, spurious oscillations arise in non-differentiable areas,
degenerating the high-order accuracy of the scheme. This latter justifies the use
of WENO reconstruction operators in space, as they are accordingly designed in
order to detect and penalize highly oscillatory stencils.



114 M. Falcone and D. Kalise

Table 1. Errors for the 2D minimum time problem with a second-order WENO recon-
struction.

k ‖ · ‖∞-error ‖ · ‖∞-order ‖ · ‖1-error ‖ · ‖1-order #iterations

0.08 0.0023 – 3.667e-4 – 21

0.04 0.0011 1.0641 1.068e-4 1.7791 30

0.02 5.711e-4 0.946 2.887e-5 1.8878 54

0.01 2.966e-4 0.945 7.51e-6 1.9427 104

Table 2. Error computation (as in Table 1) over a restricted zone excluding non-
differentiable kinks.

k ‖ · ‖∞-error ‖ · ‖∞-order ‖ · ‖1-error ‖ · ‖1-order

0.08 7.763e-9 – 1.051e-9 –

0.04 5.362e-10 3.8558 1.438e-10 2.8696

0.02 3.523e-11 3.9279 1.0758e-11 3.7406

0.01 2.257e-12 3.9643 7.1681e-13 3.9076
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Fig. 1. 2D minimum time problem: value function for different schemes. Left: high-
order scheme with WENO reconstruction in space. Right: high-order scheme using
quadratic interpolation.

A Reduced-Coordinate Pursuit-Evasion Game

In a second example, we consider a 1D pursuit-evasion game with dynamics
given by

ẋP = vP a , ẋE = vEb ,

where vP and vE denote the velocity of the pursuer and the evader respectively;
a ∈ [0, 1] and b ∈ [−1, 1] are control variables. By defining the reduced coordinate
x = xE − xp, the game is written as

ẋ = vEb − vP a.



A High-Order Semi-Lagrangian/Finite Volume Scheme 115

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

v(
x)

Exact
WENO−SL

0 50 100 150 200 250 300
10

−20

10
−15

10
−10

10
−5

10
0

Iterations

m
ax

(|
vn

+
1 −
vn
|)

h=0.7*k
h=k
h=1.3*k

Fig. 2. SL/FV scheme for a 1D differential game. Left: exact and approximated solution
for 100 elements. Right: oscillatory, but convergent behavior is achieved for the fixed
point iteration (12), for different values of h.

If we consider the target set T = B(0, R), the exact solution is given by

v(x) =

⎧
⎪⎨

⎪⎩

1 − exp(−|x + R|) if x < R

0 if x ∈ (−R,R)
1 if x > R .

We implement our SL/FV scheme with a fourth-order RK scheme in time
and a WENO reconstruction in space of degree 2; results are shown in Fig. 2.
A natural advantage of high-order methods is the level of accuracy that can be
reached with a reduced number of elements, which is particularly relevant when
fixed point iterations of the form (12) involving min or minmax operators are
considered. However, at it has been previously discussed, for high-order schemes
the fixed point operator is not a contraction anymore, and convergence has to
be understood in a different sense. In [8], the ε- monotonicity concept has been
introduced in order to characterize the convergence behavior of such high-order
schemes. Figure 2 illustrates this situation, as for different values of h and k,
convergence of the fixed point iteration is achieved in an oscillatory way, whereas
the oscillation behavior decreases when h = h(k) is reduced.

5 Concluding Remarks

We have introduced a semi-Lagrangian/finite volume scheme for the approxima-
tion of HJI equations. The main building blocks are a high-order approximation
of the system dynamics, combined with high order of accuracy in space via a
WENO interpolation operator. The resulting fully-discrete scheme is then solved
by means of a fixed point iteration. High-order of accuracy is observed in smooth
regions, and the convergence of the fixed point iteration is achieved as long as
in the spatial-resolution building block, non-oscillatory interpolation operators
are considered. Further developments in the directions of this paper will include
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the implementation of high-dimensional interpolation routines, as well as the
construction of adaptive schemes with an ad-hoc refinement criterion.
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Abstract. We use an asymptotic expansion of the compliance cost
functional in linear elasticity to find the optimal material inside ellip-
tic inclusions. We extend the proposed method to material optimization
on the whole domain and compare the global quality of the solutions
for different inclusion sizes. Specifically, we use an adjusted free mater-
ial optimization problem, that can be solved globally, as a global lower
material optimization bound. Finally, the asymptotic expansion is used
as a topological derivative in a simultaneous material and topology opti-
mization problem.

Keywords: Material optimization · Topology optimization · Material
orientation · Asymptotic expansions · Discrete material optimization

1 Introduction

We investigate material and topology optimization of compliance problems in
two dimensions. To this end, we first present an asymptotic formula1 of the com-
pliance functional for the insertion of a number of ellipsoidal bodies in an elastic
domain, originally derived in [1]. Later, we study numerically the feasibility of
replacing all material using the same asymptotic expansion as for the ellipses
and finally make use of the formula as topological derivative.

The problem described above is by far not new. There are many publications
dealing with similar types of problems. For the rotational optimization consid-
ered later, in [2] an analytical formula for the strain energy is derived, to directly
compute the optimal material orientation. In [3], this has been embedded into a
structural optimization algorithm for compliance minimization. A similar app-
roach is discussed in [4] for a plate model. The method proposed in this article,
however, can be used for a broader spectrum in material optimization as well,

The authors want to thank the German Research Foundation (DFG) for funding
this research work within Collaborative Research Centre 814, subproject C2.

1 We note that the asymptotic formulae are also available for the three-dimensional
case.
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such as discrete material optimization. The algorithm for simultaneous material
and topology optimization presented at the end of this article is very similar to
topology gradient methods, see e.g. [5]. For more references, see [6].

2 Material and Topology Optimization

We consider a domain Ω ⊂ R
2 of isotropic elastic material. The domain is

subject to exterior traction and other boundary conditions (e.g. homogeneous
Dirichlet conditions). The objective is to find the optimal material C0 in a set
of admissible materials C to insert into an inclusion, for which the compliance
as defined in (1) is minimized.

The elastic body is modeled by the equation of linear elasticity
∫

Ω

Cijkl(x)εij(u)εkl(v) dx =
∫

Γ

fu ds,

with the displacement field u, the linearized strains εij(u) =
(

∂ui

∂xj
+ ∂uj

∂ui

)
and

a traction f . We use Voigt notation to denote the fourth-order stiffness tensor
Cijkl by a symmetric 3 × 3-matrix and the strains and stresses by a vector

C =

⎛

⎝
C1111 C1122

√
2C1112

C2222

√
2C2212

sym. 2C1212

⎞

⎠ , ε =

⎛

⎝
ε11
ε22√
2ε12

⎞

⎠ , σ =

⎛

⎝
σ11

σ22√
2σ12

⎞

⎠ .

The stresses are given by Hooke’s law

σ = Cε.

2.1 Optimal Material in Elliptic Inclusions

We insert a finite number of inclusions ωi, i = 1, . . . , nell with nell > 1 and
centers z1, . . . , znell into the domain Ω and search for the optimal material to
be used in the inclusions. For an exemplary setup of boundary conditions and
loads, a sketch of a possible problem specification is shown in Fig. 1. We place
the elliptic inclusions on a regular grid within the domain Ω, so that the center
points of the inclusions are distributed equidistantly. In the sketch in Fig. 1, we
have nell = 100 disjoint elliptic inclusions. In the remaining domain

Ω1 := Ω \
nell⋃

i=1

ωi,

we insert an isotropic matrix material C1, and, in each inclusion, a material Ci,
i = 1, . . . , nell.
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Fig. 1. Example for placing elliptic inclusions ωi, i = 1, . . . , nell, in the domain Ω.

Now, the compliance function of the elastic body Ω (without inclusions) with
respect to a set of given load functions fk ∈ [L2(Γ )]2, k ∈ K = {1, 2, . . . , nloads}
applied to a part Γ of ∂Ω is defined as

Jc(f) =
∑

k∈K

∫

Γ

fk(x)uk(x) ds. (1)

By virtue of the asymptotic expansion (cf. [1]) for the two-dimensional case,
the compliance function Jc(C0)(f) of a body with a single inclusion of material
C0 can be approximated as

∣
∣
∣
∣Jc(C0)(f) −

(
Jc(f) − h2

2
ε(u; z)�P(C0)ε(u; z)

)∣
∣
∣
∣ ≤ ch5/2(1 + | ln h|)‖f‖2, (2)

where h is a dimensionless scaling parameter for the elliptic inclusion ω, ε(u; z) is
the strain corresponding to the displacement of the domain Ω without inclusion
evaluated at the center z of the ellipse, and P(C0) is the so called polarization
matrix given by

P(C0) = −|ω|
(
C1 − C0 + (C1 − C0)

(
I3 − Ψ(C1 − C0)

)−1
Ψ(C1 − C0)

)
. (3)

The matrix Ψ in formula (3) depends solely on the isotropic matrix material
and is, for the stretched coordinates ω = {ξ : ξ21/a2 + ξ22/b2 < 1}, ξ = x/h,
computed by

Ψ =
∫

∂ω

D(ν(ξ)) (D(∇ξ)Φ(ξ))� dsξ, D(x)� =
(

x1 0 2−1/2x2

0 x2 2−1/2x1

)
, (4)
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where ν denotes the exterior normal of the ellipse ω and a, b are the semi-major
and semi-minor axes of the ellipse, respectively, cf. Fig. 1. Finally, Φ in (4) is the
fundamental solution given by

Φ(x) = c1

(
−(λ + 3μ) ln(r) − (λ + μ)x2

2
r2 (λ + μ)x1x2

r2

(λ + μ)x1x2
r2 −(λ + 3μ) ln(r) − (λ + μ)x2

1
r2

)

, (5)

where c1 = 1
4π

1
μ(λ+2μ) , r =

√
x2
1 + x2

2 and λ and μ are the Lamé parameters
corresponding to the isotropic material C1, see e.g. [7, Chap. 3]. A more detailed
explanation may be found in [1, Sect. 3.1].

In order to minimize the compliance for a single inclusion with center zi we
can now use the asymptotic expansion (2) and The inserted material will be
chosen out of a set of admissible materials C

min
C0∈C

Jc(C0)(f) ≈ min
C0∈C

Jc(f) − h2

2
ε(u; zi)�P(C0)ε(u; zi)

= Jc(f) +
h2

2
min
C0∈C

(−ε(u; zi)�P(C0)ε(u; zi)
)
.

Thus, taking into account that Jc(f) is independent of the rotation angle
and noting that h2 is a constant scaling parameter, the functional

Dc(C0, zi) := −ε(u; zi)� P(C0) ε(u; zi) (6)

can be used as an approximate model to find the optimal rotation angle resulting
in the optimization problem

min
C0∈C

Dc(C0, zi). (7)

We note that the functional Dc depends on the inserted material C0 only
via the polarization matrix P(C0) and on the displacement field u(x) only locally
through the evaluation of the strain at center zi of the ellipse. Furthermore, only
a single evaluation of the state problem for the unperturbed domain is required.

Due to the local character of (6) the optimal orientation of nell < ∞ non-
intersecting inclusions at once can be approximated by the solution of nell opti-
mization problems of type (7) or equivalently by the solution of the problem

min
(C0

0 ,...,C0
nell

)∈Cnell
J asymp

c(C0
0 ,...,C0

nell
)
:=

nell∑

i=1

min
C0

i

Dc(C0
i , zi), (8)

which is separable in terms of the different materials C0
0 , . . . , C0

nell
used in the

different inclusions. The latter is certainly only an approximation of the original
simultaneous material optimization problem

min
(C0

0 ,...,C0
nell

)∈Cnell
Jc(C0

0 ,...,C0
nell

), (9)
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however it is shown in [6] for the optimal rotation of an orthotropic material,
that the results for this approximation are close to the solution of the original
problem. Moreover, we will later on compare the quality of the approximated
solution to rigorous lower bounds. We want to stress that still only a single
evaluation of the state problem for the unperturbed domain is required, which
allows for a highly efficient numerical solution.

The optimization procedure for solving (8) is performed by the following
algorithm:

(S1) choose matrix material C1 and admissible materials for inclusions C;
(S2) compute Ψ from (4);
(S3) define loads and boundary conditions;
(S4) solve state problem without inclusions for isotropic material;
foreach inclusion ωi, i = 1, . . . , nell do

(S5) solve minC0
i ∈C Dc(C0

i , zi) to global optimality;
end

Algorithm 1. Basic algorithm for minimization of the compliance based on
the asymptotic model.

2.2 Admissible Material Choices

In order to avoid local minima, the set of admissible materials C should allow for
a global solution of the local material optimization problem (7) in a reasonable
time. Interestingly, the easiest choice here would be a set of discrete materials.
In the following, however, we concentrate on parametric material formulations.
Using the properties of the asymptotic expansion, we can give a wider class
of parametrizations that lead to globally solvable problems. According to [6]
(Theorem 2.8, p. 14), the polarization matrix (3) is positive definite if (C0)−1 −
(C1)−1 is negative definite. If the isotropic material C1 is then chosen s.t. every
C0 ∈ C is strictly stiffer, it can then be shown that the functional (6) is convex for
any linear material parametrization. An example of this would be the so-called
free material optimization (FMO, see e.g. [8,9]):

CFMO :=

⎧
⎨

⎩

⎛

⎝
e1 e2 e3
e2 e4 e5
e3 e5 e6

⎞

⎠ 
 τ

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ , e1 + e4 + e6 = ρ

⎫
⎬

⎭
, (10)

where τ is a fixed lower eigenvalue bound and ρ bounds the total stiffness of the
material tensor. The positivity constraint is still linear as a semidefinite program,
s.t. the resulting problem stays convex.

Furthermore, we will now consider the usually difficult problem of rotational
optimization that is also vastly simplified by the breakdown to local minimization
problems. An example of this would be the variation of angle and stiffness

C0(θ, s) := Θ(θ)�C(s)Θ(θ), C(s) :=

⎛

⎝
1.0 + s 0.5 0

0.5 15 − s 0
0 0 1.0

⎞

⎠ (11)
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where we rotate an orthotropic material by an angle θ using the orthogonal
rotation matrix Θ defined as

Θ(θ) =

⎛

⎝
cos(θ)2 sin(θ)2 −√

2/2 sin(2θ)
sin(θ)2 cos(θ)2

√
2/2 sin(2θ)√

2/2 sin(2θ) −√
2/2 sin(2θ) cos(2θ)

⎞

⎠ . (12)

In the results section, we will consider two different admissible material sets
based on this parametrization, namely

Cθ,s :=
{
C0(θ, s) : θ ∈ [0, π], s ∈ [0, 14]

}
(13)

and a pure rotational optimization

Cθ,s=0 :=
{
C0(θ, s) : θ ∈ [0, 2π], s = 0

}
. (14)

Now this parametrization fails the proposed linearity. However, for any fixed
rotation angle θ, the local minimization problems (8) are still strictly convex. It
follows, that the problem can be solved as a bilevel problem

min
θi,si

Jc(C0
i (θi, si)) = min

θi

G(θi)

G(θi) := min
si

Jc(C0(θi,si)),

which still allows for a global solution with moderate cost as there is only a
single primary variable left. Note that this could be done similarly for more
complicated linear parametrizations with rotation or in 3D with 2–3 rotation
angles.

Lastly, we consider an orthotropic material parametrization using engineering
constants with fixed Poisson’s ratio νxy = νyx = 0.3:

C(θ,Ex, Ey, Gxy) = Θ(θ)�

⎛

⎜
⎜
⎝

Ex

1−0.09

√
0.09ExEy

1−0.09 0√
0.09ExEy

1−0.09
Ey

1−0.09 0
0 0 2Gxy

⎞

⎟
⎟
⎠ Θ(θ), (15)

with elasticity moduli Ex, Ey, shear modulus Gxy and Θ as in (12). We define
the admissible material set corresponding to (13) as

CEng :=
{
C(θ,Ex, Ey, Gxy) : θ ∈ [0, π], Ex, Ey ∈ [1, 15], Gxy ∈ [0.5, 7.5]

}
.

2.3 From Elliptic Inclusions to Material Optimization

While the asymptotic model (2) rigorously holds only for elliptic inclusions of
small size, in the following we will also numerically investigate the behavior when
replacing the material inside squared patches of finite elements. Choosing the
elements properly, the material in the whole domain can be replaced this way
with the FE patches still being disjoint. Using a large number of patches, the size
of the inclusion stays small compared to the domain size. Thus, we will study
increasingly bigger ellipses and compare the compliance values of the different
parametrizations to global lower material optimization bounds computed with
an FMO solver.
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Validation Methods. For the numerical evaluation, we discretize the domain
Ω using rectangular finite elements. This discretization is necessary to compute
the displacements used in the asymptotic expansion. The elliptic inclusions are
approximated by those finite elements, for which the coordinates of their center
point are contained in the inclusion ωi. In order to obtain the actual compliance
value for the optimization result, the material used in those elements is then
replaced by the optimal value of C0

i . When replacing all material, we use equally
sized squared FE patches that are uniformly distributed, disjoint and cover the
whole domain.

Furthermore, we compare the compliance values to a global lower material
optimization bound determined by solving a modified FMO problem. Specifi-
cally, we solve

min
(C0

0 ,...,C0
nell

)∈Cnell
FMO

Jc(C0
0 ,...,C0

nell
) (16)

with CFMO as in (10) and the bounds τ and ρ chosen as close as possible to the
ones used in the specific material parametrization, s.t. all possible tensors are a
subset of CFMO. For a more detailed description of the method, see [6]. Note that
within these bounds, any physically admissible material may be used and that
this problem is convex for the compliance cost functional. Thus, the problem is
solved globally using the algorithm described in [9] and we obtain a global lower
compliance bound.

Numerical Results. We consider the example from Fig. 1 with 10×10 ellipses
and discretize the domain Ω using 100 × 100 finite elements. We compare the
different admissible material sets as defined in Sect. 2.2. For CFMO we choose
τ = 1 as lower eigenvalue bound and ρ = 17 as upper trace bound both in the
asymptotic material optimization as in the FMO solver. The results are shown in
Table 1 and a visualization in Fig. 2. Although the error compared to the exact
FMO result increases heavily with the size of the inclusions, this is largely due
to the decrease of the overall compliance value. The absolute value does not
increase much from the largest ellipses to the squared FE patches.

For the squared FE patches, we furthermore study the different parame-
trizations separating the domain into 50 × 50 patches. The results are found in
Table 2 and Fig. 3(a). We can see, that for the parametrization with nonlinear

Table 1. Compliance values and FMO comparison for increasing ellipse size.

a = b: 0.02 0.04 0.05 squared patch

Cθ,s=0 15.420 1.0 % 11.053 6.15 % 8.3173 14.2 % 4.3730 42.3 %

Cθ,s 15.332 0.42 % 10.738 3.12 % 7.7140 5.93 % 3.5668 16.1 %

CEng 15.328 0.39 % 10.647 2.25 % 7.6135 4.55 % 3.5014 13.9 %

CFMO 15.289 0.14 % 10.551 1.33 % 7.4840 2.77 % 3.2912 7.10 %

FMO 15.268 10.413 7.2821 3.0730



Simultaneous Material and Topology Optimization 125

(a) a = b = 0.02 (b) square

Fig. 2. Optimization for Cθ,s with similar results. The arrows denote the principal
stiffness directions and the gray value the magnitude (black: low, white: high).

Table 2. Compliance values and FMO comparison for 50x50 squared FE patches.

Cθ,s=0 3.6850 38.89 %

Cθ,s 2.9963 12.93 %

CEng 3.0535 15.08 %

CFMO 2.8964 9.16 %

FMO 2.6533

(a) square (b) square, topology

Fig. 3. Results of the simultaneous material and topology optimization for Cθ,s.
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subproblems CEng, apparently a local minimum was found, which stresses the
importance of a global solution of the local material optimization problems.

2.4 Material and Topology Optimization

The term (6) in the asymptotic expansion actually corresponds to a topological
derivative and can hence be used for topology optimization. We propose an
algorithm, where we do not only use the information of “drilling a hole”, but
use the values obtained in material optimization instead. The idea is, that those
finite element patches, which provide the smallest gain, when substituting the
optimal material C0, are left out in the following iteration:

(S1) choose matrix material C1 and admissible materials for inclusions C;
(S2) compute Ψ from (4);
(S3) define loads and boundary conditions;
while volume > bound do

(S4) solve state problem without inclusions for current topology;
foreach inclusion ωi, i = 1, . . . , nell do

(S5) solve minC0
i ∈C Dc(C0

i , zi) to global optimality;
end
(S6) remove FE-patches with minC0

i ∈C Dc(C0
i , zi) largest;

end
Algorithm 2. Basic algorithm for simultaneous material and topology opti-
mization based on the asymptotic model.

Note that, again, in each iteration the state problem only needs to be solved
once.

In Fig. 3(b), the result of the algorithm for the admissible material set Cθ,s

and 50×50 squared FE patches is shown. In this experiment, we removed in the
iteration k a total of 200 ∗ 0.83k FE patches until 3 FE patches or less where
removed, which lead to a final volume fraction of 0.542. The strategy for the
removal of ellipses can be varied, however a decreasing volume fraction should
be removed in order to obtain a smoother convergence.

3 Conclusion

We proposed an efficient algorithm for material optimization on multiple elliptic
inclusions. The numerical evidence suggests that the accuracy of the proposed
method decreases only slightly, when replacing all material instead of just the
material in elliptic inclusions. A major advantage of this algorithm is the possi-
bility of avoiding local minima, however at the cost of only having an approx-
imate solution. The total error in the studied example for the finer resolution
was about 10 %. From experience in practice, the proposed algorithm for simul-
taneous material and topology optimization seems to work well in large parts,
however oftentimes small bars are left over and if a hole happens to be drilled
in a “bad” position the algorithm struggles, as material is not reintroduced.
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Nevertheless, both algorithms allow for a very efficient solution of usually
quite complicated problems, such as discrete material optimization and rota-
tional optimization. When the accuracy provided in this method does not suffice
or the optimized topology appears flawed, the optimization result may still be
used as a high quality initial design for other solution schemes, such as fully
parametrized approaches.
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Abstract. We present a formulation for a steady fluid-structure interac-
tion problem using fictitious domain technique with penalization. Numer-
ical results are presented.

Keywords: Fluid-structure interaction · Fictitious domain

1 Setting for a Steady Fluid-Structure Interaction
Problem

Let D ⊂ R
2 be a bounded open domain with boundary ∂D. Let ΩS

0 be the unde-
formed structure domain, and suppose that its boundary admits the decompo-
sition ∂ΩS

0 = ΓD ∪ Γ0, where Γ0 is a relatively open subset of the boundary. On
ΓD we impose zero displacement for the structure. We assume that Ω

S

0 ⊂ D.
Suppose that the structure is elastic and denote by u = (u1, u2) : ΩS

0 → R
2

its displacement. A particle of the structure with initial position at the point
X will occupy the position x = ϕ (X) = X + u (X) in the deformed domain
ΩS

u = ϕ
(
ΩS

0

)
.

We assume that Ω
S

u ⊂ D and the fluid occupies ΩF
u = D\Ω

S

u . We set Γu =
ϕ (Γ0), then the boundary of the deformed structure is ∂ΩS

u = ΓD ∪ Γu and the
boundary of the fluid domain admits the decomposition ∂ΩF

u = ∂D ∪ ΓD ∪ Γu.
The fluid-structure geometrical configuration is represented in Fig. 1.

Generally, the fluid equations are described using Eulerian coordinates, while
for the structure equations, the Lagrangian coordinates are employed. The gradi-
ents with respect to the Eulerian coordinates x ∈ ΩS

u of a scalar field q : D → R

or a vector field w = (w1, w2) : D → R
2 are denoted by ∇q and ∇w. The

divergence operators with respect to the Eulerian coordinates of a vector field

Andrei Halanay: Supported by Grant ID-PCE 2011-3-0211, Romania.
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Γ

Γ0
uΓ

D

Ω
F

Ω
S
u

u

D

Fig. 1. Geometrical configuration.

w = (w1, w2) : D → R
2 and of a tensor σ = (σij)1≤i,j≤2 are denoted by ∇ · w

and ∇ · σ.
When the derivatives are with respect to the Lagrangian coordinates X =

ϕ−1(x) ∈ ΩS
0 , we use the notations: ∇Xu, ∇X · u, ∇X · σ.

If A is a square matrix, we denote by det A, A−1, AT its determinant, the
inverse and the transposed matrix, respectively. We write cofA = (det A)

(
A−1

)T

the co-factor matrix of A. We write A−T =
(
A−1

)T .
We denote by F (X) = I + ∇Xu (X) the gradient of the deformation and by

J (X) = det F (X) the Jacobian determinant, where I is the unit matrix.
We introduce the tensor ε (w) = 1

2

(
∇w + (∇w)T

)
and we assume that

the fluid is Newtonian and the Cauchy stress tensor is given by σF (v, p) =
−p I+2μF ε (v), where μF > 0 is the viscosity of the fluid and I is the unit matrix.
We assume that the structure verifies the linear elasticity equation, under the
assumption of small deformations. The stress tensor of the structure written in
the Lagrangian framework is σS (u) = λS (∇ · u) I+ 2μSε (u), where λS , μS > 0
are the Lamé coefficients.

The problem is to find the structure displacement u : Ω
S

0 → R
2, the fluid

velocity v : Ω
F

u → R
2 and the fluid pressure p : Ω

F

u → R such that:

− ∇X · σS (u) = fS , in ΩS
0 (1)

u = 0, on ΓD (2)
−∇ · σF (v, p) = fF , in ΩF

u (3)
∇ · v = 0, in ΩF

u (4)
v = 0, on ∂D (5)
v = 0, on ΓD (6)
v = 0, on Γu (7)

ω
(
σF (v, p)nF

) ◦ ϕ = −σS (u)nS , on Γ0 (8)

where fS : ΩS
0 → R

2 are the applied volume forces on the structure and nS is the
structure unit outward vector normal to ∂ΩS

0 . Similarly, we define fF : ΩF
u → R

2

and nF the fluid unit outward vector normal to ∂ΩS
u .
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We point out that the stress tensor of the structure is defined on the unde-
formed structure domain ΩS

0 , while the Cauchy stress tensors of the fluid is
defined in the deformed domain ΩF

u .
We have used the notation ω (X) =

∥
∥J F−TnS

∥
∥
R2 =

∥
∥cof (F)nS

∥
∥
R2 for X on

∂ΩS
0 , which is a kind of Jacobian determinant for the change of variable formula

for integral over surface.
The Eqs. (1), (2) concern the structure, while (3)–(6) concern the fluid. The

Eqs. (7), (8) represent the boundary conditions on the moving fluid-structure
interface. The fluid and the structure domains ΩF

u , ΩS
u depend on the structure

displacement u which is unknown.

2 Parametrization and Regularization
of the Characteristic Function

The regularization of the characteristic function of the deformed structure domain
is necessary in order to prove the continuity of the solution with respect to the
structure displacement, [3].

Denote by ‖·‖1,∞,Ω the usual norm of the Sobolev space W 1,∞ (Ω) and by
‖·‖m,Ω the usual norm of Hm (Ω), m ≥ 0 with the convention H0 (Ω) = L2 (Ω).

For every 0 < δ < 1, there exists 0 < ηδ < 1 such that

1 − δ ≤ det (I + ∇u) ≤ 1 + δ, a.e. x ∈ ΩS
0 (9)

for all u ∈ (
W 1,∞(ΩS

0 )
)2 that satisfy ‖u‖1,∞,ΩS

0
≤ ηδ.

We define

Bδ = {u ∈ W 1,∞(ΩS
0 )2; ||u||1,∞,ΩS

0
≤ ηδ, u = 0 on ΓD}. (10)

Let j ∈ W 1,∞(D) be a parametrization of ΩS
0 ⊂ D, i.e. :

j(x) > 0, x ∈ ΩS
0 , j(x) < 0, x ∈ D\Ω

S

0 , j(x) = 0, x ∈ ∂ΩS
0 .

The parametrization is not necessarily unique.
Let u ∈ Bδ be a given structure displacement. Denote, as before, ΩS

u =
ϕ(ΩS

0 ), where ϕ(X) = X + u(X). Then ϕ : Ω
S

0 → Ω
S

u is bijective and bilip-
schitzian and

ju(y) =

⎧
⎨

⎩

j(x), y = ϕ(x) ∈ ΩS
u

0, y ∈ ∂ΩS
u

−dist(y, Ω
S

u), y /∈ Ω
S

u

is a parametrization of ΩS
u , ju ∈ W 1,∞(D).

If H is the Heaviside function H : R → {0, 1},

H(r) =
{

1, r ≥ 0
0, r < 0

then H(ju(·)) is the characteristic function of ΩS
u .
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For ε > 0, let Ωε
0 ⊂⊂ ΩS

0 . Since j : D → R is Lipschitz continuous and j > 0
in ΩS

0 , there is με > 0 such that j(x) ≥ με > 0, for all x ∈ Ωε
0. Consequently,

με ≤ min
y∈Ω

ε
u

ju(y), ∀u ∈ Bδ.

Then we take Hμε , the Yosida regularization of H

Hμε(r) =

⎧
⎨

⎩

1, r ≥ με
r

με
0 ≤ r < με

0, r < 0

and we set H̃u(x) = Hμε (ju(x)) for all x ∈ D, which is a Lipschitz regularization
of the characteristic function of ΩS

u . We have constructed H̃u : D → R, Lipschitz
on D, 0 ≤ H̃u(x) ≤ 1, for all x in D such that

H̃u(x) =
{

0, x ∈ D\ΩS
u

1, x ∈ Ωε
u

(11)

where Ωε
u ⊂⊂ ΩS

u .

3 Weak Formulation Using Fictitious Domain Technique
with Penalization

We assume that D and ΩS
0 are Lipschitz. Let us introduce the bi-linear forms

aS

(
u,wS

)
=

∫

ΩS
0

(
λS (∇ · u)

(∇ · wS
)

+ 2μSε (u) : ε
(
wS

))
dX

aF (v,w) =
∫

D

2μF ε (v) : ε (w) dx

bF (w, p) = −
∫

D

(∇ · w) p dx

and the Hilbert spaces

WS =
{
wS ∈ (

H1
(
ΩS

0

))2
; wS = 0 on ΓD

}
,

W =
(
H1

0 (D)
)2

,

Q = L2
0 (D) = {q ∈ L2 (D) ;

∫

D

q dx = 0}.

We assume that fF ∈ (
L2(D)

)2, fS ∈ (
L2(ΩS

0 )
)2.

Weak fluid formulation using fictitious domain. For a given u ∈ Bδ, we
define: fluid velocity vε ∈ W and fluid pressure pε ∈ Q, as the solution of the
following problem:

aF (vε,w) + bF (w, pε)

+
1
ε

∫

D

H̃u (vε · w + ∇vε : ∇w) dx =
∫

D

fF · wdx,∀w ∈ W (12)

bF (vε, q) = 0,∀q ∈ Q (13)
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Weak structure formulation. For given u ∈ Bδ, vε ∈ W and pε ∈ Q, we
define the structure displacement uε ∈ WS as the solution of

aS

(
uε,wS

)
=

∫

ΩS
0

fS · wS dX +
∫

ΩS
0

J
(
σF (vε, pε) ◦ ϕ

)
F−T : ∇XwS dX

+
1
ε

∫

ΩS
0

JH̃u(ϕ)
(
(vε ◦ ϕ) · wS + (∇vε ◦ ϕ)F−T : ∇XwS

)
dX

−
∫

ΩS
0

J
(
fF ◦ ϕ

) · wS dX, ∀wS ∈ WS(14)

where ϕ(X) = X + u(X), F(X) = I + ∇Xu(X), J(X) = det F(X).

Remark 1. From the structure equation −∇·σS (uε) = fS , in ΩS
0 using Green’s

formula, we obtain for all wS = 0 on ΓD that

aS

(
uε,wS

)
=

∫

ΩS
0

fS · wS dX +
∫

Γ0

σS (uε)nS · wSdS.

We can prove (see [3]) that the sum of the last three terms in (14) is equal to the
fluid forces acting on the structure which is also equals to

∫
Γ0

σS (uε)nS ·wSdS.
In fact, from (14) and the above weak formulation of the structure, we can get
that the boundary condition at the interface concerning the continuity of the
stress (8) is verified in a weak sense (see [3]). The second boundary condition at
the interface is the continuity of the velocity (7). This is obtained by using the
penalization term in the structure domain in (12).

For each i ∈ N
∗, there exists an unique eigenvalue λi > 0 and an unique

eigenfunction φi ∈ WS , solution of

aS

(
φi,wS

)
= λi

∫

ΩS
0

φi · wSdX, ∀wS ∈ WS (15)

such that ∫

ΩS
0

φi · φjdX = δij , (16)

see [8], Chap. [6]. We assume that λ1 ≤ λ2 ≤ . . . . The set {φi, i ∈ N
∗} forms an

orthonormal basis of L2(ΩS
0 ). Let m ∈ N

∗ be given. Let um
ε be the orthogonal

projection of uε on span
(
φi, i = 1, . . . , m

)
in L2(ΩS

0 ), so um
ε =

∑m
i=1 αiφ

i,
αi ∈ R.

We define

Bm
δ =

{
u ∈ (

W 1,∞(ΩS
0 )

)2
; u = 0 on ΓD, ‖u‖1,∞,ΩS

0
< ηδ,

u =
m∑

i=1

αiφ
i, αi ∈ R

}

. (17)
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We have Bm
δ ⊂ Bδ. For each u ∈ Bδ, we define the nonlinear operator

Tm
ε (u) = um

ε .

A solution of the penalized fluid-structure interaction problem will be, by
definition, a fixed point of Tm

ε in Bm
δ .

Remark 2. As in [3], we can prove the existence of a solution of the penalized
fluid-structure interaction problem Tm

ε (um
ε ) = um

ε using the Schauder fixed point
theorem. In order to obtain supplementary regularity of the Stokes equations,
a non linear penalization term 1

ε

∫
D

H̃u sgn(vε) |vε|α−1 · w dx was employed in
[3], where α > 2. In the present paper, we use a linear penalization term in (12),
but we are working only with a finite number of eigenfunctions of the structure
equations. The behavior of um

ε when ε goes to zero will be studied in [4].

4 Fixed Point Iterations

We replace H̃u in (12) and (14) by χS
u the characteristic function of ΩS

u in order
to simplify the computation. The regularization of the characteristic function
was necessary to obtain continuity of the solution with respect to the structure
displacement.

Under the assumption of small displacements for the structure, we can app-
roach the Jacobian determinant J by 1 and the gradient of the deformation F
by the unit matrix I.

Algorithm 1 by fixed point iterations
Step 1. Given the initial displacement of the structure um,0 =

∑m
i=1 α0

i φ
i,

compute the characteristic function χS
u0 , put k := 0.

Step 2. Find the velocity vk
ε ∈ (

H1(D)
)2, vk

ε = g on ∂D and the pressure
pk

ε ∈ Q by solving the fluid problem

aF

(
vk

ε ,w
)

+ bF

(
w, pk

ε

)

+
1
ε

∫

D

χS
uk

ε

(
vk

ε · w + ∇vk
ε : ∇w

)
dx =

∫

D

fF · w dx, ∀w ∈ W

bF

(
vk

ε , q
)

= 0, ∀q ∈ Q.

Step 3. Find the new displacement of the structure um,k+1
ε =

∑m
i=1 αk+1

i φi by
solving

αk+1
i λi =

∫

ΩS
0

(
fS − fF

) · φi dx

+
∫

ΩS
0

2μF ε
(
vk

ε

)
: ε

(
φi

)
dx −

∫

ΩS
0

(∇ · φi
)
pk

ε dx

+
1
ε

∫

ΩS
0

((
vk

ε ◦ ϕk
ε

) · φi +
(∇vk

ε ◦ ϕk
ε

)
: ∇φi

)
dx, i = 1, . . . , m

where ϕk
ε(X) = X + um,k

ε (X).
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Step 4. Stopping test: if
∥
∥um,k

ε − um,k+1
ε

∥
∥
0,ΩS

0
≤ tol, then Stop.

Step 5. Compute the characteristic function χS
um,k+1

ε
, put k := k + 1 and Go

to Step 2.
A similar fixed point algorithm was used in [7].

5 Least Squares Approach

The previous algorithm converges if the operator Tm
ε is a contraction. But, the

Algorithm 1 fails for some physical parameters. For this reason, we introduce
a second algorithm which is more robust.

For α = (α1, . . . , αm) ∈ R
m, we can define β = (β1, . . . , βm) ∈ R

m by

Tm
ε

(
m∑

i=1

αiφ
i

)

=
m∑

i=1

βiφ
i.

We set the cost function J(α) = 1
2

∑m
i=1 (αi − βi)

2 and now the problem to be
solved is infα∈Rm J(α). In order to solve the optimization problem, we employ
the quasi-Newton iterative method called Broyden, Fletcher, Goldforb, Shano
(BFGS) scheme (see for example [2], Chap. [9]).

Algorithm 2 by the BFGS method
Step 0. Choose a starting point α0 ∈ R

m, an m×m symmetric positive matrix
H0. Set k = 0.
Step 1. Compute ∇J(αk).
Step 2. If

∥
∥∇J(αk)

∥
∥ < tol Stop.

Step 3. Set dk = −Hk∇J(αk).
Step 4. Determine αk+1 = αk + θkdk, θk > 0 by means of an approximate
minimization

J(αk+1) ≈ min
θ≥0

J(αk + θdk).

Step 5. Compute δk = αk+1 − αk.
Step 6. Compute ∇J(αk+1) and γk = ∇J(αk+1) − ∇J(αk).
Step 7. Compute

Hk+1 = Hk +
(

1 +
γT

k Hkγk

δT
k γk

)
δkδT

k

δT
k γk

− δkγT
k Hk + HkγkδT

k

δT
k γk

Step 8. Update k = k + 1 and go to the Step 2.

The matrices Hk approach the inverse of the Hessian of J . For the inaccurate
line search at the Step 4, the methods of Goldstein and Armijo were used. If we
denote by g : [0,∞) → R the function g(θ) = J(αk + θdk), we determine θk > 0
such that: g(0) + (1 − λ) θkg′(0) ≤ g(θk) ≤ g(0) + λθkg′(0), where λ ∈ (0, 1/2).

In this paper, we compute ∇J(α) by the Finite Differences Method ∂J
∂αk

(α) ≈
(J(α + Δαkek) − J(α)) /Δαk, where ek is the k-th vector of the canonical base
of Rm and Δαk > 0 is the grid spacing.
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Concerning the convergence rate, the fixed point algorithm is slower than
the BFGS Method. If the starting point is not sufficiently close to the solution,
the fixed point algorithm diverges. On the contrary, the BFGS Method is less
sensitive to the choice of the starting point and, in general, it is convergent to
a local minimizer from almost any starting point. This is the main advantage,
(see [6]).

6 Numerical Results. Deformation of a Tall Building
Under the Action of Wind

We have performed numerical simulations using a 2D model adapted from [1]
(see Fig. 2).

The dimensions of a rectangular tall building are: height H = 180 m, length
L = 30 m. The computational domain of the fluid D is a rectangle of height
H1 = 3H and length L1 = L + 4H, its left bottom corner is at (0, 0). We shall
allow nonhomogeneous Dirichlet data in the numerical experiments.

The distance between the left side of the fluid and the left side of the structure
is H. We denote by Σ1, Σ3 the left and the right vertical boundaries and by Σ2,
Σ4 the bottom and the top boundaries, respectively.

The mechanical properties of the building assumed to be an elastic structure
are: Young modulus ES = 2.3×105 N/m2, Poisson’s ratio νS = 0.25, the applied
volume forces on the structure fS : ΩS

0 → R
2, fS = (0, 0)N/m3. If the Young

modulus is ES = 2.3×108 N/m2 as in [1], the displacements of the structure are
very small.

The fluid is the air with: dynamic viscosity μF = 7.03 × 10−2 N · s/m2,
the applied volume forces on the fluid fS : D → R

2, fF = (0, 0) N/m3. The
inflow velocity profile is g(x1, x2) = 100

(
x2
H

)0.19 m/s. The considered boundary
conditions for the fluid are more natural from the point of view of applications
and differ slightly compared with the previous sections. We impose: vε = g on
Σ1 ∪ Σ4, vε = 0 on Σ2 and σF (v, p)nF = 0 on Σ3.

Σ 1

Σ

Σ

Σ

2

3

4

D

Γ

Γ 0
uΓ

D

Ω
F

Ω
S
u

u

Fig. 2. Geometrical configuration for the numerical results
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Fig. 3. The fixed mesh of the fluid domain (left). The finer zone [H − L,H + 2L] ×
[0, H + L] of the fluid mesh covers the structure mesh which occupies initially the
rectangle [H,H + L] × [0, H] (zoom, right). The fluid and structure meshes are not
compatible, for example, a vertex on the structure boundary is not necessary a vertex
on the fluid mesh (right).

Fig. 4. Velocity (left) and pressure (right) of the fluid around the deformed structure.

The numerical tests have been produced using the software FreeFem++ [5].
For the approximation of the fluid velocity and pressure we have employed the
triangular finite elements P1+bubble and P1 respectively on a mesh of 34871
triangles and 17550 vertices. The finite element P1 was used in order to solve the
structure problem on a mesh of 192 triangles and 125 vertices. The characteristic
function was approached by P0 finite element.

We have performed the simulation using the Algorithm 2 described in the
previous section. We have used the initial displacement α0 = 0 at the Step 0
and the tolerance tol = 0.0001 for the stopping criterion at the Step 2. The
penalization parameter is ε = 0.001 and the number of the eigenfunctions is
m = 5. The stopping criterion holds after 6 iterations of the BFGS algorithm,
the initial value of the cost function is 34.30 and the final value is 5.9 × 10−13.
The maximal structural displacement is 0.148m.

The fluid velocity is almost zero in the deformed structure domain, more
precisely ‖vε‖1,ΩS

uε
=

√∫
D

χS
uε

(vε · vε + ∇vε : ∇vε) dx = 0.00555.
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Sensitivity of the Solution Set to Second Order
Evolution Inclusions
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Abstract. In this note we study second order evolution inclusions in the
framework of evolution triple of spaces. The existence of mild solutions
(i.e. trajectory-selection pairs) to the inclusion, and the upper and lower
semicontinuity properties of the solution set with respect to a parameter
are established.

Keywords: Evolution inclusion · Kuratowski convergence · Upper semi-
continuity · Lower semicontinuity

1 Introduction and Preliminaries

In this paper we investigate a class of systems described by abstract second order
evolution equations with multivalued right hand side. We consider Problem (P)
of the form

{
ẍ(t) + A(t, ẋ(t)) + Bx(t) ∈ F (t, x(t), ẋ(t)) a.e. t ∈ (0, T ),
x(0) = x0, ẋ(0) = x1

and the following sequence of Problems (P)n, n ∈ N, that can be regarded as
the perturbed ones

{
ẍ(t) + An(t, ẋ(t)) + Bnx(t) ∈ Fn(t, x(t), ẋ(t)) a.e. t ∈ (0, T ),
x(0) = xn

0 , ẋ(0) = xn
1 .

The goal is to establish the lower and upper semicontinuity properties of the
solution set to Problem (P) with respect to the parameter n ∈ N. The main
result concerns the Kuratowski convergence of the sequence of solution sets to
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Problem (P)n to that of Problem (P). Evolution inclusions of second order and
their applications have been considered in several papers, see e.g. [6–9] and the
references therein.

We introduce below the notation and preliminary material needed in the
next sections. For a Banach space X, we indicate by w−X, s−X the space
X equipped with the weak and the strong (norm) topology, respectively. Let
(Ω,Σ, μ) be a measure space. A multifunction F defined on Ω with values in
the space 2X of all nonempty subsets of X is called measurable if F−(E) =
{ω ∈ Ω | F (ω) ∩ E �= ∅} ∈ Σ for every closed set E ⊂ X. It is called graph
measurable if GrF = {(ω, x) ∈ Ω × X | x ∈ F (ω)} ∈ Σ × B(X) where B(X) is
the family of all Borel subsets of X. We denote by Sr

F , 1 ≤ r ≤ ∞, the set of
all selectors of F that belong to Lr(Ω;X), i.e., Sr

F = {f ∈ Lr(Ω;X) | f(ω) ∈
F (ω) μ a.e.}. The symbol Pf(c)(X) stands for the family of all closed, (convex)
subsets of 2X . On Pf (X) we define the Hausdorff metric, by setting h(A,B) =
max {supa∈A d(a,B), supb∈B d(b, A)}. We also write |A| = sup{|a| | a ∈ A}.

Given {Sn, S}n∈N ⊂ 2Z , we define (see e.g. [3]) the sequential Kuratowski
lower and upper limits respectively by τZ− lim inf Sn = {z ∈ Z | ∃ zn ∈
Sn, zn → z in τZ−Z, as n → +∞} and τZ− lim sup Sn = {z ∈ Z | ∃ {nν}, znν

∈
Snν

, znν
→ z in τZ−Z, as ν → +∞}. We say that Sn converge to S in the

Kuratowski sense (denoted by Sn
K−→ S) if and only if τZ− lim sup Sn ⊂ S ⊂

τZ− lim inf Sn.
Let (Y, τY ) and (Z, τZ) be Hausdorff topological spaces. A multifunction

G : Y → 2Z is said to be (τY −τZ) upper semicontinuous (usc) (respectively
lower semicontinuous (lsc)) (cf. [2], Sect. 4.7 of [3]), if for every C ⊂ Z closed in
τZ topology, G−(C) (respectively, G+(C) = {y ∈ Y | G(y) ⊂ C}) is closed in
τY topology in Y . The definition of lsc is equivalent to saying that if yn → y
in τY −Y , then G(y) ⊂ τZ− lim inf G(yn). For a sequence of multifunctions G,
Gn : Y → 2Z , we write

K(τY , τZ) lim sup
n→+∞,y→ỹ

Gn(y) ⊂ G(ỹ)

if τZ− lim sup Gn(yn) ⊂ G(y) for every yn → y in τY −Y . Similar notation is
used for τZ− lim inf.

Let H be a separable Hilbert space and V be a reflexive Banach space which
is densely, continuously and compactly embedded in H. Identifying H with its
dual H∗, we have the Gelfand triple V ⊂ H ⊂ V ∗, where V ∗ is the dual of
V . Let 〈·, ·〉 be the duality of V and V ∗ as well as the inner product on H,
let ‖ · ‖, | · | and ‖ · ‖V ∗ denote the norms in V , H and V ∗, respectively. For
T > 0 and 2 ≤ p < +∞, we introduce the following spaces V = Lp(0, T ;V ),
H = Lp(0, T ;H), H∗ = Lq(0, T ;H), V∗ = Lq(0, T ;V ∗), where 1/p + 1/q = 1,
1 < q ≤ 2, and W = {w ∈ V | w′ ∈ V∗}. The derivative is understood in
the sense of vector valued distributions. Clearly W ⊂ V ⊂ H ⊂ H∗ ⊂ V∗.
The pairing of V and V∗ and the duality between H and H∗ are denoted by
〈〈f, v〉〉 =

∫ T

0
〈f(s), v(s)〉 ds. It is well known that the embedding W ⊂ C(0, T ;H)

is continuous. Since V ⊂ H compactly we know that the embedding W ⊂ H is
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also compact. Finally, the class of linear bounded operators from V into V ∗ is
denoted by L(V, V ∗). For additional details on the material, we refer to [3,11].

2 Results on Evolution Equations

In this section we investigate the existence, uniqueness and continuous depen-
dence of solutions on the data for an evolution equation of second order. We
consider the following problem

(E)

{
ẍ(t) + A(t, ẋ(t)) + Bx(t) = f(t) a.e. t ∈ (0, T ),
x(0) = x0, ẋ(0) = x1.

A function x ∈ C(0, T ;V ) is called a solution to the problem (E) if and only if
ẋ ∈ W and (E) is satisfied.

We will need the following hypotheses.
H(A) : A : (0, T ) × V → V ∗ is an operator such that

(1) t �→ A(t, v) is measurable, for every v ∈ V ,
(2) v �→ A(t, v) is monotone and hemicontinuous, a.e. t ∈ (0, T ),
(3) 〈A(t, v), v〉 ≥ c ‖v‖p − d |v|2 a.e. for all v ∈ V with c > 0 and d ≥ 0,
(4) ‖A(t, v)‖V ∗ ≤ a(t) + b ‖v‖p−1 for all v ∈ V , a.e. t ∈ (0, T )

with a ∈ Lq
+(0, T ) and b > 0.

H(B) : B ∈ L(V, V ∗) is symmetric and coercive (i.e., 〈Bv, v〉 ≥ m ‖v‖2 for
all v ∈ V with m > 0).

(H0) : x0 ∈ V, x1 ∈ H.
The proof of the following result follows from the standard application of the

Galerkin method and can be found in [1,5,6].

Proposition 1. Under hypotheses H(A), H(B), (H0) and f ∈ H∗, the problem
(E) admits a unique solution which satisfies x ∈ C(0, T ;V ), ẋ ∈ W, and the
following estimate

‖x(t)‖2 + |ẋ(t)|2 + ‖ẋ‖2W ≤ C
(
1 + ‖x0‖2 + |x1|2 + ‖B‖2L(V,V ∗) + ‖f‖q

H∗

)

for all t ∈ [0, T ] with C > 0.

We present now a result on the continuous dependence of solutions to the
problem

(E)n

{
ẍ(t) + An(t, ẋ(t)) + Bnx(t) = fn(t) a.e. t ∈ (0, T ),
x(0) = xn

0 , ẋ(0) = xn
1 .

on the data. We will need the following assumptions.
H(A)1 : A : (0, T ) × V → V ∗ is such that H(A) holds, An : (0, T ) × V → V ∗

satisfy H(A)(1)(2)(3) uniformly with respect to n ∈ N and the
condition
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‖An(t, v)‖V ∗ ≤ an(t) + b ‖v‖p−1 for all v ∈ V, a.e. t ∈ (0, T )
with an ∈ Lq

+(0, T ), sup
n∈N

||an||Lq < +∞, b > 0 and

An(·, w(·)) → A(·, w(·)) in s−V∗ for all w ∈ V ∩ L∞(0, T ;H).
H(B)1 : Bn ∈ L(V, V ∗) satisfy H(B) uniformly with respect to n ∈ N and

Bn → B in L(V, V ∗).
(H0)1 : xn

0 , x0 ∈ V , xn
1 , x1 ∈ H, xn

0 → x0 in s−V and xn
1 → x1 in s−H.

For every n ∈ N, let xn be a solution of the problem (E)n and let x be a
solution of the problem (E). We have

Proposition 2. If hypotheses H(A)1, H(B)1, (H0)1 hold, fn ∈ H∗, fn → f
weakly in H∗, then the sequence {(xn, ẋn)} converges to (x, ẋ) in C(0, T ;V ×H),
as n → +∞.

Proof. By Proposition 1 we know that, for every n ∈ N, the problem (E)n has
the unique solution xn ∈ C(0, T ;V ) such that ẋn ∈ W. From (E)n and (E), we
have

〈ẍn(s) − ẍ(s), ẋn(s) − ẋ(s)〉 + 〈An(s, ẋn(s)) − A(s, ẋ(s)), ẋn(s) − ẋ(s)〉+

+〈Bnxn(s) − Bx(s), ẋn(s) − ẋ(s)〉 = 〈fn(s) − f(s), ẋn(s) − ẋ(s)〉 a.e.

for every n ∈ N. Integrating this equality and using the monotonicity of An(s, ·),
we get

|ẋn(t)− ẋ(t)|2−|ẋn(0)− ẋ(0)|2+2
∫ t

0

〈An(s, ẋ(s))−A(s, ẋ(s)), ẋn(s)− ẋ(s)〉 ds+

+2
∫ t

0

〈Bnxn(s) − Bxn(s), ẋn(s) − ẋ(s)〉 ds + 〈Bxn(t) − Bx(t), xn(t) − x(t)〉−

−〈Bxn(0) − Bx(0), xn(0) − x(0)〉 ≤ 2
∫ t

0

〈fn(s) − f(s), ẋn(s) − ẋ(s)〉 ds

for all t ∈ [0, T ]. Hence using H(B)1 and applying the Hölder inequality, we
obtain

|ẋn(t) − ẋ(t)|2 + m ‖xn(t) − x(t)‖2 ≤ ‖B‖ ‖xn
0 − x0‖ + |xn

1 − x1|2+ (1)

+2 ‖Ân(ẋ) − Â(ẋ)‖V∗‖ẋn − ẋ‖V + C̃ ‖Bn − B‖ ‖xn‖V ‖ẋn − ẋ‖V+

+2 〈〈fn − f, ẋn − ẋ〉〉
for all t ∈ [0, T ], where Ân and Â are the Nemitsky operators corresponding to
An and A, respectively, and C̃ is a positive constant independent of n. On the
other hand, due to H(A)1, H(B)1 and (H0)1, from Proposition 1, we have

‖xn(t)‖2 + |ẋn(t)|2 + ‖ẋn‖2W ≤ C
(
1 + ‖xn

0‖2 + |xn
1 |2 + ‖Bn‖2 + ‖fn‖q

H∗
)
. (2)
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Hence, it follows that {ẋn} lies in a bounded subset of W. Thus, up to a sub-
sequence, ẋn converges weakly in W and (since W ⊂ H compactly) strongly in
H. So we have

lim
n→+∞〈〈fn − f, ẋn − ẋ〉〉 = 0. (3)

Using the assumptions, (2) and (3), from (1), we get (xn(t), ẋn(t)) → (x(t),
ẋ(t)) in s−(V × H) for all t ∈ [0, T ], as n → +∞. Since the solution to (E)
is unique, we deduce that the whole sequence {(xn, ẋn)} converges to (x, ẋ) in
C(0, T ;V × H). The proof is completed. ��

In the sequel, we make use of the solution map r : H∗ → C(0, T ;V ) × W for
(E) defined by r(f) = (x, ẋ), where x (respectively ẋ) is the solution (and its
derivative, respectively) to (E). By Proposition 1 this map is well defined and
Proposition 2 implies the following result.

Corollary 1. Under hypotheses H(A), H(B) and (H0), the solution map r for
the problem (E) is continuous from w−H∗ into C(0, T ;V × H).

3 Existence Result for Inclusions

In this section we study the existence of solutions to Problem (P). We start with
the following

Definition 1. A couple (x, f) ∈ C(0, T ;V ) × H∗ is called a mild solution to
Problem (P) if and only if x is a solution to the evolution equation (E) and
f(·) ∈ Sq

F (·,x(·),ẋ(·)).

Prior to the existence theorem, we state the a priori bound on the solution
to the evolution inclusion. We need the following hypotheses.

H(F ) : F : (0, T ) × H × H → Pfc(H) is a multifunction such that
(1) F is graph measurable,
(2) GrF (t, ·, ·) is sequentially closed in H × H × (w−H), a.e. t ∈ (0, T ),
(3) |F (t, x, y)| ≤ a1(t) + b1|x|2/q + c1|y|2/q, a.e. t ∈ (0, T ), where

a1 ∈ Lq
+(0, T ) and b1, c1 > 0.

Lemma 1. Assume H(A), H(B), H(F ) and (H0). If (x, f) is a mild solution to
Problem (P), then (x, ẋ, f) lies in a bounded set of (L∞(0, T ;V )∩W 1,∞(0, T ;H))×
W × H∗.

In the proof of the next result, we follow methods used in [4,10].

Theorem 1. If hypotheses H(A), H(B), H(F ) and (H0) hold, then Problem
(P) admits a mild solution.
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Proof. From Lemma 1, it is clear that every solution to Problem (P) satisfies

|x(t)| ≤ M1, |ẋ(t)| ≤ M2, (4)

for all t ∈ (0, T ) with positive constants M1, M2. We define multifunction
F̂ : (0, T ) ×H × H → Pfc(H) by F̂ (t, x, y) = F (t, p(x, y)), where the map
p : H × H → B(0,M1) × B(0,M2) is as follows

p(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(x, y) if |x| ≤ M1 and |y| ≤ M2,

((M1x/|x|), (M2y/|y|)) if |x| > M1 and |y| > M2,

((M1x/|x|), y) if |x| > M1 and |y| ≤ M2,

(x, (M2y/|y|)) if |x| ≤ M1 and |y| > M2.

Since the map p is Lipschitz continuous, from the properties of F , we deduce
that F̂ satisfies H(F )(1)(2). Furthermore, we note that |F̂ (t, x, y)| ≤ ã1(t) a.e.
t ∈ (0, T ), where ã1 ∈ Lq

+(0, T ) is given by ã1(t) = a1(t) + b1M
2/q
1 + c1M

2/q
2 .

We define Z = {f ∈ H∗ | |f(t)| ≤ ã1(t) a.e. t ∈ (0, T )} and a multifunction
R on Z by

R(f) = S1
F̂ (·,r(f)(·)) =

{
f ∈ L1(0, T ;H) | f(t) ∈ F̂ (t, r(f)(t)) a.e. t ∈ (0, T )

}

(recall that r(·) is the solution map for the equation (E)). Since F̂ is graph
measurable and L1 integrably bounded, using the Aumann selection theorem
(see Theorem 4.3.7 of [3]), we have R(f) �= ∅ for f ∈ Z. Moreover, because
F̂ is Pfc(H)-valued and |F̂ (t, r(f)(t))| ≤ ã1(t) a.e. t ∈ (0, T ), we obtain that
R : Z → Pfc(Z).

We will show that R is (w−H∗)×(w−H∗) usc on Z. Since Z is compact in
w−H∗, it suffices to prove (see Chapter I of [2], Sect. 4.1 of [3]) that GrR is weakly−
weakly closed in Z × Z. Let (fn, zn) ∈ GrR, fn → f and zn → z both in w−H∗.
By Corollary 1, we know that r(fn)(t) → r(f)(t) in (s−H) × (s−H) for all t ∈
[0, T ]. Since F̂ satisfies H(F )(1)(2), we deduce that w− lim sup F̂ (t, r(fn)(t)) ⊂
F̂ (t, r(f)(t)) a.e. t ∈ (0, T ). Using Theorem 4.7.51 of [3], we obtain

w− lim sup R(fn) = w− lim sup S1
F̂ (·,r(fn)(·)) ⊂

⊂ S1
w−lim sup F̂ (·,r(fn)(·)) ⊂ S1

F̂ (·,r(f)(·)) = R(f).

From these inclusions we have (f, z) ∈ GrR. This means that GrR is closed in
(w−Z) × (w−Z) and proves that R is weakly−weakly usc on Z.

We apply the well known Kakutani-KyFan fixed point theorem for set-valued
mappings (see Chapter I.12 of [2]) to the multifunction R. We deduce that there
exists f∗ ∈ Z such that f∗ ∈ R(f∗). The corresponding pair (x∗, ẋ∗) = r(f∗) is
a solution to Problem (P) with F replaced by F̂ . However, the same estimates
as in Lemma 1 (cf. also (4)), imply that |x∗(t)| ≤ M1, |ẋ∗(t)| ≤ M2 for every
t ∈ (0, T ). Thus F̂ (t, x∗(t), ẋ∗(t)) = F (t, x∗(t), ẋ∗(t)) for a.e. t ∈ (0, T ), which
means that (x∗, f∗) is a mild solution to Problem (P). This completes the proof
of the theorem. ��
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Corollary 2. If F (t, u, v) = {f(t, u, v)}, where f : (0, T ) × H × H → H is a
function measurable in t, continuous in (u, v) and

|f(t, u, v)| ≤ a1(t) + b1|u|2/q + c1|v|2/q a.e. t ∈ (0, T ) (5)

for all u, v ∈ H, then Theorem 1 ensures that the Cauchy problem for the nonlin-
ear equation ẍ(t) + A(t, ẋ(t)) + Bx(t) = f(t, x(t), ẋ(t)) has at least one solution.

Let S be the set of mild solutions to Problem (P) and let

M = {(x, ẋ, f) ∈ C(0, T ;V × H) × H∗ | (x, f) ∈ S}.

Corollary 3. Under the hypotheses of Theorem 1, the set M is nonempty, com-
pact subset of C(0, T ;V × H) × (w−H∗).

Proof. The nonemptiness of M follows from Theorem 1. Let {(xk, ẋk, fk)}k∈N

⊂ M. We will show that this sequence has a subsequence which converges in
an appropriate topology to an element of M. By the definition, xk satisfies the
evolution equation (E) with the right-hand side fk and fk(·) ∈ Sq

F (·,xk(·),ẋk(·)).
From Lemma 1, we obtain in particular that fk remains in a bounded subset of
H∗. So after a possible passing to subsequence, we have fk → f weakly in H∗,
as k → +∞, with f ∈ H∗. Corollary 1 says that r(fk) → r(f) in C(0, T ;V ×H),
where r(f) = (x, ẋ) is a solution to (E). In order to conclude the proof, it suffices
to show that f is a selection for F (·, x(·), ẋ(·)). From Theorem 4.7.44 of [3], we
have

f(t) ∈ c̄o w− lim sup{fk(t)}k≥1 ⊂ c̄o w− lim sup F (t, xk(t), ẋk(t))

a.e. t ∈ (0, T ). Since (xk(t), ẋk(t)) → (x(t), ẋ(t)) in s−(H × H) for all t ∈
[0, T ], from H(F )(1) (2), we easily deduce that w− lim sup F (t, xk(t), ẋk(t)) ⊂
F (t, x(t), ẋ(t)) a.e. t ∈ (0, T ). Hence, we get f(t) ∈ F (t, x(t), ẋ(t)) a.e. t ∈ (0, T ).
So we have obtained (x, ẋ, f) ∈ M which completes the proof. ��

4 Upper Semicontinuity Property of the Solution Set

Consider now a sequence of evolution inclusions Problem (P)n. Let us denote by
Sn the set of mild solutions to Problem (P)n, i.e., Sn = {(x, f) ∈ C(0, T ;V )×H∗ |
(x, f) is a mild solution to Problem (P)n}.

Theorem 2. Suppose that hypotheses H(A)1, H(B)1, (H0)1 hold, F , Fn : (0, T )
×H × H → Pfc(H) are multifunctions satisfying H(F ) uniformly with respect
to n ∈ N and

K (s−(H × H) × (w−H)) lim sup
n→+∞,(u,v)→(ũ,ṽ)

Fn(t, u, v) ⊂ F (t, ũ, ṽ) a.e. (6)

If (xn, fn) ∈ Sn, n ∈ N and fn → f in w−H∗, then (x, f) ∈ S.
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Proof. From Theorem 1 we know that Sn, S �= ∅. Let (xn, fn) ∈ Sn for n ∈ N

and fn → f weakly in H∗. By Proposition 2, we infer that (xn, ẋn) converges
in C(0, T ;V × H) to (x, ẋ), as n → +∞, where x is a solution to the equation
(E) (corresponding to the right hand side f). It remains to prove that f(·) ∈
Sq

F (·,x(·),ẋ(·)). From Theorem 4.7.44 of [3], we have

f(t) ∈ c̄o w− lim sup{fn(t)}n∈N ⊂ c̄o w− lim sup Fn(t, xn(t), ẋn(t))

a.e. t ∈ (0, T ) and by (6) we obtain

w− lim sup Fn(t, xn(t), ẋn(t)) ⊂ F (t, x(t), ẋ(t)) a.e. t ∈ (0, T ).

This facts imply f(t) ∈ F (t, x(t), ẋ(t)) a.e. t ∈ (0, T ). Hence (x, f) is a mild
solution to Problem (P) which concludes the proof. ��

We introduce the sets Mn = {(x, ẋ, f) ∈ C(0, T ;V × H) × H∗ | (x, f) ∈ Sn}
for every n ∈ N. We have the following upper semicontinuity property.

Corollary 4. If hypotheses of Theorem 2 hold, then lim sup Mn ⊂ M, where
the upper limit is taken in C(0, T ;V × H) × (w−H∗) topology.

5 Lower Semicontinuity Property of the Solution Set

In order to state a result on lower semicontinuity of the set of mild solutions, we
admit the following stronger assumption on the multivalued term.

H(F )1 : F , Fn : (0, T ) × H × H → Pfc(H) are multifunctions satisfying
uniformly with respect to n ∈ N the conditions

(1) F (·, u, v) is measurable, for all u, v ∈ H,
(2) F (t, ·, ·) is h-continuous, a.e. t ∈ (0, T ),
(3) H(F )(3) holds

and

h(Fn(t, u1, v1), F (t, u2, v2)) ≤ αn(t) (|u1 − u2| + |v1 − v2|) + βn(t) (7)

a.e. t ∈ (0, T ), with αn ∈ L1
+(0, T ), α(t) = sup

n∈N

αn(t) ∈ L1
+(0, T ) and

βn → 0 in L2(0, T ), as n → +∞.

Remark 1. The estimate (7) holds, for instance, if we suppose that
(a) h(Fn(t, u1, v1), Fn(t, u2, v2)) ≤ αn(t) (|u1 − u2| + |v1 − v2|) a.e., for

every n ∈ N, u1, u2, v1, v2 ∈ H,
(b) Fn(t, u, v) → F (t, u, v) in the Hausdorff metric, for all u, v ∈ H, a.e. t.

Theorem 3. If hypotheses H(A)1, H(B)1, H(F )1 and (H0)1 hold, then M ⊂
lim inf Mn, where the lower limit is taken in C(0, T ;V ×H)× (s−H∗) topology.
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Proof. Let (x, ẋ, f) ∈ M. We have to find (xn, ẋn, fn) ∈ Mn such that

(xn, ẋn) → (x, ẋ) in C(0, T ;V × H), (8)

fn → f in s−H∗. (9)

Define fn(t, u, v) = proj(f(t), Fn(t, u, v)) for n ∈ N, where proj(a,A) denotes the
projection of point a onto the set A. Due to Lemma α of [10], we have that fn is
measurable in t and continuous in (u, v). Moreover, fn(t, u, v) ∈ Fn(t, u, v) and
H(F )(3) implies that fn satisfies the growth condition (5). Therefore applying
Corollary 2, we obtain that for every n ∈ N, the problem

{
ẍ(t) + An(t, ẋ(t)) + Bnx(t) = {fn(t, x(t), ẋ(t))} a.e. t ∈ (0, T ),
x(0) = x0, ẋ(0) = x1

possesses a solution xn ∈ C(0, T ;V ) with ẋn ∈ W. From the equality

〈ẍn(s) − ẍ(s), ẋn(s) − ẋ(s)〉 + 〈An(s, ẋn(s)) − A(s, ẋ(s)), ẋn(s) − ẋ(s)〉+
+〈Bnxn(s) − Bx(s), ẋn(s) − ẋ(s)〉 = 〈fn(s, xn(s), ẋn(s)) − f(s), ẋn(s) − ẋ(s)〉

a.e. s ∈ (0, T ), by integrating by parts, using H(A)1, H(B)1, similarly as in the
proof of Proposition 2, we obtain

|ẋn(t) − ẋ(t)|2 + m ‖xn(t) − x(t)‖2 ≤ σn+

+2
∫ t

0

|fn(s, xn(s), ẋn(s)) − f(s)||ẋn(s) − ẋ(s)| ds

for all t ∈ [0, T ], where σn = 2 ‖Ân(ẋ) − Â(ẋ)‖V∗‖ẋn − ẋ‖V + C ‖Bn − B‖ ‖xn‖V
‖ẋn − ẋ‖V and C > 0. Taking into account that

|fn(s, xn(s), ẋn(s)) − f(s)| = d (f(s), Fn(s, xn(s), ẋn(s))) ≤ (10)

≤ h (F (s, x(s), ẋ(s)), Fn(s, xn(s), ẋn(s))) ≤
≤ αn(s) (|xn(s) − x(s)| + |ẋn(s) − ẋ(s)|) + βn(s) a.e. s ∈ (0, T ),

we have

|ẋn(t) − ẋ(t)|2 + m ‖xn(t) − x(t)‖2 ≤ σn + 2
∫ t

0

α(s)|ẋn(s) − ẋ(s)|2 ds+

+2
∫ t

0

α(s)|xn(s) − x(s)| |ẋn(s) − ẋ(s)|2 ds + 2
∫ t

0

βn(s)|ẋn(s) − ẋ(s)| ds

for all t ∈ [0, T ]. Applying the inequality 2ab ≤ a2 + b2, a, b > 0 to the last two
integrals on the right hand side and using the fact that | · | ≤ γ‖ · ‖ with γ > 0,
we have

|ẋn(t) − ẋ(t)|2 + m ‖xn(t) − x(t)‖2 ≤ σn + ‖βn‖2L2(0,T )+
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+
∫ t

0

[
(3α(s) + 1) |ẋn(s) − ẋ(s)|2 + α(s)γ2‖xn(s) − x(s)‖2] ds

for all t ∈ [0, T ]. Invoking the Gronwall inequality, we get

|ẋn(t) − ẋ(t)|2 + ‖xn(t) − x(t)‖2 ≤ C
(
σn + ‖βn‖2L2

)
for all t ∈ (0, T ),

where C is a positive constant independent of n. From Lemma 1, H(A)1 and
H(B)1, we infer that limσn = 0. Hence, we have shown (8).

In order to prove (9), by using (10), we write
∫ T

0

|fn(s, xn(s), ẋn(s)) − f(s)|q ds ≤

≤ 2q−1

∫ T

0

(α(s))q(|xn(s) − x(s)| + |ẋn(s) − ẋ(s)|)q
ds + 2q−1‖βn‖2L2 .

In view of (8) and the convergence βn → 0 in L2(0, T ), we easily get (9). This
completes the proof. ��
Corollary 5. If hypotheses of Theorem 3 hold, then Mn

K−→ M in C(0, T ;V ×
H)×(s−H∗) topology. This follows from Theorem 3 and the fact that Corollary 4
implies lim sup Mn ⊂ M in this topology.
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Abstract. This paper examines the impulse control of a standard
Brownian motion under a long-term average criterion. In contrast with
the dynamic programming approach, this paper first imbeds the sto-
chastic control problem into an infinite-dimensional linear program over
a space of measures and then reduces the problem to a simpler nonlin-
ear optimization that has a familiar interpretation. One is able to easily
identify the optimal cost and a family of optimal impulse control policies.

Keywords: Impulse control · Long-term average criterion · Infinite
dimensional linear programming · Expected occupation and impulse
measures

1 Introduction

When one seeks to control a stochastic process and every intervention incurs a
strictly positive cost, one must select a sequence of separate intervention times
and amounts. The resulting stochastic problem is therefore an impulse control
problem in which the decision maker seeks to either maximize a reward or mini-
mize a cost. This paper examines the impulse control of the prototypical process
Brownian motion under a long-term average cost criterion; a companion paper
studies the impulse control of Brownian motion under a discounted criterion.
The aim of the paper is to illustrate a solution approach which first imbeds the
stochastic control problem into an infinite-dimensional linear program over a
space of measures and then reduces the linear program to a simpler nonlinear
optimization. This approach provides a new method for determining an optimal
impulse control policy.

Let W be a standard Brownian motion process with natural filtration {Ft}.
An impulse control policy consists of a pair of sequences (τ, Y ) := {(τk, Yk) : k ∈
N} in which τk is the {Ft}-stopping time of the kth impulseand the
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Fτk -measurable variable Yk gives the kth impulse size. The sequence {τk : k ∈ N}
is required to be non-decreasing, a natural assumption in that intervention k+1
must occur no earlier than intervention k. For a policy (τ, Y ), the impulse-
controlled Brownian motion process is given by

X(t) = x0 + W (t) +
∞∑

k=1

I{τk≤t}Yk.

The goal of the decision maker is to keep the process close to zero and to
minimize the long-term average cost incurred by the impulse policy. Define the
running/deviation cost rate function by c0(x) = x2 and set the impulse costs to
be c1(y, z) = k1 + k2|y − z| for (y, z) ∈ R

2, in which k1 > 0 and k2 ≥ 0 and y
denotes the pre-intervention location which will typically be far away from zero,
while z denotes the post-intervention location of the process X, which should be
close to zero. Note, in particular, that there is a strictly positive cost for every
impulse, even one in which Yk = 0 which does not affect the value of X. Let
(τ, Y ) be an impulse control policy. The quantity to be minimized is

J(τ, Y ) := lim sup
t→∞

t−1
E

[∫ t

0

c0(X(s)) ds +
∞∑

k=1

I{τk≤t}c1(X(τk−),X(τk))

]

. (1)

Clearly any policy (τ, Y ) for which J(τ, Y ) = ∞ is undesirable so to be admis-
sible, we require (τ, Y ) to have a finite cost; the nonnegativity of c0 and strict
positivity of c1 indicates that every policy will have nonnegative long-term aver-
age cost. The collection of all admissible impulse policies is denoted by A.

Similar type of problems have been extensively investigated in the literature.
An incomplete list includes the now classical works on general stochastic impulse
problems [1,4,8,13] as well as their applications in various areas such as port-
folio optimization, inventory control, risk management, control of a dam and
exchange rate intervention [2,3,10–12]. In particular, [11] explains the adoption
of a Brownian motion model.

Unlike the aforementioned references, in which the primary tool is the dynamic
programming principle and its associated quasi-variational inequalities, this paper
aims to illustrate the utility of a different methodology, namely, the linear
programming approach. In such an approach, we embed the stochastic impulse
control problem into an infinite-dimensional linear program over appropriate mea-
sures. Further, the linear program, with the aid of an auxiliary linear program, is
transformed into a nonlinear optimization problem. Then both the value of the
impulse control problem and an optimal impulse control policy are easily deter-
mined. The linear programming approach toward stochastic control problem can
be dated back to [9] for discrete time and a finite state space and to [14,15] for
regular stochastic control problems in continuous time with general state space.
It has been further developed in [5–7] for optimal stopping and singular control
problems. This paper aims to expand the utility of such a methodology to impulse
control problems as well.
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We make four important observations about impulse policies. Firstly, the
“no-intervention policy” in which the process is X(t) = x0 + W (t) for all t ≥ 0
incurs an infinite long-term average cost so is inadmissible. Secondly, let (τ, Y )
be an impulse policy and define τ∞ := limk→∞ τk. Should τ∞ < ∞ on a set of
positive probability, then the fixed cost k1 > 0 per intervention also results in
an infinite long-term average cost. Thus for every admissible policy τk → ∞ a.s.
as k → ∞. Thirdly, let (τ, Y ) be a policy for which there is some k such that
τk = τk+1 on a set of positive probability. Again due to the presence of the fixed
intervention cost k1, the total cost up to time τk+1 will be at least k1P(τk = τk+1)
smaller by combining these interventions into a single intervention on this set.
Hence we may restrict policies to those for which τk < τk+1 almost surely for
each k.

The final observation is similar. Suppose (τ, Y ) is a policy such that on a set
G of positive probability τk < ∞ and |X(τk)| > |X(τk−)| for some k. Consider
a modification of this impulse policy and resulting process X̃ which simply fails
to implement this impulse on G. Define the stopping time σ = inf{t > τk :
|X(t)| ≤ |X̃(t)|}. Notice that the running costs accrued by X̃ over [τk, σ) are
smaller than those accrued by X. Finally, at time σ, introduce an intervention on
the set G which moves the X̃ process so that X̃(σ) = X(σ). This intervention
will incur a cost which is no greater than the cost for the process X at time
τk. As a result, we may restrict the impulse control policies to those for which
no impulse increases the distance of the process from the origin (an intuitively
obvious observation).

2 Restricted Problem and Measure Formulation

The initial analysis considers a restricted collection of impulse policies.

Condition 1. Let A1 denote the set of policies such that for (τ, Y ) ∈ A1 the
resulting process X remains bounded; that is for some M < ∞, |X(t)| ≤ M for
all t ≥ 0.

Intuitively, Condition 1 is not much of a restriction since unbounded processes
occur by allowing the Brownian motion to diffuse which incurs an expensive
running cost. This restriction, however, is needed so that a transversality con-
dition is satisfied and a stochastic integral is a martingale. Following the initial
solution, the general class of impulse policies will be analyzed.

We capture the expected behavior of the process and impulses with measures.
Arbitrarily fix (τ, Y ) ∈ A1 and let M be as given in Condition 1. For each t > 0,
define the average expected occupation and average expected impulse measures
μ
(t)
0 and μ

(t)
1 , respectively, such that for each G,G1, G2 ∈ B(R),

μ
(t)
0 (G) = t−1

E

[∫ t

0

IG(X(s)) ds

]
, and (2)

μ
(t)
1 (G1 × G2) = t−1

E

[ ∞∑

k=1

I{τk≤t}IG1×G2(X(τk−),X(τk))

]

.
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It is immediate that μ
(t)
0 is a probability measure for each t > 0 and since

(τ, Y ) ∈ A1 ⊂ A, the finiteness of J(τ, Y ) implies that the collection of measures
{μ

(t)
1 : t > 0} is uniformly bounded above. We also note that the second com-

ponent being measured by μ
(t)
1 is the post-jump location so μ

(t)
1 is a measure on

the product space of (pre-jump, post-jump) pairs. In light of Condition 1, the
support of μ

(t)
1 is contained in the compact set R := {(y, z) : |z| ≤ |y| ≤ M}.

Similarly, each μ
(t)
0 has support in the compact interval [−M,M ]. As a result,

these collections are tight and hence relatively compact.
Now notice the objective function (1) can be expressed as

J(τ, Y ) = lim sup
t→∞

t−1

[∫
c0(x)μ

(t)
0 (dx) +

∫
c1(y, z)μ

(t)
1 (dy × dz)

]
.

Let {tj : j ∈ N} be a sequence with tj → ∞ as j → ∞ such that

t−1
j

[∫
c0(x)μ

(tj)
0 (dx) +

∫
c1(y, z)μ

(tj)
1 (dy × dz)

]
→ J(τ, Y ).

For i = 0, 1, the relative compactness of {μ
(tj)
i : j ∈ N} implies that there

exist weak limits μ0 and μ1. Note μ0 is a probability measure whereas μ1 is a
finite measure. Since c0 and c1 are bounded and continuous on [−M,M ] and R,
respectively,

J(τ, Y ) =
∫

c0(x)μ0(dx) +
∫

c1(y, z)μ1(dy × dz). (3)

It is now helpful to characterize the value of functions of the process. For f ∈
D = C2(R),

f(X(t)) = f(x0) +
∫ t

0

f ′(X(s)) dW (s)

+
∫ t

0

1
2
f ′′(X(s)) ds +

∞∑

k=1

[f(X(τk)) − f(X(τk−))] I{τk≤t}.
(4)

The generator A of the Brownian motion process is Af(x) = 1
2f ′′(x); define the

jump operator B by Bf(y, z) = f(z) − f(y). First taking expectations, then
dividing by t and letting t → ∞ in (4) results in

lim sup
t→∞

t−1
E

[∫ t

0

Af(X(s)) ds +
∞∑

k=1

I{τk≤t}Bf(X(τk−),X(τk))

]

= 0; (5)

note that the boundedness of X(t) along with f ∈ C2(R) implies both the
transversality condition limt→∞ t−1

E[f(X(t))] = 0 holds and that the stochastic
integral exists and has mean 0. (The same argument applies by taking the limit
inferior in (4), so in fact, left-hand side of (5) is a limit.) The fact that f and
f ′′ are continuous and bounded on [−M,M ] means that

∫
Af(x)μ

(tk)
0 →

∫
Af(x)μ0(dx)
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and ∫
Bf(y, z)μ

(tk)
1 (dy × dz) →

∫
B(y, z)μ1(dy × dz)

and hence (5) can be written in terms of these measures as
∫

Af(x)μ0(dx) +
∫

Bf(y, z)μ1(dy × dz) = 0. (6)

The restricted impulse control problem is therefore imbedded in the linear
program of minimizing (3) over pairs of measures (μ0, μ1) satisfying the con-
straints (6) for every f ∈ D. Since there may be pairs (μ0, μ1) which do not
correspond to any (τ, Y ) ∈ A1, it follows that the value of the linear program
is a lower bound on the minimal long-run average cost of the impulse control
problem. Observe also that by further restricting the collection of functions for
which the constraint is required to be satisfied, the corresponding “auxiliary”
linear program may have even more feasible pairs and hence will provide an even
lower bound on the value of the impulse control problem. These observations are
summarized in the following theorem.

Theorem 2. Let V denote the optimal value of the long-term average impulse
control problem, Vlp denote the optimal value of the linear program which seeks
to minimize (3) over measures satisfying (6) and Vaux be the optimal value of
an auxiliary linear program which limits (6) to a smaller collection of functions
f ∈ D1 for some D1 ⊂ D. Then Vaux ≤ Vlp ≤ V.

3 Partial Solution: First Auxiliary Linear Program

It would be helpful to reduce the complexity of the linear program by reducing
the number of constraints. We first consider the constraints (6). The intuition is
rather straightforward. Consider a function φ for which Aφ ≡ −1. Then since μ0

is a probability measure for each feasible pair (μ0, μ1), the identity (6) becomes
∫

{|z|≤|y|}
Bφ(y, z)μ1(dy × dz) = 1. (7)

The general solution to the equation Aφ ≡ −1 is φ(x) = −x2 + ax + b, in which
a, b are constants. We shall select a solution φ so that Bφ(x, y) = Ex[τy], where
|x| < |y| and τy := inf{t ≥ 0 : |X(t)| = |x + W (t)| = |y|}. To this end, we notice
that the function u(x) := −x2 + y2 solves the boundary value problem

{
Au(x) = −1, x ∈ (−|y|, |y|),
u(−|y|) = u(|y|) = 0.

(8)

Therefore the optional sampling theorem implies that for any x ∈ (−|y|, |y|) and
t ≥ 0, we have

Ex [u(X(t ∧ τy))] = u(x) + Ex

[∫ t∧τy

0

Au(X(s)) ds

]
= u(x) − Ex[t ∧ τy].
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Since X(t ∧ τy) is bounded and τy < ∞ a.s., utilizing the boundary conditions
in (8), letting t → ∞ in the above equation yields Ex[τy] = u(x) = −x2 + y2.
Therefore by selecting φ(x) = −x2, x ∈ R, the term Bφ(x, y) in (7) gives the
expected time it takes the Brownian motion process starting at x to hit the set
{−|y|, |y|}.

In a similar manner, by considering the boundary value problem
{

Au(x) = −c0(x), x ∈ (−|y|, |y|),
u(−|y|) = u(|y|) = 0,

(9)

it follows that the function g0(x) := − 1
6 x4 satisfies

Bg0(x, y) = g0(y) − g0(x) = Ex

[∫ τy

0

c0(X(s))ds

]
, |x| < |y|. (10)

The following proposition establishes the required identity.

Proposition 3. Let (τ, Y ) ∈ A1 and let X denote the resulting impulse con-
trolled process. Recall {tj : j ∈ N} is a set of times such that

t−1
j

[∫
c0 dμ

(tj)
0 +

∫
c1 dμ

(tj)
1

]
→ J(τ, Y ).

Let (μ0, μ1) be a weak limit of (μ(tj)
0 , μ

(tj)
1 ) as j → ∞. Then

∫
c0(x)μ0(dx) =

∫
Bg0(y, z)μ1(dy × dz). (11)

Proof. Without loss of generality, assume that μ
(tj)
0 ⇒ μ0 and similarly μ

(tj)
1 ⇒

μ1. Using g0 in (4) and taking expectations yields for each tj

Ex0 [g0(X(tj))] = g0(x0) + Ex0

[∫ tj

0

Ag0(X(s)) ds

+
∞∑

k−0

I{τk≤tj}Bg0(X(τk−),X(τk))
]
.

Since for (τ, Y ) ∈ A1, X(t) remains bounded, dividing by tj , using the definitions
of μ

(tj)
0 and μ

(tj)
1 in (2) and letting j → ∞ establishes the result. ��

We are now ready to define the first auxiliary linear program. Restrict the
constraint to the single function φ(x) = −x2 and use Proposition 3 to rewrite
the objective function. The resulting linear program is

⎧
⎪⎨

⎪⎩

Min.
∫

[c1(y, z) + Bg0(y, z)]μ1(dy × dz)

S.t.
∫

Bφ(y, z)μ1(dy × dz) = 1.
(12)
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Notice the support of each feasible μ1 is in the set {(y, z) ∈ R
2 : |z| ≤ |y|}. Thus

Bφ(y, z) = y2−z2 ≥ 0 and the constraint of (12) implies that Bφ(y, z) = y2−z2

is a probability density for every feasible measure μ1 of (12).
We emphasize that the auxiliary linear program includes the cost of any

impulse policy (τ, Y ) ∈ A1. These policies are not required to be of feedback
type or even stationary. It is only required that the resulting controlled process
remain bounded.

Observe that the constraint does not impose any mass restrictions on the set
{(y, z) : Bψ(y, z) = 0}. However, the goal is to minimize the objective function
and since the impulse cost function c1 > k1 > 0 any mass placed on this set
will only increase the cost. We may therefore restrict the optimization to those
measures μ1 having support in {(y, z) : Bφ(y, z) > 0} = {(y, z) : |z| < |y|}. As a
result the objective function can be rewritten as

∫
[c1(y, z) + Bg0(y, z)]μ1(dy × dz)

=
∫ (

c1(y, z) + Bg0(y, z)
Bφ(y, z)

)
· Bφ(y, z)μ1(dy × dz)

and so the problem reduces to the minimization of

F (y, z) =
c1(y, z) + Bg0(y, z)

Bφ(y, z)
(13)

over {(y, z) : |z| ≤ |y|}. Observe that F (−y,−z) = F (y, z).

Remark 4. The minimization of F in (13) has a very familiar interpretation.
Let y and z be such that 0 ≤ |z| < |y|. Let τy = inf{t ≥ 0 : |X(t)| = |y|}. Recall
from (10) that Bg0(y, z) represents the expected running cost for the cycle [0, τy).
Now consider the impulse policy in which impulses occur only when the process X
hits either y or −y and then jumps to z or −z, respectively. The symmetry of the
fixed cost function c1 means that c1(y, z) = c1(−y,−z) and this cost is assessed
at the end of the cycle. Note also Bφ(y, z) gives the expected time it takes the
Brownian motion starting from −z or z to reach −y or y. Hence the function F
represents the ratio of the expected cost per cycle over the expected cycle length
taken for such impulse control policies. The significance of this reformulation is
that the linear programming imbedding allows arbitrary impulse policies in the
class A1 yet the resulting nonlinear optimization corresponds to minimizing the
cost over a subclass of these policies.

We now determine an optimal impulse control policy.

Theorem 5. There exist values y∗ > z∗ > 0 such that

F (y∗, z∗) = F (−y∗,−z∗) = inf
(y,z)∈R

F (y, z).
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Proof. First since Bφ(y, z) = y2 − z2 and Bg0(y, z) = 1
6 (y4 − z4), the function

F (y, z) = k1+k2|y−z|
y2−z2 + 1

6 (y2+z2). Observe that as y → ∞ or z → ∞ or |y−z| → 0,
F (y, z) → ∞. Hence F achieves its minimal value at some point (y∗, z∗) which
by optimality requires y∗ and z∗ to have the same sign. ��
Theorem 6. An optimizing pair (y∗, z∗) having positive components is the level
set of the function h(x) = k2

2x + x2

3 at the level F (y∗, z∗).

Proof. Consider the function F on the set {(y, z) : 0 < z < y} so |y − z| = y − z.
The first-order optimality conditions are

[y2 − z2](k2 + (2/3)y3) − [k1 + k2(y − z) + (1/6)(y4 − z4)](2y)
[y2 − z2]2

= 0, (14)

[y2 − z2](−k2 − (2/3)z3) + [k1 + k2(y − z) + (1/6)(y4 − z4)](2z)
[y2 − z2]2

= 0, (15)

which are satisfied for pairs (y, z) such that

F (y, z) = h(y) = h(z), (16)

where the function h is defined in the statement of the theorem. We have h′(x) =
4x3−3k2

6x2 . When x > 0, one observes that h strictly decreases from +∞ until it
reaches a minimum at 3

√
3k2/4 after which it strictly increases to +∞. For x < 0,

h is strictly decreasing from +∞ to −∞. The level sets of h consist of either
a single value with x < 0 when the level lies below the minimum of h over the
positive reals or three points with x < 0 < z < y when the level is above this
minimum value. ��
It is still necessary to connect the optimal value of the linear program (12) to the
optimal value of the long-term average impulse control problem. Examine the
relative magnitudes of the roots given in the proof of Theorem 6; by definition
0 < z < y. Observe the root x < 0 is such that |x| > y and hence x < −y < −z.

Theorem 7. The optimal long-term average cost for the restricted impulse control
problem is F (y∗, z∗) and an optimal impulse control policy (τ∗, Y ∗) is defined by:

{
τ∗
1 = 0,

Y ∗
1 = z∗ − x0,

{
τ∗
k = inf{t > τ∗

k−1 : X(t−) = ±y∗},
Y ∗

k = sgn(X(τ∗
k −))z∗ − X(τ∗

k −), k ≥ 2. (17)

Remark 8. Due to the nature of the long-term average criterion, many other
optimal policies exist. In fact, any impulse control policy (τ, Y ) ∈ A1 can be
used for a finite length of time so long as after some point the process is in the
interval [−y∗, y∗] and the policy of jumping to z∗ when the process hits y∗ and
jumping to −z∗ at the time of hitting −y∗ is adopted.

Proof. Consider the impulse control policy (17) and observe that (τ∗, Y ∗) ∈ A1.
Also for each t > 0 by (2), μ

(t)
1 has its support on the set

{(x0, z∗), (−y∗,−z∗), (y∗, z∗)}
but the limiting measure μ1 only has mass on {(−y∗,−z∗), (y∗, z∗)}. As a result,
J(τ∗, Y ∗) = F (y∗, z∗) and hence by Theorem 2 is optimal. ��
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4 General Solution

The solution obtained in the previous section does not include impulse control
policies which allow the process X to become unbounded in either direction. It
is therefore necessary to show that such policies cannot provide a lower cost.

Theorem 9. The optimal long-term average cost over the collection of all admissi-
ble impulse control policies is F (y∗, z∗) and any policy which eventually only
impulseswhen the process reaches±y∗, with impulses respectively to±z∗, is optimal.

Proof. Let (τ, Y ) be an arbitrary admissible impulse control policy in A and
let X denote the resulting process. We shall prove that F∗ is a lower bound on
J(τ, Y ) and since F∗ is achieved by the impulse control policy (17), this will
establish the result.

We use a localization argument. For each n ∈ N, define the stopping time
σn = inf{t ≥ 0 : |X(t)| ≥ n} and to simplify notation, let F∗ = F (y∗, z∗). We
consider the function f(x) = F∗φ(x) − g0(x) = 1

6x4 − F∗x2, x ∈ R. Due to the
choices of φ and g0, we have Af(x) = c0(x) − F∗, and for any |z| < |y|,
Bf(y, z) = F∗(φ(z) − φ(y)) − (g0(z) − g0(y))

≤ c1(y, z) + g0(z) − g(y)
φ(z) − φ(y)

· (φ(z) − φ(y)) − (g0(z) − g0(y)) = c1(y, z).

Then applying Itô’s formula yields

f(X(t ∧ σn)) = f(x0) +
∫ t∧σn

0

Af(X(s)) ds +
∫ t∧σn

0

f ′(X(s)) dW (s)

+
∞∑

k=1

I{τk≤t∧σn}Bf(X(τk−),X(τk))

≤ f(x0) +
∫ t∧σn

0

[c0(X(s)) − F∗] ds +
∫ t∧σn

0

f ′(X(s)) dW (s)

+
∞∑

k=1

I{τk≤t∧σn}c1(X(τk−),X(τk)).

Taking expectations on both sides, and rearranging the terms, it follows that

F∗Ex0 [t ∧ σn] ≤ f(x0) − Ex0 [f(X(t ∧ σn))] + Ex0

[∫ t∧σn

0

c0(X(s))ds

]

+ Ex0

[ ∞∑

k=1

I{τk≤t∧σn}c1(X(τk−),X(τk))

]

≤ f(x0) − K + Ex0

[∫ t∧σn

0

c0(X(s)) ds

]

+ Ex0

[ ∞∑

k=0

c1(X(τk−),X(τk))I{τk≤t∧σn}

]

,
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where the last inequality follows from the observation that f(x) = 1
6 x4−F∗x2 ≥

K > −∞ for some constant K. Letting n → ∞, we know σn → ∞ almost surely
so the monotone convergence theorem yields

F∗t ≤ f(x0) − K + Ex0

[∫ t

0

c0(X(s)) ds +
∞∑

k=0

c1(X(τk−),X(τk))I{τk≤t}

]

.

Dividing by t and letting t → ∞, we obtain

F∗ ≤ lim sup
t→∞

t−1
Ex0

[∫ t

0

c0(X(s)) ds +
∞∑

k=1

c1(X(τk−),X(τk))I{τk≤t}

]

= J(τ, Y ). ��
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Abstract. This paper examines the impulse control of a standard
Brownian motion under a discounted criterion. In contrast with the
dynamic programming approach, this paper first imbeds the stochastic
control problem into an infinite-dimensional linear program over a space
of measures and derives a simpler nonlinear optimization problem that
has a familiar interpretation. Optimal solutions are obtained for initial
positions in a restricted range. Duality theory in linear programming is
then used to establish optimality for arbitrary initial positions.
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1 Introduction

When one seeks to control a stochastic process and every intervention incurs a
strictly positive cost, one must select a sequence of separate intervention times
and amounts. The resulting stochastic problem is therefore an impulse control
problem in which the decision maker seeks to either maximize a reward or min-
imize a cost. This paper continues the examination of the impulse control of
Brownian motion. It considers a discounted cost criterion while a companion
paper [5] studies the long-term average criterion. The aim of the paper is to
illustrate a solution approach which first imbeds the stochastic control problem
into an infinite-dimensional linear program over a space of measures and then
reduces the linear program to a simpler nonlinear optimization. Contrasting with
the long-term average paper, the dependence of the value function on the ini-
tial position of the process requires the use of duality in linear programming to
obtain a complete solution.

Impulse control problems have been extensively studied using a quasi-
variational approach; now classical works include [1,3] while the recent paper [2]
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examines a Brownian inventory model. This paper extends a linear programming
approach used on optimal stopping problems [4]. See [5] for additional references.

Let W be a standard Brownian motion process with natural filtration {Ft}.
An impulse control policy consists of a pair of sequences (τ, Y ) := {(τk, Yk) :
k ∈ N} in which τk is the {Ft}-stopping time of the kth impulse and the Fτk -
measurable variable Yk gives the kth impulse size. The sequence {τk : k ∈ N} is
required to be non-decreasing, a natural assumption in that intervention k + 1
must occur no earlier than intervention k. For a policy (τ, Y ), the impulse-
controlled Brownian motion process is given by

X(t) = x0 + W (t) +
∞∑

k=1

I{τk≤t}Yk.

The goal is to control the (discounted) second moment of X subject to (dis-
counted) fixed and proportional costs for interventions. Let (τ, Y ) be an impulse
control policy. Define c0(x) = x2. Let k1 > 0 denote the fixed costs incurred
for each intervention and let k2 ≥ 0 be a cost proportional to the size of the
intervention. Define the impulse cost function c1(y, z) = k1 + k2|z − y|, in which
y denotes the pre-jump location of X (typically far from 0) and z denotes the
post-jump location of X which is thought to be close to 0. Let α > 0 denote the
discount rate. The objective function is

J(τ, Y ;x0) = Ex0

[∫ ∞

0

e−αsc0(X(s)) ds

+
∞∑

k=1

I{τk<∞}e−ατkc1(X(τk−),X(τk))

]

.
(1)

The controller must balance the desire to keep the process X near 0 so as to
have a small second moment against the desire to limit the number and/or
sizes of interventions so as to have a small impulse cost. Since the goal is to
minimize the objective function, impulse control policies having J(τ, Y ;x0) = ∞
are undesirable. We therefore restrict attention to the impulse policies for which
J(τ, Y ;x0) is finite. Denote this class of admissible controls by A.

We make five important observations about impulse policies. Firstly, “0-
impulses” which do not change the state only increase the cost so can be excluded
from consideration. Secondly, the symmetry of the dynamics and costs means
that any impulse (τk, Yk) which would cause sgn(X(τk)) = −sgn(X(τk−)) on a
set of positive probability will have no greater cost (smaller cost when k2 > 0) by
replacing the impulse with one for which X̃(τk) = sgn(X(τk−))|X(τk)|. Thus we
can also restrict analysis to those policies for which all impulses keep the process
on the same side of 0. Next, any policy (τ, Y ) with limk→∞ τk =: τ∞ < ∞
on a set of positive probability will have infinite cost so for every admissible
policy τk → ∞ a.s. as k → ∞. Next let (τ, Y ) be a policy for which there is
some k such that τk = τk+1 on a set of positive probability. Again due to the
presence of the fixed intervention cost k1, the total cost up to time τk+1 will be
at least k1E[e−ατkI(τk = τk+1)] smaller by combining these interventions into a



160 K. Helmes et al.

single intervention on this set. Hence we may restrict policies to those for which
τk < τk+1 a.s. for each k.

The final observation is similar. Suppose (τ, Y ) is a policy such that on a set
G of positive probability τk < ∞ and |X(τk)| > |X(τk−)| for some k. Consider a
modification of this impulse policy and resulting process X̃ which simply fails to
implement this impulse on G. Define the stopping time σ = inf{t > τk : |X(t)| ≤
|X̃(t)|}. Notice that the running costs accrued by X̃ over [τk, σ) are smaller than
those accrued by X. Finally, at time σ, introduce an intervention on the set G
which moves the X̃ process so that X̃(σ) = X(σ). This intervention will incur
a cost which is smaller than the cost for the process X at time τk. As a result,
we may restrict the impulse control policies to those for which every impulse
decreases the distance of the process from the origin.

2 Restricted Problem and Measure Formulation

The solution of the impulse control problem is obtained by first considering a
subclass of the admissible impulse control pairs.

Condition 1. Let A1 ⊂ A be those policies (τ, Y ) such that the resulting process
X is bounded; that is, for (τ, Y ) ∈ A1, there exists some M < ∞ such that
|X(t)| ≤ M for all t ≥ 0.

Note that for each M > 0, any impulse control which has the process jump closer
to 0 whenever |X(t−)| = M is in the class A1 so this collection is non-empty. The
bound is not required to be uniform for all (τ, Y ) ∈ A1. The restricted impulse
control problem is one of minimizing J(τ, Y ;x0) over all policies (τ, Y ) ∈ A1.

We capture the expected behavior of the process and impulses with dis-
counted measures. Let (τ, Y ) ∈ A1 be given and consider f ∈ C2(R). Then upon
letting t → ∞ after taking expectations, the general Dynkin’s formula results in

f(x0) = Ex0

[∫ ∞

0

e−αs[αf(X(s)) − (1/2)f ′′(X(s))] ds

]

+ Ex0

[ ∞∑

k=0

I{τk<∞}e−ατk [f(X(τk−)) − f(X(τk))]

]

,
(2)

in which the transversality condition limt→∞ Ex0 [e−αtf(X(t))] = 0 follows from
the boundedness of X. Note the generator of the Brownian motion process is
Af(x) = (1/2)f ′′(x). To simplify notation, define Bf(y, z) = f(y) − f(z).

Define the discounted expected occupation measure μ0 and the discounted
impulse measure μ1 such that for each G,G1, G2 ⊂ R,

μ0(G) = Ex0

[∫ ∞

0

e−αsIG(X(s)) ds

]

μ1(G1 × G2) = Ex0

[ ∞∑

k=0

I{τk<∞}e−ατkIG1×G2(X(τk−),X(τk))

]

.
(3)
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Notice that the total mass of μ0 is 1/α while μ1 is a finite measure since
J(τ, Y ;x0) is finite. Rewriting the objective function and Dynkin’s formula in
terms of these measures imbeds the impulse control problem in the linear pro-
gram ⎧

⎪⎨

⎪⎩

Min.
∫

c0 dμ0 +
∫

c1 dμ1

S.t.
∫

(αf − Af) dμ0 +
∫

Bf dμ1 = f(x0), ∀f ∈ C2.
(4)

We now wish to introduce an auxiliary linear program derived from (4) which
only has the μ1 measure as its variable and has fewer constraints. Define φ(x) =
e−√

2αx and ψ(x) = e
√
2αx. Notice that φ is a strictly decreasing solution while

ψ is a strictly increasing solution of the homogeneous equation αf − Af = 0.
For each (τ, Y ) ∈ A1, the resulting process X is bounded so we can use both φ
and ψ in (2). This results in the two constraints

∫
Bφ(y, z)μ1(dy × dz) = φ(x0) and

∫
Bψ(y, z)μ1(dy × dz) = ψ(x0) (5)

which only constrain the measure μ1. Note that the monotonicity and positivity
of both φ and ψ require the support of μ1 to be such that the two integrals in
(5) are positive. We can also take advantage of the symmetry inherent in the
problem. Define p0(x) = cosh(

√
2αx). Then averaging the two constraints (5)

yields ∫
Bp0(y, z)
p0(x0)

μ1(dy × dz) = 1.

Using g0(x) = (αx2 + 1)/α2 in (2), where again the boundedness of X implies
that the transversality condition is satisfied, yields

Ex0

[∫ ∞

0

e−αsc0(X(s)) ds

]

=
αx2

0 + 1
α2

− Ex0

[ ∞∑

k=0

I{τk<∞}e−ατkBg0(X(τk−),X(τk))

]

.
(6)

Let [c1 − Bg0] denote the sum of the two functions c1 and Bg0. Using (6) in (1)
establishes that

J(τ, Y ;x0) =
α x2

0 + 1
α2

+ Ex0

[ ∞∑

k=0

I{τk<∞}e−ατk [c1 − Bg0](X(τk−),X(τk))

]

and hence that

J(τ, Y ;x0) =
α x2

0 + 1
α2

+
∫

[c1 − Bg0](y, z)μ1(dy × dz) (7)



162 K. Helmes et al.

so the objective function value only depends on the measure μ1. Since the objec-
tive function for each (τ, Y ) ∈ A1 has the affine term g0(x0), it may be ignored
for the purposes of optimization but it must be included to obtain the correct
value for the objective function. Now form the auxiliary linear program

⎧
⎪⎨

⎪⎩

Min.
∫

[c1 − Bg0](y, z)μ1(dy × dz)

S.t.
∫

Bp0(y, z)
p0(x0)

μ1(dy × dz) = 1.
(8)

Let V1(x0) denote the value of the impulse control problem over policies in
A1, Vlp denote the value of (4) and Vaux denote the value of (8). The following
proposition is immediate.

Proposition 2. Vaux(x0) ≤ Vlp(x0) ≤ V1(x0).

Remark 3. Our analysis will also involve other auxiliary linear programs as
well. One will replace the single constraint in (8) with the pair of constraints (5)
while another will limit the constraints in (4) to a single function. Each auxiliary
program will provide a lower bound on Vlp(x0) and hence on V1(x0).

2.1 Nonlinear Optimization and Partial Solution

Recall, the admissible impulse policies can be (and are) limited to those for
which impulses move X closer to the origin. As a result, the integrand Bp0 > 0
and the constraint of (8) implies that the feasible measures μ1 of (8) are those
for which Bp0/p0(x0) is a probability density. For a feasible μ1, let μ̃1 be the
probability measure Bp0

p0(x0)
μ1. Thus we can write the objective function as

∫
[c1 − Bg0] dμ1 =

(∫
c1 − Bg0

Bp0
dμ̃1

)
p0(x0).

Since the goal is to minimize the cost, a lower bound is given by the minimal
value of F scaled by the constant p0(x0), where

F (y, z) :=
c1(y, z) − Bg0(y, z)

Bp0(y, z)
.

Moreover, should the infimum be attained at some pair (y∗, z∗), then the proba-
bility measure μ̃1(·) putting unit point mass on (y∗, z∗) would achieve the lower
bound and identify an optimal μ1 measure for the auxiliary linear program. To
solve the stochastic problem, one would need to connect the measure μ1 back
to an admissible impulse control policy in the class A1 in such a way that the
resulting μ1 measure would be given by (3).

Remark 4. The objective function p0(x0)F has a natural interpretation. First
observe that Bp0(y, z) = cosh(

√
2αy) − cosh(

√
2αz) so

p0(x0)F (y, z) = [c1(y, z) − Bg0(y, z)] · cosh(
√

2αx0)
cosh(

√
2αy)

·
∞∑

n=0

(
cosh(

√
2αz)

cosh(
√

2αy)

)n

.
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It can be shown that the first fraction gives the expected discount for the time
it takes X to reach {±y} when starting at x0. The ratio cosh(

√
2αz)

cosh(
√
2αy)

then gives
the expected discount for the time it takes X to again reach {±y} but this time
starting at ±z so the sum represents the expected discounting for infinitely many
cycles. By symmetry, the initial term gives the cost for impulsing from ±y to
±z along with the second moment. The minimization therefore optimizes the
expected cost over a particular class of impulse policies. We emphasize that the
linear program imbedding is not restricted to these policies.

Proposition 5. There exists pairs (y∗, z∗) and (−y∗,−z∗) such that

F (y∗, z∗) = F (−y∗,−z∗) = inf
(y.z):|z|≤|y|

F (y, z). (9)

Moreover, the minimizing pair (y∗, z∗) having nonnegative components is unique.

Proof. First observe

F (y, z) =
k1 + k2|y − z| + (z2 − y2)/α

cosh(
√

2αy) − cosh(
√

2αz)

so there exists some pairs (y, z) for which F (y, z) < 0 since the difference of
the quadratic terms is negative and will dominate the constant and linear terms
in the numerator. A straightforward asymptotic analysis show that F (y, z) is
asymptotically nonnegative when y → ∞, z → ∞ or |y − z| → 0. Therefore F
achieves its minimum at some point (y∗, z∗).

Notice that F is symmetric about 0 in that F (−y,−z) = F (y, z) so it is
sufficient to analyze F on the domain 0 ≤ z ≤ y. The first-order optimality
conditions on F are

0 =
∂F

∂y
(y∗, z∗) =

(k2 − 2y∗/α)[cosh(
√

2α y∗) − cosh(
√

2α z∗)]
[cosh(

√
2α y∗) − cosh(

√
2α z∗)]2

−
√

2α [k1 + k2(y∗ − z∗) + (z2∗ − y2
∗)/α] sinh(

√
2α y∗)

[cosh(
√

2α y∗) − cosh(
√

2α z∗)]2
,

0 =
∂F

∂z
(y∗, z∗) =

(−k2 + 2z∗/α)[cosh(
√

2α y∗) − cosh(
√

2α z∗)]
[cosh(

√
2α y∗) − cosh(

√
2α z∗)]2

+
√

2α [k1 + k2(y∗ − z∗) + (z2∗ − y2
∗)/α] sinh(

√
2α z∗)

[cosh(
√

2α y∗) − cosh(
√

2α z∗)]2
.

The minimizing pair (y∗, z∗) will be interior to the region since ∂F
∂z (y∗, 0) =

−k2

cosh(
√
2α y∗)−1

< 0.

Simple algebra now leads to the following systems of nonlinear equations for
(y∗, z∗):
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k2α − 2y∗ = α
√

2α sinh(
√

2α y∗) · F (y∗, z∗),
k2α − 2z∗ = α

√
2α sinh(

√
2α z∗) · F (y∗, z∗).

(10)

The fact that the minimal value of F is negative implies y∗ > z∗ > k2α/2.
Solving for −α

√
2α F (y∗, z∗) in each equation shows that at an optimal pair

(y∗, z∗),

−α
√

2α F (y∗, z∗) =
2z∗ − k2α

sinh(
√

2α z∗)
=

2y∗ − k2α

sinh(
√

2α y∗)
.

A straightforward analysis of the function h(x) = [2x − k2α]/ sinh(
√

2α x) on
the domain [k2α/2,∞) shows that the level sets of h consist of two-point sets
and so on the region 0 ≤ z ≤ y, the pair (y∗, z∗) is unique. �

Now that the lower bound given in (9) is determined, it is important to connect
an optimizing μ∗

1 with an admissible impulse control policy (τ, Y ) ∈ A1. The
existence of two minimizing pairs (y∗, z∗) and (−y∗,−z∗) allows many auxiliary-
LP-feasible measures μ1 to place point masses at these two points and still
achieve the lower bound. This observation leads to a solution to the restricted
stochastic impulse control problem.

Theorem 6. Let (y∗, z∗) be the pair having positive components that minimizes
F as identified in Proposition 5. Consider initial positions −y∗ ≤ x0 ≤ y∗. Define
the impulse control policy (τ∗, Y ∗) as follows:

τ∗
1 = inf{t ≥ 0 : X(t−) = ±y∗} and Y ∗

1 = sgn(X(τ∗
1 −)) · z∗ − X(τ∗

1 −)

and for k = 2, 3, 4, . . ., define

τ∗
k = inf{t > τk−1 : X(t−) = ±y∗} and Y ∗

k = sgn(X(τ∗
k −)) · z∗ − X(τ∗

k −).

Then (τ∗, Y ∗) is an optimal impulse control pair for the restricted stochastic
impulse control problem and the corresponding optimal value is

V1(x0) =
αx2

0 + 1
α2

+ F (y∗, z∗) · cosh(
√

2α x0). (11)

Proof. The measure μ∗
1 defined from (τ∗, Y ∗) using (3) is concentrated on the two

points (−y∗,−z∗) and (y∗, z∗). Since the process resulting from the admissible
impulse control pair (τ∗, Y ∗) remains bounded, conditions (5) can be used to
obtain the masses:

μ∗
1(−y∗,−z∗)

=
φ(x0)[ψ(y∗) − ψ(z∗)] − ψ(x0)[φ(y∗) − φ(z∗)]

[φ(−y∗) − φ(−z∗)][ψ(y∗) − ψ(z∗)] − [ψ(−y∗) − ψ(−z∗)][φ(y∗) − φ(z∗)]
,

μ∗
1(y∗, z∗)

=
ψ(x0)[φ(−y∗) − φ(−z∗)] − φ(x0)[ψ(−y∗) − ψ(−z∗)]

[φ(−y∗) − φ(−z∗)][ψ(y∗) − ψ(z∗)] − [ψ(−y∗) − ψ(−z∗)][φ(y∗) − φ(z∗)]
.
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Recall φ(x) = e−√
2α x and ψ(x) = e

√
2α x so φ(−x) = ψ(x) and ψ(−x) = φ(x).

As a result these expressions simplify to

μ∗
1(−y∗,−z∗) =

φ(x0)[ψ(y∗) − ψ(z∗)] − ψ(x0)[φ(y∗) − φ(z∗)]
[ψ(y∗) − ψ(z∗)]2 − [φ(y∗) − φ(z∗)]2

,

μ∗
1(y∗, z∗) =

ψ(x0)[ψ(y∗) − ψ(z∗)] − φ(x0)[φ(y∗) − φ(z∗)]
[ψ(y∗) − ψ(z∗)]2 − [φ(y∗) − φ(z∗)]2

.

It is now straightforward to verify that J(τ∗, Y ∗;x0) equals the value in (11).�

2.2 Full Solution

Theorem 6 solves the problem for initial positions x0 with |x0| ≤ y∗. The issue is
now one of determining the optimal value and an optimal impulse control pair
when |x0| > y∗. From an intuitive point of view, |x0| < y∗ has an optimal control
which waits until the state process first hits ±y∗ before having an impulse so
one might expect an impulse to occur immediately when |x0| ≥ y∗. Since two
impulses at the same instant are no better than one, one would anticipate that
the after-jump location might be z ∈ (−y∗, y∗). The cost of an immediate jump
from x0 to z followed by using an optimal impulse control is

g(z) :=
αx2

0 + 1
α2

+ k1 + k2(x0 − z) +
z2 − x2

0

α
+ V1(z)

=
αz2 + 1

α2
+ k1 + k2(x0 − z) + V1(z).

Solving g′(z) = 0 to find a minimizer results in

0 = −k2 + 2z/α +
√

2α F (y∗, z∗) sinh(
√

2α z),

which is the first order condition (10) for which both y∗ and z∗ are solutions. An
impulse to y∗ would be followed by an immediate jump to z∗ and incur two fixed
costs whereas a single jump directly to z∗ would cost less. This line of reasoning
indicates that a single jump to z∗ could be an optimal initial impulse.

The goal is to verify that this intuitive reasoning is correct. Define

V̂ (y) =

⎧
⎨

⎩

k1 + k2(|y| − z∗) + V1(−z∗), y ≤ −y∗,
V1(y), −y∗ ≤ y ≤ y∗,

k1 + k2(y − z∗) + V1(z∗), y ≥ y∗.

For |y| > y∗, the function V̂ is the cost associated with the process starting at
initial position y, having an instantaneous jump from y to sgn(y) z∗ and then
using the optimal impulse control policy of Theorem6 thereafter. The following
lemma is fairly straightforward so its proof is left to the reader.
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Lemma 7. V̂ ∈ C1(R) ∩ C2(R\{±y∗}).

The function V̂ therefore has sufficient regularity to use in (2). We now consider
the new auxiliary linear program

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Min.
∫

R\{±y∗}
c0(x)μ0(dx) +

∫

R2
c1(y, z)μ1(dy × dz)

S.t.
∫

R\{±y∗}
[αV̂ (x) − AV̂ (x)]μ0(dx) +

∫

R2
[V̂ (y) − V̂ (z)]μ1(dy × dz)

= V̂ (x0)
(12)

and its dual (having sole variable w)
⎧
⎪⎪⎨

⎪⎪⎩

Max. V̂ (x0) · w

S.t.
(
αV̂ (x) − AV̂ (x)

)
· w ≤ c0(x), x �= ±y∗,(

V̂ (y) − V̂ (z)
)

· w ≤ c1(y, z), ∀y, z ∈ R.

(13)

Observe that each linear program has feasible points with costs that are finite. A
straightforward weak duality argument therefore shows that each value of (13)
corresponding to a feasible variable w is no greater than any value of (12) for
a feasible pair of measures and hence the value of (13) is a lower bound on the
value of the restricted impulse control problem. Since V̂ (x0) > 0, one seeks as
large a positive value as possible for w.

Theorem 8. The optimal value of (13) is V̂ (x0) which is achieved when w∗ = 1.

Proof. By symmetry, it is sufficient to examine x, y, z ≥ 0. Notice that for 0 ≤
x < y∗, αV̂ (x) − AV̂ (x) = x2 = c0(x) ≥ 0 and hence the dual variable w cannot
exceed 1. The question is whether w = 1 is feasible for (13) so examine the rest
of the constraints with w = 1.

For x > y∗, AV̂ (x) = 0 so the first constraint of (13) requires

0 ≤ x2 − α (k1 + k2(x − z∗) + V1(z∗)) = x2 − αV1(y∗).

Since the right-hand expression is an increasing function for x ∈ [k2α/2,∞), it
suffices to verify its nonnegativity with x = y∗:

0 ≤ y2
∗ − αV1(y∗) = y2

∗ − α

(
αy2

∗ + 1
α2

+ F (y∗, z∗) cosh(
√

2α y∗)
)

= − 1
α

+
[2y∗ − k2α] cosh(

√
2α y∗)√

2α sinh(
√

2α y∗)

in which (10) is used to obtain the last expression. This inequality can be rewrit-
ten as

tanh(
√

2α y∗)√
2α

≤ y∗ − k2α/2. (14)
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Since (y∗, z∗) is a minimizing pair of the function F , (14) holds and the first
family of constraints of (13) is satisfied with w = 1.

Consider now the second family of constraints with w = 1. There are several
cases to examine. When 0 ≤ y ≤ z, monotonicity of V̂ on this range shows the
condition is trivially satisfied. Next, for 0 ≤ z ≤ y ≤ y∗, the constraint can be
rewritten as

V1(y) ≤ k1 + k2(y − z) + V1(z).

The right-hand expression gives the cost of an immediate jump from y to z
followed by an optimal impulse control policy thereafter whereas the left-hand
side gives the optimal cost. Hence this inequality is satisfied. Now consider y∗ ≤
z < y and observe that V̂ (y) − V̂ (z) = k2(y − z) < k1 + k2(y − z). Finally, for
0 ≤ z < y∗ < y and again using the definition of V̂ , the second set of constraints
in (13) is equivalent to

k1 + k2(y − z∗) + V1(z∗) ≤ k1 + k2(y − z) + V1(z)

or equivalently

k2(y − y∗) + V1(y∗) = k2(y − y∗) + [k1 + k2(y∗ − z∗) + V1(z∗)]
≤ k2(y − y∗) + [k1 + k2(y∗ − z) + V1(z)].

This last inequality is true by the optimality of both the pair (y∗, z∗) and the
function V1 on [−y∗, y∗] since the bracketed quantity on the right-hand side
gives the cost associated with an initial impulse to z from y∗ along with optimal
impulse control policy starting from z. Thus the second family of constraints in
(13) hold when w = 1. �

We now have the following result.

Theorem 9. Let (y∗, z∗) be the optimizing pair for F having positive compo-
nents. Define the impulse control policy (τ∗, Y ∗) as follows;

τ∗
1 = inf{t ≥ 0 : |X(t−)| ≥ y∗} and Y ∗

1 = sgn(X(τ∗
1 −)) · z∗ − X(τ∗

1 −)

and for k = 2, 3, 4, . . ., define

τ∗
k = inf{t > τk−1 : X(t−) = ±y∗} and Y ∗

k = sgn(X(τ∗
k −)) · z∗ − X(τ∗

k −).

Then (τ∗, Y ∗) is an optimal impulse control pair for the restricted stochastic
impulse control problem and the corresponding optimal value is V̂ (x0).

Proof. The particular choice of (τ∗, Y ∗) implies V̂ (x0) ≤ Vlp(x0) ≤ V1(x0) ≤
J(τ∗, Y ∗) = V̂ (x0). �
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2.3 Solution for General Admissible Impulse Controls

The solution of Sect. 2.2 is restricted to those impulse control policies under
which the process X remains bounded. It is necessary to show that no lower
cost can be obtained by any policy which allows the process to be unbounded.

Theorem 10. The impulse control policy (τ∗, Y ∗) of Theorem9 is optimal in
the class of all admissible policies and V̂ (x0) is the optimal value.

Proof. This argument establishes that V̂ (x0) is a lower bound on J(τ, Y ;x0) for
every admissible impulse control policy. Theorem9 then gives the existence of
an optimal policy whose cost equals the lower bound.

Choose (τ, Y ) ∈ A and let X be the resulting controlled process. Suppose
there exists some K > 0 such that lim inft→∞ Ex0 [e

−αtV̂ (X(t))] ≥ K. Note that

lim inf
t→∞ Ex0

[
e−αtV̂ (X(t))

]
= lim inf

t→∞ Ex0

[
e−αtV̂ (X(t))I{|X(t)|≥y∗}

]

so the linearity of V̂ on {x : |x| ≥ y∗} implies that Ex0 [|X(t)|I{|X(t)|≥y∗}] is
asymptotically bounded below by Keαt as t → ∞. Hence by Jensen’s inequality
for ε > 0 and t large,

Ex0

[
X2(t)

] ≥ (
Ex0 [ |X(t)|I{|X(t)|≥y∗}]

)2 ≥ K2e2αt − ε.

Using this estimate in (1) shows J(τ, Y ;x0) = ∞.
Now suppose J(τ, Y ;x0) < ∞ so lim inft→∞ Ex0 [e

−αtV̂ (X(t))] = 0. Then
there exists a sequence {tj : j ∈ N} such that limj→∞ Ex0 [e

−αtj V̂ (X(tj))] = 0.
Note that |V̂ ′| ≤ k2 so

∫ t

0
e−αsV̂ ′(X(s)) dW (s), t ≥ 0, is a martingale. Thus the

dual constraints, in conjunction with the finiteness of the expected cost, implies
that Dynkin’s formula holds when t = tj for each j. Hence

V̂ (x0) = Ex0

[∫ tj

0

e−αs[α V̂ (X(s)) − AV̂ (X(s))] ds

]
− Ex0

[
e−αtj V̂ (X(tj))

]

+ Ex0

[ ∞∑

k=0

I{τk≤tj}e−ατkBV̂ (X(τk−),X(τk))

]

≤ Ex0

[∫ tj

0

e−αsc0(X(s)) ds +
∞∑

k=0

I{τk≤tk}e−ατkc1(X(τk−),X(τk))

]

− Ex0

[
e−αtj V̂ (X(tj))

]

Letting j → ∞, an application of the monotone convergence theorem on the
first expectation and the convergence to 0 of second expectation establishes that
V̂ (x0) is a lower bound on the expected cost J(τ, Y ;x0). �
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Abstract. Problems of feedback terminal target control for linear and
bilinear uncertain systems are considered. We continue the development
of control synthesis using polyhedral (parallelotope-valued) solvability
tubes. The paper deals with two types of problems, where controls appear
either additively or in the system matrix. For both problems, the cases
without uncertainties, with additive parallelotope-bounded uncertain-
ties, and also with interval uncertainties in coefficients of the system
(a bilinear uncertainty) are considered. Ordinary differential equations,
which describe the mentioned polyhedral solvability tubes, are presented
for each of these cases. New control strategies, which can be calculated
by explicit formulas on the base of the mentioned tubes, are proposed.
Results of computer simulations are presented.

Keywords: Differential systems · Uncertain systems · Control synthe-
sis · Polyhedral estimates · Parallelotopes · Interval analysis

1 Introduction

Problems of feedback terminal target control for linear and bilinear differen-
tial uncertain systems are considered. There are known approaches for solving
problems like these, in particular, based on constructing solvability tubes and the
extremal aiming strategies of N.N. Krasovskii [13,17]. The problem statement for
linear systems, approaches for solving, and the tight interconnections between
solvability tubes, the Pontriagin alternated integral, Hamilton-Jacobi-Bellman
equations, and funnel equations can be found, for example, in [15–17].

Since practical construction of the mentioned tubes can be cumbersome,
different numerical methods are devised, in particular, methods for approximat-
ing the set-valued integrals and for numerical solving the mentioned equations,
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including methods based on approximations of sets by arbitrary polytopes with
a large number of vertices [2,4,21,22] (here and below we mention, as examples,
only some references from numerous publications; see also references therein).
Such methods are devised to obtain approximations as accurate as possible. But
they can require much calculations, especially for large dimensional systems.
Other techniques are based on estimates of sets by domains of some fixed shape
such as ellipsoids and parallelepipeds, including boxes aligned with coordinate
axes as in interval analysis [4,5,7–12,14,15,17,18,20]. The main advantage of
such techniques is that they enable to obtain approximate/particular solutions
using relatively simple tools (up to explicit formulas). More accurate approxi-
mations may be obtained by using the whole families (varieties) of such simple
estimates (as was proposed by A.B. Kurzhanski) [8,12,15,17,18].

For linear differential systems, the constructive computation schemes for solv-
ing the feedback target control problems by means of ellipsoidal techniques were
proposed [15,17] and then expanded to a polyhedral technique [8]. Here we
continue the development of the polyhedral control synthesis using polyhedral
(parallelotope-valued) solvability tubes. The paper deals with two types of prob-
lems, where the controls appear either additively or in the system matrix. For
both problems, the cases without uncertainties, with additive uncertainties, and
also with interval uncertainties in coefficients of the system (the bilinear uncer-
tainty) are considered. Ordinary differential equations (ODE) for the mentioned
polyhedral solvability tubes are presented. New control strategies, which can be
calculated by explicit formulas on the base of the mentioned tubes, are proposed.
In opposite to [8,15,17], they are concretized by explicit formulas when the state
belongs to a tube. Also the polyhedral control synthesis for discrete-time systems
is considered. The results of computer simulations are presented.

Note that there are also some works devoted to other approaches for solving
different control problems under uncertainty and works concerning systems with
bilinear uncertainties (see, for example, [1,4,6,19,20]).

The following notation is used below: Rn is the n-dimensional vector space;
� is the transposition symbol; ‖x‖2 = (x�x)1/2, ‖x‖∞ = max1≤i≤n |xi| are
vector norms for x = (x1, x2, . . . , xn)� ∈ R

n; ei = (0, . . . , 0, 1, 0, . . . , 0)� is
the unit vector oriented along the axis 0xi (the unit stands at position i); e =
(1, 1, . . . , 1)�; Rn×m is the space of real n × m-matrices A = {aj

i} = {aj} (with
columns aj); I is the identity matrix; 0 is the zero matrix (vector); AbsA = {|aj

i |}
for A = {aj

i}; diag π, diag {πi} are the diagonal matrix A with ai
i = πi (πi are

the components of the vector π); det A is the determinant of A; tr A =
∑n

i=1 ai
i

is the trace of A; ‖A‖ = max1≤i≤n

∑m
j=1 |aj

i | for A ∈ R
n×m; int X is the set of

interior points of the set X ⊂ R
n; the notation of the type k = 1, . . . , N is used

instead of k = 1, 2, . . . , N .

2 Problems Formulation

Consider the controlled system with a given terminal set M (x ∈ R
n is the state):

ẋ = (A(t) + U(t) + V (t))x + u(t) + v(t), t ∈ T = [0, θ]. (1)
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Here A(t) ∈ R
n×n is a given matrix function; Lebesgue measurable functions

U(t) ∈ R
n×n and u(t) ∈ R

n serve as controls and satisfy either (2) or (3):

U(t) ≡ 0, u(t) ∈ R(t), a.e. t ∈ T, (2)

U(t) ∈ U(t) = {U ∈ R
n×n|Abs (U−Ũ(t)) ≤ Û(t)}, u(t) ≡ 0, a.e. t ∈ T ; (3)

V (t) ∈ R
n×n and v(t) ∈ R

n stand for unknown disturbances and satisfy

V (t) ∈ V(t) = {V ∈ R
n×n|Abs (V − Ṽ (t)) ≤ V̂ (t)}, v(t) ∈ Q(t), a.e. t ∈ T.

(4)
Matrix and vector inequalities (≤, <,≥, >) here and below are understood com-
ponentwise. We presume the sets R(t), Q(t), and M to be parallelotopes and a
parallelepiped respectively:

R(t) = P[r(t), R̄(t)], R̄(t) ∈ R
n×n1 , Q(t) = P[q(t), Q̄(t)], Q̄(t) ∈ R

n×n2 ,
M = P(pf , Pf , πf) = P[pf , P̄f ], P̄f ∈ R

n×n, det P̄f 	= 0;
(5)

r(t), R̄(t), q(t), Q̄(t), as well as A(t), Ũ(t), Û(t) ≥ 0, Ṽ (t), V̂ (t) ≥ 0, are known
continuous vector and matrix functions; the parallelepiped M is nondegenerate.

By a parallelepiped P(p, P , π) ⊂ R
n we mean a set such that P = P(p, P , π) =

{x ∈ R
n|x = p +

∑n
i=1 piπiξi, ‖ξ‖∞ ≤ 1}, where p ∈ R

n; P = {pi} ∈ R
n×n is

such that det P 	= 0, ‖pi‖2 = 11; π ∈ R
n, π ≥ 0. It may be said that p determines

the center of the parallelepiped, P is the orientation matrix, pi are the “directions”
and πi are the values of its “semi-axes”. We call a parallelepiped nondegenerate if
π > 0.

By a parallelotope P[p, P̄ ] ⊂ R
n we mean a set P = P[p, P̄ ] = {x ∈ R

n| x =
p+P̄ ζ, ‖ζ‖∞ ≤ 1}, where p ∈ R

n and the matrix P̄ = {p̄i} ∈ R
n×m, m ≤ n, may

be singular. We call a parallelotope P nondegenerate if m = n and det P̄ 	= 0.
Each parallelepiped P(p, P , π) is a parallelotope P[p, P̄ ] with P̄ = P diag π;

each nondegenerate parallelotope is a parallelepiped with P = P̄ diag {‖p̄i‖−1
2 },

πi = ‖p̄i‖2 or, in a different way, with P = P̄ , π = e, where e = (1, 1, . . . , 1)�.
We can consider the above system for the following cases: (I) without uncer-

tainty when v and V ≡ 0 are given functions, i.e., Q̄ ≡ 0, Ṽ ≡ V̂ ≡ 0; (II)
under uncertainty including the following three subcases: (II,i) only additive
uncertainty (V ≡ 0); (II,ii) only matrix uncertainty (Q̄ ≡ 0); (II,iii) both ones.

In [15–17], for cases (I) and (II,i) with controls (2), the following problem of
terminal target control synthesis under uncertainty was investigated.

Problem 1. For the system (1), (2), (4), case (I) or (II,i), specify a solvability
set W(τ, θ,M) = W(τ) and a set-valued feedback control strategy2 u = u(t, x),
u(·, ·) ∈ U c

R, such that all solutions to the differential inclusion ẋ ∈ A(t)x +
u(t, x) + Q(t), t ∈ T , that start from any given position {τ, xτ}, xτ = x(τ) ∈
W(τ, θ,M), τ ∈ [0, θ), would reach the terminal set M at time θ: x(θ) ∈ M.
1 The normality condition ‖pi‖2 = 1 may be omitted to simplify formulas.
2 Here the class Uc

R of feasible control strategies is taken to consist of all con-
vex compact-valued multifunctions u(t, x) that are measurable in t, upper semi-
continuous in x, being restricted by u(t, x) ⊆ R(t), t ∈ T . The condition u(·, ·) ∈ Uc

R
ensures that the corresponding differential inclusion does have a solution.
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The multivalued function W(t), t ∈ T , is known as a solvability tube W(·).
The ellipsoidal synthesis was elaborated in [15,17] for solving Problem1.

In [8], the families of external P+(·) and internal P−(·) parallelotope-valued
(shorter, polyhedral) estimates for W(·) were introduced. The extremal aim-
ing strategies of N.N. Krasovskii were used there. They were constructed in an
analytical form on the base of a solution of some specific mathematical program-
ming problem. Now let us consider two following problems, which concern all
above cases of uncertainties. Unlike Problem1, they involve single-valued control
strategies. This is possible because our strategies will be continuous and even
linear with respect to x. Moreover, they will be constructed in an explicit form.

Problem 2. For the system (1), (2), (4), (5), find a polyhedral tube P−(t) =
P[p−(t), P̄−(t)], t ∈ T , with P−(θ) = M, and find a corresponding feedback
control strategy u = u(t, x) such that u(t, x) ∈ R(t) for x ∈ P−(t), t ∈ T , and
each solution x(·) to the differential equation ẋ = (A(t)+V (t))x+u(t, x)+v(t),
t ∈ T , with x(0) = x0 ∈ int P−(0) would be defined on T and would satisfy
x(t) ∈ P−(t), t ∈ T , whatever are v(·) and V (·) subjected to (4). Moreover,
introduce a whole family of such tubes P−(·).
Problem 3. For the system (1), (3), (4), (5), find a polyhedral tube P−(t) =
P[p−(t), P̄−(t)], t ∈ T , with P−(θ) = M, and find a corresponding feedback
control strategy U = U(t, x) such that U(t, x) ∈ U(t) for x ∈ P−(t), t ∈ T , and
each solution x(·) to the differential equation

ẋ = (A(t) + U(t, x) + V (t))x + v(t), t ∈ T, (6)

with x(0) = x0 ∈ intP−(0) would be defined on T and would satisfy x(t) ∈
P−(t), t ∈ T , whatever are V (·), v(·) subjected to (4). Introduce a family of
such tubes.

3 Solutions to Problem2

First, let us consider the following ODE system for P−(t) = P[p−(t), P̄−(t)]:

dp−

dt
= (A(t) + Ṽ (t))p− + r(t) + q(t), p−(θ) = pf ; (7)

dP̄−

dt
= (A(t) + Ṽ (t))P̄− + P̄−diag β(t, P̄−) + R̄(t)Γ (t) + P̄−diag γ(t, P̄−),

β(t, P̄−) = max{Abs ((P̄−)−1) V̂ (t)Abs (p−(t) + P̄−ξ) | ξ ∈ E(C)},
γ(t, P̄−) = Abs ((P̄−)−1Q̄(t)) e, P̄−(θ) = P̄f .

(8)
Here (and below) the operation of maximum is understood componentwise, E(C)
denotes the set of all vertices of C = P(0, I, e) (i.e., points ξ ∈ R

n with ξj ∈
{−1, 1}); Γ (t) ∈ R

n1×n is an arbitrary Lebesgue measurable matrix function
satisfying Γ (t) ∈ G, a.e. t ∈ T , where G = {Γ = {γj

i } ∈ R
n1×n| ‖Γ‖ ≤ 1},
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‖Γ‖ = max1≤i≤n1

∑n
j=1 |γj

i |. Let G be the set of all such functions Γ (·). Let us
consider the following control strategy, being connected with P−(·) from (7), (8):

u(t, x) = r(t) + R̄(t)Γ (t)P̄−(t)−1(x − p−(t)). (9)

Theorem 1. We consider the system (1), (2), (4), (5), where det P̄f 	= 0. Let
Γ (·) ∈ G. Then the system (7), (8) has a unique solution (p−(·), P̄−(·)) at least
on some subinterval T1 = [τ1, θ]⊆T , where 0 ≤ τ1 < θ. If T1 = T and we
have det P̄−(t) 	= 0, t ∈ T , then the tube P−(·) and the control strategy (9)
give a particular solution to Problem 2; in cases (I), (II,i), all solutions x(·)
with x(0) ∈ P−(0) (not only with x(0) ∈ int P−(0)) generated by (9) satisfy
x(t) ∈ P−(t), t ∈ T .

The scheme of the proof is similar to the proof of Theorem 2 (see below).
Theorem 1 describes the whole family of tubes P−(·), where Γ (·) serves as

a parameter. Thus the set W0 =
⋃{int P−(0)|Γ (·) ∈ G such that detP−(t) 	=

0, t ∈ T} (or, in cases (I), (II,i), the analogous set W0 =
⋃ P−(0)) provides

the set of initial positions which can be steered to the terminal set M during
the time θ by solving Problem2. But, generally speaking, it is not true that
det P−(0) 	= 0 or even P−(0) 	= ∅ for each Γ (·) ∈ G. For cases (I), (II,i), the
above family of the tubes P−(·) coincides with the family of internal estimates
for W(·) introduced in [8]. It follows from [8,11] that for the case (I) we have
T1 = T for each Γ (·) ∈ G and W(0) =

⋃{P−(0)|Γ (·) ∈ G}. But we can not
conclude from here that W0 = W(0). The attractive property of the control
strategies (9) is their explicit form.

Remark 1. One of the heuristic ways to construct the parameter Γ (·) is to
apply arguments of a “local” volume optimization similarly to [8] (see also
Remark 2 below). Namely, assuming det P̄f > 0 and introducing a grid TN of
times τk = khN , k = 0, . . . , N , hN = θN−1, we can construct the piecewise con-
stant function Γ (t) ≡ Γ (τk) ∈ Argmin Γ∈Gtr (P̄−(τk)−1R̄(τk)Γ ), t ∈ (τk−1, τk],
k = N, . . . , 1.

For case (I), we can use, similarly to [11], minimization over Γ that satisfy
Γ ∈ G and some constraints introduced to produce tight estimates P−(t) for
W(t). Solutions of both optimization problems are known in the explicit form
[8,11].

4 Solutions to Problem3

Let us consider the following ODE system for P−(t) = P[p−(t), P̄−(t)]:

dp−

dt
= (A(t) + Ũ(t) + Ṽ (t))p− + q(t), p−(θ) = pf ; (10)
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dP̄ −

dt
= (A(t) + Ũ(t) + Ṽ (t))P̄ − − diag α(t, P̄ −)P̄ − + P̄ −diag (β(t, P̄ −) + γ(t, P̄ −)),

αi(t, P̄
−) = αi(t, P̄

−; J(t)) = ûji
i (t) ηji(t, P̄

−)(ei
�

(Abs P̄ −) e)−1, i = 1, . . . , n,
η(t, P̄ −) = max{0, Abs p−(t) − (Abs P̄ −)e},

β(t, P̄ −) = max{Abs ((P̄ −)−1) V̂ (t) Abs (p−(t) + P̄ −ξ) | ξ ∈ E(C)},
γ(t, P̄ −) = Abs ((P̄ −)−1Q̄(t)) e, P̄ −(θ) = P̄f ,

(11)

where ûj
i stand for elements of Û . Here J = {j1, . . . , jn} is an arbitrary permu-

tation of numbers {1, . . . , n} or even a measurable vector function with values
J(t) being arbitrary permutations. Let J be the set of all such functions J(·).
Let us consider the control strategy connected with P−(·) from (10), (11):

ei�U(t, x) =

{
ei�Ũ(t) − αi(t, P̄−(t))(xi − p−

i (t))(xji)
−1eji� if xji 	= 0,

ei�Ũ(t) if xji = 0, i = 1, . . . , n.

(12)

Theorem 2. We consider the system (1), (3)–(5), where det P̄f 	= 0. Let J(·) ∈
J. Then the system (10), (11) has a unique solution (p−(·), P̄−(·)) at least on
some subinterval T1 = [τ1, θ] ⊆ T , where 0 ≤ τ1 < θ. If T1 = T and we have
det P̄−(t) 	= 0, t ∈ T , then the tube P−(·) and the control strategy (12) give a
particular solution to Problem3; in cases (I), (II,i), all solutions x(·) to (6) with
x(0) ∈ P−(0) (not only with x(0) ∈ int P−(0)) satisfy x(t) ∈ P−(t), t ∈ T .

Proof. Here we give a sketch. First, it can be checked that the strategy (12) acts
for x ∈ P−(t) according to the rule U(t, x)x = Ũ(t)x − diag α(t, P̄−(t)) · (x −
p−(t)). Existence and uniqueness of the solution follow from the known results
similarly to [8,10]. Let x0 ∈ int P−(0) (x0 ∈ P−(0) for cases (I) and (II,i)). Let
x(·) be the solution of (6) that corresponds to x(0) = x0 (i.e., x(0) = p−(0) +
P̄−(0)ζ0, where ‖ζ0‖∞ < 1 (respectively, ‖ζ0‖∞ ≤ 1)), to the control U(t, x) from
(12), and to arbitrary admissible functions v(·) (such that v(t) = q(t)+Q̄(t)χ(t),
‖χ(t)‖∞ ≤ 1) and V (·) (which satisfies (4)). Let us represent x(t) − p−(t) in
the form x(t) − p−(t) = P̄−(t)ζ(t). Then we have d

dtζ = −(P̄−)−1( d
dt P̄

−)ζ +
(P̄−)−1 d

dt (x − p−) for the above function ζ. Taking into account (11) and the
relation d

dt (x−p−) = (A+ Ũ + Ṽ )(x−p−)− (diag α)(x−p−)+(V − Ṽ )x+v −q,
which follows from (6), (10), (12), it is not difficult to see that ζ̇ = −(diag β +
diag γ)ζ+(P̄−)−1((V −Ṽ )x+v−q). Let us denote b(t) = β(t, P̄−(t))+γ(t, P̄−(t)),
c(t, ζ) = P̄−(t)−1((V (t) − Ṽ (t)) · (p−(t) + P̄−(t)ζ) + Q̄(t)χ(t)). Then, using (4),
(5), we have

ζ̇i = −bi(t)ζi + ci(t, ζ), i = 1, . . . , n, ζ(0) = ζ0;
b(t) ≥ 0, Abs c(t, ζ) ≤ b(t) for ζ ∈ C = P(0, I, e).

(13)

It is not difficult to check that if ζ(·) satisfies (13) and ζ0 ∈ int C, then ζ(t) ∈ int C,
t ∈ T ; if ζ0 ∈ C and, in addition, c(t, ζ) ≡ c(t) (i.e., does not depend on ζ), then
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ζ(t) ∈ C, t ∈ T . Thus we obtain x(t) ∈ P−(t), t ∈ T . Also we have Abs (U(t, x) −
Ũ(t)) ≤ Û(t) for x ∈ P−(t) because for such x we have |αi(xi −p−

i )(xji)
−1| ≤ ûji

i ,
i = 1, . . . , n (this can be obtained by simple estimates). �
Theorem 2 describes the family of tubes P−(·), where J(·) serves as a parameter.
Thus the set W0 =

⋃{int P−(0)|J(·) ∈ J such that detP−(t) 	= 0, t ∈ T}
provides the set of x0 that can be steered to M during the time θ by solving
Problem 3. However it is not true that detP−(0) 	= 0 or P−(0) 	= ∅ for each
J(·) ∈ J.

Remark 2. One of the ways of constructing J(·) is to apply arguments of a
“local” volume optimization similarly to [9,10]. Namely, assume, without loss of
generality, that det P̄f > 0. Fix a natural number N and introduce a grid TN

of times τk = khN , k = 0, . . . , N , hN = θN−1. Integrating the system (10),
(11) from right to left, let us, for each τ ∈ TN , solve the optimization prob-
lem which is to maximize

∑n
i=1 αi(τ, P̄−(τ);J) over all possible permutations

J = {j1, . . . , jn}. This is equivalent to finding the maximal possible velocity
of increasing (from right to left) det P̄−(τ) (therefore vol P−(τ)) at time τ , by
the choice of the value J , when the value P̄−(τ) has already been found. Thus
we can sequentially construct the piecewise constant function J(t) ≡ J(τk) ∈
Argmax J

∑n
i=1 αi(τk, P̄−(τk);J), t ∈ (τk−1, τk], k = N, . . . , 1, and find P̄−(·).

5 Control Synthesis for Discrete-Time Systems

Now let us briefly consider a problem of control synthesis, similar to Problem3,
for discrete-time systems. This is of independent interest and also may be useful
for constructing difference schemes for solving the system (10), (11). The analog
of Problem 2 can be considered in a similar way.

Consider the controlled discrete-time system with a given terminal set M:

x[k] = (A[k] + U [k] + V [k])x[k − 1] + v[k], k = 1, . . . , N,
x[N ] ∈ M = P[pf , P̄f ], det P̄f 	= 0,

(14)

U [k] ∈ U [k] = {U |Abs (U − Ũ [k]) ≤ Û [k]}, V [k] ∈ {V |Abs (V − Ṽ [k]) ≤ V̂ [k]},
(15)

v[k] ∈ Q[k] = P[q[k], Q̄[k]], k = 1, . . . , N. (16)

Problem 4. Find a polyhedral tube P−[k] = P[p−[k], P̄−[k]], k = 1, . . . , N , with
P−[N ] = M, and find a corresponding feedback control strategy U = U [k, x]
such that U [k, x] ∈ U [k] for x ∈ P−[k − 1], k = 1, . . . , N , and each solution x[·]
to the equation x[k] = (A[k]+U [k, x[k−1]]+V [k]) ·x[k−1]+v[k], k = 1, . . . , N ,
with x[0] = x0 ∈ P−[0] would satisfy x[k] ∈ P−[k], k = 1, . . . , N , whatever are
V [·] and v[·] subjected to (15), (16). Introduce a family of such tubes P−[·].

Let us consider the following system of relations for P−[k] = P[p−[k], P̄−[k]]:

p−[k−1] = B[k]−1(p−[k]−q[k]), B[k] = A[k]+ Ũ [k]+ Ṽ [k], k = N, . . . , 1, p−[N ] = pf ,
(17)
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P̄−[k − 1] = H[k, P̄−[k − 1]], k = N, . . . , 1, P̄−[N ] = P̄f , (18)

H[k, P ] = (B[k] − diag α[k, P ])−1P̄−[k] diag (e − β[k, P ] − γ[k]),
αi[k, P ] = αi[k, P ;J [k]] = ûji

i [k] ηji [k, P ] (ei�(Abs P ) e)−1, i = 1, . . . , n,
η[k, P ] = max{0,Abs p−[k − 1] − (Abs P )e},

β[k, P ] = max{Abs (P̄−[k]−1) V̂ [k] Abs (p−[k − 1] + Pξ) | ξ ∈ E(C)},
γ[k] = (Abs (P̄−[k]−1Q̄[k]))e, k = N, . . . , 1.

(19)

Note that (17) is the system of explicit recurrent relations while (18)–(19) is
the system of implicit ones, i.e., for any time step k ∈ {N, . . . , 1}, we need to
solve the system of nonlinear equations with respect to the unknown matrix
P = P−[k − 1].

Theorem 3. In the system (14)–(16), let det P̄f 	= 0 and all det B[k] 	= 0.
Let J [k] = {j1[k], . . . , jn[k]} be arbitrary permutations of numbers {1, . . . , n},
k = N, . . . , 1, and the system (17)–(19) has a solution (p−[·], P̄−[·]) such that
we obtain det P̄−[k] 	= 0 and e − β[k, P̄−[k − 1]] − γ[k] > 0, k = N, . . . , 1. Then
the tube P−[·] and the control strategy which acts according to the following rule

U [k, x]x = Ũ [k]x−diag α[k, P̄−[k−1];J [k]](x−p−[k−1]), k = 1, . . . , N, (20)

(a formula similar to (12) is true), gives a particular solution to Problem4.

Proof. We give a sketch following the scheme of the proof of Theorem2 and
keeping the similar notation. Let x[·] corresponds to x[0] = x0 ∈ P−[0], i.e.,
x[0] = p−[0] + P̄−[0]ζ0, where ‖ζ0‖∞ ≤ 1. Let us represent x[k] in the form
x[k] = p−[k] + P̄−[k]ζ[k], k = 0, . . . , N . The proof is by induction on the time
step k. Let we already have x[k −1] ∈ P−[k − 1]. Then it follows from (14), (17)
that

x[k] = p−[k]+B[k]P̄−[k−1]ζ[k−1]+(U [k, x[k−1]]−Ũ [k]+ΔV [k])x[k−1]+v[k]−q[k],

where ΔV [k] = V [k] − Ṽ [k]. Taking into account (20), we obtain

ζ[k] = P̄−[k]−1(B[k] − diag α[k, P̄−[k − 1]])P̄−[k − 1]ζ[k − 1] + c[k, x[k − 1]],

c[k, x] = P̄−[k]−1ΔV [k]x + P̄−[k]−1Q̄[k]χ[k]. Using (18), (19), (15), (16), we
have

ζ[k] = diag (e − β[k, P̄−[k − 1]] − γ[k])ζ[k − 1] + c[k, x[k − 1]];
Abs c[k, x] ≤ β[k, P̄−[k − 1]] + γ[k] for x ∈ P−[k − 1].

It is not difficult to see that if ‖ζ[k−1]‖∞ ≤ 1 and e−β[k, P̄−[k−1]]−γ[k] ≥ 0,
then ‖ζ[k]‖∞ ≤ 1. Thus we obtain the desired inclusion x[k] ∈ P−[k]. Also it is
not difficult to see that Abs (U [k, x] − Ũ [k]) ≤ Û [k] for x ∈ P−[k − 1]. �
Remark 3. Let the system (14)–(16) be obtained by the Euler approximations
of (1), (3)–(5) with the same M, A[k] = I + hNA(tk−1), Ũ [k] = hN Ũ(tk−1),
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Û [k] = hN Û(tk−1), Ṽ [k] = hN Ṽ (tk−1), V̂ [k] = hN V̂ (tk−1), Q[k] = hNQ(tk−1),
tk = khN , hN = θN−1. Let, for a fixed k, det P̄−[k] 	= 0 and the time step
hN be sufficient small. Then the operator H[k, P ] is contractive in some domain
D[k] = {P | ‖P − P̄−[k]‖ ≤ δ[k]}, i.e., ‖H[k, P 1] − H[k, P 2]‖ ≤ L‖P 1 − P 2‖
for any P 1, P 2 ∈ D[k], where L = L[k] ∈ (0, 1), and therefore [3, p. 319] the
equation P = H[k, P ] from (18), (19) has a solution P = P̄−[k − 1], which can
be found by the simple iteration P l+1 = H[k, P l], l = 0, 1, . . ., starting from
P 0 = P̄−[k], and we have ‖P l − P‖ ≤ Ll(1 − L)−1‖P 1 − P 0‖. Also, the relation
γ[k] + β[k, P̄−[k − 1]] < e is satisfied. But certainly we can not derive from here
the existence of nonsingular matrices P̄−[k] for all k = N, . . . , 1 because the
value of such “small” hN depends on k.

6 Examples

We consider model examples for Problem 3. For computations we use the Euler
approximations (see Remark 3) with N = 200. Let M = P((1, 1)�, I, (0.1, 0.1)�),
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Fig. 1. Examples of polyhedral control synthesis for Problem 3 (n = 2). (a) Case
(I): the set M (dash line), two parallelotopes P−[0] and the controlled trajectory for
x0 = (0.5, 0.8)�. (b) Case (I): the tube P−[·] and the controlled trajectory. (c) Case
(II,ii): M, P−[0] corresponding to J [·] from Remark 2, and the controlled trajectory
for x0 = (0.5, 0.8)�. (d) Case (II,iii): M, P−[0] corresponding to J [·] from Remark 2,
and controlled trajectories for two initial points x0 = (0.5, 0.8)� and x0 = (1, 0.6)�.
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A(t) ≡
[−0.5 0

0 −0.5

]
, Ũ(t) ≡

[
0 2
0 0

]
, Û(t) ≡

[
0 1.5
0 0

]
, Ṽ (t) ≡

[
0 0
2 0

]
, V̂ (t) ≡

[
0 0

0.2 0

]
or V̂ (t) ≡ 0, Q(t) ≡ P(0, I, 0) or Q(t) ≡ P(0, I, (0.05, 0.05)�), θ = 0.25.

We consider 3 cases: (I), (II,ii), and (II,iii). The results are presented in Fig. 1.
In the second example, we put the realization V (t) ≡ Ṽ (t) + V̂ (t); in the third
one we presume V (·) to be the same and v(·) to be some extremal bang-bang
type disturbance [17, p. 234], where the length of intervals of constancy of v(t)
is equal to θ/4.

All the presented trajectories reach the target set M including the one with
a small violation of the inclusion x0 ∈ P−[0], though if x0 /∈ P−[0], then there is
not guarantee that the trajectory can be steered into the target set M by using
the control strategy (12) under any disturbances.
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Abstract. In this paper we apply a duality algorithm to the general
obstacle problem for second order operators. We reduce the problem to
the null obstacle case and we solve it by using an algorithm based on a
dual approximate problem. This method generates a quadratic minimiza-
tion problem, which is easy to implement numerically. The convergence
properties and the numerical results show that the algorithm is working
properly for any admissible obstacle.
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1 Introduction

The obstacle problem is a very well studied subject. Many methods have been
applied for solving it. For instance, Glowinski [6] used the finite element method
for solving the null obstacle problem, while Barbu and Precupanu [2] studied
the problem from the duality point of view. The general obstacle problem is also
intensively studied for its wide range of applications in mechanics and physics.
We refer here to Rodrigues [14], Caffarelli and Friedman [4], Duvaut and Lions
[5] and Ciarlet [3].

We extend here the duality method developed in the articles Merluşcă [8,9],
by the application of the Fenchel theorem to the obstacle problem. We discuss
the general obstacle problem in Sect. 2. We reduce the problem to the null obsta-
cle case and we compute the solutions using the duality method (Merluşcă [9]).
In Merluşcă [10], the case of the fourth order obstacle problem was analysed. In
Sect. 3, we apply this technique in numerical examples for one dimensional prob-
lems and the obtained results are very accurate. Finally, we mention the works of
Neittaanmaki, Sprekels and Tiba [12] and Sprekels and Tiba [15], where a related
duality approach was used in the study of Kirchhoff-Love arches and explicit solu-
tions were obtained.
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2 The General Obstacle Problem for Second Order
Equations

We consider the following obstacle problem

min
{

1
2

∫

Ω

|∇y|2 −
∫

Ω

fy : y ∈ Kψ

}
, (1)

where Kψ = {y ∈ H1
0 (Ω) : y ≥ ψ}, ψ ∈ H1(Ω) is such that ψ|∂Ω ≤ 0 and

f ∈ L2(Ω).
It is known that the unique solution of problem (1) is an element in H2(Ω)

(Theorem 2.5, [1]).

Lemma 1. Let yψ be the solution of the problem (1) and ŷ the solution of the
problem

−Δŷ = f, on Ω,
ŷ = 0, on ∂Ω,

(2)

then yψ ≥ ŷ almost everywhere on Ω.
The problem (1) in which we replace ψ by ψ̂ = max{ŷ, ψ} ∈ H1

0 (Ω) has the
same solution yψ.

Proof. Denoting β ⊂ R × R a maximal monotone operator defined by

β(z) =

⎧
⎨

⎩

] − ∞, 0], z = 0,
0, z > 0 ,
∅, z < 0.

we rewrite (1) as
− Δyψ + β(yψ − ψ) 	 f in Ω. (3)

Then, since yψ ∈ H2(Ω), β(yψ − ψ) ∈ L2(Ω) and β(yψ − ψ) ≤ 0 a.e. on Ω. By
a comparison of (2) and (3), we obtain that yψ ≥ ŷ a. e. on Ω.

We denote K̂ = {y ∈ H1
0 (Ω) : y ≥ ψ̂}. Then yψ ∈ K̂, Δyψ + f ≤ 0 a.e. on Ω.

For every v ∈ K̂, we compute
∫

Ω

(Δyψ + f)(v − yψ) =
∫

Ω

(Δyψ + f)(ψ̂ − yψ) +
∫

Ω

(Δyψ + f)(v − ψ̂)

≤
∫

Ω

(Δyψ + f)(ψ̂ − yψ) = 0.

The last equality is due to the classical formulation of the obstacle problem (the
complementarity property)

−Δyψ = f, in Ω+ = {yψ ∈ Ω : yψ(x) > ψ(x)},

−Δyψ ≥ f, in Ω \ Ω+ = {yψ ∈ Ω : yψ(x) = ψ(x)},

yψ = ψ and
∂yψ

∂n
=

∂ψ

∂n
, on ∂Ω+ ∩ Ω,

yψ = 0 on ∂Ω.
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and to the fact that yψ(x) = ψ(x) means that ŷ(x) ≤ ψ(x) and that yields that
yψ(x) = ψ̂(x).

Then integrating by parts we get
∫

Ω

∇yψ∇(v − yψ) ≤
∫

Ω

f(v − yψ), ∀v ≥ ψ̂.

Remark 1. Lemma 1 is known (see Murea and Tiba [11]) and we indicate its
proof for easy reference.

The null obstacle problem that we use is

min
y∈K0

{
1
2

∫

Ω

|∇y|2 −
∫

Ω

fy +
∫

Ω

∇ψ̂∇y

}
. (4)

Let y0 be the unique solution of problem (4).

Proposition 1. Then the solution of the problem (1) can be computed by just
adding ψ̂, i.e.

yψ = y0 + ψ̂. (5)

Proof. The weak formulation of problem (4) is given by the form
∫

Ω

∇y0∇(y0 − v) ≤
∫

Ω

f(y0 − v) −
∫

Ω

∇ψ̂∇(y0 − v), ∀v ∈ K0.

We translate the problem by adding ψ̂. Then, for every v ∈ K0, we get v + ψ̂ ≥
ψ̂ ≥ ψ. With this translations from the variational inequality we obtain

∫

Ω

∇(y0 + ψ̂)(∇(y0 + ψ̂) − ∇(ψ̂ + v)) ≤
∫

Ω

f(y0 + ψ̂ − v − ψ̂).

Using Lemma 1 it yields that, by a translation with ψ̂, the problem (4) is equiv-
alent to problem (1). Then we conclude that y0 + ψ̂ = yψ.

Since
∫

Ω
∇y∇ψ̂ = − ∫

Ω
Δψ̂y and Δψ̂ ∈ H−1(Ω), then we can consider the

approximate problem

min
{

1
2

∫

Ω

|∇y|2 −
∫

Ω

(
f + Δψ̂

)
y : y ∈ Ck

}
, (6)

where Ck = {y ∈ H1
0 (Ω) : y(xi) ≥ 0,∀i = 1, 2, . . . , k} and {xi}i is a dense set

in Ω.
In (6), we assume that dim Ω = 1 (for the numerical applications in Sect. 3),

but the result can be extended in higher dimension by using non hilbertian
Sobolev spaces. Using the Sobolev imbedding theorem and the weak lower semi-
continuity of the norm, then we can prove the following approximation result
(see Merluşcă [9])
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Theorem 1. The sequence {ȳk}k of the solutions of problems (6), for k ∈ N,
is a strongly convergent sequence in H1

0 (Ω) to the unique solution ȳ of the prob-
lem (4).

We denote f̂ = f + Δψ̂ ∈ H−1(Ω). Applying the Fenchel duality theorem to
problem (6) we obtain the dual problem

min
{

1
2
|y∗ + f̂ |2H−1(Ω) : y ∈ C∗

k

}
, (7)

where C∗
k = {y∗ ∈ H−1(Ω) : y∗ =

∑k
i=1 αiδxi

, αi ≥ 0} is the dual cone.

Remark 2. Let y∗
k be the solution of the dual approximate problem (7). Since

y∗
k ∈ C∗

k , it is sufficient to compute the coefficients α∗
i , due to the formula

y∗
k =

k∑

i=1

α∗
i δxi

.

The solution yk of the approximate problem (6) is computed using the equal-
ity yk = J−1(y∗

k + f̂), where J is the duality mapping J : H1
0 (Ω) → H−1(Ω)

and we also have α∗
i yk(xi) = 0, ∀i = 1, k.

We obtain the formula for the solution of the approximate problem, denoted
by y0

k,

y0
k =

k∑

i=1

α∗
i J

−1(δi) + J−1(f̂)

using the fact that the duality mapping J : H1
0 (Ω) → H−1(Ω) is defined by

J(y) = −Δy.
Then applying (5) we find the approximate solution of the general obstacle

problem (1).

3 Numerical Applications

In this section we discuss two examples in one dimension for the general obstacle
problem for second order operators.

We consider the obstacle problem (1) with Ω =]−1, 1[ the domain, ψ ≡ −1/18
the obstacle and

f(x) =
{−1, |x| > 1/4 ,

1 − 32x2, |x| ≤ 1/4.

The solution of this problem is, Ockendon and Elliott [13], (pp. 93–94)

u(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

− 1
18 + 1

2

(
x ± 2

3

)2
, 2

3 < |x| ≤ 1,

− 1
18 , 1

3 ≤ |x| ≤ 2
3 ,

− 1
18 + 1

2

(
x ± 1

3

)2
, 1

4 ≤ |x| < 1
3 ,

− 1
32 + 8

3x2
(
x2 − 3

16

)
, |x| < 1

4 .
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The duality mapping J : H1
0 (Ω) → H−1(Ω) is defined as J(y) = −y′′. It is a

linear bounded operator.
We consider the discretization xi = 2ih − 1, where h = 1/k, for all i ∈

{0, 1, 2, . . . , k}.
We denote by di = J−1(δxi

). Computing them we get

di(x) =
{

0.5(1 − xi)(x + 1), x ≤ xi,
0.5(1 − xi)(x + 1) − x + xi, x > xi,

∀i ∈ {0, 1, . . . , k}.

We consider yf = J−1(f + Δψ̂) the solution of the problem

−y′′
f = f + Δψ̂, on ] − 1, 1[,

yf (−1) = yf (1) = 0.

Then

|y∗ + f + Δψ̂|2H−1(Ω) =

∣
∣
∣
∣
∣

k∑

i=1

αidi + yf

∣
∣
∣
∣
∣

2

H1
0 (Ω)

and
∣
∣
∣
∣
∣

k∑

i=1

αidi + yf

∣
∣
∣
∣
∣

2

H1
0 (Ω)

=
k∑

i,j=1

αiαj

∫

Ω

d′
id

′
j + 2

k∑

i=1

αi

∫

Ω

d′
iy

′
f +

∫

Ω

(y′
f )2.

Denoting aij =
∫

Ω
d′

id
′
j , bi =

∫
Ω

d′
iy

′
f , we solve the dual problem (7) which is

equivalent to the quadratic minimization problem

min
α≥0

1
2
αT Aα + bT α, (8)

where A = [aij ] and b = [bi].
Computing the components, we get bi = yf (xi) and

aij =
{

0.5(1 + xi)(1 − xj), j > i,
0.5(1 + xj)(1 − xi), j ≤ i.

In Fig. 1 we represent the coefficients {α∗
i }i=1,100, the solution of the

problem (8).
We construct the solution of the problem (6) using Remark 2, then we apply

formula (5) to obtain the approximate solution of (1).
In Fig. 2 we represent three solutions: the one computed by the duality

method, the one computed with the IPOPT optimizer (Freefem++ script included
in the ff-Ipopt dynamic library, Hatch [7]; for details about the method see
Wächter and Biegler [16]) and the exact solution given by Ockendon and Elliot
[13]. They coincide graphically.

We now consider an example with general obstacle:

min
{

1
2

∫

Ω

|∇y|2 −
∫

Ω

fy : y ∈ Kψ

}
, (9)
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Fig. 1. The coefficients {α∗
i }i.

Fig. 2. The exact solution, the dual solution and the IPOPT solution are graphically
identical.

where Kψ = {y ∈ H1
0 (Ω) : y ≥ ψ}, Ω =] − 1, 1[, ψ(x) = −x2 + 0.5 and

f(x) =
{−10, |x| > 1/4,

10 − x2, |x| ≤ 1/4.

After solving the quadratic minimization problem (8), the solution of which
is represented in Fig. 3, we compute the solution of the approximate problem (6)
using the Remark 2.
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Fig. 3. The coefficients {α∗
i }i.

Fig. 4. The dual solution and the IPOPT solution coincide graphically.

We represent in Fig. 4 the obstacle ψ and the solutions, one computed by the
duality method and the other one computed by the IPOPT method [7]. The two
solutions are very close and coincide graphically.

References

1. Barbu, V.: Optimal Control of Variational Inequalities. Research Notes in Mathe-
matics, vol. 100. Pitman, Boston (1984)

2. Barbu, V., Precupanu, T.: Convexity and Optimization in Banach Spaces.
Noordhoff, London (1978)

3. Ciarlet, P.G.: Numerical analysis of the finite element method, Les Presses de
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Abstract. In this paper we propose a new algorithm for the wellknown
elliptic bilateral obstacle problem. Our approach enters the category of
fixed domain methods and solves just linear elliptic equations at each
iteration. The approximating coincidence set is explicitly computed. In
the numerical examples, the algorithm has a fast convergence.

Keywords: Obstacle problem · Free boundary problems · Penalization

1 Introduction

The obstacle problem may be formulated as an elliptic variational inequality.
Detailed theoretical discussions of various variational inequalities may be found
in [4,15,23]. Applications, including optimal control problems are investigated
in the books [1,5,6,24]. From the point of view of the numerical approximation,
we quote just the monographs [6,7,21].

In this paper we propose an algorithm for the elliptic bilateral obstacle prob-
lem which is of fixed domain type in the sense that the finite element discretiza-
tion is given in the whole domain, independently of the position of the unknown
free boundary. In each iteration a linear elliptic equation has to be solved in the
whole domain and the corresponding stiffness matrix is common for all itera-
tions. This is a clear advantage from the point of view of the implementation
and the approximating coincidence set is explicitly computed in each iteration
and it converges in the Hausdorff-Pompeiu sense [20] to the searched geometry.
Moreover, we need just a scalar penalization parameter in our method. A similar
strategy was employed in [18] for the elliptic unilateral obstacle problem and for
parabolic variational inequalities.

Dan Tiba—Supported by Grant 145/2011 CNCS, Romania.
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Our approach is inspired from shape optimization techniques, but no shape
optimization problem is used here although this is a known method in free bound-
ary problems, [2]. One may compare the present approach to the recent works
[8,19,22]. An efficient Lagrangian method together with a primal-dual active set
strategy with regularization is studied in [13]. But our approach and arguments
are certainly diferent. We also quote the multi grid method employed in [12], the
path-following method for semi-smooth Newton schemes [10] and a duality-type
method [16,17].

2 Formulation of the Problem and the Algorithm

Let D be a smooth domain in R
d, d ∈ N

∗ and f ∈ L2(D) be given. We denote
the obstacles by ψ1, ψ2 : D → R, such that ψ1, ψ2 ∈ H2(D), ψ1 ≤ ψ2 in D,
ψ1|∂D ≤ 0, ψ2|∂D ≥ 0. The admisible set

K =
{
v ∈ H1

0 (D); ψ1(x) ≤ v(x) ≤ ψ2(x) a.e. in D
}

is a nonvoid closed convex subset of H1
0 (D).

To K, the following variational inequality, may be associated:
∫

D

∇y · (∇y − ∇v) dx ≤
∫

D

f (y − v) dx, ∀v ∈ K. (1)

The existence of a unique solution y ∈ K is wellknown.
We introduce β ⊂ R × R the maximal monotone graph given by

β(r) =

⎧
⎨

⎩

∅, r < 0,
] − ∞, 0], r = 0,

0, r > 0,
(2)

the maximal monotone graph γ ⊂ R × R given by

γ(r) =

⎧
⎨

⎩

0, r < 0,
[0,+∞[, r = 0,

∅, r > 0
(3)

and denote by βε, γε, ε > 0, their Yosida approximations. We have

βε(r) =
{

1
ε r, r ≤ 0,
0, r > 0,

γε(r) =
{

0, r < 0,
1
ε r, r ≥ 0.

Notice that βε is a concave and γε is a convex function in R.
In the case when f ∈ L2(D), ψ1, ψ2 ∈ H2(D) with the compatibility condi-

tion ψ1 ≤ ψ2 in D, ψ1|∂D ≤ 0, ψ2|∂D ≥ 0, it is known that the solution of (1)
satisfies the regularity property y ∈ H2(D). Moreover, in this case, the obstacle
problem may be written as a multivalued equation

− Δy + β(y − ψ1) + γ(y − ψ2) � f in D. (4)
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One can define two coincidence sets, corresponding to the two obstacles:

D1 = {x ∈ D; y(x) = ψ1(x)}
D2 = {x ∈ D; y(x) = ψ2(x)}

and associated to (1).
We state now our algorithm.

Algorithm

(1) Choose n = 0, ε0 > 0, Ω0
1 ⊂ D, Ω0

2 ⊂ D open subsets such that (D \ Ω0
1) ∩

(D \ Ω0
2) = ∅, ỹ−1 = 0;

(2) Compute yn ∈ H1
0 (D) as solution of the linear elliptic equation

− Δyn +
1
εn

χD\Ωn
1
(yn − ψ1) +

1
εn

χD\Ωn
2
(yn − ψ2) = f in D (5)

(3) Compute yn = min {ψ2, max{yn, ψ1}}, Ωn+1
1 = {x ∈ D; yn(x) > ψ1(x)},

Ωn+1
2 = {x ∈ D; yn(x) < ψ2(x)} εn+1 = εn

2 ;
(4) If ‖yn − yn−1‖H1(D) < tol then STOP else n=n+1 GO TO step 2.

Remark 1. By the classical result of [3], the elastic-plastic torsion problem is
equivalent with a variational inequality of obstacle type and our algorithm may
be applied as well.

We convene to extend the value 1
ε for β′

ε and γ′
ε in the origin and we can rewrite

the step 2 of the Algorithm as

− Δyn +
(
β′

εn (yn−1 − ψ1)
)
(yn − ψ1) +

(
γ′

εn (yn−1 − ψ2)
)
(yn − ψ2) = f. (6)

Recall that the usual approximation by regularization of the variational
inequality (1) is

− Δỹn + βεn (ỹn − ψ1) + γεn (ỹn − ψ2) = f in D, (7)

plus homogeneous boundary conditions on ∂D.
Notice that βε(r) = β′

ε(r)r and γε(r) = γ′
ε(r)r, under the above convention,

which shows that (6) and (7) have very similar structure. Clearly, (7) is a non-
linear elliptic equation, while the decoupling operated in (6) allows to use linear
elliptic equations.

3 Stability

We present in this section a stability result in L2(D) for the algorithm introduced
above applied to the bilateral obstacle problem.

Theorem 1. i) The sequence {yn} is bounded in L2(D).
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ii) There is C > 0, independent of n, such that:
∫

D\Ωn
2

(yn − ψ2)2+dx +
∫

D\Ωn
1

(yn − ψ1)2−dx ≤ Cεn. (8)

Proof. Using βε(r) = β′
ε(r)r, the concavity of βε(·) and the definition of the

subdifferential of concave mapping, we obtain
(
β′

εn (yn−1 − ψ)
)
(yn − ψ) =

(
β′

εn (yn−1 − ψ)
)
(yn−1 − ψ)

+
(
β′

εn (yn−1 − ψ)
)
(yn − ψ − yn−1 + ψ) ≥ βεn (yn−1 − ψ)

+βεn (yn − ψ) − βεn (yn−1 − ψ) = βεn (yn − ψ) .

We use the above inequality in the Eq. (5). We get

− Δyn + βεn(yn − ψ1) +
1
εn

χD\Ωn
2
(yn − ψ2) ≤ f, (9)

where β is given by (2) and βεn is its regularization.
We multiply (9) by (yn − ψ2)+ and we use that

βεn(yn − ψ1)(yn − ψ2)+ = 0. (10)

While βεn(yn − ψ1) may take negative values, this happens for yn ≤ ψ1, that is
yn − ψ2 ≤ 0 (since ψ1 ≤ ψ2). Then (yn − ψ2)+ = 0 and (10) follows. We infer

∫

D

|∇(yn − ψ2)+|2 +
1
εn

∫

D\Ωn
2

(yn − ψ2)2+ (11)

≤
∫

D

f(yn − ψ2)+ +
∫

D

∇ψ2 · ∇(yn − ψ2)+.

By the conditions ψ2 |∂D ≥ 0 and yn |∂D = 0, we have (yn − ψ2)+ = 0 on ∂D
and the Poincaré inequality shows that {(yn − ψ2)+} is bounded in H1

0 (D),
by (11).

Equation (5) may be rewritten in the form

− Δyn +
1
εn

χD\Ωn
1
(yn − ψ1) + γ′

εn(yn−1 − ψ2)(yn − ψ2) = f. (12)

We compute

γ′
εn(yn−1 − ψ2)(yn − ψ2) = γ′

εn(yn−1 − ψ2)(yn−1 − ψ2) (13)
+γ′

εn(yn−1 − ψ2)(yn − ψ2 − yn−1 + ψ2) = γεn(yn−1 − ψ2)
+γ′

εn(yn−1 − ψ2)(yn − ψ2 − yn−1 + ψ2) ≤ γεn(yn−1 − ψ2)
+γεn(yn − ψ2) − γεn(yn−1 − ψ2) = γεn(yn − ψ2)

using the subdifferential of convex mappings.
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By (12), (13), we obtain

− Δyn +
1
εn

χD\Ωn
1
(yn − ψ1) + γεn(yn − ψ2) ≥ f. (14)

Multiply (14) by −(yn − ψ1)− ∈ H1
0 (D), due to yn = 0 on ∂D, ψ1 ≤ 0 on ∂D:

∫

D

|∇(yn − ψ1)−|2 +
1
εn

∫

D\Ωn
1

(yn − ψ1)2− − γεn(yn − ψ2)(yn − ψ1)− (15)

≤ −
∫

D

f(yn − ψ1)− +
∫

D

∇ψ1 · ∇(yn − ψ1)−.

Notice that
− γεn(yn − ψ2)(yn − ψ1)− = 0 (16)

since −γεn(yn − ψ2) may take negative values just for yn ≥ ψ2 ≥ ψ1 and in this
case (yn − ψ1)− = 0. By (15), (16) we obtain:

∫

D

|∇(yn − ψ1)−|2 +
1
εn

∫

D\Ωn
1

(yn − ψ1)2− (17)

≤ −
∫

D

f(yn − ψ1)− +
∫

D

∇ψ1 · ∇(yn − ψ1)−.

Relation (17) shows that {(yn − ψ1)−} is bounded in H1
0 (D), by the Poincaré

inequality.
We use the inequality

(x − b)+ ≤ (x − a)+ + (a − b)+

and we have

(yn − ψ1)+ ≤ (yn − ψ2)+ + (ψ2 − ψ1)+ = (yn − ψ2)+ + ψ2 − ψ1.

Relation (11) shows that {(yn − ψ1)+} is bounded in L2(D). In combination
with (17), it yields {yn} bounded in L2(D).

Relation (8) follows by adding (11) and (17) and using the already established
boundedness of all the terms except the penalization term. This ends the proof.

Remark 2. In fact, the above proof shows that {yn} bounded in Lp(D), p > 2
depending on the dimension of D. Relation (8) says that the sequence {yn} does
not overpass the obstacles ψ1, ψ2, in the limit. The proof also provides partial
information on {∇yn}, but it is unclear whether {yn} is bounded in H1

0 (D).

4 Numerical Tests

We have used the software FreeFem++ v 3.19, [9]. For all tests, we use the same
initial guess for the coincidence set D \ Ω0

1 = ∅ and D \ Ω0
2 = ∅.
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Test 1. We consider the torsion of an elastic-plastic prism studied in [7] p. 133
and [25]. The cross-section of the prism is D = [0, 1]×[0, 1]. We solve the problem
(1) with f(x) = −8 where K = {v ∈ H1

0 (D); −1 ≤ ∇v(x) ≤ 1 a.e. in D}. For
v ∈ K, the set {x ∈ D; |∇v(x)| < 1} is the elastic zone and {x ∈ D; |∇v(x)| =
1} is the plastic zone, [5, p. 264]. By the result of [3], the elastic-plastic torsion
problem is equivalent with a variational inequality of obstacle type K = {v ∈
H1

0 (D); ψ1(x) ≤ v(x) ≤ ψ2(x) a.e. in D} where ψ1(x) = −dist(x, ∂D) and
ψ2(x) = dist(x, ∂D). If f < 0, then y ≤ 0, consequently the top obstacle will be
inactive.

We use a mesh of 39158 triangles, 19836 vertices and size h = 1
128 . The

tolerance for the stopping test is tol = 10−3 and the penalization parameter is
εn = 0.003. The coincidence set of the solution presented in Fig. 1 at the right
is similar to the above references.

Fig. 1. Test 1. The computed coincidence set of the plastic zone for the bottom obstacle
at the first (left), second (middle) and last (right) iteration.

Our algorithm stops after 6 iterations and the relative error in the H1 norm
at the last iteration is ‖yn − yn−1‖H1(D) = 1.5 × 10−5.

In [18], we have tested numerically with positive results the stability of a
similar algorithm when f the right-hand side in (1) is perturbed.

Test 2. We solve the problem (1) where

K = {v ∈ H1
0 (D); ψ1(x) ≤ v(x) ≤ ψ2(x) a.e. in D},

D = [0, 1] × [0, 1], ψ1(x) = −dist(x, ∂D), ψ2(x) = dist(x, ∂D) and f(x) =
11(x + y − 1). Now both obstacles are active.

We use a mesh of 39158 triangles, 19836 vertices, the size h = 1
128 , the

tolerance for the stopping test tol = 10−3 and the penalization parameter is
εn = 0.003. The algorithm stops in 4 iterations and the relative error in the H1

norm at the last iteration is ‖yn − yn−1‖H1(D) = 0.000209.
The coincidence sets are presented in Fig. 2 and the computed solution in

Fig. 3.
We solved the problem on different meshes, see Table 1. We denote by ui,

the solution obtained using the mesh no. i.
In [11], for the semi-smooth Newton method, it is proved a mesh-independence

result: the continuous and the discrete process, converge q-linearly with the same
rate.
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Fig. 2. Test 2. Coincidence sets of the plastic zone for the bottom obstacle (left) and
for the top obstacle (right).

Fig. 3. Test 2. Computed solution.

Table 1. Test 2. Mesh parameters.

Mesh no. Mesh size h Triangles Vertices ‖ui − ui−1‖H1(D)

1 1/64 9720 4989 -

2 1/128 39158 19836 0.019005

3 1/256 154050 77538 0.008826

4 1/512 630326 316188 0.005768

Test 3. Now we test the algorithm for the torsion of the elastic-plastic prism
discussed in [14,26]. We can put this problem in the form (1). Let D = [0, 1] ×
[0, 1], ψ1(x, y) = −dist ((x, y), ∂D), ψ2(x, y) = 0.2 for all (x, y) ∈ D and set

g(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

6x, 0 < x ≤ 1/6,
2(1 − 3x), 1/6 < x ≤ 1/3,
6(x − 1/3), 1/3 < x ≤ 1/2,

2 (1 − 3(x − 1/3)) , 1/2 < x ≤ 2/3,
6(x − 2/3), 2/3 < x ≤ 5/6,

2 (1 − 3(x − 2/3)) , 5/6 < x ≤ 1
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and

f(x, y) =

⎧
⎨

⎩

300, (x, y) ∈ S = {(x, y) ∈ D; |x − y| ≤ 0.1 & x ≤ 0.3} ,
−70 exp(y)g(x), x ≤ 1 − y and (x, y) /∈ S,
15 exp(y)g(x), x > 1 − y and (x, y) /∈ S.

We use a mesh of 39158 triangles, 19836 vertices, the size h = 1
128 , the

tolerance for the stopping test tol = 10−3 and the penalization parameter is
εn = 0.03. The computed solution after 6 iterations is presented in Fig. 4 and
the corresponding coincidence sets in Fig. 5. The relative error in the H1 norm
at the last iteration is ‖yn − yn−1‖H1(D) = 2.7 × 10−5.

In [14], an augmented lagrangian active set strategy is employed. At each
iteration, a reduced linear system associated with the inactive set is solved. In
[26], at each iteration, linear systems associated to the complementary of the
coincidence sets are solved.

Fig. 4. Test 3. Computed solution.

Fig. 5. Test 3. Coincidence sets for the bottom obstacle (left) and for the top obstacle
(right).
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Binary Level Set Method for Topology
Optimization of Variational Inequalities
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Abstract. The paper is concerned with the topology optimization of the
elliptic variational inequalities using the level set approach. The standard
level set method is based on the description of the domain boundary
as an isocountour of a scalar function of a higher dimensionality. The
evolution of this boundary is governed by Hamilton-Jacobi equation. In
the paper a binary level set method is used to represent sub-domains
rather than the standard method. The binary level set function takes at
convergence value 1 in each sub domain of a whole design domain and −1
outside this sub domain. The sub domains interfaces are represented by
discontinuities of these functions. Using a two-phase approximation and a
binary level set approach the original structural optimization problem is
reformulated as an equivalent constrained optimization problem in terms
of this level set function. Necessary optimality condition is formulated.
Numerical examples are provided and discussed.

Keywords: Topology optimization · Unilateral contact problems · Binary
level set method · Uzawa method

1 Introduction

Topology optimization problem for an elliptic second order variational inequality
is considered in the paper. This inequality governs unilateral contact between
an elastic body and a rigid foundation. The results concerning the existence
and the uniqueness of solutions to this inequality are provided in [9]. The topol-
ogy optimization problem for the elastic body in unilateral contact consists in
finding such material distribution within the domain occupied by the body in
contact and/or the shape of its boundary that the normal contact stress along
the boundary of the body is minimized. The volume of the body is bounded.

Topology optimization of continuum structures is widely investigated in lit-
erature [1,5,7,11]. Among others the homogenization method and its simpli-
fied version solid isotropic material with penalization method (SIMP) as well
as evolutionary structural optimization method have been proposed to solve
these problems (see [5]). Recently, the level set approach [13] is employed in the
numerical algorithms of structural optimization [7] for tracking the evolution
of the domain boundary on a fixed mesh and finding an optimal solution to

c© IFIP International Federation for Information Processing 2014
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structural optimization problems. This approach, in classical form, is based on
an implicit representation of the boundaries of the optimized structure, i.e., the
position of the boundary of the body is described as an isocountour of a scalar
function of a higher dimensionality. The evolution of the domain boundary is
governed by Hamilton-Jacobi equation. The solution of this equation requires
reinitialization procedure to ensure that it is as close as possible to the signed
distance function to the interface. Moreover this approach requires regularization
of non-differentiable Heaviside and Dirac functions.

In order to avoid the drawbacks of the classical level set method an alternative
piecewise constant level set method has been proposed, first in image processing
area and next in structural optimization [14]. For a domain divided into 2N

sub-domains in classical level set approach is required 2N level set functions to
represent them. Piecewise constant level set method can identify an arbitrary
number of sub-domains using only one discontinuous piecewise constant level set
function. This function takes distinct constant values on each sub-domain. The
interfaces between sub-domains are represented implicitly by the discontinuity
of a set of characteristic functions of the sub-domains [14]. Comparing to the
classical level set method, this method is free of the Hamilton-Jacobi equation
and do not require the use of the signed distance function as the initial one.
Binary level set method [4,10,15] is a special piecewise constant level set method
where the function takes only two values either +1 or −1. Compared with general
piecewise constant level set approach binary level set approach requires N level
set functions to represent a structure of 2N different material phases and is very
close to the phase-field approach [12].

In the paper the original structural optimization problem is approximated by
a two-phase material optimization problem. Using the binary level set method
this approximated problem is reformulated as an equivalent constrained opti-
mization problem in terms of the binary level set function only. Therefore nei-
ther shape nor topological complicated sensitivity analysis is required. During
the evolution of the binary level set function small holes can be created without
the use of the topological derivatives. Necessary optimality condition is formu-
lated. This optimization problem is solved numerically using the augmented
Lagrangian method. Numerical examples are provided and discussed.

2 Problem Formulation

Consider deformations of an elastic body occupying two-dimensional domain Ω
with the smooth boundary Γ (see Fig. 1). Assume Ω ⊂ D where D is a bounded
smooth hold-all subset of R2. Let E ⊂ R2 and D ⊂ R2 denote given bounded
domains. So-called hold-all domain D is assumed to possess a piecewise smooth
boundary. Domain Ω is assumed to belong to the set Ol defined as follows:

Ol = {Ω ⊂ R2 : Ω is open, E ⊂ Ω ⊂ D, #Ωc ≤ l}, (1)

where #Ωc denotes the number of connected components of the complement Ωc

of Ω with respect to D and l ≥ 1 is a given integer. Moreover all perturbations
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Fig. 1. Initial domain Ω.

δΩ of Ω are assumed to satisfy δΩ ∈ Ol. The body is subject to body forces
f(x) = (f1(x), f2(x)), x ∈ Ω. Moreover, surface tractions p(x) = (p1(x), p2(x)),
x ∈ Γ , are applied to a portion Γ1 of the boundary Γ . We assume, that the
body is clamped along the portion Γ0 of the boundary Γ , and that the contact
conditions are prescribed on the portion Γ2, where Γi∩Γj = ∅, i �= j, i, j = 0, 1, 2,
Γ = Γ̄0 ∪ Γ̄1 ∪ Γ̄2. We denote by u = (u1, u2), u = u(x), x ∈ Ω, the displacement
of the body and by σ(x) = {σij(u(x))}, i, j = 1, 2, the stress field in the body.
Consider elastic bodies obeying Hooke’s law, i.e., for x ∈ Ω and i, j, k, l = 1, 2

σij(u(x)) = aijkl(x)ekl(u(x)). (2)

We use here and throughout the paper the summation convention over repeated
indices [9]. The strain ekl(u(x)), k, l = 1, 2, is defined by:

ekl(u(x)) =
1
2
(uk,l(x) + ul,k(x)), (3)

where uk,l(x) = ∂uk(x)
∂xl

. The stress field σ satisfies the system of equations [9]

− σij(x),j = fi(x) x ∈ Ω, i, j = 1, 2, (4)

where σij(x),j = ∂σij(x)
∂xj

, i, j = 1, 2. The following boundary conditions are
imposed

ui(x) = 0 on Γ0, i = 1, 2, (5)
σij(x)nj = pi on Γ1, i, j = 1, 2, (6)

uN ≤ 0, σN ≤ 0, uNσN = 0 on Γ2, (7)
| σT |≤ 1, uT σT + | uT |= 0 on Γ2, (8)

where n = (n1, n2) is the unit outward versor to the boundary Γ . Here uN = uini

and σN = σijninj , i, j = 1, 2, represent the normal components of the displace-
ment u and the stress σ, respectively. The tangential components of displace-
ment u and stress σ are given by (uT )i = ui − uNni and (σT )i = σijnj − σNni,
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i, j = 1, 2, respectively. | uT | denotes the Euclidean norm in R2 of the tangent
vector uT . The results concerning the existence and uniqueness of solutions to
(2)–(8) can be found in [9].

2.1 Variational Formulation of Contact Problem

Let us formulate contact problem (4)–(8) in variational form. Denote by Vsp and
K the space and set of kinematically admissible displacements:

Vsp = {z ∈ [H1(Ω)]2 = H1(Ω) × H1(Ω) : zi = 0 on Γ0, i = 1, 2}, (9)
K = {z ∈ Vsp : zN ≤ 0 on Γ2}. (10)

Denote also by Λ the set

Λ = {ζ ∈ L2(Γ2) : | ζ | ≤ 1}. (11)

Variational formulation of problem (4)–(8) has the form: find a pair (u, λ) ∈
K × Λ satisfying

∫

Ω

aijkleij(u)ekl(ϕ − u)dx −
∫

Ω

fi(ϕi − ui)dx −
∫

Γ1

pi(ϕi − ui)ds +
∫

Γ2

λ(ϕT − uT )ds ≥ 0 ∀ϕ ∈ K, (12)
∫

Γ2

(ζ − λ)uT ds ≤ 0 ∀ζ ∈ Λ, (13)

i, j, k, l = 1, 2. Function λ is interpreted as a Lagrange multiplier corresponding
to term | uT | in equality constraint in (8) [9]. In general, function λ belongs
to the space H−1/2(Γ2). Here following [9] function λ is assumed to be more
regular. The results concerning the existence and uniqueness of solutions to
system (12)–(13) can be found, among others, in [9].

2.2 Structural Optimization Problem

Before formulating a structural optimization problem for the state system (12)–
(13) let us introduce first the set Uad of admissible domains. Domain Ω is
assumed to satisfy the volume constraint of the form

V ol(Ω) − V olgiv ≤ 0, V ol(Ω)
def
=

∫

Ω

dx, (14)

where the constant V olgiv = const0 > 0 is given. Moreover this domain is
assumed to satisfy the perimeter constraint [6]

Per(Ω) ≤ const1, P er(Ω)
def
=

∫

Γ

dx. (15)
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The constant const1 > 0 is given. The set Uad has the following form

Uad ={Ω ∈ Ol : Ω is Lipschitz continuous, (16)
Ω satisfies conditions (14) and (15)}.

The set Uad is assumed to be nonempty. In order to define a cost functional we
shall also need the following set Mst of auxiliary functions

Mst = {η = (η1, η2) ∈ [H1(D)]2 : ηi ≤ 0 on D, i = 1, 2, (17)
‖ η ‖[H1(D)]2 ≤ 1},

where the norm ‖ η ‖[H1(D)]2= (
∑2

i=1 ‖ ηi ‖2H1(D))
1/2. Recall from [11] the cost

functional approximating the normal contact stress on the contact boundary Γ2

Jη(u(Ω)) =
∫

Γ2

σN (u)ηN (x)ds, (18)

depending on the auxiliary given bounded function η(x) ∈ Mst. σN and φN

are the normal components of the stress field σ corresponding to a solution u
satisfying system (12)–(13) and the function η, respectively.

Consider the following structural optimization problem: for a given function
η ∈ Mst, find a domain Ω� ∈ Uad such that

Jη(u(Ω�)) = min
Ω∈Uad

Jη(u(Ω)) (19)

Lemma 1. There exists an optimal domain Ω� ∈ Uad to the problem (19).

The proof follows from Šverák theorem and arguments provided in [3, Theorem 2].
Recall from [3] the class of domains Ol determined by (1) is endowed with
the complementary Hausdorff topology that guarantees the class itself to be
compact. The admissibility condition #Ωc ≤ l is crucial to provide the necessary
compactness property of Uad [3].

3 Level Set Approach

In [11] the standard level set method [13] is employed to solve numerically prob-
lem (19). Let t > 0 denote the time variable. Consider the evolution of a domain
Ω under a velocity field V = V (x, t). Under the mapping T (t, V ) we have

Ωt = T (t, V )(Ω) = (I + tV )(Ω), t > 0.

By Ω−
t and Ω+

t we denote the interior and the outside of the domain Ωt, respec-
tively. This domain and its boundary ∂Ωt are defined by a function φ = φ(x, t) :
R2 × [0, t0) → R satisfying the conditions:

φ(x, t) = 0, if x ∈ ∂Ωt, φ(x, t) < 0, if x ∈ Ω−
t , (20)

φ(x, t) > 0, if x ∈ Ω+
t .
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In the standard level set approach Heaviside function and Dirac function are
used to transform integrals from domain Ω into domain D. Assume that velocity
field V is known for every point x lying on the boundary ∂Ωt, i.e., such that
φ(x, t) = 0. Therefore the equation governing the evolution of the interface in
D × [0, t0], known as Hamilton-Jacobi equation, has the form [13]

∂φ(x, t)
∂t

+ V (x, t) · ∇xφ(x, t) = 0. (21)

Moreover φ(x, 0) = φ0 where φ0(x) is a given function close to the signed distance
function [13].

3.1 Binary Level Set Formulation

Recall from [4,10] the notion of a binary level set function. Let N be a given
integer. Assume an open bounded domain D in R2 is partitioned into 2N sub-
domains {Ωj}2N

j=1 such that

D =
2N
⋃

j=1

(Ωj ∪ ∂Ωj). (22)

∂Ωj denotes the boundary of the sub-domain Ωj . For N = 2 this function
mapping φ : D → R, is defined as:

φ(x) =
{

+1, if x ∈ Ω1,
−1, if x ∈ Ω2 = D \ Ω1.

(23)

The interface ∂Ω1 = ∂Ω2 is implicitly defined by the discontinuity of φ, i.e.,
∂Ω1 = {x ∈ D : φ(x) = κ, κ ∈ (−1, 1)}. In order to ensure that for every
x ∈ D this function converges to values +1 and −1 it is supposed to satisfy:

W (φ)
def
= (φ2 − 1) = 0. (24)

More generally, using N binary level set functions φi, i = 1, 2, ..., N , satisfying
(24) we can represent 2N sub-domains Ωj of D. The characteristic functions χj ,
j = 1, 2, ..., 2N , of the sub-domains Ωj in terms of binary level set functions φi

are represented as

χj =
(−1)s(j)

2N

N∏

i=1

(φi + 1 − 2bj−1
i ) where s(j) =

N∑

i=1

bj−1
i . (25)

For j = 1, 2, ..., 2N and i = 1, ..., N numbers bj−1
i = 0 ∨ 1 denotes binary repre-

sentation of j − 1th sub-domain. As long as each binary function satisfies (24)
and χj(x) are defined by (25) then

supp(χj) = Ωj, χj = 1 in Ωj and supp(χi) ∩ supp(χj) = ∅ for i �= j, (26)
∑

j

supp(χj) = Ω. (27)
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Condition (26) ensures non overlapping of the phases while (27) prevents vacu-
ums. Basis functions χj are used to calculate the length of the boundary ∂Ωj as
well as the area inside Ωj using the integrals:

| ∂Ωj |=
∫

Ωj

| ∇χj | dx and | Ωj |=
∫

Ωj

χjdx. (28)

The length of the boundary ∂Ωj of sub-domain Ωj equals the total variation
of χj [2]. Consider piecewise constant density function ρ = ρ(x) : D → R2

defined as

ρ(x) =
{

c1 if x ∈ D \ Ω̄,
c2 if x ∈ Ω,

(29)

where 0 < c1 < c2 < ∞ denote two given material densities. This function can
be constructed as a weighted sum of the characteristic functions χj . Denoting
by {cj}2N

j=1 a set of real scalars, we can represent a piecewise constant function
ρ taking these 2N distinct constant values in sub-domains Ωj by

ρ(x) =
2N
∑

j=1

cjχj(x). (30)

We confine to consider a two-phase problem in the domain D, i.e., we set N = 2
and c1 = ε, ε > 0 as well as c2 = 1. Since Ω consists from two sub-domains
one binary level set function φ satisfying (24) will be used to describe these
sub-domains. Therefore

χ1(x) = φ(x) + 1 and χ2(x) = 1 − φ(x), (31)

ρ(x) =
2∑

j=1

cjρj = c1χ1(x) + c2χ2(x) = c1(φ(x) + 1) + c2(1 − φ(x)). (32)

Using (22) as well as (32) the structural optimization problem (19) can be trans-
formed into the following one: find φ ∈ Uφ

ad such that

min
φ∈Uφ

ad

Jη(φ) =
∫

Γ2

ρ(φ)σN (uε)ηNds, (33)

where the set Uφ
ad of the admissible functions is given as

Uφ
ad = {φ ∈ H1(D) : V ol(φ) − V olgiv ≤ 0, W (φ) = 0, P er(φ) ≤ const1}, (34)

V ol(φ)
def
=

∫

Ω

ρ(φ)dx, Per(φ)
def
=

∫

Ω

| ∇φ | dx. (35)
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The element (uε, λε) ∈ K ×Λ depending on ε satisfies the state system (12)–(13)
in the domain D rather than Ω:

∫

D

ρ(φ)aijkleij(uε)ekl(ϕ − uε)dx −
∫

D

ρ(φ)fi(ϕi − uεi)dx−
∫

Γ1

pi(ϕi − uεi)ds +
∫

Γ2

λε(ϕT − uεT )ds ≥ 0 ∀ϕ ∈ K, (36)
∫

Γ2

(ζ − λε)uεT ds ≤ 0 ∀ζ ∈ Λ. (37)

Lemma 2. There exists an optimal solution φ ∈ H1(D) to the optimization
problem (33)–(37).

The proof follows from the lower semicontinuity in L1(D) of the regularization
term in (34) see [2, Theorem 3.2.1, p. 75].

3.2 Necessary Optimality Conditions

In order to formulate the necessary optimality condition for the optimization
problem (33)–(37) we introduce the Lagrangian L(φ, λ̃) = L(φ, uε, λε, p

a, qa, λ̃):

L(φ, λ̃) = Jη(φ) +
∫

D

ρ(φ)aijkleij(uε)ekl(pa)dx −
∫

D

ρ(φ)fip
a
i dx

−
∫

Γ1

pip
a
i ds +

∫

Γ2

λεp
a
T ds +

∫

Γ2

qauεT ds + λ̃d(φ) +
3∑

i=1

1
2μi

d2i (φ), (38)

where i, j, k, l = 1, 2, λ̃ = {λ̃i}3i=1, d(φ) = {di(φ)}3i=1 = [V ol(φ),W (φ), P er(φ)]T ,
dT (φ) denotes a transpose of d(φ), μm > 0, m = 1, 2, 3, is a given real. Element
(pa, qa) ∈ K1 × Λ1 denotes an adjoint state defined as follows:

∫

D

ρ(φ)aijkleij(η + pa)ekl(ϕ)dx +
∫

Γ2

qaϕT ds = 0 ∀ϕ ∈ K1, (39)
∫

Γ2

ζ(pa
T + ηT )ds = 0 ∀ζ ∈ Λ1. (40)

The sets K1 and Λ1 are given by

K1 = {ξ ∈ Vsp : ξN = 0 on Ast}, (41)

Λ1 = {ζ ∈ Λ : ζ(x) = 0 on B1 ∪ B2 ∪ B+
1 ∪ B+

2 }, (42)

while the coincidence set Ast = {x ∈ Γ2 : uN = 0}. Moreover B1 = {x ∈ Γ2 :
λ(x) = −1}, B2 = {x ∈ Γ2 : λ(x) = +1}, B̃i = {x ∈ Bi : uN (x) = 0}, i = 1, 2,
B+

i = Bi \ B̃i, i = 1, 2. The derivative of the Lagrangian L with respect to φ has
the form:
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∂L

∂φ
(φ, λ̃) =

∫

D

ρ′(φ)[aijkleij(uε)ekl(pa + η) − f(pa + η)]dx

+λ̃d′(φ) +
3∑

i=1

1
μi

d(φ)d′(φ), (43)

where ρ′(φ) = c1 − c2 = 1 − ε, d′(φ) = [V ol′(φ),W ′(φ), P er′(φ)] and

V ol′(φ) = 1, W ′(φ) = 2φ, (44)

Per′(φ) = χ{∂Ω=const0} max{0,−∇ · (
∇φ

| ∇φ | )} − χ{∂Ω>const0}∇ · (
∇φ

| ∇φ | ).
(45)

Using (39)–(45) we can formulate the necessary optimality condition:

Lemma 3. If φ̂ ∈ Uφ
ad is an optimal solution to the problem (33)–(37) than

there exists Lagrange multiplier λ̃� = (λ̃�
1, λ̃

�
2, λ̃

�
3) ∈ R3 such that λ̃�

1, λ̃
�
3 ≥ 0

satisfying
L(φ̂, λ̃) ≤ L(φ̂, λ̃�) ≤ L(φ, λ̃�) ∀(φ, λ̃) ∈ Uφ

ad × R3. (46)

Proof follows from standard arguments [6,8]. Recall [6,9] condition (46) implies
that for all φ ∈ Uφ

ad and λ̃ ∈ R3

∂L(φ̂, λ̃)
∂φ

≥ 0 and
∂L(φ, λ̃�)

∂λ̃
≤ 0. (47)

4 Numerical Experiments

The optimization problem (33)–(37) is discretized using the finite element method
[8,9]. The finite difference method is used to approximate interface evolution (gra-
dient flow) equation [2]. The discretized structural optimization problem (33)–
(37) is solved numerically. We employ Uzawa type algorithm to solve numerically
optimization problem (33)–(37). The algorithm is programmed in Matlab envi-
ronment. As an example a body occupying 2D domain

Ω = {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 8 ∧ 0 < v(x1) ≤ x2 ≤ 4}, (48)

is considered. The boundary Γ of the domain Ω is divided into three disjoint
pieces

Γ0 = {(x1, x2) ∈ R2 : x1 = 0, 8 ∧ 0 < v(x1) ≤ x2 ≤ 4},

Γ1 = {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 8 ∧ x2 = 4}, (49)
Γ2 = {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 8 ∧ v(x1) = x2}.

The domain Ω and the boundary Γ2 depend on the function v given as in Fig. 1.
The obtained optimal domain is presented in Fig. 2. The areas with low values
of density function appear in the central part of the body and near the fixed
edges. The obtained normal contact stress is almost constant along the optimal
shape boundary and has been significantly reduced comparing to the initial one.



208 A. Myśliński
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Abstract. We prove a necessary and a sufficient condition for a time-
dependent closed set to be viable with respect to a delay evolution inclu-
sion. An application to a null controllability problem is also included.

Keywords: Delay differential inclusion · m-dissipative operator · Via-
bility · Null controllability problem

1 Introduction

Let X be a real Banach space, I = [a, b) ⊆ R and let A : D(A) ⊆ X � X be
the infinitesimal generator of a nonlinear semigroup of nonexpansive mappings
{S(t) : D(A) → D(A); t ≥ 0}. Let σ ≥ 0 and let Cσ = C([−σ, 0 ];X) be
endowed with the usual sup-norm ‖ϕ‖σ = sup{‖ϕ(t)‖; t ∈ [−σ, 0 ]}.

If u ∈ C([ τ − σ, T ],X) and t ∈ [ τ, T ], we denote by ut ∈ Cσ the function
defined by ut(s) = u(t + s) for s ∈ [−σ, 0 ]. It should be noticed that for σ = 0,
i.e. when de delay is absent, Cσ reduces to X. Let K : I � X and F : K � X
be nonempty-valued multi-functions, where K = {(t, ϕ) ∈ I ×Cσ; ϕ(0) ∈ K(t)}.

In this paper prove a necessary and a sufficient condition in order that K be
viable with respect to A + F . Let (τ, ϕ) ∈ K and let us consider

{
u′(t) ∈ Au(t) + F (t, ut)
uτ = ϕ.

(1)

Definition 1. A function u ∈ C([ τ − σ, T ];X) is said to be a C0-solution of
(1) on [ τ, T ] ⊆ I, if (t, ut) ∈ K for t ∈ [ τ, T ], u(t) = ϕ(t − τ) for t ∈ [ τ − σ, τ ]
and there exists f ∈ L1(τ, T ;X) with f(t) ∈ F (t, ut) a.e. for t ∈ [ τ, T ] and such
that u is a C0-solution of the Cauchy problem

{
u′(t) ∈ Au(t) + f(t), t ∈ [ τ, T ]
u(τ) = ϕ(0)

in the usual sense. See Cârjă, Necula, Vrabie [2], Definition 1.6.2, p. 17.
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We say that the function u : [ τ − σ, T ) → X is a C0-solution of (1) on
[ τ − σ, T ), if u is a C0-solution on [ τ − σ, T̃ ] for every T̃ < T .

Definition 2. We say that K is C0 -viable with respect to A + F , if for each
(τ, ϕ) ∈ K, there exists T > τ , such that [ τ, T ] ⊆ I and (1) has at least one
C0-solution u : [ τ −σ, T ] → X. If T = sup I, we say that K is globally C0-viable
with respect to A + F .

Viability results concerning evolution inclusions without delay, i.e., when
σ = 0, using the concepts of tangent set and quasi-tangent set – introduced
and studied by Cârjă, Necula and Vrabie [2–4] and [5] –, were obtained by
Necula, Popescu and Vrabie [16,17]. For viability results referring to delay evo-
lution equations and inclusions, we mention the pioneering papers of Pavel and
Iacob [18] and Haddad [9]. For related results see Gavioli and Malaguti [8],
Lakshmikantham, Leela and Moauro [12], Leela and Moauro [13], Lupulescu
and Necula [14]. The semilinear case was very recently considered by Necula
and Popescu [15] and the present paper extends to the fully nonlinear case the
results there obtained.

The paper is divided into five sections, the second one being concerned with
the definitions of the basic concepts used in that follows. In Sect. 3 we state
and prove a necessary condition for C0-viability, while Sect. 4 contains the main
result of the paper: a sufficient condition for C0-viability. In Sect. 5, we include
an application to a control problem.

2 Preliminaries

Let f ∈ L1(τ, T ;X) and ξ ∈ D(A). We denote by u(·, τ, ξ, f) : [ τ, T ] → D(A)
the unique C0-solution, i.e. integral solution of the Cauchy problem

{
u′(t) ∈ Au(t) + f(t), t ∈ [ τ, T ]
u(τ) = ξ.

Clearly, u(·, τ, ξ, 0) = S(· − τ)ξ, where {S(t) : D(A) → D(A); t ≥ 0} is the
semigroup of nonexpansive mappings generated by A on D(A) by the Crandall
and Liggett Exponential Formula. See Crandall and Liggett [7].

We assume familiarity with the basic concepts and results in nonlinear evolu-
tion equations, delay equations and inclusions and we refer the reader to Barbu [1],
Cârjă, Necula and Vrabie [2], Lakshmikantham and Leela [11], Hale [10] and Vra-
bie [19] for details.

The metric d on K is defined by d((τ, ϕ), (θ, ψ)) = max{|τ − θ|, ‖ϕ − ψ‖σ},
for all (τ, ϕ), (θ, ψ) ∈ K. Furthermore, whenever we use the term strongly-weakly
u.s.c. multi-function we mean that the domain of the multi-function in question
is equipped with the strong topology, while the range is equipped with the weak
topology. The term u.s.c. refers to the case in which both domain and range are
endowed with the strong, i.e. norm, topology.

Thereafter, D(ξ, r) denotes the closed ball with center ξ and radius r.
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Definition 3. The multi-function F : K � X is called locally bounded if, for
each (τ, ϕ) in K, there exist δ > 0, ρ > 0 and M > 0 such that for all (t, ψ) in
([ τ − δ, τ + δ ] × D(ϕ, ρ)) ∩ K, we have ‖F (t, ψ)‖ ≤ M .

Let (τ, ϕ) ∈ K, let η ∈ X and let E ⊂ X be a nonempty, bounded subset,
let h > 0 and let FE =

{
f ∈ L1

loc(R;X); f(s) ∈ E a.e. for s ∈ R
}

. We denote
by u(τ + h, τ, ϕ(0),FE) = {u(τ + h, τ, ϕ(0), f); f ∈ FE}.

Definition 4. We say that E is A-right-quasi-tangent to K at (τ, ϕ) if

lim inf
h↓0

h−1d (u(τ + h, τ, ϕ(0),FE),K(τ + h)) = 0.

We denote by QTSA
K(τ, ϕ) the set of all A-right-quasi-tangent sets to K at (τ, ϕ).

If K is constant, E is right-quasi-tangent to K at (τ, ϕ) if and only if it is
A-quasi-tangent to K at ξ = ϕ(0) in the sense of Cârjă, Necula, Vrabie [2].

3 Necessary Conditions for Viability

The following lemma was proved in Necula and Popescu [15].

Lemma 1. Let f : [ τ, T ] → X be a measurable function and B,C ⊂ X two
nonempty sets such that f(t) ∈ B + C a.e. for t ∈ [ τ, T ]. Then, for every
ε > 0 there exist b : [ τ, T ] → B, c : [ τ, T ] → C and r : [ τ, T ] → S(0, ε), all
measurable, such that f(t) = b(t) + c(t) + r(t) a.e. for t ∈ [ τ, T ].

Theorem 1. If F : K � X is u.s.c. and K is C0-viable with respect to A + F
then, for all (τ, ϕ) ∈ K, lim

h↓0
h−1d

(
u(τ + h, τ, ϕ(0),FF (τ,ϕ)),K(τ + h)

)
= 0.

Proof. Let (τ, ϕ) ∈ K and u : [ τ − σ, T ] → X be a C0-solution of 1. Hence
there exists f ∈ L1(τ, T ;X) such that f(s) ∈ F (s, us) a.e. for s ∈ [ τ, T ] and
u(t) = u(t, τ, ϕ(0), f) for all t ∈ [ τ, T ]. Let ε > 0 be arbitrary but fixed.

Since F is u.s.c. at (τ, ϕ) and limt→τ ut = uτ = ϕ in Cσ, we may find δ > 0
such that f(s) ∈ F (s, us) ⊆ F (τ, ϕ) + S(0, ε) a.e. for s ∈ [ τ, τ + δ ].

Taking B = F (τ, ϕ) and C = S(0, ε), from Lemma 1, we deduce that there
exist two integrable functions g : [ τ, τ+δ ] → F (τ, ϕ) and r : [ τ, τ+δ ] → S(0, 2ε)
such that f(s) = g(s) + r(s) a.e. for s ∈ [ τ, τ + δ ]. Since u(τ + h) ∈ K(τ + h),
we deduce that, for each 0 < h < δ, d

(
u(τ + h, τ, ϕ(0),FF (τ,ϕ)),K(τ + h)

)

≤ d (u(τ + h, τ, ϕ(0), g), u(τ + h, τ, ϕ(0), f) ≤
∫ τ+h

τ

‖g(s) − f(s)‖ds ≤ 2εh. So,

lim sup
h↓0

h−1d
(
u(τ + h, τ, ϕ(0),FF (τ,ϕ)),K(τ + h)

) ≤ 2ε. The proof is complete.

Theorem 2. If F : K � X is u.s.c. and K is C0-viable with respect to A + F
then F (τ, ϕ) ∈ QTSA

K(τ, ϕ) for all (τ, ϕ) ∈ K.
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4 Sufficient Conditions for Viability

Definition 5. We say that the multi-function K : I � X is :

(i) closed from the left on I if for any sequence ((tn, xn))n≥1 from I × X, with
xn ∈ K(tn) and (tn)n nondecreasing, limn tn = t ∈ I and limn xn = x, we
have x ∈ K(t).

(ii) locally closed from the left if for each (τ, ξ) ∈ I × X with ξ ∈ K(τ) there
exist T > τ and ρ > 0 such that the multi-function t � K(t) ∩ D(ξ, ρ) is
closed from the left on [ τ, T ].

Definition 6. An m-dissipative operator A : D(A) ⊆ X � X is of complete
continuous type if for each sequence (fn, un)n in L1(τ, T ;X)×C([ τ, T ];X) with
un a C0-solution of the problem u′

n(t) ∈ Aun(t)+fn(t) on [ τ, T ] for n = 1, 2, . . . ,
limn fn = f weakly in L1(τ, T ;X) and limn un = u strongly in C([ τ, T ];X), it
follows that u is a C0-solution of the problem u′(t) ∈ Au(t) + f(t) on [ τ, T ].

If the dual of X is uniformly convex and A generates a compact semigroup,
then A is of complete continuous type. See Vrabie [19, Corollary 2.3.1, p. 49].

Theorem 3. Let K be locally closed from the left and let F : K � X be non-
empty, convex and weakly compact valued. If F is strongly-weakly u.s.c., locally
bounded and A : D(A) � X is of complete continuous type and generates a
compact semigroup, then a sufficient condition in order that K be C0-viable
with respect to A + F is the tangency condition F (τ, ϕ) ∈ QTSA

K(τ, ϕ) for all
(τ, ϕ) ∈ K. If, in addition, F is u.s.c., then the tangency condition is also nec-
essary in order that K be C0-viable with respect to A + F .

The next lemma is inspired from Cârjă and Vrabie [6].

Lemma 2. Let K : I � X be locally closed from the left, F : K � X be
locally bounded and let (τ, ϕ) ∈ K. Let us assume that the tangency condition is
satisfied. Let ρ > 0, T > τ and M > 0 be such that:

(1) the multi-function t � K(t) ∩ D(ϕ(0), ρ) is closed from the left on [ τ, T ) ;
(2) ‖F (t, ψ)‖ ≤ M for all t ∈ [ τ, T ] and all ψ ∈ Dσ(ϕ, ρ) with (t, ψ) ∈ K ;
(3) sup

t∈[ τ,T ]

‖S(t−τ)ϕ(0)−ϕ(0)‖+ sup
|t−s|≤T−τ

‖ϕ(t)−ϕ(s)‖+(T −τ)(M +1) < ρ.

Then, for each ε ∈ (0, 1), there exist a family PT = {[ tm, sm);m ∈ Γ} of disjoint
intervals, with Γ finite or at most countable, and two functions: f ∈ L1(τ, T ;X),
and u ∈ C([ τ − σ, T ];X) such that :

(i) ∪[ tm, sm) = [ τ, T ) and sm − tm ≤ ε, for all m ∈ Γ ;
(ii) u(tm) ∈ K(tm), for all m ∈ Γ and u(T ) ∈ K(T ) ;
(iii) f(s) ∈ F (tm, utm

) a.e. for s ∈ [ tm, sm) and ‖f(s)‖ ≤ M a.e. for s ∈ [ τ, T ] ;
(iv) u(t) = ϕ(t − τ) for t ∈ [ τ − σ, τ ] and

‖u(t) − u(t, tm, u(tm), f)‖ ≤ (t − tm)ε for t ∈ [ tm, T ] and m ∈ Γ ;
(v) ‖ut − ϕ‖σ < ρ for all t ∈ [ τ, T ] ;
(vi) ‖u(t) − u(tm)‖ ≤ ε for all t ∈ [ tm, sm) and all m ∈ Γ.
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Proof. Let us observe that, if (i)∼(iv) are satisfied, then (v) is satisfied too, i.e.
‖u(t + s) − ϕ(s)‖ < ρ for all t ∈ [ τ, T ] and s ∈ [−σ, 0 ]. Indeed, if t + s ≤ τ then

‖u(t + s) − ϕ(s)‖ = ‖ϕ(t + s − τ) − ϕ(s)‖ ≤ sup
|t1−t2|≤T−τ

‖ϕ(t1) − ϕ(t2)‖ < ρ.

If t + s > τ then |s| < T − τ and from (3), (iii) and (iv), we get

‖u(t + s) − ϕ(s)‖ ≤ ‖u(t + s) − u(t + s, τ, ϕ(0), f)‖
+‖u(t + s, τ, ϕ(0), f) − u(t + s, τ, ϕ(0), 0)‖

+‖u(t + s, τ, ϕ(0), 0) − ϕ(0)‖ + ‖ϕ(0) − ϕ(s)‖

≤ (t + s − τ)ε +
∫ t+s

τ

‖f(θ)‖dθ + ‖S(t + s − τ)ϕ(0) − ϕ(0)‖ + ‖ϕ(0) − ϕ(s)‖

≤ (T − τ)(1 + M) + ‖S(t + s − τ)ϕ(0) − ϕ(0)‖ + ‖ϕ(0) − ϕ(s)‖ < ρ.

Let ε ∈ (0, 1) be arbitrary, but fixed. We will show that there exist δ = δ(ε)
in (τ, T ) and Pδ, f , u such that (i)∼(vi) hold true with δ instead of T .

From the tangency condition, it follows that there exist hn ↓ 0, gn ∈ FF (τ,ϕ)

and pn ∈ X, with ‖pn‖ → 0 and u(τ + hn, τ, ϕ(0), gn) + pnhn ∈ K(τ + hn) for
every n ∈ N, n ≥ 1. Let n0 ∈ N and δ = τ +hn0 be such that δ ∈ (τ, T ), hn0 < ε
and ‖pn0‖ < ε.

Let Pδ = {[ τ, δ)}, f(t) = gn0(t) and u(t) = u(t, τ, ϕ(0), gn0) + (t − τ)pn0 for
t ∈ [ τ, δ ]. Obviously, (i)∼(v) are satisfied. Moreover, we may diminish δ > τ
(increase n0), if necessary, in order to (vi) be satisfied too.

LetU = {(Pδ, f, u); δ ∈ (τ, T ] and (i)∼(vi) are satisfied with δ instead of T}.
As we already have shown, U = ∅. On U we define a partial order by:

(Pδ1 , f1, u1) � (Pδ2 , f2, u2),

if δ1 ≤ δ2, Pδ1 ⊆ Pδ2 , f1(s) = f2(s) a.e. for s ∈ [ τ, δ1 ] and u1(s) = u2(s) for
all s ∈ [ τ, δ1 ]. We will prove that each nondecreasing sequence in U is bounded
from above. Let ((Pδj

, fj , uj))j≥1 be a nondecreasing sequence in U and let
δ = supj≥1 δj . If there exists j0 ∈ N such that δj0 = δ, then (Pδj0

, fj0 , uj0) is
an upper bound for the sequence. So, let us assume that δj < δ, for all j ≥ 1.
Obviously, δ ∈ (τ, T ]. We define Pδ = ∪j≥1Pδj

, f(t) = fj(t) and u(t) = uj(t) for
all j ≥ 1 and t ∈ [ τ, δj). Clearly, f ∈ L1(τ, δ;X) and u ∈ C([ τ, δ);X).

Let us observe that, in view of (iv), we have

‖u(t) − u(s)‖ ≤ ‖u(t) − u(t, δj , u(δj), f)‖
+‖u(t, δj , u(δj), f) − u(s, δj , u(δj), f)‖ + ‖u(s, δj , u(δj), f) − u(s)‖

≤ (t − δj)ε + ‖u(t, δj , u(δj), f) − u(s, δj , u(δj), f)‖ + (s − δj)ε

≤ 2(δ − δj)ε + ‖u(t, δj , u(δj), f) − u(s, δj , u(δj), f)‖
for all j ≥ 1 and all t, s ∈ [δj , δ). Since limj δj = δ and u(·, δj , u(δj), f) is
continuous at t = δ, we conclude that u satisfies the Cauchy condition for the
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existence of the limit at t = δ. So, u can be extended by continuity to the whole
interval [ τ, δ ]. By observing that u(δ) = lim

t↑δ
u(t) = lim

j→∞
u(δj) = lim

j→∞
uj(δj),

uj(δj) ∈ D(ϕ(0), ρ)∩K(δj) and the latter is closed from the left, we deduce that
u(δ) ∈ D(ϕ(0), ρ)∩K(δ). The rest of conditions in lemma being obviously satis-
fied, it follows that (Pδ, f, u) is an upper bound for the sequence. Consequently,
(U,�) and N : (U,�) → R, defined by N(Pδ, f, u) = δ, for each (Pδ, f, u) ∈ U,
satisfy the hypotheses of the Brezis-Browder Ordering Principle – see Cârjă, Nec-
ula and Vrabie [2, Theorem 2.1.1, p. 30]. Accordingly, there exists an N-maximal
element in U. This means that there exists (Pδ∗ , f∗, u∗) ∈ U such that, whenever
(Pδ∗ , f∗, u∗) � (Pδ, f , u), we necessarily have N(Pδ∗ , f∗, u∗) = N(Pδ, f , u). We
will show that δ∗ = T . To this aim, let us assume by contradiction that δ∗ < T .

Since (δ∗, u∗
δ∗) ∈ K, using the tangency condition, we deduce that there exist

the sequences hn ↓ 0, gn ∈ FF (δ∗,u∗
δ∗ ) and pn ∈ X, with ‖pn‖ → 0, such that

u(δ∗+hn, δ∗, u∗(δ∗), gn)+pnhn ∈ K(δ∗+hn) for all n ∈ N, n ≥ 1. Let n0 ∈ N and
δ = δ∗ + hn0 with δ ∈ (δ∗, T ), hn0 < ε and ‖pn0‖ < ε. Let Pδ = Pδ∗ ∪ {[ δ∗, δ ]},

f(t) =
{

f∗(t), t ∈ [ τ, δ∗ ]
fn0(t), t ∈ (δ∗, δ ]

,

u(t) =
{

u∗(t), t ∈ [ τ, δ∗ ]
u(t, δ∗, u∗(δ∗), fn0) + (t − δ∗)pn0 , t ∈ (δ∗, δ ].

By (v), we have u∗
δ∗ ∈ Sσ(ϕ, ρ). So, (2) implies that ‖f(s)‖ ≤ M a.e. for s ∈ (τ, δ).

Clearly (i)∼(iii) are satisfied. In order to prove (iv) we will consider only the
case tm ≤ δ∗ ≤ t, the other cases being obvious. Using the evolution property,
i.e. u(t, a, ξ, f) = u(t, b, u(b, a, ξ, f), f) for τ ≤ a ≤ b ≤ t ≤ T , we get

‖u(t) − u(t, tm, u∗(tm), f)‖

≤ ‖u(t, δ∗, u∗(δ∗), f) − u(t, tm, u∗(tm), f)‖ + (t − δ∗)ε

= ‖u(t, δ∗, u∗(δ∗), f) − u(t, δ∗, u(δ∗, tm, u∗(tm), f), f)‖ + (t − δ∗)ε

≤ ‖u∗(δ∗) − u(δ∗, tm, u∗(tm), f)‖ + (t − δ∗)ε

≤ (δ∗ − tm)ε + (t − δ∗)ε = (t − tm)ε,

which proves (iv).
Similarly, we can diminish δ (increase n0) in order that (vi) be satisfied too.
So, (Pδ, f , u) ∈ U, (Pδ∗ , f∗, u∗) � (Pδ, f , u), but δ∗ < δ which contradicts

the maximality of (Pδ∗ , f∗, u∗). Hence δ∗ = T , and Pδ∗ , f∗ and u∗ satisfy all the
conditions (i)∼(vi). The proof is complete.

Definition 7. Let ε > 0. An element (PT , f, u) satisfying (i)∼(vi) in Lemma 2,
is called an ε-approximate C0-solution of (1).

We can proceed now to the proof of Theorem 3.
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Proof. The necessity follows from Theorem 2. As long as the proof of the suf-
ficiency is concerned, let ρ > 0, T > τ and M > 0 be as in Lemma 2. Let
εn ∈ (0, 1), with εn ↓ 0. Let ((Pn

T , fn, un))n be a sequence of εn-approximate
C0-solutions of (1) given by Lemma 2. If Pn

T = {[ tnm, sn
m); m ∈ Γn} with Γn

finite or at most countable, we denote by an : [ τ, T ) → [ τ, T ) the step function,
defined by an(s) = tnm for each s ∈ [ tnm, sn

m). Clearly lim
n

an(s) = s uniformly for

s ∈ [ τ, T ), while from (vi), deduce that lim
n

‖un(t) − un(an(t))‖ = 0, uniformly

for t ∈ [ τ, T ). From (iv), we get

lim
n

(un(t) − u(t, τ, ϕ(0), fn)) = 0 (2)

uniformly for t ∈ [ τ, T ]. Since ‖fn(t)‖ ≤ M for all n ∈ N and a.e. for t ∈ [ τ, T ]
and the semigroup generated by A is compact, by Vrabie [19, Theorem 2.3.3,
p. 47], we deduce that the set {u(·, τ, ϕ(0), fn); n ≥ 1} is relatively compact in
C([ τ, T ];X). From this remark and (2), we conclude that (un)n has at least
one uniformly convergent subsequence to some function u, subsequence denoted
again by (un)n.

Since an(t) ↑ t, limn un(an(t)) = u(t), uniformly for t ∈ [ τ, T ) and the
mapping t → K(t) ∩ D(ϕ(0), ρ) is closed from the left, we get that u(t) ∈ K(t)
for all t ∈ [ τ, T ]. But limn(un)an(t) = ut in Cσ, uniformly for t ∈ [ τ, T ). Hence,
the set C = {(an(t), (un)an(t));n ≥ 1, t ∈ [ τ, T )} is compact and C ⊆ K.

At this point, recalling that F is strongly-weakly u.s.c. and has weakly com-
pact values, by Cârjă, Necula and Vrabie [2, Lemma 2.6.1, p. 47], it follows that
B = conv

(⋃
n≥1

⋃
t∈[ τ,T ) F (an(t), (un)an(t))

)
is weakly compact. We notice that

fn(s) ∈ B for all n ≥ 1 and a.e. for s ∈ [ τ, T ]. An appeal to Cârjă, Necula and
Vrabie [2, Theorem 1.3.8, p. 10] shows that, at least on a subsequence, lim

n
fn = f

weakly in L1(τ, T ;X). As F is strongly-weakly u.s.c. with closed and convex val-
ues while, by Lemma 2, for each n ≥ 1, we have fn(s) ∈ F (an(s), (un)an(s))
a.e. for s ∈ [ τ, T ], from Vrabie [19, Theorem 3.1.2, p. 88], we conclude that
f(s) ∈ F (s, us) a.e. for s ∈ [ τ, T ].

Finally, by (2) and the fact that A is of complete continuous type, we get
u(t) = u(t, τ, ϕ(0), f) for each t ∈ [ τ, T ] and so, u is a C0−solution of (1).

Theorem 4. Let K be closed from the left and let F : K � X be nonempty,
convex and weakly compact valued. If there exist a, b ∈ C(I) such that

‖F (t, ϕ)‖ ≤ a(t) + b(t)‖ϕ(0)‖ for all t ∈ I and all ϕ ∈ Cσ,

F is strongly-weakly u.s.c. and A : D(A) � X is of complete continuous type and
generates a compact semigroup, then a sufficient condition in order that K be
globally C0-viable with respect to A + F is the tangency condition in Theorem3.
If, in addition, F is u.s.c., then the tangency condition is also necessary in order
that K be mild-viable with respect to A + F .
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5 A Sufficient Condition for Null Controllability

Let X be a Banach space, A : D(A) ⊆ X � X an m-dissipative operator,
g : R+ × Cσ → X a given function and (τ, ϕ) ∈ R+ × Cσ with ϕ(0) ∈ D(A).
The problem is how to find a measurable control c(·) taking values in D(0, 1) in
order to reach the origin in some time T , by C0-solutions of the state equation

{
u′(t) ∈ Au(t) + g(t, ut) + c(t)
uτ = ϕ.

(3)

With G : R+ × Cσ � X, defined by G(t, v) = av(0) + g(t, v) + D(0, 1), the
above problem reformulates: find T > 0 and a C0-solution of problem

{
u′(t) ∈ (A − aI)u(t) + G(t, ut)
uτ = ϕ, u(τ + T ) = 0.

(4)

Theorem 5 and Corollary 1 below are “delay” versions of Cârjă, Necula and
Vrabie [3, Theorem 12.1 and Corollary 12.1].

Theorem 5. Let X be a reflexive Banach space and let A : D(A) ⊆ X � X
be such that, for some a ∈ R, A − aI is an m-dissipative operator of complete
continuous type and which is the infinitesimal generator of a compact semigroup
of contractions, {S(t) : D(A) → D(A); t ≥ 0}. Let g : R+ × Cσ → X be a
continuous function such that for some L > 0 we have

‖g(t, v)‖ ≤ L‖v(0)‖, for all (t, v) ∈ R+ × Cσ. (5)

Assume that 0 ∈ D(A) and 0 ∈ A0. Then, for each (τ, ϕ) ∈ R+ × Cσ with
ξ = ϕ(0) ∈ D(A) \ {0}, there exists a C0-solution u : [ τ,∞) → X of (4)
satisfying

‖u(t)‖ ≤ ‖ξ‖ − (t − τ) + (L + a)
∫ t

τ

‖u(s)‖ds, for all t ≥ τ with u(t) = 0. (6)

Proof. Let (τ, ϕ) ∈ R+ × Cσ with ξ = ϕ(0) ∈ D(A) \ {0}. We show that there
exist T ∈ (0,+∞) and a noncontinuable C0-solution (z, u) : [ τ, τ + T ) → R× X
of the problem

⎧
⎪⎪⎨

⎪⎪⎩

z′(t) = (L + a)‖u(t)‖ − 1, t ∈ [ τ, τ + T )
u′(t) ∈ (A − aI)u(t) + G(t, ut), t ∈ [ τ, τ + T )
zτ = ‖ϕ‖ and uτ = ϕ,
‖u(t)‖ ≤ z(t), t ∈ [ τ, τ + T ).

(7)

On the Banach space X = R × X the operator A = (0, A − aI) generates a
compact semigroup of contractions {(1, S(t)); (1, S(t)) : R × D(A) → X}.

We denote by Cσ = C([−σ, 0 ];X) = C([−σ, 0 ];R) × C([−σ, 0 ];X). Let K
be the locally closed set K = {(x1, x2) ∈ R+ × (D(A) \ {0}); ‖x2‖ ≤ x1}, with
the associate set K = {(t, ψ) ∈ R × Cσ; ψ(0) ∈ K}, i.e.

K = {(t, ψ1, ψ2) ∈ R × C([−σ, 0 ];R) × C([−σ, 0 ];X); ‖ψ2(0)‖ ≤ ψ1(0)}
and let the multi-function F : K � R × X be defined by
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F(t, ψ1, ψ2) = ((L+a)‖ψ2(0)‖−1, aψ2(0)+g(t, ψ2)+D(0, 1)), for (t, ψ1, ψ2) ∈ K.

To show that F(τ, ψ1, ψ2) ∈ QTSAK(τ, ψ1, ψ2), for every (τ, ψ1, ψ2) ∈ K, we
shall prove the stronger condition: there exists (η1, η2) ∈ F(τ, ψ1, ψ2) such that

lim inf
h↓0

h−1d (U(τ + h, τ, (ξ1, ξ2), (η1, η2)),K) = 0, (8)

where (ξ1, ξ2) = (ψ1(0), ψ2(0)) and U(·, τ, (ξ1, ξ2), (η1, η2)) is the C0-solution of
the corresponding Cauchy problem for the operator A, i.e.

U(t, τ, (ξ1, ξ2), (η1, η2)) = (ξ1 + (t − τ)η1, u(t, τ, ξ2, η2)) ∈ X,

u(·, τ, ξ2, η2) being the corresponding solution for A − aI. To this end, it suffices
to prove that there exist (hn)n in R+, with hn ↓ 0, and (θn, pn) in R × X, with
(θn, pn) → (0, 0), such that, for every n ∈ N, we have

‖u(τ + hn, τ, ξ2, η2) + hnpn‖ ≤ ξ1 + hnη1 + hnθn. (9)

Clearly, ‖u (τ + h, τ, ξ2, η2)‖ ≤ ‖ξ2‖ +
∫ τ+h

τ

[u(s, τ, ξ2, η2), η2 ]+ds for all h > 0.

The normalized semi-inner product, (x, y) �→ [x, y ]+ = lim
h↓0

h−1(‖x+hy‖−‖x‖),

is u.s.c. Hence, setting (s) := u(s, τ, ξ2, η2), we get

lim inf
h↓0

h−1

∫ τ+h

τ

[(s), η2]+ds ≤ lim sup
h↓0

h−1

∫ τ+h

τ

[ (s), η ]+ds ≤ [ ξ2, η2 ]+.

Let η1 = (L + a)‖ψ2(0)‖ − 1 = (L + a)‖ξ2‖ − 1 and η2 = aξ2 + g(τ, ψ2) − ξ2
‖ξ2‖ .

Clearly, η2 ∈ aξ2 + g(τ, ψ2) + D(0, 1) and so, (η1, η2) ∈ F(τ, ψ1, ψ2). From
(5), we get [ξ2, η2]+ = a‖ξ2‖ + [ξ2, g(τ, ψ2)]+ − 1 ≤ (L + a)‖ξ2‖ − 1 = η1
and hence lim inf

h↓0
h−1 (‖u(τ + h, τ, ξ2, η2)‖ − ‖ξ2‖) ≤ η1. Keeping in mind that

‖ξ2‖ = ‖ψ2(0)‖ ≤ ψ1(0) = ξ1 since (τ, ψ1, ψ2) ∈ K, the last inequality proves
(9) with pn = 0. Thus we get (8). From Theorem 3, K is C0-viable with respect
to A + F. As (τ, ‖ϕ‖, ϕ) ∈ K, thanks to Brezis-Browder Ordering Principle [2,
Theorem 2.1.1, p. 30] –, we obtain further that there exist T ∈ (0,+∞ ] and a
noncontinuable C0-solution of (z, u) : [ τ, τ + T ) → R × X of (7) which satisfies
(z(t), u(t)) ∈ K for every t ∈ [ τ, τ + T ). This means that (6) is satisfied for
every t ∈ [ τ, τ + T ). Since G has sublinear growth, u, as a solution of (4), can
be continued to R+. So, u(τ + T ) exists, even though the solution (z, u) of (7)
is defined merely on [ τ, τ + T ) if T is finite. In this case, u(τ + T ) = 0 since
otherwise (z, u) can be continued to the right of T which is a contradiction.

Corollary 1. Under the hypothesis of Theorem5, the following properties hold.

(i) If L + a ≤ 0, for any (τ, ϕ) ∈ R+ × Cσ with ξ = ϕ(0) ∈ D(A) \ {0}, there
exist a control c(·) and a C0-solution of (3) that reaches the origin of X in
some time T ≤ ‖ξ‖ and satisfies ‖u(t)‖ ≤ ‖x‖− (t−τ) for all τ ≤ t ≤ τ +T.
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(ii) If L+a > 0, for every (τ, ϕ) ∈ R+×Cσ with ξ = ϕ(0) ∈ D(A)\{0} satisfying
0 < ‖ξ‖ < 1/(L + a), there exist a control c(·) and a C0-solution of (3) that
reaches the origin of X in some time T ≤ (L+a)−1 log

{
[1 − (L + a)‖ξ‖]−1

}

and ‖u(t)‖ ≤ e(L+a)(t−τ)
[‖ξ‖ − (L + a)−1

]
+ (L + a)−1 for t ∈ [τ, τ + T ].
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Abstract. The recovery of the causality networks with a number of vari-
ables is an important problem that arises in various scientific contexts.
For detecting the causal relationships in the network with a big number
of variables, the so called Graphical Lasso Granger (GLG) method was
proposed. It is widely believed that the GLG-method tends to overselect
causal relationships. In this paper, we propose a thresholding strategy for
the GLG-method, which we call 2-levels-thresholding, and we show that
with this strategy the variable overselection of the GLG-method may be
overcomed. Moreover, we demonstrate that the GLG-method with the
proposed thresholding strategy may become superior to other methods
that were proposed for the recovery of the causality networks.

Keywords: Causality network · Gene causality network · Granger
causality · Graphical Lasso method · 2-levels-thresholding

1 Introduction

Causality is a relationship between a cause and its effect (its consequence). One
can say that inverse problems solving, where one would like to discover unob-
servable features of the cause from the observable features of an effect [4], i.e.,
searching for the cause of an effect, can in general be seen as a causality problem.

A causality network is a directed graph with nodes, which are variables
{xj , j = 1, . . . , p}, and directed edges, which are the causal influences between
the variables. We write xi ← xj if the variable xj has a causal influence on the
variable xi. Causality networks arise in various scientific contexts.

For example, In Cell Biology one considers causality networks which involve
sets of active genes of a cell. An active gene produces a protein. It has been
observed that the amount of the protein which is produced by a given gene may
depend on, or may be causally influenced by, the amount of the proteins which
are produced by other genes. In this way, causal relationships between genes
c© IFIP International Federation for Information Processing 2014
C. Pötzsche et al. (Eds.): CSMO 2013, IFIP AICT 443, pp. 220–229, 2014.
DOI: 10.1007/978-3-662-45504-3 21
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CDKN3

CDC2

PCNA

CCNA2

CDC6 E2F1

CCNB1 CCNE1

RFC4

Fig. 1. Causality network of the human cancer cell HeLa genes from the BioGRID
database (www.thebiogrid.org).

and the corresponding causality network arise. These causality networks are
also called gene regulatory networks. An example of such a network is presented
in Fig. 1. This network is achieved from the biological experiments in [9], and it
can be found in the BioGRID database. This network has been used in several
works [11,14,15] as a test network.

Knowledge of the correct causality networks is important for changing them.
In Cell Biology, these networks are used in the research of the causes of genetic
diseases. For example, the network in Fig. 1 consists of genes that are active in
the human cancer cell HeLa [18]. If one wants to suppress the genes expression
in this network, then the primary focus of the suppression therapy should be on
the causing genes. For the use of the causality networks in other sciences see, for
example, [12].

How can causality network be recovered? In practice, the first information
that can be known about the network is the time evolution (time series) of the
involved variables {xj

t , t = 1, . . . , T}. How can this information be used for
inferring causal relationships between the variables?

The statistical approach to the derivation of the causal relationships between
a variable y and variables {zj , j = 1, . . . , p} using the known time evolution of
their values {yt, z

j
t , t = 1, . . . , T, j = 1, . . . , p} consists in considering a model

of the relationship between y and {zj , j = 1, . . . , p}. As a first step, one can

consider a linear model of this relationship: yt ≈
p∑

j=1

βjzj
t , t = 1, . . . , T. The

coefficients {βj , j = 1, . . . , p} can be specified using the least-squares method.
Then, in Statistics [19] by fixing the value of a threshold parameter βtr > 0, one
says that there is a causal relationship y ← zj if |βj | > βtr.

For detecting causal relationships between variables {xj , j = 1, . . . , p} the
concept of the so called multivariate Granger causality has been proposed. This
concept originated in the work of Clive Granger [6], who was awarded the Nobel
Prize in Economic Sciences in 2003. Based on the intuition that the cause should
precede its effect, in Granger causality one says that a variable xi can be poten-
tially caused by the past versions of the involved variables {xj , j = 1, . . . , p}.

www.thebiogrid.org
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Then, in the spirit of the statistical approach and using a linear model for
the causal relationship, we consider the following approximation problem:

xi
t ≈

p∑

j=1

L∑

l=1

βj
l xj

t−l, t = L + 1, . . . , T, (1)

where L is the so called maximal lag, which is the maximal number of the
considered past versions of the variables. The coefficients {βj

l } can be determined
by the least-squares method. As in the statistical approach, one can now fix the
value of the threshold parameter βtr > 0 and say that

xi ← xj if
L∑

l=1

|βj
l | > βtr. (2)

It is well known that for a big number of genes p, as it is pointed out for
example in [11], the causality network, which is obtained from the approximation
problem (1), is not satisfactory. First of all, it cannot be guaranteed that the
solution of the corresponding minimization problem is unique. Another issue
is connected with the number of the causality relationships that is obtained
from (1). This number is typically very big, while one expects to have a few
causality relationships with a given gene. To address this issue, various variable
selection procedures can be employed. The Lasso [16] is a well known example
of such a procedure. In the regularization theory, this approach is known as
the l1-Tikhonov regularization. It has been extensively used for reconstructing
the sparse structure of an unknown signal. We refer the interesting reader to
[3,5,7,10,13] and the references therein.

The causality concept that is based on the Lasso was proposed in [1] and is
named Graphical Lasso Granger (GLG) method. However, it is stated in the liter-
ature that the Lasso suffers from the variable overselection. And therefore, in the
context of the gene causality networks several Lasso modifications were proposed.
In [11], the so called group Lasso method was considered for recovering gene
causality networks using the multivariate Granger causality. The corresponding
method can be named Graphical group Lasso Granger (GgrLG) method. And
in [15], the truncating Lasso method was proposed. The resulting method can
be named Graphical truncating Lasso Granger (GtrLG) method.

Nevertheless, it seems that an important tuning possibility of the Lasso,
namely an appropriate choice of the threshold parameter βtr, has been overlooked
in the literature devoted to the recovery of the gene causality networks. In this
paper, we are going to show that the GLG-method, which is equipped with an
appropriate thresholding strategy and an appropriate regularization parameter
choice rule, may become a superior method in comparison to other methods
that were proposed for the recovery of the gene causality networks.

The paper is organized as follows. In Sect. 2, we recall the GLG-method. The
quality measures of the graphical methods are presented in Sect. 3. In Sect. 4, we
use the network from Fig. 1 to compare the performance of the known graphical
methods with the ideal version of the GLG-method, which we call the optimal
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GLG-estimator. Such a comparison demonstrates the potential of the GLG-
approach. In Sect. 5, we propose a thresholding strategy for the GLG-method
that allows its automatic realization, which we describe in Sect. 6. Then again
we use the network from Fig. 1 to compare the performance of the proposed
version of the GLG-method with other graphical methods. It turns out that the
proposed method has a superior quality compared to the known methods. The
paper is finished with the conclusion and outlook in Sect. 7.

2 Graphical Lasso Granger Method

Let us specify the application of the least-squares method to the approximation
problem (1). For this purpose, let us define the vectors Y i = (xi

L+1, x
i
L+2, . . . , x

i
T )′,

β = (β1
1 , . . . , β

1
L, β2

1 , . . . , β
2
L, . . . , βp

1 , . . . , βp
L)′, and the matrix

X =
(

(x1
t−1, . . . , x

1
t−L, x2

t−1, . . . , x
2
t−L, . . . , xp

t−1, . . . , x
p
t−L); t = L + 1, . . . , T

)
.

Then, in the least-squares method, one considers the following minimization
problem:

‖Y i − Xβ‖2 → min
β

, (3)

where ‖ · ‖ denotes the l2-norm.
As it was mentioned in the introduction, the solution of (3) defines unsatis-

factory causal relationships and various variable selection procedures should be
employed instead. A well-known example of such procedures is the Lasso [16].
In this procedure, one considers the following minimization problem:

‖Y i − Xβ‖2 + λ‖β‖1 → min
β

. (4)

Solution of (4) for each variable {xi, i = 1, . . . , p} with the causality rule (2)
defines an estimator of the causality network between the variables {xi}, and in
this way one obtains the Graphical Lasso Granger (GLG) method [1].

3 Quality Measures of the Graphical Methods

A graphical method is a method that reconstructs the causality network, which is
a directed graph, with the variables {xj}. The quality of a graphical method can
be estimated from its performance on a known causality network. The network
in Fig. 1 has been used for testing methods’ quality in several publications [11,
14,15]. What measures can be used for estimating the quality of a graphical
method?

First of all, let us note that a causality network can be characterized by the
so called adjacency matrix A = {Ai,j | {i, j} ⊂ {1, . . . , p}} with the following
elements:

Ai,j = 1 if xi ← xj ; Ai,j = 0 otherwise.
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The adjacency matrix Atrue for the causality network in Fig. 1 is presented in
Fig. 2. There, the white squares correspond to Ai,j = 1, and the black squares—
to the zero-elements. The genes are numbered in the following order: CDC2,
CDC6, CDKN3, E2F1, PCNA, RFC4, CCNA2, CCNB1, CCNE1.

Now, imagine that there is a true adjacency matrix Atrue of the true causality
network, and there is its estimator Aestim, which is produced by a graphical
method. The quality of the estimator Aestim can be characterized by the following
quality measures: precision (P), recall (R), F1-score (F1). See, for example, [12]
for the detailed definition of these measures.
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Fig. 2. The adjacency matrix Atrue for the causality network in Fig. 1 and its various
GLG-estimators.

As it was already mentioned, the causality network in Fig. 1 has been used
for testing quality of graphical methods. In particular, in [15] one finds the
above mentioned quality measures for the following methods: GgrLG, GtrLG
and CNET. CNET is a graph search-based algorithm that was introduced in
[14]. The data {xj

t} is taken from the third experiment of [18] consisting of
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47 time points, and the maximal lag L is taken to be equal to 3. The quality
measures from [15] are presented in Table 1.

Table 1. Quality measures of the known graphical methods.

P R F1

GgrLG 0.24 0.44 0.3

GtrLG 0.3 0.33 0.32

CNET 0.36 0.44 0.4

As it is seen from the table, CNET has the highest F1-score. However, CNET
is the most computationally expensive among the considered methods that does
not allow its application to large networks. GgrLG has a good recall but a poor
precision, and thus, GtrLG can be considered as a better method among the
considered methods.

4 Optimal GLG-estimator

As we have seen in the previous section, the graphical methods, which are based
on the Lasso modifications, were tested on the network in Fig. 1 (Table 1). How-
ever, the application of the graphical method that is based on the pure Lasso
(GLG) to the network in Fig. 1 has not been reported. Moreover, it seems that
the possibility of varying the threshold parameter βtr in GLG also has not
been considered in the literature devoted to the reconstruction of the causality
networks.

Assume that the true causality network with the variables {xj} is given by
the adjacency matrix Atrue. Assume further that the observation data {xj

t} is
given. What is the best reconstruction of Atrue that can be achieved by the
GLG-method? The answer to this question is given by, what we call, the optimal
GLG-estimator. Let us specify its construction.

First of all, let us define the following quality measure, which we call Fs-
measure: Fs = 1

p2 ‖Atrue − Aestim‖1, 0 ≤ Fs ≤ 1. Fs-measure represents the
number of false elements in the estimator Aestim that is scaled with the total
number of elements in Aestim.

Now, let βi(λ) denote the solution of the minimization problem (4) in the GLG-
method, and βj

i (λ) = (βj
1,i, . . . , β

j
L,i). Then, the GLG-estimator AGLG(λ, βtr) of

the adjacency matrix Atrue is defined as follows:

AGLG
i,j (λ, βtr) = 1 if ‖βj

i (λ)‖1 > βtr; AGLG
i,j (λ, βtr) = 0 otherwise.

The optimal GLG-estimator AGLG,opt of the true adjacency matrix Atrue

is the GLG-estimator AGLG(λ, βtr) with the parameters λ, βtr such that the
corresponding Fs-measure is minimal.
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The optimal GLG-estimator of the adjacency matrix for the causality net-
work in Fig. 1 is presented in Fig. 2. Its quality measures can be found in Table 2.
We used the same data {xj

t} as in [11,14,15]. Also, as in [11,15], we take the
maximal lag L = 3. As one can see, the optimal GLG-estimator reconstructs
almost completely the causing genes of the most caused gene in the network.
The recall of AGLG,opt is equal to the highest recall in Table 1, but precision and
F1-score are considerably higher.

Of course, AGLG,opt is given by the ideal version of the GLG-method, where
we essentially use the knowledge of Atrue. How close can we come to AGLG,opt

without such a knowledge? To answer this question, let us first decide about the
choice of the threshold parameter βtr.

5 Thresholding Strategy

The purpose of the threshold parameter βtr is to cancel the causal relationships
xi ← xj with small ‖βj

i (λ)‖1. When can we say that ‖βj
i (λ)‖1 is small? We

propose to consider the following guideindicators of smallness:

βi
min(λ) = min{‖βj

i (λ)‖1, j = 1, . . . , p | ‖βj
i (λ)‖1 �= 0},

βi
max(λ) = max{‖βj

i (λ)‖1, j = 1, . . . , p}.
(5)

In particular, we propose to consider the threshold parameter of the following
form:

βi
tr,α(λ) = βi

min(λ) + α( βi
max(λ) − βi

min(λ)). (6)

As a default value we take α = 1/2.
In the optimal GLG-estimator AGLG,opt

tr,1/2 with the threshold parameter βi
tr,1/2

we choose λ such that the corresponding Fs-measure is minimal. For the causal-
ity network in Fig. 1, this estimator is presented in Fig. 2. Its quality measures can
be found in Table 2. One observes that although there is some quality decrease
in comparison to AGLG,opt, the quality measures are still higher than for the
methods in Table 1. However, can this quality be improved?

The choice of the threshold parameter βi
tr,1/2 rises the following issue. With

such a choice we always assign a causal relationship, unless the solution of (4)
βi(λ) is identically zero. But how strong are these causal relationships compared
to each other? The norm ‖βj

i (λ)‖1 can be seen as a strongness indicator of the
causal relationship xi ← xj .

Let us now construct a matrix AGLG,opt;β
tr,1/2 , similarly to the adjacency matrix

AGLG,opt
tr,1/2 , where instead of the element 1 we put the norm ‖βj

i (λ)‖1, i.e.

AGLG,opt;β
tr,1/2 (i, j) = ‖βj

i (λ
tr,1/2
opt,i )‖1 if ‖βj

i (λ
tr,1/2
opt,i )‖1 > βi

tr,1/2,

AGLG,opt;β
tr,1/2 (i, j) = 0 otherwise.

This matrix is presented in Fig. 2. One observes that the false causal relationships
of the estimator AGLG,opt

tr,1/2 are actually weak. This observation suggests to use a
second thresholding that is done on the network, or adjacency matrix, level.



GLG-Method for Recovering Causality Networks 227

We propose to do the thresholding on the network level similarly to the
thresholding on the gene level. Namely, let us define the guideindicators of small-
ness on the network level similarly to (5):

Amin = min{AGLG,opt;β
tr,1/2 (i, j) �= 0},

Amax = max{AGLG,opt;β
tr,1/2 (i, j)}.

And similarly to (6), define the threshold on the network level as follows:

Atr,α1 = Amin + α1(Amax − Amin). (7)

We find it suitable to call the described combination of the two thresholdings
on the gene and network levels as 2-levels-thresholding. The adjacency matrix
obtained by this thresholding strategy is the following:

AGLG,opt
tr,1/2;α1

(i, j) = 1 if AGLG,opt;β
tr,1/2 (i, j) > Atr,α1 ,

AGLG,opt
tr,1/2;α1

(i, j) = 0 otherwise.

It turns out that with α1 = 1/4 in (7) the optimal GLG-estimator can be
fully recovered.

6 An Automatic Realization of the GLG-Method

For an automatic realization of the GLG-method, i.e. a realization that does
not rely on the knowledge of the true adjacency matrix Atrue, in addition to a
thresholding strategy one needs a choice rule for the regularization parameter
λ in (4). For such a choice, we propose to use the so called quasi-optimality
criterion [2,8,17]. Some details of the application of this criterion can be found
in [12].

ThereconstructionobtainedbytheGLG-methodwiththe2-levels-thresholding
andquasi-optimality criterionAGLG,qo

tr,1/2;1/4 is presented inFig. 2. Its qualitymeasures
can be found in Table 2. One observes that there is a little decrease in recall in com-
parison to the optimal GLG-method; however, this recall is the same as for the
GtrLG-method (Table 1). But due to the highest precision, the F1-score remains
to be higher than for the methods in Table 1. Thus, one may say that the proposed
realization of the GLG-method outperforms the methods in Table 1.

Nevertheless, one may still wonder, why the proposed realization of the GLG-
method captures only the causal relationships of the most caused gene. It appears
that the value of the maximal lag L plays an important role in the selection of
the causal relationships.

In the modifications of the GLG-method the authors of [11,15] considered
L = 3. All results presented so far were also obtained with L = 3. It turns out
that for L = 4 the optimal GLG-estimator (see Fig. 2) delivers a much better
reconstruction of the causality network. In particular, two more caused genes
are recovered.
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The proposed automatic realization of the GLG-method with L = 4 (Fig. 2)
recovers an additional caused gene in comparison to the realization with L = 3.
Also, all considered quality measures for our automatic realization of the GLG-
method with L = 4 (Table 2) are considerably higher than for the methods in
Table 1. We would like to stress that no use of the knowledge of Atrue is needed
for obtaining AGLG,qo

tr,1/2;1/4, and no readjustment of the design parameters α, α1 is
necessary.

Table 2. Quality measures of the various GLG-estimators.

Fs P R F1

GLG-opt 6.2 % 1 0.44 0.62

GLG-opt; tr, 1/2 14.8 % 0.38 0.56 0.45

GLG-qo; tr, 1/2; 1/4 7.4 % 1 0.33 0.5

GLG-opt, L = 4 3.7 % 0.88 0.78 0.82

GLG-qo;L = 4; tr, 1/2; 1/4 7.4 % 0.71 0.56 0.63

7 Conclusion and Outlook

The proposed realization of the Graphical Lasso Granger method with 2-levels-
thresholding and quasi-optimality criterion for the choice of the regularization
parameter shows a considerable improvement of the reconstruction quality in
comparison to other graphical methods. So, the proposed realization is a very
promising method for recovering causality networks. Further tests and develop-
ments of the proposed realization are worthwhile. In particular, applications to
larger causality networks are of interest.

As an open problem for the future, one could consider a study of the choice
of the maximal lag and its possible variation with respect to the caused and
causing genes.
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Abstract. In this paper we apply simple GMRES bounds to the nearly
singular systems that arise in ill-posed problems. Our bounds depend
on the eigenvalues of the coefficient matrix, the right-hand side vector
and the nonnormality of the system. The bounds show that GMRES
residuals initially decrease, as residual components associated with large
eigenvalues are reduced, after which semi-convergence can be expected
because of the effects of small eigenvalues.

Keywords: GMRES · Convergence · Ill-posed problem

1 Introduction

The solution of an ill-posed problem often requires the solution of a large, sparse
linear system Ax = b where A ∈ C

n×n is non-Hermitian and nearly singular, b ∈
C

n and b ∈ range(A) [1]. We assume throughout that A is diagonalizable since,
although possible, analysis using the Jordan canonical form is more complicated.
The near-singularity of A is reflected in a number of small eigenvalues.

In many cases b is unknown and we instead possess a noisy vector bδ, where
‖b − bδ‖2 = δ. This is problematic since the ill-conditioning of A means that
A−1bδ may be a poor approximation of x. Consequently, it is necessary to reg-
ularize, i.e., to solve

Aδxδ = bδ. (1)

The Generalized Minimal Residual method [2] (GMRES) is an iterative
method for solving (1) that, given an initial guess x0 which we assume for sim-
plicity is the zero vector, selects at the kth step the iterate xk for which the
residual rk = bδ − Aδxk satisfies

‖rk‖2 = min
q∈Πk

q(0)=1

‖q(Aδ)bδ‖2, (2)

where Πk is the set of polynomials of degree at most k. When GMRES is used to
solve (1) it can sometimes give good approximations to xδ as long as the method
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is terminated after the correct number of iterations, i.e., GMRES itself can have
a regularizing effect [3,4]. Alternatively, regularization may be achieved by pre-
conditioning [4–6]. In either case it is important to understand the behaviour of
GMRES applied to nearly singular systems. Eldén and Simoncini [4] used the
Schur decomposition to show that when the right-hand side has leading compo-
nents in the direction of eigenvectors associated with large eigenvalues, the initial
convergence is related to a reduction in the sizes of these components. Here we
provide a complementary analysis involving the eigenvalue-eigenvector decom-
position and the simple bounds in Titley-Peloquin, Pestana and Wathen [7].
Similarly to Eldén and Simoncini we find that the first phase of convergence is
related to large eigenvalues. We additionally observe that the stagnation typi-
cally observed in the second phase, known as semi-convergence, is attributable
to the remaining small eigenvalues.

2 Structure of Nearly Singular Systems

Let Aδ have diagonalization Aδ = ZΛZ−1, Λ = diag(λi) and Z ∈ C
n×n, where

without loss of generality |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. We wish to separate the
spectrum of Aδ into p large eigenvalues and the remaining small eigenvalues.
The matrix Aδ may have two distinct sets of eigenvalues, for example, when a
preconditioner is applied. In other cases, however, there is no obvious separation.
In this situation we find that a division on the order of δ is a reasonable choice.

Given these two sets of eigenvalues we partition Aδ as

Aδ =
[
Z1 Z2

]
[
Λ1

Λ2

] [
Y ∗
1

Y ∗
2

]
,

where Λ1 ∈ C
p×p, Λ2 ∈ C

(n−p)×(n−p), Z1, Y1 ∈ C
n×p and Z2, Y2 ∈ C

n×(n−p).
We assume that ‖Y ∗

2 b‖2 = ε is small, i.e., that the true right-hand side vector
b is mainly associated with the low-frequency components of Aδ; otherwise the
ill-posed problem is intractable.

Integral to our bounds are the co-ordinates of bδ in the eigenvector basis

w = Z−1bδ/‖bδ‖2 =
[
w1

w2

]
=

1
‖bδ‖2

[
Y ∗
1 bδ

Y ∗
2 bδ

]
(3)

and, in particular, w2 = (Y ∗
2 b + Y ∗

2 (bδ − b))/‖bδ‖2, the norm of which is
bounded by

‖w2‖2 ≤ (ε + δ‖Y2‖2)/‖bδ‖2. (4)

To give some idea of typical spectra, and to show the difference between
the components of w1 and w2, we compute these quantities for the baart and
wing test problems from the Matlab toolbox Regularization Tools [8,9]. The
problems are described in more detail in Sect. 4. We add Gaussian noise to
the true right-hand side vectors with δ = 10−7, 10−5 and 10−3. For baart,
‖bδ‖2 ≈ 2.9, ‖Y2‖2 = 64 and ε = 10δ when p = 5. Thus, (4) gives ‖w2‖2 ≤ 26δ
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Fig. 1. Magnitudes of eigenvalues (∗) of Aδ and of corresponding components of w for
δ = 10−7 (solid line) δ = 10−5 (dashed line) and δ = 10−3 (dot-dashed line).

for baart. For wing, ‖bδ‖2 ≈ 0.15 and ‖Y2‖2 = 158 with p = 3. We find that
when δ is 10−7, 10−5 and 10−3, ε is 1×10−5, 3.6×10−4 and 9×10−3, so that (4)
is 2 × 10−4, 0.01 and 1.

Figure 1 shows that for both problems, as expected, the eigenvalues decay
and there are a number of very small eigenvalues present. Associated with large
eigenvalues are relatively large components of w in magnitude. Once the eigen-
values decrease to around the level of the noise, the components of w stay con-
stant in magnitude at a level that depends on ‖bδ‖2, the amount of noise and
the conditioning of the eigenvectors associated with small eigenvalues. This level
is, consequently, higher for wing than for baart. The structure of these two sys-
tems is typical of ill-posed linear systems and is exploited in the next section to
analyse the convergence of GMRES.

3 GMRES Bounds

Our interest is in explaining the behaviour of GMRES applied to (1). To this
end, we apply the bounds in Sect. 2 in Titley-Peloquin et al. [7], the first of which
is cast in terms of a weighted least squares problem.

Theorem 1. Suppose that Aδ has diagonalization Aδ = ZΛZ−1, Λ = diag(λi),
and let w1 = W1e and w2 = W2e, where w1 and w2 are as in (3), W = diag(wi)
and e = [1, . . . , 1]T . Then the GMRES residuals satisfy

‖rk‖2
‖b‖2 ≤ ‖Z‖2 min

q∈Πk

q(0)=1

∥
∥
∥
∥

[
W1q(Λ1)

W2q(Λ2)

]
e

∥
∥
∥
∥
2

. (5)

For our ill-posed problem, the weights in W1 are larger in magnitude than
those in W2 and the eigenvalues in Λ1 are all larger in magnitude than the
eigenvalues in Λ2. Thus, GMRES will initially choose polynomials that primarily
reduce the size of W1q(Λ1) to the size of W2q(Λ2). In particular, when ‖w1‖2 �
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‖w2‖2 we would expect that for the first p steps GMRES would mainly work on
reducing the components of the residual associated with Λ1 and Z1.

When ‖W1q(Λ1)‖2 is on the order of ‖W2(Λ2)‖2 it is common for convergence
to stagnate, after which residuals may increase in norm; this is known as semi-
convergence. The following theorem can help to explain why semi-convergence
occurs by explicitly separating the effects of large and small eigenvalues [7].

Theorem 2. Let Aδ have diagonalization Aδ = ZΛZ−1. For any subset of
indices J with |J | = p, GMRES residuals with k > p satisfy

‖rk‖2
‖bδ‖2 ≤ ‖Z‖2 min

q∈Πk−p

q(0)=1

⎛

⎜
⎝

n∑

i=1
i�∈J

|w̃i|2|q(λi)|2
⎞

⎟
⎠

1/2

, (6)

where

w̃i = wi

∏

j∈J

(
1 − λi

λj

)
.

To examine the semi-convergence phase, we choose J = [1, p]. Then for any
i ∈ [p + 1, n], we have that |λi| ≤ |λj | and |w̃i| ≤ αp|wi|, where α ≤ 2 and α is
around 1 or smaller when, say, there is a decent gap between the large and small
eigenvalues or when all eigenvalues have the same sign. Thus, for any k > p

‖rk‖2
‖bδ‖2 ≤ αp‖Z‖2‖w2‖2 min

q∈Πk−p

q(0)=1

‖q(Λ2)‖2.

Now, let us consider ‖q(Λ2)‖2. Since |λi| � 1, i = p + 1, . . . , n and q(0) = 1
it will be difficult to reduce ‖q(Λ2)‖2 significantly below 1. Consequently, we
expect the residuals to stagnate at a level bounded by

‖rk‖2
‖bδ‖2 ≤ αp‖Z‖2‖w2‖2. (7)

This, in conjunction with (4), indicates that the level of semi-convergence depends
on the sizes of the large and small eigenvalues, the noise level δ, the norm of bδ and
the conditioning of the eigenvectors associated with small eigenvalues.

4 Numerical Results

We now compare the bounds (5) and (7) to the GMRES residuals for the baart
and wing problems mentioned above, both of which are discretizations of Fred-
holm integral equations of the first kind. The integral equation for baart is

∫ π

0

es cos(t)f(t)dt = 2
sinh(s)

s
, 0 ≤ s ≤ π

2
,
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Fig. 2. Plots of the relative GMRES residuals and (5) (×) (left) and relative errors
(right) for δ = 10−7 (solid line) δ = 10−5 (dashed line) and δ = 10−3 (dot-dashed line).
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Fig. 3. Plots of the relative GMRES residuals and (7) (+) for δ = 10−7 (solid line)
δ = 10−5 (dashed line) and δ = 10−3 (dot-dashed line).
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which has the continuous solution f(t) = sin(t). For the wing problem we solve
∫ 1

0

te−st2f(t)dt =
e−st21 − e−st22

2s
, 0 ≤ s ≤ 1,

with t1 = 1/3 and t2 = 2/3. The discontinuous solution is

f(t) =

{
1 t1 < t < t2,

0 elsewhere .

Figure 2 shows the relative GMRES residuals and the relative errors. For both
baart and wing the relative residuals decrease before stagnating at a level related
to the noise level δ. Note that the staircase-like convergence behaviour for baart
is particular to this problem. It appears to be related to the harmonic Ritz values,
which at the kth step of GMRES are the eigenvalues of a certain k × k matrix,
and which define the GMRES polynomial q in (2) [10]. For fast convergence it is
desirable that these harmonic Ritz values are good approximations of eigenvalues
of A. For baart, however, at the second and fourth steps there is a harmonic Ritz
value that lies between two consecutive eigenvalues of A; these are precisely the
steps at which there is little reduction in the relative residual norm.

Unlike the relative residuals, for both problems the norm of the error ini-
tially decreases but then starts to increase. This increase occurs during the
semi-convergence phase for baart but for the wing problem the errors increase
before semi-convergence and exhibit a sawtooth-like behaviour. This highlights
the importance of applying a sensible stopping criterion and the potential unsuit-
ability of standard (unpreconditioned) GMRES for some ill-posed problems.
Interestingly, (5) seems to provide a better indication of when the iterations
should be stopped than the onset of semi-convergence for the wing problem for
noisy right-hand side vectors, although we have not investigated this further.

It is clear from Fig. 2 that the bound (5) is very descriptive during the first
phase of convergence. Although the bound is not quantitatively descriptive in the
second phase of convergence, it accurately predicts the onset of semi-convergence.
The approximation (7) is an upper bound on the relative residuals during the
semi-convergence phase for both problems (see Fig. 3). Note that for both prob-
lems α ≈ 1. Since (6) is an upper bound on (5), we cannot expect (7) to be quan-
titatively accurate. Nevertheless, it provides an analysis of semi-convergence and
the factors that can affect the level at which residual norms stagnate.

5 Conclusions

In this paper we have applied simple bounds on GMRES convergence to the
nearly singular systems that arise from ill-posed problems. We have shown that
GMRES initially reduces the residual components associated with large eigenval-
ues. Once these components are commensurate with those associated with small
eigenvalues semi-convergence sets in, with the level at which residuals stagnate
determined by the sizes of small eigenvalues, the noise in the right-hand side
vector, the size of b and the eigenvectors associated with small eigenvalues.
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Abstract. We consider shape optimization problems with elliptic par-
tial differential state equations.Using regularization and penalization,
unknown shapes are encoded via shape functions, turning the shape
optimization into optimal control problems for the unknown functions.
The method is designed to allow topological changes in a natural way.
Based on convergence and differentiability results, numerical algorithms
are formulated, using different descent directions and projections. The
algorithms are assessed in a series of numerical experiments, applied to an
elliptic PDE arising from an oil industry application with two unknown
shapes, one giving the region where the PDE is solved, and the other
determining the PDE’s coefficients.

Keywords: Shape optimization · Optimal control · Fixed domain
method · Elliptic partial differential equation · Numerical simulation

1 Introduction

We study an elliptic shape optimization problem motivated by the oil indus-
try application studied in [12], where one aims at monitoring the interior of a
pipeline. The cross section through the pipeline is modeled by a set D ⊆ R

2,
consisting of a liquid region Ω (such that D \ Ω represents air) that is part
oil (region O ⊆ Ω) and part water (Ω \ O). The shape optimization needs to
reconstruct the parts O and Ω from given measurements yd of a quantity (e.g.
voltage) taken in a region E adjacent to the boundary of D. Thus, we are led to
the following problem, previously formulated in [5]:

min
Ω, O

1
2

∫

E

|y − yd|2 dx +
1
2

∫

E

|∇y − ∇yd|2 dx , (1a)

c© IFIP International Federation for Information Processing 2014
C. Pötzsche et al. (Eds.): CSMO 2013, IFIP AICT 443, pp. 237–246, 2014.
DOI: 10.1007/978-3-662-45504-3 23
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subject to
∫

Ω

[
a1 χO + a2(1 − χO)

]∇y · ∇v dx +
∫

Ω

[
b1 χO + b2(1 − χO)

]
y v dx

=
∫

Ω

f v dx , ∀ v ∈ H1
0 (Ω), (1b)

y − ξ ∈ H1
0 (Ω), (1c)

where the sets E ⊆ O ⊆ Ω ⊆ D ⊆ R
2 all are bounded and open, D also

connected; χO denotes the characteristic function of O; a1, a2, b1, b2 > 0, f ∈
L2(D), yd, ξ ∈ H1(D) all given. In particular, depending on ξ, (1c) can mean
homogeneous or nonhomogeneous Dirichlet conditions.

The employed method (previously used, e.g., in [4,5,8]) is based on the intro-
duction of shape functions g and p, defined on D and encoding the unknown sets
Ω and O, respectively, and on a technique for the approximation and regular-
ization of characteristic functions. Assuming g, p : D → R to be continuous, the
corresponding sets are obtained via

Ωg = int{x ∈ D : g(x) ≥ 0}, Op = int{x ∈ D : p(x) ≥ 0} (2)

(Ωg and Op then are open Caratheodory sets, not necessarily connected). Enforc-
ing the constraints E ⊆ O ⊆ Ω translates into the set of admissible pairs

Uad :=
{
(g, p) ∈ C(D) × C(D) : g ≥ p on D and p ≥ 0 on E

}
. (3)

Let H : R → R denote the Heaviside function. Then H(g),H(p) : D → R are
the characteristic functions of Ωg and Op, respectively. We use the differentiable
regularization of the Heaviside function given by

Hε(r) :=

⎧
⎨

⎩

1 for r ≥ 0,
ε(r+ε)2−2r(r+ε)2

ε3 for − ε < r < 0,
0 for r ≤ −ε,

(4)

and obtain the following regularized fixed domain approximation of (1) (with
the abovementioned constraints E ⊆ O ⊆ Ω):

min
(g,p)∈Uad

1
2

∫

E

|yε − yd|2 dx +
1
2

∫

E

|∇yε − ∇yd|2 dx , (5a)
∫

D

[[
a1 Hε(p) + a2(1 − Hε(p))

]∇yε · ∇v +
[
b1 Hε(p) + b2(1 − Hε(p))

]
yεv

]
dx

+
1
ε

∫

D

(
1 − Hε(g)

)
yεv dx =

∫

D

fv dx , ∀ v ∈ H1
0 (D), (5b)

yε − ξ ∈ H1
0 (D). (5c)

For ε > 0 small, the penalty term with the 1/ε in (5b) forces the state yε to
be close to 0 outside Ωg (for precise, rigorous versions of this statement see
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[5, Theorem 2], [8, Theorem 2.2,Theorem 3.1]). It is noted that, even though the
above-described method encodes Ωg and Op, in fact, as level sets of the functions
g, p, respectively, our method is essentially different from the well-known level
set method of [6], since no time dependence of the functions g, p and no time
evolution of the corresponding open sets Ωg, Op is assumed. In particular, we
do not need to solve any Hamilton-Jacobi equations in the process.

We now consider a triangular finite element partition of D, D =
⋃

Th∈Th

Th,

h > 0, assuming the grid in D, restricted to E, provides a finite element mesh
in E as well. Let Vh, Ṽh denote the corresponding finite element spaces in D
constructed with piecewise affine continuous functions (with 0 trace on ∂D for
elements of Vh). Defining

Uh
ad :=

{
(g, p) ∈ Ṽh × Ṽh : g ≥ p on D and p ≥ 0 on E

}
, (6)

the discretized form of (5) reads

min
(gh,ph)∈Uh

ad

j(gh, ph) :=
1
2

∫

E

|yε,h − yd,h|2 dx +
1
2

∫

E

|∇yε,h − ∇yd,h|2 dx , (7a)

∫

D

[
a1 Hε(ph) + a2(1 − Hε(ph))

]∇yε,h · ∇vh dx

+
∫

D

[
b1 Hε(ph) + b2(1 − Hε(ph))

]
yε,hvh dx

+
1
ε

∫

D

(
1 − Hε(gh)

)
yε,hvh dx =

∫

D

fhvh dx , ∀ vh ∈ Vh ⊆ H1
0 (D), (7b)

yε,h − ξh ∈ Vh ⊆ H1
0 (D), (7c)

where (7b) constitutes the equation for the discretized state yε,h ∈ Ṽh ⊆ H1(D),
fh ∈ Ṽh and ξh ∈ Ṽh are given suitable approximations of f and ξ, respectively,
gh, ph ∈ Ṽh are discretized shape functions corresponding to discretizations of
Ωg and Op, respectively, and yd,h is a suitable given continuous and piecewise
affine approximation of yd.

Similar to [5, Proposition 2] and [8, Corollary 5.3], one obtains the directional
derivative of the cost functional (g, p) 	→ j(g, p) with j as in (7a) at (gh, ph) ∈
Ṽh × Ṽh in the direction (wh, uh) ∈ Ṽh × Ṽh as

1
ε

∫

D

H ′
ε(gh)whyε,hqε,h dx −

∫

D

(b1 − b2)H ′
ε(ph)uhyε,hqε,h dx

−
∫

D

(a1 − a2)H ′
ε(ph)uh∇yε,h∇qε,h dx , (8)

where qε,h ∈ Vh ⊆ H1
0 (D) is the solution to the adjoint equation
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∫

D

[
a1 Hε(ph) + a2(1 − Hε(ph))

]∇qε,h · ∇vh dx

+
∫

D

[
b1 Hε(ph) + b2(1 − Hε(ph))

]
qε,hvh dx +

1
ε

∫

D

(
1 − Hε(gh)

)
qε,hvh dx

=
∫

E

(yε,h − yd,h)vh dx + σ

∫

E

(∇yε,h − ∇yd,h) · ∇vh dx , ∀ vh ∈ Vh, (9)

and the direction of steepest descent (wd,0, ud,0) is given by

wd,0 := − (1/ε)H ′
ε(gh) yε,hqε,h, (10)

ud,0 := H ′
ε(ph) (a1 − a2)∇yε,h · ∇qε,h + H ′

ε(ph) (b1 − b2) yε,hqε,h.

While (10) is difficult to use in practise as H ′
ε(gh) and H ′

ε(ph) are typically
nonzero only in a small neighborhood of ∂Ωgh

and ∂Oph
, respectively, mul-

tiplication by nonnegative coefficients yields the following alternative descent
directions (wd,1, ud,1) and (wd,2, ud,2), without such support restrictions:

wd,1 := −yε,hqε,h, ud,1 := (a1 − a2)∇yε,h · ∇qε,h + (b1 − b2) yε,hqε,h, (11)
wd,2 := wd,1 χS , ud,2 := ud,1 χS , (12)

where χS denotes the characteristic function of

S := {x ∈ D : wd,1(x) ≥ ud,1(x)} ∪ {x ∈ E : wd,1(x) ≥ 0 and ud,1(x) ≥ 0}.
(13)

Using (12) has the advantage of maintaining the conditions g ≥ p on D and
p ≥ 0 on E.

For the numerical results presented below, we employ four variants of an
algorithm of gradient with projection type making use of (approximations of)
the descent directions (11) and (12). The two variants based on (11) will be
called A1a and A1b, whereas the variants based on (12) will be called A2a and
A2b. Moreover, variants A1a and A2a will use the admissible set Uh

ad of (6),
whereas A1b and A2b will use the modification

Uh
ad,b :=

{
(g, p) ∈ Uh

ad : |∇g|, |∇p| ≤ 1
}
, (14)

enforcing uniformly bounded gradients for the shape functions, a condition sug-
gested by the results of [8, Sect. 5]. Variant A1a was previously considered in [8];
the remaining three variants are new.

The four algorithms are formulated below in Sect. 2.1, with a description of
their implementation in Sect. 2.2. Numerical experiments comparing the perfor-
mance of the four variants are then presented in Sect. 3.

2 Numerical Algorithms

2.1 Formulation

In preparation for the numerical experiments of Sect. 3, we formulate the employed
algorithms. As indicated at the end of the Introduction, we use four variants of
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the algorithm previously published in [8], built on the earlier version of [5]. As
mentioned above, we denote the four variants by A1a, A1b, A2a, A2b, where A1a
is precisely the algorithm used in [8]. A1a and A1b use the descent direction (11)
for line searches followed by a projection step, whereas A2a and A2b use (12),
which has the advantage of remaining within Uh

ad during the line search, avoiding
the projection. Variants A1b and A2b project into the smaller space Uh

ad,b of (14)
after each line search. The algorithms consist of the following Steps (1)–(7):
(1): Set n := 0 and choose initial shape functions (gh,0, ph,0) ∈ Uh

ad.
(2): Compute the solution to the state equation yn := θε,h(gh,n, ph,n), where
θε,h : Ṽh × Ṽh → Ṽh denotes the control-to-state operator corresponding to (7b),
(7c); and compute the solution to the corresponding adjoint equation qn :=
θ̃ε,h(yn), where θ̃ε,h : Ṽh → Vh, yε,h 	→ qε,h, denotes the solution operator
corresponding to (9).
(3): Compute the descent direction (wn

d , un
d), where wn

d = wd,1(yn, qn) and un
d =

ud,1(yn, qn) according to (11) for A1a and A1b, whereas wn
d = wd,2(yn, qn) and

un
d = ud,2(yn, qn) according to (12) for A2a and A2b.

(4): Set g̃h,n := gh,n+λn wn
d and p̃h,n := ph,n+λn un

d , where λn ≥ 0 is determined
via line search, i.e. as a solution to the minimization problem

min
λ≥0

j(gh,n + λ wn
d , ph,n + λ un

d). (15)

(5): For A2a and A2b, set (˜̃gh,n, ˜̃ph,n) := (g̃h,n, p̃h,n) (no projection is necessary
to obtain (˜̃gh,n, ˜̃ph,n) ∈ Uh

ad); for A1a and A1b, set (˜̃gh,n, ˜̃ph,n) := πh(g̃h,n, p̃h,n),
where πh denotes the projection πh : Ṽh × Ṽh → Uh

ad, obtained by first setting
˜̃gh,n(xh

i ) := max{0, g̃h,n(xh
i )} and p̄h,n(xh

i ) := max{0, p̃h,n(xh
i )} for each node

xh
i of the triangulation Th such that xh

i ∈ E, and second setting ˜̃ph,n(xh
i ) :=

min{p̄h,n(xh
i ), ˜̃gh,n(xh

i )} for every node xh
i of the triangulation Th.

(6): For A1a and A2a, set (gh,n+1, ph,n+1) := (˜̃gh,n, ˜̃ph,n) (no second projection
necessary); for A1b and A2b, set (gh,n+1, ph,n+1) := πh,b(˜̃gh,n, ˜̃ph,n), where πh,b

denotes the projection πh,b : Uh
ad → Uh

ad,b, obtained by dividing ˜̃gh,n and ˜̃ph,n

by α, defined as the max of the max-norms of |∇g| and |∇p|, in case α > 1.
(7): RETURN (gh,fin, ph,fin) := (gh,n+1, ph,n+1) if the change of g, p and/or the
change of j(g, p) are below some prescribed tolerance parameter. Otherwise:
Increment n, i.e. n := n + 1 and GO TO (2).

For all the numerical examples discussed below, we stopped the iteration and
returned (gh,fin, ph,fin) := (gh,n+1, ph,n+1) if |j(gh,n, ph,n) − j(gh,n+1, ph,n+1)| <
10−5 AND ‖gh,n − gh,n+1‖2 < 10−3 AND ‖ph,n − ph,n+1‖2 < 10−3, where
|j(gh,n, ph,n) − j(gh,n+1, ph,n+1)|/|j(gh,n+1, ph,n+1)| is used for |j(gh,n, ph,n) −
j(gh,n+1, ph,n+1)| if |j(gh,n+1, ph,n+1)| > 1 and analogous for gh,n and ph,n.

2.2 Implementation

The state equations as well as the adjoint equations that need to be solved
numerically during the above algorithms are discretized linear elliptic PDE with
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Dirichlet boundary conditions. The numerical solution is obtained via a finite
volume scheme [7, Sect. 4]. More precisely, the software WIAS-HiTNIHS 1, orig-
inally designed for the solution of more general PDE occurring when model-
ing conductive-radiative heat transfer and electromagnetic heating [2], has been
adapted for use in the present context. WIAS-HiTNIHS is based on the program
package pdelib [1], it employs the grid generator Triangle [11] to produce con-
strained Delaunay triangulations of the domains, and it uses the sparse matrix
solver GSPAR [3] to solve the linear system arising from the finite volume scheme.

The numerical scheme yields discrete yn and qn (cf. Step (2) of the above
algorithms), defined at each vertex of the triangular discrete grid, interpolated
piecewise affine, i.e. affinely to each triangle of the discrete grid. In consequence,
the shape functions gh,n and ph,n are piecewise affine as well. Where integrals
of these piecewise affine functions need to be computed (e.g. in Step (7) of the
algorithms), they are computed exactly. A golden section search [10, Sect. 10.2] is
used to numerically carry out the minimization (15). Note that the minimization
(15) is typically nonconvex and the golden section search will, in general, only
provide a local min λn.

For some numerical examples, the stated initial shape functions (gh,0, ph,0)
are merely piecewise continuous (cf. the Introduction and [9]) and, thus, not in
Uh
ad. However, the stated (gh,0, ph,0) are only used to determine the values gh(xh

i ),
ph(xh

i ), at the nodes xh
i of the triangulation Th, and the resulting affinely inter-

polated functions are in Uh
ad. Moreover, in Step (3) of the algorithms, approxi-

mations of the descent directions are used, as for the gradients nodewise averages
are computed, that are then affinely interpolated, and the conditions of (13) are
enforced nodewise and affinely interpolated. In principle, in might occur that
the approximated direction is no longer a descent direction, but such a case was
not observed during our numerical experiments.

3 Numerical Experiments

3.1 Numerical Experiments with Precomputed Optimum

The numerical computations of the present section employ the circular fixed
domain D :=

{
(x1, x2) : x2

1 + x2
2 < 1

} ⊆ R
2 with fixed subdomain E := {(x1, x2)

∈ D : |x1| > 3
4 , |x2| < 1

2} ⊆ D (note E has two connected components). We use
a fixed triangular grid provided by Triangle [11], consisting of 24458 triangles.
The used regularization parameter is ε = 10−5 (cf. [8,9]). The settings for the
remaining given quantities are a1 := 1, a2 := 10, b1 := 1, b2 := 10, f(x1, x2) := 5,
ξ(x1, x2) := 2. The cost functional j as in (7a) depends on the given function
yd,h. For the first set of numerical results, we precompute yd,h := yε,h numerically
as the solution to the state Eq. (7b), (7c), using

gh(x1, x2) :=

⎧
⎪⎨

⎪⎩

−1 if (x1, x2) /∈ E and ‖(x1, x2) − (−1, 0)‖2 < 0.4,

−1 if (x1, x2) /∈ E and ‖(x1, x2) − (1, 0)‖2 < 0.4,

1 otherwise,
(16a)

1 High Temperature Numerical Induction Heating Simulator.
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ph(x1, x2) :=

{
1 in E,

−1 in D \ E.
(16b)

The computed yd,h with the corresponding Ωg and Op is depicted in Fig. 1. Using
the precomputed yd,h has the advantage that we actually know yd,h together
with gh, ph as in (16) provides an absolute minimum in the following numerical
examples, employing the cost functional j of (7a) with the precomputed yd,h

from above. A series of four numerical experiments was conducted, all using the
initial shape functions gh,0(x1, x2) := 1, ph,0(x1, x2) := 1 (see Fig. 2).
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Fig. 1. Precomputed yd,h used in all experiments of Sect. 3.1 (left, isolevels spaced at
0.2), obtained as the solution to the state Eq. (7b), (7c); with the corresponding Ωg

(middle) and Op (right).
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Fig. 2. Initial state, shapes used in all experiments of Sect. 3.1. Left: State isolevels
spaced at 0.2. Middle: Shape Ωg. Right: Shape Op. Cost: j(gh,0, ph,0) = 19.0..

We refer to the experiments as 1:A1a, 1:A1b, 1:A2a, and 1:A2b, depending
on which variant of the algorithm of Sect. 2.1 was used. The results for 1:A2a
and 1:A2b are shown in Fig. 3. The final state and shapes for 1:A1a and 1:A1b
were very similar to those of 1:A2a, with slightly higher final costs (0.69 and
0.28, respectively). All variants reduce the cost significantly, all resulting local
minima being different and different from the absolute min. Variant A2a gives
the best result, whereas A2b results in the highest final cost, where one also
observes a symmetry breaking due to the discrete grid. Actually, for A2b, after
the first line search, the cost is 0.29 with shapes resembling the final shapes of
the other variants, but the projection of Step (6) can subsequently result in a
cost increase, which occurs in this example.

3.2 Numerical Experiments Without Precomputed Optimum

In contrast to the experiments of the previous section, we now consider a setting,
where we are no longer in the situation of a known precomputed optimum. For
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Fig. 3. Final state, shapes for shape optimizations 1:A2a (1st row) and 1:A2b (2nd
row) of Sect. 3.1. Left: State isolevels spaced at 0.2. Middle: Shapes Ωg. Right: Shapes
Op. Final costs j(gh,fin, ph,fin) are 0.053 for 1:A2a, 1.30 for 1:A2b. Required number of
line searches: 6 for 1:A2a, 29 for 1:A2b

the following numerical results, the fixed domain D is still the unit disk as in
Sect. 3.1. However, the fixed subdomain E is now at the bottom of D, defined by
E := {(x1, x2) ∈ D : x2 < −0.7} ⊆ D. The numerical computations employ a
fixed triangular grid provided by Triangle [11], consisting of 24623 triangles. The
parameter settings are as in Sect. 3.1, except for f(x1, x2) := 10(x2

1+x2
2)+5. The

cost functional is as in (7a) with yd,h(x1, x2) := x1+x2. A series of four numerical
experiments was conducted, all using the initial shape functions gh,0(x1, x2) :=

ph,0(x1, x2) :=

{
1 if (x1, x2) ∈ E,

−1 otherwise
(see Fig. 4).

We refer to the experiments as 2:A1a, 2:A1b, 2:A2a, and 2:A2b, depending on
which variant of the algorithm of Sect. 2.1 was used. Results are shown in Fig. 5,
except for 2:A2a,which converged after 10 line searches to a localmin almost identi-
cal to the initial condition.All other variants reduce the cost significantly, all result-
ing local minima being different. Here, the lowest final cost is achieved for variant
A1b.Onenotices significant changes in shapes (including topology changes) during
the optimizations, where very different shapes can result in nearly identical costs.
As in Sect. 3.1, symmetry breaking can occur due to the discrete grid.
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Fig. 4. Initial state, shapes used in all experiments of Sect. 3.2. Left: State isolevels
spaced at 0.2. Middle: Shape Ωg. Right: Shape Op. Cost: j(gh,0, ph,0) = 24.8.
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Fig. 5. Intermediate and final state, shapes for shape optimizations of Sect. 3.2, i.e. for
Experiments 2:A1a (1st, 2nd row), 2:A1b (3rd, 4th row), and 2:A2b (5th, 6th row).
Left: State isolevels spaced at 0.2. Middle: Shapes Ωg. Right: Shapes Op. Costs at
shown intermediate states are 2.64 for 2:A1a, 1.74 for 2:A1b, 1.70 for 2:A2b. Final
costs j(gh,fin, ph,fin) are 1.72 for 2:A1a, 1.68 for 2:A1b, 1.69 for 2:A2b. Number of line
searches for intermediate and for final state: 8 and 31 for 2:A1a, 2 and 29 for 2:A1b, 3
and 38 for 2:A2b
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4 Conclusions

In a series of numerical experiments, we have studied four variants of an algo-
rithm of gradient with projection type for shape optimization problems driven
by elliptic PDE. The variants used different descent directions and different sets
of admissible shape functions. Except in one situation, all variants were effective
in finding local minima of significantly reduced costs. However, it did depend on
both the equation and on the initial condition, which variant showed the best
performance. Thus, further research seems warranted to further evaluate and
improve the different variants.
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Abstract. A new method is presented for tomographic reconstruction
of objects with homogeneous attenuation. The method is based on para-
metric representation with Non-Uniform Rational B-Splines (NURBS)
and statistical inversion with a Markov Chain Monte Carlo (MCMC)
algorithm. The method recovers the approximate boundary curve shape
and the attenuation value of two-dimensional homogeneous objects. The
boundary can be represented by NURBS with few parameters, reducing
the number of degrees of freedom. However, this leads to a nonlinear
inverse problem, and therefore statistical inversion is used. One of the
benefits of the approach is that the reconstruction is automatically in the
form of the geometrical representation in industrial CAD format or CNC
configuration. Computational results are presented with two different
simulated homogeneous geometric models and sparsely sampled tomo-
graphic data. The new method outperforms the baseline method (filtered
back-projection) in image quality but not in computational speed.

Keywords: Tomography · Homogeneous · CAD · NURBS · Bayesian
inversion · MCMC

1 Introduction

Creating a virtual model of a given physical object is increasingly important in,
for example, reverse engineering and game development. The details of recon-
structing the model depend on the kind of measurements that are available
about the object. For example laser scanning and digital photography are pop-
ular methods providing surface information. In this work we concentrate on
sparsely sampled X-ray tomography measurements.

Consider a three-dimensional cylindrical object Ω × R with a simply con-
nected base Ω ⊂ R

2. Furthermore, assume that we only know that the object
is homogeneous: the X-ray attenuation coefficient has an unknown but constant
value c > 0 inside the object.
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We discuss the situation where we have X-ray projection data of a transversal
slice of the object. In other words, we have access to a collection of line integrals
of the function f : R2 → R defined by

f(x, y) =
{

c for (x, y) ∈ Ω,
0 for (x, y) ∈ R

2 \ Ω.
(1)

The angular sampling of the X-ray data can be very sparse, allowing for quick
measurement process with low radiation dose. Our aim is to recover two things:
the boundary ∂Ω ⊂ R

2 represented as a parameterized curve and the attenuation
coefficient c.

We want our method to be practically useful in industrial environments.
Computer numerical control (CNC) machines are widely used in modern produc-
tion facilities, and they use computer-aided design (CAD) models. The proposed
tomographic method represents the unknown boundary curve in Non-Uniform
Rational Basis Spline (NURBS) form, which is the standard in CAD software.
This direct connection with industrial standards is the main motivation behind
the proposed method.

NURBS curves are represented by a relatively small number of parameters:
a set of planar control points and a related knot vector. In this paper we fix the
knot vector, so the information to be recovered consists merely of the control
points and the attenuation parameter. The low dimensionality of this problem
formulation offers computational advantages. However, there is a complication
as well: the linear inverse problem of X-ray tomography becomes nonlinear in
this parameterization. Therefore, we resort to the very general framework of
Bayesian inversion [4,10].

In Bayesian inversion, limited measurement data is complemented by a priori
information using the Bayes formula. This way the ill-posed inverse problem is
recast in a well-posed form of exploring the posterior probability distribution. As
explained in [5], in the case of X-ray tomography this involves a discrete atten-
uation model and a Monte Carlo Markov Chain (MCMC) method for sampling
the posterior. Usually the large number of pixels in the reconstructed image
leads to MCMC sampling in a very high-dimensional space (one dimension for
each pixel). In our case the posterior distribution is defined in a relatively low-
dimensional space: one dimension for the attenuation value plus two dimensions
for each control point. This enables efficient MCMC sampling.

The a priori information we use is rather simple: we assume that we have an
upper bound for the diameter of the two-dimensional shape (transversal slice)
under measurement. Also, we assume that the curve does not have too small
details (parts with very high curvature) and choose the number of control points
to be as small as possible while still capable of representing the smallest details
in the curve.

We demonstrate the novel NURBS-MCMC method using two simulated non-
convex examples. See Fig. 3 below. The reconstruction algorithm is found to
recover the attenuation coefficient quite precisely and the boundary shape with
reasonable accuracy from very sparsely sampled X-ray data (only 18 projection
directions).
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This paper is organized as follows. In Sect. 2, we discuss the theory of NURBS
curves. In Sect. 3 we present the X-ray measurement model. Section 4 is devoted
to the description of Bayesian inversion. In Sect. 5, we present the reconstruction
results, and in Sect. 6 we conclude our findings.

2 NURBS Description for Parametric Curve

We model an unknown object boundary ∂Ω by a continuous curve S : [0, 1] →
R

2. In our computational problem, we construct S using NURBS that are widely
used as computationally fast and robust representations of curves.

The basic building blocks of NURBS are the following:

1. Control points p1, . . . ,pn. These planar locations pi ∈ R
2 are, roughly speak-

ing, points of attraction for the NURBS curve, where i = 1, 2, ..., n. Through-
out the paper we denote by n the number of control points.

2. Knots t1, t2, . . . , tK ∈ [0, 1], with ordered as follows:

0 = t1 ≤ t2 ≤ . . . ≤ tK = 1,

where K > n. The knot are used to divide the interval [0, 1] into suitable
pieces. We collect the knots into a knot vector [t1 t2 . . . tK ].

3. Basis function (Ni,p(t)) specifies how strongly the control point pi attracts
the NURBS curve. The first-order basis function is

Ni,1(t) =
1 if ti ≤ t < ti+1,

0 otherwise.

Higher-order basis functions are defined recursively as

Ni,p(t) =
t − ti

ti+p − ti
Ni,p−1(t) +

ti+p+1 − t

ti+p+1 − ti+1,p−1
N1+i,p−1(t),

where p is the order of the basis function and K = n + p.
The general form of NURBS curve can be written as

S(t) =
n∑

i=1

piRi,p(t). (2)

The Rational in NURBS comes from the rational function Ri,p(t) =
ωiNi,p(t)∑n
i=0 ωiNi,p(t)

, where the weights ωi ≥ 0, for all i. In this preliminary result,
we use the same weights for all control points.

3 Tomographic Measurement Model

Consider a continous tomography model f : R
2 → R as in Eq. (1), where

f(x, y) ≥ 0 and supp(f) ⊂ Ω with bounded Ω ⊂ R
2.
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Fig. 1. An X-ray travels along a homogeneous target slice. The shade of gray describes
a constant coefficient attenuation c inside Ω.

Consider an X-ray traveling through a two dimensional object along a straight
line as shown in the Fig. 1. In this specimen, the slice of the target is in square
defined by 0 ≤ x ≤ a and 0 ≤ y ≤ b. Assume that an X-ray penetrates along the
horizontal path 0 ≤ x ≤ a and y = b1.

Let us consider that the X-ray has the initial intensity I0 = I(0) and the
intensity becomes smaller, say I1 = I(1) after it passes the object. This situation
can be modeled using f(x, y), an attenuation coefficient function, as:

dI(x)
I(x)

= −f(x, b1)dx,

where I(x) is the intensity of the X-ray at the point (x, b1) while passing through
the source to the detector.

In tomographic imaging, we want to collect information about f using dif-
ferent angles. Let us consider the Radon transform, denoted by R, as follows.
Assume α ∈ R as an angle measured in radians:

α =
[
cos α
sin α

]
∈ R

2,

the unit vector with angle α with respect to the x−axis.
The radon function of the function f depends on the angular parameter α

and on a linear parameter s ∈ R as follows:

Rf(s, α) =
x.α=s

f(x)dx⊥,

where dx⊥ is the one dimensional Lebesgue measure along the line {x ∈ R
2 :

x · α = s}.
For computational reasons, we need a discrete model. In this case, we con-

struct two discrete models: a pixel-based object model and a NURBS-based
object model, a model where the boundary ∂Ω is expressed as a NURBS curve
as shown in Fig. 2.

In the pixel-based model, the line integral is discretized using the standard
pencil-beam model. We use the pixel-based Matlab routine radon.m for simu-
lating parallel-beam tomographic data.
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∂Ωc

0

Fig. 2. Left: the NURBS-based object model where ∂Ω is a NURBS curve. The inside
of the curve is set to be c and the outside is set to 0. Right: the pixel image

In the NURBS-based model, the line integral is discretized by moving to
pixel-based model using an operator B defined by

B(p, c) =
c, if the pixel center is inside the NURBS curve,
0, if the pixel center is outside the NURBS curve.

(3)

Assuming that the knot vector is fixed, the degrees of freedom in our NURBS
model are the control points p1, . . . ,pn together with the attenuation.

In the simulation, we measure two simple homogeneous shapes that have
different attenuation. To avoid inverse crime [7], we produce the synthetic phan-
toms Ω1 and Ω2 without using NURBS. Those objects are set to be homogeneous
inside with attenuation values 2 and 3,5, respectively, as shown in Fig. 3.

The objects are measured with the resolution 64 × 64 using parallel beam
geometry as shown in Fig. 4. From the source, the X-ray penetrates through
the objects and a sensor detects the projection images from different directions.
Sparse full angle data, 0◦, 10◦, 20◦, ...., 170◦, are applied to obtain the projections
and each direction consists of 95 lines.

Ω1 Ω2

Fig. 3. Homogeneous phantoms
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Fig. 4. Parallel beam X-ray measurement geometry. There are 6 different directions
(0◦, 30◦, 60◦, 90◦, 120◦, 150◦) and 15 lines. Black dots show the locations of the X-
ray source at different times of measurement. The thick line represents the detector
measuring the intensity of the X-rays after passing through the target

4 Bayesian Inversion for Control Points and Attenuation
Value

This section presents the Bayesian approach to handle the inverse problem. This
measurement data, m, is used to get information about other quantities. In this
case, we encounter a nonlinear inverse problem, which need to be solved by
recovering B that depends on p and c.

We model the problem as the following form:

m = R(B(p, c)) + ε, (4)

where ε is the error of the measurement.
The Bayesian inversion approach is based on the relations between probabil-

ity distributions to model the inadequacy of information in an inverse problem.
Before performing the collection of measurement data, we construct a model for
a priori knowledge. Since the control points are presented in polar coordinates,
i.e. pi = (ri sin θi, ri cos θi), we assume that the angle of each parameter is not
less than θmin

i and not more than θmax
i , and the distance of each parameter from

the central point of the object is nonnegative and not more than rmax
i . In this

case, Ω1 and Ω2 have rmax
i values that equal to 15 and 30, respectively, and the

maximum of the attenuation value cmax is 5 for both objects.
We formulate the prior condition as follows

π(m | (p, c)) =

⎧
⎪⎨

⎪⎩

exp(− 1
2σ2

2
‖(p, c) − (p̃, c̃)‖2

2) for 0 ≤ ri ≤ rmax
i and 0.1 < c < cmax

and θmin
i ≤ θi ≤ θmax

i ,

0 otherwise,

(5)
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where p = {pi} and (p̃, c̃) is a priori information of the position of control points and
the attenuation value. After examining the measurement setting and prior information,
we can model the conditional probability of m, which is called the likelihood function

π(m | (p, c)) = exp(− 1

2σ2
1

‖R(B(p, c)) − m‖2
2). (6)

By given observed data, m, the conditional probability π(p, c |m) of p and c can
be expressed as follows

π(p, c |m) =
π(p, c)π(m | (p, c))

π(m)
, (7)

which is called the posterior distribution. To solve our inverse problem, we need to
explore this distribution.

As a common method to represent statistical estimates, we apply the conditional
mean (CM) of the unknown p and c. Since CM is defined as

(pCM, cCM) =

∫

RN

(p, c)π(p, c |m) d(p, c),

finding the estimate leads to the integration problems. Typically, the integration is over
a high-dimensional space. To unfold this issue, a Markov chain Monte Carlo (MCMC)
technique is recommended to generate a sample from the posterior distribution. For
a general introduction to Bayesian inversion and properties of MCMC computation
see [2–4].

By applying the CM estimate to the samples {p1,l,p2,l, ...,pn,l, cl}, we get

pCM
i ≈ 1

N

N

l=1

pCM
i,l and cCM ≈ 1

N

N

l=1

cCM
l ,

where pCM = {pCM
i }, i = 1, 2, ..., n and N is the number of evaluations. For the NURBS

curve reconstruction with N evaluations, it is written as SCM
N .

5 Computational Results

In this section, numerical examples are presented. We use Metropolis-Hastings as sam-
pling algorithm to generate control points and attenuation with 1 000 000 iterations
(applied also to the Radon transform and its adjoint). In each iteration, the weights
are set to be equal while the order and knot vector of NURBS curve are set to be
fixed. The order is set to be 3 because it is widely used in practical application and
to avoid heavy calculation times. As a default knot vector in CAD, the open uniform
knot vector is chosen for Ω1 and Ω2, [0 0 0 1
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1 1 1], respectively.
The NURBS curves as in the rightmost Fig. 5 are achieved. By using the mapping

as in (3), both final shape reconstructions are presented in the middle of Figs. 6 and 7.
The error in the shape reconstructions is given as follows. Denote O as the image of the
original 2D object and Orec as the image of the reconstruction. Set O\Orec for points
that belong to the original object but not to the reconstruction and Orec\O for points
that belong to the reconstruction but not to the original object. The relative error in
the reconstruction is written as

(area(O\rec) + area(Orec\O))

area O
100 % (8)
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Fig. 5. The thin black line is the target curve. The thick black line is the reconstruction
of the NURBS curve, SCM

N . Top: reconstructions for Ω1, bottom: reconstructions for
Ω2. The black circle markers are the control points, pCM

Fig. 6. Left: Original Ω1. Center: NURBS-MCMC reconstruction. Right: FBP recon-
struction. Both are using error 0.1 %

Fig. 7. Left: Original Ω2. Center: NURBS-MCMC reconstruction. Right: FBP recon-
struction. Both are using error 0.1 %
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By applying (8), the relative errors of Ω1 and Ω2 reconstructions using NURBS-
MCMC are 15 % and 8.3 %, respectively. Recovered chains of attenuation values of Ω1

and Ω2 after burn-in period have relative errors 9.26 % and 1.47 %, respectively.

Table 1. Mean and standard deviation of FBP reconstruction

mean standard deviation

Ω1 1.9795 0.11

Ω2 3.49 0.14

Table 2. Computation time (in seconds) for all reconstruction methods.

FBP NURBS-MCMC

1 18 000

The rightmost images in Figs. 6 and 7 show recovered shapes using filtered back
projection (FBP). The reconstruction uses the resolution 64 × 64. To assess the error
in the reconstructed attenuation value, a representative rectangular region of interest
is picked from the inside the reconstruction. The mean and the standard deviation of
the recovered attenuation values are computed as we can see in Table 1, while Table 2
shows computation times for both methods.

6 Discussion and Conclusions

Reconstruction using the NURBS-MCMC method in nonlinear inverse problem can
recover measurement data successfully. Homogeneous objects Ω1 and Ω2 are recovered
by only 2n+1 parameters: 25 and 17, respectively. Those recovered data are geometrical
representations which are automatically set to CAD or CNC configuration. In the
middle of Figs. 6 and 7, the vector graphic form is converted to be 512 × 512.

In filtered backprojection, the reconstruction is represented by pixel images and
consequently doing a segmentation to represent the shape is nontrivial.

Nevertheless, the slowness of computation is a shortcoming of the proposed method
as we can see in Table 2, but by implementing parallel computing, the problem can be
handled.
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Abstract. The dynamics and evolution of leukemia is determined by
the interactions between normal and leukemic cells populations at every
phase of the development of hematopoietic cells. For both types of cell
populations, two subpopulations are considered, namely the stem-like cell
population (i.e. with unlimited self-renew ability) and a more mature, dif-
ferentiated one, possessing only the capability to undergo limited repro-
duction. Treatment effects are included in the model as functions of time
and a cost functional is considered. The optimal control is obtained using
a discretization scheme. Numerical results are discussed in relation to the
medical interpretation.

Keywords: Leukemia · Asymmetric division · Competition · Optimal
control · Treatment
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1 Introduction

For the description of biological processes implied in hematopoiesis, a mathemat-
ical model that includes time delays will be used. It is based on the mass action
principle, in the spirit of [1,2,4,12,16,20]. Other authors [14,15] used the more
simple model from [18] for the dynamics of hematopoietic stem cells (HSC).

Chronic Myelogenous Leukemia (CML), also known as Chronic Granulocytic
Leukemia, is a cancer of white blood cells. It is a clonal marrow stem cells dis-
order in which the main characteristic is the proliferation of granulocytes (neu-
trophils, eosinophils and basophils) and of their precursors in the bone marrow
and the accumulation of these cells in the blood. It is a type of myeloproliferative
disease associated to a chromosomal translocation called the Philadelphia chro-
mosome (see also [6,19]) presenting the oncogene BCR-ABL that encodes a tyro-
sine kinase protein. Tyrosine kinases are enzymes that play an important role in
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tumor development by supporting cell growth through phosphorylation of signal-
ing proteins [11]. Understanding the molecular mechanism of CML permitted the
development of specific tyrosine kinase inhibitors (TKIs) as imatinib (Gleevec),
dasatinib or nilotinib. The standard first line therapy is nowadays imatinib, which
acts through competitive inhibition at the ATP-binding site of the BCR-ABL
enzyme, leading to the inhibition of tyrosine phosphorylation of proteins involved
in BCR-ABL signal transduction [7]. The molecular effect of imatinib is mainly
the inhibition of cell proliferation of BCR-ABL–positive cells but, there are exper-
imental evidences that, in the mature cell lines, the inhibition of cell proliferation
is followed by apoptosis [11]. Although imatinib has a very good successful rate,
there are many experimental evidences attesting it does not affect quiescent stem
cells deep in the bone marrow, and the consequence is the disease reapers after
the treatment is stopped.

In this paper, we study an optimal control delay differential equation model
of four cell populations, namely two healthy and two leukemic. For these classes
of cells, we consider a population of mature cells which lost their self-renew
ability and a population of stem-like cells involving a larger category consisting of
proliferating stem and progenitor cells with self-renew capacity. The emphasis in
this optimal control model is on establishing treatment strategies, considering the
competition of healthy vs. CML cell populations and three types of division that
a stem-like cell can exhibit: self-renew, asymmetric division and differentiation
[4,17,20,21,24].

Of course, besides a correct mathematical model for the time evolution of
the studied cell populations, it is very important to model the treatment effect
as accurate as one can. Obviously, different drugs have different effects: some
affect not only leukemic populations but also healthy ones (the cytotoxic ones),
some kill the cells while others only delay or stop the division process (the
cytostatic ones). We take into account here the standard treatment protocol
with imatinib which, as we specified, acts by inhibiting the BCR-ABL signal
transduction. In this way, it restrains the proliferative advantage of the CML
cells and healthy cells regain their advantage. Moreover, it is straightforward
to say that imatinib restores most of the abnormal functions of the CML cells,
and the most important function affected by the drug is the division process of
CML cell population. However, it is uncertain to what extent it affects all three
kinds of division and therefore, we consider here the hypothesis that imatinib
influences self-renew, asymmetric division and differentiation equally.

2 Description of the Model

In the present paper, is assumed that the hematopoietic stem cells that are
considered are in the proliferative phase or spend a short time into the resting
phase. These cells are called, following [17], Short-Term Hematopoietic Stem
Cells (ST-HSC). In what follows x1 denotes the density of short-term stem-like
healthy cells, x2 the density of mature healthy cells, x3 the density of short-term
stem-like leukemic cells, x4 the density of mature leukemic cells.



A Control DDE Model of Normal and Leukemic Cells Under Treatment 259

The time necessary for a ST-HSC to complete a cycle of self-renewal, asym-
metric division or differentiation is τ1l for leukemic cells and τ1h for the healthy
ones, while the time necessary for the maturation of leukocytes is denoted by τ2l

in the case of leukemic cells and τ2h for the healthy ones.
As we mentioned in the introduction, experimental evidences attest that

the imatinib therapy affects primarily the proliferation rate and secondary, the
apoptosis rate. In view of this fact, we consider the treatment functions fu =

1
1 − u

and f1a = (γ1h − γ1l) u1, f2a = cγ2hu2, with u, u1, u2 : [0, T ] → [0, 1],

where u(t), u1(t), u2(t) are the treatment effects. The action of treatment on the
proliferation rate will be considered through fu in the function of self-renew βl

and in the function of differentiation or asymmetric division kl. Note that, in
this way, both βl and kl became decreasing functions of u. If no drug is given
(i.e. u(t) = 0) then βl((x1 + y1)fu) = βl(x1 + y1), kl((x1 + y1)fu) = kl(x2 + y2)
and also, a maximal effect happens for u(t) = 1 when the process of division
essentially stops (βl ≡ kl ≡ 0).

Treatment will be consider to act only on the leukemic stem cells compart-
ment. The treatment acts on the apoptosis of mature CML cells through f2a

and on the apoptosis of stem-like CML cells through f1a, restoring this rate to
a value closed to the mortality rate of healthy cells. From the law of the mass,
we have f̃1a =

∫ t

t−τ1l
u1(s)ds. The optimal control model is

ẋ1 = f1(x1, x2, y1, y2, x1τ1h
, x2τ1h

, y1τ1h
, y2τ1h

)
ẋ2 = f2(x2, x1τ2h

, x2τ2h
, y2τ2h

)
ẏ1 = f3(t, x1, x2, y1, y2, x1τ1l

, x2τ1l
, y1τ1l

, y2τ1l
, u1, u, uτ1l

) (1)
ẏ2 = f4(y2, x2τ2l

, y1τ2l
, y2τ2l

, u2, uτ2l
)

where

f1 = −γ1hx1 − (η1h + η2h)kh(x2 + y2)x1 − (1 − η1h − η2h)βh(x1 + y1)x1+

+2e−b1hτ1h(1 − η1h − η2h)βh(x1τ1h
+ y1τ1h

)x1τ1h
+

+η1he−b1hτ1hkh(x2τ1h
+ y2τ1h

)x1τ1h

f2 = −γ2hx2 + Ahkh(x2τ2h
+ y2τ2h

)x1τ2h

f3 = −(γ1l + f1a)y1 − [(η1l + η2l)kl((x2 + y2) fu)

+ (1 − η1l − η2l)βl((x1 + y1) fu)] y1+

+[2e−b1lτ1l−f̃1a(1 − η1l − η2l)βl((x1τ1l
+ y1τ1l

) fuτ1l
)+

+η1le
−b1lτ1l−f̃1akl((x2τ1l

+ y2τ1l
) fuτ1l

)]y1τ1l

f4 = − (γ2l + f2a) y2 + Alkl((x2τ2l
+ y2τ2l

) fuτ2l
)y1τ2l

subject to minimization of the cost functional

min J(u), (2)
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where

J(u) = ay1(T ) + by2(T ) +
∫ T

0

[
u2(t) + u2

1(t) + u2
2(t)

]
dt

with g(y(T )) = ay1(T )+ by2(T ) the weighted sum of the final tumor population

and L(u(t)) =
T∫

0

[
u2(t) + u2

1(t) + u2
2(t)

]
dt, the cumulative drug toxicity.

In this paper we denote Xτ = X(t − τ), where X = (x1, x2, y1, y2). The
history of the state variables is given by

X(θ) = ϕ(θ), θ ∈ [−τmax, 0], τmax = max(τ1h, τ2h, τ1l, τ2l).

It is not difficult to see that if the initial conditions have all components
positive functions, the solutions of the system will have positive components on
all the interval of existence. Indeed, if x1(θ) > 0 for any θ ∈ [−τ, 0] and there
exists T > 0 such that x1(T ) = 0 the derivative ẋ1(T ) will be positive and this
leads to a contradiction. The same argument works for the other components,
too.

We assume that: a percentage η1α, α = h, l of stem-like cells population
is supposed to undergo asymmetric division; a percentage η2α, α = h, l of the
population differentiate symmetrically and the percentage (1−η1α−η2α), α = h, l
of the population is supposed to self-renew (see also [13]).

Furthermore,it is assumed that homeostatic mechanisms maintain the
hematopoietic stem cell population at a constant level. In this respect, the rate
of self-renewal is given by a Hill function

βα(X) = β0α
θm
1

θm
1 + Xm

, α = h, l

and the rate of differentiation, through symmetric or asymmetric division is
supposed to be dictated, through a feedback law, by

kα(X) = k0α
θn
2

θn
2 + Xn

, α = h, l.

Because in this paper we consider competition between healthy and CML cell
populations, both this rates will depend on the sum of stem-like respectively
mature populations (similar approaches on competition were modeled in [22,23]).

For α = h, l, the other parameter are defined as follows: b1α accounts for the
death rate of stem cells and a positive Kα for the loss rate due to differentiation
into other cell lines - the resulting loss rate is denoted as γ1α = Kα + b1α; β0α

and k0α represent the maximal rate of self-renewal, respectively of asymmetric
division or differentiation into leukocyte line; θi, i = 1, 2, is the value for which
βα, respectively kα attains half of their maximum value; γ2α is the mortality of
mature cells; Aα is an amplification factor of mature cells due to differentiation;
m is the parameter controlling the sensitivity of the mitotic re-entry rate βα to
changes in the size of G0 and n is the parameter controlling the sensitivity of the
asymmetric division or differentiation rate kα to changes in the size of mature
population.
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Existence of an optimal control. The existence of an optimal control results
from transforming the problem into an optimal control problem for a system of
ordinary differential equations (see next section) whose solutions will be bounded
together with their derivatives on compact intervals (see [5]).

3 Discretization of the Optimal Control Problem

In this section, we apply the numerical procedure from Gollmann et al. [10], in
order to solve the delay optimal control problem (1)+(2) (see also [8,9]). For
that matter, we write the cost functional in the Mayer form

J(u, y) = h(y(T )), y = (y1, y2) ∈ R2.

In our case, the reduction of the more general cost functional (2) to Mayer
form, proceeds by the introduction of the additional state variable z through the
delayed equation

ż(t) = L(u(t)) so ż(t) = u2(t) + u2
1(t) + u2

2(t), z(0) = 0.

Then, the cost functional (2) is rewritten as

J(u, y, z) = g(y(T )) + z(T ).

In the following, let τ > 0 such that τ1h = k1τ, τ2h = k2τ, τ1l = k3τ, τ2l = k4τ,
ki ∈ N∗, i = 1, 4, T = Nτ and use the Euler integration method with a uniform
step size τ > 0. Of course, τ can be refined in order to obtain an appropriate
smaller step-size.

Using the grid points ti = iτ , i = 0, N and the approximations x1(ti) � x1i ∈
R, x2(ti) � x2i ∈ R, y1(ti) � y1i ∈ R, y2(ti) � y2i ∈ R, u(ti) � ui, u1(ti) � u1i

and u2(ti) � u2i, the treatment function f1a becomes
∑k3

j=1 u1i−j
τ and the delay

control problem (1)+(2) is transformed into the nonlinear programming problem
(NLP)

Minimize J = g(xN , yN ) + zN (3)

subject to
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x1i − x1i+1 + τf1(x1i, x2i, y1i, y2i, x1i−k1 , x2i−k1 , y1i−k1 , y2i−k1) = 0
x2i − x2i+1 + τf2(x2i, x1i−k2 , x2i−k2 , y2i−k2) = 0
y1i − y1i+1 + τf3(x1i, x2i, y1i, y2i, x1i−k3 , x2i−k3 , y1i−k3 ,

y2i−k3 , ui, u1i, u1i−1 , .., u1i−k3
, ui−k3) = 0

y2i − y2i+1 + τf4(y2i, x2i−k4 , y1i−k4 , y2i−k4 , u2i, ui−k4) = 0
zi − zi+1 + τ

(
u2

i + u2
1i + u2

2i

)
= 0

(4)

− ui ≤ 0, ui − 1 ≤ 0, (5)
−u1i ≤ 0, u1i − 1 ≤ 0,

−u2i ≤ 0, u2i − 1 ≤ 0.

i = 0, N − 1.
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Herein, the initial value profile ϕ1,ϕ2, ϕ3 and ϕ4 gives the values

x1−i
:= ϕ1(−iτ), i = 0, k1

x2−i
:= ϕ2(−iτ), i = 0, k2

y1−j
:= ϕ3(−jτ), j = 0, k3

y2−j
:= ϕ4(−jτ), j = 0, k4

The variable to be optimized is represented by the vector

w =
(
u0, u10 , u20 , x11 , x21 , y11 , y21 , z1, ..., uN−1, u1N−1 , u2N−1 ,

x1N
, x2N

, y1N
, y2N

, zN ) ∈ R8N .

The numerical procedure described above is applied in the next section and
the graphs for states and control for different sets of parameters are obtained.

4 Numerical Results and Simulations

In the following figures, we plotted the trajectories of the healthy, respectively
CML cell populations for the competition system, showing a comparison between
the dynamics of a system without treatment and the dynamics of a system sub-
ject to optimal control of treatment. To solve the problem of optimal control the
Matlab solver for NLP problems fmincon was used, selecting the ‘interior-point’
solver.

In all figures, for the healthy cell populations, we choose the same set of para-
meters value: η1h = 0.7, η2h = 0.1, τ1h = 2, τ2h = 4, γ1h = 0.1, γ2h = 2.4, Ah =
922, β0h = 1.77, k0h = 0.1 , θ1h = 0.5 · 106, θ2h = 0.36 · 108. For leukemic cell
populations, we consider alteration of the value of the following parameters:

– smaller percent of asymmetric division (η1l);
– bigger percent of self-renewal (1 − η1l − η2l);
– lower rate of apoptosis of leukemic stem cells (γ1l);
– lower rate of apoptosis of leukemic mature cells (γ2l);
– enhanced differentiation (Al).

In the following example (Figs. 1 and 2) all these features were modified.
If we maintain the configuration of parameters from the previous example

but consider that the percentage of self renewal of leukemic cells is the same
as the percentage of self renewal of healthy cells, we see another manifestation
of the disease, for which the treatment dose is lower than in the previous case
(Figs. 3 and 4).

5 Discussion

The plots of optimal controls (Figs. 2 and 4) exhibit an optimal control effect
almost constant at 0.5 respectively at 0.25 until the 90th day for all controls.
One can intuitively expect that the treatment effect is proportional with the
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Fig. 1. Comparison between the dynamics of a system without treatment and with
with optimal control of treatment. The results correspond to the best local minimal
solution obtained for different initial guesses (the value of cost functional was improved
from 1597 to 901)

Fig. 2. Optimal control of treatment. The controls u, u1, u2 represent the influence of
drug on the proliferation rate and apoptosis. One can observe that the drug influence
is almost constant and the evolution of u, u1 and u2 are similar if parameters a an b
of cost functional are 1.
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Fig. 3. Comparison between the dynamics of a system without treatment and with
with optimal control of treatment. The results correspond to the best local minimal
solution obtained for different initial guesses (the value of cost functional was improved
from 641 to 260)

Fig. 4. Optimal control of treatment. The controls u, u1, u2 represent the influence of
drug on the proliferation rate and apoptosis. One can observe that the drug influence
is almost constant and the evolution of u, u1 and u2 are similar.
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cell concentration of imatinib; however, in order to study the influence of the
prescribed drug concentration on the population’s time-evolution, imatinib phar-
macokinetics (PK) and pharmacodynamics (PD) need to be taken into account
(see also [20]). Nevertheless, for an optimal effect of treatment, the prescribed
dose should be adapted in view of the disease parameters of a certain patient.
In that respect, a competition model of healthy vs. CML cell population that
takes into account the influence of PK and PD of imatinib, is subject of further
research.
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Abstract. Our starting point is the ascertainment that D-optimal input
signals recently considered by the same authors [12] can be too dangerous
for applying them to real life system identification. The reason is that
they grow too fast in time. In order to obtain more safe input signals,
but still leading to a good estimation accuracy of parameter estimates,
we propose a quality criterion that is a mixture of D-optimality and a
penalty for too fast growth of input signals in time.

Our derivations are parallel to those in [12] up to a certain point only,
since we obtain different optimality conditions in the form of an integral
equation. We also briefly discuss a numerical algorithm for its solution.
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1 Introduction

Our aim is to provide optimality conditions for optimal input signals that are
D-optimal for parameter estimation in linear systems described by ordinary dif-
ferential equations. In opposite to our paper [12], we put emphasis not only on
parameter estimation accuracy, but also on safety of input signals. This leads to
different optimality conditions than those obtained in [12]. They are derived from
the variational approach and they are expressed in a convenient form of integral
equations.

By the lack of space, we do not discuss the selection of input signal when a feed-
back is present. As it was demonstrated in [6] for systems described by ODE’s – the
presence of feedback can be beneficial. The result presented here can be generalized
to the case with a feedback, using the results on output sensitivity to parameters
for systems with feedback (see [13], but this is outside the scope of this paper.

The paper was supported by the National Council for Research of Polish Government
under grant 2012/07/B/ST7/01216, internal code 350914 of Wroc�law University of
Technology.
An erratum to this chapter is available at 10.1007/978-3-662-45504-3 35

c© IFIP International Federation for Information Processing 2014
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As is known, problems of selecting input signal for parameter estimation in
linear systems have been considered in seventies of 20-th century. The results
were summarized in [9] and two monographs [5,19]. They have been concen-
trated mainly on the so-called frequency domain approach. This approach leads
to a beautiful theory, which runs in paralel to the optimal experiment design
theory (see [1]). The main message of this approach is that optimal input sig-
nal are linear combinations of a finite number of sinusoidal waves with precisely
selected frequencies. We stress that sums of sinusoids can have unexpectedly
large amplitudes, which can be dangerous for an identified systems. Notice that
the frequency domain approach requires an infinite observation horizon. Here we
assume a finite observation horizon, which leads to quite different results.

Research in this area was stalled for nearly 20 years. Recently, since the
beginning of 21-st century, the interest of researchers has rapidly grown up (see
[3,4,7,8,16,17] for selected recent contributions).

Related problems of algorithms for estimating parameters in PDE’s and
selecting allocation of sensors are also not discussed (we refer the reader to
[2,10,14,15]).

2 Problem Statement

System description. Consider a system described by ODE

dr y(t)
d tr

+ ar−1
dr−1 y(t)
d tr−1

+ . . . + a0 y(t) = ar u(t), t ∈ (0, T ] (1)

with zero initial conditions, where y(t) is the output, u(t) is the input signal.
The solution y(t; ā) of (1) depends on the vector ā = [a0, a1, . . . , ar]tr

of unknown parameters. The impulse response (response to the Dirac Delta
or Green’s function) of ODE (1) will be denoted later by g(t; ā). Notice that
g(t; ā) = 0, t < 0 and y(t; ā) =

∫ T

0
g(t − τ ; ā)u(τ) dτ . Remark that it is not nec-

essary to assume differentiability of y w.r.t. ā, because solutions of linear ODE’s
are known to be analytical functions of ODE parameters.

As is well known, differential sensitivity y(t; ā) to parameter changes, can be
expressed and calculated in a number of ways (see [13] for a brief summary). For
our purposes it is convenient to express it through r × 1 vector of sensitivities
k̄(t; ā)

def
= ∇ag(t; ā). Then,

∇ay(t; ā) =
∫ T

0

k̄(t − τ ; ā)u(τ) dτ. (2)

Observations and the estimation accuracy. Available observations have the
form:

Υ (t) = y(t; ā) + ε(t), t ∈ [0, T ],

where ε(t) is zero mean, finite variance, uncorrelated, Gaussian white noise, more
precisely, ε(t) is implicitly defined by d W (t) = ε(t) dt, where W (t) is the Wiener
process.
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It can be shown (see [5]), that the Fisher information matrix MT (u) for
estimating ā has the form:

MT (u) =
∫ T

0

∇ay(t; ā) (∇ay(t; ā))tr dt,

where ∇ay(t; ā) depends on u(.) through (2). From the linearity of (1) it follows
that MT (u) can be expressed as follows

MT (u) =
∫ T

0

∫ T

0

H(τ, ν; ā)u(τ)u(ν) dτ dν,

where H(τ, ν; ā)
def
=

∫ T

0
k̄(t − τ ; ā) k̄tr(t − ν; ā) dt.

From the Cramer-Rao inequality we know that for any estimator ã of ā we
have:

cov(ã) ≥ [MT (u)]−1. (3)

When observation errors are Gaussian and the minimum least squares estimator
is used, then the equality in (3) is asymptotically attained. Thus, it is meaningful
to minimize interpretable functions of MT (u), e.g., min Det[MT (u)]−1 w.r.t.
u(.), under certain constraints on u(.).

Problem formulation. Define

U0 =

{

u :
∫ T

0

u2(t) dt ≤ e1, Det[MT (u)] > 0

}

,

where e1 > 0 is a level of available (or admissible) energy of input signals. Let
C0(0, T ) denote the space of all functions that are continuous in [0, T ].

In [12] the following problem has been considered. Find u∗ ∈ U0 ∩ C0(0, T )
for which minu∈U0 Det

[
M−1

T (u)
]
, or equivalently,

max
u∈U0

log [Det (MT (u))] (4)

is attained. As it was demonstrated in [12] (see also comparisons at the end
of this paper), signals that are optimal in the above sense can be even more
dangerous than sums of sinusoids.

For these reasons, we consider here putting additional constraints on the
system output.

Typical output constraints include:
∫ T

0

y2(t) dt ≤ e2, y(t) =
∫ T

0

g(t − τ, ā) u(τ) dτ, (5)

∫ T

0

ẏ2(t) dt ≤ e3, ẏ(t) =
∫ T

0

g′(t − τ, ā) u(τ) dτ, (6)

∫ T

0

ÿ2(t) dt ≤ e4, ÿ(t) =
∫ T

0

g′′(t − τ, ā) u(τ) dτ. (7)
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Later, we consider only (5), because results for (6) and (7) can be obtained from
those for (5) by formal replacement of g by g′ or g′′, respectively.

Define U1 =
{

u :
∫ T

0
u2(t) dt ≤ e1,

∫ T

0
y2(t) dt ≤ e2, Det[MT (u)] > 0

}
,

where e2 > 0 is the admissible level of energy of output y(t) signal that depends
on u(.) as in (5).

Now, our problem reads as follows: find u∗ ∈ U1 ∩ C0(0, T ) for which

max
u∈U1

log [Det (MT (u))] (8)

is attained.
In fact, in most cases only one of the constraints

∫ T

0
u2(t) dt ≤ e1 and

∫ T

0
y2(t) dt ≤ e2 is active, depending on the system properties and on values

of e1 and e2. In practice, the following way of obtaining an input signal that is
informative and simultaneously safe for the identified system can be proposed.

Upper level algorithm

1. For a given value of available input energy e1 > 0 solve problem (4). Denote
its solution by u∗

1, say. Set � = 1.
2. Calculate the output signal y∗

� , corresponding to u∗
� . If y∗

� is safe for the
system, then stop – u∗

� is our solution. Otherwise, go to step 3.
3. Calculate etrial =

∫ T

0
[y∗

� (t)]2 dt and select e2 less then etrial, e.g., e2 = θ etrial,
where 0 < θ < 1.

4. Set � = � + 1 and solve problem (8). Denote its solution by u∗
� and go to step

2. Notice that now the constraint for the output energy is active and the one
on input energy is almost surely not active (see the discussion in the next
section).

The curse of the lack of a priori knowledge. As in optimum experiment
design for nonlinear (in parameters) regression estimation (see [1,11]), also here
the optimal u∗ depends on unknown ā. Furthermore, condition

∫ T

0
[y(t)]2 dt ≤ e2

also contains unknown ā. The ways of circumventing these difficulties have been
discussed for a long time. The following ways are usually recommended (see
[11]):

1. use “the nominal” parameter values for ā, e.g., values from previous experi-
ments,

2. the “worst case” analysis, i.e. solve the following problem

max
u∈U1

min
ā

log [Det (MT (u; ā))] ,

where MT (u; ā) is the Fisher information matrix, in which dependence on ā
is displayed,

3. the Bayesian approach: use prior distribution imposed on ā and average
MT (u; ā) with respect to it,

4. apply the adaptive approach of subsequent estimation and planning stages.
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Later we use the “nominal” parameter values ā. Thus, we obtain locally optimal
input signals, which are optimal in a vicinity of nominal parameters. We under-
line that the results are relevant also to the Bayesian and adaptive approaches in
the sense that it is easy to obtain optimality conditions in a way that is similar
to the one presented bellow.

3 Optimality Conditions

Define the Lagrange function

L(u, γ) = log [Det (MT (u))]−γ1

(∫ T

0

u2(t) dt − e1

)

−γ2

(∫ T

0

y2(t) dt − e2

)

,

where γ1, γ2 are the Lagrange multipliers and γ = [γ1, γ2]tr.
Let u∗ ∈ U1 ∩ C0(0, T ) be a solution of (8) problem and let uε(t) = u∗(t) +

ε f(t), where f ∈ C0(0, T ) is arbitrary. Then, for the Gateaux differential of L
we obtain

∂L(uε, γ)
∂ ε

∣
∣
∣
ε=0

= 2
∫ T

0

f(ν)

[∫ T

0

k̂er(τ, ν, u∗)u∗(τ) dτ − γ1 u∗(ν)

]

dν,

where, for u ∈ U0, we define:

(a) k̂er(τ, ν, u)
def
= ker(τ, ν, u) − γ2 G(τ, ν),

(b) G(τ, ν)
def
=

∫ T

0
g(t − τ, ā) g(t − ν, ā) dt,

(c) ker(τ, ν, u)
def
= trace

[
M−1

T (u)H(τ, ν, ā)
]
.

The symmetry of kernel k̂er(τ, ν, u) was used in calculating ∂L(uε, γ)
∂ ε

∣
∣
∣
ε=0

. Notice

that k̂er(τ, ν, u) depends also on γ2 but this is not displayed in the notation.
If u∗ is optimal, then for each f ∈ C0(0, T ) we have ∂L(uε, γ)

∂ ε

∣
∣
∣
ε=0

= 0. Then,
by the fundamental lemma of the calculus of variation we obtain.

Proposition 1. If u∗ solves problem (8), then it fulfils the following integral
equation

∫ T

0

[ker(τ, ν, u∗) − γ2 G(τ, ν)] u∗(τ) dτ = γ1 u∗(ν), ν ∈ (0, T ). (9)

Notice that the constraints:

– input energy constraint
∫ T

0
u2(t) dt ≤ e1 and

– output energy constraint
∫ T

0
y2(t) dt ≤ e2
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can be simultaneously active at the optimal solution u∗ in a very special case.
Namely, if ∫ T

0

[u∗(t)]2 dt = e1, (10)

then we must also have
∫ T

0

∫ T

0

G(τ, ν)u∗(τ)u∗(ν) dτ dν = e2. (11)

In other words, simultaneous equality of both constraints (10) and (11) is not a
generic case and without loosing generality, we can consider only the cases when
only one of them1 is active.

Case I – only input energy constraint active. This case is exactly the one
considered in our paper [12]. We provide a brief summary of the results and
their extension. Notice that in this case γ2 = 0 and we consider problem (4). For
simplicity of formulas we set e1 = 1.

Proposition 2. If u∗ solves problem (4), then it fulfils the following integral
equation ∫ T

0

ker(τ, ν, u∗)u∗(τ) dτ = γ1 u∗(ν), ν ∈ (0, T ). (12)

Furthermore, γ1 = r + 1 = dim(ā) and this is the largest eigenvalue of the
following linear eigenvalue problem2

∫ T

0

ker(τ, ν, u∗)φ(τ) dτ = λ φ(ν), ν ∈ (0, T ). (13)

Thus, the eigenfunction corresponding to the largest eigenvalue is a natural
candidate for being the optimal input signal. In the case of multiple eigenvalues,
one can consider all linear combinations of the eigenfunctions that correspond
to the largest eigenvalue.

Proposition 3. Condition (12) with γ1 = r + 1 is sufficient for the optimality
of u∗ in problem (4).

This result was announced in [12] under additional condition on T . It occurs
that this condition can be removed. The proof is given in the Appendix.

Algorithm – Case I. As one can notice, (13) is nonlinear, because of the
dependence of ker(τ, ν, u∗). The simplest algorithm that allows to circumvent
this difficulty is the following:
1 We exclude also the case that both of them are inactive, because if u(t) is replaced

by ρ u(t) with ρ > 1, then det[MT (ρ u)] > det[MT ( u)].
2 As is known [18], the eigenvalue problem for linear integral equation with nonnegative

definite and symmetric kernel has the following solution: its eigenvalues are real and
nonnegative, while the corresponding eigenfunctions are orthonormal in L2(0, T ) (or
can be orthonormalized, if there are multiple eigenvalues).
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Start with arbitrary u0 ∈ U0, ||u0|| = 1 and iterate for p = 0, 1, . . .

ûp+1(ν) =
1

r + 1

∫ T

0

ker(τ, ν, up)up(τ) dτ, up+1 = ûp+1/||ûp+1||

until ||up+1 − up|| < δ, where δ > 0 is a preselected accuracy.
The proof of convergence can be based on the fixed point theorem, but this

is outside the scope of this paper.
This algorithm has been used for solving examples in the next section. It was

convergent in several or at most several dozens of steps. The Nyström method
with the grid step size 0.01 was used to approximate integrals.

Case II – only output energy constraint active. If only the output energy
constraint active then γ1 = 0 and Proposition 1 immediately implies.

Proposition 4. If u∗ solves problem (4) with the input energy constraint inac-
tive, then it fulfils the following integral equation for ν ∈ (0, T )

∫ T

0

ker(τ, ν, u∗)u∗(τ) dτ = γ2

∫ T

0

G(τ, ν)u∗(τ) dτ. (14)

Furthermore, γ2 = (r + 1)/e2.

The last fact follows from the multiplication of the both sides of (14) by u∗(ν)
and their subsequent integration. One should also observe that

∫ T

0

∫ T

0

G(τ, ν)u∗(τ)u∗(ν) dτ dν =
∫ T

0

[y∗(t)]2 dt = e2.

For solving (14) one can use iterations analogous to the Algorithm - Case I.
The discussion of sufficiency of (14) is outside the scope of this paper. It is

however worth noticing that the following linear, generalized eigenvalue problem
is associated with (14): find non-vanishing eigenfunctions and eigenvalues of the
following equation:

∫ T

0

ker(τ, ν, u∗)ψ(τ) dτ = γ2

∫ T

0

G(τ, ν)ψ(τ) dτ, ν ∈ (0, T ). (15)

4 Example

Consider the system ÿ(t)+2 ξ ẏ(t)+ω2
0 y(t) = ω0 u(t) with known resonance fre-

quency ω0 and unknown damping parameter ξ to be estimated, ẏ(0) = 0, y(0) =
0. Its impulse response has the form: g(t; ξ) = exp(−ξ t) sin(ω0 t), t > 0, while its
sensitivity k(t; ξ) = d g(t;ξ)

d ξ has the form: k(t; ξ) = −t exp(−ξ t) sin(ω0 t), t > 0.
Our starting point for searching informative but safe input signal for estimat-

ing ξ is u0(t) = 0.14 sin(3 t), t ∈ [0, 2.5]. It provides MT = 0.013 and
∫

y2 = 25.8
at ξ0 = 0.1, which is our nominal value. Firstly, problem (4) has been solved.
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Fig. 1. Left panel – more aggressive input signal (no output constraints, right panel –
more safe input signal (with output power constraint) obtained for a system described
in Sect. 4.

Fig. 2. Left panel – more aggressive output signal (no output constraints, right panel –
more safe output signal (with output power constraint) obtained for a system described
in Sect. 4.

The results are shown at the left panels of Figs. 1 and 2 for input signal and the
corresponding output with

∫
y2 = 68.7, respectively. This input signal is much

more informative than u0 – it provides MT = 0.745, but is too aggressive – its
largest amplitude is about 0.25.

Then, according to the proposed methodology, the constraint
∫

y2 ≤ 53.2
has been added and problem (8) has been solved. The results are shown at the
right panels of Figs. 1 and 2 for input signal and the corresponding output with∫

y2 = 53.2, respectively. This input signal is less aggressive – its maximum is
0.15 – and only slightly less informative MT = 0.715 than more aggressive input
signal described above. The relative information efficiency of these two signals
is 96%. Thus, we have reduced the largest amplitude by 60%, the output energy
by 77%, while D-efficiency dropped by 4%. It is worth to mention that the more
safe input signal provides 56 times better information content than our initial
guess u0.
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Appendix

Proof of Proposition 3. Notice that γ2 = 0 in this case. By direct calculations for
∂L(uε, γ)

∂ ε we have the following expression:

∂L(uε, γ)
∂ ε

= 2
∫ T

0

f(ν)

[∫ T

0

ker(τ, ν, uε) (u∗(τ) + ε f(τ)) dτ − γ uε(ν)

]

dν

Before obtaining ∂2L(uε, γ)
∂ ε2 it isworth consideringKε(τ, ν, uε)

def
= ∂ker(τ, ν, uε)

∂ ε

∣
∣
∣
ε=0

Kε(τ, ν, uε) =
∫ T

0

k̄tr(t′ − τ ; ā)
∂ M−1

T (uε)
∂ ε

∣
∣
∣
ε=0

k̄(t′ − ν; ā) dt′ (16)

Using the well known formula ∂ B−1(ε)
∂ ε = −B−1(ε) ∂ B(ε)

∂ ε B−1(ε), valid for
differentiable matrix valued functions B(ε) that are nonsingular and symmetric,
we obtain

∂ M−1
T (uε)
∂ ε

∣
∣
∣
ε=0

= −M−1
T (u∗)G(u∗, f)M−1

T (u∗) (17)

where G(u∗, f) is an R × R symmetric matrix defined as follows

G(u∗, f)
def
=

∫ T

0

[∫ T

0

k̄(t − ν′; ā)u∗(ν′) dν′
∫ T

0

k̄tr(t − τ ′; ā) f(τ ′) dτ ′+ (18)

∫ T

0

k̄(t − ν; ā) f(ν) dν

∫ T

0

k̄tr(t − τ ; ā) u∗(τ) dτ

]

dt

Define f̄ =
∫ T

0
f(ν) dν, f2 =

∫ T

0
f2(ν) dν. Differentiation of L(uε, γ1) w.r.t. ε

yields ∂2L(uε, γ1)
∂ ε2

∣
∣
∣
ε=0

=

= 2
(
f̄2 − γ1 f2

)
+ 2

∫ T

0

∫ T

0

Kε(τ, ν, u∗) f(ν)u∗(τ) dτ dν (19)

Subsequent substitutions of (18) into (17) and then to (16) plus tedious calcu-
lations lead to the following expression for the second summand in (19)

− 2 trace
[
M−1

T (u∗)Z
(
Z M−1

T (u∗)
)tr

]
, (20)

where Z
def
=

∫ T

0
Y (t)F tr(t) dt, while Y (t)

def
=

∫ T

0
k̄(t − τ)u∗(τ) dτ , F (t)

def
=

∫ T

0
k̄(t − ν) f(ν) dν. The matrix in the square brackets in (20) is nonnegative

definite. Thus, the whole expression is negative or zero.
From the obvious inequality

∫ T

0

(√
γ1 f(t) − f̄

)2
dt ≥ 0 we immediately

obtain
(
f̄2 − γ1 f2

)
≤ (1 − T − 2

√
γ1) f̄2 If (1 − 2

√
γ1 − T ) ≤ 0, then the
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expression
(
f̄2 − γ1 f2

)
is nonpositive for all admissible non-constant functions

f �= 0, which yields that (19) is negative, proving sufficiency. It remains to be
sure that (1 − 2

√
γ1 − T ) ≤ 0 or equivalently that

T ≥ 1 − 2
√

γ1. (21)

Notice that γ1 = r + 1. Thus, 1− 2
√

(r + 1) is always negative, even if only one
parameter is estimated. Hence, condition (21) always holds for T > 0.
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Abstract. We consider a linear system of compactly coupled wave equa-
tions with Neumann feedback controllers that contain delay terms. First,
we prove under some assumptions that the closed-loop system generates
a C0−semigroup of contractions on an appropriate Hilbert space. Then,
under further assumptions, we show that the closed-loop system is expo-
nentially stable. This result is obtained by introducing a suitable energy
function and by using an observability estimate.

Keywords: Coupled wave equations · Time delays · Boundary
stabilization

1 Introduction

In [1,2], Datko et al. presented examples of infinite-dimensional second-order
systems that become unstable when arbitrary small time delays occur in the
damping.

Xu et al. established in [9] sufficient conditions that guarantee the exponential
stability of the one-dimensional wave equation with a delay term in the boundary
feedback. Nicaise and Pignotti [6] extended this result to the multi-dimensional
wave equation with a delay term in the boundary or internal feedbacks. The
same type of result was obtained by Nicaise and Rebiai [7] for the Schrödinger
equation.

Motivated by the references [3,5,6,9], we investigate in this paper the prob-
lem of exponential stability for a linear system of compactly coupled wave equa-
tions with delay terms in the boundary feedbacks.

Let Ω be an open bounded domain of Rn with a boundary Γ of class C2 which
consists of two non-empty parts Γ1 and Γ2 such that Γ1 ∩ Γ2 = ∅. Furthermore,
assume that there exists a real vector field h ∈ (C2(Ω))n such that:
(H.1) The Jacobian matrix J of h satisfies

∫

Ω

J(x)ζ(x).ζ(x)dΩ ≥ c

∫

Ω

|ζ(x)|2 dΩ,

for some constant c > 0 and for all ζ ∈ L2(Ω;Rn),

c© IFIP International Federation for Information Processing 2014
C. Pötzsche et al. (Eds.): CSMO 2013, IFIP AICT 443, pp. 278–284, 2014.
DOI: 10.1007/978-3-662-45504-3 27
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(H.2) h(x).ν(x) ≤ 0 on Γ1,
where ν is the unit normal on Γ pointing towards the exterior of Ω.

Consider the following coupled system of two wave equations with delay
terms in the boundary conditions:

∂2u(x, t)
∂t2

− Δu(x, t) + l(u(x, t) − v(x, t)) = 0 in Ω × (0,+∞), (1)

∂2v(x, t)
∂t2

− Δv(x, t) + l(v(x, t) − u(x, t)) = 0 in Ω × (0,+∞), (2)

u(x, 0) = u0(x),
∂u(x, 0)

∂t
= u1(x) in Ω, (3)

v(x, 0) = v0(x),
∂v(x, 0)

∂t
= v1(x) in Ω, (4)

u(x, t) = v(x, t) = 0 on Γ1 × (0,+∞), (5)
∂u(x, t)

∂ν
= −α1

∂u(x, t)
∂t

− α2
∂u(x, t − τ)

∂t
on Γ2 × (0,+∞), (6)

∂v(x, t)
∂ν

= −β1
∂v(x, t)

∂t
− β2

∂v(x, t − τ)
∂t

on Γ2 × (0,+∞), (7)

∂u(x, t − τ)
∂t

= g(x, t − τ) on Γ2 × (0, τ), (8)

∂v(x, t − τ)
∂t

= h(x, t − τ) on Γ2 × (0, τ). (9)

Physically, u and v may represent the displacements of two vibratings objects
measured from their equilibrium positions, the coupling terms ±l(u − v) are the
distributed springs linking the two vibrating objects. l, α1, α2, β1, β2 are positive
constants, τ is the time delay, u0, u1, v0, v1, g and h are the initial data.

It is well known that in the absence of delay (i.e. α2 = β2 = 0), the solution
of (1)–(9) with α1 and β1 positive, decays exponentially to zero in the energy
space H1

Γ1
(Ω) × L2(Ω)× H1

Γ1
(Ω) × L2(Ω) (see [5] and [3]).

The purpose of this paper is to investigate the uniform exponential stability of
system (1)–(9) in the case where all the boundary damping coefficients α1, α2, β1

and β2 are positive. To this end, assume as in [6] that

α1 > α2, β1 > β2 (10)

and define the energy of a solution of (1)–(9) by

E(t) =
1
2

∫

Ω

[|∇u(x, t)|2 +
∣
∣
∣
∣
∂u(x, t)

∂t

∣
∣
∣
∣

2

+ |∇v(x, t)|2 +
∣
∣
∣
∣
∂v(x, t)

∂t

∣
∣
∣
∣

2

+

l |u(x, t) − v(x, t)|2 ]dx +
1
2

∫

Γ2

∫ 1

0

[μ
∣
∣
∣
∣
∂u(x, t − τρ)

∂t

∣
∣
∣
∣

2

+

ξ

∣
∣
∣
∣
∂v(x, t − τρ)

∂t

∣
∣
∣
∣

2

]dρ dΓ (11)
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where
τα2 < μ < τ(2α1 − α2) (12)

and
τβ2 < ξ < τ(2β1 − β2) (13)

We show that if {Ω,Γ1, Γ2} satisfies (H.1) and (H.2), then there is an exponential
decay rate for E(t).The proof of this result is based on Carleman estimates for
a system of coupled nonconservative hyperbolic systems established by Lasieka
and Triggiani in [4] and on compactness-uniqueness arguments.

The main result of this paper can be stated as follows.

Theorem 1. Assume (H1), (H.2), (10),(12) and (13). Then there exist con-
stants M ≥ 1 and ω > 0 such that

E(t) ≤ Me−ωtE(0).

Theorem 1 is proved in Sect. 3. In Sect. 2, we study the well-posedness of system
(1)–(9) using semigroup theory.

2 Well-Posedness of System (1)–(9)

Inspired from [6] and [7], we introduce the auxilliary variables

y(x, ρ, t) =
∂u(x, t − τρ)

∂t

z(x, ρ, t) =
∂v(x, t − τρ)

∂t

With these new unknowns, system (1)–(9) is equivalent to

∂2u(x, t)
∂t2

− Δu(x, t) + l(u(x, t) − v(x, t)) = 0 in Ω × (0,+∞), (14)

∂y(x, ρ, t)
∂t

+
1
τ

∂y(x, ρ, t)
∂ρ

= 0 on Γ2 × (0, 1) × (0,+∞), (15)

∂2v(x, t)
∂t2

− Δv(x, t) + l(v(x, t) − u(x, t)) = 0 in Ω × (0,+∞), (16)

∂z(x, ρ, t)
∂t

+
1
τ

∂z(x, ρ, t)
∂ρ

= 0 on Γ2 × (0, 1) × (0,+∞), (17)

u(x, t) = v(x, t) = 0 on Γ1 × (0,+∞), (18)
∂u(x, t)

∂ν
= −α1

∂u(x, t)
∂t

− α2y(x, 1, t) on Γ2 × (0,+∞), (19)

∂v(x, t)
∂ν

= −β1
∂u(x, t)

∂t
− β2z(x, 1, t) on Γ2 × (0,+∞), (20)

y(x, 0, t) =
∂u(x, t)

∂t
, z(x, 0, t) =

∂v(x, t)
∂t

on Γ2 × (0,+∞), (21)
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u(x, 0) = u0(x),
∂u(x, 0)

∂t
= u1(x) in Ω, (22)

v(x, 0) = v0(x),
∂v(x, 0)

∂t
= v1(x) in Ω, (23)

y(x, ρ, 0) = g(x,−τρ), z(x, ρ, 0) = h(x,−τρ) on Γ2 × (0, 1). (24)

Denote by H the Hilbert space

H =H1
Γ1

(Ω) × L2(Ω) × L2(Γ2;L2(0, 1)) × H1
Γ1

(Ω) × L2(Ω) × L2(Γ2;L2(0, 1))

where
H1

Γ1
(Ω) = {u ∈ H1(Ω) : u = 0 on Γ1}

We equip H with the inner product

〈

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ζ
η
θ
φ
χ
ψ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

;

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ζ̃
η̃

θ̃

φ̃
χ̃

ψ̃

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

〉

=
∫

Ω

(∇ζ(x).∇ζ̃(x) + η(x)η̃(x)) dx+

μ

∫

Γ2

∫ 1

0

θ(x, ρ)θ̃(x, ρ)dρ dΓ +
∫

Ω

(∇φ(x).∇φ̃(x) + χ(x)χ̃(x)) dx+

ξ

∫

Γ2

∫ 1

0

ψ(x, ρ)ψ̃(x, ρ)dρ dΓ + l

∫

Ω

(ζ(x) − φ(x))(ζ̃(x) − φ̃(x))dx

Define in H a linear operator A by

D(A) = {(ζ, η, θ, φ, χ, ψ)T ∈ H2(Ω) × H1
Γ1

(Ω) × L2(Γ2;H1(0, 1))×
H2(Ω) × H1

Γ1
(Ω) × L2(Γ2;H1(0, 1));

∂ζ

∂ν
= −α1η − α2θ(., 1),

η = θ(., 0) on Γ2;
∂φ

∂ν
= −β1χ − β2ψ(., 1), χ = ψ(., 0) on Γ2} (25)

A(ζ, η, θ, φ, χ, ψ)T = (η,Δζ + lφ − lζ,−τ−1 ∂θ

∂ρ
, χ,Δφ − lφ + lζ,−τ−1 ∂ψ

∂ρ
)T

(26)

Then we can rewrite (14)–(24) as an abstract Cauchy problem in H
{

d
dtW (t) = AW (t)
W (0) = W0

(27)

where

W (t) = (u(x, t),
∂u(x, t)

∂t
, y(x, ρ, t), v(x, t),

∂v(x, t)
∂t

, z(x, ρ, t))T ,

and W0 = (u0, u1, g(.,−.τ), v0, v1, h(.,−.τ))T
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We verify that A is dissipative and that λI−A is onto for a fixed λ > 0. Thus,
by the Lumer-Phillips Theorem (see for instance [8]) A generates a strongly
continuous semigroup on H and consequently we have

Proposition 1. For every W0 ∈ H, problem (27) has a unique solution W
whose regularity depends on the initial datum W0 as follows:

W (.) ∈ C([0,+∞);H) if W0 ∈ H,

W (.) ∈ C1([0,+∞);H) ∩ C([0,+∞);D(A)) if W0 ∈ D(A).

3 Proof of Theorem 1

We prove Theorem 1 for smooth initial data. The general case follows by a
standard density argument.

We proceed in several steps.
Step 1.
Differentiating E(t) with respect to time, we obtain

d

dt
E(t) ≤ −k

∫

Γ2

{
∣
∣
∣
∣
∂u(x, t)

∂t

∣
∣
∣
∣

2

+
∣
∣
∣
∣
∂u(x, t − τ)

∂t

∣
∣
∣
∣

2

+
∣
∣
∣
∣
∂v(x, t)

∂t

∣
∣
∣
∣

2

+
∣
∣
∣
∣
∂v(x, t − τ)

∂t

∣
∣
∣
∣

2

}dΓ

(28)
where

k = min{α1 − α2

2
− μ

2τ
,

μ

2τ
− α2

2
, β1 − β2

2
− ξ

2τ
,

ξ

2τ
− β2

2
}

Step 2.
We rewrite

E(t) = E(t) + Ed(t)

where

E(t) =
1

2

∫

Ω

{|∇u(x, t)|2+

∣
∣
∣
∣
∂u(x, t)

∂t

∣
∣
∣
∣

2

+|∇v(x, t)|2+

∣
∣
∣
∣
∂v(x, t)

∂t

∣
∣
∣
∣

2

+l |u(x, t) − v(x, t)|2}dx

and

Ed(t) =
1
2

∫

Γ2

∫ 1

0

{μ

∣
∣
∣
∣
∂u(x, t − τρ)

∂t

∣
∣
∣
∣

2

+ ξ

∣
∣
∣
∣
∂v(x, t − τρ)

∂t

∣
∣
∣
∣

2

}dρdΓ

Ed(t) can be rewritten via a change of variable as

Ed(t) =
1
2τ

∫ t+τ

t

∫

Γ2

{μ

∣
∣
∣
∣
∂u(x, s − τ)

∂t

∣
∣
∣
∣

2

+ ξ

∣
∣
∣
∣
∂v(x, s − τ)

∂t

∣
∣
∣
∣

2

}dΓds (29)

From (29), we obtain (here and throughout the rest of the paper C is some
positive constant different at different occurences)

Ed(t) ≤ C

∫ T

0

∫

Γ2

{
∣
∣
∣
∣
∂u(x, s − τ)

∂t

∣
∣
∣
∣

2

+
∣
∣
∣
∣
∂v(x, s − τ)

∂t

∣
∣
∣
∣

2

}dΓds (30)

for 0 ≤ t + τ ≤ T and T large enough.
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Step 3.
From Poincaré inequality and Proposition 3.5 of [4], we have for T sufficiently
large and for any ε > 0

E(0) ≤ C

∫ T

0

∫

Γ2

{
∣
∣
∣
∣
∂u(x, t)

∂ν

∣
∣
∣
∣

2

+
∣
∣
∣
∣
∂u(x, t)

∂t

∣
∣
∣
∣

2

+
∣
∣
∣
∣
∂v(x, t)

∂ν

∣
∣
∣
∣

2

+
∣
∣
∣
∣
∂v(x, t)

∂t

∣
∣
∣
∣

2

}dΓdt +

C{‖u‖2L2(0,T ;H1/2+ε(Ω)) + ‖v‖2L2(0,T ;H1/2+ε(Ω))} (31)

Inserting the boundary conditions (6) and (7) into (31), we obtain

E(0) ≤ C

∫ T

0

∫

Γ2

{
∣∣
∣
∣
∂u(x, t)

∂t

∣∣
∣
∣

2

+

∣∣
∣
∣
∂u(x, t − τ)

∂t

∣∣
∣
∣

2

+

∣∣
∣
∣
∂v(x, t)

∂t

∣∣
∣
∣

2

+

∣∣
∣
∣
∂v(x, t − τ)

∂t

∣∣
∣
∣

2

}dΓdt+

C{‖u‖2
L2(0,T ;H1/2+ε(Ω)) + ‖v‖2

L2(0,T ;H1/2+ε(Ω))} (32)

Step 4.
Estimate (30) together with (32) yields

E(0) ≤ C

∫ T

0

∫

Γ2

{
∣
∣
∣
∣
∂u(x, t)

∂t

∣
∣
∣
∣

2

+

∣
∣
∣
∣
∂u(x, t − τ)

∂t

∣
∣
∣
∣

2

+

∣
∣
∣
∣
∂v(x, t)

∂t

∣
∣
∣
∣

2

+

∣
∣
∣
∣
∂v(x, t − τ)

∂t

∣
∣
∣
∣

2

}dΓdt +

C{‖u‖2
L2(0,T ;H1/2+ε(Ω)) + ‖v‖2

L2(0,T ;H1/2+ε(Ω))} (33)

Step 5.
We drop the lower order terms on the right-hand side of (33) by a compactness-
uniqueness argument to obtain

E(0) ≤ C

∫ T

0

∫

Γ2

{
∣
∣
∣
∣
∂u(x, t)

∂t

∣
∣
∣
∣

2

+

∣
∣
∣
∣
∂u(x, t − τ)

∂t

∣
∣
∣
∣

2

+

∣
∣
∣
∣
∂v(x, t)

∂t

∣
∣
∣
∣

2

+

∣
∣
∣
∣
∂v(x, t − τ)

∂t

∣
∣
∣
∣

2

}dΓdt

(34)

Step 6.
From (28), we have

E(T )− E(0) ≤ −k

∫ T

0

∫
Γ2

{
∣∣∣∣∂u(x, t)

∂t

∣∣∣∣2 +

∣∣∣∣∂u(x, t − τ)

∂t

∣∣∣∣2 +

∣∣∣∣∂v(x, t)

∂t

∣∣∣∣2 +

∣∣∣∣∂v(x, t − τ)

∂t

∣∣∣∣2}dΓdt

which together with (34) leads to

E(T ) ≤ Ck−1

1 + Ck−1
E(0) (35)

The desired conclusion follows now from (35).
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Abstract. The major application of heating, ventilating and air-
conditioning (HVAC) systems is the simultaneous control of air tempera-
ture and air humidity. Therefore, in a typical industrial HVAC plant the
following actuators are available: A cooling coil is used to decrease the
air temperature and relative humidity by cooling below the dew point
temperature. A steam humidifier is installed to increase the air humidity
whereas the air temperature is influenced via a heating coil. Additionally,
air temperature and humidity are affected by disturbances acting on the
system. These disturbances include outer air temperature and humidity
as well as the temperatures of hot water and cool water supply. Conse-
quently, in the setup at hand, a plant with three manipulated inputs, four
measurable disturbances and two controlled outputs has to be considered.
A predictive control scheme based on a discrete time plant model is pre-
sented. The proposed controller computes the manipulated variables by
solving an optimization problem at each time step. Simulation and mea-
surement results obtained from an industrial HVAC system are shown.

Keywords: Model predictive control · Heating ventilating and air con-
ditioning systems

1 Introduction

Heating, ventilating and air conditioning (HVAC) systems are used in comfort
applications like office space air conditioning. Furthermore, they are also required
in industrial applications like inlet air conditioning of engine test benches or for
the air conditioning of climate test chambers, e.g. used for automotive tests,
see Fig. 1. The two latter fields of application impose stringent specifications on
control accuracy.

In order to efficiently operate e.g. a climate chamber, the time required to
switch from one temperature/humidity setpoint to another one should be as

The authors would like to thank the company Fischer & Co. Luft- und Klimatechnik
in Graz, Austria for their support and for providing the test plant.
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Fig. 1. Sketch of a climate chamber for automotive tests.

short as possible. In Fig. 2, two exemplary setpoint changes are shown: the
left one shows poor performance, whereas the right one reveals a much bet-
ter dynamic behaviour and consequently a shorter time to track new setpoints.
In this figure, a given tolerance band for temperature and humidity is indicated.
The grey shaded area illustrates the time it takes to meet the tolerance band
after a setpoint change.

In the present paper, a concept to control air temperature and air humidity
is presented. A systematic approach for controller design is given. The concept is
experimentally verified on an industrial test plant and the results are compared
to standard control techniques. The paper is structured as follows: Sect. 2 intro-
duces an industrial test plant used to experimentally validate the results. A math-
ematical model of the plant required for the proposed control concept is given.
Section 3 describes the suggested control strategy and its application to the test
plant. Section 4 discusses the obtained results and Sect. 5 concludes the paper.

2 Test Plant

In order to verify the proposed concept on an industrial system, the test plant
shown in Fig. 3 is available1. The plant is capable of increasing and decreasing
air temperature as well as air humidity. The core components are heating coils
1 The test plant was built and is maintained by Company Fischer&Co. Luft- und

Klimatechnik in Graz, Austria (http://www.fischer-co.at/).

http://www.fischer-co.at/
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Fig. 2. A setpoint change for temperature and humidity. Poor reference tracking (left
hand side) vs. desired reference tracking (right hand side).

(to increase the air temperature), cooling coils (to decrease the air temperature
and to decrease the air humidity) and a steam humidifier (to increase the air
humidity). Via a fan, the conditioned air can be transported to a neighboring
factory building. In the considered plant setup, three actuating signals (u1 . . .
cooling coil 1, u2 . . . heating coil 1, u3 . . . steam humidifier) are used. The con-
trolled variables are air temperature y1 and air humidity y2 in the supply air duct
to the factory building. The air temperature and humidity after the fan, denoted
by d1 and d2 respectively, are regarded as measurable disturbances. Furthermore,
the hot water supply temperature for the heating coil and the cold water supply
temperature for the cooling coil are considered as measureable disturbances d3
and d4.

2.1 Mathematical Plant Model

Mathematical plant models were derived for the components of the test plant. For
the relevant items, the modeling will be described in the following subsections.

Temperature and Humidity Sensor. Temperature and humidity sensors
were modeled as first order systems with transfer functions

G(s) =
1

1 + s T
, (1)

where the individual time constants T were identified from measurements.
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Fig. 3. Picture and schematic representation of the industrial test plant. Outside air
enters the plant from the right, is conditioned and then transported to the neighboring
factory building.

Heating and Cooling Coil. Since the structure of heating and cooling coil
is in principle the same, only one model is required for both. A hot/cold fluid
passes through pipes and air circulates around the pipes which leads to - in case
of a temperature difference between water and air - a heat transfer. The math-
ematical model is derived from mass and energy balances. The gained partial
differential equations describing temperature of water, pipe and air are converted
to ordinary differential equations by segmenting the pipe [1,2]. For one segment,
see Fig. 4, the following set of differential equations is obtained2.

dϑp,j

dt
=

αiAi

mpcp

[
ϑI
w,j + ϑII

w,j

2
− ϑp,j

]

+
αoAoΨa

mpcpκa
(ϑin

a,j − ϑp,j) +
βAorvΨv

mpcpκv
(xin

a,j − xp,j)

(2)

dϑI
w,j

dt
=

2

TdwΔx̃

[

ϑin
w,j −

ϑI
w,j + ϑII

w,j

2

]

+
αiAi

mwcw
(ϑp,j − ϑI

w,j) (3)

dϑII
w,j

dt
=

2

TdwΔx̃
(ϑI

w,j − ϑII
w,j) +

αiAi

mwcw
(ϑp,j − ϑII

w,j) (4)

2 A description of the used variables can be found in the nomenclature at the end of
the paper.
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ϑout
w,j = 1.5ϑII

w,j − 0.5ϑI
w,j (5)

ϑout
a,j = e−κaϑin

a,j + (1 − e−κa)ϑp,j (6)

xout
a,j = e−κvxin

a,j + (1 − e−κv )xp,j (7)

The temperature ϑp of the pipe is influenced by the heat transfer from water
to pipe, by the air inlet temperature and the inlet humidity, see (2). The water
temperatures ϑI

w,j and ϑII
w,j depend on the inlet water temperature ϑin

w,j and
the pipe temperature ϑp. The coefficients in (2)–(4) are given by heat transfer
properties. The outlet air temperature ϑout

a,j as well as the outlet air humidity
xout
a,j are computed from the respective values at the segments inlet and at the

pipe, see (6) and (7). The computation of the weighting factors is given in the
nomenclature and can be found in [1].

Fig. 4. Structure of a heating/cooling coil and sketch of one pipe segment.

Hydraulics. The structure of the hydraulics for heating coil and cooling coil
differ. The heating coil is operated with (almost) constant water mass flow, its
heating power is varied by adjusting the mixing ratio of (hot) supply water with
(cold) return water. In contrast to this operating mode, the water mass flow of
the cooling coil is varied in order to set the cooling power. For the hydraulic
system of the heating coil, a static curve which relates a valve position to a
mixing ratio is used for modeling. In case of the cooling coil, a curve that relates
the valve position to a water mass flow is used. Both relationships were obtained
from measurements and valve data. From the valve data and pipe resistance
values, the shape of the respective static curve was obtained. Via measurements,
the scaling of the static curve was adopted to the plant hydraulics.

3 Control Concept

Model predictive control (MPC) [3,4] has been increasingly applied to HVAC
systems in recent years, see e.g. [5–8]. The sampling times of HVAC systems,
which are typically in the range of several seconds, make the online solution of
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the optimization problem possible, even with limited computing power. Further-
more, multi-input-multi-output systems with constraints on the actuating signals
are handled naturally with MPC. The block diagram of the proposed concept is
depicted in Fig. 5. The model predictive controller utilizes a linear plant model
which is updated each sampling instant. The linear model is obtained from a
model constructed via the local linear model tree (LoLiMoT) algorithm [9–11].
This model will be referred to as LoLiMoT-model in the following and its gener-
ation will be illustrated in the next section. The computation of the linear state
space model is addressed in Sect. 3.2.

Fig. 5. Block diagram of the proposed control concept.

3.1 LoLiMoT-Model of the Plant

The idea of the LoLiMoT algorithm is to approximate a nonlinear system via
several locally affine models. Input and output data of the system to be modeled,
in the following referred to as identification data, is required by the algorithm
to compute the local models parameters w and the validity range of the local
models. The output of one local model is computed from the n previous plant
inputs u and outputs y via its individual difference equation. The order of the
local models is given by n. The output yk of the LoLiMoT-model at time instant
k is computed via the weighted sum of the locally affine models outputs, i.e.

yk =
M∑

l=1

⎛

⎝wl0 +
n∑

i=1

⎡

⎣wy
liyk−i +

m∑

j=1

w
uj

li uj,k−i

⎤

⎦

⎞

⎠ Φl(u∗
k), (8)

where u∗
k = [u1,k−1 u1,k−2 . . . u1,k−n u2,k−1 . . . u2,k−n

. . . um,k−1 . . . um,k−n yk−1 yk−2 . . . yk−n]T . (9)
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The number of local models is denoted by M . The number of model inputs is m.
In the present paper, M = 20, n = 1 and m = 7 holds. The weighting functions
Φ(u∗

k) corresponding to the local models are normalized Gaussian functions.
They depend on the previous inputs and outputs of the LoLiMoT-model which
are collected in the vector u∗.

In a first attempt, the identification data is directly derived from measure-
ments at the test plant. This approach shows a severe problem: the disturbances
d1 to d4 cannot be excited arbitrarily. Consequently, the data available for iden-
tification is inappropriate. To tackle the mentioned obstacle, the identification
data was generated via the mathematical plant model given in Sect. 2.1. Via this
method, sufficiently long and sufficiently excited identification signals can be
generated. In Fig. 6, a comparison of test plant measurements versus the math-
ematical model output is shown. The dynamic behaviour is captured very well.
The temperature offset will be compensated by the controller. The LoLiMoT-
model output compared to the test plant measurements is depicted in Fig. 6 on
the right hand side. A good accordance of the model output with the test plant
measurements is given.
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Fig. 6. Comparison: test plant measurements vs. mathematical model output (left)
and test plant measurement vs. LoLiMoT-model output (right).

3.2 Computation of the Linear State Space Model

For the proposed control concept, the plant parameters A, B, H and C of a
linear state space model are required. These parameters are updated at each
sampling instant and are obtained from the LoLiMoT-model. The observability
canonical form is chosen, the parameters are computed from the coefficients
given in (8). A detailed description is omitted due to space limitations, it can
be found in [12].
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3.3 Model Predictive Controller

The proposed control concept relies on a linear model predictive controller of
the form3

min
uk+i|k

np−1∑

i=0

(rk+i|k − ŷk+i|k)TQ(rk+i|k − ŷk+i|k)+

+ ΔuT
k+i|kR1Δuk+i|k + uT

k+i|kR2uk+i|k (10)

s.t.

umin ≤ uk+i|k ≤ umax (11)

Δumin ≤ Δuk+i|k ≤ Δumax (12)
Δuk+i|k = uk+i|k − uk+i−1|k (13)
Δuk+i|k = 0 ∀i > nc (14)
xk+i+1|k = Akxk+i|k + Bkuk+i|k + Hkdk+i|k (15)

ŷk+i|k = Ckxk+i|k (16)

Deviations of the predicted plant output ŷ from the reference r are penalized
by the matrix Q along the prediction horizon np. The choice of the prediction
horizon was motivated by the system dynamics. From step experiments, the
dominant time constant was determined and the horizon was chosen to cover
approximately 5 time constants. With this setting, extensive experimental valida-
tion was performed on the industrial system with the proposed MPC-LoLiMoT-
scheme. These experiments showed that the controlled variables converged to
their respective reference values. The predicted output ŷk+i|k is corrected by
the difference between measurement and model output at time k, i.e. ŷk − yk.
Constraints on the actuating signal u are given by (11). The rate of change of
the actuating signal Δu is limited by Δumin and Δumax, see (12)–(13). Further-
more, the actuating signal is supposed to remain constant for i > nc, where nc is
the control horizon, see (14). Constraints due to the plant model are represented
by (15) and (16). The actuating signal as well as the actuating signals rate of
change are penalized via R2 and R1 respectively.

4 Discussion

In Fig. 7, measurements obtained at the test plant are presented. The diagram
on the left hand side outlines the capability of the proposed controller to track
reference step signals. The short settling time demonstrates the performance
of the MPC/LoLiMoT combination. Actuating signal limits concerning ampli-
tude (limited to the range 0–100 %) and rate (limited to 28.57 % per 10 s) are

3 The nomenclature k + i|k denotes the prediction of a variable at time instant k + i,
provided measurement data is available up to time instant k.
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accounted for by (11) and (12). The heater is at the lower limit until 1000 s,
i.e. constraint (11) is active for the heater during this period. At time equal to
1000 s, the rate limitations (12) are active for the heater and for the humidifier.
During the experiment, at least one of the actuators is at its lower limit most of
the time. In the diagram on the right hand side, a comparision to a classical PI
approach is shown. For this measurement, the steam humidifier was deactivated,
and instead of cooling coil 1 and heating coil 1, cooling coil 2 and heating coil
2 were selected as actuators. In the PI-strategy, the cooler was used to control
the temperature, the heater was used to control the humidity. Two seperate
PI-controllers were tuned by a company specialized to HVAC control. In the
comparison diagram, the proposed strategy clearly outperforms the PI strategy.
Especially, the temperature can be kept at the setpoint very accurately (notice
the small deviation of less than 0.5 ◦C from the reference) with the proposed
strategy, whereas the PI-strategy shows control errors above 1.5 ◦C. The track-
ing performance regarding the humidity is similar for both approaches with slight
advantages for the proposed concept. The humidity remains in a ±5% tolerance
band from approximately 100 s after the step signal.
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Fig. 7. Measurement results. Left: tracking of several reference steps. Right: Compar-
ison to a conventional PI-controller.

5 Conclusion

In the present paper, a control technique is presented which relies on a linear
MPC formulation. To deal with nonlinearities of the plant, the parameters of
the linear model are updated each sampling instant. A plant model obtained via
the LoLiMoT algorithm forms the basis for the creation of the linear state space
model. For the presented application consisting of 3 actuators and 2 controlled
variables, the presented concept naturally handles the choice of the actuators.
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Limitations of the actuators (e.g. limited valve travel in the range of 0 to 100 %
and limited slew rate) are handled by the model predictive controller. With
conventional schemes, e.g. separate PI-controllers, an additional logic to switch
between the destinct controllers has to be implemented. This is not necessary
with the proposed concept, it offers a straight forward, systematic approach to
design controllers for HVAC systems.

Nomenclature

Ai . . . inner pipe surface
Ao . . . outer pipe surface
ca . . . specific heat capacity of air
cp . . . specific heat capacity of the pipe
cw . . . specific heat capacity of water
ṁa . . . air mass flow
mp . . . pipe mass
mw . . . water mass
nc . . . control horizon
np . . . prediction horizon
rv . . . evaporation heat of water

Tdw . . . time it takes the water to
pass the coil

T . . . time constant

x . . . air humidity in kg water per kg air
Δx̃ . . . normalized length of

one pipe segment
αi . . . inner heat transfer coefficient

water-pipe
αo . . . outer heat transfer coefficient

pipe-air
β . . . mass transfer coefficient
ϑ . . . temperature, index a: air,

index p: pipe, index w: water
κa . . . αoAo

ṁaca

κv . . . βAo
ṁa

Ψa . . . 1 − eκa

Ψv . . . 1 − eκv
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Abstract. We analyze L2-regularization of a class of linear-quadratic
optimal control problems with an additional L1-control cost depend-
ing on a parameter β. To deal with this nonsmooth problem we use an
augmentation approach known from linear programming in which the
number of control variables is doubled. It is shown that if the optimal
control for a given β∗ ≥ 0 is bang-zero-bang, the solutions are contin-
uous functions of the parameter β and the regularization parameter α.
Moreover we derive error estimates for Euler discretization.

Keywords: Optimal control · Bang-bang control · L1-minimization ·
Nonsmooth analysis · Regularization · Discretization

1 Introduction

The regularization of optimal control problems by a L2-term α
2 ‖u‖2L2 is often

used in order to get a smoother optimal control. In this cases α can be viewed
as a regularization parameter and one is interested in the question how the
solutions depend on this parameter. For the special case that the control vari-
able appears linearly in the control problem and the optimal control without
regularization (α = 0) has bang-bang structure this question has been inves-
tigated in Deckelnick/Hinze [1] for a class of elliptic control problems and in
Alt/Seydenschwanz [2] for a general class of linear-quadratic control problems
governed by ordinary differential equations.

Maurer/Vossen [3] investigate first order necessary and second order suf-
ficient optimality conditions for a class of nonlinear control problems involv-
ing a L1-term in the cost functional, where the parameter β is kept fixed.
They also propose some numerical algorithms for the solution of such prob-
lems. Sakawa [4] also considers a special numerical algorithm for a fixed para-
meter β > 0. Stadler [5] and Casas et al. [6,7] investigate classes of elliptic
control problems with a L1-term in the cost functional, which is interpreted as
a regularization term. They derive results on the dependence of the solutions
on the parameter β and error estimates for discretizations, but an additional
L2-regularization term with fixed parameter α is used in order to get smoother
solutions. In Wachsmuth/Wachsmuth [8] the dependence of solutions of a class
c© IFIP International Federation for Information Processing 2014
C. Pötzsche et al. (Eds.): CSMO 2013, IFIP AICT 443, pp. 296–305, 2014.
DOI: 10.1007/978-3-662-45504-3 29
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of elliptic control problems on the regularization parameter α is studied while
the parameter β is kept fix.

Results for the dependence of the solutions on the parameter β and error esti-
mates for discretizations for a general class of linear-quadratic control problems
governed by ordinary differential equations have been recently derived in [9]. In
the present paper, we investigate the regularization of such control problems and
the dependence of solutions on the parameter β and the regularization parame-
ter α assuming that for a fixed parameter β∗ the corresponding optimal control
is of bang-zero-bang type.

2 Problem Formulation

With X = X1 × X2, X1 = W 1
∞(0, tf ;Rn), X2 = L∞(0, tf ;Rm), we consider

the following family of L2-regularized linear-quadratic control problems with
L1-control cost depending on the parameters α ≥ 0 and β ≥ 0:

min
(x,u)∈X

fα,β(x, u)

s. t. ẋ(t) = A(t)x(t) + B(t)u(t) a.e. on [0, tf ] , (PQα,β)
x(0) = a ,
u(t) ∈ U a.e. on [0, tf ] ,

where fα,β is a linear-quadratic cost functional with an additional nonsmooth
L1-term defined by

fα,β(x, u) =
1
2
x(tf )TQx(tf ) + qTx(tf )

+
∫ tf

0

1
2
x(t)TW (t)x(t) + w(t)Tx(t) + r(t)Tu(t) dt

+ β ‖u‖L1 +
α

2
‖u‖2L2 .

Here, u(t) ∈ R
m is the control, and x(t) ∈ R

n is the state of the system at
time t, where t ∈ [0, tf ]. Further Q ∈ R

n×n is a symmetric and positive semi-
definite matrix, q ∈ R

n, and the functions W : [0, tf ] → R
n×n, w : [0, tf ] → R

n,
r : [0, tf ] → R

m, A : [0, tf ] → R
n×n, and B : [0, tf ] → R

n×m are Lipschitz contin-
uous. The matrices W (t) are assumed to be symmetric and positive semidefinite,
and the set U ∈ R

m is defined by lower and upper bounds, i.e.

U = {u ∈ R
m | b� ≤ u ≤ bu}

with b�, bu ∈ R
m, b� < bu, where all inequalities are to be understood compo-

nentwise.
While the regularization term α

2 ‖u‖2L2 leads to a smooth optimal control for
α > 0 the term β ‖u‖L1 may be interpreted as both a regularization or some
(nonsmooth) L1-control cost. We are interested in the behavior of a solution
uα,β of Problem (PQα,β) depending on both parameters α and β.
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3 Optimality Conditions

We denote by
U = {u ∈ X2 | u(t) ∈ U a.e. on [0, tf ]}

the set of admissible controls, and by

F = {(x, u) ∈ X | u ∈ U , ẋ(t) = A(t)x(t) + B(t)u(t) a.e. on [0, tf ], x(0) = a}
the feasible set of (PQα,β). Since U is nonempty, the feasible set F is nonempty,
too. And since U is bounded, it follows that ẋ is bounded for any feasible pair
(x, u) ∈ F , and therefore F ⊂ X. Moreover, there is some constant c such that
‖x‖1,∞ ≤ c ‖u‖L∞ for any solution x of the system equation, which implies that
F is bounded.

A feasible pair (xα,β , uα,β) ∈ F is called a minimizer for Problem (PQα,β)
if fα,β(xα,β , uα,β) ≤ fα,β(x, u) for all (x, u) ∈ F . Since the feasible set F
is nonempty, closed, convex and bounded, and the cost functional is convex
and continuous, a minimizer (xα,β , uα,β) ∈ W 1

2 (0, tf ;Rn) × L2(0, tf ;Rm) of
(PQα,β) exists (see [10, Chap. II, Prop. 1.2]), and since U is bounded we have
(xα,β , uα,β) ∈ X = W 1

∞(0, tf ;Rn) × L∞(0, tf ;Rm).
Let (xα,β , uα,β) ∈ F be a minimizer of (PQα,β). Then there exist an ele-

ment γα,β ∈ ∂‖uα,β‖L1 of the subdifferential of ‖uα,β‖L1 and a function λα,β ∈
W 1

∞(0, tf ;Rn) such that the adjoint equation

−λ̇α,β(t) = A(t)Tλα,β(t) + W (t)xα,β(t) + w(t) a.e. on [0, tf ] ,

λα,β(tf ) = Qxα,β(tf ) + q , (1)

and the minimum principle
[
B(t)Tλα,β(t) + r(t) + α uα,β(t) + β γα,β(t)

]T (
u − uα,β(t)

) ≥ 0 ∀u ∈ U (2)

hold a.e. on [0, tf ] (compare e.g. [11, Theorem 10.47] or [3, Sect. 2]).

Remark 1. Since (PQα,β) is a convex optimization problem for all α ≥ 0 and
β ≥ 0, a pair (xα,β , uα,β) ∈ F satisfying the minimum principle (2) and solving
the adjoint equation (1) with some functions γα,β and λα,β is a solution of
(PQα,β) (compare [11, Propositon 4.12]).

Provided α = 0 we are able to evaluate the minimum principle (2) in more
detail (compare [3] and [9]) and obtain

u0,β
i (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

bu,i, if ξβ
i (t) < −β ,

undetermined ∈] 0, bu,i] , if ξβ
i (t) = −β ,

0 , if ξβ
i (t) ∈] − β, β[ ,

undetermined ∈[ b�,i, 0[ , if ξβ
i (t) = β ,

b�,i , if ξβ
i (t) > β ,

(3)
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where ξβ(t) := B(t)Tλ0,β(t) + r(t). If we assume that the set of switching times

Mβ
i =

{
t ∈ [0, tf ]

∣
∣
∣ξβ

i (t) = β or ξβ
i (t) = −β

}
.

is finite, then by (3) the i-th component of the optimal control has a bang-zero-
bang structure.

4 Problem Transformation

In common with [3] and [9] we formulate a transformed problem (TQα,β) in order
to study the dependence of the optimal control on the parameters α and β. This
is a well known augmentation approach from linear programming wherewith
we obtain a linear-quadratic control problem with smooth cost functional (see
e.g. [12]).

Introducing new controls v ∈ X̃2 := L∞(0, tf ;R2m) and using the matrix

M :=

⎛

⎜
⎜
⎜
⎝

1 −1
1 −1

. . . . . .
1 −1

⎞

⎟
⎟
⎟
⎠

∈ R
m×2m (4)

we have

min
(x,v)∈X1×X̃2

f̄α,β(x, v)

s. t. ẋ(t) = A(t)x(t) + B(t)v(t) a.e. on [0, tf ] , (TQα,β)

x(0) = a ,

v(t) ∈ V a.e. on [0, tf ] ,

where B(t) := B(t)M . There are new box constraints for the controls,

V :=
{
v ∈ R

2m | v ≥ 0 , v2i−1 ≤ bu,i , v2i ≤ −b�,i , i = 1, . . . , m
}

,

and fα,β is a linear-quadratic cost functional:

f̄α,β(x, v) =
1
2
x(tf )TQx(tf ) + qTx(tf )

+
∫ tf

0

1
2
x(t)TW (t)x(t) + w(t)Tx(t) + r(t)TMv(t) dt

+ β ‖Mv‖L1 +
α

2
‖Mv‖2L2 .

With the same argumentation as above for Problem (PQα,β) we are able to show
that a minimizer of Problem (TQα,β) exists. We denote the set of admissible
controls by

V =
{

v ∈ X̃2 | v(t) ∈ V a.e. on [0, tf ]
}
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and the feasible set of Problem (TQα,β) by T ⊂ X1 × X̃2, where

T = {(x, v) | v ∈ V , ẋ(t) = A(t)x(t) + B(t)v(t) a.e. on [0, tf ] , x(0) = a} .

Although Problem (TQα,β) admits controls with components v2i−1, v2i being
positive simultaneously, such controls cannot be optimal (see [3, Sect. 4], [9,
Sect. 3], [12, p.42etseq.]). Therefore, all optimal controls satisfy

vα,β
2i−1(t) = max

{
0, uα,β

i (t)
}

, vα,β
2i (t) = max

{
0,−uα,β

i (t)
}

. (5)

The optimality conditions also prove this result. By (5) and v(t) ≥ 0 we now are
able to simplify

‖Mv‖L1 = ‖v‖L1 =
∫ tf

0

2m∑

i=1

vi(t) dt and ‖Mv‖2L2 = ‖v‖2L2 ,

which nicely shows, that a L1- or L2-regularization of the original problem
implies the same regularization of the transformed problem. We finally intro-
duce the minimum principle of Problem (TQα,β)

[
σα,β

]T (
v − vα,β(t)

) ≥ 0 ∀v ∈ V , (6)

where
σα,β := MT

(
B(t)Tλα,β(t) + r(t)

)
+ α vα,β(t) + β e , (7)

with e := (1, . . . , 1)T ∈ R
2m. The adjoint equation (1) as well as the adjoint

variables λα,β do not change im comparison to Problem (PQα,β). A detailed
discussion of the optimality conditions can be found in [3,9].

5 Uniqueness of Solutions

It is well known that the solution of Problem (TQα,β) is uniquely determined
for each β ≥ 0, if α > 0 (compare e.g. [13, Satz 3.2.5]). This extends with (5) to
Problem (PQα,β).

In the case of α = 0 we consider a fixed parameter β∗ ≥ 0 and assume
that the optimal control v0,β∗

of Problem (TQ0,β∗) is of bang-bang type which
implies an optimal control u0,β∗

of bang-zero-bang type for Problem (PQ0,β∗)
by (5). To ensure this we assume that

(B1) There exists a solution (x0,β∗
, v0,β∗

) ∈ T of (TQ0,β∗) such that the set Σ

of zeros of the components of the switching function σ0,β∗
defined by (7)

is finite and 0, tf /∈ Σ, i.e. Σ = {s1, . . . , sl} with 0 < s1 < . . . < sl < tf .

Let I(sj) := {1 ≤ i ≤ 2m | σ0,β∗
i (sj) = 0} be the set of active indices for the

components of the switching function. In order to get stability of the bang-bang
structure under perturbations we need an additional assumption (compare [14]):
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(B2) The functions B and r are differentiable, Ḃ and ṙ are Lipschitz continuous,
and there exists σ̄ > 0 such that

min
1≤j≤l

min
i∈I(sj)

{∣
∣σ̇0,β∗

i (sj)
∣
∣
}

≥ 2σ̄ .

Remark 2. Assumption (B2) can be slightly relaxed (see e.g. [9,15]).

The following result is extracted from [14, Proof of Lemma 3.3]. Proofs can also
be found in [2,9,15].

Lemma 1. Let (x0,β∗
, v0,β∗

) be a minimizer for Problem (TQ0,β∗) and let the
switching function σ0,β∗

(t) be defined by (7). If Assumptions (B1) and (B2) are
satisfied, then there are constants ω, γ, δ̄ > 0 independent of β such that for any
feasible pair (x, v)

∫ tf

0

σ0,β∗
(t)T

(
v(t) − v0,β∗

(t)
)

dt ≥ ω
∥
∥v − v0,β∗∥

∥2

L1 (8)

if ‖v − v0,β∗‖L1 ≤ 2γδ̄, and

∫ tf

0

σ0,β∗
(t)T

(
v(t) − v0,β∗

(t)
)

dt ≥ ω
∥
∥v − v0,β∗∥

∥
L1 (9)

if ‖v − v0,β∗‖L1 ≥ 2γδ̄.

By the help of standard arguments this result implies uniqueness of the solu-
tion of (TQ0,β∗) (compare [14, Theorem 2.2]). It follows with (5) that Prob-
lem (PQ0,β∗) has a unique solution, too.

6 Calmness of Solutions

In this section for α ≥ 0 and β ≥ 0 we denote by (xα,β , uα,β) and (xα,β , vα,β) the
solutions of (PQα,β) and (TQα,β), respectively. We want to study the dependence
of solutions on α and β. We derive estimates which show that the solutions as
functions of the regularization parameters α and β are calm at α = 0 and β = β∗

(compare Dontchev/Rockafellar [16, Sect. 1C]). For this purpose we combine the
results achieved in [2,9].

Theorem 1. Let (B1) and (B2) be satisfied for some β∗ ≥ 0. Then for any
α ≥ 0 and β ≥ 0 the estimate

∥
∥vα,β − v0,β∗∥

∥
L1 ≤ c1 (α + |β − β∗|) (10)

holds, where the constant c1 is independent of α and β.
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Proof. We only consider the case ‖vα,β − v0,β∗‖L1 ≤ 2γδ̄ and refer to [9] and [2]
for the case ‖vα,β − v0,β∗‖L1 ≥ 2γδ̄ which can be handled analogously. Since
Assumptions (B1) and (B2) are satisfied, for α, β ≥ 0 by (8) we have

∫ tf

0

σ0,β∗
(t)T

(
vα,β(t) − v0,β∗

(t)
)

dt ≥ ω
∥
∥vα,β − v0,β∗∥

∥2

L1 (11)

with ω > 0. By the minimum principle (6) we obtain
∫ tf

0

σα,β(t)T
(
v0,β∗

(t) − vα,β(t)
)

dt ≥ 0 . (12)

Adding (12) and (11) it follows that
∫ tf

0

(
σ0,β∗

(t) − σα,β(t)
)T (

vα,β(t) − v0,β∗
(t)

)
dt ≥ ω

∥
∥vα,β − v0,β∗∥

∥2

L1 . (13)

Since

σ0,β∗
(t) − σα,β(t) = B(t)T

(
λ0,β∗

(t) − λα,β(t)
)

+ (β∗ − β) e − α vα,β(t) ,

and due to the fact that xα,β , x0,β∗
satisfy the system equation, and λα,β , λ0,β∗

satisfy the adjoint equation we obtain
∫ tf

0

[
B(t)T

(
λ0,β∗

(t) − λα,β(t)
)]T

(vα,β(t) − v0,β∗
(t)) dt

=
(
x0,β∗

(tf ) − xα,β(tf )
)T

Q
(
xα,β(tf ) − x0,β∗

(tf )
)

+
∫ tf

0

(
x0,β∗

(t) − xα,β(t)
)T

W (t)
(
xα,β(t) − x0,β∗

(t)
)

dt .

Together with (13) this implies

ω
∥
∥vα,β − v0,β∗∥

∥2

L1 +
(
xα,β(tf ) − x0,β∗

(tf )
)T

Q
(
xα,β(tf ) − x0,β∗

(tf )
)

+
∫ tf

0

(
xα,β(t) − x0,β∗

(t)
)T

W (t)
(
xα,β(t) − x0,β∗

(t)
)

dt

≤
∫ tf

0

[
(β∗ − β) e − α vα,β(t)

]T (
vα,β(t) − v0,β∗

(t)
)

dt

≤ |β − β∗|∥∥vα,β − v0,β∗∥
∥

L1 + α
∥
∥vα,β

∥
∥

L∞
∥
∥vα,β − v0,β∗∥

∥
L1 .

Since the matrices Q and W (t), t ∈ [0, tf ], are assumed to be positive semidefinite
and ω > 0, we obtain

ω
∥
∥vα,β − v0,β∗∥

∥2

L1 ≤ (|β − β∗| + α
∥
∥vα,β

∥
∥

L∞
) ∥
∥vα,β − v0,β∗∥

∥
L1 .

We now get (10) with some constant c1 independent of α and β. �
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Remark 3. By Theorem 1 we also obtain estimates for the optimal states
∥
∥xα,β − x0,β∗∥

∥
1,1

≤ c̄1 (α + |β − β∗|)

and for the optimal controls uα,β of the original problem (PQα,β), by using the
matrix (4) and the relation (5) between uα,β and vα,β

∥
∥uα,β − u0,β∗∥

∥
L1 =

∥
∥Mvα,β − Mv0,β∗∥

∥
L1 ≤ ‖M‖1

∥
∥vα,β − v0,β∗∥

∥
L1

≤ c1 (α + |β − β∗|) .

If we choose some β in a sufficiently small neighborhood of β∗ this result can
even be improved.

Theorem 2. Let (B1) and (B2) be satisfied for some β∗ ≥ 0. Then there exist
ρ > 0 and a constant c2 independent of α ≥ 0 and ρ, such that for any βi ∈ R,
i = 1, 2, with βi ≥ 0 and |βi − β∗| < ρ the estimate

∥
∥vα,β1 − v0,β2

∥
∥

L1 ≤ c2 (α + |β1 − β2|) (14)

holds.

Proof. We use [9, Theorem 6.3, Remark 10], which proved the local Lipschitz-
continuity of the optimal control depending on β, where the constant c̃ is inde-
pendent of β: ∥

∥u0,β1 − u0,β2
∥
∥

L1 ≤ c̃ |β1 − β2| . (15)

In addition to this we are able to extend the result of [2, Theorem 4.1] using the
problem transformation introduced in Sect. 4 and obtain

∥
∥uα,β1 − u0,β1

∥
∥

L1 ≤ c̄ α (16)

with some constant c̄ independent of α. Together (15) and (16) lead to
∥
∥uα,β1 − u0,β2

∥
∥

L1 ≤ ∥
∥uα,β1 − u0,β1

∥
∥

L1 +
∥
∥u0,β1 − u0,β2

∥
∥

L1

≤ c̃ α + c̄ |β1 − β2| ,
which implies (14). �

7 Discretization

For the numerical solution of Problem (PQα,β) we use the Euler discretization
scheme described in [9,15]. Given a natural number N and let hN = tf/N be
the meshsize, we approximate the cost functional fα,β by

fα,β,N (x, u) =
1
2
xT

NQxN + qTxN + hN

N−1∑

i=0

1
2
xT

i W (ti)xi + w(ti)Txi + r(ti)Tui

+ hN

⎛

⎝β
N−1∑

i=0

m∑

j=1

|uj,i| +
α

2

N−1∑

i=0

m∑

j=1

u2
j,i

⎞

⎠ ,
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and Problem (PQα,β) by

min fα,β,N (x, u)

s. t. xi+1 = xi + hN (A(ti)xi + B(ti)ui) , i = 0, . . . , N − 1 , (PQN
α,β)

x0 = a ,
ui ∈ U , i = 0, . . . , N − 1 .

Remark 4. Note that analogously to [9] we solve a transformed discretized prob-
lem (compare also Sect. 4) to compute the solution of Problem (PQα,β) numer-
ically.

Theorem 3. Let (x0,β∗
, u0,β∗

) be the solution of Problem (PQ0,β∗) for which
Assumptions (B1) and (B2) are satisfied. Then, for sufficiently large N , choosing
α = cαhN and β = β∗ + cβhN with constants cα and cβ, any optimal control
uα,β

h of Problem (PQN
α,β) can be estimated by

∥
∥uα,β

h − u0,β∗∥
∥

L1 ≤ cuhN ,

where the constant cu is independent of N .

Proof. Using [17, Theorem 5.2] and [9, Theorem 5.1,Remark 8] we have
∥
∥uα,β

h − u0,β∗∥
∥

L1 ≤ ∥
∥uα,β

h − u0,β
∥
∥

L1 +
∥
∥u0,β − u0,β∗∥

∥
L1

≤ cαh + c̃β |β − β∗|

with some constant c̃β independent of β, which implies the assertion. �

Example 1. (The Rocket Car) We consider the popular example of the rocket
car, driving from some starting point to it’s destination (0, 0).

min
1
2

(
x1(5)2 + x2(5)2

)
+ β ‖u‖L1 +

α

2
‖u‖2L2

s. t. ẋ1(t) = x2(t) , ẋ2(t) = u(t) a. e. on [0, 5] ,
x1(0) = 6 , x2(0) = 1 ,
u(t) ∈ [−1, 1] a. e. on [0, 5] .

Table 1 shows numerical results for different meshsizes which confirm the theoret-
ical findings of Theorem 3. To solve the discretized problems we used Ipopt [18].

Table 1. Discretization for different N , β∗ = 1, β = β∗ + hN and α = 10 hN .

N 125 250 500 1000 2000 4000

‖uα,β
h − u0,β∗‖L1 0.2644 0.1344 0.0644 0.0331 0.0177 0.0083

‖u
α,β
h

−u0,β∗ ‖
L1

hN
6.6098 6.7177 6.4409 6.6123 7.0826 6.6752
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Abstract. Our aim is to discuss advantages of quasi-random points
(also known as uniformly distributed (UD) points [8]) and their sub-class
recently proposed by the authors [17] that are well-distributed (WD)
as sensors’ positions in estimating the spatial mean. UD and WD
s sequences have many interesting properties that are useful both for
wireless sensors networks (coverage an and connectivity) and for large
area networks such as radiological or environment pollution monitoring
stations.

In opposite to most popular parameter estimation approaches, we
consider a nonparametric estimator of the spatial mean. We shall prove
the estimator convergence in the integrated mean square-error sense.

Keywords: Sensor networks · Quasi-random sequences · Space-filling
curves · Nonparametric estimation

1 Introduction

Spatial sampling is a crucial issue for proper estimation of parameters in spatio-
temporal dynamical models [9,18] and for estimation of spatial fields (see [14]).
For wireless sensor network (WSN) at least three requirements are crucial,
namely, efficient energy usage, coverage and connectivity. Here, we concentrate
on the last two of them from the view-point of sensors’ deployment. Coverage
(or information coverage) is the ability of WSN to cover the whole area, assum-
ing that a single sensor has the ability of collecting information from its (usually
circular) neighborhood. The connectivity requires that wireless senors can trans-
mit information from one to another and finally to a sink. Both connectivity and
coverage require sensors to be evenly placed in the area.

Our aim is to discuss advantages of equidistributed (EQD) (also known
as uniformly distributed (UD) or quasi-random points [8]) and their sub-class
recently proposed by the authors [17] that are well-distributed (WD). Further-
more, we shall prove that it is possible to construct a nonparametric estimator
c© IFIP International Federation for Information Processing 2014
C. Pötzsche et al. (Eds.): CSMO 2013, IFIP AICT 443, pp. 306–316, 2014.
DOI: 10.1007/978-3-662-45504-3 30
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of the mean of (possibly correlated) random field that is based on observations
from such points.

We refer the reader to [1] and [3] for surveys on WSN and to [5,10,11,14,19]
for an excerpt of approaches recently proposed for sensors placement.

2 Equidistributed Sequences – Good Candidates
for Sensors’ Sites

Equidistributed sequences, also called uniformly distributed, quasi-random or
quasi Monte-Carlo sequences, are well known in the theory of numerical integra-
tion (see, e.g., [7,8]). Here, we summarize some of their basic properties, putting
emphasis on those, which indicate that they are good candidates for sensors’
positions in WSN.

2.1 Definition

Define Id = [0, 1]d as d-dimensional unit cube, which is our space for sensors’
deployment. Clearly, most WSN are considered for d = 2, but it can also be of
interest in some applications to consider WSN in 3D space, e.g., for air pollution.

A deterministic sequence (xi)n
i=1 is called EQD sequence in Id iff

lim
n→∞ n−1

∑n

i=1
g(xi) =

∫

Id

g(x) dx (1)

holds for every g continuous on Id.
Thus, formally, EQD sequence behave as uniformly distributed random

sequences, since (1) mimics a law of large numbers. As we shall see later,
EQD sequences are in some sense “more uniform” than uniformly distributed
random sequences.

The well known EQD sequences include Corput, Halton, Hammersley,
Korobov, Zaremba and Sobol (see, e.g., [6–8]). For our purposes, the following
example is important.

Important example – the Weyl sequence is defined as follows:

ti = fractional part(i θ), i = 1, 2, . . . ,

where θ is selected irrational number. E.g., quadratic irrational – θ = (
√

5−1)/2
behaves quite well in practice. In general, as it is more difficult to approximate θ
by rational numbers, then it is better candidate for generating the Weyl sequence.

2.2 Discrepancy as Indicator of WSN Coverage and Connectivity

A discrepancy Dn of EQD sequence is well known measure of its uniformity (see,
e.g., [6,7]). Dn discrepancy of (xi)n

i=1 is defined as follows:

Dn = sup
A⊂Id

∣
∣
∣
∣μd(A) − Nn(A)

n

∣
∣
∣
∣ , (2)
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where A is any parallelepiped and supremum is taken with respect to all such
A ⊂ Id, μd(A) is d-dimensional Lebesgue measure (the area or volume) of A,
while Nn(A) is number of xi’s in A.

As in the classical Monte-Carlo method, one can expect that for fairly spaced
sensors μd(A) is close to the fraction of sensors in A. For interpreting (8) assume
that the supremum is attained for a certain set Ân ⊂ Id. Then, Ân is the set
that is most unevenly covered by sensors, i.e., it contains too small or too large
number of sensors in comparison to other areas.

For this reason, in our opinion, Dn is a a good measure for connectivity and
coverage of a sensors’ net. It is, however, not easy to find Ân numerically and for
this reason in the theory of numerical integration a simplified, but still useful,
version of discrepancy, called D∗

n discrepancy, is more frequently used.
Let Π(x) be the parallelepiped in Id with vertices in (0, . . . 0) and x. D∗

n

discrepancy of (xi)n
i=1 is defined as follows:

D∗
n = sup

x∈Id

∣
∣
∣
∣μd(Π(x)) − Nn(x)

n

∣
∣
∣
∣ , (3)

where Nn(x) is the number of xi’s in Π(x).
Notice that D∗

n is an analog to Kolmogorov-Smirnoff statistics for testing the
uniformity of a distribution. D∗

n can be efficiently calculated for a given set of
points in 1D, 2D. Furthermore, it can be proved (see [7]) that

D∗
n ≤ Dn ≤ 2d D∗

n. (4)

For “good” known EQD sequences:

D∗
n =

logd(n)
n

.

This is much better than for “usual” uniformly distributed random variables,
for which

D∗
n ∼ 1√

n
.

The same order 1/
√

n is obtained when equidistant grid is considered in R2.

3 Basic Properties of Space-Filling Curves

Our idea is to transform a sequence of one dimensional EQD sequence by a
space-filling curve (SFC) in order to obtain multidimensional EQD sequence with
good properties. Note that a similar construction has been already proposed and
used in the theory of numerical integration, but the transformed sequence was
equidistant, i.e., i/n, i = 1, 2, . . . , n.

Below, we summarize known properties of space filling curves that are either
directly used in the rest of the paper or indicate why we can expect that our
construction leads to sensors’ site with good coverage and connectivity.
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Space-filling curve is a mapping Φ : [0, 1] onto→ Id such that

• Φ(t) a continuous function in I1 = [0, 1]
• maps I1 = [0, 1] onto Id – d-dim. cube.

The Hilbert, Peano and Sierpinski are well known examples of SFCs [15]. All
these curves:

– preserve areas and neighbors (see SFC (2), SFC (3) below),
– fill the space uniformly and as densely as desired.
– can be generated recursively and efficiently.

For the Peano, Hilbert and Sierpiński curves the following properties hold:
SFC (1) ∀g : Id → R, g - continuous

∫

Id

g(x) dx =
∫ 1

0

g(Φ(t)) dt, (5)

where x = [x(1), x(2), . . . , x(d)]
SFC (2) Hölder continuity:

∃CΦ>0 ||Φ(t) − Φ(t′)|| ≤ CΦ|t − t′|1/d, (6)

where ||.|| is the Euclidean norm in Rd.
It is well known that Φ does not have the inverse. However, for any Borel set

A ⊂ Id we can define Φ−1(A) as preimage of A.
SFC (3) Φ preserves the Lebesgue measure in the sense that

∀A⊂Id, μd(A) = μ1(Φ−1(A)), (7)

where μ1, μd are the Lebesgue measures in R1, Rd, respectively. In other words,
volume of Borel set A in Id is equal to the length of Φ−1(A) in I1.

We stress that the Peano, Hilbert and Sierpiński curves can be approximated
efficiently, using O

(	d
ε 
) arithmetic operations, where ε > 0 is the approxima-

tion accuracy (see [2], [16]). Notice that for our purpose we shall calculate Φ(t)
once for t = t1, t2, . . . , tn. Approximation of the Hilbert SFC is shown in Fig. 1.

4 Proposed EQD Sequences

The following algorithm generates EQD sequences that can be used as sensors’
positions.

Algorithm 1

Step (1) Generate EQD sequence in [0, 1] by the Weyl method: ti = frac(i θ), i =
1, 2, . . . , n, where θ is irrational number, e.g., θ = (

√
5 − 1)/2.

Step (2*) Sort ti’s and get t(1) < t(2) < . . . < t(n). This step is optional, it serves
mainly for theoretical purposes, but it can also be used to determine ordering
of senors along SFC, which – in turn – can be used to indicate the ordering of
information transmission between sensors.
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Fig. 1. Approximation of the Hilbert SFC using 1024 points

Step (3) Select SFC and generate xi’s as follows: xi = Φ(t(i)), i = 1, 2, . . . , n.

Below we state properties of the above generated sequences that justify their
usefulness as sensors’ positions.

Algorithm 1 generates sequences that are extendable, i.e., one can add points
without recalculating positions of earlier sites. This property is not shared by
many other methods of generating multidimensional EQD sequences.

A deterministic sequence (xi)n
i=1 is called well distributed (WD) in Id iff

lim
n→∞ n−1

∑p+n

i=p
g(xi) =

∫

Id

g(x) dx

holds uniformly in p, for every g ∈ C(Id), i.e., continuous on Id.
It is known that Weyl seq. ti = frac(i θ) is WD. As far as we know, multidi-

mensional, extendable WD sequences are not known. The only exception is the
above proposed sequence.

Theorem: If θ irrational and SFC has the property SFC (1), then xi’s generated
by Algorithm 1 are not only EQD but also well distributed.

Proof – EQD property. ∀g ∈ C(Id) we have:

n−1
n∑

i=1

g(xi) = n−1
n∑

i=1

g(Φ(ti)) →

→
∫ 1

0

g(Φ(t))dt =
∫

Id

g(x) dx, (8)

since {ti}n
i=1 are EQD, g(Φ(.)) is also continuous, while last equality follows from

SFC 1). The proof of WD property uses the Weyl criterion, generalized to WD
that is too complicated to be presented here (see [17] for details).
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Corollary 1.
Under the same assumptions as in Theorem 1, for points generated by Algorithm 1
we have:

Dn → 0 and D∗
n → 0 as n → ∞ (9)

The first statement follows from (8) by selecting g as indicator functions of
parallelepipeds. The second one is a direct consequence of (4).

Points generated by Algorithm 1, using the Hilbert SFC and θ = (
√

5 − 1)/2
are shown in Fig. 2. We do not have a closed form formula for D∗

n of sequences
generated by Algorithm 1. Instead, we have performed extensive simulations for
n ranging from 50 to 30 000. Then, values of D∗

n were calculated and the least-
squares method was used to fit the dependence of D∗

n(d) on n for d = 2 and
d = 3. The results are the following:

0.2 log2(n)/n for d = 2, (10)

0.06 log3(n)/n for d = 3. (11)

They follow a general pattern of “good” EQD sequences

D∗
n(d) = O

(
logd(n)

n

)

. (12)

Fig. 2. n = 256 points generated by Algorithm 1, using the Hilbert SFC, and linked
by thin lines, indicating their ordering on SFC that can be used as ordering for trans-
mitting information between sensors.



312 E. Skubalska-Rafaj�lowicz and E. Rafaj�lowicz

5 Nonparametric Estimation of Spatial Means
of Random Fields

Our aim in this section is to show how to estimate the spatial mean of a random
field using WD points generated by Algorithm 1. The proposed estimator is
similar to those proposed earlier in [12,13], but it differs in the following two
respects.

– In [12] and [13] points were generated using the Halton-Hammersley sequences,
which are EQD, but it is not known whether they are WD or not, while our
sensors’ positions are WD.

– Here, we allow correlated observations.

Let us assume that observations yi of a scalar random field with unknown
mean f(x) are collected at spatial points xi’s , generated by Algorithm 1. More
precisely,

yi = f(xi) + εi, i = 1, 2, . . . , n, (13)

where εi are random variables (r.v.’s) for which the following conditions hold:

ERR1) εi’s have zero mean, finite variance σ2,
ERR2) for each i = 1, 2, . . . , n the covariance E(εi εj) is not equal to zero only
for a finite number, 0 ≤ G(n) < n of indices j = 1, 2, . . . , n.

This assumption means that we allow for correlations between observations
from i-th sensor and observations from only a finite number G(n) of its nearest
neighborhood sensors with indices in a set denoted by O(i). As we shall see
later, we may allow G(n) to grow with n, but rather slowly. It is a reasonable
assumption since the statistical dependence between sensors fades out rapidly
as a function of a distance between them. Clearly, if errors are uncorrelated, we
have O(i) = {i}.

Our aim is to estimate f from (xi, yi), i = 1, 2, . . . , n in a nonparametric
way, i.e., without imposing any finite parametrization of f . Instead, we impose
some smoothness assumptions on f and our aim is to construct estimator f̂n(x)

such that the integrated mean-square error (IMSE) I(f, fn)
def
=

∫
Id

E(f(x) −
f̂n(x))2 dx → ∞ as n → ∞.

We select the following estimator f̂n of f .
Algorithm 2

f̂n(x) =
N∑

k=1

âknvk(x), (14)

âkn =
1
n

n∑

i=1

yivk(xi), k = 1, 2, . . . , N, (15)

where v1, v2, . . . is a complete sequence of orthonormal functions1 in the space
L2(Id) of square integrable functions on Id. Denote by ak =

∫
Id

f(x)vk(x) dx,

1 Orthonormality means that
∫

vk(x)2 dx = 1 and
∫

vk(x)v�(x) dx = 0, for all k �= �
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k = 1, 2, . . ., the coefficients of the Fourier series of f in the basis (vk), i.e.,

f(x) ∼
∞∑

k=1

ak vk(x), (16)

where convergence is understand in L2 norm. In (14) one can recognize the trun-
cated version of (16). In practice, the truncation point N is also estimated. In
asymptotical considerations below, we admit a slowly growing dependence of N
on the number of sensors n and we shall write N(n).

Remark 1. Notice that âkn is the estimator of ak, which is asymptotically unbi-
ased. Indeed, equidistribution of xi’s implies

E(âkn) = n−1
n∑

i=1

f(xi) vk(xi) →
∫

Id

f vk = ak. (17)

But, due tu WD property of xi’s, we can say more, namely

E(âkn) = n−1

n+p∑

i=p

f(xi) vk(xi) → ak, (18)

uniformly w.r.t p. This property seems to be important for WSN, because it
frequently happens that a group of sensors fails (due to, e.g., a battery or com-
munication faults) and can be replaced by differently located sensors. From (18)
it follows that WSN based on sensors placed at WD points still can provide
estimators with a small bias, provided that n, i.e., the number of active sensors,
is sufficiently large.

Remark 2. Notice that (15) has the form that is well suited for collecting data
along a network, because coefficients can be calculated recursively. Indeed,
vk(xi)’ s, (k = 1, 2, . . . , N) can be pre-computed and stored in i-h sensor. Sen-
sors can be ordered along SFC (see Fig. 2) and values of partial sums, after
adding yi vk(xi) to previous ones can be passed from one sensor to another. The
role of the sink is to calculate (14).

Now, our aim is to sketch the proof of IMSE consistency of f̂n. For simplicity
of formulas, we assume that d = 2 and ONS) vk(x(1), x(2)) are ordered and
normalized trigonometric functions of the form: 1, sin(x(1)) sin(x(2)), sin(x(1))
cos(x(2)), cos(x(1)) sin(x(2)), cos(x(1)) cos(x(2)), . . .. We have N = N(n) such
products in common and they are commonly bounded by H > 0, say, while
their derivatives are commonly bounded by N(n)H. Notice that N(n) implicitly
depends on d, so for d = 2, N(n) = M1(n)M2(n), where M1(n) and M2(n) are
the numbers of trigonometric functions in x(1) and x(2) variables, respectively.
Below, when we write N(n) → ∞, we require that M1(n) → ∞ and M2(n) → ∞.

One can weaken this assumption by allowing H be dependent on k, as it is,
e. g., for the Legendre polynomials.

The orthonormality of (vk) implies

IMSE(f̂n, f) = Wn + B2
n + R(N, f) (19)
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where R(N, f)
def
=

∑∞
k=N+1 a2

k,

Wn
def
=

N∑

k=1

Var(âkn), (20)

B2
n

def
=

N∑

k=1

(E(âkn) − ak)2, (21)

To estimate the variance, let us note that

Var(âkn) =
1
n2

E

(
n∑

i=1

εi vk(xi)

)2

= (22)

=
1
n2

n∑

i=1

n∑

j=1

cov(εi, εj) vk(xi) vk(xj) =

=
1
n2

n∑

i=1

∑

j∈O(i)

cov(εi, εj) vk(xi) vk(xj)

Due to ONS) and ERR2) we have

Var(âkn) ≤ H G(n)σ2

n

[
1
n

n∑

i=1

|vk(xi)|
]

≤ H2 G(n)σ2

n
. (23)

Thus, Wn ≤ N(n)H2 G(n)σ2

n .
Denote by V (Id) the space of functions having bounded variation and let V(g)

denote the total variation of g ∈ V (Id). Then, by the Koksma-Hlavka inequality
(see, e.g., [6]) we obtain for f ∈ V (X) ∩ C(X)

(E(âkn) − ak)2 ≤ (V(f · vk) · D∗
n)2 ≤ c1 N2(n) (D∗

n)2, (24)

where c1 > 0 is a constant independent of n, while the second inequality can
be obtained in a way similar to the one that was used in [12]. Thus, B2

n ≤
c1 N3(n) (D∗

n)2 and finally, we obtain

IMSE(f̂n, f) ≤ c1 N3(n) (D∗
n)2 + c2 N(n)/n + R(N, f). (25)

Notice that f ∈ V (Id) ∩ C(Id) ⊂ L2(Id), which implies R(N, f) → 0 as
N(n) → ∞.

Proposition: If f ∈ V (Id) ∩ C(Id) and sequence N(n) is selected in such a way
that for n → ∞

N(n) → ∞, N3(n) (D∗
n)2 → 0, N(n)/n → 0, (26)

then IMSE(f̂n, f) → 0.
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In the case of bivariate random fields, a particular choice of N(n) = M1(n)
M2(n) depends on the rate of decay D∗

n, which is typically of order O
(

1
n1−ε

)
,

where ε > 0 is arbitrarily small. Thus, selecting M1(n) = M2(n) = c nβ/2, c > 0,
0 < β < 2 (1− ε)/3, we can assure that for N(n) = M1(n)M2(n) conditions (26)
hold.
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Abstract. Unique word (UW) OFDM is a multicarrier technique that
follows a different approach than standard multicarrier techniques like
cyclic prefix (CP) OFDM. It has been reported that UW-OFDM outper-
forms CP-OFDM in the sense that it performs better in fading channels
[1,2], and it has much lower out-of-band radiation [3] compared to CP-
OFDM. However, a theoretical analysis of the error rate performance
of UW-OFDM was never addressed in the literature. In this paper, we
derive analytical expressions for the bit error rate for UW-OFDM, from
which we can obtain the diversity order. It turns out that when the code
generator matrix, needed to construct the UW-OFDM signal, is full rank,
the UW-OFDM system reaches the maximum diversity order. This is in
contrast with standard CP-OFDM, where only diversity order one can be
reached, unless additional precoding is applied. Further, in the paper, we
propose a construction method for the code generator matrix to achieve
a (close to) maximum coding gain.

1 System Description

In multicarrier techniques, typically a guard interval is used to avoid intersymbol
interference between successively transmitted symbols. In standard multicarrier
techniques such as CP-OFDM, this guard interval is added on top of the DFT
interval, implying the length of a transmitted symbol is increased. A different
approach is used in UW-OFDM: here the guard interval is part of the DFT
block. Further, in contrast with CP-OFDM, where the guard interval samples
depend on the transmitted data, and are thus a priori unknown to the receiver,
the guard interval in UW-OFDM is filled with known samples. The UW-OFDM
signal is constructed in two steps. First, the data is modulated on the carriers
such that after the N -point DFT, the last Nu time domain samples are zero. In
this zero part of the signal, the unique word consisting of Nu known samples will
be added. In order to obtain the zeroes in the time domain, we have to introduce
redundancy in the frequency domain. Assume that because of the presence of
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guard bands, Nm ≤ N carriers are modulated. In that case maximally Nm −Nu

data symbols can be transmitted per DFT interval.
Let us assume we transmit Nd ≤ Nm − Nu data symbols xd. The required

redundancy in the frequency domain is added by multiplying the data sym-
bols with the Nm × Nd code generator matrix G. To select which carriers are
modulated and which are reserved as guard carriers, we use the N × Nm carrier
selection matrix B, where Nm ≤ N is the number of modulated carriers. This
carrier selection matrix is a reduced version of the N ×N identity matrix, where
the columns corresponding to the unmodulated carriers are deleted. The result-
ing frequency domain vector is applied to the inverse DFT, resulting in the time
domain samples

y = FH
NBGxd =

( ∗
0

)
(1)

where (FN )k,� = 1√
N

e−j2π k�
N . The last Nu elements of y must be zero, implying

that the matrix G must belong to the null space of the matrix F̃, which consists
of the Nu bottom rows of FH

NB. As FH
N is an orthogonal matrix and B is full

rank, also the submatrix F̃ has full rank, inferring the null space has dimension
Nm − Nu. Let us define the N × (Nm − Nu) matrix U as the matrix containing
an orthonormal basis for this null space. Such a basis can easily be found using
the singular value decomposition of F̃. As the columns of the matrix G belong to
this null space, the matrix G can be written as the following linear combination:

G = UW (2)

where the (Nm − Nu) × Nd matrix W can freely be selected.

2 Theoretical Error Performance

In this section we derive an upper bound on the bit error rate when the
UW-OFDM signal is transmitted over a Rayleigh fading channel. The chan-
nel is modelled as a tapped delay line with L + 1 taps: h = [h(0) . . . h(L)]T ,
and the channel adds white Gaussian noise with spectral density N0/2 per real
dimension. To avoid intersymbol interference, we assume that the guard interval,
i.e. the unique word, is longer than the channel length: Nu ≥ L. Neglecting the
presence of the unique word, the received sequence, is applied to a DFT resulting
in the samples

r = FNHFH
NBGxd + FNw = H̃BGxd + FNw. (3)

where H̃k,k′ = δk,k′
∑L

�=0 h(�)ej2π k�
N .

To derive the error rate performance, we use a similar approach as in [4].
Let us define the pairwise error probability (PEP) of the transmitted data vector
xd and the detected data vector x′

d �= xd, given the channel realization h, by
Pr(x′

d �= xd|h). This PEP can be upper bounded using the Chernoff bound:

Pr(x′
d �= xd|h) ≤ exp

(
−d2(v,v′)

4N0

)
(4)
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with d2(v,v′) the Euclidean distance between the vectors v and v′ that depend
on the transmitted and detected data sequences: v = H̃BGxd and v′ = H̃BGx′

d.
Defining H̃BG(xd − x′

d) = H̃BGe = Beh, we rewrite the Euclidean distance
as d2(v,v′) = hHBH

e Beh. Averaging over the random channel, an upper bound
on the average PEP is found:

Pr(xd �= x′
d) ≤

L∏

�=0

1

1 + αL
λe,�

4N0

(5)

where λe,� are the eigenvalues of the matrix BH
e Be. We assumed in the derivation

of (5) that the channel taps were uncorrelated: E[hhH ] = α2
LIL+1, with αL =

1
L+1 . The upper bound on the average PEP still depends on the unknown error
vector e = xd−x′

d through the eigenvalues. We assume, without loss of generality,
that eHe = 1.

Because of the definition of BH
e Be, i.e., d2(v,v′) = hHBH

e Beh ≥ 0, it follows
that the eigenvalues are real-valued and non-negative. Assuming there are re

non-zero eigenvalues λe,� > 0, we can further upper bound (5):

Pr(xd �= x′
d) <

(
1

4N0

)−re
(

re∏

�=1

αLλe,�

)−1

. (6)

The first factor determines the diversity order, i.e., the diversity order equals re,
and the second factor is related to the coding gain γe. If there are no zero eigen-
values, i.e. when BH

e Be is full rank, the diversity order is maximized: re = L+1.

In that case, the coding gain equals γe = αL

[
det(BH

e Be)
] 1

L+1 . The coding gain
and diversity order still depend on the unknown error vector e. The maximum
obtainable diversity order and coding gain, irrespective of the data sequence is
obtained by minimizing re and γe over the data.

r = min
e �=0

re

γ = min
e �=0

γe. (7)

It has been shown in [4] that the maximum diversity order can be achieved
provided that the minimum Euclidean distance is larger than the channel length:
dmin = min

e
d(v,v′) ≥ L+1. It turns out that a sufficient condition to reach the

maximum diversity order is that rank(BG) = Nd, and Nd ≥ L + 1, implying
that the matrix Nm × Nd matrix G must be full rank. Taking into account the
decomposition G = UW, where the matrix U is full rank because it consists of
orthogonal basis vectors of the null space, it follows that the matrix W must be
full rank to obtain full diversity. Hence, it turns out to be quite simple to design
a UW-OFDM system with full diversity: it can be shown that the standard
implementations for UW-OFDM, given in [1] and [2], reach full diversity. This
is in contrast with CP-OFDM, which reaches a diversity of one only, unless we
apply precoding.



320 H. Steendam

3 Coding Gain

In the following, we restrict our attention to the case where the code generator
matrix is full rank, i.e. the system has full diversity. We are interested in the
code generator matrix that maximizes the coding gain γ. Comparing the upper
bounds (4) and (5), it is obvious that if we find a code generator matrix G
that maximizes the minimum Euclidean distance d2(v,v′) irrespective of the
error vector, also the coding gain will be (close to) maximum. Hence, let us look
closer at the Euclidean distance. Given that v = H̃BGxd and v′ = H̃BGx′

d, it
follows that

d2(v,v′) = eHGHBHH̃HH̃BGe = eHARe (8)

where the matrix AR is a positive semi-definite Hermitian Nd × Nd matrix.
In the following, we assume that the error vector e ∈ C

Nd×1, with eHe = 1.
Using the property that the Rayleigh quotient (eHARe)/(eHe) is bounded by
the minimum and maximum eigenvalue of the matrix AR [5], it follows that
the minimum of the product eHARe corresponds to the minimum eigenvalue of
AR. If we want the minimum Euclidean distance to be as large as possible, this
implies that the minimum eigenvalue of AR must be as large as possible.

To maximize the minimum eigenvalue, we use the property of the Gerschgorin
circles [5]. For a Hermitian matrix AR, this property states that the real-valued
eigenvalues λk are located in the intervals 1 − Rk ≤ λk ≤ 1 + Rk, with

Rk =
Nd∑

�=1
� �=k

|(AR)k,�|. (9)

In the following we assume that (GHBHH̃HH̃BG)k,k = 1. The normalization
of the received energy per symbol implies that all data symbols have the same
error performance [6,7], which results in the lowest error rate performance if
we average over all data symbols. As a consequence, the sum of the eigenvalues
λk is a constant: trace(AR) =

∑Nd

k=1 λk = Nd. It is straightforward to show
through Lagrange optimization that maximizing the minimum eigenvalue under
the constraint that the sum of the eigenvalues is known, corresponds to the case
where all eigenvalues are equal, which infers AR must be the identity matrix.
This implies that we have to select the code generator matrix G such that

AR = GHBHH̃H̃BG = INd
. (10)

However, the matrix AR depends on the channel taps h through the diagonal
matrix H̃. Hence, unless the channel is known, finding the code generator matrix
that results in AR = INd

is generally not possible. Therefore, we restrict our
attention to the case where we know the channel. This case could correspond
to the case of a fixed wired link, or a wireless link with slowly varying channel,
where the channel is estimated and fed back to the transmitter.

In the following, we propose a systematic construction method for the matrix
G based on the decomposition G = UW (2). Note that the Nm × (N − Nu)
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matrix U is composed using the orthonormal basis vectors of the null space of
the matrix F̃, and forces the last Nu time domain samples in the DFT block
to be zero. As soon as the system parameters (N , Nm and Nu) are known, the
matrices U and B are fixed. Hence, we only need to select the matrix W, which
needs to be full rank to have full diversity. Using G = UW in (10), we obtain
the following restriction on W: WHUHBHH̃HH̃BUW = INd

. Let us consider
the eigenvalue decomposition of the known (Nm − Nu) × (Nm − Nu) matrix
UHBHH̃HH̃BU = VΛVH . Because of the Hermitian nature of the matrix, its
eigenvalues are real-valued and its eigenvector matrix V is a unitary matrix.
Further, UHBHH̃HH̃BU is the Gram matrix of H̃BU implying the matrix is
positive semi-definite. Assuming the diagonal matrix BHH̃HH̃B is full rank,
i.e., the channel at the frequencies of the modulated carriers does not contain
spectral nulls, its eigenvalues are strictly non-zero. Without loss of generality,
we can decompose W as W = VZ, resulting in WHUHBHH̃HH̃BUW =
ZHVHVΛVHVZ = ZHΛZ = INd

. Further, defining Λ = ΓΓ , where the
real-valued diagonal matrix Γ equals Γ =diag(

√
λk), with λk the eigenvalues

contained in Λ, we can substitute Z = Γ −1X, resulting in:

XHX = INd
. (11)

In the case of Nr = Nu, the matrix X is a square matrix. It can be verified that
in this case the condition (11) can only be fulfilled when X is a unitary matrix.
On the other hand, if Nr > Nu, the condition (11) requires that X is a finite
frame [8]. In the following, we restrict our attention to the case where Nu = Nr.

4 Transmit Versus Received Power

In the previous section, we have proposed a systematic construction method to
generate the code generation matrix that achieves (a close to maximum) coding
gain if the channel is known at the transmitter. The degree of freedom that
follows from the construction method (i.e., a unitary matrix X must be selected)
gives us a large number of possible code generator matrices. In our solution, we
have set a restriction on the received power, but no specifications were given on
the transmit power. Let us look closer at the power at the transmitter PT and
the received power PR:

PR = Estrace(GHBHH̃HH̃BG) = NdEs

PT = Estrace(GHBHBG)
= Estrace(XHΓ −1VHUHBHBUVΓ −1X)
= Estrace(UHBHBUVΓ −1XXHΓ −1VH)
= Estrace(UHBHBU(UHBHH̃HH̃BU)−1). (12)

where in the last line, we used the unitary nature of the matrix X, i.e.,
XXH = INd

, and VΓ −1Γ −1VH = VΛ−1VH = (UHBHH̃HH̃BU)−1. Note
that the transmit power nor the received power depend on the selected uni-
tary matrix X, but only depend on the channel and system parameters, i.e., all
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Fig. 1. Frequency response |H̃k,k| of the channel for a) h(�) = ν and b) h(�) =
ν exp(−�); � = 0, . . . , L, ν is a constant to normalize the channel: hHh = αL.

matrices X lead to the same transmit/received power. In general, it turns out
that the transmitted energy per symbol is not normalized. However, because BG
needs to be full rank in order to have full diversity and as we assumed in our
construction method that H̃ does not contain spectral nulls at the modulated
carriers, we know that in this case the transmit power is finite.

As an illustration, we evaluate the influence of the system parameters and
the channel on the transmit power PT for the following two channels:

channel a : h(�) = ν

channel b : h(�) = νe−�

where the channel parameter ν is selected such that hHh = 1
L+1 . Figure 1 shows

the frequency response |H̃k,k| for these two channels, for different values for L.
In this figure, we observe that the frequency response of channel ‘b’ is reasonably
flat, whereas channel ‘a’ is more frequency selective. None of the channels show
spectral nulls1, implying their channel matrix H̃ is full rank. Further, it follows
from the figure that the amplitude of the frequency response reduces when L
increases.

Figure 2 shows the required transmit power normalized to the received power,
i.e., PT /(NdEs), as function of the DFT size N , with and without guard band.
The guard band consists of g unmodulated edge carriers at both sides of the
frequency band. Hence, the number of modulated carriers equals Nm = N − 2g.
In Fig. 2(a), the channel length is kept constant, while in Fig. 2(b), the channel
length increases proportional to the DFT size. The transmit power for channel

1 Although channel ‘a’ from Fig. 1 shows small values for the frequency response |H̃k,k|,
they are non-zero. If we plot the y-axis in the figure with a logarithmic scale, it can
be observed that the largest and smallest value of |H̃k,k| differ approximately a factor
of 100. This difference is not large enough to make the matrix H̃ singular.
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Fig. 2. Transmit power PT , normalized to the received power NdEs.

‘a’ is larger than for channel ‘b’, and the transmit power is larger for g = 2
than for g = 0, although the difference for channel ‘b’ is small. To explain this
effect, look at the eigenvalues of the matrix UHBHH̃HH̃BU for both channels,
with and without guard band, for N = 32. For other values of N , similar results
are obtained. From Fig. 3, it follows that for both channels, the eigenvalues are
larger for g = 0 than for g = 2, and the difference is larger in channel ‘a’ than
in channel ‘b’. This can be explained using Fig. 1. In our channel models, the
amplitude of the channel frequency response is larger at the band edges. By not
using these carriers, the average channel frequency response decreases, resulting
in smaller eigenvalues. This effect is larger in channel ‘a’ because the channel is
more frequency selective than channel ‘b’. Further, the eigenvalues for channel
‘a’ are smaller than for channel ‘b’, as the frequency response of channel ‘a’ is
for (almost) all carriers much smaller than for channel ‘b’. Hence, it is expected
that, to obtain the same received power, the required transmit power in channel
‘a’ will be larger than in channel ‘b’, and increasing the guard band width will
result in an increased transmit power, which is confirmed in Fig. 2.
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Further, in Fig. 2, it also can be observed that when the channel length is
kept constant, the required transmit power for channel ‘b’ is essentially constant
as function of the DFT size, whereas for channel ‘a’ the transmit power linearly
increases with the DFT size. When the channel length increases with the DFT
size, both the transmit power in channel ‘a’ and channel ‘b’ increase, although
in channel ‘a’, the transmit power increases faster. To explain this effect, we
consider the special case where all carriers are modulated, i.e., with g = 0.
In that case, the carrier selection matrix B reduces to the identity matrix. In
addition, the null space matrix U reduces to F̂, where F̂ corresponds to the first
N − Nu rows of FH

N . Consequently, the transmit power reduces to

PT = Estrace(UHH̃HH̃U)−1. (13)

After some straightforward computations, it follows that for the two channels ‘a’
and ‘b’, the matrix UHH̃HH̃U reduces to a symmetric banded Toeplitz matrix
with elements (UHH̃HH̃U)m,m′ = 1

L+1w(m − m′), with

wa(m) =

{
1 − |m|

L+1 |m| ≤ L

0 else
(14)

wb(m) =

{
e−|m| 1−e−2(L+1−|m|)

1−e−2(L+1) |m| ≤ L

0 else
(15)

for channel ‘a’ and ‘b’, respectively2. For channel ‘b’, it follows from (15) that
the matrix UHH̃HH̃U is diagonally dominant. Hence, taking into account the
Gerschgorin theorem [5], the N − Nu eigenvalues λk of the matrix will be of

2 For general channels, it can be verified that the matrix UHH̃HH̃U is a banded
matrix having L non-zero side diagonals at both sides of the main diagonal, although
in general, the matrix is not symmetric Toeplitz.
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the order of the diagonal elements, i.e., λk ≈ 1
L+1 . This can also be observed

in Fig. 3. The normalized transmit power PT

NdEs
= 1

Nd
trace(UHH̃HH̃U)−1 =

∑N−Nu−1
k=0

1
λk

can therefore be approximated by PT

NdEs
≈ L + 1, with Nd =

N−Nu. For channel ‘a’, the matrix UHH̃HH̃U is not diagonally dominant. How-
ever, in [9], it is shown that square banded Toeplitz matrices are asymptotically
equivalent to a circulant matrix for increasing matrix size. Hence, the eigenval-
ues for channel ‘a’ can be approximated by the eigenvalues of the asymptotically
equivalent circulant matrix, which are obtained by computing its spectrum f(z):

f(z) =
L∑

m=−L

1
L + 1

wa(m)ejmz

=
(

sin(L + 1) z
2

(L + 1) sin z
2

)2

. (16)

The eigenvalues of the matrix are given by λk = f( 2πk
N−Nu

). Hence, the eigenvalue
spread will be larger than for channel ‘b’, which is also observed in Fig. 3. The
transmit power is mainly determined by the smallest eigenvalues. These smallest
eigenvalues correspond to the values of k for which 2πk

N−Nu
is close to a zero of

the function f(z) in the interval [0, 1[ , where the zeros are given by zm = 2πm
L+1 ,

m = 1, . . . , 	L+1
2π 
. To find the smallest eigenvalues, we derive the Taylor series

expansion of f(z) at z = zm:

f(z) ≈ (z − zm)2

2 sin2( πm
L+1 )

. (17)

After some straightforward computations, we find that the smallest eigenvalues
can be upper bounded by λk̂ ≤ 2[(N − Nu) sin πm

L+1 ]2, where k̂ = [πm(N−Nu)
L+1 ]I

and [x]I rounds x to the nearest integer. Taking this into account, the normalized
transmit power for channel ‘a’ can be approximated by

PT

NdEs
≈ 2(N − Nu)2

Nd

� L+1
2π �∑

m=1

sin2 πm

L + 1
∼ (N − Nu)(L + 1). (18)

Hence, the theoretical approximations for the transmit power for both channels
confirm the behaviour of the transmit power in Fig. 2.

5 Conclusions

In this paper, we derived an analytical expression for the theoretical error rate
performance for UW-OFDM. From this expression we obtained the conditions
to achieve full diversity and a (close to) maximum coding gain: full diversity
is reached if the code generator matrix is full rank, and a (close to) maximum
coding gain requires that the matrix AR must be the identity matrix. Based on
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these conditions, we proposed a systematic construction method for the code
generator matrix. We showed that the transmit power, given the received power
is normalized, is independent of the selected code generator matrix, but only
depends on the channel and the system parameters.
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Abstract. It follows from the well known min/max representation given
by Scholtes in his recent Springer book, that all piecewise linear contin-
uous functions y = F (x) : R

n → R
m can be written in a so-called

abs-normal form. This means in particular, that all nonsmoothness is
encapsulated in s absolute value functions that are applied to interme-
diate switching variables zi for i = 1, . . . , s. The relation between the
vectors x, z, and y is described by four matrices Y, L, J , and Z, such that

[
z
y

]
=

[
c
b

]
+

[
Z L
J Y

] [
x
|z|
]

This form can be generated by ADOL-C or other automatic differenta-
tion tools. Here L is a strictly lower triangular matrix, and therefore zi
can be computed successively from previous results. We show that in the
square case n = m the system of equations F (x) = 0 can be rewritten
in terms of the variable vector z as a linear complementarity problem
(LCP). The transformation itself and the properties of the LCP depend
on the Schur complement S = L − ZJ−1Y .

Keywords: Piecewise linearization (PL) · Algorithmic differentiation
(AD) · Equation solving · Semi-smooth newton · Smooth dominance ·
Complementary piecewise linear system (CLP) · Linear complementarity
(LCP)

1 Introduction

Via algorithmic differentiation it is possible to calculate directional derivatives
from evaluation procedures of vector valued functions simultaneously with their
evaluation at a base point x0. These evaluations are exact within the limitations
of machine precision. An evaluation procedure is a composition of so called ele-
mentary functions, which are aggregated as a library in their symbolic form and
thus make up the atomic constituents of complex functions. Basically the selec-
tion of elementary functions for the library is arbitrary, as long as they comply
with assumption (ED) (elementary differentiability, in [3]), meaning that they
are at least once Lipschitz-continuously differentiable. In the literature (see e.g.
[3,8]) the following collection is suggested as the quasi-standard for a library:

Φ = {+,−, ∗, /, sin, cos, tan, cot, exp, log, . . . }
c© IFIP International Federation for Information Processing 2014
C. Pötzsche et al. (Eds.): CSMO 2013, IFIP AICT 443, pp. 327–336, 2014.
DOI: 10.1007/978-3-662-45504-3 32
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Common software packages such as ADOL-C provide tools for the algorithmic
differentiation of functions composed from the contents of this collection.

But many practical problems and most algorithms are not smooth every-
where and thus cannot be modelled via a library that consists solely of a set
of functions that comply with (ED). More specifically one is likely to encounter
standard functions of computer arithmetic, that are not globally differentiable,
e.g. abs,max and min. Since

max(x, y, z) ≡ max(max(x, y), z), max(x, y) ≡ 0.5 ∗ (x + y + abs(x − y))

max and min can be expressed in terms of the absolute value function. As
shown, this reformulation of max and min provides us with a very practical
handle on the representation of piecewise linearity, since Scholtes proved in
[12], that any scalar-valued, real piecewise linear function f : Rn → R can
be expressed as a finite nesting of max and min comparisons of linear functions.
Here and throughout we use linear in the sense of affine, i.e. allow a constant
increment.

Generally any one dimensional piecewise linear function f : R → R can be
expressed in terms of absolute values. For a given set of points {(xi, yi) : i =
0, . . . , n}, where x0 < x1 < · · · < xn, two outer slopes s0, sn+1 and n inner slopes
si = (yi − yi−1)/(xi − xi−1), we obtain the formula

y =
1
2

[

y0 + s0(x − x0) +
n∑

i=0

(si+1 − si) abs (x − xi) + yn + sn+1(x − xn)

]

where the two linear functions at the beginning and the end can be combined
to [y0 − s0 x0 + yn − sn+1 xn + (s0 + sn+1)x]/2. This might be helpful for the
purpose of implementation. For example with a < b ∈ R we obtain the cut-off
function

f(x) = max(a,min(x, b)) = 0.5 ∗ [a + abs(x − a) − abs(x − b) + b]

Similar to linear models of smooth functions, piecewise linearizations can be
used to approximate piecewise smooth functions [12]. The aim is to extend the
principles and techniques of classic algorithmic differentiation in such a way, that
these piecewise linear models can be evaluated with the same efficiency, stability
and simplicity of data structures as in the linear case. Since the absolute value
function is already piecewise linear, it can be modelled by itself. By proposition
3.1 from [4] we have for the procedure (introduced in the next chapter) that
the error of the piecewise linear approximation is of second order and varies
Lipschitz continuously w.r.t. the developing point.

2 Piecewise Linearization and Abs-Normal Form

Example 1. Formula, graph and sequential code instruction of an evaluation
procedure:
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x1 v1 |v1|

v4 |v4|v0 |v0|

y1

x2 y2

v6

The vi are called intermediate values. The indices are in a dependency rela-
tion j ≺ i, if there is an edge from vj to vi. In general the values of a sequential
code instruction of an evaluation procedure are denoted as a tuple

[v1−n, v1−(n−1), . . . , v0, v1, v2, . . . , vi, . . . , vl] where

vj−n = xj for j = 1, . . . , n

vi = ϕi(vj)j≺i for i = 1, . . . , l and ϕ ∈ Φabs = Φ ∪ {abs}

The values of the piecewise linearization can be evaluated simultaneuosly as
increments of the function value by the following set of propagation rules [4]
that implicitly defines a second code instruction.

Procedure 1.

[Δv1−n,Δv1−(n−1), . . . , Δv0,Δv1,Δv2, . . . , Δvi, . . . , Δvl] where

for j = 1, . . . , n : Δvj−n = Δxj and for i = 1, . . . , l :

Δvi = Δvj ± Δvk when vi = vj ± vk

Δvi = Δvj ∗ vk + vj ∗ Δvk when vi = vj ∗ vk

Δvi = cij ∗ Δvj when vi = ϕ(vj)

where ϕ ∈ Φ \ {±, ∗, abs} and ci,j = ϕ′
i(vj) is the local partial derivative

Δvi = abs(vj + Δvj) − abs(vj) when vi = abs(vj)

Then the k-th component of the piecewise linearization is determined by:

yk = vl−m+k + Δvl−m+k

The overall costs are at most four times of those of a function evaluation [3].
So far we have a method for a small number of evaluations at some basepoints.

But for the purposes of integration, solving ODEs, optimization and solving
piecewise linear equation systems (see [4,5]) we need a suitable data structure
for a large number of evaluations of a single piecewise linearization. A general
nonlinear concept of Barton and Khan from [6] combined with taping technology
leads to the abs-normal form:

Definition 1. For Z ∈ Rs×n, L ∈ Rs×s, J ∈ Rm×n, Y ∈ Rm×s matrices, where
L is of strictly lower triangular form and vectors c ∈ Rs, b ∈ Rm, the system
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[
z
y

]
=

[
c
b

]
+

[
Z L
J Y

] [
x
|z|

]
(1)

is called abs-normal form. The modulus operation |z| has to be understood com-
ponentwise here. An abs-normal form is called simply switched if L = 0.

The components of z can be evaluated successively, since L is a strictly lower
triangular matrix. The control flow in the evaluation of the abs-normal form is
conveniently characterised by the signature vectors and matrices

σx ≡ σz ≡ sign(z) ∈ {−1, 0, 1}s, Σz = diag(σz) ∈ {−1, 0, 1}s×s

In particular we will use throughout the identity |z| = Σzz. Using this relation
we can eliminate z for any given x ∈ Rn and obtain the explicit representation

F (x) = y =

piecewise constant
︷ ︸︸ ︷
b + Y Σσ(I − LΣσ)−1c+Jσ · x (2)

where Jσ = J + Y Σσ(I − LΣσ)−1Z (3)

On the other hand every piecewise linear function in max-min expression can be
represented in abs-normal form. Thus the abs-normal form is an equivalent char-
acterization of piecewise linear mappings, which is stable w.r.t to perturbations1.
Each signature vector σ ∈ {−1, 0, 1}s uniquely characterises the polyhedron

Pσ = {x ∈ Rn | σx = σ}

The collection of these mutually disjoint and relatively open polyhedra forms a
so called polyhedral decomposition or skeleton P of Rn. The restriction of F to
the closure of any Pσ ∈ P is linear (Fig. 1).

x
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2.0y

0.0 0.5 1.0 1.5 2.0 2.5 3.0

F
(x
, y)

0
2
4
6
8
10
12
14
16
18

Polyhedron

Fig. 1. Example of a piecewise linear function and its corresponding polyhedral decom-
position

1 Perturbations of the data Z,L, J, Y, c and b preserves the property of being a contin-
uous, piecewise linear abs-normal form, provided L stays strictly lower triangular.
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Each P = Pσ has a nonempty interior if and only if it is open, in which case
we will also refer to σ as open. By continuity all σ that have no zero components
are open, but the converse need not be the case. It can be shown, that the Jσ

given in (3) are limiting Jacobians in the following sense exactly if σ is open.
For general Lipschitz continuous F it follows from Rademacher’s Theorem

that it has a Frechet derivative F ′(x) at all points in a set DF , whose complement
has the measure zero. The set of limiting Jacobians at any x0 ∈ Rn is defined as

∂LF (x0) =

{

lim
x→x0
x∈DF

F ′(x)

}

�= ∅

and the set of generalized Jacobians in the sense of Clarke as

∂F (x0) = conv(∂LF (x0))

The definition of ∂LF (x0) looks quite nonconstructive and in fact there is
no general methodology for evaluating limiting Jacobians since the rules for
propagating generalized derivatives are only inclusions. Given the abs-normal
form one can compute limiting Jacobians that are also generalized Jacobians
of the underlying nonlinear functions by a technique called polynomial escape
[4,6]. The computational complexity is similar to that of the foward mode in the
smooth case. Especially for generalized gradients where m = 1 an adaption of
the much cheaper reverse mode is under development.

Throughout the remainder of this paper, we will only consider piecewise
linear F in abs-normal form that are square in that m = n. Furthermore we
assume w.l.o.g. that the so called smooth part J is nonsingular. If this is not a
priori true one can shift terms by using the identity x = abs(x+abs(x))−abs(x).
The Schur complement of J within the abs-normal form is given by S = L −
ZJ−1Y . By using the Sherman-Morrison-Woodbury formula we can characterise
the nonsingularity of the generalized Jacobian Jσ as follows

det(Jσ) = det(J) det(I − SΣσ), for σ = σx ∈ {−1, 0, 1}s (4)

Note that the upper half of the abs-normal form, which maps x onto z, need not
be surjective. Hence the mapping is maybe partially switched in that some sig-
nature vectors σ ∈ {−1, 0, 1}s do not arise as σx for any x. In other words some
Pσ might be empty. On the other hand if the linear map Zx is surjective, then
the abs-normal form must be totally switched in that all 3n sign combinations
of σ with corresponding nonempty Pσ do arise. The following so called comple-
mentary piecewise linear mappings are always totally switched, since z ∈ Rs

becomes independent and ranges over all of Rs.

3 Complementary Piecewise Linear Systems and Their
Relation to LCPs

In contrast the nonsingularity of the smooth part J allows the elimination of x
for any given z and y.

y = b + Jx + Y |z| ⇐⇒ x = J−1(y − b) − J−1Y |z|
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In view of solving F (x) = 0 we can set y = 0 or absorb it into b. Then substitution
of x into the upper half yields the complementary piecewise linear mapping

H(z) ≡ (I − SΣz)z − ĉ, where ĉ ≡ c − ZJ−1b

The function H : Rs → Rs is still piecewise linear and has the abs-normal form
[

z̃
H(z)

]
=

[
0

−ĉ

]
+

[
I 0
I −S

] [
z
|z̃|

]
(5)

whose Schur complement is again S. Since the new L vanishes, the complemen-
tary piecewise linear map is always simply switched. Moreover the polyhedral
decomposition consists entirely of 2n open orthants and their faces. As shown
in [5] this implies that H is bijective if and only if it is an open map. For gen-
eral PL functions and in particular the underlying F we only have the chain of
implications [12]

F is injective =⇒ F is open =⇒ F is surjective

Furthermore Scholtes has proven in [12] that piecewise linear maps are open
maps if and only if the determinants of all limiting Jacobians have the same
sign (are w.l.o.g. positive). The limiting Jacobians of H are exactly the shifted
identities I −SΣ for any Σ = diag(σ) with σ ∈ {−1, 1}s. Consequently, coherent
orientation of H occurs if and only if all det(I −SΣ) are positive, which implies
by (4) the coherent orientation of F . Whereas the converse need not be true, i.e.
F may be coherently oriented but H not.

The problem of solving H(z) = 0, for some z ∈ Rn can be recast as a linear
complementarity problem (LCP). It turns out to have the P -matrix property if
and only if H is coherently oriented [11]. The reformulation requires:

Lemma 1. Let M,S ∈ Rs×s arbitrary, s.t. (I + S)M = (I − S), then

1. det(I + S) �= 0 ⇐⇒ det(I + M) �= 0
2. S = (I + M)−1(I − M) if det(I + M) �= 0

Proof.

M = [I + S]−1[I − S] ⇐⇒ [I + S] 12 (I + M) = 1
2 ([I + S] + [I − S]) = I

⇐⇒ S = 2(I + M)−1 − I = (I + M)−1(I − M) �

Now consider two vectors 0 ≤ u,w ≥ 0, such that z = u − w and u�w = 0.
Then by the upper half of an abs-normal form for F

u − w = c + Zx + L(u + w)

= c +
[
ZJ−1(y − b) − ZJ−1Y (u + w)

]
+ L(u + w)

= ĉ + S(u + w) ⇐⇒ (I − S)u = ĉ + (I + S)w

⇐⇒ w = u − (I + S)−1ĉ ⇐⇒ w = Mu + q



Analysis of Piecewise Linear Functions 333

where M ≡ (I + S)−1(I − S) and q ≡ −(I + S)−1ĉ. Because of the substitution
of x, the solutions of this standard LCP w = q + Mu, are solutions of the
complementary piecewise linear system H. Any standard LCP w = q + Mu,
where u,w ≥ 0 and u�w = 0, can be rewritten as a complementary piecewise
linear equation system as

z = (I + M)−1(I − M)|z| − 2(I + M)−1q

where u = 1
2 (|z| + z) and w = 1

2 (|z| − z). This was proven by Bokhoven in his
thesis [1]. To transform the complementary piecewise linear system into an LCP
or vice versa one has to compute the Möbius transform of S or M , respectively.
This requires in either case at least implicitly a matrix inversion and several
multiplications. Therefore we consider methods for directly solving the original
and complementary piecewise linear system possibly even avoiding the explicit
computation of S = L − ZJ−1Y .

4 Solving Piecewise Linear Equation Systems

The principal task is to find solutions x ∈ Rn, such that F (x) = 0 with piecewise
linear F : Rn → Rn. A possible nonzero right hand side can be absorbed into
the vector b as described above.

There are several methods developed and discussed in detail in [4,5]. Some
of them solve F (x) = 0 directly, whereas others solve the complementary piece-
wise linear equation System H(z) = 0. Note that there is a one-to-one solution
correspondence between both representations [5]. Now, let us give an overview
of some of these methods.

4.1 Full-Step Newton Variants

All continuous piecewise linear functions are known to be semi smooth. Hence
the result in [10] ensures local convergence of the full-step iteration

x+ = x − J−1F (x), for J ∈ ∂F (x)

to a solution x∗, provided that all generalized Jacobians J ∈ ∂F (x∗) are non-
singular. However this condition need not be satisfied even if F is coherently
oriented. Coherent orientation in some vicinity of x∗ means that all limiting
Jacobians J ∈ ∂LF (x∗) are nonsingular, so that the stronger result from [9],
where the J are restricted to be limiting Jacobians, is applicable.

It should be noted that both results apply here in a trivial fashion, since
convergence in one step must occur from all points x0 belonging to polyhedra
Pσ, whose closure contains x∗. Of course finding such an initial point x0 requires
to resolve all combinatorial issues in advance.

Hence we are more interested in global convergence results. We can guarantee
full step convergence for the restricted generalized Newton method in finitely
many steps towards the unique solution, if either of the contractivity conditions
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‖I − J−1
σ Jσ̃‖ < 1, for all σ, σ̃ open

or ‖I − JσJ−1
σ̃ ‖ < 1, for all σ, σ̃ open

is satisfied w.r.t. to some induced matrix norm. The proof can be found in [5].
Either condition is rather strong and implies bijectivity. In terms of the abs-
normal form they are implied by the conditions

ρ̂ ≡ ‖Z‖‖J−1Y ‖ < 1 − ‖L‖ and
ρ̂

(1 − ρ̂ − ‖L‖)(1 − ‖L‖)
<

1
2

As we have already noted suitable Jσ can be computed from the abs-normal
form at reasonable expense.

Naturally the generalized Newton method with or without restriction to lim-
iting Jacobians can also be applied to the complementary piecewise linear sys-
tem, yielding

z+ = z − (I − SΣz)−1H(z) = (I − SΣz)−1ĉ

However, here the local convergence condition that all limiting Jacobians be
nonsingular is no weaker than the requirement that all generalized Jacobians be
nonsingular. Sufficient for global full-step convergence are either of the following
independent conditions

‖S‖p < 1
3 or ρ(|S|) < 1

2

where ρ denotes the spectral radius and |S| the componentwise modulus.
If the second condition is satisfied, the calculation can be organized such that

the whole solution process requires only 1
3s3 operations, just like a Gaussian

elimination in the smooth linear case.

4.2 Piecewise Newton

Rather than taking full steps based on a local linearization one may restrict steps
to stay within the closure of one polyhedron Pσ. This requires some pivoting
and active set managament familiar from Lemke type algorithms for LCPs. For
a comparitive study of the two approaches see the dissertation of T. Munson [7].
In [4] it was observed that coherent orientation implies, that the fibres

[x0] ≡ {x ∈ Rn : F (x) = λF (x0), 0 < λ ∈ R}
are bifurcation-free piecewise linear paths for almost all x0 ∈ Rn. Then their
closure contains a solution. Even in the case of singular fibres, there are strategies
to reduce the residual towards a solution. An implementation is currently under
development.

4.3 Modulus Algorithm

Checking F for surjectivity or openess is NP-hard, because there may be 2n pos-
sible determinants det(Jσ), for σ = σx. An easier verifiable property is smooth
dominance.
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Definition 2. F : Rn → Rn in abs-normal form is called smooth dominant, if
for some nonsingular diagonal matrix D and a p ∈ [1,∞]

‖DSD−1‖p < 1

Smooth dominant abs-normal forms are always injective [5]. Nevertheless there
are many practical problems which satisfy this condition.

In [2] Brugnano and Casulli consider unilateral constraints

solve max(0, x) + Tx = −e/2

where T ∈ Rn×n is an irreducible, symmetric, positive semidefinite matrix and
x, e ∈ Rn vectors. This class of problems is piecewise linear and its abs-normal
forms are smooth dominant. Electrical engineers considered piecewise linear
function as models of electrical circuits since the 50’s of the last century. For
example Bokhoven discussed those models in his dissertation [1] and introduced
the iteration

z+ = S|z| − ĉ

whose convergence follows from smooth dominance, by the Banach fix point
theorem. In our experience the modulus iteration is robust, but rather slow.

4.4 Alternating Block Seidel Iteration

Another fixed point iteration which has the potential of being significantly faster,
is the following block Seidel scheme from [5]. Solving alternatingly the upper half
for z and the lower half for x, we obtain z+ = hz(hx(z)), where

hz :Rn → Rs hz(x) = (I − LΣx)−1(c + Zx)

hx :Rs → Rn hx(z) = −J−1b − J−1Y Σzz

The convergence of this method to the unique solution is ensured [5], if

‖S‖p ≤ ‖L‖p + ‖ZJ−1Y ‖p < 1

for some suitable p where positive diagonal scaling may be applied.

5 Conclusion and Outlook

We gave a short introduction to basic techniques of automatic differentiation and
methods for the modelling of piecewise smooth functions via piecewise lineariza-
tion with a second order error. We also discussed the solvabillity of the resulting
equation systems in abs-normal form, by finitely convergent Newton variants or
linearly convergent fix point solvers. Currently we are working on hybrid algo-
rithms to obtain stable global and fast local convergence. They will then be used
in the inner loop of a piecewise smooth equation solver by successive piecewise
linearization. A related task to equation solving are the (un)constrained opti-
mization of piecewise smooth objectives and the numerical integration of initial
value problems with Lipschitzian right hand sides. Common utillities for manip-
ulating abs-normal forms are developed as the linear algebra package PLAN-C,
which uses abs-normal forms as objects.
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Abstract. In the present paper we concentrate on an important issue in
constructing a good multigrid solver: the choice of an efficient smoother.
We will introduce all-at-once multigrid solvers for optimal control prob-
lems which show robust convergence in the grid size and in the regular-
ization parameter. We will refer to recent publications that guarantee
such a convergence behavior. These publications do not pay much atten-
tion to the construction of the smoother and suggest to use a normal
equation smoother. We will see that using a Gauss Seidel like variant of
this smoother, the overall multigrid solver is speeded up by a factor of
about two with no additional work. The author will give a proof which
indicates that also the Gauss Seidel like variant of the smoother is cov-
ered by the convergence theory. Numerical experiments suggest that the
proposed method are competitive with Vanka type methods.

Keywords: PDE-constrained optimization · All-at-once multigrid ·
Gauss Seidel

1 Introduction

In the present paper we discuss the construction of the all-at-once multigrid
solvers for two model problems. The first model problem is a standard Poisson
control problem: Find a state y ∈ H1(Ω) and a control u ∈ L2(Ω) such that
they minimize the cost functional

J(y, u) := 1
2‖y − yD‖2L2(Ω) + α

2 ‖u‖2L2(Ω),

subject to the elliptic boundary value problem (BVP)

−Δy + y = u in Ω and ∂y
∂n = 0 on ∂Ω.

The desired state yD and the regularization parameter α > 0 are assumed to
be given. Here and in what follows, Ω ⊆ R

2 is a polygonal domain. We want to
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solve the finite element discretization of this problem using a fast linear solver
which shows robust convergence behavior in the grid size and the regularization
parameter. For solving this problem, we use the method of Lagrange multipliers,
cf. [5,6]. We obtain a linear system in the state y, the control u and the Lagrange
multiplier λ. In this linear system we eliminate the control as this has been done
in [6,9]. We discretize the resulting system using the Courant element and obtain
a linear system: (

Mk Kk

Kk −α−1Mk

)

︸ ︷︷ ︸
Ak :=

(
y

k
λk

)

︸ ︷︷ ︸
xk :=

=
(

f
k
0

)

︸ ︷︷ ︸
f

k
:=

. (1)

Here, Mk and Kk are the standard mass and stiffness matrices, respectively. The
control can be recovered using the following simple relation from the Lagrange
multiplier: uk = α−1λk, cf. [6]. In [6,12] it was shown that there are constants
C > 0 and C > 0 (independent of the grid size hk and the choice of α) such that
the stability estimate

‖Q−1/2
k AkQ−1/2

k ‖ ≤ C and ‖Q1/2
k A−1

k Q1/2
k ‖ ≤ C−1 (2)

holds for the symmetric and positive definite matrix

Qk :=
(

Mk + α1/2Kk

α−1Mk + α−1/2Kk

)
.

The second model problem is a standard Stokes control problem (velocity
tracking problem): Find a velocity filed v ∈ [H1(Ω)]d, a pressure distribution
p ∈ L2(Ω) and a control u ∈ [L2(Ω)]d such that

J(v, p, u) = 1
2‖v − vD‖2L2(Ω) + α

2 ‖u‖2L2(Ω)

is minimized subject to the Stokes equations

−Δv + ∇p = u in Ω, ∇ · v = 0 in Ω, v = 0 on ∂Ω.

The regularization parameter α > 0 and the desired state (desired velocity field)
vD ∈ [L2(Ω)]d are assumed to be given. To enforce uniqueness of the solution,
we additionally require

∫
Ω

p dx = 0.
Similar as above, we can set up the optimality system and eliminate the

control, cf. [7,12]. The discretization can be done using the Taylor-Hood element.
After these steps, we end up with the following linear system:

⎛

⎜
⎜
⎝

Mk Kk DT
k

0 Dk

Kk DT
k −α−1Mk

Dk 0

⎞

⎟
⎟
⎠

︸ ︷︷ ︸
Ak :=

⎛

⎜
⎜
⎝

vk

p
k

λk

μ
k

⎞

⎟
⎟
⎠

︸ ︷︷ ︸
xk :=

=

⎛

⎜
⎜
⎝

f
k
0
0
0

⎞

⎟
⎟
⎠ .

︸ ︷︷ ︸
f

k
:=

(3)
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where Mk and Kk are standard mass and stiffness matrices and DT
k is the

discretization of the gradient operator, see, e.g., [7,12]. Again, we are inter-
ested in a fast solver which is robust in the regularization parameter and the
grid size. As in the previous example, the control uk can by recovered from the
Lagrange multiplier: uk = α−1λk. In [12] it was shown that stability estimate (2)
is satisfied for

Qk = block-diag
(
Wk, αDkW−1

k DT
k , α−1Wk, DkW−1

k DT
k

)
,

where Wk := Mk + α1/2Kk.

2 An All-at-once Multigrid Method

The linear systems (1) and (3) shall be solved by a multigrid method, which
reads as follows. Starting from an initial approximation x

(0)
k , one iterate of the

multigrid method is given by the following two steps:

– Smoothing procedure: Compute

x
(0,m)
k := x

(0,m−1)
k + Â−1

k

(
f

k
− Ak x

(0,m−1)
k

)
for m = 1, . . . , ν

with x
(0,0)
k = x

(0)
k . The choice of the smoother (or, in other words, of the

matrix Â−1
k ) will be discussed below.

– Coarse-grid correction:
• Compute the defect f

k
− Ak x

(0,ν)
k and restrict it to grid level k − 1 using

an restriction matrix Ik−1
k : r

(1)
k−1 := Ik−1

k

(
f

k
− Ak x

(0,ν)
k

)
.

• Solve the following coarse-grid problem approximatively:

Ak−1 p(1)
k−1

= r
(1)
k−1 (4)

• Prolongate p
(1)
k−1 to the grid level k using an prolongation matrix Ik

k−1 and

add the result to the previous iterate: x
(1)
k := x

(0,ν)
k + Ik

k−1 p
(1)
k−1.

As we have assumed to have nested spaces, the intergrid-transfer matrices can be
chosen in a canonical way: Ik

k−1 is the canonical embedding and the restriction
Ik−1
k is its (properly scaled) transpose. If the problem (4) is solved exactly, we

obtain the two-grid method. In practice, the problem (4) is approximatively
solved by applying one step (V-cycle) or two steps (W-cycle) of the multigrid
method, recursively. Only the coarsest grid level, (4) is solved exactly.

The only part of the multigrid algorithm that has not been specified yet, is
the smoother. For the choice of the smoother, we make use of the convergence
theory. We develop a convergence theory based on Hackbusch’s splitting of the
analysis into smoothing property and approximation property:
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– Smoothing property:

sup
x̃k∈Xk

(
Ak(x(0,ν)

k − x∗
k), x̃k

)

�2

‖x̃k‖Lk

≤ η(ν)‖x
(0)
k − x∗

k‖Lk
(5)

should hold for some function η(ν) with limν→∞ η(ν) = 0. Here and in what
follows, x∗

k := A−1
k f

k
is the exact solution, ‖ · ‖Lk

:= (·, ·)1/2
Lk

:= (Lk·, ·)1/2
�2

for some symmetric positive definite matrix Lk and (·, ·)�2 is the standard
Euclidean scalar product.

– Approximation property:

‖x
(1)
k − x∗

k‖Lk
≤ CA sup

x̃k∈Xk

(
Ak(x(0,ν)

k − x∗
k), x̃k

)

�2

‖x̃k‖Lk

should hold for some constant CA > 0.

It is easy to see that, if we combine both conditions, we see that the two-grid
method converges in the norm ‖ · ‖Lk

for ν large enough. The convergence of the
W-cycle multigrid method can be shown under mild assumptions, see e.g. [3].

For the smoothing analysis, it is convenient to rewrite the smoothing property
in pure matrix notation: (5) is equivalent to

‖L−1/2
k Ak(I − Â−1

k Ak)νL−1/2
k ‖ ≤ η(ν). (6)

For the Poisson control problem, it was shown in [6], that the approximation
property is satisfied for the following choice of the matrix Lk (note that this
matrix represents the norm ‖ · ‖X− used in the mentioned paper)

Lk =
(

diag(Mk + α1/2Kk)
diag(α−1Mk + α−1/2Kk)

)
,

i.e., Lk = diag(Qk). Here and in what follows, diag(M) is the diagonal matrix
containing the diagonal of a matrix M . For the Stokes control problem it was
shown in [7], that the approximation property is satisfied for the following choice
of Lk:

Lk =

⎛

⎜
⎜
⎝

Ŵk

P̂k

α−1Ŵk

α−1P̂k

⎞

⎟
⎟
⎠ ,

where Ŵk := diag(Mk + α1/2Kk) and P̂k := α diag(DkŴ−1
k DT

k ).
Still, we have not specified the choice of the smoother, which now can be

done using the convergence theory. We have seen for which choices of Lk the
approximation property is satisfied. We are interested in a smoother such that
the smoothing property is satisfied for the same choice of Lk.
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In [7,9] a normal equation smoother was proposed. This approach is applicable
to a quite general class of problems, cf. [2] and others. In our notation, the normal
equation smoother reads as follows:

x
(0,m)
k := x

(0,m−1)
k + τ L−1

k AT
k L−1

k︸ ︷︷ ︸
Â−1

k :=

(
f

k
− Ak x

(0,m−1)
k

)
for m = 1, . . . , ν.

Here, a fixed τ > 0 has to be chosen such that the spectral radius ρ(τÂ−1
k Ak)

is bounded away from 2 on all grid levels k and for all choices of the parame-
ters. It was shown that it is possible to find such an uniform τ for the Poisson
control problem, e.g., in [9] and for the Stokes control problem, e.g., in [7]. For
the normal equation smoother, the smoothing property can be shown using a
simple eigenvalue analysis, cf. [2]. Numerical experiments show that the normal
equation smoother works rather well for the mentioned model problems. How-
ever, there are smoothers such that the overall multigrid method converges much
faster. Note that the normal equation smoother is basically a Richardson itera-
tion scheme, applied to the normal equation. It is well-known for elliptic problems
that Gauss Seidel iteration schemes are typically much better smoothers than
Richardson iteration schemes. In the context of saddle point problems, the idea
of Gauss Seidel smoothers has been applied, e.g., in the context of collective
smoothers, see below. However, in the context of normal equation smoothers the
idea of Gauss Seidel smoothers has not gained much attention. The setup of such
an approach is straight forward: In compact notation such an approach, which
we call least squares Gauss Seidel (LSGS) approach, reads as follows:

x
(0,m)
k := x

(0,m−1)
k + trig(Nk)−1AT

k L−1
k︸ ︷︷ ︸

Âk :=

(
f

k
− Ak x

(0,m−1)
k

)
for m = 1, . . . , ν,

where Nk := AT
k L−1

k Ak and trig(M) is a matrix whose coefficients coincide
with the coefficients of M on the diagonal and the left-lower triangular part and
vanish elsewhere. The author provides a possible realization of that approach as
Algorithm 2 to convince the reader that the computational complexity of the
LSGS approach is equal to the computational complexity of the normal equation
smoother, where a possible realization is given as Algorithm 1.

We will see below that the LSGS approach works very well in the numerical
experiments. However, there is no proof of the smoothing property known to
the author. This is due to the fact that the matrix Âk is not symmetric. One
possibility to overcome this difficulty is to consider the symmetric version (sym-
metric least squares Gauss Seidel approach, sLSGS approach). This is analogous
to the case of elliptic problems: For elliptic problems the smoothing property
for the symmetric Gauss Seidel iteration can be shown for general cases but for
the standard Gauss Seidel iteration the analysis is restricted to special cases, cf.
Section 6.2.4 in [3].

One step of the sLSGS iteration consists of one step of the LSGS iteration,
followed by one step of the LSGS iteration with reversed order of the variables.
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Given: Iterate (xi)
N
i=1 = x(0,m−1) and corresp. residual (ri)

N
i=1 = f − Ax(0,m−1);

Result: Iterate (xi)
N
i=1 = x(0,m) and corresp. residual (ri)

N
i=1 = f − Ax(0,m);

for i = 1, . . . , N do
q := 0;
for all j such that Ai,j �= 0 do q := q + Ai,j/Lj,j ∗ rj ;
pi := τ ∗ q/Li,i;

end
for i = 1, . . . , N do

xi := xi + pi;
for all j such that Aj,i �= 0 do rj := rj − Aj,i ∗ pi;

end
Algorithm 1. Normal equation iteration scheme

Given: Iterate (xi)
N
i=1 = x(0,m−1) and corresp. residual (ri)

N
i=1 = f − Ax(0,m−1);

Result: Iterate (xi)
N
i=1 = x(0,m) and corresp. residual (ri)

N
i=1 = f − Ax(0,m);

Prepare once: Ni,i :=
∑N

j=1 A2
i,j/Lj,j for all i = 1, . . . , N ;

for i = 1, . . . , N do
q := 0;
for all j such that Ai,j �= 0 do q := q + Ai,j/Lj,j ∗ rj ;
p := q/Ni,i;
xi := xi + p;
for all j such that Aj,i �= 0 do rj := rj − Aj,i ∗ p;

end
Algorithm 2. LSGS iteration scheme

(So the computational complexity of one step of the sLSGS iteration is equal
to the computational complexity of two steps of the standard LSGS iteration.)
One step of the sLSGS iteration reads as follows in compact notation:

x
(0,m)
k := x

(0,m−1)
k + N̂ −1

k AT
k L−1

k

(
f

k
− Ak x

(0,m−1)
k

)
for m = 1, . . . , ν,

where N̂k := trig(Nk) diag(Nk)−1 trig(Nk)T . (7)

For our needs, the following convergence lemma is sufficient.

Lemma 1. Assume that Ak is sparse, (2) is satisfied and let Lk be a positive
definite diagonal matrix such that

‖Q1/2
k xk‖ ≤ ‖L1/2

k xk‖ for all xk. (8)

Then the sLSGS approach satisfies the smoothing property (6), i.e.,

‖L−1/2
k Ak(I − N̂ −1

k Nk)νL−1/2
k ‖ ≤ 2−1/2 C nnz(Ak)5/2

√
ν

,

where nnz(M) is the maximum number of non-zero entries per row of M .
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Note that (8) is a standard inverse inequality, which is satisfied for both model
problems, cf. [6,7,9]. Note moreover that this assumption also has to be satisfied
to show the smoothing property for the normal equation smoother, cf. [7,9].

Proof of Lemma 1. The combination of (2) and (8) yields ‖L−1/2
k AkL−1/2

k ‖ ≤ C.
Property 6.2.27 in [3] states that for any symmetric positive definite matrix Nk

‖N̂ −1/2
k Nk(I − N̂ −1

k Nk)νN̂ −1/2
k ‖ ≤ ν−1 (9)

holds, where N̂k is as in (7). Using Dk := diag(Nk), we obtain

‖L−1/2
k N̂ 1/2

k ‖2 = ρ(L−1/2
k N̂kL−1/2

k ) ≤ ‖L−1/2
k trig(Nk)D−1/2

k ‖2

≤ ‖L−1/2
k D1/2

k ‖2‖D−1/2
k trig(Nk)L−1/2

k ‖2

Let Ak = (Ai,j)N
i,j=1, Nk = (Ni,j)N

i,j=1, Lk = (Li,j)N
i,j=1 and ψ(i) := {j ∈ N :

Ni,j �= 0}. We obtain using Gerschgorin’s theorem, the fact that the infinity
norm is monotone in the matrix entries, and using the symmetry of Nk and Ak

and Cauchy-Schwarz inequality:

‖D−1/2
k trig(Nk)D−1/2

k ‖
≤ ‖D−1/2

k trig(Nk)D−1/2
k ‖1/2

∞ ‖D−1/2
k trig(Nk)T D−1/2

k ‖1/2
∞ ≤ ‖D−1/2

k NkD−1/2
k ‖∞

= max
i=1,...,N

∑

k∈ψ(i)

(
N∑

n=1

A2
i,n

Ln,n

)−1/2
⎛

⎝
N∑

j=1

Ai,jAj,k

Lj,j

⎞

⎠

(
N∑

n=1

A2
k,n

Ln,n

)−1/2

≤ max
i=1,...,N

∑

k∈ψ(i)

1 = nnz(Nk) ≤ nnz(Ak)2. (10)

Further, we obtain

‖L−1/2
k D1/2

k ‖2 = ‖L−1/2
k D1/2

k ‖2∞ = ‖L−1/2
k DkL−1/2

k ‖∞ = max
i=1,...,N

N∑

j=1

A2
i,j

Li,iLj,j

≤ nnz(Ak) max
i,j=1,...,N

A2
i,j

Li,iLj,j
= nnz(Ak)‖L−1/2AL−1/2‖2 ≤ nnz(Ak) C

2
.

(11)

By combining (9), (10) and (11), we obtain

‖L−1/2
k Ak(I − N̂ −1

k Nk)νL−1/2
k ‖2

≤ ‖L−1/2
k (I − NkN̂ −1

k )νAkL−1
k Ak(I − N̂ −1

k Nk)νL−1/2
k ‖

= ‖L−1/2
k Nk(I − N̂ −1

k Nk)2νL−1/2
k ‖ ≤ C

2
nnz(Ak)5

2ν
,

which finishes the proof. �
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We went to compare the numerical behavior of the LSGS approach with the
behavior of a standard smoother. One class of standard smoothers for saddle
point problems is the class of Vanka type smoothers, which has been originally
introduced for Stokes problems, cf. [11]. Such smoothers have also gained interest
for optimal control problems, see, e.g., [1,8,10].

The idea of Vanka type smoothers is to compute updates in subspaces directly
for the whole saddle point problem and to combine these updates is an additive
or a multiplicative way to compute the next update. Here, the variables are
not grouped based on the block-structure of Ak, but the grouping is done of
based on the location of the corresponding degrees of freedom in the domain Ω.
The easiest of such ideas for the Poisson control problems is to do the grouping
point-wise, which leads to the idea of point smoothing. Here, we group for each
node δi of the discretization (each degree of freedom of the Courant element) the
value yi of the state and the value λi of the Lagrange multiplier and compute
an update in the corresponding subspace. The multiplicative variant of such a
smoother is a collective Gauss Seidel (CGS) smoother:

x
(0,m,i)
k := x

(0,m,i−1)
k + P(i)

k

(
P(i)

k

T AkP(i)
k

)−1

P(i)
k

T (
f

k
− Ak x

(0,m,i−1)
k

)
,

where x
(0,m,0)
k := x

(0,m−1)
k and x

(0,m)
k := x

(0,m,Nk)
k . For each i = 1, . . . , Nk, the

matrix P(i)
k ∈ R

2Nk×2 takes the value 1 on the positions (i, 1) and (i + Nk, 2)
and the value 0 elsewhere. For the Poisson control problem, we obtain

P(i)
k

T AkP(i)
k =

(
Mi,i Ki,i

Ki,i −α−1Mi,i

)
,

where Mi,i and Ki,i are the entries of the matrices Mk and Kk.
For the Stokes control problem, it is not reasonable to use exactly the same

approach. This is basically due to the fact that the degrees of freedom for v and
λ are not located on the same positions as the degrees of freedom for p and μ.
However, we can introduce an approach based on patches: so, for each vertex of
the triangulation, we consider subspaces that consist of the degrees of freedoms
located on the vertex itself and the degrees of freedom located on all edges which
have one end at the chosen vertex, cf. Fig. 1. Note that here the subspaces are

Fig. 1. Patches for the Vanka-type smoother applied to a Taylor Hood discretization.
The dots are the degrees of freedom of v and λ, the rectangles are the degrees of
freedom of p and μ
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much larger than the subspaces chosen in the case of the CGS approach for the
Poisson control problem (which was just 2). This increases the computational
cost of applying the method significantly. For Vanka type smoothers there are
only a few convergence results known, cf. [1] for a Fourier Analysis and an
analysis based compactness argument and [8] for a proof based on Hackbusch’s
splitting of the analysis into smoothing property and approximation property
which shows the convergence in case of a collective Richardson smoother.

3 Numerical Results

In this section we give numerical results to illustrate quantitatively the conver-
gence behavior of the proposed methods. The number of iterations was mea-
sured as follows: We start with a random initial guess and iterate until the
relative error in the norm ‖ · ‖Lk

was reduced by a factor of 10−6. Without loss
of generality, the right-hand side was chosen to be 0. For both model problems,
the normal equation smoother, the LSGS smoother, the sLSGS smoother and a
Vanka type smoother have been applied. For the smoothers 2 pre- and 2 post-
smoothing steps have been applied. Only for the sLSGS smoother, just 1 pre-
and 1 post-smoothing step has been applied. This is due to the fact that one
step of the symmetric version is basically the same computational cost as two
steps of the standard version. The normal equation smoother was damped with
τ = 0.4 for the Poisson control problem and τ = 0.35 for the Stokes control
problem, cf. [7,9]. For the Gauss Seidel-like approaches, damping was not used.

In Table 1, we give the results for the standard Poisson control problem. Here,
we see that all smoothers lead to convergence rates that are well bounded for a
wide range of hk and α. Compared to the normal equation smoother, the LSGS
smoother leads to a speedup be a factor of about two without any additional
work. The symmetric version (sLSGS) is a bit slower than the LSGS method.
For the first model problem, the (popular) CGS method is significantly faster.
However, for this method no convergence theory is known.

Table 1. Number of iterations for the Poisson control model problem

Normal equation LSGS sLSGS CGS

α = 100 10−6 10−12 100 10−6 10−12 100 10−6 10−12 100 10−6 10−12

k = 5 26 31 28 11 9 7 14 12 14 5 5 3

k = 6 27 28 29 11 11 7 14 14 13 5 5 3

k = 7 27 28 31 11 11 6 14 14 12 5 5 3

k = 8 27 27 25 11 11 3 14 14 7 5 5 4

In Table 2, we give the convergence results for the Stokes control problem.
Also here we observe that the LSGS and the sLSGS approach lead to a speedup
of a factor of about two compared to the normal equation smoother. Here, the
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Table 2. Number of iterations for the Stokes control model problem

Normal equation LSGS sLSGS Vanka type

α = 100 10−6 10−12 100 10−6 10−12 100 10−6 10−12 100 10−6 10−12

k = 4 31 31 60 13 12 14 17 16 22 11 10 7

k = 5 32 30 55 14 13 12 18 16 19 11 10 7

k = 6 32 31 44 14 13 9 18 17 12 11 11 7

k = 7 32 31 37 14 14 6 18 17 9 11 11 9

Vanka type smoother shows slightly smaller iteration numbers than the LSGS
approach. In terms of computational costs, the LSGS smoother seems to be
much better than the patch-based Vanka type smoother because there relatively
large subproblems have to be solved to compute the updates. This is different
the case of the CGS smoother, where the subproblems are just 2-by-2 linear
systems. Numerical experiments have shown that the undamped version of the
patch-based Vanka type method does not lead to a convergent multigrid method.
So, this smoother was damped with τ = 0.4. Due to lack of convergence theory,
the author cannot explain why this approach – although it is a multiplicative
approach – needs damping.

For completeness, the author wants to mention that for cases, where a (closed
form of a) matrix Qk satisfying (2) robustly is not known, the normal equation
smoother does not show as good results as methods where such an information
is not needed, like Vanka type methods. This was discussed in [8] for a bound-
ary control problem, but it is also true for the linearization of optimal control
problems with inequality constraints as discussed in [4] and others. The same is
true for the Gauss Seidel like variants of the normal equation smoother.

Concluding, we have observed that accelerating the idea of normal equation
smoothing with a Gauss Seidel approach, leads to a speedup of a factor of about
two without any further work. The fact that convergence theory is known for
the sLSGS approach, helps also for the numerical practice (unlike the case of
Vanka type smoothers).
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Abstract. In this paper we consider continuous-time local model
networks (LMN) to model dynamical processes with strong nonlineari-
ties. The local model approach allows for simple black-box identification
procedures using experimental data. Using the LoLiMoT algorithm the
number of models can be significantly reduced and may yield insights into
the nonlinearities driving the process. We propose a variation of the
LoLiMoT algorithm that partitions the operating range in a more efficient
manner and proves particular suited for heterogenous nonlinearities.

Keywords: Local model network · Modelling · Turbocharger

1 Introduction

Mathematical modelling is an essential tool for system analysis and control.
In this regard we motivate our aim to derive a mathematical model that describes
the considered process in an adequate fashion. Precise physical models, however,
are often hard to obtain and are frequently challenged by tedious parameter
estimation. Moreover, physical models can be very sensitive with respect to
parameter variations such that an appropriate set of parameters is very hard
to obtain. In particular nonlinear dynamical processes suffer from this prob-
lem. Resorting to grey-box models that are driven by experimental data can
often resolve this problem. For processes with nonlinear dynamics local-model
networks can be used to represent the global dynamics by identifying sim-
ple linear models locally and combine them to a network that matches the
nonlinear global dynamics sufficiently. This is particular useful in industrial
practice where simple controller structures with few tunable parameters are often
preferred. Therefore we aim for an continuous-time LMN such that most common
manual control-design methods are readily applicable.

The basic concepts for local model networks have been developed in the
nineties, see e.g. [1,2], for early work. Ever since local model networks have been
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studied for various system classes and applications range from mechatronical
systems to process engineering. Typical issues that arise in most studies
pertain to the implementation of the local model network. In [3,4] the local
models are realised each having their own local state-space. The overall
output of the model network is then obtained by interpolation of the local model
outputs. The complement approach is taken in [5], where the state is shared by
all local models. Here the parameters are interpolated in appropriate fashion to
emulate the nonlinear dynamics of the process. The vast majority of the publi-
cations, however, consider discrete-time systems.

An important role for the complexity of the local model network plays the
choice of the operating regimes of the individual models. In this regard several
methods have been proposed to partition the scheduling space. A summary on
existing partitioning strategies is given in [6,7].

More details on local model trees based on recursive orthogonal splitting
(LoLiMoT) are given in [2,8–11]. This partitioning strategy uses hyper-rectangles
and is time-consuming regarding large scheduling problems. Axis oblique parti-
tioning strategies using the HiLoMoT algorithm can be found in [6,12]. Other
publications focus on the optimisation of the partitions for a fixed number of
models [5] itself. Based on the chosen partitioning the used weighting functions
have an additional effect on the performance of the LMN [13].

In this contribution we investigate the suitability of local model networks for
continuous-time domain. In regard to the controller design the dynamics and the
gain of the process are equally important. In particular whenever the dominating
time-constant of the dynamics vary within the operating range, good knowledge
of the latter is vital in order to design high-performing controllers. Therefore we
choose an approach that is able to map individual dynamics to different points
in the scheduling space, as well as individual gains.

For the resulting local model network we address in particular issues regard-
ing the offsets of the local models and suitable partitioning techniques. For
processes that exhibit strong nonlinear dynamics, the local model network may
need a very large number of models to match the behaviour appropriately, when
the local operating points are evenly distributed. In order to keep the number
of local models moderately large, we apply the LoLiMoT algorithm and propose
a novel technique that is able to introduce multiple partitions in each iteration
and may lead to partitions that fit the nonlinearity better.

The described techniques are applied to model the boots-pressure dynamics
of a turbo charged combustion engine. The experimental data for modelling and
verification are obtained from a full-scale test rig.

2 Local Model Networks

The local model network (LMN) approach [1] uses the strategy of divide and
conquer to describe a complex and non-linear behaviour of a dynamical system,
given by:

y = h(x(t),u(t), t) . (1)
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First of all the operating range of the system is divided in M regions, wherein
the dynamics can be approximated by a more simple (e.g. linear or affine) model
h̃i(x(t),u(t), t).

In order to cover the complete operating range the interaction of the local
models is controlled by the scheduler Φ, a vector of exogenous or system vari-
ables prior chosen. Each model is weighted a function by ρi(Φ) ∈ [0, 1], repre-
senting the range of validity of the i-th model. The system dynamics (1) are
then approximated by the LMN by the interpolation of the local models

ỹ =
M∑

i=1

ρi(Φ) h̃i

(
x(t),u(t), t

)
with

M∑

i=1

ρi(Φ) = 1 .

In this paper we examine the application of the LMN approach to nonlinear
dynamical systems of the form

ẋ(t) = f(x(t),u(t)), x(0) = x0 with: x ∈ Rm,y ∈ Rq,u ∈ Rp

y(t) = h(x(t),u(t)) .
(2)

The nonlinear dynamics shall be approximated by linearisations at M stationary
solutions (x∗

i ,u
∗
i ) with f(x∗

i ,u
∗
i ) = 0:

ẋ(t) = f(x∗
i ,u

∗
i ) + Ai(x(t) − x∗

i ) + Bi(u(t) − u∗
i )

y(t) = h(x∗
i ,u

∗
i ) + Ci(x(t) − x∗

i ) + Di(u(t) − u∗
i ) .

(3)

Following [3] we can define M models with local states x̃i(t) = x(t)−x∗
i , inputs

ũi(t) = u(t) − u∗
i and outputs ỹi(t) = y(t) − h(x∗

i ,u
∗
i ). This leads to a local-

state representation of the LMN where the output is a weighted sum of the single
models’ outputs. This description proves sufficient for controller design based on
local observes as discussed in [3].

However, simulation purposes or even stability analysis may pose further
requirements onto the LMN [14,15]. In a local-state architecture, the initial
state of the local model may induce strong transient responses at the switch-
ing instance which are not desirable and may affect stability [16]. Furthermore,
whenever the scheduling variable switches different output signals between the
subsequent local models will cause discontinuities of the output, which will not
be observed in the original nonlinear process behaviour.

Therefore we shall choose a global-state representation of the LMN, where the
state-vector x is shared by all local models. Then the linearisation (3) becomes
an affine system with local system-offset Ki and the local output-offset Li:

Ki = −(Aix
∗
i + Biu

∗
i )

Li = h(x∗
i ,u

∗
i ) − (Cix

∗
i + Diu

∗
i ) .

(4)

For the global-state LMN we obtain the parameter-varying affine system

ẋ = A(Φ)x + B(Φ)u + K(Φ)
y = C(Φ)x + D(Φ)u + L(Φ). (5)
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where A(Φ) =
∑M

i=1 ρi(Φ)Ai and B(Φ), K(Φ), C(Φ), D(Φ) and L(Φ) with
according interpolations.

Note that the state-space of the global-state LMN has M -time smaller dimen-
sion than that of the local-state LMN. Furthermore, the state is continuous for
all variations in Φ. With some mild assumptions the same holds for the output.

3 Experimental Identification of the Pressure-Dynamics

Modern combustion engines are frequently equipped with an exhaust turbo-
charger that boosts the pressure of the intake air in order to increase the amount
of oxygen in the cylinder. Often the compressor power can be manipulated
by varying the geometry of the turbine, so-called variable-geometry turbine
(VGT). This allows for influencing the charging pressure within certain con-
straints. While the physical relations of the quantities are well known, e.g. [17],
deriving a dynamical model of the pressure dynamics and identifying its para-
meters is very time-consuming as such models exhibit strong non-linearities and
are very sensitive with respect to certain parameter variations [18–20]. A data-
driven black-box approach may therefore prove valuable in this context and, thus,
the pressure dynamics are a very suitable process to investigate properties and
challenges of the LMN approach.
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Fig. 1. Sample of data time-series and identification result

The data-base for identification consists of 16 time-series of experimental
input-output data at various engine operating points (ni, qi). Within one test-
cycle the engine speed ni and injection rate qi was maintained constant whereas
the compressor power PC was increased stepwise, see Fig. 1 for a sample time-
series.
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3.1 LMN Identification

The engine speed and injection rate are natural scheduling variables from an
engineering point of view. We can further observe that the dynamics vary signif-
icantly for different levels of the compressor power PC , cf. Fig. 1. Therefore we
choose Φ = [n, q, PC ]T as scheduling vector; the system’s input is the compressor
power u := PC , the output is the boost-pressure y := p2.

Based on the data structure the most simple partitioning approach of a regu-
lar grid is used to divide the total working range into 256 local regions. For each
of these local regions we choose a grey-box approach to identify the local dynam-
ics. In our case physical considerations lead to the following parametrisation of
the local models:

G(s) = V
τ1s + 1

(τ2s + 1)(τ3s + 1)
.

The parameters (Vi, τ1i, τ2i, τ3i) of the local models i = 1, . . . , M are obtained
by non-linear optimisation for each individual step in the time-series with removed
offsets. In order to cast the local models in into the state-space representation (5)
we choose the observer canonical form which has a constant output matrix that
renders the output continuous for all variations of Φ. The regions of validity of
each model are defined by triangular weighting functions ρi.

The offset parameters Ki and Li in (4) are chosen to account for the removed
offset in the local identification. Without loss of generality we choose Li = 0 for
all i. For calculating Ki we note, that the second state-component is the output
and thus can be taken from the data. For the first local model of each time-series
we have:

Ki = −Biu(0) − Ai

(
x1(0)
y(0)

)
,

where only x1(0) can be chosen arbitrarily. For the second step of a given
time-series we obtain the initial condition from the final state using the already
identified parameters of the first model, etc. Determining the offsets in this fash-
ion yields a continuous output for each time-series as shown in Fig. 1.

3.2 Verification of the LMN

In order to verify the LMN’s ability to match the non-linear process dynamics,
we simulate the LMN using a highly dynamic verification-cycle covering the
full operation range. Figure 2 shows the evolution of the scheduling variable’s
components during that test-cycle featuring steep sloped jumps as well as various
smooth transitions.

The overall performance of the LMN is quite satisfactory with a mean square
error of MSE = 2.72 × 103 hPa2 and a maximum error |emax| = 223.6 hPa.
Figure 3 shows two details of the full cycle. The model matches the experimental
data very well for dynamical (right) and stationary (left) areas. However, we note
that for high compressor powers the stationary error may rise as high as 100 hPa.
This may be due to high noise-levels in the data for these operating points that
prohibit a precise estimate of the DC-gain in these regions.
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Fig. 2. Evolution of the scheduling variables during the validation cycle.
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Fig. 3. Simulation result using the validation cycle with 256 local models.

4 Local Model Trees

The grid-based approach of the previous section typically leads to a large number
of local models that are equally spaced in the operating range, irrespective of the
character of the nonlinearity. Local model tree algorithms address these issues
by starting with a low number of models and improving the model network
iteratively by introducing additional models, if the error is large in a certain
region. Thereby, only few models will be placed in regions where the process
behaves in an almost linear fashion and local over-fitting is avoided.

While there are a number of partitioning strategies available, an orthogonal
partitioning appears to be a natural choice in our case, as the data for iden-
tification is distributed in a grid-like fashion within the scheduling space. The
classical LoLiMoT-algorithm presented in [9,10] uses such orthogonal partition-
ing. In each iteration the region of the worst performing local model is split
in 2 hyper-rectangles wherein the parameters for new local models are identi-
fied. Every possible division (one for each dimension of the scheduling space) is
analysed and the best division is chosen.

4.1 Local Error Based Partitioning (LEB)

The classical LoLiMoT considers the accumulated quadratic error to evaluate the
performance of the model and thus does not use the full available information
at each iteration. In this section we propose a novel partitioning strategy that
uses the signed error at each point in the scheduling space in relation to cer-
tain thresholds τ− and τ+ dividing the scheduling space into 3 regions in one
iteration. As illustrated in Fig. 4 this may lead to a better approximation of
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Fig. 4. Illustration of local error based partitioning (top) and classical LoLiMoT par-
titioning (bottom) for a simple static nonlinearity.

the nonlinearity by using a smaller number of models compared to the classical
bisection.

Our optimisation data is given at discrete points of the scheduling space.
Therefore we can define the local error

el(Φk) :=

tend∫

0

[ŷ(t) − y(t)] ρk (Φ(t)) dt

for each local model k = 1, 2, . . . ,Mmax. In order to find the best cut in the
scheduling space the local error is projected onto one component by the weighted
sum of the local errors of the remaining dimensions.

For the boost-pressure dynamics we obtained either a quadratic or linear
distribution of this projected local error (PLE), cf. Fig. 5. Based on this classi-
fication of the PLE distribution an adaptive threshold τ is calculated:

1. If the PLE shows a parabolic distribution (with 2 zero-crossings) the threshold
is set to zero τ = 0 defining three regions, based on the requirement that the
area of validity of a local model should be compact.

2. If the PLE shows a linear distribution (with a single zero-crossing) the sym-
metric thresholds |τ+| = |τ−| are calculated based on the PLE: τ± =
±κ · min{el,min; el,max} with a constant factor κ < 1 three regions are set.

3. If the PLE distribution cannot be categorised clearly, the classical bisection
is applied defining two new regions.

Finally we embedded this approach into the LoLiMoT algorithm [9] (see Fig. 5):

1. The weighting functions of the initial model are calculated. If only one global
model is used, the global weight is set to ρ1(Φ) = 1.
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Fig. 5. LoLiMoT algorithm with local error based (LEB) partitioning algorithm.

2. The partitioning criterion is evaluated choosing the worst model. If the chosen
model covers the smallest possible region given by the data structure its
partitioning criteria is set to zero and the next model is chosen.

3. The local error for the complete operation range is calculated.
4. For every scheduling variable Φ1, . . . , ΦN do:

(a) The projected local error and the partitioning thresholds are calculated.
If the original region is minimal regarding the dimension i, the temporary
partitioning criterion is set to infinity and the following steps are skipped.

(b) The model parameters are optimised locally.
(c) The weighting function and the partitioning criteria of the new models

are determined.
5. The best partitioning is chosen and the number of local models increased.
6. If any abort criterion is reached (e.g. maximum number of models), the LMN

is completely defined. Otherwise the iteration starts again at point 1.

The inner loop can be evaluated using parallel computing with one threat cov-
ering each dimension of the scheduling vector. If linear triangular weighting
functions are used, only a part of the weighting functions needs to be updated.
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Because every iteration leads to 2 new local models (best case) the approach
reduces the number of optimisation tasks from 4N(M − 1)/2 + 1 optimisation
task for the classical LoLiMoT to 3N(M − 1)/2 + 1 where M denotes the total
(odd) number of models and N the dimension of the scheduling vector.

4.2 Results and Comparison of the Partitioning Techniques

We used the LoLiMoT with LEB partitioning technique as well as the classical
bisection method to obtain a reduced LMN. To have a fair comparison we ran
the latter for more iterations to obtain the same number of local models. Both
networks are then compared to the full-grid LMN obtain in Sect. 3 using the
verification cycle, see Fig. 6.

Table 1. LMN error development regarding the validation cycle.

LoLiMoT Local error based

M MSE/hPa2 |emax|/hPa MSE/hPa2 |emax|/hPa

10 4.1e3 253.9 2.4e3 203.8

30 2.7e3 200.5 2.8e3 165.5

45 2.4e3 208.9 2.3e3 157.5

60 2.4e3 208.9 2.2e3 159.6

Both networks (with only 10 local models each) are able to match the non-
linear dynamics reasonably well. However, the stationary error is significantly
larger compared to the full-grid LMN with 256 models. Increasing the num-
ber of models both algorithms can reduce the error measure as expected. Often
the LEB-network shows better stationary behaviour than the bisection-network,
but the data does not allow for a strong statement here. However, the overall
error of the LEB-network is significantly better than the errors produced by the
bisection-model, see Table 1. This holds in particular for the maximum error
which is up to 25 % lower for the LEB-network.
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Fig. 6. Comparison of the LMN performances using the verification cycle.
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5 Conclusions

In this work we apply a continuous-time global-state local model network to iden-
tify the boost-pressure dynamics of an exhaust turbocharger using experimental
input-output data. The approach is feasible to match the strongly nonlinear
dynamics and may therefore be suitable as a basis for control design. We discuss
several implementation issues such as the choice of state-space representation,
global-state implementation and the use of discontinuous time-series at various
operation points. We propose a novel partition strategy that is computationally
more efficient compared to the classical bisection method and also yields better
results in the global performance using an independent verification-cycle.
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