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Preface

In 2014, both major Latin American HPCWorkshops (HPC Latam and CLCAR)
joined to form CARLA 2014, which was held in the Universidad Santa Maŕıa in
Valparáıso, Chile. This conference also included the Third HPC School – ECAR
2014. Both events were organized by the following institutions:

• Valparáıso Center for Science and Technology (CCTVal), Universidad Téc-
nica Federico Santa Maŕıa

• National Laboratory for High Performance Computing (NLHPC), Universi-
dad de Chile

The main goal of the CARLA 2014 conference was to provide a regional
forum fostering the growth of the HPC community in Latin America through
the exchange and dissemination of new ideas, techniques, and research in HPC.
The conference featured invited talks from academy and industry, short- and
full-paper sessions presenting both mature work and new ideas in research and
industrial applications. The suggested topics of interest of the conference in-
cluded:

• Big data management and visualizations
• GPU computing
• Grid and cloud computing
• High-performance computing applications
• Parallel algorithms and techniques
• Parallel computing architectures and technologies
• Scientific computing applications and methods
• Tools and environments for high-performance computing

I would like to thank the organizing institutions (CCTVAl and NLHPC),
sponsors (Intel, NVidia, Seagate, Siasa), and everyone who helped in the orga-
nization and realization of CARLA: the co-chairs, track chairs, members of the
Program Committee, keynotes, lecturers, and administrative staff.

October 2014 Gonzalo Hernández
General Chair CARLA 2014
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Lucas Iacono, José Luis Vázquez-Poletti, Carlos Garćıa Garino,
and Ignacio Mart́ın Llorente

Ensemble Learning of Run-Time Prediction Models for Data-Intensive
Scientific Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
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Implications of CPU Dynamic Performance and Energy-Efficient
Technologies on the Intrusiveness Generated by Desktop Grids Based
on Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Germán Sotelo, Eduardo Rosales, and Harold Castro



XII Table of Contents

Efficient Fluorescence Microscopy Analysis over a Volunteer Grid/Cloud
Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Miguel Da Silva, Sergio Nesmachnow, Maximiliano Geier,
Esteban Mocskos, Juan Angiolini, Valeria Levi, and Alfredo Cristobal

Track: HPC Architectures and Tools

Multiobjective Energy-Aware Datacenter Planning Accounting
for Power Consumption Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Sergio Nesmachnow, Cristian Perfumo, and Íñigo Goiri
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Adriano M.A. Côrtes, Philippe Vignal, Adel Sarmiento,
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Efficient Symmetric Band Matrix-Matrix

Multiplication on GPUs

Ernesto Dufrechou2, Pablo Ezzatti2, Enrique S. Quintana-Ort́ı3,
and Alfredo Remón1

1 Max Planck Institute for Dynamics of Complex Technical Systems,
Magdeburg, Germany

remon@mpi-magdeburg.mpg.de
2 Instituto de Computación, Universidad de la República,

11.300–Montevideo, Uruguay
{edufrechou,pezzatti}@fing.edu.uy

3 Dep. de Ingenieŕıa y Ciencia de la Computación, Universidad Jaime I,
12.071–Castellón, Spain
quintana@icc.uji.es

Abstract. Matrix-matrix multiplication is an important linear algebra
operation with a myriad of applications in scientific and engineering com-
puting. Due to the relevance and inner parallelism of this operation, there
exist many high performance implementations for a variety of hardware
platforms. Exploit the structure of the matrices involved in the operation
in general provides relevant time and memory savings. This is the case,
e.g., when one of the matrices is a symmetric band matrix. This work
presents two efficient specialized implementations of the operation when
a symmetric band matrix is involved and the target architecture con-
tains a graphics processor (GPU). In particular, both implementations
exploit the structure of the matrices to leverage the vast parallelism of
the underlying hardware. The experimental results show remarkable re-
ductions in the computation time over the tuned implementations of the
same operation provided by MKL and CUBLAS.

1 Introduction

The matrix product

C := αAB + βC, (1)

where C ∈ R
m×n, A ∈ R

m×k, B ∈ R
k×n, and both α, β are scalars is a common

and well-known kernel in numerical linear algebra [6]. This operation exhibits a
high level of concurrency and there exist highly tuned implementations available
for most high performance computing (HPC) hardware architectures.

In this work we address the special case of the matrix-matrix product (1)
when matrix A presents a symmetric band structure (and, therefore, m = k),
meaning that all the nonzero elements of A are placed in a small set of super-
and sub-diagonals adjacent to the main diagonal. Exploiting the structure of

G. Hernández et al. (Eds.): CARLA 2014, CCIS 485, pp. 1–12, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



2 E. Dufrechou et al.

α
00

α
10

α
11

α
21

α
22

α
32

α
33

α
43

α
44

α
54

α
55

α
42

α
31

α
53

α
20

α
00

α

α α

α α

α α
α α

α

10

01 02

12 13

23 24

34 35

45

α
11

α
20

α
21

α
22

α
31

α
32

α
33

α
42

α
44

α
53

α
54

α
55

α
43

* *

*

Fig. 1. 6×6 symmetric and matrix with bandwidth k = 2 (left); packed storage scheme
used in BLAS and LAPACK (right)

A yields a large reduction in the number of computations and in memory re-
quirements. In particular, due to the symmetry of A, only its lower/upper part
needs to be stored. Additionally, due to its band structure, the null elements
that lie out of the band do not need to be kept. The number of arithmetic oper-
ations may also be reduced as all the computations involving null elements are
not necessary. Band matrices present also favorable differences when compared
with unstructured sparse matrices. Specifically, storage formats for unstructured
sparse matrices are complex, as the position of each nonzero must also be stored,
but for band matrices the data layout can be simplified because the structure
of the nonzeros is regular and, consequently, it is not necessary to maintain the
coordinates of each element of the matrix. Additionally, the memory accesses
can be performed with a regular and predictable pattern.

The positive properties of symmetric band matrices, and the availability of
reordering techniques (e.g. the RCM method [3]) to transform symmetric sparse
matrices, in some cases, into symmetric narrow-band matrices has motivated the
exploitation of these favourable properties in several engineering applications,
including real optimization, numerical solution of partial differential equations,
and control theory problems; see, among others, [5,2].

The advantages of exploiting the structure of symmetric band matrices moti-
vated the inclusion of specific routines in BLAS and LAPACK [1]. The BLAS

specification defines a compact storage format for symmetric band matrices (see
Figure 1) that is a trade-off between minimal storage and optimal access pattern
to the matrix elements. In particular, the symmetric band storage format stores
(k+1)×m elements, where k represents the number of nonzero super- and sub-
diagonals, and m is the number of rows and columns of the matrix. Only a few
null elements are stored (marked in Figure 1 with the symbol “*”). However, the
main feature of this storage format is that it permits a memory access pattern
very convenient for today’s cache-based architectures.

The support of BLAS for symmetric band matrices comprises a small set of
routines that implement some key linear algebra operations. This is the case
for routine sbmv, which computes a matrix-vector product where the matrix
presents a symmetric band structure. Similarly, LAPACK gives support to some
operations with band matrices; e.g., matrix factorizations and linear system
solvers [4].
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The main contribution of this paper is the introduction and evaluation of
two new GPU-based routines for the symmetric band matrix multiplication
(sbmm) that leverage the vast hardware parallelism of GPUs and the high data-
parallelism of this operation to significantly accelerate its computation. In par-
ticular, the experimental results for the accelerator-enabled codes collected on
an NVIDIA C2050 GPU and two Intel E5520 quad-processor, demonstrate su-
perior performance and scalability over a multithreaded CPU variant using the
Intel MKL (Math Kernel Library) and a GPU version based on CUBLAS.

The rest of the paper is structured as follows. In Section 2, we describe the
routines related to band matrix multiplication available in BLAS. Then, in Sec-
tion 3, we introduce a modified algorithm for the operation where most of the
computations are cast in terms of BLAS-3 kernels. We describe the two new
GPU-based versions that implement the aforementioned algorithm in Section 4.
We present experimental results in Section 5 and, finally, we discuss some con-
clusions and future work in Section 6.

2 The Operation in BLAS

The BLAS specification provides support to perform computations with sym-
metric band matrices. In particular, it includes a specific kernel called sbmv to
perform a matrix-vector product where the matrix is symmetric and banded.
In contrast, BLAS does not offer the equivalent kernel for the matrix-matrix
product operation when one of the matrices presents a band structure. This
matrix-matrix product can be easily implemented on top of sbmv routine. Con-
cretely, we can partition matrix B columnwise, and perform a matrix-vector
product with each column of B. This procedure can be written as:

Ci = αABi + βCi, (2)

where Ci, Bi stand for the i-th columns of B and C respectively, and 1 ≤ i ≤ n.
Although this simple approach allows us the use of BLAS kernels to execute

the complete operation, it is based on a level-2 BLAS routine, while the prod-
uct of matrices is a level-3 BLAS operation. Thus, with this implementation
the underlying architecture can not be efficiently exploited. In particular, each
element of matrix A is accessed n times resulting in a suboptimal usage of the
memory hierarchy.

3 Algorithm sbmmBLK

Block-wise algorithms for linear algebra computations can efficiently leverage
the memory hierarchy of current parallel computing architectures, resulting in
higher performances. In this context, we propose a blocked algorithm to perform
the matrix-matrix product when matrix A presents a symmetric band structure,
which is presented in Figures 2 and 3. Note that it only accesses the elements in
the lower triangular part of matrix A, in order to support the use of the packed
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Algorithm: [C] := sbmmBLK outer(C,A,B, k)

Partition C → (
CL CR

)
, B → (

BL BR

)

where CL, BL have 0 columns

while n(CL) < n(C) do
Determine block size c
Repartition

(
CL CR

) → (
C0 C1 C2

)
,
(
BL BR

) → (
B0 B1 B2

)

where C1, B1 have c columns

C1 := sbmmBLK inner(C1, A,B1, k)

Continue with

(
CL CR

) ← (
C0 C1 C2

)
,
(
BL BR

) ← (
B0 B1 B2

)

endwhile

Fig. 2. Outer loop of Algorithm sbmmBLK that computes C := A ·B + C

storage format. An analogous procedure that accesses the elements in the upper
triangle or all the elements of A is straight-forward.

The algorithm consists of two loops. The outer loop (Figure 2) partitions
matrices B and C into blocks of c columns; at every iteration of the loop, the
elements in the active column-block of C are updated. The inner loop (Figure 3)
proceeds along the main diagonal of A (top-left to down-right), updating the
corresponding elements of C. Matrices B and C are partitioned row-wise, while
matrix A requires a 3 × 3 partition. At each iteration, blocks Ai1 and Bi with
i = 1, 2, 3, are accessed; while block Ci where i = 1, 2, 3, is updated. Note that
A11 and A31 are respectively, lower and upper triangular. Figure 4 details the
blocks accessed and updated at a given iteration of the inner loop.

The execution of Algorithm sbmmBLK can be adapted to the underlying
architecture and problem by carefully choosing parameters c and b. Parameter
c defines the number of columns of C computed at a given iteration of the outer
loop, while b corresponds to the number of columns of A that are accessed at
each iteration of the inner loop. The optimal values for c and b strongly depends
on the memory organisation of the target architecture. For example, in current
multicore processors, b = 32 is usually a convenient choice, while for GPUs larger
values are recommended (e.g. b = 128).

4 Implementations

We next present three routines to compute the symmetric band matrix-matrix
product on a CPU-GPU system. All the implementations intensively invoke ker-
nels from CUBLAS.
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Algorithm: [E] := sbmmBLK inner(E,A,D, k)

Partition E →
⎛
⎝

ET

EM

EB

⎞
⎠ , A →

⎛
⎝

ATL

AML AMR

ABR

⎞
⎠ , D →

⎛
⎝

DT

DM

DB

⎞
⎠

where ET , DT have 0 elements; ATL is 0 × 0 and EM , AML have k rows

while m(ET ) < m(E) do
Determine block size b
Repartition

⎛
⎝

ET

EM

EB

⎞
⎠ →

⎛
⎜⎜⎜⎜⎝

E0

E1

E2

E3

E4

⎞
⎟⎟⎟⎟⎠

,

⎛
⎝

ATL

AML AMR

ABR
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where D1 has b rows;
E1 has b rows;
E3 has 0 rows if m(D0) > (n(A) − k − 1) and has b rows otherwise;
A11 is b × b;
A31 is empty if m(D0) > (n(A) − k − 1) and is b × b otherwise

E1 := E1 + A11 · D1

E1 := E1 + AT
21 · D2

E1 := E1 + AT
31 · D3

E2 := E2 + A21 · D1

E3 := E3 + A31 · D1
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endwhile

Fig. 3. Inner loop of Algorithm sbmmBLK that computes C := A ·B + C

4.1 Implementation sbmmblk

Routine sbmmblk is an implementation of Algorithm sbmmBLK with all the
computations performed via the appropriate CUBLAS kernel. Initially, all the
matrices are sent to the GPU. Then, βC is computed via the corresponding
CUBLAS routine. This is not a BLAS-3 operation, but it presents a relatively
small computational cost and can be efficiently computed on the accelerator.
Next, the operations in sbmmBLK are executed; and finally C is transferred
back to the CPU. The update of C1 requires three matrix-matrix products: one
involving a symmetric matrix (block A11), a second with an upper triangular
matrix (block A31); and the last one with two general matrices. CUBLAS pro-
vides specific routines for all these operations. Blocks C2 and C3 are updated via
a product of two general matrices and a product of an upper triangular matrix
times a general matrix, respectively.

The use of CUBLAS routines also presents a drawback, as the kernel that
implements the product of a triangular matrix times a general matrix (routine
trmm) indeed computes

C = α op(A) B, (3)
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Fig. 4. Elements read and updated during a step of the inner loop of the sbmmBLK

algorithm

where A is an upper or lower triangular matrix and op(A) denotes A or AT

hereafter. In contrast, the updates of C1 and C3 require an operation of the type

C = C + α op(A) B, (4)

To overcome this problem, routine sbmmblk performs the following sequence of
operations in order to update C1:

(trmm) W = AT
31B1,

(geam) C1 = C1 +W.

(Next to each operation, we indicate the CUBLAS kernel that implements it.)
The update of C3 is analogous. This procedure requires an auxiliary workspace
(W ∈ Rb×c).

High performance can be expected of this implementation due to the use of
tuned CUBLAS routines.

4.2 Implementation sbmmblk+ms

The sbmmblk implementation presents some drawbacks that reduce its perfor-
mance. In particular, it requires up to 6 operations per iteration. Besides, two
of the operations involve a triangular matrix and are computed in two steps
(as discussed in the previous subsection). Thus, up to 8 kernels are invoked at
each iteration and some of them require a low computational effort (as do the
two invocations to geam). The sbmmblk+ms implementation aims to reduce the
number of routine invocations, specifically, by removing those with a lower com-
putational cost. To make this possible, we perform some changes in the matrix
storage. Assume A presents a symmetric band structure and its lower part is
stored following the BLAS specific format. Then, in order to accelerate algo-
rithm sbmmBLK we add b additional rows to the bottom of A. Correspondingly,
when the upper part of A is stored, then the new rows should be added at the
top of A. Additionally, in a GPU environment, we suggest that this number is
chosen to enable a coalesced access to the elements of A.
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Fig. 5. Modified storage scheme for symmetric band matrices and how it is accessed
in the inner loop from sbmmBLK

Figure 5 shows the modified storage scheme and how it is accessed during an
inner loop iteration in sbmmBLK . The strictly lower triangular part of A31 is
now conveniently placed in the added rows. Consequently, blocks A21 and A31

can be merged, and so can the operations they are involved in. Thus, the updates
performed at each step of the inner loop can be reformulated as:

E1 := E1 +A11 ·D1,

E1 := E1 +
[
AT

21A
T
31

] ·D1[
E2

E3

]
:=

[
E2

E3

]
+

[
A21

A31

]
·
[
D2

D3

]
.

This approach presents two main advantages:

– The number of invocations to CUBLAS kernels is reduced from 8 to 3 per
step and, consequently, the overhead introduced by the kernels invocations
is also reduced.

– It eliminates the invocations to kernels with a moderate to low cost, which
can not exploit the massively parallel architecture of the GPU. Concretely,
the operations that dissapear involve triangular matrices and present load-
balancing problems.

There are also some drawbacks related to this implementation. First of all, the
memory requirements are enlarged. In addition, the number of arithmetic opera-
tions is also increased, as it operates with the null elements in A11 and A31.

4.3 Implementation sbmvms

Additionally, we implemented a symmetric banded matrix-vector product vari-
ant based on the modified storage scheme. Due to the different storage scheme,
this variant may be slightly faster than the implementation from CUBLAS. The
overhead introduced by transforming A to the modified storage can be relatively
high, in principle higher than the gain that sbmvms introduces with respect to
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the CUBLAS routine. However, there exist some applications where the same
matrix is involved in several matrix-vector products. In those applications, it
may pay off to accelerate (even slightly) the matrix-vector products at the price
of an increase in the storage space required to keep the matrix. This is, for
example, the case for iterative solvers such as the Conjugate-Gradient method.

5 Experimental Evaluation

We evaluate the performance of the band matrix multiplication implementations
presented in the previous section, namely the sbmmblk routine built upon the
BLAS packed storage format, and sbmmblk+ms that supports the modified stor-
age. Additionally we include in the evaluation three implementations based on
the band matrix-vector product: two based on the routines provided by MKL

(sbmmmkl) and CUBLAS (sbmmcublas), and one more based on routine sbmvms

(sbmmms).
We computed the products where the dimension of A varies from m = 12, 800

tom = 64, 000. Three bandwidths were tested for each dimension, k = 0.5, 1, and
2% of m. Matrices B, C featured a reduced number of columns: n = 1, 10, 20.
The first one corresponds in fact to a matrix-vector product.

The evaluation was performed in a platform eqquiped with an nVIDIA C2050
and two Intel Xeon E5520 quad-core processors. The implementations per-
form a heavy use of routines from libraries Intel MKL v9.293 and nVIDIA

CUBLAS v5.5. They were compiled with gcc v4.1.2. Finally, all the experiments
were performed using IEEE double-precision real arithmetic.

Table 1 shows the execution time for all the routines evaluated. All the results
include the time required to transfer data between the CPU and the GPU memo-
ries. If matricesB and C present a single column, meaning that we are computing
a matrix-vector product, then sbmmmkl obtains the best performance. The rea-
son is that the computational cost of the operation is too low, and the larger
parallelism of the GPU can not compensate for the communication time. The
fastest routine in the device is sbmmcublas when the dimension of A is medium
to small. For larger products, e.g. when m > 38, 400 and k ≥ 2%, sbmvms

outperforms sbmmcublas.
As soon as n becomes larger, the blocked variants become more efficient. In

particular, with n = 10, sbmmblk attains the best execution times. Only the
performance of sbmmblk+ms is comparable but always lower to that of sbmmblk.
This is due to the extra memory required to store A using the modified storage
scheme and the subsequent overhead when the matrix is transferred to the GPU.
Note that in most of the cases, sbmmms outperforms the sbmmcublas implemen-
tation. Only for the smallest values of m and when the bandwidth k < 2%,
the CUBLAS routine outperforms sbmmms. This is because the matrix-vector
kernel in sbmmms is more efficient than its counterpart in CUBLAS, and it can
compensate the overhead introduced by the extra data transfers required by the
modified storage.

This behaviour is reinforced when n = 20. The blocked variants deliver the
best performances even for the smallest test-cases evaluated.Additionally,with the
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Table 1. Execution time (in seconds) for the symmetric band matrix-matrix product
routines when n = 1, 10, 20. The bandwidth is expressed as a percentage of the matrix
dimension.

Matrix
Bandwidth sbmmmkl sbmmcublas sbmmblk sbmmms sbmmblk+msDimension

n = 1

12800
0.5% 0.002 0.004 0.011 0.009 0.013
1.0% 0.005 0.006 0.012 0.011 0.017
2.0% 0.006 0.011 0.016 0.014 0.024

25600
0.5% 0.006 0.012 0.022 0.022 0.032
1.0% 0.011 0.024 0.030 0.032 0.048
2.0% 0.020 0.042 0.064 0.047 0.078

38400
0.5% 0.014 0.028 0.040 0.040 0.062
1.0% 0.022 0.054 0.071 0.063 0.099
2.0% 0.039 0.101 0.133 0.096 0.157

51200
0.5% 0.023 0.049 0.060 0.063 0.096
1.0% 0.039 0.092 0.126 0.094 0.156
2.0% 0.070 0.159 0.227 0.147 0.254

64000
0.5% 0.035 0.076 0.106 0.090 0.140
1.0% 0.056 0.130 0.175 0.124 0.200
2.0% 0.103 0.252 0.320 0.231 0.354

n = 10

12800
0.5% 0.011 0.016 0.014 0.034 0.015
1.0% 0.029 0.029 0.014 0.039 0.019
2.0% 0.054 0.052 0.019 0.048 0.027

25600
0.5% 0.059 0.058 0.027 0.076 0.038
1.0% 0.115 0.105 0.036 0.094 0.053
2.0% 0.193 0.180 0.070 0.113 0.083

38400
0.5% 0.129 0.124 0.046 0.127 0.068
1.0% 0.224 0.228 0.080 0.173 0.106
2.0% 0.392 0.379 0.132 0.199 0.150

51200
0.5% 0.231 0.211 0.070 0.186 0.099
1.0% 0.388 0.358 0.137 0.226 0.165
2.0% 0.704 0.631 0.237 0.338 0.263

64000
0.5% 0.350 0.317 0.113 0.250 0.150
1.0% 0.624 0.557 0.205 0.319 0.241
2.0% 1.031 0.989 0.357 0.505 0.391

n = 20

12800
0.5% 0.020 0.029 0.016 0.057 0.018
1.0% 0.057 0.053 0.017 0.064 0.020
2.0% 0.116 0.097 0.022 0.079 0.029

25600
0.5% 0.117 0.106 0.033 0.127 0.042
1.0% 0.230 0.195 0.042 0.157 0.058
2.0% 0.417 0.328 0.077 0.180 0.089

38400
0.5% 0.258 0.227 0.051 0.203 0.081
1.0% 0.643 0.425 0.092 0.302 0.115
2.0% 0.867 0.706 0.153 0.329 0.171

51200
0.5% 0.461 0.399 0.084 0.310 0.114
1.0% 0.757 0.661 0.144 0.346 0.164
2.0% 1.409 1.138 0.253 0.523 0.273

64000
0.5% 0.699 0.592 0.138 0.434 0.176
1.0% 1.429 1.019 0.225 0.501 0.255
2.0% 2.069 1.840 0.379 0.783 0.407
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Table 2. Execution time (in seconds) for the symmetric band matrix-vector product
routines. The CPU-GPU communication times are not reported in this table. The
bandwidth is expressed as a percentage of the matrix dimension.

Matrix
Bandwidth sbmvmkl sbmvcublas sbmvms

Dimension

12800
0.5% 0.002 0.001 0.002
1.0% 0.004 0.002 0.003
2.0% 0.009 0.004 0.003

25600
0.5% 0.006 0.005 0.005
1.0% 0.012 0.008 0.006
2.0% 0.019 0.015 0.007

38400
0.5% 0.013 0.010 0.009
1.0% 0.023 0.019 0.011
2.0% 0.039 0.031 0.012

51200
0.5% 0.023 0.018 0.012
1.0% 0.055 0.030 0.013
2.0% 0.071 0.050 0.018

64000
0.5% 0.035 0.027 0.017
1.0% 0.056 0.045 0.018
2.0% 0.103 0.081 0.027

blocked variants, the cases with n = 10 and n = 20 present a similar execution
time.On the contrary, as could be expected, sbmmmkl requires 2×more time, while
sbmmcublas and sbmmms require approximately between 1.75 and 2× more time.
This is because in the GPU-based variants, although the computing time is dou-
bled, the data transfer time is similar. Thus, the total time is increased by a factor
lower but near to 2×.

As stated above, the sbmvms routine is more efficient than the correspond-
ing kernel from CUBLAS. However the gains reported do not compensate the
overhead introduced by the higher volume of data transfer, and the mandatory
transform of A to the modified storage scheme. There are some applications
where several matrix-vector products have to be computed using the same ma-
trix. This is the case of iterative solvers of systems of linear equations such as
the Conjugate-Gradient method. In such applications, the matrix can be trans-
formed and transferred to the device once, and can be then successively re-used
at each iteration of the algorithm. Thus, the overhead introduced by data trans-
fers can be easily compensated after several steps iterations if the matrix-vector
routine is more efficient.

Table 2 shows the execution time required by the matrix-vector implementa-
tions without taking into account the time dedicated to the data transfers. The
sbmvmkl kernel is outperformed by both GPU-based routines and the sbmvms

variant in particular obtains remarkable speed-ups. These results show that the
speed-up is higher for larger matrices. In this experimental evaluation, sbmvms

reports an acceleration factor of up to 4× when compared with its MKL coun-
terpart, and up to 3× when compared with the CUBLAS routine.
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6 Concluding Remarks

We have addressed the computation of the symmetric band matrix-matrix mul-
tiplication on CPU-GPU platforms. Exploiting the structure of the matrix yields
relevant savings in both memory and computational cost. Two specific implemen-
tations, sbmmblk and sbmmblk+ms, are presented and evaluated. Both routines
leverage the parallelism of the target architecture to deliver remarkable per-
formance. Routine sbmmblk adopts the packed storage scheme defined in BLAS

and, consequently, presents some drawbacks that limit its performance in parallel
hardware architectures. Routine sbmmblk+ms partially overcomes these problems
by relying on a modified packed storage scheme which is more suitable for the
underlying architecture, at the cost of a minor increase in the memory require-
ments. The experimental evaluation shows remarkable gains of both routines
over the naive implementations based on the kernels in MKL and CUBLAS for
this operation.

Additionally, we have developed a symmetric band matrix-vector routine,
sbmvms, that exploits the benefits from the modified storage scheme revealed by
sbmmblk+ms. Specifically, this new routine renders higher performance than its
counterpart from CUBLAS. Although our solution requires an additional effort
to transform the matrix to the modified storage scheme, we believe it may be
useful in methods that perform several symmetric band matrix-vector products
involving the same matrix such as, e.g., iterative Krylov subspace-based solvers
for symmetric band linear systems.
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Abstract. This paper deals with the problem of autoscaling for cloud
computing scientific workflows. Autoscaling is a process in which the in-
frastructure scaling (i.e. determining the number and type of instances to
acquire for executing an application) interleaves with the scheduling of
tasks for reducing time and monetary cost of executions. This work pro-
poses a novel strategy called Spots Instances Aware Autoscaling (SIAA)
designed for the optimized execution of scientific workflow applications.
SIAA takes advantage of the better prices of Amazon’s EC2-like spot
instances to achieve better performance and cost savings. To deal with
execution efficiency, SIAA uses a novel heuristic scheduling algorithm to
optimize workflow makespan and reduce the effect of tasks failures that
may occur by the use of spot instances. Experiments were carried out us-
ing several types of real-world scientific workflows. Results demonstrated
that SIAA is able to greatly overcome the performance of state-of-the-art
autoscaling mechanisms in terms of makespan (up to 88.0%) and cost of
execution (up to 43.6%).

Keywords: Scientific workflows, Cloud Computing, Autoscaling,
Scheduling, Spot instances.

1 Introduction

Many scientific areas have turn to in silico experimentation giving birth to the
so-called discipline e-Science. In this sense, workflow technology plays a central
role and has been widely adopted for guiding the design and execution of complex
scientific experiments [13]. Workflow applications comprise a set of computation
tasks and a set of dependencies between them, which determine constraints for
the execution order of tasks arranged in a directed acyclic graph (see figure 1).
To meet the computational requirements, which are usually high and efficiently
execute the applications, cloud computing technologies are being extensively
used [17,11].

Public cloud providers permit a transparent, on-demand and inexpensive
access to computational resources relying on virtualization strategies [4]. In-
frastructure as a Service (IaaS) providers permit the on-demand acquisition
of Virtual Machine (VM) instances under a pay-per-use fashion with a fixed

G. Hernández et al. (Eds.): CARLA 2014, CCIS 485, pp. 13–27, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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Fig. 1. Directed acyclic graph (DAG) workflow example with 5 tasks. Edges represent
control-flow dependencies.

price. Providers offer several types of instances, which present different cost-
performances (i.e. computing power/price).

Some providers also permit the acquisition of instances under a different scheme
in which prices change over time. Amazon’s Elastic Compute Cloud (EC2) spot
instances [3] are a strategy for selling idle computing capacity using a dynamic
market-driven pricing scheme, in other words based on the law of supply and de-
mand. These dynamically changing prices are generally significantly lower than
the fixed price of on-demand instances.

To acquire a set of spot instances, the user must bid for the price that is willing
to pay. If the user’s bid is greater than the current spot price, the requested
instances are provided. If in any moment the spot price overcomes the user’s
bid, the instances are terminated without previous notice. This situation is called
an out-of-bid error. As can be perceived, this scheme of computation supposes
a trade-off between the cost of each instance and its reliability. To face such
issue many strategies to select the proper bid have been proposed. Most of them
rely on the use of historical spot prices [1,15]. These kind of strategies for price
prediction has been applied in many contexts [14,16].

When running a scientific workflow application, deciding the number and type
of instances to acquire becomes a particularly complex problem. In first place,
because the unbalance of task durations and the existent dependencies generate
variable computation requirements during the execution of the application [7]. In
second place, because it may be difficult to accurately predict the performance
of tasks. On the one hand because experimental applications usually explore
different sets of data and parameters, which may hinder the proper performance
modeling of tasks. On the other hand because performance variability in the
cloud is inevitable [12,6].

These two factors make very hard to know in advance the necessary amount
of instances. For such reason, autoscaling mechanisms [9] emerged to (i) au-
tomatically determine the number and type of instances to acquire, while (ii)
scheduling the workflow tasks onto the acquired instances. As autoscaling is a
two-fold problem with circular dependencies, the mechanisms operate during the
entire execution of an application dynamically resizing the computing infrastruc-
ture, scheduling and executing the tasks.
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Current autoscaling techniques present some limitations that deteriorate the
performance of applications. Some techniques [17,11] lack on adaptivity because
they assume a fixed infrastructure and schedule the tasks in a best effort manner.
Other techniques [2] are constructed upon very simple ad-hoc rules that must
be defined by the user. Finally some techniques do not take advantage of the
better cost-performances offered by spot instances [9]. This work proposes a
novel adaptive autoscaling strategy that overcomes the mentioned limitations
exploiting the advantages of using spot instances and dealing with task failures
intelligently to reduce the time and cost of execution for scientific workflows.

This paper is organized as follows. Next section provides a discussion of the
current advances on managing cloud workflows. Section 3 presents a novel au-
toscaling strategy for scientific workflows. Section 4 discusses the experiments
carried out and analyzes the obtained results. Finally, section 5 concludes this
work and provides future research directions.

2 Related Work

The problem of executing workflows in the cloud has been extensively addressed
over the last years. Several techniques and strategies have been proposed to cope
with the objective of achieving fast and cheap executions. We grouped these
approaches in 3 categories: scheduling on fixed-size infrastructures, rule-based
scaling methods, and autoscaling mechanisms.

Scheduling on fixed-size infrastructures : these strategies rely on heuristic and
metaheuristic methods for a best-effort scheduling considering a predefined cloud
infrastructure [17,11]. Their main limitation is that the infrastructure is kept
unchanged during the entire execution. The lack of adaptability to the variable
workload inherent of workflow applications precludes from taking advantage of
time and cost optimization possibilities.

Rule-based scaling : for addressing the problem of load variability on web ap-
plications (e.g. facebook, vimeo, etc), cloud providers suggest using ad-hoc rule-
based methods to adapt the size of the infrastructure [2]; e.g. “if CPU load
overcomes a certain percentage then acquire x new instances”. However, this
type of rules depend on the characteristics of the application running and might
be unsuitable for experimental applications like scientific workflows.

Autoscaling: these are techniques specially designed for workflow applications
to cope with the problems of scaling and scheduling simultaneously [9]. Under
this category, two strategies denominated Scheduling First and Scaling First
have been proposed. As their names indicate the strategies differ in which of
the phases (scaling or scheduling) are accomplished first. On both cases, the
strategies operate continuously while the applications are running. The men-
tioned strategies use on-demand instances disregarding the use of spot instances
missing important time and cost saving opportunities. As both strategies
present a considerable complexity they are not further discussed due to space
limitations. To obtain a better understanding of the strategies, please refer to
the existing literature [9].
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Our contribution: to the best of our knowledge, this is the first paper dealing
with the problem of cloud infrastructure autoscaling using spot instances in
the context of scientific workflows. Next section describes a novel autoscaling
strategy designed for achieving superior cost-performance on the execution of
scientific workflows. The strategy proposed in this work differentiates from others
on the following features:

1. it exploits spot instances for achieving an overall better cost-performance aim-
ing the reduction of time and/or cost of scientific workflow executions, and

2. it uses an heuristic method for workflow makespan optimization, which
schedules critical tasks intelligently minimizing the effect of failures in the
overall running time.

3 Spot Instances Aware Autoscaling

The aim of the Spot Instances Aware Autoscaling (SIAA) strategy proposed
in this work is to achieve a better cost-performance of scientific workflows on
the cloud. This is attained, first, by acquiring an infrastructure comprising on-
demand and spot instances according to the computation requirements for the
next hour. And, second, by minimizing the overall makespan and reducing the
probability of task failures due to out-of-bid errors.

The strategy performs the autoscaling process on an hourly basis through a
sequence of 4 phases, namely: (i) information update, (ii) infrastructure scaling
(iii) heuristic tasks scheduling, and (iv) shutdown idle instances. The purpose of
each of these phases is explained through the following subsections. The execu-
tion interval SIAA was set to 1 hour as in alternative autoscaling strategies [9].

3.1 Phase 1: Information Update

Every time SIAA is invoked it updates the workflow execution information.
This phase of the algorithm is fundamental because (i) it permits a dynamic
adaptation of the strategy to changes in the infrastructure, and (ii) it reduces
the adverse effects of errors in performance and bid price prediction methods. In
other words, having updated information allows a more accurate decision making
process on the following phases of autoscaling.

When SIAA is invoked it updates the state of the instances and predicts the
remaining execution time for already running tasks. For waiting tasks it
updates duration, (earliest and late) start times, and identifies which of those
tasks are critical for executing the workflow in minimum time.

Task durations the duration dt of a task t can be estimated in practice using
some of the existent performance prediction mechanism [10]. For the pur-
pose of our experiments, task durations are estimated using a linear model
relating the task’s size and the instance’s performance, plus the addition of
an uniformly distributed error. Durations are estimated considering the pre-
ferred instance type for each task. The preferred instance type for a waiting
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task is such that provides the best cost-performance ratio (i.e. the min-
imum cost/time value). In the case of a running task, the preferred instance
type is the type of the instance where the task is executing. For running
tasks, the remaining execution time is estimated by subtracting the time
that the task has been running. Task durations are the basis information to
compute earliest and late start times.

Earliest start time (EST) is the minimum time at which a task can start
its execution considering its predecessors. The EST of a waiting task t is
computed as EST (t) = max

1≤k≤p
{EST (tk) + dk}, where t is a waiting task, tk

is one of the p parent tasks of t and dk is the estimated running time of tk.
For tasks which are ready to execute, the EST is set to the current time.

Late start time (LST) is the maximum start time at which a task can start
without delaying any of its successor tasks. The LST of a task t is computed
as LST (t) = min

1≤k≤c
{LST (tk) − dk), where tk is one of the c child tasks of

t and dk is the estimated running time of tk. For each of the n exit tasks
the LST is computed as LST (t) = FT − dt, where FT is finish time of the
workflow computed as FT = max

1≤k≤n
{EST (tk) + dk}.

Critical tasks are tasks that if delayed, will produce an increment of the overall
application execution time (makespan). The slack time of a task permits
identifying which of the tasks are critical. The slack time of a task t is
computed as slack(t) = LST (t)− EST (t). Tasks with a slack time of 0 are
critical tasks and should not be delayed.

3.2 Phase 2: Infrastructure Scaling

SIAA relies on the exploitation of spot instances for achieving an overall better
cost-performance. But, as spot instances also introduce the possibility of task
failures derived from out-of-bid situations, SIAA generates a scaling plan com-
prising on-demand and spot instances. A scaling plan generated by SIAA can
be formally defined as planscaling = {〈VMType, scheme〉 → N} which maps the
amount of instances to acquire for each combination of instance type VMType
and pricing scheme (on-demand/spot).

On-demand instances provide a stable computing platform very suitable for
critical tasks but at expenses of a higher cost. Conversely, spot instances extend
such infrastructure with unreliable instances of better cost-efficiency ideal for
short duration or non-critical tasks. The balance between both types of instances
is governed by the spots ratio parameter (α ∈ [0, 1]) as follows.

The parameter α determines which proportion of a given budget B available
for acquiring instances is assigned to spot or on-demand instances. The algorithm
assigns a portion of B for on-demand instances as Bod = B ∗ (1 − α); and the
remaining portion for spot instances, i.e. Bs = B∗α. These two budgets conform
constraints that prevent from acquiring a number of instances whose monetary
cost exceeds the maximum permitted budget (B).
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According to the budget constraints the algorithm constructs a scaling plan
that best fit the workflow computation requirements for the next hour. Algo-
rithm 1 presents the process of infrastructure scaling.

Algorithm 1. Infrastructure scaling algorithm

1: procedure scaleInfrastructure:
2: tasks ← getTasksInThePeriod() � tasks running during the next hour
3: Cunbound ← estimateConsumption(tasks) � get unconstrained consumption
4: Cod ← scale(Cunbound, Bod/costunbound) � determine on-demand instances
5: Cunbound ← Cunbound − Cod

6: bidPrices ← predictBidPrices() � invokes a bid price prediction method
7: Cs ← scale(Cs, Bs/costs) � determine spot instances
8: Cod = Cod −R
9: Cs = Cs − (R −Cod)
10: for all VMTypei in VMTypes do: � request instances
11: requestInstance(Cod[VMTypei])
12: requestSpotInstance(Cs[VMTypei], bidPrices[VMTypei])

To generate the scaling plan, the algorithm starts by estimating the compu-
tation load for the next hour (lines 2 and 3). A consumption vector Cunbound =
{c1, c2, . . . , cn} represents the amount of instances necessary for each type for
the next hour with unconstrained budget. Each component ci represents the
amount of instances of type VMTypei.

Each ci value is estimated summing the computation hour portions for all
the tasks which prefer and instance of type VMTypei. In the case of running
tasks, the computation load is set to the type of the instance where such task
is executing.

To generate the scaling plan, the algorithm computes two consumption vec-
tors, Cod and Cs (for on-demand and spot instances respectively) derived from
the unconstrained consumption vector Cunbound. This process is carried out in
two steps:

1. The consumption vector of on-demand instances Cod is determined fitting
the number of instances according to the available budget Bod. The Cod vec-
tor is obtained scaling the unconstrained consumption vectorCunbound by the
factor Bod/costod, where costod is the total cost of acquiring all the instances
in Cunbound using the on-demand instance prices (line 4). A consumption

vector C is scaled by a factor r > 0 as scale(C, r) =

{
round(C · r) r < 1

round(C) r ≥ 1
,

where C · r is the product of a vector and a scalar and the round function
is applied to each element of the resulting vector.

2. In analogous manner, the consumption vector of spot instances Cs is de-
termined by scaling the remaining unconstrained instances: Cunbound − Cod

(line 5). This new consumption vector is then scaled by the factor Bs/costs
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using the same criteria as before. Note that costs is the total cost of acquir-
ing all the instances in CS according to a bid price prediction method (lines 6
and 7). Next paragraphs detail the strategy used for spot prices bidding used
in this work.

Both consumption vectors (Cod and Cs) represent the scaling plan generated
by SIAA. The algorithm then acquires the necessary instances considering the
number of instances already running (lines 10 to 12).

Spot Prices and Bidding. Many strategies for bidding the spot prices have been
proposed relying on the use of historical data prices [1]. The performance of bid
price prediction methods have impact on the These prediction methods present
estimation errors that may affect the overall behavior of the autoscaling strategy.
If the method tends to underestimate the minimal bid price, instances may fail
earlier augmenting the number of interrupted tasks and reducing the size of the
infrastructure. Overestimation of the optimal bid price reduces the chances of
failure but may unnecessary increase the cost of execution if idle instances are not
terminated wisely. Because the aim of this work is not evaluating the performance
of bidding strategies, we simulate bid prediction methods as follows. The bid
is computed by sampling from a uniform distribution centered on the optimal
price for the next hour with bounds determined by a specified error percentage
of such optimal price. Prices used correspond to an existent databases [16]. This
bidding schema permits modeling a non-perfect bid-price estimation method by
just specifying the desired prediction error.

3.3 Phase 3: Heuristic Tasks Scheduling

At this point of the process, the infrastructure has been fitted to the needs
for the next hour of computation for an application. The scheduling algorithm
is now in charge of efficiently execute the workflow application considering the
available instances. SIAA uses an heuristic scheduling algorithm which optimizes
the workflow makespan, i.e. the total running time of the workflow.

The objective of makespan minimization is accomplished keeping in mind two
premises: (i) execute the tasks as fast as possible, and (ii) minimize the negative
effects of instance failures. For such purpose, knowing which are the critical
tasks (slack times) plays a central role in the optimization process. Algorithm 2
describes the pseudocode of the scheduling strategy in SIAA.

The algorithm undertakes the minimization of workflow makespan reducing
the execution time of critical tasks. Tasks ready to execute are sorted prioritizing
those with the smaller slack times (line 3). Then, one by one, the tasks are
scheduled to the instance that offers the earliest completion time (ECT). This
process (lines 5 to 9) is repeated until there are no more ready tasks to schedule
or available instances (line 4). Please note that in all cases only waiting tasks
and available instances are considered. Tasks currently running continue their
execution on the instances they were previously assigned.

Although, the bid price prediction method (used during the scaling phase)
aims to reduce the number of task failures, out-of-bid errors are likely to occur.
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Algorithm 2. Tasks scheduling algorithm

1: procedure ScheduleTasks(instancesod, instancess): � input:lists of available
on-demand and spot instances

2: readyTasks← getReadyTasks() � tasks ready to run
3: queue ← sortByPriority(readyTasks)
4: while there are instances available and size(queue) > 0 do:
5: task ← queue.pop()
6: instance ← fastest(task, instancesod) � ETC on-demand instance
7: if instance == null then: � no on-demand instances available
8: instance ← fastest(task, instancess) � ETC spot instance

9: schedule(task, instance) � submit for execution

For such reason, the algorithm addresses the minimization of the negative effects
of such failures on the workflow makespan. This second objective is achieved by
reducing the number of failures that may affect critical tasks. The algorithm
prioritizes the execution of the tasks (sorted by slack time), first on on-demand
instances and then on spot instances (lines 6 to 8). In this way, most of the
critical tasks are executed safely on on-demand instances.

This scheme is highly convenient because non-critical tasks can fail and be
re-launched for execution without handicapping the overall makespan as they
have a wider margin for delays (larger slack times). When a task is terminated
due to an out-of-bid failure, the task is re-inserted in the execution queue. Then,
the workflow information is updated and the scheduling algorithm is invoked to
initiate the execution of more tasks or the re-submission of failed tasks.

3.4 Phase 4: Shutdown Idle Instances

For avoiding the use of unnecessary instances (and therefore reducing monetary
costs), SIAA shuts down all the idle instances that are close to an hour of
computation. This step can be seen as a scale down process complementary
to the infrastructure scaling (phase 2).

4 Experiments and Results

The evaluation of SIAA was carried out by two main experiments. The first one
evaluates the performance of SIAA with some state-of-the-art autoscaling strate-
gies. The second one analyzes the performance of SIAA on different scenarios
varying the portion of spot instances used and the error affecting the bid price
prediction method. The following paragraphs describe the workflow applications
and the instances used in the experiments. Then, sections 4.1 and 4.2 discuss
both experiments.

Workflow Applications. Several scientific workflow applications from Geo Sci-
ences, Astronomy and Bioinformatics were used for both experiments [7].
These applications are CyberShake (seismic hazard simulation), LIGO’s Inspiral
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(detection of gravitational waves), Montage (generation of mosaics from the sky)
and SIPTH (search for small untranslated RNAs). Figure 2 shows the duration
in minutes for each task type of the 4 mentioned applications. Each application
comprises about 1000 tasks each one.

Fig. 2. Scientific workflows tasks profile. Bars represent the average duration in minutes
of each task type. The label on the top of each bar represents the total number of tasks
of each type.

From the figure can be seen that the applications present very different work-
load patterns. For example, CyberShake and LIGO have just 5 and 4 types of
tasks respectively while Montage and SIPHT are constructed using 9 and 13
different types of tasks respectively. Other difference to note is that the duration
of tasks greatly vary between applications ranging from a few seconds to tasks of
very long duration (e.g. 430 minutes for Inspiral tasks in LIGO and 2029 minutes
for Blast tasks in SIPHT). Such differences are convenient because they serve to
evaluate the performance of the algorithms under very dissimilar conditions.

VM Instances. The experiments were conducted considering 5 different types of
instances. Table 1 presents the characteristics for each type of the on-demand
instances considered. Price denotes the cost of an hour of computation. The rel-
ative performance of the instances is measured in EC2 Compute Units (ECU) 1.
Cost-performance represents is the ratio ECU/Price and represents the effec-
tiveness of each instance type. Lag time, represents the mean initialization time
for each instance type [8].

Spot instances have the same characteristics presented on the above table
except that their prices vary over time. Time series of spot price observations are

1 One ECU is equivalent to a CPU capacity of a 1.0-1.2 GHz 2007 Opteron.
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Table 1. Characteristics of the on-demand instances

Attribute t1.micro m3.medium c3.2xlarge r3.xlarge m3.2xlarge

Price [$] 0.02 0.07 0.42 0.35 0.56
Performance [ECU] 1 2 28 13 26
Cost-perf. [ECU/$] 50.0 28.6 66.7 37.1 46.4
Lag time [s] 60 80 90 90 120

spaced by 5 minutes. It is worth pointing out that the spot prices are expressed
as a percentage of the corresponding on-demand prices. The data used is a
normalization of the data used by other colleagues [16].

4.1 Performance Comparison

This experiment aims to evaluate the performance of SIAA in comparison with
state-of-the-art autoscaling methods, namely: Scheduling First (SchF) and Scal-
ing First (ScaF) [9]. The comparison with other workflow management methods
like ad-hoc rules or fixed-infrastructure scheduling are omitted from this study
since Mao et al. [9] already proved the advantages of SchF and ScaF.

The algorithms were executed on several simulated scenarios with different
settings. Each scenario is defined by the workflow application executed (Cyber-
Shake, LIGO, Montage, SIPHT), and the budget available ($10, $20 or $30 per
hour in concordance with other works [9]). Each experimental scenario was sim-
ulated 4 times using the CloudSim simulator [5]. In all cases, tasks running times
and instance lag times were affected by a 20% error to increase the uncertainty
during the simulations and to provide a more realistic environment according
to the performance variability of the cloud. For SIAA the bid price predictions
were affected by errors of 0%, 10% and 20% to model bid estimations methods
of different quality.

Figure 3 presents the performance comparison of the studied autoscaling algo-
rithms for each of the 4 selected applications. Performance comparison comprises
three different metrics namely speedup, cost and instances percentage of use.

The first row presents the average speedup with respect to the linear execu-
tion time of the applications on an instance of the type �c3.2xlarge�, which pro-
vides the best cost-performance. Formally the speedup is computed as Sx =

Tseq

Tx
,

where x indicates an autoscaling strategy, Tseq is the sequential time of the ap-
plication and Tx is the workflow makespan using the autoscaling strategy x. In
all cases SIAA outperformed its competitors with a wide margin (from 14.1%
to 88.0%). As SIAA takes advantage of instances of better cost-performance, it
is able to acquire more computing power (more instances) with the same bud-
get. This leads to an increase of tasks executed in parallel and therefore to a
reduction of the overall makespan.
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Fig. 3. Performance comparison for each type of workflow. Three autoscaling algo-
rithms are analyzed: (a) Scaling First (ScaF), and (b) Scheduling First (SchF) and (c)
SIAA. Algorithms are compared considering speedup, average execution cost per task
and efficiency.

The worst performing method is SchF because the algorithm purchases in-
stances in decreasing cost (and performance) until the hourly budget is con-
sumed. In practice happens that some tasks are scheduled to very slow instances
increasing the overall makespan.

With respect to the cost of execution (second row), the graphics show
that SIAA obtains the lowest cost of execution per task (reductions are in the
range 21.5%-43.6%). Again, these results respond to the fact that SIAA is able
to acquire instances with better cost-performance relation. Hence, for the same
levels of performance instances of lower price can be acquired. For SchF and
ScaF the average cost per task is similar. It is noticeable that in general, tasks
for the LIGO and SIPHT workflows are considerably more expensive (about one
order of magnitude). The reason is that such applications comprise tasks of very
long duration (see figure 2).

The third row of graphics present the average instance percentage of use for
each algorithm. It can be seen that SIAA presents the lowest usage of instances
(6.6%-16.6% of use below its competitors). The reason for such behavior is that
SIAA acquires a higher number of instances increasing the total lag time and un-
used partial hours of computation. However, it is worth mentioning that the ma-
jority of this wasted instance time corresponds to (cheap) spot instance hours (in
average, SIAA acquired 5.49 spot instances per each on-demand instance).

As a summary, table 2 presents the results of the three strategies considered.
The best results per analyzed aspect (column) are highlighted in bold font.
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Table 2. Summary of results averaged by strategy

Strategy Speedup Cost/task Usage [%] Failures

ScaF 33.0 0.73 90.4 N/A
SchF 10.7 0.75 89.5 N/A
SIAA 47.9 0.48 77.7 100.9

SIAA outperforms the remaining strategies in terms of speedup and cost per
task. These results corroborate that SIAA permits faster and cheaper executions
than its competitors. In the downside, it can be also seen that SIAA evidences
a lower percentage of instances usage (up to 22.3% of time wasted) and number
of 100.9 failures (about 10.1% of tasks). However, the inferior use of instances
and the (relatively) large number of failures do not prevent the strategy from
achieving high time and cost savings when compared with ScaF and SchF. The
following section provides a deeper insight in the aspect of task failures by ana-
lyzing the robustness of SIAA in several uncertainty scenarios.

4.2 Robustness Analysis

The previous experiment evidenced the advantages of using SIAA by compar-
ing its performance with other autoscaling strategies. This section analyzes the
robustness of SIAA in terms of the number of failures and speedup for a wide
number of settings involving different balances of on-demand/spot instances and
different errors affecting the bid price prediction methods.

Although for this second experiment the same type of workflows were used
we focused on applications around 100 tasks to limit the size of the experiment.
All the simulations were carried out using a 20% error for tasks running time
and instances lag time. In all cases the budget was set to $30. Figure 4 presents
the number of task failures and speedups according to scenarios defined by:

1. The spotsRatio parameter (percentage of the total budget assigned to spot
instances) varying from 0, 20, . . . , 100% (horizontal axis), and

2. The bidError parameter (error affecting the bid price prediction methods)
(vertical axis). Errors vary from 0 (an hypothetical perfect predictor) and a
48.5% predictor error.

Task Failures. From the top figure it can be seen that as the spotsRatio
parameter increases, the number of failures augments. This is because having a
smaller proportion of on-demand instances makes the critical tasks more prone
to run on spot instances and therefore are more likely to fail. By looking on the
other axis, as the prediction error increases the number of failures also increases.
Larger errors on the prediction of the optimal bid price increment the probability
of failure contributing to an increase of the total number of failures.
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Fig. 4. Heat-maps of the number of task failures (on top) and the speedup (bot-
tom). Results are presented for different combinations of (i) the percentage of budget
assigned to spot instances (horizontal axis), and (ii) the error on the prediction of the
optimal bid price for the next computation hour (vertical axis).

The largest number of failures (top figure) is circumscribed to scenarios where
the spotsRatio parameter (percent of the budget is used for acquiring spot in-
stances) varies from 40% to 100% and the bidError parameter (bid price pre-
diction error) ranges from 41.5% to 48.5%. We call this set of scenarios the
max-failures region.

Speedups. Comparing the top and bottom heat-maps a common pattern is evi-
denced. The speedups achieved in the max-failures region are the lowest (bottom
figure). This correlation indicates that the number of failures directly affects the
speedup achieved by SIAA. A larger number of failures not only reduces the
number of instances running but also forces the restart of the tasks affected by
the failure incrementing the workflow makespan.

The best speedups are achieved using a 20%-40% of budget assigned to spot
instances. Within this range, the highest speedup levels correspond to scenarios
where the bid prediction error is below 5%. From the analysis arises that for
achieving the maximum speedup in practice it could be convenient to properly
select the spotsRatio parameter considering the quality of the bid price predic-
tion method.

It is also worth to point out that using an infrastructure entirely composed
of on-demand instances (spotsRatio = 0) permits the achievement of better
speedups than those corresponding to the max-failures region indicating that
for some bad quality bid price predictors it is very important to select the proper
value of spotsRatio.

From the results of both experiments, we can conclude that the use of spot
instances plays a fundamental role on the reduction of execution times and costs
of scientific workflows on the cloud. Moreover, SIAA has proved that is a robust
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strategy capable of achieving time and cost savings in the execution of scientific
workflows.

5 Concluding Remarks

This paper presented a novel strategy for cloud infrastructure autoscaling de-
signed for scientific workflows denominated Spots Instances Aware Autoscaling
(SIAA) strategy. The strategy takes advantage of the better cost-performance
relation provided by spot instances in combination with a heuristic scheduling
method for makespan optimization and reduction of the negative effect of out of
bid failures. SIAA permits a highly efficient use of cloud infrastructures reducing
the workflow makespan and the monetary cost of execution.

Four different real-world scientific workflows were selected for evaluating the
performance of SIAA. Results evidenced that assigning a half of the budget
to spot instances permits SIAA to overcome the state-of-the-art autoscaling
methods in a 14.1%-88.0% of makespan. Results also demonstrated that SIAA
conduced to cost reductions of 21.5% to 43.6%. From the experiments is also
evidenced that SIAA is capable of providing good performance levels regardless
of the number of failures occurring. Results highlighted the importance of (i)
determining the adequate proportion of the budget assigned to spot instances as
well as (ii) having access to bid price prediction methods with good accuracy,
to improve the workflow makespan.

As part of our future work we plan to study checkpointing techniques for
reducing the time and and money loses derived from failures of large duration
tasks. Checkpointing would also permit a more extensive use of spot instances
without compromising the workflow makespan. A second aspect to investigate
in the future is a method for determining the proper value of the spotsRatio
parameter considering the characteristics of the application and the quality of
the available bid price prediction method. Finally it is interesting to study the
repercussion of data transfer times and cost during the autoscaling process.
These features are crucial for studying new autoscaling techniques designed for
big data applications like, for example, MapReduce workflows.
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Abstract. Scientists and engineers often require huge amounts of computing
power to execute their experiments. This work focuses on the federated Cloud
model, where custom virtual machines (VM) are launched in appropriate hosts
belonging to different providers to execute scientific experiments and minimize
response time. Here, scheduling is performed at three levels. First, at the
broker level, datacenters are selected by their network latencies via three poli-
cies –Lowest-Latency-Time-First, First-Latency-Time-First, and Latency-Time-
In-Round–. Second, at the infrastructure level, two Cloud VM schedulers based
on Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) for
mapping VMs to appropriate datacenter hosts are implemented. Finally, at the VM
level, jobs are assigned for execution into the preallocated VMs. Simulated exper-
iments show that the combination of policies at the broker level with ACO and
PSO succeed in reducing the response time compared to using the broker level
policies combined with Genetic Algorithms.

1 Introduction

Scientific computing is a field that applies Computer Science to solve typical scientific
problems. A representative example of scientific experiments is parameter sweep exper-
iments (PSEs) [13]. Running PSEs involves managing many independent jobs, since the
experiments are executed under multiple initial configurations a large number of times,
to locate a particular point in the parameter space that satisfies certain user criteria. In-
deed, users relying on PSEs need a computing environment that delivers large amounts
of computational power over a long period of time. A kind of parallel environment that
has gained momentum is represented by Clouds [14].

Executing PSEs on Clouds is not free from the well-known scheduling problem, i.e.,
it is necessary to develop efficient scheduling strategies to appropriately allocate the
jobs and reduce the associated computation time. Moreover, in federated Clouds [3] it
is necessary to properly manage physical resources, when they are part of geographi-
cally distributed datacenters. Therefore, for the efficient execution of jobs in federated
Clouds, scheduling should be performed at three levels. Firstly, at the broker level,
scheduling strategies are used for selecting datacenters taking into account issues such
as network interconnections or monetary cost of allocating VMs on hosts that compose
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them. Secondly, at the infrastructure level, by using a VM scheduler, the VMs are allo-
cated on the available hosts belonging to the previously selected datacenters. Lastly, at
the VM level, by using job scheduling techniques, jobs are assigned for execution into
allocated virtual resources. However, scheduling is in general an NP-Complete [21]
problem and therefore it is not trivial from an algorithmic standpoint. Besides, in this
context, the necessity of scheduling algorithms spans the three levels.

In the last ten years, Swarm Intelligence (SI) has received increasing attention among
researchers. SI refers to the collective behavior that emerges from a swarm of so-
cial insects [9]. Inspired by these capabilities, researchers have proposed algorithms
or theories for combinatorial optimization problems, where the most popular SI-based
strategies are Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO).
Moreover, job scheduling in Clouds is also a combinatorial optimization problem, and
schedulers in this line that exploit SI have been proposed.

Existing efforts which address SI have not being studied in the context of federated
Clouds. In this paper, unlike previous works of our own [16,18] where we proposed a
two-level scheduler for Clouds composed of a single datacenter, in this work we extend
the scheduler for operating in federated Clouds. To this end, the scheduler operates at
three levels. Firstly, by means of a policy that operates at the broker level, datacenters
are selected according to their network interconnections and latencies. Indeed, the net-
work latencies among datacenters can contribute to negatively affect the response time
delivered to the user. We consider three policies, Lowest-Latency-Time-First (LLTF),
First-Latency-Time-First (FLTF), and Latency-Time-In-Round (LTIR). Then, at the in-
frastructure level, we have explored ACO and PSO for allocating the VMs into the
physical resources of a datacenter. To allocate the VMs into hosts, each scheduler must
make a different number of “queries” to hosts to determine their availability upon each
VM allocation attempt. These queries are actually messages sent to hosts over the net-
work to obtain information regarding their availability. The number of queries to be per-
formed by each algorithm and the latencies of datacenters also influence the response
time to the user. Finally, at the VM level, PSE-jobs are assigned to the preallocated
VMs by using FIFO, as in [18]. Briefly, in this paper we include the broker level and
evaluate how decisions taken both at the broker level and infrastructure level influence
the response time.

Simulated experiments performed with job data extracted from a real-world PSE [6]
involving a viscoplastic problem suggest that the SI schedulers at the infrastructure
level, in combination with these policies at the broker level and FIFO at the VM level,
deliver competitive performance with respect to the response time. Experiments were
performed by using the CloudSim [2] simulator. To set the basis for comparison, and
since VM scheduling is highly challenging and heavily contributes to the overall perfor-
mance in Cloud scheduling [20], we used the same three policies at the broker level and
FIFO at the VM level in combination with a scheduler based on Genetic Algorithms
(GA) [1].

The rest of the paper is as follows. Section 2 gives some background necessary to
understand the concepts underpinning our scheduler. Section 3 surveys relevant related
works. Section 4 presents our proposal. Section 5 presents the experimental evaluation.
Section 6 concludes the paper and discusses future prospective extensions.
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2 Background

Clouds [14] are the current emerging trend in delivering IT services, and offer to end-
users a variety of services covering the entire computing stack. Scientists in general and
PSEs users in particular can completely customize their execution environment, thus
deploying the most appropriate setup for their experiments. Another related important
feature is the ability to scale up and down the computing infrastructure according to
PSEs resource requirements.

In the next subsections we describe the federated Cloud basics (Subsection 2.1),
and introduce the classical SI-based algorithms (Subsection 2.2), the core optimization
techniques of the schedulers implemented in this work at the infrastructure level.

2.1 Federated Clouds

Federated Clouds [15] consist of infrastructures with physical resources belonging to
different Cloud providers. A federated Cloud could involve different architectures and
levels of coupling among federated datacenters. Federated Clouds also make use of
brokers to meet the needs of their participating organizations. A broker is an entity
which keeps a queue of requests from a particular user that need to be provisioned by
a datacenter. In the context of this work, where a user runs PSEs, only one broker is
associated with that user.

Clouds allow the dynamic scaling of users applications by the provisioning of com-
puting resources via machine images, or VMs. In order to achieve good performance,
VMs have to fully utilize its services and resources by adapting to the Cloud dynam-
ically. Proper allocation of resources must be guaranteed so as to improve resource
usefulness [15].

For running applications in a Cloud, resources are scheduled at three levels (Fig-
ure 1): Broker level, Infrastructure level, and VM level. At the broker level, different
policies can be implemented in order to serve users. Some examples are policies consid-
ering the influence of network interconnections among Cloud datacenters or monetary
cost of hosts that compose them [1]. Furthermore, the scheduler at this level can decide
to deploy the VMs in a remote Cloud when there are insufficient physical resources in
the datacenter where the VM creation was issued. Secondly, once a datacenter/provider
has been selected by a broker, at the infrastructure level, the VMs are allocated into real
hardware through a VM scheduler. Finally, at the VM level, by using job scheduling
techniques, jobs are assigned for execution into virtual resources (the allocated VMs).
Figure 1 illustrates a Cloud where one or more users are connected via a network and
require the creation of a number of VMs for executing their experiments, i.e., a set of
jobs. As can be seen in the Figure 1, a broker is created for each user that connects to the
Cloud. Each broker knows who are the providers that are part of the federation through
network interconnections –the relation of each broker is colored with green and blue
dotted lines–. In addition, the Figure 1 illustrates how jobs sent by User N are executed
in the datacenter of Cloud Provider 2. At the right of this provider –inside the dotted
Cloud– the intra-datacenter scheduling activities are depicted, i.e., at the infrastructure
level and the VM level.
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Fig. 1. High-level view of a federated Cloud

2.2 SI Techniques for Cloud Scheduling

Broadly, SI techniques [9] have shown to be useful in optimization problems. The ad-
vantage of these techniques derives from their ability to explore solutions in large search
spaces in a very efficient way. The most popular SI-based techniques are ACO and PSO.
ACO [9] arises from the way real ants behave in nature, i.e., from the observation of ant
colonies when they search the shortest paths to reach a food source from their nest. In
nature, real ants move randomly from one place to another to search for food, and upon
finding food and returning to their nest each ant leaves a pheromone that lures other
working ants to the same course. When more and more ants choose the same path, the
pheromone trail is reinforced and even more ants will further choose it. Over time the
shortest paths will be intensified by the pheromone faster since the ants will both reach
the food source and travel back to their nest at a faster rate.

On the other hand, PSO [9] is a population-based technique that finds solution to
a problem in a search space by modeling and predicting insect social behavior in the
presence of objectives. In the algorithm the general term “particle” is used to represent
birds, bees or any other individuals who exhibit social behavior as group and interact
with each other. An example based on nature to illustrate the algorithm is as follows: a
group of bees flies over the countryside looking for flowers. Their goal is to find as many
flowers as possible. At the beginning, bees do not have knowledge of the field and fly to
random locations with random velocities looking for flowers. Each bee has the capability
of remember the places where it saw the most flowers, and moreover, somehow knows
the places where other bees have found a high density of flowers. These two pieces of
information –nostalgia and social knowledge– are used by the bees to continually modify
their trajectory, i.e., each bee alters its path between the two directions to fly somewhere
between the two points and find a greater density of flowers. Occasionally, a bee may
fly over a place with more flowers than any other place found previously by other bees
in the swarm. If this happens the whole swarm is attracted towards this new direction.
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3 Related Work

In this paper we address the scheduling of scientific application in federated Clouds in
order to minimize the response time considering the influence of the network latencies
among datacenters. Our approach differs from those presented in literature for federated
Cloud, where the authors have not considered SI-based strategies at the infrastructure
level. In previous works of our own [16,18] we have presented SI-based schedulers
focused on the infrastructure level. However, it is important to note that in these works
the schedulers operate at two levels for Clouds composed of a single datacenter. The
remaining works found in literature are focused on one level and do not evaluate the
three levels such as we propose in this work.

Among these works we can mention [5,10,20]. In [5] the authors summarize some
VM allocation policies based on linear programming for different Cloud federation ar-
chitectures. Then, in [10] scheduling strategies at the broker level based on different
optimization criteria (e.g., monetary cost optimization or performance optimization)
and different user constraints (e.g., budget, performance, VMs types) were proposed.
Moreover, in [20], the scheduler restricts the deployment of VMs according to some
placement constraints (e.g., Clouds to deploy the VMs) defined by the user.

Two works that deserve special attention are [1,4]. In [1], the authors used at the
broker level, a Dijkstra algorithm to select the datacenter with lower monetary cost,
and a GA for allocating the VMs at the infrastructure level. Although in this work
the authors target the broker and the infrastructure levels, the goal was to reduce the
monetary costs without considering the response time. For scientific applications in
general, the response time is very important [18]. Moreover, in [4] the authors proposed
an ACO scheduler based on load balancing to perform efficient distribution of jobs by
finding the best VM to execute jobs. The aim of this work was minimizing the makespan
and improve load balancing in the VMs. Makespan is the maximum execution time of
a set of jobs. To the best of our knowledge, this is the only work in literature in which
the authors have considered the use of SI for federated Clouds. However, it is important
to note that ACO was implemented at the VM level and not at the infrastructure level.

With respect to works which address the scheduling problem at the infrastructure
level –intra-datacenter– using SI-based strategies as we propose in this work, few efforts
have been found [17]. However, in these related works, it is important to note that SI
techniques are used to solve the job scheduling problem, i.e., determining how the jobs
are assigned to pre-allocated VMs, and few efforts have aimed to solve VM scheduling
problems to date [17]. It is worth noting that, from the related works found, most of them
have been proposed for Clouds taking into account only one of the scheduling levels
without considering SI for allocating VMs, or Clouds composed by a single datacenter
where only scheduling of jobs (and not VMs) is addressed. The next Section explains
our approach, which considers the three levels described in Subsection 2.1.

4 Proposed Scheduler

The goal of our scheduler is to minimize the response time of a set of PSE jobs. Re-
sponse time is the period of time between a user makes a request to the Cloud and gets
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the answer, i.e., the period of time in which a user requests a number of VMs to execute
its PSE, and the time in which all the entire PSE-jobs finish their execution. Concep-
tually, the scheduling problem to tackle down can be formulated as follows. A PSE is
formally defined as a set of N = 1, 2, ..., n independent jobs, where each job corresponds
to a particular value for a variable of the model being studied by the PSE. The jobs are
distributed and executed on the v VMs issued by the user. With the goal of minimizing
the response time, the need to implement strategies to select the appropriate datacenters
in which to place the VMs arises. For example, the most suitable datacenter might be
the one that provides the lowest communication latency to a broker when this latter asks
about the availability of physical resources. Latency is due to delays by packets mov-
ing over the various networks between the end user computer and the geographically
distributed Cloud datacenters. One way to mitigate the effects of such latencies is to
choose a datacenter which operates with a fast and efficient internal network and plenty
of capacity.

The proposed scheduler proceeds as follows. Firstly, at the broker level, a datacenter
is selected by a policy that takes into account network interconnections and/or network
latencies. Secondly, at the infrastructure level, by means of a VM scheduler, user VMs
are allocated in the physical resources (i.e., hosts) belonging to the selected datacenter
at the broker level. When there are no available hosts in the datacenter to allocate the
VMs, a new datacenter is selected at the broker level. Finally, at the VM level, a policy
for assigning user jobs to allocated VMs is also used (currently we use FIFO).

4.1 Scheduler at the Broker Level

The scheduler at the broker level is executed both to select the first datacenter to allo-
cate the VMs, which are managed by the scheduler implemented at the infrastructure
level, as well as each time such datacenter is not able to perform the allocation of VMs
anymore. At present, the policies implemented at this level are:

– Lowest-Latency-Time-First (LLTF), maintains a list of all network interconnected
datacenters sorted by their latencies. Each time a user requires a number the VMs
to execute their PSE, this policy is responsible for selecting first the datacenter with
the lowest latency in the list. Then, whenever a datacenter has no more physical
resources to allocate VMs, then the algorithm selects the next datacenter in the list.

– First-Latency-Time-First (FLTF) selects the first datacenter from a list sorted ran-
domly, containing all network interconnected datacenters to which a user can access
and allocate his VMs. When the selected datacenter has no more available physical
resources to allocate VMs, the algorithm selects the next datacenter in the list.

– Latency-Time-In-Round (LTIR) maintains a list of all network interconnected dat-
acenters that make up the Cloud, sorted by increasing latency, and assigns each VM
required by the user to a datacenter from the list in a circular order.

4.2 Scheduler at the Infrastructure Level

To implement the Infrastructure level policy, the SI algorithms proposed in [18] are
used. Below we describe these algorithms.
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Scheduler Based on Ant Colony Optimization. In this algorithm, each ant works
independently and represents a VM “looking” for the best host to which it can be allo-
cated. When a VM is created in a datacenter, an ant is initialized and starts to work. A
master table containing information on the load of each host in the selected datacenter is
initialized. Subsequently, if an ant associated to the VM that is executing the algorithm
already exists, the ant is obtained from a pool of ants. If the VM does not exist in the
ant pool, then a new ant is created. To do this, first, a list of all suitable hosts belonging
to the selected datacenter in which can be allocated the VM is obtained.

Algorithm 1. ACO-based Cloud scheduler: Core logic

Procedure AntAlgor i thm ( )
Begin

s t e p=1
i n i t i a l i z e ( )
While ( s t e p < maxSteps ) do

c u r r e n t L o a d=g e t H o s t L o a d I n f o r m a t i o n ( )
A n t H i s t o r y . add ( c u r r e n t L o a d )
l o c a l L o a d T a b l e . u p d a t e ( )
i f ( c u r r e n t L o a d = 0 . 0 )

b r e a k
e l s e i f ( random ( ) < m u t a t i o n R a t e ) then

n e x t H o s t= randomlyChoos eNex tS tep ( )
e l s e

n e x t H o s t=choos eNex tS tep ( )
end i f
m u t a t i o n R a t e=m u t a t i o n R a t e−decayRa te
s t e p= s t e p+1
moveTo ( n e x t H o s t )

end whi le
de l ive rVM toHos t ( )

End

Then, the working ant and its associated VM is added to the ant pool and the ACO-
specific logic starts to operate (see Algorithm 1). In each iteration, the ant collects the load
information of the host that is visiting and adds this information to its private load history.
The ant then updates a load information table of visited hosts (localLoadTable.up-
date()), which is maintained in each host. This table contains information of the own
load of an ant, as well as load information of other hosts of the datacenter, which were
added to the table when other ants visited the host. Here, load refers to the total CPU
utilization within a host and is calculated taking into account the number of VMs that
are executing at a given time in each physical host.

When an ant moves from one host to another it has two choices: moving to a random
host using a constant probability or mutation rate, or using the load table information
of the current host (chooseNextStep()). The mutation rate decreases with a decay
rate factor as time passes, thus, the ant will be more dependent on load information
than to random choice. When an ant reads the information from a load table in a host,
the ant chooses the lightest loaded host in the table, i.e., each entry of the load infor-
mation table is evaluated and compared with the current load of the visited host. If the
load of the visited host is smaller than any other host provided in the load information
table, the ant chooses the host with the smallest load. This process is repeated until the
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finishing criterion is met. The completion criterion is equal to a predefined number of
steps (maxSteps). Finally, the ant delivers its VM to the current host and finishes its
task. Since each step performed by an ant involves moving through the intra-datacenter
network, we have added a control to minimize the number of steps that an ant performs:
every time an ant visits a host that has not allocated VMs yet, the ant allocates its as-
sociated VM to it directly without performing further steps. Every time an ant sends a
message through the intra-datacenter network to obtain information regarding the avail-
ability of the hosts from the selected datacenter latencies are produced. The smaller the
number messages sent to the hosts through the network, the smaller the impact of the
latencies in the response time given to the user.

Every time an ant visits a host, it updates the host load information table with the
information of other hosts in the datacenter, but at the same time the ant collects the
information already provided by the table of that host, if any. The load information
table acts as a pheromone trail that an ant leaves while it is moving, to guide other ants
to choose better paths rather than wandering randomly in the Cloud. Entries of each
local table are the hosts that ants have visited on their way to deliver their VMs together
with their load information.

Scheduler Based on Particle Swarm Optimization. In this algorithm, each particle
works independently and represents a VM looking for the best host –in the selected
datacenter at the broker level– to which it can be allocated. Following the analogy from
the example of bees in Subsection 2.2, each VM is considered a bee and each host
represent locations in the field with different density of flowers. When a VM is created,
a particle is initialized in a random host, i.e., in a random place in the field. The density
of flowers of each host is determined by its load.

This definition helps to search in the load search space –in the field of flowers– and
try to minimize the load. The smaller the load on a host, the better the flower con-
centration. This means that the host has more available resources to allocate a VM. In
the algorithm (see Algorithm 2), every time a user requires a VM, a particle is initial-
ized in a random host of the selected datacenter (getInitialHost()). Each particle in
the search space takes a position according to the load of the host in which is initialized
through the calculateTotalLoad(hostId)method. Load refers to the total CPU uti-
lization within a host and is calculated as well as ACO. The neighborhood of each par-
ticle is composed by the remaining hosts in a datacenter excluding the one in which the
particle is initialized. The neighborhood of that particle is obtained through getNeigh-
bors(hostId,neighborSize). Each one of the neighbors –hosts– that compose the
neighborhood are selected randomly. Moreover, the size of the particle neighborhood is
a parameter defined by the user.

In each iteration of the algorithm, the particle moves to the neighbors of its current
host in search of a host with a lower load. The velocity of each particle is defined by
the load difference between the host to which the particle has been previously assigned
with respect to its other neighboring hosts. If any of the hosts in the neighborhood has
a lower load than the original host, then the particle is moved to the neighbor host with
a greater velocity. Taking into account that the particles move through hosts of their
neighborhood into a datacenter in search of a host with the lower load, the algorithm
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reaches a local optimum quickly. Thus, each particle makes a move from their asso-
ciated host to one of its neighbors, which has the minimum load among all. If all its
neighbors are busier than the associated host itself, the particle is not moved from the
current host. Finally, the particle delivers its associated VM to the host with the lower
load among their neighbors and finishes its task.

Algorithm 2. PSO-based Cloud scheduler: Core logic

Procedure P S O a l l o c a t i o n P o l i c y (vm , h o s t L i s t )
Begin

p a r t i c l e = new P a r t i c l e (vm , h o s t L i s t )
i n i t i a l H o s t I d = p a r t i c l e . g e t I n i t i a l H o s t ( )
c u r r e n t P o s i t i o n L o a d = p a r t i c l e . c a l c u l a t e T o t a l L o a d ( i n i t i a l H o s t I d )
n e i g h b o u r s = p a r t i c l e . g e t N e i g h b o u r s ( i n i t i a l H o s t I d , n e i g h b o u r S i z e )
While ( i < n e i g h b o u r s . s i z e ( ) ) do

n e i g h b o u r I d = n e i g h b o u r s . g e t ( i )
d e s t P o s i t i o n L o a d = p a r t i c l e . c a l c u l a t e T o t a l L o a d ( n e i g h b o u r I d )

i f ( d e s t P o s i t i o n L o a d == 0)
c u r r e n t P o s i t i o n L o a d = d e s t P o s i t i o n L o a d
d e s t H o s t I d = n e i g h b o u r s . g e t ( i )
i=n e i g h b o u r s . s i z e ( )

end i f
i f ( c u r r e n t P o s i t i o n L o a d − d e s t P o s i t i o n L o a d > v e l o c i t y )

v e l o c i t y = c u r r e n t P o s i t i o n L o a d − d e s t P o s i t i o n L o a d
c u r r e n t P o s i t i o n L o a d = d e s t P o s i t i o n L o a d
d e s t H o s t I d = n e i g h b o u r s . g e t ( i )

end i f
i= i+1
end whi le
a l l o c a t e d H o s t= h o s t L i s t . g e t ( d e s t H o s t I d )
i f ( ! a l l o c a t e d H o s t . a l loca teVM (vm)

P S O a l l o c a t i o n P o l i c y (vm , h o s t L i s t )
End

Since each move a particle performs involves traveling through the intra-datacenter
network, similarly to ACO, a control to minimize the number of moves that a particle
performs have been added: every time a particle moves from the associated host to a
neighbor host that has not allocated VMs yet, the particle allocates its associated VM to
it immediately. The smaller the number messages sent to the hosts through the network
by a particle, the smaller the impact of the latency in the response time given to the user.

4.3 Scheduler at the VM Level

Once the VMs have been allocated to physical resources at the Infrastructure level, the
job scheduler proceeds to assign the jobs to these VMs. This sub-algorithm uses two
lists, one containing the jobs that have been sent by the user, i.e., a PSE, and the other
list contains all user VMs that are already allocated to a physical resource and hence
are ready to execute jobs. The algorithm iterates the list of all jobs, and then retrieves
jobs by a FIFO policy. Each time a job is obtained from the list, it is submitted to be
executed in a VM in a round robin fashion. Internally, the algorithm maintains a queue
for each VM that contains its list of jobs to be executed. The procedure is repeated until
all jobs have been submitted for execution. Due to their high CPU requirements, and the
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fact that each VM requires only one PE, we assumed a 1-1 job-VM execution model,
i.e., jobs within a VM waiting queue are executed one at a time by competing for CPU
time with other jobs from other VMs in the same hosts. This is, a time-shared CPU
scheduling policy was used, since it is a good alternative for executing CPU-intensive
jobs in terms of fairness.

5 Evaluation

To assess the effectiveness of our proposal, we processed a real case study for solving
a well-known benchmark problem [6]. Details on the experimental methodology are
provided in Section 5.1. After that, we compared our proposal with a GA in terms of
the metric of interest in this paper, i.e., response time. The results are explained in
Subsection 5.2.

5.1 Experimental Methodology

A plane strain plate with a central circular hole, see reference [6] and therein is studied.
The dimensions of the plate were 18 x 10 m, with R = 5 m. The 3D finite element mesh
used had 1,152 elements. To generate the PSE jobs, a material parameter –viscosity η–
was selected as the variation parameter. Then, 25 different viscosity values for the η pa-
rameter were considered, namely x.10y Mpa, with x = 1, 2, 3, 4, 5, 7 and y = 4, 5, 6, 7,
plus 1.108 Mpa. Introductory details on viscoplastic theory and numerical implementa-
tion can be found in [6].

After establishing the problem parameters, we employed a single machine to run
the parameter sweep experiment by varying the viscosity parameter η as indicated and
measuring the execution time for the 25 different experiments, which resulted in 25 in-
put files with different input configurations and 25 output files. The tests were solved
using the SOGDE finite element solver software [7]. Once the execution times were
obtained from the real machine, we approximated for each experiment the number of
executed instructions by the following formula NIi = mipsCPU ∗ Ti, where NIi is the
number of million instructions to be executed by or associated to a job i, mipsCPU is
the processing power of the CPU of our real machine measured in MIPS, and Ti is the
time that took to run the job i on the real machine. For example, for a job taking 539
seconds to execute, the approximated number of instructions was 2,160,657 MI (Mil-
lion Instructions). By means of the generated job data, we instantiated the CloudSim
toolkit [2].

The experimental scenario consists of a Cloud composed of 5 datacenters. The net-
work topology is defined in the Boston university Representative Internet Topology
gEnerator (BRITE) [8] format. BRITE is a file used by CloudSim which defines the
different nodes that compose a commonly-found federation (e.g., datacenters, brokers)
and the network connections among them. This file is then used to calculate latencies in
network traffic. Then, each datacenter is composed of 10 physical resources –or “host”
in CloudSim terminology–. The characteristics of hosts are 4,008 MIPS (processing
power), 4 GBytes (RAM), 400 GBytes (storage), 100 Mbps (bandwidth), and 4 CPUs.
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Furthermore, each datacenter has an associated latency of 0.8, 1.5, 0.5, 0.15, 2.8 sec-
onds, respectively. These latencies have been assigned taking into account other works
proposed in the literature [12,19].

Moreover, a user requests 100 VMs to execute its PSE. Each VM has one virtual CPU
of 4,008 MIPS, 512 Mbyte of RAM, a machine image size of 100 Gbytes and a band-
width of 25 Mbps. For further details about the job data gathering and the CloudSim
instantiation process, please refer to [13,18].

In this work, we evaluated the performance of the user PSE-jobs as we increased the
number of jobs to be performed from 1,000 to 10,000. This is, the base job set com-
prising 25 jobs that was obtained by varying the value of η was cloned to obtain larger
sets. Each job was determined by a length parameter or the number of instructions to
be executed by the job, which varied between 1,362,938 and 2,160,657 MI. Moreover,
another parameter was PEs, or the number of processing elements (cores) required to
perform each individual job. Each job required one PE since jobs are sequential (not
multi-threaded). Finally, the experiments had input files of 291,738 bytes and output
files of 5,662,310 bytes.

5.2 Performed Experiments

In this subsection we report results obtained through our proposed three level sched-
uler. Particularly, at the infrastructure level we compare to another alternative scheduler
based on GA proposed in [1], which has been previously evaluated via CloudSim as
well. The population structure is represented as the set of physical resources that com-
pose a datacenter and each chromosome is an individual in the population that repre-
sents a part of the searching space. Each gene (field in a chromosome) is a physical
resource in a datacenter, and the last field in this structure is the fitness field, which
indicate the suitability of the hosts in each chromosome.

In our experiments, the GA-specific parameters were set to the following values:
chromosome size = 8, population size = 10 and number of iterations = 10. Moreover,
we have set the ACO-specific parameters to values within the range of values stud-
ied in [11]: mutation rate = 0.6, decay rate = 0.1 and maximum steps = 8, and the
PSO-specific parameter neighbourhood size = 8. Since the number of hosts that com-
pose each datacenter is equal to 10, a specific parameter values (i.e., maxSteps in ACO,
neighborhood in PSO and chromosome size in GA) equal to 8, means exploring a per-
centage of the 80% of the number of hosts for each datacenter.

Figure 2 compares the obtained results for all the considered scheduling algorithms
(ACO, PSO, GA) and each one the policies at the broker level (LLTF, FLTF, LTIR) in
subfigures a), b) and c), respectively. Graphically, it can be seen that the response time
presents a linear tendency in all cases. As shown in the subfigures included in Figure 2,
regardless of the policy used at the broker level, GA is the algorithm that produces the
greatest response time to the user with respect to ACO and PSO.

Since the GA algorithm contains a population size of 10 and chromosome sizes of
8, for each datacenter in which it tries to create the VMs, to calculate the fitness func-
tion, the algorithm sends one message for each host of the chromosome to know its
availability and obtain the chromosome containing the best fitness value. The number
of messages sent is equals to the number of host within each chromosome multiplied by
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Fig. 2. Response time as the number of jobs increases

the population size. The number of messages to send through the network for each al-
gorithm directly impacts the response time to the user. This is because for each message
sent to query about hosts availability, latencies from datacenters affect the answers.

The proposed ACO and PSO, however, make less use of network resources than GA,
being in some cases PSO the one which sends less network messages. The number of
messages to send by ACO depends of the maximum number of steps that an ant carries
out to allocate its associated VM. For example, when the maximum number of steps
is equals to 8, ACO sends a maximum of 8 messages per VM allocation. Moreover,
when ACO finds an idle host, it allocates the current VM and does not perform any
further step. This reduces the total number of network messages sent. On the other
hand, the number of network messages to send by PSO depends of the neighborhood
size, which is also equals to 8, i.e., PSO sends a maximum of 8 messages per VM
allocation. Furthermore, like ACO, when PSO finds an idle host, it allocates the current
VM and does not make any further move. This also reduces the total number of network
messages sent, and therefore, the total latency that influences the user response time.

Another observations from the subfigures included in Figure 2 are that when the
LLTF policy is used combined with PSO, ACO and GA, the response time decreases
with respect to FLTF and LTIR policies. This happens because most VMs are created
in datacenters with lower latencies. For example, when the LLTF policy is used and
the number of jobs to be executed is increased from 1,000 to 10,000, the response
time varied between (71–661), (72–661), and (191–780) minutes, for PSO, ACO and
GA, respectively. On the other hand, when the FLTF policy is used at the broker level,
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the response time for PSO, ACO, and GA, when the number of jobs was increased from
1,000 to 10,000, varied between (79–668), (79–668), and (367–962) minutes. Finally,
when the LTIR policy is used, the response time rose from (79– 668), (84–673), and
(409–996) minutes, when the number of jobs was increased from 1,000 to 10,000, and
for PSO, ACO and GA, respectively.

As can be seen, the response times for ACO and PSO are close when FLTF and LTIR
are used at the broker level. The reason is because both algorithms reduce the number
of queries to the hosts when LTIR is used. This is because when ACO and PSO find
an idle host, they not make any further move, and due to the fact that LTIR explores
all datacenters (in a circular order for each VM to be allocated), it has more chance of
finding an underloaded hosts where to allocate the VMs. However, if the user requests
the execution of a larger number of VMs, the latencies of datacenters will have more
influence in the response time when LTIR is used instead of FLTF.

Finally, the gains of PSO and ACO with respect to GA, when LLTF is used at the
broker level varied between 15% and 62%. When FLTF was used, gains varied between
30% and 78%. Lastly, when LTIR was used, gains varied between 32% and 80%. As
can be seen, the greatest gains were obtained when LTIR was used at the broker level.
The is because, since GA sent a greater number of network messages to the hosts than
PSO and ACO, the inter-datacenter latencies had more influence on the response time.

6 Conclusions

One popular kind of scientific experiments are PSEs, which involve running many CPU-
intensive independent jobs. These jobs must be efficiently processed –i.e., scheduled–
in the different computing resources of a distributed environment such as the ones pro-
vided by Cloud. The growing popularity of Cloud environments has increased the at-
tention in the research of resource allocation mechanisms across datacenters. Federated
Clouds potentially provide plenty of resources to users, specially when the number of
VMs required by a user exceeds the maximum that can be provided by a single provider
or datacenter. Then, job/VM scheduling plays a fundamental role.

Recently, SI-inspired algorithms have received increasing attention in the Cloud re-
search community for dealing with VM and job scheduling. In this work, we described
two schedulers –based on ACO and PSO– for the efficient allocation of VMs in a dat-
acenter combined with three strategies –LLTF, FLTF and LTIR– that consider network
information for selecting datacenters. Simulated experiments performed with CloudSim
and real PSE job data suggest that our PSO and ACO schedulers provide better response
times to the user than GA. In addition, when PSO, ACO and GA are combined with
LLTF, the response time is the lowest for all of them w.r.t. FLTF and LTIR, being LTIR
the most influential on the response time.

We are extending this work in several directions. We will explore the ideas exposed in
this paper in the context of other bio-inspired techniques such as Artificial Bee Colony
(ABC), which is also extensively used to solve combinatorial optimization problems.
Another issue which deserves attention is to consider other Cloud scenarios [15] with
heterogeneous physical resources belonging to different Cloud providers.

Due to multi-tenancy, in Clouds it is necessary to provide distributed scheduling
mechanisms for allocating resources to a number of independent users’ VMs/jobs along
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with time constraints. For this, we plan to implement a Cloud scheduler based on SI
techniques in order to fairly schedule users’ VMs/jobs based on different optimization
criteria (e.g., cost, execution times, etc.).

Finally, another interesting issue consists of providing more elaborated dynamic op-
timization capabilities, enabling the dynamic reallocation (migration) of VMs from one
physical machine to another to meet a specific optimization criteria such as improving
the response time, reducing the number of physical resources in use for minimizing
energy consumption, or balancing the workload of all resources to avoid resources sat-
uration and performance slowdown. In addition, the user could also specify constraints
for the scheduler decisions such as hardware (amount of CPU, memory, bandwidth,
etc.), platform (type of hypervisor, operating system, etc.), location (geographical re-
strictions), among others.
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Abstract. Scaling machine learning (ML) methods to learn from large
datasets requires devising distributed data architectures and algorithms
to support their iterative nature where the same data records are pro-
cessed several times. Data caching becomes key to minimize data trans-
mission through iterations at each node and, thus, contribute to the
overall scalability. In this work we propose a two level caching archi-
tecture (disk and memory) and benchmark different caching strategies
in a distributed machine learning setup over a cluster with no shared
RAM memory. Our results strongly favour strategies where (1) datasets
are partitioned and preloaded throughout the distributed memory of the
cluster nodes and (2) algorithms use data locality information to syn-
chronize computations at each iteration. This supports the convergence
towards models where “computing goes to data” as observed in other
Big Data contexts, and allows us to align strategies for parallelizing ML
algorithms and configure appropriately computing infrastructures.

1 Introduction

Data caching strategies have become a key issue in scaling machine learning
methods that typically iterate several times over a given dataset aiming at re-
ducing some error measure on their predictions. It is known that as dataset sizes
increase we need to adapt or even redesign the algorithms and devise the appro-
priate software and hardware architectures to support them. This is especially
true if we want to endow our systems with horizontal scalability, where increased
performance is to be achieved not by upgrading the existing computing resources
(faster machines with more memory) but by adding more computing resources
of a similar (commodity) kind.

In this sense, machine learning methods are particularly sensible to below-
optimal architectures as they typically need to iterate or process large amounts of
data which necessarily lives on distributed storage. Despite the fact there is a rich
variety of machine learning methods, many of them follow a common pattern:

G. Hernández et al. (Eds.): CARLA 2014, CCIS 485, pp. 43–53, 2014.
© Springer-Verlag Berlin Heidelberg 2014
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iterative optimization of a loss function which is evaluated (several times) on a
training data set. For this, machine learning algorithms need to be redesigned
to efficiently access and reuse data in a synchronized manner to preserve their
behavior (i.e. improving the prediction accuracy) whilst scaling horizontally to
analyze larger datasets.

Different complementary approaches exist today to deal with this problem,
such as using the map-reduce computing model [11], engineering stochastic or
online versions of existing algorithms [1,5], reformulating the algorithms in a
distributed manner [3,4], etc. Furthermore, several software frameworks have
emerged in the last years to support these processes in a scalable manner to
different extents [12,13,6]. Notably, Spark proposes a memory-only caching ar-
chitecture which is recently gaining popularity.

This work complements this architecture by combining disk and memory caches
and enabling a finer grained configuration for deciding what portions of data re-
side on the caches of each computing node. We focus on ML algorithms that fit
the Statistical Query Model [2] (see section 2.1) which represents a vast majority
of the algorithms. This way, we obtain parallel versions with relatively low effort
and combine them with distributed cache strategies [8] to understand their behav-
ior and settle for suitable strategies for scalable machine learning methods. Our
experiments are based on BIGS (Big Image Data Analysis Toolkit), a framework
which enables programming such algorithms in a distributed and opportunistic
manner; and were run over a virtualized computing cluster using the OpenNeb-
ula stack at the computing facilities in our universities. BIGS was extended by
implementing the cache strategies described and benchmarked in this work.

Our results strongly favour strategies where (1) datasets are partitioned and
pre loaded throughout the distributed memory of the different cluster nodes
and (2) algorithms use data locality information to maximize data reuse and
synchronize computations at each iteration through the data. This supports the
convergence towards models where “computing goes to data” as observed in other
Big Data related contexts.

The rest of this paper is structured as follows. Section 2 describes our im-
plementation of a parallel machine learning classification algorithms with dis-
tributed cache. Section 3 describes our experimental setup. Section 4 discuss the
experiments results and, finally, in Section 5 we expose our concluding remarks.

2 Distributed Machine Learning

A majority of ML algorithms adhere to the Statistical Query Model [2], through
which algorithms trying to learn a function f(x, y) of the data (such as to mea-
sure the prediction or classification errors) are required to return an estimate of
the expectation of f(x, y) using test and train data. Algorithms falling in this
class approach this problem through mathematical optimization (such as to min-
imize prediction error) and use gradients or sufficient statistics for this. These
computations are typically expressible as a sum over data points and therefore
are partitionable and distributable. If we have m data points, a sum of a gradient



Distributed Cache Strategies for Machine Learning Classification Tasks 45

function over all data points can be split into partial sums and then the results
can be aggregated:

m∑
i=1

gθ(xi, yi) =

1000∑
i=1

gθ(xi, yi) +

2000∑
i=1001

gθ(xi, yi) + ...+

m∑
i=m−999

gθ(xi, yi).

Each partial sum can then be executed over a different computing node and
a designated node performs the final aggregation of partial sums. However, this
poses additional problems as each partition of the data has to be made available
to the computing node that is going to perform each partial sum. Furthermore,
each iteration over the data requires the global sum to be recomputed. At each
iteration each computing node will have to access the partition of the data
it is commanded to sum upon which might not necessarily be the same for
all iterations. This may generate huge amounts of network traffic within the
computing cluster, specially if there is a central storage system shared by all
computing nodes as it is typically the case.

In this context is where caching come to be valuable. However, as shown in
this work, caching alone might only solve partially the problem, and we need
to devise caching strategies to encourage computing nodes to reuse as much as
possible cached data throughout all iterations.

2.1 BIGS

The Big Image Data Analysis Toolkit (BIGS) was developed by our research
group to enables distributed image processing workflows over heterogeneous com-
puting infrastructures including computer clusters and cloud resources but also
desktop computers in our lab or seldom servers available in an unplanned man-
ner. BIGS promotes opportunistic, data locality aware computing through

1. a data partition iterative programming model supporting the parallelization
scheme described in the previous section,

2. users assembling image processing jobs by pipelining machine learning algo-
rithms over streams of data,

3. BIGS workers are software agents deployed over the actual distributed com-
puting resources in charge of resolving the computing load,

4. a NoSQL storage model with a reference NoSQL central database,
5. removing the need of a central control node so that workers contain the logic

to coordinate their work through the reference NoSQL database,
6. simple and opportunistic deployment model for workers, requiring only con-

nectivity to the reference NoSQL database,
7. redundant data replication throughout workers,
8. a two level data caching in workers in memory and disk,
9. a set of strategies for workers for data access so that users can enforce data

locality aware computing or only-in- memory computing,
10. a set of APIs through which BIGS can be extended with new algorithms,

storage and data import modules. More information can be found at http://
www.3igs.org. Prototype releases of BIGS are described in [10,9].
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BIGS endorses a data partition iterative computing model (such as described in
Section 2.1) through which workers can exploit locality aware computation if so
desired by the user. Through this model, distributed data analysis jobs are struc-
tured into a repeatable sequence of INIT-STATE, MAP and AGGREGATE-
STATE operations as shown in Figure 1.

Fig. 1. BIGS algorithm model

All operations receive a State Object as input and they may produce another
State Object as output. Any operation cannot start until the preceding ones have
finished according to the job dependency graph in Figure 1, which is stored in the
reference NoSQL database. Input datasets to be processed are split into a user
definable number of partitions, and there is one MAP operation per partition.
Each MAP operation can loop over the elements of the partition it is processing
and may produce elements for an output dataset. For instance, an image feature
extraction MAP operation would produce one or more feature vectors for each
input image. Workers take over operations by inspecting the job dependency
graph stored in the reference database. Developers program their algorithms by
providing implementations for the Java Process API methods. When a BIGS
worker takes over an operation, it creates the appropriate programming context
and makes the corresponding data available (through data caches) to the imple-
mentation being invoked. As it can be seen in Figure 2, AGGREGATE-STATE
operations use all output states of the preceding MAP operations to create the
resulting state of iteration or the whole process.

2.2 Data Access and Caching Strategies

BIGS takes advantage of data parallelism approach. Given a large amount of
data that can be processed independently, BIGS can distribute them in data
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partitions across workers in order to process them separately and then aggregate
their results. A critical step in this parallelization strategy is the way that each
worker accesses to the data partitions. The most conventional way to deal with
this issue is by implementing caching systems.

BIGS implements two levels of caching, both of them implemented using the
Java Caching System library. The memory cache stores Java objects in the main
memory of the Java Virtual Machine indexed by an unique ID. The local cache
stores information in a raw database in the local hard drive of the worker. Both
caching systems allows faster access than performing a request from the worker
directly to the HBASE server. Notice that the memory cache allows the fastest
access because avoids reading hard drive as well as the parsing from the raw
data to the Java object. On the other hand, the local cache allows greater storage
capacity. This allowed us to implemented 2 strategies for deciding what partition
a worker takes: any-partition and only-local-partitions. This combination
of a two level caching architecture (disk and memory) together with these caching
strategies constitutes the main contribution of this work.

In the any-partition strategy the worker reads the next execution unit in the
schedule, if the data partition required by such execution unit is in the memory
cache, then the worker processes it at once, otherwise the worker requests the data
partition to the HBASE server, stores it in the memory cache and processes it.

The only-local-partitions strategy requires that one or more copies of the
dataset be distributed through data partitions over all the active workers before
the job be submitted. Those partitions are stored in the local cache. A worker
will process only execution units for which it has their data partitions previously
loaded in its local cache. The worker will also keep its memory cache enable.

2.3 Multiclass Logistic Regression

Logistic regression (LR) is a popular supervised machine learning algorithm
and, despite its name, it is really applied to learn classification models, not to
regression models. LR is probabilistic in nature, it learns a model which estimates
the class posterior probability, P (C|x), where x is a vector of input features and
C is a random variable representing the class to be predicted. If C is assumed
to have a multinomial distribution the posterior probability is calculated as:

yi = P̂ (Ci|x) = exp[wT
i x+ wi0]∑K

j=1 exp[w
T
j x+ wj0]

, i=1..K,

where K is the number of classes, x ∈ R
n is a vector with the input features

and W ∈ R
K×(n+1) is the set of parameters to be learned. Observe that W

is a matrix and for each class i contains a row vector wi ∈ R
n and a bias

parameter wi0. The learning algorithm works by finding the set of parameters,
W , that minimizes a loss function L(W,X), equivalent to the negative likelihood
over the training data set (X). This is usually done by using a gradient descent
strategy which iteratively updates W by adding a vector, 	W , which points in
the opposite as the gradient of the loss function, ∇L(W,X)
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W t+1 = W t − η∇L(W t, X).

This update is performed iteratively until some convergence criterion is met.
An interesting characteristic of the gradient of the LR loss function is that the
evaluation of it over the whole dataset is equivalent to the sum of the individual
evaluations over each data samples, i.e.:

∇L(W t, X) =

m∑
i=1

∇L(W t, xi).

Giving rise to a form in the sense described in Section 2 above for the gradient
function that can be calculated in a distributed fashion, by separating the train-
ing dataset in several groups, independently calculating the gradient for each
group, and then summing them up to find the overall gradient.

3 Experimental Setup

3.1 Dataset

The goal of our experiments was to measure the parallelization capabilities of a
gradient descent based method over a fixed number of computing resources as
the dataset size and number of iterations over the data increased using three dif-
ferent caching strategies (1) no cache, (2) default caching, (3) local only caching.
For this, we used the MNIST dataset [7] containing about 60,000 images with
handwritten digits (from 0 to 9), which is typically used as a benchmark for
computer vision algorithms. Each digit is contained within a 28x28 gray scale
image and represented by a vector of 784 components with the gray intensities
of each pixel. Given any digit image, the machine learning task is to classify each
image as the digit it represents. Figure 2 shows a sample of the dataset.

Fig. 2. MNIST dataset sample

3.2 Experimental Runs

We perform the evaluation on three dataset versions: 30000, 60000 and 120000.
To build the 120k dataset the original dataset was duplicated. Conversely, the
30k was built by subsampling at 50% the original dataset. From each dataset,
80% was taken as training set and the remainder 20% as the test set. Each dataset
was partitioned on 10 data partitions and loaded in the HBASE database to be
processed by the BIGS workers. The gradient descent algorithm hyperparameters
were fixed for all runs. Each run used 5 workers. We evaluated the experiment
for 25, 40 and 100 iterations. Each configuration was executed twice and their
average is reported. Table 1 shows the list of evaluated configurations.
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Fig. 3. Computing resources for experimentation

Table 1. List of evaluated configurations. Note that each one was executed twice and
the average is reported. Each configuration was evaluated using 3 strategies: no cache,
any partition and only local partitions.

# of iterations Dataset size # of processed samples
25 30K 750K
25 60K 1500K
40 30K 1200K
40 60K 2400K
40 120K 4800K
100 60K 6000K

3.3 Computing Infrastructure

HBASE version 0.94 run in Ubuntu 10.04 server with Intel® Xeon®. The work-
ers process were scheduled in TORQUE, a distributed resource manager that
provides control over batch jobs over five virtualized compute nodes managed
by OpenNebula (http://opennebula.org/). All nodes and the HBASE server run
the Java Virtual Machine 1.6 version, each node with dual quad core processor
and 64 GB of RAM. This is shown in Figure 3
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4 Results

Metrics collected in experiments focused on understanding (1) how different
cache configurations affected the total elapsed time of the experiments and (2)
how the processing time per data item (or 1 million data items) evolved through-
out the different run configurations. Elapsed time is understood as the wall time
of each experiment from beginning to end. As each experiment was run twice,
results show averages of the two runs. Deviations in times between the two runs
were insignificant.

Figure 4 (left) shows the experimental elapsed time as a function of the number
of data items processed. Here we averaged runs processing the same number of
data items, regardless the number of iterations and dataset size. For instance, a
dataset with 30K data items through 40 iterations processes a total of 1.2M data
items, whereas a dataset with 60K data items through 25 iterations processes a
total of 1.5M data items.

As it can be seen any cache strategy largely outperforms the lack of cache
and, furthermore, caching strategies using only local data tend to perform even
better that caching strategies that use no criteria to select the data to work on.

Figure 5 shows the average time to process 1 million data items as a function
of the number of iterations (left) and the dataset size (right). In all cases, as the
amount of data processed grows (either through iterations or through dataset
size) the time to processes 1 million data items tends to decrease, probably as
the first data items loads in other low level caches (processor, OS, Java virtual
machine, etc.). Anyhow, again we see that exploiting local data outperforms all
other strategies.

When coming to compare the two caching strategies used we can observe in
Figure 6, as expected, that using only local data results in a reduced number of
writes (PUTs) to the cache whereas the number of reads is similar. This signals
data reuse within each cache and we interpret this as the root cause of the
observed improvement of caching strategies using data locality information.

Figure 4 (right) shows the number of cache HITs per PUT with respect to
dataset size where one can observe some indication of the degree of data reuse in
each configuration. In general each data item is re-used about 5 times more often

Fig. 4. Total elapsed time of experiments (left) and data reuse (right)
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Fig. 5. Time to process 1 million data points vs the dataset size and the number of
iterations

Fig. 6. Number of cache PUTS (writes) and HITS (reads) per dataset size

using cache with local only partitions but, interestingly enough, as we increase
dataset size, this reuse drops, probably to due to RAM memory exhaustion on
each computing node. This behavior is a subject for further experimentation and
understanding.

Finally, it is worthwhile mentioning that our experiments produced an average
train accuracy of 86.77% of successful digit recognition (with 0.59 standard de-
viation), and an average 86.91% accuracy on the test data (with 0.76 standard
deviation). This figures fall within the expected accuracy of similar methods
reported for the MNIST dataset, including the method stability (very low stan-
dard deviation, under 1%) and generalization capabilities (very low difference
between train and test data), and guarantees the well behavior of the algorithms
throughout all experiments.

5 Conclusions

Caching strategies are key to enable scaling machine learning methods of iterative
nature. This work shows that even different strategies yield to different scalability
properties and, thus, caching arquitectures for distributed data must be taken into
account when devising scalable algorithms. Our results evidence that strategies
favoring cache reuse throughout the different iterations over the data outperform
simpler strategies, but this requires the algorithms (or the frameworks used) to
keep track and exploit data locality, combining different levels of caching (disk
and memory). This supports the convergence towards models where “computing
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goes to data” as observed in other Big Data related contexts, and allows us to
confidently envision strategies for parallelizing ML algorithms and aligning the
design of computing infrastructures to solving specific ML problems.

Acknowledgements. This work was partially funded by projects “Multimodal
Image Retrieval to Support Medical Case-Based Scientific Literature Search”,
ID R1212LAC006 by Microsoft Research LACCIR, “Diseño e implementación
de un sistema de cómputo sobre recursos heterogéneos para la identificación de
estructuras atmosféricas en predicción climatológica” number 1225-569-34920
through Colciencias contract number 0213-2013 and “Proyecto Centro de Super-
computación de la Universidad Nacional de Colombia”. John Arevalo also thanks
Colciencias for its support through a doctoral grant in call 617 2013. Authors
also thank the support of the High Performance and Scientific Computing Centre
and Universidad Industrial de Santander (http://sc3.uis.edu.co).

References

1. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Pro-
ceedings of COMPSTAT 2010, pp. 177–186. Springer (2010)

2. Chu, C., Kim, S.K., Lin, Y.-A., Yu, Y., Bradski, G., Ng, A.Y., Olukotun, K.:
Map-reduce for machine learning on multicore. Advances in neural information
processing systems 19, 281 (2007)

3. Coates, A., Huval, B., Wang, T., Wu, D., Catanzaro, B., Andrew, N.: Deep learning
with cots hpc systems. In: Proceedings of the 30th International Conference on
Machine Learning, pp. 1337–1345 (2013)

4. Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Senior, A.,
Tucker, P., Yang, K., Le, Q.V., et al.: Large scale distributed deep networks. In:
Advances in Neural Information Processing Systems, pp. 1223–1231 (2012)

5. Hsu, D., Karampatziakis, N., Langford, J., Smola, A.J.: Parallel online learning.
CoRR, abs/1103.4204 (2011)

6. Kraska, T., Talwalkar, A., Duchi, J.C., Griffith, R., Franklin, M.J., Jordan, M.I.:
Mlbase: A distributed machine-learning system. In: CIDR (2013)

7. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

8. Navruzyan, A.: Online machine learning with distributed in-memory clusters (2013)
9. Ramos-Pollan, R., Cruz-Roa, A., Gonzalez, F.A.: A framework for high perfor-

mance image analysis pipelines. In: 2012 7th Colombian Computing Congress
(CCC), pp. 1–6 (October 2012)

10. Ramos-Pollan, R., Gonzalez, F.A., Caicedo, J.C., Cruz-Roa, A., Camargo, J.E.,
Vanegas, J.A., Perez, S.A., Bermeo, J.D., Otalora, J.S., Rozo, P.K., Arevalo, J.:
Bigs: A framework for large-scale image processing and analysis over distributed
and heterogeneous computing resources. In: 2012 IEEE 8th International Confer-
ence on E-Science (e-Science), pp. 1–8 (October 2012)

11. Rosen, J., Polyzotis, N., Borkar, V., Bu, Y., Carey, M.J., Weimer, M., Condie, T.,
Ramakrishnan, R.: Iterative mapreduce for large scale machine learning. arXiv
preprint arXiv:1303.3517 (2013)

http://sc3.uis.edu.co


Distributed Cache Strategies for Machine Learning Classification Tasks 53

12. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file
system. In: 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), pp. 1–10. IEEE (2010)

13. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster
computing with working sets. In: Proceedings of the 2nd USENIX Conference on
Hot Topics in Cloud Computing, p. 10 (2010)



A Flexible Strategy for Distributed and Parallel

Execution of a Monolithic Large-Scale
Sequential Application
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Abstract. A wide range of scientific computing applications still use al-
gorithms provided by large old code or libraries, that rarely make profit
from multiple cores architectures and hardly ever are distributed. In this
paper we propose a flexible strategy for execution of those legacy codes,
identifying main modules involved in the process. Key technologies in-
volved and a tentative implementation are provided allowing to under-
stand challenges and limitations that surround this problem. Finally a
case study is presented for a large-scale, single threaded, stochastic geo-
statistical simulation, in the context of mining and geological modeling
applications. A successful execution, running time and speedup results
are shown using a workstation cluster up to eleven nodes.

Keywords: HPC, parallel computing, distributed system, workload mod-
eling, gslib.

1 Introduction

The development of scientific computing applications has been benefited by new
hardware technologies and software frameworks, allowing new applications to
reach faster execution times, using better programming practices. Despite these
advances, many fields in science and engineering still use algorithms and methods
implemented in large monolithic applications, in the sense that they have single-
tiered and self-contained software designs, contrary to current trends of modular
and flexible designs. From those monolithic applications, only a portion were
designed to efficiently use multi-core architectures and even less can be executed
in distributed environments. Nowadays, many monolithic sequential applications
are still actively used, taking several minutes, hours or days to compute.

Many scientists are not parallel computing users and –in some cases– have
basic programming skills. Most of the time they use large old code or libraries
designed for single-core workstations, mostly because their research priority is
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to explore new methods, techniques or just to have a simple proof of concept.
In mining, projects require uncertainty quantification for risk analysis, which is
done through the construction of multiple simulated scenarios. These scenarios
often are represented by a numerical model that discretizes the volume of the
ore deposit into small cells, each one requiring a prediction of its properties, such
as grades or geological attributes. The construction of these models is costly in
computing time, and currently done using legacy code.

Many attempts to parallelize these algorithms have been made, but most of
them have been aimed at specific codes rather than providing a global solution
that can be implemented to all algorithms. The focus has been put into optimiz-
ing interpolation methods [4,6,24], sequential simulation code [19,18,27], multiple
point geostatistical methods [14,15,20,21,22,25]. In many of these cases, the use
of a GPU based approach has been central, however, we aim at providing a more
general solution to use many computers with different hardware characteristics.

Our goal is to solve these problems by enabling the use of multiple computers
connected in a local network, making them to work seamlessly. This would allow
scientists run many types of legacy code for large-scale applications and to have
a simple scheduler for easy and efficient execution of tasks.

In a recent work of Bergen et al. [5], they successfully transformed existing
monolithic C applications into a distributed semi-automatic system, making
that legacy code relevant again, through the use of remote procedure calls by
an approach similar to map-reduce — doing small modifications to their legacy
code. Later, Lunacek et al. [17] have proved through a scaling study that Python
is an excellent option to execute many-tasks on a compute cluster. There are
others solutions based on software as a service [3] or cloud technologies [1,2],
but we pursuit a different goal: develop an in-house tool, not running any extra
configuration on our machines nor installing an enterprise solution. Based on
these experiences, our contribution is to give a simple strategy for distributed
and parallel execution of tasks, using an existing heterogeneous computer local
network, in a clean an efficient way. We choose Python because it is easy to learn,
provides a wide range of scientific tools, it is supported by a strong community
and it is multi-platform.

This document is organized as follows: a description of the proposed strategy
and implementation topics are presented in sections 2 and 3 respectively. In sec-
tion 4, a case study using a sequential indicator simulation (sisim in GSLIB[7])
is developed and section 5 shows some discussion on the results and some ideas
for future work.

2 Strategy Design

2.1 System Requirements

For the reasons explained above, we have defined the following requirements for
our distributed and parallel execution strategy:
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– Polyglot model. Should be able to perform native executions of existing
code and binary executables. Here, the bottom line is to execute applications
written in Fortran, C, C++ and Python. This cannot be done using Remote
Object Call (ROC) or Remote Procedure Call (RPC), because the source
code is not always available.

– Data handling.Must use different scientific data types as multidimensional
arrays, hashed tables, time tables, among others. Continuous and categorical
variables are represented in different formats and ranges — integer, float or
strings.

– Input/output. There is the need to simplify the parametrization of the
processes and the input files required for each of them. The output from
each execution could be numerical data, (probably several) big binary files
and large images.

– Distributed computing. Computation must be easily and seamlessly dis-
tributed. Message Passing Interface (MPI) is discarded because, on the one
hand, it requires to make big changes to the legacy code and, on the other
hand, our workstation cluster is extremely heterogeneous.

– Hardware availability. The available resources on each workstation (com-
putation node) must be transparently visible and highly configurable in order
to allow managing the limited resources, taking advantage of as much com-
puting power as possible (multicore CPUs, multiple GPUs or SSD units)
without interfering with user common tasks — optimizing idle computing
capacity.

– System heterogeneity. Should be able to deploy in a multi-platform sys-
tem.

– Multi-master topology. Every computation node should be set up as a
master, configuring in this way a decentralized system.

2.2 Architecture Overview

The architecture is composed of two main components: a) a distributed task
scheduler and b) a shared data storage. The task scheduler is necessary to assign
workload to different workstation nodes. The shared data storage is required
to save and retrieve input and output files, session variables and corresponding
metadata.

Distributed Task Scheduler. A Task represents an abstract definition of the
target (actual legacy) code that is needed to be executed. Every node in the
cluster must run some component in background in order to accept and gener-
ate remote (task) execution calls. That component is called the Distributed Task
Scheduler. In order to provide a strategy as general as possible, the scheduler
modules were grouped in three categories: front-end, broker and back-end. De-
tails are shown in Figure 1.
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front-end broker back-end

Application Task Service Worker*

«execute»

task_list

Task Handler

target_code
parameters

Task

remote

«use»

1

Fig. 1. Distributed task scheduler architecture

a. Front-end. It is composed of Task Handlers and Applications. The former is
a module designed to provide a high level API for task creation, task control
(run, stop, pause, cancel, delete) and to handle notifications. Every Task
Handler controls a task list and uses a messaging system to connect them
with the rest of the components. An Application uses the Task Handler API
to orchestrate the tasks execution flow which has the logic related to every
specific problem.

b. Broker. Encapsulates all services related with task distribution, load balanc-
ing, remote communications requirements and response messages routing. It
is called Task Service. Each node must have a single instance of the latter
running. Task distribution can be either dynamic or static. Dynamic schedul-
ing may include different load balancing methods, fault tolerant strategies
and automatic network discovery functionalities. On the other hand, static
scheduling can use simple selection methods like a static weighted round-robin
scheme.

c. Back-end. Its main components are the Workers. Their responsibility is
to actually execute tasks. They are highly configurable: number of them,
resources allowed to be used and permissions.

Shared Data Storage. Analogously to the task -related architecture, it is nec-
essary to define an architecture for data handling which provides functionalities
for CRUD 1 operations on atomic data and every other required actions on data
sets — like searching or listing. The atomic data will be handled as a Document
that represents different kind of data: variables, files, images or tasks; could be
extended to any other datatype. The categories in this case are front-end and
back-end showed in Figure 2.

1 Create, Read, Update, Delete.
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front-end back-end

Data Handler

Document

Variable

FileImage

Task

Data Service
«use»

Fig. 2. Shared storage system schema

a. Front-end. A Document Handler is defined to provide a general API for
document operations. It acts as a proxy which allows to handle different data
types seamlessly and independently of the back-end implementation.

b. Back-end. It is composed of a Document Service and runs in background
on a defined node or can be splitted using sharding when available, allowing
splitting the data volume and computational load over multiple servers.

3 Implementation Topics

The strategy presented so far is quite straightforward because it is based on
standard design patterns [10]. However, it is worth to mention four critical im-
plementation aspects. Deployment details are shown in Figure 3.

a. Messaging system. A JSON based message specification that includes both
internal and external events was defined. This satisfies the requirement to have
heterogeneous interoperability. A simple protocol was defined which, despite
it is lightweight, it is flexible enough to contain a rich message set — ranging
from low level messages (system calls, synchronization messages or callbacks)
to user defined commands. ZeroMQ [8,12] was chosen for message transport,
that implements IPC socket for internal messaging and TCP sockets for node
communications. It also provides fault tolerance functionalities, to deal with
issues like slow joined or sockets disconnections.

b. Parallel and distributed processing. Each node contributes with a num-
ber of Workers (running as separated processes) and an implementation of a
Task Service (running as background server). They are all synchronized using
message passing through the messaging system, avoiding classic approaches
with low level structures such as semaphores or mutex [13]. Every node can
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be configured independently to optimize the usage of node specific resources.
Task Services keep a known remote node list (multi-master topology) and
load balancing is implemented using static round-robin.

c. Shared storage system. The Data model is extremely simple, using just
one entity (Document). Thus the natural choice was using MongoDB [23], a
Document-oriented database — which has great performance, scalability and
flexibility with low level of complexity [26,16]. Furthermore, MongoDB has
a specification called GridFS for storing and retrieving files, making easier
working with large input/output distributed data files.

d. Programming language. The glue language is Python. It is multi-platform
and has stable bindings to ZeroMQ, MongoDB and direct JSON handling
functions. Additionally, C was used to provide GridFS functionality for For-
tran as required by the case study (section 4).

«protocol»
TCP/IP

Master Node

«protocol»
IPC

Worker

Task Service

«protocol»
IPC

Application

Slave Node

«protocol»
IPC

Worker

Task Service

«protocol»
TCP/IP Shared Storage

«device»«device»«device»

MongoDB

«protocol»
TCP/IP

Fig. 3. Deployment diagram of the presented strategy

3.1 Execution Flow

The proposed strategy is fulfilled by the described architecture allowing to run
several distributed instances of a Task using a simple schema, shown as a UML
sequence diagram in Figure 4. The execution flow starts with the initial set up
of the workstation cluster: on each node a Task Service and a set of Workers are
created and configured. At least one node running a Document Service instance is
required. A node is chosen as the current master (CM) and runs the Application
that controls the Task execution flow.

The Application main uses a Task Handler instance to create a new Task, con-
taining all necessary information to execute the target code— executable, number
of executions, parameters, input/output data or environment variables. This ap-
plication starts a Task execution using the Task Handler interface, which commu-
nicates using message passing to the Task Service. The later distributes all Task
instances over the available local or remote Workers. After each Worker runs the
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target code or command, results are notified back to the CM, which routes mes-
sages to the corresponding Task Handler instance using the Task Service.

To finally get the results of the parallel (distributed) execution, application
main waits for all Task instances to finish. Again, Task Handler provides proper
methods for this purpose.

:Application :Task Handler :Task Service :Worker 1 :Worker N

target

result

target

result

create_task()

Task

execute(Task) Execute: Task
Instances: N Run: Task

Instances: 1

Run: Task
Instances: 1

Done: Task

Done: Task
wait(Task)

End: Task
Instances: 1

End: Task
Instances: N

results

current master remote nodes

Fig. 4. Distributed task sequence diagram

The target code needs to be available in every remote node. This requirement
can be accomplished in two ways:

1. Using external remote node configuration software to maintain desired target
code updated across the network, then the Task just has to execute a shell
command.

2. Using the shared storage system to upload desired code, then the Task is
configured to download and execute it.

A combination of those options can be used to run complex tasks –commonly
found in legacy applications– that may require to run multiple commands, dif-
ficult parameter settings and processing partial results.
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4 Case Study

The strategy was tested using a well-known geostatistical simulation program,
named sisim, which delivers 3D stochastic simulations of either integer-coded
categorical variables, or continuous variables with indicator data defined from a
cumulative density function. The sisim algorithm is part of a legacy library of
geostatistical tools called GSLIB [7], which was implemented in Fortran 77/90
and uses a single thread of execution.

A sketch of sisim execution can be viewed in Algorithm 9. For each simulation,
a regular lattice is defined over which a random path P of points in the domain
Ω are visited and simulated. At every node, a local search of neighboring data or
previously simulated nodes is performed, and for each category (categorical case)
or each threshold value (continuous case) a local interpolation is done by simple or
ordinary kriging, using the corresponding structural variographic model that pro-
vides a measure of the spatial continuity of the indicator variables. With these re-
sults a conditional cumulative distribution function is built of the random variable
at the simulation location, from which a simulated value is drawn using Monte-
Carlo simulation. The routine create random path creates the random path P
based in the seed τ and simulatemodifies the index-th value of the array Vtmp

storing in it the result of a local interpolation using the parameters γ, κ and τ .
None of these routines have side effects, so each iteration of the outer loop, corre-
sponding to simulations, can be executed independently. This kind of application
can be easily parallelized, distributing the iterations through local threads and/or
distributed processes (embarrassingly parallel application [28]).

Input: (V, Ω): sample data base values defined in a 3D domain; γ: structural
variographic models; κ: local interpolation parameters; τ : seed for
pseudo-random number generator; N : number of generated simulations;
output.txt: output file

1 for isim ∈ {1, . . . , N} do
2 P ← create random path(Ω, τ );
3 Vtmp ← zeros(V);
4 for ixyz ∈ {1, . . . , |Ω|} do
5 index ← Pixyz;
6 Vtmp

index ← simulate(index, γ, κ, τ );

7 end
8 write(output.txt,Vtmp);

9 end

Output: N stochastic simulations stored in file output.txt

Algorithm 1. SISIM geostatistical simulation program, sequential algorithm
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4.1 Tests Setup

Two types of test configurations were used: homogeneous and heterogeneous ma-
chines. The homogeneous setting uses a cluster of eight workstations, each node
having the following features: CPU Intel Xeon E3 1225 3.10GHz (four cores),
16GB of RAM, 1TB HDD running different GNU/Linux distributions (open-
SUSE 12.3, Ubuntu 13.04/13.10/14.04, Kubuntu 14.04) with Python 3.3/3.4 in-
stalled. Similarly, the heterogeneous settings uses up to eleven nodes: nine four
cores nodes, one eight core node, all using a wider range of Intel Xeon CPUs and
an iMac with Intel Core i5 2.7 GHz. All nodes are connected to campus facilities
local network.

For all test a dedicated local server Intel Dual Core CPU, 2GB RAM and
1TB HDD was configured with the shared storage system using MongoDB and
GridFS.

A manager for configuring all remote nodes was used. We chose Ansible [11]
because its syntax is easy to read-and-learn and does not require specific agents
on every node. The configuration steps are as follows:

– Compile and install the standard GSLIB 90 with sisim v3.0
– Optional: compile and install the implemented C API with MongoDB and

GridFS drivers (section 4.3)
– Optional: compile and install an improvedGSLIB sisim routine with GridFS,

named sisim-gfs to avoid ambiguities (section 4.3)
– Run Task Service with four Workers in each node with remote support:

$ taskservice.py --workers 4 --hosts nodes.txt

– Create the script who encapsulate the task to execute, to manage I/O and
required parameters (See Listing 1.1)

– On the master node, run the Application main which controls the task exe-
cution flow (Figure 4) with 96 realizations using 16 distributed workers:
$ main app.py --script sisim script.py -n 96 --workers 16

The creation, configuration and execution of the sisim script is straightforward
and no more requirements are needed. A simple measure, the average develop-
ment time for several programmers, has shown that it takes less than 25 minutes

Listing 1.1. Code snippet of sisim script

import subprocess

from strategy.prototype import StrategyScript

from strategy.prototype import GridFS as fs

class SisimScript (StrategyScript ):

def main(self ):

input = "/path/to/input/file"

output = "/path/to/output/file"

cmd = "sisim {0} {1}".format(input , output)

exit_status = subprocess .call(cmd , shell=True)

fs.save(output_file )
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to fully understand all the required steps to deploy a script using different under-
lying applications. More complex scripts can be extended using standard Python
programming techniques.

4.2 Standard SISIM Scalability Test

In the first test the simulation workload was distributed using our strategy,
without any code modifications to the existing sisim program. We implemented
a Python script that set the parameters and data files pointing to sisim exe-
cutable. Also a simple main application was developed. This main application
creates a Task that will configure the target code input parameters, uploads the
target code and corresponding input data to the shared storage system and fi-
nally send the Task for execution. The code was instrumented to report partial
and overall execution times.

This case study includes a comparison between the base execution of standard
sisim routine and the distributed version up to 32 cores using the homogeneous
cluster. Timing and speedup results can be viewed in Table 1. Base case denotes
an execution of sisim with N = 96 (number of simulations) and a domain Ω of
2880000 points. Single node tests use the strategy to distribute simulations in
one machine as independent native system processes, namely, up to four parallel
workers running 24 simulations each one. Distributed tests use four workers
in each node, using the implemented round-robin scheduler to assign workload.
Under this configuration, sisim was parallelized up to 32 instances, each Worker
running 3 simulations.

Table 1. Standard algorithm parallelized and distributed

case processes time[s] speedup efficiency

base 1 9124.64 1.00

sisim

single node

1 9240.11 0.99 99%
2 4748.68 1.91 95%
3 3240.30 2.82 94%
4 2518.77 3.62 91%

sisim

distributed

4 2890.09 3.16 79%
8 1515.58 6.02 75%
12 1101.01 8.29 69%
16 909.53 10.03 63%
24 712.66 12.80 53%
32 627.36 14.54 45%

Table 1 shows that using the proposed strategy it is possible to increase the
speedup in single node, having an efficiency of 91% when using all available re-
sources on a local workstation. Distributed tests results also demonstrate scala-
bility reducing overall computation time progressively. However, it shows that we
lose efficiency when more nodes were added. This phenomenon is explained by
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the increase of overhead produced by nodes interactions, the time used to write
output files to hard disk, and their uploading time into the shared storage system.
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Fig. 5. Time comparison of sisim and sisim-gfs with available resources

4.3 Improved SISIM Scalability Test

To avoid the bottleneck generated by multiple processes writing result files to
hard disk and the overhead of uploading those files to the shared storage system,
we use the C API to make a simple wrapper from Fortran, allowing us to write
each simulation result directly to GridFS. Doing a simple modification to the
sisim code, we replaced line 8 on the Algorithm 9 by our own write to gfs

function which saves the final Vtmp array directly to the shared storage system.
We perform the same tests detailed in section 4.2 and the results can be

viewed in Table 2. Furthermore, Figures 5 and 6 show a comparison between
standard sisim and improved sisim-gfs tests.

Speedup results are based on standard sisim single core execution time. Both,
single node and distributed tests results show a clear overall computation time re-
duction. The sisim-gfs results shows a reduction on overhead by using GridFS.
Figures 5 and 6 shows that sisim-gfs perform better than the standard sisim

and when using more workstations, the former tend to outperform twice the
standard.

4.4 Heterogeneous Cluster Distribution Test

Finally, in order to run a larger test using all computational resources available
in our laboratory, a cluster of eleven heterogeneous nodes with a total of 46
cores was used, as specified in section 4.1. Initially was needed close to 2 hours
32 minutes to run 96 simulations in a single thread execution (base case, Tables
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Table 2. Improved algorithm parallelized and distributed

case processes time[s] speedup efficiency

sisim single node 1 9240.11 1.00

sisim-gfs

single node

1 7522.86 1.23 123%
2 3909.90 2.36 118%
3 2636.28 3.50 117%
4 2051.63 4.50 113%

sisim-gfs

distributed

4 1994.82 4.63 116%
8 1005.58 9.19 115%
12 674.75 13.69 114%
16 516.15 17.90 112%
24 388.29 23.80 99%
32 307.39 30.06 94%
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Fig. 6. Speedup test of sisim and sisim-gfs with available resources

1 and 2). Using the described strategy is possible to run the same number of
simulations in less than 6 minutes.

5 Conclusions and Future Work

The proposed strategy has successfully fulfilled the requirements presented in
section 2.1 and has been flexible enough to fit many embarrassingly parallel algo-
rithms. Results show that using the proposed software architecture and available
computational resources (local computer network, clusters or cloud services),
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the overall execution time can be considerably reduced —up to 24 times— and
can be applied on monolithic legacy code used in geological modeling applications
(like sisim) within real scenarios, making it practical to be used in industrial
workflows. It is worth to mention that this strategy is general enough to be used
in other analogous domains.

The entire system implementation exercise presented different challenges re-
lated to distributed systems that were solved using cutting edges approaches.
For example, multiple processes synchronization and node communication were
implemented with message passing; data handling, via a distributed Document-
oriented NoSQL database; and, cluster management, with a remote configuration
management tool.

The presented work was focused on a particular algorithm, but this (general)
strategy can be applied to a wide range of applications. In geosciences only, there
are many other algorithms that have the same characteristics, like being embar-
rassingly parallelizable or having heavy task workflows (Sequential Gaussian
Simulation [7], Turning Bands Methods [9], Multi-point Statistics Algorithms
[14], among others). This point is a motivation to replicate this architecture
many times. Thus, an efficient way to do this, is to build a general framework
software to easily generate parallel and distributed executions, specially focused
in scientific applications. This framework could be a helpful tool for researchers
that need to generate rapid software prototypes that includes HPC features,
allowing to integrate new and existing code with a small effort.
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Abstract. Frosts are one of the main causes of economic losses in the
Province of Mendoza, Argentina. Although it is a phenomenon that hap-
pens every year, frosts can be predicted using Agricultural Monitoring
Systems (AMS). AMS provide information to start and stop frosts de-
fense systems and thus reduce economic losses. In recent years, the emer-
gence of infrastructures called Sensor Clouds improved AMS in several
aspects such as scalability, reliability, fault tolerance, etc. Sensor Clouds
use Wireless Sensor Networks (WSN) to collect data in the field and
Cloud Computing to store and process these data. Currently, Cloud
providers like Amazon offer different instances to store and process data
in a profitable way. Moreover, due to the variety of offered instances
arises the need for tools to determine which is the most appropriate in-
stance type, in terms of execution time and economic costs, for running
agro-meteorological applications. In this paper we present a model tar-
geted to estimate the execution time and economic cost of Amazon EC2
instances for frosts prediction applications.

1 Introduction

Frost is an agro-meteorological event which causes both damage in crops and
important economic losses. The impact of frost damages in the Province of Men-
doza, region of Cuyo, Argentina (which affected up to 80% of crops in 2013)
resulted in economic emergency in all the region. Due to frosts happen every
year, there are different defense methods (such as surface irrigation, heaters and
others) that can be used to minimize damage.

Defense systems should be activated based on information provided by Agri-
cultural Monitoring Systems (AMS). AMS perform in-field data acquisition and
data management. Moreover, AMS ensure production quality and guarantee
crops traceability.

G. Hernández et al. (Eds.): CARLA 2014, CCIS 485, pp. 68–82, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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On the one hand, in-field data acquisition process can be performed by mea-
suring instruments, weather stations and Wireless Sensor Networks (WSN) [1,2].
Compared to traditional measurement instruments and weather stations, WSNs
have the advantage that they can cover extensive areas with low cost devices
called sensor nodes. Moreover, sensor nodes low-power consumption and long
lifetime (over 2 years) allow long-term monitoring with low maintenance.

On the other hand, the WSNs data management include data remote access,
storage and data processing. This management process can be reliably and eas-
ily performed using Cloud Computing technologies [3,4,5,6,7]. The use of Cloud
Computing for data management allow to incorporate the benefits of this tech-
nology (data replication, fault tolerance, resources scalability, etc.) to AMS.

There are two main reason for using public Clouds in order to process and
store WSN data. The first one is the large volume of data generated by WSNs.
As an example, in the region of Cuyo there are up to 170000 hectares of crops
which can be instrumented with one sensor node per hectare. For this reason,
there are 170000 potential sensors that generate data, which must be processed
and stored in a proper infrastructure. The second one is the traffic bottle neck
from the WSNs to an isolated private data center. Several Cloud providers offer
different types of public infrastructure resources which can be used to store and
process data in a profitable way. Today one of the leading providers is Amazon.
The Elastic Compute Cloud (EC2) toolkit service provides different types of
virtual machines (instances) for both processing and data storage. In addition,
due to the wide range of instances offered by Amazon, arises the need to identify
which of them has better performance, in terms of execution time and economic
cost, for processing frost prediction applications.

In this paper we propose a set of models, constructed from empirical data, that
can be used to estimate the performance and economic costs of Amazon EC2
instances applied to frost prevention applications processing. Although there are
other costs associated with the use of Amazon EC2 instances (like the ones
for data transfer), the target of our study are the economic costs for WSN
data processing. These ones are more relevant compared with the ones for data
transfer.

This paper is structured as follows. Section 2 introduces Agricultural Moni-
toring Systems based in WSN. Next, Section 3 surveys relevant related works.
Section 4 describes the application developed for frost prediction. Then, Sec-
tion 5 presents our proposal of models for each Amazon EC2 instance and the
methodology used to construct them. Finally Section 6 concludes this paper and
discusses future prospective extensions.

2 Agricultural Monitoring Systems Based in WSNs

In this section we provide an introduction to the technologies used to perform
both the data acquisition and data management in WSN’s based AMS.
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2.1 Data Acquisition with WSN

Sensor nodes, a technology appeared in the late 90s, are composed of a micro-
controller, memory, different sensors, battery and a radio module. Sensor nodes
can be interconnected into special networks called WSNs and interact among
them. Such WSN networks are used to study the environment and for acquir-
ing different variables related to weather (temperature, humidity, pressure, and
others).

Within a WSN, data are acquired by source nodes and sent via radio frequency
to a special node (known as sink) connected to the base station. The base station
coordinates all operations of the WSN and can be a personal computer (PC) or
embedded system. Furthermore, the base station can store or transmit via the
Internet all the information collected by sensor nodes.

WSNs nodes must meet requirements such as autonomy, low power consump-
tion, low cost, robustness and reliability. Unlike traditional wireless networks,
WSNs nodes use communications protocols specifically designed for working with
scarce energy sources and hardware resources. In addition, these protocols are
not compatible with TCP/IP networks.

2.2 Data Management

Data collected by AMS through WSNs, can be used to provide a solution to
many scientific and commercial problems (e.g., frost prevention, fire detection,
etc.). The data management process starts when WSN data are sent to re-
mote machines. Next, data are stored and processed in order to extract useful
information. Next subsections detail different technologies used to WSN data
management.

Traditional Technologies. Generally, the use of isolated machines such as
computers and mainframes is adequate to process low volumes of non-critical
WSN data. A typical use case of isolated machines is when low volumes of data
(in the order of Kbytes) are sent from the base station deployed in-field to a
remote server. The external server stores the data and then proceeds to run the
processing application.

Although this technology is easy to use, it presents some problems for (i) pro-
cessing large volume of data, (ii) scaling to a large number of WSN nodes and
(iii) ensuring availability 24 hours a day - 365 days a year. A possible solution to
solve these issues is by using powerful servers, mainframes and clusters in appro-
priate datacenter infrastructures. However, this solution generates prohibitive
economic costs, at least for agro-meteorological applications.

As the use of traditional technologies is not always suitable, different au-
thors proposed the use of Cloud Computing infrastructures for processing WSN
data [3,4,5,6,7].

Cloud Computing. Cloud Computing is a computing paradigm for applica-
tion development and the use of computing and storage resources [8]. Through
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the use of virtualization techniques and web services, hardware resources and
applications can be dynamically provided to the user.

Foster et. al. [9] define Cloud Computing as “A large-scale distributed comput-
ing paradigm that is driven by economies of scale, in which a pool of abstracted,
virtualized, dynamically-scalable, managed computing power, storage, platforms,
and services are delivered on demand to external customers over the Internet”.

One of the main advantages of Clouds is resources scalability. In this way
Clouds can solve the computational and storage requirements of the applica-
tions. Another advantage is that the users can easily to access to development
frameworks of applications that use Cloud services in order to allow the scal-
ing of resources. Cloud services are deployed in terms of certain business mod-
els. Clouds providers offer their services according to three fundamental models
which are described below.

Infrastructure as a Service (IaaS), where “service” means resource. Through
infrastructure services users can access to virtualized high performance comput-
ing (HPC) resources (CPUs, storage devices, etc.). The service provider delivers
resources to a client in accordance to the specific requirements such as CPU type
and power, memory, storage, operating system, etc. Among others IaaS, Amazon
EC2 [10] can be cited. Amazon EC2 is a set of Cloud services which allow to run
applications on custom virtual machines (VM) deployed on servers of Amazon
datacenters. Amazon offers various types of VMs (also called Instances) with
different processing power and memory capabilities.

Platform as a Service (PaaS), where “service” means platform-level func-
tionality. These services provide Application Programming Interfaces (APIs) and
standard development kits (SDKs) in order to allow users to develop and imple-
ment their own applications for Clouds. Some examples of these platforms are
Google App Engine [11] and Windows Azure [12].

Software as a Service (SaaS), where “service” means application. The SaaS
Cloud providers deliver applications that can be accessed by an end user through
a Internet connection and a standard web browser. Furthermore, the applications
can be developed with Platform Services and executed with Infrastructure Ser-
vices. As an example of SaaS is Google Drive [13].

3 Related Works

Recently, different authors have proposed the use of Cloud technologies for man-
aging the WSN’s resources. In Lee et. al. [14] the authors describe concepts of
Cloud like: virtualized resources, SaaS, pay-per-use price model, and applied
them to create a Cloud infrastructure capable of integrate devices with sensing
capabilities. The authors also implement a new infrastructure called Tangible
Cloud which use Amazon EC2 instances to process data from sensor nodes [3].
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In the paper the authors show that the platform solves (through resources scal-
ability) the computational power requirements of environmental monitoring and
modeling applications.

Another work proposed by Ahmed and Gregory [4] presents an integration
framework between WSN and Cloud Computing. The main objective of the
proposed framework is to “facilitate the shift of data from WSN to the Cloud
Computing environment ”. In addition, the authors suggest that the linkage of
Cloud Computing and WSNs allows the possibility of storage the WSNs data
in publics domains. Then, different users and applications can access to the
information of the sensors and these results in a better data usage.

Another platform to integrate WSN into Clouds is Aneka [5]. This platform
uses resources of private and public Clouds in order to provide support to ap-
plications of smart environments including health-care, transportation, urban
monitoring and others.

Regarding to the use of Clouds in agricultural environments, Hirafuji et. al. [6]
developed a Ambient Sensor Cloud System for High-throughput Phenotyping.
This platform allows the storage and access to data collected by sensor nodes
using Twitter Cloud services. The main goal of the system is to provide a simple
and economical solution to solve the access and storage of large datasets from
various sensor nodes. Hori et. al. [7] present a commercial solution to storage
and process WSNs data. The platform allows the integration with business man-
agement, production history, traceability and good agricultural practice systems
provided as a SaaS model.

Based on the works studied in this section, it can be concluded that Cloud
is a promising technology for solving the management and processing of data in
WSN’s based AMS. Although most of the studied works use Amazon EC2, to
the best of our knowledge there are no works oriented to model the performance
and economic cost of EC2 instances in Agricultural Monitoring Systems.

4 Frost Prediction Application

In this Section we present the application for frost prediction. The main objective
of this application is to compute the minimum temperature that happen in the
night. Then, this temperature value is useful to predict if a frost may occur on
the farm. The Section is organized as follow: in subsection 4.1, we present the
method for frost prediction used in our application. Next, in subsection 4.2 the
application implementation is detailed.

4.1 Frost Prediction Method

The frost prediction application was developed using the frost prediction method
(FPM) of Snyder and de Melo-Abreu [15], which is based on Allen’s equation [16].
The FPM predicts the minimum temperature that will occur in nights without
both clouds and cold fronts. Therefore, it is only suitable to predict radiation
frosts. The data used to calculate the minimum temperature are extracted from
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an historical dataset of ten years. The FPM uses a sample of fifty days from the
historical dataset (of the month to which belongs the day of the prediction) in
which radiation frosts occurred.

Formally, the minimum temperature is calculated by the following linear re-
gression (LR) equation:

Tp = sT ∗ To + sD ∗D0 + i , (1)
where Tp is the minimum temperature to be predicted, To represents the mini-
mum temperature and D0 the dew point. The parameters To and D0 have to be
acquired the same day of the prediction, two hours after sunset. Finally, i is the
LR intercept, sT temperature slope and sD dew point slope.

The values of sT and i are calculated from the equations (2) and (3), respectively.

sT =

∑
(Th0 − T̄h0)(Tm − T̄m)∑

(Th0 − T̄h0)2
, (2)

i =

∑
Tm − sT

∑
Th0

n
, (3)

where Th0 are historical temperatures registered two hours after sunset, Tm min-
imum temperatures that succeed in the night, and n is the number of historical
data. Finally, T̄h0 and T̄m account for the average data temperatures.

The slope sD is calculated by using the equation (4).

sD =

∑
(Dh0 − D̄h0)(R− R̄)∑

(Dh0 − D̄h0)2
, (4)

where Dh0 are historical dew points two hour after sunset and R the residuals.
The parameters D̄h0 and R̄ are the average of Dh0 and R, respectively. Finally,
the residual is calculated with the expression: R = Tm − sT ∗ To + i.

4.2 Application Implementation

In order to develop the frost prediction application we implement the Snyder and
de Melo-Abreu [15] FPM, using Java and MySQL. MySQL was used to store
the data from the sensor nodes and the results obtained after running the FPM.
The application was executed using Amazon EC2 instances.

The integration of WSN data with Cloud infrastructures was performed with a
WSN - Cloud integration platform called Sensor Cirrus [17,18,19]. Sensor Cirrus
manages the WSN data using Cloud services and includes the developed frost
prediction application for data processing.

Figure 1 illustrates a scheme of the frost prediction module. The information
collected by WSN sensors in the field is stored in a proper database, as it seen in
process (1). Next, in process (2), the application performs a query to catch the
sample of fifty days. This sample includes all the collected data (temperature,
humidity, solar radiation, wind speed, etc.) by the WSNs. Then, in process (3)
the application retrieves from the sample of fifty days only the FPM input data
(To ,Do , etc.). Finally, in (4) the FPM is executed, resulting in the minimum
temperature that occurs next night through process (5).
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(1)

(2)

(3)
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Fig. 1. Frost Detection Module

5 Performance Estimation Models

In the present Section we present our models to estimate the performance of EC2
instances for processing frost prediction applications. The methodology used to
construct the models is the following: first, we execute the frost prediction ap-
plication in each instance to obtain empirical results of performance indicators
(execution time and economic cost). Then, we use polynomial expressions and
empirical results to generate the performance models. Next, we extract conclu-
sions about the accuracy of the proposed models. Finally we select the most
suitable instance for frost prediction through a comparison in a typical use case.

5.1 Frost Prediction Application Execution

The execution consists of running the frost prediction application and measure
the execution time. In order to extract the average value of the execution time,
the procedure is repeated four times for different number of sensor nodes (from
10 to 1000) in each instance. Finally we use the average execution time and the
pricing list of Amazon to calculate the economic cost required to execute the
application.

We have considered five test scenarios, one for each instance types to model
(see Table 1). Each row in the Table 1 represents the different instance types, i.e.,
t1.micro, m1.small, m1.large, m1.xlarge and c3.xlarge, and each column indicates
the instance characteristics, i.e., number of virtual CPUs (vCPUs), Amazon EC2
Compute Unit (ECU), Memory (expressed in GBytes) and Instance Pricing.
Regarding the Amazon’s pricing model used in our work, we use the “on demand”
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pricing model. It is noteworthy that in this paper we do not make an analysis
of the accuracy of the minimum temperature predicted by the frost detection
application. However (and based in our experience with agronomists) we can
affirm that an error of +/- 1.5 celsius degrees is an acceptable error value to
predict frosts, and the used FPM meets this requirement.

Table 1. Test Scenarios

Amazon EC2 Instance vCPUs ECU Memory (GBytes) Pricing on demand (U$S)

t1.micro 1 variable 0.615 0.020
m1.small 1 1 1.7 0.047
m1.large 2 4 7.5 0.190
m1.xlarge 4 8 15 0.379
c3.xlarge 4 14 7.5 0.239

The application execution allows to obtain empirical performance results in
each EC2 instance. Figure 2a shows the execution time versus the number of pro-
cessed sensor nodes for the scenarios considered. Figure 2b details the economic
cost versus the number of processed sensor nodes.

(a) Execution Times. (b) Execution Costs

Fig. 2. Empirical Results.

From the Figure 2a can be observed that m1.large is the instance which have
achieved the shorter execution times for the frost prediction application. In ad-
dition, it can be seen that up to 200 sensor nodes processed, the performance of
m1.large is notable. Next, the performance of m1.large becomes similar to the
m1.xlarge and c3.xlarge.

Furthermore, results show that for multiprocessor machines as m1.large and
c3.xlarge, the processing times decrease for 30 and 40 sensor nodes, respec-
tively. Regarding the observed decrease, the decrease in m1.large instance is
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lower (about 9% over the previous calculation) than the c3.xlarge instance (20%
compared to the previous point).

The analysis of hardware features of such instances (ng"m1.large and c3.xlarge)
shows that they have: (i) two and four vCPUs respectively and (ii) the same RAM
memory (7.5 GBytes). Then it can be concluded that the decrease of processing
times could be due to the load balancing between processors and the access to
shared resources such as memory, buses, etc.

Figure 2b shows the empirical economic costs. Is noted that economic costs
are the same from 10 to 400 nodes. The cause of this behavior is because Amazon
set the pricing of instances per hour of use. Reason why, the pricing is the same
if the processing time is less or equal than one hour. Similarly, if processing time
is longer than one hour (for example 800 to 1000 nodes), it doubles the cost and
so on.

5.2 Perfomance Estimation Proposed Models

In this subsection we introduce the proposed models in order to estimate the
performance for each instance considered. These models were obtained through
polynomials up to second degree of the form:

t = ax2 + bx+ c ,

where, x is the number of sensor nodes processed and t is the estimated execution
time. The values of the coefficients a, b and c for each scenario are detailed in
Table 2).

Table 2. Coefficients of Each Scenario Theoretical Model

Amazon EC2 Instance a b c

t1.micro 0 7.85E − 01 −1.44
m1.small 1.84E − 06 1.78E − 01 1.80
m1.large 6.02E − 06 6.50E − 02 9.98E − 01
m1.xlarge 1.40E − 05 8.24E − 02 2.25
c3.xlarge 1.66E − 05 6.73E − 02 2.59

In order to evaluate the proposed models we calculate the execution time and
economic cost for each scenario. In addition, the execution of the application has
been conducted for more than 1000 nodes (up to 5000).

Finally, with the aim of determining the accuracy of the proposed models,
Figure 3 and Figure 4 show a comparison between the results of empirical ex-
periments and our performance models for each scenario.

Specifically, Figure 3 shows that execution times calculated through the pro-
posed model differ seconds or few minutes (depending on the instance) with
respect to those obtained through the execution of the frost prediction applica-
tion. Then the proposed models can predict the results with a reasonable good
accuracy.
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(a) t1.micro (b) m1.small

(c) m1.large (d) m1.xlarge

(e) c3.xlarge

Fig. 3. Proposed Model versus Empirical Execution Times
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Regarding economics costs, a particular case is when the execution times are
close to an hour. In this situation, if the execution time calculated by the model
is longer than one hour, the costs predicted by the model will be twice than
those empirical. This is because the price of EC2 instances is per hour of use.
Likewise, if the model predicts less time than one our, the cost calculated by the
model would be half than empirical costs. However, when the proposed model
is used this situation does not happen, so we can say that the accuracy of the
models regarding economic cost is suitable.

5.3 Instance Performance Comparison in Typical Use Case

In order to select which is the instance that presents the best performance for
running frost prediction applications, in this subsection we present a comparison
in a typical use case of frost prediction.

The typical use case consists of WSNs deployed in different farms in the
Province of Mendoza. The prediction was made for one day of July because it is
one of the months of frost season, which begins in April and ends in October.

The frost prediction application runs on the Cloud and predicts the mini-
mum temperature, which allows to alert the agronomist engineer. Finally, the
agronomist decides if the guard procedure against frosts must be conducted.
Regarding frosts guard procedure, it consists in moving the staff to the farm
and wait the decision of the specialist, who in turn decide - on the basis of data
collected in real time - the activation of the defense system (heaters, surface
irrigation, sprinklers, etc.).

Another aspect to consider is that the processing of data has time constraints.
This problem arises because in July the logistic of the defense system against
frosts requires that the farm staff must be alerted before 22:00 h. However,
the frost prediction application needs the T0 temperature which is registered
in July of Mendoza province about the 21:00 h. According to the above men-
tioned reasons we can conclude that the maximum execution time allowed for
the application must be less or equal to one hour.

Table 3 shows the number of nodes processed by each EC2 instance model for
one hour and the execution cost.

Table 3. Processed Sensor Nodes in Maximum Execution Time

Amazon EC2 Instance Nodes Economic Cost (U$S)

t1.micro 78 0.020
m1.small 324 0.047
m1.large 841 0.190
m1.xlarge 632 0.379
c3.xlarge 722 0.239

Results showed that the most suitable machine for this application type is the
instance m1.large. The reason is because the m1.large is the machine that can
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(a) t1.micro (b) m1.small

(c) m1.large (d) m1.xlarge

(e) c3.xlarge

Fig. 4. Model versus Empirical Economic Costs
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process the largest number of sensor nodes in one hour and its economic cost is
smaller than the instances m1.xlarge and c3.xlarge.

6 Conclusions and Future Works

In this paper we have proposed theoretical models to estimate the performance of
Amazon EC2 instances for processing frost prediction applications based on dif-
ferent number of sensor nodes used. In order to evaluate the proposed method, an
application for frost prediction was used. Next, Amazon EC2 Cloud services were
used to run the application and study the performance of each instance. The per-
formance was evaluated based on two metrics, execution time and economic cost.

In order to conduct the experiments and generate the models we have pre-
sented different test scenarios. Each scenario corresponds to a particular Amazon
EC2 instance. The accuracy of the obtained models was compared with data of
previous executions of the frost prediction application. From the results we con-
clude that the proposed models are suitable to estimate both the execution time
and economic cost. In addition, a typical application case was used to determine
which instance is more suitable for processing frost prediction applications.

Regarding the comparison of the different instances in the typical evaluation
case, it can be concluded that for WSNs formed by few nodes (up to 80) the
t1.micro instance is recommended. Otherwise, for larger number of nodes: 200 -
300, 400 - 700, 800 - 900; it should be used the m1.small, m1.large and m1.xlarge
instances, respectively.

On the other hand, while the c3.xlarge is the EC2 instances with highest per-
formance, we did not observe important differences in the performance compared
to the other tested instances. Moreover, if we also consider its high cost, it is not
recommended for this type of applications. Furthermore, for the case of WSNs
made up of more than 1000 sensor nodes, multiple EC2 instances should be used
in parallel to run the application.

Regarding the frosts prediction method we will test other frost prediction
methods based in machine learning algorithms. It should be mentioned that the
costs of transfer and storage are minimal compared with these ones for using
the on demand instances. For example, there is a pricing of 0.12 U$S per GB of
transfered data for the first 10 TB for month, and if data volume do not exceeds
the GB per month, the transfer is free. However, such costs will be considered
and included in future works.

In this paper we showed that second degree polynomials are a simple and
suitable way for estimating the performance of Amazon EC2 instances. However
we will continue the validation of these polynomials in future works studying
the processing of the frost prediction application using multiple EC2 instances
managed with specific Cloud tools like Star Cluster. The purpose of these fu-
ture experiments is to extend the proposed models in order to estimate how
many machines are needed for optimizing the relationship between the execu-
tion time and economic cost for frost prediction applications and how they must
be managed.
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Abstract. Workflow applications for in-silico experimentation involve
the processing of large amounts of data. One of the core issues for the
efficient management of such applications is the prediction of tasks per-
formance. This paper proposes a novel approach that enables the con-
struction models for predicting task’s running-times of data-intensive
scientific workflows. Ensemble Machine Learning techniques are used to
produce robust combined models with high predictive accuracy. Informa-
tion derived from workflow systems and the characteristics and prove-
nance of the data are exploited to guarantee the accuracy of the models.
The proposed approach has been tested on Bioinformatics workflows for
Gene Expressions Analysis over homogeneous and heterogeneous com-
puting environments. Obtained results highlight the convenience of using
ensemble models in comparison with single/standalone prediction mod-
els. Ensemble learning techniques permitted reductions of the prediction
error up to 24.9% in comparison with single-model strategies.

Keywords: Performance prediction, Scientific workflows, Ensemble
Learning, Data Provenance, Data-intensive computing.

1 Introduction

Workflow technology is intended to ease the development of applications through
the combination of reusable software components. This approach facilitates the
development of large-scale applications by people with low or even null experi-
ence on programming languages. For such reason, workflow technology has been
widely accepted on many scientific areas [13].

Scientific data-intensive computing is in vogue nowadays [6]. In this sense,
workflows are used to describe large-scale applications, whose execution is dele-
gated to Workflow Management Systems (WMSs) that take in the details of the
underlying computing infrastructure. This aspect is very important for executing
large-scale applications because the users can take advantage of a huge comput-
ing power (i.e. clusters, grids or clouds) abstracting them from the particularities
of the underlying infrastructure.

G. Hernández et al. (Eds.): CARLA 2014, CCIS 485, pp. 83–97, 2014.
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For managing the applications efficiently, WMSs rely on run-time estimates
of tasks. This information is the basis for several processes like for example:
tasks scheduling, fulfillment of Quality of Service (QoS) requirements, autoscal-
ing cloud infrastructures among others [3,5,9].

Most of the prediction methods used by WMSs were crafted for characteriz-
ing parallel applications. Although such techniques provide accurate predictions,
they require the supervision of an expert for constructing and tuning the pre-
diction models. Such requirements lure one of the main advantages of workflow
technology: simplicity for the user.

To cope with such limitation many authors applied Machine Learning strate-
gies to generate the prediction models (semi-)automatically. Following this line
of thought, we propose a novel method for the autonomous generation of mul-
tiple combined run-time prediction models derived using Ensemble Learning
methods. The final objective of our approach is the minimization of the human
effort when generating the models without handicapping the accuracy of pre-
dictions. For accomplishing such objective this work utilizes the performance
information available in WMSs and workflow provenance information to learn
robust combined models.

The rest of this paper is organized as follows. In section 2 we provide a review
of performance prediction strategies based on Machine Learning methods. Sec-
tion 3 presents the proposed approach for learning run-time prediction models.
Section 4 describes a set of Bioinformatic workflows and the methodology used
for validating our proposal. Section 5 presents and discusses the results obtained.
Finally, conclusions and future work are given in section 6.

2 Related Works

The prediction of application’s performance has been studied since the genesis
of parallel and distributed computing [1]. Many of such strategies use historical
data to carry out the predictions instead of constructing the models by hand.
Statistical and Machine Learning techniques permit the derivation of models
based on the available historical data (examples). This approach supposes an
important advantage for workflow applications executing on Grid or Cloud envi-
ronments because models can be refined over time and the user does not need to
be supervising the construction of the models or performing tedious tasks such
as benchmarking resources, profiling applications, etc.

Some of these strategies address the prediction issue using the k-Nearest
Neighbors strategy [8,11]. Predictions are performed by first looking execution
examples with similar settings to the prediction query (e.g. examples with similar
task parameters, processor speed, etc.). Then, the execution times correspond-
ing to the selected examples are averaged and returned as the prediction. Other
authors use methods such as regression trees for predicting the performance of
applications [12]. More recently, Artificial Neural Networks have been applied to
estimate the price of market-based computing resources [15].

Mentioned strategies apply statistical or machine-learning methods to pre-
dict several aspects of the execution of applications in the context of distributed
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computing environments. Like so, surveyed techniques have been developed hav-
ing in mind compute-intensive applications disregarding important information
sources such the size or the structure of data, to say nothing of data prove-
nance [4] (i.e. the origin and transformations suffered by the data during the
execution of an application). In the context of scientific workflows (where data
is becoming the first-class citizen [6,10]) this information is fundamental for
achieving accurate performance predictions.

A second aspect to remark is that these strategies rely on the use of a single
model for performing the predictions. It is known that combining multiple models
usually permits achieving a higher performance than using a unique model [17].
The following list describes the main limitations of the reviewed techniques in
the light of scientific data-intensive workflows:

– Disregard of data provenance information. Attributes of the data are a cen-
tral source of information for achieving high quality task’s performance pre-
dictions.

– Use of standalone models. Techniques reviewed in this section rely on a single
model for predicting the running time of tasks.

Our contribution this paper proposes a novel method for minimizing the in-
tervention of a human expert to model the performance of tasks in the
context of scientific workflows. The proposed method relies on ensemble
Machine Learning methods for generating models in a automatic fashion.
The proposed strategy incorporates several sources of information provided
by the underlying WMS, such as task parameters, hardware information,
data characteristics and provenance information to maximize the ac-
curacy of the models.

3 Learning Performance Models

This section describes a novel generic strategy for the autonomous generation
of performance models (AGPM) for the prediction of workflow tasks run-time.
Unlike other strategies, AGPM relies only on the information that can be ac-
cessible from the underlying workflow system. The user only needs to define the
meta-data of tasks that might be important for modeling their performance. In
this way, the process of performance modeling is focused on the parameters and
data that affect the performance (user’s empirical knowledge) and not in the
particular process implemented by the tasks. This is one of the main advantages
of AGPM because it considers tasks as black boxes, which permits the modeling
of legacy applications or web/grid services (i.e. software components whose code
is unavailable or inaccessible).

AGPM uses machine learning (ML) techniques to model task’s running time
using information of workflow tasks parameters, data and dependencies as well
as resource benchmark metrics. ML methods permit the construction of the
models and their readjustment as new performance data becomes available. In
this manner, the required human effort to maintain the models is greatly reduced
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maintaining a high predictive accuracy. AGPM uses ensemble Machine Learning
methods to construct a meta-model comprising several sub-models to achieve
higher quality predictions.

3.1 AGPM Learning Process

AGPM drives an adaptive learning process that comprises 4 stages (see figure 1):
(i) execution of workflow tasks, (ii) performance data gathering, (iii) model
learning, and (iv) tasks run-time prediction. In the following paragraphs we
briefly discuss each of them.

Fig. 1. Learning process carried out by AGPM

Stage 1: Workflow tasks execution. This stage involves the execution and mon-
itoring of tasks as well as the generation of the corresponding execution logs,
which are later used in the following stages. This stage is carried out entirely by
the WMS.

Stage 2: Performance-data Gathering. Consists in the harvesting of the neces-
sary information for the further learning/refinement of the performance models.
Execution logs are used to extract valuable information of tasks performance
such as the parameters and the data used, provenance information and the char-
acteristics of the resources where the tasks executed. The appliance of AGPM is
not restricted to applications for grid and cloud but also to web services. AGPM
compiles all the information that can be gathered from the running workflow
management system. The collected data is stored in separate databases for each
type of runnable task.

Stage 3: Model Learning. At this point of the process, the databases contain up-
dated information of the last task execution. AGPM then learns a new model for
each type of task following a two-step procedure consisting on (i) data prepro-
cessing, and (ii) ensemble model learning. AGPM pre-processes the databases in
order to prepare the data for the ensemble learning strategy. As a second step,
multiple models are learned from the data and combined in order to perform
future running-time predictions. Sections 3.2 and 3.3 provide a deeper insight
on the described process which is the central contribution of this paper.
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Stage 4: Tasks Run-time Prediction. Consists in the generation of running time
estimates for tasks using the models constructed on the previous stage. Run-time
estimates are obtained considering the inputs of workflow tasks (i.e. parameters
and data) and the characteristics of the resources which will eventually execute
such tasks.

This sequence of stages is repeated continuously throughout the execution
of several applications. Each one of these cycles permits the improvement of
the predictive accuracy of the models. This strategy allows the adaptation of
the models to new (unseen) execution examples. The important aspect to note
is that this adaptive learning process improves the accuracy of the prediction
models without requiring human intervention more than the initial setup of
the performance data to collect. Ensemble learning plays a central role in such
objective because enables the strategy with very robust models autonomously.

3.2 Performance-Data Representation

Performance data is stored separately for each type of task. The performance
dataset for a task can be formally defined as a set D = {x(i), y(i)}i=1

m , where x(i)

represents a column vector of features for the ith (out of m) recorded execution
example of a task, and y(i) is the measured running time for such execution, also
known as target.

Each feature vector x = [x1, x2, · · · , xn] comprises three types of elements:
(i) task features, which represent the inputs of the task, e.g. parameter val-
ues, data size, etc.; (ii) provenance features, describe previous processes that
generated or modified the input data; and (iii) resource features, which model
characteristics of the resource used on the execution of the task.

Task features. This kind of features describe the task’s inputs. This information
includes the values taken by input parameters and characteristics of the data
such as size, number of lines, registers or columns, etc.

Provenance features. This type of features capture information of the data origin
and the transformations produced by other tasks during the execution of the
workflow. Such information can be easily extracted from the description of the
workflow. The incorporation of such information permits the obtainment of more
accurate performance models. As said before, to the extent of our knowledge,
there is no other strategy in the state of the art using such information for
producing run-time predictions.

Resource features. This kind of features describe the computing resources used
in the tasks execution. These features can be obtained from the WMS. Features
used for modeling the performance of an application are those which measure the
performance of the resources (i.e. those that impact directly on the performance
of tasks). Such information is mainly provided by resource benchmarks. In gen-
eral, most part of the WMSs provide such metrics and update them regularly.
Note that in the case of web services, this type of features will be inaccessible.
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3.3 Learning Prediction Models

Machine Learning (ML) methods are the core of our approach. This section
briefly describes some of the traditional Machine Learning techniques used in
state-of-the-art works to produce (standalone) prediction models. This section
also discusses an ensemble learning strategy denominated Bootstrap Aggregating
used to validate our hypothesis.

Standalone Models. Our implementation of AGPM includes some well es-
tablished Machine Learning strategies used in some of the papers dealing with
performance prediction. The following paragraphs describe the essential concepts
behind such strategies. Please note that the implementations of the algorithms
used in this work are provided by the Weka library [14].

Artificial Neural Networks (ANNs). These kind of Networks belong to a family of
models that emulate the operation of biological neural networks [17]. The models
comprise a set of neurons (units) arranged in multiple layers. Units in one layer
are connected to units in the following layer throughout the net reaching an
output neuron that predicts the target value y. Networks used in this study
comprise one hidden layer with n/2 hidden units, where n is the number of
features in the input vector. The parameters of the network are two matrices
Θ(1) and Θ(2) of size (n+1)×(n/2) and (n/2+1)×1 that model the interactions
between the units in different layers. Figure 2 shows an example neural network.

Fig. 2. Artificial Neural Network example. The network comprises one hidden layer
and a single output unit y that provides the run-time prediction.

The activation (outputs) of the hidden units are computed as a = σ(x̄ ·Θ(1)),
where x̄ is an input vector x extended with a first component x0 = 1 (bias unit),
and σ(z) = 1/(1+ e−z), which is the sigmoid function. Activation of the hidden
units are forward propagated to the next layer to produce the predicted value
of the running time y = ā ·Θ(2), where ā is the activation vector a of the hidden
layer extended with a bias unit a0 = 1. Learning the model consists on learning
the weights in the network, i.e. the values of matrices Θ(1) and Θ(2). To such
end the back-propagation algorithm [17] is used, which for space limitations is
not discussed in this paper.
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k-Nearest Neighbors (k-NN). In this strategy, training examples are stored ver-
batim. A distance function is used to determine which are the k examples of the
training set that are closest to an unknown test example [17]. The output of the
method is the average of the target values (i.e. running time) corresponding to
those k nearest examples. In this study we use the Euclidean distance. Given two

examples x(1) and x(2) with components x
(1)
1 , x

(1)
2 , . . . , x

(1)
n and x

(2)
1 , x

(2)
2 , . . . , x

(2)
n

respectively, the Euclidean distance between them is:

√∑n
1 (x

(1)
i − x

(2)
i )2.

Support Vector Regression (SVR). SVR [17] is an adaptation of the Support
Vector Machines (SVM) to deal with the prediction of numeric classes. Produced
models can be expressed in terms of a few support vectors that best describe
the prediction surface. The SVR model has the form f(x) =

∑
i∈SV

αiK(x(i), x) +

b,where SV is the set of support vectors and K(x(i), x) is a kernel function that
maps an example into a feature space of higher dimensions. αi and b are model
parameters determined by solving the following optimization problem:

min
α,b,ξi,ξ∗i

1
2α

Tα+ C
l∑

i=1

(ξi + ξ∗i ) subject to : y − f(xi) ≤ ε+ ξi

f(xi)− y ≤ ε+ ξ∗i
ξi, ξ

∗
i > 0

,

where C is the model complexity parameter which penalizes the loss of train-
ing errors, ξi and ξ∗i are slack variables that specify upper and lower bound
training errors subject to an error tolerance ε. To model non-linear functions
of the running time we use a radial basis function (RBF) kernel k(x(i), x(j)) =

exp(−γ
∥∥x(i) − x(j)

∥∥2
) with γ = 0.01. The values parameters of SVR were set

to C = 1 and ε = 0.001, which are the default values in Weka.

M5P Regression trees. The M5 Prime (M5P) algorithm [17] permits the induc-
tion of decision trees whose leaves are associated to regression models. M5P
trees are a combination of decision trees and linear models in the tree leaves.
The model is constructed in three phases as follows. First, a decision tree is
constructed minimizing the variability the output variable (i.e. examples with
very similar running time are grouped). Then, the tree is pruned starting from
the leaf nodes. If an inner node is pruned, it is converted into a leaf node and a
regression plane is associated. Finally, a smoothing function is applied to avoid
sharp discontinuities between the hyperplanes. An example of M5P regression
tree is given in Figure 3b.

Preprocessing. Before constructing the models, the available performance data
is normalized to avoid the dominance of some features of higher orders of magni-
tude in the construction of the models. To such end, each feature xi is transformed
into a new feature x̂i according to the equation x̂i =

xi−μ
σ , where μ and σ are the
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mean and the standard deviation of all the values for the feature xi. In this work
we only focused on data normalization but much more can be done to improve the
quality of the models [2].

Learning Ensemble Models. One of the main advantages of ensemble learn-
ing methods is that they permit achieving predictions of better quality than those
obtained by standalone models. For generating the models we use the Bootstrap
Aggregating (Bagging) technique [17]. This technique reduces the variance, i.e.
the expected error derived from all the possible training sets for the problem.

The Bagging technique works as follows. For a given training dataset D, n
new training datasets (Di) of size m′ are obtained by sampling the set D ran-
domly with replacement (some examples are removed and some are repeated).
Each of the n bootstrap samples are used to generate n different (base) models.
The outputs of the n models are combined by averaging them. This procedure
generates a combined model that usually outperforms the single models and is
never considerably worse. As base models we use M5P regression trees, which
were discussed in the previous paragraphs. The entire process is illustrated in
Figure 3a.

(a) Bagging process. The n bootstrap samples
(Di) are used to construct the base models (Mi).
The base models are M5P regression trees.

(b) Example of an M5P tree con-
structed for one of the Di bootstrap
samples.

Fig. 3. Process for Bagging M5P regression trees

4 Experiment Settings

To analyze the performance of the ensemble models we evaluated the predictive
accuracy of standalone models generated using the reviewed methods and en-
semble models learned with the Bagging strategy. Following sections describe a
bioinformatics application used as case of study, and details the methodology
used for the validation of our proposal.

4.1 Gene Expression Analysis Workflows

For the purposes of this work we evaluated our approach on bioinformatics data-
mining workflows, which perform a large-scale gene expression analysis experi-
ment (GEAE). The goal of the experiment is to compare a novel classification
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algorithm (GELF) and the state-of-the-art approach (baseline) [7] on their re-
spective ability to classify unseen data.

The experiment comprises the execution of several workflows. Each of them
processes one of the 20 microarray datasets used for the experiment using a 10-
fold cross-validation scheme. Figure 4a represents one GEAE example workflow.
Sub-experiments, cover a set of several parameters in order to consider various
aspects of methods intended to compare. As can be seen on Figure 4b each
sub-experiment involves 3 types of tasks:

There are two ranker tasks that perform a selection of genes in order to re-
duce the number of features for learning the classifier. The first one uses recursive
feature elimination using support vector machines (called SVM-RFE), and the
second one returns a random order of features (RandomR). The third task
consists on consists on learning and evaluating the performance of the (GELF)
classifier. GELF is a feature construction algorithm based on iterative improve-
ment of the best solution obtained by the state-of-the-art approach [7].

(a) Scheme of one of the GEAE workflows. (b) Abstract and concrete views of a ML
sub-experiment.

Fig. 4. GEAE workflows. Overview of one of the GEAE workflows (a) and decompo-
sition of for one sub-experiment (b).

Each workflow comprises 20 sub-experiments: both combinations of the GELF
task with the rankers (Random and SVM-RFE) applied on the 10 dataset folds.
As can be seen each workflow application consists of 40 tasks (i.e. 10 Random
ranker executions, 10 SVM-RFE ranker executions and 20 GELF executions).
Considering that we executed the workflows over 20 different datasets. This
gives 800 task executions. To generate a wide spectrum of performance-data
examples, each workflow was executed 10 times on resources of different type.
Table 1 describes the characteristic of the resources used for executing the GEAE
workflows. JavaMFlops, KFlops and MIPS are performance values provided by
the SciMark2 1, Linpack 2 and Dhrystone [16] benchmarks respectively.

1 SciMark2 benchmark. http://math.nist.gov/scimark2
2 Linpack benchmark. http://www.netlib.org/linpack

http://math.nist.gov/scimark2
http://www.netlib.org/linpack
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Table 1. Computing infrastructure summary

Resource type

Characteristics Twister Reloaded Opteron

Processor type Intel Core2 Duo Intel P4 HT AMD Opteron 242
Processor frequency 3.0 GHz 3.0 GHz 1.6 GHz
Memory 4 GB 1 GB 2 GB
Average JavaMFlops 962.23 281.05 400.76
Average KFlops 17.54E5 4.99E5 6.63E5
Average MIPS 4983.80 1465.42 2057.00
No. of resources 10 12 4

4.2 Performance Datasets

For testing the applicability of our approach we evaluated the performance of the
GEAE workflows using homogeneous (solely twister-type resources) and hetero-
geneous (all the resources) infrastructures. The execution of the workflows was
carried multiple times on each type of infrastructure to obtain the necessary
data for learning the models. Execution logs generated were used to feed the
performance databases for each type of task. Each database contains the infor-
mation of previous task execution examples. Table 2 presents the features of
each execution example for the ranker tasks (Random and SVM-RFE) and the
GELF tasks comprised in the GEAE workflows.

Table 2. Features of the performance datasets for the tasks in GEAE workflows

Feature Type Description

dataset-id provenance identification of the used dataset {1,2,...,20}
ranker * provenance feature ranking task {RandomR, SVM-RFE}
tr-size task size in bytes of the training dataset folds

tr-rows task number of rows in the training dataset folds

tr-columns task number of columns in the training dataset folds

tt-size * task size in bytes of the training testing folds

tt-rows * task number of rows in the testing dataset folds

tt-columns * task number of columns in the testing dataset folds

java-mflops resource SciMark2 benchmark for the resource used

kflops resource Linpack benchmark for the resource used

mips resource Dhrystone benchmark for the resource used

execution-time target measured running time for the task execution example

* features that pertain only to GELF (not applicable to rankers).
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According to this configuration, six different datasets were generated. One of
each combination of task type (RandomR, SVM-RFE or GELF) and type of
infrastructure (homogeneous or heterogeneous)

5 Results and Analysis

In this section we present the results obtained during the experimental process.
Six different scenarios were analyzed: the three types of GEAE tasks on homo-
geneous and heterogeneous infrastructures.

For measuring the performance of each model we use the Relative Absolute

Error (RAE), which is computed as error = |p1−a1|+...+|pm−am|
|a1−ā|+...+|am−ā| · 100%, where,

pi and ai represent the predicted and actual values respectively for ith example.
ā represents the mean value of the actual values and m is the number of testing
examples. This metric measures the deviation of predictions with respect to the
actual values. Following sections present the results obtained for the homoge-
neous and heterogeneous environments respectively, and an overall analysis of
results.

Homogeneous Environment. Table 3 presents the errors for the homoge-
neous environments. Highlighted values represent the minimum errors for each
type of task. For the RandomR task, ANN achieves the minimum error (34.1%),
but all the methods present very similar performances (except for SVR whose
error ascends to 43.1%). It is worth to point out that regardless that high errors
are evidenced, in practice these errors do not imply very negative effects because
the mean duration of tasks is very small (7.7 s).

SVM-RFE is a much more simple task to model as can be evidenced by lower
errors on the table. Once again ANN achieves the best results. The impact of
these errors is depreciable because SVM-RFE tasks have an average duration of
16.3 s.

For GELF tasks, it can be seen that the Bagging strategy presents the mini-
mum error. This error is about 20.7%, which represents a reduction of the error
ranging from 10.5% to 21.2% in comparison with the rest of the competitors. In
contraposition to the ranker tasks, large errors on the prediction of GELF task’s
duration have much more undesirable consequences because the duration of the
tasks are much larger (2183.6 s).

As a general note, it can be seen that the highest errors are obtained for
RandomR, because of two reasons. First, its performance is not determined by
any parameter or characteristic of the data (the task randomly sorts the genes
without any particular input than the data). Second, its short duration is very
likely to be disturbed by other factors (i.e. background load, workflow system
overhead, etc.).

Another result to note, the ensemble method evidenced errors in the same
range than the best of the methods (ANN) with only a 1%-2% increase of the
error. In addition, for the case of GELF, the performance of ANN drops dramat-
ically becoming the worst performing method. In contrast, the ensemble method
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Table 3. Relative Absolute Errors for the Homogeneous environment

Strategy RandomR SVM-RFE GELF

M5P 34.7% 22.0% 31.2%
ANN 34.1% 20.8% 41.9%
k-NN 35.1% 21.2% 32.0%
SVR 43.1% 24.8% 40.9%
Ensemble model 36.0% 21.1% 20.7%

(that had an average performance for the rankers) achieved the lowest error
for GELF. This behavior evidences an important characteristic of the ensemble
method, i.e. its robustness. The method can be applied to different scenarios
resulting always in a good performance.

Heterogeneous Environment. Table 4 shows the errors for the heteroge-
neous environment. Highlighted values represent the minimum errors for each
type of task. For the RandomR task, the best performing methods are k-NN and
Bagging-M5P with a 19.8% error. The predictions for this (heterogeneous) envi-
ronment are much more accurate than in the previous case. For the SVM-RFE

task, the best performance is achieved by the ensemble method which evidences
a 10.1% error. This is also the case with GELF for which an error of 15.7% is
manifested. In the case of GELF, the improvements range from 8.0% to 24.9%
compared to all other methods.

Table 4. Relative Absolute Errors for the Heterogeneous environment

Strategy RandomR SVM-RFE GELF

M5P 22.1% 14.7% 23.7%
ANN 23.7% 11.0% 40.6%
k-NN 19.8% 10.3% 24.3%
SVR 32.6% 25.5% 32.3%
Ensemble model 19.8% 10.1% 15.7%

From the table, similar observations to the homogeneous case are derived.
Higher errors are obtained for the RandomR task and there is a wide mar-
gin between the ensemble model and the remaining ones while modeling the
performance of GELF tasks.

Overall Comparison. Figure 5 presents the average error for each of the strate-
gies considering the six scenarios. It can be seen that the ensemble strategy
presents the minimum average error (20.6%). These results highlight the robust-
ness of the ensemble model. It is important to note that the standalone M5P
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achieves an average performance among the learning methods. But, a combined
model of M5P trees permits achieving much more accurate predictions. The en-
semble method lead to error reductions ranging between 3% and 13% considering
the six scenarios. The robustness of the ensemble method makes it very suitable
for real world settings where effort and intervention of experts in performance
modeling must be minimized.

Fig. 5. Relative Absolute Error for each model

6 Concluding Remarks

In this paper we proposed an adaptive scheme for the construction of perfor-
mance models for workflow-tasks run-time prediction suitable for Grids and
Clouds. This scheme uses Machine Learning methods to construct ensemble mod-
els using data-provenance information and other sources of data available from
the workflow systems.

Conducted experiments were designed for evaluating the performance of an
ensemble model in comparison with other single-model machine learning tech-
niques. Experiments focused on predicting the running time of tasks comprised
in real-world bioinformatic workflows. The performance of the studied strategies
was measured on both computing environments.

Results evidenced that the ensemble method outperforms its competitors ex-
cept for two of the six analyzed scenarios. For those two cases, the ensemble
method achieved a prediction errors only 1%-2% higher than the best strategy.
For the remaining 4 scenarios, the ensemble method outperformed their competi-
tors. The best results present wide margins of improvement with respect to their
competitors. In the best case the ensemble method presented error reductions
in the range of 10.5% to 21.2% on the homogeneous environment, and 8.0% to
24.9% for the heterogeneous case.

Undoubtedly, there is much more that can be investigated in relation with
complex models for predicting the performance of data-intensive scientific work-
flows. This paper is an initial step towards such objective. As future work we
plan to evaluate other ensemble learning strategies to gain more insights on the
importance of utilizing combined models for predicting the performance of appli-
cations. Also, studying new techniques for improving the quality of features may
help to increase the accuracy of the models [2]. Another idea to explore in this
direction is to study the applicability of these ensemble models into applications
for the processing of massive amounts of data, i.e. Big Data applications.
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Abstract. We evaluate how dynamic performance and energy-efficient  
technologies, as features introduced in modern processor architectures, affect 
the intrusiveness that Desktop Grids based on virtualization generate on desk-
tops. Such intrusiveness is defined as degradation in the performance perceived 
by an end-user that is using a desktop while it is opportunistically utilized by 
Desktop Grid systems. To achieve this, we deploy virtual machines on a selec-
tion of desktops representing recent processor architectures. We then bench-
mark CPU intensive workloads simultaneously executed on both the virtual and 
the physical environment. The results show that dynamic performance and 
energy-efficient technologies, when incorporated on the supporting desktops, 
directly affect the level of intrusiveness an end-user perceives. Furthermore, 
depending on the processor architecture the intrusiveness percentage varies in a 
range from 3% to 100%. Finally, we propose policies aimed to minimize such 
intrusiveness according to the supporting processor architectures to be utilized 
and end-user profiles. 

Keywords: Desktop Grid, Grid Computing, Volunteer Computing, Benchmark-
ing, Virtualization, Intrusiveness, Performance. 

1 Introduction 

Desktop Grid Computing benefits from idle computing resources available in volun-
teer computers around the world (known as Public, Global, Peer-to-Peer, Public-
Resource, or Internet-based Desktop Grids) or desktops deployed at an institution 
(known as Local, Private, or Enterprise Desktop Grids) [13]. These efforts mostly aim 
to support e-Science projects by integrating non-dedicated, distributed, and heteroge-
neous computing resources that usually belong to different administrative domains in 
order to provide large-scale computational capacities at low-cost. Since desktops tend 
to be underutilized during significant periods, there is usually a large amount of idle 
computing resources available (processing, networking and storage). Therefore, Desk-
top Grids are an economically attractive solution to deploy large-scale computing 
infrastructures, avoiding not only underutilization, but also financial investments in 
new and dedicated hardware. 
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In this context, several scientific projects have been leveraging the potential of 
Desktop Grids. Initiatives such as Distributed.net [4], XtremWeb [17], SETI@home 
[12], BOINC [2], SZTAKI [14], and OurGrid [10], among others, have shown fore-
most research results by exploiting opportunistic infrastructures mainly composed of 
desktop computers. These Desktop Grid systems are based on software agents that are 
installed directly on the operating system in order to manage the usage of idle compu-
ting resources. 

More recently, initiatives such as VMware@Home [16], LHC@Home [8], and 
UnaCloud [11], among others, are pioneers in the use of virtualization technologies to 
build Desktop Grid Computing. Indeed, virtualization has appeared as an innovative 
technology to enable running complete guest operating systems on top of a single 
hypervisor (hypervisor type I) or a hypervisor on top of a host operating system 
(hypervisor type II). This latter feature allows the deployment of single or a number 
of virtual machines on off-the-shelf desktops, thus facilitating the deployment of 
large-scale virtual environments aimed to support Desktop Grids. Above all, virtuali-
zation enables the deployment of customized operating systems along with the full 
software stack required by scientific applications across a set of desktops that may 
considerably differ in terms of hardware and/or software. 

Nonetheless, when the execution of Desktop Grid systems (based on agents, virtua-
lization or hybrids) occur in parallel to tasks performed by end-users, a level of intru-
siveness is caused. Such intrusiveness is defined as the degradation in the perfor-
mance perceived by an end-user that is using a desktop while a Desktop Grid is con-
currently leveraging its idle computing resources. Since most of such desktops are 
non-dedicated and temporally donated resources, the level of intrusiveness becomes a 
key factor either to encourage or to dissuade the donation of idle computing resources 
to support Desktop Grids for e-Science projects.  

In this paper, we study how intrusiveness of Desktop Grids based on virtualization 
is directly related to hardware specifications of the supporting desktops. We analyze 
how technologies incorporated on several generations of modern processor architec-
tures have been consistently altering such intrusiveness. Specifically, we evaluate 
how dynamic performance and energy-efficient technologies, when incorporated on 
the processor of the supporting desktop, directly affect the level of intrusiveness an 
end-user is able to perceive when using Desktop Grid systems based on virtualization. 

The remainder of this paper is organized as follows: section 2 summarizes the re-
lated work. Section 3 presents the methodology used to conduct this research. Section 
4 presents the results and discussion. Section 5 presents a set of recommendations 
based on our research findings. Finally, in section 6 are presented the conclusions and 
future work. 

2 Related Work 

In the context of benchmarking virtualization for Desktop Grids, there are two main 
groups of existing work related to the research presented in this paper. 
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The first group is concerned with measuring the performance degradation (over-
head) of using virtual machines over desktops for the execution of applications in 
comparison with the direct use of the physical environment, so called native. In [15] 
the authors compare the floating-point performance of VMware Player virtual ma-
chines by using Windows and Linux as host and guest operating systems on the AMD 
Dual-Core architecture. They conclude that both operating systems used as guests 
induced performance penalties compared to a native execution, but as a guest operat-
ing system Linux delivers better performance than Windows. Since VMware Player 
emulates only the kernel-mode instructions, the authors hypothesize that incidence of 
such instructions in Linux is lower than in Windows.  

In [7] the authors compare the performance of executions on native versus virtua-
lized environments by using benchmarks based on CPU intensive tasks.  They found 
that overhead induced by virtualization is less than 10%. The experiments are set on 
architectures based on the Intel Dual Pentium III processor by using VMware 
Workstation as hypervisor and RedHat as host and guest operating system.  

A second group, which is more related to our research, is concerned with eva-
luating the intrusiveness of virtual machines executed as low-priority processes on a 
desktop in relation to the performance perceived by an end-user that is simulta-
neously using its environment. In [5] the authors evaluate the performance of vir-
tual environments based on the hypervisors VMware Player, QEMU, VirtualPC, 
and VirtualBox on Intel Dual-Core processors by using Windows as host and Linux 
as guest operating systems. The results show marginal performance impact in the 
presence of a single virtual machine as long as only single-threaded applications run 
at the host operating system. In contrast, multi-threaded applications running at the 
host operating system suffer a considerable performance drop which ranges from 
10% to 35% compared with the same execution on the native environment. On the 
other hand, for the applications executed on the virtual environment they found that 
performance depends on the application type and the virtualization software used. 
Indeed, for CPU intensive tasks the overhead revolves around 15% to 30% which is 
considered acceptable. However, disk IO and network IO performances are severely 
penalized, and thus the authors suggest not using virtual environments for such 
execution scenarios. 

In [3] the authors evaluate the intrusiveness of a Desktop Grid system named Un-
aGrid. For this purpose, they execute the hypervisor type 2 VMware Workstation over 
an Intel Core 2 Duo processor. They simultaneously execute CPU intensive tasks on 
two operating systems, Linux as guest and Windows as host. Each virtual machine is 
executed as a low-priority process in background and it is assigned with one and two 
cores subsequently. In such tests, the results show performance degradation of less 
than 1%. The authors conclude that priority set to the virtual environment at the oper-
ating system level allows an exclusive harvesting of idle CPU resources that guaran-
tees very low impact on the performance perceived by end-users. 

This research complements and extends the work presented above by benchmark-
ing a Desktop Grid based on virtualization over several generations of modern  
processor architectures in order to evaluate variations in the intrusiveness caused to  
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end-users. As a result, we demonstrate that intrusiveness caused by Desktop Grids 
based on virtualization varies according to dynamic performance and energy-efficient 
technologies enabled on the supporting processor. To the best of our knowledge, our 
work is the first to evaluate how dynamic performance and energy-efficient technolo-
gies, as features introduced in modern processor architectures, affect the intrusiveness 
that Desktop Grids based on virtualization generate on desktops.  Furthermore, a first 
set of strategies are recommended to implementations of Desktop Grid systems in 
order to reduce degradation on the performance perceived by end-users when donat-
ing their resources to Desktop Grid Computing. 

3 Methodology 

The aim of this research is to show implications of technologies incorporated on re-
cent processor architectures in relation to intrusiveness produced by Desktop Grids. 
Specifically, our hypothesis is that dynamic performance and energy-efficient tech-
nologies directly affect the intrusiveness that Desktop Grids supported by virtualiza-
tion generate when running over desktops. We clarify that our research findings may 
not be limited to Desktop Grids based on virtualization, but they may be generalized 
to every type of Desktop Grid; however, such generalization cannot be confirmed 
from the limited data obtained in this research. In addition, our research outcomes are 
not limited to the generations of processors studied, but they can be obtained in simi-
lar processor architectures, including servers. Nevertheless, the scope of this paper 
considers a specific selection of processors and a unique Desktop Grid system sup-
ported by virtualization technologies. In consequence, a set of test scenarios based on 
virtualization are proposed and performed over a variety of desktops. Finally, we 
clarify the test scenarios were designed in order to exclusively evaluate intrusiveness 
in terms of the performance delivered by the processor. To validate our hypotheses, 
the following methodology was developed. 

3.1 Experimental Setup 

The tests were executed over different generations of off-the-shelf desktop comput-
ers from laboratories open to employees, professors, and students on our university 
campus. Moreover, such computers have been opportunistically exploited in order to 
execute virtual machines for multiple e-Science projects [11]. The variety of such 
desktops was constrained by the inventory of hardware on our campus. This invento-
ry is updated annually, hence limiting the amount of processor architectures to be 
studied.  All of these desktops had Windows 7 as host operating system. This selec-
tion is justified by the fact that Windows is the dominating operating system for 
Desktop Grids [1]. The hardware configurations used in the experiments are shown 
in Table 1. 
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Table 1. Configurations of the hardware tested 

CPU RAM Cores Threads Cache 

Intel Core i7-4770 16 GB DDR3 4 8 8 MB 

Intel Core i7-2600 16 GB DDR3 4 8 8 MB 

Intel Core i5-660 8 GB DDR3 2 4 4 MB 

Intel Core 2 Duo e7600 4 GB DDR3 2 2 3 MB 

Intel Core 2 Duo e6300 4 GB DDR2 2 2 2 MB 

AMD Athlon 64 X2 5000+ 8 GB DDR2 2 2 1 MB 

 
In order to avoid bias, the tests were conducted on separate virtual environments 

supported by two different hypervisors type II, VMware Workstation 10 (using .vmx 
files) and VirtualBox 4.3 (using .vdi files).  Consequently, the simultaneous execu-
tion of both hypervisors on the same desktop is not within the scope of this research. 

Each virtual machine had a new and default Debian 7 installation with the Oracle 
Java Virtual Machine (JVM) version 7.0.15. The hardware specifications for each 
virtual machine consisted of the use of 1 CPU core and 1 GB of RAM. Additionally, 
each virtual machine had the VMware Tools or the VBox Guest Additions installed 
(according to the hypervisor) in order to facilitate its management and deployment. 

3.2 Test Deployment 

Desktop Grid System: The tests were assisted by UnaCloud [11], our local opportu-
nistic Cloud Computing Infrastructure as a Service (IaaS) implementation. Similarly 
to a Local Desktop Grid solution, UnaCloud is able to opportunistically execute single 
instances and/or clusters of virtual machines. It is important to emphasize that such 
execution is mostly supported by off-the-shelf, non-dedicated, distributed, and hete-
rogeneous computing resources (such as desktops) that may belong to a variety of 
administrative domains. Furthermore, UnaCloud uses virtualization technologies as a 
strategy to enable on-demand deployments of customized execution environments 
that meet complex computing requirements from e-Science projects. UnaCloud ex-
ecutes each virtual machine as a low-priority process that remains running in back-
ground. Such deployment features enable harvesting idle computing resources oppor-
tunistically, that is, virtual machines are executed while an end-user is simultaneously 
utilizing the desktop or when it is fully available. In consequence, UnaCloud design 
specifications strongly consider intrusiveness, since it runs over computer laboratories 
mainly used by students to perform their daily work. In such a context, the manage-
ment and utilization of idle computing resources must be as least intrusive as possible. 
 
Virtual environment: The test scenarios differed in the amount of virtual machines 
concurrently executed on the physical machine. This number was in a range from no 
virtual machines to a number equivalent to the amount of physical CPU cores. In addi-
tion, all the virtual machines used were rebooted before and after each test scenario in 
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order to avoid bias produced by incidental or cumulative consumption of computing 
resources. 

3.3 Benchmark Selection 

In order to represent and assess the intrusiveness in the execution of virtual environ-
ments for Desktop Grids, two benchmarks were set and performed over the selection 
of processors. Both benchmarks were exclusively based on CPU intensive workloads 
generated through the execution of a program able to calculate prime numbers by 
using the sieve of Eratosthenes [9]. This integer arithmetic algorithm was selected in 
order to avoid potential bias caused by improvements on the architectures tested to 
perform floating-point operations. Moreover, the execution of this program had neg-
ligible demands of RAM memory and no network activity was required. 

The first benchmark was designed to test the virtual environment. For this purpose, 
the program was set to run on the virtual machine for approximately 10 hours thus 
loading permanently it with CPU intensive tasks. As explained formerly, according to 
the test scenario, the number of virtual machines varied from zero to the number of 
physical CPU cores. 

The second benchmark was designed to test the physical environment. For this end, 
a number of concurrent processes were executed simulating an end-user without root 
privileges. According to the test scenario, this number ranged from 1 to the number of 
CPU threads. The concurrent processes were the same CPU intensive workloads used 
in the virtual environment. However, in this case the program was set to run for only 
60 seconds on average. 

Each test scenario consisted of the simultaneous execution of both benchmarks. 
The measurements were obtained only from the second benchmark. While the first 
benchmark was executed once to permanently load the virtual machine, the second 
was executed 24 separate times to obtain averaged results. This number allowed dis-
carding the two measurements that were most distant from the median in order to 
avoid biases mainly produced by periodical processes running at the host operating 
system level. 

3.4 Intrusiveness Definition 

In the context of this research, intrusiveness is defined as degradation in the perfor-
mance perceived by an end-user that is using a desktop while it is opportunistically 
utilized by a Desktop Grid system based on virtualization. Such intrusiveness is ex-
clusively measured in terms of the performance delivered by the processor thus dis-
carding intensive operations related to RAM memory, storage, network or any other 
computing resource. It is calculated as a percentage, named intrusiveness percentage 
(% ), and its formula is explained as follows: 

 % 100                              (1) 
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Where,  represents the average time a physical machine requires to finalize a 
CPU intensive workload in the absent of virtual machines and processes unrelated to 
those normally executed by the host operating system. On the other hand,  
represents the average time the same physical machine requires to conclude the same 
CPU intensive workload in presence of as many virtual machines as set in the test 
scenario. 

4 Results and Discussion 

The figures presented in this section summarize the results for the aforementioned 
tests scenarios.  To ease interpretations, the Y-axis shows the intrusiveness percen-
tage, while the X-axis shows the amount of processes being executed by the end-user 
during the test. It is important to note that the intrusiveness percentage is calculated as 
presented in (1). Besides, each line represents the number of virtual machines simul-
taneously executed on the same desktop. Finally, acronyms are used to shorten words 
as follows: Virtual Machines – VMs, VMware Workstation - VMware, and Virtual-
Box – Vbox. 

First of all, as shown in Figure 1, the intrusiveness percentage measured over a 
desktop based on the Intel Core 2 Duo Legacy architecture is below 4%. Similar re-
sults were obtained on the AMD Athlon architecture as depicted on Figure 2. Since 
virtual machines are executed as low-priority processes, the host operating system 
penalizes release and allocation of computing resources to perform them in presence 
of processes executed in normal or any higher priority. Indeed, processes executed by 
end-users by default are set with normal priority thus guarantying negligible intru-
siveness.  Such research findings corroborate the results presented in [3] and [5]. 
Furthermore, these outcomes reveal that the opportunistic use of desktops based on 
Intel Core 2 Duo Legacy and AMD Athlon processors can be considered as non-
intrusive. This is probably a consequence of the absent of dynamic performance and 
energy-efficient technologies on both processor architectures. 

Secondly, Figure 3 shows the measurements obtained on desktops which processor 
architectures range from 1st, 2nd, and 4th generations of Intel Core processor. The line 
which marker symbol is a square represents a scenario where simultaneous CPU in-
tensive workloads are executed on the same physical processor in the absent of virtual 
machines. The results show that individual completion time of a task executed by an 
end-user increases proportionally to the number of simultaneous tasks executed on the 
same desktop, even when it is less than or equal to the number of CPU threads.  Such 
findings can be explained by the introduction of a selection of technologies aimed to 
increase performance and energy-efficiency on recent processor architectures. As 
detailed thereafter, one of these features is Intel Turbo Boost Technology [6]. This 
technology automatically allows CPU cores to run faster than the base operating fre-
quency when the processor is working below rated power, temperature, and current 
specification limits [6].  Therefore, Turbo Boost dynamically controls the CPU clock 
frequency to be increased in presence of CPU lightweight workloads (single-threaded 
or multi-threaded) and to be nominal in presence of CPU intensive workloads. 
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Fig. 1. Measurements obtained on Intel Core 2 Duo processors. A and B were obtained on Intel 
Core 2 Duo e7600 and C and D on Intel Core 2 Duo e6300. The results shown in the first col-
umn (to the left) were obtained by using VBox. The results shown in the second column were 
obtained with VMware. 

 
Under certain configurations and workloads, Turbo Boost technology can be used 

to enable higher performance through the availability of increased core frequency [6]. 
Despite this fact,  it also can affect the intrusiveness that end-users are able to perce-
ive when using Desktop Grids based on virtualization that run simultaneously to their 
tasks. That is, when the processor is being opportunistically used by a Desktop Grid 
(e.g. low-priority processes), it thermally behaves likewise being executing processes 
of an end-user in normal priority. Under such circumstances, Turbo Boost technology 
dynamically decreases the clock frequency thus affecting the overall performance of 
the processor. As a result, this feature and other similar technologies severely impact 
on the performance perceived by end-users that are donating their idle computing 
resources to Desktop Grids. In fact, as can been seen on Figure 3 A and B measure-
ments show that according to the number of virtual machines opportunistically ex-
ecuted on a desktop equipped with a processor Intel Core i7-4770, the intrusiveness 
percentage varies up to 60%. Furthermore, Figure 3 E and F show the intrusiveness 
percentage measured over a desktop equipped with a processor Intel Core i5-660. In 
this test, intrusiveness percentage is approximately 100% in the worst case. That is, 
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when an end-user is executing 3 or 4 processes simultaneously to a pair of opportunis-
tic virtual machines on a single desktop, the individual completion time of such 
processes is approximately duplicated. 

 

 
Fig. 2. Measurements obtained on AMD Athlon X2 5000+ processors. A was obtained by using 
VBox and B was obtained by using VMware. 

These results show that intrusiveness directly depends on specific implementation 
of technologies aimed to deliver performance and energy-efficiency on modern pro-
cessors. The results can be attributed to the fact that each subsequent generation of 
processor architectures incorporates improvements on the performance and optimiza-
tions on thermal-controls. In particular, it is worthwhile to note that processors Intel 
Core i7-4770 and Core i7-2600 incorporate Turbo Boost technology in version 2.0 
whereas processor Intel Core i5-660 incorporates such technology in version 1.0. 

Thirdly, Figure 4 shows the intrusiveness percentage measured over a desktop 
based on the Intel Core i7-4770 architecture. In such tests, Turbo Boost technology 
was deactivated from the BIOS. As a result, intrusiveness percentage decreased 4.3% 
on average; however, similarly to the results previously presented, it can be increased 
up to 60% in the worst case.  

In such scenario centered on Intel processors and based on the limited data col-
lected, we hypothesize that variations not attributed to Turbo Boost technology may 
be produced by other dynamic performance and energy-efficient technologies able to 
modify power consumption, temperature, and CPU rate, among others features of the 
processor. They include but may not be limited to: SpeedStep, Hyper-Threading, and 
Thermal Monitoring technologies. They were designed to optimize energy consump-
tion and increase performance under particular circumstances. Therefore, reducing 
intrusiveness through deactivation of such technologies is actually a counterproduc-
tive arrangement. In such case, the overall performance would be reduced dramatical-
ly thus meaning permanent intrusiveness to end-users. 
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Fig. 3. Measurements obtained on modern Intel processors. A and B were obtained on Intel 
Core i7-4770, C and D on Intel Core i7-2600, and E and F on Intel Core i5-660. The results 
shown in the first column (to the left) were obtained by using VBox. The results shown in the 
second column were obtained with VMware. 
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Fig. 4. Measurements obtained on Intel Core i7-4770 processors with Turbo Boost disabled 

Finally, Figure 5 shows the intrusiveness percentage measured over a desktop 
based on the Intel Core i7-4770 architecture. In these tests, Turbo Boost, Hyper-            
Threading, and Speed Step technologies were disabled. In comparison with Figure 1 
A and B, where such technologies were enabled, it can be seen that intrusiveness is 
reduced from 50% to 14% in the worst case. Moreover, on average intrusiveness per-
centage reduces up to 14%. It is important to note that such comparison should be 
considered to only a maximum of 4 processes being executed by end-users during the 
test, since CPU threads were halved when Hyper-Threading technology was disabled. 

 

 

Fig. 5. Measurements obtained on Intel Core i7-4770 processors with Turbo Boost, Hyper-            
Threading, and Speed Step technologies disabled. This graph shows a range from 1 to 4 user 
processes because processor threads were reduced when Hyper-Threading was disabled. 
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5 Recommendations 

The experimental results presented on this paper lead to a comprehensive understand-
ing on the implications of the supporting infrastructure utilized by Desktop Grids in 
relation to its intrusiveness. Since intrusiveness plays a key role in promoting or dis-
couraging the donation of idle computing resources to support Desktop Grids, we 
propose a set of general recommendations to minimize it based on our research find-
ings. Such recommendations consider that dynamic performance and energy-efficient 
technologies, when incorporated on the supporting processor of desktops, directly 
affect the intrusiveness generated by Desktop Grids. Therefore, opportunistic strate-
gies aimed to harvest as many idle computing resources as available should be consi-
dered as intrusive.  Indeed, new strategies should be considered in order to minimize 
the degradation on the performance that end-users are able to perceive while donating 
their idle computing resources to Desktop Grids.  

The set of recommendations are focused, but not necessarily limited to, Desktop 
Grids based on virtualization to be executed on desktops based on processors ranging 
from 1st, 2nd, and 4th generations of Intel Core. Since intrusiveness caused by Desktop 
Grids affects the performance perceived by an end-user when simultaneously execut-
ing CPU intensive workloads, we propose that new execution policies should be con-
sidered for this particular scenario. Such policies are based on end-user profiles and 
can be divided into two types: pessimistic and optimistic. 

Firstly, in the context of pessimistic policies, it is stated that the end-user perma-
nently requires the maximum performance the processor is able to deliver. In such a 
scenario, any opportunistic activity generated by a Desktop Grid system must be 
halted as soon as an end-user starts using the physical machine. In consequence, as 
soon as no end-user is using the physical machine, opportunistic activity should con-
tinue its normal execution. Precisely, the opportunistic harvesting of idle computing 
resources must exclusively occur when the physical machine is fully available. 

Secondly, in terms of optimistic policies, it is supposed that the end-user tolerates a 
level of degradation on the performance delivered by the processor. However, such 
level must be in a range of acceptance, that is, at least, discontinuous intrusiveness. In 
order to implement optimistic policies, continuous monitoring is required in terms of 
computing resources usage. Hence, in the absent of CPU intensive workloads ex-
ecuted by end-users, idle computing resources should be dynamically assigned to the 
Desktop Grid system. It is important to emphasize that specific implementations of 
such policies depend on the supporting processor architectures to be used. 

5.1 A Case Study 

In order to briefly illustrate a specific implementation of the proposed policies, a basic 
case study is developed. Figure 6 depicts relative intrusiveness percentage measured 
over a desktop computer based on the Intel Core i7-4770 architecture. It is important 
to note that relative intrusiveness in considered in terms of the performance an end-
user is expecting from the physical machine and its formula is explained as follows: 
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% 100                             (2) 

Where,  represents the average time a physical machine requires to finalize a 
CPU intensive workload in the execution conditions set for the test. On the other 
hand,  represents the average time the same physical machine requires to 
conclude the same CPU intensive workload in the absent of virtual machines (the 
amount of processes being executed by the end-user during the test is constant). 

 

 
 

Fig. 6. Intrusiveness of a Desktop Grid system in relation to the performance expected by an 
end-user using an Intel Core i7-4770 processor 

In Figure 6, the solid line at bottom represents the intrusiveness caused by the ex-
ecution of a virtual machine assigned with a single CPU core. Indeed, its execution 
can be categorized as non-intrusive since the degradation an end-user perceives on the 
performance delivered by the processor remains below 10%. These conclusions can 
be extended to scenarios with two virtual machines only when the end-user is not 
executing CPU intensive workloads (i.e. by using 1 or 2 CPU cores). Similarly, when 
the end-user is executing CPU intensive workloads (i.e. by using 7 to 8 CPU cores) 
the results show that intrusiveness generated by Desktop Grids is below 10%. How-
ever, in the latter case, all the virtual machines in execution are not assigned with 
processor resources thus severely decreasing its performance. 

According to the results presented above, the following policy is proposed for the 
non-intrusive opportunistic use of desktops based on the Intel Core i7-4770 architecture: 

1. In the absent of an end-user: opportunistically harvest all the computing resources. 
2. In presence of an end-user that is not executing CPU intensive workloads (i.e. by 

using 1 or 2 CPU cores on average): opportunistically harvest up to 2 CPU cores. 
3. In presence of an end-user that is executing CPU intensive workloads (i.e. by using 

2 to 6 CPU cores on average): opportunistically harvest 1 CPU core to diminish in-
trusiveness up to 10% or to exploit 2 CPU cores in order to decrease intrusiveness 
up to 15%. 

4. In presence of an end-user that is using the entire processing resources (i.e. by us-
ing 7 to 8 CPU cores on average): opportunistically harvest as many idle resources 
as available (even though they will be very limited to low-priority processes). 
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6 Conclusions and Future Work 

We evaluated the implications of dynamic performance and energy-efficient, as tech-
nologies incorporated in modern processor architectures in relation to intrusiveness 
generated by Desktop Grids based on virtualization. Such intrusiveness is defined as 
degradation in the performance perceived by an end-user that is using a desktop while 
at the same time it is opportunistically utilized by a Desktop Grid system. 

The tests were performed on off-the-shelf desktops with Windows 7 installed as 
host operating system. These desktops were equipped with a variety of processors, 
including: Intel Core i7-4770, Intel Core i7-2600, Intel Core i5-660, Intel Core 2 Duo 
e7600, Intel Core 2 Duo e6300, and AMD Athlon 64 X2 5000+. 

All the test scenarios varied in the number of virtual machines executed in each 
psychical machine, ranging from zero to the number of physical CPU cores. To avoid 
bias, such virtualization was supported by two independent hypervisors type II: VM-
ware Workstation and VirtualBox. Each virtual machine was installed with a Debian 
7 installation from scratch and the Oracle JVM. The hardware specifications for each 
virtual machine were set to 1 CPU core and 1 GB of RAM. 

In order to produce intrusiveness, two benchmarks were set and performed over the 
selection of desktops. Both benchmarks were based on CPU intensive workloads 
generated through a program able to calculate prime numbers by using the sieve of 
Eratosthenes [9]. The benchmarks were simultaneously executed on both, the virtual 
and the physical environment. In the first benchmark, the program was set to run over 
10 hours on each virtual machine initiated. In the second benchmark, the program was 
set to run on average 60 seconds on the physical machine. This latter benchmark was 
executed a number varying from 1 to the number of CPU threads, thus simulating 
CPU intensive tasks executed by an end-user without root privileges. 

The experimental outline pursued herein has several implications for Desktop Gr-
ids. The results obtained demonstrate that intrusiveness caused by Desktop Grids 
based on virtualization varies according to the use of desktops which processor archi-
tectures incorporate dynamic performance and energy-efficient technologies. The 
results show that depending on the processor architecture the intrusiveness percentage 
varies in a range from 3% up to 100%. For instance, on Intel Core i7-2600 the intru-
siveness percentage varies from 10% up to 80% as the number of virtual machines 
varied from 1 to 4. In consequence, we propose that specific policies should be im-
plemented in Desktop Grids in order to reduce its intrusiveness to end-users that do-
nate their idle computing resources to e-Science. Such policies were classified accord-
ing to end-user profiles as pessimistic and optimistic. The specific implementations of 
such policies directly depend on the supporting processor architectures to be used by 
Desktop Grids. Therefore a case study was developed to illustrate such implementa-
tion for the non-intrusive opportunistic use of desktops based on the Intel Core i7-
4770 architecture. 

New challenges will have to be faced in order to exhaustively analyze the implica-
tions of the supporting infrastructure used by Desktop Grids in relation to its intru-
siveness. In the future we will analyze the incidence that each dynamic performance 
and energy-efficient technology has in terms of intrusiveness to end-users. We plan to 
enhance the experimental setup by extending the statistical test sample, including 
additional processor architectures, increasing the number of repetitions of each test 
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scenario, using other host and guest operating systems, using a variety of hardware 
configurations for the virtual environment, using additional hypervisors type 2, and 
using other Desktop Grid systems (e.g. based on agents). In addition, we plan to eva-
luate the degradation in the performance obtained on opportunistic virtual environ-
ments in relation to CPU-intensive workloads executed by end-users. Such research 
efforts will be aimed but not limited to extend the scope of our conclusions, particu-
larly, in order to improve and generalize the policies presented on this paper and test 
its implementation in a Desktop Grid system. 

References 

1. Anderson, D.P., Fedak, G.: The Computational and Storage Potential of Volunteer Compu-
ting. In: IEEE International Symposium on Cluster Computing and the Grid, pp. 73–80. 
IEEE Press, Singapore (2006) 

2. BOINC, http://boinc.berkeley.edu/ 
3. Castro, H., Rosales, E., Villamizar, M., Jiménez, A.: UnaGrid: On Demand Opportunistic 

Desktop Grid. In: Proceedings of the 10th IEEE/ACM International Conference on Clus-
ter, Cloud and Grid Computing, pp. 661–666. IEEE Press, Melbourne (2010) 

4. Distributed.Net, http://www.distributed.net/ 
5. Domingues, P., Araujo, F., Silva, L.: Evaluating the Performance and Intrusiveness of Vir-

tual Machines for Desktop Grid Computing. In: Proceedings of the IEEE International 
Symposium on Parallel & Distributed Processing, pp. 1–8. IEEE Press, Rome (2009) 

6. Intel Turbo Boost Technology in Intel Core Microarchitecture (Nehalem) Based Proces-
sors, http://files.shareholder.com/downloads/INTC/0x0x348508/ 
C9259E98-BE06-42C8-A433-
E28F64CB8EF2/TurboBoostWhitePaper.pdf 

7. Langer, S.G., French, T.: Virtual Machine Performance Benchmarking. Journal of Digital 
Imaging 24, 883–889 (2011) 

8. LHC@Home, http://lhcathomeclassic.cern.ch/ 
9. O’Neill, M.E.: The Genuine Sieve of Eratosthenes. Journal of Functional Programming 19, 

95–106 (2008) 
10. OurGrid, http://www.ourgrid.org/ 
11. Rosales, E., Castro, H., Villamizar, M.: UnaCloud: Opportunistic Cloud Computing Infra-

structure as a Service. In: Proceedings of the Second International Conference on Cloud 
Computing, GRIDs, and Virtualization, pp. 187–194. XPS, Rome (2011) 

12. SETI@Home, http://setiathome.ssl.berkeley.edu/ 
13. Choi, S., Buyya, R., et al.: A Taxonomy of Desktop Grids and its Mapping to State-of-the-

Art Systems. Technical Report, GRIDS-TR-2008-2013, the University of Melbourne,  
Australia (2008) 

14. SZTAKI, http://szdg.lpds.sztaki.hu/szdg/ 
15. Tanaka, K., Uehara, M., Mori, H.: A case study of a Linux Grid on Windows Using Vir-

tual Machines. In: Proceedings of the 22nd International Conference on Advanced Infor-
mation Networking and Applications, pp. 195–200. IEEE Press, Okinawa (2008) 

16. VMware@Home, 
https://twiki.cern.ch/twiki/bin/view/EGEE/VMwareAtHome 

17. XtremWeb, http://www.xtremweb.net/ 



Efficient Fluorescence Microscopy Analysis

over a Volunteer Grid/Cloud Infrastructure

Miguel Da Silva1, Sergio Nesmachnow1, Maximiliano Geier2,
Esteban Mocskos2, Juan Angiolini3, Valeria Levi3, and Alfredo Cristobal4

1 Universidad de la República, Uruguay
2 Departamento de Computación, Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires, Argentina
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Abstract. This work presents a distributed computing algorithm over
volunteer grid/cloud computing systems for Fluorescence Correlation
Spectroscopy, a computational biology technique for obtaining quanti-
tative information about the motion of molecules in living cells. High
performance computing is needed to cope with large computing times
when performing complex simulations, and volunteer grid/cloud com-
puting emerges as a powerful paradigm to solve this kind of problems
by coordinately using many computing resources distributed around the
world. The proposed algorithm applies a domain decomposition tech-
nique for performing many simulations using different cell models at the
same time. The experimental evaluation performed on a volunteer dis-
tributing computing infrastructure demonstrates that efficient execution
times are obtained when using OurGrid middleware.

Keywords: fluorescence analysis, grid/cloud computing, volunteer
computing.

1 Introduction

Nowadays, fluorescence microscopy is considered a routine technique in biomed-
ical research. It was originally devised as a tool to observe the localization of
fluorescent labels, but has significantly evolved with time. A fluorescence micro-
scope is capable of providing extremely relevant dynamical information of the
biological specimen under study with very high temporal and spatial resolution
(for example see [12,13])

Among the new tools designed to obtain such dynamical information, Fluores-
cence Correlation Spectroscopy (FCS) and related methods [9] are considered key
techniques to obtain quantitative information regarding the motion of molecules
in living cells. Briefly, FCS is based on the analysis of intensity fluctuations
caused by fluorescence-labeled molecules moving through the small detection
volume of a confocal or two-photon excitation microscope (see a detailed de-
scription of the technique in Section 2).

G. Hernández et al. (Eds.): CARLA 2014, CCIS 485, pp. 113–127, 2014.
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FCS captures fluctuations of the fluorescence due to the motion of single
molecules. Thus, it is necessary to process a large number of data points to ob-
tain a statistically sound simulation of the underlying dynamical process. These
numerical experiments are computing demanding: the motion of each molecule
(data point) must be followed, and the interaction with other molecules (i.e.
reactions) must be solved in every simulated time step.

High Performance Computing (HPC) techniques come to play a key role to
process the needed amount of data points during sufficient time steps to cap-
ture the biological process. Using HPC for treating reaction diffusion systems is
presented in previous works like [14,15,16], but the implementation of a specific
application for fluorescence fluctuation analysis based on a volunteer comput-
ing platform is novel at the best of our knowledge. Moreover, the techniques
described in this paper allows the simultaneous analysis of several experiments,
considerably increasing the capability of generation and validation of the pro-
posed models for complex biological phenomena.

In this line of work, the main contribution of the research reported in this arti-
cle is the use of a volunteer computing system to support the efficient execution
of the cases to perform FCS measurements analysis in a realistic scenario.

The article is organized as follows. Section 2 describes the numerical tech-
niques and computing tools to simulate the biological processes. Section 3 intro-
duces the main concepts about distributed computing on volunteer grid/cloud
infrastructures.

The approach using HPC techniques for solving the problem is presented in
Section 4, just before reporting the experimental analysis in Section 5. Section 6
summarizes the main conclusions and lines for future work.

2 Fluorescence Correlation Spectroscopy and Tools

This section describes FCS techniques and the computing tools used to simulate
the underlying biological processes.

2.1 Fluorescence Correlation Spectroscopy

FCS is a well-known technique applied to obtain quantitative information re-
garding the motion of molecules in living cells. It is based on the analysis of
intensity fluctuations caused by fluorescence-labeled molecules moving through
the small detection volume of a confocal or two-photon excitation microscope.

Fig. 1 shows a schema of an experiment: some molecules emit photons when
they are under the observation volume defined by the laser beam. The photon
emission is a stochastic process, its probability is related to the relative position
of the molecule and the beam center, which is the most probable position, while
the probability diminishes when moving out (see Eq. 1), ωxy and ωz are the radial
and axial waists of the point spread function. Standard values are: ωxy = 0.2μm
and ωz = 1μm.

g(x, y, z) = exp

(−2(x2 + y2)

ω2
xy

+
−2z2

ω2
z

)
(1)
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Fig. 1. Fluorescent molecules diffuse through the small observation volume. The prob-
ability of emitting a photon depends on the relative position of the molecule respect
to the center of the observation volume.

FCS has been applied to study diffusion, transport, binding, etc. [7]. In the
case of simple scenarios such as molecules passively moving in a homogeneous
media, the FCS analysis yields analytical functions that can be fitted to the ex-
perimental data to recover the phenomenological rate parameters (e.g. diffusion
coefficients, chemical rate constants, etc.). However, many dynamical processes
in cells do not follow these simple models and, in many instances, it is not pos-
sible to obtain an analytical function through the theoretical analysis of a more
complex model [7].

In those cases, the experimental analysis can be combined with Monte Carlo
simulations to help with the interpretation of the experimental data recovered
in FCS experiments (see for example, [6]). The comparison between the expec-
tations for a reduced, simulated model and the experimental data could provide
important clues of the dynamical processes hidden in the FCS data. Despite
of being useful, most Monte Carlo tools used to simulate FCS experiments are
developed as sequential ad-hoc programs designed only for specific scenarios.

The procedure for FCS measurements is presented in Fig. 2: (a) shows a car-
toon of the experimental setup required in these experiments. The sample (e.g.
cells expressing a fluorescent protein) is placed on top of the microscope stage of
a confocal or two-photon excitation microscope. The excitation laser is focused
in a diffraction-limited spot on the sample and fluorescence photons produced in
the small observation volume (near 1 fl.) as presented in (b); (c) shows a repre-
sentative fluorescence intensity trace obtained in an FCS experiment. This trace
shows fluctuations due to fluorescent molecules moving in and out of the ob-
servation volume. The amplitude of the fluctuations are inversely related to the
number of molecules in the observation volume while their duration is given by
the dynamics of these molecules. This information can be recovered calculating
the autocorrelation function, such as the example presented in (d).
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2.2 Tool Description

At cellular scales, a finite number of molecules interact in complex spaces defined
by cell and organelle membranes. In order to simulate stochastic cellular events
(movements, interactions, diverse reactions) with spatial realism at reasonable
computational cost, specific numerical techniques should be employed [3,18].

Using these optimization techniques in conjunction with Monte Carlo reaction
probabilities, it is nowadays possible to study biological systems considering their
evolution during a wide range of time from milliseconds to minutes [11].

The standard approximation for reaction-diffusion systems ignores the dis-
crete nature of the reactants and the stochastic character of their interactions.
Techniques based on the chemical master equation, such as the Gillespie algo-
rithm [20], assume that at each instant the particles are uniformly distributed
in space.

(a) Experimental setup (b) Detection of labeled molecules

(c) Fluorescence intensity time trace (d) Autocorrelation function

Fig. 2. Representation of a confocal or two photon microscope Fluorescence Correlation
Spectroscopy measurements

In order to take into account both the full spatial distribution of the com-
ponents and the stochastic character of their interactions, a technique based on
Brownian dynamics is used. The MCell simulation package [11,19,18] is based
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on an event-driven algorithm, named Green’s function reaction dynamics, which
uses Green’s functions to combine in one step the propagation of the particles
in space with the reactions between them. In this algorithm, the particles move
diffusively; it is assumed that if a reaction exists, it follows a Poisson process and
it happens instantaneously. This means that the reaction event can be decoupled
from the diffusive motion of the particle. The time step of the algorithm is deter-
mined such that only single particles or pairs of particles have to be considered,
avoiding complex reaction rules.

MCell is used as the simulation engine; one of its outputs consists in the
position of each molecule in the system every time step. These positions are
used as the input for FERNet (Fluorescence Emission Routine Network), which
generates the fluorescent trace for each sample time. This data is then compared
against the experimental data and can support the validation of the proposed
model.

3 Volunteer Grid/Cloud Computing

This section describes the paradigms of grid and cloud computing, and the Our-
Grid middleware for developing applications over volunteer grid/cloud platforms.

3.1 Grid and Cloud Computing

Grid computing is a paradigm for parallel/distributed information processing
that allows the integration of many computer resources to provide a power-
ful computing platform that allows solving applications with high computing
demands. This paradigm has been increasingly employed to solve complex prob-
lems (i.e. e-Science, optimization, simulation, etc.) in the last twenty years [10].

Grid infrastructures are conceived as a large loosely-coupled virtual super-
computer formed by many heterogeneous platforms of different characteristics,
usually working with non-interactive workloads with a large number of files. Grid
infrastructures have made it feasible to provide pervasive and cost-effective ac-
cess to distributed computing resources for solving hard problems [5]. Starting
from small grids in the earlier 2000’s, nowadays grid computing is a consolidated
field of research in Computer Science and many grid infrastructures are widely
available. As of 2012, more than 12 PFLOPS are available in the current more
powerful grid system, from the Folding@home project.

In the last years, cloud computing [4,8] emerged as one of the main existing
computing paradigms, mainly due to several very interesting features it provides,
including elasticity, flexibility, or large computational power, among many oth-
ers. Cloud computing has raised the interest of both academic and industrial
research communities, by providing a computing model which is able to cope
efficiently with complex problems involving hard computing functions and han-
dling very large volumes of data.

Cloud computing provides a stack with different kinds of services to users,
including: Infrastructure as a Service (IaaS), dealing with resources as servers,
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storage, or networks; Platform as a Service (PaaS), providing an operating sys-
tem as well as a set of tools and services to the user; or Software as a Service
(SaaS) that allows providers to grant customers with access to licensed software.

3.2 The OurGrid Middleware

OurGrid is an open source middleware for grid and cloud computing based on
a peer-to-peer architecture, developed by researchers at Universidade Federal
do Campina Grande, Brazil [5]. This middleware enables the creation of peer-
to-peer computational grids, and it is intended to speed up the execution of
Bag-of-Tasks (BoT) applications.

The OurGrid architecture is built by aggregating several participants in a grid
environment, allowing them to use remote and local resources to run their appli-
cations. OurGrid uses the eXtensible Messaging and Presence Protocol (XMPP),
an open technology for real-time communication which powers a wide range of
applications, including instant messaging, presence, multi-party chat, voice and
video calls, collaboration, lightweight middleware, content syndication, and gen-
eralized routing of XML data. XMPP allows federation, it is Internet-friendly,
and efficient, since several services can use the same XMPP server.

The main components of the OurGrid architecture are:

– Broker: implements the user interface to the grid. By using the broker, the
users can submit jobs to the grid and also track their execution. All the
interaction between the user and the grid infrastructure is performed through
the broker.

– Workers: used for processing the jobs submitted to the grid. Each worker
represents a real computing resource. OurGrid workers support virtualiza-
tion, and so they offer an isolated platform for executing jobs comprising no
risks to the local system running the component.

– Peers: have a twofold role; from the point-of-view of the user, they search
and allocate corresponding computing resources for the execution of his jobs.
From the point-of-view of the infrastructure (implicitly, for the site adminis-
trator) each peer is responsible for determining which workers can be used to
execute an application, and also how they will be used. Normally, it is enough
to have one peer per site. Communication between peers makes possible to
execute jobs remotely; in case that the local resources are not enough for
satisfying the requirements of a job, the peer seeks for additional resources
available in remote sites.

– Discovery Service: keeps updated information about the system composition.
It finds out the end points that peers should use to communicate with.

All these components are integrated in a transparent way to the user, allowing
the system to provide a single-image of an infrastructure with a large computing
power. A description of the OurGrid architecture is shown in Fig. 3.
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Fig. 3. Description of the OurGrid architecture

3.3 Volunteer Computing

The OurGrid middleware provides support for implementing the volunteer com-
puting paradigm[2,17]. Volunteer computing is based on individual users making
available their computing resources to execute applications and projects. The
first volunteer computing projects were proposed in the mid-1990s. In 1999, the
well-known SETI@home and Folding@home distributed projects were launched.
Both became pioneering projects to demonstrate the power of gathering volun-
teer computing resources to solve very large scale scientific problems.

The main features of volunteer computing are:

i) often unaccountable and potentially anonymous users voluntarily provide
their resources for computation;

ii) users can join and leave the volunteer computing platform at any time;
iii) users “credits” are accounted in order to know how much computing time

h in the systems been used and provided by every user;
iv) replication is usually applied for fault-tolerance, in order to cope with incor-

rect results or anomalous events that occur when volunteers unexpectedly
leave the system.

The middleware for volunteer computing is a software layer that provides
support for creating, managing, and using the volunteer distributed computing
infrastructure, independently from the scientific computing applications to exe-
cute. The Berkeley Open Infrastructure for Network Computing (BOINC) [1] is
the most widely used middleware system for volunteer computing. The general
architecture of a middleware for volunteer computing is like the one presented for
OurGrid: a client program runs on the volunteer side, which periodically contacts
servers over the Internet, requesting jobs and reporting the results of completed
jobs. In OurGrid, the standard volunteer computing model is extended to sup-
port a full P2P architecture. This feature allows OurGrid to be used in cloud
infrastructures too.
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4 Distributed Fluorescence Analysis over an Ad-Hoc
Grid/Cloud Infrastructure

This section presents the implemented solution for efficient fluorescence analysis
over an ad-hoc grid/cloud infrastructure.

4.1 Motivation

The final objective of our research is to bring the user of Biomedical or Biol-
ogy fields an easy-to-use tool to complement the analysis of the experimental
data obtained using real microscopes. A cloud-oriented portal for Fluorescence
Microscopy Analysis and related applications will provide an integrated way for
accessing and displaying information to the end user.

Grid/cloud technologies allow to take full advantage of powerful simulation
tools, as the one describing using FCS, without having to follow a complex
installation procedure. This technology will also allow users to access and browse
the obtained data from any mobile device (e.g. smart phone, tablet, etc.).

Furthermore, cloud computing will also provide immediate benefits for exe-
cuting highly computing-demanding fluorescence microscopy simulations in rea-
sonable execution times, by applying HPC techniques over a highly robust com-
puting infrastructure composed of geographically distributed resources. OurGrid
middleware is chosen for it is able to provide a stable infrastructure for executing
BoT applications and is suitable for this article.

4.2 Design and Parallel Model

MCell and FERNet were conceived as sequential applications. MCell produces
the data that is later consumed/processed by FERNet to finally generate the
output (i.e. fluorescence trace) that can be used to analyze the biological process.

The domain distribution technique is used as the parallel model for the ap-
plication to be deployed in a distributed environment. No further modifications
are necessary to MCell or FERNet applications. Any UNIX-like computational
platform can execute MCell+FERNet properly. The domain distribution is im-
plemented by partitioning the set of models in a given workload and distributing
them to the available computational resources.

4.3 Implementation in OurGrid

An OurGrid site will provide the environment to execute MCell and FERNet.
The site is composed by a peer, a set of worker nodes and, potentially many
broker/client nodes. The local peer can associate to a community and connect
to other peers. Then, it will be able to share local resources and consume remote
ones.

As described in section 4.2, different subsets containing various instances of
cellular models, possibly from different users, can be created and submitted for
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execution. In OurGrid, the job description files (JDF) is used to specify these
subsets. This file is interpreted by the middleware, which then performs the
actions needed to execute each instance.

Fig. 4. Job submission and execution scheme in OurGrid

Figure 4 shows the proposed approach using OurGrid. Considering a job as a
subset of instances and a task as one of these instances, various jobs and tasks
can be specified and submitted for execution. The middleware is in charge of
finding available resources (local or remote) and sending the jobs for execution.
Once the job execution is finished, the results are retrieved automatically and
stored in the broker that submitted it.

job :

label : mcell -fernet -scenario -1

task:

init :

put job.mcell.sh job.mcell.sh

put mcell.fernet.tar.bz2 mcell.fernet.tar.bz2

remote: sh job.mcell.sh

final :

get out_point .txt out_point .txt

Listing 1.1. JDF file example

The listing 1.1 shows an example of a JDF file used in the simulations. The
tags job and label declare a new job for execution and give it a name for
control purposes. put and get are used to indicate the files to be uploaded and
downloaded, and remote determines the commands to be executed in the worker
nodes.
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5 Experimental Analysis

This subsection reports the experimental analysis of the proposed parallel algo-
rithm for distributed fluorescence analysis.

5.1 Development and Execution Platform

Fig. 5. OurGrid platform is used to create a federation of volunteer computing nodes.
Nodes from Argentina, Brazil, Mexico, and Uruguay were assembled to support the
execution of the distributed version of MCell+Fernet.

The experimental evaluation was performed on a volunteer infrastructure with
computing resources from four Latin America research institutions: Universidad
de Buenos Aires (UBA) in Argentina, Universidade Federal de Campina Grande
(UFCG) in Brazil, Universidad Veracruzana (UV) in Mexico, and Universidad
de la República (UdelaR), in Uruguay, as it is shown in Fig. 5.

The volunteer computing infrastructure gathers a heterogeneous collection of
computing resources, including:

– UBA, Argentina: IBM Express x3650 M4, Xeon E5-2620 12 cores, (2.0GHz),
128GB RAM, Gigabit Ethernet.

– UFCG, Brazil: : Intel i5-3470S, 4 cores (2.9 GHz) and i7-2600, 8 cores
(3.40GHz), 8 GB RAM, Gigabit Ethernet.

– UV, Mexico: Intel i5-3470S, 4 cores (2.3 GHz), 48 GB RAM, Ethernet.
– UdelaR, Uruguay: AMD Opteron 6172, 24 cores (2.1 GHz), 24 GB RAM,

Gigabit Ethernet, from Cluster FING.

5.2 Problem Instances

The problem instances are inspired in the study of the dynamics of the binding
of a special molecule called transcription factor to a specific site (i.e. binding
site). Thus, three types of molecules exists in the system: i) TF: transcription
factor (most of molecules correspond to this type); ii) B (Binding site); and iii)
[TF-B] (binded molecule).
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The interactions between these molecules are described by the chemical equa-
tion (Eq. 2), where kon and koff corresponds to the parameters that control the
binding and unbinding between TF and B. TF molecules can diffuse through the
specified domain, while the binding sites maintain their initial position during
the simulation (i.e. diffusion constant is 0).

TF + B
kon−−⇀↽−−
koff

[TF−B] (2)

In the case of FCS analysis, some of the parameters that should be specified
include the size of the volume, the initial number of molecules and the type of
reactions that may occur in the system.

Table 1 shows the three different configured scenarios. The simulation domain
is a cube of 3μm per side for all the cases. The main difference lays in the amount
of initial TF molecules. There are [TF-B] molecules since the simulation starting
to set the system at equilibrium. It can be configured to be initially 0, but in this
case, it should be waited until stabilization is reached. 8 instances were created
for each scenario, and in each instance a different value for a chosen group of
parameters is used (i.e. parameter sweeping).

Table 1. Parameters used for the three configured scenarios

parameter description small medium large

#TF Number of initial TF molecules 415 1660 4150

#B Number of initial B molecules 10000

#[TF −B] Number of initial [TF −B] molecules 85 340 850

DTF Diffusion coefficient for TF 55× 10−08 cm2/s

DB Diffusion coefficient for B 0

D[TF−B] Diffusion coefficient for [TF −B] 0

kon Constant controlling binding of TF and B 1.7 × 106 M−1s−1

koff Constant controlling the unbinding of TF and B 5 s−1

TIME STEP Preferred time step for the numerical integration 1× 10−5

5.3 Results and Discussion

The computational resources of the volunteer platform form a single federation
of OurGrid sites and the execution of each task can, eventually, take place in
any of these resources. The sequential executions used as a reference baseline
to compare the execution times were performed only in the local resources at
UdelaR. Due to characteristics of the infrastructure, the hardware available in
UdelaR is able to provide better performance for sequential executions.

Table 2 summarizes the parameter settings defining each instance and reports
the processing times of sequential executions. Edge size and step size are
parameters correspond to the dimensions of the volume containing the molecules
and the area of coverage that is analyzed by the microscope.

The problem instances are split in groups of tasks for submission in the volun-
teer computing infrastructure. This method emulates the work of a grid/cloud
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Table 2. Details of the instances and sequential processing times

scenario edge size instance id step size execution time (s)

1

1.5

1 0.05 210
2 0.10 177
3 0.20 217
4 0.50 1030

3.0

5 0.05 318
6 0.10 214
7 0.20 198
8 0.50 362

2

1.5

9 0.05 765
10 0.10 672
11 0.20 809
12 0.50 4068

3.0

13 0.05 1160
14 0.10 780
15 0.20 712
16 0.50 1500

3

1.5

17 0.05 2044
18 0.10 1715
19 0.20 2002
20 0.50 9796

3.0

21 0.05 2271
22 0.10 2002
23 0.20 1596
24 0.50 3798

Workload Management System that arranges several requests submitted by dif-
ferent users from an (application-oriented) back-end portal.

Groups of 4 and 6 tasks were created, and each group is executed as a sin-
gle job. This way a total of 4 and 6 jobs will be launched. The main reasons
for grouping tasks in different jobs are to apply the paradigm of domain de-
composition and also to avoid job failures due to a single task failure. OurGrid
allows setting the number of times a certain task will be rescheduled if it fails;
the default value is 3 and it was not changed for experimentation. The groups
comprise instances of different scenarios, selected using uniform distributions of
integer numbers in the range [1, 24] for instance selection, and in the ranges [1, 6]
and [1, 4] for group selection (depending on the number of groups created).

OurGrid allocates resources according to the number of tasks included in a
job. If a job is composed of a large number of tasks, a site with insufficient
resources could be ignored by the allocation algorithm. As we are dealing with
volunteer infrastructures, 4 and 6 tasks per job is a suitable number. It has to
be remarked that MCell is a computing demanding application and launching
many tasks in a single job could overload a single site.

The groups for 4 and 6 tasks are shown in Table 3, along with the execution
times for the parallel executions.
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Table 3. Parallel execution times

using 4 tasks/job using 6 tasks/job
group ID instances time (s) group ID instances time (s)

1 4,5,10,21 2891 1 3,7,10,12,17,22 4212
2 1,8,22,23 2045 2 4,8,13,14,20,23 10124
3 24,9,11,7 3450 3 1,5,6,9,11,15 914
4 2,20,15,13 9976 4 2,16,18,19,22,24 3977
5 6,12,14,17 4500
6 3,16,18,19 2240

Based on data generated by MCell, FERNet creates a single plain text con-
taining the amount of photons collected every time step. For each instance, a
different file is generated and approximately 300 KB of storage space is needed.
Once the task is finished, the output is transfered to the broker/client that sub-
mitted the corresponding job.

The output generated by MCell consists in the positions of each molecule every
time step. The size of this file depends on the amount of molecules configured in
the simulation, resulting in files between 8 and 15 GB. These files are discarded
once the task is finished.

Figure 6 shows the processing times for each group of tasks. Each group of
tasks corresponds to a job that is launched in the grid/cloud infrastructure.
A JDF file defining the job and the corresponding tasks is created for each
job. The total processing time for sequential execution of the 24 instances is
approximately 10.81 hours. The parallel execution time is approximately 2.78
hours. Figure 6 shows that both grouping methods require approximately the
same time to complete all the considered instances. As MCell is designed as a

Fig. 6. Processing times for parallel execution
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sequential application, the processing times are conditioned by the time required
to complete the most CPU demanding task.

No optimization is applied for grouping tasks as the processing times for
each task is unknown before hand. As mentioned earlier in this section, groups
are created using uniform distributions and random selection. This method of
selection explains why a group of 6 tasks (group #3) is processed faster than all
groups of 4 tasks. Even though a subset of results is obtained earlier, the total
processing time still remains comparable.

As the main goal of this work is to reduce the time needed to process the
whole set of instances, the results obtained using groups of different sizes are
valid. The speedup factor obtained is approximately 4.

6 Conclusions and Future Work

This article presented an experimental analysis of applying a grid/cloud ap-
proach for the execution of different scenarios for fluorescence analysis. Results
for sequential and parallel execution of MCell and FERNet were reported.

The experimental evaluation of the proposed distributed computing approach
was carried out using a volunteer federation of OurGrid sites distributed in four
countries in Latin America. The efficiency analysis demonstrates that the use
of a volunteer grid/cloud infrastructure is an effective method for reducing the
overall execution time of simulations. Overall, execution time reductions up to
about 70-75% were obtained when solving different scenarios for the considered
problem. These results suggest that the volunteer computing paradigm suits well
for executing simulations of complex biological phenomena.

The main lines for future work include increasing the number of models and
scenarios to be simulated and performing more realistic experiments including
more biologically-relevant parameters of the models. Additional studies regard-
ing the composition of groups of tasks should also be performed, as well as further
extending the scalability analysis when using distributed infrastructures for solve
very complex problems. We are also working on executing MCell and FERnet on
federations of volunteers OpenNebula sites running Hadoop Framework. Besides
that, tests on Microsoft Azure Cloud Platform are also being carried out.
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Abstract. Energy efficiency is one of the major concerns when operat-
ing datacenters nowadays, as the large amount of energy used by parallel
computing infrastructures impacts on both the energy cost and the elec-
tricity grid. Power consumption can be lowered by dynamically adjusting
the power demand of datacenters, but conflicting objectives such as tem-
perature and quality of service must be taken into account. This paper
proposes a multiobjective evolutionary approach to solve the energy-
aware scheduling problem in datacenters, regarding power consumption,
temperature, and quality of service when controlling servers and cool-
ing infrastructures. Accurate results are reported for both best solutions
regarding each of the problem objectives and best trade-off solutions.

1 Introduction

Nowadays, cluster/grid/cloud computing datacenters host powerful high per-
formance computing (HPC) resources having large and increasing energy de-
mands [28]. Energy efficiency is a major concern in datacenter operation, as
recent surveys point out that datacenters account for about 1.5% of the total
energy usage in the world [14]. Thus, power consumption in datacenters raises
many important environmental and economic issues. Owners and operators are
highly interested in energy-efficient datacenters that applies intelligent planning
to reduce and adjust power consumption, and integrate renewable generation [8].

Within the research community, there is growing interest in energy-aware
planning of HPC infrastructures, including dynamic operation control [8][21][27],
and energy-aware scheduling and planning [28][1].

Dynamic control approaches are especially useful when considering the cost re-
ductions that the operator can achieve by shifting operation to periods of cheaper
energy prices, and the possible utilization of (intermittent) renewable solar and
wind energy. Energy-aware datacenters can also participate as providers of ancil-
lary services in the electricity market. Ancillary services are used to compensate
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c© Springer-Verlag Berlin Heidelberg 2014



Multiobjective Energy-Aware Datacenter Planning Accounting 129

for short-term variability in the grid as well as for contingency purposes, such
as recovering after faults in transmission lines or generators.

Many different techniques have been proposed to reduce the energy consump-
tion of data-centers [1], from low-level hardware solutions to high-level software
methods. Sustainable energy-aware techniques are in conflict with system per-
formance metrics that accounts for the QoS perceived by the user, because in-
creasing performance usually leads to increase the energy consumption. Thus,
multiobjective approaches are required to model the reality of current datacen-
ters operation when taking into account the energy efficiency.

This paper presents a multiobjective approach for datacenter planning that
accounts for both server (IT) and cooling infrastructures: free cooling and air
conditioning (AC) in order to provide appropriate levels of quality of service
(QoS) and temperature when following a specific power consumption profile.

We propose a two-phase approach for control and scheduling. In the upper
level, a multiobjective evolutionary algorithm (MOEA) is applied for power con-
trol according to a reference power profile and temperature, providing multi-
ple trade-off solutions to the problem. In the lower level, specific energy-aware
scheduling heuristics are applied to provide appropriate QoS according to Server
Level Agreements (SLA) between provider and user. The multiobjective ap-
proach helps the datacenter planner to explore different options for controlling
the system performance and energy consumption.

The experimental evaluation, performed considering a set of realistic work-
loads and hardware scenarios, indicate that the proposed approach is a useful op-
tion for power management in datacenters. When compared against a business-
as-usual (BAU) strategy, the proposed MOEA is able to compute solutions with
up to 78% improvement on power tracking and 86% on the temperature values,
with very low degradation in QoS-related metrics.

The paper is organized as follows. Section 2 reviews the related work about
power control and energy-aware scheduling in datacenters. The problem model
and the proposed control and planning strategies for energy-aware datacenters
is described in Section 3. The proposed MOEA for energy-aware datacenter
control and planning is described in Section 4. The experimental evaluation is
reported and discussed in Section 5. Finally, Section 6 presents the conclusions
and formulates the main lines for future work.

2 Related Work

This section reviews the main related work in literature in the areas of control
and energy-aware scheduling in datacenters.

Control and energy aware datacenters. GreenSlot [9] considers job allocation
for HPC applications in a datacenter powered by solar panels, using job infor-
mation (nodes per job, deadline, estimated runtime) for scheduling when solar
energy is available. GreenHadoop [10] considers green generation and energy
prices to allocate MapReduce jobs using heuristics to predict the energy re-
quirements. GreenSwitch [8] also considers energy storage (batteries and net
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metering), managing energy sources and workloads to minimize electricity costs.
This approach is evaluated on Parasol, a solar-powered micro-datacenter [8].

An alternative to shifting load is to trade-off energy and QoS. The scheduler by
Kriukov et al. [15] follows wind generation, using less power by delaying requests
with slack. Aikema et al. [2] presented simulation results for a datacenter in the
New York ancillary service market. A selective approach is applied in [7], where
participation as an ancillary services provider is determined by expected profits
(the compensation is weighed against the SLA penalties).

Ghamkhari and Mohsenian-Rad [21] schedule non-critical jobs based on pre-
dicted power output and datacenter load. This is to the best of our knowledge
the only other existing approach for energy-aware scheduling in data centres that
considers air conditioning power. The main differences with our control approach
are: (a) we look at fine time granularity (minutes), broadening the applications of
datacenter energy management, e.g. by enabling ancillary services; (b) we apply
a multiobjective approach to the problem, thus considering a range of trade-off
solutions between power, temperature, and QoS; and (c) different schedulers are
studied in order to provide diverse power/QoS trade-offs.

Energy aware scheduling. A simple optimization approach for energy-aware
scheduling assumes energy and performance as independent. A more compre-
hensive one is to optimize performance and energy at the same time, modeling
the problem as a multiobjective optimization. Algorithms are oriented to find
Pareto optimal schedules; i.e., no scheduling decision can strictly dominate the
others with better performance and lower energy consumption at the same time.

Khan and Ahmad [12] applied game theory for scheduling independent jobs,
simultaneously minimizing makespan and energy on a Dynamic Voltage Scal-
ing (DVS)-enabled grid system. Lee and Zomaya [17] studied several heuristics
to minimize the weighted sum of makespan and energy using a makespan con-
servative local search to slightly modify scheduling decisions when they do not
increase energy consumption, in order to escape from local optima. Later, Mez-
maz et al. [22] proposed a parallel bi-objective hybrid genetic algorithm (GA)
for the same problem. significantly reducing the scheduler execution time.

Kim et al. [13] studied the deadline constrained scheduling problem in ad-hoc
grids with limited-charge batteries, proposing a resource manager to exploit the
task heterogeneity while managing energy. Li et al. [19] introduced an online dy-
namic strategy with multiple power-saving states to reduce energy consumption
of scheduling algorithms. Pinel et al. [26] proposed a double minimization ap-
proach for scheduling independent tasks on grids, using an heuristic to optimize
makespan, and then a local search to minimize energy consumption. Lindberg
et al. [20] proposed six greedy algorithms and two GAs to solve the makespan-
energy scheduling problem subject to deadline and memory requirements.

Le et al. [16] proposed a scheduler for deciding the datacenter to run virtual
machine requests and job migration, taking into account electricity price and
temperature, which can trigger AC activation, increasing power consumption.

Our previous work [24] introduced an energy consumption model for multi-
core computing systems based on the energy the system requires to operate at
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full capacity, the energy when not all the available cores of the machine are used,
and the energy that each machine consumes in idle state (MIN-MAX mode).
Iturriaga et al. [11] showed that a parallel multiobjective local search based on
Pareto dominance outperforms deterministic heuristics based on the traditional
Min-Min strategy. We also apply the MIN-MAX mode in this present article.

Dorronsoro et al. [6] presented a two-level strategy for scheduling large par-
allel applications in multicore distributed systems, minimizing the total compu-
tation time and the energy consumption. The approach combines a higher-level
(between distributed datacenters) and a lower-level (within each datacenter)
scheduler. Accurate schedules were computed by using heuristics accounting for
both problem objectives in the higher level, and ad-hoc schedulers to take ad-
vantage of multicore infrastructures in the lower level. We adapt three low-level
schedulers from that previous article for the problem we consider in this work.

We initially explored the application of multiobjective control planning for
datacenters in [25]. We introduced the problem model and initial results about
controlling datacenter power consumption while maintaining temperature and
QoS levels. The present work extends the previous study, focusing on further an-
alyzing the multiobjective approach and studying different scheduling strategies
for reducing power consumption and increasing QoS.

3 Control and Scheduling Approach for Energy-Aware
Datacenters

This section describes the approach for control and energy-aware scheduling in
datacenters, according to reference power consumption profiles.

3.1 Datacenter Model

Fig. 1 shows the datacenter model applied in this work. We follow the power man-
agement approach applied to the Parasol datacenter [8], considering two systems:
heating-ventilation-air conditioning (HVAC) and computing infrastructure (IT).

The control signals are variables that alter the behavior of the datacenter:

1. HVAC control (ck): we consider a datacenter equipped with free and AC
cooling infrastructure. ck comprises a set of signals: AC compressor state
(binary), free cooling fan speed (%), and free cooling damper state (binary).

2. Schedule (sk): shape the IT power consumption, considering the number of
servers running, load constraints, and specific user requirements.

The controllable variables are handled via manipulation of the control signals:

1. Quality of service (QoSk): depends on user and system related metrics, which
are computed using a specific scheduling strategy applied in the datacenter.

2. Internal temperature (Tk): thermostat reading of the datacenter (oC).
3. Cooling power (Ck): the sum of AC power and free cooling fan power (kW).
4. IT power (Ik): the power of the servers, switches and all IT equipment in

the datacenter (kW).
5. Total power (Pk): the total power used by the datacenter (Pk = Ck + Ik).
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Fig. 1. Diagram of the datacenter model

The disturbances are variables that affect the datacenter behavior but we have
no control over, in our case the external temperature αk (oC).

3.2 Scheduling Model

The scheduling model considers a set of tasks to be executed in the datacenter.
Each task is defined by its arrival time, the estimated execution time, and a
deadline, which represents the time by which the user wants the task to finish.

We assume that tasks arrive following a Poisson distribution (parameter λ=
instance size/simulation time). Tasks durations follow a normal distribution,
with average and standard deviations following a typical cluster, according to
traces from Cluster FING [23] and the Parallel Workload Archive repository.
Three levels are used for deadlines, modeling different SLA between the provider
and the users, according to three slack factors (sf ): tight (sf<10%), medium
(10%<sf<30%), and loose (sf>30%), which represent the time the user admits
the tasks end (over the task duration and since the arrival time).

We apply a dynamic scheduling strategy applying specific QoS and energy-
aware scheduling heuristics, which are described in the following section.

3.3 The Optimization Problem

We want to control the datacenter so that its total power demand Pk and temper-
ature Tk follow as closely as possible a desired reference demand and temperature
profiles Rk and Tref , while minimizing the impact on QoS.

The datacenter executes n tasks in the simulation period (K steps). Each user
submission requests execution before a deadlineD(i) for task i, and the scheduler
executes the task according to the availability of computing resources and energy
consumption. Each task i finishes at time FT (i), and QoS is evaluated according
the deadline satisfaction. Formally, we want to minimize the deviation regarding
the reference power profile (1) and regarding the temperature (2), and the total
time of deadline violations (3) during the simulating period.
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K∑

k=1

|Pk −Rk|
max(Rk)

(1)
K∑

k=1

|Tref − Tk| (2)
K∑

i=1

max(0, FT (i)−D(i)) (3)

The total IT power is Ik = Smax
k +Sidle

k +Ssleep
k where Smax

k , Sidle
k and Ssleep

k

are the total power of servers executing, idle, and sleep at time k.
AC is used to keep temperature within a specified hysteresis band. In free

cooling mode, outside air is blown into the datacenter using a fan. The cooling
power Ck takes the values CPWR in AC mode, compressor ON; 0 in AC mode,
compressor OFF; and FANPWR in free cooling mode. Based on two months of
operation data from Parasol, we identified an Auto-Regressive eXogenous [18]
model for temperature: A(q)Tk = B(q)uk + ek.

4 A Multiobjective Evolutionary Approach for
Energy-Aware Datacenter Planning

This section presents the proposed MOEA for energy-aware datacenter planning.

4.1 Evolutionary Algorithms and NSGA-II

Evolutionary algorithms (EAs) are non-deterministic methods that emulate the
natural evolution to solve optimization problems [3]. In the last thirty years,
EAs have been successfully applied for solving many optimization problems.

MOEAs [5] have been applied to solve hard optimization problems, obtaining
accurate results when solving real-life problems in many research areas. Unlike
many traditional methods for multiobjective optimization, MOEAs are able to
find a set with several solutions in a single execution, since they work with a
population of tentative solutions.

MOEAs must be designed aiming at two goals at the same time: i) approxi-
mating the Pareto front, by applying a Pareto-based search, and ii) maintaining
diversity instead of converging to a reduced section of the Pareto front, by using
specific techniques from multimodal optimization (sharing, crowding, etc.).

In this work, we apply the Non-dominated Sorting Genetic Algorithm, version
II (NSGA-II) [5], a popular MOEA that has been successfully applied in many
application areas. NSGA-II includes features to deal with specific issues of the
search: i) a non-dominated elitist ordering that diminishes the complexity of the
dominance check; ii) a crowding technique for diversity preservation; and iii) a
fitness assignment method considering the crowding distance values.

4.2 The Proposed Resolution Approach

Solution encoding: Each solution represents the power (cooling and IT) to be
used at each time step k. A solution is encoded as an integer vector of 2K
elements, representing the cooling (positions 1 to K) and server power (positions
K+1 to 2K). The server power is encoded directly as Watts, whereas the cooling
power is encoded as an integer value representing three states: (a) 1–100 : free
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cooling mode is applied, and the value represents the fan speed as a percentage of
its maximum; (b) 101–200 : the air conditioning unit is assumed to be operating,
and (c) 201–300 : neither air conditioning nor free cooling are in operation.

Evolutionary operators : We apply a three-point crossover (using cross points
p1, p2, and p3); p1 is selected randomly in (1,K), p2 is K and p3 is K + p1. This
approach assures that portions representing the same time interval for both
cooling and server power move together from parents to offspring.

Mutation is applied to each gene with probability pM . For a cooling power
gene (position 1 to K) its value v is replaced with mod(v+rand()×MAX HVAC,
MAX HVAC)). For the other genes, they are redefined with a random value
between 0 and the maximum server power, i.e. representing all servers on.

4.3 Energy and QoS-aware Scheduling

In order to model a realistic task planning in the simulated datacenter, we apply
three heuristic energy-aware QoS schedulers. They are based on the ones defined
from our previous work [6], but adapted to deal with the specific features of the
problem addressed in this article.

The schedulers apply different backfilling-oriented techniques to work with
computing resources that are available in certain periods of time (we call these
periods slack-times or simply holes) and unavailable in other moments (e.g. due
to sleeping and/or switching off servers). The heuristics differ in the way they
fill holes/slack-times that are left after a given policy for sleeping/shutting down
holes is applied to reduce the energy consumption:

1. Best Fit Hole (BFH): Tasks are first sorted according to their arrival times,
and then assigned to computing resources to fill their existing holes/slack-
times. If a task fits into more than one hole, the one that “best fits” the task
(i.e., the hole that minimizes the difference between the hole duration and
task execution time) is selected. Holes within each machine are processed
according to their finishing times. A specific logic is included to deal with
deferrable tasks. When no hole is available to execute a task, BFH assigns it
to the machine that provides the minimum finishing time for that task. The
rationale behind this strategy is to use available holes and spare unoccupied
large holes and empty machines for upcoming tasks with potential larger
execution times.

2. Best Deadline (BD): This scheduler applies a greedy approach to select the
slack to execute each incoming task, improving the QoS of the resulting
schedule. As in BFH, a specific logic is included to deal with deferrable
tasks, which can be scheduled in any available hole within the simulation
period. When no hole is available to execute a task, BD also assigns it to
the machine that provides the minimum finishing time for that task.

3. Earliest Finishing Time Hole (EFTH): In this strategy, holes/slack-times are
selected to minimize the tasks’ finishing times. That is, instead of finding the
hole that best fits a given task (as in BFH), a hole that can finish it earlier
is selected regardless of its length. As a result, EFTH should lead to fewer



Multiobjective Energy-Aware Datacenter Planning Accounting 135

deadline violations. If no hole is available to execute a task, EFTH selects
the machine that provides the minimum finishing time to the task.

5 Experimental Analysis

This section reports the experimental analysis of the proposed MOEA for energy-
aware datacenter control and scheduling for a simulated data center with the
characteristics described above. Both the MOEA and the datacenter simulator
were implemented in MATLAB.

5.1 Problem Instances

Instances are defined by a workload, a scenario, and a reference power profile.
Workloads are sets of tasks. We consider non-deferrable workloads and de-

ferrable workloads, where 25% of the tasks are allowed to end after the deadline
without having a negative impact in the QoS perceived by the user. We study
three different workload dimensions: low operation (50 tasks in 150 time steps),
normal (75 tasks in 150 time steps), and full steam (100 tasks in 150 time steps).

The hardware scenarios assume 64 Atom-based servers in the datacenter, as
in Parasol [8]. The power consumption of each server is 30W(max), 22W(idle),
3W(asleep). We consider a time horizon of 75 minutes (150 30-second time steps)
in the simulation, and an average utilization of 50%, to allow for a reasonable
task planning (utilization values as low as 15–20% have been reported [27]).

We consider three reference power profiles to follow (see Fig. 2, percentages
represent a fraction of the maximum datacenter power):

– Profile A: 20% during 25 time steps, 80% during 25 time steps and 20%
during 25 time steps. This scenario studies how the system responds to step
changes (both up and down) in power profile.

– Profile B: 50% during 15 time steps, 80 % during 10 time steps, 20% during
20 time steps, 80% during 10 time steps and 50% during 20 time steps. In
this situation, it is known in advance that demand will have to be dropped in
the near future (e.g. forecast indicates that renewable generation will drop)
and we decide increasing power demand before and after the drop.

– Profile C: 80% during 25 time steps, then a linear ramp decreasing to 20%
during the course of 25 time steps, and then 20% during 25 time steps. This
scenario tests how the control responds to ramp changes, a very common
type of power change in the electricity market.

5.2 Multiobjective Optimization Metrics

In this work, we apply several relevant metrics to evaluate the results obtained by
the studied MOEAs, regarding the goals of converging to and correctly sampling
the set of non-dominated solutions of the problem [5][4]:
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Fig. 2. Power profiles considered in the study

– The number of (different) non-dominated solutions (ND).

– Generational Distance (GD): the sum of the distances between the non-
dominated solutions in the computed Pareto front and a set of uniformly
distributed points in the true Pareto front (Eq. 4). Smaller values of GD
mean a better approximation to the Pareto front.

– Spread (s): evaluates the dispersion of non-dominated solutions in the com-
puted Pareto front, including the distance from the extreme points of the
true Pareto front (Eq. 5); di is the distance between solution i in the com-
puted Pareto front and its nearest neighbor, d̄ is the average of all di and
deh is the distance between the extreme of the h-th objective in the true
Pareto front and the closest point in the computed Pareto front [5]. Smaller
values of spread mean a better distribution of non-dominated solutions.

GD =

∑
v∈P∗

d(v, P )

|P ∗| (4) s =

k∑
h=1

deh +
ND∑
i=1

∣∣d̄− di
∣∣

k∑
h=1

deh +ND × d̄

(5)

– Relative hypervolume (RHV): the ratio of the volume (in the objective func-
tions space) covered by the computed Pareto front and the one covered by
the true Pareto front. The ideal RHV value is 1.

The true Pareto front—unknown for the problem instances studied—was ap-
proximated by gathering the non-dominated solutions found for each instance,
in each execution performed for the three variants of the proposed MOEA.

5.3 Results and Discussion

All the reported results were computed in 15 independent executions of the
proposed MOEA for each problem instance dimension solved.

Parameter setting. The proposed MOEA was executed using the best parame-
ter values from a previous analysis that studied: population size (#P, candidate
values {50,75,100}), and the probabilities for crossover (pC , candidate values
{0.6,0.75,0.9}) and mutation (pM , candidate values {0.01,0.05,0.1}). The best
results were obtained using the parameter setting #P = 75, pC = 0.9, and pM =
0.01. The stopping criterion is 500 generations, providing a reasonable trade-off
between results quality and execution time.
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Multiobjective analysis. Table 1 reports the average results for the multiobjec-
tive metrics studied for each algorithm, workload dimension, and power profile.
The results shows that all the studied MOEAs are able to compute a large num-
ber of non-dominated solutions (between 35 and 55, i.e. more than 50% of the
population) for all problem instances.

Table 1. Multiobjective optimization metrics results

non-deferrable workloads

ND GD spread RHV

profile n BFH BD EFT BFH BD EFT BFH BD EFT BFH BD EFT

A
50 44.9 40.9 40.6 1899.4 1198.9 926.1 0.74 1.09 0.71 0.90 0.95 0.93
75 44.1 36.1 37.9 4975.5 5982.7 433.4 0.70 0.88 0.74 0.85 0.92 0.98

100 39.9 38.6 50.6 3104.8 5102.9 760.4 0.73 0.80 0.85 0.89 0.91 0.98

B
50 40.3 42.7 39.0 3896.8 820.2 361.7 0.86 0.95 0.95 0.91 0.76 0.97
75 39.0 41.8 44.9 1113.4 4710.3 462.6 0.83 0.96 0.92 0.91 0.91 0.98

100 39.3 42.4 53.4 2142.3 2596.5 5764.7 0.78 0.86 0.96 0.92 0.88 0.96

C
50 42.0 38.6 40.6 1459.9 1146.6 742.2 0.71 0.80 0.78 0.95 0.97 0.93
75 35.7 39.9 37.9 1948.1 5150.8 2084.9 0.64 0.82 0.72 0.88 0.95 0.91

100 36.9 39.5 44.7 2904.8 2145.7 612.7 0.74 0.90 0.75 0.88 0.93 0.88

deferrable workloads

ND GD spread RHV

profile n BFH BD EFT BFH BD EFT BFH BD EFT BFH BD EFT

A
50 41.1 40.9 37.9 1449.9 7267.1 554.4 0.75 0.89 0.80 0.94 0.88 0.94
75 41.3 38.5 41.5 1302.3 3559.9 1239.3 0.79 0.81 0.76 0.91 0.94 0.92

100 41.7 36.5 53.5 2703.3 5870.8 1180.9 0.74 0.83 0.79 0.89 0.93 0.95

B
50 47.6 44.4 42.5 708.8 1344.6 562.2 0.75 0.88 0.78 0.94 0.90 0.93
75 38.1 39.6 43.3 813.0 2022.0 740.8 0.79 0.95 0.89 0.94 0.93 0.91

100 38.1 39.5 44.2 850.6 2128.9 793.7 0.85 0.87 0.85 0.96 0.95 0.96

C
50 36.8 40.8 39.3 735.7 2591.9 931.5 0.66 0.76 0.70 0.94 0.94 0.93
75 37.3 44.3 39.1 2083.1 8176.6 1025.3 0.71 0.76 0.78 0.88 0.93 0.93

100 38.1 40.5 39.7 1103.0 8043.6 1733.9 0.72 0.76 0.68 0.95 0.89 0.95

Regarding the GD metric, NSGA-II+EFT computed the closest solutions to
the Pareto front for most of the problem instances. However, NSGA-II+BFH
achieves a better distribution of non-dominated solutions, as the spread results
indicate. Mixed results are obtained for the RHV metric: NSGA-II+EFT and
NSGA-II+BD work better for non-deferrable workloads, as they take into ac-
count the deadlines for the task-to-processor assignment, and all NSGA variants
compute competitive results for deferrable workloads. The previous results sug-
gest that NSGA-II+EFT is the most promising alternative to solve the problem.

Best and trade-off results. Table 2 reports the average improvements on power
and temperature when comparing with a business-as-usual (BAU) strategy, and
the QoS metrics—time (dvT ) and number (dvn) of deadline violations—for non-
deferrable/deferrable workloads and the power profiles studied. The BAU strat-
egy represents a conventional datacenter operation. It does not apply an energy-
aware control, assumes that all the servers are on, AC is used to maintain the
temperature within 1.5 C around the desired level, and applies a FIFO sched-
uler. All improvements are averaged by problem dimension and SLA type. The
best improvements obtained for each problem class and dimension are in bold.

We analyze the best results computed for each objective (best power, best
temperature, and best QoS solutions). This analysis is useful in case the data-
center planner is mainly interested in prioritizing a specific objective. We also



138 S. Nesmachnow, C. Perfumo, and Í. Goiri

Table 2. Average improvements and QoS results over the BAU strategy

power temp. dvT dvn power temp. dvT dvn power temp. dvT dvn power temp. dvT dvn

A
50 77.8% -75.1% 239.2 17.5 23.6% 76.3% 133.6 16.0 48.5% 4.9% 3.8 1.8 57.8% 30.2% 127.0 13.5
75 75.3% -60.6% 464.4 29.5 26.1% 73.2% 477.6 29.3 38.6% 27.8% 13.0 10.5 55.5% 27.4% 158.2 27.4

100 76.1% -89.3% 879.2 36.7 28.2% 74.6% 351.2 34.3 44.3% 4.3% 40.4 16.9 56.6% 34.4% 162.4 32.2

B
50 51.1% -6.0% 184.8 40.0 10.9% 75.1% 28.8 43.0 34.8% -24.3% 39.0 1.4 40.9% 35.4% 118.6 26.0
75 53.5% -80.6% 525.8 39.0 13.6% 76.6% 138.6 43.0 32.8% 0.8% 11.0 19.0 46.2% 25.7% 114.6 34.0

100 56.1% -8.5% 552.2 46.0 14.1% 75.7% 163.4 45.0 37.3% 2.5% 31.6 17.0 43.3% 41.9% 216.4 50.0

C
50 58.7% -226.0% 355.4 40.0 5.8% 75.3% 221.2 14.0 36.1% -137.9% 34.0 3.6 38.6% -15.4% 107.8 38.0
75 58.0% -272.5% 190.6 14.0 15.2% 78.2% 139.4 34.0 23.6% 9.8% 40.0 13.0 40.7% -11.3% 75.6 52.0

100 55.1% -293.5% 637.0 48.0 11.2% 76.1% 587.4 45.0 30.0% -60.8% 27.0 16.0 40.4% -26.9% 153.4 48.0

NSGA-II using BD

P n
best power solution best temperature solution best QoS solution best trade-off solution

power temp. dvT dvn power temp. dvT dvn power temp. dvT dvn power temp. dvT dvn

A
50 70.5% -52.5% 465.8 8.5 22.5% 81.8% 541.4 8.6 53.2% -15.8% 0.0 0.0 52.1% 38.5% 134.4 6.2
75 71.7% -63.6% 766.1 14.7 19.2% 82.5% 1303.9 15.4 54.3% -95.8% 0.0 0.0 56.8% 16.1% 275.7 10.1

100 74.9% -78.0% 863.8 15.2 21.1% 82.3% 1626.3 21.7 55.7% -41.2% 0.3 0.2 54.9% 28.1% 243.3 10.3

B
50 52.4% 2.9% 587.0 8.1 18.2% 81.8% 532.8 10.2 41.2% 34.9% 2.0 0.6 38.3% 58.4% 104.0 4.1
75 54.6% -24.0% 1292.0 19.8 13.1% 82.6% 1134.2 15.4 32.3% 29.2% 0.0 0.0 44.8% 43.5% 259.2 12.0

100 53.2% -38.6% 1784.0 23.8 11.3% 81.9% 881.9 15.5 24.0% 8.2% 2.7 0.5 40.5% 29.8% 300.2 11.9

C
50 57.5% -144.8% 259.7 4.6 11.3% 81.9% 583.7 8.3 36.1% -29.2% 0.0 0.0 41.0% 21.6% 61.3 3.5
75 56.1% -140.3% 269.5 6.1 11.0% 82.1% 723.3 9.3 40.8% -98.9% 0.0 0.0 39.6% 24.1% 136.9 4.4

100 58.6% -153.3% 227.8 7.0 18.7% 82.9% 1030.4 11.0 36.9% -44.2% 0.8 0.4 45.2% 4.8% 193.4 8.6

NSGA-II using EFT

P n
best power solution best temperature solution best QoS solution best trade-off solution

power temp. dvT dvn power temp. dvT dvn power temp. dvT dvn power temp. dvT dvn

A
50 74.7% -61.1% 166.6 5.0 24.7% 85.8% 409.2 7.2 62.2% -88.7% 2.6 0.1 60.4% 20.2% 92.0 2.0
75 73.6% -73.6% 291.6 6.2 25.6% 84.5% 414.4 6.9 47.4% 10.8% 5.2 2.2 60.5% 16.9% 97.4 3.4

100 77.0% -73.8% 398.0 7.1 27.2% 85.6% 491.0 8.4 60.0% -51.8% 9.8 0.7 61.0% 24.5% 102.2 5.3

B
50 53.1% -66.6% 251.8 12.5 11.2% 75.4% 72.4 20.0 34.7% 33.6% 0.0 0.0 45.3% 36.9% 21.4 4.7
75 56.1% -18.5% 673.2 18.0 13.9% 76.2% 209.2 36.0 33.2% -20.0% 0.4 0.1 48.0% 39.9% 90.8 8.4

100 57.1% -50.5% 751.8 22.8 13.6% 75.4% 81.4 29.7 38.9% 20.8% 6.9 3.6 49.0% 31.3% 171.6 14.2

C
50 54.5% -296.0% 25.2 13.3 11.4% 76.9% 152.6 9.3 26.8% -48.4% 0.0 1.4 37.6% -24.6% 26.8 11.1
75 57.4% -276.3% 212.8 12.1 13.4% 77.1% 315.8 19.5 50.2% -253.4% 0.4 0.8 42.6% -40.1% 58.2 11.1

100 58.5% -279.1% 139.2 27.5 19.8% 76.7% 221.8 25.7 30.0% -66.0% 0.6 0.1 43.8% -24.0% 102.0 16.1

deferrable workloads

NSGA-II using BFH

P n
best power solution best temperature solution best QoS solution best trade-off solution

power temp. dvT dvn power temp. dvT dvn power temp. dvT dvn power temp. dvT dvn

A
50 77.5% -95.1% 138.2 17.3 28.9% 76.5% 231.0 15.0 58.4% -20.6% 12.0 2.8 61.7% 17.2% 42.6 15.3
75 76.6% -79.8% 394.0 12.0 21.7% 76.2% 313.2 14.0 55.8% -33.6% 12.4 6.0 58.5% 25.0% 91.0 13.3

100 77.4% -65.9% 478.0 19.0 25.6% 74.2% 544.8 7.0 60.3% -70.8% 15.4 5.0 61.4% 15.5% 148.2 14.3

B
50 57.8% -40.7% 405.2 36.0 10.7% 75.5% 419.2 40.0 36.8% 28.6% 20.0 4.8 46.2% 35.0% 59.8 43.0
75 53.8% -62.2% 152.2 36.0 9.7% 78.0% 159.0 50.0 36.1% 29.8% 20.0 5.4 44.4% 32.9% 91.0 45.0

100 57.5% -37.6% 328.4 26.0 12.1% 75.7% 220.0 34.0 34.8% -13.5% 16.8 7.0 44.7% 34.5% 125.4 33.0

C
50 58.7% -221.4% 94.6 47.0 15.2% 76.9% 163.4 12.0 29.4% -45.4% 29.0 3.8 40.2% -10.3% 48.0 32.0
75 57.5% -247.1% 389.4 29.0 10.3% 76.6% 261.0 47.0 22.6% 2.9% 12.4 8.0 36.1% -16.9% 59.2 33.0

100 58.6% -294.1% 301.8 24.0 8.2% 76.9% 273.8 19.0 34.2% -95.7% 32.6 6.0 44.4% -23.7% 152.2 12.0

NSGA-II using BD

P n
best power solution best temperature solution best QoS solution best trade-off solution

power temp. dvT dvn power temp. dvT dvn power temp. dvT dvn power temp. dvT dvn

A
50 70.8% -64.3% 485.6 8.9 20.0% 83.1% 833.0 11.7 41.3% -17.1% 7.5 0.4 55.1% 28.4% 119.1 5.9
75 71.8% -82.9% 619.9 15.3 23.3% 82.3% 1010.7 17.7 47.2% -45.7% 5.3 0.5 56.7% 23.0% 268.1 11.6

100 74.2% -81.2% 765.0 17.7 19.9% 82.5% 1103.9 17.1 53.8% -60.7% 0.2 0.1 58.0% 9.5% 218.9 11.1

B
50 50.7% -22.1% 594.2 10.1 10.3% 82.1% 383.1 6.3 27.6% 18.4% 1.4 0.1 38.2% 49.1% 142.5 4.9
75 52.6% -18.0% 1674.2 21.6 10.9% 81.6% 873.0 15.4 15.4% 36.0% 0.0 0.0 40.1% 46.8% 297.4 11.4

100 52.6% -33.8% 1418.1 20.5 10.8% 82.6% 977.7 18.7 33.3% -20.2% 6.3 0.9 39.3% 46.8% 278.2 12.1

C
50 55.7% -139.9% 315.3 7.4 12.6% 81.3% 445.9 8.1 32.9% -50.2% 3.2 0.7 39.8% 23.9% 113.9 5.0
75 54.8% -146.4% 461.1 12.0 12.0% 81.4% 841.7 14.1 30.9% -85.5% 5.6 1.1 35.8% 25.3% 227.1 10.0

100 58.5% -149.5% 348.3 11.5 11.7% 81.1% 341.8 7.2 28.3% -8.2% 3.6 0.6 42.6% 11.4% 100.9 5.1

NSGA-II using EFT

P n
best power solution best temperature solution best QoS solution best trade-off solution

power temp. dvT dvn power temp. dvT dvn power temp. dvT dvn power temp. dvT dvn

A
50 77.4% -119.2% 120.0 8.0 25.7% 84.1% 200.8 10.9 48.5% -9.7% 0.0 0.0 62.2% 24.7% 60.2 4.6
75 75.8% -105.4% 338.2 12.4 26.2% 85.5% 645.2 15.5 48.1% 20.1% 1.8 0.7 61.0% 34.2% 97.0 8.1

100 74.9% -169.3% 293.2 15.8 21.7% 81.3% 495.4 18.6 39.2% 13.8% 0.3 0.1 57.0% 15.7% 93.8 10.9

B
50 54.1% 1.8% 171.0 9.7 12.8% 75.9% 268.4 10.0 30.9% 26.9% 4.6 2.0 45.8% 39.4% 49.2 6.2
75 51.4% -26.1% 268.6 14.9 10.5% 74.7% 43.2 17.7 31.1% 31.6% 2.0 3.5 41.4% 38.1% 60.6 8.5

100 56.7% -9.3% 860.0 17.2 12.0% 76.4% 231.6 22.8 39.2% 22.4% 4.2 5.5 45.4% 38.0% 160.6 10.1

C
50 57.5% -339.4% 105.2 8.7 9.1% 76.0% 147.2 11.8 24.6% -43.6% 1.8 2.1 42.9% -27.4% 59.4 8.0
75 56.5% -297.1% 253.2 16.9 11.8% 75.3% 212.6 19.7 37.1% -54.6% 2.8 4.7 42.5% -34.2% 108.2 14.6

100 54.9% -268.7% 214.6 28.5 3.7% 75.7% 199.6 25.5 26.4% -46.3% 6.8 10.1 38.2% -29.5% 77.4 19.3
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analyze the best trade-off solutions defined as the nearest to the (normalized)
ideal objective vector [5] for each problem instance, which corresponds to an
ideal solution that equally weights power, temperature, and QoS.

The results in Table 2 demonstrate that NSGA-II+BFH computes the best
power-aware solutions, up to 77.8% better than the BAU strategy, and NSGA-
II+BD obtains the best temperature results, up to 85.8% over the BAU strategy.
However, those solutions have a significant impact on the other objectives. Ac-
curate QoS values are obtained using NSGA-II+BD when admitting reasonable
temperature deviations, for both non-deferrable and deferrable workloads.

Regarding the best trade-off solutions, NSGA-II+EFT accounts for the lower
impacts on QoS (in average, 8.4% for non-deferrable workloads, and 10.0% for
deferrable workloads), while achieving important improvements on energy (be-
tween 38–62%) and temperature (up to 49%) when compared against the BAU
strategy. NSGA-II+BD is an acceptable second option. The results also indicate
that no significant differences on the objective function values are obtained when
considering deferrable and non-deferrable tasks using the proposed schedulers.

The reported results indicate that NSGA-II+ETF is a promising technique for
datacenter controlling, to decide the most appropriate trade-off between objec-
tives (e.g., during short periods of very high electricity price, it might be useful
to drop power demand at the expense of QoS and temperature).

Fig. 3 presents examples of Pareto fronts computed for two different (repre-
sentative) problem instances. The figures show that a good coverage of trade-off
solutions is obtained, correctly sampling the region of (equally-weighted) best
compromise solutions for the problem. When comparing the three schedulers,
we see that NSGA-II+EFT generally outperforms NSGA-II+BSD and NSGA-
II+BFH in terms of QoS. For example, for power profile A, EFT (blue) delivers
solutions with very low QoS impact all across the Pareto front, making the front
almost a 2D curve of trade-off between temperature and power violations.

Solution analysis. Fig. 4 presents four illustrative solutions from the Pareto
front obtained using NSGA-II+EFT for a problem instance with 75 tasks and
power profile A. Figs. 4(a)-4(c) show the extremes of the Pareto front. Fig. 4(a)
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Fig. 3. Sample Pareto fronts computed by NSGA-II+EFT for representative instances
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shows that the power closely follows the step-changing reference power, enabling
the datacenter to reduce electricity costs, maximize renewable utilization, or
participate in the electricity market. For example, if the electricity price was to
change from 0.4 $/kWh during peak time to 0.23 $/kWh during off-peak time
(the case for some electricity retailers in Australia) the solution in Fig. 4(a)
would reduce the energy cost in the electricity bill of the datacenter by 16.5%.
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(d) Selected trade-off solution

Fig. 4. Best and trade-off NSGA-II+EFT solutions (75 tasks, profile A)

Fig. 4(b), which gives maximum priority to temperature, shows a tight regu-
lation within less than 0.5 C from the reference. It is 81% better than the BAU
solution with respect to temperature. However, it being an extreme of the Pareto
front, we observe poor power tracking for this solution. Fig. 4(c) shows the best
solution in terms of QoS (zero violated deadlines). Finally, Fig. 4(b) presents
the selected trade-off solution from the Pareto front which is closest to the ideal
vector. While, as expected, this solution does not follow the reference power
or temperature as closely as Fig.s 4(a) and 4(b) respectively, it roughly tracks
power while maintaining the temperature deviation from the reference at less
than 1 C at all times except for a 1.2 C excursion at the end of the simulation.

6 Conclusions and Future Work

This article presented a multiobjective optimization approach for operating a dat-
acenter taking into account power profiles, temperature and QoS. The proposed
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method combines the NSGA-II evolutionary algorithm with ad-hoc QoS sched-
ulers. The experimental analysis compared three variants of the proposed algo-
rithm against a BAU planning strategy over realistic problem instances.

Accurate solutions were computed regarding the studied objectives (extremes
of the Pareto front) as well as interesting trade-off solutions which are clearly
superior than the BAU strategy. NSGA-II+ETF computed better results regard-
ing both the multiobjective optimization metrics studied, and the best trade-off
solutions. NSGA-II+BD was the second best planning strategy overall.

The main lines for future work are related to further improving the control
approach, by including more decision variables in the evolutionary optimization,
in order to extend the planning flexibility, among them dynamic voltage and
frequency scaling, battery state of charge, and the scheduling itself. The model
can be extended to support virtual machines and multi-core architectures, where
there is not a one-to-one correspondence between tasks and servers.

The ultimate goal of our research is to design and implement a model predic-
tive control to dynamically regulate the datacenter operation, allowing to update
the state of the system and solving the optimization problem as more informa-
tion arrives. High performance computing techniques should be applied in order
to speed up the optimization process, allowing to take decisions on-the-fly and
act/react when unpredictable events occur.
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Abstract. This article presents an empirical evaluation of energy-aware
schedulers under uncertainties in both the execution time of tasks and
the energy consumption of the computing infrastructure. We address an
important problem with direct application in current clusters and dis-
tributed computing systems, by analyzing how the list scheduling tech-
niques proposed in a previous work behave when considering errors in
the execution time estimation of tasks and realistic deviations in the
power consumption. The experimental evaluation is performed over re-
alistic workloads and scenarios, and validated by in-situ measurements
using a power distribution unit. Results demonstrate that errors in real-
world scenarios have a significant impact on the accuracy of the schedul-
ing algorithms. Different online and offline scheduling approaches were
evaluated, and online approach showed improvements of up to 32% in
computing performance and up to 18% in energy consumption over the
offline approach using the same scheduling algorithm.

Keywords: HPC, scheduling, energy-aware, uncertainty.

1 Introduction

Nowadays, energy efficiency is a major concern when operating clusters, data-
centers, and grid/cloud computing infrastructures. From a global perspective,
all issues related to energy consumption raise several concerns for the scientific
community, including economic, environmental, and system performance [11].

Energy consumption on computing systems does not only depend on the
energy efficiency and features of the hardware, but also on the software used
for task planning [1]. Among many different strategies for reducing the energy
consumption,energy-aware scheduling techniques have emerged as useful alter-
natives for accurate planning and lowering the power required for operation [16].
Energy reduction techniques are usually based on limiting the computing power
of the computing elements. They are in conflict with the system performance,
so applying them has an impact on the Quality of Service (QoS) perceived by
the user. Multi-objective formulations of the scheduling problem have been for-
mulated to account for the specific features of the trade-off between energy
utilization and performance [7].

G. Hernández et al. (Eds.): CARLA 2014, CCIS 485, pp. 143–157, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



144 S. Iturriaga, S. Garćıa, and S. Nesmachnow

The main trend on the scientific community in energy-aware scheduling is
based on optimizing the energy consumption of the computing elements since
the processor is the main energy consuming element among the hardware com-
ponents. The processor also offers the most flexible options for energy manage-
ment, such as dynamic voltage and frequency scaling (DVFS), dynamic power
management, slack sharing and reclamation, and other techniques [20].

Many scheduling algorithms are based on assuming that the time required to
perform every task is known in advance, and the planning is performed accord-
ing to that input information. However, that assumption does not hold true in
the case of computational infrastructures, where users submit their jobs to be
executed on heterogeneous computing elements. Accurately predicting the exe-
cution time for individual tasks is a very hard problem, mainly because the actual
execution time depends on many factors including the hardware features, com-
munications and delays due to infrastructure and parallel execution, resource
availability, among others. Estimation models using task profiling and bench-
marking have been proposed since the early 1990’s [9,10], but they rely on spe-
cific hardware features and computing models that are not fully reasonable for
nowadays clusters and distributed computing infrastructures. Furthermore, cur-
rent models for predicting the energy consumption do include some unrealistic
approximations about the power utilization, especially in the case of complex
multicore servers [16].

This article presents an empirical evaluation of energy-aware schedulers in
heterogeneous computing (HC) scenarios that consider uncertainties in both
the execution time of tasks and the energy consumption for a given computing
infrastructure. We propose three variants of each of the best energy-aware list
scheduling techniques proposed in our previous work [16]. Then, we analyze
their behavior when addressing specific instances of the energy-aware scheduling
problem in multicore HC systems, accounting for realistic errors in the estimation
of the execution time of tasks, and specific deviations in the power consumption
calculation when using a standard energy model for computing systems.

The main contribution of this article consists in proposing novel scheduling
algorithms and reporting their experimental evaluation performed over realis-
tic workloads and scenarios, validated by in-situ measurements using a power
distribution unit. The empirical results demonstrate that error in real-world sce-
narios have a significant impact on the accuracy of the scheduling algorithms.
Different scheduling approaches were evaluated, and the online approach showed
improvements of up to 32% in computing performance and up to 18% in energy
consumption over the offline approach using the same scheduling algorithm.

The paper is organized as follows. Section 2 describes the energy-aware schedul-
ing problem under uncertainty. A review of related work is presented in Section 3.
The heuristics for energy-aware scheduling in high performance computing
systems are introduced in Section 4, just before the description of our model for
uncertainty in Section 5. The experimental analysis of the proposed heuristics is
reported in Section 6, Finally, Section 7 presents the conclusions and formulates
the main lines for future work.
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2 Robust Energy-Aware Scheduling under Uncertainty

This section describes the robust energy-aware scheduling problem in HC sys-
tems under conditions of uncertainty.

2.1 The Energy-Aware Scheduling Problem

In this article, we consider a multi-objective version of the scheduling problem in
multicore HC systems, taking into account the minimization of the makespan and
energy consumption. We call this problem the Makespan-Energy Heterogeneous
Computing Scheduling Problem (ME-HCSP). The mathematical formulation for
the problem considers the following elements:

– A HC system composed of a set of multicore machines P = {m1, . . . ,mM};
each machine having NC(mi) processing cores and processing speed S(mi).

– A collection of tasks T = {t1, . . . , tN} to be executed on the system, each
task arrives in time ARR(ti).

– An execution time function ET : T ×P → R+, where ET (ti,mj) is the time
required to execute task ti on machine mj .

– An execution time error function ΔET : T ×P → R+, where ΔET (ti,mj) is
the error introduced when estimating ET (ti,mj).

– An energy consumption function EC : T × P → R+, where EC(ti,mj) is
the energy required to execute task ti on machine mj , and ECIDLE(mj) is
the energy that machine mj consumes in idle state.

– An energy consumption error function ΔEC : T×P → R, whereΔEC(ti,mj)
is the error introduced when estimating EC(ti,mj).

The goal of the ME-HCSP is to find an assignment function f : TN → PM

which simultaneously minimizes the makespan and the total energy consumption
metrics. The assignment function f should schedule each task ti to be executed
without preemption on some machine mj at some time ST (ti), with ST (ti) ≥
ARR(ti). The makespan metric is defined as the maximum completion time
Cmax = maxti∈T C(ti), where the completion time of task ti is C(ti) = ST (ti) +
ET (ti,mj). The energy required to execute the task ti in the machine mj , given
by EC(ti,mj), depends on the execution time of the task ti in machine mj ,
ET (ti,mj), and the energy consumption of the machine mj . The total energy
consumption is defined as shown in Equation 1.∑

ti∈T :

f(ti)=mj

EC(ti,mj) +ΔEC(ti,mj) +
∑

mj∈P

ECIDLE(mj) (1)

Regarding the energy consumption, in this work we apply the model for mul-
ticore computing systems introduced in our previous work [16]. In this model,
the energy consumption of a task is estimated by assuming the task is CPU-
bound and approximating its energy consumption by the energy consumption of
the CPU when executing that task. This was found to be an accurate approxi-
mation in an HPC systems where most tasks are CPU intensive and where the
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CPU is the most energy consuming device. This model states that the total en-
ergy consumption accounts for both the energy required to execute the assigned
tasks, and the energy that each machine consumes in idle state. Therefore, we
do estimations for the worst case scenarios because in real systems idle machines
can be changed to an energy saving mode (or switched off).

In the previous formulation all tasks can be independently executed, disre-
garding the execution order. The independent task model is common in grid and
volunteer-based computing infrastructures, as well as in BoT applications.

2.2 Robust Scheduling

Most modern High Performance Computing (HPC) systems are comprised of a
large number of distributed and heterogeneous computing elements. The exe-
cution times of tasks in these HPC systems is inherently unpredictable [5,15];
computing element heterogeneity and network communication delays contribute
a great deal to task execution time uncertainty. But arguably the major factor
of uncertainty when scheduling tasks in HPC systems is introduced by the users
of the system when specifying the Estimated Execution Time (EET), defined as
EET = ET +ΔET . The ET of all tasks is a very important component in order
to compute an accurate task schedule, but because it is unknown for the schedul-
ing algorithm, nowadays HPC systems relay on user estimates of tasks execution
times, the EET. This is true for most of the modern scheduling products such
as Load Leveler, Maui, Open Grid Scheduler, etc. [19].

Studies show the EET estimates are highly inaccurate, in some cases the ET of
a significant number of jobs account for 10% or less of their EET [3]. There are a
number of reasons for the high inaccuracy of the EET estimates. The first being
that a significant number of tasks fail to execute because of task initialization
errors. Though this is more related to configuring errors than to inaccurate EET,
it still needs be considered by the scheduling algorithm. Another reason is that
tasks that do execute correctly are largely overestimated. This is because many
systems kill an executing task after its EET has been consumed, hence the EET
estimate is not the true user estimate, but rather the maximum amount of time
the user is willing to wait for the task execution output before it is acceptable
for the task to be killed by the system [15]. Real-world execution traces show
this is true even for tasks following the independent task model [19].

Energy consumption estimation is greatly affected by execution time estima-
tion errors since energy consumption directly depends on the execution time of
the scheduled tasks. But this is not the only uncertainty source; although the
CPU is the most energy consuming device in HPC systems, certainly it is not the
only one. Energy consumption is also affected by the use of peripheral devices
(such as hard drives, network adapters, etc.) and by the use of cooling devices
(such as cooling fans, air conditioning, etc.).

Uncertainty in the energy consumption and the execution time of tasks in
HPC systems can lead to a considerable performance loss in task execution [19].
Hence, looking for scheduling solutions that are robust against such inaccuracies
may help alleviate, or even neglect, the performance decrease they produce.
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3 Related Work

Several works in the related literature have studied algorithms to find flexible
solutions to the scheduling problem, i.e. they are able to handle some kind of
uncertainties related to faults in the system, or they are expected to be less
affected by these uncertainties than a regular scheduler.

Ali et al. [2] proposed a mathematical formulation of a metric for the ro-
bustness which can be applied to various parallel and distributed systems. The
authors apply this metric to two example systems, one of them being the in-
dependent application allocation system that we are considering in this paper.
When adopting this robustness metric, it is guaranteed that if the collective dif-
ference of the actual task execution times versus the estimated times is within
a certain calculated range, then the given makespan requirement will be met.
This metric has been used in a number of related works [7,13].

Several works aim at predicting an uncertainty value in order to include this
prediction into the scheduling knowledge. All these works focus on predicting ex-
ecution time uncertainty while considering a simple FCFS scheduling approach;
they do not consider the energy consumption of the system. Tsafrir et al. [19]
proposed a system-generated prediction system based on users’ history and ap-
plied it to the EASY [8] algorithm. Using this approach they achieved a 25%
average reduction in wait time and slowdown. Tran et al. [14] presented a method
for predicting task execution time based on historical data. Using this predictor
they were able to improve accuracy by up to 32%. The CREASY scheduler by
Shmueli et al. [17] exploits knowledge on user behavior to improve QoS of the
system. Using an alternative simulation methodology called site-level simulation
they were able to improve user productivity by up to 50%. Tang et al. [18] an-
alyzed the impact of execution time estimates in scheduling algorithms on the
Blue Gene/P, designing and implementing a number of schemes for adjusting es-
timates. These schemes make use of historical workload data in order to predict
the accuracy of a task estimation considering user and project information. The
analysis showed the user estimates are highly inaccurate with only 31–33% of all
the considered tasks having an estimation accuracy of 80% or more, and up to
21–28% having an accuracy of 20% or less. The experiments showed the adjusting
schemes were able to improve up to 20% the performance of the system.

In our previous work [16], the model for multi-core computing systems that
we apply in this article was introduced. Our approach did not apply DVFS nor
other specific techniques for power/energy management. Instead, we proposed
an energy consumption model (MIN/MAX model) based on the energy required
to execute tasks at full capacity (EMAX), the energy when not all the available
cores of the machine are used, and the energy that each machine on the sys-
tem consumes in idle state (EIDLE). In our previous work, we proposed twenty
fast list scheduling methods adapted to solve the bi-objective problem we also
consider here, by simultaneously optimizing both makespan and energy con-
sumption when executing independent BoT applications on a computing system
composed of multi-core computers.
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In this work we propose to study the impact on real-world scenarios of both
execution time and energy consumption uncertainties when considering system
performance and energy efficiency objectives. We evaluate a set of online and
offline variants of scheduling algorithms proposed in [16] which simultaneously
consider both objectives. To the best of our knowledge, this is the first work to
evaluate energy consumption uncertainty in a computing scheduling problem.

4 Robustness of Energy Aware Scheduling Heuristics

In this work we consider three well-known scheduling approaches which can be
classified as offline, online greedy, and online batch [12]. The offline approach
assumes all tasks are known beforehand, hence the scheduling algorithm needs
only to be executed once and is able to consider all the tasks simultaneously for
the scheduling decisions. This approach is definitely the best in an uncertainty
free problem, since the scheduling algorithm is provided with absolutely all the
available information for making scheduling decision. Unfortunately, because the
scheduling algorithm is executed only once, it is unable to dynamically adjust
the scheduling to cope with uncertainty values.

On the other hand, in the online approach tasks are not known by the schedul-
ing algorithm until they arrive. This requires the scheduling algorithm to be
executed multiple times for completely scheduling a task workload. We tackle
the online scheduling problems using two different techniques, one is a greedy
technique and the other is a batch oriented technique. In the online greedy ap-
proach, tasks are scheduled one at a time as soon as they arrive and are never
rescheduled. This approach is very simple and straightforward, and is able to re-
act to some degree to uncertainty in the data. On the downside, the information
available to the scheduler for making the scheduling decisions is minimal.

The online batch approach tackles some of the previously presented problems.
In this approach the scheduling algorithm is re-executed after a predefined time
step, all the tasks that arrive in a given time-step are delayed, are grouped
as a batch, and are scheduled together by the scheduling algorithm. This way
the online problem is treated as a succession of smaller offline problems. We
consider two further improvements to this approach. The first being that in
every scheduling batch not only the tasks that arrive in that time step are
considered by the scheduler, but also all the tasks from previous batches already
scheduled but which have not started their execution (i.e. are still queued). The
second improvement is that the scheduling algorithm is not executed in every
time step, it is executed only if in the current time step some meaningful event
has occurred (i.e. at least one task has finished or at least a new task has arrived).

In this work we evaluate five different scheduling algorithms following the pre-
vious approaches. For the offline and online batch approaches we considered three
multiobjective two-phase list-scheduling algorithms proposed in [16]: MaxMin,
MaxMIN, and SuffMIN. Because a two-phase approach is not applicable to the
online greedy approach, two simple single-objective algorithms were proposed:
Min and MIN. The algorithms work as follows:



An Empirical Study of the Robustness of Energy-Aware Schedulers 149

– MaxMin is a traditional two-phase heuristic which considers the makespan
objective in both phases. In the first phase the task t with the largest compute
time is selected. In the second phase task t is assigned to the machine which
minimizes the makespan.

– MaxMIN is a two-phase heuristic which considers the makespan objective in
the first phase and the energy consumption in the second. In the first phase
the task t with the largest compute time is selected. In the second phase
task t is assigned to the machine which minimizes the energy consumption.

– SuffMIN again considers the makespan objective in the first phase and the
energy consumption in the second. In the first phase the task t which suffers
the most if not assigned right away is selected. In the second phase task t is
assigned to the machine which minimizes the energy consumption.

– Min and MIN are one-phase greedy heuristics that assign tasks as they
arrive, considering the makespan (Min) and the energy consumption (MIN ).

5 Modeling Uncertainty

In this work we consider two sources of uncertainty, the task execution time (ET)
and the machine energy consumption (EC). We present here the task execution
time model and the energy consumption model proposed in this work.

5.1 The Task Execution Time Uncertainty Model

One of the most popular models for modelling execution time uncertainty is
the f -model [15]. This model assumes the task’s EET is uniformly distributed
within [ET, (f + 1)ET ], where f is some positive factor. When f = 0 then
ΔET = 0 hence estimates are identical to execution times, and the larger the
f -value the greater the user inaccuracy in the system. In this work we perform
some empirical analysis and show the f -model does not fit the empirical data
considered in the analysis, hence we deduce some simple model from the data in
order to model task execution time uncertainty in this work.

In order to construct a model for uncertainty in the tasks execution time
we performed an empirical study using workloads from three real-world HPC
infrastructures. The analysis is two-fold, first we studied the EET of the tasks
to characterize the user behavior when requesting execution time for their tasks,
and second we studied the ΔET of the tasks considering their requested EET.

The first analyzed infrastructure is the CEA Curie system, a large HPC in-
frastructure with 93312 cores during the considered time span. A workload with
773138 tasks, which spans for 20 months (Feb. 2011–Oct. 2012), was used. We
also studied the RICC infrastructure, a medium sized system with 9216 cores. A
workload with 447794 tasks, which spans for 5 months (May 2010 to Sept. 2010)
was used. Finally, we studied the Cluster FING system, a small sized system
which was comprised of 408 cores during the considered time span. For the
Cluster FING system a 31 months period was analyzed, in this period dated
between November 2011 and June 2014, a total of 500000 tasks were executed.
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The CEA Curie and RICC task workloads are available at the Parallel Work-
loads Archive http://www.cs.huji.ac.il/labs/parallel/workloadwhile the
Cluster FING workload is available at www.fing.edu.uy/cluster.

When analyzing the EET of the tasks in the studied real-world workloads, we
found that most EETs are within either less than 20% or more than 80% of the
maximum execution time allowed in the system. Hence, we propose grouping
tasks in the workloads in 5 different groups: in the first group tasks which have
EET between 0% and 20% of the maximum execution time, in the second groups
tasks with EET between 20% and 40%, then between 40% and 60%, then between
60% and 80%, and finally between 80% and 100% (see Fig. 1).

When averaging the results for the three real-world workloads, we see that in
average 50% of the tasks request less than 20% of the maximum allowed execu-
tion time, 45% of the tasks request more than 80% of the maximum execution
time, and the remaining 5% is somewhat uniformly distributed.

Regarding ΔET , the workload analysis showed that the estimation errors are
rather large and, again, not uniformly distributed. Further analysis showed that
a significantly large number of tasks present either a quite accurate estimation
or a very inaccurate estimation. This is shown in Fig. 1. This empirical findings
are similar to the ones presented by Tsafrir [19]. Based on this data we propose
three different error scenarios for our model: Δlow

ET with an average error of 48%,

Δmed
ET with an average error of 56%, and Δhigh

ET with an average error of 67%.

relative EET percentage of tasks

[0, 20%) 50%
[20%, 40%) 2%
[40%, 60%) 2%
[60%, 80%) 1%
[80%, 100%] 45%

relative EET error
percentage of tasks
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ET Δmed

ET Δhigh
ET

[0, 40%) 45% 35% 25%
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Fig. 1. Analysis of the proposed workloads

5.2 The Energy Consumption Uncertainty Model

We conducted a set of empirical evaluations in order to determine the uncertainty
model for the energy consumption.

Our starting point was the high-level theoretical linear increasing model that
we originally introduced in our previous work [16]. This model proposes a linear

http://www.cs.huji.ac.il/labs/parallel/workload
www.fing.edu.uy/cluster
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increase in the energy consumption (from EIDLE to EMAX) when using an
increasing number of CPU cores. However, the model is only focused on the
energy consumption of the processor; it does not take into account the energy
consumption due to memory utilization and I/O devices. Thus, in this work we
aim at validating the energy consumption model and estimate deviations from
the previous model due to other energy consuming components.

In order to evaluate the model, three basic tests were executed using a server
from our HPC infrastructure at Universidad de la República. The server is an
HP Proliant DL385 G7 server with two AMD Opteron 6172 processors with 12
cores running at 2.1 GH, and 24 GB of RAM memory.

For the energy evaluation, a specialized Power Distribution Unit (PDU) was
used: CyberPower PDU20SWHVIEC8FNET. We connected only the server run-
ning the tests to the PDU, as it lacks the capability of per outlet measurement. A
specific application was developed to poll and log the energy consumption data,
due to a limitation on the granularity of the logging capabilities of the PDU,
which is only able to save log data at a rate of one measurement per minute.
The logging application was executed in a separated computer also connected
to the PDU, in order to avoid adding its own energy consumption to the mea-
surements. Using the logging application, we were able to log a minimum of four
and a mean of six instant energy measurements per second during each test.

The tests consist in executing an increasing number of applications in order
to use different number of cores, from a single core up to twenty four cores. The
applications used in the tests range from a simple mathematical operation to a
complex transformation, in order to evaluate different scenarios:

1. Single loop. The first test consists on running a simple C++ loop performing
a multiplication a huge number of times, this way ensuring a fully CPU-
bound test using only one CPU.

2. LINPACK. The second test is based on an open source sequential implemen-
tation of the LINPACK benchmark [6]. We adjusted the LINPACK parame-
ters to have an acceptable execution time while not using too much memory,
to reduce the race for cache and RAM memories when running 24 instances.

3. Fast Fourier Transform. This test is similar to the previous one, but based
on an open source implementation of the Fast Fourier Transform [4]. In this
case, the evaluation was made using only up to 23 instances of the test,
because the parameter setting resulted in an execution time for twenty-four
instances that doubled the twenty-three one, due to race for RAM memory.

In the tests, the energy consumption was estimated from the logs obtained
using the PDU by applying an interpolation of the instant power measurements.
The graphics in Figure 2 shows the energy consumption when using an increasing
number of cores for the three applications in the test (loop, LINPACK, and FFT,
respectively). The fourth graphic in Figure 2 is an example of the instant power
usage as function of time for the loop test case, where the execution of the tests
using an increasing number of cores were performed one after the other.
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Fig. 2. Energy consumption for the three applications in the test (loop, LINPACK,
and FFT, respectively), and instant power usage sample (loop test case)

Table 1 reports the maximum (worst case) and mean values for the error and
the deviation from linearity in the energy consumption, along with the relative
error values for each application in the test suite.

Table 1. Error results and deviation from linearity for the three tests performed

test
error deviation from linearity relative error

maximum mean maximum mean maximum (%) mean (%)

simple loop 5.71 2.56 2.48 1.11 7.36 3.34
LINPACK 5.36 2.39 2.74 1.23 21.58 7.98
FFT 3.52 1.26 2.82 1.01 13.11 4.88

The numerical results validates the linear increasing energy consumption
model, as we verify that the deviation from linearity when using real appli-
cations is below 3%; and the relative error on the energy consumption is below
8%, and about 5% in average. These results demonstrate that no significant im-
pact is observed when executing CPU-oriented applications, such as the ones
commonly executed in HPC facilities. Taking into account the results of the
empirical analysis, we assume that the energy consumption error for multicore
computers is in the range [-5%,5%].
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6 Experimental Analysis

This section reports the experimental analysis of the proposed heuristics for
robust energy-aware scheduling under uncertainty.

6.1 Problem Instances

We created a number of problem instances to evaluate the scheduling algorithm
using the proposed uncertainty model. Each problem instance is defined by the
task workload, describing the tasks to be executed in the system, and the machine
scenario, describing the hardware infrastructure to execute the tasks.

The machine scenarios were created using the model for energy consumption
in multicore computers [16] which makes use of a list of CPU and generates each
scenario selecting machines using a uniform probability distribution. However, in
this work we propose an alternative machine selection method for constructing
each scenario: the CPUs are sorted according to their generation, the mean of
the Gaussian probability distribution is uniformly selected, and two different
standard deviation values are used, σhigh and σlow . These σ values represent
the machine heterogeneity in the generated scenario and they are defined as
σhigh=0.25×M and σlow=0.025×M , where M is the number of machines in the
scenario. This new machine selection method models a more realistic computing
infrastructure comprised of sets of machines with similar computing power.

Scenarios of three different sizes were generated for this work following this
new approach, M ∈ {8, 12, 16}. A total of 800 scenarios were generated for each
of the considered number of machines, with the smallest 8-machine scenarios
comprising an average of 131 cores per scenario, and the largest 16-machine
scenarios comprising an average of 262 cores per scenario.

Regarding the task workload generation, 1024 tasks were generated for each
workload using a Poisson probability distribution to model their arrival time. The
experiments were performed using the lowest and highest average arrival rates of
the three real-world workloads analyzed, λlow = 0.317 and λhigh = 0.634. With
this settings, the average simulation time of each 1024-tasks workload is around
53 minutes when using λlow and around 26 minutes when using λhigh.

We fixed the maximum allowed time for each task execution to be 28 hours,
which considering the proposed uncertainty model results in an average task
EET of 13.7 hours and an average task ET of 7.8 hours.

A total of 400 task workloads were generated, 50 workloads for each combi-
nation of execution time error rate (ΔET ) and arrival rate (λ). Each workload is
evaluated with two machine scenarios, with high and low heterogeneity. Hence,
a total of 800 experiments were conducted with different problem instances.

6.2 Results and Discussion

In this section we present and discuss the experimental analysis results for all
the performed experiments.
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Table 2. Average makespan and energy deviation for the offline algorithms

num.
ΔET

offline heuristic
machines MaxMin MaxMIN SuffMIN

m
a
ke
sp
a
n

8
low 24.2% 16.8% 29.9%
med. 31.4% 22.2% 37.9%
high 38.4% 28.0% 46.6%

12
low 22.1% 13.1% 28.9%
med. 27.7% 16.7% 36.0%
high 34.0% 21.7% 45.0%

16
low 20.7% 11.7% 27.8%
med. 23.6% 13.1% 33.3%
high 29.2% 18.1% 42.0%

en
er
gy

8
low 33.7% 37.6% 26.8%
med. 42.0% 45.5% 35.9%
high 53.1% 54.8% 48.5%

12
low 30.6% 35.7% 15.5%
med. 38.1% 42.9% 26.5%
high 50.1% 52.5% 41.9%

16
low 28.5% 34.8% 11.3%
med. 37.0% 41.5% 20.0%
high 46.5% 50.5% 32.3%

First we explore the deviation from the expected schedule when using the
offline scheduling algorithms. Table 2 presents the relative deviation between
the expected and the actual makespan and energy consumption for each algo-
rithm. Because of the nature of the problem the expected makespan and energy
consumption is an upper bound of the actual values of the schedule, hence all
deviation is an improvement form the expected schedule.

We can see the schedule deviation in both objectives increases as the error
rate increases, and decreases as the problem dimension increases. When com-
paring the scheduling algorithms, results show the MaxMIN algorithm is the
most robust for the makespan objective, while SuffMIN is the most robust for
the energy consumption objective. However, the gap between the expected and
the actual metrics of the schedules is significant for all the scenarios and all the
scheduling algorithms. The best results are marked in bold.

Table 3 compares the considered algorithms showing their average relative im-
provement with respect to the worse performing algorithm for each scenario and
objective. Results show the offline MaxMin computes the most accurate sched-
ules for both objectives in every scenario when the error rate (ΔET ) is none,
increasing its accuracy as the problem dimension increases. This was expected
as the offline algorithm is the one considering the greater amount of scheduling
information. When considering problem scenarios with higher error rates, it can
be seen that the online batch algorithms outperform the offline algorithms. The
scheduling algorithms using the online approach are able to react to uncertainty
and improve the accuracy of the schedule. The online batch MaxMin computes
the most accurate schedules for the makespan objective, and the online batch
MaxMIN computes the most accurate schedules for the energy consumption ob-
jective. It can be seen that the accuracy of the online batch algorithms increases
with the problem dimension and the error rate, achieving an improvement of up
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Table 3. Average makespan and energy consumption improvement

ΔET

heuristic

offline
online

batch greedy
MaxMin MaxMIN SuffMIN MaxMin MaxMIN SuffMIN Min MIN

m
a
ke
sp
a
n

8
m
a
ch
. none 34.7% 22.0% 0.7% 34.4% 34.0% 29.8% 27.4% 28.0%

low 23.1% 15.8% 2.4% 44.4% 44.2% 38.1% 22.7% 21.8%
med. 22.0% 16.2% 3.4% 47.2% 46.3% 40.6% 22.2% 19.9%
high 16.8% 15.0% 5.4% 49.1% 48.4% 43.2% 20.0% 19.3%

1
2
m
a
ch
. none 43.6% 29.1% 1.3% 42.7% 40.9% 36.3% 35.1% 35.4%

low 31.0% 23.3% 1.5% 48.3% 47.5% 42.1% 28.7% 28.0%
med. 26.8% 19.9% 2.1% 49.5% 47.8% 43.2% 26.4% 25.3%
high 21.7% 18.6% 3.5% 48.6% 47.9% 43.0% 24.1% 22.2%

1
6
m
a
ch
. none 48.4% 32.9% 1.7% 47.0% 43.3% 39.3% 39.1% 38.9%

low 33.2% 24.5% 1.2% 47.9% 46.0% 40.7% 28.9% 28.1%
med. 32.0% 25.5% 1.2% 50.2% 48.5% 43.4% 29.6% 29.1%
high 28.4% 22.7% 2.4% 49.6% 48.4% 44.5% 28.1% 27.0%

en
er
gy

8
m
a
ch
. none 13.4% 8.9% 0.6% 13.2% 13.1% 11.6% 10.8% 11.0%

low 10.7% 8.0% 1.9% 21.7% 22.1% 19.1% 10.8% 10.2%
med. 10.6% 8.8% 2.7% 24.4% 24.5% 21.4% 11.1% 9.7%
high 9.0% 9.2% 4.2% 27.5% 27.8% 24.9% 11.2% 10.6%

1
2
m
a
ch
. none 19.4% 13.9% 0.8% 19.0% 18.4% 16.5% 15.7% 15.9%

low 15.8% 13.1% 1.2% 25.8% 26.3% 23.3% 15.1% 14.6%
med. 14.4% 11.9% 1.9% 27.9% 27.8% 25.0% 14.5% 13.8%
high 12.2% 11.6% 2.8% 28.7% 29.2% 26.2% 14.5% 13.2%

1
6
m
a
ch
. none 23.6% 17.5% 1.1% 22.9% 21.6% 19.5% 19.5% 19.4%

low 17.4% 14.2% 1.0% 26.2% 26.1% 23.0% 15.5% 14.9%
med. 17.9% 15.7% 1.0% 29.4% 29.4% 26.1% 17.1% 16.8%
high 17.6% 15.3% 2.1% 31.6% 32.0% 29.0% 18.1% 17.3%

Table 4. Number of problem instances in which each of the proposed heuristic compute
the best makespan and energy consumption value

ΔET

heuristic

offline
online

batch greedy
MaxMin MaxMIN SuffMIN MaxMin MaxMIN SuffMIN Min MIN

m
a
ke
sp
a
n

8
m
a
ch
. none 153 2 0 32 13 0 0 0

low 1 0 0 108 89 4 0 0
med. 2 0 0 125 70 5 0 0
high 1 0 0 102 82 16 0 0

1
2
m
a
ch
. none 151 1 0 24 23 1 0 0

low 7 0 0 115 74 4 0 0
med. 7 2 0 122 61 12 0 0
high 4 0 0 91 89 16 0 1

1
6
m
a
ch
. none 170 1 0 20 9 0 0 0

low 18 0 0 111 69 2 0 0
med. 11 0 0 101 85 7 0 0
high 14 1 0 96 78 13 0 0

en
er
gy

8
m
a
ch
. none 47 13 2 69 58 11 0 0

low 0 0 0 73 117 10 0 0
med. 0 2 1 91 100 6 0 0
high 0 0 0 77 103 20 0 0

1
2
m
a
ch
. none 80 10 0 53 53 4 0 0

low 5 0 0 66 119 10 0 0
med. 2 2 0 85 94 16 0 1
high 1 0 0 63 108 26 1 1

1
6
m
a
ch
. none 93 22 3 33 46 3 0 0

low 10 3 0 76 101 10 0 0
med. 4 0 0 70 114 11 1 0
high 7 4 0 62 107 19 0 1
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to 50.2% for the makespan and up to 32.0% for the energy consumption. When
comparing the online batch and offline approaches of the best algorithms, results
show the online batch MaxMin is up to 32.3% more accurate than the offline
MaxMin for the makespan, and the online batch MaxMIN is up to 18% more
accurate than the offline MaxMIN for the energy consumption.

Table 4 shows the number of problem instances in which each algorithm is able
to compute the most accurate schedule for each objective. It can be seen that the
previous results hold. The most accurate heuristic is the offline MaxMin when no
error level is considered. The online batch MaxMin is the most accurate for the
makespan objective when higher error rates are considered, and the online batch
MaxMIN is the most accurate for the energy consumption objective also when
higher error rates are considered. Although the online greedy algorithms are able
to compute competitive schedules in average, they are not able to compute the
most accurate result for any problem instance.

7 Conclusions and Future Work

This work presented a formulation for the energy-aware scheduling problem con-
sidering uncertainties in the execution time of the tasks and in the energy con-
sumption of the computing infrastructure. We analysed three real-world task
workloads and proposed a workload generation model considering uncertainties.
We also conducted empirical evaluations to validate and extend our previously
proposed energy consumption model to consider uncertainty values.

In order to analyse the impact of these uncertainty values we evaluated a set of
scheduling algorithms considering different scheduling approaches. Some of these
scheduling approaches being better fitted to cope with uncertainties than others.
Results show the uncertainty values in real-world scenarios significantly affects
the accuracy of the scheduling algorithm, hence considering these uncertainty
values may improve the accuracy of a scheduling algorithm.

In future work, we propose to extend our mathematical model to consider
parallel non-independent tasks and to characterize the energy consumption of
tasks which are not entirely CPU-bound, allowing us to model even more realistic
problem instances and to take advantage of technologies such as DVFS. We
will work on improving the accuracy of our proposed scheduling algorithms and
compare them with some well-known commercial batch scheduler, e.g. Maui.
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Abstract. Multi-Bulk Synchronous Parallel (MultiBSP) is a recently
proposed parallel programming model for multicore machines that ex-
tends the classic BSP model. MultiBSP is very useful to design algo-
rithms and estimate their running time, which are hard to do in High
Performance Computing applications. For a correct estimation of the
running time, the main parameters of the MultiBSP model for different
multicore architectures need to be determined. This article presents a
benchmark proposal for measuring the parameters that characterize the
communication and synchronization cost for the model. Our approach
discovers automatically the hierarchical structure of the multicore archi-
tecture by using a specific tool (hwloc) that allows obtaining runtime
information about the machine. We describe the design, implementation
and the results of benchmarking two multicore machines. Furthermore,
we report the validation of the proposed method by using a real Multi-
BSP implementation of the vector inner product algorithm and compar-
ing the predicted execution time against the real execution time.

1 Introduction

Performance prediction is an important tool for performance analysis of parallel
applications [5]. This technique involves modeling program performance as a
function of the hardware and software characteristics of a system. By changing
these characteristics in the model, the execution time of standard programs can
be accurately predicted for a variety of platforms and configurations.

The Bulk Synchronous Parallel (BSP) model [7], is one of the most popular
among several analytical models proposed. The model assumes a BSP abstract
machine with identical processors. Each processor has access to its own local
memory and they communicate with each other through a all-to-all network,
providing uniform point-to-point access time and bandwidth capacity.

The BSP model was introduced for distributed computers, but assuming only
one core per computing node. Although the model was very successfully used in
the 1990s, it gradually became less used with the emergence of new multicore
architectures in the last decade. As the evaluation of computers gained renewed
importance, the BSP model was extended to MultiBSP by Valiant [8]. MultiBSP
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extends BSP in two ways: i) it is a hierarchical model, with an arbitrary number
of components, taking into account the physical structure of multiple memory
and cache levels within single chips as well as in multi-chip architectures; and ii)
at each level, MultiBSP incorporates memory size as an additional parameter in
the model, which was not included in the original BSP.

In this line of work, the research reported in this paper is focused on solving
the problem of characterizing multicore computing architectures, which are de-
scribed by a series of parameters such as size, latency, and memory levels. When
a parallel algorithm based on the MultiBSP computational model is designed,
the programmer needs to know the value of the parameters that describe the
architecture, since the performance of the resulting algorithm depends on these
parameters. Moreover, the MultiBSP programmer needs to conceive his appli-
cation with multiple levels of abstraction that require the appropriate use of
threads, cache memories and the cores that share these caches.

The proposed benchmark has the following features: a) it computes the Multi-
BSP parameters using a bottom-up technique for discovering the architecture
and building the hierarchy levels using the MultiBSP approach and b) it is im-
plemented using the same library that implements the abstraction levels of the
application, so it measures the critical operations taking into account not only
the theoretical aspects, but also the specific implementation.

In order to develop the proposed benchmark, we address the following topics:
i) based on the detection of the hierarchy of levels in a multicore machine,
we show how to translate the hierarchy into the components of an abstract
MultiBSP machine. ii) we explain formally all parameters, specially focusing on
communication and synchronization costs. iii) we introduce the concept of h-
communication, which is an adaptation of the h-relation of BSP for the specific
case of shared-memory relations within a single node.

Our benchmark is applied to characterize two High Performance Computing
(HPC) multicore machines. We also report the validation of the proposed method
by using a real MultiBSP implementation of the vector inner product algorithm
and comparing the predicted execution time against the real execution time.

The research reported in this article is developed within the project “Schedul-
ing evaluation in heterogeneous computing systems with hwloc” (SEHLOC1).
The main goal consists in the development of runtime systems that allow com-
bining characteristics of the software applications and topological information
of the computational platforms, in order to get scheduling suggestions to profit
from software and hardware affinities and provide a way for efficiently executing
realistic applications.

The paper is organized as follows. Section 2 introduces the BSP and Multi-
BSP models, and relevant related work about BSP benchmarking. Section 3
describes the design and implementation of the MBSPDiscover benchmark. Sec-
tion 4 reports the application of the proposed benchmark for two case studies
and the validation using a real MultiBSP application. Finally, Section 5 presents
the conclusions and formulates the main lines for future work.

1 http://runtime.bordeaux.inria.fr/sehloc/

http://runtime.bordeaux.inria.fr/sehloc/
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2 BSP and MultiBSP Models

To set the scope of this paper, this section describes the BSP and MultiBSP mod-
els. We start with a brief description of the flat BSP model and how it evolved
into the concept of multicore, which emphasizes hierarchies of components.

2.1 The Original BSP Model

The BSP model considers an abstract parallel computer, which is fully mod-
eled by a set of parameters: p—number of processors, s—processor speed, g—
communication cost, and l—synchronization cost. Using these parameters, the
execution time of any BSP algorithm can be calculated.

In the BSP model, the computations are organized in a sequence of global
supersteps, which consist of three phases: i) every participating processor per-
forms local computations, i.e., each process can only make use of values stored
in the local memory of the processor; ii) the processes exchange data between
themselves to facilitate remote data storage capabilities and iii) every partic-
ipating process must reach the next synchronization barrier, i.e., each process
waits until all other processes have reached the same barrier. Then, the next
superstep can begin.

The practical model of programming is Single ProgramMultiple Data (SPMD),
implemented as C/C++ program copies running on p processors, wherein com-
munication and synchronization among copies are performed using specific li-
braries such as BSPlib [4] or PUB [2]. In addition to defining an abstract machine
and imposing a structure on parallel programs, the BSP model provides a cost
function modeled by the architecture parameters.

The total running time of a BSP program can be calculated as the accumu-
lative sum of the cost of its supersteps, where the cost of each superstep is the
sum of three quantities: i) w, the maximum number of calculations performed
by each processor; ii) h× g, where h is the maximum of the messages sent/re-
ceived by each processor, with each word costing g units of time; and iii) l, the
time cost of the barrier synchronizing the processors. The effect of the computer
architecture is included by the parameters g and l. These values, along with the
processor speed s, can be empirically determined for each parallel computer by
executing benchmark programs at installation time.

2.2 The New MultiBSP Model

Modern supercomputers are made of highly parallel nodes with tens of cores.
The efficiency of these nodes required improvements of the memory subsystem
by adding multiple hierarchical levels of caches as well as a distributed memory
interconnect causing Non-Uniform Memory Access (NUMA). In 2010, Valiant
updated the BSP model to account for this situation, resulting in the MultiBSP
model. It was defined with the same abstractions and bridge architecture as the
original BSP, but adapted to multicore machines.
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The MultiBSP Model describes a model instance as a tree structure of nested
components, where the leaves are processors and each internal node is a BSP
computer with local memory or some storage capacity.

Formally, a MultiBSP machine is specified by a list of tuples (levels) where
each tuple has four parameters (mi, pi, gi, Li) where:

– pi is the number of i-1th level components inside an ith component. For
i = 1, these 1st level components consist of p1 raw processors, which can be
regarded as 0th level components. One computation step of such a processor
on a word in level 1 memory is taken as one basic unit of time.

– gi is the communication cost parameter, it is defined as the ratio of the
number of operations that a processor can perform in a second and the
number of words that can be transmitted in a second between the memories
of a component at level i and its parent component at level i + 1. A word
here is the amount of data on which a processor operation is performed. We
assume that the level1 memories can keep up with the processors, and hence
that the data rate (corresponding to the notation g0) has the value one.

– Li is the cost for the barrier synchronization for a level i superstep. The
definition requires barrier synchronization of the subcomponents of a com-
ponent, but no synchronization across above branches in the component
hierarchy.

– mi is the number of words of memory inside an ith level component that is
not inside any i− 1th level component.

Fig. 1. Schematic view of the ith component level of MultiBSP model

Fig. 1 shows a component of level i. A level i superstep is a construct running
at a level i component that allows each of its pi level i − 1 components to
execute independently (including supersteps of level i − 1). Once all pi finish
their computation, they can all exchange information with the mi memory of
the level i component with a communication cost determined by gi−1. The cost
charged will be mgi−1, wherem is the maximum number of words communicated
between the memory of the ith level component and any one of its level i − 1
subcomponents. After a barrier between the pi components, the next superstep
may begin.
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Fig. 2. MultiBSP model: (5118KB, 4, g1, L1),(64GB, 8, g2, L2)

For instance, Fig. 2 shows a machine, whose architecture can be specified by
three MultiBSP components (level0, level1 and level2): (0, 1, 0, 0), (5118KB, 4,
g1, L1) and (64GB, 8, g2, L2). We can ignore the level0 because it represents
only one processing unit and thus does not involve internal synchronization or
communication. Therefore we only have two components, which corresponds to
the two level of hierarchy in the architecture.

A benchmarking algorithm for the MultiBSP model will need an automatic
process for discovering the specific hardware architectures. Accordingly, in our
work we use the portable HardWare LOCality (hwloc) tool [3]2 that allows ob-
taining runtime information about the architecture of the machine, such as pro-
cessors, caches, memory nodes, etc. in an abstract way.

The use of the hwloc software package has been proposed in the SEHLOC
project in order to have a tool for automatically detecting the architecture fea-
tures of multicore systems, defining the interconnection topologies and the hier-
archies for neighboring cores. We use the version 1.7.2 of hwloc, which provides
a portable abstraction (across OS, versions, architectures, etc.) of the hierarchi-
cal topology of modern architectures, including NUMA memory nodes, sockets,
shared caches, cores and simultaneous multithreading. It also gathers various
system attributes such as cache and memory information as well as the locality
of I/O devices such as network interfaces, InfiniBand HCAs or GPUs. It pri-
marily aims at helping applications with gathering information about modern
computing hardware so as to exploit it accordingly and efficiently.

2.3 Related Work

The program bspbench from BSPEdupack[4] has been the main benchmarking
program on BSP model. The proposed benchmark measures a full h-relation,
where every processor sends and receives exactly h data words. The method-
ology tries to measure the slowest possible communication, putting single data
words into other processors in a cyclic fashion. This reveals whether the system
software indeed combines data for the same destination and whether it can han-
dle all-to-all communication efficiently. In this cases the resulting g obtained by
benchmarking program bspbench is called pessimistic. The Oxford BSP toolset

2 Available under the BSD license at http://www.open-mpi.org/projects/hwloc

http://www.open-mpi.org/projects/hwloc
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[4] has another benchmarking program, bspprobe, which measures optimistic g
values using larger packets insted of single words. BSP benchmarking also can
be done by using mpibench from MPIedupack[4].

The benchmarking of the MultiBSP computational model has been recently
addressed in the article by Savadi and Hossein [6], using a similar approach as
the one we apply here. The classic BSP benchmarking is used as a baseline,
but the specification of a model instance is different. Unlike the benchmarking
methodology followed in our work, the authors consider deep architecture details
such as cache coherency, for instance for propagation of values in the memory
hierarchy. In their approach, the analysis of results is made by comparing the
real values obtained by the process of benchmarking against theoretical values of
the g and L parameters, which are computed as optimistic lower bounds (i.e. the
authors suppose that the memory utilization is always lower than the cache size,
and that all cores work at maximum speed). Our approach differs since we do
not make any assumption about the underlying hardware platform but rather
hide its characterics inside the output of will chosen benchmarks. We believe this
strategy is well suited to modern architectures that are too complex for precise
models depending on their advanced, hidden and/or rarely well documented
features.

From a practical point of view, the main advantage of our proposal is to
evaluate real MultiBSP operations implemented for the library MulticoreBSP

for C [9]. In addition, our results are validated using a real MultiBSP program,
comparing the real execution time of the inner product algorithm against the
predicted running time using the theoretical MultiBSP cost function.

3 The MBSPDiscover Benchmark for MultiBSP

This section presents the design and implementation of the MBSPDiscover bench-
mark to estimate the g and L parameters that characterize a MultiBSP machine.

3.1 Motivation

Multicore architectures are widely used for HPC applications, and both the num-
ber of cores and the cache levels have been steadily increasing in the last years.
Therefore, there is a real need to identify and evaluate the different parameters
that characterize the structure of cores and memories, not only to understand
and compare different architectures, but also for using them wisely for a bet-
ter design of HPC applications. This characterization is motivated by the fact
that the performance improvements when using a multi-core processor strongly
depend on software algorithms, their implementation, and the utilization of the
hardware capabilities.

As mentioned previously, this work follows the MultiBSP model which spec-
ifies the parameters needed to characterize a multicore machine. In this model,
the performance of a parallel algorithm depends on parameters such as commu-
nication and synchronization costs, number of cores, and the size of caches.
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Because it is hard to build analytical equations involving those variables,
performing computer benchmarking via a computational model is therefore a
reasonable method to evaluate performance and characterize the architecture.

It is important to emphasize that the quality of a benchmarking tool should
not depend on particular architecture. This extra requirement is solved by dis-
covering the relations of the different cores within each level of cache.

3.2 MBSPDiscover Design

The existing benchmark BSPbench for the standard BSP model [1] was used as
a reference baseline to design the MBSPDiscover tool. The obvious difference
between the existing benchmark and the new one is the need of obtaining pairs
of values for the g and L parameters for each level of components in the Multi-
BSP model. In addition, in the MultiBSP case, the processing is made inside of
multicore nodes instead of outside nodes through the network.

Software Architecture and Modules. Fig. 3 shows the software architecture
for the kernel of the MBSPDiscover proposal. The functionality for each of the
processes displayed in the figure is explained below:

– Discovering module: the hardware architecture is collected by using hwloc

and it is loaded in a tree of resources. This structure is inside the hwloc API
box.

– Interface: Once the tree structure is generated, a set of functions walk across
the tree using a bottom-up process for building a new tree named MBSPTree

that contains all the information needed to support the MultiBSP model.
– Benchmarking module: It retrieves core indexes and memory size from the

MBSPTree for each level. Then it measures communication and synchroniza-
tion cost through a MultiBSP submodule, as well as an affinity submodule
for pinning levels on the right cores. Finally it computes the resulting g and
L parameters.

1 MBSPTree = multibsp_discover()
2
3 foreach (level in MBSPTree ) {
4 g,L = coreBenchmark (level)
5 }

Algorithm 1.1. MBSPDiscover
pseudocode.

Fig. 3. Schematic view (left) and pseudocode (right) of the MBSPDiscover process

MBSPTree acts as the interface between both modules. Fig. 4 shows the struc-
ture corresponding to the hardware architecture presented in Fig. 5.
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Fig. 4. MBSPTree structure generated by MBSPDiscover

The Corebenchmark Module. We explain in detail the implementation of
the coreBenchmark module for computing the parameters gi and Li.

The coreBenchmark function is shown in Algorithm 1.2. It receives as param-
eters the information of the corresponding level based in the MultiBSP Model,
and data for affinity like the core indexes and the size of cache memory, which
are stored in the MBSPTree structure. At the beginning (line 2), coreBenchmark
uses the setPinning function from the affinitymodule. setPinning binds the
threads spawned by the begin function (line 3) to the cores corresponding to
the current level. The function spawns one thread per core in that level and cal-
culates the computing rate of the MultiBSP component using computingRate

function (line 4). Each level has a set of cores sharing one memory, then for
benchmarking a level, only those cores are considered.

The computingRate function measures the time required to perform
2×n×DAXPY operations. The DAXPY routine performs the vector operation y =
α∗x+y, adding a multiple of a double precision vector to another double preci-
sion vector. DAXPY is a standard BLAS1 operation 3 for estimating the platform
efficiency when performing memory-intensive floating point operations.

1 function coreBenchmark(level) {
2 setPinning(level.cores_indexes)
3
4 begin(level.cores)
5 rate = computingRate(level)
6 sync()
7
8 for (h=0; h<HMAX; h++) {
9

10 initCommunicationPattern(h)
11 sync()
12
13 t0 = time()
14
15 for (i=0; i<NITERS; i++) {
16 communication()
17 sync()
18 }
19
20 t = time() - t0
21

3 BLAS operations are described at http://www.netlib.org/blas/

http://www.netlib.org/blas/
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22 if (master) {
23 times.append (t*rate/NITERS);
24 }
25 }
26 level.g, level.L = leastSquares(times)
27 return (level.g, level.L)
28 }

Algorithm 1.2. coreBenchmark function.

Then a synchronization for the current level is performed (line 5) in order to
assure that all threads have the computing rate value.

The coreBenchmark function measures a full h-communication, which we de-
fine as the extension of a h-relation for the shared-memory case within a single
node. It is implemented as a communication where every core writes/reads ex-
actly h data words. We consider the worst case, measuring the slowest communi-
cation possible by cyclically reading single data words into other processors. In
that way, the values of gi and Li computed using the benchmark are pessimistic
values, and the real values will be always better. The variable h represents the
largest number of words read or written in the shared memory of the level. HMAX
is the maximum value for all h parameters used in the communications patterns
for each level. It may need to be different for different levels of the hierarchy, we
plan to find suitable values by trial and error.

The communication times using the h-communication pattern are initialized
by the initCommunicationPattern routine (line 7). This process is repeated
NITERS times (lines 10–13), because each operation is too fast to be measured
with proper precision. After that, the master thread in each level saves the flops
used for each h-communication (line 16).

Finally, the parameters g and L are computed using a traditional least squares
approximation method (line 19), to fit the data to a linear model, according to
the related works [1,6], providing an accurate approximation for gi and Li.

3.3 Methodology for the Empirical Evaluation of h-Communications

The methodology applied to measure the h-communications and then estimate
the parameters g and L is based on measuring the implementation of MultiBSP
operations. We refer to MultiBSP operations as the functions/procedures need to
implement an algorithm designed with the MultiBSP computational model. In
our software design, the MBSP operations module contains the implementation
of these functions, including operations provided by the MulticoreBSP for C

library [9]. This library establishes a methodology for programming according
to the MultiBSP computational model.

The software design shown in Fig. 3 is important here because when MultiBSP
algorithms are programmed using other libraries, it is possible to reconfigure the
tool, changing the MBSP operation module and re-characterizing the architec-
ture by running the benchmark with this new configuration.



An Automatic Benchmark for MultiBSP Performance Analysis 167

4 Experimental Analysis

This section reports the experimental analysis of the proposed MultiBSP bench-
mark. First, we introduce the problem instances by describing the main features
of the architectures used to test the benchmark. After that, the numerical results
and the values for the g and L parameters are reported. Finally, the validation
of our results using a real MultiBSP program is presented.

4.1 MultiBSP Architectures Used in the Experimental Analysis

For our experiments, the hierarchical levels of the considered architectures are
specially relevant. The main goals of the experimental analysis are to verify
the proper functionality of the proposed benchmark and also to compute the
corresponding values for the parameters of the MultiBSP model.

We selected two real infrastructures for the experimental analysis, which fea-
ture a reasonably large number of cores and interesting cache levels:

– Instance #1 is dell32, whose architecture is shown in Fig. 5. dell32 has four
AMD Opteron 6128 Magny-Cours processors with a total of 32 cores, 64GB
RAM, and two hierarchy levels.

– Instance #2 is jolly, whose architecture is shown in Fig. 6. jolly has four
AMD Opteron 6272 Interlagos processors with a total of 64 cores, 128GB
RAM, and three hierarchy levels.

Fig. 5. hwloc output describing the topology of the dell32 multicore machine
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Fig. 6. hwloc output describing the topology of the jolly multicore machine

For each of those architectures, we need to specify the instances in MultiBSP.
We proceed step by step for a better understanding of the MultiBSP formulation.

For dell32 we start from bottom (cores) to upper levels and build the com-
ponents in tuples that share a memory space. The first tuple is made of a single
core at level0. It does not shared any memory with any other component, so
its shared memory is 0 and both parameters g and L are zero by definition:
tuple0 = 〈p0 = 1,m0 = 0, g0 = 0, L0 = 0〉. Then, the basic 4 components in
level0 share the L3 cache memory with a size of 5MB, building a new Multi-
BSP component level1. This new component is formally described by the tuple:
tuple1 = 〈p1 = 4,m1 = 5MB, g1, L1〉. Finally, all eight components in level1
share the RAM memory, with size of 64GB, building the next and last level,
level2, in a MultiBSP specification. This one is formally described by the tuple:
tuple2 = 〈p2 = 8,m2 = 64GB, g2, L2〉.

We join all tuples using a sequence for a complete MultiBSP machine speci-
fication and discard the level0 for our benchmark proposal, because the values
of g0 and L0 are known by definition. The architecture of instance #1 is then
described by Eq. 1.

M1 = [〈p1 = 4,m1 = 5MB, g1, L1〉, 〈p2 = 8,m2 = 64GB, g2, L2〉] (1)

Using the same procedure, we build the MultiBSP specification for instance
#2, jolly. Again, level0 is described by tuple0 = 〈p0 = 1,m0 = 0, g0 = 0, L0 = 0〉.
It is the same in all machines, except for cores that use the hyperthreading
technology (in that case, an extra level is need to specify physical threads). Then,
there are two components sharing the L2 cache, with a size of 2MB. The level1
is described by tuple1 = 〈p1 = 2,m1 = 2MB, g1, L1〉 The components at level1
are grouped by sharing four L3 cache memories, with a size of 6MB, building
the level2, as defined by tuple2 = 〈p2 = 4,m2 = 6MB, g2, L2〉. In the last level
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(#3), eight components from level2 are grouped. They share the RAM memory,
with a size of 128GB, as specified by tuple3 = 〈p3 = 8,m3 = 128GB, g3, L3〉.

Finally, using the same procedure we previously applied to the dell32 ar-
chitecture (i.e. joining all tuples and discarding level0), we get the MultiBSP
specification in Eq. 2.

M2 = [〈p1 = 2,m1 = 2MB, g1, L1〉, 〈p2 = 4,m2 = 6MB, g2, L2〉,
〈p3 = 8, m3 = 128GB, g3, L3〉] (2)

Using these instances of the MultiBSP model, we can predict the running time
of a MultiBSP algorithm executed in each machine. The gi and Li parameters
in each tuple must be previously calculated using the benchmarking procedure
explained in the previous section. Next section reports the values of g and L
obtained for both architectures at each level.

4.2 Results

We report the time to perform h-communications in each level, increasing the
number h as in the coreBenchmark function. Reporting the flops for each h-
communications is important because we compute the gi and Li using least
squares to estimate the parameters at each level.

(a) Instance #1: dell32 (b) Instance #2: jolly

Fig. 7. Time to perform from h-communications per level in a MultiBSP tree, with h
between 0 and 256

Figure 7 show the hi communications in each level for dell32 (level1 and level2)
and jolly (levels 1, 2, and 3). In level1 of dell32, the communications are within
the shared memory (L3 cache), so they are twice faster than in level2, which
use the RAM memory. For jolly, the communications in level1 are within the
L2 cache, thus they are three times faster than in level2, where communications
are performed through the L3 cache. In turn, they are 1.5× faster than those in
level3 of the hierarchy, which are performed by accessing the RAM memory.
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Table 1. Computed values for g and L parameters for the studied architectures

dell 32 jolly
level g (flops/word) L (flops) level g (flops/word) L (flops)
2 977.5 15550.2 3 1315.9 16184.4
1 334.9 7792.9 2 549.9 7157.9

1 105.3 498.2

Finally, using the least squares method we estimate the values of gi and Li

over the h-communications for each level. The final values for dell32 and jolly
are reported in Table 1.

4.3 Validation of Results

For validating the results computed in the previous subsection, we conducted an
experiment using a real application, the vector inner product from BSPedupack
(actually the computation of the norm of a vector), described in Algorithm 1.3
in the MultiBSP programming model. We plan to extend the validation by con-
sidering a set of benchmark applications as future work.

1 innerProduct(level , vector) {
2 if (level.next == NULL ) {
3 return sequentialInnerProduct(vector);
4 } else {
5 begin_parallel_multibsp ( level.sons.length )
6 ownslice = split_vector(vector , multibsp_pid );
7 level = level.sons[ multibsp_pid ];
8 sync()
9 results = innerProduct(level , ownslice )

10 sync()
11 if (multbsp_id == master) {
12 return sequentialInnerProduct(results );
13 }
14 end_parallel_multibsp
15 }
16 }
17 MBSPTree = MBSPDiscover()
18 innerProduct(MBSPTree , data_vector)

Algorithm 1.3. Vector Inner Product.

Algorithm 1.3 applies the MultiBSP programming model recursively, crossing the
MCBSPTree obtained with MBSPDiscover in the proposed benchmark. Using
the tree structure, the data vector is split in slices for each thread at level i.
For i > 0, the data splitting is applied recursively. In level 0, a sequential inner
product algorithm is used to compute a partial result. Then, after synchronizing
all threads in each level, the result is the inner product for the whole data
vector. The master thread applies a reduction phase, combining all results using
the sequential inner product and then returns the result to the upper level.

The validation involves the following steps (applied for different vector sizes):

1. Estimate the amount of communications and synchronizations at each level,
by using hardware counters.
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2. Compute the values of gi and Li parameters using the proposed benchmark.
3. Compute the runtime of the algorithm using the theoretical cost model of

tje MultiBSP [8].
4. Run the vector inner product algorithm.
5. Compare the results with the theoretical prediction.

(a) Instance #1: dell32 (b) Instance #2: jolly

Fig. 8. Comparison between the real execution time against the theoretical execution
time

Fig. 8 graphically presents the comparison between the real execution time
against the theoretical execution time for both studied architectures.

The results show that when using a vector with less than 28 elements, the
real execution time is larger than the theoretical time. This happens mainly
because with few data, the time for spawning threads adds a significant overhead
compared with the time to calculate a vector slice at leveli. For dell32, when
computing vectors with more than 28 elements, both curves have the same slope,
then we can say that both times are relative and the measure is stabilized. For
jolly, the predicted and execution times have a different behavior. There is an
ideal point where both measures are the same, but when the vector is larger
than 28 elements, the execution time increases slower than the predicted time.
The good results in Fig. 8(a) validates the proposed approach, as the values gi
and Li used in the predicted time are very close to the real time. On other hand,
in Fig. 8(b) the predicted time is not as close to the real time as we expect.
However, the theoretical time is always greater than the real time, so it is useful
as an accurate lower bound for predictions.

5 Conclusions and Future Work

This work presented MBSPDiscover4, an automatic tool for characterizing mul-
ticore architectures based in the MultiBSP computational model. The proposed

4 Available from http://runtime.bordeaux.inria.fr/sehloc/

http://runtime.bordeaux.inria.fr/sehloc/
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benchmark computes the parameters g and L (communication and synchroniza-
tion cost) for the MultiBSP model. It is adaptable to any hierarchical architec-
ture and its output is a structure with the information of each level, useful for
programming applications following the MultiBSP model.

We applied the benchmark to characterize and evaluate two actual HPC mul-
ticore systems. In order to validate the results, we designed and implemented a
particular problem in the MultiBSP model, and predicted its execution costs.
The results demonstrated that the execution time can be satisfyingly predicted
when using the information from the benchmark, especially for the dell32 ma-
chine.

The main lines for future work are related to verify the results of the MB-
SPDiscover benchmark using a suite of algorithms, and extend the library for
heterogeneous multicore clusters by including a network level.
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gram partners MINCyT (Argentina), Inria (France), and ANII (Uruguay),
through the SEHLOC project.
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Abstract. Processors supporting a wide range of supply voltages are
necessary to achieve high performance in nominal supply voltage and
to reduce the power consumption in low supply voltage. However, when
the supply voltage is lowered below the safe margin (especially close to
the threshold voltage level), the memory cell failure rate increases dras-
tically. Thus, it is essential to provide reliability solutions for memory
structures. This paper proposes a novel, reliable L1 cache design, Flexi-
cache, which automatically configures itself for different supply voltages
in order to tolerate different fault rates. Flexicache is a circuit-driven
solution achieving in-cache replication with no increase in the access la-
tency and with a minimum increase in the energy consumption. It defines
three operating modes: Single Version Mode, Double Version Mode and
Triple Version Mode. Compared to the best previous proposal, Flexi-
cache can provide 34% higher energy reduction for L1 caches with 2×
higher error correction capability in the low-voltage mode.

1 Introduction

As energy is a key design concern for computer systems, microprocessors started
to provide 1) high-performance and 2) low-power operating modes [20]. Proces-
sors run at a high frequency by using the nominal supply voltage (Vdd) in the
high-performance mode, and they reduce Vdd in the low-power mode to reduce
the energy consumption by trading-off performance. However, this energy reduc-
tion comes with a drastic increase in the number of failures especially in memory
structures (i.e on-chip SRAM memories such as L1 and L2 caches) [11,15]. These
memory failures can be persistent (i.e. yield loss or hard errors) or non-persistent
(i.e. soft errors or erratic bits) while rates of both failures increase as the Vdd is
decreased. Moreover transistor scaling increases the vulnerability of transistors
to radiation events since it increases the likelihood of having multibit soft errors
on adjacent bits [7]. Thus, it is essential to implement reliability solutions ad-
dressing both persistent and non-persistent failures in caches in order to reduce
the Vdd and provide reliable cache operation for future technology nodes. There
are two main techniques to deal with high fault rates stemming from the above
issues: 1) Coding techniques such as parity or ECC, 2) In-cache replication.
While they are effective, both mechanisms have issues.

G. Hernández et al. (Eds.): CARLA 2014, CCIS 485, pp. 173–190, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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Error Correction Codes (ECCs) are the most widely used techniques for de-
tecting and correcting both persistent and non-persistent failures with additional
area, power and encoding/decoding time overhead [12,18,23]. However, the in-
crease in the error correction capability of ECC is much lower than the increase in
power and area consumption. For example, in 8-byte data, correcting a double-
bit error costs 19% area overhead while three-bit error correction requires a
stronger and a more complex ECC with 100% area overhead [7]. Intel’s latest
22nm 15-core Xeon processor uses Double Error Correction, Triple Error Detec-
tion (DECTED), a very strong ECC, for its L3 cache data tag array; however,
the computational cost of DECTED ECC impacts the L3 data accesses, whose
latency is variable, thus significantly complicating the micro-architecture [25].
Due to the diminishing benefits of stronger ECCs, providing reliability in an
environment with a very high fault rate (i.e. more than 10−3 failure probabil-
ity for each bit) such as when the processor is operating in a very low power
mode, is not trivial. Thus, only a few ECC solutions address large-scale multibit
errors in a line [12,23]. However, they require a complex encoder/decoder with
a high energy consumption which diminish the energy saving potential of the
low-power mode execution. The second mechanism, in-cache replication such as
triplication, is a conventional way of providing high reliability with a minimum
fault recovery latency in which replicated cache lines are corrected via bitwise
majority voter [9,31]. However, replication schemes have two main problems: (1)
Writing/reading more than one cache line increases access latency and energy
consumption. (2) When processors operate with a very low Vdd, the number of
uncorrectable lines increases due to the multiple failures in the same bit-position.

In this study, our goal is designing on-chip SRAM memories which can tolerate
very high bit failure rates of ultra-low voltage execution with minimum overhead,
and without harming the cache capacity in the nominal mode. To this end, we
present Flexicache, a new cache design which avoids the problematic aspects of
coding and in-cache replication through a two-tiered approach. First, Flexicache
proposes a circuit-driven solution that duplicates/triplicates all the available
cache lines and achieves read/write accesses to multiple lines without increasing
access latency and with a minimum increase in the access energy. Flexicache
automatically configures itself for different supply voltages in order to tolerate
different fault rates. It works in one of the three modes:(1) Single Version Mode
(SVM), (2) Double Version Mode (DVM) or (3) Triple Version Mode (TVM).
Second, Flexicache divides each cache line into single-parity-protected partitions
to increase the error correction capability of replication schemes.

The main contributions of this study are the following:

– We present a novel, reliable cache design, Flexicache, which configures itself
for different supply voltages from the nominal to the near threshold voltage
levels in order to duplicate or triplicate each data line when higher reliability
is required.

– Flexicache provides significantly higher cache capacity with less error cor-
rection energy compared to OLSC [12] and conventional triplication.
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– Flexicache allows cache operating down to 320 mV (10% failure rate) by
presenting, on average, 63% energy reduction in cache operations. The area
overhead of Flexicache is only 12% compared to a typical L1 cache.

2 Background and Related Work

In this section, we first explain the nomenclatures of failures in memory struc-
tures. Then we present the previous schemes used for scaling Vdd.

Memory Failures: Bit failures are classified into two broad categories [12]:
Persistent Failures: The random variation in the number and location of dopant

atoms in the channel region of the device leads to the random variations in
transistor threshold voltage. It causes threshold voltage mismatch between the
transistors close to each other. In a SRAM cell, a mismatch in the strength be-
tween the neighbouring transistors caused by intra-die variations can result in
the failure of the cell [4]. A cell failure can occur due to: (1) An increase in the cell
access time, (2) unstable read operation, (3) unstable write operation, (4) failure
in the data holding capability of the cell. Further details can be found in [30].
On the other side, open or short circuits cause irreversible physical changes in
the semiconductor devices. These permanent failures tend to occur early in the
processor lifetime due to manufacturing faults (called the infant mortality), or
late in the lifetime due to thermal and process related stress. The location of a
persistent failure is random and independent of whether the neighbouring bit is
faulty or not [20]. The locations of persistently defective bits can be detected by
performing built-in self test (BIST) [17].

Non-Persistent Failures: Radiation events or power supply noise can cause a
bit flip and corrupt a data stored in a device until a new data is written [8].
As transistor dimensions and operating voltages shrink, sensitivity to radiation
events increases drastically. On the other side, process variation or in-progress
wear-out, combined with voltage and temperature fluctuations might cause cor-
related faults of short duration. They are termed intermittent faults (or erratic
failures), that last from several cycles to several seconds [13]. Diagnosing an in-
termittent fault by BIST is hard since it does not persist and conditions that
cause the fault are hard to regenerate. As Vdd decreases, the bit failure rate
increases rapidly for both intermittent faults and persistent failures [23,12].

Related Work: In this section, we discuss architecture-based schemes uti-
lized under scaling voltage and compare their main characteristics with Flexi-
cache in Table 1. Orthogonal Latin Square Code (OLSC) [18] is a state of the
art ECC scheme used for level-1 caches when the supply voltage is lower than
the safe margin. Multi-Bit Segmented ECC (MS-ECC) [12] utilizes OLSC at a
finer granularity in order to increase the error correction capability of OLSC to
be used for ultra-low voltage level. Thus MS-ECC can reduce the supply voltage
until 350 mV in 35nm technology by providing 6.5% useful cache capacity (We
define useful cache capacity as the portion of the cache which is not disabled) [23].
Kim, et al. [19], propose two-dimensional (2D) ECC to correct multi-bit errors
with a minimum area overhead in check bits. However, the correction capability
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Table 1. Comparison of Flexicache with Architecture Based Error Correction Schemes
for Scaling Vcc (Bold is better)

Segmented 2D ECC Disabling/ Flexicache
ECC Bit-Fix

Persistent Failures yes yes yes yes
Non-Persistent Failures yes yes no yes
Minimum Vdd 375 mV – 400 mV 320 mV

(see Section 5)
Latency in the 1 cycle 1 cycle 0 cycle 1 cycle
Low-Power Mode
Other Latency no read-modify-write no no

of this scheme is strongly dependent upon the location of defective bits. So that,
it is not convenient to use in low-power mode when failures are random. Also,
it requires a read-modify-write operation for all Stores and for every cache miss
which increases the delay and power consumed by all write operations. Miller
et al. [23] proposed Parichute which utilizes Turbocodes for reducing Vdd of the
second and higher level caches. Although this scheme provides a very high error
correction rate supporting a voltage reduction significantly, its error correction
latency can be couple of cycles (i.e. more than 5 cycles [23]) in the near-threshold
voltage level. Thus, Parichute is not convenient to be used in time-critical L1
caches. Several disabling schemes have been proposed for tolerating only persis-
tent failures [30,3,5]. Wilkerson et al. [30] disables the faulty words in order to
combine two consecutive cache lines to form a single cache line where only non-
failing words are used. Although the area overhead of word-disable in high-power
mode is only 8%, in the low power mode the available cache size shrinks to the
half when the error rate is lower than 0.01%. Abella, et al. [3] disables sub-blocks
instead of words in order to utilize more capacity in the low-power mode. Both
disabling schemes need to access a fault map in parallel. ZerehCache [5] employs
fine granularity re-mapping of faulty bits and relies on solving a graph coloring
problem to find the best re-mapping of defects to spare lines. Bit-fix [30] stores
the location of defective bits and their correct values to the quarter of cache
ways. Circuit-based hardening approaches have also been proposed such as us-
ing 8T SRAM cells [24] which are more stable against parameter variations than
6T cells. 8T cells are useful for noisy places and specially designed for low Vdd

modes while it presents high area overhead in the nominal voltage.
In this study, we propose Flexicache, a circuit-driven solution that duplicates

or triplicates all the available lines in the cache with no increase in the access
latency. We presented the preliminary sketch of the idea for the circuit design in a
previous event without precluding further submissions [26]. In this study, besides
elaborating the circuit design, we present the details of the address decoder and
the architectural extensions of Flexicache.

3 Architecture of Flexicache

Flexicache allows three modes of error protection according to the resilience level
of the applied Vdd: Single Version Mode (SVM), Double Version Mode (DVM)
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(a) DVM (b) TVM (c) DVM
(Correction)

(d) TVM
(Correction)

Fig. 1. The figure presents the basics Flexicache for DVM (Figure.1a) and TVM
(Figure.1b) for 8-bit partitions. Also, it presents examples for correctable and non-
correctable faults.

and Triple Version Mode (TVM). Flexicache divides each cache line into parity-
protected-partitions akin to many commercial L1 caches protected by single-bit
parity in block, word or byte granularity [21]. Figure 1 presents the design of
DVM and TVM for a hypothetical 8-bit partition. SVM, which is not presented
in the figure, provides reliability solely based on single bit interleaved parity. In
this study, Flexicache runs in SVM in the nominal voltage when the failure rate
is minimum in order to provide full cache capacity for the applications. Note
that instead of parity, a stronger code can also be utilized to provide a higher
reliability for mission critical applications.

Flexicache runs in DVM when the Vdd is medium-low and writes data to two
cache lines. Note that the circuit design allows writing/reading multiple lines
simultaneously (i.e. without increasing the access time) as we explain in the
following section. In a read, DVM compares two duplicated, parity-protected
partitions through the XORs to check if there is any fault. In case of the com-
plete match, Flexicache dispatches one of the partitions to the output buffer.
Otherwise, Flexicache calculates the parity of each partition and sends out the
partition which has the correct parity. DVM provides a backup copy for each
partition. For instance, when a particle strike effects several adjacent bits in a
line, the correct value is read from its replica without requiring any decode-and-
correct time. In order to avoid the possibility of a strike affecting both coupled
lines, Flexicache couples the lines with spatially distant locations. (e.g 0th and
63th lines.)

When the Vdd is near threshold, in order to tolerate the drastically increased
error rate, Flexicache runs in TVM by writing the data to three cache lines simul-
taneously. On a read, Flexicache uses bitwise majority voting to obtain the correct
data and calculates the parity of the data. Unless parity confirms that the result
is correct, Flexicache calculates the parities of three partitions and sends out the
correct partition. In TVM, the whole cache should be divided into three which is
not trivial for a cache having 2n lines. One solution can be manually connecting
lines by taking into account that the lines in the same group should be in distinct
positions (e.g. 0th, 42th and 84th lines for a 128-line cache). However, this con-
siderably increases the complexity of the address decoder. Instead, we add spare
lines to make the cache dividable into three. For instance, for a 128-line cache, we
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add 16 spare lines and we connect every 48 lines.Note that using spare lines for
tolerating yield loss is a common approach [5,22] and, the area overhead due to
extra lines is similar to this approach.

DVM can correct odd number of errors if they effect only one copy of the data
(Figure 1c). However, if the faults are in different copies of the data, DVM can
only detect the bit-positions of the faults without correcting them. Similarly, if
there is even number of faults in one partition DVM cannot correct them, either.
TVM (Figure 1d), on the other hand, can correct errors easily unless they are
affecting the bits in the same position (it has a significant possibility in very
high bit failure rate). Otherwise, after calculating the parity, TVM detects that
the result of majority voter is not correct, and it can correct errors if one of the
three copies is error-free. If all three copies are erroneous, and some errors are
in the same bit position, TVM can not correct the partition.

When there is an uncorrectable partition in a line, we utilize a partition-fix
mechanism in DVM and TVM to avoid wasting the correct partitions. Partition-
fix is similar to the bit-fix proposed by Wilkerson et al [30]. It uses a quarter of
the cache ways to store locations and the correct values of defective partitions.
This reduces both the cache size and associativity in the low-power mode. Thus,
we utilize partition-fix mechanism only for the lines which have uncorrectable
partitions. Note that, our partition-fix mechanism is different from the bit-fix for
a non-persistent bit failure correction. In bit-fix, the cache lines are not protected
by any other means, they only rely on memory tests and fixing the detected
failures. In Flexicache, the fixed partitions are also protected by DVM or TVM
which can still correct non-persistent failures. Previous triplication schemes [9,31]
write data to three cache lines and read the correct value from the majority voter.
In Flexicache, partitioning and parity protection of each partition present higher
error correction capability.

Persistent-fault tolerating proposals perform BIST [17] either postmanufac-
turing or at boot time to determine the uncorrectable cache lines at each volt-
age level [3,30,23]. These lines are stored in on-chip ROM or main memory and
loaded before the processor transitions into near-threshold. For non-persistent
failures, if the system can not correct a fault in L1 cache, either the correct value
is re-fetched from L2 cache if the write-through cache is utilized or the system
issues a machine check exception unless other means are utilized. Flexicache per-
forms BIST test as in previous proposals to determine faulty partitions in order
to fix them or disable the cache ways/lines including them. In runtime, Flex-
icache can detect and correct non-persistent failures, as well. For uncorrected
non-persistent failures, Flexicache can utilize lightweight, global checkpointing
such as SafetyNet [28].

4 Circuit Design

Conventional triplication schemes either write three lines sequentially [31] (harms
application performance) or increases the number of read/write ports [9] (in-
creases energy consumption). Previously, we designed dvSRAM which includes
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(a) Block Diagram of a Bank (b) Layout of a sub-bank

Fig. 2. The figure shows the block diagram of a bank in a 64KB, 4-way Flexicache and
the layout of a sub-bank and address decoder of Flexicache

two values in each cell, primary value and secondary value [27]. These two val-
ues can be accessed, modified, moved back and forth between the main and
secondary cells within the access time of the cache. Ergin et al. [16] also pro-
posed similar work using a shadow cell SRAM design for checkpointed register
files. Similarly, Flexicache needs to access replicated data within the cache ac-
cess time with minimum energy. Armejach et al [6] present how a reconfigurable
cache using dvSRAM circuits can be designed so that it can dynamically switch
its configuration between a 64KB general purpose data cache and a 32KB special
purpose, dual version using data cache. Flexicache also requires a reconfigurable
cache design so that it can provide three different execution modes (i.e. SVM,
DVM, TVM) not to sacrifice the cache capacity in the high-performance execu-
tion mode.

In this section, we elaborate how we can design the circuit of Flexicache for L1
data cache so that it can replicate cache lines without increasing access latency
and with minimal energy overhead. Note that it is straightforward to extend the
design for the instruction cache and the L2 cache. Felxicache can also be designed
orthogonally to dvSRAM so that it can support both optimistic concurrency and
near-threshold voltage execution that we leave it out of the scope of this study.

In this section we present the design of Flexicache for 4-way, 64-KB data cache
with 64-byte cache lines, and two clock cycle access time. Figure 2a presents the
block diagram of one of 4 ways. We use Cacti [29] to determine the optimal
number and size of Flexicache components (e.g. number of sub-banks) and the
cache architecture with optimal access time and power consumption. For a one-
bank array, Cacti suggests 2 identical sub-banks, 1 mat for each sub-bank and 4
sub-arrays in each mat (Figure 2a). We utilize these high-level CACTI results as
inputs to subsequent cache circuit design steps: we construct for one way Hspice
transistor level netlist using 45-nm Predictive Technology Model [2]. During an
access, only one of the two sub-banks (i.e. left sub-bank and right sub-bank) and
four identical sub-arrays of the mat (i.e. each sub-array holds a part of the cache
line) are activated. The address decoder and control signal generator units are
placed in the middle part of the array. Necessary data and address wires and
drivers are placed in the middle part of each sub-bank. Flexicache divides each
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(a) Details of the Subarray (b) Address Decoder

Fig. 3. The figure presents the basic components of Flexicache such as buses, decoder
and Address Decoder

sub-array to eight equal slices (i.e sub-array slice) each containing 16 lines with
the individual precharged circuit, the write circuit, the sense amplifier circuit
and input and output buffers. Also, it extends each sub-array with an extra
slice (i.e. to make it divisible by 3). In Figure 2b, we show the layouts of one
sub-bank [1] for Flexicache; the second symmetric sub-bank is omitted.

Figure 3a presents the abstract view of the block diagram of one sub-array in
Flexicache (For the details of the required buffers and the interfaces please see
Appendix 6). According to the decoded addresses and the Vdd level, one, two
or three slice(s) are activated and the data coming from the bus is written to
the enabled slice(s). Cosemans et al. [14] evaluated the energy consumption of
the cache elements during read or write operations in a design based on 90nm
technology. For instance, during the read operation, timing components (includ-
ing delay elements and control wires) is the most energy consuming element (i.e.
30%). Similarly, address decoder consumes around 25% of the read/write energy.
Since Flexicache still uses the most of the energy-hungry components (e.g. buses,
data drivers and the address decoder) only once in DVM and TVM, it slightly in-
creases the energy consumption of timing elements and the address decoder. On
the other side, Flexicache only duplicates (triplicates) the energy consumption
of cells and sense amplifiers which consumes less than 15% of the read/write en-
ergy. Thus, Flexicache presents modest additional energy consumption in DVM
and TVM.

Figure 3b presents an abstract view of the address decoder (The detailed view
of the decoder can be seen in Appendix 6). In the figure, A0 to A7 represents
the addresses bits. The decoder uses the 4 least significant bits (i.e A0 to A3)
in order to address the line number within a slice. Also, it uses A7 to activate
either the left sub-bank or the right sub-bank. Voltage Level Detector activates
either SVM, DVM or TVM. These three signals together with A4 to A6 generates
enable signals (EN0 to ENex) which activate slice(s). At each time, depending
on the mode, one, two or three Enable Signals are high and data is written to
(and read from) one two or three cache lines simultaneously.
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Fig. 4. Slices activated at a time in DVM and TVM

4.1 Switching Between Modes

The Vdd can be increased or decreased in the runtime, thus, Flexicache needs to
switch between modes. In a näıve approach, before mode switching, the whole
cache is flushed which presents a cache warm-up performance overhead imme-
diately after switch. In this section, we present a more efficient approach. We
organized the activated slices in each mode in order to ease the switching. In Fig-
ure 4, we present the activated slices at a time during the read/write operation
of DVM and TVM.

In order to switch TVM→DVM→SVM, it is adequate to flush the slices in the
last column of the old mode in the tables shown in Figure 4. In another word,
when Flexicache switches from DVM to SVM, slices 3, 4, 5 and 7 are flushed
from the cache. Similarly, when Flexicache switches from TVM to DVM, slices
6, 7 and Extra slice are flushed. Also, if Flexicache switches from TVM to SVM
(although many systems do not allow this fast voltage increase), combination
of both columns (i.e. slices 3, 4, 5, 6, 7, Ex) are flushed. Obviously, before this
flushing operation, the slices which are not flushed (i.e staying slices) should
be corrected with the old mode. One option can be stopping the execution of
the application right after the voltage increase, using the to-be-flushed lines
for correcting the staying lines by utilizing the old mode and continuing the
application execution after all staying lines are corrected. In the second option, in
order to avoid this stopping overhead, all staying lines are traced after changing
the mode. When a line is read for the first time after the mode change (or a
dirty line is evicted from the cache), this line is corrected by using the old mode.
The second or the third replica of the line can be flushed after this correction.
If a line is written without reading after changing the mode, the flushing can be
done without requiring any correction.

However switching SVM→DVM→TVM is not that trivial since the correct
data should be updated in the second or third replica before reducing the supply
voltage. Thus, for instance, when Flexicache switches from DVM to TVM, before
reducing the supply voltage, lines in the slices 6, 7 and Ex are first evicted from
the cache. Then, these lines are updated as the third copy. As an example, lines
in slice 6 should be updated by reading the lines in slices 0 and 3 and obtaining
the correct data via DVM circuit. It is only safe to reduce the supply voltage
after that. Although switching SVM→DVM→TVM present the performance
overhead of a runtime barrier for updating the second or third copies, it is not
a show-stopper since this switch operation is required when going towards low-
power mode from the high-performance mode meaning that the application can
trade off the performance for power.
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(a) Bit failure rate (log scale). (b) Useful capacity

Fig. 5. Bit Failure Rate due to scaling voltage and he Useful cache capacity provided
by Flexicache after disabling uncorrectable lines under this bit failure rate

5 Evaluation

In this section, we compare Flexicache against a conventional triplication scheme
(TMR) and MS-ECC [12]. We use 4-way set associative, 64KB L1 cache with
2-cycle access time, 64B line size. We divide each line into 32 partitions for both
OLSC and Flexicache with the partition size of 16 bits.

Miller et al [23] examined the persistent bit failure rate in the given Vdd for
32nm technology (Figure 5a). As Vdd is lowered, the bit failure rate increases
exponentially. Flexicache targets to tolerate ultra high bit failure rates occur-
ring in the near-threshold voltage level without harming the performance of the
cache in the low error rate. For the calculation of the Vdd that Flexicache oper-
ate reliably, we reference these previous results. We inject persistent faults into
random locations according to bit failure rate (i.e. probability that a single bit
fails) given in [23]. We calculate the useful cache capacity as the portion of the
cache which is not disabled. For non-persistent failure such as soft errors, we in-
ject multi-bit failures varying between 1 to 10 bits. We present the experimental
results for the aspects of 1) useful cache capacity, 2) error correction latency, 3)
energy reduction of cache operations, and 4) reliability against non-persistent
faults (mean time to failure) and 5) uniform view of the cache. 6) area overhead,

Useful Cache Capacity: Figure 5b compares the cache capacities. We ex-
tend Flexicache with extra slices in order to make it divisible to three, and
we normalized the useful cache capacity to the non-extended capacity for fair
comparison. First, when the Vdd is high, Flexicache do not sacrifice the useful
cache capacity due to its flexible circuit design which dynamically switch its
configuration to 64KB general purpose data cache (i.e. SVM). Second, due to
the partitioning and partition-fix mechanism of Flexicache, it provides higher
cache capacity than the conventional triplication schemes even in the low-power
mode. Third, Flexicache can operate until the persistent bit failure rate is 12%
while TMR can operate until 6% bit failure rate and MS-ECC can operate
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Table 2. The figure analysis the area overhead and latency

Flexicache MS-ECC

Encoder Decoder Encoder Decoder

Number of Gates in 4 XORs 7 XORs + 2 XORS 2 XORs +
the Critical Path 2 ANDs + 2 ANDs +

2 ORs 4 ORs

Total Number 480 XORs 3K XORs + 1,5K XORs 6K XORs +
of Gates 1,5K ORs + 4,5K ORs +

3,5K ANDs 10K ANDs

Latency 1 cycle 1 cycle 1 cycle 1 cycle

Energy Overhead 2,5% 20% 5,5% 50%
(In the nominal voltage)

Area Overhead 0.06% 0.12%
(Encoder+Decoder)

until 2% bit failure rate (Bit failure rates are not shown in the graph). There-
fore, TMR and MS-ECC can provide more more than 20% of the cache capacity
when the supply voltage is as low as 400mV while Flexicache can provide the
similar amount of useful cache capacity when the supply voltage is 320 mV.

Error Correction Latency: In Table 2, we compare the area overhead and
the latency presented by encoders and decoders in Flexicache and OLSC. We
first present the number of gates in the critical paths. Although, in Flexicache,
the number of gates in the critical path are higher than the one in MS-ECC, both
encoding and decoding in each scheme can be accomplished in 1 cycle. Note that
the decoding latency can be tolerated since decoding is done simultaneously with
writing. On the other hand, total number of gates in the encoder and decoder
of MS-ECC is much higher than the one in Flexicache which presents higher
overhead in both read/write energies (4th line in the table) and area (5th line in
the table). Both Flexicache and MS-ECC require changes in the address decoder
of the cache to be able to write more than one line simultaneously. The overhead
of these address decoders are similar in both schemes.

Energy Reduction: Figure 6 presents the energy consumption of cache op-
erations (i.e. read/write energy and static energy). For read and write energies,
TMR allocates three cache ways in a non-modified cache which triplicates the
energy consumption. Similarly MS-ECC allocates two cache ways (1 for data and
the other for parity bits) when the supply voltage is lower than 700 mV, thus at
this point MS-ECC also roughly duplicates reading and writing energies. This is
mainly because the size of the in/out data is duplicated (or triplicated). Also, the
energy consumption of the OLSC decoder is very high (i.e. 50%). Thus, which
diminish the energy saving of scaling voltage for read energy as it can be seen
at 600mV when OLSC is activated in MS-ECC (Figure. 6a and Figure. 6b). On
the other hand, Flexicache accomplishes replication and fault recovery within a
way without increasing the size of the data in/out bus coming to the way. Thus,
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(a) Read Energy (b) Write Energy

(c) Static Energy (d) Average Energy

Fig. 6. Energy reduction in cache operations

reading and writing energies of Flexicache is much lower than MS-ECC and trip-
lication. For the static energies (i.e. energy spent in one cycle when the cache is
idle), Flexicache presents slightly higher energy consumption than an unmodi-
fied cache mainly due to the additional extra slices (Figure. 6c). Note that these
additional slices also increase the cache capacity that we excluded this increased
capacity in our previous results. The static energy consumption of MS-ECC is
negligibly higher than a non-modified cache due to OLSC encoder/decoder. It
has been showed that dynamic energies are only the 30% of cache energy con-
sumptions and among them they are mostly (two out of three) read operations.
By considering that, in Figure 6d, we present the average energy consumption
of a cache at a time. The figure shows that only Flexicache can operate when
Vdd is 320 mV by presenting 39% reduction in the energy consumption of the
cache compared to non-modified cache when it executes in the high-performance
mode with the minimum safe Vdd (i.e. 700 mV). MS-ECC can reduce the energy
consumption by only 5% compared to the same minimum safe voltage level.

Reliability against Particle Strike: In Figure 7, we inject non-persistent,
multi-bit faults (i.e. size of the faults are between n=1-10 bits which means n
adjacent bit become faulty due to a particle strike) to the non-disabled cache
portion and, we present the fault coverage (i.e. the percentage of the injected
faults) for error detection (Figure 7a) and error correction (Figure 7b). In the
high-performance mode, MS-ECC can not detect or correct non-persistent faults
since it does not extend the cache lines with ECC codes. On the other hand,
each cache line is extended with ECC protection in the low-power mode when
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(a) The percentage of de-
tected errors.

(b) The percentage of cor-
rected errors.

Fig. 7. Non-persistent fault injection

the persistent fault rate is very high. At this point, additional multi-bit non-
persistent faults leads the total number of faults in the cache line higher than
OLSC can correct. Thus, non-persistent fault correction capability of MS-ECC
is around 20% or less. Note that error detection capability and error correction
capability of MS-ECC are identical since OLSC intends to produce the correct
data without trying to detect if there was a fault or not. In SVM, Flexicache
can not correct faults, but it can detect half of the injected faults (i.e. when
the size of the fault is odd). In DVM, it can correct half of the injected faults
since it uses parity for the error correction while it can detect more than 90% of
the injected faults. TVM can provide more than 90% error correction capability
until Vdd is 400mV. When Vdd is 320mV, only TVM can provide useful cache
capacity. At this point, it can detect 58% of the injected non-persistent faults
and can correct half of the injected faults. In this study, we switch from SVM
to DVM when the Vdd is 600mV. One can decide to utilize DVM for higher Vdds
for reliability critical applications or systems in faulty environments in order to
provide higher reliability with the cost of useful cache capacity.

Area Overhead: After adding parity bits, parity calculators, extra slices,
XORs, majority voters, buffers and peripheral circuits, Flexicache presents 12%
area overhead compared to the typical cache without any protection. The biggest
portion of this overhead belongs to the extra slices which we add to make the
cache dividable by three, therefore, actually increasing the size of the cache.
This layout allows Flexicache dynamically switch between SVM, DVM and TVM
which provides maximum 100%, 50% and 33% useful cache capacity as we pre-
sented in Figure 5b.

6 Conclusion

In this study, we present Flexicache, a novel, reliable cache design which config-
ures itself for different supply voltages from the nominal to the near threshold
voltage levels in order to duplicate or triplicate each data line if higher reli-
ability is required. Flexicache can continue to operate reliably up to 10% bit
failure rate. Therefore, it alters the possibility to operate in 320 mV. Compared
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to MS-ECC [12] and conventional triplication, Flexicache provides a cache with
a higher capacity in low-power mode with significantly less energy consumption.
Also, Flexicache can provide higher reliability against non-persistent faults.

Future Work: A way of overcoming the lack of knowledge of voltage-reliability
relationship could be the integration with lightweight error detection schemes,
such as ECC. When error handling is beyond the capacity of error detection
schemes, the in-cache redundancy can be increased.
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A Appendix

In this section we explain the circuit details of Flexicache for a sub-array and for the
address decoder that we used in the evaluation of energy and area overhead. In the
main text, we present abstract views of these structures for simplicity.

A.1 Details of Sub-array

Figure 8 shows the block diagram of each sub-array structure. The figure presents the
necessary buffers, comparators, parity calculators and control and data lines in detail.
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Fig. 8. Address Decoder and Sub-Array in Flexicache

For writing the selected cache line in SVM, signal IEU1 is high and activates input
buffers IB1 and IB2 and data can transfer to the selected cache-line via Bus4 and
Bus1; and similarly for reading the selected line, signal OEU1 is high and output
buffers OB6 and OB13 are active and data is transferred from Bus1 to Bus3. Bus3
(Bus4) is connected to output data drivers (input data drivers) which are located close
to each sub-array. At each access time, the enabler signals (CDE and CTE) are high
and activate connector buffers, CD1, CD2, CD3, CD4, CT1 and CT2 and connect
nodes B1, B2, B3, B4 and B5 to each other (Each connector buffer contains two series
inverters with enablers). Similar to many typical L1 caches error protection is based
on bit-parity calculation in order to achieve high performance. We divide each cache-
line into 8 partitions each contains 16 bits where each interleaved parity protects one
partition. At each reading time parity bit calculated and compared with the original
parity bit.

For writing in DVM, signal IEU1 is high and data is transferred from Bus4 to Bus1
via IB1 and IB2 and is written to two selected lines at the same time. Parity calculator
circuits generate parity bits and write them in parity bit cells as well. For reading the
two selected lines, signals CTE is high and CDE is low, connector buffers, CD1, CD2,
CD3 and CD4 disconnect B1 with B2 and also B3 with B4 while connector buffers, CT1
and CT2 connect B2 with B3 and also B4 with B5. With this method, Bus1 is divided
into two parts; sub-array slices 0,1,2,6 are connected to the first part and sub-array
slices 3, 4, 5, 7 are connected to the second part. Signal OED1 is high; output buffers
OB1 and OB2 transfer two selected data to the XOR circuit to check the cell contents
are identical. Signal EN10 activates two parity calculator circuits to calculate parity
bits of selected lines. Then the result of these parity calculator circuits are compared
with the original parity bits of each selected-lines. These two comparators generate two
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enable signals EN11 and EN12. Whenever one of comparator shows equality (when
EN11 or EN12 is high), the related output buffer transfers its data to Bus3. If two
compared data are equal, signal EN10 is low and output buffer OB7 transfers data to
BUS3.

In TVM, for writing the selected cache-lines signal IEU1 is high and data is trans-
ferred from Bus4 to Bus1 via IB1 and IB2 and written in three selected lines simultane-
ously. Similar to SVM and DVM, signals CDE and CTE are high to connect separated
Bus1 nodes with each other. At the reading time, CTE is low and CDE is high so
Bus1 is divided into three parts; sub-array slices 0, 1, 2 are connected to the first part
and sub-array slices 6, 4, 5 are connected to the second part and sub-array slices 3,
7 and extra slice are connected to the third part. CT1 and CT2 circuits disconnect
B2 with B3 and B4 with B5. For reading the three selected lines, each from separate
sub-array slice group, signal OET1 is high, OB3, OB4 and OB5 are active and data
including parities are transferred to a majority voter (the correct value is decided by
bit-wise majority voter). The majority voter output for cache-lines is DataM and for
their parity-bits is ParityM. Then, the parity calculator circuit calculates the parity
bits of DataM. Later one comparator circuit compares these results (the parity bits of
DataM) with ParityM. If there are any differences, signal En13 will be high and the
parity bits of selected lines are calculated and compared with their original parity bits.
Whenever one of parity comparators shows equality, En14, En15 or En16 is high, the
related output buffer (OB10, OB11 or OB12) is active and transfers data to Bus3. If
signal En13 is low, DataM is transferred to Bus3 via OB9.

A.2 Detail of Address Decoder

The details of address decoder are present in Figure 9. Voltage level detector circuit
generates four output signals V1, V2, V3 and V4 according to the supply voltage, Vdd;
if V1 is high, the cache is in SVM and only one word-line address is activated at each
access time; if V2 is high, the cache will be in DVM and two word-line addresses will
be activated at each access time; if V3 is high, the cache will be in TVM and three
word-line addresses will be activated at each access time; if V4 is high, the supply
voltage level is lower than two threshold voltages and the memory cells operate in sub-
threshold mode which is beyond our work in this paper and we leave it for future; so
the cache-lines will be deactivated in this state. Pre-decoder 2, control signal generator
unit 2 and control signal generator unit 3 and control signal generator unit 4 generate
enabler signals, En1, En2 . . . and En9 to activate 144 word-line addresses. There
are two groups of buffers located in the right and left side of the pre-decoder 1. Each
buffers group contains 9 sub-groups, and each sub-group has 16 buffers. The outputs of
pre-decoder 1 are connected to the buffers of each sub-group and generated 144 word-
line addresses. All buffers of each sub-group are activated with one enabler signal. For
example all buffers of sub-group 1 are enabled by signal En1. When partial address
0 and En1 are high, WL0 will be generated. In this way, all word-line addresses from
0 to 143 are generated. If A7 is high, the left part of each cache way is activated;
similarly, If A7 is low, the right part of each cache way is activated. At each access
time, depending on the mode, one, two or three Enable signals are high and data is
written to (read from) one, two or three cache-lines simultaneously. For example in
DVM, WL0 and WL48 are activated simultaneously; whenever one of the addresses 0
or 48 are activated, X1 or X4 are high and Vn1 is high so En1 and En4 are high. En1
and En4 are enablers for buffers and let partial address 0 pass and generates WL0 and
WL48.
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Fig. 9. Necessary decoders and control signal generators
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Abstract. The parallelism provided by low cost environments as multi-
core and GPU processors has encouraged the design of algorithms that
can utilize it. In the last time, the GPU approach constitutes an envi-
ronment of proven successful progress in the implementation of different
bio-inspired algorithms without major additional costs of performance.
Among these techniques, the Firefly Algorithm (FA) is a recent method
based on the flashing light of fireflies. As a population-based algorithm
with operations without a high level of divergence, it is well suited as a
highly parallelizable model on GPU. In this work we describe the design
of a Discrete Firefly Algorithm (GPU-DFA) to solve permutation combi-
natorial problems. Two well-known permutation optimization problems
(Travelling Salesman Problem and DNA Fragment Assembling Problem)
were employed in order to test GPU-DFA. We have evaluated numerical
efficacy and performance with respect to a CPU-DFA version. Results
demonstrate that our algorithm is a fast robust procedure for the treat-
ment of heterogeneous permutation combinatorial problems.

Keywords: Graphic Processing Units, Optimization, Permutations, DNA
Fragment Assembly, Travelling Salesman Problem.

1 Introduction

In the last decades, metaheuristics have proved to be useful to solve combina-
torial optimization problems [20,21,29,38]. In particular, nature-inspired algo-
rithms have become very popular to solve this kind of problems [17,42]. These
techniques usually need a high amount of computational resources and time in
contrast with the need for answers in a “reasonable time” [39]. In this way,
parallelization emerges as an attractive alternative in order to decrease the ex-
ecution time and, in some cases it improves the accurate results of sequential
algorithms. In this sense, interest has been growing in the development of parallel
evolutionary algorithms by using Graphics Processing Units (GPUs) [39].

� Corresponding author: Pablo Vidal, pjvidal@uaco.unpa.edu.ar

G. Hernández et al. (Eds.): CARLA 2014, CCIS 485, pp. 191–205, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://www.unpa.edu.ar
pjvidal@uaco.unpa.edu.ar


192 P. Vidal and A.C. Olivera

The GPUs represent a low cost environment for massively parallel compu-
tations with APIs and development kits for parallel applications. NVIDIA has
created a parallel computing platform and programming model called CUDA
(Compute Unified Device Architecture) [30] that allows the development of GPU
routines called kernels. Each kernel defines instructions that are executed on the
GPU device by many threads at the same time following the Simple Instruction
Multiple Data (SIMD) model. NVIDIA has advertised its potential for bringing
facilities for the programming in these devices and invested great efforts to create
a programmable and transparent GPU architecture for programmers [30].

Several studies have presented ideas on how to port existing algorithms run-
ning on CPUs to the new GPU architecture: genetic algorithms [16], cellu-
lar genetic algorithms [40], particle swarm optimization [12] and some oth-
ers [4,6,22,41]. In particular, there are contemporary contributions about GPUs
that deal with permutation combinatorial problems [23,24,27,39].

The Firefly-Inspired Algorithms (FA), which were developed by Yang [42,43],
are recent bio-inspired algorithms that have achieved outstanding results in var-
ious domains [8,11,25,45]. FAs have become an increasingly important tool of
Swarm Intelligence that has been applied in almost all areas of optimization,
as well as in engineering practice [44]. FA is a population-based Swarm Intel-
ligence approach based on the flashing patterns and behaviour of fireflies [43].
FAs have some significant advantages over other metaheuristics, such as genetic
algorithms and Particle Swarm Optimizers [9]. A couple of its distinctive advan-
tages are: the automatic subgrouping and its ability to deal with multimodal
problems [43]. Fireflies can randomly subdivide into sub-groups and each group
can potentially swarm around a local optimum. All optima (obviously including
the global optimum) can be obtained simultaneously if the number of fireflies is
much higher than the number of subgroups [42,43]. Its characteristics become
an attractive alternative to parallelize. In a few years, a lot of research around
FA has been done with excellent results [2,10] in many different fields like Power
Energy Systems [5,8], mobile networks [3] and permutations combinatorial prob-
lems [25,36,44]. However, parallel FA for general purposes and, in particular, for
permutation combinatorial problems constitutes a new developing research area
and there are relatively fewer papers published on this topic [13,32].

In this work, we present a Discrete Firefly Algorithm on GPUs (GPU-DFA)
for permutation combinatorial problems. Therefore, here we show a parallel DFA
running entirely on GPU, and demonstrate that the proposed optimization tech-
nique is quite amenable for massive parallelism to obtain larger performances
and substantial improvements in gain times. We have also studied the behaviour
of GPU-DFA over a set of combinatorial problems not only to establish the
time reductions, but also the numerical advantages of this swarm intelligence
algorithm. In particular, permutation combinatorial optimization problems are
presented in the world in many ways, appearing as an excellent way to evaluate
the performance of our GPU version with problems of interest related to cur-
rent society [18]. In our case, the following well-known problems are analysed:
Travelling Salesman Problem (TSP) and DNA Fragment Assembly Problem
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(DNA-FAP) are employed to test the GPU-DFA. For TSP and DNA-FAP, in-
stances of different sizes are used in order to test the behaviour and scalability of
GPU-DFA in contrast with the CPU version. To the best of our knowledge, this is
the first time that a GPU Firefly Algorithm is designed and developed especially
for permutation combinatorial problems entirely over a GPU platform [13,32].

The remainder of this paper is organized as follows. Section 2 introduces the
canonical DFA proposed by Yang [42]. Section 3 presents the general formulation
of the GPU-Discrete Firefly Algorithm. In Section 4 we describe the experimen-
tal settings, including a brief explanation about TSP and DNA-FAP instances.
The main details of the analysis and the results of the computational study
are discussed in Section 5. Finally, Section 6 provides the conclusions and also
highlights future research directions.

2 The Firefly Algorithm and Related Works

The FireflyAlgorithm (FA) is a bio-inspiredmetaheuristic developed byYang [42].
It was inspired by mimicking the flashing and attraction behaviour of fireflies. In
the scheme of Yang [42,43,44] the fireflies have the following characteristics [9]:

1. All fireflies are unisex, so that one firefly is attracted to other fireflies re-
gardless of their sex.

2. Attractiveness is proportional to their brightness. Hence, for any two flashing
fireflies, the less bright one will move towards the brighter one (see Fig. 1(a)).
The attractiveness is proportional to the brightness and they both decrease
as their distance increases. If no one is brighter than a particular firefly, it
moves randomly as shown in Fig. 1(b).

3. The brightness or light intensity of a firefly is affected or determined by the
landscape of the objective function to be optimized.

(a) (b)

Fig. 1. Firefly movement considering their attractiveness: (a) j moves to i, the most
bright firefly close to it; (b) j has more brightness that the most attractive firefly i, so
j moves randomly

A canonical FA works with two basic concepts: the variation of light inten-
sity I, and the firefly attractiveness β between two fireflies i and j [42]. This
attractiveness varies according to a distance r under a fixed light of absorption
coefficient γ, that can be defined as follows:
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Ij(rij) = I0e
−γr2ij (1) βj(rij) = β0e

−γr2ij (2)

where I0 is the light intensity and β0 the original brightness of firefly (i.e.,
fitness) at r = 0, respectively. With respect to the light absorption coefficient
γ, if γ → 0 the attractiveness of a firefly i matches with its brightness (fitness),
i.e., the brightness of a firefly will not decrease when viewed by another one. In
the case of γ → ∞, this means that the attractiveness value of a firefly is close
to zero when viewed by another firefly in the sense that fireflies fly randomly
in a very foggy region. In this case, the fireflies cannot see each other and fly
in a random way. So, γ determines the speed of convergence and how the FA
behaves. However, the distance between two fireflies i and jwhich are located in
two different locations, can be expressed as an Euclidean distance. Taking into
account the parameters like r, β and I. FA can define what kind of movement a
firefly i can make with respect to a firefly j.

In a few years FAs have proven to be useful for continuous optimiza-
tion [10,19,42]. For the case of FAs on GPU, only a few approaches have been
performed on a GPU platform [13,32]. These models were tested over a contin-
uous domain and good gain times were obtained.

Algorithm 1. CPU Firefly Algorithm

1. Initialize a population P of p fireflies
2. Define light absorption coefficient γ
3. while non stop condition do
4. for j = 1 : p do
5. temp=∅
6. i = find the most attractive firefly near to j
7. if i 	= null then
8. for l = 1 : m do
9. A = computedistance(j, i)
10. temp.add(movementOperator(j, A))
11. end for
12. else
13. for l = 1 : m do
14. temp.add(movementRandom(j))
15. end for
16. end if
17. end for
18. sort(temp)
19. select p fireflies from temp and replace on P
20. end while
21. return The best of P

Discrete Firefly Algorithm. Discrete FA is a variation of canonical FA
that may be used for combinatorial problems with success for diverse problems
[8,14,36]. It is the base model used in this work for the implementation over
GPU.

A pseudocode explanation of CPU-DFA can be seen in Algorithm 1. First,
the p fireflies are initialized in population P (line 1). Next, the γ parameter is
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defined (line 2). Then, while the stop condition is not reached (line 3), the set
temp is initialized to ∅ (line 5). For each firefly j, FA tries to find the brightest
firefly i near j (line 6). FA calculates the attractiveness (βj(rji)) of firefly j with
respect to i by using Equation 2. If βi(rij) > βj(rji) then firefly j will move
toward firefly i (line 7); otherwise firefly j will move randomly (i = null, line
12). If j moves to i, m new fireflies are created by applying a specific operator
considering the distance between j and i (lines 9 and 10). In the case when firefly
j moves randomly, m new random fireflies are created (line 13 and 14) taking
j as the base. After p fireflies have moved, there are p × m fireflies in temp.
Then, the best p fireflies will be chosen based on their fitness (lines 18 and 19).
When the evolutionary process ends, FA returns the best one of those p fireflies
(line 21). In this context, DFA was shown to be efficient when solving various
combinatorial problems [8,14,15,36].

3 GPU-Firefly Algorithm

The goal of this section is to present our algorithmic proposal, which has been
called GPU-DFA. In short, our primary concern when designing DFA acceler-
ated by GPU is to create an efficient model that runs the main processes of
DFA entirely on GPU. The CUDA software model is employed so as to exploit
maximum parallel execution and high arithmetic intensity of GPUs. One of the
objectives is to minimize data transfers between the CPU and the GPU, thus
avoiding communication bottlenecks.

We follow a coarse-grained parallelization scheme (one thread by firefly or
pair of fireflies, respectively). The flowchart of the GPU-DFA model is presented
in Fig. 2. The beginning of the proposed algorithm is the initialization of the FA
and GPU parameters, respectively on the CPU side. Then, all parameters are
transferred to the GPU main memory. Next, we use a group of CUDA kernels
with the next tasks: At first, GPU-DFA creates and evaluates each solution in P
per GPU thread. Afterwards, until the stop condition has been reached, GPU-
DFA executes a series of kernels to evolve the current population. The division
in multiple kernels is due to the heterogeneity of the tasks and the complexity
thereof. In the evolution step, first GPU-DFA calculates parameters r, β and I
between each pair of fireflies in parallel. When evaluating each pair of solutions
in parallel, it is necessary to apply a method of parallel reduction in GPU so
as to assess whether each solution of P found some brighter firefly it could get
closer to or move randomly. Once each firefly j has a defined movement, we
create and evaluate p×m new solutions (by disturbing each one with a specific
operator or randomly) in a separate kernel and save them in temp population.
Finally, temp is sorted according to its fitness by using parallel Bitonic Sort [33]
and replaced over P with the p best fireflies from temp.

CUDA code‘s performance depends largely on the deployment of the threads
in GPU, the number of kernels, the memory access schemes and the specific
function optimized for GPU (as reduction, sorts or random generators). All
methods presented here aim at exploiting fast-access local and global memory
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Fig. 2. GPU Discrete Firefly Algorithm Model

to the greatest possible extent. The local populations P and temp are stored
in global memory. Due to the size of solutions that manage the use of shared
memory, it becomes less feasible in our model, since the storage is limited when
compared with solution size. However, this approach can be studied in the future
with other kind of combinatorial problems or as an improvement in the model.
In this work, we have considered the number of kernels as the main criterion
to assess how well an algorithm can be parallelized. Due to the complexity of
some operations that are completely different from each other, we have tried to
write simple and small kernels since the kernel launch cost is negligible with the
operations to perform and less registers are used.

On the other hand, the performance of a nature-inspired algorithm largely
depends on the quality of its random number generations. For this work, we have
utilized a Mersenne Twister random generator approach [35]. We have employed
a global seed pass at the beginning of the GPU-DFA execution; then, each thread
is initialized with different seed values (by modifying the initial global seed) in
the device. Finally, they are invoked sequentially by each thread for subsequent
random number generations.

4 Experimental Settings

In this section, two well-known permutation combinatorial problems are intro-
duced in order to test the GPU-DFA.
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4.1 Problems

We have selected two permutation problems that have been widely discussed in
the literature, exhibiting multiple applications in both academic and industrial
fields [7,37].

First, the TSP can be considered one of the most popular permutation combi-
natorial problems in the literature [15]. TSP is defined as a permutation problem
with the objective of finding, given a list of cities and the distances between each
pair of cities, the path of the shortest length (or the minimum cost) that a sales-
man has to take by visiting all the cities exactly once and returning to the
starting point. The fitness of a TSP solution is calculated as usual (i.e., as the
sum of edges’ weights in the solution tour).

In another sense, DNA-FAP is one of the fundamental problems in computa-
tional molecular biology. This problem involves the combination of the partial
information from known fragments to find a consistent total DNA chain. Hence,
large DNA strands need to be broken into small fragments for sequencing in a
process called shotgun sequencing [34]. But this process does not keep either
the ordering of the fragments or the portion a particular fragment came from.
This leads to the DNA fragment assembly problem [17] where these short se-
quences have to be then reassembled in order, by using the overlapping portions
as landmarks. Most fragment assembly algorithms consist of the following steps:

– Overlap: Finding potentially overlapping reads
– Layout: Finding the order of reads along DNA
– Consensus: Deriving the DNA sequence from the layout

The overlap problem consists in finding the best match between the suffix of
one read and the prefix of another one. The common practice is to filter out
pairs of fragments that do not share a significantly long common substring.

Constructing the layout is the hardest step in fragment assembly [28]. The
difficulty is encountered when deciding whether two fragments really overlap
(i.e., their differences are caused by sequencing errors) or they actually come
from two different copies of a repeat. Repeats represent a major challenge for
whole genome shotgun sequencing and make the layout problem very difficult.

The final consensus step of fragment assembly amounts to correcting errors
in sequence reads. To measure the quality of a consensus, we can look at the
coverage distribution. Coverage at a base position is defined as the number of
fragments at that position. It is a measure of the redundancy of the fragment
data, and it denotes the number of fragments, on average, where a given nu-
cleotide in the target DNA is expected to appear. It is computed as the number
of bases read from fragments over the target DNA’s length [17]. For a firefly
i = [0, ..., a, a + 1, ..., n] the Equation 3 shows the fitness (to maximize) of the
sequence i for DNA-FAP.

Fitness(i) =

n−1∑
a=0

wa,a+1 (3)

where wa,a+1 is the pairwise overlap strength of fragments a and a+ 1 [31].
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For the purpose of GPU-FA analysis, we have carried out several experiments
with different instances of TSP extracted from TSPLib1[1] and DNA-FAP bench-
mark data sets, which were described by Mallén-Fullerton et. al [26]. Table 1
summarizes the information of instances (number of cities, optimal) employed
to evaluate the GPU-FA in contrast with the CPU-FA version.

Table 1. TSP and DNA-FAP instances

TSP

Instance # of cities Optimal

kroA100 100 21282
d657 657 48912
pr1002 1002 259045

DNA-SA

Instance # of Fragments Optimal

x60189 4 39 11478
m154216 6 173 48052
bx842596 4 442 227920

4.2 Experimentation

In order to analyse both the behaviour and performance of the algorithms, we
need to clarify some parameter definitions and mechanisms.

In both permutation problems, the distance between two fireflies is defined
by Equation 4, where A is the number of different edges between fireflies i and
j following the order brought by the array index or likewise, the number of
consecutive differences in the array positions. For TSP, we need to evaluate one
edge more in A when the last index and the first one do not coincide for both
fireflies. n is the size of problem. Equation 4 scales r in the interval [0, 10] [14].

rij =
A

n
× 10 (4)

For DFA, the movement of a firefly attracted by another one depends on A.
In this work we have applied a 2-opt movement k times, where k is a number
generated randomly between 2 and A. Otherwise, random movement is generated
by applying a 2-opt operator without restrictions.

In order to make a meaningful comparison among both FA versions, we have
employed a common parametrization. We have used a maximum number of eval-
uations as the stop condition for both algorithms (1000000). As the population
and the new solutions may vary, it has different sizes to see if there exists dif-
ferent behaviours of the algorithms and compare that exist some advantage or
not to use different population sizes for each problem. FA works with two pop-
ulations P and temp respectively. Each one can be modified according to the
parameters p and m. Then, following the philosophy of FA, we decided to work
combining these two parameters with the follow values: 16, 32 and 48, to evaluate
the scalability of each parameter by modifying the other.

We perform 30 independent runs to test TSP and DNA-FAP instances. Ad-
ditionally we apply statistical analysis is of course very important to sustain

1 http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
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final claims; first, we apply the Kolmogorov-Smirnov test on the data to check
their normality; if they are normally distributed the ANOVA test is performed,
otherwise we will apply a Kruskal-Wallis test. The confidence level used for our
claims is 95%.

We always consider in this work a confidence level of 95% (i.e., significance
level of 5% or p-value under 0.05) in the statistical tests, which means that the
differences are unlikely to have occurred by chance with a probability of 95%.
Successful tests are marked with + symbol, •means that no statistical confidence
was found (p-value < 0.05).

The experiments was performed using the host with a CPU Intel(R) i7 CPU
920, with a total physical memory of 8192 MB. The operating system is Ubuntu
Precise 12.04. In the case of the GPU, we have an NVIDIA GeForce GTX 680
with 2048 MB of DRAM on device and we used CUDA version 6.0.

5 Analysis and Results

In this section, we show the experimental results obtained by testing our pro-
posed method and the behaviour of GPU-FAP is discussed. First, we present a
detailed analysis about numerical and time performance for both DNA-FAP and
TSP instances. Finally, we study the scalability of our approach and compare
the gain times with respect to CPU-DFA version.

DNA-FAP Results. Table 2 shows the results for all the DNA-FAP instances
with the different configurations for p and m. In the first column, we inform the
name chosen for the instance, columns two and three show the diverse values
assumed by parameters p and m. For CPU-DFA, columns four, five and six
indicate in 30 independent runs the best fitness (Best) found, the average fitness
value with its standard deviation and average runtime, respectively. In the case
of GPU-DFA, the same data are exposed in columns seven, eight and nine.

Among the results for both implementations, they generate fitness values that
are closer to the overall one, while even in some instances, they reach it. Table
2 shows that the two versions found the optimal value at least once for instance
x601894 in all the configurations. For the rest of instances, both versions (CPU
and GPU) obtain values located really quite near to the optimal one. In par-
ticular for the second DNA-FAP instance (m1542166), both versions found the
best known optimal value with one configuration. For the instance bx8425964 the
increase in parameters p and m does not mean an improvement in the quality
of the results; moreover, their quality worsens.

Regarding the results related to parameter p, for instance x601894 shows that
there are no differences; all variations reach the optimum value. For the other two
instances, the fitness values obtained are very close to the best optimum one with
p = 32 for m1542166 and p = 16 for bx8425964. With respect to parameter m,
the best configuration is obtained with m = 32, exhibiting the same behaviour
in most of the instances that are very close to the optimal one. We can also note
that for parameter m = 48 we obtained shorter times for all the instances.
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Table 2. DNA instance results for CPU-DFA and GPU-DFA

Instances CPU-DFA GPU-DFA
ST

p m Best Avg. Time (sec.) Best Avg. Time (sec.)

x601894

16
16 11478.00 11084.93±81.12 4.13 11478.00 11420.23±45.77 2.38 •
32 11478.00 11390.93±41.48 2.33 11478.00 11469.60±25.63 1.51 •
48 11478.00 11469.83±25.95 1.76 11478.00 11473.73±11.29 1.72 •

32
16 11478.00 11464.93±58.19 7.73 11478.00 11462.00±35.16 2.72 •
32 11478.00 11574.73±31.43 4.06 11478.00 11466.80±28.80 1.59 •
48 11478.00 11467.93±16.75 2.90 11478.00 11475.20±15.21 1.19 •

48
16 11478.00 11608.03±47.49 11.26 11478.00 11470.23±23.87 1.25 •
32 11478.00 11444.47±39.73 5.79 11478.00 11462.40±31.36 0.86 •
48 11478.00 11466.00±23.06 4.06 11478.00 11463.93±27.71 0.77 •

m1542166

16
16 47963.00 45230.90±312.77 52.37 47803.00 46219.96±184.61 5.37 •
32 47550.00 47357.63±180.33 27.21 48050.00 47935.93±90.40 12.62 •
48 47811.00 47593.13±112.79 18.88 47919.00 47696.47±136.71 3.32 •

32
16 47521.00 46255.50±297.18 104.34 47750.00 47511.07±154.07 16.64 •
32 48052.00 47416.60±130.49 53.41 48052.00 47673.57±114.99 8.96 •
48 47881.00 47651.07±117.43 36.51 47917.00 47724.60±132.16 6.49 •

48
16 46931.00 46348.87±277.81 157.36 46817.00 46223.69±296.13 11.85 •
32 47569.00 47204.63±183.40 80.54 47612.00 47174.77±201.70 7.82 •
48 47918.00 47429.10±206.12 54.76 47961.00 47688.36±100.61 6.98 •

bx8425964

16
16 212802.00 211408.97±863.62 393.18 213512.00 211709.77±977.70 139.73 •
32 225918.00 224496.94±916.74 199.19 226165.00 225110.91±1017.12 101.67 •
48 218523.00 216496.00±1054.03 134.93 217649.00 216800.73±1100.46 72.70 •

32
16 211857.00 210783.79±1163.03 787.43 212381.00 210599.81±1711.13 128.78 •
32 213821.00 211529.03±1887.81 395.64 212479.00 210181.33±1281.12 66.22 •
48 212659.00 211233.76±1291.36 266.27 212177.00 211918.10±1151.91 45.03 •

48
16 209954.00 208333.23±990.41 1185.84 206025.00 203691.00±1280.78 70.62 •
32 207797.00 204743.23±1293.12 596.09 207522.00 206787.00±1484.26 46.31 •
48 193276.00 189610.83±1641.84 399.42 192587.00 191152.00±1679.52 31.93 •

Table 2 indicates that the GPU-DFA algorithm obtains lower times in all
the instances for all the configurations. These good times might be due to the
FA operations that are translated into a parallel model that can maximize the
efficiency of each thread and thus, the simplicity of each kernel is maintained.
Concerning the amount of gain time obtained, we have computed this metric
by dividing the time of the CPU-DFA with the GPU-DFA. The GPU-DFA gain
time ranges from 1.02 to 16.79. In fact, the execution times in Table 2 confirm
this fact, since the execution time when using GPU-DFA is much lower than the
CPU’s. The results clearly indicate that executing CPU-DFA is more expensive,
when compared with the GPU version in all the DNA-FAP instances.

Additionally, in order to make a better comparison between both versions
developed in this work, namely GPU-DFA and CPU-DFA, Fig. 3, Fig. 4 and
Fig. 5 display the gain time factor obtained for each configuration among the
three selected DNA-FAP instances, respectively. As an initial observation, we
can say that the time gain values are above the value 1.00, which indicates that
the CPU has always spent more execution time than GPU. In the same way,
we see that the biggest gain factors of the time appeared in smaller parameter
settings, especially those with m = 16. These figures clearly indicate that the
GPU-DFA is the faster algorithm for all the instances. With respect to the time
gain factor values, they range from 1.02 to 16.79.
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for x601894

p=16 p=32 p=48
0

5

10

15

T
im

e 
ga

in
 v

al
ue

s

 

 

9.75

6.27

13.28

2.16

5.96

10.30

5.69 5.63

7.85

Fig. 4. Gain time results
for m1542166
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Fig. 5. Gain time results
for bx8425964

Table 3. TSP instance results for CPU-DFA and GPU-DFA

Instances CPU-DFA GPU-DFA
ST

p m Best Avg. Time (sec.) Best Avg. Time (sec.)

kroA100

16
16 21858.00 22042.80±213.40 18.66 21778.00 21593.12±352.38 3.16 •
32 21282.00 21639.60±381.12 9.93 21282.00 21497.69±429.79 2.89 •
48 21336.00 21621.08±477.20 7.03 21402.00 21736.00±237.40 2.67 •

32
16 21282.00 21582.33±360.48 36.88 21282.00 21401.40±228.60 3.85 •
32 21282.00 21521.20±592.02 19.08 21282.00 22721.94±1281.12 3.78 •
48 21395.00 21474.40±176.80 13.18 21631.00 22140.66±498.60 3.03 •

48
16 21653.00 22114.20±567.60 54.85 21529.00 22071.39±562.48 2.98 •
32 21477.00 22170.40±620.94 28.32 21438.00 22950.01±583.00 2.61 •
48 21722.00 22290.80±477.38 19.47 21691.00 22266.20±502.80 2.20 •

d657

16
16 62346.00 63563.60±992.00 701.40 62198.00 63236.03±1113.40 129.09 •
32 53019.00 55432.00±822.66 356.11 53919.00 54711.20±1964.40 82.11 •
48 70824.00 73321.80±1958.05 240.50 69846.00 72198.20±1883.68 62.90 •

32
16 59947.00 61889.60±2437, 36 1415.81 59718.00 62617.21±2512.40 92.82 •
32 50824.00 53321.80±1958.05 717.87 51282.00 54060.93±1926.02 59.21 •
48 57406.00 59073.87±1032.66 482.90 61931.00 61420.94±1281.12 44.62 •

48
16 66152.00 67607.00±1281.80 2134.44 66136.00 67204.20±1173.60 97.70 •
32 55111.00 57073.59±2198.92 1087.16 55053.00 57771.03±2648.26 81.07 •
48 73767.00 77686.00±3081.70 731.44 73896.00 77982.94±3443.19 65.71 •

pr1002

16
16 315113.00 327007.38±6680.03 1585.95 314822.00 323356.00±7320.00 292.66 •
32 307182.00 314207.01±7279.82 801.31 309648.00 315094.19±8341.06 187.85 •
48 333770.00 341904.93±6747.18 540.54 335412.00 343747.40±8580.93 147.91 •

32
16 1451710.00 1481918.00±22179.53 3190.76 1478993.00 1528377.00±18649.91 138.18 •
32 1063330.00 1117894.00±16308.92 1610.57 105938.00 1101450.38±15291.60 90.36 •
48 1783723.00 1992019.00±16821.80 1083.88 1765683.00 1994320.94±19120.73 84.30 •

48
16 991450.00 997701.38±6112.30 4835.04 995171.00 1118918.00±22179.53 237.49 •
32 1563330.00 1576598.93±12728.05 2432.82 1589205.00 1601145.94±11273.20 138.32 •
48 1961320.00 1995822.00±20345.82 1636.99 1968641.00 1996123.00±24837.80 112.79 •

TSP Results. Table 3 displays the results for all the TSP instances with differ-
ent settings p and m. The first column shows the name chosen for the instance,
columns two and three present the values taken for p and m. Columns four,
five and six indicate the results for the best fitness (Best) found, the average
fitness value with the standard deviation and the average runtime in 30 inde-
pendent runs for the CPU-DFA approach. For GPU-DFA, the same kind of data
is presented in columns seven, eight and nine.

Among the results of GPU-DFA implementation, we can clearly observe that
this algorithm reaches an average fitness value that is really quite close to the
best known optimal value in kroA100 and d657 instances. In particular, for
configuration p = 32 and m = {16, 32} the best fitness value has been achieved
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at least once in the executions. With respect to the largest TSP instance, we note
that when the parameters take the values p = 16 and M = {16, 32, 48} those
are the settings that are more approximate to the optimal values. Probably, the
reason why this happens is that these small configurations allow the algorithmic
model iterate a greater number of times, thus generating subgroups that can
perform further exploitation. Table 3 shows clearly the difference between the
execution times of CPU and GPU implementations. GPU-DFA exhibits better
times for all instances.
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Regarding the gain of the times obtained in the TSP instances, Fig. 6, 7 and 8
show the respective values for each of those instances. We can observe the same
behaviour as the one in the DNA instances. The gain factors range between 2
to 21 (GPU-DFA faster than CPU-DFA in all the instances).

The corresponding statistical tests included in the column ST in Tables 2
and 3 indicates that no statistical differences exists between them (• symbol).
As espected, this confirms that they are the same numerical model.

As final remarks regarding our approach, these preliminary results demon-
strate that GPU-DFA obtains best results in front of CPU-DFA. However, the
numerical performance was not as good as expected, but we have confidence in
the algorithmic performance since we have not yet introduced any specific func-
tion or operator related to any of the problems in particular. We have tested
our approach with different problems and demonstrated that our approximation
supports working with different instance sizes without a huge loss in time and
solution quality by using smaller configuration parameters. The efficiency of the
canonical DFA algorithm has shown that the model is perfectly suited to the
GPU architecture.

6 Conclusions and Future Work

The work presented here is based on the Discrete Firefly Algorithm on GPU
for Permutation Problems. We performed the tests over two well-known discrete
problems: TSP and DNA-FAP. The algorithm was executed in a GPU plat-
form designed for massive parallel arithmetic computing. The new algorithm is
inspired by the successful experience gathered by the FA in different fields.
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We compared our approach in accuracy and performance to the original single-
threaded Discrete Firefly algorithm. Our comparative study between the CPU
and GPU implementations shows that, in general terms, both yield numerical
results closer to the overall and even in some instances reach it. The GPU-
DFA obtains lower times than CPU implementation in the large instances. In
this sense, our GPU implementation produced significantly better optimization
results with significantly less time than CPU model, which in our experiments
yielded a gain time between 1.02 and 21.85.

Besides, we have found that the GPU-DFA model provides a robust parallel
model that would allows to solve instances of different sizes without a great
degradation in the quality of the solutions.

In the future we will explore the expansion by hybridising this technique with
others that can guide the search. Analysing the behaviour of several population
sizes or the use of different natural inspired operators will also be part of future
work. Besides, it would be interesting to evaluate the specific contribution over
other kinds of problem domains or real scenarios to test the feasibility of using
this type of technique.
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González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) NICSO
2010. SCI, vol. 284, pp. 223–232. Springer, Heidelberg (2010)

41. Vidal, P., Luna, F., Alba, E.: Systolic neighborhood search on graphics processing
units. Soft Computing 18(1), 125–142 (2014)

42. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2008)
43. Yang, X.S.: Firefly algorithm, stochastic test functions and design optimisation.

Int. J. Bio-Inspired Comput. 2(2), 78–84 (2010)
44. Yang, X.S., He, X.: Firefly algorithm: Recent advances and applications. Int. J.

Swarm Intelligence 1, 36–50 (2013)
45. Yang, X.S., Hosseini, S.S.S., Gandomi, A.H.: Firefly algorithm for solving non-

convex economic dispatch problems with valve loading effect. Appl. Soft Com-
put. 12(3), 1180–1186 (2012)



A Parallel Multilevel Data Decomposition

Algorithm for Orientation Estimation
of Unmanned Aerial Vehicles

Claudio Paz1, Sergio Nesmachnow2, and Julio H. Toloza1

1 Universidad Tecnológica Nacional, Facultad Regional Córdoba, Argentina
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Abstract. Fast orientation estimation of unmanned aerial vehicles is
important for maintain stable flight as well as to perform more complex
task like obstacle avoidance, search, mapping, etc. The orientation esti-
mation can be performed by means of the fusion of different sensors like
accelerometers, gyroscopes and magnetometers, however magnetometers
suffer from high distortion in indoor flights, therefore information from
cameras can be used as a replacement. This article presents a multilevel
decomposition method to process images sent from an unmanned aerial
vehicle to a ground station composed by an heterogeneous set of desktop
computers. The multilevel decomposition is performed using an alter-
native hierarchy called Master/Taskmaster/Slaves in order to minimize
the network latency. Results shows that using this hierarchy the speed
of traditional Master/Slave can be doubled.

Keywords: orientation estimation, unmanned aerial vehicles, high per-
formance computing.

1 Introduction

Nowadays, unmanned aerial vehicles (UAV) generate great interest because they
can replace traditional vehicles which carry out dangerous task like early impact
analysis after a disaster [1], [2], [3], high cost assessment task like atmospheric
surveys [4] or simply for crops analysis [5].

Quadrotors are low cost aerial vehicles, easy to build and maintain because
they consist of a cross shape chassis with four rotors in the corners as shown in
Fig. 1. Due to this shape quadrotors are able to maintain a hovering flight and
perform aggressive maneuvers. Quadrotors flight can be classified in hovering,
navigation and vertical take-of and landing. Fast orientation estimation of a
quadrotor is important for two reason, first, hovering flight demands high speed
controlled thrust on each motor for balance it, and second, in many applications
like autonomous navigation, search, mapping, etc. it is useful to known the full
orientation of the vehicle.

G. Hernández et al. (Eds.): CARLA 2014, CCIS 485, pp. 206–220, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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Fig. 1. QA3 Mini, quadrotor under development at IT Research Center

There are different orientation representation methods including Euler axis,
Euler angles, direct cosine matrix and quaternion [6]. Euler angles orientation
representation exceeds other methods in clarity and with some constraints can
be used for quadrotor flight control in hovering mode. Orientation of a rigid body
referred to a global reference can be represented by Euler angles by a sequence of
three elemental rotations (yaw, pitch and roll) about the axes of the coordinate
system of the body (z, y and x, respectively). Usually, in the body reference
system the x-axis points forward and y-axis points right and to complete the
right-hand rule, z-axis points down.

The quadrotor can carry large number of sensors on board, accelerometers, gy-
roscopes and magnetometers among them. This sensors are generally mounted
in an arrangement to measure vehicle attitude and motion. It is well known
that MEMS (Micro Electro Mechanical Systems) gyroscopes are cheap and
lightweight but have large bias due to its operating principle. As a consequence
of this bias, the estimation of attitude angles has an important drift and grows
without limits. To eliminate this bias, accelerometers complement the gyroscopes
to estimate roll and pitch, and magnetometers are used to correct yaw angle.
Nevertheless, magnetometers suffer high distortion in indoor navigation due to
power wires and electric and electronic devices [7]. Thus, in this cases, another
sensor must be used to assist gyroscopes. Cameras are lightweight and cheap
sensors which are able to provide big amount of information. There are numer-
ous methods that can be used to recover camera rotations from two successive
images like feature tracking and optical flow [8]. In hovering flight, given the
slow variation of the yaw angle respect to the frame rate of the camera, it is
possible estimate this angle using images taken by a downward looking camera
attached to the quadrotor chassis. Gyroscopes can be aided with this informa-
tion to obtain drift-free yaw angle estimation. For the case of low altitude indoor
flight, it is hard to find features to track due to the regularity of ground (tiling or
carpet). In this cases, frequency domain representation of the images can detect
displacement of the camera using the Fourier Transform and the so called Cross
Power Spectrum [9]. This method can be used on small portions of the images
to obtain the displacement the so called spectral features to aid gyroscope read-
ings [10]. However, this approach can be computationally expensive and may not
run efficiently on a single computer.
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Commodity cluster computing is a paradigm for parallel/distributed com-
puting that proposes using a reasonable large number of available computing
resources to perform parallel computation at low cost, since those resources
are suppose to be already available for non-high performance computing tasks
(i.e., office equipment, educational computers, personal notebooks) [11]. Com-
modity cluster infrastructures, usually built by integrating low-cost personal
computers and other devices using a local-area network (LAN), have been used
since the mid-1990s for solving a wide range of problems in different application
domains, including the scientific and industrial ones [12]. They are character-
ized as Beowulf clusters, from the pioneering work by Sterling and Becker at
NASA [13].

In this work a parallel implementation of yaw angle determination is pre-
sented. This system runs in a ground station which receive images from the
camera mounted in the quadrotor, performs the yaw angle estimation and sends
the result again to the quadrotor. The implemented parallel application was
evaluated over a Beowulf cluster using two benchmark sets: the specific public
data-set by Lee et al. [14] and a benchmark set built with own images. In order
to mitigate the latency of the LAN a multilevel data decomposition is proposed
using a pyramidal hierarchy called Master/Taskmaster/Slaves. The experimen-
tal evaluation indicates that significant reductions in the execution time are
achieved when using this hierarchy instead of the classical Master/Slave. The
speedup analysis demonstrates that using a multilevel data decomposition an
improved of 2× can be achieved.

The paper is organized as follows. Section 2 presents the basis for camera
orientation estimation and particularly for the case of yaw angle estimation, be-
sides a brief explanation of the spectral features. Section 3 gives an overview
of the proposed approach to implement a parallel orientation estimation algo-
rithm. The experimental analysis of the proposed parallel algorithm is reported
in Sect. 4 using a precise public data set of images and orientation, as well as us-
ing own images with an ad hoc orientation method for reference. Finally, Sect. 5
presents the conclusions and formulates the main lines for future work.

2 Homography Based Yaw Angle Determination

Given two images of the same plane taken with a camera from different points of
view, each characteristic pointma belonging to image ia and their corresponding
mb belonging to image ib are related by a plane induced homography Hba [8]
such that ma = Hbamb.

The homography Hba represents the spatial translation and the rotation be-
tween the different camera positions. Particularly, if camera movement is limited
to a plane parallel to the plane containing the characteristics and the rotation
is around a normal vector to this plane, the homography Hba is defined by

Hba =

[
Rz t
0 1

]
(1)
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where t is the vector representing the spatial translation and Rz is the rotation
matrix of the camera around z-axis. Matrix Rz is defined by

Rz =

[
cosψ − sinψ
sinψ cosψ

]
(2)

where ψ is the rotation angle between images.
In the ground station, corresponding characteristics ma and mb must be

found in order to determine the homography matrix Hba from which rotation
matrix Rz can be obtained. Finally, the yaw angle ψ can be isolated from any
element of rotation matrix Rz

Characteristics, also named features, are key points based on intensity changes
extracted from an image, easily recognizable in subsequent frames. Occasionally,
in the case of downward looking camera attached to a quadrotor in low altitude
hovering flight, features are hard to find because of that terrains like lawn in
outdoor or carpets in indoor are too regular for feature tracking. To deal with this
problem, the frequency domain representation, obtained by Fourier Transform
and Fourier shift theorem can be used. Fourier shift theorem claims that given
two identical images ia and ib displaced one of each other a distance (u, v)

ia(x, y) = ib(x+ u, y + v) (3)

and the Fourier Transform of both images are related by

Ia(ωx, ωy) = ej(uωx+vωy)Ib(ωx, ωy) (4)

where Ia and Ib are the Fourier transform of ia and ib, respectively. The dis-
placement Δd = (u, v) can be calculated first using the Cross Power Spectrum
(CPS) as follows

C(Ia, Ib) = Ia(ωx, ωy)I
∗
b(ωx, ωy)

|Ia(ωx, ωy)||I∗b(ωx, ωy)| = ej(uωx+vωy) (5)

and finally using the inverse Fourier transform.
Given that, to recover the homography at least four point are required, images

are divided into patches pi and the Fourier transform is calculated on each one
of them. Hence, a Δdi displacement is found for each patch as is shown in Fig. 2.
By adding this displacements to some point of the patches of the first image,
correspondence characteristics set between images are found. Formally,

{mai ↔ mai +Δdi = mbi} . (6)

Finally, from the homography matrix, rotation matrix Rz is obtained and
from (2) the ψ angle is isolated.

Algorithm 1 summarizes the described method using Algorithm 2 for displace-
ment determination.
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Fig. 2. Patches displacement between two images

Algorithm 1. Yaw angle estimation

function yaw estimation(it, it−1)
Obtain patches pi t and pi t−1 from it and it−1

for all {pi t, pi t−1} do
Δdi ← findDisplacement(pi t, pi t−1)
mi t ← mi t−1 +Δdi

end for
ψ ← Rz ← H ← findHomography(mi t,mi t−1)
return ψ

end function

Algorithm 2. Displacement determination between patches

function findDisplacement(pi t, pi t−1)
Pi t ← FFT (pi t)
Pi t−1 ← FFT (pi t−1)
C ← CPS(Pi t, Pi t−1)
r ← IFFT (c)
Δdi ← max(r)
return Δdi

end function

3 A Multilevel Decomposition Algorithm

This work proposes a parallel algorithm to calculate the homography based yaw
angle determination equations described in the previous section, over a parallel
architecture. This algorithm take advantage of the natural division of the images
in patches using a domain decomposition method, following the data-parallel
approach. The parallel algorithm is implemented in a ground station which is
composed by office desktop computers connected with a pre-existing LAN to
form a distributed system. From now on, we refer to the computers as nodes,
and each node has multiple processors running one thread each.
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The successive images sent by the quadrotor are received by just one thread
in the node containing the UHF receiver and the video digitalizer card. This
requires designing the system with a master-slave hierarchy in which the master
thread receives and divides the image, and then distributes the patches between
threads. The main drawback of this hierarchical approach is that the latency of
the network to send each individual patch can significantly increase the execution
times.

In order to mitigate the latency problem of the legacy infrastructure, a mul-
tilevel domain decomposition approach is proposed. Furthermore, a pyramidal
Master/Taskmaster/Slave hierarchy to distribute the patches are used. The pro-
posed hierarchy uses one taskmaster per node, which is in charge of partitioning
data for the slave threads executing on that node, as shown in Fig. 3.

Master/Taskmaster 1

Node 1

Node 2 Node 3

Taskmaster 2 Taskmaster 3

Fig. 3. Master/Taskmaster/Slave hierarchy example. Circles represent threads, gray
ones are the taskmasters. Wide lines represent connections over Ethernet and the thin
lines symbolize shared memory connections.

Thus, once the image is received, it is divided into blocks by the master thread
and each block is sent to the corresponding taskmaster. This previous division
of the image into blocks minimizes the number of messages sent by the master.
In the Master/Taskmaster/Slave hierarchy example shown in Fig. 3 only two
messages are sent over Ethernet against eight if the traditional Master/Slave
were used. After this, each taskmaster divides the received block into patches
and sends each patch to the slaves. The partitioning process is shown in Fig. 4.

Later, each slave performs the FFT, CPS and IFFT of the patch to find
Δdi and then each displacement is sent back to the taskmasters and finally to
master. Once all the distances have been collected, the master thread calculates
the homography and isolates the ψ angle.

Algorithm 3 summarizes the described method in Sect. 2 with the proposed
multilevel decomposition approach. As in the sequential approach the displace-
ments are calculated using the Algorithm 2.

4 Experimental Analysis

This section reports the experimental analysis of the proposed parallel algorithm
for yaw angle estimation.
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Master

Taskmaster 1

Taskmaster 2

Taskmaster 3

Slave 1.1 Slave 1.2

Slave 1.3 Slave 1.4

Slave 2.1 Slave 2.2

Slave 2.3 Slave 2.4

Slave 3.1 Slave 3.2

Slave 3.3 Slave 3.4

Fig. 4. Domain Multilevel Decomposition example. Image is partitioned into blocks
before being sent to taskmasters. Each taskmaster divides the block into patches and
sends them to slaves in order to hide network latency.

Algorithm 3. Parallel implementation of the yaw angle estimation algorithm

function parallel yaw estimation(it, it−1)
if Thread == Master then

Obtain blocks bj t and bj t−1 for j = 1 . . . J from It and It−1

Send blocks to the J taskmasters
else if Thread == Taskmaster then

Receive block j from master thread
Obtain patches pi t and pi t−1 for i = 1 . . .K from bj t and bj t−1

Send patches to the K slaves in charge of the j−th taskmaster
else if Thread == Slave then

Δdi ← findDisplacement(pi t, pi t−1)
end if
gather(Δdi)
if Thread == Master then

mi t ← mi t−1 +Δdi

ψ ← Rz ← H ← findHomography(mi t,mi t−1)
return ψ

end if
end function

4.1 Development and Execution Platform

The proposed algorithm was implemented in the C programming language, us-
ing the phaseCorrelate() function from OpenCV library [15] for both the
sequential and parallel version. In both Algorithm 1 and Algorithm 3, the find-
Homography() function was implemented with its homonym function from
OpenCV library as well.

The parallel version was implemented using the MPICH version of the Mes-
sage Passing Interface (MPI) library for parallel and distributed computing [16].

The experimental evaluation was performed on a commodity cluster made
with desktop computers with 3rd generation Intel i5 processors and 8GB of
RAM connected to a 100Mb/s Ethernet LAN. In order to increase the amount
of nodes and threads, an old Dell Power Edge rack server with 2 AMD Opteron
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6128 and 16GB of RAM was also connected. Given the heterogeneous platform, a
simple load balance method based on the execution time was also implemented.

To denote the number of nodes and number of threads in the graphics, up-
percase letter N and T were used, respectively (e.g. 1N4T for one node and four
threads, 3N24T for three nodes and twenty four threads, etc.).

4.2 Problem Instances

The experimental analysis was performed using the sFly data sets by Lee et
al. [14] (http://www.sfly.org/mav-datasets), which were taken by an UAV
and consist of different images sequences from a front looking and downward
looking cameras, together with measurements from an IMU as well as the ground
truth information given by a precision external reference system called Vicon
system.

The sequence of images used is named hoveringDown; it consists of 2041
image frames of 752 × 480 pixels of resolution taken at approximately 20fps
by the downward looking camera. The IMU and Vicon system sample rate are
200Hz, resulting in a total of 21388 samples. They correspond to a flight period
of approximately 106 seconds, where the UAV takes off, performs a hovering
flight and ends landing near to the same place. The total amount of yaw angle
change during the flight is approximately 1.4rad.

Furthermore, a data set with own images was also tested. The images were
taken with a 640×480 downward looking camera attached to a quadrotor over a
carpet at approximately 15fps. In Fig. 5 two consecutive images of the data set
are shown where it is possible to see the total absence of intensity features. In this
conditions traditional feature trackers are hard to use. The flight period of the
data set is around 40 seconds resulting in a total of 600 images without features.
The quadrotor is named QA3 and it is under development at IT Research Center
(http://ciii.frc.utn.edu.ar).

(a) (b)

Fig. 5. Consecutive images of the QA3 data set carpet, which are rotated 0.008rad
between them. The lack of intensity features make very difficult the use of traditional
feature trackers

Two mains goals were taken into account: maintain the accuracy of the se-
quential algorithm presented by Araguás et al. [10] and ensure a processing time

http://www.sfly.org/mav-datasets
http://ciii.frc.utn.edu.ar
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of no more than 0.10 seconds which is enough time to close the yaw angle control
loop on-board of the UAV.

4.3 Performance Metrics

In this work, we apply two standard metrics to evaluate the performance of
the proposed multilevel data decomposition: speedup and efficiency. Both are
common metrics used by the research community to evaluate the performance
of parallel algorithms [17].

The speedup evaluates how much faster is a parallel algorithm than its sequen-
tial version. The relative speedup (SRS) is defined as the ratio of the execution
times of the sequential algorithm (TS1) and the parallel version executed on
m computing elements (threads or processors) (TPm) (7). We also evaluate the
parallel capabilities/scalability of the proposed algorithm by comparing the exe-
cution times of the parallel algorithm executing on one (TP1) and m computing
resources (TPm), which we call Parallel Relative Speedup (PRS) (8). When ap-
plied to non-deterministic algorithms (i.e., due to non-deterministic situations in
the computing environment or non-deterministic bifurcations in the algorithm
itself), the speedup should compare the mean values of the sequential and paral-
lel execution times, obtained in a reasonable number of independent executions.
The ideal case for a parallel algorithm is to achieve linear speedup (SPSm = m),
but the common situation is to achieve sublinear speedup (SPSm < m), due to
the times required to communicate and synchronize the parallel processes.

The efficiency (9) is the normalized value of the speedup, regarding the num-
ber of computing elements used for execution. This metric allows comparing
algorithms executed in non-identical computing platforms. The linear speedup
corresponds to em = 1, and in usual situations em < 1.

SPSm =
TS1

TPm
(7) PRSm =

TP1

TPm
(8) em =

SPSm

m
(9)

4.4 Results and Discussion

To validate the parallel implementation, previous to the performance analysis,
the yaw angle estimation of the sequential application and various of the parallel
configurations were compared using the sFly and QA3 data sets, and the results
are reported in Fig 6 and Fig. 7, respectively.

Figure 6a shows that the different estimates are almost coincident and most
of the time are overlapped. In Fig. 7a is also possible to see the overlapping of
the parallel and sequential versions. Black lines show in both cases the actual
orientation. These results validate the parallel implementations and they lead to
use any parallel configuration as a reference baseline, provided that time is not
being measured like in Fig. 6b and Fig. 7b where the absolute error is shown.
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Fig. 7. Yaw angle estimation performed by different algorithms using QA3 data set
where the complete overlapping of the serial and parallel estimation can be seen
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The graphics in Fig. 6 and Fig. 7 show that the parallel yaw angle estimation
is an accurate implementation of the sequential version.

Figure 8 shows the parallel and serial execution times to process two con-
secutive frames of the sFly data set, for different combinations of nodes and
threads. The analysis of results for the unbalanced configurations (i.e., orange
and lilac for Master/Slaves and Master/Taskmasters/Slaves, respectively) allows
concluding the configuration that use taskmasters outperform in 2× those that
not use them. A good example of this behavior is the comparison between the
different configurations of 2N8T and the different configurations of 3N24T. In
the last case, given that it is an heterogeneous configuration, the best result
is performed with a balance method, but keeping this configuration apart and
taking only the unbalanced, again approximately an increase 2× of performance
is achieved. Obviously, for heterogeneous configurations (i.e., all configurations
with three nodes together with the configuration of two nodes and twenty threads
(2N20T)) a better performance can be achieved using load balancing.
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Fig. 8. Execution times to process two consecutive frames of each implemented con-
figuration using the sFly data set
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Table 1. Speedup and efficiency achieved with the different configurations

SRS PRS efficiency

3N16T Taskmasters Balanced 3.88 4.57 0.2425
3N20T Taskmasters Balanced 3.88 4.56 0.1940
3N12T Taskmasters Balanced 3.66 4.31 0.3050
2N20T Taskmasters Balanced 3.65 4.29 0.1825
2N8T Taskmasters Unbalanced 3.60 4.24 0.4500
2N8T Taskmasters Balanced 3.59 4.23 0.4487
3N24T Taskmasters Balanced 3.24 3.82 0.1350
2N8T Balanced 2.68 3.16 0.3350
2N20T Taskmasters Unbalanced 2.68 3.15 0.1340
1N4T Unbalanced 2.59 3.05 0.6475
3N20T Taskmasters Unbalanced 2.41 2.84 0.1205
1N4T Balanced 2.40 2.82 0.6000
3N24T Taskmasters Unbalanced 2.31 2.72 0.0962
3N16T Taskmasters Unbalanced 2.11 2.49 0.1318
2N20T Balanced 2.07 2.43 0.1035
3N24 Balanced 1.91 2.25 0.0796
3N12T Taskmasters Unbalanced 1.90 2.24 0.1583
2N8T Unbalanced 1.61 1.90 0.2000
3N20T Unbalanced 1.20 1.41 0.0600
3N16T Unbalanced 1.19 1.41 0.0743
3N12T Unbalanced 1.14 1.34 0.0949
2N20T Unbalanced 1.12 1.32 0.0560
3N24T Unbalanced 1.07 1.26 0.0445

Table 1 reports the SRS, PRS and efficiency metrics of the different configu-
rations based on Fig. 8.

The comparison between the sequential version of the yaw angle estimation al-
gorithm against the best parallel implementation (i.e., 3N16T with Taskmasters
and load balance) reported in Table 1 demonstrates that approximately 4× of
speedup can be achieved. In terms of efficiency, it can be seen comparing all the
unbalanced configurations with and without taskmasters, that using the lasts the
performance was increased at least 2×. Obviously, the best efficiency (0.64) was
achieved avoiding the use of the network (i.e., the configuration 1N4T which has
only one node and no load balance). Nevertheless, this configuration is not able
to ensure enough speed to process the images in less than 0.1s to close which is a
constraint to use the yaw angle control loop. This speed could be accomplished
only with the configurations that uses more than one node like 3N16T, 3N20T,
3N12T, 2N20T, 2N8T and 3N24T using Master/Taskmasters/Slaves hierarchy.

Similar results are obtained when processing the QA3 data set. They are
presented in Fig. 9. Given that this data set has smaller images, the processing
time is slightly lower.



218 C. Paz, S. Nesmachnow, and J.H. Toloza

0.0626

0.0637

0.0638

0.0672

0.0674

0.0692

0.0719

0.0848

0.0937

0.1014

0.1054

0.1156

0.1283

0.1531

0.2146

0.2164

0.2250

0.2267

0.2355

0.2422

0.2616

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Sequential

1N1T

1N4T

2N8T

2N8T

2N8T

2N20T

2N20T

2N20T

3N24T

3N24T

3N24T

3N12T

3N12T

3N12T

3N16T

3N16T

3N16T

3N20T

3N20T

3N20T

Time [s]

Master/Slaves

Taskmasters

Taskmasters
Balanced

Unbalanced

Unbalanced

Without
Parallelization

Fig. 9. Execution times to process two consecutive frames of each implemented con-
figuration using the data set composed of own images

5 Conclusions and Future Work

In this work, a parallel implementation of an algorithm able to estimate the
orientation of a unmanned aerial vehicle was presented. The estimation is per-
formed by using a remote processing of images taken from an on-board camera.
A multilevel decomposition method to process the images in an heterogeneous
set of desktop computers was proposed. This method uses an alternative hier-
archy called Master/Taskmaster/Slaves which has as main goal the reduction of
the messages sent over Ethernet in order to minimize the latency of the network.
To test the algorithm two data sets were used.

The results show that using the proposed hierarchy and the multilevel data
decomposition method the speed of the process using the traditional hierarchy
Master/Slaves can be doubled. This method can be used for any type of parallel
implementation with large amounts of information passing from one node to
another. Moreover, for the evaluated case of an UAV along with a ground station,
given the processing speed achieved, a close loop for full control of the yaw angle
of the UAV can be implemented.

Currently, as a direct application of the research reported in this work, a full
orientation control loop for the QA3 quadrotor is under development.
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Abstract. This paper describes QDsim, a parallel application designed
to compute the quantum concurrence by calculating the Wootters cor-
relation of a quantum system. The system is based on a two-level two
quantum dots inside a resonant cavity. A Beowulf-like cluster was used
for running QDsim. The application was developed using open, portable
and scalable software and can be controlled via a GUI client from a
remote terminal over either the Internet or a local network. A serial
version and three parallel models (shared memory, distributed memory
and hybrid –distributed/shared memory) using two different partitioning
schemes were implemented to assess their performance. Results showed
that the hybrid model approach using domain decomposition achieves
the highest performance (12.2X speedup in front of the sequential ver-
sion) followed by the distributed memory model (6.6X speedup). In both
cases, the numerical error is within 1×10−4, which is accurate enough
for estimating the correlation trend.

Keywords: Quantum Computing, Wootters Correlation, Density Ma-
trix, Parallel Algorithms, Parallel Models, Cluster Computing.

1 Introduction

Quantum Computing is a revolutionary field of Physics whose goal is increase
enormously the computing performance by using quantum mechanics laws to
create very small-scale processing units (a few atoms in size) thus surpassing the
limits of classic computing. This field studies different topics on the classic infor-
mation theory and its processing, e.g., quantum algorithms, quantum teleporta-
tion, quantum codes and error detection, and realization of quantum computers.
The latter topic investigates new forms of processing and information storage
at the nano scale. A variety of future candidate technologies for implementation
are currently being explored [1]; for example, superconductor quantum com-
puter, trapped-ion quantum computer, solid state Nuclear Magnetic Resonance
(NMR), Kane Quantum computers and Quantum Dot computers.

Nowadays, Quantum Dot computers are a promising technology for the real-
ization of quantum computers. Unfortunately, a Quantum Dot (QD) is not able
to retain its state for a long time. Consequently, the information is destroyed [1].

G. Hernández et al. (Eds.): CARLA 2014, CCIS 485, pp. 221–235, 2014.
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This effect is known as Decoherence. To provide an insight into this phenomenon,
an application called QDsim was created.

QDsim is a numerical application designed to study the quantum dynamics
of concurrence for a bipartite system composed of two quantum dots under
external interactions. It is important to highlight that the concurrence is the
best known indirect measurement of entanglement1 of any bipartite system. By
using the density operator Master Equation (ME), QDsim is able to compute
the concurrence in the bipartite system using the analytical formula derived by
Wootters[2].

Electromagnetic radiations from any source, can produce a series of resonant
effects inside the quantum cavity (where the QDs are embedded) thus causing
interactions. Furthermore, even the laser beam used to control the operation
of the QD may cause such interactions. The aforementioned resonant effect is
composed of infinite light modes (Fock states) or degrees of freedom that perturb
the quantum state of the QDs. For this reason, solving this kind of system is a
time-consuming task; from hours to even days.

This paper thus proposes an algorithm to solve Wootters Concurrence using
parallel techniques that runs over a Beowulf-like cluster composed of shared
memory processors in order to reduce the processing time. Section 2 gives a
brief introduction of the quantum system, sections 3, 4 and 5 show how the
computation was parallelized, and finally sections 6, 7 and 8 discuss the results
and how performance was measured.

2 System Model

Using the analogy of the binary representation, where bits (represented by “0”
logic and “1” logic) are the cornerstone of the information in classical compu-
tation, excitonic states are the foundation of the quantum information through
quantum bits or Qbits. The model under study has two QDs embedded in a
three dimensional semiconductor microcavity as shown schematically in Fig. 1.
Qbits have two levels: the first, represented by |0〉, corresponds to the absence
of excitons; on the other hand, the |1〉 state indicates the presence of excitons.

Fig. 1. Model of a QD into quantum cavity taken from [3]

1 A phenomenon in which the quantum states of two or more QDs are correlated.
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The dynamics of the quantum system depicted in Fig. 1 is described in more
detail in [3] where it is analyzed with the coupling constant of the resonant cavity
with the environment (denoted by k) and the external radiation field (denoted
by I). Both QDs are coupled to the cavity and the coupling is represented by g.
Since the cavity and external fields interact with the QDs, the excitonic states
are affected by the radiative and non-radiative decays (γr and γnr respectively).

From this model, the Hamiltonian is given by: H = H0 +H1 +H2, where H0

represents the free energy of the QD, the cavity, the phonons and the electro-
magnetic bath; H1 represents the internal QD-cavity and QD-QD interactions;
and H2 is the interaction between QD and cavity with the electromagnetic bath
and phonons. The master equation for the evolution of the systems dynamics is
given by:

dρ

dt
=
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[H, ρ] +
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(1)

Where H is the Hamiltonian of the quantum system, γr and γnr are the ra-
diative and non-radiative exciton decay rates, 〈nphot, ωe〉 is the average number
of photons with excitonic Bohr frequency, ωe is the Bohr frequency related to
the energy difference among “1” and “0” levels, a and a† are the creation and
annihilation operators, k(t) is the cavity decay rate, ωc is the cavity radiation
frequency, 〈nphot, ωc〉 is the average number of photons with cavity frequency and
〈nphon, ωe〉 is the average number of phonons with excitonic Bohr frequency, σ+

and σ− are the excitation and de-excitation operators (excitonic operator) re-
spectively. Finally, h.c is the hermitian conjugate of the preceding term. Equation
(1) is time dependent but it is normalized regarding the spontaneous emission
rate for excitons in the empty electromagnetic field.

Projecting (1) on the Fock states, the density matrix is obtained. From it the
dynamics of the base states of the QD can be extracted to compute the quantum
dynamics of Wootters concurrence [4], which is defined by:

C(t) = max
(
0,

√
λ1(t)−

√
λ2(t)−

√
λ3(t)−

√
λ4(t)

)
. (2)

Where λi are the eigenvalues of the matrix R defined by:

R = ρ̂ · σy · ρ̂∗ · σy . (3)
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where σy is the Pauli spin matrix:

σy =

⎛
⎜⎜⎝

0 0 0 −j
0 0 1 0
0 1 0 0
−j 0 0 0

⎞
⎟⎟⎠ . (4)

3 The Application

QDsim was designed to solve the density matrix and compute the quantum
dynamics of concurrence as a function of time and a physical variable of the
QD system that is chosen by the user. For example, Fig. 2 shows in the vertical
axis, the concurrence, whose values oscillate between 0 and 1; the two horizontal
axes represent time (given in picoseconds) and the physical variable V X (e.g.,
the degree of purity of the Extended Werner-like state, probability amplitude,
the quotient between photon emission decay rate and radiative quantum dot
decay rate, the quotient between phonon emission decay rate and non-radiative
quantum dot decay rate, the quotient between dots coupling and dot-cavity
coupling. For more details about these variables, see [9] and [3].)

VX

Time

Co
nc

ur
re

nc
e

Fig. 2. Surface plot of quantum concurrence

The system allows setting up different simulation parameters. The physical
variable to simulate (given by V X) is adjustable through a Graphical User Inter-
face (GUI) with their respective limits called V LL (V X Lower Limit) and V UL
(V X Upper Limit) and the step increment (V INC). In addition, other variables
such as integration method, integration error, time intervals (TLL, TUL) and
other simulation variables can also be defined using the GUI.

The basic flow diagram of the application is composed of five tasks (see Fig.
3):
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1. An initialization process where a set of parameters regarding the simulation
is defined (e.g., time intervals, V X intervals, integration method, definition
of physical parameters, etc.)

2. Generate the system equations or ME
3. Solve the ME using Ordinary Differential Equation (ODE) solvers
4. Computation of the quantum concurrence where a set of system equations

(master equation) to be solved using a specific integration method are gen-
erated and then the concurrence is computed using Wootters concurrence
[4]. Results are temporarily stored in hard disk.

5. From the results stored in hard disk, generate the surface plot using GNU-
plot2.

Fig. 3. Basic flow diagram of QDsim

4 Parallelization Features

The computational complexity of the algorithm depends on several variables (e.g
the degree of freedom of the system, the number of interactions of the QD, the
numerical error of the integrator). The problem is that the complexity is not
easy to derive a priori: the number of equations to generate can be known in
a static manner; on the other hand, the number of terms and factors is only
known at runtime, and worst yet, some of the factors could be simulation-time
dependent functions. Since using the estimated worst-case execution time can be
overly optimistic, a proof-of-concept was implemented using Mathematica3, to

2 See http://www.gnuplot.info
3 See: Wolfram Mathematica, http://www.wolfram.com/mathematica/

http://www.gnuplot.info
http://www.wolfram.com/mathematica/
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have an idea about the computational complexity. Its execution required hours
and even days for processing.

Three key elements were used to improve the processing time of the applica-
tion as follows:

– The programming language
– Optimization of the source code
– Use of parallel algorithms and architectures

4.1 The Programming Language

During the early stages of the project development, to overcome the higher ex-
ecution times of using Mathematica, the algorithm was partially implemented
in different languages such as R4 and Python5. They are two widely used lan-
guages in many scientific computing applications but unfortunately, they are
slower than other languages such as C and Fortran. Despite that Fortran is an
older language, its performance is still one of the best and is currently used in
many HPC applications. Besides, Fortran is suitable for working in distributed
memory parallel architectures and is integrated into many Linux distributions
using GNU Fortran compiler. For this reason, GNU Fortran 4.1, which is based
on Fortran 95, was used to implement QDsim.

4.2 Optimization of the Source Code

The performance of a program is affected by the algorithm complexity (i.e.,
number of loops and computational operations in a code) and the location of
data in the memory hierarchy. For these reasons, the number of variables and
operations should be limited, recycled and controlled. This approach avoids,
on one hand memory paging6, which causes high penalties in execution perfor-
mance; on the other hand it is mandatory to avoid any unnecessary operations.
For example, (1) is composed of many factors, which depending upon system
parameters, sometimes yield multiplied by zero at runtime. Unfortunately, nei-
ther the compiler (in spite of the optimization flags) nor the Control Unit7 are
aware of finding an efficient way of minimizing such operations. Being unaware
of this, the program wastes valuable clock cycles in a fruitless manner. Thus, the
proposed algorithm avoids those redundant operations to increase significantly
its performance. From (1), the elements of the density matrix are obtained and
represented (in a compact manner) as a set of i terms [3], where each term is
composed of a set of aj factors as shown in (5).

F (t, ρk) =
d

dt
ρk =

∑
i

[∏
j

aj,i

]
· ρi . (5)

4 See: The R Project for Statistical Computing, http://www.r-project.org
5 See: http://www.phyton.org
6 Reading from the lower levels of the memory hierarchy instead of doing so from the
higher ones.

7 Internal circuitry that allows the operations inside the CPU and the data flow.

http://www.r-project.org
http://www.phyton.org
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Since some aj can be either functions (composed of hyperbolic and exponential
operations) or constants, the approach is to compute first those aj with lower
CPI8 and then, compute the functions with higher CPIs (for example, math
operations such as “×”, “+”, “-”, “÷” have lower CPI than “sinh(x)” and
“ex”.) When aj = 0, the algorithm skips the product operator and computes
the next i-th term as shown in Fig. 4.

Fig. 4. Flow diagram of the optimization of the number of operations

This method reduces unnecessary operations when there is a multiplication
by zero, thus decreasing the waste of valuable clock periods.

4.3 Use of Parallel Algorithms and Architectures

In order to reduce the processing time of complex computations, parallel tech-
niques can be applied. For a computational problem, the parallelization can be
achieved using compiler directives [6] or manually. The former approach is not
recommended in this particular problem because it yields lower performance in
complex problems like this since the parallelization process depends on many fac-
tors such as algorithm structure9, the parallel computer architecture10 and the
parallel programming model. Since there is no general method for parallelization,
there are a series of steps described in [5] that were used for the parallelization
process.

Based on the flow diagram of Fig. 3, there are two types of partition schemes:
Loop Partitioning (called LP) on V X loop and Task Partitioning (called TP)
where the tasks (see Fig. 3) are parallelized. As mentioned previously, these

8 Acronym of Clocks Per Instruction.
9 Regarding the data and task dependencies in a code.

10 Architectures based on distributed memory, shared memory, number of processing
units and interconnection topology.
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partitions depend of the algorithm structure and computer architecture. Fortu-
nately, the loop only sets a given value in the physical variable V X of the ME
and consequently, there are no loop dependencies in LP between one iteration
and the subsequent ones. The LP scheme is easy to implement in a distributed
memory scheme (MP); furthermore, since there are no loop dependencies, the
communication cost is low. On the other hand, implementing LP in a shared
memory platform (MC) is not straightforward due to resource constraints (e.g.
resources such as cache size –level 1, 2 and 3–, bus access policies and data
flow restrictions) and the high number of variables involved in the computation.
Nevertheless, in any case, it is necessary to determine hotspots and bottlenecks
using profilers such as Valgrind [7] or Vtune [8].

5 Algorithm Parallelization

The main idea of the parallel algorithm is to get maximum performance by
exploiting all of the processing resources of the cluster architecture (computer
nodes and their cores.) As a first approach however it is natural that the algo-
rithm uses the LP scheme in a distributed memory platform and the TP scheme
in a shared memory platform. Nevertheless, in order to achieve higher speedups
it is critical to use the most appropriate partitioning scheme(s).

5.1 LP Partitioning Scheme

Figure 3 suggests that the majority of code is placed inside the loop. This is
indeed the case, as Valgrind shows that, for the worst-case execution time sce-
nario, 95.16%11 of processing time occurs inside this loop. This fact is beneficial
for parallelization purposes to achieve higher speedups.

The LP partitioning uses domain decomposition to split the range [V LL,
V ULL] of the physical variable V X in several sub-domains and then assign
them to every processing unit (computer nodes or cores) as shown in Fig. 5. The
number of chunks per processing unit is determined by V INC (step increment)
and the number of computers, np. These chunks are uniformly distributed among
the processing units to keep the processing load balanced.

5.2 TP Partitioning Scheme

The results of the measurement analysis by executing Valgrind showed that
“Solve ME” is a hotspot (with the 91.3% of processing time). Inside of this
function, the integration method consumes roughly 78% of the processing time,
while the rest of code (13.3%) are strictly serial statements. Therefore, the opti-
mization efforts need to be focused there. This task solves a large coupled ODE
system of the ME12 using an integration method. To solve the ME, QDsim im-
plements different integration methods such as Adams-Bourdon for stiff systems,
Backward Differentiation Formula and Euler.
11 95.16loop = 0.02generateME + 91.3solveME + 3.84computeConcurrence.
12 Generated by the task “Generate ME”.
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Fig. 5. Partitioning using domain decomposition. Every processing element computes
a non-dependent chunk.

The latter method was chosen for all of the experiments due to its good nu-
merical convergence in the analysis of quantum concurrence. Despite the Euler
is strictly serial, the large number of equations allowed the parallelization using
only a shared memory scheme. Besides, the TP partitioning leads to a cumber-
some implementation in a distributed memory scheme since the high quantity
of data dependencies will increase the execution time due to a higher latency in
the interconnection network. For these reasons, a shared memory scheme is used
for this partitioning.

Figure 6 shows the Euler method for a linear system where ρ(i, j) is the
dependent variable for the i-th equation in the j-th iteration, Δt is the time
step, F is an ODE function that depends on the previous values of ρ(i, j) and
the current time t. The length of the vector ρ depends on the degree of freedom
of the light modes (ideally, it is infinity) and is limited to n modes by statistical
experiences. The number of equations increases proportionally to the number of
modes and it is limited to n equations (in Fig. 6, n = 40.)

Since the number of equations is large, the domain of n is split into blocks.
Each block has a number of pieces that is equal to the number of cores; a block
is then assigned to each core. The problem arises during the evaluation of the
function F where the system equations are produced. For example, the k-th
derivate –see (5)– is compound of j factors, whose number varies significantly
from 0 to many factors. Worst yet, a factor may be a function.

Since the complexity of evaluating each equation is not even from a computa-
tional viewpoint, the performance of the system is reduced significantly because
of this imbalance. For this reason, to keep the load balancing, it is not enough
to distribute an equal number of equations among the cores. Ideally, to get a
perfect balance one should distribute a number of operations per core such that
the computational cost in every core is the same. This of course, is unfeasible in
this particular case. A pragmatic solution was to attempt to distribute an equal
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Fig. 6. Vectorial form of the ODE system in a shared memory

number of terms per core, which resulted in a fair balance. The allocation of
terms uses a fine-grained round-robin scheduling.

Since the matrix ρ is a strongly coupled system, it should be stored in a shared
memory to allow that every core can read the vector ρ(i, j) simultaneously13.

6 Experimental Setup

Three models of QDsim were implemented to analyze its performance under
different environments and applying two partition schemes (LP and TP):

– A shared memory model using OpenMP 14

– A distributed memory model using OpenMPI 15

– A hybrid model (distributed/shared memory) using OpenMPI & OpenMP

Basically, these versions tried to answer the following questions:

1. Has a shared memory architecture the same performance as a distributed
memory architecture?

2. Does hyper-threading technology contributes in the computing performance?

13 The simultaneity depends on the size of the level 2 cache and the data size to be
mapped into it.

14 See: http://openmp.org
15 See: http://www.open-mpi.org

http://openmp.org
http://www.open-mpi.org
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3. How much performance can achieve a distributed memory/shared memory
model?

These versions plus the serial version were executed in a cluster architecture
that is composed of seven Symmetric Multi-Processing (SMP) heterogeneous
nodes (three nodes with Intel Xeon SL8SV dual-core processors with Hyper-
threading technology16 and four nodes with two AMD Opteron250 single-core
processors.) Every node has 64-bit Scientific Linux 5.6 executing runlevel 3 (text
mode) to decrease the system workload caused by the GUI. Of these nodes, one
node is used as Master and another is used as a Storage Node. The nodes are
connected via a dedicated 8-port Gigabit switch. To measure the elapsed time,
the time command on Linux is used. Unfortunately, no profilers were executed
at runtime due to the high volume of operations. To reduce the time error mea-
surement, the elapsed time was measured repeatedly (10 trials). Valgrind was
used during the debugging phase only to compute the percentage of the serial
and parallel sections. To minimize unexpected behaviors in performance, CPU
throttling was disabled during the measurement process.

To validate the numerical results of the proposed algorithm, the data was
compared with analytical results from [9]; it has a sound research in bipartite
systems of quantum dots. From there, eight experiments were performed to val-
idate QDsim using different configurations. Each simulation changes a specific
parameter of the quantum system such as the Purity level, the QD decay rate,
the amplitude of probability, the radiative decay rate and the quotient between
photon emission decay rate and radiative quantum dot decay rate. The physical
parameters to feed the model are based on a InAs/GaAs semiconductor.

7 Results

From a partitioning viewpoint there are four implementations:

– Loop Partitioning
• on a shared memory model using OpenMP (LPMC)
• on a distributed memory model using OpenMPI (LPMP)
• on a hybrid (distributed/shared memory) version using OpenMPI &
OpenMP (LPMP + LPMC)

– Loop/Task Partitioning
• on a hybrid (distributed/shared memory) version using OpenMPI &
OpenMP (LPMP + TPMC)

Performance is measured using speedup as a metric. The speedup S is the
quotient between the time of the serial algorithm Ts and the time of the par-
allel version Tp (S = Ts/Tp). The time of the parallel version is a function
of the number of computer nodes np and the number of cores nt used in the
computation.

16 Increases the performance of physical cores by using abstract cores called Logical
Cores.
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7.1 Loop Partitioning

Figure 7 shows the behavior of the three parallel models (LPMC, LPMP and
LPMC+LPMP.) The x axis shows the variations of either np or nt; note that
only the hybrid model shows the variation of np when nt = 2. The y axis shows
the variation of speedup S as the number of Processing Units (np or nt) increases.
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Fig. 7. Performance comparison among parallel models as np(nt) increases

For this implementation, according to Amdahl’s law, a linear behavior on
speedup is expected in every model since the parallel section covers more of the
91.3% of the coding. For example, the LPMP model is closer to the ideal behav-
ior when 1 ≤ np < 4. Nevertheless, there is an inflection point in the linearity
for the LPMC model when nt > 2 (see Fig. 7). This indeed is caused by the
performance of the logical cores17 when the available physical cores are oversub-
scribed. Only when nt = 2, the speedup for the LPMC model gets closer to that
for the LPMP model but with a downtick: the LPMP model got S = 1.97X ap-
proximately whereas the LPMC model got S = 1.90X (see Table 1) using either
two computer nodes or two cores respectively. The relative error of the speedup
between the Ideal and LPMC models increases as the number of cores increase
and consequently the parallel efficiency decreases. The hybrid model (LPMP +
LPMC) gets the highest performance since every core contributes to the total
efficiency of the processing.

17 Hyper-threading technology on Xeon processors.
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Observe that for this simulation, Table 1 shows that logical cores only con-
tribute 0.5X to speedup while physical cores contribute 1.0X . Regarding the
LPMP + LPMC scheme, its performance increases roughly proportional to np·nt
(e.g., S ≈ 4 when np = 2 and nt = 2) and the speedup increases faster than
both LPMP and LPMC.

Table 1. Speedup values for Loop Partitioning

nt=2 nt=3 nt=4 nt=5 nt=6 nt=7

SLPMC 1.90X 2.31X 2.82X - - -

Stheoretical 2.00X 3.00X 4.00X - - -

Errorrelative 5.00% 23.0% 29.5% - - -

np=2 np=3 np=4 np=5 np=6 np=7

SLPMP 1.95X 2.85X 3.81X 4.71X 5.50X 6.61X

Stheoretical 2.00X 3.00X 4.00X 5.00X 6.00X 7.00X

Errorrelative 2.13% 4.71% 4.62% 5.70 8.21 5.51

np=2 np=3 np=4 np=5 np=6 np=7
nt=2 nt=2 nt=2 nt=2 nt=2 nt=2

SLPMC+LPMP 3.74X 5.48X 7.09X 8.93X 9.82X 12.20X

Stheoretical 4.00X 6.00X 8.0X 10.0X 12.0X 14.0X

7.2 Loop/Task Partitioning

Since the parallelizable section (task “solve ME”) is around 78%, the expected
speedup behavior is asymptotic but it is mixed up with the effects of core over-
subscription. When the percentage of the parallel section decreases, the speedup
is reduced. For the Loop Partitioning, each core contributed with 1X ; now one
can say that each core contributes with 0.8X approximately when nt = 2. This
contribution of course decreases when the computations use the logical cores.
Figure 8 shows the speedup when the number of threads increase from 0 to 4
and the number of computer nodes increases up to 7. The black squares repre-
sent the measured values while the dashed line only represents the tendency. The
maximum speedup, 10.5X approximately, is reached when np = 7 and nt = 2.

8 Concluding Remarks

Regarding the three proposed questions, the numerical results show a small per-
formance increment for the distributed memory model in front of the shared
memory model for all of the trials. The reasons are the serialization effects on
the code section. This serialization is mainly caused by constraints in the ar-
chitecture, cache size, memory paging and hard disk access. Figure 9 shows the
serialization effects when a processor tries to access the I/O interface. This snap-
shot from Vtune shows the states of the threads (in the upper part of the figure)
as well as the thread concurrency18 (in the bottom part of the figure.) Since the

18 A measure of the level of parallelism between threads.
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Fig. 8. Speedup for Loop/Task Partitioning

data bus can be accessed by one core only at any given moment, the other cores
must wait for their turns (the sequential section S in the upper right half of the
figure.) For this reason, thread concurrency decreases in this section. Neverthe-
less, the measurement error in the performance increases with the number of
processing units. Logical cores always exhibited a lower performance than phys-
ical cores and can not be compared. Operating Systems always show these cores
(logical and physical cores) as comparable and the general consumers usually
get awry judgements about their real performance.

Fig. 9. Serialization effects

Regarding the parallelization of the density matrix, the use of hybrid models
exhibited a good performance where the speedup increased until 10.5X (Task
Partitioning) to 12.2X (Loop Partitioning) using the available cluster platform.
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Selecting the appropriate partitioning scheme in accordance with the paralleliza-
tion model is of utmost importance to yield good speedups.

Implementing the Loop Partitioning in a shared memory platform was a
painful task due to the number of variables and its declaration19. Furthermore,
the debugging process was also very difficult. For these reasons, the per core
allocated workload on a shared memory model should be a simple task. Despite
the Loop Partitioning got higher performance than Loop/Task Partitioning, the
latter has several advantages such as: it is controllable; easy to implement; lower
implementation time and an easier debugging process.

Further work may explore using Intel’s Threading Building Blocks (TBB)20

to exploit dynamic load balancing among cores. On the other hand, to minimize
contentions regarding hard disk access, it can be worthwhile to use a dedicated
thread for that purpose.
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Adriano M.A. Côrtes1,2, Philippe Vignal1,3, Adel Sarmiento1,4,
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Abstract. In this paper we present PetIGA, a high-performance imple-
mentation of Isogeometric Analysis built on top of PETSc. We show its
use in solving nonlinear and time-dependent problems, such as phase-
field models, by taking advantage of the high-continuity of the basis
functions granted by the isogeometric framework. In this work, we focus
on the Cahn-Hilliard equation and the phase-field crystal equation.
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1 Introduction

The recent interest in Isogeometric Analysis (IGA) [1], a spline-based finite ele-
ment method, motivated an efficient implementation of this numerical method.
PetIGA [2] pursues this goal. It is built on top of PETSc [3,4], an efficient and
parallel library tailored for the solution of partial differential equations.

To highlight some of the features we have access to through the use of PetIGA,
we decided to focus on two phase-fields models of great interest in the material
science community, namely, the Cahn-Hilliard equation, and the phase-field crys-
tal equation. These are high-order and nonlinear partial differential equations.
Their discretization in space can be be simplified through the use of IGA when
compared to traditional finite elements, as the higher-continuous basis functions
required can be trivially generated within this setting.
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In the second section we give a brief definition of what spline functions are,
followed by a section that describes the main ideas behind the IGA framework.
In the fourth section we describe some of the PetIGA data-structures and their
parallelism. In the last section, we show how the framework can be applied to
the phase-field models mentioned before.

2 Spline Spaces

To define a univariate B-spline basis one needs to specify the number n of basis
functions wanted, the polynomial degree p of the basis and a knot vector

Ξ = {ζ1, . . . , ζ1︸ ︷︷ ︸
r1 times

, ζ2, . . . , ζ2︸ ︷︷ ︸
r2 times

, . . . , ζm, . . . , ζm︸ ︷︷ ︸
rm times

}, (1)

with
m∑
i=1

ri = n+ p+1 and ζi < ζi+1. The B-spline basis functions are piecewise

polynomials of degree p on the subdivision ζ = {ζ1, . . . , ζm}.
A stable way of generating them involves using the Cox-de Boor recursion

algorithm [5], which receives as inputs p and Ξ. Knot multiplicity is an essential
ingredient in spline theory, since it allows to control the smoothness of the basis.
Indeed, if a breakpoint ζj has multiplicity rj , then the basis functions have at
least αj := p − rj continuous derivatives at ζj . The vector α := {α1, . . . , αm}
collects the basis regularities.

The space of spline functions is denoted by Sp
α := span {Bp

i }ni=1. The multi-
variate cases are defined by tensor products of univariate spaces. As an example,
the bivariate spline space is defined by Sp1,p2

α1,α2
= Sp1

α1
⊗ Sp2

α2
.

3 Isogeometric Analysis Concept

Spline spaces are one of the main theories that the Computer Assisted De-
sign (CAD) community uses to model geometries on a computer [5]. They are
used as basis functions to parameterize euclidean subsets. The main concept
behind Isogeometric analysis (IGA) is to use the same spline functions as basis
functions for the Galerkin approximation of partial differential equations. As is
done with isoparametric finite elements methods, the parameterization, here-
after denoted as F : [0, 1]d → R

n, called patch by the CAD community and
geometric mapping by the IGA community, can then be used to induce an
approximation space on the domain of the equation, Ω = F([0, 1]d).

It is important to note that the tensor product nature of a multivariate basis
induces a structured grid on the parametric space. That is, we end up with a set
of basis on a structured grid. An efficient implementation should take this into
account.

Besides the possibility of h-refinement and p-refinement, spline functions also
allow the possibility of a new type of refinement, called k-refinement in the
IGA literature. Within k-refinement, the basis has a higher regularity than only
continuous. This opened another pathway of application for the IGA framework,
namely, the discretization of higher-order differential operators [8].
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4 PetIGA

The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a set
of data structures and routines for the parallel solution of discrete problems,
generally coming from some discretization of a partial differential equation. With
respect to parallelism, PETSc is built on top of MPI, the standard message
passing interface framework. Its main goal is to provide the user with a complete
set of tools for the solution process, freeing the programmer from the burden of
parallel implementation.

PETSc is object-oriented in nature, with the main classes being: IS, Vec,
Mat, DM, KSP, PC, SNES, TS. For example, once a Vec object is created, its
contiguous chunks are spread throughout as many processors as the user has
requested. The same is true of a Mat object. To access those objects, PETSc
provides the Set and Get pair, such that the programmer does not have to think
about the inter-process communication. More information on these objects and
the PETSc framework can be found in [4].

PetIGA is a scalable implementation of NURBS-based Galerkin and Colloca-
tion finite element methods, built on top of the PETSc library. Its main idea is to
use the advantageous features one has access to through PETSc, while providing
the user with a framework that only requires a variational formulation, specified
through the coding of a residual and the Jacobian associated with the discrete
problem.

4.1 PetIGA Data Structures

PetIGA also uses the object-oriented paradigm. The first main class, called IGA,
is an abstraction of the notion of a patch. An IGA object contains all the in-
formation to build the basis functions in each direction (IGABasis), the control
points to build the geometric mapping and the quadrature rule (IGARule) used,
that is, the quadrature points and weights. Additionally, in terms of paralleliza-
tion, we use a domain decomposition approach, splitting each direction in a way
to guarantee a load balance between the processors.

Figure 1a shows an example using four processors, numbered from P0 to P3.
In this simple case, each processor will have its own IGA object. To properly
perform the parallel assembly of the global vectors and matrices, PetIGA makes
extensive use of distributed structured grid data structures very similar to the
built-in DMDA objects of PETSc (see [4], section 2.4), which manage all of
the communication patterns on a structured grid between the processors. The
crosshatched regions in figure 1a show the neighboring (ghost) elements of pro-
cessor P0. To complete its description, the IGA object has an iterator through
IGAElement objects. This relationship is shown on the diagram of figure 1b.

The IGAElement class abstracts an element in the patch. It contains all the
information needed from the element point of view, with the most important
piece being the local degrees of freedom (i.e. the basis functions), whose support
intercept the element, as well as their derivatives, evaluated at the quadrature
points. To achieve good memory performance, since a structured grid is being
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(a) PetIGA classes abstractions
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IGAElement

IGAPoint

(b) PetIGA classes relation

Fig. 1. Main concepts of PetIGA framework

considered, no connectivity array is stored, and everything is computed on the fly
for each element. The IGAElement object has an iterator through the IGAPoint
object, as expressed in figure 1b.

From the perspective of the user, the IGAPoint class is the most important
one, and actually, the only one a PetIGA user must care about. An IGAPoint
object gets all the information from the IGAElement, which refers to a specific
quadrature (or collocation) point. Within that object, the shape field stores
the shape functions and its nonzero derivatives on that quadrature point (see
listing 1.1, lines 5,6). The rationale behind these abstractions stems from wanting
the user to only have to focus on the variational formulation of the problem.

As an example, let us consider the C function SystemGalerkin, shown in list-
ing 1.1, that a user has to write to compute a discrete scalar Laplacian. This is
part of the Poisson demo tutorial included in the PetIGA repository [2,17].

1 PetscErrorCode SystemGalerkin(IGAPoint p,PetscScalar *K,PetscScalar *F,
void *ctx)

{
3 PetscInt nen = p->nen;

PetscInt dim = p->dim;
5 const PetscReal *N0 = (typeof(N0)) p->shape [0];

const PetscReal (*N1)[dim] = (typeof(N1)) p->shape [1];
7

PetscInt a,b;
9 for (a=0; a<nen; a++) {

for (b=0; b<nen; b++)
11 K[a*nen+b] = DOT(dim ,N1[a],N1[b]);

F[a] = N0[a] * 1.0;
13 }

return 0;
15 }

Listing 1.1. Callback function to build the discrete Laplacian and an unit force
vector. Part of PetIGA demo code Poisson.c
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5 Examples

The cases studied concern two equations that are being extensively studied by
the computational materials science community. These are the Cahn-Hilliard
equation [6], and the phase-field crystal equation [13]. Both are two high-order,
time-dependent and nonlinear partial differential equations. The discretizations
that will be presented cannot be done in a standard finite element setting, where
only C0-continuity is available. This is due to the presence of the higher-order
operators in both variational formulations. The system of nonlinear equations
that is obtained in both cases is solved using Newton’s method. More details
on the implementations can be found in [8,9,10,11]. In terms of computational
cost, we refer the reader to the work in [15,16], where in-depth analysis of the
linear systems solved while using both direct and iterative solvers can be found.
The examples presented in this work use the options PETSc has set by default,
which are:

– nonlinear solver tolerance with a value of 10−8,
– GMRES as linear solver, with a restart parameter of 30 and a 10−5 tolerance,
– block-Jacobi ILU(0) preconditioner.

5.1 The Cahn-Hilliard Equation

The Cahn-Hilliard equation is a fourth-order, nonlinear and time-dependent,
partial differential equation. In this work, we consider the dimensionless ver-
sion, adapted from [8]. The Cahn-Hilliard equation has successfully been used to
model spinodal decomposition [12], a physical mechanism in which an immisci-
ble binary fluid phase-separates when a critical transition parameter, θ, reaches
a certain threshold. The phase-field parameter c in the Cahn-Hilliard equation
represents concentration of one of the components in the mixture, and is related
to the dimensionless free energy functional of the system, FCH by

FCH =

∫
Ω

(
c log c+ (1 − c)log(1− c) + 2θc(1− c) +

1

2χ
|∇c|2

)
dV (2)

where θ is given a value of 3/2, and χ =
L2
0

2θε2
= 100 where L0 is a representative

length, and will in this work be equal to one. Note that in this formulation,
the critical transition value for θ, θc, is one, such that the value assigned being
greater than θc, induces phase-separation. Following the phase-field framework
for generating the partial differential equation that models the interfacial behav-
ior of the system [7], we now take the variational derivative of this free energy
with respect to c, such that

δFCH

δc
= μc − 1

χ
Δc, (3)

where μc represents the chemical potential, given by

μc = log
c

1− c
+ 2θ (1− 2c) ,
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such that the partial differential equation is then defined as

∂c

∂t
= ∇ ·

(
Mc∇

(
δFCH

δc

))

= ∇ ·
(
Mc∇

(
μc − 1

χ
Δc

))
, (4)

where Mc = c(1 − c) represents a mobility. Finally, the strong form of this
equation, given that concentration must be conserved [7], can be expressed as:
over the spatial domain Ω and the time interval ]0, T [, given c0 : Ω �−→ R, find
c : Ω × [0, T ] �−→ R⎧⎨

⎩
∂c

∂t
−∇ ·

(
Mc∇

(
μc − 1

χ
Δc

))
= 0 on Ω×]0, T ]

c = c0 on Ω × {t = 0}
(5)

where c0 denotes the initial condition, the natural boundary conditions are taken
to be equal to zero, and periodic boundary conditions are considered in all di-
rections. To derive the weak form for this equation, we let V denote the trial and
weighting function spaces, and multiply the strong form (5) by a test function
w ∈ V and integrate by parts,. The problem using the Galerkin method is then
stated as: find c ∈ V such that ∀w ∈ V ,(

w,
∂c

∂t

)
Ω

+

(
∇w,Mc∇μc +

1

χ
∇McΔc

)
Ω

+

(
Δw,

1

χ
McΔc

)
Ω

= 0, (6)

where (., .)Ω represents the L2 inner product over the domain Ω and V needs to
be H2-conforming, where H2 represents the Sobolev space of square integrable
functions with square integrable first and second derivatives. We now discretize
the infinite dimensional problem in space, and derive the semidiscrete formula-
tion which can be stated as: find ch ∈ Vh ⊂ V such that ∀wh ∈ Vh ⊂ V(
wh, ċh

)
Ω
+

(
∇wh,Mh

c ∇μh
c +

1

χ
∇Mh

c Δch
)

Ω

+

(
Δwh,

1

χ
Mh

c Δch
)

Ω

= 0. (7)

We suppose that the discrete space Vh is spanned by the linear combination of
basis functions NA, which are C1-continuous B-spline basis functions.

With regards to PetIGA, if one is able to get equation (7) and an initial
condition, testing of the residual can already be done to check if the system
converges to a solution, or compare the results to a benchmark problem. Being a
nonlinear time-dependent problem, the Cahn-Hilliard model requires the use of a
Jacobian if a Newton-type scheme [8] is used. Nonetheless, by being built on top
of PETSc, the user can use available functions to approximate the Jacobian. This
can save valuable time while prototyping and debugging code, as the residual
can be tested without explicitly coding the Jacobian [4]. With regards to the
time-discretization, we employ the adaptive scheme from [8], which uses the
generalized-α method. By setting an initial condition c0 such that

c(t = 0,x) = 0.63 + η, (8)
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over a unit square, with η a uniform random variable in [−0.05, 0.05], phase-
separation can be observed. In Figure 2, snapshots of the evolution of an initially
mixed and immiscible binary fluid are shown. Notice that at steady state the
phases have separated, which is consistent with the thermodynamics of this pro-
cess. Given the adaptive time-stepping algorithm used, and the highly nonlinear
nature due to the logarithmic chemical potential of the problem, the number of
nonlinear iterations per (accepted) time step varies between 2 and 10 throughout
the simulation. More details on this particular method can be found in [8].

We present preliminary strong scaling results for this problem and show them
on table 5.1. The code was run on Shaheen, a BlueGene/P supercomputer at
King Abdullah University of Science and Technology, and the results show how
PetIGA is well suited for high-performance applications.

Table 1. Scaling results for the two-dimensional Cahn-Hilliard equation. The compu-
tational mesh used consisted of 81922C1-quadratic B-splines. The computational time
reported refers to the time taken for 10 time steps.

Cores (N) Time t (s) Speedup Efficiency

512 2296 1.00 100%

1024 1207 1.90 95%

2048 578 3.97 99%

8192 147 15.62 98%

5.2 The Phase-Field Crystal Equation

The phase-field crystal equation is a sixth-order, nonlinear time-dependent par-
tial differential equation. Although initially developed to solve solidification
problems with both spatial and temporal scales orders of magnitude larger than
the ones available through molecular dynamics [13], it has since then been used
to tackle issues in crack propagation, dislocation dynamics, and formation of
foams among others [14]. In this equation, the order parameter φ represents an
atomistic density field, which is periodic in the solid state and uniform in the
liquid one. The free energy functional used in this model is given by

FPFC =

∫
Ω

(
φ4

4
− ε

φ2

2
+

1

2

(
φ2 − 2|∇φ|2 + (Δφ)2

))
dV (9)

The same procedure shown in section 5.1 to derive the partial differential equa-
tion is again applied, such that the evolution in time of the atomistic density
field is defined as

∂φ

∂t
= Δ

(
(1 +Δ)2φ+ φ3 − εφ)

)
. (10)
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(a) t = 0

(b) t = 9.937 · 10−5

(c) t = 2.291 · 10−3

Fig. 2. Transient solution to the Cahn-Hilliard problem in two spatial dimensions,
subject to a random initial condition and periodic boundary conditions. The weak
form is discretized in space by a mesh of 1282C1-quadratic elements. The initially
mixed fluid phase-separates.
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By considering homogeneous boundary conditions equal to zero and periodic
boundary conditions in all directions, the strong form of the problem can then
be stated as follows: over the spatial domain Ω and the time interval ]0, T [, given
φ0 : Ω �−→ R, find φ : Ω × [0, T ] �−→ R such that⎧⎨

⎩
∂φ

∂t
= Δ

[
(1 +Δ)

2
φ− εφ+ φ3

]
on Ω×]0, T ]

φ(x, 0) = φ0(x) on Ω̄
(11)

The functional space V ∈ H3 is defined, where H3 corresponds to the Sobolev
space of square integrable functions with square integrable first, second deriva-
tives and third derivatives. A weak form is obtained by multiplying equation (11)
by a test functions q ∈ H3, and integrating by parts. One can state the problem
as: find φ ∈ V and σ ∈ V such that for all q ∈ V and w ∈ V(

q,
∂φ

∂t

)
Ω

+ (∇q,∇((1 − ε)φ+ φ3))Ω − 2(Δq,Δφ)Ω + (∇3q,∇3φ)Ω = 0 (12)

To derive a finite approximation to the problem, we pick the finite dimensional
space Vh ⊂ V and derive a semi discrete formulation. The problem is then to
find φh ∈ Vh such that for all qh ∈ Vh

0 =

(
qh,

∂φh

∂t

)
Ω

+ (∇qh,∇((1− ε)φh +
(
φh

)3
))Ω

− 2(Δqh, Δφh)Ω + (∇3qh,∇3φh)Ω = 0 (13)

We again suppose that the discrete space Vh is spanned by the linear combi-
nation of basis functions NA, which are C2-continuous B-spline basis functions.
An example modeling crack propagation in a ductile material [18] is shown in
Figure 3. A circular notch of radius 20π/3 is set at the center of a crystalline
lattice, defined as

φ(t = 0,x) = 0.49 + cos(qxx)cos
(
qyy/

√
3
)
− 0.5cos

(
2qyy/

√
3
)
. (14)

where qx and qy are equal to 1.16/
√
2 and 1.15/

√
2, respectively. These assigned

values, different from the equilibrium values that qx and qy are supposed to take,
induce stretching in both the x and y directions of 16% and 15%, respectively,
and explain the propagating crack in the domain. With regards to the numerical
simulation, this problem is not as hard to solve as the one presented previously,
and requires no more than 4 nonlinear Newton iterations per time step.

6 Conclusions

In this paper, a scalable implementation of isogeometric analysis is presented.
The framework is built in such a way that so as to have the the user only
worry about coding the discrete variational formulation of the problem. Besides
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(a) t = 0

(b) t = 8000

Fig. 3. Transient solution to the phase-field crystal equation in two spatial dimen-
sions. A square domain Ω = [0, 1024π/3]2 is considered. The computational mesh
is composed of 10242C2-cubic elements. The generalized-α method was used to han-
dle the temporal integration, along with a time step size of Δt = 5. The initial crack
propagates throughout the domain.
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inheriting the embedded parallelism of PETSc, PetIGA choice also gives access to
the modular options that PETSc has to solve partial differential equations, such
as solvers, preconditioners and time-integration schemes. Due to the inherent
high-order nature of phase-field models and the high-resolution needed to solve
them, PetIGA is a sensible choice as a framework to handle them.
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9. Gómez, H., Hughes, T.J.R.: Provably unconditionally stable, second-order time-
accurate, mixed variational methods for phase-field models. Journal of Computa-
tional Physics 230(13), 5310–5327 (2011)

10. Vignal, P., Dalcin, L., Brown, D.L., Collier, N., Calo, V.M.: An energy-stable con-
vex splitting for the phase-field crystal equation. arxiv, 1405.3488 (2014)

11. Vignal, P., Collier, N., Calo, V.M.: Phase Field Modeling Using PetIGA. Procedia
Computer Science 18, 1614–1623 (2013)

12. Elliot, C.M.: The Cahn-Hilliard Model for the Kinetics of Pbase Separation. In:
Mathematical Models for Phase Change Problems. International Series in Numer-
ical Mathematics, vol. 88, pp. 35–73 (1989)

13. Elder, K.R., Katakowski, M., Haataja, M., Grant, M.: Modeling elasticity in crystal
growth. Phys. Rev. Lett. 88 (2002)

14. Emmerich, H., Granasy, L., Lowen, H.: Selected issues of phase-field crystal simu-
lations. The European Physical Journal Plus 126, 1–18 (2011)

http://www.mcs.anl.gov/petsc


Solving Nonlinear, High-Order PDEs Using PetIGA 247

15. Collier, N., Dalcin, L., Pardo, D., Calo, V.M.: The cost of continuity: performance
of iterative solvers on isogeometric finite elements. SIAM Journal on Scientific
Computing 35, 767–784 (2013)

16. Collier, N., Pardo, D., Dalcin, L., Paszynski, M., Calo, V.M.: The cost of continuity:
A study of the performance of isogeometric finite elements using direct solvers.
Computer Methods in Applied Mechanics and Engineering 213-216, 353–361 (2012)

17. PetIGA repository, https://bitbucket.org/dalcinl/petiga/
18. Gomez, H., Nogueira, X.: An unconditionally energy-stable method for the phase

field crystal equation. Comput. Methods Appl. Mech. Eng., 249–252, 52–61 (2012)

https://bitbucket.org/dalcinl/petiga/


Alya Multiphysics Simulations on Intel’s Xeon

Phi Accelerators

Mariano Vázquez1,2, Guillaume Houzeaux1,
Félix Rubio1, and Christian Simarro1

1 Barcelona Supercomputing Center, Spain
2 IIIA-CSIC, Spain

Abstract. In this paper we describe the porting of Alya, our HPC-
based multiphysics simulation code to Intel’s Xeon Phi, assessing code
performance. This is a continuation of a short white paper where the
solid mechanics module was tested. Here, we add two tests more and
asses the code on a much wider context. From the Physical point of view,
we solve a complex multiphysics problem (combustion in a kiln furnace)
and a single-physics problem with an explicit scheme (compressible flow
around a wing). From the architecture point of view, we perform new
tests using multiple accelerators on different hosts.

1 Introduction

Alya (see for instance [3,4,10,2,5,9]) is a multiphysics simulation code developed
in Barcelona Supercomputing Center. Thanks to HPC-based programming
techniques, it is able to simulate multi-physics problems with high parallel
efficiency in supercomputers, being already tested up to one hundred
thousand cores in Blue Waters supercomputer [10]. Alya simulates multiphysics
problems such as fluid mechanics (compressible and incompressible), non linear
solid mechanics, combustion and chemical reactions, electromagnetism, etc.
Multiphysics coupling includes contact problem and deforming solids, fluid-
structure interaction or fluid-solid thermal coupling. Its parallel architecture
is based in an automatic mesh partition (using Metis [1]) and MPI tasks.
Additionally it has an inner parallelization layer based on OpenMP threads,
which combined with MPI tasks results in a hybrid parallelization scheme. In
this paper we will focus in the pure MPI case.

Since years ago, heterogeneous systems with accelerators have been a very
appealing alternative to more traditional homogeneous systems. Accelerators
are hardware specifically designed to perform very efficiently a certain kind of
operations, typical of number-crunching situations. In the last years, GPGPUs
have emerged as the de-facto main alternative. NVIDIA, which is the largest
manufacturer of GPGPUs, has been carrying out a huge effort to put all the
computational power of its accelerators in the hands of scientists. They developed
a powerful programming model, CUDA, to help programmers to adapt their
codes to them. However, NVIDIA’s GPGPUs’ architecture is not well-suited for
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all the cases, being very efficient for a particular kind of algorithmics. The fact
is that in GPGPUs regular data structures heavily condition parallel action on
these structures. This fact penalizes a widespread use, although makes them
the best option for such things such as simulation on cartesian meshes. As a
supplementary drawback, in order to get the most of them, very heavy code
re-engineering is required.

A second option that has appeared more recently is the INTEL Xeon Phi
(IXP) accelerator, also known as MIC. Being based on the X-86 architecture,
they do not require a special re-coding. IXP represents a very appealing
architecture for codes such as Alya for several reasons. Firstly, Alya does
not exploit mesh cartesian structure because it is specially designed for non-
structured meshes, where connectivity bandwidth is not uniform and data access
is more complex. Due to their flexibility, non-structured meshes are well suited
for complex geometries. Secondly, due to the Physics that Alya solves, the
numerical schemes cannot guarantee that all the threads will have the same
amount of work. Finally, coupled multi-physics requires a lot of flexibility to
program the different subproblems and, above all, the coupling schemes. It is
worth to mention that Alya is around 500K lines, with more than 40 researchers
working, experts in different disciplines. There is only one version of the code,
which is standard enough to run in several platforms, and specifically designed
to run in parallel and sequential in the same version. We made of portability,
flexibility and code re-usage three of the main pillars of Alya. Therefore, we look
for an accelerator where we can still keep the same flags up. This paper goes in
this direction, exploring Intel Xeon Phi possibilities.

We attack the porting to Intel Xeon Phi in stages. In this paper and as
a starting point, we focus in MPI parallelism. It is a relatively natural path,
because Alya has already shown good scalability for cases where parallel work is
distributed only through MPI tasks. Additionally, we observe that debugging a
parallel application based on MPI tasks is easier than when based on OpenMP
threads, so we can be sure where is the origin of differences in results, if any,
and in performance. In a next paper we will address the hybrid case.

The tests have been carried out in native mode, where the code is compiled
and run on the accelerator.

Briefly, we wanted to explore the following aspects:

– How much porting effort is required and how much of the code must be
re-written and/or reengineered?

– As Alya is specially targetted to engineering simulations, would it be possible
for a small company to upgrade a workstation just by buying a couple of
IXP? Is it possible for them to run the same kind of problems with little
effort but still scaling?

– Being under the same parallelization scheme, i.e. MPI-tasks, could IXP be
considered as a “small cluster”?

– What is the behaviour of Alya when using accelerators hosted at different
nodes?
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2 Computational Aspects

2.1 Porting and Running on Intel Xeon Phi Coprocessor

Porting was not complex at all and no supplementary programming was
required. At the moment of performing the tests, BSC’s main supercomputer,
Marenostrum, was being upgraded to include 84 Xeon Phi accelerators. For
that reason, the main effort was indeed to provide feedback to the system
administrators in order to do a clean set-up of the IXP. Alya is all written in
Fortran 2003, strictly following the standard. Except for Metis [1] no third-party
library is used. Alya has been compiled and tested in several supercomputer
architectures using different compilers, including Intel products. Therefore, no
special effort was required, except for adding the compiling option -mmic.

All cases were tested on Marenostrum III (MNIII), whose computing nodes
are 2x Sandy Bridge-EP E5-2670, 2.6GHz/1600 20M 8-core, with 32 Gb. Each
node has 2 PCIe x24, each one connected to a Xeon Phi 5110P with 8Gb memory.
One of the two Sandy Bridge has an Infiniband card connected to a PCI-E x8.
Finally, Mellanox provides a virtual interface to each Xeon Phi, allowing a fast
and transparent interconnection between all the 84 accelerators in MNIII. Alya
is compiled using the last version of the Intel Fortran Compiler and the Intel
MPI Library.

In both of the cases shown here, Xeon Phi performance is assessed taking into
account the followin aspects:

– Each Xeon Phi has 60 cores, each of them allowing up to 4 hardware threads.
Therefore, each Xeon Phi can run in parallel up to 240 MPI tasks.

– Pure MPI cases are considered, setting the OpenMP environment variable
to OMP NUMTHREADS=1. This is done explicitly to force single software
threads in regions where Alya has OpenMP’ed loops.

– Running in native mode, with all the MPI tasks running on board the Xeon
Phi. In this first test, the host does not provide computing power.

– MPI tasks are shuffled among four accelerators corresponding to two different
hosts.

– No special compilation options was used, except for -O1.

2.2 Simulation Examples

We have chosen several cases of increasing complexity, to examine different
simulation scenarios and schemes. The common features of all the cases tested
are: relatively complex geometries, non-structured meshes, mixed different
element types (tetrahedra, hexahedra, prisms and pyramids). Strong scalability
is measured by computing the cpu-time required for each cycle of the time steps
loop. Both explicit and implicit schemes are tested. In this paper we show the
strong scalability for compressible flow and incompressible flow and combustion
for a multi-phsyics case.
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Fig. 1. Downwind view and pressure contours showing the characteristic lambda
structure for the Onera M6 wing (left) and kiln flow temperature contours

Fig. 2. Onera M6 wing: Strong scalability for both the Xeon Phi (left) and the hosts.
Ideal and measured scalabilities, parallel efficiency and mean number of elements per
core are shown

Onera M6 Wing: Compressible Inviscid Flow, Explicit Scheme. This is
compressible flow passing an Onera M6 wing, under the following conditions:
Mach 0.8395, Reynolds number 11.72E06, angle of attack 3.06 degrees and
angle of side-slip 0.0 degrees [8]. Flow is solved with an explicit scheme, with a
Preconditioned Variational Multiscale (P-VMS) scheme, presented in [7]. Figure
1 shows the pressure contour plot on the downstream surface of the wing. Figure
2 shows the strong scalability for the Xeon Phi. The mesh is made of 1.8M
tetrahedra, with four degrees of freedom per node (momentum vector, density
scalar and energy scalar).
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Figure 2 shows the strong scalability of the Onera M6 compressible flow
explicit solver, for both the host nodes and the accelerators. This comparison
is done to assess whether the communication overhead is similarly penalizing
both cases. Efficiency is degraded a bit earlier in the case of the Xeon Phi due
to the fact that the accelerators are much slower processors than the hosts,
up to 20 times slower. This fact is commented below in the conclusions. As in
previous works [10], we define the scalability “sweet spot” for a certain problem
by keeping the parallel efficiency higher than, say, 75% - 80%, while increasing
the number of MPI tasks. This gives a mean amount of elements per task which
is the lower limit for sustained linear scalability. This number depends on the
physical problem solved and how it is implemented, the solution scheme, the size
and element types, etc: in this case, compressible flow solved explicitly in 1.8M
tetrahedra.

Kiln Furnace: Low Mach Incompressible Flow with Combustion a
Chemical Reactions, Implicit Scheme. This is a complex multi-physics
problem. It is a kiln furnace, typical of cement industry. It is a large cylindrical
vessel in slow rotatory motion where concrete and aggregates is cooked, with
temperature values rising up to 2000 degrees. The length can go up to 120 meters
and the diameter, up to 20 meters. The air is simulated for an incompressible
flow regime with a low Mach approximation, temperature transport is solved
with a the heat flow equation as it is convected by the fluid and several
species are transported, which reacts with each other, both producing and
consuming energy. In this case, there are 5 species. The three problems are
solved in a seggregated strongly coupled way, all of them through an implicit
time integration scheme. The problem is deeply described in [6].

Figure 1 shows a shapshot of the temperature contours in a kiln during the
ignition phase. Figure 3 plots the scalability of the fluid phase. In this case,
the elements-per-core sweet spot, where the scalability is sustained with no less
than 80% efficiency, goes up to around 10K. In this case, the sweet spot is lower,
which allows the authors to go no further than 80 MPI tasks withoug a serious
lose of parallel performance.

3 Conclusions and Future Lines

This paper is a very preliminary leverage of Alya on Intel Xeon Phi accelerators.
Intel Xeon Phi is a valuable option as an accelerator for supercomputing
applications on complex geometries with multiphysics. This is specially the case
when the simulation code has already being parallelized using MPI. Just by
compiling the code using the -mmic option, a running binary is obtained, with
very similar scalability properties when compared to the host binary, with no
code re-writting or re-engineering. In this paper we tested it in multi-physics
examples with both explicit and implicit schemes. However, there are several
points to improve:
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Fig. 3. Strong scalability the Xeon Phi for the flow solution on the kiln furnace
simulation. Ideal and measured scalabilities, parallel efficiency and mean number of
elements per core are shown.

– A straight comparison with the speed with the Sandy Bridge hosts leaves
IXP way behind: the same example with no MPI runs around 20 times
faster in the Sandy Bridge, which is surprising considering the differences in
processors clock (slightly 2x favouring the host). That is to say that, running
the same sequential case, one MPI task takes around 20 times longer in the
Xeon Phi. Further tracing of the code to analyze its performance is required.
Also, it is very likely that a specific IXP compiling option set will make them
run much faster. In this paper we have left this optimization aside purposedly.

– The powerful hosts were not used in the runs here, only the IXP. Now that
we are sure that the code scales well in the accelerators and once a proper
compiling option set is obtained for the IXP, we can establish the true speed
ratio between both computing units. Taking into account these figures, we
can shuffle the MPI tasks among the host and the accelerator, giving METIS
a weight to do a balanced partition.

– Software threading is still to be analyzed, specially for the hybrid MPI-
OpenMP mode.
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