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Preface

FC 2014, the 18th Conference on Financial Cryptography and Data Security, was held
during March 3–7, at Accra Beach Hotel & Spa, Barbados.

We received 165 abstract registrations, 138 full paper submissions, out of which 31
were accepted, 12 as short papers and 19 as full papers, resulting in an overall
acceptance rate of 22.5%, and 13.8% acceptance rate for full papers. These proceedings
contain the revised version of all the papers. The keynote address, entitled “EMV: Why
Payment Systems Fail,” was given by Ross Anderson, Professor of Security Engi-
neering at the Computer Laboratory, Cambridge University.

The Program Committee consisted of 42 members with diverse research interests
and experience. Papers were reviewed double-blind, with each paper assigned to at
least three reviewers. Submissions by Program Committee members received at least
four reviews each. During the discussion phase, when necessary, additional reviews
were solicited. We ensured that all papers received fair and objective evaluation by
experts and also a broader group of PC members, with particular attention paid to
highlighting the strengths and weaknesses of papers. The final decisions were made
based on the reviews and discussion. The task of paper selection was especially
challenging given the high number of strong submissions. In the end, a sizable number
of strong papers could not be included in the program for lack of space.

We would like to sincerely thank the authors of all submissions—those whose
papers made it to the program and those whose papers did not. We, and the Program
Committee as a whole, were impressed by the quality of submissions contributed from
all around the world. Although this made the task of selecting the final list of accepted
papers very challenging, it gave us the opportunity to have a strong and diverse
program.

Our sincere gratitude also goes out to the Program Committee. We were extremely
fortunate that so many brilliant people put such an inordinate amount of time not only
in writing reviews, but also actively participating in discussions for a period of nearly
three weeks, and finally during the shepherding process. They responded promptly to
our requests for additional reviews, opinions, comments, comparisons, and inputs. We
were extremely impressed by the knowledge, dedication, and integrity of our Program
Committee. We are also indebted to the many external reviewers who significantly
contributed to the comprehensive evaluation of papers. A list of Program Committee
members and external reviewers appears after this note.

We would like to thank Tyler Moore, the conference General Chair, for working
closely with us throughout the whole process, and providing much needed support in
every step.

We benefited from advice and feedback of Rafael Hirschfeld, and of the Board of
Directors of International Financial Cryptography Association. Alfred Hofmann and
his colleagues at Springer provided a meticulous service for the timely production of
this volume.



Finally, we are grateful to the Bitcoin Foundation, Silent Circle, Google, Computer
Associates Technologies, the National Science Foundation, and WorldPay for their
generous support.

April 2014 Nicolas Christin
Reihaneh Safavi-Naini
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Digital Check Forgery Attacks on Client Check
Truncation Systems

Rigel Gjomemo1(B), Hafiz Malik2, Nilesh Sumb1, V.N. Venkatakrishnan1,
and Rashid Ansari1

1 University of Illinois at Chicago, Chicago, USA
{rgjome1,nsumb2,venkat,ransari}@uic.edu

2 University of Michigan-Dearborn, Dearborn, USA
hafiz@umich.edu

Abstract. In this paper, we present a digital check forgery attack on
check processing systems used in online banking that results in check
fraud. Such an attack is facilitated by multiple factors: the use of digi-
tal images to perform check transactions, advances in image processing
technologies, the use of untrusted client-side devices and software, and
the modalities of deposit. We note that digital check forgery attacks offer
better chances of success in committing fraud when compared with con-
ventional check forgery attacks. We discuss an instance of this attack
and find several leading banks vulnerable to digital check forgery.

Keywords: Digital check forgery · Financial applications · Remote deposit

1 Introduction

Remote check deposit is one of the most recent internet-based practices intro-
duced as an alternative to traditional paper-based check deposit and clearing,
which required customers to physically go to the banks and banks to physically
meet to exchange checks. This practice was enabled in the US by the Check
21 Act in 2008 [1], which established the equivalence between paper checks and
their electronic representations (typically images), and regulated the practice
of check truncation, which removes a paper check from the clearing process by
using one of its electronic representations. This practice largely reduces costs
related to physical exchange of paper checks among financial institutions.

To remotely deposit a check, a customer uses a client truncation system (out-
lined in Fig. 1), which comprises: (1) a scanning device, which acquires images
of the front and back of the check (step 1), (2) a processing software module
(e.g., computer program or mobile app), which processes those images (step 2),
and (3) a communication system to transmit the images over the internet to the
bank servers (step 6). On the server side, the check images are recovered and

This work was partially supported by National Science Foundation grants CNS-
1065537, CNS-1069311, CNS-0845894, and CNS-0910988.

c© International Financial Cryptography Association 2014
N. Christin and R. Safavi-Naini (Eds.): FC 2014, LNCS 8437, pp. 3–20, 2014.
DOI: 10.1007/978-3-662-45472-5 1



4 R. Gjomemo et al.

processed by optical recognition software to determine the amount along with
the routing and account numbers. The extracted information is further processed
to clear the check. Common client check truncation systems in use today include
scanners and computers (businesses) and smartphones (end customers).

The convenience of remote check deposit using a client check truncation sys-
tem has made this feature very popular among financial institutions and their
customers. According to recent statistics, millions of private and business bank
customers are using it on a daily basis in the United States, and several gov-
ernments and financial institutions worldwide have already introduced it or are
projected to introduce it in the near future [2–6].

In this paper, we demonstrate that this convenience comes with an increased
risk of check forgery, especially so when compared with the more traditional
paper-based check deposit. This is especially significant given that (paper-based)
checks remain the payment type most vulnerable to fraud attacks, with frauds
amounting to 69 % of all payment frauds [7] and the revenue losses due to check
fraud in the U.S. alone amount to approximately $645 million [8].

This paper examines the risk of check forgery associated with remote check
deposit and is based on the following observations about the changes intro-
duced in check transactions by client check truncation systems: (1) digital image
processing enables sophisticated forgeries on check images with an unprecedented
precision, (2) functions such as check acceptance previously executed by trusted
and well-guarded entities (bank tellers, ATMs) have been delegated to untrusted
entities (users) that use the client check truncation system, (3) substitution of
the paper-based checks with image-based checks has rendered well-established,
decades-old anti-forgery techniques mostly useless and (4) the paper trail is elim-
inated since the physical check remains in the hands of the fraud perpetrator.

Based on these observations, we devise a class of attacks that demonstrate the
feasibility of successful digital check forgery aided by untrusted client check trun-
cation systems. These attacks are based on client device and software tampering
to inject forged images in the transaction and on a library of image processing
modules that we created to digitally alter check images. One particular instance
of this class of attacks is outlined in Fig. 1, where in addition to the normal trunca-
tion steps, a check image is extracted at some point along the path to the server, for
instance before it reaches the processing software module (step 3), digitally forged
by the attacker using custom-made or off the shelf tools (step 4), and replaced with
a forged image before being sent to the bank’s servers (step 5). Another instance
of this class of attacks includes creation of a forged check from scratch, without
possessing an existing check.

To demonstrate the practicability of these attacks, we describe specific attack
instances performed on banking applications belonging to three Fortune 500
banks where the client check truncation system is implemented on Android
smartphones. We carefully designed the experiments to avoid any harm to actual
banks or customers. We also followed responsible disclosure practices, where we
shared our findings with the vulnerable banks more than five months prior to this
submission, to give the banks sufficient time to develop and deploy appropriate
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Fig. 1. Check truncation system and attack description

countermeasures. In our conversations, all banks acknowledged the vulnerability
and the underlying issues raised by our research.

Contributions. The scientific purpose of this paper is three-fold: (1) To exam-
ine the threat on client check truncation systems and understand their inherent
weaknesses, (2) to analyze the possible ways by which a criminal could construct
advanced check forgery attacks and (3) to shed light on appropriate countermea-
sures that would thwart such attacks. We make the following contributions:

– We highlight the easiness of carrying out digital check forgery through long
established and powerful image processing techniques (Sect. 3).

– We compare classic physical check forgery techniques with digital check forgery
techniques and highlight the ineffectiveness of classic anti-forgery mechanisms
in preventing digital check forgery (Sect. 2).

– We describe a framework and techniques that can be used to digitally tamper
check images (Sects. 3 and 4).

– We describe an instance of an attack that targets the client check truncation
systems of three major banks implemented on Android smartphones (Sects. 4
and 5).

– Based on our insights and experience, we provide some guidelines and sugges-
tions (Sect. 6) for possible countermeasures against such attacks.

2 Current Check Transactions and Anti-forgery Measures

In this section, we provide a short background of check transactions and survey
the history of digital check processing as well as common forgery techniques and
anti-forgery countermeasures developed to prevent check forgery.

Prior to the 90s, a check issued by a bank that is deposited into an account
of another bank required physical exchange of the paper check between the two
banks before the money transfer took place. To avoid delays in such exchanges,
central clearing facilities were developed, wherein banks met each day, where the
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Table 1. Common techniques to combat check forgery

Techniques Usage Digital checks

Paper-based Paper changes visible properties if tampered Ineffective

Ink-based Ink changes visible properties if tampered Ineffective

Print-based Printed patterns visible on original check only Camera-dependent

paper copies were exchanged and the money credited and debited from the rele-
vant accounts. To avoid forgeries, checks had to be examined manually by several
bank employees along their path (teller of the receiving bank, often teller’s super-
visor, as well as employees of the settling bank). This process was necessarily
labor-intensive, costly and slow.

As check transactions became common and the volume of exchanged checks
increased, magnetic ink routing and account numbers enabled machines to read
and sort the deposited checks much faster. However, the clearing process was still
dependent on physical exchange of checks at a central clearing house, somewhat
still slowing the clearing process.

Check Truncation. To overcome these limitations, the Check 21 Act came
into effect in the U.S. in October 2004, establishing the legal equivalence between
paper and substitute checks (paper representations of checks with the same infor-
mation as the original checks), and their electronic representations [9]. This Act
expedited check clearing by regulating the preexisting practice of check trunca-
tion, in use by some banks. As a result, older practices of paper-based check
clearing could be used together with the newer practice of check truncation.

The next development included the widespread use of client check truncation
systems. These systems brought check truncation facilities to bank customers
via a flood of technologies for remote check processing. Such systems include
dedicated check scanners, PC clients, as well as smartphones. This development
brought the benefits of electronic check processing to the end customers by
providing valuable savings efforts related to physically going to the bank. In
addition, the original paper check remained with the end customers.

2.1 Traditional Check Forgery

Check forgery is executed by physically altering the information written on
a check. Alterations may involve amounts, payee names, routing and account
numbers, dates, and so on. Check forgery may be executed in many ways, most
commonly by: (1) photocopying an original check using image processing tools
and printing devices, (2) check washing, where the ink on the original check is
erased using chemical compounds and new information is written on the check,
and (3) check fabrication, where a completely new check is created.

Table 1 outlines some common techniques currently used to combat paper-
based check forgery. (We omit the techniques that can be used on the back-end,
such as account reconciliation, as they are common to both paper and digital
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checks.) The goal of these techniques is to make physical check forgeries more
difficult and to detect forgeries when checks are submitted. They include: (1)
paper-based ones focused on the paper material of the check, which is produced
by highly specialized and difficult to replicate technologies and is often sensitive
to chemical materials, (2) Ink-based ones, such as bleeding ink and magnetic ink
character recognition (MICR), which focus on the ink used in the original checks,
and (3) Print-based ones, such as ultra-violet (UV) printing, void pantographs,
watermarks, and microprints, which rely on printed patterns that are destroyed
or become visible on photocopied checks. These countermeasures have improved
detection of check forgery considerably. However, even if the reported success
rate of these countermeasures is close to 84 %, check forgery continues to be a
widespread problem causing large financial losses every year [7].

However, the recent remote check truncation practice has completely bypassed
these protection mechanisms by removing the very foundations they rely on –
paper and ink. In particular, only print-based techniques, which rely on visual
properties rather than on chemical and physical ones, may be potentially adapted
as protection mechanisms, since those properties are preserved to some extent in
digital check images. These techniques may depend on several factors, such as
resolution and image quality, camera quality, and pattern quality. However, even
though image forensics research to detect forged JPEG images exists [17,23,28,
29,33,37], the numerous challenges that need to be faced to adopt these ideas to
digital check images have not received sufficient attention from the image process-
ing community. Additionally, due to the recency of this practice, the development
of new methods that exploit features of the digital domain have not received suf-
ficient attention either.

3 Attack Description

In this section, we describe the advantages of digital check forgery over physical
check forgery, which render the former much more likely to succeed than the
latter, and a framework that leverages a wide range of image processing methods
that can be used by an attacker to perform sophisticated forgeries.

3.1 Digital Check Forgery Advantages

The attacker’s goal is to gain monetary gain via remote check deposit by either
digitally modifying an existing check or by digitally forging a new check. In
this paper, we do not consider the (trivial) case where checks may be modified
physically and then remotely deposited. In fact, we believe that digital forgery is
a lower hanging fruit for an attacker than physical check forgery, since it provides
several advantages over physical forgery. These advantages are described next.

Precision. Digital image processing provides an attacker with the opportunity
to manipulate an image at the pixel level with a level of precision unrivaled by
physical forgery. Consider for example the amount area of an actual check shown
in Fig. 2 and produced by a (5MPixel) camera. The area measures approximately
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Fig. 2. Amount area (magnified 3x times.)

3 × 0.8 cm in the physical check while the corresponding image measures 296 × 87
pixels for a total of 25,752 pixels at a bit depth equal to 24. Using digital image
processing, an attacker can assign to each of those pixels any of the 16.8 million
colors available at that bit depth. In reality, an attacker can only choose from
a smaller set of colors that comprises only dark ones for the amount to show,
however that subset is still a large one. To reach a similar precision level in the
physical check, an attacker would have to be able to select and manipulate a
region equal to 0.93 ∗ 10−4mm2 = 93µ2. With a scanning device of higher res-
olution, digital forgery can be even more precise. Furthermore, digital forgeries
do not destroy the physical check. In particular, even though a physical attacker
may not need the level of precision available in the digital domain, a physical
forgery may trigger countermeasures such as bleeding ink and chemically sensi-
tive paper that would make the paper check unusable.

Unlimited Trial and Error. Since all forging operations are performed in the
digital domain, an attacker has an unlimited power to revert them and return
the image to the original state. Alternatively, by keeping copies of a check image
file, an attacker has an unlimited number of images on which to perfect the
forgery before submitting the check to the bank, thus minimizing the risk of
detection. In the physical domain however, forgeries cannot be attempted more
than once or twice on the same physical check without damaging it.

Absence of high fidelity trails for forgery detection. Recall that both the tradi-
tional check and the ATM transactions leave a paper trail that can facilitate
forgery detection either in real-time (in case of traditional check transaction) or
during post-clearance audit. As the remote deposit transaction does not leave a
paper trail at the financial institution, however, none of the anti-forgery coun-
termeasures described earlier can be used to detect forgeries.

Use of untrusted client check truncation systems. In the recent deployments of
remote check deposit the check truncation systems have changed from trusted,
tamper resistant, and well protected entities (e.g. teller centers or video surveilled
ATMs) to untrusted (vulnerable to tampering) entities under an attacker’s con-
trol. By modifying these components and their software, a determined attacker
can interpose at any point along the path from the scanning device to the net-
work device that sends the images and extract or inject forged images.

We assume that the attacker does not have any prior knowledge about spe-
cific image forgery detection mechanisms that may be in place on a target server.
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However, the attacker has a good knowledge about common forgery detection
and counter-forensics techniques [19]. These techniques rely on the fact that
almost all image forgeries leave characteristic artifacts in the resulting image.
These artifacts may be detected by several passive detection techniques such
as bispectral analysis, JPEG compression-based methods, etc. [18,24,27,34,38].
To increase the chances for avoiding detection by any of these techniques, an
attacker must use sophisticated forgery methods depending on the type of mod-
ification. These methods are described in Sect. 3.2.

In summary, the availability of powerful, sophisticated, and often easy-to-use
digital image processing tools, the elimination of the paper trail, and the use
of untrusted client check truncation systems contribute to the feasibility of this
attack.

3.2 An Image Processing Framework for Digital Check Forgeries

The objective of an attacker is to conduct digital check forgery. To do this, the
attacker will desire to introduce as few modifications to the original image as
possible during the forging process. Therefore, the modifications must be carried
out in such a way that the “background” remains intact in the forged image,
and only the fields targeted for tampering are isolated and altered. The design
of a framework, outlined in Fig. 3, is motivated by these objectives. In addition,
although a variety of regions of interest exist on the check, the framework focuses
on content alteration of five check fields: Payee name, Courtesy amount, Legal
amount, Date, and Check number. The content of these fields consists of either
handwritten or printed text.

Attack framework. The input to the framework consists of a rectangular image
Ia of an original check and of forging user specifications, while the output is

Fig. 3. A conceptual block diagram of digital forged check generation framework.
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a forged image, It. These specifications identify the target fields, the type of
alterations, and postprocessing method. For example, the Courtesy Amount of
“20.00” and Legal Amount of “Twenty & 00/100” in the original image Ia may
be targeted with a specification for alteration to “120.00” and “One Hundred
Twenty & 00/100”, respectively.

Field Demarcation and Field Selection (FDFS): This unit analyzes the input
image Ia and demarcates the boundaries of the target check fields using a graph-
ical interface and user input. For automatic field demarcation, an attacker can
also take advantage of an automatic check reading system similar to [31].

Handwriting/Text Processing (HTP): This unit analyzes the text in the target
check fields for text extraction, handwriting style modeling, and dictionary con-
struction from handwriting and standard font templates. This unit is divided
into the following three subunits:

Handwriting/Text Extraction (HTE) Subunit: This unit analyzes the selected
fields for text extraction using methods based on digital image morphology [22]
and attacker feedback. For example, a series of dilation and erosion operations
along with user feedback are used for handwriting/text extraction process.

Handwriting Modeling (HM) Subunit: For handwritten target fields, preserving
the handwriting style may help an attacker bypass eventual handwriting verifi-
cations. To this end, this unit models the handwriting extracted from the input
check image using active shape modeling as discussed in [21].

Dictionary Construction (DC) Subunit: This unit processes the target fields to
extract a template for each character with the purpose of reusing them later.
In particular, a series of image processing operations such as attacker-assisted
segmentation, slant correction, size normalization, and thickness normalization
is used for this task [31]. Character dictionaries for each victim and check type
are stored in the database and later used to generate the text in the forged check.

Check-Background Generation (CBG): This unit “washes the check” by inter-
polating the pixels corresponding to the extracted text and filling them with
values similar to the surrounding background. This operation can be executed
with varying levels of sophistication, by using background check images stored in
the database and employing a variety of super-resolution interpolation methods
to make the washed pixels as similar to the background as possible [16,32,36].

Text Generation and Placement (TGP): The task of this unit is to generate and
place new text in the target fields. The new text can be composed using existing
characters saved previously in the dictionary or by using a template-based active
shape modeling technique [21] backed by the handwriting model learned by the
HM unit, thus preserving the consistency with the handwriting and fonts in
the original check. In addition, other operations such as resizing, rotation, and
spacing can be employed.

Check Background Templates and Character Database (CBTCD): The database
stores the estimated check background templates, issuer-specific handwriting
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Table 2. Check forgeries and their realizations using the framework units

Forgery type Processing units/subunits involved

Check # FDFS → HTP(HTE &DC)→ TGP → CBG → FCG

Date same as above

Legal- & Courtesy-amount FDFS → HTP (HTE, HM, DC)→ TGP → CBG → FCG

Payee Name same as above

Signature FDFS → HTP (HTE &DC)→ TGP → CBG → FCG

Fake Check Generation HTP (DC)→ TGP → CBG → FCG

style models and text dictionaries. During the forged check generation process-
ing, the TGP and FCG units request the database unit to provide information
not readily available from the input image of the check, such as character tem-
plates previously extracted and check backgrounds.

Forged Check Generation and Post-processing(FCG): This unit is responsible for
suppressing artifacts such as text or field boundary imperfections. The type of
post-processing method (e.g. type of smoothing filter used) is provided in the
attacker’s input. It is worth highlighting that post-processing operations such
as linear or nonlinear smoothing are likely to leave (statistical) traces them-
selves [19]. To get around such issues, an attacker can take advantage of counter-
forensics methods, as discussed in [19].

Employing the Framework for Attacks. Theproposed framework enables the
attacker to performawide range of simple and sophisticated forgeries. Each forgery
can be realized by using various features and framework units. For instance, to
modify specific fields of an existing check, an attacker can use the units FDFS,
HTP, CBTCD TGP, CBG, and FCG, in that sequence.

Backed by a rich database of check and character templates, which can be
populated over time, and by post-processing counter-forensic capabilities, more
sophisticated forgery attacks are possible, e.g., generating a fake check digitally
from scratch. We depict in Table 2 some specific instances of forgeries and how
they may be executed by using the units of this framework.

4 Implementation

In this section, we describe the implementation of an instance of our attack for
three client check truncation systems that run on the Android platform.

4.1 Library Instrumentation

The objective of library instrumentation is to achieve transparent interposition
between the point where the check image is acquired and the point where it is
sent over the network. The instrumentation described here is Android-specific
but similar instrumentation may be applied to other implementations of the
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client check truncation systems. More specifically, it includes: (1) software modi-
fication with the purpose of analyzing the communications between the different
application components, (2) identification of the interposition points where the
original images can be extracted and where the forged images can be injected,
and (3) implementation of the actual extraction and injection operations.

We highlight at this point that we deliberately treated the bank applications
as black boxes for several reasons. First, we wanted to prove the generality
of this attack and did not want to rely on particular implementation details
of a specific application. Second, the EULAs of those applications specifically
prohibit decompilation or modification of the binary or source code.

The client truncation system in Android lies entirely inside the device and
includes the full software and hardware stack from the camera hardware to the
bank application as depicted in Fig. 4.a. As can be noted, the bank applications
rely on the camera and network APIs during a check transaction.

In Android, the camera subsystem is implemented by the Java android.
hardware.camera package and related C/C++ code residing in the lower lay-
ers, while the network APIs are implemented by several libraries, among which
the Java Apache HttpClient library. To capture the operations during a check
transaction, we introduced DEBUG output messages in several key points inside
these libraries. Each message prints out the line of the source code that is being
executed as well as the stack trace at that point. Using these instrumentations
we gained a clear picture of how these libraries interact with the applications in
the different steps of a check deposit transaction.

To take a picture, an application issues a request to the class android.
hardware.camera.Camera. Inside this class, another private class is responsible
for handling callbacks and ultimately forwarding the (JPEG) image data to the
application inside an array of bytes. Next, the application processes the image
and sends it to the network APIs to be delivered to the bank servers. Further
instrumentation of the Camera and HttpClient classes allowed us to extract
the original images being delivered to the bank applications and the processed
images being sent over the network.

The previous analysis suggests two alternatives for the modified image injec-
tion point: (1) in the camera subsystem before the image is received and processed
by the application, and (2) in the network subsystem, after the image is received
and processed by the application and before it is encrypted and sent over the
network. The latter alternative however poses a greater risk, since it may inter-
fere with eventual image processing inside the application. In addition, not all
applications use the Apache HttpClient library. Therefore, we chose to instru-
ment the camera subsystem for injecting the forged image. The resulting system
is depicted in Fig. 4.b using dashed arrows.

Our instrumentation provides three different modes of operation for the Cam-
era subsystem: (1) Saving mode, where a copy of the image data is saved as a
JPEG file on local storage and the image data are forwarded to the applica-
tion, (2) Injection mode, where the image data are retrieved from a file on local
storage rather than from the underlying layers, and (3) Regular mode, which is
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Fig. 4. The original and modified camera subsystems

the original mode of the camera subsystem, where the image data are forwarded
to the applications that use the camera. These modes can be enabled/disabled
using a simple configuration file saved on the local storage of the phone.

We chose not to interfere with the applications’ operations, in order to intro-
duce as little disturbances as possible in the data received by those applications.
For instance, since the applications request JPEG data rather than RAW data,
we decided not to change the option to RAW. In fact, even though the RAW data
returned by the camera may provide the original dataset to perform the forgery,
a subsequent JPEG compression is still needed to pass the modified image to
the application. If we do not know the parameters used for compression by the
camera the subsequent compression (done by our framework) may be different
from that performed by the camera, thus potentially disturbing the data.

4.2 Digital Check Forgery

For our proof-of-concept implementation, we decided to perform a light-weight
forgery (due to the sensitivity of the experiments) by tampering only with the
Legal- & Courtesy-Amount fields. This forgery is realized using a MATLAB
implementation of approximately 1100 LoC of the framework units FDFS, HTP,
TGP, and FCG described in Sect. 3.2. A GUI was also developed to assist the
FDFS, HTE, and CBG units with user input. The GUI visualizes the check and
allows the user to provide an input vector consisting of the locations of the target
fields and the post-processing method to be used along with its parameters.

More specifically, starting from the original check (Fig. 5.a), the user-assisted
FDFS unit selects the two fields (Legal-amount shown in Fig. 5.b). Next, the
HTP unit uses background subtraction and relative thresholding to identify the
handwritten text in those fields (Fig. 5.c). Next, assisted by the developed GUI,
the HTE subunit directs the user to select portions of the field representing
single characters and ultimately build a character dictionary of the text in the
check. Next, for each target field, the user-assisted TGP unit sequentially selects
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Fig. 5. Digital check forgery steps

the desired set of characters from the dictionary and places them in the selected
field (Fig. 5.e illustrates how the extracted characters for numerals ‘6’ and ‘7’
are used to generate ‘76’ and how the words ‘six’, ‘ty’, and ‘seven’ are used to
generate ‘seventy six’).

For each target field, the CBG unit “digitally washes” the check by replacing
the pixels corresponding to the text with pixel values estimated from the neigh-
borhood pixels (Fig. 5.d). Next, the FCG unit merges the background image
with the TGP-produced image to obtain the final image (Fig. 5.f). Next, post-
processing based on an averaging filter of 3x3 pixels is used to mitigate boundary
artifacts of the forgery. The final post-processing step uses Exiftool [10] to copy
and update as necessary the JPEG Exif metadata from the original file to the
forged file. For instance, the creation timestamp is modified to coincide with the
injection time rather than with the capture time.

5 Experiments and Results

Experimental Setup and Application Descriptions. The experiments were
performed on a Galaxy Nexus phone running Android 4.1.2 (Jelly Bean). The
Android source files were downloaded from the official Google Android repos
[11] and those implementing the camera and network APIs were modified as
described in the previous section. Next, a userdebug build, which provides root
access, was flashed into the phone.

Banking Applications Description. After a user logs in, each application
presents a screen with the check and instructs the user to take pictures of its
front and back. Next, the user is required to select the account # where the
check must be deposited, type in the amount, and finally submit the check.
Up to the final submission step, the transaction may be canceled at any time
by the user. The application transmits the two images and the data submitted
by the user to the server using the network APIs. On the server side, optical
character recognition (OCR) software is used on the check’s areas of interest
and a confirmation message is sent back to the user.
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Table 3. Preliminary analysis results

Captured Transmitted Obfuscated code

(quality/size dimensions/metadata) (size dimensions/metadata)

Bank 1 95/700KB/1600×1200px/Exif 80KB/1600×1125px/JFIF No

Bank 2 70/290KB/1600×1200px/Exif 290KB/1600×1200px/Exif Yes

Bank 3 30/210KB/1600×1200px/Exif 80KB/ N/A Yes

5.1 Preliminary Experiments and Analysis

Before carrying out the actual attacks, several preliminary experiments were
performed to gain an understanding of: (1) the properties of the images captured
by the camera and of those sent to the server as well as applications’ features,
(2) the server side operations, in particular tolerance to errors, picture quality,
OCR capabilities, and possible human involvement in the clearing process.

Image Properties and Application Features. Using the instrumented
libraries, we initiated several transactions with untampered checks, most of
which were aborted by us before the final submission. Four transactions were
instead brought to completion targeting two banks (two transactions per bank).

The results of these experiments are outlined in Table 3. In this table, the first
column represents the bank, the second represents the JPEG quality, approx-
imate file size, dimensions, and the metadata format of the images (Exif or
JFIF) captured by the camera while the third column represents the same infor-
mation about the images transmitted to the servers. Finally, the fourth column
shows the applications that use code obfuscation (discovered by inspection of
the stack traces). As can be noted, Bank 1 compresses the image before sending
it to the server, presumably to save bandwidth. In addition, its Exif metadata
are replaced by JFIF metadata. Bank 3 instead retrieves a low quality image
from the camera from the start. We could not capture the transmitted images
for Bank 3 using our Apache HTTP instrumentation. However, we observed a
total encrypted network traffic equal to approximately 80 KB per image, sug-
gesting that the images are sent over the network via some other mechanism. In
addition, we discovered that OCR is performed on the smartphone as well.

The practices of sending low quality images have important consequences on
the server’s side ability to detect forged images. In fact, while the regions of
interest can still be processed successfully by OCR software, the loss of informa-
tion in the high frequencies present in low JPEQ quality images makes detection
of artifacts introduced by forgeries hard to detect. Indeed, pixel values tend to
be more uniform across larger regions giving images blocky features.

Server Operations and OCR. In a first experiment, a different amount from
the one written on the check was entered during the user interaction step. In
this case, the server recognizes the mismatch and prompts the user to enter
the amount again. If a different amount is entered again, the server temporarily
accepts the amount entered by the user. Ultimately, however, the amount written
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Table 4. Attack results

Preliminary experiments Transformation type Success

Bank 1 Wrong Amount/names Block Swapping (amount) YES

Bank 2 Wrong Amount Block Swapping (amount) YES

Bank 3 Wrong Amount Block Swapping (amount) YES

on the check is deposited in the user’s account. The results of this first experiment
suggest that no OCR is being performed on the client and that in the case of a
disagreement between the amount entered by the user and the amount recognized
by OCR, there is human intervention in the check clearing system. In a second
experiment, misspelled names were written in the handwritten name portion of
the check. In this case, the transaction proceeded without glitches, suggesting
that OCR is not performed on the handwritten name portion of the check.

The results of these experiments suggest that the check clearing system is
configured to be tolerant towards errors, to the advantage of attackers. Indeed,
given the wide variety of checks, lighting conditions in which pictures may be
taken and cameras, it would be difficult to set strict parameters for picture
quality and JPEG characteristics on the server side.

5.2 Forging Attacks and Results

Three checks with small amounts were modified and injected in each application.
The modifications reused the characters of the original check as outlined in
Table 4 and described in Sect. 4. In our experiments, the payer and the payee
were the same person and the accounts were different accounts of that person on
different banks or within the same bank. The forged checks that were injected
into the three applications were cleared without glitches within a business day.

By connecting the phone to a computer before a check transaction and switch-
ing among the different modes of operation described in the implementation
section, the attack proceeds as follows.

Acquisition. The camera subsystem is set in saving mode. A remote check
transaction is started in the banking application and a picture of the check front
is taken. The byte array with the image data is saved as a file on the local file
system, in addition to being forwarded to the application. At this point, the
transaction is canceled to avoid sending the original image to the server.

Digital Forgery. The saved image is pulled from the phone using adb and, using
the procedure described in the implementation section, it is modified in Matlab
and pushed back on the local file system of the phone.

Injection. The camera subsystem is placed in injection mode and a check trans-
action is started in the app. When taking the picture of the check front, the
modified image is loaded from the local file system as a byte array, which is for-
warded to the application, while the byte array corresponding to the real image
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is blocked. Next, the camera subsystem is placed in regular mode and the picture
of the check back is taken. Finally, the images are submitted to the server.

This attack takes approximately ten minutes, most of which spent by the
user in pushing and pulling the image from the smartphone and in providing
input specifications to Matlab’s framework. In our experiments, the percentage
of changed pixels was in average equal to 0.43 % of the total number of pixels.

We note that due to the sensitive nature of the evaluation, the nature of var-
ious experiments we conducted were “light-weight” and our results have to read
in that light. More experiments and different forgeries are technically possible
(forging account numbers, creating checks from scratch, using larger amounts),
but have not been tested against any possible mitigation strategies currently
employed by the banks due to their sensitive nature. More such experiments are
needed to be done in collaboration with the banks to study the feasibility of
these advanced attacks.

After the attacks, we contacted the banks and provided them with an ear-
lier draft of this paper, nearly 5 months before submission of this paper. The
banks have acknowledged the problem of digital forgery and are actively work-
ing to design countermeasures. We also shared our preliminary ideas regarding
countermeasures which we discuss below.

6 Countermeasures

In this section, we discuss some countermeasures that can be employed on the
client and server sides of a remote check transaction system, to prevent or detect
digital check forgery attacks. We intend to provide a high-level discussion, and
note that our treatment of this topic is not comprehensive due to space reasons.

Trusted Computing. Trusted computing solutions have been proposed and
implemented against client side tampering in a wide range of devices [12,13,
25]. Using a trusted computing platform, the image data or the sensitive por-
tions of the image (amount, account number) may be digitally signed by a
hardware-based tamper-resistant and trusted module on that platform before
being released to the upper layers of the OS. As an example, the OMAP 4
hardware platform on the Galaxy Nexus phone used in our experiments pro-
vides capabilities to implement a trusted computing module on this phone [14].
To take full advantage of these capabilities, however, the applications must be
modified to interface with the trusted module. In addition, such a solution would
not protect against attacks that modify the physical check before scanning it.

Check Reconciliation, Positive Pay and Transaction Limits. The old-
est technique that is an effective method for consumers to prevent check fraud
is reconciliation, wherein a consumer-kept record of the check issue is matched
against the actual transaction record. However, it appears that a large fraction
of users do not reconcile their accounts [15]. Motivated by this, Positive Pay is
a common countermeasure used to protect against check forgery, developed pri-
marily for businesses. In positive pay, the payee sends copies of the issued checks
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to the bank daily, thus providing a reference copy of the original check. However,
due to its cost this countermeasure is currently used only by corporations and
companies and even then, according to [7], 23 % out of 5700 surveyed companies
do not use it due to the costs involved.

A current countermeasure to reduce risk is placement of check, daily, and
monthly amount limits on remote check transactions for end users. However,
this measure, while reducing eventual harm, does not prevent the attack from
occurring. In addition, this measure seems to be applied in practice only to
individual customers and not to business customers.

Digital Image Forensics Techniques. Digital image forensics techniques may
be utilized to detect check forgeries and raise the difficulty bar for attackers. We
list some of these techniques below:

– Camera fingerprinting. Recent research shows that device sensor irregular-
ities affect the pixel values of the images and the pattern of these irregularities
is unique to each device [26,30]. These unique camera characteristics may serve
as or be used to derive unique watermarks to add to the target check fields
and thus detect images that are not produced by the devices. This method,
however, requires the servers to obtain a set of digital images produced by a
device to derive the watermarks (for instance, by taking a set of pictures and
sending them when a check truncation application is first started). A skilled
attacker, however, may defeat this countermeasure by providing an initial set
of pictures with the same watermarks as (future) forged images.

– Copy-evident images. This technique introduces special markings in JPEG
files that are invisible to the naked eye but become visible when an image is
recompressed under certain conditions [28]. The special markings, however,
need to be introduced before an attacker extracts the image, ideally by the
camera hardware. Combined with a list of server-approved JPEG quantization
tables to reduce the freedom of attackers in manipulating the images, this
technique may significantly raise the bar of difficulty for attackers.

– Double JPEG Compression. Several techniques have been proposed to
detect JPEG artifacts due to a second JPEG compression [17,20,23,29,33].
However, the existence of double compression alone is not sufficient to detect
forgeries and, as seen in our experiments, images may be recompressed by
some of the apps. Furthermore, recent research on anti-forensics shows that
some of these techniques can be defeated [35].

High quality images. To further improve the chances of detection on the server
side, high quality images may be sent by the applications. This countermeasure
is simple to implement, however, it must be accompanied with the deployment
of appropriate forgery detection mechanisms on the server.

7 Conclusion

In this paper, we presented and analyzed a digital check forgery attack that
can be used against client check truncation systems. This attack is enabled by



Digital Check Forgery Attacks on Client Check Truncation Systems 19

the delegation to untrusted entities of critical operations performed by trusted
entities. We demonstrate the feasibility of an instance of this attack with exper-
iments on three banking applications running on Android smartphones. We also
discussed countermeasures that can be employed against this attack.
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Abstract. As security protocols are used to authenticate more transac-
tions, they end up being relied on in legal proceedings. Designers often
fail to anticipate this. Here we show how the EMV protocol – the domi-
nant card payment system worldwide – does not produce adequate evi-
dence for resolving disputes. We propose five principles for designing
systems to produce robust evidence. We apply these principles to other
systems such as Bitcoin, electronic banking and phone payment apps. We
finally propose specific modifications to EMV that could allow disputes
to be resolved more efficiently and fairly.

1 Introduction

Even if a security protocol design is sound, the implementation may be flawed;
principals may be dishonest; or other principals may raise doubt about the
integrity of humans or system components. Such issues frequently occur with
financial transaction protocols, where real money is at stake.

In this paper, we use payment cards as a case study for developing principles
for designing systems to produce robust evidence of their correct operation.
These principles apply widely, but banking is a good place to start. Section 2
will summarize the EMV protocol and highlight its flaws from some case studies
of disputes; Sect. 3 will introduce a set of principles for designing systems to
produce reliable evidence; Sect. 4 will discuss some other systems and Sect. 5
will show how these principles can be applied to payment systems.

2 The EMV Protocol and Its Flaws

The EMV protocol [11] promoted by EuroPay, MasterCard and Visa is now
the world’s dominant smart card payment system, with 1.55 billion cards (both
credit and debit) in issue as of Q2 2012 [10]. The USA is a late adopter but has
a target of 2015 for completing deployment [15].

EMV provides a standard toolkit to build security protocols which interoper-
ate despite the details differing by brand and by country. In the UK and Canada,
the system is known as ‘Chip and PIN’ because most point-of-sale transactions
are authenticated with a PIN; Singapore continued to use signatures to authen-
ticate customers; and the USA will be somewhat similar to Singapore.
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An EMV transaction consists of three stages. The first is card authentica-
tion where a chip in the card proves to the terminal that it is authentic. Next,
cardholder verification involves the customer either entering a PIN or signing for
the transaction. Finally, in transaction authorization, the card produces one or
more message authentication codes; as these use a symmetric key shared between
the card and the issuing bank, they can only be verified if the terminal is online.

The EMV protocol has numerous vulnerabilities, some of which are the
inevitable result of implementation choices. For example, banks can issue expen-
sive cards that use public-key cryptography in the card authentication step, or
cheap ones that merely present a certificate, signed by the issuing bank, on the
card data; cards using this static data authentication option are easy to clone [4].
Other vulnerabilities were errors of design or implementation.

Insider attacks and blunders: Visa admitted that criminals have used brute-force
attacks against the PIN-verification command of their hardware security modules
(HSMs) to discover customer PINs, bypassing PIN-retry limits [21]. API attacks
on HSMs have been known for a decade [8], and can also be used to steal the
keys needed to forge cards. Call-centre operators can send PIN-readvice letters
to an address controlled by an accomplice [17]; and many other bank employees
have been prosecuted for abusing their access to commit fraud in various ways [1].
Blunders also happen; in one case, two identical cards were sent to a customer –
a ‘this should never happen’ failure in the process of personalization.

PIN verification flaws: Where the customer PIN is verified by the card offline –
the default in most countries for merchant terminals – a fraudster can often use
a stolen card without knowing the PIN by inserting electronics between the card
and the terminal that tells the terminal the PIN verified correctly, but tells the
card that the transaction was authorised by signature [19]. Despite fraud losses
since 2010 [20] and publicity since 2011, only a few banks cross-check the card
and merchant records carefully enough to detect this ‘No-PIN’ attack.

Pre-play attack: In an EMV transaction, the terminal sends the card the trans-
action amount, the date, and a random challenge; these are authenticated by
the card. However many terminals do not generate proper random numbers;
some use a counter instead. So an attacker with a payment terminal can get an
authentication code that will be accepted by a different terminal at some future
date [7]. The communications from a terminal to a bank can also be manip-
ulated to achieve the same effect: the attacker can insert a prerecorded nonce
and authentication code to make a transaction work. So a correct authentication
code does not automatically imply that the card was used in that terminal.

Misreporting by terminal: We have seen cases of the issuer’s logs stating that a
transaction was PIN-authenticated but the receipt showing it as authenticated
by signature [12]. Merchants have an incentive to lie to their bank, as PIN
transactions attract lower fees and are less likely to be charged back. In this case
the issuer relied upon the (unauthenticated) merchant-reported value rather then
the (authenticated) card-reported value, and denied the customer a refund.
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Transaction reversal: The EMV transaction that authenticates a payment is
separate from the later settlement transaction where the merchant actually gets
paid. A UK gang noticed that while cardholders were authenticated to the bank,
merchants were not. They would buy expensive goods from a merchant, then
impersonate that merchant to the bank to do a transaction reversal, and spend
the same money all over again. At trial, bank experts’ and defence experts’
estimates of the gang’s takings differed by many millions of pounds, and the
jury failed to agree.

Where it is clear which type of fraud has occurred, the card scheme rules
will specify who must pay the costs. The hard cases are where it is not clear
whether the correct PIN and card were used, and merchants or customers dis-
agree with the banks’ view of what happened. Many of the above cases led to fierce
disputes – which is why they came to our attention.

3 Designing for Evidence

The above cases show that the evidence produced by EMV transactions is just
not adequate for discriminating between attacks, and can lead to unfair treat-
ment of both cardholders and merchants. Banks for their part fear that due to
the lack of confidence that can be placed on the evidence, they may be forced
to refund customers who are actually making fraudulent claims of fraud. It is
in the interests of all honest parties to design a protocol that produces robust
evidence. In this section, we will explore what principles might help.

First, evidence must be usable. In the case of Job v Halifax [13], the bank was
unwilling to disclose the card’s authentication keys because they were derived
from a batch key, and other cards using keys derived from this were still in issue.
In addition, key management procedures were considered commercially sensitive.
So an outside expert witness could not have verified the authentication codes in
the logs. This brings us to our first principle:

Principle 1: Retention and disclosure. Protocols designed for evidence
should allow all protocol data and the keys needed to authenticate them to
be publicly disclosed, together with full documentation and a chain of custody.

It follows that nothing in the calculations needed to check a protocol run
should depend on any security sensitive, commercially confidential, or personal
information. The processes used to generate, issue, use, store and recover both
keys and data must be open to inspection by hostile litigants.

Second, evidence mechanisms must be tested end-to-end. Many cryptography
papers have statements like ‘so the judge raises Alice’s signature s to the power
e, finds it’s equal to h(m), and sends Bob to jail.’ This is sadly unrealistic. Each
party in legal proceedings presents their own evidence, and they can challenge the
evidence presented by the other party. For example, the digital tachographs now
used to monitor drivers’ hours in Europe are designed to produce authenticated
logs with digital signatures, but these are not yet used [2]. A vehicle inspector
who stops a truck suspected of a violation simply uses the traditional procedure
of printing out two separate copies of the log from the vehicle unit and sealing
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them in evidence bags. The cryptography although present is disregarded. This
should have been expected: system functionality that isn’t tested thoroughly
before deployment isn’t likely to work well, especially if the main stakeholders
and their vendors don’t think it matters. Our second principle is therefore:

Principle 2: Test and debug evidential functionality. When a protocol is
designed for use in evidence, the designers should also specify, test and debug the
procedures to be followed by police officers, defence lawyers and expert witnesses.

With digital tachograph records, police officers had to improvise, and contin-
ued using ancient techniques, as did the organisations that received EMV fraud
reports. This led to front-line dispute resolution being left to bank call centres
and second-line resolution to bodies such as the Financial Ombudsman Service
that do not have the technical expertise to challenge bank logs. The easiest way
to deal with disputes was to fob off customers who were not particularly prof-
itable, or perhaps who were not rich enough to fight the bank in court. In the
tachograph case, the failure might be described perhaps as a missed business
opportunity; in the bank case as a failure of regulation.

Third comes complexity. Systems incorporating a security protocol are usu-
ally much more complex than the protocol itself. For example, card payment
systems incorporate EMV but also include backwards compatibility with legacy
systems, data collection for marketing, interfaces with call centers, and settle-
ment services. Bugs in, or insider attacks through, these other systems can lead
to inaccurate logs – as in the fraudulent reversal case above. Systems that are
complex and poorly documented are also more liable to have exploitable bugs –
complexity was at fault for the No-PIN attack. Our third principle is therefore:

Principle 3: Open description of TCB. Systems designed to produce evi-
dence must have an open specification, including a concept of operations, a threat
model, a security policy, a reference implementation and protection profiles for
the evaluation of other implementations.

Another example comes from curfew tags, which are used in many countries
to track offenders released early from prison, or given a community sentence
instead of prison. The tag is typically a tamper-evident ankle bracelet that alarms
if the offender tried to pull it off, or goes out of range of a base station at his home
between 7pm and 7am. However one UK operator kept logs only at a back-end
system that was notoriously buggy, and was thus unable to distinguish between
tamper events and false alarms due to software bugs. As a result, tampering
prosecutions that were subject to technical challenge had to be dropped [3]. The
curfew enforcement contract has now gone to a different firm. A much better
design would have been to get the base station to create and sign log entries
for storage on the back-end server. The base station contains tamper-resistant
cryptography in any case, and using this to sign the log would have removed the
server software from the trusted computing base (TCB). A useful precedent may
be the Google NFC wallet, where logs are generated in the secure element in
the NFC chip and stored on Google’s servers, thus removing both the Android
handset and the merchant terminal from the TCB.
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So if designing a system that is too complex or sensitive for a full open
specification to be feasible, such as a smartphone incorporating a mobile wal-
let payment system, the prudent engineer will design the payment part of the
system so that it has open mechanisms and independent logging, with a clear
specification of the APIs or other interfaces by means of which an attacker might
have fed malicious instructions to it. That way, expert witnesses can investigate
how the overall system might have been tampered with.

Our fourth point is related, and concerns the effects of failure. In practice,
the evidence for a disputed EMV transaction is simply a record that an EMV
transaction happened. At best, there may be enough information in the logs
to repeat the security checks; but if a fraud was carried out successfully, the
attacker must have seen to it that the checks passed. This applies even to cards
implementing the most secure EMV variant, Combined DDA/Application Cryp-
togram Generation (CDA), where the card signs a hash of the transaction. The
transaction should only work if the CDA signature verifies – but, perversely,
neither the signature nor the data needed to verify it are sent back to the bank.

This is quite the wrong way round. Compare what happens with an old-
fashioned manuscript signature: frauds are easier to commit than with a PIN,
but are also easier to investigate because criminals are likely to produce a signa-
ture which forensic inspection will reveal as a forgery. Similarly, banknotes are
designed to support three levels of checking – by the public, by bank tellers and
by central-bank examiners. The public know a few of the security features, the
tellers a few more, while only the banknote issuer knows all of them.

It would therefore be beneficial if the system used for dispute resolution
could make extra checks. Fraudsters would have to bypass the normal checks,
but would have less incentive or opportunity to circumvent the secondary ones.
Our fourth principle is therefore:

Principle 4: Failure-evidentness. Transaction systems designed to produce
evidence must be failure-evident. Thus they must not be designed so that any
defeat of the system entails the defeat of the evidence mechanism.

This is a more subtle property than the classic case of a fail-stop system.
Failure-evidentness might in some cases require independent mechanisms so it
can detect a total system compromise, and these mechanisms might have to
be based on random sampling. For example, the UK has had successive waves
of ATM frauds that the banks initially believed were impossible, and tried to
blame on customers, until a large enough number of complaints from respectable
cardholders or merchants whose business was too valuable to alienate forced
managers to take a second look. The same happened with transaction reversal
frauds. In some overseas jurisdictions, ATM cameras are mandatory for other
reasons (in New York to deter mugging) and these ensure that fraud patterns
resulting from a new modus operandi cannot so easily be ignored. Regulators
might consider requiring 5 % of the ATM fleet to be equipped with cameras.
This would reduce the incentive on middle managers to deny a problem for as
long as possible and hope it will go away.
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Finally, there is a governance issue. Even if digital evidence starts off being
retained, open, tested and forensically efficacious, it is not trivial to ensure that it
will remain so as the system evolves, or that failures will be fixed. Initial forensic
procedures can be specified by the system designer, but if he retains control he
may resist admitting that anything was overlooked. He may have long-term
supply contracts with banks worth many millions and be very anxious to not
increase his manufacturing costs. Banks similarly may be anxious not to shake
confidence in the system, for fear of encouraging fraudulent claims of fraud. Our
fifth suggested principle is therefore aimed at regulators:

Principle 5: Governance of forensic procedures. The forensic procedures
for investigating disputed payments must be repeatable and be reviewed regu-
larly by independent experts appointed by the regulator. They must have access
to all security breach notifications and vulnerability disclosures.

This is a political hot potato in Europe at the moment. Security engineers
and NGOs have pushed for breach-disclosure laws, while the European Com-
mission has proposed a Network and Information Security directive that will
compel all Member States to legislate for both breaches and vulnerabilities to
be reported to a single government agency in each country. It is unclear that
the designated agency is likely to have financial consumer protection as its first
priority. Nonetheless, regulators must do what they can.

4 Other Systems

The above principles can be illustrated by considering three different payment
systems: phone banking apps, the overlay banking service Sofortüberweisung,
and the cryptographic payment scheme Bitcoin.

4.1 Phone Banking Apps

Bank customers are increasingly making payments using phone banking apps.
The security of these apps varies across platforms and suppliers, but the diversity
of Android platforms has so far prevented significant use of protection mecha-
nisms such as TrustZone [5], while mobile network operators have opposed the
widespread use of secure elements in phone handsets themselves, instead promot-
ing the SIMs they themselves control. As a result, apps provided by the handset
vendors (such as the Google mobile wallet) are more or less limited to low-value
payments, while high-value account payments are made using proprietary apps
that run in user mode. In consequence, the vendors of banking trojan software
like Zeus are starting to make versions available that target phone banking.

The typical phone banking app complies with none of our principles. First,
the protocols and the embedded crypto are proprietary and may be covered by
an NDA between the software vendor and the bank; the disclosure of technical
details in one trial might expose vulnerabilities that could be exploited against
other banks who bought banking apps from the same vendor. Next, we have
seen no case of an open design or reference implementation, let alone support for
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dispute resolution or transparency to the regulator. The obscurity extends from
the software design to the nature of the logs kept by the bank, or by the system
house that operates its servers. And finally there is no reason to believe that such
a system will be failure evident. A malware attack on the bank’s customers that
steals authentication keys, or simply modifies the app’s user interface to make
payments to the gang using the mechanisms described in Aurasium [22], could
be catastrophic, and detected only when a mob of angry customers complain.

4.2 Sofortüberweisung

A payment service in Germany, Sofortüberweisung means ‘instant payment’.
This offers an service whereby a customer can make a payment to an online
merchant using a Giro transfer from his bank account. A participating website
might offer a shopper an option of a card payment with a fee or a Sofort payment
with no charge. If she clicks on Sofort, it solicits her bank name and account
number, then tries to log on to her bank account and asks for her password and
authentication code when the bank demands it. It checks that funds are available
and sends them to the merchant. In effect it does a man-in-the middle attack on
the German banking system, and now has 3 % of the online payment market.

For the merchant, it’s cheaper than a card payment (the fee is .75 % plus
10 cents versus 2.5 % for a card); for the customer, it’s more convenient than
doing a Giro payment, as the interface is better, and the payment is tied to
the merchant transaction automatically; but for the banks it’s a nightmare.
A third party is not only costing them money by arbitraging their services, but
accumulating customer credentials and thus undermining their security. The
German banks sued Sofort for inducing their customers to break their terms
and conditions by disclosing passwords, but the case failed when the Federal
competition authorities intervened and told the court that competition with the
payment card cartel was welcome. Sofort now has a banking license.

The implications for our robustness principles are as follows. Principle 1,
openness, is reinforced for all; bank attempts to make authentication processes
obscure to thwart Sofort have failed. Principles 2 and 3 are disregarded by all
players equally except insofar as openness is increased. Principle 4, of failure-
evidentness, is seriously undermined. If a customer disputes a transaction with
a bank, and has previously used Sofort for any transaction at all, then it’s not
obvious who is at fault, and in theory the bank could rely on its terms and
conditions to void the customer guarantee. Principle 5 is essentially unaffected,
although Sofort’s very existence may in time drive regulators to acquire more
technical nous.

4.3 Bitcoin

Bitcoin is a digital currency, or perhaps more correctly a digital resource designed
to be scarce and electronically tradeable, in which coins are mined by principals



28 S.J. Murdoch and R. Anderson

who solve cryptographic puzzles (‘miners’) and can be transferred to other prin-
cipals using digital signatures. Bitcoin miners find special hashes of all trans-
actions seen to date, thereby guaranteeing consensus on the transaction history
or ‘blockchain’ (unless a majority of miners were to start working on a different
transaction history). Bitcoins are converted to and from real money by brokers,
of which one firm (Mt. Gox) has most of the business. Principals are known only
by one or more public signature verification keys, so pseudonymous transactions
are possible (though coins can be traced through transactions, allowing traffic
analysis of the Bitcoin economy [16]). Bitcoins have been used for both lawful
and unlawful purposes, the latter including the ‘Silk Road’ auction market for
illegal drugs and firearms, which was recently shut down by the FBI.

Had the authorities not managed to identify the individuals behind Silk Road,
legal coercion might conceivably have been used to shut Bitcoin down or bring
it under regulatory control. There are several options. First, as pointed out by
Möser et al. [18], law enforcement could have compelled the major brokers such
as Mt. Gox to blacklist bitcoins that had been used on illegal markets such as
Silk Road, thereby undermining Bitcoin’s fungibility and causing loss of trust.
A second possibility would be to coerce the Bitcoin developer community; this has
been done in the Lavabit case, where a webmail provider shut his service rather
than yield to an FBI demand that he hand over the service’s SSL keys. A third
possibility would be to coerce the miners: at present two mining companies pro-
duce over 50 % of bitcoins, so could in theory tamper with the blockchain by, for
example, not recognising a transaction made by a criminal suspect. A fourth would
be for a government agency to acquire the computing power to produce over 50 %
of the mining activity and thus take over the blockchain directly.

From individual bitcoin holders’ point of view, the main problem is that
there is no issuing authority and thus no-one to turn to in the event that their
bitcoins get stolen (or that they simply forget the password to their Bitcoin
wallet, rendering their bitcoins unspendable). Thus Bitcoin fails to meet the
consumer-protection provisions of the EU Payment Services Directive.

Bitcoin easily satisfies principle 1 (open data and checkability of authen-
tication) and arguably 3 (open spec and implementation). It fails principles 2
(forensic and dispute procedures) and 5 (governance) because there is no dispute
resolution mechanism. Principle 4 is also violated because a defeat of Bitcoin (for
example, by legal coercion of the software) would be a catastrophic failure.

An interesting protocol design problem is if a court is contemplating ordering
a break of Bitcoin – e.g. by coercing software developers, brokers, or miners –
then is it feasible to move to a Bitcoin 2.0 that allowed selective transaction
blacklisting in a robust way? Blacklisting all transactions with coins that were
once used in Silk Road, for example, would lead to gross overblocking. Or is the
only feasible outcome the total destruction of the Bitcoin ecosystem?

5 Improvements to EMV

It can be very hard to implement changes to any widely deployed protocol if
that involves changing a lot of systems simultaneously. For example, the many
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bugs discovered in SSL/TLS over the past decade have mostly been fixed with
server-side hacks, as it is simply too hard to change all the world’s web servers
and browsers at once. The same applies in spades to EMV, with 30,000 banks,
millions of merchants, and over a billion cards in issue. We can therefore only
consider changes that can be introduced piecemeal with changes to either cards
or back-end systems.

Following principle 3, we propose performing the additional checks primar-
ily on the card, because cards are far simpler than the back-end, are tamper
resistant, and are in some sense under control of the customer. Therefore more
information about their functionality can be disclosed and there are fewer oppor-
tunities for malicious modification.

5.1 Transaction Counters

EMV cards maintain one or more counters that are incremented at the start of
every transaction. This can already be quite useful for detecting cloned cards,
because if a genuine card and its clone are used concurrently there will be
sequence overlaps in attempted transactions.

The use of the transaction counter as an investigation tool does not require
any changes to the card, but does require the development of procedures to
extract it from the banks’ logs and also from the legitimate card. Above all we
need a regulatory change. For example, banks instruct their customers to cut
up the card at once if there is a dispute, which is contrary to the customer’s
interest.

5.2 Transaction Log

Optionally EMV cards can maintain a log of recent transactions. If the card is
still in the customer’s possession then the presence or absence of the disputed
transaction in the card log is convincing evidence as to whether the legitimate
card was used. However the transaction log is not commonly enabled, and there
is a privacy impact of enabling the log as any merchant could then read it.

As with the transaction counter, no changes are needed to cards (other
than enabling the feature) but there would need to be procedures developed
for extracting and evaluating the results. Perhaps, with a bit more effort, a bank
could arrange things so that its customers could read their card logs at its ATMs
but still protect their privacy from merchants.

5.3 Forensics Mode

An issue with the transaction counter and the transaction log is that gaining
access to them requires initiating a transaction and therefore increasing the
counter. For repeatability, it would be better if a card could be placed into
a forensics mode where it is no longer able to carry out transactions but will
disclose the transaction counter. The card could also unlock the transaction log
so that it could be read, and allow access to internal risk analysis counters which
could be correlated with bank logs.
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5.4 Cryptographic Audit Log

A weakness of all of the above approaches is that they still depend on the bank’s
logs for reliability and so do not meet the criterion of complete system disclosure.
Past experience sadly suggests that banks in some countries will drag their feet
over retaining logs and making them available; and that the regulators in these
countries will be reluctant to force them. (The two properties are of course
related.) So how can a bank in a well-regulated country protect its cardholders
when they travel and transact in a poorly-regulated one? A forward secure audit
log implemented by the card can provide a lot of protection while storing log
records on the card issuer’s server to avoid limitations of smart card memory.

The card would be initialized not just with a key used for authentication
codes, but with an audit key that is also unique to each card (even if this card
replaces a card which seemed to fail personalisation). The audit key is updated
on each new transaction and a forward-secure MAC [6] is computed on the trans-
action (including the result of PIN verification). Even compromising the card’s
current audit key will not then be enough to produce fake log messages from the
past. This construction also means that audit keys can always be produced in
court to resolve disputes.

We want to prevent a forger working forwards as well as backwards, so that
even if a card’s original audit key is later compromised, the attacker still cannot
go back and invent an entirely fake transaction history. So the bank should create
a hash-chain over all online transactions, with the root being the audit key [14],
and commit the audit records by including them in the customer’s statement.
Once put into forensics mode, the card would provide access to the final entry
of the hash-chain. Then even with access to the original audit key, a criminal
would not be able to insert a fake transaction without creating an inconsistency
between the bank’s log and the legitimate card’s log.

6 Open Questions

The adoption of the above proposals would substantially improve the quality
of evidence which could be presented in EMV disputes. However, it would not
resolve all cases. When there is no dispute that the correct card and PIN was
used, liability depends on whether the PIN was discovered through customer
negligence. Fraudulent requests for PIN-readvice letters or brute force attacks
against bank HSMs cannot be stopped by changes to card software, but will
require changes to back-end systems and operational procedures.

The relay attack [9] also poses a problem because a cryptographic audit log
would only prove whether a card processed the transaction which was authenti-
cated, not that the customer saw the transaction. Here too, operational changes
can help: in Singapore, transactions are reported to the account holder by SMS,
so any relay attacks should be rapidly detected. An alternative technology is a
smartphone payment mechanism which can give a more trustworthy display.

ATM transactions are typically performed using online PIN verification and
so the card is not able to know whether the PIN was verified correctly. This could
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be resolved by the ATM sending the PIN to the card for offline PIN verification in
addition to the usual online PIN verification. This approach will produce a more
valuable audit log as well as defeating attacks which rely on desynchronizing the
version of the PIN on the card and the version on the issuer’s back-end system.

7 Conclusions

We proposed five principles to guide designers of payment mechanisms and other
systems that may have to be relied on to provide evidence.

We analysed a number of systems. Mobile phone banking apps are partic-
ularly bad as they typically abide by none of these; this may portend trouble
for the industry, as the tagging systems used to monitor curfewees’ parole also
ignore the above principles, and have failed to stand up in court, with significant
commercial consequences. Overlay payment systems such as Sofortüberweisung
are less bad but still fall short; such systems may need carefully-designed logging
systems to deal with frauds and disputes in the future. Bitcoin does not support
any form of dispute resolution at all, and given that it is vulnerable to at least
three forms of attack based on legal coercion and one based on brute-force, it
may well be more fragile than most of its users realise. Our principles can also
be used to expose and highlight design deficiencies in other monitoring systems,
such as curfew tags and tachographs.

Our most detailed study was of EMV, ‘Chip and PIN’, the dominant card pay-
ment mechanism, which is used in Europe and Asia, and is now being deployed in
the USA. This turns out to have a number of significant shortcomings. We argue
that they can be mitigated by individual card-issuing banks, independent of any
changes to the EMV protocol suite itself, by making transaction counters more
accessible to forensic examination; by having logs of recent transactions on the
card; and having key material on the card with which logs are authenticated, and
which can be released to forensic examiners without compromising the security
of the payment mechanism itself. These technical measures have to be comple-
mented by changes in procedure – most notably telling customers to retain cards
in transaction disputes rather than destroy them; and almost certainly by regula-
tory action too, which will ultimately be successful only if card-issuing banks are
less able than at present to externalise their fraud liability to their customers.
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Abstract. We study what happens to the domains used by US banks
for their customer-facing websites when the bank is shut down or merges
with another institution. The Federal Deposit Insurance Corporation
(FDIC) publishes detailed statistical data about the many thousands of
US banks, including their website URLs. We extracted details of the 3 181
banks that have closed their doors since 2003 and determined the fate of
2 302 domain names they are known to have used. We found that 47 % are
still owned by a banking institution but that 33 % have passed into the
hands of people who are exploiting the residual good reputation attached
to the domain by hosting adverts, distributing malware or carrying out
search engine optimization (SEO) activities. We map out the lifecycle
of domain usage after the original institution no longer requires it as
their main customer contact point – and explain our findings from an
economic perspective. We present logistic regressions that help explain
some of reasons why closed bank domains are let go, as well as why
others choose to repurpose them. For instance, we find that smaller and
troubled banks are more likely to lose control of their domains, and
that the domains from bigger banks are more likely to be repurposed
by others. We draw attention to other classes of domain that are best
kept off the open market lest old botnets be revivified or other forms of
criminality be resurrected. We end by exploring what the public policy
options might be that would protect us all from ghost domains that are
no longer being looked after by their original registrants.

1 Introduction

Many countries have just a handful of High Street banks, each with branches
nationwide. The USA is an exception, in that although there are a number of
national or regional brands, there are still many local banks – with perhaps
only one branch, or just a couple more in neighboring towns. The US banking
sector is underpinned by a government promise that should a bank fail then
depositors will get their money back (up to $250,000). The databases created by
the administration of this scheme make it relatively straightforward to find data
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about US banks – as of 31 March 2013 there were 7 019 institutions that were
insured by the Federal Deposit Insurance Corporation (FDIC).

In Spring 2013 we came across what appeared to be a legitimate website,
albeit of somewhat dated design, for the Mid Valley Bank, Corning, California,
USA. What caught our eye was that on their “News” page they had several
stories which appeared to be ‘astroturfing’ puffs for rare earth metal investments,
gold sales and reverse mortgages. Alongside this they had news stories from 2010
on their quarterly financial results, but when we clicked through the pages were
dated 2013. In fact, not only were they dated 2013 but some stories even referred
to events that would occur several months into the future.

We used a search engine and found Mid Valley Bank listed on white pages
websites such as Yelp, Merchant Circle and MapQuest. However we also found
links to the FDIC website. This explained that on 23 January 2004 the bank was
“merged without assistance” into PremierWest Bank. This is presumably why
when we followed another link on the first page of the search results to lendio.com
(a company founded in 2006 that puts businesses in touch with lenders) their
webpage about the Mid Valley Bank marks the details as “not verified”.

Examining the history of the midvalleybank.com domain we find that it was
first registered on 19 July 1996 by the Mid Valley Bank. By 22 February 2008 it
was registered in the name of an employee of PremierWest Bank but the domain
was allowed to expire on 18 July 2009. It was re-registered on 3 October 2009 by
a resident of Novokuznetsk, Russia, a town 500 km SE of Novosibirsk and 800 Km
from the Mongolian border. On 8 October 2010 the registration changed to a
proxy service which suggests that its ownership may have changed hands again.
It remains registered under a proxy service to the present time.

The Internet Archive www.archive.org records that the current website design
was put in place sometime between June 2009 and 10 October 2010 – at which
time the forward looking statements about financial results now present were
dated consistently with the reporting of then recent events. However, the archive
shows that identical reports (with exactly the same profit/loss/asset numbers)
were posted by the real bank in 2002, and the current website design was in use
by the real bank between October 2000 and July 2004, after which a redirection
page (to premierwestbank.com) was present.

Thus we had determined that one closed bank’s website had come back to life
with somewhat dubious content. We therefore decided to ascertain how common
such resurrections are and then identify how the public might best be protected
when domains with a substantial reputation become surplus to requirements.

In Sect. 2 we discuss the FDIC banking database and how it comes to contain
banking domain names. In Sect. 3 we examine the current state of the domain
names of 2 393 of the banks that have merged or been shut down since July 2003.
We propose a ‘life cycle’ for banking domains, with a common progression from
each stage of reuse to the next. We find that large banks (as measured by total
deposits) are more likely to retain old domains, and that non-banks are nearly
always responsible for the resurrection of expired bank domains. We describe
methods for identifying when non-banks impersonate banks on domains from

https://www.lendio.com
https://www.midvalleybank.com
www.archive.org
https://www.premierwestbank.com
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closed banks and for locating at-risk domains that may soon fall out of bank
control. In Sect. 4 we discuss policy options for proactively dealing with the
domains of closed banks in order to protect the public interest. We conclude by
discussing related work in Sect. 5 and by summarizing our findings in Sect. 6.

2 Data Collection and Analysis Methodology

We first describe our approach to identifying the ‘ghost’ websites associated
with closed banks in Sect. 2.1. We then describe in Sect. 2.2 a methodology for
classifying how the websites are being used and whether or not the bank still
retains control over the domains. The collected data and analysis scripts are
publicly available for replication purposes at doi:10.7910/DVN/26011.

2.1 FDIC Data Collection

Franklin D. Roosevelt was inaugurated as US President on 4 March 1933 amidst
a banking crisis – confidence had evaporated, investors were withdrawing their
funds, and banks were closing their doors because they did not have the currency
to fund withdrawals. FDR declared a banking holiday on 6 March 1933 and banks
were only allowed to reopen once federal inspectors had declared them sound and
that they had access to sufficient capital. This restored confidence and investors
queued up again to return their funds to the banks that reopened.

This system of federal investor deposit insurance was regularized by the
Banking Act of June 1933 which created the Federal Deposit Insurance Cor-
poration (FDIC). The FDIC examines and supervises US banks, including state
banks. Should a bank fail then the FDIC will manage it in receivership, and it
also has a rôle in ensuring mergers occur so as to prevent a bank from failing.

The FDIC provides an online database in which are recorded all of the institu-
tions that it has supervised, including those which no longer exist, having merged
or failed.1 This database is populated from the quarterly questionnaires that all
supervised banks must complete, and one of the optional questions requests the
URL of the bank’s website. In other words the FDIC has a database that records
a substantial number of domains currently being used by US banks and – key
to the present study – it often records the domains being used by banks at the
point at which they became, in the FDIC’s jargon, “inactive”.

We fetched a copy of the FDIC’s database for 6 June 2013 and extracted
from this the website URLs for banks that had closed on or after 1 July 2003
(i.e. over a period of almost ten years). We found that quite a number of these
closed banks did not have a website URL entry. However, we located a third-
party website (http://banks.com-guide.org) which appears to have populated
its pages using FDIC data from 2007 – and this provided us a large number of
website URLs that the current FDIC database was missing.
1 Federal Deposit Insurance Corporation Institution Directory: http://www2.fdic.gov/

idasp/warp download all.asp.

http://dx.doi.org/10.7910/DVN/26011
http://banks.com-guide.org
http://www2.fdic.gov/idasp/warp_download_all.asp
http://www2.fdic.gov/idasp/warp_download_all.asp
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In total, the FDIC database lists 3 181 banks that were merged or closed
between 1 July 2003 and 6 June 2013 and, by the means just described, we were
eventually able to obtain 2 302 URLs for their websites matching 2 393 banks
(75 % of the total).2

2.2 Methodology for Identifying Domain Usage

Following an initial sampling of websites, we identified the following categories
for how closed bank domains are used:

1. operable bank-held website (old bank, redirect, or interstitial page);
2. domain parking pages with syndicated advertisements;
3. websites used to distribute malware;
4. other forms of reuse (e.g., blog spam, black-hat search-engine optimization);
5. inoperable websites (e.g., blank pages, misconfigured websites);
6. inactive domains (unregistered, or not resolving).

We visited all the closed banks’ domains programmatically using a Selenium
Firefox client, capturing a screenshot of the rendered website. We manually
inspected each screenshot and assigned the domains to the appropriate category,
a tedious but straightforward task. We identified malware-distributing websites
by observing a blocking page set by the university firewall indicating that the
website appears in a malware blacklist. We did not verify that the website still
continued to distribute malware.

Inactive domains were identified by DNS lookup failures. WHOIS information
was gathered for all domains and parsed using the DeftWhois Perl package.3

We also distinguished between domains still held by banks and those con-
trolled by others. We used the following heuristics to confirm that a bank controls
the domain:

1. any website whose screenshot is categorized as a bank and the domain has
been continuously registered since before the bank closed;

2. any website that redirects to a currently open bank website URL that appears
in the FDIC list;

3. any domain with WHOIS information indicating ownership by a bank.

Any domain satisfying one of these requirements is classified as being bank-
held. This enables us to identify which inoperable domains are controlled by
banks as opposed to third parties.

The first heuristic also enables us to identify the rare but insidious practice
of impersonating a bank. Some websites look like a bank, but are in fact run
by someone other than a bank. We can identify this by looking for bank-like
websites where the domain dates from after the associated bank has already
closed. In these cases, the closed bank allowed the domain registration to lapse,
after which it is re-registered by a non-bank entity.
2 The reason that we found fewer distinct URLs than banks is that some closed banks

used the same web address (most likely as a result of merging).
3 WHOIS Data Extracted from Templates: http://www.deft-whois.org.

http://www.deft-whois.org
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3 Empirical Analysis

We now discuss the data collected on ghost websites. First, in Sect. 3.1 we break
down the prevalence of different forms of reuse. Then in Sect. 3.2 we present
evidence that domains often progress from relatively innocuous forms of reuse
to more insidious ones. In Sect. 3.3 we investigate how different characteristics
such as bank size affect the likelihood of banks retaining control over domains.
We then identify instances of bank impersonation on ghost domains in Sect. 3.4,
followed by finding at-risk domains currently held by banks but susceptible to
changing hands in Sect. 3.5.

3.1 How Closed Bank Websites Are Used

2 393 banks operated 2 302 distinct websites at the time they were closed. The
first question one might ask of these orphaned website domains is who controls
them. Surprisingly, just 46 % (1 059) of the domains are still held by banks. 45 %
(1 030) are used by others, while 9 % of domains (213) are unregistered.

Figure 1 shows how the domains are currently being used. 30 % of the closed
bank domains are still used as bank websites, by redirecting to another bank’s
website, displaying an interstitial page, or hosting the old website. 37 % of the
domains have registered owners but are functionally inoperable.

The most popular repurposing of bank domains is for websites displaying the
type of pay-per-click adverts typical of domain parking companies (426 domains,
18 % of the total). Malware is distributed by 11 websites (0.5 % of the total) and
110 domains (4.6 %) have websites used for an assortment of other purposes.

Occasionally these domains are bought by legitimate services interested in
the address (e.g., the social technology firm Gab Online registered gab.com after
the Greater Atlantic Bank collapsed). More frequently, the new purpose bears
little resemblance to the original bank. For example, a few websites sell phar-
maceuticals or display pornographic content. Perhaps the most curious reuse is
bankoffriendship.com, which displays a trailer and cast information for the Ger-
man language film “Nullstex”. This could be a symptom of dodgy search-engine
optimization, which is a frequent form of reuse.

3.2 The Lifecycle of Closed Bank Websites

Given the many uses for closed bank domains, we now investigate the extent to
which bank domains cycle through different phases of usage over time. Figure 2
plots the fraction of domains still held by a bank against year of closure.

We start by noting that when the bank originally registered their domain
name they will have been able to choose to register for 1, 2, 5 or 10 years.4 Thus
when the bank closed it may have been several years until the next time at which
4 Some top level domains do not allow very long registration periods for domain names,

but .com, which dominated our results, certainly does.

https://www.gab.com
http://www.bankoffriendship.com
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Fig. 1. Current use of domains from closed banks. Blue bars indicate bank-held (46 %),
red bars indicates non-bank holders (45 %) or unregistered (9 %) (Color figure online).

Fig. 2. Fraction of closed banks whose domains are still owned by a bank, by year of
bank closure.

Unregistered

Malware

Other reuse

Parking ads

Inoperable (non−bank)

Inoperable (bank−held)

Operable (bank−held)

0 2 4 6 8 10

Years since bank closed

Fig. 3. Box plot of time since bank closed for different website categories.
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a renewal decision had to be made. However, we found nothing in our data to
suggest that long term registrations obscure shorter-term behavior.

We do find that the domains of recently closed banks are much more likely
to remain with a bank – 99 % of domains for banks closed in 2013 and 82 % of
domains for banks closed in 2012 remain under bank control. As time passes and
domain registration renewals must be authorized and funded, perhaps several
times, more domains fall out of the possession of a bank. The decline is steady,
falling from 58 % for banks shut in 2011 to 29 % for banks closed in 2003.

For those domains that fall into the hands of others, how are they used and
when does it happen? Fig. 3 sheds some light. Domains that still point to banks
have been closed for just under 4 years (median). By contrast, domains now
used by parking companies have been closed for 5.5 years on average, with other
forms of reuse falling slightly behind at 6 years. The eleven websites distributing
malware belonged to banks that had closed 7.5 years prior on average, which is
a similar time to domains that are simply unregistered today.

We note that there is substantial variation in the delays observed for each
category. Some bank websites are abandoned and repurposed in less than a
year, while some banks have held onto domains for more than a decade. But the
median values do suggest that most abandoned domains are older, and they shift
from use by parking companies to more sinister forms of reuse as time passes.

But are these differences statistically significant? The closure times are not
normally distributed, since they are bounded on the left by zero. We also con-
firmed this using a Q-Q plot against a normal distribution. Hence, we use non-
parametric tests to assess the differences in medians across categories.

We first run a Kruskal-Wallis test checking for differences among median
values across all categories. This is highly significant, with a χ2 value of 292.9.
We therefore investigate pairwise differences in the closure times for each pair
of categories to identify which differences are in fact significant. The results are
given in Table 1.

Table 1. Pairwise Wilcoxon rank-sum tests comparing differences in median closure
times for different types of reuse. P-values are adjusted using the Holm method. The
differences are statistically significant as follows. Legend: ✖: not significant, ●: p <
0.10, ✱: p < 0.05, ✱✱: p < 0.01, ✱✱✱: p < 10−6.

Not Malware Other Parking Inoperable Inoperable
registered reuse adverts (not bank) (bank-held)

Malware
Other reuse
Parking adverts
Inop. (not bank)
Inop. (bank)
Operable (bank)
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We can see that the difference in closure times between domains held by
banks that are still used for banking and all other categories is statistically
significant, with the exception of inoperable domains held by banks. Domains
used to display adverts and other reuses are associated with banks that have
been closed significantly longer than domains still serving as banks or those that
are now inoperable. However, unregistered domains have closed for the longest
periods, and the difference between unregistered and both parking and reuse is
statistically significant.

3.3 Characteristics Affecting Domain Reuse

We next examine whether certain attributes affect the chances the domains will
fall from bank control. Characteristics studied include the time since closure,
bank size and the reason the bank closed (e.g., collapse or voluntary merger).
We first present descriptive statistics and then construct logistic regressions to
more carefully identify factors that affect domain reuse.

Descriptive Statistics. Table 2 shows the prevalence of different attributes
for domains controlled by banks compared to those which are not. Differences in
proportion are checked for statistical significance using χ2 tests (those categories
found to be significant are indicated by + and − signs in the table).

535 bank domains have been allowed to expire at some time after the bank
closed. However, 326 of these have subsequently been ‘resurrected’, that is, re-
registered and a new creation date has been recorded in the WHOIS.

The first grouping in Table 2 examines how resurrected domains are used.
Only 0.7 % of bank-held domains have been resurrected, compared with 30 %
of domains not held by banks. Once resurrected, very few domains lose their
registration again (only 2 %). Thus, we can safely conclude that the vast majority
of domains abandoned by banks are no longer seen to be valuable for banking,
and that non-bank entities are most likely to resurrect an abandoned domain.

We can also examine if any characteristics of the bank itself are associated
with who ends up controlling the closed bank’s domain. Larger banks tend to
have greater IT resources, so they are less likely to inadvertently lose control
over domain names. Smaller banks may have fewer resources, but their domains
may also be less attractive for others to reuse since there would be less incoming
traffic and fewer links to the old content.

The second grouping of rows in Table 2 uses the reported total deposits at
closure as a measure of bank size. Indeed, large banks are more likely to hold
onto their domains. When smaller banks close, their domains are more likely to
be abandoned and end up unregistered than mid-sized bank domains.

Finally, we can examine the circumstances of why the bank closed to see
if this affects how the domain is later used. Of the 2 394 closed banks, the vast
majority shut as a result of a merger or acquisition. 79 % merged or were acquired
without requiring any financial assistance from federal regulators, while another
18 % did so with assistance. 71 banks, 7 % of the total, collapsed and were closed
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Table 2. Comparison of characteristics of closed banks to post-closure website use.
The first grouping compares websites that are ‘resurrected’ (i.e., the domain’s creation
date occurs after the bank closed) to those whose domains have not expired after the
bank closed. The second grouping measures bank size in terms of deposits, and the
third grouping examines why the bank closed (e.g., due to collapse, versus acquisition
or merger made with or without federal assistance). Differences in proportion that
are statistically significant at the 95 % confidence interval according to a χ2 test are
indicated with a (+) or (−) sign.

Bank-held Not bank-held Unregistered

# % Diff.? # % Diff.? # % Diff.?

Not resurrected 1 119 99.3% (+) 739 70.2% (−) 209 98.1 %

Resurrected 8 0.7% (−) 314 29.8% (+) 4 1.9% (−)

Deposits < $100M 353 31.4% (−) 365 34.5 % 146 69.2% (+)

$100M < Dep. < $1Bn 622 55.4 % 591 56.4 % 62 29.4% (−)

Deposits > $1Bn 148 13.2% (+) 91 8.7 % 3 1.4% (−)

Collapsed 27 2.4 % 36 3.4 % 8 3.8 %

M/A with assistance 196 17.4 % 226 21.5% (+) 12 5.6% (−)

M/A without assistance 904 80 % 791 75.1 % 193 90.6 %

by the FDIC. Banks that are merged or acquired with federal assistance (i.e.,
they were in financial trouble but not enough to lead to total collapse) are
disproportionately likely to see their domains fall into the hands of non-banks.
These domains are also less likely to be abandoned completely.

Logistic Regressions. We carry out two related logistic regressions to identify
factors that may lead to the abandonment and repurposing of bank websites by
others. In the first regression, we create a binary response variable for whether
or not the bank relinquishes the domain. This includes domains that are used
by others as well as those that remain unregistered.

Our first model takes the following form:

log
pabandoned

1 − pabandoned
= c0 +c1 log (Deposits) + c2 Troubled + c3 Years closed + ε

where the variables we examined were:

* Abandoned: Boolean response variable set to True if the bank no longer
controls the domain (i.e., it is unregistered or not bank-held).

* Deposits: Deposits held by the bank when closed (in thousands of dollars).
* Troubled: Boolean variable set to True if the bank collapsed or was merged

with FDIC assistance.
* Years closed: Years since the bank has closed.

Informed by the summary statistics just presented, we hypothesize that trou-
bled banks and smaller banks (as measured by deposits) are more likely to aban-
don domains. We also anticipate that as more time passes following a bank’s
closure, the associated domain becomes more likely to fall outside its control.
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Table 3. Tables of coefficients for logistic regressions.

Regression 1 Response variable: Abandoned
coef. Odds Ratio 95% conf. int. Significance

(Intercept) 0.58 1.79 (0.90,3.63) -
log(Deposits) -0.17 0.84 (0.80,0.89) p 0.0001
Troubled 0.87 2.38 (1.90,2.98) p 0.0001
Years closed 0.29 1.33 (1.29,1.39) p 0.0001

Model fit: χ2 = 322.8, p 0.0001

Regression 2 Response variable: Registered
coef. Odds Ratio 95% conf. int. Significance

(Intercept) -0.84 0.43 (0.13,1.38) -
log(Deposits) 0.33 1.39 (1.27,1.53) p 0.0001
Troubled 0.73 2.08 (1.18,3.86) p = 0.0151
Years closed 0.24 0.79 (0.73,0.85) p 0.0001

Model fit: χ2 = 120.7, p 0.0001

Indeed, as shown in Table 3 (top), each of these hypotheses are confirmed.
Every doubling of the size of deposits at the closed bank reduces the odds that the
domain will be abandoned by 16 %. For troubled banks, the odds of abandonment
are increased by 138 %. Finally, each additional year that the bank has been
closed increases the odds that the domain will be abandoned by 33 %.

We are also interested in finding out which domains that have been aban-
doned get repurposed by others. Consequently, we performed a second logistic
regression on the 1 265 domains that banks no longer control:

log
pregistered

1 − pregistered
= c0 +c1 log (Deposits) + c2 Troubled + c3 Years closed + ε

For this regression, the binary response variable Registered is simply set to
True if the abandoned domain is still registered.

Once again, as shown in Table 3 (bottom), each of the explanatory vari-
ables are statistically significant. However, this time the effects are different. In
particular, the abandoned domains associated with closed banks having greater
deposits are more likely to remain registered. As each year passes, the odds that
a website outside of bank control will remain registered falls by 21 %. Finally,
abandoned domains of troubled banks face double the odds that they will be
registered by others.

3.4 Identifying Bank Impersonation

While quite rare, an especially harmful form of closed bank domain reuse is to
set up webpages that look like banks but are not in fact banks. We identified
such websites by more closely inspecting all the resurrected domains that we had
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classified as being banks to determine whether their content was branded for an
appropriate banking entity.

In all, we found just five dubious domains. Three (rockbridgebank.com,
securitystatebank.net and the aforementioned midvalleybank.com) serve copies
of the old bank website but have had links to other websites added, likely as
part of some blackhat search-engine optimization scheme.

One bank, plazabank.com, is a false positive. After Plaza Bank of Texas
was acquired, the address plazabank.com was allowed to expire. Plaza Bank of
California and Nevada, which goes by the address plazabank.net according to
the FDIC, resurrected plazabank.com, which now shows a copy of the content
appearing on plazabank.net.

The fifth website, townecenterbank.com, is more of a head-scratcher. Accord-
ing to the WHOIS information, townecenterbank.com is registered to “Domain
Listing Agent” and now redirects to towncenterbank.net, which is registered to
“Town Center Bank”. It is plausible that the unrelated Town Center Bank took
over the domain after Towne Center Bank folded.

3.5 Identifying At-Risk Bank Websites

While the analysis so far has focused on the ways in which expired bank domains
are already being reused, we can also identify at-risk websites that are more likely
to fall from bank control in the future.

We consider a bank-controlled website to be at-risk if, according to the
WHOIS record, the domain has not been updated since before the bank closed
but has yet to expire. In this circumstance, the bank has not yet had to make a
decision whether or not to renew the domain, if indeed they are fully aware that
the domain is theirs to renew.

Of the 1 127 bank-controlled websites, 157 are at-risk of falling out of bank
control. Figure 4 shows when the registration for these websites is set to expire.
Between 30 and 40 websites will expire annually over the next three years. We
anticipate that as further banks close, the number for the years 2016 and beyond
will rise to the level of 2013–2015.

How many at-risk websites do we anticipate will fall from bank control? We
know that the 970 websites for closed banks have been updated and remain held
by banks, compared to 1 266 websites that banks no longer control. If the same
fraction holds for the 157 at-risk domains that have not yet faced the option to
renew, then we would expect that without any change in the approach taken by
the banks then 57 % of the at-risk domains will be taken over by non-banks.

We next discuss the policy options that might be considered for dealing with
these and future at-risk domains.

4 Policy Options

The domains that were once used by banks are not alone in having a residual
reputation that might be exploited once the original owner finds them to be

https://www.rockbridgebank.com
https://www.securitystatebank.net
https://www.midvalleybank.com
https://www.plazabank.com
https://www.plazabank.com
https://www.plazabank.net
https://www.plazabank.com
https://www.plazabank.net
https://www.townecenterbank.com
https://www.townecenterbank.com
https://www.towncenterbank.net
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Fig. 4. Number of at-risk websites for closed banks set to expire each year.

surplus to requirement. It is possible to imagine scenarios in which the domains
associated with newspapers, e-commerce or the provision of stock market prices
might be used for nefarious purposes by a new owner.

There are also domains that were created solely to do harm, which need to be
kept out of circulation for a considerable period. Botnet command and control
(C&C) domains fall into this category. When malware infects a new machine it
will contact the controlling system for instructions so that it can join in with
botnet activities. The malware typically locates the controller by resolving a
baked-in hostname. A key part of neutralizing this type of botnet is to prevent
the hostname from resolving – usually by having the domain name suspended.

However, once the domain name expires (because the botnet operators are
unlikely to renew it) then it becomes available for anyone to register. One of the
authors of this paper purchased an old botnet C&C domain a year after it had
been suspended and found that there were still around 5 000 malware infected
machines attempting to make contact. A less civic-minded registrant could have
easily resurrected the botnet.

Similarly, some iframe injection exploits in late 2012 were dealt with by taking
down the websites hosting the malicious JavaScript. Unfortunately, the websites
that had been compromised to add an iframe to fetch the injected code were
not all cleaned up. In early October 2013 the domains came under the control
of someone who once again supplied malicious JavaScript – and the original
security problem had to be tackled for a second time.

We now review a range of mechanisms that might be adopted in order to
address the problem of the control of domains that should not be available for
just anyone to register for an extended period.

Permanent Cancellation. The domain would be permanently canceled and
would not be available for anyone to register ever again. This is obviously avoids
any possible harm – but preventing all future use will often be overkill; and all
sorts of complications would arise if, for example, a bank decided to resurrect a
legacy brand and wanted to recover the domain that they used to own. It would
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also be hard to determine objective criteria for putting a domain name into this
state, whether or not the previous owner agreed that it might be for the best.

Prepaid Escrow. It could become a requirement for certain classes of domain
name to be prepaid for many years into the future. A regulator such as FDIC
could require the cost of future domain renewal and management to be escrowed
as a prerequisite of operating a customer-facing website. The same effect would
be achieved by requiring that banks make the FDIC the registrant of record
rather than letting the domain expire – with the FDIC underwriting their costs
from their general operating budget, or perhaps by a specific levy on active
banks. This policy option would be almost impossible to operate outside of a
statute-based regulatory regime, so it does not address maliciously registered
domains.

Trusted Repository. A neutral body could be created to hold relevant domains
in trust and it would be excused annual payment for the domain registration.
This body would decide, on the basis of expert analysis of the available evidence,
when a domain could be returned to the general pool. Until that point it would be
‘sinkholed’ – accesses would be logged to assist the decision making process, and
perhaps to assist in informing the owners of compromised websites and machines
that they had a security problem that should be addressed. Once again, the
problem would be to determine the criteria for putting domains into this state –
an obvious abuse would be for brand owners to see this as a cheap way of parking
domains. Finding some way of funding the necessary infrastructure and of obtain-
ing expert advice would also be somewhat problematic.

Warning Lock. Domains that were perceived to have a residual value could
be specially tracked so that their imminent expiry triggered warnings to the
community. It would then be necessary for public spirited organizations to step
up and renew any domains that were not deemed safe to allow just anyone
to renew. This policy option is essentially a distributed version of the trusted
repository just discussed, and although it could be effective for some types of
domain its impact is likely to be extremely patchy. It might be argued that
the present ad hoc arrangements for sinkholing maliciously registered domains,
operated by organizations such as Shadowserver and Team Cymru, serve as
prototypes for this type of approach.

It is perhaps unlikely that the best remedy for preventing the creation of
‘ghost’ websites will be the same as the ideal solution for blocking the resur-
rection of maliciously registered domains, so we do not propose a universally
applicable approach. However, for bank websites we conclude that of the avail-
able options, prepaid escrow would be the most practical mechanism to adopt
since it could easily be added to the winding-down process managed by FDIC.

Because no adequate policy is currently in place, we have elected to defen-
sively register all unregistered bank domain names to prevent further abuse.
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We plan to reach out to the expired domain’s associated bank, in the case of
acquisitions, to determine whether they would like to assume control of the
domain at no cost. This work is being funded as a research project for ICANN.

5 Related Work

There has been considerable empirical research investigating the nature of phish-
ing attacks impersonating banks [6,7]. To our knowledge, there has been no
prior work discussing the re-use of closed banking websites. However, several
researchers have observed that spammers sometimes re-register expired domains
in order to benefit from the reputation of the old domain [2–4]. For instance,
Hao et al. found that spammers quickly register recently expired domains, much
faster than non-spammers [4].

There has also been detailed research into ‘typo-squatting’, where domains
are registered with similar names to popular websites [8]. The hope is that users
will mistype URLs, reach the ‘wrong’ place and, by clicking on adverts for the
‘real’ site thereby make money for the domain registrants. In the present case,
where there is no ‘real’ site anymore, someone using the domain names to catch
traffic from people who had forgotten about the demise of their bank could only
serve up adverts for generic banking or insurance products.

Kalafut et al. examine ‘orphan’ DNS servers, whose domains have (usually)
been suspended due to malicious activity but remain in the DNS as authoritative
for some domains [5]. They note that attackers could re-register these domains
to take control of otherwise operational domains. This resembles our study in
that websites could cause harm if brought back online, though in our study we
consider legitimate, trusted resources (banks) instead of illicit websites.

There are counterbalances to the use of confusingly similar domain names
and these might conceivably be used to tackle the reuse of domain names in a
confusing context. Some jurisdictions have explicit legislation; in the US there is
the Anticybersquatting Consumer Protection Act of 1999 (15 U.S.C. §1125(d))
and the Truth in Domain Names Act of 2003 (18 U.S.C. §2252B). Addition-
ally, Uniform Dispute Resolution Procedures (UDRP) are operated by many of
the domain registries. The UDRP process is a form of arbitration that allows
complainants to recover domains from unworthy registrants [1] but there is no
provision for third parties to initiate proceedings, and presumably a bank that
has let domains lapse would have limited interest in expensive action under a
UDRP regime.

6 Concluding Remarks

We have investigated what happens to domains that were once used for customer-
facing banking websites after their owners change or disappear. By inspecting
over 2 000 websites associated with banks that have closed in the last decade,
we can provide insights drawn from a statistically robust dataset.
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We find that while many websites initially remain in the hands of a bank, over
time these websites tend to become inactive and their domains are frequently
allowed to expire. Large banks tend to hold on for longer but even they frequently
choose to relinquish control eventually. When domains do expire they are often
quickly acquired by non-banks and repurposed. Logistic regressions have been
presented to precisely quantify this behavior.

Often the domains of closed banks are used to serve advertising but other,
more sinister, uses may occur. Most reuse is lawful, albeit ethically questionable,
such as when advertisers trade on the residual reputation of collapsed institu-
tions. However, older domains are occasionally used to serve malware. Further-
more, in a handful of cases we saw domains that were no longer owned by the
original bank but they served up content that made them look as if the original
bank was still operating.

What, if anything, should be done? We have examined various policy options
that would ensure that the residual reputation of bank domains is not used
outside the banking sector. While each approach has drawbacks, placing domains
in prepaid escrow as part of FDIC’s bank closure process seems most compelling.

Although this paper concentrates on banking domains as an exemplar of
domains where controlling future ownership of the domains might reduce risk,
we also drew attention to other classes of domain where there is a strong public
interest in controlling registration, such as botnet C&C domains and maliciously
registered malware exploit domains. Unfortunately, policy solutions for these
latter types of domain are rather more limited. Nonetheless, the current solution
of having public-spirited organizations hold on to them can already be seen to
have occasional failures, so we must expect that many more ghosts will come
back to haunt us in the future.
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Abstract. The cryptographic foundations of e-auction and e-voting
schemes are similar, for instance, seminal works in both domains have
appliedmixnets,homomorphicencryption,andtrapdoorbit-commitments.
However, these developments have appeared independently and the two
research communities are disjoint. In this paper, we demonstrate a rela-
tion between e-auction and e-voting: we present Hawk and Aucitas, two
e-auction schemes derived from the Helios and Civitas e-voting schemes.
Our results make progress towards the unification of the e-auction and
e-voting domains.

Keywords: Aucitas · Auction · Bid secrecy · Civitas · Collusion
resistance · Hawk · Helios · Price flexibility · Privacy · Sealed-bid ·
Verifiability · Voting

1 Introduction

An e-auction is a process for the trade of goods and services from sellers to
bidders (or buyers), with the aid of an auctioneer. We study sealed-bid auctions,
which are defined as follows. First, each bidder submits a bid which encapsu-
lates the price that the bidder is willing to pay. Secondly, the bids are opened
to derive the winning price. Finally, the winner is revealed. The winning price
and winner are derived in accordance with the auction’s policy, for example,
in first-price sealed-bid auctions the winning price is the highest price bid and
the winner is the bidder who bid at the winning price. We shall focus on M th
price sealed-bid auctions, which generalise first-price sealed-bid auctions to sell
M identical items at the highest price that M bidders are mutually willing to
pay. For instance, in the case M = 6, six identical items will be sold at the sixth
highest price that is bid, because six bidders are mutually willing to pay this
price.

An election is a decision-making process by which voters choose a representa-
tive from some candidates. We study secret ballot elections, which are defined as
follows. First, each voter submits a ballot which encapsulates the voter’s chosen

See [16] for the long version of this paper.
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candidate (i.e., the voter’s vote). Secondly, all ballots are tallied to derive the
distribution of votes. Finally, the representative is derived in accordance with
the election’s policy, e.g., in first-past-the-post elections the representative is the
candidate with the most votes. In this paper, we shall demonstrate that it is
possible to derive e-auction schemes from e-voting schemes.

Constructing e-auction Schemes from e-voting Schemes. Our translation from an
e-voting scheme to an e-auction scheme assumes that prices can be represented as
candidates, for example, an e-auction with a starting price of 10, price increments
of 5 and a price ceiling1 of 30 can be represented by the following five candidates:
10, 15, 20, 25 and 30 (we refer to these values as biddable prices). In this setting,
an e-auction proceeds as follows. First, to bid for a particular price, bidders
“vote” for the candidate that represents the price that the bidder is willing to
pay, for example, a bid at price 20 is captured by a “vote” for the third candidate.
Secondly, the bids are “tallied” to determine the distribution of “votes” and the
winning price is derived from this distribution: the winning price is the largest
price in (10, 15, 20, 25, 30) for which at least M bidders “voted” at or above.
Finally, we link the winning price to winning bidders. This final step distinguishes
our e-auction scheme from the underlying e-voting scheme and we shall see that
this can be achieved in the context of secret ballot elections.

1.1 Security Properties

Bidders should be able to bid in auctions without fear of repercussions. This
property is known as privacy and bid secrecy has emerged as a de facto standard
privacy requirement.

– Bid secrecy: A losing bidder cannot be linked to a price.

We are also interested in collusion resistance (to help prevent bid rigging [19] by
conspiring bidders).

– Collusion resistance: A losing bidder cannot collaborate with a conspirator
to gain information which can be used to prove how they bid.

Verifiability allows bidders and observers to verify that bids have been recorded
and tallied correctly without trusting the system running the e-auction. The
concept is intended to avoid situations whereby systems are trusted and, subse-
quently, discovered to be untrustworthy, thus bringing auctions into disrepute.
We distinguish the following three aspects of verifiability.

– Outcome verifiability: A bidder can check that their bid is included in the
e-auction and anyone can check that the winning price is valid.

– Eligibility verifiability: Anyone can check that all bids were submitted by
registered bidders.

– Non-repudiation: Anyone can check the winners’ identities.

1 A price ceiling – that is, an upper bound on the price that may be offered by bidders
– is common in e-auctions.
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We are also interested in the following functional requirement, which avoids
restricting the bidding amount.

– Price flexibility: Bidders can submit any price.

2 Cryptographic Preliminaries

We adopt standard notation for the application of probabilistic algorithms A,
namely, A(x1, . . . , xn; r) is the result of running A on input x1, . . . , xn and coins
r. Moreover, A(x1, . . . , xn) denotes A(x1, . . . , xn; r), where r is chosen at random.
We write x ← α for the assignment of α to x. Vectors are denoted using boldface,
for example, x. We write |x| to denote the length of a vector x and x[i] for
the ith component of the vector, where x = (x[1], . . . ,x[|x|]). We extend set
membership notation to vectors: we write x ∈ x (respectively, x �∈ x) if x is an
element (respectively, x is not an element) of the set {x[i] : 1 ≤ i ≤ |x|}.

An asymmetric encryption scheme is a tuple of algorithms (Gen,Enc,Dec)
satisfying the standard correctness property (see the long version [16, Defin-
ition 1] of this paper for a formal definition). We say an encryption scheme
is homomorphic if there exists binary operators ⊕, ⊗ and � such that for all
(pk , sk ,m) ← Gen(1k), messages m1,m2 ∈ m and coins r1 and r2, we have
Enc(pk ,m1; r1) ⊗ Enc(pk ,m2; r2) = Enc(pk ,m1 � m2; r1 ⊕ r2). The scheme is
additive homomorphic if � is the addition operator or multiplicative homomor-
phic if � is the multiplication operator.

An interactive proof system is a two party protocol between a prover and
a verifier on some common input, which allows a claim of membership to be
evaluated. Formally, we capture such proof systems as sigma protocols (see the
long version [16, Definition 2] of this paper for a formal definition). A sigma
protocol for an NP language LR, where LR = {s | ∃ w such that (s, w) ∈ R},
is a tuple of algorithms (Comm,Chal,Resp,Verify) satisfying special soundness
and special honest-verifier zero-knowledge (see [5] for details), in addition to the
standard completeness property. Our e-auction schemes are dependent upon the
sigma protocols given in Definition 1.

Definition 1. Given an asymmetric encryption scheme (Gen,Enc,Dec) and a
sigma protocol Σ for the language LR, we say Σ:

– proves correct key construction if ((1k, pk ′,m′), (sk ′, r)) ∈ R ⇔ (pk′, sk′,m′) =
Gen(1k; r)

– proves plaintext knowledge in M if M ⊆ m and ((pk , c), (m, r)) ∈ R ⇔ c =
Enc(pk,m; r) ∧ m ∈ M

– proves correct ciphertext construction if ((pk , c1, . . . , c�), (m1, r1, . . . , m�, r�))
∈ R ⇔ ∧

1≤i≤� ci = Enc(pk ,mi; ri)
– is a plaintext equality test (PET) if ((pk , c, c′, i), sk) ∈ R∧ i ∈ {0, 1} ⇔ ((i =

0∧Dec(pk , sk , c) �= Dec(pk , sk , c′))∨(i = 1∧Dec(pk , sk , c) = Dec(pk , sk , c′)))∧
Dec(pk , sk , c) �= ⊥

– proves decryption if ((pk , c,m), sk) ∈ R ⇔ m = Dec(pk , sk , c)

where (pk , sk ,m) ← Gen(1k).
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We can derive proofs of knowledge from sigma protocols using the Fiat-
Shamir heuristic [9], which replaces the verifier’s challenge with a hash of the
prover’s commitment, optionally concatenated with the prover’s statement [5]
and a message.

Definition 2 (Fiat-Shamir transformation). Given a sigma protocol Σ =
(CommΣ ,ChalΣ ,RespΣ ,VerifyΣ) and a hash function H, the Fiat-Shamir trans-
formation FS(Σ,H) = (Prove,Verify), where Prove and Verify are the algorithms
defined as follows:

– The proof algorithm Prove takes a statement s, witness w, and (option-
ally) message m as input. The algorithm proceeds as follows. First, compute
(comm, t) ← CommΣ(s, w). Secondly, derive chal as follows: if m is defined,
then chal ← H(s, comm,m), otherwise, chal ← H(s, comm). Thirdly, compute
resp ← RespΣ(chal, t). Finally, output σ = (comm, resp).

– The verification algorithm Verify takes a statement s, candidate proof (comm,
resp) and (optionally) message m as input and outputs VerifyΣ(s, (comm,
chal, resp)), where chal is derived as follows: if m is defined, then chal ←
H(s, comm,m), otherwise, chal ← H(s, comm).

3 Syntax for e-auction Schemes

Based upon Bernhard et al. [4,5,18], we formalise e-auction schemes as a tuple
of algorithms (Setup,BB,Open,Reveal) which are executed by an auctioneer and
bidders as follows. (We consider a single auctioneer for simplicity and note that
schemes can be generalised to several auctioneers to distribute trust, if neces-
sary.) The Setup algorithm is run by the auctioneer to initialise a key pair and
bulletin board. The Bid algorithm is used by bidders to generate their bids and
the BB algorithm is used by the auctioneer to process bids, in particular, the
algorithm adds correctly formed bids to the bulletin board. Once all of the bids
have been collected, the auctioneer runs Open to find the winning price, which
is announced by the auctioneer. Finally, the Reveal algorithm is used to iden-
tify winners; the Reveal algorithm uses private data s to reveal the winners, for
example, s could be a private key which is used to decrypt bids. We define the
inputs and outputs of our algorithms below:

Setup(1k) → (pk , sk , bb, aux -pk). The setup algorithm Setup takes the security
parameter 1k as input and outputs a public key pk , private key sk , bulletin
board bb and auxiliary data aux -pk , where bb is a set.

Bid(pk , aux -pk ,P, p) → b. The bid algorithm Bid takes as input a public key
pk , auxiliary data aux -pk , vector of biddable prices P and price p, where
1 ≤ p ≤ |P|. It outputs a bid b such that b = ⊥ upon failure.
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BB(pk ,P, bb, b) → bb′. The bulletin board algorithm BB takes as input a public
key pk , vector of biddable prices P, bulletin board bb and bid b, where bb is
a set. It outputs bb ∪ {b} if successful or bb to denote failure.

Open(pk , sk ,P, bb,M) → (p, aux -open). The opening algorithm Open takes as
input a public key pk , private key sk , vector of biddable prices P, bulletin
board bb and parameter M denoting the number of items to be sold, where
bb is a set and M > 0. It outputs the winning price p and auxiliary data
aux -open such that p = 0 if no winning price is found and p = ⊥ upon failure.

Reveal(pk , s, aux -pk ,P, bb,M, p, aux -open) → (w, aux -reveal). The reveal algo-
rithm Reveal takes as input a public key pk , private data s, auxiliary data
aux -pk , a vector of biddable prices P, bulletin board bb, parameter M denot-
ing the number of items to be sold, winning price p and auxiliary data
aux -open, where M > 0 and 1 ≤ p ≤ |P|. It outputs a vector of winners
w and auxiliary data aux -reveal such that w = ⊥ upon failure.

Our definition assumes that a vector of biddable prices P has been published
and a bid for price P[p] is identified by price index p, where P[1] < · · · < P[|P|]
and 1 ≤ p ≤ |P|. For ease of understanding, we sometimes refer to p as a price.

4 Hawk: An e-auction Scheme Based on Helios

Hawk is an e-auction scheme derived from the Helios e-voting scheme [3]. An
auction is created by naming an auctioneer. The auctioneer generates a key
pair and a proof of correct construction. The auctioneer publishes the public
key, proof, biddable prices, and number of items to be sold. The bidding phase
proceeds as follows.

Bidding. The bidder creates a bid by encrypting her price with the auctioneer’s
public key and proving that the ciphertext contains a biddable price. The
bidder sends her bid to the auctioneer. The auctioneer authenticates the
bidder, checks that she is eligible to bid, and verifies the bidder’s proof; if
these checks succeed, then the auctioneer publishes the bid on the bulletin
board.

After some predefined deadline, the opening and revealing phases commence.

Opening. The auctioneer homomorphically combines the bids, decrypts the
homomorphic combination, proves that decryption was performed correctly,
and announces the winning price.

Revealing. The auctioneer identifies bids for prices greater than or equal to the
winning price, decrypts these bids, and proves that decryption was performed
correctly.

Intuitively, every phase of the auction is verifiable. Bidders can check that their
bid appears on the bulletin board and, by verifying bidders’ proofs, observers
are assured that bids represent valid prices. Moreover, anyone can check that the
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homomorphic combination of bids and decryption were correctly computed. Fur-
thermore, anyone can verify that the decrypted bids contain prices greater than
or equal to the winning price. It follows that outcome verifiability is satisfied. In
addition, our scheme satisfies bid secrecy, since bids for prices less than the win-
ning price are not decrypted, and also provides non-repudiation, assuming that
the auctioneer authenticates the relation between bidders and bids. (An informal
security analysis appears in the long version [16, Sect. 4.4] of this paper.)

4.1 Cryptographic Construction

We derive Hawk (Auction Scheme 1) from our informal description using an
additively homomorphic encryption scheme satisfying IND-CPA, proofs of cor-
rect key construction, proofs of plaintext knowledge, and proofs of decryption.
The Setup algorithm generates the auctioneer’s key pair, proves correct key con-
struction, and initialises the bulletin board. The Bid algorithm outputs cipher-
texts c1, . . . , c|P|, such that ciphertext cp contains plaintext 1 and the remaining
ciphertexts contain plaintext 0, where P[p] is the price that the bidder is willing
to pay. The algorithm also outputs proofs σ1, ..., σ|P| so that this can be verified.
Moreover, it outputs a proof σ|P|+1 that the bidder bid for at most one price.
The BB algorithm adds correctly formed ballots to the bulletin board. The Open
algorithm homomorphically combines ciphertexts representing bids at the high-
est price and decrypts the homomorphic combination, the algorithm repeats this
process for ciphertexts at lower prices, until the sum of the decrypted cipher-
texts is equal to or greater than the number of items to be sold, i.e., M . The
Reveal algorithm homomorphically combines a bidder’s ciphertexts at or above
the winning price, and decrypts the homomorphic combination. The bidder is a
winner if the decryption reveals plaintext 1. In the long version [16] of this paper
we demonstrate an execution of Hawk and implement2 a variant which provides
a stronger notion of privacy.

A Comparison of Helios and Hawk. In terms of functionality, the new contribu-
tion of Hawk is the introduction of its reveal algorithm, which can be used to link
a price to a bidder, given the auctioneer’s private key. In addition, we improve
efficiency: Hawk’s opening algorithm modifies Helios’s tallying algorithm, in par-
ticular, Hawk only decrypts homomorphic combinations of ciphertexts until the
sum of the decrypted ciphertexts is equal to or greater than the number of items
to be sold, whereas Helios decrypts all homomorphic combinations of ciphertexts.

5 Aucitas: An e-auction Scheme Based on Civitas

Aucitas is an e-auction scheme derived from the Civitas e-voting scheme [7],
which extends the e-voting scheme by Juels, Catalano & Jakobsson [13]. An auc-
tion is created by naming an auctioneer and registrar. The auctioneer generates
a key pair and a proof of correct key construction. The auctioneer publishes
2 Our implementation is available from the following URL: http://bensmyth.com/

publications/2014-Hawk-and-Aucitas-auction-schemes/.

http://bensmyth.com/publications/2014-Hawk-and-Aucitas-auction-schemes/
http://bensmyth.com/publications/2014-Hawk-and-Aucitas-auction-schemes/
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Auction Scheme 1 Hawk
Suppose Π = (Gen,Enc,Dec) is an additively homomorphic asymmetric encryption
scheme satisfying IND-CPA, Σ1 proves correct key construction, Σ2 proves plain-
text knowledge in {0, 1} and Σ3 proves decryption, where Π’s message space is
{0, 1}∗. Further suppose H is a hash function and let FS(Σ1, H) = (ProveKey,VerKey),
FS(Σ2, H) = (ProveCiph,VerCiph), and FS(Σ3, H) = (ProveDec,VerDec). We define
Hawk as Γ (Π, Σ1, Σ2, Σ3, H) = (Setup,Bid,BB,Open,Reveal).

Setup(1k). Select coins r, compute (pk , sk ,m) ← Gen(1k; r); ρ ← ProveKey((1k, pk ,m),
(sk , r));aux-pk ← (1k,m, ρ); bb ← ∅ and output (pk , sk , bb,aux-pk). .

Bid(pk ,aux-pk,P, p). Parse aux-pk as (1k,m, ρ), outputting ⊥ if parsing fails or
VerKey((1k, pk ,m), ρ) �= �. Select coins r1, . . . , r|P| and compute:

for 1 ≤ i ≤ |P| do
if i = p then mi ← 1 else mi ← 0
ci ← Enc(pk , mi; ri); σi ← ProveCiph((pk , ci), (mi, ri), i)

c ← c1 ⊗ · · · ⊗ c|P|; m ← m1 	 · · · 	 m|P|; r ← r1 ⊕ · · · ⊕ r|P|;
σ|P|+1 ← ProveCiph((pk , c), (m, r), |P| + 1)

Output the bid b = (c1, . . . , c|P|, σ1, . . . , σ|P|+1).
BB(pk ,P, bb, b). Parse b as a vector (c1, . . . , c|P|, σ1, . . . , σ|P|+1). If parsing succeeds

and
∧|P|+1

i =1 VerCiph((pk , ci), σi, i) = �, where c|P|+1 ← c1 ⊗· · ·⊗ c|P|, then output
bb ∪ {b}, otherwise, output bb.

Open(pk , sk ,P, bb, M). Parse bb = {b1, . . . , bn} as a set of vectors of length 2 · |P|+1,
outputting (⊥, ⊥) if parsing fails. Initialise index p ← |P| + 1 and vector
aux-open ← (⊥, . . . , ⊥) of length |P|, and compute:

do
p ← p − 1;
c ← b1[p] ⊗ · · · ⊗ bn[p];
m ← Dec(pk , sk , c); aux-open[p] ← ProveDec((pk , c, m), sk);
M ← M − m

while M > 0 ∧ p > 0;
if M > 0 then p ← 0

Output p and auxiliary data aux-open.
Reveal(pk , sk ,aux-pk,P, bb, M, p,aux-open). Parse bb = {b1, . . . , bn} as a set of

vectors of length 2 · |P|+1, outputting (⊥, ⊥) if parsing fails. Initialise a set w ← ∅,
vector aux-reveal ← (⊥, . . . , ⊥) of length n and integer j ← 1, and compute:

do
c ← bj [p] ⊗ · · · ⊗ bj [|P|];
m ← Dec(pk , sk , c); aux-reveal[j] ← ProveDec((pk , c, m), sk);
if m = 1 then w ← w ∪ {bj}
j ← j + 1

while M > |w| ∧ j ≤ n;
Output (w,aux-reveal).

the public key, proof, biddable prices, and number of items to be sold. The
registration phase proceeds as follows.

Registration. For each eligible bidder, the registrar constructs a (private) cre-
dential, sends the credential to the bidder, and derives the public credential
by encrypting the credential with the auctioneer’s public key.
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The registrar authentically publishes the public credentials L and the bidding
phase proceeds as follows.

Bidding. The bidder produces two ciphertexts under the auctioneer’s public
key: the first contains her price and the second contains her credential. In
addition, the bidder proves plaintext knowledge of both ciphertexts. The
bidder sends the bid – namely, the ciphertexts and proof – to the auctioneer.
The auctioneer verifies the bidder’s proof and if verification succeeds, then
the auctioneer publishes the bid on the bulletin board.

After some predefined deadline, the opening and revealing phases commence.

Opening. The auctioneer proceeds as follows.

– Eliminating duplicates: The auctioneer performs pairwise plaintext equality
tests on the ciphertexts containing credentials and discards any bids for
which a test holds, i.e., bids using the same credential are discarded.

– Mixing: The auctioneer mixes the ciphertexts in the bids (i.e., the ciphertexts
containing prices and the ciphertexts containing credentials), using the same
secret permutation for both mixes, hence, the mix preserves the relation
between encrypted prices and credentials. Let C1 and C2 be the outputs of
these mixes. The auctioneer also mixes the public credentials published by
the registrar and assigns the output to C3.

– Checking credentials: The auctioneer discards ciphertexts C1[i] from C1 if
there is no ciphertext c in C3 such that a PET holds for c and C2[i], that
is, bids cast using ineligible credentials are discarded.

– Decrypting: The auctioneer decrypts the remaining encrypted prices in C1

and proves that decryption was performed correctly.

The auctioneer identifies the winning price from the decrypted prices.

Revealing. The auctioneer identifies ciphertexts C1[i] containing prices greater
than or equal to the winning price, and performs PETs between C2[i] and
L to reveal the identities of winning bidders.

Intuitively, every phase of the auction is verifiable and, hence, outcome and
eligibility verifiability, and non-repudiation are derived from the individual, uni-
versal and eligibility verifiability properties of Civitas. Moreover, we shall define
biddable prices from a starting price of 1 using price increments of 1 and a
price ceiling equal to the size of the encryption scheme’s message space, hence
we have price flexibility. Furthermore, we derive collusion resistance from the
coercion resistance property of Civitas.

5.1 Cryptographic Construction

For our cryptographic construction of Aucitas, we extend the syntax for
e-auctions schemes to include a registration algorithm, hence, ane-auction scheme
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is a tuple of algorithms (Setup,Register,Bid,BB,Open,Reveal) such that
Register(pk , aux -pk) → (d, pd), where pk is the auctioneer’s public key, aux -pk
is auxiliary data, d is a (private) credential, and pd is a public credential.
Moreover, we modify the input parameters of Bid, Open and Reveal, namely,
Bid(d, pk , aux -pk ,P, p) → b, Open(pk , sk , aux -pk ,P, bb,M,L) → (p, aux -open)
and Reveal(pk , sk , aux -pk ,P, bb, p, aux -open,L) → (L′, aux -reveal), where d is a
bidder’s credential, L and L′ are vectors of public credentials, and the remaining
inputs and outputs are as per Sect. 3. We define a mixnet as Mix(c) → (c′, ρ)
such that c′ contains a permutation of the ciphertexts in c after re-encryption
and ρ is a proof that the mix has been performed correctly. For brevity, we omit
a formal definition and refer the reader to Jakobsson, Juels & Rivest [12].

We present Aucitas in Auction Scheme 2. The Setup algorithm generates
the auctioneer’s key pair using an asymmetric encryption scheme, proves that
the key has been correctly constructed, and initialises the bulletin board. The
scheme is price flexible using biddable prices P = (1, 2, . . . , |m|), where m is the
encryption scheme’s message space. The Register algorithm generates bidders’
credentials and we assume that the auctioneer provides the bidder with a cre-
dential d corresponding to a public credential Enc(pk , d); this assumption can
be dropped using designated verifier proofs, for example. The specification of
the Bid, BB, Open and Reveal algorithms follow from our informal description.
We demonstrate an execution of Aucitas in the long version [16, Figure 3] of this
paper.

Intuitively, collusion resistance is satisfied if a bidder can convince a conspir-
ator that they behaved as instructed, when they actually behaved differently.
In Aucitas, this condition is satisfied as follows: given an instruction, a bidder
generates a fake credential and follows the instruction using the fake credential.
For instance, if the bidder is instructed to bid for a particular price, then the
bidder constructs a bid for the price using the fake credential. It follows from
the description of Aucitas that this bid will be removed during credential check-
ing, however, the adversary will be unable to detect this, assuming at least one
bidder bids at the adversary’s price. We acknowledge that price flexibility and
collusion resistance are conflicting properties – allowing bidders to submit any
price decreases the probability that at least one bidder bids the price instructed
by an adversary – and we can balance the degree of price flexibility and collusion
resistance by restricting the prices.

6 Related Work

Magkos, Alexandris & Chrissikopoulos [15] and Her, Imamot & Sakurai [10] also
study the relation between e-auction and e-voting schemes. Magkos, Alexandris
& Chrissikopoulos remark that e-voting and e-auction schemes have a similar
structure and share similar security properties. Her, Imamot & Sakurai contrast
privacy properties of e-voting and e-auctions, and compare the use of homo-
morphic encryption and mixnets between domains. Our work is distinguished
from these earlier works, since we demonstrate a relation between e-auction and
e-voting schemes.
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Auction Scheme 2 Aucitas
Suppose (Gen,Enc,Dec) is a homomorphic asymmetric encryption scheme satisfy-
ing IND-CPA, Σ1 proves correct key construction, Σ2 proves correct ciphertext
construction, Σ3 proves decryption, Σ4 is a PET, and H is a hash function. Let
FS(Σ1, H) = (ProveKey,VerKey), FS(Σ2, H) = (ProveBind,VerBind), FS(Σ3, H) =
(ProveDec,VerDec), and FS(Σ4, H) = (ProvePET,VerPET). We define Aucitas below.

Setup(1k). Select coins r, compute (pk , sk ,m) ← Gen(1k; r); ρ ← ProveKey((1k, pk ,m),
(sk , r)); bb ← ∅;aux-pk ← (1k,m, ρ) and output (pk , sk , bb,aux-pk).

Register(pk ,aux-pk). Parse aux-pk as (1k,m, ρ), outputting (⊥, ⊥) if parsing fails.
Assign a random element from m to d and compute pd ← Enc(pk , d) and output
(d, pd).

Bid(d, pk ,aux-pk,P, p). Parse aux-pk as (1k,m, ρ), outputting ⊥ if parsing fails
or VerKey((1k,m, ρ), ρ) �= �. Suppose m = {m1, . . . , m|m|} such that m1 <
· · · < m|m|. Select coins r1 and r2, compute c1 ← Enc(pk , mp; r1); c2 ←
Enc(pk , d; r2); σ ← ProveBind((pk , c1, c2), (mp, r1, d, r2)); b ← (c1, c2, σ) and out-
put bid b.

BB(pk ,P, bb, b). Parse b as (c1, c2, σ). If parsing succeeds and VerBind((pk , c1, c2), σ) =
�, then output bb ∪ {b}, otherwise, output bb.

Open(pk , sk ,aux-pk,P, bb, M,L). Parse aux-pk as (1k,m, ρ) and bb = {b1, . . . , bn}
as a set of vectors of length 3, outputting (⊥, ⊥) if parsing fails. Proceed as follows.

– Eliminating duplicates: Let aux-dupl be a vector of length n and BB be
the empty vector. For each 1 ≤ i ≤ n, if there exists σ and j ∈ {1,
. . . , i − 1, i + 1, . . . , n} such that σ ← ProvePET((pk , bi[2], bj [2], 1), sk) and
VerPET((pk , bi[2], bj [2], 1), σ) = �, then assign aux-dupl[i] ← σ, otherwise,
compute σj ← ProvePET((pk , bi[2], bj [2], 0), sk) for each j ∈ {1, . . . , i − 1,
i + 1, . . . , n} and assign aux-dupl[i] ← (σ1, . . . , σi−1, σi+1, . . . , σn);BB ←
BB ‖ (bi), where BB ‖ (bi) denotes the concatenation of vectors BB and
(bi), i.e., BB ‖ (bi) = (BB[1], . . . ,BB[|BB|], bi).

– Mixing: Suppose BB = (b′
1, . . . , b

′
�), select coins r, and com-

pute (C1,aux-mix1) ← Mix((b′
1[1], . . . , b′

�[1]); r); (C2,aux-mix2) ←
Mix((b′

1[2], . . . , b′
�[2]); r); (C3,aux-mix3) ← Mix(L).

– Checking credentials: Let aux-cred be a vector of length |C2|. For each 1 ≤ i ≤
|C2|, if there exists σ and c ∈ C3 such that σ ← ProvePET((pk ,C2[i], c, 1), sk)
and VerPET((pk ,C2[i], c, 1), σ) = �, then assign aux-cred[i] ← σ, otherwise,
compute σj ← ProvePET((pk ,C2[i],C3[j], 0), sk) for each j ∈ {1, . . . , |C3|}
and assign aux-cred[i] ← (σ1, . . . , σ|C3|).

– Decrypting: Let aux-dec be the empty set. For each 1 ≤ i ≤ |C1| such that
|aux-cred[i]| = 1 assign aux-dec ← aux-dec ∪ {((C1[i],C2[i]), σ, m)}, where
m ← Dec(pk , sk ,C1[i]) and σ ← ProveDec((pk ,C1[i], m), sk).

If |aux-dec| < M , then output (0, ⊥). Otherwise, output (p,aux-open), where
p ∈ {1, . . . , |m|} is the largest integer such that M integers in the set {m |
(b, σ, m) ∈ aux-dec} are greater than or equal to mp, and aux-open ←
(aux-dupl,aux-mix1, aux-mix2,aux-mix3,aux-cred, aux-dec).

Reveal(pk , sk ,aux-pk,P, bb, M, p,aux-open,L). Let aux-dec ← aux-open[6]. Parse
aux-pk as (1k,m, ρ) and aux-dec as a set of vectors of length 3, outputting (⊥, ⊥)
if parsing fails. Suppose m = {m1, . . . , m|m|} such that m1 < · · · < m|m|. If there
exist M distinct triples (b1, σ1, m

′
1), . . . , (bM , σM , m′

M ) ∈ aux-dec and ciphertexts
c1, . . . , cM ∈ L such that for each 1 ≤ i ≤ M we have VerPET((pk , bi[2], ci, 1), τi) =
� ∧ m′

i ≥ mp, where τi ← ProvePET((pk , bi[2], ci, 1), sk), then output
((c1, . . . , cM ), (τ1, . . . , τM )), otherwise, output (⊥, ⊥).
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Lipmaa, Asokan & Niemi [14] propose an e-auction scheme, based upon
homomorphic encryption, which is similar to the e-voting scheme proposed by
Damg̊ard, Jurik & Nielsen [8] (although the similarities are not explicitly dis-
cussed) and Hawk. In essence, their scheme is defined as follows: (1) encrypted
bids are sent to the seller during the bidding phase, (2) these encrypted bids are
homomorphically combined by the seller in the opening phase and the homomor-
phic combination is decrypted by the auctioneer, and (3) bidders demonstrate
to sellers that they are winning bidders during the reveal phase. Their scheme
satisfies bid secrecy under the assumption that either the seller or auctioneer
is trusted; by comparision, Hawk assumes that the auctioneer is trusted. This
suggests that Hawk requires a stronger trust assumption, however, as we have
discussed (Sect. 3), we can mitigate against the possibility that the auctioneer
is dishonest by distributing trust amongst several auctioneers and, hence, the
trust assumptions of Hawk and the scheme by Lipmaa, Asokan & Niemi are
similar in the case that the seller is also an auctioneer. In addition, Lipmaa,
Asokan & Niemi claim that their e-auction scheme could be used to construct
an e-voting scheme [14, Sect. 9]; by comparision, we focus on the inverse, i.e.,
the construction of e-auction schemes from e-voting schemes.

Abe & Suzuki [1] propose an e-auction scheme based upon homomorphic
encryption. Their scheme satisfies bid secrecy and a complimentary privacy
property: with the exception of the winning price, prices are not revealed (this
property helps protect bidding strategies, for example). The scheme is similar to
Hawk until the opening phase, but differs thereafter, using Jakobsson & Juels’s
mix and match technique [11] to find the winning price, for instance. By contrast,
Hawk is conceptually simpler.

Peng et al. [17] propose an e-auction schemes based upon mixnets, however,
unlike Aucitas, they focus on bid secrecy rather than collusion resistance. Abe &
Suzuki [2] introduce an e-auction scheme using trapdoor bit-commitments and
Chen, Lee & Kim [6] introduce a scheme using mixnets; these two schemes satisfy
collusion resistance. However, Abe & Suzuki assume the existence of a bidding
booth, where the bidder must bid and cannot communicate with a conspirator,
and Chen, Lee & Kim assume the seller is trusted. By comparision, Aucitas
achieves collusion resistance without such assumptions.
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Abstract. The privacy-related Snapchat smartphone application allows
users to share time-limited photos or videos, which “disappear” after
a specified number of seconds once opened. This paper describes the
results of a user survey designed to help us understand how and why
people use the Snapchat application. We surveyed 127 adult Snapchat
users, finding that security is not a major concern for the majority of
these respondents. We learn that most do not use Snapchat to send
sensitive content (although up to 25 % may do so experimentally), that
taking screenshots is not generally a violation of the sender’s trust but
instead common and expected, that most respondents understand that
messages can be recovered, and that security and privacy concerns are
overshadowed by other influences on how and why respondents choose
to use or not use Snapchat. Nevertheless, we find that a non-negligible
fraction (though not a majority) of respondents have adapted or would
adapt their behavior in response to understanding Snapchat’s (lack of)
security properties, suggesting that there remains an opportunity for a
more secure messaging application. We reflect on the implications of our
findings for Snapchat and on the design of secure messaging applications.

1 Introduction

The privacy-related Snapchat smartphone application1 allows users to share
time-limited photos or videos with friends. Users take photos or videos using the
application and specify the number of seconds (up to ten) for which the recipient
is allowed to view the content. After this time, the content “disappears”—i.e.,
it is no longer accessible via the Snapchat user interface, but it is not actually
securely deleted from the device. Snapchat’s popularity has increased dramati-
cally in recent months, with over 8 million adult users [31], 350 million “snaps”
sent every day [17], and a possible valuation of up to $3.5 billion [6].

We surveyed 127 adult Snapchat users, finding that security is not a major
concern for the majority of them, despite our sample being slightly skewed
towards users with higher self-reported security expertise. We find that most
1 http://www.snapchat.com
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respondents do not use Snapchat primarily for sensitive content (although up to
25 % may do so experimentally), that screenshots are common and expected, and
that most respondents understand that messages can be recovered. However, a
non-negligible fraction (though not a majority) of respondents has adapted or
would adapt their behavior in response to weakened trust in Snapchat, suggest-
ing that there remains an opportunity for a more secure messaging application.

2 Background and Motivation

We first provide background on Snapchat, an application that allows users to
send photos and videos that “disappear” after a specified number of seconds.
Figure 1 shows a screenshot of the Snapchat application running on Android.

Snapchat Usage. Snapchat’s primary feature is that each message “disap-
pears” once the recipient has opened it and the sender-specified timeout (of
up to ten seconds) has elapsed. The ephemeral nature of Snapchat messages
naturally evokes the idea of its use for privacy-sensitive content—indeed, much
media buzz has been made about Snapchat’s potential use for sexual content
(“sexting”) [21]. In practice, however, it appears that Snapchat is used for a
variety of creative purposes that are not necessarily privacy-related. For exam-
ple, many people make use of the application’s support for easily drawing on
photos [24], and others (including Snapchat itself) argue that disappearing mes-
sages also reduce inhibitions for sending non-sensitive, in-the-moment content,

Fig. 1. Snapchat screenshots. On the left, Snapchat runs on an Android phone. The
timer indicates the number of seconds that this image will be viewable by recipients.
Users can add caption text or draw arbitrarily on top of the picture. On the right,
Snapchat’s log shows sent and received “snaps” (usernames hidden for anonymity),
e.g., indicating that the recipient of the second message in the list took a screenshot.
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challenging the “never forgets” nature of the Internet and other social media
services [14,16]. These and similar anecdotes led us to ask: How and for what do
people really use Snapchat? What are common, uncommon, or surprising usage
patterns?

Saving and Retrieving Snaps. Importantly, the way in which Snapchat imple-
ments message destruction is not secure. In practice, there are many ways to save
or retrieve “snaps” on a user’s device after their timeout has elapsed. In one class
of data exfiltration, recipients can take screenshots of messages as they view
them, using the operating system’s application-agnostic screenshot capabilities
(e.g., holding the volume down and power buttons on a Samsung Galaxy Nexus
device). The Snapchat application can (generally) detect these kinds of screen-
shots, in which case it notifies the sender (e.g., the second message in the list in
Fig. 1). However, this notification is not always reliable, as users have discovered
ways to take screenshots without alerting the Snapchat application (e.g., [10]). In
light of these capabilities, websites have emerged that encourage people to post
screenshots of embarrassing or sensitive “snaps” (e.g., SnapchatLeaked [1]). In
our study, we attempt to answer the following questions: What are users’ screen-
shot practices? To what extent are screenshots a common and expected use of the
application, rather than a violation of the sender’s trust?

Another class of attacks exploits the fact that Snapchat doesn’t actually
delete from the device messages that have passed their timeout. Instead, it simply
renames the files and makes them inaccessible via its user interface. As a result,
people with moderate technical expertise can retrieve these files from a device
even for destroyed messages (e.g., [8,9]). Snapchat itself does not claim perfect
security, warning that deleted data can sometimes be retrieved [26]. Thus, we ask:
Do users have a realistic mental model with respect to Snapchat’s security? Do
they trust Snapchat? Does this mental model affect their use of the application?

3 User Survey

To explore the above questions, we designed a survey that was taken by 127
adult Snapchat users. We estimate that the survey, which consisted of at most
41 optional questions per respondent, took 15–30 min to complete. We surveyed
only adults (18 years or older), who we recruited primarily by sharing the sur-
vey link via our own and our contacts’ social media pages and via university
email lists. As a result, our sample is slightly skewed towards respondents with
higher self-reported security expertise—however, reported security expertise did
not significantly affect most responses. Furthermore, while reports suggest that
Snapchat is also popular among 13–18 year olds [29], sexting-style behavior is
not necessarily more common among younger users [28]. This study was reviewed
and found exempt by our institution’s human subjects ethics review board.

Of 206 initial recruits, 18 (8.7 %) responded that they do not know what
Snapchat is and were screened out. Of the remaining 188 respondents, 61 (32.4 %)
responded that they had never used Snapchat. We report the remainder of our
results considering only the 127 self-reported Snapchat users. Unless otherwise
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noted, questions were multiple choice; free responses and multiple-choice “other”
responses were coded independently by two of the authors.

Demographics. 68.5 % of Snapchat-using respondents were male and 29.9 %
female (two did not specify). Although our population is skewed towards male
respondents, we find almost no statistically significant gender differences. Most
respondents (81.9 %) were between the ages of 18–24; 14.2 % were between the
ages of 25–34, 1.6 % between 35–44, 0 % between 45–54, and 1.6 % between 55–64.

When asked to describe their level of familiarity with computer security on a
scale of 1 (novice) to 5 (expert), 12.6 % considered themselves an expert and only
4.7 % a novice, with a plurality (31.5 %) selecting option 4 on the scale. (Note that
ten respondents were not asked about security expertise because we added the
question to the survey after they had already completed it. All other questions
were unmodified.) We also asked respondents to rate their agreement with three
privacy-related prompts, allowing us to classify them according to the Westin
Privacy Index [18] as Privacy Fundamentalists, Privacy Pragmatists, or Privacy
Unconcerned. We found that 39.4 % of respondents are Privacy Fundamentalists,
45.7 % are Privacy Pragmatists, and 12.6 % are Privacy Unconcerned.

3.1 Common Usage Patterns

We first explore whether our respondents use Snapchat to send sensitive (such as
sexual) content, and then consider whether respondents’ message timeout behav-
iors and reported reasons for using Snapchat suggest privacy considerations.

Do Respondents Send Sensitive Content? We asked respondents about
whether they primarily send and/or have sent certain types of sensitive content
using Snapchat, including sexual, legally questionable, mean/offensive/insulting
content, and documents. We provided additional non-sensitive options to avoid
priming respondents; Fig. 2 shows the response options and responses.

We find that only 1.6 % of respondents report using Snapchat primarily for
“sexting”—although 14.2 % admit to having sent sexual content via Snapchat
at some point. (More, 23.6 %, admit to having sent content classified as “joke
sexting,” in which sexual or pseudo-sexual content is sent as a joke.) Though
some do appear to use Snapchat for sensitive content, respondents in aggregate
report sending sensitive content types uniformly less than non-sensitive content
(Fig. 2). However, we may consider self-photographs to be borderline sensitive:
while most content types show no significant differences between Westin Privacy
types, Privacy Unconcerned respondents are slightly more likely to say that they
primarily send “photos/videos of myself” (62.5 %) than Pragmatists (31 %) or
Fundamentalists (28 %) (Fisher’s exact test, 2 d.f., p = 0.042).

While we recognize that respondents may have underreported how often they
send sensitive content (as we discuss further in Sect. 4), our findings suggest that
they do seem to find Snapchat useful for non-sensitive content. In a free response
question about additional Snapchat experiences, several respondents empha-
sized using Snapchat for fun, sending messages with silly or mundane content
that they might not otherwise send via a messaging platform that emphasizes
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Fig. 2. Do respondents send sensitive content? For each type of content we asked
about, respondents indicated whether they primarily send it and/or have sent it. They
report sending sensitive content (sexual, legally questionable, mean/offensive/insulting
content, and documents) uniformly less than non-sensitive content.

archival rather than temporariness. For example, one respondent mentioned that
Snapchat “lets me have more cats in my life because my friends who don’t nor-
mally post pictures of their cats on other social media will snapchat their cats
to me.” Others mention that they use it to send photos of “stupid faces” and
another wishes for an option to “add moustaches to those faces.” Indeed, of
the content options presented in our survey, respondents most commonly chose
funny content as their primary use for Snapchat (59.8 %).

Does Message Timeout Behavior Reflect Privacy Considerations? A
possible explanation for Snapchat’s recent success is its implied security and pri-
vacy properties. To evaluate this claim, we consider whether our respondents’ use
of message timeouts or their choice of Snapchat suggest privacy considerations.

First, we asked respondents multiple choice questions about the message
timeout that they set (up to ten seconds). About half (52.8 %) use a fixed or
arbitrary timeout length, regardless of content type or recipient. The remain-
ing 47.2 % report adjusting the timeout depending on content and/or recipient.
When asked about the reason,2 many of these respondents report setting shorter
timeouts for embarrassing photos (22.8 % of 127) or for secret information (10 %).
Many also report setting longer timeouts for people they trust more (18.9 %) or
shorter timeouts for people they trust less (10 %).

A possible explanation for shorter timeouts is an attempt to control screen-
shots by recipients. Two respondents explained in “other” responses that they
set shorter timeouts if a screenshot should be avoided and longer timeouts if
one is desired (particularly for photos of cats, according to one respondent).

2 Respondents could select multiple answers: I set shorter timeouts for embarrassing
photos; I set shorter timeouts for content containing secret information; I set longer
timeouts for people I trust more. I set shorter timeouts for people I trust less; Other.
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Another mentioned “a tacit agreement that if the timeout is 10 s, then a screen-
shot is almost expected.” However, not all timeout manipulation is for privacy
reasons: 12 respondents (9.4 %) explained in “other” responses that they set a
longer timeout if the message takes more time to comprehend (e.g., includes a
lot of text), and more may have selected this answer choice had we included it
explicitly.

These results suggest that up to a quarter of respondents do adjust timeouts
with privacy in mind (e.g., in an attempt to avoid screenshots). However, most do
not explicitly manage timeouts. We observed no significant associations between
Privacy Index or reported security expertise and timeout behavior.

Do Respondents Use Snapchat for Security/Privacy Reasons? We asked
respondents why, when they use Snapchat, they choose it over other services such
as email, text messaging, Facebook, or Twitter. We included two security-related
options, as well as additional options to avoid priming respondents. While a
non-negligible (though not majority) of respondents prefers Snapchat because
content is unlikely to or can’t (according to the respondent’s belief) be saved
(46.5 % chose one or both of these answer choices), not all of these respondents
appear to like message disappearance for security or privacy reasons. Instead,
some explicitly report liking it because it becomes socially acceptable to send
more casual, in-the-moment content and/or to “spam” friends: 6 respondents
(4.7 %) who selected the “other” response wrote in sentiments like: “expectation
of spam means it’s ok to spam,” “some content, whether or not it’s risque, does
not need to be seen more than once (e.g., photos of food),” or “Snapchat allows
for less serious communication.” Respondents more frequently selected answer
choices unrelated to security or privacy, most commonly that Snapchat is easy
and simple (66.1 %) and/or more fun to use (55.9 %).

3.2 Screenshot Practices

One might argue that screenshots circumvent Snapchat’s intended usage model
and violate the sender’s trust, thus expecting that screenshots are taken rarely.

How Often do Respondents Take Screenshots? Contrary to expectation,
we find that it is common for respondents to take screenshots of Snapchat mes-
sages: 47.2 % admit to taking screenshots and 52.8 % report that others have
taken screenshots of their messages. We also found that a small numbers of
respondents have used a separate camera to take a photo of a Snapchat message
(5 respondents, or 3.9 %) or report that someone has used a separate camera to
take a photo of their message (3 respondents). While most respondents didn’t
select reasons for taking screenshots that indicated the explicit intent to violate
trust, 10.2 % admit that they have done so to embarrass the sender.

How do Respondents and Their Contacts React to Screenshots? If mes-
sage senders feel that their trust is violated by a screenshot, they may react with
anger or by changing their behavior: by sending messages with shorter timeouts
or different content, by no longer sending messages to that recipient, and/or
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Fig. 3. Do screenshots violate trust? Only a minority of respondents reports that
the victim changed his or her behavior or was angry after learning of a screenshot
or photo. Respondents more commonly selected neutral (“didn’t care”) or positive
(“thought it was funny”) answer choices. Note that respondents could select multiple
response options.

by taking a screenshot in retaliation. Using these alongside options indicating
neutral (e.g., “didn’t care”) and positive (e.g., “thought it was funny”) senti-
ments, we asked respondents both about their own reactions to screenshots of
their messages as well as about the reactions of people of whose messages they
took screenshots. Figure 3 summarizes these responses.

Only 11.8 % of respondents reported reacting by changing their own behavior;
only 15.0 % reported that their contact changed his or her behavior. Even fewer
respondents reported themselves or their contacts reacting with anger (4.4 % and
6.7 %, respectively). Respondents more commonly chose answer choices indicat-
ing neutral (“didn’t care”) or positive (“thought it was funny”) reactions.

Thus, screenshots seem to be an ordinary and expected component of Snapchat
use among our respondents. Recall also from Sect. 3.1 the anecdote that longer
timeouts implicitly permit the recipient to take a screenshot. Interestingly, Pri-
vacy Unconcerned respondents were more likely to report having taken a screen-
shot (64.7 %) than Pragmatists (33.7 %) or Fundamentalists (22.0 %) (Fisher’s
exact test, 2 d.f., p = 0.0026). This finding suggests that privacy-sensitive respon-
dents, who may be more likely to view a screenshot as a trust violation, are less
likely to take a screenshot themselves.

3.3 Effects of Security Weaknesses

Since Snapchat is marketed as a secure messaging application, one might expect
discoveries about its insecurity to threaten its popularity. We directly asked
respondents about their views of Snapchat’s security, and we infer additional
security-related views from their reported behaviors.

Do Respondents Know Snapchat Message Destruction is Insecure? We
asked respondents whether they believe that someone with technical expertise
can recover expired Snapchat messages on a device. (As discussed in Sect. 2,
the correct answer to this question is “yes” [8,9].) We find that a majority
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of respondents (79.4 %) says that they know or think that recovering “snaps” is
possible. Only a minority of respondents thinks or “knows” that expired messages
cannot be recovered (14.1 %); the rest (5.5 %) responded that they don’t know.

Our sample is skewed towards respondents with security expertise, who may
have more realistic security mental models than the average Snapchat user.
Indeed, knowing the message destruction is insecure was associated with higher
levels of security expertise (Wilcoxon rank sum test, p = 0.014). Respondents
may also have been made suspicious by the availability of certain answer choices.
Nevertheless, we were surprised at the large majority of respondents who reported
knowing or suspecting that Snapchat’s message destruction is insecure.

Do Respondents Report Security-Related Behavior Changes? We asked
respondents about whether and how they would change their Snapchat use
in response to learning that message destruction is insecure. We find that a
small majority (52.8 %) reports that experts finding a way to recover expired
messages would not affect their use of the application at all. However, a non-
negligible (38.6 %) report that they would change or have changed their behavior
(by using Snapchat less, sending different content, and/or sending messages to
different people) in response to learning that message destruction is not secure.
A majority of these behavior-changing respondents do not report that they would
use Snapchat less (14.2 % of 127), suggesting that Snapchat’s lack of security may
not dramatically reduce its user base. Nevertheless, since they would use it dif-
ferently (24.4 % of 127), our results suggest that there remains an opportunity
for a more secure ephemeral messaging application, as we discuss in Sect. 4.

Does Lack of Trust in Snapchat Affect Content Respondents Send?
Above, we described how respondents said they would change their behavior
upon learning that Snapchat messages can be recovered. Because the majority
already knew or suspected that message destruction is insecure, these responses
don’t yet give us a clear idea of how respondents’ behavior is affected by their
(lack of) trust in Snapchat. We thus also examine what types of content respon-
dents report not sending via Snapchat and why.3 Overwhelmingly, respon-
dents are willing to send most types of content via Snapchat, with the following
exceptions:

– 74.8 % of respondents are not willing to send content classified as “sexting” or
“joke sexting.” The primary reported reason is that these respondents “never
take pictures of that kind of thing” (47.2 %), followed by fear of screenshots
(25.2 %) and distrust of Snapchat (14.2 %).

– 85.0 % of respondents are not willing to send photos of documents via Snapchat,
primarily because they “never take pictures of that sort of thing” (30.7 %).

3 For each type of content in Fig. 2 that a respondent would not be willing to send
via Snapchat, he/she could select multiple reasons for why not: I’m afraid someone
will take a screenshot or photo; I don’t trust the Snapchat application; I never take
pictures of that kind of thing; I don’t want to bother people; I don’t want it to
disappear; I want to share it more publicly; I’d rather send it another way (such as
using email, text message, Facebook, Twitter).
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Many would “rather send it another way” (e.g., email, text message, Facebook,
Twitter) (26.8 %), in part because they don’t want documents to disappear
(18.1 %). Only 11.8 % wouldn’t trust Snapchat with documents.

– 86.6 % of respondents are not willing to send messages containing legally ques-
tionable content, again primarily because they “never take pictures of that
kind of thing” (66.9 %). Concerns about screenshots and Snapchat’s trustwor-
thiness were also present in this case (12.6 % and 8.7 % respectively), possibly
because of the risk of legal ramifications. Indeed, three of 16 free responses
explaining additional reasons for not using Snapchat for certain content were
related to legality issues and/or concerns that Snapchat may allow government
access to user data, the latter now known to be true [25].

– 93.7 % of respondents are not willing to send content considered mean, offen-
sive, or insulting, reporting primarily that they “never take pictures of that
kind of thing” (73.2 %), followed by “I don’t want to bother people” (15.7 %).

Thus, although most respondents don’t use Snapchat for certain types of
content primarily because they don’t produce such content, the remaining respon-
dents commonly selected fear of screenshots or lack of trust in Snapchat as
reasons for avoiding it. Considering sexual, legally questionable, offensive con-
tent and/or documents as “more sensitive,” we find that respondents were more
likely to be concerned about screenshots or about trusting Snapchat for these
than for less sensitive types of content. Only 3.1 % of respondents indicated con-
cern about screenshots for non-sensitive content compared to 33.1 % for poten-
tially sensitive content (McNemar’s test, p < 0.001), and only 1.6 % don’t send
non-sensitive content because they don’t trust Snapchat, compared to 26.0 % for
potentially sensitive content (McNemar’s test, p < 0.001).

More generally, we find a significant difference among the Privacy Index
groups (Kruskal-Wallis rank sum test, χ2 = 9.88, 2 d.f., p = 0.0072) in how
frequently they use Snapchat at all: Privacy Unconcerned report using it more
frequently than both Pragmatists (p = 0.021) and Fundamentalists (p = 0.002).
That is, privacy-sensitive respondents tend to use Snapchat less frequently.

4 Discussion

We reflect on the implications of our findings, including perspectives from respon-
dents given with “other” responses to multiple choice questions or in a free-
response question asking about additional thoughts regarding Snapchat.

Implications for Snapchat. Some potential Snapchat users may assume that
the application is intended or commonly used for “sexting” or other sensitive
content. For example, before ending the survey for 61 respondents who reported
not using Snapchat, we asked them about why they have chosen not to use it.
While mostly simply expressed lack of interest, several voiced concerns related to
sensitive content, including that Snapchat “has a bad reputation (for sexting),”
that it “seems useful for only inappropriate content,” and that “there are addi-
tional connotations that go along with this particular app.” By contrast, we find
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that although some of our 127 Snapchat-using respondents do use Snapchat for
sensitive content, they don’t report using it primarily for this purpose, and they
commonly report finding it useful for non-sensitive content (e.g., funny content).

Our findings are also in contrast with media coverage of every new Snapchat
vulnerability (e.g., [8–10]), which often implies that Snapchat’s success depends
on it being actually secure. Instead, our survey results suggest that Snapchat’s
success is not due to its security properties but because users find Snapchat to be
fun. Because they don’t often send sensitive content, respondents may not need
messages to disappear securely, but the mere disappearance of messages from the
user interface seems to appeal to some. Some report feeling comfortable sending
casual content more frequently via Snapchat because “it doesn’t feel like spam”
and “it makes it easy not to think about the storage of old messages.”

Thus, Snapchat may be better served by advertising itself without implied
security properties, focusing rather on the “fun” factor and the change in social
media norms introduced by ephemeral content. There is evidence that Snapchat
has already begun to embrace this shift in its role: for example, after the launch
of our survey, Snapchat introduced “stories” that live for 24 h [27]. The company
has also explicitly backed away from security promises [26].

Implications for Secure Messaging Applications. Most respondents appear
to understand Snapchat’s weaknesses and most report they have not or would not
change their behavior in response. However, recall that about 40 % report that
they would change or have changed their behavior in response to this knowledge,
and that security-sensitive respondents reported using Snapchat less frequently.

Indeed, a non-trivial fraction of respondents reports that they don’t send
sensitive content in part because they don’t trust Snapchat or they are worried
about screenshots. Respondents may also have underreported sending sensitive
content or already incorporated their knowledge of Snapchat’s weaknesses into
their reported behaviors. Some emphasized using Snapchat for fun while remain-
ing aware of its lack of absolute security. For example, one respondent said, “I
use Snapchat knowing that it’s a limited tool (screencaptures at the OS-level
are easy), so I use it knowing that the impermanence is artificial (meaning that
I have to trust my friends to play along).” Another expressed hesitation: “I like
the idea of Snapchat, but it definitely worries me that the photos are ‘out there’
somewhere, even if the snaps I’m sending don’t have sensitive content.”

Combined, the above two paragraphs suggest that while Snapchat is useful
and fun for a large set of users for non-sensitive content, a more secure messaging
platform would still be a valuable addition to the set of communication tools for
many users. In particular, these users would likely value the following properties
in a more secure messaging system: (1) privacy on the server-side (i.e., from
company employees), (2) privacy in transit, (3) more secure message destruction
on the device and in the cloud, and (4) a higher bar for message recipients to
save messages, e.g., by completely preventing screenshots. In practice, many of
these features may be challenging or impossible to achieve—for example, message
recipients can always use another device to take photos even if screenshots are
prohibited (i.e., the “analog hole”). Nevertheless, an application that adequately
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addresses even a subset of these issues would significantly raise the bar over
Snapchat and may attract some of these more privacy-sensitive users.

Study Limitations. We highlight several limitations that prevent us from gen-
eralizing our results to the entire population of Snapchat users. First, our survey
did not reach a random sample of users but rather propagated through our own
social and university networks (snowball sampling). Additionally, we only sur-
veyed respondents at least 18 years of age, though reports suggest that Snapchat
is also popular among younger users [29]. Finally, we asked about respondents’
behaviors rather than observing them directly, allowing respondents to under-
report potentially sensitive behaviors or beliefs, and we used primarily multiple
choice questions that limit our ability to explore respondents’ behaviors and
mental models more generally. Future studies are thus needed to better under-
stand Snapchat use in the wild among a more general population.

5 Related Work

Finally, we briefly summarize related work. In the research community, there
have been a number of efforts toward creating self-destructing data, including
early work by Perlman [22] and more recent work on Vanish [11,12], as well as
work on attacking specific implementations of Vanish with Sybil attacks [33]. An
analysis of different approaches for secure data deletion appears in [23]. There
have also been significant efforts toward ephemeral two-way communications,
such as the off-the-record messaging system [4,13].

Commercial examples of messaging applications that reportedly support mes-
sage destruction include TigerText [30], Wickr [32], and Facebook’s Poke [2],
which emerged as a potential competitor to Snapchat and reportedly encrypts
messages and deletes the encryption key after two days [7]. Another Snapchat-
inspired idea is BlinkLink [3], a link that disappears after some number of views.

Other researchers have studied users’ interactions with social media from a
security and privacy perspective. For example, studies have shown that users
struggle to understand and apply Facebook privacy settings (e.g., [15,19]) and
that privacy violations on Twitter are a growing problem [20]. Others have con-
sidered the privacy strategies of users on social networks more generally [5].

6 Conclusion

We surveyed 127 adult users of the privacy-related Snapchat smartphone appli-
cation, which allows users to send messages that “disappear” after a timeout.
We found that security and privacy are not major concerns for the majority
of respondents. Respondents more commonly respond that they use Snapchat
because it is fun, not because of its implied or actual security properties. Indeed,
most respondents understand that Snapchat’s message destruction is insecure,
but they do not send sensitive messages (such as sexual or legally question-
able content) more commonly because they don’t produce such content than
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because they don’t trust Snapchat or their friends. We find that screenshots are
common and that respondents appear not to consider them a trust violation.
Nevertheless, we observe that a non-negligible fraction (but not a majority) of
respondents adapt their behavior in response to Snapchat’s weak security prop-
erties, and thus conclude that these users may still have a use for a more secure
messaging application in addition to the more casual, fun-focused Snapchat.
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Abstract. With the continuously rising number of shared photos, meta-
data is also increasingly shared, possibly with a huge and potentially
unseen impact on the privacy of people. Users often relinquish the con-
trol over their photos and the embedded metadata when uploading them.
Our results confirm that the concept of metadata is still not commonly
known and even people who know about the concept are not aware of the
full extent of what is shared. In this work we present two solutions, one to
raise awareness about metadata in online photos and one to offer a user-
friendly way to gain control over what and how metadata is shared. We
assess user interest in options ranging from deletion and modification to
encryption and third party storage. We present results from a lab study
(n = 43) in which we evaluated user acceptance, feelings and usability
of the proposed solutions. Many of our participants expressed the desire
for user-friendly mechanisms to control the privacy of metadata. 33 % of
them did not simply want to delete their metadata, but preferred to use
encryption to share, but nonetheless protect, their data.

1 Introduction

Due to the proliferation of broadband Internet and the wide-spread adoption
of mobile devices, the sharing of photos is nowadays booming more than ever:
In 2013 Facebook reported more than 350 million photo uploads per day, while
Instagram reports an average of 55 million photos per day today.

By uploading their photos, people partially relinquish the control over their
personal media. A central problem is that many people may not realize the loss
of control induced by sharing their files. Critically, only few people are aware
that most of their photos contain more information than the visual content itself,
i.e. the image metadata. Besides the visual content, the metadata can amplify
or even create threats to the users’ privacy. While in the early days of digital
imaging, metadata had to be manually—and thus consciously—added to the
pictures, current cameras are capable of embedding metadata like GPS coordi-
nates, a camera owner’s name or the position of faces into photos automatically.
Mobile apps even feature facial recognition that aims to support tagging and
might automatically tag individuals with names in the near future. When these
photos are uploaded, the metadata is often shared as well.
© International Financial Cryptography Association 2014
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There has been a lot of work concerning the privacy and security of photos in
particular in the context of social media. Prior work mainly focused on privacy,
i.e. access control of images [8]. Additionally, specific metadata, like the location
of a photo [5] or people linked to photos [1], have been topics of research, but
mostly in the scope of services that grant access only to registered users or
“friends” [10]. Metadata in general, specifically metadata stored within image
files, has received far less attention. One fairly common approach is to simply
remove all metadata. However, since metadata can add value for users, this
radical solution is not suitable for all situations.

Our work aims at finding a way to maintain the metadata and the users’
privacy at the same time. One important aspect of this issue is that people must
first become aware of the existence of this “invisible” metadata and thus hope-
fully gain the desire to use it, protect it or delete it. In this paper we present
a Chrome browser extension for raising awareness of metadata when uploading
content and while browsing. It also allows users to control what metadata is dis-
closed. We propose an integrated encryption-based approach to securely share
metadata online. Finally, we present results of a lab study (n = 43) on aware-
ness, control and the usability of our solution including a mock-up of metadata
encryption.

2 Metadata Problems in a Nutshell

Technical Complexity. Photo metadata stored in files can contain an immense
amount of context information. Common metadata standards—such as Exif,
IPTC, and XMP—incorporate hundreds of different tags. While many tags
address technical details, which are not so relevant for privacy, the scope of
privacy-related information should not be underestimated. For instance, the date
and time a photo was taken, the name of an image creator or camera owner, a
camera’s unique serial id, un-cropped preview images, descriptions, and textual
or coordinate-based location information can be included. Even person tags with
bounding boxes, as known from social networks services can be embedded today.
Besides the diversity of the information, its handling poses challenges as well:

– The sheer number of existing tags from different standards and the lack of
any overall structure make the identification of specific—in our case privacy-
related—information difficult.

– The sets of tags supported by applications differ significantly, so people may
unintentionally use one that hides privacy-related information from them.

– Client applications and online services deal with metadata in a bewildering
number of ways [7]: Some strip metadata out entirely, others partially or not
at all. It is next to impossible for users to find out how each service handles
their data without manually trying it out on their own.

– Metadata is stored in different ways; i.e. in local databases, in image files, in
sidecar files, or in online services’ databases and people may not realize the
differences between respective privacy implications.
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Rising Adoption. Due to the evolution of software and devices, the amount
of embedded metadata is rising rapidly. A dataset we crawled at Flickr provides
evidence for this trend. We crawled 200 k photos, one from each 100 k random
users/cameras and from another 100 k users taken by one of 76 popular smart-
phones. While the portion of geo-tagged images of the 100 k random users rose
from 1.5 % in 2006 to 5.1 % in 2012, its portion rose from 0 in 2006 to 39.3 % in
2012 and 42.9 % in 2013 in the subset of 100 k mobile photos. Additionally, we
found embedded person tags are now receiving early adoption: 5 % of the mobile
photos from 2013 contained unnamed person tags (bounding boxes only) and
0.1‰ named person tags. Most photos with unnamed person tags were taken
by iOS devices, which tag faces without names automatically since iOS 5.

User Awareness and Actions. In a prior study (n = 414) [6] we analyzed user
behavior and perceptions of photo sharing including a section on metadata: In
that study 61.1 % of the participants indicated to know the concept of metadata.
Those indicating to know metadata made following statements: 29 % generally
do not know which additional information is contained in the photos they share;
58 % do not know what their social Web services do with photo metadata; and
about 27 % do not think about metadata at all when sharing images on the
Web. About 25 % of them do not manually add metadata to photos. About 6 %
remove all metadata before sharing, while additional 35 % remove it partially.

To Remove or Not to Remove Metadata. The removal of metadata—either
by a service or the user—prevents privacy leaks but also removes information
that can be beneficial as well. Metadata is a valuable tool to maintain control of
an increasing amount of photos. While most service providers are able to handle
big data very well, users are often overburdened keeping track of all their media.
In the latter case, metadata can help users to improve the handling of their
personal photos. Hence, it can be beneficial to retain metadata in shared files.
It can also be desirable to allow others access to the metadata, however the user
should be able to consciously choose how and with whom this data is shared.
Users should not have to rely on service providers to remove or protect metadata
upon upload. Especially because it is impossible for them to check on what a
service does with the data.

Summary. Image metadata introduces many benefits, but it also creates diverse
challenges for usability and privacy research. We identified two essential objec-
tives that we address in the remainder of this work:

1. Users have to become aware of the existence of metadata, for instance by
appropriate visualization [9]. Thus we have to find usable technical solutions
that help raising the level of transparency and awareness of metadata in the
users’ files. This is true both for files already on the Web as well as files
currently being uploaded to the Web.

2. Users should have options beyond an all or nothing approach of removing
metadata or leaving it unchanged, so they can share metadata with whom
they choose without endangering their privacy.



80 B. Henne et al.

3 Metadata Privacy Browser Extension

To address and study these objectives, we created a Chrome browser extension.
The base extension aims to raise awareness about privacy-relevant metadata in
shared photos, both for photos that users intend to upload, and for photos that
are already on the Web. The extension visualizes metadata with a privacy focus
and allows the modification of metadata during upload.

Our extension handles the metadata standards Exif, IPTC, and XMP, based
on the Exiv2 C++ library that we integrated using Google Native Client. We
also extended the library to support latest in-file person tags as used by Google
Picasa, Windows Live Photo Gallery or the current iOS camera app.

While there are already browser extensions for the visualization of online
metadata in the Chrome Web Store, those are targeted mainly at photo enthu-
siasts who actively want to look at metadata. None of them has the goal of
informing users of potential privacy issues. Some even send images to a third
party web services to extract metadata, creating privacy issues of their own.

In contrast our extension indicates privacy-related metadata passively, thus
giving users a chance to see potential issues without having to consciously search
for themselves. Our metadata quick indicator icons overlay the actual image as
shown in Fig. 1 and thus are right where the focus of the users is when they are
paying attention to the image. Maurer et al. have shown that placing security
indicators in-context significantly improves their effectiveness [11]. A user can
then click on the icons to open an information sidebar to get more information.

3.1 Visualization of Metadata

To visualize and raise awareness about privacy-relevant metadata, our extension
groups metadata in the sidebar corresponding to five categories: people, location,
date & time, content description, and other. For instance, the people category
includes person tags, names of photographers/artists or unique camera serial ids;
content description includes the image headline or keyword tags. Each group has
its own indicator icon. Wherever possible our extension visualizes the metadata:
Coordinate-based locations are shown on a map and bounding boxes of person
tags are drawn in a small preview image. For the power-users there is also a
button to see full metadata in all its technical glory. One particularly interesting
and potentially very harmful piece of metadata is also visualized: The preview
image, which is embedded by many cameras and software by default. An exam-
ple scenario in which this could lead to an unwanted privacy situation is if a
somewhat revealing photo is cropped to only show the torso or lower body, but
the preview still contains the head of person - thus identifying the person.

Since the perception of privacy certainly differs between people, generations
and countries, we opted to structure presented metadata based on the kind of
information instead of attempting to display the most privacy critical infor-
mation at the top. However, the extension allows assigning a privacy rating to
metadata, which then leads to that item being highlighted with a color of choice,
such as suggested by Shin et al. [13]. The assignment can be modified by the
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Fig. 1. Photo page at Flickr.com with metadata indicators and information sidebar

users according to their own privacy perception. For the lab study we labeled
a selection of items as highly privacy-sensitive and colored them red to test the
concept.

3.2 Control of Metadata

We believe unawareness is a major factor for the rare use of applications that
enable users to edit or remove metadata before upload. If people do not know
what is invisibly stored, they will not take any actions to deal with the issue.
However, it is very likely that usability also plays a big role. Most existing tools
require at least a moderate level of technical expertise. Additionally, users might
not be willing to invest the extra effort of using such tools when their primary
goal is to share an image. Our hypothesis is that adding the visual information
and easy controls into the upload workflow will raise awareness of potential
privacy issues and also give the user easy to use tools to deal with the issues.
Thus, we implemented such features with our browser extension.

The prototypical implementation works with all basic HTML upload forms
based on re-submission with modified files. When a user uploads a photo via
the form, the extension engages in the form submission. An overlay as shown in
Fig. 2 appears, and the metadata of all images selected in the file input can be
reviewed. The user additionally can modify or remove it from the files.

4 Protecting Metadata

Now that we are able to make people aware of metadata they are about to
upload, we need to give them tools to protect that data. As shown above the
upload sidebar can be used to easily delete metadata. However, metadata can be
useful and it would be desirable to be able to use it without endangering one’s
privacy by protecting it from unauthorized and unwanted parties.
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In-File Encryption of Metadata. One solution for securing metadata would
be the encryption of the data in the files. However, this creates several challenges
for current metadata standards: Since XMP bases on RDF/XML, we could in
principle extend it with secure encryption and even digital signatures. In con-
trast, the most common Exif and IPTC data is in binary format with restrictions
to data length and types. In this case it is not possible to store data in encrypted
form without violating the standards or storing additional data somewhere else
in the files. When storing additional encryption data in files, it would be hard
to keep imaging software from removing it.

Metadata Stores. For online photo sharing, we propose the use of external
metadata storage services (metadata stores) for two reasons: First, storing meta-
data in such a service allows users to maintain and share metadata even for
images stored at services like Facebook, which strip off the valuable data in
general. Second and related to privacy, the separate storage of metadata allows
the implementation of security mechanisms specifically for metadata, while also
enabling users to secure images and metadata differently. Data splitting allows
much more flexibility for access control as any sharing services allows today [7].

To investigate the idea of metadata stores, we implemented an exemplary
test scenario based on Flickr. However, a similar app could be implemented
for other services that provide a public API. The Flickr app enables users to
upload photos to their photostream. When a user uploads an image with the
web app, the user can modify metadata as described before. Finally, the user
can choose to upload metadata in the image to Flickr or only separately to the
metadata store. When browsing the image, the extension loads metadata from
the metadata store and shows them in merged form.

Metadata Encryption. So as not to create a privacy problem by storing meta-
data in plain text the data needs to be encrypted so that the store and other
unauthorized parties cannot access it. Storing metadata at a service makes
encryption easier: It is possible to encrypt the metadata without the restric-
tions discussed before. As a first step, we propose encrypting all metadata en
bloc, since encrypting separate parts creates additional usability challenges.

The big crux with most encryption solutions is that key management creates
so many usability problems that users do not bother to use encryption or can’t
use it correctly [12]. For our use case the Confidentiality as a Service (CaaS) par-
adigm proposed by Fahl et al. [3] would be applicable to encrypt stored metadata.
Its usability has already been evaluated in the context of Facebook messaging
[4]. CaaS removes the need for user-based key management by splitting the trust
between a service provider and the CaaS provider. Applying Caas-encryption,
a user additionally chooses the sharing audience and enters his CaaS password
when uploading. If the audience is public the metadata is uploaded unencrypt-
edly. Otherwise the user selects contacts from his friends list and thus defines
the ACL for CaaS-encryption. When selecting a group like friends, every user in
the group is added. To prevent pre-binding attacks only users can be added who
are already registered with CaaS. Once the metadata has been encrypted by the
CaaS provider, it is uploaded to the store. When someone is browsing a photo
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Fig. 2. Upload sidebar allows modifi-
cation before final submission

Fig. 3. Upload sidebar with option to
store metadata encryptedly—multiple
file upload with two photos

for which metadata was escrowed in a store, the extension loads the metadata.
If metadata is encrypted and the user is on the recipients lists, the extension
asks for the user’s password and decrypts the data.

5 User Study

To assess user benefits and the usability of our browser extension, we conducted
a lab study. We invited students from our university mailing list for study par-
ticipation. 62 people filled out the online survey we used to outline our study, of
which 43 attended and completed the lab study without any issues. The partici-
pants received a compensation of e 5. 62.8 % of the participants were female and
37.2 % were male. Their average age was 24± 4. The participants were guided by
a rough task description and answered 22 questions in a paper survey while com-
pleting their tasks. Since we were mainly looking for feedback on the usability of
our solution and the amount of interest the new features could illicit, we opted
to openly state what we were attempting to study. Thus, we briefly explained
that we want to examine two new privacy features of the web browser Chrome:
the possibility to modify or delete metadata while uploading photos and a meta-
data viewer with metadata indicator icons. We did not mention that we are the
authors of the extension, but rather portrayed it as new browser features.

Before our participants started their tasks, we asked them how much they
think about if, where, and how they disclose personal information on the Web.
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On the 5-point scale from (1) not at all to (5) very much, they answered with a
mean and mode value of 4 (sd = 0.9) with 9 % of answers being in the lower two
items. Additionally, we asked them to rate their feeling of control of what they
disclose about themselves when sharing photos on the Web. On the 5-point scale
from (1) not at all to (5) absolutely they reported their feeling about control with
a mean value of 2.7 (sd = 1) with 20 % in the upper two items. The answers
showed a clear feeling of lack of control that we try to address with our work.

5.1 Awareness and Control at Photo Upload

In the first task the participants were instructed to upload five photos at a
basic photo-sharing service: One image without metadata and four containing
different metadata including location data, (un)named person tags, a camera
owner’s name, a camera serial id and technical details. The visual content and
location had slight relation to our university and students’ life.

After the participants had encountered the upload dialog and the metadata
for the first time, we asked them if they knew that the information just visu-
alized by the browser was stored in (their) photos. 19 % of them answered no;
23 % answered yes. 58 % of them stated that they knew that some metadata is
embedded, but did not know which kind of data. Additionally, 20 % of those
answering with yes wondered about some kind of data being embedded later
on in the study. This emphasizes that even if people know about metadata in
general, most people probably do not know what is really embedded and shared.

After all uploads we asked our participants how much the new feature improved
their awareness about what is shared with their photos. On a 5-point scale from
(1) not at all to (5) very much they answered with a mean value of 4.5, with 69 %
answering very much. This is an encouraging result. When we asked the same ques-
tion about control of what is shared, participants answered with a mean value of
4.3 with 55 % of participants having chosen the top answer. Only a single partic-
ipant stated in a comment that he still does not feel that he has an overview of
what exactly he shares on the Web. However, a large majority of our participants
stated that the new feature increased awareness and control.

During this task overall 11 participants selectively deleted metadata of a
mean of 2.4 photos; 15 participants used the delete all button for other photos
(mean 2.5 photos), while 9 of them first deleted selectively, but deleted all embed-
ded metadata in the end. When we asked the participants in the debriefing if and
why they removed metadata in this task (42 % of them affirmed deletion), some
explained that they had not removed metadata because it was only a study or
not their own photos. Interestingly, a participant reported to have deleted meta-
data for the same reason. She stated that she did not want to disclose data of
other people, even though she did not know them.

We also investigated first contact perception and usability. After the par-
ticipants had used the upload feature for the first time, we asked them if they
intuitively understood the new functionality. On a 5-point scale from (1) not at
all to (5) absolutely, they answered with a mean score of 3.8 (sd = 1.1).
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Using the system usability scale (SUS) score [2], participants rated the upload
feature with 73.5 of 100 points, which indicates a good usability.

We questioned our participants how they perceived the integration of the
metadata modification dialog in the upload process. On the 5-point scale from
(1) unfunctional/obstructive to (5) very functional/very good, they answered
with a mean value of 4.3 with 58 % in the top item and only 5 % in the lower
two items. When asking how often they would like to use the new features at
home using the 5-point scale from (1) never to (5) always with (3) as from
time to time, they answered with a mean value of 4.2 (sd = 1,mode = 5) in
case of the visualization of uploaded metadata. Concerning the possibility of
removing metadata, they answered with a mean value of 4 (sd = 1,mode =
5). In contrast, the mean answer of 3.7 (sd = 1.1,mode = 4) was given in
case of the modification of metadata. Participants significantly preferred viewing
(Wilcoxon test: Z = −3, p < .05) and visibly preferred deletion (Z = −1.7, p =
.08) to changing values. When asked for missing features, some participants
requested easier removal of groups of metadata, or a default option to delete
all metadata on upload. Others asked for the ability to add metadata (person
tags, location, and copyright information). Finally, one participant asked for the
option to encrypt metadata in files.

5.2 Awareness of Metadata on the Web

In the second task participants started to browse on a prepared web page showing
some public images with links to source pages to allow the images to be viewed
in their original context. The images contained all kinds of metadata discussed
before including an example of a face cropped in the image, but with the complete
preview embedded. In addition, they could browse the Flickr page of recent
iPhone 4S uploads and another public photo-sharing community that preserves
metadata. Participants were free to decide where they browse and could choose
when to proceed with the questionnaire. On average they visited 3 external pages
and viewed the metadata details of 4 photos over a timespan of roughly 5 min
before going on to the questionnaire.

When we asked them how helpful they perceived the indicator icons that
show what information is stored in the images, participants answered with a
mean value of 4.1 (sd = 1.1,mode = 5) on the 5-point scale from (1) not at all
helpful to (5) very helpful with 9 % of answers in the bottom two items. We also
asked how much the icons annoy them during browsing using the scale from (1)
not at all annoying to (5) very annoying. They responded to this question with
a mean value of 1.5 (sd = 0.7) with only one answer in the upper two items.
Most of the participants perceived the indicators as helpful to very helpful and
hardly anyone felt annoyed. However, both these values must be taken in the
context of the task focus participants had. Particularly the annoyance question
will have to be re-evaluated in a field study.

Since the sidebar includes different aspects to improve the understanding of
information, we asked our participants how they perceived those aspects using
the 5-point scale from (1) useless to (5) very helpful with (3) as neutral. In case of
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grouping data, showing very private data with red background, visualizing loca-
tions on a map and the detailed view of all metadata the participants answered
with a mean score of 4.1 (sd = 1,mode = 5). In case of person tag previews
showing names when hovering over bounding boxes, the average score was 3.9
(sd = 1,mode = 4), and in case of tag descriptions the average answer was 3.8
(sd = 1.2,mode = 5). So, none of the features were regarded as useless.

To assess the awareness gain based on the metadata visualization, we asked
our participants how effectively the new feature improves their awareness of what
is embedded in photos that they and others shared. On the 5-point scale from
(1) not at all to (5) very effectively participants answered with the mean value
of 4.6 (sd = 0.8,mode = 5), indicating an appreciable improvement.

When we asked them how often they would like to use the new visualization
features at home using the 5-point scale from (1) never to (5) always with (3) as
from time to time, over 60 % answered in the top two items and no one answered
never. Our participants slightly preferred (Wilcoxon test: Z = 1.7, p = .09) using
metadata indicators on the average with a mean value of 4.2 (sd = 0.9,mode = 5)
to showing details in the sidebar with a mean value of 4 (sd = 1,mode = {4, 5}).

Based on the SUS score, participants rated the visualizations feature’s usabil-
ity with 76.9 of 100 points, which indicates a good usability.

5.3 Metadata Privacy and Usefulness

In the last task of the study the participants were instructed to upload one of
the initial photos again. To test whether users would be able to use the proposed
encryption mechanisms and to a small extent also test whether they would be
interested in it, the corresponding upload page was extended to support storing
metadata in a pre-configured metadata store. On this upload page our mock-up
of encryption was automatically enabled. When uploading a photo, participants
now were presented two buttons in the sidebar: Continue upload and Continue
upload; encrypt metadata as shown in Fig. 3. When selecting encryption, meta-
data was removed from the image file and stored in the service. On submission
the user was asked for the sharing audience corresponding to Flickr groups fam-
ily, friends, only me, and some people from the user’s role-playing contact list.
Subsequently users had to enter their encryption password and the image was
uploaded. Viewing the uploaded image, the extension recognized the image and
asked for password once to decrypt the metadata from the store.

While the participants were primed to upload an image, we did not elaborate
on the encryption. We only provided them a password in the task description
with which they could encrypt their metadata if they want. We did not give them
any task which explicitly required them to do that though. When executing the
task, 56 % of the participants encrypted metadata of an uploaded image.

In the survey we asked them whether they consider metadata as (1) a threat
to privacy or as (5) useful and meaningful information on a 5-point scale. In the
case of sharing photos on the Web, they stated that they consider it as a threat
with a mean rating of 1.7 (sd = 1,mode = 1). When sharing photos with single
persons for instance via email, they rated metadata to be more meaningful with
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a mean value of 3.9 (sd = 1,mode = 4). For private use, they rated it with a
mean value of 4.6 (sd = 0.9) to be meaningful and useful data.

Finally, we asked our participants to rank different ways to secure metadata
sharing and hence preserve their privacy. In their answers, 40 % of the partici-
pants indicated to mostly prefer the removal of all metadata, while 33 % stated
to prefer encryption to restrict access to it. We found this to be surprising. Con-
sidering how unpopular email encryption is and the fact that we only mentioned
the possibility to use encryption but did not task them to use it, we did not
expect so many participants to list this as their preferred option. 26 % prefer to
share metadata publicly after selectively removing some information and only
one participant stated he wanted to share the metadata completely as is the cur-
rent standard. On the second rank, 53 % of the participants chose the selective
removal; 23 % encryption; and 19 % the complete removal. Sharing metadata
as it is was the last choice for 86 % of participants. Participants’ answers show
an appreciable willingness to encrypt metadata, which allows securing it while
retaining the data for a restricted audience.

5.4 Debriefing and Summary

In the debriefing of the study, we asked the participants what they had learned
by using the extended browser and if they thought this would have any effect on
their thinking or future behavior. 88 % of our participants answered affirmatively.
About one quarter of them stated that they will (try to) think about metadata
or even modify it when sharing photos in the future, while others stated that
they are now more aware about the topic after having seen metadata in the wild.
This shows that once informed about the existence of metadata there is a desire
for change. Thus, it should be our goal to raise awareness in the wild and give
users tools with which to control and protect their metadata. More than 10 %
commented that they underestimated the amount and kind of stored informa-
tion. Even people who thought that they know what is stored were surprised
about some data like embedded previews or in-file person tags.

Before we could debrief them on the fact that the extension was developed
by us about one quarter of the participants asked when or where they could
get the browser with the new features. Even after they were informed that the
extension is still a prototype some were interested in getting an early version.

6 Conclusion and Future Work

In this work we presented an extension for the Google Chrome web browser that
aims to assist users in seeing and controlling photo metadata. Our lab study
showed that users reacted very positively to the capability of seeing and being
able to control the metadata they upload. The usability evaluation received very
good results and set the stage for the next phase of our research. In this study
we did not obfuscate the fact that we were studying the visualization and control
of metadata. Thus, we could only study the usability of our approach and not
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the awareness and desire raising effect this technology can have in the wild.
The next step in our work is to conduct a field study to see how effective the
upload window, the metadata indicators and sidebar are without any priming
or task focus. Based on a mock-up implementation of the encryption service we
proposed, our study’s results showed that one third of our participants opted for
the encryption approach. This surprising result also bears further research.
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Abstract. Many companies have recently started to offer wearable com-
puting devices including glasses, bracelets, and watches. While this tech-
nology enables exciting new applications, it also poses new security and
privacy concerns. In this work, we explore these implications and analyze
the impact of one of the first networked wearable devices—smartwatches—
on an academic environment. As a proof of concept, we develop an applica-
tion for the Pebble smartwatch called ConTest that would allow dishonest
students to inconspicuously collaborate on multiple-choice exams in real
time, using a cloud-based service, a smartphone, and a client application
on a smartwatch. We discuss the broader implications of this technology,
suggest hardware and software approaches that can be used to prevent such
attacks, and pose questions for future research.

Keywords: Security · Wearable computing · Smartwatches · Cheating

1 Introduction

Recent hardware advances have led to the development and consumerization of
wearable computing devices ranging from exercise and sleep tracking bracelets [6]
to augmented reality glasses [8]. While these new technologies enable a spectrum
of new applications, they also introduce security and privacy questions that are
largely unexplored.

The introduction of smartphones created important new risks to users’ pri-
vacy due to their mobility, ubiquity, and wealth of sensors—wearable computing
form factors are likely to magnify these threats. For instance, while smartphone
malware can hijack the sensors to spy on the user, video-capable smartglasses
or smartwatches are worn continuously outside the clothing where they are even
better positioned to record both the user’s activities and those of others nearby.

Beyond risks to the user’s own privacy, wearables have the potential to be
maliciously deployed by the users themselves to violate the security and privacy
of others. These threats will be particularly acute in coming years: as wearables
gradually become widespread and inconspicuous, they will challenge longstand-
ing social norms and violate expectations about the capabilities of technology.
For instance, glasses and wristwatches are socially acceptable in situations where
the use of smartphones and computers might not be and they can be used to
surreptitiously capture and exfiltrate data in violation of privacy expectations.
c© International Financial Cryptography Association 2014
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In this paper, we examine a second dimension in which wearables challenge
existing threat models: they have the potential to secretly receive data or perform
computations in ways that confer an underhanded advantage to the user, such
as helping count cards in a casino or cheating on an exam. Although wearables
encompass a diverse range of form factors, we focus on smartwatches because
they are among the first feature-rich and programmable wearable devices to
reach a broad consumer audience.

As a proof of concept, we examine how smartwatches can lead to realis-
tic attacks on an academic testing environment. Using the Pebble smartwatch
platform, we demonstrate a prototype cloud-backed application called ConTest
that would enable dishonest students to covertly collaborate on multiple-choice
exams. We also discuss defensive countermeasures for this class of attacks and
use the perspective of this case study to draw broader security lessons about the
future of wearable computing technologies.

2 Related Work

Most prior work has focused on the security of wearable devices themselves
and on the privacy of the data produced by these technologies [9,12–14,18].
However, there has been little work exploring the implications of such devices
within current day society, despite increasing interest [20]. In this work, we
primarily focus on the implications of new wearable devices and how users can
potentially abuse these devices—not on securing the devices themselves or the
data they produce.

Another interesting aspect of our example attack is that it relies on multiple
devices with different feature sets to execute the attack. A smartwatch alone may
not pose security risks, but combining features of many wearables may allow for
security vulnerabilities. This concept was investigated by Denning et al. as it
applied to household robots [4].

There has also been previous work on the dynamics of cheating outside
of the computational space [3,7,10]. However, a large portion of the research
assumes that users may only collaboratively cheat if test takers are sitting side-
by-side [10]. The attack we introduce eliminates this restriction.

There is growing precedent for students using emerging technology to cheat.
In one widely reported case, a student in Thailand was caught using a watch
with phone capabilities to send text messages during an exam [21]. In another
instance, a man taking a driver’s license test used a small video camera to send
live video of the questions to a remote party who helped him correctly answer
them via an earpiece [15]. Students have also used programmable graphing calcu-
lators, Bluetooth pens, and invisible ink to cheat on exams [17]. Such high-tech
cheating may become even more widespread as wearable devices gain in popu-
larity and decrease in detectability.
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Fig. 1. Left : IBM created this Linux smartwatch prototype in 2000, but it was never
commercialized; image adapted from [16]. Right : The Pebble Smartwatch came on the
market in 2012.

3 Smartwatches

Wristwatches have evolved significantly over the last half-century from the intro-
duction of the first digital watches in the 1960s to what we now term
“smartwatches”—fully programmable watches with the capability to interact
with other devices and Internet services [11]. The first smartwatch was intro-
duced in 2000 by IBM, which demonstrated a prototype watch running Linux
and powered by an ARM processor (Fig. 1; left). The device was bulky and the
prototype was never commercialized [16].

In late 2012, Pebble Technology released the first successful consumer smart-
watch (Fig. 1; right) after receiving funding through Kickstarter. As of July 2013,
more than 85,000 of the devices had been sold [2]. The most recent version of the
watch includes an ARM Cortex-M3 processor, a 144×168 pixel black-and-white
e-paper display, Bluetooth 4.0, a vibrating motor, digital compass, accelerometer,
and Lithium-ion battery. Pebble provides a software development kit (SDK) that
allows programmers to create applications for the watch and provides APIs for
Bluetooth communication, local storage, time synchronization, graphics draw-
ing, and button and vibration control.

Today’s smartwatches have relatively limited hardware capabilities compared
to smartphones or laptops, limiting the set of security mechanisms that can be
applied locally within the devices. Furthermore, the Pebble architecture places
a large amount of trust in the user’s smartphone, with which the watch pairs via
Bluetooth. An app on the phone is responsible for updating the watch’s firmware,
transferring data to and from the Internet, and installing and managing apps on
the watch, all of which compounds the watch’s attack surface. However, advances
in technology are likely to remove these limitations in future generations of
smartwatches and other wearable devices.
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Fig. 2. ConTest Architecture— A light-weight app on the Pebble smartwatch inter-
faces via Bluetooth with a control app running on a smartphone. The smartphone app
in turn communicates with a centralized cloud-based service.

4 ConTest: Cheating by Smartwatch

In order to illustrate some of the disruptive security implications of wearable
technologies such as smartwatches, we developed ConTest, an application for
the Pebble smartwatch that is designed to allow dishonest students to incon-
spicuously share and vote on answers during multiple-choice exams in real-time.
Society’s expectations about the capabilities of wristwatches have yet to catch
up to the new capabilities of devices such as Pebble. While smartphones are
prohibited in many exams, including the ACT and SAT, digital watches are
currently allowed [1,19]. ConTest is nearly indistinguishable from a standard
watch, provides a difficult-to-notice user interface, and allows students to cheat
in a manner similar to if they had readily available access to a smartphone during
an exam.

ConTest is composed of three components: a client application for the Pebble
smartwatch that allows users to vote and view the collaboratively decided solu-
tions, a cloud-based service that coordinates answer sharing, and an application
for the smartphone that relays data between the smartwatch and the central
service. The application architecture is shown in Fig. 2.

Cheating by smartwatch presents a realistic threat today. Pebble smart-
watches are available for $150, smartphones have become ubiquitous among stu-
dents, and web hosting providers such as Amazon EC2 and Heroku are available
for free or at negligible cost. Even if used among a small conspiracy of stu-
dents, ConTest has potential for impacting exam scores, because research has
shown that a dishonest student needs to view the collective answers of only four
students in order to perform satisfactorily on an exam [10].
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Fig. 3. ConTest Prototype— At a distance (left), the application appears to be
an innocuous clock face. Closer inspection reveals the question number and answer
displays (right), encoded in groups of missing pixels (Color figure online).

Cloud Application. A cloud-based server provides a central service that stores
and aggregates exam responses submitted by individual users. It determines
the most common response to each question and distributes it back to each
smartwatch as necessary. This central service could also potentially perform
more complex calculations, such as distinguishing between multiple forms of an
exam or allowing a third-party to authoritatively provide answers instead of
relying on crowdsourced solutions. We implemented the server using Ruby on
Rails and hosted it via Heroku.

Smartphone Application. Before entering a testing environment, a student
pairs a Pebble smartwatch with a smartphone and installs a smartphone app
that allows them to select the exam they are going to take. During the exam,
the smartphone app relays data between the Pebble and the cloud-based server.
While the attack does require a smartphone for communication, no further inter-
action is required on the smartphone during the exam itself. The smartphone
can remain out of sight in the student’s jacket or backpack. The smartphone app
runs on iOS and is implemented using the iOS and Pebble SDKs.

Smartwatch Application. The smartwatch component of ConTest allows users
to both provide and view collaboratively decided answers. In order to make
the app more difficult for proctors or other test takers to notice, the correct
date and time are shown on the watch face as usual. The questions and answers
are indicated by inverting small groups of noncritical pixels, as shown in Fig. 3.

The answer to the selected question is encoded by mapping each of the digits
in the time to an answer and inverting a small number of pixels in the digit to
indicate its selection. For example, in Fig. 3, the purple-circled block of miss-
ing pixels in the five indicates that the user has voted for answer D and the
red-circled block of pixels in the seven indicates that the most popular answer
selected by other users is B. As seen in the figure, this surreptitious form of
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Fig. 4. ConTest Protocol Schematic— When providing answers (top), the smart-
watch app transmits test answers volunteered by users to the cloud-based service. When
receiving answers (bottom), the app queries the service for the answer to a numbered
question and receives the consensus response.

displaying answers is clear to the user at close range, but practically invisible to
anyone examining the watch from a longer distance.

The user can vote for a particular answer by double-clicking the watch but-
tons. When a user changes their vote, the new answer is immediately relayed to
the service and other watches. A similar approach is used to choose the ques-
tion number. The selected question number is encoded in binary in the date.
For example, the blue-circled digits in Fig. 3 indicate that the displayed solution
is for question 13. The selected answer can be changed by single-clicking the
built-in buttons on the watch (Fig. 4).

5 Defenses and Lessons

The obvious solution for preventing students from cheating using smartwatches
is to ban the devices from exams. Even as smartwatches become commonplace
and harder to distinguish, it would not be out of the question to ban all types of
wristwatches and to instead provide wall clocks. The Graduate Record Exami-
nation (GRE) has adopted a policy along these lines in which it bans all forms of
digital watches from its examination centers [5]. Exams can also be constructed
to be more resilient to such attacks, particularly if the test is computerized, by
randomly selecting and ordering questions and answers.

However, while it may be obvious to ban smart devices in controlled environ-
ments such as during an exam or at a casino, this may not be feasible in other
situations such as at public events. Devices will continue to evolve, both decreas-
ing in size and detectability and improving in terms of processing power, sensing
capability, and connectivity. As wearable devices begin to include features such
as integrated cameras and direct Internet connectivity, there is further poten-
tial for abuse such as covertly monitoring private meetings. Further, as these
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technologies continue to become integrated into our daily lives, e.g. smartglasses
that are integrated with prescription eye-ware, users may be dependent on these
wearables, making it burdensome for users to simply remove a device.

While wearables are likely have disruptive security effects, the computing and
communication capabilities of these devices might also be harnessed to create
new countermeasures. One simplistic approach would be to implement software-
based restrictions that could be switched on by an external signal or when the
device recognizes it is in a special environment, such as an exam mode that
disables third-party applications on the Pebble. However, such restrictions might
be readily bypassed if the devices are not locked down by the manufacturer.
Future work is needed to determine whether wearable devices can be designed
with flexible, safe, and guaranteeable restrictions.

6 Conclusion

Wearable technologies offer an exciting platform for new types of applications
and have the potential to more tightly integrate computing within daily life.
However, they also pose new security and privacy concerns. Wearables are prone
to many of the same attacks as smartphones, but they may pose increased risks
due to their novel form factors. Many questions arise over the privacy of the
data collected by these devices, and their potential to inconspicuously record
and stream sensor data in social settings. In this work, we explored another
new security dimension, how wearable devices can be maliciously used by their
owners to violate existing security paradigms.

We introduced ConTest, an application for the Pebble smartwatch that can
be used by dishonest students to collaboratively cheat on multiple-choice exams.
ConTest demonstrates that today’s wearable technology already poses a mean-
ingful threat to existing threat models, and future wearable devices are likely to
be even more disruptive. Although preventing cheating by banning such devices
from testing environments may be somewhat effective, in the long run, threat
models will need to be revised to take into account the rapidly increasing capa-
bilities of wearable computing.
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Abstract. As more corporate and private users outsource their data
to cloud storage providers, recent data breach incidents make end-to-
end encryption an increasingly prominent requirement. Unfortunately,
semantically secure encryption schemes render various cost-effective stor-
age optimization techniques, such as data deduplication, ineffective. We
present a novel idea that differentiates data according to their popular-
ity. Based on this idea, we design an encryption scheme that guaran-
tees semantic security for unpopular data and provides weaker security
and better storage and bandwidth benefits for popular data. This way,
data deduplication can be effective for popular data, whilst semanti-
cally secure encryption protects unpopular content. We show that our
scheme is secure under the Symmetric External Decisional Diffie-Hellman
Assumption in the random oracle model.

1 Introduction

With the rapidly increasing amounts of data produced worldwide, networked
and multi-user storage systems are becoming very popular. However, concerns
over data security still prevent many users from migrating data to remote stor-
age. The conventional solution is to encrypt the data before it leaves the owner’s
premises. While sound from a security perspective, this approach prevents the
storage provider from effectively applying storage efficiency functions, such as
compression and deduplication, which would allow optimal usage of the resources
and consequently lower service cost. Client-side data deduplication in particular
ensures that multiple uploads of the same content only consume network band-
width and storage space of a single upload. Deduplication is actively used by a
number of cloud backup providers (e.g. Bitcasa) as well as various cloud services
(e.g. Dropbox). Unfortunately, encrypted data is pseudorandom and thus can-
not be deduplicated: as a consequence, current schemes have to entirely sacrifice
either security or storage efficiency.

In this paper, we present a scheme that permits a more fine-grained trade-off.
The intuition is that outsourced data may require different levels of protection,
depending on how popular it is: content shared by many users, such as a popular
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song or video, arguably requires less protection than a personal document, the
copy of a payslip or the draft of an unsubmitted scientific paper.

Around this intuition we build the following contributions: (i) we present Eμ,
a novel threshold cryptosystem (which can be of independent interest), together
with a security model and formal security proofs, and (ii) we introduce a scheme
that uses Eμ as a building block and enables to leverage popularity to achieve
both security and storage efficiency. Finally, (iii) we discuss its overall security.

2 Problem Statement

Storage efficiency functions such as compression and deduplication afford stor-
age providers better utilization of their storage backends and the ability to serve
more customers with the same infrastructure. Data deduplication is the process
by which a storage provider only stores a single copy of a file owned by sev-
eral of its users. There are four different deduplication strategies, depending on
whether deduplication happens at the client side (i.e. before the upload) or at
the server side, and whether deduplication happens at a block level or at a file
level. Deduplication is most rewarding when it is triggered at the client side,
as it also saves upload bandwidth. For these reasons, deduplication is a critical
enabler for a number of popular and successful storage services (e.g. Dropbox,
Memopal) that offer cheap, remote storage to the broad public by performing
client-side deduplication, thus saving both the network bandwidth and storage
costs. Indeed, data deduplication is arguably one of the main reasons why the
prices for cloud storage and cloud backup services have dropped so sharply.

Unfortunately, deduplication loses its effectiveness in conjunction with end-
to-end encryption. End-to-end encryption in a storage system is the process by
which data is encrypted at its source prior to ingress into the storage system. It
is becoming an increasingly prominent requirement due to both the number of
security incidents linked to leakage of unencrypted data [1] and the tightening
of sector-specific laws and regulations. Clearly, if semantically secure encryption
is used, file deduplication is impossible, as no one—apart from the owner of
the decryption key—can decide whether two ciphertexts correspond to the same
plaintext. Trivial solutions, such as forcing users to share encryption keys or using
deterministic encryption, fall short of providing acceptable levels of security.

As a consequence, storage systems are expected to undergo major restruc-
turing to maintain the current disk/customer ratio in the presence of end-to-end
encryption. The design of storage efficiency functions in general and of dedupli-
cation functions in particular that do not lose their effectiveness in presence of
end-to-end security is therefore still an open problem.

2.1 Related Work

Several deduplication schemes have been proposed by the research commu-
nity [2–4] showing how deduplication allows very appealing reductions in the
usage of storage resources [5,6].
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Most works do not consider security as a concern for deduplicating systems;
recently however, Harnik et al. [7] have presented a number of attacks that can
lead to data leakage in storage systems in which client-side deduplication is
in place. To thwart such attacks, the concept of proof of ownership has been
introduced [8,9]. None of these works, however, can provide real end-user confi-
dentiality in presence of a malicious or honest-but-curious cloud provider.

Convergent encryption is a cryptographic primitive introduced by Douceur
et al. [10,11], attempting to combine data confidentiality with the possibility of
data deduplication. Convergent encryption of a message consists of encrypting
the plaintext using a deterministic (symmetric) encryption scheme with a key
which is deterministically derived solely from the plaintext. Clearly, when two
users independently attempt to encrypt the same file, they will generate the same
ciphertext which can be easily deduplicated. Unfortunately, convergent encryp-
tion does not provide semantic security as it is vulnerable to content-guessing
attacks. Later, Bellare et al. [12] formalized convergent encryption under the
name message-locked encryption. As expected, the security analysis presented
in [12] highlights that message-locked encryption offers confidentiality for unpre-
dictable messages only, clearly failing to achieve semantic security.

Xu et al. [13] present a PoW scheme allowing client-side deduplication in a
bounded leakage setting. They provide a security proof in a random oracle model
for their solution, but do not address the problem of low min-entropy files.

Recently, Bellare et al. presented DupLESS [14], a server-aided encryption for
deduplicated storage. Similarly to ours, their solution uses a modified convergent
encryption scheme with the aid of a secure component for key generation. While
DupLESS offers the possibility to securely use server-side deduplication, our
scheme targets secure client-side deduplication.

3 Overview of the Solution

Deduplication-based systems require solutions tailored to the type of data they
are expected to handle [5]. We focus our analysis on scenarios where the out-
sourced dataset contains few instances of some data items and many instances of
others. Concrete examples of such datasets include (but are not limited to) those
handled by Dropbox-like backup tools and hypervisors handling linked clones of
VM-images. Other scenarios where such premises do not hold, require different
solutions and are out of the scope of this paper.

The main intuition behind our scheme is that there are scenarios in which
data requires different degrees of protection that depend on how popular a datum
is. Let us start with an example: imagine that a storage system is used by multiple
users to perform full backups of their hard drives. The files that undergo backup
can be divided into those uploaded by many users and those uploaded by one
or very few users only. Files falling in the former category will benefit strongly
from deduplication because of their popularity and may not be particularly sen-
sitive from a confidentiality standpoint. Files falling in the latter category, may
instead contain user-generated content which requires confidentiality, and would
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by definition not allow reclaiming a lot of space via deduplication. The same can
be said about common blocks of shared VM images, mail attachments sent to
several recipients, to reused code snippets, etc.

This intuition can be implemented cryptographically using a multi-layered
cryptosystem. All files are initially declared unpopular and are encrypted with
two layers, as illustrated in Fig. 1: the inner layer is applied using a convergent
cryptosystem, whereas the outer layer is applied using a semantically secure
threshold cryptosystem. Uploaders of an unpopular file attach a decryption share
to the ciphertext. In this way, when sufficient distinct copies of an unpopular
file have been uploaded, the threshold layer can be removed. This step has two
consequences: (i) the security notion for the now popular file is downgraded
from semantic to standard convergent (see [12]), and (ii) the properties of the
remaining convergent encryption layer allow deduplication to happen naturally.
Security is thus traded for storage efficiency as for every file that transits from
unpopular to popular status, storage space can be reclaimed. Once a file reaches
the popular status, space is reclaimed for the copies uploaded so far, and normal
deduplication can take place for future copies. Standard security mechanisms
(such as Proof of Ownership [8,9]) can be applied to secure this step. Note that
such mechanisms are not required in the case of unpopular files, given that they
are protected by both encryption layers and cannot be deduplicated.

Fig. 1. The multi-layered cryptosystem
used in our scheme. Unpopular files are
protected using two layers, whereas for
popular files, the outer layer can be
removed. The inner layer is obtained
through convergent encryption that gen-
erates identical ciphertext at each invoca-
tion. The outer layer (for unpopular files)
is obtained through a semantically secure
cryptosystem.

There are two further challenges
in the secure design of the scheme.
Firstly, without proper identity man-
agement, sybil attacks [15] could be
mounted by spawning sufficient sybil
accounts to force a file to become
popular: in this way, the semantically
secure encryption layer could be forced
off and information could be inferred
on the content of the file, whose only
remaining protection is the weaker
convergent layer. While this is accept-
able for popular files (provided that
storage efficiency is an objective), it is
not for unpopular files whose content
– we postulate – has to enjoy stronger
protection. The second issue relates to
the need of every deduplicating sys-
tem to group together uploads of the
same content. In client-side dedupli-
cating systems, this is usually accom-
plished through an index computed deterministically from the content of the file
so that all uploading users can compute the same. However, by its very nature,
this index leaks information about the content of the file and violates semantic
security for unpopular files.
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For the reasons listed above, we extend the conventional user-storage provider
setting with two additional trusted entities: (i) an identity provider, that deploys
a strict user identity control and prevents users from mounting sybil attacks, and
(ii) an indexing service that provides a secure indirection for unpopular files.

3.1 System Model

Our system consists of users, a storage provider and two trusted entities, the
identity provider, and the indexing service, as shown in Fig. 2.

The storage provider (S) offers basic storage services and can be instantiated
by any storage provider (e.g. Bitcasa, Dropbox etc.) Users (Ui) own files and
wish to make use of the storage provider to ensure persistent storage of their
content. Users are identified via credentials issued by an identity provider IdP
when a user first joins the system.

A file is identified within S via a unique file identifier (I), which is issued by
the indexing service IS when the file is uploaded to S. The indexing service also
maintains a record of how many distinct users have uploaded a file.

3.2 Security Model

Fig. 2. Illustration of our system model.
The schematic shows the main four entities
and their interaction for registration and
file upload process.

The objective of our scheme is con-
fidentiality of user content. Specifi-
cally, we achieve two different security
notions, depending on the nature of
each datum, as follows: (i) Semantic
security [16] for unpopular data; (ii)
Conventional convergent security [12]
for popular data. Note that integrity
and data origin authentication exceed
the scope of this work.

In our model, the storage provider
is trusted to reliably store data on
behalf of users and make it available to
any user upon request. Nevertheless, S
is interested in compromising the con-
fidentiality of user content. We assume
that the storage provider controls nA
users: this captures the two scenarios of a set of malicious users colluding with
the storage provider and the storage provider attempting to spawn system users.
We also assume that the goal of a malicious user is only limited to breaking the
confidentiality of content uploaded by honest users.

Let us now formally define popularity. We introduce a system-wide popularity
limit, plim, which represents the smallest number of distinct, legitimate users that
need to upload a given file F for that file to be declared popular. Note that plim

does not account for malicious uploads. Based on plim and nA, we can then
introduce the threshold t for our system, which is set to be t ≥ plim + nA.
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Setting the global system threshold to t ensures that the adversary cannot use
its control over nA users to subvert the popularity mechanism and force a non
popular file of its choice to become popular. A file shall therefore be declared
popular once more than t uploads for it have taken place. Note that this accounts
for nA possibly malicious uploads. Fixing a single threshold t arguably reduces
the flexibility of the scheme. While for the sake of simplicity of notation we stick
to a single threshold, Sect. 7 discusses how this restriction can be lifted.

The indexing service and the identity provider are assumed to be completely
trusted and to abide by the protocol specifications. In particular, it is assumed
that these entities will not collude with the adversary, and that the adversary
cannot compromise them. While the existence of an identity provider is not
uncommon and is often an essential building block of many practical deploy-
ments, we adopt the indexing service as a way to focus our analysis on the
security of the content of files, and to thwart attacks to its indexes by means of
the trusted nature of this separate entity. TTPs are indeed often adopted as a
means of achieving security objectives all the while preserving usability [17,18].

4 Building Blocks

Modeling Deduplication. In this Section we will describe the interactions
between a storage provider (S) that uses deduplication and a set of users (U)
who store content on the server. We consider client-side deduplication, i.e., the
form of deduplication that takes place at the client side, thus avoiding the need
to upload the duplicate file and saving network bandwidth. For simplicity, we
assume that deduplication happens at the file level. To identify files and detect
duplicates, the scheme uses an indexing function I: {0, 1}∗ → {0, 1}∗; we will
refer to IF as the index for a given file F . The storage provider’s backend can be
modeled as an associative array DB mapping indexes produced by I to records
of arbitrary length: for example DB [IF ] is the record mapped to the index of file
F . In a simple deduplication scheme, records contain two fields, DB [IF ] .data
and DB [IF ] .users. The first contains the content of file F , whereas the second
is a list that tracks the users that have so far uploaded F . The storage provider
and users interact using the following algorithms:
Put: user u sends IF to S. The latter checks whether DB [IF ] exists. If it does,

the server appends u to DB [IF ] .users. Otherwise, it requests u to upload the
content of F , which will be assigned to DB [IF ] .data. DB [IF ] .users is then
initialized with u.

Get: user u sends IF to the server. The server checks whether DB [IF ] exists
and whether DB [IF ] .users contains u. If it does, the server responds with
DB [IF ] .data. Otherwise, it answers with an error message.

Symmetric Cryptosystems and Convergent Encryption. A symmetric
cryptosystem E is defined as a tuple (K, E, D) of probabilistic polynomial-time
algorithms (assuming a security parameter κ). K takes κ as input and is used to
generate a random secret key k, which is then used by E to encrypt a message
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m and generate a ciphertext c, and by D to decrypt the ciphertext and produce
the original message.

A convergent encryption scheme Ec, also known as message-locked encryption
scheme, is defined as a tuple of three polynomial-time algorithms (assuming a
security parameter κ) (K, E, D). The two main differences with respect to E is
that (i) these algorithms are not probabilistic and (ii) that keys generated by K
are a deterministic function of the cleartext message m; we then refer to keys
generated by Ec.K as km. As a consequence of the deterministic nature of these
algorithms, multiple invocations of K and E (on input of a given message m)
produce identical keys and ciphertexts, respectively, as output.

Threshold Cryptosystems. Threshold cryptosystems offer the ability to share
the power of performing certain cryptographic operations (e.g. generating a sig-
nature, decrypting a message, computing a shared secret) among n authorized
users, such that any t of them can do it efficiently. Moreover, according to the
security properties of threshold cryptosystems it is computationally infeasible to
perform these operations with fewer than t (authorized) users. In our scheme we
use threshold public-key cryptosystem. A threshold public-key cryptosystem Et

is defined as a tuple (Setup, Encrypt, DShare, Decrypt), consisting of four prob-
abilistic polynomial-time algorithms (in terms of a security parameter κ) with
the following properties:

Setup(κ, n, t) → (pk, sk,S): generates the public key of the system pk, the corre-
sponding private key sk and a set S = {(ri, ski)}n−1

i=0 of n pairs of key shares ski
of the private key with their indexes ri; key shares are secret, and are distrib-
uted to authorized users; indexes on the other hand need not be secret.

Encrypt(pk,m) → (c): takes as input a message m and produces its encrypted
version c under the public key pk.

DShare(ri, ski,m) → (ri, dsi): takes as input a message m and a key share ski with
its index ri and produces a decryption share dsi; the index is also outputted.

Decrypt(c,St) → (m): takes as input a ciphertext c, a set St = {(ri, dsi)}t−1
i=0 of t

pairs of decryption shares and indexes, and outputs the cleartext message m.

5 Our Scheme

In this Section we will formally introduce our scheme. First, we will present
a novel cryptosystem of independent interest, whose threshold and convergent
nature make it a suitable building block for our scheme. We will then describe
the role of our trusted third parties and finally we will detail the algorithms that
compose the scheme.

5.1 Eµ: A Convergent Threshold Cryptosystem

In the remainder of this paper we will make use of pairing groups G1, g,G2, ḡ,GT ,
ê, where G1 = 〈g〉, G2 = 〈ḡ〉 are of prime order q, where the bitsize of q is
determined by the security parameter κ, and ê : G1 ×G2 → GT is a computable,
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non-degenerate bilinear pairing. We further assume that there is no efficient
distortion map ψ : G1 → G2, or ψ : G2 → G1. These groups are commonly
referred to as SXDH groups, i.e., groups where it is known that the Symmetric
Extensible Diffie Hellman Assumption(SXDH) [19] holds.

Eμ is defined as a tuple (Setup, Encrypt, DShare, Decrypt), consisting of four
probabilistic polynomial-time algorithms (in terms of a security parameter κ):

Setup(κ, n, t) → (pk, sk,S): at first, q, G1, g, G2, ḡ, GT and ê are generated as
described above. Also, let secret x ←R Z

∗
q and {xi}n−1

i=0 be n shares of x such
that any set of t shares can be used to reconstruct x through polynomial
interpolation (see [20] for more details). Also, let ḡpub ← ḡx. Finally, let
H1 : {0, 1}∗ → G1 and H2 : GT → {0, 1}l for some l, be two cryptographic
hash functions. Public key pk is set to {q,G1,G2,GT , ê, H1,H2, g, ḡ, ḡpub}, sk
to x; S is the set of n pairs (ri, ski), where ski is set to xi and ri is the preimage
of xi under the aforementioned polynomial.

Encrypt(pk,m) → (c): let r ←R Z
∗
q and let E ← ê (H1(m), ḡpub)

r. Next, set
c1 ← H2(E) ⊕ m and c2 ← ḡr. Finally, output the ciphertext c as (c1, c2).

DShare(ri, ski,m) → (ri, dsi): let dsi ← H1(m)ski .
Decrypt(c,St) → (m): parse c as (c1, c2) and St as {(ri, dsi)}t−1

i=0; compute

∏

(ri,dsi)∈St

dsi
λ
St
0,ri =

∏

(ri,ski)∈S
′
t

H1(m)skiλ
St
0,ri = H1(m)

∑

(ri,ski)∈S
′
t

skiλ
St
0,ri

= H1(m)sk,

where λSt
0,ri

are the Lagrangian coefficients of the polynomial with interpolation
points from the set S

′
t = {(ri, ski)}t−1

i=0. Then compute Ê as ê (H1(m)x, c2) and
output c1 ⊕ H2(Ê).

Note that decryption is possible because, by the properties of bilinear pair-
ings, ê (H1(m)x, ḡr) = ê (H1(m), ḡpub)

r = ê (H1(m), ḡx)r
. This equality satisfies

considerations on the correctness of Eμ.
Eμ has a few noteworthy properties: (i) The decryption algorithm is non-

interactive, meaning that it does not require the live participation of the entities
that executed the Eμ.DShare algorithm; (ii) It mimics convergent encryption
in that the decryption shares are deterministically dependent on the plaintext
message. However, in contrast to plain convergent encryption, the cryptosystem
provides semantic security as long as less than t decryption shares are collected;
(iii) The cryptosystem can be reused for an arbitrary number of messages, i.e.,
the Eμ.Setup algorithm should only be executed once. Finally, note that it is
possible to generate more shares skj (j > n) anytime after the execution of the
Setup algorithm, to allow new users to join the system even if all the original n
key-shares were already assigned.

5.2 The Role of Trusted Third Parties

Our scheme uses two trusted components, namely, an identity provider (IdP) and
an indexing service (IS). The main role of the IdP is to thwart sybil attacks by
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ensuring that users can sign in only once: we treat this as an orthogonal problem
for which many effective solutions have been outlined [15]. The identity provider
is also responsible for the execution of Eμ.Setup, and is trusted not to leak the
secret key of the system, nor to use this knowledge to violate confidentiality of
unpopular data. This assumption is consistent to the trust users put on today’s
identity providers.

The main role of the second trusted third party, i.e., the indexing service, is to
avoid leaking information about unpopular files to the storage provider through
the index used to coalesce multiple uploads of the same file coming from dif-
ferent users (see Sect. 4), without which reclaiming space and saving network
bandwidth through deduplication would be infeasible. The leakage is related to
the requirement of finding a common indexing function that can be evaluated
independently by different users whose only shared piece of information is the
content of the file itself. As a result, the indexing function is usually a deter-
ministic (often one-way) function of the file’s content, which is leaked to the
cloud provider. We introduce the indexing service to tackle this problem before
deduplication takes place, i.e., when the file is still unpopular.

Recall from Sect. 4 that the indexing function I produces indexes IF for every
file F . This function can be implemented using cryptographic hash functions, but
we avoid the usual notation with H to prevent it from being confused with the
other hash functions used in Eμ. Informally, the indexing service receives requests
from users about IF and keeps count of the number of requests received for it
from different users. As long as this number is below the popularity threshold,
IS answers with a bitstring of the same length as the output of I; this bitstring
is obtained by invoking a PRF (with a random seed σ) on a concatenation of
IF and the identity of the requesting user. The domain of I and of the PRF is
large enough to ensure that collisions happen with negligible probability. IS also
keeps track of all such indexes. Whenever the popularity threshold is reached for
a given file F , the indexing service reveals the set of indexes that were generated
for it. More formally, the IS maintains an associative array DBIS [IF ] with two
fields, DBIS [IF ] .ctr and DBIS [IF ] .idxes. The first is a counter initialized to
zero, the second is an initially empty list. IS implements the GetIdx algorithm in
Fig. 3.

An important consequence of the choice of how Irnd is computed is that
repeated queries by the same user on the same target file will neither shift a
given file’s popularity nor reveal anything but a single index.

5.3 The Scheme

We are now ready to formally introduce our scheme, detailing the interactions
between a set of n users Ui, a storage provider S and the two trusted entities,
the identity provider IdP and the indexing service IS. S is modeled as described
in Sect. 4; the database record contains an extra boolean field, DB [IF ] .popular,
initialized to false for every new record.
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Recall that E and Ec are a symmetric cryptosystem and a convergent sym-
metric cryptosystem, respectively (see Sect. 4); Eμ is our convergent threshold
cryptosystem. The scheme consists of the following distributed algorithms:

Init: IdP executes Eμ.Setup, publishes the public key system pk of the system.
IdP keeps key shares {ski}n−1

i=0 secret.
Join: whenever a user Ui wants to join the system, they contact IdP. IdP verifies

Ui’s identity; upon successful verification, it issues the credentials Ui will
need to authenticate to S and a secret key share ski (generating a new skj if
necessary).

Upload (Fig. 4): this algorithm is executed between a user Ui, the storage server
S and the indexing service IS whenever Ui requests upload of a file F . First,
Ui uses convergent encryption to create ciphertext Fc; Ui then interacts with
IS to obtain an index Iret (note that either Iret = Irnd or Iret = IFc

) to use
for the interaction with S and possibly a list of indexes used by other users
when uploading the same file. Depending on IS’s response, Ui proceeds with
one of the following sub-algorithms:

–Upload.Unpopular (Fig. 5): this algorithm captures the interaction between Ui

and S if F is not (yet) popular. In this case, Iret is a random index. The user
uploads a blob containing two ciphertexts, obtained with E and Eμ, respec-
tively. The first ciphertext allows Ui to recover the file if it never becomes
popular. The second gives S the ability to remove the threshold encryption
layer and perform deduplication if the file becomes popular1. Ui replaces F
with a stub of the two indexes, Iret, IFc

, and the two keys K and Kc.
–Upload.Reclaim (Fig. 6): this algorithm is executed exactly once for every pop-

ular file whenever Ui’s upload of F reaches the popularity threshold. The
user sends to S the list of indexes I received from IS. S collects the decryp-
tion shares from each uploaded blob. It is then able to decrypt each uploaded
instance of cμ and can trigger the execution of Put, to store the outcome of the
decryption as DB [IFc

] .data. Note that, because of the nature of convergent
encryption, all decrypted instances are identical, hence deduplication happens
automatically. Finally, S can remove all previously uploaded record entries,
thus effectively reclaiming the space that was previously used.

–Upload.Popular (Fig. 7): this algorithm captures the interaction between Ui and
S if F is already popular; note that in this case, Iret = IFc

. Here, the user is
not expected to upload the content of the file as it has already been declared
popular. Ui replaces F with a stub containing the index IFc

and of the key
Kc.

1 We have chosen to formalize this approach for the sake of readability. In practice,
one would adopt a solution in which the file is encrypted only once with K; this key,
not the entire file, is in turn encrypted with a slightly modified version of Eµ that
allows H1(Fc) to be used as the H1-hash for computing ciphertext and decryption
shares for K. This approach would require uploading and storing a single ciphertext
of the file and not two as described above.
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Ui: IF ← I(F )
Ui → IS: IF

IS: if (DBIS [IF ] .ctr > t)
return IF , ∅

Irnd ← PRFσ(Ui||IF )
if (Irnd /∈ DBIS [IF ] .idxes)

increment DBIS [IF ] .ctr
add Irnd to DBIS [IF ] .idxes

if (DBIS [IF ] .ctr = t)
return Irnd, DBIS [IF ] .idxes

else
return Irnd, ∅

Fig. 3. The GetIdx algorithm.

Ui: Kc ← Ec.K(F )
Fc ← Ec.E(Kc, F )
IFc ← I(Fc)

Ui −→ IS: IFc

Ui ←− IS: 〈Iret, I〉 ← GetIdx(IFc)
Ui: if(Iret = IFc)

execute Upload.Popular
else if(I = ∅)

execute Upload.Unpopular
else

execute Upload.Unpopular
execute Upload.Reclaim

Fig. 4. The Upload algorithm.

Ui: K ← E .K(); c ← E .E(K,F )
cμ ← Eμ.Encrypt(pk, Fc)
dsi ← Eμ.DShare(ski, Fc)
F ′ ← 〈c, cμ, dsi〉

Ui −→ S: Iret, F
′

S: if(¬DB [Iret] .popular)
execute Put(IFc ,Ui, F

′)
else signal an error and exit

Ui: F ← 〈K,Kc, Iret, IFc〉

Fig. 5. The Upload.Unpopular alg.

Ui −→ S: I
S: DS ← {ds : 〈c, cμ, ds〉 ←

← DB [I] .data, I ∈ I}
foreach(Ii ∈ I)

〈c, cμ, dsi〉 ← DB [IF ] .data
Fc ← Eμ.Decrypt(cμ,DS)
IFc ← I(Fc)
Ui ← DB [Ii] .users
execute Put(IFc ,Ui, Fc)

DB [IFc ] .popular ← true
delete all records indexed by I

Fig. 6. The Upload.Reclaim algorithm

Ui −→ S: IFc

S: if(DB [IFc ] .popular)
execute Put(IFc ,Ui)

else abort
Ui: F ← 〈Kc, IFc〉

Fig. 7. The Upload.Popular algo-
rithm

Download: whenever user Ui wants to retrieve
a previously uploaded file, it reads the tuple
used to replace the content of F during the
execution of the Upload algorithm. It first
attempts to issue a Get request on S, supply-
ing Iret as index. If the operation succeeds, it
proceeds to decrypt the received content with
E .D, using key K, and returns the output of
the decryption. Otherwise, it issues a second
Get request, supplying IFc

as index; then it
invokes Ec.D on the received content, using Kc as decryption key, and outputs
the decrypted plaintext.
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6 Security Analysis

We formally analyze the security of the Eμ cryptosystem and we argue informally
that the security requirements of Sect. 3.2 are met by our scheme as a whole.

6.1 Security Analysis of Eµ

In this section we will define and analyze semantic security for Eμ. The security
definition we adopt makes use of a straightforward adaptation of the IND-CPA
experiment, henceforth referred to as INDμ-CPA. Additionally, we introduce the
concept of unlinkability of decryption shares and prove that Eμ provides this
property: informally, this property assures that an adversary cannot link together
decryption shares as having been generated for the same message, as long as less
than t of them are available. We will refer to the experiment used for the proof
of this property as DSμ-IND. Both experiments require the adversary to declare
upfront the set of users to be corrupted, similarly to selective security [21].

Unlinkability of Decryption Shares. Informally, in DSμ-IND, the adversary
is given access to two hash function oracles OH1 , and OH2 ; the adversary can
corrupt an arbitrary number nA < t − 1 of pre-declared users, and obtains
their secret keys through an oracle OCorrupt. Finally, the adversary can access a
decryption share oracle ODShare, submitting a message m of her choice and a non-
corrupted user identity Ui; for each message that appears to ODShare-queries, the
challenger chooses at random whether to respond with a properly constructed
decryption share that corresponds to message m and secret key share ski as
defined in Eμ, or with a random bitstring of the same length (e.g., when bm∗ = 0).
At the end of the game, the adversary declares a message m∗, for which up to t−
nA −1 decryption share queries for distinct user identities have been submitted.
The adversary outputs a bit b′

m∗ and wins the game if b′
m∗ = bm∗ . Eμ is said

to satisfy unlinkability of decryption shares, if no polynomial-time adversary
can win the game with a non-negligible advantage. Formally, unlinkability of
decryption shares is defined using the experiment DSμ-IND between an adversary
A and a challenger C, given security parameter κ:

Setup Phase C executes the Setup algorithm with κ, and generates a set of user
identities U = {Ui}n−1

i=0 . Further, C gives pk to A and keeps {ski}n−1
i=0 secret.

At this point, A declares the list UA of |UA| = nA < t − 1 identities of users
that will later on be subject to OCorrupt calls.

Access to Oracles Throughout the game, the adversary can invoke oracles for
the hash functions H1 and H2. Additionally, the adversary can invoke the
corrupt oracle OCorrupt and receive the secret key share that corresponds to
any user Ui ∈ UA. Finally, A can invoke the decryption share oracle ODShare

to request a decryption share that corresponds to a specific message, say m,
and the key share of a non-corrupted user, say Ui /∈ UA. More specifically,
for each message m that appears in ODShare-queries, the challenger chooses at
random (based on a fair coin flip bm) whether to respond to ODShare-queries
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for m with decryption shares constructed as defined by the protocol, or with
random bitstrings of the same length. Let dsi,m denote the response of a
ODShare-query for m and Ui. bm = 1 correspond to the case, where responses
in ODShare-queries for m are properly constructed decryption shares.

Challenge Phase A chooses a target message m∗. The adversary is limited in
the choice of the challenge message as follows: m∗ must not have been the
subject of more than t − nA − 1 ODShare queries for distinct user identities.
At the challenge time, if the limit of t − nA − 1 has not been reached, the
adversary is allowed to request for more decryption shares for as long as the
aforementioned condition holds. Recall that C responds to challenge ODShare-
queries based on bm∗ .

Guessing Phase A outputs b′
m∗ , that represents her guess for bm∗ . The adver-

sary wins the game, if bm∗ = b′
m∗ .

Semantic Security. Informally, in INDμ-CPA, the adversary is given access to
all oracles as in DSμ-IND. However, here, oracle ODShare responds with properly
constructed decryption shares, i.e., decryption shares that correspond to the
queried message and non-corrupted user identity. At the end of the game, the
adversary outputs a message m∗; the challenger flips a fair coin b, and based on
its outcome, it returns to A the encryption of either m∗ or of another random
bitstring of the same length. The adversary outputs a bit b′ and wins the game
if b′ = b. Eμ is said to be semantically secure if no polynomial-time adversary
can win the game with a non-negligible advantage. Formally, the security of Eμ

is defined through the INDμ-CPA experiment between an adversary A and a
challenger C, given a security parameter κ:

Setup Phase is the same as in DSμ-IND.
Access to Oracles Throughout the game, the adversary can invoke oracles for

the hash functions H1 and H2 and the OCorrupt oracle as in DSμ-IND. A is
given access to the decryption share oracle ODShare to request a decryption
share that corresponds to a specific message, say m, and the key share of a
non-corrupted user, say Ui.

Challenge Phase A picks the challenge message m∗ and sends it to C; the
adversary is limited in her choice of the challenge message as follows: the
sum of distinct user identities supplied to ODShare together with the challenge
message cannot be greater than t − nA − 1. C chooses at random (based on
a coin flip b) whether to return the encryption of m∗ (b = 1), or of another
random string of the same length (b = 0); let c∗ be the resulting ciphertext,
which is returned to A.

Guessing Phase A outputs b′, that represents her guess for b. The adversary
wins the game, if b = b′.

The following lemmas show that unlinkability of decryption shares and semantic
security are guaranteed in Eμ as long as the SXDH problem is intractable [19].
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Lemma 1. Let H1 and H2 be random oracles. If a DSμ-IND adversary A has a
non-negligible advantage AdvA

DSμ−IND := Pr[b′
m∗ ← A(m∗, ds∗,m∗) : b′

m∗ = bm∗ ]−
1
2 , then, a probabilistic, polynomial-time algorithm C can create an environment
where it uses A’s advantage to solve any given instance of the SXDH problem.

Lemma 2. Let H1, and H2 be random oracles. If an INDμ-CPA adversary A has
a non-negligible advantage AdvA

INDμ−CPA := Prob[b′ ← A(c∗) : b = b′] − 1
2 , then,

a probabilistic, polynomial-time algorithm C can create an environment where it
uses A’s advantage to solve any given instance of the SXDH problem.

Proofs for Lemmas 1 and 2 are available in the appendices.

6.2 Security Analysis of the Scheme

A formal security analysis of the scheme under the UC framework [22] is not
presented here due to space limitations and is left for future work. We instead
present informal arguments, supported by the proofs shown in the previous
section and the assumptions on our trusted third parties, showing how the secu-
rity requirements highlighted in Sect. 3 are met.

Let us briefly recall that the adversary in our scheme is represented by a set of
users colluding with the cloud storage provider. The objective of the adversary is
to violate the confidentiality of data uploaded by legitimate users: in particular,
the objective for unpopular data is semantic security, whereas it is conventional
convergent security for popular data. We assume that the adversary controls a
set of nA users {Ui}nA

i=1. The popularity threshold plim represents the smallest
number of distinct, legitimate users that are required to upload a given file F
for that file to be declared popular. We finally recall that the threshold t of Eμ–
also used by the indexing service – is set to be t ≥ plim + nA. This implies
that the adversary cannot use its control over nA users to subvert the popu-
larity mechanism and force a non-popular file of its choice to become popular.
This fact stems from the security of Eμ and from the way the indexing service
is implemented. As a consequence, transition of a file between unpopular and
popular is governed by legitimate users.

The adversary can access two conduits to retrieve information on user data:
(i) the indexing service (IS) and (ii) the records stored by S in DB. The indexing
service cannot be used by the attacker to retrieve any useful information on
popular files; indeed the adversary already possesses IFc

for all popular files and
consequently, queries to IS on input the index IFc

do not reveal any additional
information other than the notion that the file is popular. As for unpopular files,
the adversary can only retrieve indexes computed using a PRF with a random
secret seed. Nothing can be inferred from those, as guaranteed by the security of
the PRF. Note also that repeated queries of a single user on a given file always
only yield the same index and do not influence popularity.

Let us now consider what the adversary can learn from the content of the
storage backend, modeled by DB. The indexing keys are either random strings
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(for unpopular files) or the output of a deterministic, one-way function I on the
convergent ciphertext (for popular files). In the first case, it is trivial to show
how nothing can be learned. In the latter case, the adversary may formulate a
guess F ′ for the content of a given file, compute IF ′ and compare it with the
index. However this process does not yield any additional information that can
help break standard convergent security: indeed the same can be done on the
convergent ciphertext. As for the data content of DB, it is always in either of
two forms: 〈c, cμ, dsi〉 for unpopular files and Fc for popular files. It is easy to
see that in both cases, the length of the plaintext is leaked but we argue this
does not constitute a security breach. The case of a popular file is very simple to
analyze given that security claims stem directly from the security of convergent
encryption. As for unpopular files, c is the ciphertext produced by a semantically
secure cryptosystem and by definition does not leak any information about the
corresponding ciphertext. cμ and dsi represent the ciphertext and the decryption
share produced by Eμ, respectively. Assuming that t is set as described above, the
adversary cannot be in possession of t decryption shares. Consequently, Lemma 2
guarantees that no information on the corresponding plaintext can be learned.

7 Discussion

Here we justify some of our assumptions and discuss the scheme’s limitations:

Prototype Performance. To demonstrate the practicality and functionality
of our proposal, we implemented a prototype of the core of the scheme as a
client-server C++ application. Results show that the most overhead stems from
symmetric and convergent encryption operations implemented via AES-256 and
SHA-256; the execution of Eμ.Encrypt and Eμ.Decrypt forms only a fraction of
the computational overhead. Additionally, while Eμ.Encrypt is executed for every
store and retrieval operation, Eμ.Decrypt is used only during file state transition
and user share generation is done only once per every new registered user. In
conclusion, most of the computational overhead is caused by convergent and
symmetric encryption to protect unpopular files, while the overhead introduced
by the threshold cryptosystem is comparatively small.

Privacy. Individual privacy is often equivalent to each party being able to con-
trol the degree to which it will interact and share information with other parties
and its environment. In our setting, user privacy is closely connected to user
data confidentiality: it should not be possible to link a particular file plaintext
to a particular individual with better probability than choosing that individ-
ual and file plaintext at random. Clearly, within our protocols, user privacy is
provided completely for users who own only unpopular files, while it is slightly
degraded for users who own popular files. One solution for the latter case would
be to incorporate anonymous and unlinkable credentials [23,24] every time user
authentication is required. This way, a user who uploads a file to the storage
provider will not have her identity linked to the file ciphertext. On the contrary,
the file owner will be registered as one of the certified users of the system.
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Dynamic Popularity Threshold. In our scheme, files are classified as popular
or unpopular based on a single popularity threshold. One way of relaxing this
requirement would be to create multiple instances of Eμ with different values of
t and issue as many keys to each user. Different users are then free to encrypt an
input file using different thresholds, with the property that a file uploaded with a
given threshold t1 does not count towards popularity for the same file uploaded
with a different threshold t2 (otherwise, malicious users could easily compromise
the popularity system). A label identifying the chosen threshold (which does
not leak other information) must be uploaded together with the ciphertext.
Furthermore, the indexing service needs to be modified to keep indexes for a given
file and threshold separate from those of the same file but different thresholds.
This can be achieved by modifying the GetIdx interface.

Deletion. Deletion of content is challenging in our scheme, given that the stor-
age provider may be malicious and refuse to erase the uploaded content. Ide-
ally, a deletion operation should remove also the uploaded decryption share and
decrease the popularity of that file by one. A malicious storage provider would
undoubtedly refuse to perform this step. However, the indexing service, which
is a trusted entity, would perform the deletion step honestly by removing the
random index generated for the file and decreasing the popularity. This alone
however does not guarantee any security. Indeed, we may be faced with the sce-
nario in which the popularity threshold has not yet been reached (that is, the
storage provider has not been given the set of indexes), and yet more than t
decryption shares exist at unknown locations. The property of unlinkability of
decryption shares described in Lemma 1 however guarantees that the adversary
has no better strategy than trying all the dsi shares of currently unpopular files
stored in the storage. While this does not constitute a formal argument, it is
easy to show how, if number of shares grows, this task becomes infeasible.

8 Conclusion

This work deals with the inherent tension between well established storage opti-
mization methods and end-to-end encryption. Differently from the approach of
related works, that assume all files to be equally security-sensitive, we vary the
security level of a file based on how popular that file is among the users of the
system. We present a novel encryption scheme that guarantees semantic security
for unpopular data and provides weaker security and better storage and band-
width benefits for popular data, so that data deduplication can be applied for
the (less sensitive) popular data. Files transition from one mode to the other in
a seamless way as soon as they become popular. We show that our protocols are
secure under the SXDH Assumption. In the future we plan to deploy and test
the proposed solution and evaluate the practicality of the notion of popularity
and whether the strict popular/unpopular classification can be made more fine-
grained. Also, we plan to remove the assumption of a trusted indexing service
and explore different means of securing the indexes of unpopular files.
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Appendix A: Proof of Lemma 1

SXDH assumes two groups of prime order q, G1, and G2, such that there is not
an efficiently computable distortion map between the two; a bilinear group GT ,
and an efficient, non-degenerate bilinear map ê : G1 ×G2 → GT . In this setting,
the Decisional Diffie-Hellman (DDH) holds in both G1, and G2, and that the
bilinear decisional Diffie-Hellman (BDDH) holds given the existence of ê [19].

Challenger C is given an SXDH context G′
1,G

′
2,G

′
T , ê′ and an instance of the

DDH problem 〈G′
1, g

′, A = (g′)a, B = (g′)b,W 〉 in G1’. C simulates an environ-
ment in which A operates, using its advantage in the game DSμ-IND to decide
whether W = g′ab. C interacts with A in the DSμ-IND game as follows:

Setup Phase C sets G1 ← G
′
1, G2 ← G

′
2, GT ← G

′
T , ê = ê′, g ← g′; picks

a random generator ḡ of G2 and sets ḡpub = (ḡ)sk, where sk ←R Z
∗
q . C

also generates the set of user identities U = {Ui}n−1
i=0 . The public key pk =

{q,G1,G2,GT ê,OH1 ,OH2 , ḡ, ḡpub} and U are forwarded to A. A declares the
list UA of nA < t − 1 user identities that will later on be subject to OCorrupt

calls. Let UA = {Ui}nA−1
i=0 . To generate key-shares {ski}n−1

i=0 , C constructs a
t−1-degree Lagrange polynomial P() with interpolation points IP = {(0, sk)∪
{(ri, yi)}t−2

i=0}, where ri, yi ←R Z
∗
q , for i ∈ [0, t−3], and rt−2 ←R Z

∗
q , yt−2 ← a.

Secret key-shares are set to ski ← yi, i ∈ [0, n − 1]. Since a is not known to
C, A sets the corrupted key-shares to be ski for i ∈ [0, nA − 1].

Access to Oracles C simulates oracles OH1 , OH2 , OCorrupt and ODShare:
OH1 : to respond to OH1 -queries, C maintains a list of tuples {H1, v, hv, ρv, cv}

as explained below. We refer to this list as OH1 list, and it is initially
empty. When A submits an OH1 query for v, C checks if v already appears
in the OH1 list in a tuple {v, hv, ρv, cv}. If so, C responds with H1(v) =
hv. Otherwise, C picks ρv ←R Z

∗
q , and flips a coin cv; cv flips to ′0′

with probability δ for some δ to be determined later. If cv equals ′0′,
C responds H1(v) = hv = gρv and stores {v, hv, ρv, cv}; otherwise, she
returns H1(v) = hv = Bρv and stores {v, hv, ρv, cv}.

OH2 : The challenger C responds to a newly submitted OH2 query for v with
a randomly chosen hv ∈ GT . To be consistent in her OH2 responses, C
maintains the history of her responses in her local memory.

OCorrupt: C responds to a OCorrupt query involving user Ui ∈ UA, by returning
the coordinate yi chosen in the Setup Phase.

ODShare: simulation of ODShare is performed as follows. As before, C keeps track
of the submitted ODShare queries in her local memory. Let 〈m,Ui〉 be a
decryption query submitted for message m and user identity Ui. If there
is no entry in H1-list for m, then C runs the OH1 algorithm for m. Let
{m,hm, ρm, cm} be the OH1 entry in C’s local memory for message m. Let
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IP′ ← IP\(rt−2, skt−2). C responds with dsm,i =

⎛

⎜
⎜
⎝g

∑

(rj,skj)∈IP
′
skjλ

IP
′

ri,rj

X
λ
IP

′
ri,rt−2

⎞

⎟
⎟
⎠

ρm

where X ← A iff cm = 0, and X ← W iff cm = 1. In both cases, C keeps
a record of her response in her local memory.

Challenge Phase A selects the challenge message m∗. Let the corresponding
entry in the OH1 list be {m∗, hm∗ , ρm∗ , cm∗}. If cm∗ = 0, then C aborts.

Guessing Phase A outputs one bit b′
m∗ representing the guess for bm∗ . C

responds positively to the DDH challenger if b′
m∗ = 0, and negatively other-

wise.

It is easy to see, that if A’s answer is ′0′, it means that the ODShare responses for
m∗ constitute properly structured decryption shares for m∗. This can only be
if W = gab and C can give a positive answer to the SXDH challenger. Clearly,
if cm∗ = 1 and cm = 0 for all other queries to OH1 such that m 
= m∗, the
execution environment is indistinguishable from the actual game DSμ-IND. This
happens with probability Pr[cm∗ = 1 ∧ (∀m 
= m∗ : cm = 0)] = δ(1 − δ)QH1−1,
where QH1 is the number of distinct OH1 queries. By setting δ ≈ 1

QH1−1 the

above probability becomes greater than 1
e·(QH1−1) and the success probability of

the adversary can be bounded as AdvA
DSμ−IND ≤ e · (QH1 − 1) · AdvC

SXDH.

Appendix B: Proof of Lemma 2

Challenger C is given an instance 〈q′, G′
1,G

′
2,G

′
T , ê′, g′, ḡ′, A = (g′)a, B = (g′)b,

C = (g′)c, Ā = (ḡ′)a, B̄ = (ḡ′)b, C̄ = (ḡ′)c,W 〉 of the SXDH problem and wishes
to use A to decide if W = ê (g′, ḡ′)abc. The algorithm C simulates an environment
in which A operates, using its advantage in the game INDμ-CPA to help compute
the solution to the BDDH problem, as described before. C interacts with A within
an INDμ-CPA game:

Setup Phase C sets q ← q′, G1 ← G
′
1, G2 ← G

′
2, GT ← G

′
T , ê = ê′,

g ← g′, ḡ ← ḡ′, ḡpub = Ā. Notice that the secret key sk = a is not
known to C. C also generates the list of user identities U. C sends pk =
{q,G1,G2,GT ê,OH1 ,OH2 , ḡ, ḡpub} to A. At this point, A declares the list
of corrupted users UA as in DSμ-IND. Let UA = {Ui}nA−1

i=0 . To generate
key-shares {ski}n−1

i=0 , C picks a t − 1 degree Lagrange polynomial P() assum-
ing interpolation points IP =

{
(0, a) ∪ {(ri, yi)}t−2

i=0

}
, where ri, yi ←R Z

∗
q .

She then sets the key-shares to ski ← yi, i ∈ [0, n − 1] and assigns ski for
i ∈ [0, nA − 1] to corrupted users.

Access to Oracles C simulates oracles OH1 , OH2 , OCorrupt and ODShare:
OH1 , OH2 , OCorrupt: C responds to these queries as in DSμ-IND.
ODShare: C keeps track of the submitted ODShare-queries in her local mem-

ory. Let 〈m,Ui〉 be a decryption query submitted for message m and
user identity Ui. If there is no entry in H1-list for m, then C runs the OH1

algorithm for m. Let {m,hm, ρm, cm} be the OH1 entry in C’s local mem-
ory for message m. If cm = 1, and A has already submitted t − nA − 1
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queries for m, C aborts. If the limit of t − nA − 1 queries has not been
reached, C responds with a random dsm,i ∈ G1 and keeps a record for it.
From Lemma 1, this step is legitimate as long as less than t decryption
shares are available for m. Let IP′ ← IP \ (0, a). If cm = 0, C responds

with dsm,i =

⎛

⎝g

∑

(rj,skj)∈IP
′
skjλ

IP
′

ri,rj

Aλ
IP

′
ri,0

⎞

⎠

rm

.

Challenge Phase A submits m∗ to C. A has not submitted ODShare-queries for
the challenge message with more than t − nA − 1 distinct user identities.
Next, C runs the algorithm for responding to OH1 -queries for m∗ to recover
the entry from the OH1 -list. Let the entry be {m∗, hm∗ , ρm∗ , cm∗}. If cm∗ = 0,
C aborts. Otherwise, C computes e∗ ← W ρm∗ , sets c∗ ← 〈m∗ ⊕ H2(e∗), C̄〉
and returns c∗ to A.

Guessing Ph. A outputs the guess b′ for b. C provides b′ for its SXDH challenge.

If A’s answer is b′ = 1, it means that she has recognized the ciphertext c∗ as the
encryption of m∗; C can then give the positive answer to her SXDH challenge.
Indeed, W ρm∗ = ê (g, ḡ)abcρm∗ = ê ((Bρm∗ )a, ḡc) = ê

(
H1(m∗)sk, C̄

)
. Clearly, if

cm∗ = 1 and cm = 0 for all other queries to OH1 such that m 
= m∗, then the
execution environment is indistinguishable from the actual game INDμ-CPA. This
happens with probability Pr[cm∗ = 1 ∧ (∀m 
= m∗ : cm = 0)] = δ(1 − δ)QH1−1,
where QH1 is the number of different OH1 -queries. By setting δ ≈ 1

QH1−1 , the

above probability becomes greater than 1
e·(QH1−1) , and the success probability of

the adversary AdvA
INDμ−CPA is bounded as AdvA

INDμ−CPA ≤ e · (QH1 −1) ·AdvC
SXDH.
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Abstract. General-Purpose computing on Graphics Processing Units
(GPGPU) combined to cloud computing is already a commercial success.
However, there is little literature that investigates its security impli-
cations. Our objective is to highlight possible information leakage due
to GPUs in virtualized and cloud computing environments. We pro-
vide insight into the different GPU virtualization techniques, along with
their security implications. We systematically experiment and analyze
the behavior of GPU global memory in the case of direct device assign-
ment. We find that the GPU global memory is zeroed only in some con-
figurations. In those configurations, it happens as a side effect of Error
Correction Codes (ECC) and not for security reasons. As a consequence,
an adversary can recover data of a previously executed GPGPU applica-
tion in a variety of situations. These situations include setups where the
adversary launches a virtual machine after the victim’s virtual machine
using the same GPU, thus bypassing the isolation mechanisms of virtu-
alization. Memory cleaning is not implemented by the GPU card itself
and we cannot generally exclude the existence of data leakage in cloud
computing environments. We finally discuss possible countermeasures for
current GPU clouds users and providers.

Keywords: GPU · Security · Cloud computing · Information leakage

1 Introduction

Graphics Processing Units (GPUs) benefit from a great interest from the sci-
entific community since the rise of General-Purpose computing on Graphics
Processing Units (GPGPU) programming. GPGPU allows performing massively
parallel general purpose computations on a GPU by leveraging the inherent par-
allelism of GPUs. GPUs exploit hundreds to thousands of cores to accelerate par-
allel computing tasks, such as financial applications [8,22,40], encryption [16,45],
and Bitcoin mining [23]. They are also used as a co-processor to execute malicious
code that evades detection [24,41], or on the opposite to monitor security [26].
GPUs have recently been offered by several cloud computing providers to supply
on demand and pay-per-use of otherwise very expensive hardware.
c© International Financial Cryptography Association 2014
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While GPU Clouds have been mainly used for on demand high performance
computing, other applications emerge. For example, in cloud gaming game ren-
dering is done in the cloud allowing to play to GPU intensive games on low
end devices, such as tablets. Virtualized workstations allow performing data and
graphically intensive tasks on regular desktops or laptops, such as movie editing
or high-end computer aided design.

GPUs have been designed to provide maximum performance and through-
put. They have not been designed for concurrent accesses, that is to support
virtualization or simultaneous users that share the same physical resource. It is
known that GPU buffers are not zeroed when allocated [20]. This raises confi-
dentiality issues between different programs or different users when GPUs are
used natively on personal computers [12]. Clearly, the attack surface is larger in
a cloud environment when several users exploit the same GPU one after another
or even simultaneously. However, such a setup has not been previously studied.

Our objective is to evaluate the security of GPUs in the context of virtual-
ized and cloud computing environments, and particularly to highlight potential
information leakage from one user to another. This is a topic of interest since
users cannot trust each other in the cloud environment. However, identifying
possible information leakage in such environments is an intricate problem since
we are faced with two layers of obscurity: the cloud provider as well as the GPU.

Contributions

In this paper, we study information leakage on GPUs and evaluate its possible
impact on GPU clouds. We systematically experiment and analyze the behav-
ior of GPU global memory in non-virtualized and virtualized environments. In
particular:

1. We give an overview of existing GPU virtualization techniques and discuss
the security implications for each technique.

2. We reproduce and extend recent information leakage experiments on non-
virtualized GPUs [9,12]. In addition to previous work, we show how an adver-
sary can retrieve information from GPU global memory using a variety of
proprietary and open-source drivers and frameworks. Furthermore, we find
that in the rare cases where GPU global memory is zeroed, it is only as a
side effect of Error Correction Codes (ECC) and not for security reasons.
We also propose a method to retrieve memory in a driver agnostic way that
bypasses some memory cleanup measures a conscious programmer may have
implemented.

3. We experiment the case of virtual environments with lab testbeds under Xen
and KVM using a GPU in direct device assignment mode, which is the GPU
virtualization technique most commonly used in GPU clouds. We also conduct
experiments on a real life cloud. We explain under which conditions and how
an adversary can retrieve data from GPU global memory of an application
that has been executed on a different virtual machine (VM).

4. We present recommendations to limit information leakage in cloud and vir-
tualized environments.
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The remainder of this paper is organized as follows. Section 2 presents the
background related to GPUs and the related work on information leakage and
GPU virtualization. Section 3 details our adversary model and the security impact
of the different GPU virtualization techniques. Section 4 exposes our experi-
ments, organized according to two main parameters: the degree of virtualization
and the method used to access the memory. Section 5 details the experiments that
leverage GPGPU runtime to access the memory, and Sect. 6 the experiments that
exploit the PCI configuration space. Section 7 presents possible countermeasures.
Section 8 concludes.

2 Background

In this section, we recall basic notions on GPUs, as well as related work on
information leakage and GPU virtualization.

2.1 GPU Basics

In this paper we focus on NVIDIA GPUs because they are the most widespread
devices used in GPGPU applications, yet they are poorly documented. The Tesla
architecture1 introduced a general purpose pipeline, followed by the Fermi and,
the latest, Kepler architecture. GPUs handle throughput-based workloads that
have a large degree of data parallelism. GPUs have hundreds of cores that can
handle hundreds of threads to mitigate the latency caused by the limited memory
bandwidth and the deep pipeline. A GPU is first composed of several Streaming
Multiprocessors (SM), which are in turn composed of Streaming Processor cores
(SP, or CUDA cores). The number of SMs depends on the card, and the number
of SP per SM depends on the architecture. The Fermi architecture introduces a
memory hierarchy. It offers an off-chip DRAM memory and an off-chip L2 cache
shared by all SMs. On-chip, each SM has its own set of registers and its own
memory partitioned between a L1 cache and a shared memory accessible by the
threads running on the SPs. Figure 1 depicts a typical GPU architecture.

CUDA is the most used GPGPU platform and programming model for
NVIDIA GPUs. CUDA allows developers to write GPGPU-specific C functions
called kernels. Kernels are executed n times in parallel by n threads. Each SP
handles one or more threads. A group of threads is called a block, and each SM
handles one or more blocks. A group of blocks is called a grid, and an entire grid
is handled by a single GPU. CUDA introduces a set of memory types. Global,
texture and constant memories are accessible by all threads of a grid and stored
on the GPU DRAM. Local memory is specific to a thread but stored on the
GPU DRAM. Shared memory is shared by all threads of a block and stored in
shared memory. Finally, registers are specific to a thread and stored on-chip.
1 Tesla is used by NVIDIA both as an architecture code name and a product range

name [25]. NVIDIA commercialized the Tesla architecture under the name GeForce
8 Series. When not specified, we refer to the product range name in the remainder
of the article.
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CUDA programs either run on top of the closed source NVIDIA CUDA runtime
or on top of the open-source Gdev [19] runtime. The NVIDIA CUDA runtime
relies on the closed-source kernel-space NVIDIA driver and a closed-source user-
space library. Gdev supports the open source Nouveau driver [28], the PSCNV
driver [33] and the NVIDIA driver. Both closed-source and open-source solu-
tions support the same APIs: CUDA programs can be written using the runtime
API, or the driver API for low-level interaction with the hardware [30]. Figure 2
illustrates the stack of CUDA and Gdev frameworks under Linux.

2.2 Information Leakage

Information Leakage in Cloud Computing. Information leakage in cloud
computing has been extensively studied and related work mainly focus on
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deduplication, side and covert channels. Harnik et al. [18] show the implications
of file-level deduplication in terms of covert and side channels; Suzaki et al. [39]
reveal that page-level deduplication can be used to infer the applications that are
running on other VMs; Owens et al. [32] infer the OS of other VMs using dedu-
plication. Ristenpart et al. [35] study the extraction of confidential information
via a coarse grained side channel on the data cache. Zhang et al. [46] exploit a
side channel on the L1 (CPU) instruction cache across VMs. Wu et al. [44] assert
that cache covert and side channels are not practical due to the distribution of
virtual cores among physical cores. They propose a new bus-contention based
covert channel, that uses atomic instructions to lock the shared memory bus.

Information Leakage in GPUs. Using the CUDA framework, Di Pietro et al.
[12] show that GPU architectures are vulnerable to information leakage, mainly
due to memory isolation issues. The leakage affects the different memory spaces
in GPU: global memory, shared memory, and registers. Di Pietro et al. also
show that current implementations of AES cipher that leverage GPUs allow
recovering both plaintext and encryption key in the GPU global memory. Bress
et al. [9] consider using these vulnerabilities to perform forensic investigations.
Nevertheless, they note that we cannot guarantee that calls to the CUDA API do
not modify the memory. These two works begin to pave the way of GPU security,
however they do not evaluate information leakage by GPUs in the context of
virtualization that is characteristic of cloud computing.

2.3 GPU Virtualization

In virtualized environments, guest VMs are running isolated from each other
and managed by a privileged VM, while an hypervisor handles access to physi-
cal resources. Hardware-assisted virtualization (HVM) was introduced by Intel
in VT-x Virtualization Technology (and similarly by AMD in AMD-V) to over-
come the performance overhead of software virtualization of the x86 architecture.
Examples of commodity hypervisors include Xen and KVM, both of them sup-
porting HVM. KVM is implemented as a kernel-space device driver. Xen is a
bare-metal hypervisor, meaning that it runs directly on the host’s hardware. At
startup, Xen starts the privileged domain that is called Domain-0 (or dom0).
The other unprivileged domains are named domU.

Dowty et al. [13] classify GPU virtualization into frontend and backend vir-
tualization. Frontend virtualization puts the virtualization boundary at the host
or hypervisor level so that guests only interact with the GPU through soft-
ware. Solutions go on a continuum between device emulation and a split driver
model, also called API remoting. Backend virtualization is also called direct
device assignment or PCI passthrough (both are equivalent). In their perfor-
mance evaluation, Vinaya et al. [42] concluded that direct device assignment
mode is the one that provides the best performance and fidelity.
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Emulation. When a GPU is emulated, the hypervisor implements in software
the features of existing, standard devices – regardless of the actual physical
devices. Device emulation does not require any change in the guest OS, which
uses standard device drivers. Emulation comes with non negligible overhead,
and is therefore not an option for GPUs that are used for high performance
computing. The closest approach to full GPU emulation is the one presented by
Dowty et al. in [13], which also includes characteristics of API remoting.

Split Driver Model. The split driver model, also known as driver paravirtu-
alization, involves sharing a physical GPU. Hardware management is left to a
privileged domain. A frontend driver runs in the unprivileged VM and forwards
calls to the backend driver in the privileged domain. The backend driver then
takes care of sharing resources among virtual machines. This approach requires
special drivers for the guest VM. In the literature, the methods that use this
model virtualize the GPU at the CUDA API level [15,17,36], i.e., the back-
end drivers in the privileged domain comprise the NVIDIA GPU drivers and
the CUDA library. The split driver model is currently the only GPU virtualiza-
tion technique that effectively allows sharing the same GPU hardware between
several VMs simultaneously [7,34].

Direct Device Assignment. In direct device assignment, the guest VM has
direct control on the PCI device. Direct device assignment does not allow sev-
eral VMs to share the same GPU at the same time, and for the whole duration
of the VM. However, it allows several VMs to share the same GPU one after
another. Direct device assignment is the most commonly used GPU virtualiza-
tion mode and it is also used by GPU cloud providers such as Amazon Web
Services. To assign a device to a virtual machine, the hypervisor allows the VM
to directly access the device’s PCI range. A hardware I/O Memory Management
Unit (IOMMU), such as Intel’s VT-d, thwarts Direct Memory Access (DMA)
attacks by preventing devices from accessing arbitrary parts of the physical
memory.

Direct Device Assignment with SR-IOV. Single Root I/O Virtualization
(SR-IOV) capable devices can expose themselves to the operating system as
several devices. The hardware device itself can be composed of several indepen-
dent functions (multiple devices) or multiplex the resources in hardware. This
technique therefore provides increased performance. In SR-IOV, the hypervi-
sor controls the assignment of each of the devices to a different guest VM. All
isolation mechanisms are implemented in hardware. This technology allows to
simultaneously share the same GPU among several tenants. NVIDA only very
recently introduced this type of technology as GRID VGX [31], however, we are
not aware of any deployment of SR-IOV GPUs by cloud providers.
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3 The Security of GPUs in Virtualized Environments

In this section, we present our adversary model, as well as a study of the security
of the different GPU virtualization techniques, in terms of information leakage.

3.1 Adversary Model

The objective of the adversary is to learn some information about the victim.
This can occur directly by retrieving data owned by the victim in the memory
of the GPU, or indirectly through side channels. We assume that the adversary
has full control over a VM. In our case, the VM has access to a virtualized GPU.
We consider two cases:

– The serial adversary has access to the same GPU as the victim’s, before or
after the victim. She will seek for traces of data previously left in different
memories of the GPU. Our experiments, in Sect. 4 and following, consider this
particular adversary.

– The parallel adversary and the victim are running simultaneously on the same
virtualized GPU. She may also have direct access to memory used by the vic-
tim, if memory management is not properly implemented. However, as the
parallel adversary shares the device with the victim, she may also abuse some
side channels on the GPU, possibly allowing her to recover useful information.

The serial adversary can have access to the GPU memory in two different
ways. In our experiments, we outline two types of attacks that require different
capabilities for the adversary and differ in their results:

– In the first scenario, the adversary accesses portions of the GPU memory
through a GPGPU runtime. She does not need root privileges since she uses
perfectly legitimate calls to the CUDA runtime API.

– In the second scenario, the adversary accesses the GPU memory through the
PCI configuration space; we assume the adversary has root privileges, either
because she controls the machine or because she compromised it by exploiting
a known privilege escalation. This attack calls for a more powerful adversary,
but gives a complete snapshot of the GPU memory.

3.2 GPU Virtualization Technologies Impact on Security

Emulation. Emulation is conceptually the safest virtualization technique. This
virtualization technique is the one that brings the most interposition, i.e., the
hypervisor is able to inspect, and possibly modify or deny, all guests calls. Emu-
lation also implements a narrow API, which limits the attack surface. Emulation
often does not rely on actual hardware. Therefore, information leakage – or side
channels – that is due to hardware sharing is effectively eliminated.
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Split Driver Model. The split driver model is prone to information leakage
and side channels enabled by the shared hardware. Furthermore, the back-
end driver has to ensure the isolation of guests that share the same hardware.
GPU drivers have not been designed with that goal in mind, therefore, the back-
end driver should completely be redesigned to address this. From an isolation,
interposition and attack surface perspective, the split driver model is somewhere
between emulation and direct device assignment. The API exposed to the guest
domain is limited, which makes the split driver model a safe approach at first
sight. Nevertheless, if the backend driver runs on the privileged domain and not
in a separate isolated driver domain, the device driver is part of the Trusted
Computing Base (TCB), along with the hypervisor and the hardware. As such,
a compromise of the backend driver can lead to the compromise of the entire sys-
tem and break isolation between guest VMs. Reducing the TCB to its minimum
is a common method to improve security. One approach is [38], that breaks the
monolithic Gallium 3D graphic driver to move a portion of the code out of the
privileged domain. More generally, reducing the TCB is a daunting task given
that the TCB of a virtualization platform is already very large [11]. Drivers are
well-known to be a major source of operating systems bugs [10]. GPU drivers
are also very complex, require several modules and have a large code base. In
the case of NVIDIA drivers, code cannot be inspected and verified since it is
closed source. Like any complex piece of software, GPU drivers can suffer from
vulnerabilities, such as those reported for NVIDIA drivers [1–5].

Direct Device Assignment. This technique gives direct access to a physical
GPU, with a very limited level of interposition. The PCI passthrough is managed
by QEMU and the IOMMU, that become two targets for attacks. The attack
surface of the IOMMU is large since it has to handle every calls to the hardware:
Memory-Mapped Input/Output (MMIO), Programmed Input/Output (PIO),
DMA, interrupts. Although a piece of hardware is generally known as more
secure than a piece of software, the IOMMU is prone to attacks [27,43]. Side
channels are of less importance because the GPU is not simultaneously shared
by two tenants, but information leakage can still occur given that it is physical
hardware that is shared across different sessions.

Direct Device Assignment with SR-IOV. This setup is recent and not yet
deployed by cloud providers, so no study has been conducted to assess its secu-
rity. Because they are designed for virtualization and for sharing, it is likely that
they will provide an isolation mechanism that will prevent direct information
leakage from a parallel adversary. However, if memory cleaning is not properly
implemented, it is the same situation as direct device assignment for a serial
adversary. Moreover, performance and resource sharing are antagonistic to side
channel resistance. Therefore we can expect that indirect information leaks will
be possible.

Full emulation and split driver techniques have low maturity and perfor-
mance, and SR-IOV GPUs are not currently deployed. Therefore, in the rest of
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this paper we focus on data leaks in virtualization setups when GPUs are used
in direct device assignment mode, and in cloud setups. This effectively restricts
the adversary model to the serial adversary.

4 Experiments Setup

In this section, we detail the experiments that we conducted during our study.
We consider the serial adversary. We organize our experiments according to two
main parameters: the degree of virtualization, and the method used to access
the memory.

We pursue experiments with no virtualization, and with direct device assign-
ment GPU virtualization. We use a lab setup for both settings and a real life
cloud computing setup using Amazon. In our virtualized lab setup, we test two
hypervisors: KVM [21] and Xen [6]. For both of them, we used HVM virtualiza-
tion, with VT-d enabled. The administrative and guest VMs run GNU/Linux.
The cloud computing setup is an Amazon GPU instance that uses Xen HVM
virtualization with an NVIDIA Tesla GPU in direct device assignment mode.
The VM also runs GNU/Linux.

We pursue experiments accessing the memory with different GPGPU frame-
works under different drivers, as we explain in Sect. 5. We also access the memory
with no framework through the PCI configuration space, in a driver agnostic way,
as we describe in Sect. 6. To that extent, we build a generic CUDA taint program
and two search programs, depending on the access method.

1. Taint writes identifiable strings in the global memory of the GPU. It makes
use of the CUDA primitives cudaMalloc to allocate space on the global mem-
ory, cudaMemcpy to copy data from host to device, and cudaFree that frees
memory on the device.

2. Search scans the global memory, searching for the strings written by taint. The
program that uses a GPGPU framework operates in the same way as taint by
allocating memory on the device. However, data is copied from device to host
before finally freeing memory. The other program uses the PCI configuration
space.

We first execute taint, then search, with various actions between these two exe-
cutions. An information leakage occurred if search can retrieve data written by
taint. Table 1 summarizes the experiments and their results.

5 Accessing Memory Through GPGPU Runtime

In this section, we detail our method and results to access the GPU memory
with the CUDA and Gdev runtimes, in three environments: Native, virtualized
and cloud.
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Table 1. Overview of the attacks and results. The different actions between taint
and search are: (1) switch user; (2) soft reboot bare machine or VM; (3) reset GPU
using nvidia-smi utility; (4) kill VM and start another one; (5) hard reboot machine.

indicates a leak, and no successful leak. N/A means that the attack is not
applicable.

a

a

b

b

b

a We cannot guarantee that we end up in the same physical machine after releasing
a VM in the cloud setup.

b The access through PCI configuration space needs root privilege.

5.1 Native Environment

We conduct experiments similar to [9,12] with a Quadro Fermi GPU that does
not provide ECC for its memory. We validate information leakage on two frame-
works: (i) using the runtime API on top of the CUDA runtime and the NVIDIA
driver and (ii) using the driver API on top of the Gdev runtime and the Nou-
veau driver. We observed information leakage when users switch, when there is
a soft reboot and when the GPU is reset, i.e., in all cases between search and
taint except for the hard reboot. This indicates that the GPU maintains data in
memory as long as it is powered, i.e., anyone can retrieve data during this time.
The driver and framework do not impact memory leakage in this setting.

We now consider a Tesla Kepler GPU which provides ECC for its memory.
We found that the Tesla GPU has two options that impact the behavior of the
memory:

– Persistence mode: Enabling persistence keeps the driver loaded even when no
application is accessing the GPU and minimizes the driver load latency.

– ECC mode: When the Error Correction Code option is enabled part of the
dedicated memory is used for ECC bits, this reduces the available memory
by 12.5 %. ECC protects register files, L1/L2 caches, shared memory, and
DRAM [29]. It takes effect after the next reboot, or device reset.

Table 2 shows in which cases we could observe an information leakage with a
user switch on the Tesla Kepler GPU in a native environment. The only case
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Table 2. Information leakage with user switch between the execution of taint and
search, as function of ECC and persistence mode. Tested on a Tesla card in a native
environment. indicates a leak, and no successful leak.

where we could not observe any information leakage is when ECC is enabled and
persistence is disabled. In this mode, the driver loads dynamically each time a
GPU application is executed. These experiments suggest that memory cleaning
is triggered by loading the driver when ECC is enabled. Furthermore, memory
is not zeroed with ECC and persistence disabled; this indicates that memory
zeroing in the ECC case is not implemented for security reasons but only to
properly support ECC mode.

In the case of a soft reboot of the machine or a reset of the GPU, the driver
is unloaded and reloaded independently of the persistence mode. There is no
information leakage between taint and search with ECC enabled in these cases.

5.2 Virtualized Environment

From a guest VM, we observed information leakage when switching user between
taint and search, which is the same behavior as in a native environment. The
soft reboot and the GPU reset are also giving different result depending on ECC,
showing information leakage when ECC is disabled, and no leakage when ECC
is enabled. Consistently with the native environment, there was no information
leakage after a hard reboot. Information leakage on these setups threatens the
confidentiality between users and applications of the same guest VM.

To investigate the role of the hypervisor, we are interested in knowing whether
a guest VM can retrieve data in the GPU memory left by a previous guest VM.
For that matter, we create a guest VM running NVIDIA driver on Ubuntu,
launch the taint program and then destroy the VM. Afterwards, we create
another guest VM and launch the search program. We could retrieve data on
both Xen and KVM, revealing that information has leaked. This result indicates
a clear violation of the isolation that the hypervisor must maintain between two
guest VMs.

5.3 Cloud Environment

Within the same guest VM, we obtain the same results as in the virtualized
environment. Information leakage occurs with ECC disabled when there is a
user switch, after a soft reboot of the VM or a reset of the GPU.

In the default configuration of Amazon GPU instances, ECC is enabled and
persistence is disabled. In accordance with our previous experiments, it means
that the memory is cleaned, and it is supposed to prevent a user from accessing
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the memory of previous users. However, a user that deactivates ECC to have
more memory available (or uses a VM image configured this way) may not be
protected. Based on our observations, we imagine an attack where an adversary
rents many instances and disables ECC – or provides a custom image that dis-
ables ECC to numerous victims. Slaviero et al. [37] showed that it is possible
to pollute the Amazon Machine Image market with VM images prepared by an
adversary. The adversary then waits for its victim to launch an instance where
the ECC has been disabled. When the victim releases the instance, the adversary
tries to launch its own instance on the same physical machine. While this may be
difficult, Ristenpart et al. [35] showed that it is possible to exploit and influence
VM placement in Amazon. The adversary then runs the search program to seek
data in the GPU memory. We did not implement this attack as we would have
needed to rent a large number of instances, without any guarantee to retrieve
the same physical machine as a victim’s.

We therefore contacted Amazon security team, who mentioned that they
were already addressing such concerns in their pre-provisioning workflow, i.e.,
before allocating a new instance to a user. However, without further details on
how GPU memory is cleaned, there is no guarantee that Amazon performs this
correctly. In addition to this, in absence of formal industry recommendations,
we cannot exclude the existence of data leakage in other GPU cloud providers.

6 Accessing Memory Through PCI Configuration Space

The access method that leverages GPGPU runtime has the disadvantage of only
showing a partial view of the GPU memory, i.e., only what can be accessed via
the GPU MMU. In this section, we show a method to access the GPU memory
through the PCI configuration space, in a driver agnostic way.

6.1 Native Environment

There are two methods to perform I/O operations between the CPU and I/O
devices: Memory-Mapped I/O (MMIO) and Port-mapped I/O (PIO). The map-
ping of the device memory to the MMIO or PIO address space is configured in
the Base Address Registers (BAR), in the PCI configuration space. The PCI con-
figuration space is a set of registers that allow the configuration of PCI devices.
Reads and writes can be initiated by the legacy x86 I/O address space, and
memory-mapped I/O.

For NVIDIA GPUs, the BARs are obtained by a reverse-engineering work of
the open-source community. BAR0 contains MMIO registers, documented in the
Envytools git [14]. The registers are architecture dependent, but the area we are
interested in remains the same for the architectures Tesla, Fermi and Kepler.
The mapping at 0x700000–0x7fffff, called PRAMIN, can be used to access
any part of video memory by its physical address. It is used as a 1 MB window
to physical memory, and its base address can be set using the register HOST MEM
at the address 0x1700. Figure 3 illustrates this access.
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Fig. 3. Accessing GPU memory via PCI configuration space: PRAMIN mapping is
used to access 1 MB of the GPU physical memory, at address configured in the register
host mem. We depict two consecutive steps in Algorithm 1 while loop.

Algorithm 1. Accessing memory through PRAMIN
pramin offset ← 0 × 700000
host mem ← 0x0
vram[size]
while i < size do

read(pramin offset, vram[i], 0x100000)
host mem ← host mem + 0x100000

end while

The access to video RAM is done through the following steps. First, HOST MEM
is set to 0x0 and we read the 1 MB of PRAMIN – that way we are able to read
the first 1 MB of the GPU’s physical memory. We then add 1 MB to HOST MEM
and re-read PRAMIN. This step is done again until the whole memory has been
accessed. Algorithm 1 summarizes these steps. We use read and write functions
of the Envytools [14] (nva wr32 and nva rd8), that in turn use libpciaccess
to access the PCI configuration space.

Consistently with the experiments leveraging a GPGPU runtime, we observe
information leakage after a soft reboot and a reset of the GPU. There is no
information leakage after a hard reboot. Changing user does not apply in this
setup since we need to be root to access the PCI configuration space.

Accessing memory through PCI configuration space gives a complete snap-
shot of the GPU memory and bypasses the GPU MMU. The advantage of such
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method is that it is capable of bypassing some memory cleanup measures imple-
mented at the applicative level. We discuss this aspect in Sect. 7.

6.2 Virtualized and Cloud Environment

Xen provides I/O virtualization by means of emulation for its HVM guests with
the QEMU device model (QEMU-dm) daemon that runs in Dom0. When a
guest is configured with a device in direct device assignment mode, QEMU-dm
reads its PCI configuration space register, and then replicates it in a virtual PCI
configuration space. QEMU-dm maps MMIO and PIO into the guest memory
space, and configures the IOMMU to grant the guest OS access to these mem-
ory regions. However, QEMU-dm emulates some configuration space registers
like BAR for security reasons, so that an adversary cannot change the memory
mapping of the device to another device attached to another VM, or to the
hypervisor. Other registers like command register are not emulated.

Our access method leverages BAR registers to access the GPU memory. We
tested the method on our Xen setup and obtained garbage (series of 0xffff val-
ues), confirming that the access to the registers are emulated, which prevented
us from effectively accessing the memory. The results are the same for Amazon
GPU instances. These setups are then showing no information leakage. To cir-
cumvent the protection of BAR registers, an adversary may try to attack the
virtualization mechanisms themselves.

7 Countermeasures

We divide the possible countermeasures in three categories: changes in existing
runtimes, steps that can be taken by cloud providers, and those that can already
be initiated by a user using only calls to existing APIs.

Changes to Existing Runtimes. Di Pietro et al. [12] suggest an approach to
be implemented in runtimes. The solution is to zero-fill buffers at allocation time,
as it is done when an operating system allocates a new physical page of memory
to a process. This solution targets an adversary that uses GPGPU runtime to
launch her attack, however, it does not protect from an adversary that accesses
memory through PCI configuration space, since she will not allocate memory.
In this case, it would be better to clear memory at deallocation time. In both
cases, zero-filling buffers entails performance issues as the memory bandwidth is
generally a bottleneck for GPGPU applications. Di Pietro et al. assess the impact
of the cudaMemset function that is used for zeroing buffers. The overhead turns
out to be linearly proportional to the buffer size.

Cloud Providers. Cloud providers can already take measures to protect their
customers. The necessary steps before handing an instance to a customer include
cleanup of the GPU memory. This is the approach that appears to be taken by
Amazon, which seems to implement proper memory cleaning and does not rely
solely on a side effect of having ECC enabled by default.
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Defensive Programming. In the absence of the two types of countermeasures
above, a security-conscious programmer that writes his own kernels and can
accept a performance penalty can clear the buffer before freeing memory with
a function such as cudaMemset. If the end-user can not modify the program,
he should erase the GPU memory when finishing an execution on a GPU. This
countermeasure seems trivial, nevertheless its practical implementation can be
difficult due to the complicated memory hierarchy present in GPUs (e.g., access
mechanisms depend on the type of memory). A standalone CUDA program
that cleans the memory would allocate the maximum amount of memory, and
then overwrite it (e.g., with zeros). However, this solution relies on the CUDA
memory manager, which does not guarantee the allocation of the whole memory.
Portions of memory risk not to be properly erased because of fragmentation
issues. We built an experiment to illustrate this: We run a CUDA program for
some time, then we stop it to run the CUDA program that cleans the memory.
We finally dump the memory via PRAMIN to access the whole memory. We
clearly recovered a portion of the memory that was not cleaned by the CUDA
program, demonstrating clear limitations of this countermeasure.

A practical solution for NVIDIA Tesla GPUs that benefit from ECC memory
is to enable ECC and reload the driver, or to reset the GPU when ECC is
enabled. As we saw in our experiments Sect. 5.1, these sequences of actions clear
the memory.

8 Conclusions

We evaluated the confidentiality issues that are posed by the recent advent of
GPU virtualization. Our experiments in native and virtualized environments
showed that the driver, operating system, hypervisor and the GPU card itself
do not implement any security related memory cleanup measure. As a result, we
observed information leakage from one user to another, and in particular from
one VM to another in a virtualized environment. Amazon seems to implement
proper GPU memory cleaning at the provisioning of an instance; we could thus
not confirm any information leakage from one Amazon instance to another. How-
ever, because of the general lack of GPU memory zeroing, we cannot generally
exclude the existence of data leakage in cloud computing environments.

The rise of GPGPU increases the attack surface and urges programmers and
industry to handle GPU memory with the same care as main memory. For this
matter, industry should include GPU memory cleaning in its best practices. We
provided a set of recommendations for proper memory cleanup at the various
layers involved in GPU virtualization (application, driver, hypervisor).

In the future, GPU virtualization will move from sequential sharing of a GPU
card to simultaneous sharing between several tenants. Proper memory isolation
will become even more challenging in this context, and we plan to study this
aspect in future work.
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Abstract. When represented as a bit string in a standard way, even
using point compression, an elliptic curve point is easily distinguished
from a random bit string. This property potentially allows an adversary
to tell apart network traffic that makes use of elliptic curve cryptography
from random traffic, and then intercept, block or otherwise tamper with
such traffic.

Recently, Bernstein, Hamburg, Krasnova and Lange proposed a par-
tial solution to this problem in the form of Elligator: an algorithm for
representing around half of the points on a large class of elliptic curves
as close to uniform random strings. Their proposal has the advantage of
being very efficient, but suffers from several limitations:

– Since only a subset of all elliptic curve points can be encoded as a
string, their approach only applies to cryptographic protocols trans-
mitting points that are rerandomizable in some sense.

– Supported curves all have non-trivial 2-torsion, so that Elligator can-
not be used with prime-order curves, ruling out standard ECC para-
meters and many other cryptographically interesting curves such as
BN curves.

– For indistinguishability to hold, transmitted points have to be uniform
in the whole set of representable points; in particular, they cannot
be taken from a prime order subgroup, which, in conjunction with
the non-trivial 2-torsion, rules out protocols that require groups of
prime order.

In this paper, we propose an approach to overcome all of these limita-
tions. The general idea is as follows: whereas Bernstein et al. represent
an elliptic curve point P as the bit string ι−1(P ), where ι is an injec-
tive encoding to the curve (which is only known to exist for some curve
families, and reaches only half of all possible points), we propose to use
a randomly sampled preimage of P under an admissible encoding of the
form f⊗2 : (u, v) �→ f(u) + f(v), where f is essentially any algebraic
encoding. Such encodings f exist for all elliptic curves, and the corre-
sponding admissible encodings f⊗2 are essentially surjective, inducing a
close to uniform distribution on the curve.

As a result, our bit string representation is somewhat less compact
(about twice as long as Elligator), but it has none of the limitations
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above, and can be computed quite efficiently when the function f is
suitably chosen.

Keywords: Elliptic curve cryptography ·Point encoding ·Circumvention
technology · Anonymity and privacy

1 Introduction

Elliptic curves, whose use in public-key cryptography was first suggested by
Koblitz and Miller in the mid-1980s [18,20], offer numerous advantages over more
traditional settings like RSA and finite field discrete logarithms, particularly
higher efficiency and a much smaller key size that scales gracefully with security
requirements. Moreover, they possess a rich geometric structure that enables the
construction of additional primitives such as bilinear pairings, which have opened
up avenues for novel cryptographic protocols over the past decade, starting with
Joux’s tripartite key agreement [17] and Boneh and Franklin’s construction of
an identity-based encryption scheme [5].

On the Internet, adoption of elliptic curve cryptography is growing in general-
purpose protocols like TLS, SSH and S/MIME, as well as anonymity and privacy-
enhancing tools like Tor (which favors ECDH key exchange in recent versions)
and Bitcoin (which is based on ECDSA).

For circumvention applications, however, ECC presents a weakness: points
on a given elliptic curve, when represented in a usual way (even in compressed
form) are easy to distinguish from random bit strings. For example, the usual
compressed bit string representation of an elliptic curve point is essentially the
x-coordinate of the point, and only about half of all possible x-coordinates cor-
respond to valid points (the other half being x-coordinates of points of the
quadratic twist). This makes it relatively easy for an attacker to distinguish
ECC traffic (the transcripts of multiple ECDH key exchanges, say) from ran-
dom traffic, and then proceed to intercept, block or otherwise tamper with such
traffic.

Note that while RSA presents a similar weakness, it is both less severe and
easier to mitigate. Namely, an RSA ciphertext or signature with respect to a
public modulus N is usually represented as a bit string of length n = �log2 N�
corresponding to an integer between 1 and N − 1. This can be distinguished
from a random bit string with advantage ≈ (1 − N/2n), which is usually less
than 1/2, and possibly much less for an appropriate choice of N . Moreover, even
when N isn’t close to 2n, it is possible to thwart the distinguishing attack by
using redundant representations, i.e. transmitting representatives of the classes
modulo N chosen in [0, 2n+t) (see Sect. 3.4).

Countering the distinguishers for elliptic curve points is more difficult. One
possible approach is to modify protocols so that transmitted points randomly
lie either on the given elliptic curve or on its quadratic twist (and the curve
parameters must therefore be chosen to be twist-secure). This is the approach
taken by Möller [21], who constructed a CCA-secure KEM and a corresponding
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hybrid public-key encryption scheme based on elliptic curves, using a binary (to
avoid modulus based distinguishers like in RSA) elliptic curve and its twist. Sim-
ilarly, Young and Yung constructed secure key exchange [26] and encryption [27]
without random oracles based on the hardness of DDH in an elliptic curve and
its twist.

Möller’s approach has already been deployed in circumvention tools, includ-
ing StegoTorus [24], a camouflage proxy for Tor, and Telex [25], an anticensorship
technology that uses a covert channel in TLS handshakes to securely commu-
nicate with friendly proxy servers. However, since protocols and security proofs
have to be adapted to work on both a curve and its twist, this approach is not
particularly versatile, and it imposes additional security requirements (twist-
security) on the choice of curve parameters.

Elligator. A different approach was recently proposed by Bernstein, Ham-
burg, Krasnova and Lange [4]. Their idea is to leverage an efficiently com-
putable, efficiently invertible algebraic function that maps the integer interval
S = {0, . . . , (p − 1)/2}, p prime, injectively to the group E(Fp) where E is an
elliptic curve over Fp (subject to some conditions on the choice of p and E).
Bernstein et al. observe that, since ι is injective, a uniformly random point P
in ι(S) ⊂ E(Fp) has a uniformly random preimage ι−1(P ) in S, and use that
observation to represent an elliptic curve point P as the bit string representation
of the unique integer ι−1(P ) if it exists. If the prime p is close to a power of 2,
a uniform point in ι(S) will have a close to uniform bit string representation.

This method, which they call Elligator, has numerous advantages over Möller’s
twisted curvemethod: it is easier to adapt to existing protocols using elliptic curves,
since there is no need to modify them to also deal with the quadratic twist; it avoids
the need to publish a twisted curve counterpart of each public key element, hence
allowing a more compact public key; and it doesn’t impose additional security
requirements like twist-security. But it also has some significant limitations:

– The set ι(S) of elliptic curve points that can be represented as bit strings
using Elligator is of cardinality ≈ p/2, and hence contains only about half
of all points on the curve. As a result, the approach only applies to crypto-
graphic protocols transmitting points that are rerandomizable in some sense.
For example, Elligator cannot be used in conjunction with a deterministic
signature scheme like BLS [6] (short of using e.g. additional padding).

– Not all elliptic curves are known to admit an injective encoding ι as used in
the construction of Elligator, and all of those curves have order divisible by a
small prime. Bernstein et al. use the injective encoding proposed by Fouque,
Joux and Tibouchi [13], which only exists for curves of order divisible by 4 over
fields with p ≡ 3 (mod 4), and another new injective encoding which exists
for curves of even order. The only other known injective encoding to ordinary
curves is due to Farashahi [10] and applies to curves of order divisible by 3.
The Elligator construction cannot be used with any other elliptic curve, and in
particular does not apply to prime-order curves, which make up essentially all
standardized ECC parameters (including NIST [12], SEC 2 [9], Brainpool [19]
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and ANSSI [1] curves), or to many other cryptographically interesting curves
such as Barreto–Naehrig curves [2].

– For indistinguishability to hold, transmitted points have to be uniform in
ι(S); in particular, they cannot be taken from a strict subgroup, which rules
out protocols that require groups of prime order, since none of the supported
curves has prime order. In particular, many protocols with standard model
security cannot be used with Elligator. For example, Bernstein et al. describe
a hybrid encryption scheme constructed from a slightly modified version of
the ElGamal key encapsulation mechanism in the whole group of points of
their elliptic curve [4, Sect. 2.3]. The overall hybrid scheme is secure if the key
derivation function is modeled as a random oracle, but the existence of small
divisors of the group order breaks the semantic security of the underlying
standard model KEM, even though the usual ElGamal KEM is IND-CPA
secure in the standard model.

Our Contributions. In this paper, we propose a new approach to overcome
all of these limitations. The general idea is as follows: whereas Bernstein et al.
represent an elliptic curve point P as the bit string ι−1(P ), where ι is an injective
encoding to the curve (which is only known to exist for some curve families, and
reaches only half of all possible points, we propose to use a randomly sampled
preimage of P under an admissible encoding of the form:

f⊗2 : (u, v) �→ f(u) + f(v),

where f is essentially any algebraic encoding. Such encodings f exist for all
elliptic curves, and the corresponding admissible encodings f⊗2 are essentially
surjective, inducing a close to uniform distribution on the curve.

As a result, using our approach, all elliptic curve points are representable,
and the bit string representation of a random point on the whole elliptic curve
(rather than just a special subset of it) is statistically indistinguishable from a
random bit string. This eliminates the need for repeatedly restarting the pro-
tocol until a representable point is found, and for rerandomizability in general
(for example, full domain hash-like deterministic signatures such as BLS signa-
tures [6], which we mentioned are not directly usable with Elligator, can be used
with our representation algorithm without problem).

In addition, since the kind of encoding functions f we use exist for essentially
all elliptic curves, including curves of prime as well as composite order, pairing-
friendly curves and so on, our method lifts all the limitations that Elligator sets
on curve parameters. In particular, protocols requiring curves of prime order can
be used in our setting.

We also recommend specific choices of the function f that are well-suited to
various elliptic curve parameters, and propose optimizations of the corresponding
algorithms for representing points as bit strings and back. We find that in most
setting, our approach is in fact more efficient than Elligator for representing
generated points as bit strings. It is, however, less compact, since a curve point
is represented as two base field elements instead of one.
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Organization of the Paper. In Sect. 2, we introduce notation, definitions
and useful results related to discrete probability distributions, regularity and
so-called well-distributed encodings to elliptic curves. In Sect. 3, we introduce
our main construction, and state and establish the theorem on which it is based.
Finally, in Sect. 4, we present concrete choices of functions f which are well-
suited to our approach, working for large families of curves, and also offer a
performance comparison to Elligator.

2 Preliminaries

2.1 Statistical Distance and Regularity

For D a probability distribution on a finite set S, we write Pr[s ← D ] for the
probability assigned to the singleton {s} ⊂ S by D . The uniform distribution
on S is denoted by US (or just U if the context is clear).

Definition 1 (Statistical distance). Let D and D ′ be two probability distrib-
utions on a finite set S. The statistical distance between them is defined as the
�1 norm:1

Δ1(D ,D ′) =
∑

s∈S

∣
∣ Pr[s ← D ] − Pr[s ← D ′]

∣
∣.

We simply denote by Δ1(D) the statistical distance between D and US:

Δ1(D) =
∑

s∈S

∣
∣
∣ Pr[s ← D ] − 1

|S|
∣
∣
∣,

and say that D is ε-statistically close to uniform when Δ1(D) ≤ ε. When Δ1(D)
is negligible, we simply say than D is statistically close to uniform.2

The squared Euclidean imbalance Δ2
2(D) of D is the square of the �2 norm

between D and US:

Δ2
2(D) =

∑

s∈S

∣
∣
∣ Pr[s ← D ] − 1/|S|

∣
∣
∣
2

.

Definition 2 (Pushforward and pullback). Let S, T be two finite sets and
F any mapping from S to T . For any probability distribution DS on S, we can
define the pushforward F∗DS of DS by F as the probability distribution on T
such that sampling from F∗DS is equivalent to sampling a value s ← DS and
returning F (s). In other words:

Pr
[
t ← F∗DS

]
= Pr

[
s ← DS ; t = F (s)

]
= μS

(
F−1(t)

)
=

∑

s∈F−1(t)

Pr[s ← DS ],

1 An alternate definition frequently found in the literature differs from this one by a
constant factor 1/2. That constant factor is irrelevant for our purposes.

2 For this to be well-defined, we of course need a family of random variables on increas-
ingly large sets S. Usual abuses of language apply.
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where μS is the probability measure defined by DS. Similarly, for any probability
distribution DT on T that assigns a nonzero weight μT

(
F (S)

)
to the image of

F , we can define the pullback F ∗DT of DT by F as the probability distribution
on S such that sampling from F ∗DT is equivalent to sampling a value t ← DT ,
returning a uniformly random preimage s ∈ F−1(t) if one exists, and restarting
otherwise. In other words:

Pr
[
s ← F ∗DT

]
=

1
μT

(
F (S)

) · Pr[t ← DT ]
#F−1(t)

where t = F (s).

Definition 3 (Regularity). Let S, T be two finite sets and F any mapping
from S to T . We say that F is ε-regular (resp. ε-antiregular) when F∗US (resp.
F ∗UT ) is ε-close to the uniform distribution. We may omit ε if it is negligible.

Lemma 1. Let S, T be two finite sets and F an ε-regular mapping from S to
T . Then F satisfies:

1 − #F (S)
#T

≤ ε,

and is also a 2ε-antiregular mapping.

Proof. This result is similar to [7, Lemma 3]. Since F is ε-regular, we have:

Δ1(F∗US) =
∑

t∈T

∣
∣
∣ Pr[t ← F∗US ] − 1

#T

∣
∣
∣ =

∑

t∈T

∣
∣
∣
#F−1(t)

#S
− 1

#T

∣
∣
∣ ≤ ε.

On the other hand, that sum is larger than the same sum restricted to T \F (S),
which is:

∑

t/∈F (S)

∣
∣
∣
#F−1(t)

#S
− 1

#T

∣
∣
∣ = #

(
T \ F (S)

) ·
∣
∣
∣0 − 1

#T

∣
∣
∣ = 1 − #F (S)

#T
.

Hence the first assertion that 1 − #F (S)/#T ≤ ε. Turning to the second asser-
tion, we compute Δ1(F ∗UT ):

Δ1(F ∗UT ) =
∑

s∈S

∣
∣
∣ Pr[s ← F ∗UT ] − 1

#S

∣
∣
∣

=
∑

s∈S

∣
∣
∣

#T

#F (S)
· Pr[F (s) ← UT ]

#F−1
(
F (s)

) − 1
#S

∣
∣
∣

=
∑

s∈S

∣
∣
∣

1
#F (S) · #F−1

(
F (s)

) − 1
#S

∣
∣
∣

=
∑

t∈F (S)

#F−1(t) ·
∣
∣
∣

1
#F (S) · #F−1(t)

− 1
#S

∣
∣
∣

≤
∑

t∈F (S)

∣
∣
∣

1
#F (S)

− 1
#T

∣
∣
∣ +

∣
∣
∣

1
#T

− #F−1(t)
#S

∣
∣
∣

≤
∣
∣
∣1 − #F (S)

#T

∣
∣
∣ + Δ1(F∗US) ≤ 2ε

as required. �
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2.2 Well-Distributed Encodings

Let E be an elliptic curve over a finite field Fq, and f : Fq → E(Fq) any function.
Farashahi et al., in [11], show that regularity properties of the tensor square f⊗2

defined by:

f⊗2 : F2
q → E(Fq)

(u, v) �→ f(u) + f(v)

can be derived formally from the behavior of f with respect to characters of the
group E(Fq). More precisely, they call the function f a well-distributed encod-
ing when it satisfies good bounds with respect to character sums of the form∑

u∈Fq
χ(f(u)), for nontrivial characters χ of E(Fq).

Definition 4. A function f : Fq → E(Fq) is said to be a B-well-distributed
encoding for a certain constant B > 0 if for any nontrivial character χ of E(Fq),
the following holds: ∣

∣
∣

∑

u∈Fq

χ(f(u))
∣
∣
∣ ≤ B

√
q.

Farashahi et al. then show that if f is a well-distributed encoding, then f⊗2 is
regular. They also provide a bound on the Euclidean imbalance of (f⊗2)∗U .

Lemma 2 ([11, Theorem 3 & Corollary 4]). Let f : Fq → E(Fq) be a B-well-
distributed encoding, and D = (f⊗2)∗UF2

q
the distribution on E(Fq) induced by

f⊗2. Then, we have:

Δ1(D) ≤ B2

q

√
#E(Fq) and Δ2

2(D) ≤ B4

q2
.

Note that since #E(Fq) = q + O(q1/2) by the Hasse–Weil bound, this implies
Δ1(D) = O(q−1/2), so the distribution induced by f⊗2 on E(Fq) is indeed
statistically close to uniform.

We also mention a special case of the general geometric result that Farashahi
et al. use to show that concrete maps are well-distributed encodings.

Lemma 3 ([11, Theorem 7]). Let h : C → E a morphism over Fq from a curve
C of genus g to the elliptic curve E. Assume that h does not factor through a
nontrivial unramified morphism Z → E. Then, for all nontrivial characters χ of
E(Fq), we have: ∣

∣
∣

∑

P∈Fq

χ
(
h(P )

)∣∣
∣ ≤ (2g − 2)

√
q.
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3 Our Construction

3.1 Elligator Squared

As explained in the introduction, our new approach to representing Fq-points
on an elliptic curve E as bit strings is to fix a suitable point encoding function
f : Fq → E(Fq), and to use the tensor square function:

f⊗2 : F2
q → E(Fq)

(u, v) �→ f(u) + f(v).

A point P ∈ E(Fq) is then represented as (a bit string representation of) a
uniformly random preimage (u, v) ∈ (f⊗2)−1(P ) ⊂ F

2
q, and a pair (u, v) is

converted back to a point by applying f⊗2.
Leaving aside the question of how elements of F

2
q are represented as bit

string for now (we discuss it in Sect. 3.4), we now describe the type of function f
we will consider, formally define our construction, and state the corresponding
main results. In what follows, we fix a finite field Fq and an elliptic curve E over
Fq. When stating asymptotic results, we implicitly assume as usual that q, E,
and functions depending on them fit in infinite families indexed by a security
parameter λ.

Definition 5. We call a function f : Fq → E(Fq) a (d,B)-well-bounded encod-
ing, for positive constants d,B, when f is B-well-distributed and all points in
E(Fq) have at most d preimages under f . We may occasionally omit the constant
B or both d and B as appropriate.

Our main result pertaining to well-bounded encodings says that, on the one hand,
if we sample a uniformly random preimage under f⊗2 of a uniformly random
point P on the curve, we get a pair (u, v) ∈ F

2
q which is statistically close to

uniform; and on the other hand, that sampling uniformly random preimages
under f⊗2 can be done efficiently for all points P ∈ E(Fq) except possibly a
negligible fraction of them.

Theorem 1. Let f : Fq → E(Fq) be a (d,B)-well-bounded encoding. Then, the
distribution on F

2
q obtained by picking a uniformly random point P in E(Fq), and

then a uniformly random preimage (u, v) ∈ F
2
q of P under f⊗2 if one exists is

ε-statistically close to uniform for ε = 2B2
√

#E(Fq)/q = O(q−1/2). Moreover,
there exists a probabilistic algorithm which, on input of any point P ∈ E(Fq),
returns a uniformly random preimage of P under f⊗2 if it exists, and whose
average running time T (P ) on input P satisfies:

T (P ) ≤ Tf−1 +
(
1 + εT (P )

) · d · (Tf + T� + T#f−1)

where Tf , T�, T#f−1 and Tf−1 are the respective running times of the algorithms
computing f , a subtraction in E(Fq), the number of preimages of a point under
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f , and all the preimages of a point under f , and the coefficient εT (P ) is bounded,
for all P except possibly a fraction of ≤ q−1/2 of them, as:

εT (P ) ≤ 2B2 + 2
q1/4 − 2B2

= O(q−1/4). (1)

In other words, for all P ∈ E(Fq) except possibly a negligible fraction of them,
the time it takes to sample a uniformly random preimage of P under f⊗2 is one
evaluation of f−1 and about d evaluations of f , of point subtractions on E(Fq)
and of the function that counts preimages under f .

Proof. The first assertion says that f⊗2 is ε-antiregular, which is a direct con-
sequence of Lemma 1 and Lemma 2. We describe the preimage sampling algo-
rithm in Sect. 3.3 below. The assertion on the running time is an immediate
consequence of Lemmas 4 and 5 from that subsection.

Definition 6. For a given well-bounded encoding f : Fq → E(Fq), the Elliga-
tor Squared construction for f is the pair formed by a randomized algorithm
E(Fq) → F

2
q as in Theorem 1, called the Elligator Squared representation algo-

rithm, which samples uniform preimages under f⊗2, and the deterministic algo-
rithm, called the Elligator Squared recombination algorithm, which computes the
function f⊗2.

3.2 Example: ECDH Using Elligator Squared

As an example of how this construction can be used in practice, we describe
a standard elliptic curve Diffie–Hellman key exchange protected with Elligator
Squared. Let P be a generator of E(Fq) (which we assume is a cyclic group of
order N), f : Fq → E(Fq) a well-bounded encoding, and KDF: E(Fq) → {0, 1}λ

a key derivation function. To derive a common secret, Alice and Bob proceed as
follows.

1. Alice and Bob generate short term secrets (the values computed by Alice,
resp. Bob, are indicated with indices A, resp. B, below):
(a) Pick a uniformly random r

$← {0, . . . , N − 1}.
(b) Compute the point R = rP .
(c) Sample a random preimage (u, v) $← (f⊗2)−1(R) under f⊗2 using the

Elligator Squared representation algorithm.
2. Alice sends (uA, vA) to Bob; Bob sends (uB , vB) to Alice.
3. Alice uses the Elligator Squared recombination algorithm to compute RB =

f⊗2(uB , vB). Similarly, Bob computes RA = f⊗2(uA, vA).
4. Alice computes the shared secret as kAB = KDF(rARB), and similarly, Bob

computes it as kAB = KDF(rBRA).

The transmitted values (uA, vA) and (uB , vB) are elements of F
2
q that are

statistically close to uniform, as shown by Theorem 1, so a transcript of this
protocol cannot be distinguished from random messages.3

3 With the caveat that an actual implementation transmits bit strings rather than
field elements, but this is addressed in Sect. 3.4.
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Moreover, in contrast with the same protocol implemented with Bernstein
et al.’s Elligator [4, Sect. 2.3], our approach doesn’t require any kind of rejection
sampling during the computation of the pairs (u, v), and therefore only one ellip-
tic curve scalar multiplication is needed to generate the short term secrets, com-
pared to an average of two, and possibly more, with Elligator. Indeed, Theorem 1
ensures that with overwhelming probability on the choice of r, the representation
algorithm samples a random preimage of R = rP efficiently.

3.3 The Sampling Algorithm

Let f : Fq → E(Fq) be a (d,B)-well-bounded encoding. We now turn to the
sampling algorithm for preimages of f⊗2 whose existence was asserted as Theo-
rem 1. It is described as Algorithm 1. This algorithm generalizes the sampling
algorithm proposed, but not thoroughly analyzed, by Brier et al. [7, Algorithm
1] for the tensor square of Icart’s encoding [16].

Algorithm 1. Preimage sampling algorithm for f⊗2.
1: function SamplePreimage(P )
2: repeat

3: u
$← Fq

4: Q ← P − f(u)
5: t ← #f−1(Q)

6: j
$← {1, . . . , d}

7: until j ≤ t
8: {v1, . . . , vt} ← f−1(Q)
9: return (u, vj)

10: end function

Lemma 4. On all inputs P ∈ E(Fq) in the image of f⊗2, Algorithm 1 termi-
nates almost surely, and returns a uniformly random preimage of P under f⊗2,
after an average of N(P ) iterations of the main loop (Steps 2–7), where:

N(P ) = d · q

#(f⊗2)−1(P )
.

On inputs P that have no preimage under f⊗2, Algorithm 1 does not terminate.

Proof. The probability to exit the main loop after Step 7 for a given random
choice of u ∈ Fq is t/d, where t = #f−1

(
P − f(u)

)
(note that since f is d-well

bounded, we know that t is always less or equal to d). As a result, taking all
possible choices of u into account, the overall probability �(P ) to exit the main
loop for a given input P is:
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�(P ) =
1
q

∑

u∈Fq

#f−1
(
P − f(u)

)

d
=

1
d · q

∑

u∈Fq

∑

v∈Fq

[
f(v) = P − f(u)

]

=
1

d · q

∑

(u,v)∈F2
q

[
f⊗2(u, v) = P

]
=

1
d · q

#(f⊗2)−1(P ),

where [·] is the usual Iverson bracket notation: for a statement U , [U ] = 1
if U is true and 0 otherwise. As a result, we see that Algorithm 1 does not
terminate when #(f⊗2)−1(P ) = 0, and terminates almost surely otherwise, after
an average of N(P ) = 1/�(P ) = d · q/#(f⊗2)−1(P ) iterations of the main loop
as required. Moreover, all outputs are clearly preimages of P under f⊗2, so all
it remains to prove is that each preimage is output with equal probability.

Fix a preimage (u0, v0) of P in F
2
q. The probability that Algorithm 1 out-

puts (u0, v0) on input P conditionally to the first coordinate being u0 is clearly
1/t0 where t0 = #f−1

(
P − f(u0)

)
. Furthermore, the rejection sampling in the

main loop ensures that any given first coordinate u is chosen with probability
proportional to t = #f−1

(
P − f(u)

)
. As a result, we obtain, using the previous

computation, that the probability of Algorithm 1 returning (u0, v0) on input P
is exactly:

1
t0

· t0
∑

u∈Fq
#f−1

(
P − f(u)

) =
1

d · q · �(P )
=

1
#(f⊗2)−1(P )

as required. �
Lemma 5. With the same notation as in Lemma 4, write, for all P ∈ E(Fq),
εT (P ) = N(P )/d − 1 = q/#(f⊗2)−1(P ) − 1. Then, for all P ∈ E(Fq) except
possibly a fraction of ≤ q−1/2 of them, we have:

εT (P ) ≤ 2B2 + 2
q1/4 − 2B2

= O(q−1/4).

(This is the same bound as (1) above).

Proof. Define δ = B2q5/4/
√

#E(Fq) (in particular, δ ∼ B2q3/4), and let α be
the fraction of all points in E(Fq) such that:

∣
∣
∣#(f⊗2)−1(P ) − q2

#E(Fq)

∣
∣
∣ > δ.

Now, according to Lemma 2, we have:

Δ2
2

(
(f⊗2)∗UF2

q

)
=

∑

P∈E(Fq)

∣
∣
∣
#(f⊗2)−1(P )

q2
− 1

#E(Fq)

∣
∣
∣
2

≤ B4

q2
.

On the other hand, by definition of α:

Δ2
2

(
(f⊗2)∗UF2

q

)
=

1
q4

∑

P∈E(Fq)

∣
∣
∣#(f⊗2)−1(P ) − q2

#E(Fq)

∣
∣
∣
2

≥ 1
q4

· α#E(Fq) · δ2.
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Putting both inequalities together, we get:

α ≤ B4q2

#E(Fq) · δ2
= q−1/2.

Hence, for all P ∈ E(Fq) except a fraction α ≤ q−1/2, the number #(f⊗2)−1(P )
of preimages of P under f⊗2 is within δ of q2/#E(Fq). For all such P , we get:

εT (P ) =
q

#(f⊗2)−1(P )
− 1 ≤ q

q2

#E(Fq)
− δ

− 1 =
(q + δ)#E(Fq) − q2

q2 − δ#E(Fq)
.

The Hasse–Weil bound gives #E(Fq) ≤ q + 2
√

q + 1 = (
√

q + 1)2, and hence
δ#E(Fq) = B2q5/4#E(Fq) ≤ 2B2q7/4. As a result, again for all P except a
fraction ≤ q−1/2:

εT (P ) ≤ q2 + 2q3/2 + q + 2B2q7/4 − q2

q2 − 2B2q7/4

≤ 2B2

q1/4
· 1 + 1

B2 q−1/4 + 1
2B2 q−3/4

1 − 2B2q−1/4
≤ 2B2 + 2

q1/4 − 2B2

as required. �
With these lemmas, the proof of Theorem 1 is now complete. We also note that
we can deduce the following result of independent interest as an easy corollary.
This result is hinted to in [11], but not formally stated, let alone proven, although
it is quite important if the results of that paper are to be applied to hash function
constructions.

Corollary 1. Let f : Fq → E(Fq) be a (d,B)-well-bounded encoding such that
both f and f−1 are computable in polynomial time. Then f⊗2 is 2q−1/2-samplable
in the sense of [7, Definition 2], i.e. there exists a randomized algorithm I tak-
ing points P ∈ E(Fq) as inputs, running in polynomial time on all inputs, and
such that I (P ) is an element of (f⊗2)−1(P )∪{⊥} whose distribution is 2q−1/2-
statistically close to the uniform distribution on (f⊗2)−1(P ). In particular, if h
is a random oracle with values in F

2
q, (f⊗2)◦h is indifferentiable from a random

oracle with values in E(Fq).

Proof. The only subtle point is that Algorithm 1 samples exactly uniform preim-
ages under (f⊗2), but may run in superpolynomial time, or even fail to terminate,
on a negligibly small fraction of possible inputs. We can convert it to an algo-
rithm that terminates in polynomial time on all inputs but induces a sampling
that is only statistically close to uniform using early termination: for example,
modify Algorithm 1 to return ⊥ if more than log q/ log(d/(1 − d)) iterations of
the main loop are executed. Then, by Lemma 5, we obtain the algorithm returns
a uniform preimage with probability ≥ 1 − q−1/2 and ⊥ otherwise on all inputs
except possibly a fraction ≤ q−1/2 of them, which gives the stated samplability
result. The indifferentiability of the corresponding hash function construction
in then a consequence of [7, Theorem 1], since f is also regular and efficiently
computable. �
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3.4 Bit-String Representation

The Elligator Squared construction represents uniform elliptic curve points as
close to uniform elements (u, v) of F

2
q, but in practice, one wants to transmit

bit strings rather than field elements. Can we obtain close to uniform bit strings
instead?

Let us say for simplicity’s sake that q = p is a large prime (the prime power
setting can be treated similarly). Then, the simplest way to represent an ele-
ment in Fp is as the basic n-bit representation of the corresponding integer in
{0, . . . , p − 1}, where n = �log2 p�. Then, it is easy to see that the statistical
distance between a uniform element of Fp in that representation and a uniform
bit string of the same length is given by 2 · (1 − p/2n).

If p is very close to 2n, which is often the case for standardized curve parame-
ters (including most NIST and SEC 2 curves [9,12], as well as Edwards curves
such as Curve25519 and Curve1174 [3,4]) as such special primes offer efficient
modular reduction, then we can simply transmit the basic n-bit representations
of u and v directly, since they are close to uniform bit strings.

In some cases, however (like Brainpool curves [19], most families of pairing-
friendly curves, etc.), p is not close to 2n. Then, one possible approach to get close
to uniform bit strings is to use a redundant representation as a bit string of length
n+t for some suitable t, i.e. represent u ∈ Fp as the basic (n+t)-bit representation
of a randomly chosen integer of the form u + kp with k ∈ {

0, . . . ,
⌊
2n+t−u

p

⌋}
.

For a uniform u ∈ Fp, the statistical distance to uniform of the corresponding
distribution on (n + t)-bit strings is given by:

∑

u∈Fp

∣
∣
∣
∣
∣

⌊
2n+t−u

p

⌋
+ 1

2n+t
− 1

p

∣
∣
∣
∣
∣
≤ p

2n+t
≤ 2−t.

Therefore, taking t ≈ n/2 is sufficient. In fact, we can represent the whole pair
(u, v) ∈ F

2
p as a close to uniform bit string of length ≈ 2n + n/2 by first packing

u and v as an integer in {0, . . . , p2 − 1} and then using the same technique.

4 Application to Specific Curve Families

One drawback of the Elligator Squared construction when applied to general
well-bounded encodings f is that the representation algorithm involves the com-
putation of f−1, which usually amounts to finding the roots of a possibly com-
plicated polynomial over Fq.

For example, Icart’s encoding [16], defined for an elliptic curve E : y2 =
x3 + ax + b over a field Fq with q ≡ 2 (mod 2) and ab �= 0, is a (4, 14)-well-
bounded encoding by [11, Theorem 8], so we can use it with Elligator Squared. In
particular, many curves of prime order are of that form and are thus supported by
our construction. But computing the preimages of a point (x, y), or even counting
those preimages, involves solving quartic equation u4 − 6xu2 + 6yu − 3a = 0
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over Fq, which would probably be done using a rather costly algorithm such as
Berlekamp or Cantor–Zassenhaus.

However, in many cases, we can choose a well-bounded encoding f such that
f−1 is much easier to compute (it might take a couple of base field exponentia-
tions, say), and counting the number of preimages of a point is even faster. We
present several large classes of curves that admit such a convenient well-bounded
encoding below. The curves considered here will be defined over a field Fq with
q ≡ 3 (mod 4). In such a field Fq, we denote by χq(·) : Fq → {−1, 0, 1} the non-
trivial quadratic character (which is the Legendre symbol when q is prime), and
by

√· the standard square root, defined by
√

u = u(q+1)/4 when χq(u) �= −1.

4.1 Ordinary Curves with q ≡ 3 (mod 4)

Let E : y2 = x3+ax+b be an elliptic curve over Fq, q ≡ 3 (mod 4), with ab �= 0,
and let g be the polynomial X3+aX +b ∈ Fq[X]. Based on earlier constructions
by Shallue and van de Woestijne [22] and Ulas [23], Brier et al. [7] define the
simplified SWU encoding to E(Fq) as follows (we follow the slightly modified
presentation from [11,14]).

Definition 7. Define rational functions X0,X1 ∈ Fq(u) as:

X0(u) = − b

a

(
1 +

1
u4 − u2

)
and X1(u) = −u2X0(u).

The simplified SWU encoding to E(Fq) is the following mapping, which is well-
defined (where we denote by O the point at infinity on E).

f : Fq → E(Fq)

u �→

⎧
⎪⎪⎨

⎪⎪⎩

O if u ∈ {−1, 0, 1};
(
X0(u),

√
g
(
X0(u)

))
if u /∈ {−1, 0, 1} and g

(
X0(u)

)
is a square;

(
X1(u),−

√
g
(
X1(u)

))
otherwise.

It is shown in [11, Sect. 5.3] that f is a (52 + O(q−1/2))-well-distributed
encoding, and that for all u ∈ Fq \ {−1, 0, 1}:

x = X0(u) ⇐⇒ u4 − u2 +
1
ω

= 0

x = X1(u) ⇐⇒ u4 − ωu2 + ω = 0

where ω = a
b x + 1. Since these are equations of degree 4 in u, it follows that

any point P = (x, y) ∈ E(Fq) has at most 4 preimages under f (which must
come from X0 if χq(y) ≥ 0 and from X1 otherwise). Therefore, f is a 4-well-
bounded encoding. Moreover, the equations are biquadratic: therefore, f−1 can
be computed with at most two square root computations on any input. And
we can often compute the number of preimages under f with only quadratic
character evaluations.
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Indeed, to compute the number of preimages of (x, y) under f where, without
loss of generality, χq(y) ≥ 0, we have to count the number N = #f−1(x, y)
of roots of the biquadratic equation u4 − u2 + 1/ω = 0, where ω = a

b x + 1.
Let Δ = 1 − 4/ω be the discriminant of the corresponding quadratic equation
v2 − v + 1/ω = 0. Clearly, if χq(Δ) = −1, we have N = 0, and if Δ = 0, the
equation becomes u2 = v = 1/2, hence N = 0 or 2 depending on whether 1/2 is
a square in Fq. Finally, suppose χq(Δ) = 1. Then, the equation v2 −v +1/ω = 0
has two simple roots whose product is 1/ω. Therefore, if χq(1/ω) = −1, exactly
one of those roots is a square, and we get its two square roots as solutions for
u, hence N = 2. If, however, χq(1/ω) = 1, we compute one of the roots, say
v0 = (1 +

√
Δ)/2, and we get N = 0 or 4 depending on whether χq(v0) = ±1.

Thus, as we can see, we can compute N with at most one exponentiation,
and no exponentiation at all (only quadratic character evaluations) most of the
time. This makes the Elligator Square construction quite efficient: the represen-
tation algorithm has an average total cost of 6.5 field exponentiations, while the
recombination algorithm costs 2 field exponentiations (ignoring faster operations
like field arithmetic and quadratic character evaluations).

4.2 Elligator 1 curves

Consider now an Elligator 1 curve E over Fq in the sense of [4, Sect. 3]. It
is associated with a map φ : Fq → E(Fq) such that each point in E(Fq) has
either 0 or 2 preimages under φ (except one special point, which has a single
preimage). Bernstein et al. show that computing and inverting φ both cost about
one exponentiation in the base field, while counting the number of preimages of
a given point can be done with only a quadratic character evaluation and a few
multiplications.

Moreover, one can prove that φ is well-distributed. This is because φ can
be expressed in terms of a degree 2 covering h : H → E of E by a certain
elliptic curve H of genus 2, as described by Fouque et al. in [13]. As a result,
character sums of the form

∑
u∈Fq

χ(φ(u)) can be rewritten up to a constant
as

∑
P∈H(Fq)

χ(h(P )). Moreover, the covering h : H → E is of prime degree, so
does not factor nontrivially, and it cannot be unramified since H is not elliptic.
Therefore, Lemma 3 ensures that:

∣
∣
∣

∑

P∈H(Fq)

χ
(
h(P )

)∣∣
∣ ≤ (2g − 2)

√
q = 2

√
q

for all nontrivial characters χ of E(Fq). Therefore, we get that φ is (2+O(q−1/2))-
well-distributed, and hence also (2, 2 + O(q−1/2))-well-bounded.

This allows us to apply the Square Elligator construction to φ. It is even more
efficient that for the simplified SWU encoding: the representation algorithm
has an average total cost of 2 × 1 + 1 = 3 field exponentiations, while the
recombination algorithm costs 2 field exponentiations (ignoring faster operations
again).
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4.3 BN Curves

In [15], Fouque and Tibouchi have analyzed the Shallue–van de Woestijne encod-
ing [22] in the particular case of Barreto–Naehrig curves [2], and found that it
was a (62+O(q−1/2))-well-distributed. Moreover, preimages under this encoding
are of three types, and the analysis in [15] makes it clear that each curve point
can have at most one preimage of type 1, one preimage of type 2 and 2 preimages
of type 3. As a result, the Shallue–van de Woestijne encoding f to any BN curve
is a 4-well-bounded encoding.

Moreover, since the equations satisfied by preimages are quadratic for type 1
and 2 and biquadratic for type 3, f−1 can be computed with at most 4 square
root computations, and the number of preimages of a given point can again be
estimated with at most one square root computations and none at all most of
the time. Therefore, even for BN curves, the Elligator Square construction is
quite efficient.

4.4 Performance Comparison with Elligator

Consider again a protocol such as the ECDH key exchange described in Sect. 3.2.
The ephemeral key generation involves a single elliptic curve scalar multiplica-
tion, as well as one evaluation of the Elligator Squared representation algorithm,
which costs an average of 6.5 base fields exponentiations with a general ellip-
tic curve as in Sect. 4.1, or 3 base fields exponentiations with an Elligator 1
curve as in Sect. 4.2. In contrast, the corresponding algorithm implemented using
Elligator [4, Sect. 2.4] costs an average of two scalar multiplications, plus one base
field exponentiation for computing the representation. This is likely to make this
phase of the protocol significantly faster with Elligator Squared compared to
Elligator (certainly so at least when comparing implementations on the same
curve). This is on top of the other advantages of Elligator Squared, including
much more freedom in terms of supported curve parameters (prime order curves,
BN curves, etc.), support for non-rerandomizable protocols and encoding of all
curve points.

On the other hand, the transmitted data with Elligator Squared is twice as
large, and the recombination algorithm about twice as slow (although for both
Elligator and Elligator Squared this recombination time is usually dwarfed by a
subsequent scalar multiplication on the curve).
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Abstract. In this paper we perform a review of elliptic curve cryptog-
raphy (ECC) as it is used in practice today in order to reveal unique mis-
takes and vulnerabilities that arise in implementations of ECC. We study
four popular protocols that make use of this type of public-key cryptog-
raphy: Bitcoin, secure shell (SSH), transport layer security (TLS), and
the Austrian e-ID card. We are pleased to observe that about 1 in 10 sys-
tems support ECC across the TLS and SSH protocols. However, we find
that despite the high stakes of money, access and resources protected by
ECC, implementations suffer from vulnerabilities similar to those that
plague previous cryptographic systems.

1 Introduction

Elliptic curve cryptography (ECC) [32,37] is increasingly used in practice to
instantiate public-key cryptography protocols, for example implementing digital
signatures and key agreement. More than 25 years after their introduction to
cryptography, the practical benefits of using elliptic curves are well-understood:
they offer smaller key sizes [34] and more efficient implementations [6] at the
same security level as other widely deployed schemes such as RSA [44]. In this
paper, we provide two contributions:

• First, we study the current state of existing elliptic curve deployments in
several different applications. Certicom released the first document providing
standards for elliptic curve cryptography in 2000, and NIST standardized
ECDSA in 2006. What does the deployment of these algorithms look like in
2013? In order to study this question, we collect cryptographic data from
a number of different real-world deployments of elliptic curve cryptography:
Bitcoin [38], secure shell (SSH) [47], transport layer security (TLS) [9], and
the Austrian Citizen Card [29].

Joppe W. Bos—This work was conducted while this author was at Microsoft
Research, Redmond, USA.
Jonathan Moore—Unaffiliated.

c© International Financial Cryptography Association 2014
N. Christin and R. Safavi-Naini (Eds.): FC 2014, LNCS 8437, pp. 157–175, 2014.
DOI: 10.1007/978-3-662-45472-5 11



158 J.W. Bos et al.

• Next, we perform a number of “sanity checks” on the data we collected, in
particular on the public keys, key exchange data, and digital signatures, in
order to detect implementation problems that might signal the presence of
cryptographic vulnerabilities.

The security of deployed asymmetric cryptographic schemes relies on the believed
hardness of number theoretic problems such as integer factorization and the com-
putation of discrete logarithms in finite fields or in groups of points on an elliptic
curve. However, most real-world cryptographic vulnerabilities do not stem from
a weakness in the underlying hardness assumption, but rather from implementa-
tion issues such as side-channel attacks, software bugs or design flaws (cf. [26]).
One such example are so-called cache attacks [40] (see [13] for an application to
the asymmetric setting) that exploit the memory access pattern in cryptographic
schemes using data dependent table lookups. Another class of problems is related
to implementations which do not provide sufficient randomness and subsequently
generate insecure cryptographic keys. Recent examples of implementations suf-
fering from a lack of randomness are the Debian OpenSSL vulnerability [51],
the discovery of widespread weak RSA and DSA keys used for TLS, SSH, and
PGP as documented in [28,33] and recent results in [4] that show how to break a
number of RSA keys obtained from Taiwan’s national Citizen Digital Certificate
database.

In order to survey the implementation landscape for elliptic curve cryptog-
raphy, we collected several large cryptographic datasets:

• The first (and largest) dataset is obtained from the Bitcoin block chain. Bit-
coin is an electronic crypto-currency, and elliptic curve cryptography is cen-
tral to its operation: Bitcoin addresses are directly derived from elliptic-curve
public keys, and transactions are authenticated using digital signatures. The
public keys and signatures are published as part of the publicly available and
auditable block chain to prevent double-spending.

• The second largest dataset we collected is drawn from an Internet-wide scan
of HTTPS servers. Elliptic-curve cipher suites that offer forward secrecy by
establishing a session key using elliptic-curve Diffie-Hellman key exchange [19]
were introduced in 2006 and are growing in popularity for TLS. This dataset
includes the Diffie-Hellman server key exchange messages, as well as public
keys and signatures from servers using ECDSA.

• We also performed an Internet-wide scan of SSH servers. Elliptic-curve
cipher suites for SSH were introduced in 2009, and are also growing more
common as software support increases. This dataset includes elliptic curve
Diffie-Hellman server key exchange messages, elliptic-curve public host keys,
and ECDSA signatures.

• Finally, we collected certificate information, including public keys from the
publicly available lightweight directory access protocol (LDAP) database for
the Austrian Citizen Card. The Austrian e-ID contains public keys for encryp-
tion and digital signatures, and as of 2009, ECDSA signatures are offered.

Our main results can be categorized as follows.
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Deployment. Elliptic curve cryptography is far from being supported as a
standard option in most cryptographic deployments. Despite three NIST curves
having been standardized at the 128-bit security level or higher, the smallest
curve size, secp256r1, is by far the most commonly used. Many servers seem to
prefer the curves defined over smaller fields.

Weak keys. We observed significant numbers of non-related users sharing public
(and hence private) keys in the wild in both TLS and SSH. Some of these cases
were due to virtual machine deployments that apparently duplicated keys across
distinct instances; others we were able to attribute to default or low-entropy
keys generated by embedded devices, such as a network firewall product.

Vulnerable signatures. ECDSA, like DSA, has the property that poor ran-
domness used during signature generation can compromise the long-term sign-
ing key. We found several cases of poor signature randomness used in Bitcoin,
which can allow (and has allowed) attackers to steal money from these clients.
There appear to be diverse causes for the poor randomness, including test values
for uncommonly used implementations, and most prominently an Android Java
bug that was discovered earlier this year (see [35] for a discussion of this bug in
Android and related Java implementations).

2 Preliminaries

This section briefly discusses the standardized elliptic curves that are mainly
used in practice. It also fixes notation for elliptic curve public-key pairs and
introduces the basic concepts for key establishment and digital signatures in the
elliptic curve setting.

Elliptic Curves Used in Practice. First, we briefly recap standardized elliptic
curves that are used most commonly in real-world applications. All these curves
are given in their short Weierstrass form E : y2 = x3 + ax + b and are defined
over a finite field Fp, where p > 3 is prime and a, b ∈ Fp. Given such a curve
E, the cryptographic group that is employed in protocols is a large prime-order
subgroup of the group E(Fp) of Fp-rational points on E. The group of rational
points consists of all solutions (x, y) ∈ F2

p to the curve equation together with
a point at infinity, the neutral element. The number of Fp-rational points is
denoted by #E(Fp) and the prime order of the subgroup by n. A fixed generator
of the cyclic subgroup is usually called the base point and denoted by G ∈ E(Fp).

In the FIPS 186-4 standard [50], NIST recommends five elliptic curves for use
in the elliptic curve digital signature algorithm targeting five different security
levels. Each curve is defined over a prime field defined by a generalized Mersenne
prime. Such primes allow fast reduction based on the work by Solinas [46]. All
curves have the same coefficient a = −3, supposedly chosen for efficiency rea-
sons, and their group orders are all prime, meaning that n = #E(Fp). The five
recommended primes are

p192 = 2192 − 264 − 1, p224 = 2224 − 296 + 1,
p256 = 2256 − 2224 + 2192 + 296 − 1, p384 = 2384 − 2128 − 296 + 232 − 1,
p521 = 2521 − 1.
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In the standard, these curves are named P-192. P-224, P-256, P-384, and P-521,
but in practice they also appear as nistp192, nistp224 etc. These along with
other curves are also recommended by Certicom in the standards for efficient
cryptography SEC2 [15], in which the curves are named secp192r1, secp224r1,
secp256r1, secp384r1, secp521r1. But sometimes, other names are used, for
example P-192 and P-256 are named prime192v1 and prime256v1 in OpenSSL.

For 256-bit primes, in addition to the NIST curve defined over Fp256 , SEC2
also proposes a curve named secp256k1 defined over Fp where p = 2256 − 232 −
977. This curve is used in Bitcoin. It has a 256-bit prime order. Interestingly, this
choice deviates from those made in FIPS 186-4 in that the curve coefficients are
a = 0 and b = 7. This means that secp256k1 has j-invariant 0 and thus possesses
a very special structure. A curve with j-invariant 0 has efficiently computable
endomorphisms that can be used to speed up implementations, for example using
the GLV decomposition for scalar multiplication [25]. Since for secp256k1 p ≡ 1
(mod 6), there exists a primitive 6th root of unity ζ ∈ Fp and a corresponding
curve automorphism ψ : E → E, (x, y) �→ (ζx,−y). This map allows the fast
computation of certain multiples of any point P ∈ E(Fp), namely ψ(P ) = λP
for an integer λ with λ6 ≡ 1 (mod n). But efficient endomorphisms not only
speed up scalar multiplication, they also speed up Pollard’s rho algorithm [41]
for computing discrete logarithms [23]. The automorphism group of E has order
6 and is generated by the map ψ above. In contrast, an elliptic curve with j-
invariant different from 0 and 1728 only has an automorphism group of order 2,
such that the speed-up in Pollard’s rho algorithm is a constant factor of up to√

2 over such a curve.
Another consequence of the larger automorphism group is the existence of six

twists (including the curve itself and the standard quadratic twist). An imple-
mentation using x-coordinate only arithmetic (such as the formulas in [11])
must pay attention to the curve’s twist security (see [2,3]). This means that
its quadratic twist needs to have a large enough prime divisor for the discrete
logarithm problem on the twist to be hard enough. This prevents an invalid-curve
attack in which an attacker obtains multiples with secret scalars of a point on the
quadratic twist, e.g. via fault injection [24]. The quadratic twist of secp256k1
has a 220-bit prime factor and thus can be considered twist secure (e.g. as in
[5]). A non-laddering implementation (using both x- and y-coordinates) can be
compromised by an invalid-curve attack if the implementation does not check
whether the point satisfies the correct curve equation [7]. This could lead to a
more serious attack on secp256k11 since an attacker might obtain scalar multi-
ples with secret scalars of a point on any curve over Fp with coefficient a = 0,
i.e. on any of secp256k1’s twists. The largest prime divisors of the remaining
four twists’ group orders are of size 133, 188, 135, and 161 bits, respectively,
1 This invalid curve attack on secp256k1 using fault injection has been mentioned

before, for example by Paulo S.L.M. Barreto (@pbarreto):“In other words: given 13
faults and a good PC, one can break secp256k1 (and Bitcoin) in 1 min.”, October
21, 2013, 10:20 PM, Tweet.
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but there are several other smaller prime factors that offer more choices for an
invalid-curve attack.

Elliptic Curve Public-Key Pairs. Given a set of domain parameters that
include a choice of base field prime p, an elliptic curve E/Fp, and a base point
G of order n on E, an elliptic curve key pair (d,Q) consists of a private key d,
which is a randomly selected non-zero integer modulo the group order n, and a
public key Q = dG, the d-multiple of the base point G. Thus the point Q is a
randomly selected point in the group generated by G.

Elliptic Curve Key Exchange. There are several different standardized key
exchange protocols (see [16,48]) extending the basic elliptic curve Diffie-Hellman
protocol, which works as follows. To agree on a shared key, Alice and Bob indi-
vidually generate key pairs (da, Qa) and (db, Qb). They then exchange the public
keys Qa and Qb, such that each can compute the point P = daQb = dbQa using
their respective private keys. The shared secret key is derived from P by a key
derivation function, generally being applied to its x-coordinate.

Elliptic Curve Digital Signatures. The Elliptic Curve Digital Signature
Algorithm (ECDSA) was standardized in FIPS 186-4 [50]. The signer generates
a key pair (d,Q) consisting of a private signing key d and a public verification
key Q = dG. To sign a message m, the signer first chooses a per-message random
integer k such that 1 ≤ k ≤ n− 1, computes the point (x1, y1) = kG, transforms
x1 to an integer and computes r = x1 mod n. The message m is hashed to a
bitstring of length no more than the bit length of n, which is then transformed
to an integer e. The signature of m is the pair (r, s) of integers modulo n, where
s = k−1(e + dr) mod n. Note that r and s need to be different from 0, and k
must not be revealed and must be a per-message secret, which means that it
must not be used for more than one message.

It is important that the per-message secret k is not revealed, since otherwise
the secret signing key d can be computed by d ≡ r−1(ks − e) (mod n) because
r and s are given in the signature and e can be computed from the signed
message. Even if only several consecutive bits of the per-message secrets for a
certain number of signatures are known, it is possible to compute the private key
(see [30]). Also, if the same value for k is used to sign two different messages m1

and m2 using the same signing key d and producing signatures (r, s1) and (r, s2),
then k can be easily computed as k ≡ (s2 − s1)−1(e1 − e2) (mod n), which then
allows recovery of the secret key.

One solution to prevent the generation of predictable or repeated nonces is to
generate the nonce deterministically from the private key and the message [42].

3 Applications of Elliptic Curves

In this section, we survey deployments of elliptic curve cryptography in the real
world and provide statistics on usage.

Bitcoin. The cryptocurrency Bitcoin is a distributed peer-to-peer digital cur-
rency which allows “online payments to be sent directly from one party to



162 J.W. Bos et al.

another without going through a financial institution” [38]. The (public) Bit-
coin block chain is a journal of all the transactions ever executed. Each block in
this journal contains the SHA-256 [49] hash of the previous block, hereby chain-
ing the blocks together starting from the so-called genesis block. In Bitcoin, an
ECDSA private key typically serves as a user’s account. Transferring ownership
of bitcoins from user A to user B is realized by attaching a digital signature
(using user A’s private key) of the hash of the previous transaction and infor-
mation about the public key of user B at the end of a new transaction. The
signature can be verified with the help of user A’s public key from the previous
transaction. Other issues, such as avoiding double-spending, are discussed in the
original document [38].

The cryptographic signatures used in Bitcoin are ECDSA signatures and use
the curve secp256k1 (see Sect. 2). Given an ECDSA (possibly compressed) public-
key K, a Bitcoin address is generated using the cryptographic hash functions SHA-
256 and RIPEMD-160 [21]. The public key is hashed twice: HASH160 =
RIPEMD-160(SHA-256(K)). The Bitcoin address is computed directly from this
HASH160 value (where ‖ denotes concatenation) as

base58(0x00 ‖ HASH160 ‖ 	SHA-256(SHA-256(0x00 ‖ HASH160))/2224
),

where base58 is a binary-to-text encoding scheme.
By participating in the Bitcoin peer-to-peer network, we downloaded the Bit-

coin block chain up to block number 252 450 (all transactions up to mid-August
2013) in the Berkeley DB [39] format. We extracted 22 159 078 transactions in
plain text: this resulted in a single 26 GB file. In our dataset we have 46 254 121
valid public keys containing an elliptic curve point on the curve, and 15 291 112
of these points are unique. There are 6 608 556 unique points represented in com-
pressed (x-coordinate only) format and 8 682 692 unique points in uncompressed
format (we found 136 points which occur in both compressed and uncompressed
public keys). Since it is hard to tell if address reuse is due to the same user
reusing their key in Bitcoin (see e.g. [36,43] regarding privacy and anonymity in
Bitcoin), there is no simple way to check if these duplicate public keys belong
to the same or different owners.

Currently (January 2014) there are over 12.2 million bitcoins in circulation
with an estimated value of over 10 billion USD. Bitcoin has been analyzed before
in different settings (e.g. [1,45]), but we perform, as far as we are aware, the first
asymmetric cryptographic “sanity” check; see Sect. 4.1.

Secure Shell (SSH). Elliptic curve cryptography can be used in three posi-
tions in the SSH protocol. In SSH-2, session keys are negotiated using a Diffie-
Hellman key exchange. RFC 5656 [47] specifies the ephemeral Elliptic Curve
Diffie-Hellman key exchange method used in SSH, following SEC1 [16]. Each
server has a host key that allows the server to authenticate itself to the client.
The server sends its host key to the client during the key exchange, and the
user verifies that the key fingerprint matches their saved value. The server then
authenticates itself by signing a transcript of the key exchange. This host key
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may be an ECDSA public key [47]. Finally, clients can use ECDSA public keys
for client authentication.

We surveyed the state of elliptic curve deployment on the server side for SSH
by scanning the complete public IPv4 space in October 2013 for SSH host keys,
server Diffie-Hellman values, and signature values. We also collected the list of
key exchange and authentication cipher suites offered by each server. We used
ZMap [22], a fast Internet-wide port scanner, to scan for hosts with port 22
open, and attempted an SSH protocol handshake with the addresses accepting
connections on port 22.

In order to focus on elliptic curve values, our client offered only elliptic curve
cipher suites. This resulted in us discovering several implementations that pro-
vided unexpected responses to our non-standards-compliant SSH handshake:
servers that provided RSA or prime-order DSA public keys, or servers that pro-
vided empty keys.

Of the 12 114 534 hosts where we successfully collected a set of cipher suites,
1 249 273 (10.3 %) supported an ECDSA cipher suite for the host key. Of these,
1 247 741 (99.9 %) supported ecdsa-sha2-nistp256, 74 supported ecdsa-sha2-
nistp384, and 1458 (0.1 %) supported ecdsa-sha2-nistp521. 1 674 700 hosts
(13.8 %) supported some form of ECDH key exchange. Of these, 1 672 458
(99.8 %) supported the suites ecdh-sha2-nistp256, ecdh-sha2-nistp384,
ecdh-sha2- nistp521 in order of increasing security, and 25 supported them in
the opposite order. We successfully collected 1 245 051 P-256, 73 P-384, and 1436
P-521 public keys. In addition, 458 689 servers responded with a DSA public key,
29 648 responded with an RSA public key, and 7 935 responded with an empty
host key, despite our client only claiming ECDSA support. The hosts responsi-
ble for these responses included several kinds of routers and embedded devices,
including those from Huawei and Mikrotik.

Transport Layer Security (TLS). In TLS, elliptic curves can arise in several
locations in the protocol. RFC 4492 [9] specifies elliptic curve cipher suites for
TLS. All of the cipher suites specified in this RFC use the elliptic curve Diffie-
Hellman (ECDH) key exchange. The ECDH keys may either be long-term (in
which case they are reused for different key exchanges) or ephemeral (in which
case they are regenerated for each key exchange). TLS certificates also contain a
public key that the server uses to authenticate itself; with ECDH key exchanges,
this public key may be either ECDSA or RSA.

ECC support was added to TLS [9] through an additional set of cipher suites
and three extensions in the client and server hello messages. The cipher suites
indicate support for a particular selection of key exchange, identity verifica-
tion, encryption, and message authenticity algorithms. For example, the cipher
suite TLS ECDHE RSA WITH AES 128 CBC SHA uses ephemeral ECDH for a key
exchange, signed with an RSA key for identity verification, and uses AES-128 [18]
in CBC mode for encryption and the SHA-1 hash function in an HMAC for mes-
sage authentication. In addition, if a cipher suite that involves ECC is desired,
the client must include a set of supported elliptic curves in a TLS extension in
its client hello message.
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Unlike in SSH, a TLS server does not send its full preference of cipher suites
or curves that it supports. Rather, the client sends its list of supported cipher
suites and elliptic curves, and the server either replies with a single cipher suite
from that list or closes the connection if it does not support any cipher suites in
common with the client. If the suite requires ECC, the server similarly includes
only a single curve type along with the key or signature. This makes learning
which curves a server supports more difficult; a client must use multiple TLS
connections to offer a varying set of curves in order to learn a list of the server’s
supported suites.

In October 2013, we used ZMap [22] to scan the IPv4 address space on port
443, and used an event-driven program to send a specially crafted client hello
message to each host with the port open. We offered 38 ECDH and ECDHE
cipher suites and 28 different elliptic curves. Of the 30.2 million hosts with port
443 open, 2.2 million (7.2 %) supported some form of ECDH and provided an
ECC public key, along with information about which curve it uses. We then
connected to these hosts again, excluding their known-supported curve type
from our client hello’s curve list. We repeated this process until we had an
empty curve list, the server disconnected with an error, or the server presented
a curve that was not offered to them (a violation of the protocol). This process
allowed us to learn each server’s support across our 28 curves. We found the
most commonly supported curve type across the 2.2 million ECC-supporting
hosts was secp256r1, supported by 98 % of hosts. The curves secp384r1 and
secp521r1 were supported by 80 % and 17 % respectively, with the remaining
curves supported by fewer than 3 % of hosts each. This suggests that most hosts
have opted for lower computation and bandwidth costs over increased security.
We note that we cannot infer ordered preference of curves for TLS servers as we
can in SSH, because TLS servers simply select the first supported curve from
the client’s (ordered) list.

Austrian e-ID. Physical smart cards are increasingly being deployed for user
authentication. These smart cards contain cryptographic hardware modules that
perform the cryptographic computations; most often, these cards contain private
keys for encryption and signatures. Elliptic curve cryptography is an attractive
option for these types of deployments because of the decreased key size and
computational complexity relative to RSA or large prime-order groups.

Austria’s national e-ID cards contain either an RSA or ECDSA public key,
and can be used to provide legally binding digital signatures. We collected
828 911 Citizen Card certificates from the LDAP database ldap.a-trust.at in
January 2013. Each certificate contained a public key and an RSA signature
from the certificate authority. 477 985 (58 %) certificates contained an elliptic
curve public key, and 477 785 parsed correctly using OpenSSL. Of these, 253 047
used curve P-192, and 224 738 used curve P-256.

http://ldap.a-trust.at
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4 Cryptographic Sanity Check

There is long history of practical problems in cryptography related to insuffi-
cient randomness. The most notorious example in recent history is the Debian
OpenSSL vulnerability [51]: a 2006 change in the code prevented any entropy
from being incorporated into the OpenSSL entropy pool, so that the state of
the pool was dependent only on the process ID and architecture of the host
machine. A fixed number of cryptographic keys, nonces, or other random values
of a given size could ever be generated by these implementations. The problem
was discovered in 2008.

In 2012 two different teams of researchers showed independently that a signif-
icant number of RSA keys (not considering the keys affected due to the Debian
OpenSSL bug) are insecure due to insufficient randomness [28,33]. The latter
paper also examined prime-order DSA SSH host keys and signatures, and found
a significant number of SSH host keys could be compromised due to poor random-
ness during signature generation. Most of the vulnerable keys were attributed to
poor entropy available at first boot on resource-limited embedded and headless
devices such as routers. In 2013, another paper showed that a number of RSA
keys obtained from Taiwan’s national Citizen Digital Certificate database could
be factored [4] due to a malfunctioning hardware random number generator on
cryptographic smart cards. In order to verify if similar vulnerabilities occur in
the setting of elliptic curve cryptography, we gathered as much elliptic curve
data as we could find and performed a number of cryptographic sanity checks:

Key Generation. An elliptic curve public key is a point Q = dG which is a
multiple of the generator G for 1 ≤ d < n. Poor randomness might manifest itself
as repeated values of d, and thus repeated public keys observed in the wild. In
contrast to RSA, where poor random number generators and bugs have resulted
in distinct RSA moduli that can be factored using the greatest common divisor
algorithm when they share exactly one prime factor in common, an elliptic curve
public key appears to have no analogous property. We are unaware of any similar
mathematical properties of the public keys alone that might result in complete
compromise of the private keys, and they are unlikely to exist because discrete
logarithms have strong hardcore properties [10,31]. We checked for these prob-
lems by looking for collisions of elliptic curve points provided in public keys. In
practice, however, it is not uncommon to encounter the same public key multiple
times: individuals can use the same key for multiple transactions in Bitcoin or
the same key pair can be used to protect different servers owned by the same
entity.

Repeated Per-Message Signature Secrets. ECDSA signatures are random-
ized: each signature consists of two values (r, s): the value r is derived from an
ephemeral public key kG generated using a random per-message secret k, and
a signature value s that depends on k. It is essential for the security of ECDSA
that signers use unpredictable and distinct values for k for every signature, since
predictable or repeated values allow an adversary to efficiently compute the long-
term private key from one or two signature values, as explained in Sect. 2. In a
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widely known security failure, the Sony PlayStation 3 video game console used
a constant value for signatures generated using their ECDSA code signing key,
allowing hackers to compute the secret code signing key [14].

We checked for these problems by parsing each signature and checking for
colliding values of the ephemeral public key.

4.1 Bitcoin

Unexpected, Illegal, and Known Weak Values. We checked for public keys
corresponding to the point at infinity, points that do not lie on the curve, and
“public keys” that possibly do not have corresponding private keys. In addition,
we generated a large list of elliptic curve points for which we know the private
key. This is realized by multiplying the generator of the curve, as specified in
the standard, by various integers s from different sets in the hope that poor
entropy might have generated these scalars. We computed the elliptic curve
scalar multiplication sG for these different values of the scalar s and stored the x-
coordinate of this resulting point in a database (by restricting to the x-coordinate
we represent both points ±sG). We checked these self-generated points in this
database against all the elliptic curve points extracted from the ECDSA public-
keys and signatures to verify if we find collisions: if so, we can compute the
private key. We considered three different sets in the setting of the secp256k1
curve (as used in Bitcoin) and the NIST P-256 curve. The first set contains
small integers i: where 100 ≤ i ≤ 106. The second set contains 256-bit scalars
of low Hamming weight: we used integers of Hamming-weight one (

(
256
1

)
= 256

scalars), two (
(
256
2

)
= 32 640 scalars), and three (

(
256
3

)
= 2763 520 scalars). The

third set contains the Debian OpenSSL vulnerable keys. We generated the set of
scalars produced by the broken Debian OpenSSL implementation run on a 64-
bit little-endian byte order architecture implementation. For the Bitcoin curve
we extended the first set by also considering the scalars iλ such that the scalar
multiplication corresponds to iλP = ψ(iP ) (see Sect. 2).

We found that two values from the set of small integers have been used in
practice: the Bitcoin addresses corresponding to the secret key 1 and 2. For the
secret key 1 both the addresses derived from the compressed and decompressed
public point have been used while for the secret scalar 2 only the address to the
decompressed point has been used. One value from the Hamming-weight one set
appeared in practice, the address corresponding to the decompressed public key
268G. All these three addresses currently have a zero balance.

Repeated Per-Message Secrets. We extracted 47 093 121 elliptic curve points
from the signatures and verified that they are correct: i.e. the points are on the
curve secp256k1 (see Sect. 2). We also looked for duplicated nonces in the signa-
ture and found that 158 unique public keys had used the same signature nonces r
value inmore than one signature,making it possible to compute these users’ private
keys. We find that the total remaining balance across all 158 accounts is small: only
0.00031217 BTC, which is smaller than the transaction fee needed to claim them.
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Fig. 1. Visualization of transactions between Bitcoin addresses that duplicated sig-
nature nonces (red), and addresses one (yellow) and two (blue) hops away in the
transaction graph. The unique pattern across graphs suggests that multiple distinct
implementations or usage patterns may be to blame for the generation of repeated
nonces that expose users’ private keys. (Color figure online)

However, we find that one address, 1HKywxiL4JziqXrzLKhmB6a74ma6kxbSDj,
appears to have stolen bitcoins from 10 of these addresses. This account made
11 transactions between March and October 2013. Each transaction contained
inputs from addresses that duplicated signature nonces, and appear in our list.
These transactions have netted this account over 59 bitcoins (approximately
$48,000 USD).

To understand the root causes of the repeated signature nonces, we made a
graph of transactions, starting with the vulnerable addresses and adding edges
to other addresses indicating if they had sent or received bitcoins to one another.
Next, we created edges from those second layer addresses, terminating the graph
2 degrees from the original vulnerable keys. This resulted in five distinct con-
nected components, with the largest connected component containing 1649
addresses. Figure 1 shows the second and third largest connected graphs. The
unique patterns of these two graphs suggest that there are several sets of unique
users or implementations at play creating these types of failure.

We were able to identify three keys belonging to Bitcoincard [8], an embed-
ded device that acts as a standalone Bitcoin client. We also identified several
Blockchain.info accounts that duplicated nonces due to a bug in a Javascript-
client’s random number generator not being seeded correctly [27]. These funds
were then subsequently transferred to the same address mentioned above. In
some cases, nonce repetition may be intentional: there exists a timestamping
scheme for Bitcoin that purposely leaks the private key of a transaction by delib-
erately using the same random nonce [17]. If this scheme is implemented and
tested, then this might explain very small transactions signed with duplicated
nonces.

Unspendable Bitcoins. It is possible to transfer bitcoins to an account for
which (most likely) no corresponding cryptographic key-pair exists. These bitcoins
remain stuck at these accounts forever and are essentially removed from circula-
tion. This might result in deflation: increasing the value of the other (spendable)
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Table 1. A summary of the interesting HASH160 and public key values used in the
Bitcoin block chain with the corresponding Bitcoin address and balance. Most likely,
these addresses have no valid private key, leaving the account balances unspendable.
The dots in the notation 0 128. . . 0 represent 128 zeros (the key has 130 zeros in all). We
find these addresses hold a total of 75 unspendable BTC.

bitcoins. We investigate a lower bound on the number of “unspendable” bitcoins.
Since the HASH160 values and the Bitcoin addresses (which are directly derived
from this HASH160 value) are an integral part of the Bitcoin block chain (i.e. the
transaction history), people have used “interesting” invalid values for the ECDSA
public-key or used the HASH160 value to embed a message. Such transactions
to addresses without corresponding cryptographic key-pair are possible since the
actual ECDSA keys are only required when the money in these accounts is spent.
Given a Bitcoin address, or HASH160 value, it is infeasible to compute the corre-
sponding cryptographic key-pair (since this requires computing preimages of the
hash function used). In this section we assume that the interesting (or strange) val-
ues we encounter do not correspond to a valid cryptographic key-pair. Of course,
it is possible (but unlikely) that these were generated in a valid manner.

Interesting HASH160 Values. Since no cryptographic key is required to
generate a Bitcoin address, just a HASH160 value, our first idea was to check
for addresses which have a HASH160 value which is a small integer i, where
0 ≤ i < 100. We found that the first nine values all exist and have a non-zero
balance. This motivated us to search for repeated patterns when the HASH160
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is displayed in hexadecimal. All of these 16 possibilities exist and three of them
have a non-zero balance; see Table 1.

People have sometimes used HASH160 values to embed an ASCII encoded
string into one or multiple HASH160 values within a transaction. ASCII encodes
128 specific characters (97 printable and 33 non-printable). The probability
that an ECDSA public key results in a hexadecimal written HASH160 con-
taining ASCII characters only is 2−20 (where we assume the cryptographic hash
functions used outputs uniform random data). Our dataset contains 53 019 716
HASH160 values (16 526 211 unique). Hence, we expect to find approximately
16 valid Bitcoin addresses with a HASH160 value containing ASCII characters
only. In our dataset we found 248 ASCII-only HASH160 values (180 unique).
Out of these, 20 unique addresses have spent their money; i.e. they correspond
to a valid Bitcoin address. This is in line with our estimate of 16. Out of the
other 160 unique addresses 137 have a non-zero balance. When inspecting these
values it is clear that people have inserted various messages in the Bitcoin trans-
action history (the messages range from a happy birthday message to a tribute).
Typically only a small number of bitcoins are used in these transactions. See
Table 1 for the details.

Interesting ECDSA Public Keys. Following the same reasoning as in the
HASH160 setting, one could use “interesting” values for the public key itself.
Before we outline our search for such values, let us recall the format of ECDSA
public keys as specified in [16] where we assume the keys are represented in their
hexadecimal value (this is the setting used in Bitcoin). A point P = (x, y) can
be represented as follows where p = 2256−232−977 is the prime used in Bitcoin.

• If P is the point at infinity, then it is represented by the single byte 00.
• An uncompressed point starts with the byte 04 followed by the 256-bit x- and

256-bit y-coordinate of the point (04 ‖ x ‖ y). Hence 2�log2(p)/8� + 1 = 65
bytes are used to represent a point.

• A point is compressed by first computing a parity bit b of the y-coordinate
as b = (y mod 2) + 2 and converting this to a byte value (b ∈ {02, 03}). The
�log2(p)/8� + 1 = 33-byte compressed point is written as b ‖ x.

Similar to the HASH160 search, we started by looking for points that encode
a small integer value. We generated all the Bitcoin addresses corresponding to
the public keys with values the first 256 integers i (0 ≤ i < 256) and various
values for the parity bit. We used a single byte containing i, a 33-byte value
b ‖ 0 60. . . 0 ‖ i, b ∈ {00, 02, 03}, and a 65-byte value b ‖ 0 124. . . 0 ‖ i, for
b ∈ {00, 04}. We found three addresses with a non-zero balance: the single byte
00, and the 65-byte b ‖ 0 124. . . 0 ‖ i for i = 00 and b ∈ {00, 04}. This first point is
the point at infinity, which is a correctly encoded and valid point on the curve.
Note, however, that this value is explicitly prohibited as a public key [16] since it
can only occur for the private key d = 0 which is not allowed. The 65-byte values
both seem to try and encode the point at infinity: in the case where b = 00 the
encoding is invalid while in the case b = 04 the encoding is valid but the point
(x, y) = (0, 0) is not on the curve.



170 J.W. Bos et al.

When looking for other values, we also tried the empty public key (∅). This
address contains a significant amount of bitcoins (over 68 BTC). We suspect
money has been transferred to this account due to software bugs. These results
are included in Table 1. In total we found that at least 75 BTC (over 61,000 USD)
has been transferred to accounts which have (most likely) no valid corresponding
ECDSA private key. Note that this is strictly a lower bound on the number of
unspendable bitcoins, as we do not claim that this list is complete.

4.2 Secure Shell (SSH)

Duplicate Public Keys. An August 2013 SSH scan collected 1 353 151 valid
elliptic curve public keys, of which 854 949 (63 %) are unique. There were 1 246 560
valid elliptic curve public keys in the October 2013 scan data, of which 848 218
(68 %) are unique. We clustered the data by public key. Many of the most com-
monly repeated keys are from cloud hosting providers. For these types of hosts,
repeated host keys could be due either to shared SSH infrastructure that is acces-
sible via multiple IP addresses, in which case the repeated keys would not be a
vulnerability, or they could be due to mistakes during virtual machine deploy-
ment that initialize multiple VMs for different customers from a snapshot that
already contains an SSH host key pair. It appears that both cases are represented
in our dataset. Digital Ocean released a security advisory in July 2013 [20] recom-
mending that customers should regenerate SSH host keys due to repeated keys
deployed on VM snapshots; we found 5 614 hosts that had served the public key
whose fingerprint appears in Digital Ocean’s setup guide.

We were also able to identify several types of network devices that appeared
to be responsible for repeated host keys, either due to default keys present in the
hardware or poor entropy on boot. These include the Juniper Web Device Man-
ager, the Juni FemtoAP, and ZTE Wireless Controller. We were able to attribute
the repeated keys to these implementations because these devices served login
pages over HTTP or HTTPS which identified the manufacturer and brand. We
were unable to easily give an explanation for most of the repeated keys, as (unlike
in the results reported in [28]) many of the clusters of repeated keys appeared to
have almost nothing in common: different SSH versions and operating systems,
different ports open, different results using nmap host identification, different
content served over HTTP and HTTPS, and IP blocks belonging to many dif-
ferent hosting providers or home/small commercial Internet providers. We can
speculate that some of these may be VM images, but in many cases we have no
explanation whatsoever. We can rule out Debian weak keys as an explanation
for these hosts, because the Debian bug was reported and fixed in 2008, while
OpenSSH (which is almost universally given in the client version strings for the
elliptic curve results) introduced support for elliptic curve cryptography in 2011.
We checked for repeated signature nonces and did not find any. We also checked
for overlap with the set of TLS keys we collected and did not find any.
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4.3 Transport Layer Security (TLS)

Duplicate Public Keys. Although we collected a total of over 5.4 million pub-
lic keys from ECDH and ECDHE key exchanges, only 5.2 million of these were
unique. As observed in [12], OpenSSL’s default behavior is to use ephemeral-
static ECDH (the key pair is ephemeral for each application instance and not
necessarily per handshake instance) which might explain some of the observed
duplicate keys. We found 120 900 distinct keys that were presented by more
than one IP address, with the most common duplicated key presented by over
2 000 hosts. Many of these duplicated keys appear to be served from a single
or small set of subnets, and appear to serve similarly configured web pages for
various URLs, suggesting that these are part of a single shared hosting. We
also discovered one instance of a default key being used on a device sold to dif-
ferent consumers. We found about 1 831 Netasq devices that present the same
secp256r1 public key for their ECDHE key exchange. Each device must also
have the same private key, allowing an attacker who buys or compromises one
device to passively decrypt traffic to other devices.

Duplicate Server Randomness. We also were surprised to find that several
hosts duplicated the 32-byte random nonce used in the server hello message.
We found 20 distinct nonces that were used more than once, 19 of which were
re-used by more than one IP address. The most repeated server random was
repeated 1 541 times and was simply an ASCII string of 32 “f” characters. These
devices all appear to be a UPS power monitor, which appears to outsource its
SSL implementation to a company called Ingrasys according to the certificate
presented. However, we were unable to successfully establish any TLS sessions
with these devices, either using a browser or OpenSSL.

For servers that happen to always duplicate a server random, it is clear
there is an implementation problem to be fixed. However, for servers that only
occasionally produce the same server random, it is indeed more troubling. More
investigation is required to find the root cause of these collisions and determine
if the problem extends to cryptographic keys.

4.4 Austrian E-ID

We did not find any abnormalities with the ECDSA keys in this dataset. Of the
477 985 elliptic curve public keys that we extracted from the Austrian Citizen
Card certificate database, 24 126 keys appear multiple times. However, in all
but 5961 of these cases, the certificate subjects were equal. Of the nonequal
subjects, all but 70 had identical “CN” fields. All of these remaining certificates
with identical public keys issued to nonequal names appeared to be due to either
minor character encoding or punctuation differences or name changes.

5 Conclusions

We explore the deployment of elliptic curve cryptography (ECC) in practice
by investigating its usage in Bitcoin, SSH, TLS, and the Austrian citizen card.
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More than a decade after its first standardization, we find that this instantiation
of public-key cryptography is gaining in popularity. Although ECC is still far
from the dominant choice for cryptography, the landscape shows considerable
deployment in 2013.

Our cryptographic sanity checks on these datasets confirmed that, as expected,
ECC is not immune to insufficient entropy and software bugs. We found many
instances of repeated public SSH and TLS keys, some of which seem to correspond
to different owners. For the Bitcoin data set, there are many signatures sharing
ephemeral nonces, allowing attackers to compute the corresponding private keys
and steal coins. We hope that our work will encourage researchers and developers
alike to remain diligent in discovering and tracking down these types of implemen-
tation problems, ultimately improving the security of the cryptographic protocols
and libraries we depend on.
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Abstract. In this paper we develop a range of practical cryptographic
protocols for secure decision tree learning, a primary problem in pri-
vacy preserving data mining. We focus on particular variants of the well-
known ID3 algorithm allowing a high level of security and performance at
the same time. Our approach is basically to design special-purpose secure
multiparty computations, hence privacy will be guaranteed as long as the
honest parties form a sufficiently large quorum.

Our main ID3 protocol will ensure that the entire database of transac-
tions remains secret except for the information leaked from the decision
tree output by the protocol. We instantiate the underlying ID3 algorithm
such that the performance of the protocol is enhanced considerably, while
at the same time limiting the information leakage from the decision tree.
Concretely, we apply a threshold for the number of transactions below
which the decision tree will consist of a single leaf—limiting information
leakage. We base the choice of the “best” predicting attribute for the
root of a decision tree on the Gini index rather than the well-known
information gain based on Shannon entropy, and we develop a particu-
larly efficient protocol for securely finding the attribute of highest Gini
index. Moreover, we present advanced secure ID3 protocols, which gen-
erate the decision tree as a secret output, and which allow secure lookup
of predictions (even hiding the transaction for which the prediction is
made). In all cases, the resulting decision trees are of the same quality
as commonly obtained for the ID3 algorithm.

We have implemented our protocols in Python using VIFF, where
the underlying protocols are based on Shamir secret sharing. Due to a
judicious use of secret indexing and masking techniques, we are able to
code the protocols in a recursive manner without any loss of efficiency. To
demonstrate practical feasibility we apply the secure ID3 protocols to an
automated health care system of a real-life rehabilitation organization.
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1 Introduction

Data mining is an evolving field that attempts to extract sensible information
from large databases without the need of a priori hypotheses. The goal of the
design of these data mining algorithms is to be simple and efficient, while provid-
ing sensible outputs (such as reliable predictions). Applications include improv-
ing services to the (predicted) needs of customers, and automatization of services
as we will show below. In health care, for example, automation is of signifi-
cant importance, since the cost of health care is increasing due to demographic
changes and longer life expectancies.

As a motivational example, we consider the following system from [AJH10]
that describes a fully automated system, that assists rehabilitation patients.
Rehabilitation patients should maintain a certain activity level for a smooth
rehabilitation process. A patient is required to carry a small device that measures
his activity. The device connects to a smartphone which provides the patient
with feedback helping him to maintain his target activity level. The goal is to
provide advice in such a way that the patient will follow it. Using data mining
techniques the device is able to learn to which (type of) messages the patient
is most compliant. In order to overcome the issue of cold start, data mining is
applied to patient data of other patients so that the application can be setup in
such a way that it provides on average messages to which new patients are likely
to comply. More specifically, a decision tree is extracted from old patient data
that predicts patients compliance to certain messages in certain circumstances.

Although decision trees may not reveal individual data records, algorithms
constructing decision trees require as inputs individual data records. But this
leads to privacy issues since patient data is by its nature confidential. Privacy
preserving data mining offers a solution. Its goal is to enable data mining on
large databases without having access to (some of) the contents. Much research
has been done in the field of privacy preserving data mining since the works of
Agrawal & Srikant [AS00] and Lindell & Pinkas [LP00]. The solutions can be
classified as follows, each having its own advantages and disadvantages [MGA12]:
Anonymization based, Pertubation based, Randomized Response based, Conden-
sation Approach based, and Cryptography based.

Our cryptography based solution will focus on the generation of decision
trees using ID3. The cryptography based solutions provide provable security in
the framework of multiparty computation, but comes at the cost of time consum-
ing protocols. There are many solutions in the literature that apply multiparty
computation techniques to securely evaluate ID3, such as [LP00,VCKP08,DZ02,
XHLS05,SM08,WXSY06,MD08]. All of them require that the database is par-
titioned in some special way among the computing parties.

In this paper we provide a cryptographic solution for extracting decision trees
using ID3 where the database is not partitioned over the parties. In fact, no party
is required to have any knowledge of a single entry of the database. We assume
that there are n ≥ 3 parties that wish to evaluate ID3 on a database while having
no access to its individual records. Together, they will learn the desired decision
tree and nothing more than what can be learned from the tree. We assume that
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the servers are semi-honest and no more than n/2 servers will collude trying to
learn additional information.

In contrast to existing secure solutions we assume that no party has knowl-
edge of any record of the database. Nevertheless, the resulting protocols perform
well due to the minimal overhead imposed by our approach. In addition, our pro-
tocols are designed such that the implementation in VIFF is similar to a straight-
forward implementation of the original (unsecured) ID3 algorithm. Finally, we
show that our protocols are applicable in practice by providing the running
times of the protocols on the database used in the rehabilitation application of
[AJH10].

1.1 Related Work

Privacy preserving data mining using secure multiparty computation for solv-
ing real-life problems is first demonstrated in [BTW12], where a secure data
aggregation system was built for jointly collecting and analyzing financial data
from a number of Estonian ICT companies. The application was deployed in the
beginning of 2011 and is still in continuous use. However, their data analysis is
limited to basic data mining operations, such as sorting and filtering.

Many results on secure decision tree learning using multiparty computation,
however, can be found in the literature. We will briefly describe some of them
below.

The first results on secure generation of decision trees using multiparty com-
putation is from Lindell and Pinkas in 2000. In [LP00] they provide protocols
for secure ID3, where the database is horizontally partitioned over two parties.
They show how to efficiently compute the entropy based information gain by
providing two party protocols for computing x log x. Their protocols are based
on garbled circuits [Yao86].

Protocols for securely evaluating ID3 over horizontally partitioned data over
more than two parties are given in [XHLS05,SM08]. The former provide mul-
tiparty protocols computing the entropy based information gain based using
threshold homomorphic encryption and the latter applies similar protocols to
compute the information gain using the Gini index instead. In the same fashion
[MD08] provides protocols for both vertically and horizontally partitioned data
using the Gini index, but with a trusted server to provide the parties with shares
instead of using homomorphic encryption.

In [DZ02] protocols for secure ID3 over vertically partitioned data over two
parties are described and in [WXSY06] protocols over vertically partitioned data
over more than two parties are described. Both solutions assume that all parties
have the class attribute and show how to gain efficiency by disclosing additional
information on the database. These issues have been addressed by [VCKP08],
where a secure set of protocols for vertically partitioned data over more than
two parties is discussed without disclosing any additional information and where
not all parties have the class attribute.
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Algorithm 2.1. ID3(T,R)
1: i∗ = arg maxi |T ∩ S0,i|
2: if R = ∅ or |T | ≤ ε|T | or |T ∩ S0,i∗ | = |T | then
3: return 〈ci∗〉
4: else
5: k∗ = arg maxk f(T, Ak)
6: return 〈Ak∗ , {ID3(T ∩ Sk∗,j , R \ {Ak∗})}j〉

2 The ID3 Algorithm

Decision tree learning is a basic concept in data mining. A popular algorithm
is the Iterative Dichotomizer 3 (ID3) from [Qui86] that extracts a decision tree
from a dataset viewed as a table from a structured database. Each row is called a
transaction and each column corresponds to an attribute. One of the attributes
is the target attribute or class attribute, which one wants to predict for new
transactions given values for the other attributes. For example, in the teletreat-
ment scenario, the attributes include the gender and age of a patient as well as
specific attributes such as the advice given to the patient (e.g., “go for a walk
right now”) and the weather conditions; the class attribute indicates whether or
not the patient is compliant with the advice given.

We will use the following notation. Consider database T with attributes
A = {Ak}. Let C = A0 denote the class attribute. For each Ak ∈ A, let {akj}
be the set of possible values for attribute Ak and let {ci} = {a0i} be the set of
possible values for the class attribute C. For any t ∈ T , we denote by t(Ak) the
value of attribute Ak in transaction t. Let Sk,j = {t ∈ T : t(Ak) = akj} denote
the set of transactions in T for which attribute Ak has the value akj . Note that
{Sk,j}j forms a partition of T , which we will call the partition of T according
to Ak.

The overall approach of ID3 is to recursively choose the attribute that best
classifies the transactions and partition the database according to the values
of that attribute, see Algorithm 2.1. ID3 takes as input a set of transactions
T ⊆ T together with a set of non-class attributes R ⊆ A \ {C} over which the
decision tree is built. First the algorithm checks whether some stopping criterion
is satisfied. There are many common stopping criteria [RM05], each having its
own merits. We use the following three stopping criteria. Firstly, if no further
partition is possible, i.e., if R = ∅. Secondly, if the class attribute takes on only
one value, i.e., if |T ∩ S0,i| = |T | for some i. And, finally, if the number of
transactions in a partition is relatively small, i.e., if |T |/|T | ≤ ε, for some small
ε. In all cases when a stopping criterion is satisfied, ID3 returns a leaf node
containing the value for C that occurs most frequently in the transactions in T .

If none of the stopping criteria is satisfied, ID3 continues by choosing some
attribute Ak∗ ∈ R and returning a tree with root Ak∗ and a subtree gener-
ated recursively as ID3(T ∩ Sk∗,j , R \ {Ak∗}) for all possible values {ak∗j} for
attribute Ak∗ . The main task is to determine which attribute Ak ∈ R classi-
fies the transactions in T best. This relies on a measure for goodness of split.
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In practice, the goodness of split is represented by some function f for which
the value {f(T,Ak)} is maximal if Ak classifies the transactions in T best. We
will discuss two common choices for f in the next section.

2.1 Two Common Splitting Rules

We will use two common splitting rules for generating decision trees, based on
entropy and based on the Gini index, respectively. See, e.g., [Bre96].

The goodness of split based on entropy was originally used in the ID3 algo-
rithm [Qui86]. The amount of information needed to identify the class of a trans-
action in a set T ⊆ T is given by the entropy:

H(T ) = −
∑

i

|T ∩ S0,i|
|T | log

|T ∩ S0,i|
|T | .

Similarly, the amount of information needed to determine the class of a trans-
action in a set T given attribute Ak is given by the conditional entropy:

H(T |Ak) =
∑

j

|T ∩ Sk,j |
|T | H(T ∩ Sk,j).

ID3 is a greedy algorithm that recursively selects the attribute with maximal
information gain, which is defined by

IG(Ak) = H(T ) − H(T |Ak).

The best split is defined as the partition of T according to attribute Ak with the
highest information gain, or equivalently, with minimal H(T |Ak).

Computing a logarithm securely is in general a complex task and requires
specialized protocols to be applicable in practice [LP00]. Instead of computing
a logarithm securely we choose to go a different well known splitting measure
to avoid secure computation of logarithms. Our protocols will be based on the
Gini index, which is another common splitting measure that can be implemented
using simple arithmetic only.

The Gini index measures the probability of incorrectly classifying transac-
tions in T if classification is done randomly according to the distribution of the
class values in T [RS00], and is given by

G(T ) = 1 −
∑

i

( |T ∩ S0,i|
|T |

)2

.

Similarly, the estimated conditional probability of incorrectly classifying trans-
actions in T given attribute Ak is given by

G(T |Ak) =
∑

j

|T ∩ Sk,j |
|T | G(T ∩ Sk,j).

One can show that 0 ≤ G(T |Ak) ≤ G(T ), such that
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GG(Ak) = G(T ) − G(T |Ak)

defines the reduction of incorrect classifications in T given attribute Ak. Again,
the best split is defined as the partition T according to attribute Ak with the
highest Gini gain, or equivalently, with minimal G(T |Ak).

3 Secure Computation Framework

We develop our protocols in a generic framework for secure computation. For
simplicity, we assume that all secret values are signed integers ranging over
Zp = {−�p/2	, . . . ,−1, 0, 1, . . . , �p/2	} for a sufficiently large prime p. As a con-
crete instantiation of a secure computation framework we use the Virtually Ideal
Functionality Framework (VIFF), basically using Shamir secret sharing over Zp

to provide n-party computation secure against passive adversaries. Any secret
value in Zp is thus represented by n shares in Zp, each party holding one share.

We assume that we have efficient integer arithmetic for secret values. As
usual, we take the cost of one multiplication x ∗ y as our basic unit of work. The
cost of one addition x + y or subtraction x − y is considered negligibly small
compared to the cost of one multiplication. Exact division (that is, x/y where x
is an integral multiple of y) costs about two multiplications.

Secure integer equality x = y and secure integer comparison x ≤ y are
also assumed to be available. Both of these operations yield a secret bit value,
with 0 representing false and 1 representing true, and are at least an order of
magnitude more expensive than secure multiplication. In our protocols, we also
use the operation arg max to securely find a location of the maximum value in
a given list of N secret values, basically using N − 1 secure comparisons.

Furthermore, we will assume that secret subsets of a given finite (ordered)
set V are represented as secret bit vectors of length |V |. For simplicity, we will
identify a secret set A ⊆ V with the bit vector representing it. So, for instance, to
securely compute |A| it suffices to sum the entries of the bit vector representing
A, hence this operation is almost for free. Similarly, the disjoint union A �
B is obtained securely by taking the entrywise sum A + B of the bit vectors
representing A and B, and the symmetric difference A\B for B ⊆ A is obtained
by taking the entrywise difference A−B. Moreover, we see that the intersection
A ∩ B is obtained securely by taking the entrywise product A � B of the bit
vectors representing A and B (at the cost of |V | secure multiplications). Finally,
we note that frequently we need to compute only the size of the intersection
|A ∩ B|, for which it suffices to take the dot product A · B.

We assume that the dot product can be computed securely at the cost of
one or at most a few secure multiplications, independent of the length of the
vectors (see, e.g., [CdH10], using similar ideas as in [CDI05]). More precisely,
the communication cost of a secure dot product is independent of the length of
the vectors (whereas the computational cost is still linear in the length of the
vectors). The communication cost is the dominating cost factor in a framework
such as VIFF. By using dot products judiciously we are able to reduce the total
cost of our protocols considerably.
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Protocol 4.1. SID3(T,R)
1: foreach i do
2: si = T · S0,i

3: i∗ = arg maxi si
4: if R = ∅ or (|T | ≤ ε|T | or si∗ = |T |) then
5: return 〈ci∗〉
6: else
7: foreach i do
8: Ui = T � S0,i

9: foreach k s.t. Ak ∈ R do
10: foreach j do
11: foreach i do
12: xij = Ui · Sk,j

13: yj = α
∑

i xij + 1
14: Dk =

∏
j yj

15: G̃k = Dk

∑
j(
∑

i x2
ij)/yj ÷ Dk

16: k∗ = arg maxk G̃k

17: return 〈Ak∗ , {SID3(T � Sk∗,j , R \ {Ak∗})}j〉

4 Secure ID3 Protocol

We present a secure multiparty protocol based on the recursive ID3 algorithm
presented in Sect. 2. The goal is to completely hide the contents of the transac-
tional database except for the information leaked from the decision tree output
by the protocol.

Our recursive SID3 protocol is described below, see Protocol 4.1. Given a
database containing a set of transactions T with attributes in A, a decision tree
is obtained by the call SID3(T ,A \ {C}), where C = A0 is the class attribute.
In general, the recursive protocol SID3(T,R) takes sets T ⊆ T and R ⊆ A\{C}
as inputs. The decision tree output by the protocol is public, and therefore set
R is not secret either. Set T on the other hand is a secret input, represented as
a secret bit vector of length |T |.

We will now give a step-by-step description of the SID3 protocol, assuming
that the sets Sk,j of transactions for which attribute Ak has value akj are given
as secret bit vectors, all of length |T |.

In lines 1–3 we determine the most frequently occurring class value ci∗ . First,
si is computed as the number of transactions in T with class value ci by taking
the dot product of the bit vectors representing T and S0,i, respectively. Subse-
quently, a class value ci∗ such that si∗ is maximal is determined. The value of
i∗ is public, but no further information on the secret values si is leaked.

Lines 4–5 cover the cases in which the decision tree consists of a single node
containing value ci∗. Whether R = ∅ holds can be evaluated quickly as R is not
secret. If R �= ∅ (which is usually the case) the test ‘|T | ≤ ε|T | or si∗ = |T |’
is evaluated securely as follows. Input T is given as a secret bit vector, hence
by summing its entries |T | is obtained as a secret value. The value si∗ is secret
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as well. Subsequently, using a secure comparison, a secure equality test, and a
secure or, only the value of the test is revealed. This means, in particular, that if
the test evaluates to true, it remains hidden whether |T | ≤ ε|T | holds, whether
si∗ = |T | holds, or whether both conditions hold.

The remaining lines cover the case of a composite decision tree. Lines 7–15
cover the computation of the secret values G̃k which are used to determine an
attribute Ak∗ of highest Gini index in line 16. The resulting decision tree is
then computed in line 17, with Ak∗ as root value, and with a decision tree for
transaction set T ∩ Sk∗,j as jth subtree.

The quantities G̃k are used to approximate the quantities Gk sufficiently
close, where

Gk =
∑

j s.t. |T∩Sk,j |�=0

∑
i |T ∩ S0,i ∩ Sk,j |2

|T ∩ Sk,j | .

It can be seen easily that finding an attribute of highest Gini index corresponds
to maximizing Gk over Ak ∈ R. However, secure computation of Gk requires
that the indices j for which |T ∩ Sk,j | = 0 are not revealed. To this end, we
will replace the nonnegative values |T ∩ Sk,j | by positive values yj such that the
resulting quantity G̃k is sufficiently similar to Gk, where

G̃k =
∑

j

∑
i x2

ij

yj
.

Here, entries xij = |T ∩ S0,i ∩ Sk,j | form a so-called contingency table, and
we set yj = α|T ∩ Sk,j | + 1 for some sufficiently large integer constant α ≥ 1.
In our experiments in Sect. 6 it turns out that α = 8 suffices, as compared to
the results for the alternative of setting yj = |T ∩ Sk,j | if |T ∩ Sk,j | > 0 and
yj = 1 otherwise—in which case we have in fact G̃k = Gk. We prefer to use
yj = α|T ∩ Sk,j | + 1 as secure evaluation of the alternative for yj requires a
secure equality test, which has a big impact on the performance; a disadvantage
of this choice is that we need to increase the size of the field Zp, as can be seen
from the bit lengths used in Table 1.

For each attribute Ak ∈ R, the secret values xij and yj are computed effi-
ciently as follows. First, the bit vectors Ui representing the intersections T ∩S0,i

are computed as entrywise products of the bit vectors representing T and S0,i.
Then each xij is obtained as the dot product of the bit vector Ui and the bit
vector representing Sk,j , and we set yj = α

∑
i xij + 1.

Finally, to avoid secure arithmetic over rational numbers, we take the com-
mon denominator of all terms in the sum G̃k:

G̃k =

∑

j

∑

i

x2
ij

∏

l �=j

yl

∏

l

yl
.

This way, both the numerator and denominator of G̃k are integers, and we can
maximize G̃k using integer arithmetic only, as x ÷ y ≤ x′ ÷ y′ is equivalent to
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xy′ ≤ x′y for y, y′ > 0. The test xy′ ≤ x′y is further optimized by actually
evaluating (x, y) · (y′,−x′) ≤ 0, hence using a single dot product instead of two
multiplications. Of course, the terms

∑
i x2

ij are also each computed using a
single dot product.

In the actual code used in the experiments of Sect. 6 we have applied some
further optimizations throughout. For instance, since

∑
i Ui = T , one can save

one entrywise product in lines 7–8, which speeds up this part by a factor of
two in case the class attribute takes on two values only. Similarly, one entrywise
product can be saved in line 17.

5 Secure ID3 in Other Settings

We show how minor changes to SID3 allow efficient generation of secret deci-
sion trees. In addition, we show that if the database is horizontally partitioned
between the parties, then minor changes to SID3 allow generation of a public
decision tree with communication complexity that is independent of the number
of transactions in the database.

5.1 Secret Output and Secret Prediction

There are some serious restrictions when hiding the resulting decision tree.
Firstly, when any third party is allowed to ask for decisions from the secret
tree, it may be able to reconstruct or build an equivalent tree by querying the
tree often enough. A strategy could be, for example, to generate its own database
by querying the secret tree, and apply ID3 to the generated database.

Secondly, not revealing any information about the decision tree requires hid-
ing the shape of the tree. This would lead to a tree of worst case size, which is
exponential. Indeed, a database with m attributes each taking possibly � values
has at most �m leaves. Moreover, in this case it is useless to apply ID3: one
could simply compute the best class for all possible �m paths. The resulting tree
is of maximum size as required and can be computed much more efficiently by
just partitioning the database into all possible paths along the attribute values.
More precisely, one would run SID3S(T,m,⊥), where ⊥ indicates that there is
nothing to output when the original database T is empty, see Protocol 5.1.

In line 4 of SID3S the index i∗ of the most frequent class value in T is com-
puted similar to line 3 of SID3. However, i∗ should not be revealed. Therefore,
we use its secret unary representation, which is a vector containing zeros only,
except at position i∗, where it contains a 1. Thus, to hide i∗ we apply a variant
of arg maxi that returns a length |{cj}| secret unary representation of the value
i∗, say i∗. Then ci∗ can be computed securely and without interaction by the
dot product (c1, . . . , c|C|) · i∗, since {ci} is public. This is applied in lines 1–4 of
SID3S.

As a tradeoff between security and efficiency one could choose to reveal some
information on the shape of the tree, e.g., the length of the paths. This avoids
exponential growth of the tree. In this case we need to take care of the following
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Protocol 5.1. SID3S(T, k, c)
1: if |T | �= 0 then
2: foreach i do
3: si = T · S0,i

4: i∗ = arg maxi si
5: c = ci∗

6: if k = 0 then
7: return 〈c〉
8: else
9: return 〈Ak, {SID3S(T � Sk,j , k − 1, c)}j〉

two things: Firstly, we cannot reveal the attribute representing the next best split
and leaf values as this would leak the entire decision tree. Secondly, we should
ensure that all attributes take the same number of values. Indeed, one could
learn information about the attribute label of each non-leaf node by observing
the number of children it has. The latter can be ensured simply by adding dummy
values to each attribute.

Thus, ID3 is applied as before, except for opening the values of the leaves
and opening the values of the next best split. Not opening the values of the next
best split leads to a bit more complicated partitioning of the tree. Fore example,
we need to prevent a selected attribute to be selected again in some subsequent
call to ID3. Protocol 5.2 computes the secret decision tree for T and reveals only
the depth of each path. We will discuss line by line the changes with respect to
SID3.

Firstly, as we observed in SID3S, the index i∗ of the most frequent class value
in T is computed similar to line 3 of SID3, but should not be revealed. So, in
lines 1–5 of SID3T we again apply the variant of arg maxi that returns a length
|{cj}| secret unary representation of the value i∗, such that ci∗ can be computed
securely and without interaction using a dot product.

Secondly, instead of R ⊆ A being public it should be secret to avoid revealing
which attribute is selected in previous recursions. This will affect lines 4, 16,
and 17 of SID3. We let R be represented by a secret bit vector, where its kth
entry is equal to [Ak ∈ R] with [true] = 1 and [false] = 0.

In line 4 of SID3 one checks whether R = ∅. However, since R is secret
it cannot be used to perform this check. To check whether R = ∅ without
communication, observe that R = ∅ if and only if the current path is maximal,
or, equivalently, when the recursive call to ID3 is in depth |A| − 1. Therefore,
we use a public counter r that is initialized to |A|− 1 and decreases by one after
each recursive call to ID3. The condition R = ∅ is replaced by r = 0, see line 4
of SID3T.

Line 16 of SID3 computes and reveals the attribute with the best Gini
index among the available attributes given by R. To ensure selection among
the available attributes in the secret set R we proceed as follows. First we
compute G̃k for all k, and then we choose attribute Ak∗ obliviously such that
G̃k∗ − [Ak �∈ R] is maximal, see line 16 of SID3T. This ensures selection of
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Protocol 5.2. SID3T(T,R, r)
1: foreach i do
2: si = T · S0,i

3: i∗ = arg maxi si
4: if r = 0 or (|T | ≤ ε|T | or si∗ = |T |) then
5: return 〈ci∗〉
6: else
7: foreach i do
8: Ui = T � S0,i

9: foreach k do
10: foreach j do
11: foreach i do
12: xij = Ui · Sk,j

13: yj = α
∑

i xij + 1
14: Dk =

∏
j yj

15: G̃k = Dk

∑
j(
∑

i x2
ij)/yj ÷ Dk

16: k∗ = arg maxk G̃k − [Ak �∈ R]
17: return 〈Ak∗ , {SID3T(T � Sk∗,j , R \ {Ak∗}, r − 1)}j〉

an attribute with maximal G̃k that has not been selected already. Indeed, if
attribute Ak has already been selected then its value in all transactions con-
sidered by successive recursive calls to ID3 is constant, so that G̃k = 0 and
G̃k − [Ak �∈ R] = −1 < 0 ≤ G̃v − [Av �∈ R] for any available attribute Av.

Since Ak∗ should remain secret, in line 16 we apply again the variant of
arg maxi that returns a length |A − 1| secret unary representation of the value
k∗, say k∗. We let Ak∗ be represented by the secret unary representation of its
index k∗. To update T by T � Sk∗,j , in line 17, we first need to compute Sk∗,j ,
which is done using the following dot product

Sk∗,j =
(
S1,j , S2,j , . . . , S|A|−1,j

) · k∗,

which is interactive, since both Si,j and k∗ are secret.
Finally, in line 17 of SID3T the secret representation of R is updated. This

is done without interaction by the entrywise subtraction by the secret unary
representation of k∗. Indeed, R \{Ak∗} is equivalent to setting the bit [Ak∗ ∈ R]
to zero. Let k∗ be the secret unary representation of k∗ then the entrywise
subtraction of the secret representation of R by k∗ will only affect the k∗th
entry of the secret bit vector for R, where it becomes [Ak∗ ∈ R] − 1. Since Ak∗

is selected it was available so that [Ak∗ ∈ R] = 1, and subtraction by one will
result in [Ak∗ ∈ R] = 0 as required in the next recursive call.

With respect to complexity, selecting the next best attribute requires |A|−2
secure comparisons in each recursive call as opposed to only |R| − 1 secure com-
parisons in SID3. Computing Sk∗,j requires �|T | secure dot products in addition
to the �|T | multiplications for computing T � Sk∗,j .

Secure class prediction using the secret decision tree that is output by Pro-
tocol 5.2 is given by Protocol 5.3. It has input the secret decision tree B and
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Protocol 5.3. Class(t, B)
1: if B = 〈c〉 then
2: return c
3: else
4: m = t · B1

5: return
∑

j mj · Class(t, B2,j)

a secret transaction t. The transaction t has |A − 1| entries, where each entry
is a length � unary representation of the corresponding attribute value. So, for
example, the jth value of the kth entry of t is equal to 1 if t(Ak) = akj and it is
equal to 0 otherwise. By construction of Protocol 5.2 the output B = 〈c〉 if B is a
single leaf node and B = 〈B1, B2〉 = 〈Ak, (B2,1, . . . , B2,�)〉 otherwise, where B2,j

is the resulting tree of SID3T(Sk,j , R \ Ak, |A| − 2) and, therefore, has the same
structure as B. Recall that Ak is secret and represented by the length |A| − 1
secret unary representation of it index k.

Observe that if B �= 〈c〉, then t·B1 is the unary representation of t(B1), which
is the attribute value in t corresponding to the root of B. Hence, if B = 〈c〉, then
t is assigned class c, else t is assigned the class given by

∑
j(t ·B1)jClass(t, B2,j).

5.2 Horizontally Partitioned Database

If the database T is horizontally partitioned and if the resulting tree is made
public, then there is no need to securely split the database by computing a
mask. Given a set of transactions, each party can locally compute any partition
of T according to some attribute. Hence, the communication complexity will be
independent of |T |, which is a significant improvement in practice where |T | is
relatively large compared to |A|. Checking the stopping criteria and computing
the Gini index, however, requires knowledge of the entire database and requires
interaction.

Let {Tz} be the partition of T such that each Pz owns Tz. Observe that
{Sz:k,j}, where Sz:k,j = {t ∈ Tz : t(Ak) = akj}, is a partition of Sk,j where
each block Sz:k,j can be computed by party Pz locally. Furthermore, if {Tz} is
a horizontal partition of some T ⊆ T , then {Tz ∩ Sz:k,j} forms a partition of
T ∩Sk,j . To jointly compute |T ∩Sk,j |, each party Pz computes first |Tz ∩Sz:k,j |
and shares the result with all other parties. Then all parties locally compute
shares of |T ∩ Sk,j | =

∑
z |Tz ∩ Sz:k,j | by summing the received shares. This has

an impact on lines 2 and 12 in SID3.
Protocol 5.4 shows how to securely compute the decision tree for a horizon-

tally partitioned T . With id we denote the identity of the party running the
protocol.

With respect to efficiency, computing the entries of the contingency table
xij requires each party to share their local contingency table. With respect to
communication, this is equivalent to performing |A−1||{cj}| dot products, which
is the same as for the computation of the contingency table in ID3. However,
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Protocol 5.4. SID3P(T,R)
1: foreach i do
2: sid:i = Share(Tz · Sz:0,i)
3: foreach Pz �= Pid do
4: Receive(sz:i)
5: si =

∑
z sz:i

6: i∗ = arg maxi si
7: if R = ∅ or (|T | ≤ ε|T | or si∗ = |T |) then
8: return 〈ci∗〉
9: else

10: foreach i do
11: Uid:i = Tz � Sid:0,i

12: foreach k s.t. Ak ∈ R do
13: foreach j do
14: foreach i do
15: xid:ij = Share(Uid:i · Sid:k,j)
16: foreach Pz �= Pid do
17: Receive(xz:ij)
18: xij =

∑
z xz:ij

19: yj = α
∑

i xij + 1
20: Dk =

∏
j yj

21: G̃k = Dk

∑
j(
∑

i x2
ij)/yj ÷ Dk

22: k∗ = arg maxk G̃k

23: return 〈Ak∗ , {SID3P(T � Sk∗,j , R \ {Ak})}j〉

splitting the database requires no interaction anymore. This saves O(|T |) secure
multiplications. In fact, the communication complexity of the resulting protocol
is independent of |T |.

6 Performance Results

To analyze the performance of our protocols in a practical setting, we have built
applications using the Virtual Ideal Functionality Framework (VIFF). VIFF is
a general software framework for doing secure multiparty computation [Gei10],
which provides researchers and programmers with the basic building blocks (or
sub-protocols) as APIs to allow rapid prototyping of new protocols and building
practical applications. For improved efficiency, we use the ‘boost’ extension to
VIFF, which greatly improves the performance of VIFF applications [Kel10]. The
comparison protocols applied are the probabilistic equality test from [NO07] and
the integer comparison from [EFG+09].

We have run the protocols for three players on different network ports on a
64-bit Windows 7 PC, with Intel Core i5-3470 CPU @3.20 GHz (2 cores, 4 hyper-
threads), 16 GB memory. Even on such a moderately fast PC and even though
the performance overhead of VIFF is intrinsically large, the absolute timings
range from a few seconds to a few minutes only, showing the practical feasibility
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Table 1. Performance results

Data Size Measure Bit length SID3 SID3T SID3P

SPECT 267 G̃k 41 27 s 43 s 24 s

Gk 32 57 s 88 s 54 s

Scale 625 G̃k 76 9 s 17 s 7 s

Gk 49 11 s 17 s 8 s

Car 1728 G̃k 95 18 s 29 s 10 s

Gk 74 20 s 33 s 12 s

KRKPA7 3196 G̃k 69 46 s 104 s 26 s

Gk 57 73 s 142 s 50 s

[AJH10] 2196 G̃k 78 68 s 185 s 40 s

Gk 63 96 s 255 s 69 s

of our approach. A marked advantage of VIFF specifically for implementing
secure ID3 protocols is the fact that scheduling is done dynamically at runtime,
depending on the shape of the decision tree as it develops!

We have tested the performance of our ID3 protocols with the benchmarking
data set from the UCI Machine Learning Repository [FA10] and with the data
set from [AJH10]. Table 1 shows the performance results of our protocols. The
threshold for early stopping is set to ε = 5% of the size of the original data set
T . The parameter for computing G̃k is set to α = 8, which is sufficiently large
to ensure that the protocols return basically the same decision trees as obtained
using Gk (the decision trees are identical for all data sets, except for SPECT,
where some minor differences are visible).

Note that the required size modulus p of the prime field is affected by α.
Indeed, the size of each xij is increased by log2(α) so that the size yj (Line 13
of SID3) is increased by at most � log2(α) bits, where � denotes the maximum
number of values an attribute from A takes. This in turn affects the commu-
nication complexity of the integer comparisons which are proportional to the
given bit length of the inputs. The bit length b in Table 1 denotes the number
of bits required to simulate integer arithmetic over Zp. In our experiments, the
statistical security parameter is set to 30 bits. As a consequence the prime p is
chosen such that log2 p ≈ b + 31.
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Abstract. We examine the feasibility of private set intersection (PSI)
over massive datasets. PSI, which allows two parties to find the inter-
section of their sets without revealing them to each other, has numerous
applications including to privacy-preserving data mining, location-based
services and genomic computations. Unfortunately, the most efficient
constructions only scale to sets containing a few thousand elements—
even in the semi-honest model and over a LAN.

In this work, we design PSI protocols in the server-aided setting,
where the parties have access to a single untrusted server that makes its
computational resources available as a service. We show that by exploit-
ing the server-aided model and by carefully optimizing and parallelizing
our implementations, PSI is feasible for billion-element sets even while
communicating over the Internet. As far as we know, ours is the first
attempt to scale PSI to billion-element sets which represents an increase
of five orders of magnitude over previous work.

Our protocols are secure in several adversarial models including
against a semi-honest, covert and malicious server; and address a range
of security and privacy concerns including fairness and the leakage of
the intersection size. Our protocols also yield efficient server-aided pri-
vate equality-testing (PET) with stronger security guarantees than prior
work.

1 Introduction

In the problem of private set intersection (PSI), two parties want to learn the
intersection of their sets without revealing to each other any information about
their sets beyond the intersection. PSI is a fundamental problem in security and
privacy that comes up in many different contexts. Consider, for example, the
case of two or more institutions that wish to obtain a list of common customers
for data-mining purposes; or a government agency that wants to learn whether
anyone on its no-fly list is on a flight’s passenger list. PSI has found applications
in a wide range of settings such as genomic computation [3], location-based
services [58], and collaborative botnet detection [57].
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Secure multi-party computation. PSI is a special case of the more gen-
eral problem of secure multi-party computation (MPC). In this problem, each
party holds its own private input and the goal is to collectively compute a
joint function of the participants’ inputs without leaking additional informa-
tion and while guaranteeing correctness of the output. The design and imple-
mentation of practical MPC protocols has been an active area of research over
past decade with numerous efforts to improve and optimize software imple-
mentations and to develop new frameworks such as Fairplay [5,56], VIFF [19],
Sharemind [6], Tasty [41], HEKM [42], VMCrypt [55], and SCAPI [26]. While
these general-purpose solutions can be used to solve the PSI problem, they
usually do not provide efficient solutions. A large body of work, therefore, has
focused on the design and implementation of efficient special-purpose PSI pro-
tocols [9,16,22,31,39,40,43,44].

Limitations of MPC. While progress on efficient PSI (and MPC in gen-
eral) has been impressive, existing protocols are still far from optimal for many
real-world scenarios. As the trend towards “Big Data” continues, Governments
and private organizations often manage massive databases that store billions
of records. Therefore, for any PSI solution to be of practical interest in such
settings, it needs to efficiently process sets with tens or hundreds of millions
of records. Unfortunately, existing general- and special-purpose PSI solutions
(especially with malicious security) are orders of magnitude less efficient than
computing intersections on plaintext sets and hence do not scale to massive
datasets.

Another limitation of standard approaches to PSI is that achieving fairness
is not always possible. Roughly speaking, fairness ensures that either all the
parties learn the output of the computation or none will. This is crucial in
many real-world applications such as auctions, electronic voting, or collective
financial analysis, where a dishonest participant should not be able to disrupt
the protocol if it is not satisfied with the outcome of the computation. In 1986,
Cleve showed that complete fairness is impossible in general, unless the majority
of the players are honest [13]. A number of constructions try to achieve fairness
for a specific class of functionalities [37], or consider limited (partial) notions of
fairness instead [32,36,59].

server-aided MPC. A promising approach to address these limitations is
server-aided or cloud-assisted MPC.1 In this variant of MPC, the standard set-
ting is augmented with a small set of servers that have no inputs to the compu-
tation and that receive no output but that make their computational resources
available to the parties. In this paradigm, the goal is to tradeoff the parties’
work at the expense of the servers’. Server-aided MPC with two or more servers
1 An alternative approach considered in the PSI literature is the use of tamper-proof

hardware in the design of private set intersection [30,38]. This approach allows for
better efficiency and hence more scalable protocols. Token-based PSI makes different
and incomparable trust assumptions compared to server-aided MPC, and does not
seem suitable for settings that involve a cloud service.
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has been considered in the past [20,21] and even deployed in practice [7], but
since we focus on instantiating the server using a cloud service we are mostly
interested in the single-server scenario.

A variety of single-server-aided protocols have been considered in the past.
This includes general-purpose solutions such as [2], which combines fully-
homomorphic encryption [34] with a proof system [4]; and the constructions
based on Yao’s garbled circuit technique [64], proposed by Feige, Killian and
Naor [29] in the semi-honest model and recently formalized and extended to
stronger models in [45] and optimized and implemented in [48]. This also includes
special-purpose protocols such as server-aided private equality-testing [33,58].

Non-collusion. With the exception of [2], which uses heavy machinery and
is only of theoretical interest at this stage, all other single-sever-aided protocols
we know of are secure in a setting where the server does not collude with the
parties. There are many settings in practice where collusion does not occur, e.g.,
due to physical restrictions, legal constraints and/or economic incentives. In a
server-aided setting where the server is a large cloud provider (e.g., Amazon,
Google or Microsoft), it is reasonable—given the consequences of legal action
and bad publicity—to assume that the server will not collude with the parties.

The work of [45] attempts to formally define non-collusion in the context of
MPC. For the purpose of our work, however, we use a simplified notion of non-
collusion wherein two parties A and B are considered to not collude if they are
not simultaneously corrupted by the adversary (e.g., either A is malicious or B
is, but not both). This allows us to use the standard ideal/real-world simulation-
based definitions of security for MPC and simply restrict the parties that the
adversary can corrupt. In particular, we consider the adversary structures that
respect the non-collusion relations described above (which we refer to as admis-
sible subsets). So, for example, with two parties and a single server that does not
collude with them we need to consider adversary structures that only contain
a single malicious party. On the other hand, in a setting with multiple parties
and a single server, either an arbitrary subset of the parties are corrupted or the
server is. This simplified notion appears to capture the security of all existing
server-aided constructions we are aware of (see full version for a more detailed
discussion).

1.1 Our Contributions

Motivated by the problem of PSI for massive datasets, we design and implement
several new PSI protocols in the server-aided setting. Our protocols are provably
secure in several adversarial models including against a semi-honest, covert and
malicious server; and address a range of security and privacy concerns including
fairness and intersection size-hiding.2 Our protocols also yield efficient server-
aided private equality-testing (PET) with stronger security guarantees than prior
work.
2 Due to space limitations we had to omit our security definitions and proofs. The full

version of this work with definitions and proofs is available on request.
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Efficiency and Comparison. All our protocols require only a linear number
of block-cipher invocations (a pseudorandom permutation) in the set sizes for the
parties with inputs; and the execution of a standard/plaintext set intersection
algorithm for the server. This is a major improvement over all previous general-
and special-purpose PSI constructions.

We then show that by making use of various optimizations, efficient data
structures and by carefully parallelizing our implementations, PSI is feasible
for billion-element sets even while communicating over the Internet. This is
five orders of magnitude larger than what the best standard PSI protocols can
feasibly achieve over a LAN (see the experiments in Sects. 4.2 and 4.3).

Our protocols are competitive compared to non-private set intersection as
well. For example, our semi-honest protocol is only 10% slower than the non-
private variant (note that we use the same optimizations in both ours and the
non-private protocol). This shows that achieving privacy can indeed be affordable
when using the right infrastructure and optimizations (see the experiments in
Sect. 4.4).

We also show that our constructions can easily implemented on top of existing
frameworks for fast set operations. In particular, we show how to use a NoSQL
database implementation, Redis (in use by various cloud-based services), in a
black-box way to implement our server-aided PSIs (see experiments in Sect. 4.5).

Optimizations for large sets. In order to make the memory, bandwidth,
and CPU usage of our implementations scalable to very large sets (up to billion-
elements) and for communication over the internet, we carefully optimize every
aspect of our implementation. For example, we use fast and memory-efficient
data structures from the Sparsehash library [27] to implement our server-side
set intersection protocol. In order to take advantage of the parallelizability of
our protocols, we also use multi-threading both on the client- and the server-
side, simultaneously processing, sending, receiving, and looking-up elements in
multiple threads. The use of parallelization particularly improves the commu-
nication time, which dominates the total running time of our protocols. Our
experiments (see Sect. 4.1) show that we gain up to a factor of 3 improvement
in total running time in this fashion. Other important considerations include the
choice of cryptographic primitives, and the truncation of ciphertexts before send
and receive operations, while avoiding potential erroneous collisions.

1.2 Related Work

The problem of PSI was introduced by Freedman, Nissim and Pinkas [31]. PSI
has attracted a lot of attention and several protocols have been proposed with
various levels of efficiency [9,17,39,40,44,51]. De Cristofaro and Tsudik pre-
sented the first PSI protocols with linear complexity [14,22,23]. Huang, Evans
and Katz [43] proposed a protocol with O(n log n) complexity (where n is the
size of the sets) based on secure two-party computation. While the Huang et al.
protocol has larger complexity, experimental results [25] suggest it is competitive
and even more efficient than DeCristofaro and Tsudik’s protocol for large secu-
rity parameters. In recent work, Dong, Chen and Wen propose a new two-party
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PSI protocol with linear complexity based on Bloom filters, secret sharing and
oblivious transfer [25]. Though the Dong et al. protocol is linear, the underly-
ing cryptographic operations mostly consist of symmetric-key operations. This
results in the fastest two-party PSI protocol to date and is an order of magnitude
faster than previous work.

As far as we know, the recent works of Dong, Chen, Camenisch and Russello
[24] and of Kerschbaum [50] are the only other works that propose server-aided
PSI protocols. Both protocols, however, assume a semi-honest server and require
public-key operations (the latter even requires bilinear pairing operations) which
prevent these protocols from scaling to the sizes we consider in this work.

We also note that server-aided PSI protocols can be constructed from search-
able symmetric encryption schemes (SSE) and, in particular, from index-based
SSE schemes [10–12,15,35,46,47,62]. In the full version of this work,3 we pro-
vide a detailed comparison between these notions and only note here that SSE
schemes provide a richer functionality than needed for PSI so the design of non-
SSE-based server-aided PSI protocols is well motivated.

Finally, private equality testing [1,8,28,54] is a well-known and important
functionality that has found numerous applications in the past, typically as a
sub-protocol. Indeed, PET has recently found application in privacy-preserving
proximity testing [33,58,61] and, in particular, the work of [58] uses a server-
aided PET (in a model similar to ours) as the main cryptographic component of
their construction. While previous work [33,58,61] suggests several sever-aided
PET protocols, all these constructions assume a semi-honest server. By setting
the set size of our intersection size-hiding protocol to 1 (note that we need to
hide the intersection size to hide the output of PET), we get a an alternative
instantiation of server-aided PET that is secure against a malicious server while
still only using lightweight symmetric-key operations.

2 Our Protocols

In this Section, we describe our protocols for server-aided PSI. Our first protocol
is a multi-party protocol that is only secure in the presence of a semi-honest
server (but any collusion of malicious parties). Our second protocol is a two-
party protocol and is secure against a covert or a malicious server depending
on the parameters used, and also secure when one of the parties is malicious.
Our third protocol shows how one can augment the two-party protocol to achieve
fairness while our fourth protocol, shows how to hide the size of the intersection4

from the server as well. Our intersection-size hiding protocol also yields the first
server-aided PET with security against a malicious server.

In all our protocols, k denotes the computational security parameter (i.e.,
the key length for the pseudorandom permutation (PRP)) while s denotes a
statistical security parameter. For λ ≥ 1, we define the set Sλ as
3 The full version is available upon request.
4 We note that, this is different from what is know in the literature as size-hiding PSI

where the goal is the hide the size of input sets. Here, we only intend to hide the
size of the intersection from the server who does not have any inputs or outputs.
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Fig. 1. A PSI protocol with a semi-honest server

Sλ =
{
x‖1, . . . , x‖λ : x ∈ S

}

and (Sλ)−λ = S. If F : U → V is a function, the S-evaluation of F is the
set F (S) =

{
F (s) : s ∈ S

}
. We also denote by F−1 the inverse of F where

F−1(F (S)) = S. If π : [|S|] → [|S|] is a permutation, then the set π(S) is the
set that results from permuting the elements of S according to π (assuming a
natural ordering of the elements). In other words:

π(S) =
{
xπ(i) : xi ∈ S}.

We denote the union and set difference of two sets S1 and S2 as S1 + S2 and
S1 − S2, respectively.

2.1 Server-Aided PSI with Semi-honest Server

We first describe our server-aided protocol for a semi-honest server or any collu-
sion of malicious parties. The protocol is described in Fig. 1 and works as follows.
Let Si be the set of party Pi. The parties start by jointly generating a secret
k-bit key K for a pseudorandom permutation (PRP) F . Each party randomly
permutes the set FK(Si) which consists of labels computed by evaluating the
PRP over the elements of his appropriate set, and sends the permuted set to
the server. The server then simply computes and returns the intersection of the
labels FK(S1) through FK(Sn).

Intuitively, the security of the protocol follows from the fact that the parties
never receive any messages from each other, and their only possible malicious
behavior is to change their own PRP labels which simply translates to changing
their input set. The semi-hoenest server only receives labels which due to the
pseudo-randomness of the PRP reveal no information about the set elements.
We formalize this intuition in the Theorem 1 whose proof is omitted due to lack
of space.

Theorem 1. The protocol described in Fig. 1 is secure in the presence (1) a
semi-honest server and honest parties or (2) a honest server and any collusion
of malicious parties.
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Efficiency. Each Pi invokes the PRP a total of |Si| times, while the server only
performs a “plaintext” set intersection and no cryptographic operations. Once
can use any of the existing algorithms for set intersection. We use the folklore
hash table insertion/lookup which runs in nearly linear time in parties sets.

Also note that the protocol can be executed asynchronously where each party
connects at a different time to submit his message to the sever and later to obtain
the output.

2.2 Server-Aided PSI with Malicious Security

The previous protocol is only secure against a semi-honest server because the
server can return an arbitrary result as the intersection without the parties being
able to detect this. To overcome this we proceed as follows: we require each
party Pi to augment its set Si with λ copies of each element. In other words,
they create a new set Sλ

i that consists of elements
{
x‖1, . . . , x‖λ

}
for all x ∈ Si.

The parties then generate a random k-bit key for a PRP F using a coin tossing
protocol and evaluate the PRP on their augmented sets. This results in sets of
labels FK(Sλ

i ). Finally, they permute labels with a random permutation πi to
obtain Ti = πi

(
FK(Sλ)

)
which they send to the server. The server computes

the intersection I of T1 = π1(FK(Sλ
1 )) and T2 = π2(FK(Sλ

2 )) and returns the
result to the parties. Each party then checks that F−1

K (I) contains all λ copies
of every element and aborts if this is not the case.

Intuitively, this check allows the parties to detect if the server omitted any
element in the intersection since, in order to cheat, the server has to guess which
elements in I correspond to the λ copies of the element it wishes to omit. But
this still does not prevent the server from cheating in two specific ways: (1) the
server can return an empty intersection; or (2) it can claim to each party that
all the elements from the party’s input set are in the intersection.

We address these cases by guaranteeing that the set intersection is never
empty and never contains all elements of an input set. To do this, the parties
agree on three dummy sets D0, D1 and D2 of strings outside the range of possible
input values U such that |D0| = |D1| = |D2| = t. The first party then adds the
set Δ1 = D0 + D1 to Sλ

1 and the second party adds the set Δ2 = D0 + D2

to the set Sλ
2 . We denote the resulting sets Sλ

1 + Δ1 and Sλ
2 + Δ2, respectively.

Now, the intersection I of (Sλ
1 + Δ1) ∩ (Sλ

2 + Δ2) cannot be empty since D0

will always be in it and it cannot consist entirely of one of the sets Sλ
1 + Δ1 or

Sλ
2 + Δ2 since neither of them are contained in the intersection. We note that

the three dummy sets D0, D1 and D2 need to be generated only once and can
be reused in multiple executions of the set intersection protocol. The parties can
generate the dummy values using a pseudorandom number generator together
with a short shared random seed for the PRG, which they can obtain running
a coin-tossing protocol. We can easily obtain dummy values inside and outside
the range U by adding a bit to the output of the PRG, where this bit is set to
zero for values inside the range and to one for values outside the range.

It turns out that adding the dummy sets provides an additional benefit. In
particular, in order to cheat, by say removing or adding elements, the server
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not only needs to ensure λ copies remain consistent, but also has to make sure
that it does not remove or add elements from the corresponding dummy sets.
In other words, we now have two parameters t and λ and as stated in Theo-
rem 2, the probability of undetected cheating is 1/tλ−1 + negl(k) where k is the
computational security parameter used for the PRP. Therefore, by choosing the
right values of t and λ one can significantly increase security against a malicious
server.

Figure 2 presents the details of our protocol and its security is formalized in
Theorems 2 and 3 below whose proof is omitted due to lack of space. This two
theorem consider all possible admissible subsets of the participants that can be
corrupted by the adversary.

Coin-toss. The coin tossing protocol is abstracted as a coin tossing functionality
FCT which takes as input a security parameter k and returns a k-bit string chosen
uniformly at random. This functionality can be achieved by simply running a
simulatable coin tossing protocol [49,53]. Such a protocol emulates the usual
coin-flipping functionality in the presence of arbitrary malicious adversaries and
allows a simulator who controls a single player to control the outcome of the coin
flip. We note that the coin-tossing step is independent of the parties’ input sets
and can be performed offline (e.g., for multiple instantiations of the protocol
at once). After this step, the two parties interact directly with the untrusted
server until they retrieve their final result. As a result, it has negligible effect on
efficiency of our constructions and is omitted from those discussions.

Our set intersection protocol in Fig. 2 provides security in the case of one
malicious party, which can be any of the parties. We state formally our security
guarantees in the next two theorems.

Theorem 2. If F is pseudo-random, and (1/t)λ−1 is negligible in the statistical
security parameter s, the protocol described in Fig. 2 is secure in the presence of
a malicious server and honest P1 and P2.

Theorem 3. The protocol described in Fig. 2 is secure in (1) the presence of
malicious P1 and an honest server and P2; and (2) a malicious P2 and honest
server and P1.

Covert Security. By setting the two parameters t and λ properly, one can
aim for larger probabilities of undetected cheating and hence achieve covert
security (vs. malicious security) in exchange for better efficiency. For example,
for deterrence factor of 1/2, one can let t = 2 and λ = 2.

Efficiency. Each party Pi invokes the PRP λ|Si| + 2t times while the server
performs a “plaintext” set intersection on two sets of size |S1|+2t and |S2|+2t,
with no cryptographic operations.

Once again, the protocol can be run asynchronously with each party connect-
ing at a different time to submit his message to the server and later to obtain
his output.
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Fig. 2. A Server-aided PSI protocol with malicious security

2.3 Fair Server-Aided PSI

While the protocol in Fig. 2 is secure against malicious parties, it does not achieve
fairness. For example, a malicious P1 can submit an incorrectly structured input
that could cause P2 to abort after receiving an invalid intersection while P1

learns the real intersection. To detect this kind of misbehavior (for either party)
and achieve fairness, we augment the protocol as follows.

Suppose we did not need to hide the input sets from the server but still
wanted to achieve fairness. In such a case, we could modify the protocol from
Fig. 2 as follows. After computing the intersection I = T1 ∩T2, the server would
commit to I (properly padded so as to hide its size) and ask that P1 and P2

reveal their sets S1 and S2 as well as their shared key K. The server would then
check the correctness of T1 and T2 and notify the parties in case it detected any
cheating (without being able to change the intersection since it is committed).
This modification achieves fairness since, in the presence of a malicious P1, P2

will abort before the server opens the commitment. In order to hide the sets S1

and S2 from the server, it will be enough to apply an additional layer of the PRP.
The first layer will account for the privacy guarantee while the second layer will
enable the detection of misbehavior.
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Fig. 3. A fair server-aided PSI protocol

The protocol is described in detail in Fig. 3 and the next two theorems
describe the adversarial settings in which it guarantees security.

Theorem 4. If F is pseudo-random, and (1/t)λ−1 is negligible in the security
parameter s, the protocol described in Fig. 3 is secure in the presence of a mali-
cious server and honest P1 and P2.

Theorem 5. The protocol described in Fig. 3 is secure in (1) the presence of
malicious P1 and an honest server and P2; and (2) a malicious P2 and honest
server and P1, and also achieves fairness.

Efficiency. Each party Pi invokes the PRP 2(λ|Si|+2t) times, while the server
executes a “plaintext” set intersection on two sets of size |S1| + 2t and |S2| + 2t
respectively, and also computes a commitment to this set which can also be
implemented using fast symmetric-key primitives such as hashing.
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2.4 Intersection Size-Hiding Server-Aided PSI

Our previous protocols reveal the size of the intersection to the server which, for
some applications, may be undesirable. To address this we describe a protocol
that hides the size of the intersection from the server as well. The protocol is
described in detail in Fig. 4 and works as follows.

The high-level idea to hiding the size of the intersection from the server is
simply to not have it compute the intersection at all. Instead, P1 will compute
the intersection while the server will only play an auxiliary role and help P1. The
parties P1 and P2 generate a shared secret key K1 for a PRP. Similarly, P2 and
the server generate a shared secret key K2, also for a PRP. P1 uses K1 (which it
shares with P2) to send FK1(S1) to the server who uses K2 (which it shares with
P2) to return a random permutation of FK2(FK1(S1)) to P1. P2 then randomly
permutes FK2(FK1(S2)) and sends it to P1. P1 then computes the intersection of
the two sets and sends the result to P2. Since P2 knows both K2 and K1, he can
remove both layers of encryption and learn the intersection (as usual, he aborts
if the intersection is not well-formatted). Finally, P2 needs to let P1 learn the
intersection as well. Sending the intersection directly to him is not secure since
a malicious P2 may lie about the output. Instead, P2 will notify the server who
will reveal to P1 the random permutation he used to permute FK2(FK1(S1)).
This allows P1 to learn the location of each element in the intersection in his set
and recover the intersection itself using that information (P1 also aborts if the
intersection is not well-formatted).

We formalize security of this protocol in Theorems 6 and 7 whose proof is
omitted due to lack of space.

Theorem 6. If F is pseudo-random, and (1/t)λ−1 is negligible in the security
parameter s, the protocol described in Fig. 4 is secure and intersection-size hiding
in the presence of a malicious server and honest P1 and P2.

Theorem 7. The protocol described in Fig. 4 is secure in (1) the presence of
malicious P1 and an honest server and P2; and (2) a malicious P2 and honest
server and P1.

Efficiency. P1 invokes the PRP, λ|S1|+2t times. He also performs the “plain-
text” set intersection on two sets of size |S1| + 2t and |S1| + 2t respectively. P2

invokes the PRP, 2(λ|S1| + 2t) while the server invokes the PRP λ|S1| + 2t.

3 Our Implementation

In this section we describe the details of our implementation, including our choice
of primitives and our optimization and parallelization techniques.

We implemented three of our protocols: the one described in Fig. 1, which
is secure against a semi-honest server; the one of Fig. 2, which is secure against
a malicious server; and the one of Fig. 4, which hides the intersection size from
the server. In the following, we refer to these protocols by SHPSI, MPSI, and
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Fig. 4. An intersection size-hiding server-aided PSI

SizePSI, respectively. Our implementation is in C++ and uses the Crypto++
library v.5.62 [18]. The code can be compiled on Windows and Linux and will
be released publicly once when the paper is made public. Throughout, we will
sometimes refer to parties that are not the server as clients.
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To make our implementation scale to massive-size sets, we had to optimize
each step of the protocols, use efficient data structures, and make extensive use
of the parallelization via multi-threading.

3.1 Client Processing

The main operations during the client processing steps are the application of a
PRP to generate labels and the application of a random permutation to shuffle
labels around. We now describe how each of these operations is implemented.

PRP instantiation. We considered two possibilities for implementing the
PRP: (1) using the Crypto++ implementation of SHA-1 (as a random oracle);
(2) using the Crypto++ implementation of AES which uses the AES Instruction
Set (Intel AES-NI). We ran micro benchmarks with over a million invocations
and concluded that the Crypto++ AES implementation was faster than the
SHA-1 implementation. As a result, we chose the Crypto++ AES implementa-
tion to instantiate the PRP. For set elements larger than the AES block size, we
used AES in the CBC mode.

Random permutation instantiation. We instantiated the random permu-
tations using a variant of the Fisher-Yates shuffle [52]. Let S ⊂ U be a set and
A be an array of size |S| that stores each element of S. To randomly permute S,
for all items A[i], we generate an index j ≤ [|S|] uniformly at random and swap
A[i] with A[j]. We sampled the random j by applying AES to A[i] and using the
first log(|S|) bits of the output.

Communication and Truncation. For our protocols—especially when run-
ning over the Internet—communication is the main bottleneck. Our experiments
showed that the send and receive functions (on Windows Winsock) have a high
overhead and so invoking them many times heavily slows down communication.
To improve performance we therefore store the sets Ti in a continuous data
structure in memory. This allows us to make a single invocation of the send
function. Naturally, our memory usage becomes lower-bounded by the size of
the sets Ti.

Since we need to send all labels, the only solution to reduce communication
complexity is to truncate the labels. Note that the output of a PRP is random so
any substring of its output is also a random. This property allows us to truncate
the labels without affecting security. The problem with truncation, however, is
that it introduces false positives in the intersection computation due to possible
collisions between the labels of different set elements. In particular, when working
with a set S, and truncating the AES output to � bits, the probability of collision
is less than |S|/2�/2 (this follows from the birthday problem). So when working
with sets of tens or hundreds of millions of elements, we need to choose 80 ≤ � ≤
100 to reduce the probability of a collision to 2−20. Another issue with truncation
is that the clients cannot recover the set elements from the labels by inverting
the PRP anymore. To address this, we simply store tables at the clients that
map labels to their set elements.
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3.2 Server Intersection

For the intersection operation that is performed by the server—or the client
in the case of SizePSI—we considered and implemented two different approaches.
The first is based on a custom implementation whereas the second is based on the
open-source Redis NoSQL database.

Our custom implementation. The trivial pair-wise comparison approach to
compute set intersection has a quadratic complexity and does not scale to large
sets. We therefore implemented the folklore set intersection algorithm based on
hash tables, wherein the server hashes the elements of the first set into a hash
table, and then tries to lookup the elements of the second set in the same table.
Any element with a successful lookup is added to the intersection. The server
then outputs a boolean vector indicating which elements of the second set are
in the intersection and which are not.

To implement this algorithm, we used the dense hash set and dense hash
map implementation from the Sparsehash library [27]. In contrast to their sparse
implementation which focuses on optimizing memory usage, the dense imple-
mentation focuses on speed. The choice of data structure was critical in our
ability to scale to billion-element datasets, in terms of both memory usage, and
computational efficiency.

The Redis-based implementation. As an alternative to our custom imple-
mentation of the server, we also used the Redis NoSQL database. Redis is
generally considered to be one of the most efficient NoSQL databases and is capa-
ble of operating on very large datasets (250 million in practice). Redis is open
source and implemented in ANSI C (for high performance). It is also employed
by several cloud-based companies such as Instagram, Flickr and Twitter. This
highlights an important benefit of our PSI protocols (with the exception of the
size-hiding protocol), which is that the server-side computations consists only of
set intersection operations. As such any database can be used at the server.

Looking ahead, we note that our experiments were run on a Windows Server
and that the Redis project does not directly support Windows. Fortunately, the
Microsoft Open Tech group develops and maintains an experimental Windows
port of Redis [60] which we used for our experiments. Unfortunately, the port
is not production quality yet and we therefore were not able to use it for very
large sets, i.e., for sets of size larger than 10 million (this is the reason for the
“X” in one row of Table 4).

We integrated the Windows port of the Redis C client library, hiredis [63] in
our implementation with minor modifications. Instead of sending the labels to
the server, we send them as sets of insertion queries to the Redis server. This is
followed by a set intersection query which returns the result. We note that our
custom server uses the same interface. To improve the mass insertion of sets, we
employ the Redis pipelining feature. Pipelining adds the commands to a buffer
according to the Redis protocol and sends them as they are ready. At the end,
we have to wait for a reply for each of the commands. The extra delay caused
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by this last step, as well as the overhead of the Redis protocol, makes Redis less
efficient than our custom implementation.

3.3 Output Checks

Recall that in the case of MPSI, the clients have to perform various checks
on the output set I they receive from the server. In particular, they need to
verify that each element in I has λ copies, that D0 is in I and that Di is not.
We use two additional data structures to facilitate these verification steps. The
data structures are created by each client separately. The first structure is a
dictionary mv, implemented with dense hash set, that maps the indices of the
elements in (the truncated version of) Ti to the index of the element in Si that
it is associated with (all λ copies of the same element are mapped to the same
index). The truncated labels of the elements in D0 and D1 are mapped to the
values −2 and −3, respectively. The truncated labels of the elements in D0 are
then inserted into a dense hash set data structure.

During verification, the clients can now easily use the mv structure and the
dense hash map map to keep track of the number of copies of each element in
Si and to quickly check that D0 is present and that Di is not.

3.4 Parallelizability and Multi-threading

One of the main advantages of our protocols is that they are highly parallel. To
exploit this we used the POSIX thread library for the portable implementation
of threads and their synchronization. At the beginning of the protocol, each
client creates a certain number TCP connections with the server and starts a
thread for each connection. In Step 1, the clients start preparing the values and
send them in parallel to the server. In Steps 2, 3, and 4, the server inserts the
elements in the hash table. Since Sparsehash is not a thread-safe library, these
steps cannot be performed in parallel. Finally, in Step 5, the server performs a
parallel lookup of the second client’s set and returns the intersection as a boolean
vector. We report on the effect of multi-threading on the running time of our
protocols in the next section.

4 Experimental Evaluation

Next, we evaluate the performance and scalability of our implementations. In
particular, we investigate the effect of multi-threading on the efficiency of our
protocols, we evaluate the scalability of SHPSIby executing it on billion-element
sets, and we compare the efficiency of our protocols with state-of-the-art two-
party PSI protocols as well as with non-private solutions.

We generate the input sets on the fly and as part of the execution. Each
element is a 16 byte value. We note that, for our implementation, the size of the
intersection does not effect computation or communication. This is because the
server does not return the intersection but a bit vector that indicates whether
each element of the partie’s set is in the intersection or not.
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4.1 Effect of Multi-threading

To demonstrate the effect of parallelization, we ran an experiment where we
increased the number of threads for a given set size (10 Million) for both the
SHPSI and the SizePSI protocols. Results are presented in two separate graphs
in Fig. 5. The use of parallelization particularly improves the communication
time which dominates the total running time of our protocols. We get up to
a factor of 3 improvement in total running time by increasing the number of
threads.
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Fig. 5. Effect of multi-threading on the runtime of our protocols. Set size is 10 Million.

4.2 Scalability of Our SHPSIProtocol

We examine the scalability of our protocol in the WAN setup. We run SHPSIfor
sets ranging from 100K to 1 billion elements. The total running times and the
size of communication (for each client) are provided in Table 1. Note that even
for sets with 1 billion elements, our protocol runs on the order of minutes.

We used 3 Windows Azure services connected over the Internet. The server
was an 8-core Windows server 2012 VM with 14 GB of memory located in the
West US region. For each client, we used a 8-core Windows server 2012 VM
with 7 GB of memory. The clients were both located in the East US region to
guarantee that they were not on the same network as the server. We chose to
run our clients in the Cloud (as opposed to locally) to provide a somewhat
uniform platform that can be used by others to reproduce our experiments. For
the billion-element sets, we increased the client’s RAM to 14 GB and the server’s
to 24 GB.

4.3 Comparison with Standard PSI

We compare SHPSIwhich provides security against a semi-honest server and our
SizePSIprotocol with malicious security against the state-of-the-art two-party
PSI protocol [23] (we used an implementation provided to us by the authors).
We stress that the protocol of [23] is secure against semi-honest adversaries in the
standard MPC setting. The point of this comparison is simply to demonstrate
that server-aided protocols can allow for significant efficiency improvements over
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Table 1. Scalability of SHPSI. Communication is in MegaBytes.

Set Size Threads # Comm. Total

100 K 20 1 532 (ms)

1 M 20 10 1652 (ms)

10 M 100 114 7 (s)

100 M 100 1239 53 (s)

1 B 100 12397 580 (s)

standard two-party protocols. The provided implementation of [23] is intended
for LAN setting and can be compiled under Linux, so we used the same setup for
our comparison. In this setting, our experimental testbed consisted of 3 machines,
each of which was a 3 GHz Xeon server with 16 GB of memory running Linux as
their OS. The timings are provided in Table 2. They include the total running
time for each protocol, starting from when the clients start running until they
output the result of the intersection (i.e., the communication times are included).
We only went up to sets of 100K elements in order to keep the running time of
the protocol of [23] manageable.

Table 2. Comparison of SHPSI, SizePSIand [23]. Times include communication (10
Threads).

Set size [23] (ms) SHPSI(ms) SizePSI(ms)

1000 600 2 13

10000 6725 12 112

50000 116155 59 488

100000 559100 117 996

4.4 Comparison with Plaintext Set Intersection

In this experiment, we compare SHPSI, and SizePSI(with λ = 3 and t = 1000000,
yielding s ≈ 40) with a plaintext set intersection for a wide range of set sizes. In
particular, we implemented and tested a non-private server-aided set intersection
execution, where the clients send their plaintext sets and receive the intersection
from the server. We employed all the optimizations and parallelization applied
to our own protocols (such as multi-threading, choice of data structures etc.) to
the plaintext protocol as well. This experiment was just so we could compare
the overhead incurred by our protocols over plaintext intersection. The times
are in Table 3. Note that our SHPSIprotocol is at most 10% slower than the
plaintext intersection for most set sizes while SizePSIis a factor of 4–10 slower.
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This is in contrast to the setting of standard MPC where going from semi-honest
to malicious security increases computation and communication by orders of
magnitude.

Table 3. Comparison of our SHPSIand SizePSIto plaintext set intersection. T. is short
for total time. C. is short for communication and times are in millisecond.

Set size SHPSIC. SizePSIC. Plain T. SHPSIT. SizePSIT.

100 K 1 MB 7.4 MB 530 532 2000

1 M 10 MB 74.3 MB 1600 1652 10232

10 M 114 MB 619 MB 7102 7717 82323

20 M 228 MB 1.2 GB 10780 11662 185123

4.5 Porting to NoSQL Databases

In our final experiment we replace our custom server with a Redis server with
which the clients interact using insertion and set intersection queries. Table 4
show details of some of our timings. The experiment shows a nice feature of
our SHPSIand MPSIprotocols i.e. that they can be easily plugged into existing
NoSQL database implementation without the need to make any changes to them.

Table 4. Comparison of our SHPSIand MPSIto plaintext set intersection when server
is implemented by Redis. T. is short for total time in milliseconds.

Set size Plain T. SHPSIT. MPSIT.

1000 380.3 381.0 857.4

10000 934.0 939.7 2020.0

100000 2170.4 2239.8 7368.3

1000000 5798.9 6496.3 61544.9

10000000 47041.5 54020.5 X
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Abstract. We propose a non-interactive zero knowledge pairwise mul-
tiset sum equality test (PMSET) argument of knowledge in the common
reference string (CRS) model that allows a prover to show that the given
committed multisets Aj for j ∈ {1, 2, 3, 4} satisfy A1 �A2 = A3 �A4, i.e.,
every element is contained in A1 and A2 exactly as many times as in A3

and A4. As a corollary to the PMSET argument, we present arguments
that enable to efficiently verify the correctness of various (multi)set oper-
ations, for example, that one committed set is the intersection or union
of two other committed sets. The new arguments have constant com-
munication and verification complexity (in group elements and group
operations, respectively), whereas the CRS length and the prover’s com-
putational complexity are both proportional to the cardinality of the
(multi)sets. We show that one can shorten the CRS length at the cost of
a small increase of the communication and the verifier’s computation.

Keywords: Multisets · Non-interactive zero knowledge · Set operation
arguments

1 Introduction

One of the most common tasks undertaken to achieve active security (i.e.,
security against malicious participants) in various cryptographic protocols is to
construct an efficient zero knowledge proof that the committed (or encrypted)
messages sent by various parties belong to correct sets. For example, some of
the most efficient e-voting protocols [12,14] and e-auction protocols [34] are
secure only if the voters (resp., bidders) have committed to inputs from a certain
range. Because of such reasons, range proofs — where the prover aims to convince
the verifier that the committed message belongs to some public range — have
been widely studied in cryptographic literature. There are many well-known effi-
cient range proofs, both interactive [6,7,10,31,34] and non-interactive [11,18,37].

However, in many applications it is not sufficient to prove that the inputs
belong to a continuous range, since the valid input set may be an arbitrary
(polynomial-size) set of integers. Moreover, often th e same party has to com-
mit to related inputs many times, and the whole protocol is secure only if the
c© International Financial Cryptography Association 2014
N. Christin and R. Safavi-Naini (Eds.): FC 2014, LNCS 8437, pp. 216–233, 2014.
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Table 1. Performance comparison of NIZK for set operations

Paper Operation RO |CRS| Prov comp Ver comp Comm

[28] zero-knowledge sets yes Θ(k) Θ(k) Θ(1) Θ(1)

[16] committed subset of
disjoint sets

yes - Ω(k) Ω(k) Ω(k)

[29] set intersection, set union yes - O(k) O(k) O(k)

[27] set intersection yes Θ(1) Θ(k) Θ(k) Θ(k)

This paper PMSET, committed
subset, set intersection,
set union, set
difference,
zero-knowledge sets,
accumulator, . . .

no Θ(k) Θ(k) Θ(1) Θ(1)

committed input sets satisfy some set-theoretic relations. E.g., in an approval
e-voting protocol, one could first to be asked to commit to a set A of all approved
candidates, and in the second round (based on the outcome of the first round)
to a certain subset B of A. One could interpret A and B as multisets, where a
voter is allowed to distribute a limited number of points between the set of all
candidates. To achieve active security, the voter must prove in particular that
B ⊆ A ⊆ U, where U is the set of all candidates. Moreover, in any concrete
application, it can also be required to lower and upper bound the cardinality of
A and B. For instance, in the case of approval voting, the voter may only have a
number of votes to spend, but may be required to vote at least once. Similarly,
in a combinatorial auction, a bidder may bid up to a certain number items, but
might be required to bid at least once to continue in the next round.

Similar issues arise in many other applications, and thus a lot of work has
been done in constructing efficient zero knowledge proofs for (multi)set-theoretic
operations. However, practically all existing (multi)set-theoretic zero knowledge
proofs [16,27,29] require at least linear communication in the size of the com-
mitted sets. This is not acceptable in many applications where the cardinality of
the underlying sets is large. See Table 1 for a brief comparison, and AppendixA
for a longer comparison. (AppendixA also compares the current work with [28].)

Moreover, all existing efficient set-theoretic zero-knowledge proofs are inter-
active, which makes them less useful in practice. While they can be made non-
interactive in the random oracle model by using the Fiat-Shamir heuristic [19],
it is well-known that such a heuristic is not a proof [9,23]. Thus, a better app-
roach is to build non-interactive zero knowledge (NIZK) proofs in the common
reference string (CRS) model. A zero knowledge proof is a proof of knowledge,
if the verifier is additionally convinced that the prover knows the witness. See
Sect. 2 for more preliminaries on NIZK proofs and arguments (i.e., computa-
tionally sound proofs). For the rest of this introduction, we recall that sublinear
NIZK proofs can only be (a) computationally sound, and (b) cannot be based
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on standard (falsifiable) assumptions [22]. Thus, following a long line of contem-
porary cryptographic research [1,3,11,18,21,25,32,33], we will construct NIZK
arguments that are sound under some knowledge assumptions.

Our Contibutions. We tackle the task of constructing efficient (multi)set-
theoretic NIZK arguments in a modular way. First, we design an efficient pairing-
based NIZK argument of knowledge for a certain multiset relation. Second, we
show that the proposed argument can be used to construct efficient NIZK argu-
ments of knowledge for a plethora of other (multi)set relations.

More precisely, recall that if A is a multiset, then every element a of the
universe U belongs to A with some multiplicity 1A(a) ≥ 0. (Multiplicity 0 means
that a does not belong to A.) In particular, A1�A2 is a multiset that has as many
copies of any element a as A1 and A2 put together, 1A1�A2(a) = 1A1(a)+1A2(a)
for each a ∈ U. See Sect. 2 for more preliminaries on multisets.

We propose a non-interactive pairwise multiset sum equality test (PMSET)
argument, where the prover has committed to four multisets A1, A2, A3 and A4,
and aims to prove in zero knowledge that A1 � A2 = A3 � A4. That is, for all
a ∈ U, 1A1(a) + 1A2(a) = 1A3(a) + 1A4(a). Moreover, for some public constants
kj , this argument guarantees the verifier that |Aj | ≤ kj .

Briefly, the intuition behind our new PMSET argument is as follows. The
prover first commits to a succinct encoding of each Aj . More precisely, Aj ⊂ Zp

is encoded as χAj
(σ), where χAj

(X) :=
∏

a∈Aj
(X − a) (with correct multiplic-

ities), and σ is a secret key. The prover commits to χAj
(σ) for j ∈ {1, 2, 3, 4}.

After that, the prover creates a succinct NIZK argument that χA1(σ)χA2(σ) =
χA3(σ)χA4(σ), where χAj

(X) is a degree ≤ kj polynomial. The real argument is
more complicated, since it has to include several extra values to allow for both
the soundness and the zero knowledge part of the security proof to go through:

(i) to achieve computational soundness, every group element in the argument
is accompanied by a knowledge component,

(ii) to achieve zero knowledge, the argument contains independent random com-
mitments Dj to all 4 multisets Aj . In the simulation, the simulator sets Dj

to be equal to random group elements, and simulates the NIZK arguments
that Dj commit to the original sets Aj .

(See Sect. 4 for details.) The argument can be verified by using a small number
of computations of a bilinear map.

By relying on suitable hardness assumptions, from a successful verification
it follows that χA1(X)χA2(X) = χA3(X)χA4(X), and thus the two polynomials
χA1(X)χA2(X) and χA3(X)χA4(X) have the same set of roots with the same
multiplicities. Thus, if the PMSET argument verifies, then the verifier is con-
vinced that the prover knows multisets Aj , such that A1 � A2 = A3 � A4. Since
χAj

(X) is a degree ≤ kj polynomial, the verifier is also convinced that |Aj | ≤ kj .
We actually work in a relaxation of the described model, by allowing χAj

(X)
to be any polynomial that has Aj as its null set (again, with correct multiplici-
ties). This somewhat simplifies the argument. Moreover, it allows us to specify
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parameters kj such that the prover can additionally convince the verifier that the
cardinality of Aj is not larger than kj . Thus, we automatically achieve the size-
hiding property, required (in particular) in the case of zero-knowledge sets [35].
On the other hand, we can use the upper bound on |Aj | to guarantee, for exam-
ple, that a voter has approved at most kj candidates. Without the mentioned
relaxation, it seems that the cardinality of Aj would have to be exactly equal to
kj , where kj is fixed during the CRS generation.

The length of the new argument is Θ(1) group elements, while the veri-
fier’s computation is dominated by Θ(1) cryptographic pairings. As a drawback,
the CRS length is Θ(k∗), where k∗ = maxj kj , and the prover’s computational
complexity is dominated by several k∗-wide bilinear-group multiexponentiations.
Although multiexponentiations can be optimized by using the algorithms of
Straus [38] and Pippenger [36], they are still costly.

We also provide a version of the PMSET argument that has a smaller CRS
length but larger communication and verifier’s computation. In the balanced
version, all these parameters have complexity Θ(

√
k). (The prover’s computation

is still linear in k — this seems, although we are not claiming it, to be necessary
unless Aj have a specific structure that one can exploit.)

We finish the paper by showing how to use the PMSET argument to prove the
correct execution of several (multi)set operations. Many applications are possible
since any of the multisets Aj can be either public (e.g., in some applications
we can choose Aj = ∅ to be public) or committed to, and that we are given
flexibility of choosing the values kj for committed multisets. For example, we
obtain arguments for A1 ⊆ A2, A1 = A2 \A3, A1 = A2 ∪A3, A1 = A2 ∩A3, etc.

As another example, we can prove that A1 is a multiset obtained from A2 by
increasing or decreasing the multiplicity of exactly one (public or committed)
element by one. If that element is public, we obtain a dynamic accumulator [8].

Finally, we mention that one can construct a zap (two-message witness-
indistinguishable argument, where the verifier’s first message can be shared
between many protocol executions, [17]) from the new NIZK argument by using
standard techniques: basically, the verifier creates the CRS, and the prover then
replies with the NIZK argument. Such a zap is secure in the standard model,
without assuming the existence of a trusted third party who creates the CRS.

2 Preliminaries

Sets are denoted by blackboard bold uppercase letters as in A. By deg(f), we
denote the degree of the polynomial f . If h = gx in a group G, then we write
x = logg h. For a group G, we utilize the fact that G2 = G×G is a group and thus
aggressively use notation like (g, h)a or (g1, h1) · (g2, h2). Let NUPPT stand for
non-uniform probabilistic polynomial time. A positive function ε(·) is negligible
in its parameter if it decreases faster than the inverse of any polynomial, i.e.,
ε(n) = n−ω(1). By κ, we denote the security parameter.
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Sets and Multisets. Formally, a multiset is a 2-tuple (A, μA) where A is some
set and μA : A → N≥1 is a function from A to the set N≥1 = {1, 2, 3, . . . } of
positive natural numbers. The set A is called the underlying set of elements. For
each a in A the multiplicity of a is the number μA(a). If A ⊆ U for some larger
set U, then one can extend μA to U, by defining μA(a) = 0 for a ∈ A. We denote
this extended multiplicity function by 1A, and assume its existence implicitly,
talking about a multiset A instead of a multiset (A,1A).

If A and B are sets, then 1A(a) = 1 if a ∈ A and 1A(a) = 0 if x ∈ A. If A and B

are sets, then 1A∩B(a) = min {1A(a),1B(a)} and 1A∪B(a) = max {1A(a),1B(a)}.
We have that A ⊆ B iff ∀a, 1A(a) ≤ 1B(a). The cardinality of a finite (multi)set
A is |A| =

∑
a∈U

1A(a).
Now, assume that A and B are multisets. The multiset sum A � B is defined

so that 1A�B(a) = 1A(a) + 1B(a) for all a, and the multiset difference A \ B is
defined so that 1A\B(a) = max(0,1A(a) − 1B(a)) for all a. In most of the cases,
we just use common set-theoretic operations with multisets. For example, a ∈ A

means that 1A(a) ≥ 1.

Bilinear Groups. Let Gbp(1κ) be a bilinear group generator that outputs
a description of a bilinear group parm := (p,G1,G2,GT , ê) ← Gbp(1κ), s.t. p
is a κ-bit prime, G1, G2 and GT are multiplicative cyclic groups of order p,
ê : G1 × G2 → GT is a bilinear map (pairing), s.t. ∀a, b ∈ Zp and gz ∈ Gz,
ê(ga

1 , gb
2) = ê(g1, g2)ab. If gz generates Gz for z ∈ {1, 2}, then ê(g1, g2) generates

GT . Deciding the membership in G1, G2 and GT , group operations, the pairing ê,
and sampling the generators are efficient, and the descriptions of the groups and
group elements are O(κ)-bit long each. A cryptographic pairing is also required
to satisfy some hardness assumptions (see later in this section).

(Λ, u) Trapdoor Commitment Scheme. A trapdoor commitment scheme is
a randomized cryptographic primitive (in the common reference string model [5])
that takes a message and outputs a commitment and a trapdoor. It is required to
have the following three security properties. Computational binding: without
access to the trapdoor, it is intractable to open the same commitment to two
different messages. Perfect hiding: the commitments of any two messages have
the same distribution. Trapdoor: given an access to the original message, the
randomizer and the trapdoor, one can open the commitment to an arbitrary
message.

Let z ∈ {1, 2}. Assume that small integers k > 0 and u ∈ [0, k] are public
parameters. Let Ψk,u := [0, k] ∪ {u}. We use the following ([0, k], u) trapdoor
commitment scheme from [18]. For parm ← Gbp(1κ), gz ←r Gz \ {1} and the
trapdoor (σ, α) ← Z

2
p (with σ = 0)1, let the common reference string be ck =

((gz, g
α
z )σi

)i∈Ψk,u
. The common reference string ck is made public, while the

1 The requirement that σ �= 0 is necessary to get perfect zero knowledge. In [18]
and related works, one did not require that σ �= 0 (and thus in particular they
only achieved statistical zero knowledge). The change σ �= 0 introduces a negligible
change in security definitions.
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trapdoor (σ, α) is only used in security proofs. Define2 comck((a0, . . . , ak); r) :=
∏k

i=0((gz, g
α
z )σi

)ai · ((gz, g
α
z )σu

)r = (gz, g
α
z )rσu+

∑k
i=0 aiσ

i

. The computation of
com can be sped up by using efficient multi-exponentiations algorithms [36,38].
Groth [25] and Lipmaa [32] used a similar trapdoor commitment scheme, but
with u = 0. (See also [24].) In our arguments, the case of an arbitrary u is more
suitable, though we can also modify them to work in the case u = 0.

Let Λ ⊂ Zp. A bilinear group generator Gbp is Λ-PSDL (power symmetric
discrete logarithm) secure [32], if for any NUPPT adversary A, the following
probability is negligible in κ:

Pr

[
parm := (p,G1,G2,GT , ê) ← Gbp(1κ), g1 ←r G1 \ {1} ,

g2 ←r G2 \ {1} , σ ←r Z
∗
p : A(parm; (gσi

1 , gσi

2 )i∈Λ) = σ

]

.

For algorithms A and XA, we write (y; yX) ← (A||XA)(σ) if A on input σ
outputs y, and XA on the same input (including the random tape of A) outputs
yX . Let z ∈ {1, 2}. Let Λ ⊂ Zp. Gbp is Λ-PKE (power knowledge of exponent)
secure [25,32] in Gz if for any NUPPT A there exists an NUPPT extractor XA,
such that the following probability is negligible in κ:

Pr

⎡

⎢
⎢
⎢
⎢
⎣

parm := (p,G1,G2,GT , ê) ← Gbp(1κ), gz ←r Gz \ {1} ,

(α, σ) ←r Zp × Z
∗
p, crs ←

(
parm; ((gz, g

α
z )σi

)i∈Λ

)
,

(c, ĉ; (ai)i∈Λ) ← (A||XA)(crs) : ĉ = cα ∧ c =
∏

i∈Λ

gaiσ
i

z

⎤

⎥
⎥
⎥
⎥
⎦

.

Let z = 1. Consider a CRS ck that in particular specifies g2, ĝ2 ∈ G2. A
commitment (C, Ĉ) ∈ G

2
1 is valid, if ê(C, ĝ2) = ê(Ĉ, g2). The case z = 2 is dual.

As shown in [18], the ([0, k], u) trapdoor commitment scheme is perfectly hid-
ing, and computationally binding under the Ψk,u-PSDL assumption. Moreover,
if the Ψk,u-PKE assumption holds, then for any NUPPT A that outputs a valid
commitment C, there exists a NUPPT extractor that, given A’s input together
with A’s random coins, extracts a valid opening of C.

Non-Interactive Zero Knowledge (NIZK). NIZK proofs [5] allow the prover
to convince the verifier that some input x belongs to some NP language L in
the manner that nothing else expect the truth of the statement is revealed. It
is well-known that NIZK proofs for non-trivial languages do not exist without
trusted setups unless P = NP. There are two popular approaches to deal with
this. The first approach, the use of random oracle model, results often in very
efficient protocols. It is well known [9,23] that some protocols that are secure in
the random oracle model are non-instantiable in the standard model, and thus
the random oracle model is a heuristic at its best.
2 Here and in what follows, elements of the form (g, gα)x, where α is a secret random

key, can be thought of as a linear-only encoding of x, see [3] for a discussion.
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A better approach is to construct NIZK proofs in the common reference
string (CRS) model [5]. Many verifiers can then later independently verify the
proof, by having access to the same CRS. The proof has to be complete, sound
and satisfy the zero-knowledge property. In practice, one is interested in proofs
where both the proof length and verification time are sublinear in the statement
size. Such succinct proofs cannot be statistically sound, and their soundness
cannot be proven under falsifiable assumptions [22]. The latter means that one
has to employ knowledge assumptions [13]. A computationally sound proof is
also known as an argument. Succinct NIZK arguments have been proposed for
languages like Circuit-SAT [1,21,25,32,33], Range [11,18], Set Partition,
Subset Sum and Decision Knapsack [18]. While several of these arguments
are efficient, they are all highly technical, and based on a careful combination of
already complex basic arguments.

More formally, an NIZK argument for a language L consists of three algo-
rithms, Gencrs, Pro and Ver. The CRS generation algorithm Gencrs takes as input
1κ (and possibly some other, public, language-dependent information) and out-
puts the prover’s CRS crsp, the verifier’s CRS crsv, and the trapdoor td. (The
distinction between crsp and crsv is not important for security, but in many
applications crsv is much shorter.) The prover’s algorithm Pro takes as an input
crsp together with a statement x and a witness w, and outputs an argument π.
The verifier’s algorithm Ver takes as an input crsv together with a statement x
and an argument π, and either accepts or rejects.

We expect the argument to be (i) perfectly complete (the honest verifier
always accepts the honest prover), (ii) perfectly zero knowledge (there exists an
efficient simulator who can, given x, crsp and td, output an argument that comes
from the same distribution as the argument produced by the prover), and (iii)
computationally sound (if x ∈ L, then an arbitrary NUPPT prover has only a
negligible success in creating a satisfying argument). We refer to say [25,32] for
formal definitions.

3 New Succinct Trapdoor Multiset Commitment Scheme

To succinctly commit to a multiset A, we represent A as a null set (with mul-
tiplicities) of a polynomial. For a multiset A ⊂ Zp, let χA(X) :=

∏
a∈A

(X − a),
where every a has been counted with its multiplicity. For example, χ{1,1,2}(X) =
(X − 1)2(X − 2).

Let z ∈ {1, 2}, and let k = |A| (recall that |A| includes the multiplic-
ities of all elements) and u ∈ [0, k] be again public parameters. To commit
to a multiset A, we use the ([0, k], u) trapdoor commitment scheme from [18].
Again, we first choose parm ← Gbp(1κ) and (α, σ) ←r Zp × Z

∗
p, and then set

ck ← (parm, ((gz, g
α
z )σi

)i∈Ψk,u
) to be the common reference string. We then

define comck(A; r) := comck(χA(σ); r). More precisely, the committer assumes
that χA(X) =

∑k
i=0 siX

i for some coefficients si, and then computes
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comck(A; r) :=
k∏

i=0

((gz, g
α
z )σi

)si · ((gz, g
α
z )σu

)r

for r ←r Zp. The trapdoor is equal to td ← (α, σ).

Theorem 1. Suppose z ∈ {1, 2}. The described trapdoor multiset commitment
scheme is perfectly hiding and, under the Ψk,u-PSDL assumption, computation-
ally binding. If the Ψk,u-PKE assumption holds in Gz, then one can also extract
the contents of the commitment.

Proof. The proof follows [18]. Perfect Hiding: follows from the fact that if r

is uniformly random in Zp and σ = 0, then g
χA(σ)+rσu

z is a uniformly random ele-
ment of Gz and thus does not depend on A. Computational Binding: assume
that an adversary can efficiently produce (s1, . . . , sk; r) and (s′

1, . . . , s
′
k; r′) with

si = s′
i for some i, such that loggz

c =
∑k

i=0 siσ
i + rσu =

∑k
i=0 s′

iσ
i + r′σu.

Then f(X) =
∑k

i=0 siX
i + rXu and f ′(X) =

∑k
i=0 s′

iX
i + r′Xu are two dif-

ferent polynomials. Thus, d(X) = f(X) − f ′(X) is a non-zero polynomial such
that d(σ) = 0. By using efficient polynomial factorization [30], we can find all
possible roots of d, and then find σ by comparing for each root x the value gx

z

with gσ
z ∈ ck.

Trapdoor: given td, ck, (A, r), (C,C ′) = comck(A; r) and A
′, one can com-

pute r′ such that (C,C ′) = comck(A′; r′) by using the fact that loggz
C =

∑
siσ

i + rσu =
∑

s′
iσ

i + r′σu.
Extraction: follows straightforwardly from the Ψk,u-PKE assumption. ��

4 New Pairwise Multiset Sum Equality Test Argument

In a pairwise multiset sum equality test (PMSET) argument, the prover aims to
convince the prover, that he knows how to open given four commitments Cj to
four multisets Aj , for j ∈ {1, 2, 3, 4}, such that A1 � A2 = A3 � A4, where in
both sides, the multiplicities of all elements are summed up. That is, we have
1A1(i) + 1A2(i) = 1A3(i) + 1A4(i) for all i ∈ Zp. In addition to that, one can also
upperbound |Aj | by some public value kj .

The intuition of the new PMSET argument is as follows. The prover commits
to Aj , for j ∈ {1, 2, 3, 4}, by using the multiset commitment scheme of Sect. 3.
After that, the prover creates a short NIZK argument to show that

χA1(σ)χA2(σ) = χA3(σ)χA4(σ) . (1)

If one does not randomize the commitments, the use of the trapdoor commitment
scheme from [18] makes the corresponding NIZK argument relatively (but not
completely) straightforward. To take into account the fact that the commitment
scheme is randomized, we let the prover also to create a crib E that enables the
verifier to verify Eq. (1) on committed elements.

Moreover, due to technical reasons, the prover also has to add extra elements
(Dj ,Δj), j ∈ {1, 2, 3, 4}, to the argument. These elements make it possible
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for the simulator to simulate the NIZK argument, and are necessary since the
commitments Cj are a part of the statement (i.e., the input of the prover) and
not a part of the NIZK argument. Here, Dj is basically an alternative random
commitment to Aj , while Δj is an element that makes it possible to verify that
Dj was created correctly. In the simulation, Dj are chosen uniformly and at
random, and Δj will be set so that the verification still accepts. Such a design
also increases the compatibility of our argument; namely the four multisets to
be proven can be arbitrarily committed in either G1 or G2. This allows the
prover to freely compose our arguments for some complex (multi)set relations.
Without loss of generality, in the remaining of this section, we assume that all
the commitments in the statement are in G1.

Thus, in the new argument, the prover creates new random commitments Dj

to Aj for j ∈ {1, 2, 3, 4}, together with Δj and the crib E. Since we will use a
knowledge assumption, all elements have an accompanying knowledge compo-
nent with respect to several different secret keys.

By relying on suitable assumptions, from Eq. (1) we obtain that χA1(X)χA2(X)
= χA3(X)χA4(X), and thus in particular χA1(X)χA2(X) and χA3(X)χA4(X) have
the same roots with the same multiplicities. Therefore, the verifier is convinced
that A1 �A2 = A3 �A4 (and due to the use of a knowledge assumption, that the
prover actually knows all four multisets).

We relax the multiset commitment scheme of Sect. 3 slightly, by allowing
χAj

(X) to be any polynomial that has Aj as its null set (with correct mul-
tiplicities). This relaxation allows us to achieve the following property. Recall
that the cardinality of a multiset counts the multiplicities of its elements, |A| =∑

a∈U
1A(a) = deg χA(X). In the new PMSET argument, one sets an upper

bound kj to the cardinality of the multiset Aj , |Aj | ≤ kj , before creating the
CRS. Hence, χAj

(X) =
∑kj

i=0 sjiX
i for some coefficients sji. As we will see

later, setting different kj to related values makes it possible to design interesting
variations of the PMSET argument.

We do not know how to achieve such flexibility without the relaxation of the
previous paragraph: without it, the committed polynomial χAj

has to be monic,
and thus in the committed subset argument one has to check that a specific
coefficient of χAj

is equal to 1. This would mean that the cardinality of Aj has
to be known before even creating the CRS. In our case, one just has an upper
bound on |Aj |, and thus our arguments are size-hiding which allows to build
zero-knowledge sets [35].

We note that we have another complication. We divide the commitment
scheme into two partial commitment schemes as follows (com1

ck(A; r), com2
ck

(A; r)) ← comck(A; r). (Thus, com2 is the knowledge component of the com-
mitment scheme.) Only com1

ck(Aj ; rj) is given as a part of the statement. To
obtain soundness, it is necessary that the prover generates com2

ck(Aj ; rj) as a
part of the argument.

We now give a formal definition of the new PMSET argument (Gencrs,Pro,Ver).
Here, the statement is (Cj)4j=1 where Cj = com1

ck(Aj ; rj)4j=1. On the other hand,
the witness is (Aj , rj)4j=1. Note that most of the elements gj

i that are used by the
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prover or the verifier include a secret component in their exponent and thus they
are computed based on the elements that are a part of the CRS. To avoid filling
the variable namespace, we will not assign special variable names for all those ele-
ments. Finally, for the ease of reading, we have included some elements (e.g., g1)
multiple times to crsp; they can be removed in an optimized implementation.

CRS generation Gencrs(1κ, k1, k2, k3, k4):
Set parm := (p,G1,G2,GT , ê) ←r Gbp(1κ); Set g1 ←r G1 \ {1} and g2 ←r

G2 \ {1}; Set σ, α, β1, β2, β3, β4, η, γ ←r Zp with σ = 0; Set k∗ ←
max(k1, k2, k3, k4); Set u ← k∗ + 1;
For j ∈ {1, 2, 3, 4}: Let z = 1 if j ∈ {1, 3} and z = 2 if j ∈ {2, 4}; Set
ckj ← (((gz, g

βj
z )σi

)i∈Ψkj,u
);

Set ck ← ((g1, gα
1 )σi

)i∈Ψk∗,u
;

Output

crsp ←(parm, ck, ck1, ck2, ck3, ck4, ((g2, g
η
2 )σi+u

)k∗
i=0, (g2, g

η
2 )σ2u

) ,

crsv ←(parm, g1, g
γ
2 , gσu

2 , gβ1
1 , gβ3

1 , g2, g
β2
2 , gβ4

2 , gη
2 ) ,

td ←(σ, α, β1, β2, β3, β4, η, γ) .

Prover Pro(crsp; (Cj)4j=1; (Aj , rj)4j=1):
For j ∈ {1, 2, 3, 4}:

(i) Write χAj
(X) =

∑kj

i=0 sjiX
i;

(ii) Set C ′
j ← com2

ck(Aj ; rj);
(iii) Set r′

j ←r Zp;
(iv) Set (Dj ,D

′
j) ← comckj (Aj ; r′

j);
(v) Set (Δj ,Δ′

j) ← (g1, g
γ
1 )rj−r′

j ;
Set

(E,E′) ←
k1∏

i=0

((g2, g
η
2 )σi+u

)r′
2s1i ·

k2∏

i=0

((g2, g
η
2 )σi+u

)r′
1s2i ·

k3∏

i=0

((g2, g
η
2 )σi+u

)−r′
4s3i ·

k4∏

i=0

((g2, g
η
2 )σi+u

)−r′
3s4i ·

((g2, g
η
2 )σ2u

)r′
1r′

2−r′
3r′

4 ;

Output π ← ((C ′
j ,Δj ,Δ′

j ,Dj ,D
′
j)

4
j=1, E,E′);

Verifier Ver(crsv; (Cj)4j=1;π): Accept if
(a) Verify knowledge components w.r.t. corresponding secret keys:

– For j ∈ {1, 2, 3, 4}, ê(Δ′
j , g2) =? ê(Δj , g

γ
2 ),

– For j ∈ {1, 2, 3, 4}, ê(C ′
j , g2) =? ê(Cj , g

α
2 ),

– ê(D′
1, g2) =? ê(D1, g

β1
2 ), ê(g1,D′

2) =? ê(gβ2
1 ,D2), ê(D′

3, g2)
=? ê(D3, g

β3
2 ), ê(g1,D′

4) =? ê(gβ4
1 ,D4),

– ê(g1, E′) =? ê(gη
1 , E),

(b) Verify that Cj and Dj commit to the same multisets:
– For j ∈ {1, 3}, ê(Cj/Dj , g2) =? ê(Δj , g

σu

2 );
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– For j ∈ {2, 4}, ê(Cj , g2)/ê(g1,Dj) =? ê(Δj , g
σu

2 );
(c) Verify that A1 � A2 =? A3 � A4: ê(g1, E) =? ê(D1,D2)/ê(D3,D4).
Otherwise, reject.

Theorem 2. The argument of the current subsection is a perfectly complete and
perfectly zero-knowledge argument that the prover knows how to open Cj as a
multiset Aj for j ∈ {1, 2, 3, 4}, such that A1 � A2 = A3 � A4 and |Aj | ≤ kj for
j ∈ {1, 2, 3, 4}. Let Ψk∗,u,2u := [0, k∗] ∪ [u, k∗ + u] ∪ {2u}. Moreover:

– If the Ψk∗,u,2u-PSDL, the Ψk1,u-PKE and the Ψk3,u-PKE assumption in G1,
the Ψk2,u-PKE and the Ψk4,u-PKE and the ([u, u+k∗]∪{2u})-PKE assumption
in G2 hold, then it is computationally sound.

– If the Ψk1,u-PKE assumption and the Ψk3,u-PKE assumption hold in G1 and
the Ψk2,u-PKE assumption and the Ψk4,u-PKE assumption hold in G2, then it
is an argument of knowledge.

We remark that to simplify the claim, one can combine the different PKE
assumptions into one (stronger than necessary) PKE assumption, but we pre-
ferred to state precise assumptions. For example, (Ψ1 ∪ Ψ2)-PKE implies both
Ψ1-PKE and Ψ2-PKE, but the opposite direction does not necessarily hold.

Proof. Let h = ê(g1, g2). Completeness: It is easy to see that if the prover
is honest, then all the equations but the last one hold. For the very last equa-
tion, note that since (

∑k1
i=0 s1iσ

i)(
∑k2

i=0 s2iσ
i) =

∏
i∈A1

(σ − i) · ∏
i∈A2

(σ − i) =
∏

i∈A1�A2
(σ − i) =

∏
i∈A3�A4

(σ − i) = · · · = (
∑k3

i=0 s3iσ
i)(

∑k4
i=0 s4iσ

i), we get

logh ê(D1,D2) = logh ê(g
∑k1

i=0 s1iσ
i+r′

1σu

1 , g
∑k2

i=0 s2iσ
i+r′

2σu

2 )

=(
k1∑

i=0

s1iσ
i + r′

1σ
u)(

k2∑

i=0

s2iσ
i + r′

2σ
u)

=χA1�A2(σ) +
k1∑

i=0

r′
2s1iσ

i+u +
k2∑

i=0

r′
1s2iσ

i+u + r′
1r

′
2σ

2u ,

and analogously logh ê(D3,D4) = χA3�A4(σ)+
∑k3

i=0 r′
4s3iσ

i+u+
∑k4

i=0 r′
3s4iσ

i+u+
r′
3r

′
4σ

2u. Thus,

logh(ê(D1,D2)/ê(D3,D4)) = (
k1∑

i=0

r′
2s1iσ

i+u +
k2∑

i=0

r′
1s2iσ

i+u)−

(
k3∑

i=0

r′
4s3iσ

i+u +
k4∑

i=0

r′
3s4iσ

i+u) + (r′
1r

′
2 − r′

3r
′
4)σ

2u = logh E .

Zero-Knowledge: In the real execution, the variables Cj , Dj , Δj , and E
are distributed randomly, modulo the last verification equation. Moreover, C ′

j ,
D′

j , Δ′
j , and E′ are such that the verification equations on line (a) hold.

The simulator, who knows td but does not know the witness, will simulate
the proof as follows.
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1. Let D1 ← g
β∗
1

1 , D2 ← g
β∗
2

2 , D3 ← g
β∗
3

1 , D4 ← g
β∗
4

2 for β∗
1 , β∗

2 , β∗
3 , β∗

4 ←r Zp.

2. For j ∈ {1, 2, 3, 4}, set Δj ← (Cjg
−β∗

j

1 )1/σu

. It is obvious that ê(Cj/Dj , g2) =

ê(Cjg
−β∗

j

1 , g2) = ê(Δj , g
σu

2 ) for j ∈ {1, 3} and ê(Cj , g2)/ê(g1,Dj) = ê(Cjg
−β∗

j

1 ,

g2)ê(g1, g2)β∗
j /ê(g1,Dj) = ê(Δj , g

σu

2 ) for j ∈ {2, 4}.
3. Choose E so that the last verification equation holds, that is, E ← g

β∗
1β∗

2−β∗
3β∗

4
2 .

Clearly, ê(D1,D2)/ê(D3,D4) = ê(g1, g2)β∗
1β∗

2−β∗
3β∗

4 = ê(g1, E).
4. Now, set C ′

j ← Cα
j ,Δ′

j ← Δγ
j ,D′

j ← D
βj

j for j ∈ {1, 2, 3, 4}, and E′ ← Eη.
Such a choice satisfies the verification equations on line (a).

5. Finally, let π ← ((C ′
j ,Δj ,Δ′

j ,Dj ,D
′
j)

4
j=1, E,E′).

Since all verifications are satisfied and π comes from the correct distribution, then
the simulation has been successful and the argument is perfect zero-knowledge.

Computational soundness: Assume that an adversary A can break the
soundness. We construct adversary Apsdl that breaks the Ψk∗,u,2u-PSDL assump-
tion or at least one of the claimed knowledge assumptions as follows.

Assume that all the required knowledge assumptions hold. Therefore, we can
extract the following values:

– For j ∈ {1, 2, 3, 4}, by the Ψkj ,u-PKE assumption in G1, from (Cj , C
′
j) the

adversary obtains a polynomial fj(X) =
∑kj

i=0 sjiX
i + rjX

u, such that Cj =
g

fj(σ)
1 .

– For j ∈ {1, 2, 3, 4}, by the {0}-PKE assumption in G2, from (Δj ,Δ′
j) the

adversary obtains δj such that Δj = g
δj
1 . (Note that the {0}-PKE assumption

follows from the Ψkj ,u-PKE assumption.)
– For j ∈ {1, 2, 3, 4}: let z = 1 for j ∈ {1, 3} and z = 2 for j ∈ {2, 4}. By the

Ψkj ,u-PKE assumption in Gz, from (Dj ,D
′
j) the adversary obtains a polyno-

mial f ′
j(X) =

∑kj

i=0 s′
jiX

i + r′
jX

u, such that Dj = g
f ′
j(σ)

z .
– By the ([u, u+k∗]∪{2u})-PKE assumption in G2, from (E,E′) the adversary

obtains a polynomial f̂(X) =
∑k∗

i=0 ŝiX
i+u + r̂X2u, such that E = g

f̂(σ)
2 .

If some extraction does not succeed, then Apsdl aborts (it has broken one of the
knowledge assumptions). Assume now that Apsdl does not abort.

Since for j ∈ {1, 3}, ê(Cj/Dj , g2) = ê(Δj , g
σu

2 ) holds, we have fj(σ)−f ′
j(σ) =

δjσ
u. Therefore, if for some i, j, sji = s′

ji or δj = tj − rj we have a non-zero
polynomial d(X) := fj(X)−f ′

j(X)−δjX
u, such that d(σ) = 0. Note that σ = 0,

so Apsdl can use an efficient polynomial factorization algorithm [30] to find all
roots of d(X), and then test for which root x it holds that (say) gx

1 = gσ
1 . Thus,

Apsdl has found σ and broken the Ψk∗,u-PSDL assumption (and thus also the
Ψk∗,u,2u-PSDL assumption).

Analogously, Apsdl can break the Ψk∗,u-PSDL assumption if for some i, sji =
s′

ji or δj = tj − rj in the case j ∈ {2, 4}.
Assuming that the adversary did not already break the Ψk∗,u-PSDL assump-

tion, we now have that for j ∈ {1, 2, 3, 4}, (Dj ,D
′
j) and (Cj , C

′
j) commit to the

same set, let it be Aj .
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Finally, due to the last verification equation (c), we have f̂(σ) = f ′
1(σ)f ′

2(σ)−
f ′
3(σ)f ′

4(σ). This means that, defining

d(X) :=f ′
1(X)f ′

2(X) − f ′
3(X)f ′

4(X) − f̂(X)

=(
∑

s′
1iX

i)(
∑

s′
2iX

i) − (
∑

s′
3iX

i)(
∑

s′
4iX

i) +
k∗
∑

i=0

ciX
i+u + c′X2u

for some coefficients ci and c′, we have d(σ) = 0.
Since A succeeded in cheating, it must be the case that d(X) is a non-zero

polynomial. But in this case, Apsdl has obtained a non-zero polynomial d(X)
where d(σ) = 0 for some unknown σ. Again, Apsdl uses an efficient polynomial
factorization algorithm [30] to find all roots of d(X), and then tests for which
root x it holds that (say) gx

1 = gσ
1 . Thus, Apsdl has found σ and broken the

Ψk∗,u,2u-PSDL assumption.
Thus, (Dj ,D

′
j) commit to the sets Aj such that A1 � A2 = A3 � A4. We

have already established before that (Cj , C
′
j) and (Dj ,D

′
j) commit to the same

values. The claim follows.
Argument of knowledge: follows from the last claim of Theorem 1. ��
Clearly, the communication complexity of this argument is 22 = Θ(1) group

elements and the verifier’s computational complexity is dominated by 39 = Θ(1)
pairings. The verifier’s CRS length contains the parameters parm and 9 = Θ(1)
group elements. On the other hand, the prover’s CRS length, the CRS com-
putation, and the prover’s computation are Θ(k) group elements or operations
respectively. Once again, the computation can be sped up by using efficient
multi-exponentiation algorithms [36,38].

Finally, one can design a balanced version of the new subset argument as
follows. Let k = |A1 �A2|. Partition both A1 and A2 into ≈ √

k subsets A1i and
A2i, so that |A1i � A2i| ≈ √

k. Partition A3 and A4 in a similar way, so that
A1i �A2i = A3i �A4i. Now, the PMSET argument that A1�A2 = A3�A4 is just
equal to the concatenation of

√
k PMSET arguments that A1i �A2i = A3i �A4i.

Clearly, in this balanced version, the CRS length, the verifier’s computation,
and the communication are Θ(

√
k), that is, sublinear in k. On the other hand,

the prover’s computational complexity is still Θ(k). However, Θ(k) total work is
clearly a lower bound for arbitrary sets Aj .

5 Applications

In this section, we show how to apply the new PMSET argument to construct
arguments for standard (multi)set operations, such as intersections, unions, and
complements. In such arguments, the prover wants to convince the verifier that
its three committed (multi)sets A,B,C satisfy relations like A ⊆ B, A = B ∩ C,
A = B ∪ C or A = B \ C. We first note that one can clearly modify the PMSET
argument so that to allow any subset of {A,B,C,D} to be publicly known sets
(e.g., C = ∅). This just means that canonical commitments of the public sets are
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included to the CRS. One has to obviously take care about including only the
correct knowledge components to the CRS. We omit further discussion.

In what follows, let U be some publicly known universal set. For efficiency
reasons, it is required that U is not too large; this is usually not a too restrictive
assumption. In fact, in many cases U has been fixed by the application and one
has to verify among other things that all sets belong to U. E.g., in the case of
e-voting, U can be the set of all candidates, and in the case of e-auctions, U can
be the set of bids (or in combinatorial auctions, the set of all auctioned goods).

Is-a-Sub(multi)set Argument. Clearly, A ⊆ B (i.e., 1A(a) ≤ 1B(a) for all a ∈ U)
iff A � C = ∅ � B, for some (committed) multiset C. Thus, the prover simply
provides a commitment to C as a part of the is-a-subset argument, and then
directly utilizes the PMSET argument.

Is-a-Set Argument. A committed multiset A is a set (i.e., 1A(a) ≤ 1 for all a) if
A ⊆ U. Thus, for example to show that A ⊆ B where A and B are both sets, one
has to show that A ⊆ B and B ⊆ U by using the argument from the previous
paragraph. Note that having an upper bound on |C| effectively enforces an lower
bound on |A|; this is useful in some applications.

Multiset-Sum Argument. Multiset sum is trivial, as C = A � B iff A � B = C � ∅.

Set-Intersection-And-Union Argument. Set intersection and union are closely
related. Suppose the prover wants to show that the given four committed sets
A,B,C,D ⊆ U satisfyC = A∩B andD = A∪B. For this it is sufficient to show that
A�B = C�D,C ⊆ A,C ⊆ B and thatA, B andD are sets. Really, ifA, B andD are
sets, and C ⊆ A then also C is a set. Thus, for all a, 1A(a),1B(a),1C(a),1D(a) ∈
{0, 1}. If 1A(a) = 1B(a) = 0, then also 1C(a) = 1D(a) = 0. If 1A(a) = 1B(a) = 1,
then 1C(a) + 1D(a) = 2. But since C and D are sets, then 1C(a) = 1D(a) = 1. If
1A(a) = 0 and 1B(a) = 1 (the opposite case is similar), then 1C(a) + 1D(a) = 1.
But since C ⊆ A, 1C(a) = 0 and 1D(a) = 1. Thus, C = A ∩ B and D = A ∪ B.

Set-Difference Argument. To show that committed sets A,B,C ⊆ U satisfy A =
B\C (i.e., 1A(a) = max(0,1B(a)−1C(a)) for all a), the prover shows (by using the
set-intersection-and-union argument from the previous paragraph) that A∩C = ∅
and A∪C = B∪C. Since ∅ is not committed to, one can somewhat simplify the
resulting argument (e.g., one does not have to verify that ∅ ⊆ A).

Accumulators. We can extend the applications to the case of cryptographic accu-
mulators [2], where given committed S and a public k, one has to present a short
proof of either k ∈ S or k ∈ S. In this case, one is traditionally not interested
in privacy, but the proofs should be sound. More precisely, given k ∈ S, we can
give a PMSET argument that {k} ∪ S

′ = S for some committed multiset S
′.

Similarly, given k ∈ S, we can give a PMSET argument that {k}∪S
′′ = U\S for

some committed multiset S
′′. In both cases, one can additionally use an is-a-set

argument to show that S (or S′′, in the k ∈ S case) is a set. This also means that
we can implement a dynamic accumulator [8], by first showing that k ∈ S (or
k ∈ S) and then using commitment to S

′ as the accumulator for S \ {k} (resp.,
commitment to S ∪ {k} as the accumulator for S ∪ {k}).



230 P. Fauzi et al.

Acknowledgments. The first two authors were supported by the Estonian Research
Council, and European Union through the European Regional Development Fund.
The third author was supported by Project FINER, Greek Secretariat of Research and
Technology, and by ERC project CODAMODA.

A Related Work

Our multiset commitment scheme is a modification of the commitment scheme [18],
which in turn is related to the polynomial commitment scheme of [28]. In [28], the
authors proposed a commitment scheme for polynomials f , where instead of com-
mitting to the coefficients of f separately, one commits to f(σ), where σ is a ran-
dom key. Their commitment scheme is based on the fact that for any polynomial f ,
x−i divides f(x)−f(i). Our commitment scheme is somewhat more efficient than
the one from [28], since [28] required the randomness r also to be a polynomial.
Thus, one needs to generate deg(f) times more randomness, and the opening of
the commitment is also more burdensome. While the need for a new commitment
scheme was motivated by the applications considered in [28], it is not necessary in
our distinctively different applications.

Based on their commitment scheme, [28] proposed an NIZK proof that a
specific public element belongs to the committed subset, which they named
zero knowledge sets. Henry and Goldberg [26] showed that this argument was
insecure, and provided a secure improvement. However, both these constructions
were interactive, and would either require a random oracle, or be less efficient to
get non-interactiveness. We provide a non-interactive implementation without
random oracles in our accumulator argument, which is as efficient as both [28]
and [26].

The balanced version of our multiset commitment scheme is somewhat similar
to the setting in the electronic voting protocol of Dimitriou and Foteinakis [16],
which had K disjoint but same size sets V1, · · · VK with total cardinality C =
K · |V1|, and a prover commits to S such that S ⊆ Vi for some i ∈ [1,K]. We can
directly compare when either K = 1 or K =

√
C = |V1|. But in both cases Dim-

itriou and Foteinakis require a separate zero-knowledge proof for each candidate,
hence the prover’s computation, communication and verification are all ω(C),
whereas we have either Θ(C) prover’s computation, Θ(

√
C) communication and

Θ(
√

C) verification (in the balanced version) or Θ(C) prover’s computation, con-
stant communication and constant verification (in the non-balanced version).

In terms of set operations, there is a lot of related research in the literature.
We denote k to be an upper bound for the size of the client’s and server’s sets (or
the maximum of the two, if an upper bound is not required). Freedman, Nissim
and Pinkas presented a two-party private matching and set intersection proto-
col [20], where the client inputs a private set C, and the server inputs a private
set S; if si ∈ S ∩ C, the client learns si, otherwise it learns a uniformly random
value. The proposed 2-round protocol requires oblivious pseudorandom functions
(OPRF) and is provably secure in the random oracle model, but requires O(k)
communication. Jarecki and Lim [27] improved upon this and used OPRF to
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get a 1-round protocol secure in the random oracle model, and a 2-round pro-
tocol secure in the CRS model, both cases having O(k) communication. Both
protocols reveal the size of the server’s set.

Kissner and Song [29] proposed different privacy-preserving set operation
protocols that employed the concept of multi-sets. For example, the set union
operation is seen as simply the product of the polynomial representations of the
two sets. They implement secure set intersection with a fixed and equal size
for the client and server sets, using the fact that for random polynomials r, s,
χAr + χBs = χA∩Bt with t having no roots from the universal set U, except for
a negligible probability. However, their protocols have O(k) proof size, prover’s
computation and verification, with the overhead being a proof of correct poly-
nomial multiplication. Moreover, they also have several operations on encrypted
polynomials, such as derivatives to reduce duplicated elements of a multiset.
These operations are costly, and we choose not to implement them as they will
require a product argument as in [18].

There are several other results on private set intersections that are not
directly comparable to ours. For example, Blanton and Aguiar [4] had more
efficient set operations than the work stated above based on efficient parallelized
multi-party operations, but it requires n > 2 parties while we focus on two-party
protocols. D’Arco et al. [15] showed that unconditionally secure size-hiding set
intersection is possible with the help of a trusted third party (TTP), given that
the client and server have set cardinality at most k. However, the TTP sends
output to the client and server based on their specific sets. This means that even
for a fixed server set V, the TTP is required for each new client set. Moreover,
their 2-round, O(k)-communication protocol is only secure in the semi-honest
model. Extending it to become a protocol secure against malicious adversaries,
the proof size (that is dominated by proof of correct encryption for each of k
Paillier ciphertexts) will also become O(k).

We summarize in Table 1. Note that we only include results that either have
non-interactive zero knowledge proofs, or can be made non-interactive using the
Fiat-Shamir heuristic. None of the work discussed has 1 round (non-interactive),
does not require a random oracle and has proof size sublinear in the set cardi-
nality, whereas our set operations have constant-size proof and is secure in the
CRS model.
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Abstract. In a searchable symmetric encryption (SSE) scheme, a client
can keyword search over symmetrically-encrypted files which he stored
on the server (ideally without leaking any information to the server). In
this paper, we show the first multiple keyword search SSE scheme such
that even the search formula f (AND, OR and so on) is kept secret. Our
scheme is based on an extended garbled circuit satisfying label-reusable
privacy which is introduced in this paper.

Keywords: Searchable symmetric encryption ·Multiple keyword search ·
Garbled circuit

1 Introduction

1.1 Searchable Symmetric Encryption

Cloud storage service is a major industry trend in the Internet society. In the
model of searchable symmetric encryption (SSE) schemes, a client first stores a
set of encrypted files {Ci} on the server. Later, in the search phase, he can effi-
ciently retrieve the encrypted files which contain some specific keywords without
any loss of data confidentiality. While single keyword search SSE schemes have
been studies extensively so far [6,9,10,17–20,22], there are only a few works that
study multiple keyword search SSE schemes.

Conjunctive (AND) keyword search in the SSE setting was first considered
by Golle et al. [15]. In their scheme, a client can specify at most one keyword in
each keyword field. For example, the keyword fields consist of “To”, “From” and
“Subject” in emails. This framework was followed up by [4,5]. In such schemes,
however, the client cannot retrieve files which contain both Alice and Bob some-
where in all the keyword fields (for example, somewhere in “To”, “From” and
“Subject”).

Wang et al. [23] showed a keyword field free conjunctive keyword search
scheme. However, their scheme does not support any other search formulas (for
example, OR).

Recently, Cash et al. [7] showed a keyword field free SSE scheme which can
support any search formula in the random oracle model. However, the search
formulas are leaked to the server [8, p. 16]. Further, their search phase requires
four moves. Namely in the first two moves, the client receives the set of encrypted
c© International Financial Cryptography Association 2014
N. Christin and R. Safavi-Naini (Eds.): FC 2014, LNCS 8437, pp. 234–251, 2014.
DOI: 10.1007/978-3-662-45472-5 15
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indexes {rind} of the files he wants to retrieve [8, Fig. 3]. He then decrypts them
to DB = {ind}. In the next two moves, the client sends DB to the server, and the
server returns all encrypted files Ci such that i ∈ DB.

1.2 Garbled Circuit

Garbled circuits were initially presented by Yao [24] in the context of secure
two-party computation. They were proven secure by Lindell and Pinkas [21].
Recently, the notion has been formalized by Bellare et al. [3].

Over the years, garbled circuits have found many applications: two-party
secure protocols [25], multi-party secure protocols [14], one-time programs [13],
KDM-security [2], verifiable computation [11], homomorphic computations [12]
and others.

A garbled circuit is an encoding garble(f) of a boolean circuit f such that
one can compute f(X) from (garble(f), label(X)) without learning anything
about (f,X) other than f(X), where label(X) is an encoding of X. This security
notion is called circuit and input privacy.

Usually, (garble(f), label(X)) is one-time use. Namely if garble(f) or
label(X) is reused, then some information on (f,X) is leaked. Very recently,
Goldwasser et al. [16] constructed a reusable garbled circuit garble(f), which
can be reused for multiple inputs X1,X2, . . ..

1.3 Our Contribution

In this paper, we show the first multiple keyword search SSE scheme such that
even the search formula f is kept secret. Also, (1) it is keyword field free, (2) it
can support any search formula and (3) the search phase requires only two moves
(Table 1).

Table 1. Keyword field free SSE scheme.

Search formula Search phase Search formula secrecy

Wang et al. [23] Only AND 2 moves No

Cash et al. [7] Any 4 moves No

Proposed Any 2 moves Yes

Our scheme is based on an extended garbled circuit satisfying label-reusable
privacy which is introduced in this paper. In such a scheme, one can com-
pute f1(X), f2(X), . . . from label(X), garble(f1), garble(f2), . . . without learn-
ing anything about (X, f1, f2, . . .) other than f1(X), f2(X), . . . (Table 2).

We first formulate this security notion, and then present a simple scheme
which satisfies it. We next construct a multiple keyword search SSE scheme by
using an extended garbled circuit which satisfies label-reusable privacy. (In the
first place, no SSE scheme is known which uses a garbled circuit.)
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Table 2. Reusable garbled circuit.

Goldwasser et al. [16] garble(f) can be reused

This paper label(X) can be reused

Suppose that a client wants to retrieve all files which contain two keywords
w1 AND w2. Let List(w) = {i | a file Di contains a keyword w}. Then in any
multiple keyword search SSE scheme, the server learns at least List(w1) ∩
List(w2) because she must return all encrypted files Ci such that i ∈ (List(w1)∩
List(w2)). In addition to this, our scheme allows the server to learn only π(1)
and π(2), where π is a random permutation.

On the other hand, in the scheme of Cash et al. [7], the server additionally
learns (i) that the search formula is AND, (ii) List(w1) or List(w2), and some
more information (see [8, Sect. 5.3] for the details).

The communication overhead of our search phase is cλ+4msλ bits, where λ
is the security parameter (say λ = 128), m is the number of files, c is the input
size of a search formula f (namely c is the number of search keywords) and s
is the number of gates of f . We also present a more efficient variant for small c
such that the communication overhead is cλ + m2c bits, which is 2λ + 4m bits
for 2(= c) keyword search.1,2

This paper is organized as follows. Section 2 is preliminaries. In Sect. 3, we
introduce a notion of label-reusable privacy of garbled circuits. We then present a
simple construction which satisfies this security notion. Section 4 defines multiple
keyword query SSE schemes. In Sect. 5, we show how to construct a multiple key-
word query SSE scheme from a label-reusable garbled circuit. Section 6 presents
an example.

2 Preliminaries

PPT means probabilistic polynomial time. If A is an algorithm, then y ←
A(x1, . . ., xn; r) represents the act of running the algorithm A with inputs
x1, . . . , xn and coins r to get an output y, and y ← A(x1, . . . , xn) represents
the act of picking r at random and letting y ← A(x1, . . . , xn; r).

If X is a set, then x
$← X represents the act of choosing x randomly from

X. |X| denotes the cardinality of X.
If X is a string, then |X| denotes the bit length of X, and lsb(X) denotes

the least significant bit of X.
For X = (x1, . . . , xn) and U = (i1, . . . , ic), we define

X|U = (xi1 , . . . , xic).
1 Our scheme can be combined with an efficient single keyword search SSE scheme

such as [20]. Then a single keyword search will be faster.
2 The scheme of Cash et al. [7] achieves sublinear in m while their search phase requires

4 moves, and some amount of information is leaked to the server.
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3 Label Reusable Garbled Circuit

In this section we introduce a notion of label-reusable privacy of garbled circuits.

3.1 Garbled Circuit

According to Bellare et al. [3], a boolean circuit is a 5-tuple f = (n, s,A,B,G).
Here n ≥ 2 is the number of inputs, and s ≥ 1 is the number of gates. We
let Inputs = {1, ..., n}, Gates = {n + 1, ..., n + s}, Wires = {1, ..., n + s} and
OutputWire = {n + s}. Then A: Gates → Wires\OutputWire is a function to
identify each gate’s first incoming wire, and B : Gates → Wires\OutputWire
is a function to identify each gate’s second incoming wire. We require A(g) <
B(g) < g for each gate g ∈ Gates. Finally G : Gates ×{0, 1}2 → {0, 1} is a
function that determines the functionality of each gate. For example, if g is an
AND gate, then Gg(x, y) = x ∧ y.

Each gate has two inputs and arbitrary functionality. The ith bit of the input
is presented along wire i. Every non-input wire is the outgoing wire of some gate.
The wires are numbered 1 to n + s, and the output wire is n + s. The outgoing
wire of each gate serves as the name of that gate.

Fig. 1. A boolean circuit f with n = 4 and s = 3.

We say that f− = (n, s,A,B) is a topological circuit of f = (n, s,A,B,G).
Thus a topological circuit is like a circuit except that the functionality of the
gates is unspecified (Fig. 2).

We define a garbling scheme by a tuple of PPT algorithms (GenLab, GenGC,
EvalGC) as follows:

– GenLab(1λ, n) chooses v0
i ∈ {0, 1}λ and v1

i ∈ {0, 1}λ such that

lsb(v0
i ) �= lsb(v1

i )

for i = 1, . . . , n randomly, and outputs

V = ((v0
1 , v

1
1), . . . , (v

0
n, v1

n)).
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Fig. 2. The topological circuit f− of Fig. 1.

– GenGC(f, V ) outputs a garbled circuit Γ , where

f = (n, s,A,B,G) and V = ((v0
1 , v

1
1), . . . , (v

0
n, v1

n)).

– EvalGC(f−, Γ, (vx1
1 , . . . , vxn

n )) is a deterministic algorithm which outputs z
such that

z = f(x1, . . . , xn),

where xi ∈ {0, 1} for each i.

Correctness requires that if V ← GenLab(1λ, n) and Γ ← GenGC(f, V ), then

EvalGC(f−, Γ, (vx1
1 , . . . , vxn

n )) = f(x1, . . . , xn).

for any X = (x1, . . . , xn).
A garbling scheme (GenLab, GenGC, EvalGC) is said to satisfy circuit and input

privacy if (f−, Γ , (vx1
1 , . . . , vxn

n )) leaks no information on f and (x1, . . . , xn) other
than z = f(x1, . . . , xn) and f−.

3.2 Label Reusable Privacy

We first extend a garbling scheme (GenLab, GenGC, EvalGC) to an extended gar-
bling scheme (GenLab, eGenGC, eEvalGC). The difference is that eGenGC and
eEvalGC take a positive integer counter as an additional input. Namely

Γ ← eGenGC(counter, f, V ),
z ← eEvalGC(counter, f−, Γ, (vx1

1 , . . . , vxn
n )).

The correctness requires that if V ← GenLab(1λ, n) and Γ ← eGenGC
(counter, f, V ), then

eEvalGC(counter, f−, Γ, (vx1
1 , . . . , vxn

n )) = f(x1, . . . , xn)

for any X = (x1, . . . , xn).
We next define label-reusable privacy for extended garbling schemes. Roughly

speaking, it means that no information on X and (f1, f2, . . .) is leaked from
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Fig. 3. Extended garbling scheme

(vx1
1 , . . . , vxn

n ) and (Γ1, Γ2, . . .), where a fixed input X is reused for multiple
boolean circuits f1, f2, . . . (Fig. 3).

To formally define this security notion, we consider a real game Garblereal

and a simulation game Garblesim as shown in Figs. 4 and 5. In both games, the
adversary A chooses

– X = (x1, . . . , xn) in the setup phase, and
– (Ui, fi) in the query phase for i = 1, . . . , q, where Ui ⊆ {1, . . . , n} and fi =

(|Ui|, si, Ai, Bi, Gi) is a boolean circuit,

and sends them to the challenger. In Garblereal, the challenger returns (vx1
1 , . . .,

vxn
n ) in the setup phase, and a garbled circuit Γi in the query phase. In Garblesim,

the simulator must return

– fake (vx1
1 , . . . , vxn

n ) based solely on n in the setup phase, and
– fake Γi based solely on |Ui|, zi = fi(X|Ui

) and f−
i in the query phase.

Our requirement is that (vx1
1 , . . . , vxn

n ) and {Γi} should not leak any information
other than n, {zi = fi(X|Ui

)} and {(|Ui|, f−
i )}3. Let

Advgarblereal (A) = Pr(A outputs b = 1 in Garblereal),

Advgarblesim (A) = Pr(A outputs b = 1 in Garblesim).

Definition 1. We say that an extended garbling scheme (GenLab, eGenGC,
eEvalGC) satisfies label-reusable privacy if there exists a PPT simulator Sim
such that |Advgarblereal (A) − Advgarblesim (A)| is negligible for any PPT adversary A.

3 {(|Ui|, f−
i )} corresponds to the side-information function Φtopo of [3].
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Fig. 4. Real game for a garbling scheme: Garblereal.

Fig. 5. Simulation game for a garbling scheme: Garblesim.

3.3 Construction

We present a simple construction of an extended garbling scheme which satisfies
label-reusable privacy. Let H0 : {0, 1}∗ → {0, 1}λ and H1 : {0, 1}∗ → {0, 1}
be two hash functions. They will be treated as random oracles in the security
proofs.

On input counter, f = (n, s,A,B,G) and V = ((v0
1 , v

1
1), . . . , (v

0
n, v1

n)),
eGenGC behaves as follows.

1. For i ∈ {n + 1, . . . , n + s − 1}, choose v̄0
i and v̄1

i from {0, 1}λ such that
lsb(v̄0

i ) �= lsb(v̄1
i ) randomly.

2. Define

Lx
i =

{
vx

i if 1 ≤ i ≤ n
v̄x

i if n < i ≤ n + s − 1

for 1 ≤ i ≤ n + s − 1 and x ∈ {0, 1}.
3. For (g, x, y) ∈ {n + 1, . . . , n + s} × {0, 1} × {0, 1}, do

a ← A(g), b ← B(g), �a ← lsb(Lx
a), �b ← lsb(Ly

b ),
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P [g, �a, �b] =
{

H0(counter, g, Lx
a, Ly

b ) ⊕ L
Gg(x,y)
g if g �= n + s

H1(counter, g, Lx
a, Ly

b ) ⊕ Gg(x, y) if g = n + s

4. Output a garbled circuit

Γ = [P (n + 1, ·, ·), . . . , P (n + s, ·, ·)]. (1)

On input counter, f−, Γ = [P (n + 1, ·, ·), . . . , P (n + s, ·, ·)] and (v1, . . . , vn),
eEvalGC behaves as follows. Let Li = vi for i = 1, . . . , n.

1. For g = n + 1, . . . , n + s, do

a ← A(g), b ← B(g), �a ← lsb(La), �b ← lsb(Lb),

vg = P [g, �a, �b] ⊕ H0(counter, g, La, Lb) if g �= n + s

z = P [g, �a, �b] ⊕ H1(counter, g, La, Lb) if g = n + s

2. Output z.

Namely our extended garbling scheme is almost the same as the usual gar-
bling scheme except for that the additional input counter is included in the
inputs to H0 and H1, and each value of v̄x

i is chosen freshly for each value of
counter.

Also P (n+ s, ·, ·) encrypts a bit Gn+s(x, y) instead of a string L
Gn+s(x,y)
n+s (by

one-time pad) because this is enough for our application to searchable symmetric
encryption. (We must encrypt L

Gn+s(x,y)
n+s by one-time pad in secure two-party

computation, though.)

(Example 1). Let n = 2. In GenLab, we choose

v0
1 , v

1
1 , v

0
2 , v

1
2

$← {0, 1}λ.

For simplicity, assume that

lsb(v0
1) = lsb(v0

2) = 0, lsb(v1
1) = lsb(v1

2) = 1.

In eGenGC, for a boolean circuit f(·, ·), the garbled circuit Γ is constructed
as

Γ = [P (3, 0, 0), . . . , P (3, 1, 1)],

where

P (3, 0, 0) = H1(counter, 3, v0
1 , v

0
2) ⊕ f(0, 0) (2)

P (3, 0, 1) = H1(counter, 3, v0
1 , v

1
2) ⊕ f(0, 1) (3)

P (3, 1, 0) = H1(counter, 3, v1
1 , v

0
2) ⊕ f(1, 0) (4)

P (3, 1, 1) = H1(counter, 3, v1
1 , v

1
2) ⊕ f(1, 1) (5)
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In eEvalGC, we are given Γ , counter and some (v1, v2). Suppose that

(v1, v2) = (v0
1 , v

0
2).

Then we first compute
(lsb(v0

1), lsb(v
0
2)) = (0, 0)

We next compute

f(0, 0) = P (3, 0, 0) ⊕ H1(counter, 3, v0
1 , v

0
2).

Theorem 1. The above extended garbling scheme (GenLab, eGenGC, eEvalGC)
satisfies label-reusable privacy in the random oracle model.

3.4 Proof

We construct a simulator Sim as follows. In the setup phase, Sim is given n.
Then, Sim runs GenLab(1λ, n) to generate V = ((v0

1 , v
1
1), . . . , (v

0
n, v1

n)). It then
returns (v0

1 , . . . , v
0
n) to the challenger.

In the ith query phase, Sim is given (i, Ui, f
−
i , zi). Let f−

i = (ci, si, Ai, Bi).

1. Sim chooses G such that f ′
i = (ci, si, Ai, Bi, G) is a boolean circuit and

zi = f ′
i(0, . . . , 0) arbitrarily.

2. Sim computes Γi ← eGenGC(i, f ′
i , V |Ui

) and returns Γi.

For i = 1, . . . , q, we say that (i, g, La, Lb) is visible if we must query (i, g, La, Lb)
to the H0-oracle or to the H1-oracle when computing

zi ← EvalGC(i, f−
i , Γi, (vx1

1 , . . . , vxn
n )).

Otherwise we say that (i, g, La, Lb) is invisible.
Then, consider a game Garble1 which is the same as Garblereal except for

that each H0(i, g, La, Lb), such that (i, g, La, Lb) is invisible, is replaced by a
random string, and each H1(i, g, La, Lb), such that (i, g, La, Lb) is invisible, is
replaced by a random bit. Define

p1 = Pr(A outputs b = 1 in Garble1).

Lemma 1. |Advgarblereal (A) − p1| is negligible.

Proof. Let BAD be the event that an adversary A queries some invisible (i, g, La,
Lb) to the H0-oracle or to the H1-oracle. Until BAD occurs, Garblereal and
Garble1 are the same because H0 and H1 are random oracles. Therefore

|Advgarblereal (A) − p1| ≤ Pr(BAD).

Next Pr(BAD) is negligible because A has no information on v1−xi
i for

i = 1, . . . , n. Therefore, we can see that Hence |Advgarblereal (A)−p1| is negligible. �
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Similarly, let Garble2 be a game which is the same as Garblesim except for
that each H0(i, g, La, Lb), such that (i, g, La, Lb) is invisible, is replaced by a
random string, and each H1(i, g, La, Lb), such that (i, g, La, Lb) is invisible, is
replaced by a random bit. Let

p2 = Pr(A outputs b = 1 in Garble2).

Then, |Advgarblesim (A) − p2| is negligible similarly to Lemma 1. Finally, it is easy
to see that Garble1 and Garble2 are identical. Therefore p1 = p2. Consequently
|Advgarblereal (A) − Advgarblesim (A)| is negligible.

4 Multiple Keyword Query SSE

Let D = {D1, . . . , Dm} be a set of documents and W = {w1, . . . , wn} be a set
of keywords. Let Index = {ei,j} be an m × n binary matrix such that

ei,j =
{

1 if Di contains wj

0 otherwise
. (6)

For a list of keywords w̄ = (wj1 , . . . , wjc) and a boolean circuit f = (c, s, A,B,
G), we write IB(f, w̄) for the set of identities of documents that satisfy f . Namely
this means that i ∈ IB(f, w̄) if and only if

f(ei,j1 , . . . , ei,jc) = 1.

For example, suppose that w̄ = (w1, w2) and f1(x1, x2) = x1 ∧ x2. Then
i ∈ IB(f1, w̄) if and only if Di contains w1 AND w2.

4.1 Model

A multiple keyword search SSE scheme is a protocol between a client and a
server as follows.

(Store Phase). On input (D,W, Index), the client sends (C, I) to the server,
where C = (C1, . . . , Cm) is the set of encrypted documents, and I is an encrypted
Index.

(Search Phase)

1. The client chooses a list of keywords w̄ = (wj1 , . . . , wjc) and a boolean
circuit f = (c, s, A,B,G). He then sends a trapdoor information t(f, w̄) to
the server.

2. The server somehow computes IB(f, w̄) and returns CB(f, w̄) = {Cj | j ∈
IB(f, w̄)} to the client.

3. The client decrypts each Ci ∈ CB(f, w̄) and outputs DB(f, w̄) = {Dj | j ∈
IB(f, w̄)}.
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Fig. 6. Real Game for Multiple Keywords: SSEreal

4.2 Security

We consider a real game SSEreal and a simulation game SSEsim as shown in
Figs. 6 and 7. In both games, the adversary A chooses

– (D,W, Index) in the setup phase, and
– w̄ = (wj1 , . . . , wjc) and f in the query phase for i = 1, . . . , q,

and sends them to the challenger. In SSEreal, the challenger returns (I, C) in the
setup phase, and t(f, w̄) in the query phase to A. In SSEsim, on the other hand,
the simulator must return

– fake (I, C) based solely on |D1|, . . . , |Dm| and n = |W| in the setup phase,
– and fake t(f, w̄) based solely on IB(f, w̄), f− and U = (σ(j1), . . . , σ(jc)) in

the query phase, where σ is a random permutation chosen by the challenger
at the beginning of the query phase.

In any multiple keyword search SSE scheme, the server learns |D1|, . . ., |Dn|
and |W| in the store phase, and IB(f, w̄)4 and f− in the query phase. In addition
to these, our definition will allow the server to learn only U = (σ(j1), . . . , σ(jc)).
Let

Advssereal(A) = Pr(A outputs b = 1 in SSEreal),
Advssesim(A) = Pr(A outputs b = 1 in SSEsim).

Definition 2. We say that a multiple keyword search SSE scheme is secure if
there exists a PPT simulator Sim such that

|Advssereal(A) − Advssesim(A)|

is negligible for any PPT adversary A.

4 This is because the server must be able to return CB(f, w̄) = {Cj | j ∈ IB(f, w̄)}.
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Fig. 7. Simulation Game for Multiple Keywords: SSEsim.

5 How to Construct Multiple Keyword SSE

In this section we construct a multiple keyword search SSE scheme by using
an extended garbling scheme which satisfies label usable privacy. Define D,W,
Index = (eij) and IB(f, w̄) as shown in Sect. 4.

5.1 Construction

Let (GenLab, eGenGC, eEvalGC) be an extended garbling scheme. Let SKE =
(Gen, E,D) be a CPA-secure symmetric-key encryption scheme [1], where Gen is
a key generation algorithm, E is an encryption algorithm and D is a decryption
algorithm. Let PRF : {0, 1}� × {0, 1}∗ → {0, 1}λ be a pseudorandom function,
where � is the size of keys.

(Store Phase)

1. The client generates (ke, k0) randomly, where ke is a key of SKE, and k0 is a
key of the PRF. He also chooses a random permutation π on {1, . . . , n}.

2. He computes Ci = Eke
(Di) for i = 1, . . . , m, and

kwj = PRFk0(wj) (7)

for j = 1, . . . , n.
3. For i = 1, . . . , m and j = 1, . . . , n, do:

(a) Compute
v0

i,j = PRFk0(i, wj , 0), v1
i,j = PRFk0(i, wj , 1). (8)

(b) If lsb(v0
i,j) = lsb(v1

i,j), then let

v1
i,j ← v1

i,j ⊕ (0, . . . , 0, 1). (9)

(c) Let
vi,j = v

ei,j

i,j , (10)

where ei,j is defined by Eq. (6).
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4. For i = 1, . . . , m, let
Yi = (vi,π(1), . . . , vi,π(n)). (11)

5. He then stores C = (C1, . . . , Cm) and I = (kwπ(1), . . . , kwπ(n), Y1, . . . , Ym) to
the server. (See Table 3.)

6. Let counter ← 0. He holds (counter,m), and keeps (ke, k0) secret.

(Example 2). Consider Index such that

Index =
(

e1,1, e1,2, e1,3

e1,1, e1,2, e1,3

)

=
(

1, 1, 0
1, 0, 1

)

, (12)

where m = 2 and n = 3. Suppose that π(i) = i for i = 1, 2, 3. Then the
client stores the following table to the server, where v0

i,j and v1
i,j are computed

according to Eqs. (8) and (9). After this, he holds (counter = 0,m = 2), and
keeps (ke, k0) secret.

(Search Phase). The client chooses w̄ = (wj1 , . . . , wjc) and f = (c, s, A,B,G).
Then he does the following.

1. Let counter ← counter + 1.
2. Compute kwj1 = PRFk0(wj1), . . . , kwjc = PRFk0(wjc).
3. For i = 1, . . . , m, do:

(a) Compute (v0
i,j1

, v1
i,j1

), . . . , (v0
i,jc

, v1
i,jc

) as in the store phase.
(b) Let Vi = ((v0

i,j1
, v1

i,j1
), . . . , (v0

i,jc
, v1

i,jc
))

4. For i = 1, . . . , m, compute Γi ← eGenGC(counter, f, Vi).
5. Send

t(f, w̄) = [counter, f−, (kwj1 , . . . , kwjc), (Γ1, . . . , Γm)]

to the server.

The server does the following.

1. For i = 1, . . . , m, do
Find (vi,j1 , . . . , vi,jc) from Yi by using (kwj1 , . . . , kwjc).
Compute zi ← eEvalGC(counter, f−, Γi, (vj1 , . . . , vjc)).

2. Return all Ci such that zi = 1.

Table 3. Example of the store phase.

kw1 kw2 kw3

C1 v1
1,1 v1

1,2 v0
1,3

C2 v1
2,1 v0

2,2 v1
2,3
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5.2 Security

Theorem 2. The above multiple keyword search SSE scheme is secure if the
extended garbling scheme (GenLab, eGenGC, eEvalGC) satisfies label-reusable pri-
vacy and SKE = (Gen, E,D) is CPA-secure.

Proof. Since (GenLab, eGenGC, eEvalGC) satisfies label-reusable privacy, there
exists a simulator Simg which satisfies Definition 1. We will construct a sim-
ulator Simsse which satisfies Definition 2 by using Simg as a subroutine (see
Fig. 8).

Let A be an adversary against our multiple keyword search SSE scheme. Let
SSE1 be a game which is the same as SSEreal except for the fact that all the
outputs of PRF are replaced by random strings. Define

p1 = Pr(A outputs b = 1 in SSE1).

Then, |Advssereal(A) − p1| is negligible because PRF is a pseudorandom function.
Let Sim1

g, . . . ,Simm
g be m copies of Simg such that each Simi

g has indepen-
dent random coins. Then, our simulator Simsse behaves as follows.

(Store Phase). Simsse receives |D1|, . . . , |Dm| and n = |W| from the challenger.

1. Simsse chooses ke randomly, where ke is a key of SKE. Then, it computes
Ci = Eke

(0|Di|) for i = 1, . . . , m. Also let kwi
$← {0, 1}λ for i = 1, . . . , n.

2. For i = 1, . . . , m, Simsse sends n to Simi
g, and receives Yi = (vi,1, . . . , vi,n)

from Simi
g.

3. Simsse returns C = (C1, . . . , Cm) and I = (kw1, . . . , kwn, Y1, . . . , Ym).

(Search Phase). For ctr = 1, . . . , q, Simsse receives IB(f, w̄), U = (σ(j1), . . . ,
σ(jc)) and f− from the challenger.

1. For i = 1, . . . , m, let

zi =
{

1 if i ∈ IB(f, w̄)
0 if i �∈ IB(f, w̄).

2. For i = 1, . . . , m, Simsse sends (ctr, U, f−, zi) to Simi
g, and receives Γi from

Simi
g.

3. Simsse returns

t(f, w̄) = [ctr, f−, (kwσ(j1), . . . , kwσ(jc)), (Γ1, . . . , Γn)].

Then, we can show that |Advssesim(A) − p1| is negligible by using a hybrid
argument because Simg is a simulator of (GenLab, eGenGC, eEvalGC). Otherwise,
we can construct an adversary B against (GenLab, eGenGC, eEvalGC) by using
A and Simsse as subroutines.

Consequently, |Advssereal(A) − Advssesim(A)| is negligible. �
Corollary 1. There exists a secure multiple keyword search SSE scheme in the
random oracle model if there exists a pseudorandom function and a CPA-secure
symmetric-key encryption scheme.

Proof. The proof follows from Theorems 1 and 2. �
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Fig. 8. Proof of Theorem 2.

5.3 Efficiency

Suppose that we use our extended garbling scheme given in Sect. 3.3. Then, from
Eqs. (7), (8), (10) and (11), we have

|kwi| = λ and |Yi| = nλ

for all i. Also from Eq. (1), we have

|Γi| = 4(s − 1)λ + 4

for all i.
Therefore, in the store phase, the communication overhead is

|I| =
m∑

i=1

|kwi| +
m∑

i=1

|Yi| = m(n + 1)λ.

In the search phase, suppose that the client chooses a list of keywords w̄ =
(wj1 , . . . , wjc) and a boolean circuit f = (c, s, A,B,G). Then, the communication
overhead is

|counter| + |f−| +
c∑

i=1

|kwji | +
m∑

i=1

|Γi|

= |counter| + |f−| + cλ + 4m((s − 1)λ + 1)

� |counter| + |f−| + (c + 4m(s − 1))λ

where s is the number of gates of f .
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5.4 More Efficient Variant

In the search phase, let c be the input size of f , i.e., the number of search
keywords. If c is small, then we can consider a more efficient variant such as
follows. We can naturally extend our garbling scheme to f which consists of a
single gate whose fan-in is c. Then, while the communication overhead of the
store phase remains the same, that of the search phase is reduced to

|counter| + cλ + 2c · m.

(For example, if c = 2, then |Γi| = 4 as can be seen from the next section.)
Suppose that λ = 128. Then this, variant is more efficient for c ≤ 7. Further,

no information on even f− is leaked in this variant. (Namely no information on
f is leaked at all.)

6 Example

Consider an example of the store phase shown in Sect. 5.1. After the store phase,
the client holds (counter = 0,m = 2), and keeps (ke, k0) secret. In the search
phase, suppose that the he wants to retrieve the documents which contain w1

AND w2. Namely in Eq. (12), he wants to know if ei,1 ∧ ei,2 = 1 for i = 1, 2.
Then, the client does the following.

1. Let counter ← counter + 1.
2. Compute kw1 = PRFk0(w1) and kw2 = PRFk0(w2).
3. For i = 1, 2, compute (v0

i,1, v
1
i,1) and (v0

i,2, v
1
i,2) according to Eqs. (8) and (9).

4. For simplicity, suppose that

lsb(v0
i,1) = lsb(v0

i,2) = 0, lsb(v1
i,1) = lsb(v1

i,2) = 1

for i = 1, 2.
5. For i = 1, 2 and (x, y) = (0, 0), . . . , (1, 1), compute

Pi(3, x, y) ← H1(counter, 3, vx
i,1, v

y
i,2) ⊕ (x ∧ y).

(See Eqs. (2) ∼ (5).)
6. For i = 1, 2, let

Γi ← [Pi(3, 0, 0), Pi(3, 0, 1), Pi(3, 1, 0), Pi(3, 1, 1)].

7. Send [counter, (kw1, kw2), (Γ1, Γ2)] to the server.

The communication cost is |counter|+2λ+4×2 bits. If there are m documents,
then the communication cost is |counter| + 2λ + 4m bits.

The server has the table of Table 3. She now receives

[counter, (kw1, kw2), (Γ1, Γ2)]

from the client. Then she does the following.
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1. From (kw1, kw1) and Table 3, find (v1
1,1, v

1
1,2) and (v1

2,1, v
0
2,2).

2. Compute

(lsb(v1
1,1), lsb(v

1
1,2)) = (1, 1)

(lsb(v1
2,1), lsb(v

0
2,2)) = (1, 0)

3. Compute

z1 = P1(3, 1, 1) ⊕ H1(counter, 3, v1
1,1, v

1
1,2) = 1 ∧ 1 = 1

z2 = P2(3, 1, 0) ⊕ H1(counter, 3, v1
2,1, v

0
2,2) = 1 ∧ 0 = 0

4. Return only C1 because z1 = 1 and z2 = 0.
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Abstract. The notion of domain-specific pseudonymous signatures
(DSPS) has recently been introduced for private authentication of ID
documents, like passports, that embed a chip with computational abil-
ities. Thanks to this privacy-friendly primitive, the document authenti-
cates to a service provider through a reader and the resulting signatures
are anonymous, linkable inside the service and unlinkable across services.
A subsequent work proposes to enhance security and privacy of DSPS
through group signatures techniques. In this paper, we improve on these
proposals in three ways. First, we spot several imprecisions in previ-
ous formalizations. We consequently provide a clean security model for
dynamic domain-specific pseudonymous signatures, where we correctly
address the dynamic and adaptive case. Second, we note that using group
signatures is somehow an overkill for constructing DSPS, and we provide
an optimized construction that achieves the same strong level of security
while being more efficient. Finally, we study the implementation of our
protocol in a chip and show that our solution is well-suited for these
limited environments. In particular, we propose a secure protocol for
delegating the most demanding operations from the chip to the reader.

Keywords: ID documents · Privacy-enhancing cryptography ·
Domain-specific pseudonymous signatures

1 Introduction

Authentication with ID documents. Recently, the German BSI agency introduced
several security mechanisms regarding the use of ID documents for authenti-
cation purposes [9]. In such situations, a Machine Readable Travel Document
(MRTD) connects to a Service Provider (SP) through a reader (for concrete-
ness, one might see the MRTD as a passport). The security mechanisms of [9]
can be summarized as follows. First of all, during the PACE protocol (Password
c© International Financial Cryptography Association 2014
N. Christin and R. Safavi-Naini (Eds.): FC 2014, LNCS 8437, pp. 255–272, 2014.
DOI: 10.1007/978-3-662-45472-5 16
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Authenticated Connection Establishment), the MRTD and the reader establish
a secure channel. Then, during the EAC protocol (Extended Access Control),
the MRTD and the SP authenticate each other through another secure channel.
The reader transfers the exchanged messages. At last, during the (optional) RI
protocol (Restricted Identification), the MRTD gives its pseudonym for the ser-
vice to the SP. This pseudonym enables the SP to link users inside its service.
However, across the services, users are still unlinkable. The latter property is
called cross-domain anonymity. This property is interesting for many applica-
tions, since it offers at the same time privacy for the users and usability for the
service provider, who might not want to have fully anonymous users, but might
want them to use an account to give them more personal services (e.g. bank
accounts, TV subscriptions, etc.).

For authentication purposes, giving pseudonyms is insufficient since the
authenticity of the pseudonym is not guaranteed. For this reason, subsequent
works [5,6] adopt a “signature mode” for the RI protocol. This signature mode
can be described as follows.

1. The SP sends the MRTD the public key dpk of the service and a message m.
2. The MRTD computes a pseudonym nym as a deterministic function of its

secret key usk and the public key dpk.
3. The MRTD signs m with its secret key usk and the pseudonym nym.
4. The MRTD sends the signature σ and the pseudonym nym to the SP.
5. The SP checks the signature σ.

The contribution of [6] is to propose this signature mode and to present an
efficient construction based on groups of prime order (without pairings). Their
construction relies on a very strong hypothesis regarding the tamperproofness
of the MRTD. In fact, recovering two users’ secrets enables to compute the key of
the certification authority. To deal with this concern, the authors of [5] propose
to introduce group signatures into this signature mode. In addition to providing
strong privacy properties, group signatures provide collusion resistance even if
several users’ secrets do leak.

Our contributions. The authors of [5] claim that the security model of group
signatures directly gives a security model for DSPS, and, in fact, leave imprecise
the definition of the DSPS security properties. Moreover, the model of [6] only
concerns the static case, and their anonymity definition is flawed. So a security
model for dynamic DSPS as such has to be supplied. Our first contribution is then
a clean security model for dynamic domain-specific pseudonymous signatures.

This first contribution highlights the fact that, in some sense, using group
signatures is “too strong” for constructing DSPS signatures. Following this intu-
ition, we provide a new construction that is more efficient than the one of [5],
while achieving the same strong security and privacy properties. Our second con-
tribution is then an efficient proven secure dynamic DSPS with short signatures.

Finally, we concentrate on the use of our DSPS scheme in the RI protocol
for MRTD private authentication. Our construction is based on bilinear pair-
ings, but, as a first advantage, no pairing computation is necessary during the
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signature. However, we can go a step further, by taking advantage of the compu-
tational power of the reader. If some computations are delegated to the reader,
then the chip only performs computation in a group of prime order. This is a
valuable practical advantage since existing chips might be used. Otherwise, one
needs to deploy ad hoc chips, which has an industrial cost.

Related notions. As a privacy-preserving cryptographic primitive, a DSPS scheme
shares some properties with other primitives. We now discuss common points and
differences. DSPS schemes share some similarities with group signatures with veri-
fier local revocation (VLR) [8] in the sense that, in both primitives, the revocation
is done on the verifier’s side. However, the anonymity properties are not the same:
group signatures are always unlinkable, whereas DSPS achieve some partial link-
ability. Moreover, one can establish a parallel with the notion of cross-unlinkable
VLR group signatures [4], where users employ several group signatures for several
domains such that the signatures are unlinkable across domains. Within a domain,
the group signatures are however unlinkable, which is too strong for the context
of DSPS.

The difference between DSPS and pseudonym systems [13] or anonymous cre-
dential systems [10] is that DSPS-pseudonyms are deterministic whereas
anonymous credentials pseudonyms must be unlinkable. In a DSPS scheme, the
unlinkability is required across domains only, which is a weaker notion compared
to anonymity in anonymous credentials. In fact, the anonymity of DSPS is a weaker
notion compared to the anonymity of group signatures, as noticed above, and
(multi-show) anonymous credentials are often constructed through group signa-
tures techniques [10].

A point of interest is to clarify the relation between pseudonymous signatures
and direct anonymous attestations (DAA) [2]. A DAA scheme might be seen
(cf. [7]) as a group signature where (i) the user is split between a TPM and a host,
(ii) signatures are unlinkable but in specific cases and (iii) there is no opening
procedure. More precisely, the partial linkability is achieved by the notion of
basename, a particular token present in all signature processes. Two signatures
are linkable if, and only if, they are issued with the same basename.

At a first sight, a DSPS scheme is a DAA scheme where basenames are
replaced by pseudonyms, and where the underlying group signature is replaced
by a VLR group signature. The VLR group signatures introduce revocation
concerns that are away from DAA. Moreover, in the ID document use-case,
the MRTD/reader pair might be seen as the TPM/host pair of DAA scheme.
However, both primitives remain distinct. The choice of pseudonyms in DSPS
is more restrictive than the choice of the basename in DAA. Moreover, the host
always embeds the same chip, but a MRTD is not linked to a specific reader,
and might authenticate in front of several readers. Both differences impact the
DSPS notion of anonymity.

Organization of the paper. In Sect. 2, we supply a security model for dynamic
domain-specific pseudonymous signatures, and discuss in details some tricky
points to formalize. Then in Sect. 3, we present our efficient construction of
dynamic DSPS, and prove it secure in the random oracle model. Finally in
Sect. 4, we discuss some implementation considerations and, among other things,
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analyse the possibility to delegate some parts of signature computation from the
MRTD to the reader.

2 Definition and Security Properties of Dynamic DSPS

A dynamic domain-specific pseudonymous signature scheme is given by an issu-
ing authority IA, a set of users U , a set of domains D, and the functionalities
{Setup, DomainKeyGen, Join, Issue, NymGen, Sign, Verify, DomainRevoke,
Revoke} as described below. By convention, users are enumerated here with
indices i ∈ N and domains with indices j ∈ N.

Setup. On input a security parameter λ, this algorithm computes global para-
meters gpk and an issuing secret key isk. A message space M is spec-
ified. The sets U and D are initially empty. The global parameters gpk
are implicitly given to all algorithms, if not explicitly specified. We note
(gpk, isk) ← Setup(1λ).

DomainKeyGen. On input the global parameters gpk and a domain j ∈ D, this
algorithm outputs a public key dpkj for j. Together with the creation of
a public key, an empty revocation list RLj associated to this domain j is
created. We note (dpkj , RLj) ← DomainKeyGen(gpk, j).

Join ↔ Issue. This protocol involves a user i ∈ U and the issuing authority IA.
Join takes as input the global parameters gpk. Issue takes as input the
global parameters gpk and the issuing secret key isk. At the end of the
protocol, the user i gets a secret key uski and the issuing authority IA gets
a revocation token rti. We note uski ← Join(gpk) ↔ Issue(gpk, isk) → rti.

NymGen. On input the global parameters gpk, a public key dpkj for a domain
j ∈ D and a secret key uski of a user i ∈ U , this deterministic algorithm
outputs a pseudonym nymij for the user i usable in the domain j. We note
nymij ← NymGen(gpk, dpkj , uski).

Sign. On input the global parameters gpk, a public key dpkj of a domain j ∈ D,
a user secret key uski of a user i ∈ U , a pseudonym nymij for the user i and
the domain j and a message m ∈ M, this algorithm outputs a signature σ.
We note σ ← Sign(gpk, dpkj , uski, nymij ,m).

Verify. On input the global parameters gpk, a public key dpkj of a domain
j ∈ D, a pseudonym nymij , a message m ∈ M, a signature σ and the
revocation list RLj of the domain j, this algorithm outputs a decision d ∈
{accept, reject}. We note d ← Verify(gpk, dpkj , nymij ,m, σ,RLj).

DomainRevoke. On input the global parameters gpk, a public key dpkj of a
domain j ∈ D, an auxiliary information auxj and the revocation list RLj of
the domain j, this algorithm outputs an updated revocation list RL′

j . We
note RL′

j ← DomainRevoke(gpk, dpkj , auxj , RLj).
Revoke. On input the global parameters gpk, a revocation token rti of a user

i ∈ U and a list of domain public keys {dpkj}j∈D′⊆D, this algorithm outputs
a list of auxiliary information {auxj}j∈D′⊆D intended to the subset D′ ⊆ D
of domains. We note {auxj}j∈D′⊆D ← Revoke(gpk, rti, {dpkj}j∈D′⊆D).
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We consider the dynamic case where both users and domains may be added to
the system. Users might also be revoked. Moreover, the global revocation may
concern all the domains at a given point, or a subset of them. A global revoca-
tion protocol enabling to revoke the user i from every domain is implicit here: it
suffices to publish rti. Using rti and public parameters, anyone can revoke user
i, even for domains that will be added later. Pseudonyms are deterministic. This
implies the existence of an implicit Link algorithm to link signatures inside a
specific domain. On input a domain public key dpk and two triples (nym,m, σ)
and (nym′,m′, σ′), this algorithm outputs 1 if nym = nym′ and outputs 0 other-
wise. This also gives implicit procedures for the service providers to put the users
on a white list or a black list, without invoking the Revoke or DomainRevoke
algorithms: it suffices to publish the pseudonym of the concerned user.

Security definitions. To be secure, a DSPS scheme should satisfy the cor-
rectness, cross-domain anonymity, seclusiveness and unforgeability properties.
Informally, a DSPS scheme is (i) correct if honest and non-revoked users are
accepted (signature correctness) and if the revocation of honest users effectively
blacklists them (revocation correctness), (ii) cross-domain anonymous if signa-
tures are unlinkable but within a specific domain, (iii) seclusive if it is impos-
sible to exhibit a valid signature without involving a single existing user, and
(iv) unforgeable if corrupted authority and domains owners cannot sign on behalf
of an honest user. Let us now formalize each of these intuitions. The definition
of correctness does not make difficulties and is postponed to the full version [3].

Oracles and variables. We model algorithms as probabilistic polynomial Turing
machines (with internal states state and decisions dec). We formalize the security
properties as games between an adversary and a challenger. The adversary may
have access to some oracles that are given Fig. 1. Moreover, games involve the
following global variables: D is a set of domains, HU of honest users, CU of
corrupted users and CH of inputs to the challenge. UU is the list of “uncertainty”
(see the anonymity definition below) that is: the list, for each pseudonym, of the
users that might be linked to this pseudonym (in the adversary’s view). usk
records the users’ secret keys, rt the revocation tokens, nym the pseudonyms,
dpk the domain public keys, RL the revocation lists and Σ the signed messages.

Seclusiveness. Informally, a DSPS scheme achieves seclusiveness if, by similarity
with the traceability property of the group signatures, an adversary A is unable
to forge a valid signature that cannot “trace” to a valid user. In the group sig-
nature case, there is an opening algorithm, which enables to check if a valid user
produced a given signature. However, there is no opening here, so one might ask
how to define “tracing” users. Nevertheless, the management of the revocation
tokens allows to correctly phrase the gain condition, as in VLR group signa-
tures [8], providing that we take into account the presence of the pseudonyms.
At the end of the game, we revoke all users on the domain supplied by the
adversary. If the signature is still valid, then the adversary has won the game.
Indeed, in this case, the signature does not involve any existing user. (This is an
analogue of “the opener cannot conclude” in the group signature case).
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SeclusivenessDSPS
A (λ)

- (gpk, isk) ← DSPS.Setup(1λ) ; D, HU , CU ← {}
- O ← {AddDomain(·), AddUser(·), CorruptUser(·), UserSecretKey(·), Sign(·, ·, ·),

ReadRegistrationTable(·), SendToIssuer(·, ·)}
- (dpk∗, nym∗, m∗, σ∗) ← AO(gpk)

- Find j ∈ D such that dpk∗ := dpk[j]. If no match is found, then return 0.

- Return 1 if for all i ∈ U , either rt[i] = ⊥ or DSPS.Verify(gpk, dpk∗, nym∗, m∗, σ∗,

RL)= accept where RL := DSPS.DomainRevoke
(
gpk, dpk∗, aux,RL[j]

)
and aux

:= DSPS.Revoke(gpk, rt[i], {dpk∗}).

A DSPS scheme achieves seclusiveness if the probability for a polynomial adver-
sary A to win the SeclusivenessDSPS

A game is negligible (as a function of λ).

Unforgeability. Informally, we want that a corrupted authority and corrupted
owners of the domains cannot sign on behalf of an honest user.

UnforgeabilityDSPS
A (λ)

- (gpk, isk) ← DSPS.Setup(1λ) ; D, HU , CU ← {}
- O ← {AddDomain(·), WriteRegistrationTable(·, ·), Sign(·, ·, ·), SendToUser(·, ·)}
- (dpk∗, nym∗, m∗, σ∗) ← AO(gpk, isk)

- Return 1 if all the following statements hold.

- There exists j ∈ D such that dpk∗ = dpk[j]

- There exists i ∈ HU such that nym∗ = nym[i][j], usk[i] �= ⊥ and rt[i] �= ⊥
- m∗ �∈ Σ[(i, j)]

- DSPS.Verify(gpk, dpk∗, nym∗, m∗, σ∗, {}) = accept

- DSPS.Verify(gpk, dpk∗, nym∗, m∗, σ∗, L) = reject where L := DomainRevoke(gpk,

dpk∗, DSPS.Revoke(gpk, rt[i], {dpk∗}), {})

A DSPS scheme achieves unforgeability if the probability for a polynomial adver-
sary A to win the UnforgeabilityDSPS

A game is negligible (as a function of λ).

Cross-domain anonymity. Informally, a DSPS scheme achieves cross-domain
anonymity if an adversary is not able to link users across domains. We formalize
this intuition thanks to a left-or-right challenge oracle. Given two users i0 and
i1 and two domains jA and jB, the challenger picks two bits bA, bB ∈ {0, 1} and
returns (nym0, nym1) where nym0 is the pseudonym of ibA

for the first domain
and nym1 the pseudonym of ibB

for the second domain. The adversary wins if he
correctly guesses the bit (bA == bB), in other words if he correctly guesses that
underlying users are the same user or not. The Challenge oracle is called once.

AnonymityDSPS
A (λ)

- (gpk, isk) ← DSPS.Setup(1λ) ; D, HU , CU , CH ← {} ; bA, bB
$← {0, 1}

- O ← {AddDomain(·), AddUser(·), CorruptUser(·), UserSecretKey(·), Revoke(·, ·),
DomainRevoke(·, ·), Nym(·, ·), NymDomain(·), NymSign(·, ·, ·), SendToIssuer(·, ·),
Challenge(bA, bB , ·, ·, ·, ·)}

- b′ ← AO(gpk)

- Return 1 if b′ == (bA == bB), and return 0 otherwise.
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Fig. 1. Oracles provided to adversaries

A DSPS scheme achieves cross-domain anonymity if the probability for a poly-
nomial adversary A to win the AnonymityDSPS

A game is negligible1,2.

1 The SendToIssuer oracle might be surprising here. But, contrary to group signa-
tures, the issuing authority IA is not corrupted. This assumption is minimal since
the IA may trace all honest users. Hence we must give the adversary the ability to
interact as a corrupted user with the honest issuer.

2 Our model takes into account the case where pseudonyms leak from the network. To
this aim, the NymDomain oracle gives the adversary a collection of pseudonyms.
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Discussion about anonymity. We want to catch the intuition of being anony-
mous across domains, so we propose that the adversary supplies two domains
of its choice, and aims at breaking anonymity across these domains. Moreover,
the Challenge oracle, in our model, does not output two signatures, but two
pseudonyms belonging to the different domains. The adversary’s goal is to guess
if those pseudonyms belong to the same user or not. To obtain signatures, the
adversary may call a NymSign oracle. The adversary does not directly supply a
user, but a pseudonym and obtains a signature on behalf of the underlying user.
If the adversary A wants a signature from a particular user, A asks for this user’s
pseudonym and then asks the NymSign oracle for a signature.

Since the functionality is dynamic, there might be no anonymity at all if
we do not take care of the formalization. For instance, an adversary might ask
for adding two domains, two users, i0, i1, ask for their pseudonyms through
two calls to NymDomain, add a user i2 and win a challenge involving i0, i2 with
non-negligible probability. This attack does not work here, since the All list is
emptied after each NymDomain call.

To correctly address the cross-domain anonymity definition, we introduce
a notion of “uncertainty” in the oracles. The challenger maintains, for each
pseudonym, a list of the possible users the pseudonym might be linked to from the
adversary’s point of view. These lists evolve in function of the adversary’s queries.
Thus, the challenger ensures that the pseudonyms returned by the Challenge
oracle contain enough uncertainty for at least one domain. Note that the uncer-
tainty is required for only one domain. A user queried to the Challenge might
be known or revoked in a domain: the adversary has to guess whether the other
pseudonym belongs to the same user.

Comparison to previous security models. First, the model of [6] is static: all users
and domains are created at the beginning of the games, while our security games
are all dynamic. Second, let us focus on the cross-domain anonymity and show
that their definition is flawed. The adversary is given all pseudonyms and all
domain parameters. The left-or-right challenge takes as input two pseudonyms
for the same domain and a message and outputs a signature on this message by
one of the corresponding users. A simple strategy to win the game, independently
of the construction, is to verify this signature using both pseudonyms: it will
be valid for only one of them. This observation motivates our choice for our
challenge output to be a pair of pseudonyms and not a pair of signatures, since
it is easy to verify correctness using pseudonyms. Moreover, in their game, both
pseudonyms queried to the challenge oracle are in the same domain, which does
not fit the cross-domain anonymity, while our challenge involving two different
domains does. Third, the model of [6] does not allow for collusions: the adversary
can be given at most one user secret key (indeed, with their construction, using
two users’ secret keys, one can recover the issuing keys)3.

The model of [5] is largely inspired by the security model of VLR group
signatures. That is why it does not enough take into account the specificities of
DSPS. The challenge of the cross-domain anonymity game also considers a single
3 For sake of clarity, note that (nymi, dsnymij) in [6] maps to (i, nymij) in our model.
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domain and outputs a signature (but it does not take as input the pseudonyms
of the users, only identifiers, so it does not inherit the security flaw of [6]).
The model also lacks from a precise description of the oracles, thus leaving
looseness on what are the exact inputs and outputs. Our model is more precise
and separated from the model of group signatures, which leads, as we will see in
the following, to a more efficient construction.

3 An Efficient Construction of Dynamic DSPS

In this section, we present an efficient construction of dynamic DSPS we call
the D scheme and prove it secure in the sense of the previous Section in the
random oracle model. Our construction makes use of bilinear pairings. A bilinear
environment is given by a tuple (p,G1,G2,GT , e) where p is a prime number,
G1, G2 and GT are three groups of order p (in multiplicative notation) and e
is a bilinear and non-degenerate application e : G1 × G2 → GT . The property
of bilinearity states that for all g ∈ G1, h ∈ G2, a, b ∈ Zp, we have e(ga, hb) =
e(g, h)ab = e(gb, ha). The property of non-degeneracy states that for all g ∈ G1 \
{1G1}, h ∈ G2 \ {1G2}, e(g, h) �= 1GT

. Bilinear environments may be symmetric
if G1 = G2 or asymmetric if G1 �= G2. Let us now describe our scheme.

Setup(1λ)
1. Generate an asymmetric bilinear environment (p,G1,G2,GT , e)

2. Pick generators g1, h
$← G1 \ {1G1} and g2

$← G2 \ {1G2}
3. Pick γ ∈ Zp ; Set w := g2

γ

4. Choose a hash function H : {0, 1}∗ → {0, 1}λ

5. Return gpk := (p,G1,G2,GT , e, g1, h, g2, w,H) ; isk := γ
DomainKeyGen(gpk, j)

1. Pick r
$← Z

∗
p ; Set RLj ← {} ; Return dpkj := g1

r ; RLj

Join(gpk) ↔ Issue(gpk, isk)

1. [i] Pick f ′ $← Zp ; Set F ′ := hf ′

2. [i] Compute Π := PoK{C = Ext-Commit(f ′) ∧ NIZKPEqDL(f ′, C, F ′, h)}4
3. [U → IA] Send F,Π [IA] Check Π

4. [IA] Pick x, f ′′ ∈ Zp ; Set F := F ′ · hf ′′
; A :=

(
g1 · F

) 1
γ+x ; Z := e(A, g2)

5. [U ← IA] Send f ′′, A, x, Z

6. [i] Set f := f ′ + f ′′ ; Check e(A, g2
x · w) ?= e(g1 · hf , g2)

The user gets uski := (f,A, x, Z) ; The issuer gets rti := (F, x)
NymGen(gpk, dpkj , uski)

1. Parse uski as (fi, Ai, xi, Zi) ; Return nymij := hfi · (dpkj)xi

4 Ext-Commit is an extractable commitment scheme (a perfectly binding computa-
tionally hiding commitment scheme where an extraction key allows to extract the
committed value). NIZKPEqDL(f, C, F, h) is a Non Interactive Zero Knowledge Proof
of Equality of the Discrete Logarithm f of F w.r.t h with the value committed in C.
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The Sign procedure is obtained by applying the Fiat-Shamir heuristic [12] to
a proof of knowledge of a valid user’s certificate (we explicitly give this proof
of knowledge in AppendixA.1). More precisely, a signer proves knowledge of

(f, (A, x)) such that A =
(
g1 · hf

) 1
γ+x and nym = hf · dpkx.

Sign(gpk, dpk, usk, nym,m)
1. Parse usk as (f,A, x, Z)

2. Pick a, ra, rf , rx, rb, rd
$← Zp ; Set T := A · ha

3. Set R1 := hrf · dpkrx ; R2 := nymra · h−rd · dpk−rb

4. Set R3 := Zrx · e(h, g2)a·rx−rf −rb · e(h,w)−ra

5. Compute c := H(dpk‖nym‖T‖R1‖R2‖R3‖m)
6. Set sf := rf + c · f ; sx := rx + c · x ; sa := ra + c · a ; sb := rb + c · a · x ;

sd := rd + c · a · f
7. Return σ := (T, c, sf , sx, sa, sb, sd)

Verify(gpk, dpk, nym,m, σ,RL)
1. If nym ∈ RL, then return reject and abort.
2. Parse σ as (T, c, sf , sx, sa, sb, sd)
3. Set R′

1 := hsf · dpksx · nym−c ; R′
2 := nymsa · h−sd · dpk−sb

4. Set R′
3 := e(T, g2)sx · e(h, g2)−sf −sb · e(h,w)−sa · [

e(g1, g2) · e(T,w)−1
]−c

5. Compute c′ := H(dpk‖nym‖T‖R′
1‖R′

2‖R′
3‖m)

6. Return accept if c = c′, otherwise return reject.
Revoke(gpk, rti,D′)

1. Parse rti as (Fi, xi) ; Return {auxj := Fi · (dpkj)xi}j∈D′

DomainRevoke(gpk, dpkj , auxj , RLj)5

1. Return RLj := RLj ∪ {auxj}
We now sketch a proof of the following theorem. A full proof can be found in [3].

Theorem 1. The D scheme achieves seclusiveness, unforgeability and cross-
domain anonymity in the sense of Sect. 2 in the random oracle model under
the DL, q-SDH and DDH assumptions.

Discrete Logarithm DL. Let G be a cyclic group of prime order p. Given (g, h) $←
G

2, find x ∈ N such that gx = h.
Decisional Diffie-Hellman DDH. Let p be a prime number, G be a cyclic group
of order p and a, b, c

$← Zp. Given g := (g,A,B,C) ∈ G
4, decide whether g =

(g, ga, gb, ga+b) or g = (g, ga, gb, gc).
q-Strong Diffie-Hellman q-SDH [1]. Let (p,G1,G2,GT , e) be a bilinear environ-

ment, h1
$← G1, h2

$← G2 and θ
$← Zp. Given (h1, h1

θ, h1
θ2

, . . . , h1
θq

, h2, h2
θ) ∈

G
q+1
1 × G

2
2, find a pair (c, g11/(θ+c)) ∈ Zp \ {−θ} × G1.

5 A revocation list is a set of revoked pseudonyms. Given a (pseudonym, signature)
pair, the revocation test is a simple membership test. In practice, this can be done
very efficiently.
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We first show that, under a chosen-message attack, in the random oracle model, it
is computationally impossible to produce a valid D signature σ := (T, c, sf , sx, sa,
sb, sd) without the knowledge of a valid certificate (f,A, x, Z). In other words,
from a valid signature, we can extract a valid certificate. This “extraction step” is
standard when signature schemes are built by applying the Fiat-Shamir heuristic
[12] to a given Σ-protocol (cf. [11,14,15]).

Proof of seclusiveness. In the random oracle model, the D scheme achieves
seclusiveness in the sense of Sect. 2 if the SDH problem is hard. Let (h1, h1

θ,
h1

θ2
, . . . , h1

θq

, h2, h2
θ) ∈ G

q+1
1 ×G

2
2 be a SDH instance on a bilinear environment

(p,G1,G2,GT , e). We build an algorithm B that outputs (c, g11/(θ+c)), for a
c ∈ Zp \ {−θ}, from an adversary A against the seclusiveness of our scheme.

Parameters. B picks k
$← [1, q], x1, . . . , xq, s1, . . . , sq

$← Zp, computes g2 := h2,
w := (h2

θ) · h2
−xk . For {x1, . . . , xq} ∈ Fp, define polynomials P , Pm and P−

m for
m ∈ [1, q] on Fp[X] by P :=

∏q
n=1(X + xn − xk), Pm :=

∏q
n=1,n �=m(X + xn −

xk), P−
m :=

∏q
n=1,n �=m,n�=k(X + xn − xk). Expanding P on θ, we get P (θ) =

∑q
n=0 anθn for some {an}q

n=0 depending on the xn. Since B knows h1
θn

from
the q-SDH challenge, B is able to compute h1

P (θ) without the knowledge of θ.
B picks α

$← Zp, β
$← Z

∗
p, sets g1 := h1

β(αP (θ)−skPk(θ)), h := h1
βPk(θ) and gives

(e,G1,G2,GT , e, g1, h, g2, w,H) to A.

Simulating the issuing algorithm. Let Aux be the following sub-routine, tak-
ing as input (f ′, ctr) ∈ Zp × N and outputting (f ′′, A, x, Z) as in the fourth
step of the D.Issue algorithm. ctr is a counter for the queries. B sets Actr :=
h1

β(αPctr(θ)+P −
ctr(θ)(sctr−sk)) and returns (sctr − f ′, Actr, xctr, e(Actr, g2)).

Simulating the oracles. A counter is set ctr := 0. When A asks for adding a new
honest user, B sets ctr := ctr+1, picks f ′ $← Zp, calls the Aux procedure on input
(f ′, ctr), gets (f ′′

ctr, Actr, xctr, Zctr), records usk[ctr] := (f ′ + f ′′
ctr, Actr, xctr, Zctr)

and rt[ctr] := (hf ′+f ′′
ctr , xctr). When A interacts with the issuer as a corrupted

user, B sets ctr := ctr + 1 and extracts f ′ such that F := hf ′
thanks to the

extraction key ek. B then calls the Aux procedure on the input (f ′, ctr), and
gets (f ′′

ctr, Actr, fctr, Zctr) back, which B transfers to A. B records usk[ctr] :=
(f ′ + f ′′

ctr, Actr, xctr, Zctr) and rt[ctr] := (hf ′+f ′′
ctr , xctr).

Response. A eventually outputs (dpk∗, nym∗,m∗, σ∗). If this is a non trivial
response, then there exists j ∈ D such that dpk∗ = dpk[j]. At this point, B black-
lists all users near j, by updating RL[j]. For all i ∈ U , we have (i) usk[i] �= ⊥
and (ii) rt[i] �= ⊥. If the response is valid, then Verify(gpk, dpk∗, nym∗,m, σ,
RL[j])= accept. This means that B can extract a new certificate (f∗, A∗, x∗, Z∗)
in reasonable expecting time.

Solving the SDH challenge. Since from (ii) for all i ∈ U , rt[i] �= ⊥, then, if
the signature is not rejected, then there is no n ∈ [1, q], such that nym∗ =
hfn · (dpk∗)xn . Hence (iii) (f∗, x∗) �∈ {(f1, x1), . . . , (fq, xq)}. We have two cases.



266 J. Bringer et al.

(A) x∗ ∈ {x1, . . . , xq}. (A.I) If x∗ �= xk, B returns ⊥ and aborts. (A.II) Let
us now assume that x∗ = xk. We have f∗ �= sk (since f∗ = sk contradicts (iii))
and (A∗sk · Ak

−f∗)
1

sk−f∗ = h1
β(αP (θ)−skPk(θ))

1
θ . By dividing β(αP (θ) − skPk(θ))

by θ we get R and Q such that C := R(0) = −βsk

∏q
n=1,n �=k (xn − x∗) and

(A∗sk · Ak
−f∗)

1
sk−f∗ = h1

C
θ +Q(θ) where C �= 0. B computes h1

1/θ := ((A∗sk ·
Ak

−f∗)
1

sk−f∗ · h1
−Q(θ))1/C , sets c := 0 and returns (0, h1

1/θ).
(B) x∗ �∈ {x1, . . . , xq}. In particular, we have (iv) xn−x∗ �= 0 for all n ∈ [1, q].

Let us now consider the quantity βPk(θ)(αθ + f∗ − sk) as a polynomial D in θ.
If we carry out the Euclidean division of D by (θ + x∗ − xk), we get Q and R
such that D(θ) = (θ + x∗ − xk)Q(θ) + R(θ). As (θ + x∗ − xk) is a first degree
polynomial X − (xk − x∗), we know that R(θ) = D(xk − x∗), so B can compute
C := R(θ) = D(xk − x∗) = β

[∏q
n=1,n �=k (xn − x∗)

]
(α(xk − x∗) + f∗ − sk).

We have A∗ = h1
Q(θ)+ C

θ+x∗−xk . B can compute h1
Q(θ) from the SDH challenge.

(B.I) (f∗ − sk) �= α(x∗ − xk). In this case, C �= 0 by (iv) and by the choice of

β, so B can compute g1
1

θ+x∗−xk =
(
A∗ · g1

−Q(θ)
) 1

C , set c = x∗ − xk, and return
(c, g11/(θ+c)). (B.II) (f∗ − sk) = α(x∗ − xk). B returns ⊥ and aborts.

In [3] we show that A outputs a valid forgery with probability ε, then B
solves the SDH challenge with probability at least ε/2q. �
Proof of unforgeability. In the random oracle model, the D scheme achieves
unforgeability in the sense of the Sect. 2 if the DL problem is hard. Let A be
an adversary against the unforgeability of the D scheme. Let (p,G1,G2,GT , e)
be a bilinear environment and (g,H) be a discrete logarithm instance in G1. We
construct an algorithm B that computes θ := logg H.

Parameters. B picks g1
$← G1, g2

$← G2, γ
$← Zp, sets h := g and w := g2

γ .
B gives parameters gpk := (e,G1,G2,GT , e, g1, h, g2, w) to A. B picks a random
user i ∈ [1, qU ]. In addition, B generates parameters for the extractable commit-
ment scheme Ext-Commit and the non-interactive proof system NIZKPEqDL.

Simulating the oracles. At each time B interacts (as an honest user) with A (as
the corrupted issuing authority), B follows the Join procedure, but for the i-th
user. In the latter case, B sets F ′ := H, simulates Π and gets (f ′′

i , Ai, xi, Zi)
where Ai = (g1 · H · hf ′′

i )
1

xi+γ for some f ′′
i . B does not know fi, but can compute

nymij := H · hf ′′
i · dpkj

xi for all j ∈ D. When A asks for a signature, B simulates
a signature for i, other signatures are normally computed.

Response. A play of A gives a valid and non trivial (dpk∗, nym∗,m∗, σ∗). Then
(i) we can find a domain j such that dpk∗ = dpk[j] and an honest user i
with consistent values nymij ∈ nym[i][j], (Fi, xi) ∈ rt[i] and (∗, Ai, xi, Zi) ∈
usk[i] such that nym∗ = nymij = Fi · (dpk∗)xi , and (ii) we are able to extract
a valid certificate (f∗, A∗, x∗, Z∗) where, in particular, nym∗ = hf∗ · (dpk∗)x∗ .
Since discrete representations in G1 are unique modulo p, then we have that
f∗ = logg Fi (the pseudonym must be valid in a non trivial forgery) and x∗ = xi.
With probability 1

|U| we have i = i, since i is independent of the view of A.
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This implies that Ai = A∗ (a value A is determined by f , x and γ). Thus
A∗ = (g1 · gf∗)

1
x∗+γ = (g1 · H · hf ′′

i )
1

x∗+γ and we obtain θ = f∗ − f ′′
i . �

Proof of anonymity. The D scheme achieves anonymity in the sense of Sect. 2
if the DDH problem is hard in G1. Let qU be the number of queries to AddUser
and SendToIssuer and qD to AddDomain. Let A be an ε-adversary against the
unforgeability of the D scheme. Let (p,G1,G2,GT , e) be a bilinear environment
and (g,A,B,C) a Diffie-Hellman instance in G1. We construct B that decides
whether C is the Diffie-Hellman of A and B w.r.t. g.

Parameters. The parameters gpk := (p,G1,G2,GT , e, g1, h, g2, w) for the D sche-
me are computed honestly, knowing isk = γ, except that g1 := g. B picks two
bits bA, bB

$← {0, 1}, a random user i
$← [1, qU ] and a random domain j

$← [1, qD].

Simulating the oracles. Since the challenger knows the issuing secret key, and
moreover can simulate signatures on behalf of any user, then the simulation of
the oracles is done without noticeable facts, except that B acts as if dpkj = B
and xi = logg A. B aborts and returns a random bit if the user i is queried to
UserSecretKey (B has no valid uski) or if nymij is not returned by Challenge.
The reduction relies upon the following procedure for simulating pseudonyms.

SimNym(i, j).
(I) i �= i and j �= j: B gets (fi, xi), (dpkj , rj) and sets nymij := hfi · g1

rjxi .
(II) i = i and j �= j: B gets fi, (dpkj , rj) and sets nymij := hfi · Arj .
(III) i �= i and j = j: B gets (fi, xi) and sets nymij := hfi · Bxi .
(IV) i = i and j = j: B gets fi and sets nymij := hfi · C.

Response. Eventually, A outputs a bit b′, its guess for (bA == bB). B returns
true if (b′ == (bA == bB)), or false otherwise, as response to its own challenge.

Let us now estimate the advantage that B has of solving the DDH challenge.

AdvDDH
B =

∣
∣Pr[B ⇒ true|C = DHg(A,B)] − Pr[B ⇒ true|C is random]

∣
∣

=
∣
∣Pr[abort] · P1 + Pr[abort] · P2 − Pr[abort] · P3 − Pr[abort] · P4

∣
∣

where P1 := Pr[B ⇒ true|abort ∧ C = DHg(A,B)], P2 := Pr[B ⇒ true|abort ∧
C = DHg(A,B)], P3 := Pr[B ⇒ true|abort ∧ C is random] and P4 := Pr[B ⇒
true|abort ∧ C is random]. Due to the lack of space, we only give a bound and
postpone its analysis to the full version of our paper [3]. We obtain:

AdvDDH
B =

∣
∣
∣Pr[abort] · 1

2
+ Pr[abort] · ε + 1

2
− Pr[abort] · 1

2
− Pr[abort] · 1

2

∣
∣
∣

≥ ε

(qU − qC) · qD
·
(

1 − qC

qU

)

·
(

1 − qS · (qH + qS)

p4

)

where qC , qS and qH are the number of queries to (resp.) UserSecretKey, Sign
and H. �
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Fig. 2. Delegation of computation from the MRTD to the reader

4 Implementation Considerations

Signature size. A signature σ := (T, c, sf , sx, sa, sb, sd) is composed of 1 element
in G1, a challenge of size λ and five scalars, which is particularly short for this
level of security. By comparison, a signature of [5] is of the form (B, J,K, T, c,
sf , sx, sa, sb) ∈ G1

4 × {0, 1}λ × Zp
4. The short group signature of [11] lies in

∈ G1
4 × {0, 1}λ ×Zp

4 as well, which highlights the fact that we do not need the
whole power of group signatures here.

Pre-computations and delegation of computation. In the D scheme, the issuer
computes the element Z := e(A, g2) and adds it to the user secret key. Thanks
to this pre-computation, the user avoids to compute any pairing. In the signature
procedure, the user only computes (multi)-exponentiations in G1 and GT . This is
an advantage if we consider that the user is a smart-card, as in the ID document
use-case.

But we can go a step further by delegating some computation from the card
to the reader. The MRTD interacts with the SP through the reader but, in the
RI protocol, even in signature mode, the reader just transfers the messages. In
our case however, we take advantage of the computational power of the reader.
A proposal for this kind of delegation is given Fig. 2. We obtain a piece of valuable
advantages since there is no need to implement large groups operations (like
operations in GT ) in the MRTD. As a consequence, we do not need to develop
specific chips for achieving those heavy computations, and existing chips can
be used. We implemented our protocol on a PC. Following first estimations of
a partial implementation on a chip, the overall signature and communication
(including delegation) between the reader and the passport cost around 890ms,
for equipment currently in use.

Security of the delegation. Of course, this delegation of computation must be done
without compromising the security. In the DAA analysis of [7], a DAA scheme
(with distinct host and TPM) is built upon a pre-DAA scheme (where TPM and
host are not separated). However, our analysis differs, because the MRTD is not
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linked to a single reader. Therefore we adapt our model. We add a pair of suc-
cessive oracles (with a lock mechanism between their calls): GetPreComp(i, j,m),
enabling a corrupted reader to obtain pre-computations from an honest user, and
Sign′(i, j,D), where the same user produces a signature given a delegated com-
putation D supplied by the adversary. Formal definition are given in [3].

Now, in the seclusiveness game, users are corrupted and try to cheat with the
issuer and the verifier. We can assume that readers are corrupted, so
the adversary might call GetPreComp and Sign′ to interact with honest users.
In the unforgeability game, we can also assume that the reader is corrupted
and add the two oracles above. Regarding the anonymity, in our use case, the
reader is able to read the data on the ID document, so there is no anonymity in
front of the reader (for the concerned domain/user), as there is no anonymity
of the TPM from the host’s point of view in a DAA scheme. However, we still
want a notion of unlinkability across domains. Even if a reader is corrupted, the
same user must remain anonymous in other domains, which is exactly our DSPS
notion of anonymity. So the adversary might call GetPreComp and Sign′, and we
restrict the Challenge query to involve at most one user for which the adversary
called GetPreComp (before and after the Challenge call).

Finally, we adapt our proofs. First, in the anonymity proof, the challenger
honestly computes signatures for all users, but i, for which signatures are simu-
lated. Then, we must show that, in each game, the challenger can simulate B1,
B2 and σ (a proof of this fact is given in AppendixA.2). In our construction,
the adversary can compute A from B2 and σ. The fact that we can simulate
signatures even in the cross-domain anonymity game shows that the knowledge
of A does not help linking users across domains.

5 Conclusion

In this paper, we supplied a clean security model for dynamic domain-specific
pseudonymous signatures, and compared this notion with other privacy-friendly
cryptographic primitives. We then highlighted the fact that, in some sense, using
group signatures is “too strong” for constructing DSPS signatures. Following this
intuition, we provided a new construction that is more efficient than the one
of [5], while achieving the same strong security and privacy properties. Finally,
we concentrated on the use of our DSPS scheme in the RI protocol for MRTD
private authentication. Our construction might be implemented on existing chips
if one takes advantage of the computational power of the reader. We supplied
an analysis of such a delegation of computation.

Acknowledgements. The authors would like to thanks the anonymous reviewers for
their valuable comments. This work has been partially funded by the European FP7
FIDELITY project (SEC-2011-284862). The opinions expressed in this document only
represent the authors’ view. They reflect neither the view of the European Commission
nor the view of their employer.
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A Appendix

A.1 A Proof of Knowledge of a Valid Certificate

Let P be the protocol Fig. 3 for proving knowledge of (f, (A, x)) such that

A =
(
g1 ·hf

) 1
γ+x and nym = hf · dpkx. In [3], we show that (i) for an honest ver-

ifier, the transcripts T , (R1, R2, R3), c, (sf , sx, sa, sb, sd) can be simulated in an
indistinguishable way, without knowing any valid certificate, and that (ii) there
exists an extractor for the protocol P.

Fig. 3. The P protocol

A.2 Simulation of Signatures with Delegated Computation

We now adapt the proofs of our main scheme to the extended model of Sect. 4.
We first simulate the GetPreComp step. In the seclusiveness proof, all signa-
tures are honestly computed. In the unforgeability proof, if i �= i, then all
signatures are honestly computed. If i = i, then, given H (from the DL chal-

lenge), Ai, xi and f ′′
i , B picks a, c, sf , sx, sa, sb

$← Zp and computes B1 :=
(Ai

−xi · H · hf ′′
i )c · Asx · ha·sx−sf −sb and B2 := ha·c−sa . In the cross-domain
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anonymity proof, the challenger honestly computes signatures for all users, but i,
for which signatures are simulated. Given A (from the DDH challenge) and fi,

B picks α
$← Zp. The same α is used in each signature, for consistency. Then,

for each signature query, B picks fresh values a, c, sf , sx, sa, sb and computes
B1 := (A−α · hfi)c · T sx · h−sf −sb and B2 := ha·c−sa . (The simulation is done as
if Ai := g1

α.)
We now simulate the Sign′ oracle (identically in the three proofs). B retrieves

m,B1, B2, c, sa, sx, sa, sb from the GetPreComp step. Whatever D is (D may not

equal e(B1, g2) · e(B2, w)), B picks sd
$← Zp, computes T , R1 and R2 as usual

and sets c as the random oracle’s value for the input dpk‖nym‖T‖R1‖R2‖D‖m.
If D is correct w.r.t. B1 and B2, then B returns a valid signature. If not, then
the signature is no longer valid but the response remains consistent w.r.t. B1

and B2. �
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Abstract. U-Prove is a credential system that allows users to disclose
information about themselves in a minimalistic way. Roughly speaking,
in the U-Prove system a user obtains certified cryptographic tokens con-
taining a set of attributes and is able to disclose a subset of his attributes
to a verifier, while hiding the undisclosed attributes. In U-prove the
actual identity of a token holder is hidden from verifiers, however each
token has a static public key (i.e. token pseudonym), which makes a sin-
gle token traceable, by what we mean that, if a token is presented twice
to a verifier, then the verifier knows that it is the same token. We pro-
pose an extension to the U-Prove system which enables users to show
U-Prove tokens in a blinded form, so even if a single token is presented
twice, a verifier is not able to tell whether it is the same token or two
distinct tokens. Our proposition is an optional extension, not changing
the core of the U-Prove system. A verifier decides whether to use issuer
signatures from U-Prove, or the blind certificates from the extension.

Keywords: U-prove · Anonymous credentials · Self-blindable
certificates

1 Introduction

David Chaum in [1] sketched some of the problems related to identity certificates.
One of them is that service providers are able to track the activity of users. The
idea to hide the actual identity of a user is based on pseudonyms. A pseudonym
is a unique identifier by which a user can authenticate against some parties in the
system. Typically pseudonyms are issued by service providers in order to blind
the actual identity of a user. Pseudonymity can be differently understood. In
some systems users appear under just one pseudonym which sometimes is called
a token. Other systems provide unique pseudonyms for a user which are different
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in distinct service providers and even if these service providers cooperate, the
pseudonyms cannot be linked. This means that having two or more pseudonyms
it is infeasible to decide whether the pseudonym is related to one user or many
different users. The notion of unlinkability was also described in [1] and can
be differently understood. One situation is, as described above, when a user
presents different pseudonyms in different domains and the identity cannot be
linked between this domains, however within one domain a user appears under
just one pseudonym and thus is traceable in it [2]. Another situation is when
each authentication session provides a new pseudonym. We will call the second
situation untraceability since the data which a user passes during two or more
authentication sessions are unlinkable, so it cannot be used to trace the activity
of a particular user.

Generally, the anonymity notion appears in a range of different protocols and
schemes. The main goal of group signatures [3–5], for instance, is to identify that
a signer belongs to a group and the signatures made by any group member are
unlinkable in the sense that, a verifier checks only if a signature was made by a
relevant group member, but it is infeasible to determine who exactly produced
that signature.

A similar notion of anonymity can be observed in anonymous credential sys-
tems where a user can prove different statements about himself, but without
revealing any other information to a verifier. Such credential systems based on
CL-Signatures [6] were designed in [7] and are constructed for algebraic groups
of unknown order. Another credential system, designed by Microsoft, is called
U-Prove [8] where a user obtains authentication tokens and is able to proof state-
ments about himself, which are contained in that token. The token contains a
public key, so in some sense it is a pseudonym of a user, and an issuer certificate
on that public key. Presenting one U-Prove token twice or more requires to show
the token public key and the certificate in an unblinded form, so a set of verifiers
can easily track a single token.

In this short paper we study the possibility to improve the U-Prove credential
system by providing the untraceability property for a U-Prove token. So in effect,
many presentations of a single token should be unlinkable. We believe that an
interesting building block introduced by Verhuel in [9], called self-blindable cer-
tificate, can naturally provide the untraceability property for credential systems
such as U-Prove. The idea behind a self-blindable certificate is, that a issuer
generates a certificate under a users public key, and the user can present such
certificate in an blinded form to a verifier.

Contribution. We show an extension to the Microsoft U-Prove credential sys-
tem providing the untraceability property for U-Prove tokens using self-blindable
certificates. In short, instead of obtaining a linkable certificate on a token, we
issue a self-blindable certificate on the token public key, so a token holder can
show statements related to the token without revealing the token public key,
i.e. show the token public key in an blinded form and prove that it is genuine
by showing the blinded certificate. In effect two or more authentication sessions
become unlinkable and verifiers cannot track one particular token. This might be
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desirable in use cases where users shouldn’t be tracked by verifiers, because of the
privacy policy. Our extension don’t changes the U-Prove system substantially.
A verifier can choose, depending on his intend, whether to verify the standard
U-Prove certificate or the self-blindable certificate. In the first case, the protocols
goes unchanged as described in the specification [8]. When self-blindable certifi-
cates are used, then some steps of the protocol are modified. First in Sect. 2 we
describe a construction for self-blindable certificates from [9]. Then, we give a
high-level description of the U-Prove system and indicate the changes between
our contribution and the original protocol in Sect. 3. Finally in Sect. 4 we give a
brief security analysis of our proposed extension.

2 Self-Blindable Certificates

We first recall the definition of Self-Blindable Certificates as described in [9] by
Verheul. Then, we present a construction that implements this definition.

2.1 Definition

We assume that the system consists of users and a trust provider. We define a
certificate on a user public key PU ∈ U , signed with the trust providers secret
key ST , as:

{PU , Sig(PU , ST )}.

Let C be the set of all possible certificates and let F be a set called trans-
formation factor space. We call the certificates C self-blindable if there exist a
efficiently computable transformation map D : C × F → C such that:

– For any certificate C ∈ C and f ∈ F the certificate D(C, f) is signed with the
same trust provider secret key as the certificate C.

– Let C1, C2 be certificates and let f ∈ F is known. If C2 = D(C1, f) then
one can efficiently compute a transformation factor f ′ ∈ F such that C1 =
D(C2, f

′).
– The mapping D(., .) induces a mapping D′ : U × F → U namely if C1, C2

are certificates on a users public key PU , then D(C1, f) and D(C2, f) are
certificates for the public key D′(PU , f), for any transformation factor f ∈ F .

– Let PU be the public key of a user and let f ∈ F be a transformation factor
known by the user. If the user possesses the private key for PU , then the user
also knows the private key for D′(PU , f).

– If the users public key PU is fixed and the transformation factor f ∈ F is
uniformly random, then D′(PU , f) ∈ U is a uniformly random.

2.2 Instantiation

Definition 1. Let G1, G2, GT be cyclic groups of prime order q. Let e : G1 ×
G2 → GT be a map with the following properties:
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– for P ∈ G1, Q ∈ G2 and a, b ∈ Zq, we have e(aP, bQ) = e(P,Q)a·b,
– if P is a generator of G1 and Q is a generator of G2, then e(P,Q) generates

GT ,
– there is an efficient algorithm to compute e(P,Q) for P ∈ G1, Q ∈ G2.

We now say that the function e is a:

– Type 1 pairing function if G1 = G2,
– Type 2 pairing function if G1 and G2 are distinct groups and there exists a

efficiently computable isomorphism ψ : G2 → G1,
– Type 3 pairing function if G1 and G2 are distinct groups and there is no

known isomorphism ψ : G2 → G1.

Type 1 pairing is also called symmetric, because G1 = G2. Type 2 and type 3
are called asymmetric.

From now on, we will only use the multiplicative notation (even when the
group is additive) to simplify the description and to remain compatible with the
U-Prove Crypto Specification V1.1 [8].

Construction. We prosend a robust construction for self-blindable signatures
from [9]. We describe the scheme in groups with type 2 pairing, i.e. the DDH
problem in G2 is easy and DL problem and DH problem is hard, but in G1 the
DDH problem is hard.

In this case we define the set U as G
3
1, the transformation factor space F as

Z
2
q and the certificate space C as G1. In addition let P1 be the generator of G1

and P2 be the generator of G2.
Let z, f ∈ Zq be the private key of the trust provider and let r, rf , h, hz (for

random r, h ∈ G2) be his public key. The users public key takes the following
form: (g1, g2, gx1

1 gx2
2 ), where g1 is a random element in G1, g2 = gf

1 and (x1, x2)
is the private key of the user. The certificate for the users public key is (gx1

1 gx2
2 )z.

The certificate can be easily verified by checking if:

e(gx1
1 gx2

2 , hz) ?= e((gx1
1 gx2

2 )z, h) and e(g1, rf ) ?= e(g2, r)

and by verifying that the user knows x1 and x2, which can be checked using the
Okamoto variant of Schnorr’s identification scheme [10].

Note that, for a random (k, l) ∈ F , functions D(., .) and D′(., .) defined as
follows:

D((gx1
1 gx2

2 )z, (k, l)) = (gx1
1 gx2

2 )z·l·k,
D′((g1, g2, gx1

1 gx2
2 ), (k, l)) = (gl

1, g
l
2, (g

x1
1 gx2

2 )l·k)

fulfil the above definition of self-blindable certificates.

3 Our Contribution

In this section, we will present our extension. We describe it by embedding it into
the U-Prove Crypto Specification V1.1 [8]. Due to space reasons we only show a
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sketch of the system. Thus, we advise to read this section in conjunction with [8].
Our extension is an optional feature. In short, a token issuer makes an additional
self-blindable certificate on the tokens public key. In the proof generation and
verification a user or verifier, depending on the use case, can choose whether to
show the standard signature specified in [8] or the self-blindable certificate from
our proposed extension. We will denote as [Standard] the situation when the
signature from [8] is used, and as [Blinding] when the self-blindable certificate
is used. An exception from this is the issuing phase, where both certificates are
issued to the token holder.

3.1 System Parameters

The system parameters consist of the standard U-Prove parameters:

IP = (UIDP , desc(G1), UIDH, (g0, g1, . . . , gn, gt),
(e1, . . . , en), (z0, z1, . . . , zn, zt), S)

where

– UIDP is a unique identifier of the token,
– desc(G1) is the description of a group of prime order q with a generator g ∈ G1

– UIDH is the specification of the hash function H,
– (g0, g1, . . . , gn, gt) is the issuers public key, where y0 is private, g0 = gy0 and

g1, . . . , gt are random group generators.
– (e1, . . . , en) list of byte values indicating whether or not the attribute values

A1, . . . , An are hashed computing an UProve token.
– (z0, z1, . . . , zn, zt) for each i ∈ {1, . . . , n, t}, zi = gy0

i .
– S - specification for the issuer parameters.

and the additional extension parameters:

IP[Blinded] = (q, p, pr,G2,GT , e, p0, p1).

where G2 is a cyclic group of order q generated by p, r is random in Zq, e is
a Type 2 pairing in sense of Definition 1, p0 = pr·z, p1 = pf and (z, f) is the
issuers secret key.

3.2 Issuing U-Prove Token

The issuing protocol is similar to the one in the specification [8]. In the issuing
procedure the user receives a U-Prove token of the form:

T = (UIDP , h, T I, IP, (σ′
z, σ

′
c, σ

′
r)[STANDARD], (B)[BLINDED]).

During the issuing procedure the user generates a private key α ∈ Zq which is
associated with the public key h = (g0gx1

1 . . . gxn
n gxt

t )α of the token T . The values
σ′

z, σ′
c and σ′

r form the issuer signature on the public key h.
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In our extension, a user obtains a self-blindable certificate on the tokens pub-
lic key h. The issuer computes h2 = hf . The user then chooses two private keys
b1 and b2, computes a value hb1hb2

2 on which the issuer makes his signature using
his private key z. Finally, the self-blindable certificate with the corresponding
public key, obtained by the user is of the form B = (h, h2, h

b1hb2
2 , (hb1hb2

2 )z) and
his private keys associated to the certificate are b1 and b2.

3.3 Presenting U-Prove Token

In this subsection we describe the proof presentation procedure.
Input:

1. Disclosed attributes: D ⊂ {1, . . . , n},
2. Undisclosed attributes: U ⊂ {1, . . . , n}\D,
3. U-Prove token: T = (UIDP , h, T I, IP, (σ′

z , σ′
cσ

′
r)[STANDARD], (B)[BLINDED]),

4. Message: m ∈ {0, 1}∗,
5. Private key: α,
6. Attribute values: (A1, . . . , An) ∈ ({0, 1}∗)n.

Proof Generation:

1. For each i ∈ U , generate wi ∈ Zq and generate w0 ∈ Zq,
2. [Standard] Compute a = H(hw0(

∏
i∈U gwi

i )), or
2. [Blinded] Choose a random blinding l and compute a = H(hw0·l(

∏
i∈U gwi

i ))
3. xt = ComputeXt(IP, TI),
4. For each i ∈ {1, . . . , n}, xi = ComputeXi(IP,Ai),
5. [Blinded] Compute the blinded token

(a) Blind the U-Prove public key B1 = hl, where l is chosen randomly,
(b) Blind the certificate for the token by computing B2 = hl

2, B3 = (hb1hb2
2 )l·k

and B4 = ((hb1hb2
2 )z)l·k, where k is chosen randomly.

(c) Choose r1, r2 at random, and compute additionally B′
1 = Br1

1 and B′
2 =

Br2
2 .

(d) The blinded certificate consists of Bb = (B1, B2, B3, B4, B
′
1, B

′
2)

(e) Set the blinded token as T = (TI, IP,Bb) (note that the blinded U-Prove
token is contained in Bb).

5. c = GenerateChallenge(IP, T , a,m,D, {xi}i∈D),
6. [Standard] Compute r0 = cα−1 + w0, or
6. [Blinded]

(a) Compute r0 = cα−1 · l−1 + w0,
(b) Compute s1 = r1 − c · k · b1 and s2 = r2 − c · k · b2

7. Compute ri = −cxi + wi for each i ∈ U , where wi is chosen randomly,
8. Return the U-Prove token proof ({Ai}i∈D, a, r0, {ri}i∈U ).
8. [Blinded] Additionally, return s1 and s2.
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3.4 Verifying U-Prove Token

Input

1. Issuer parameter fields IP and if the token is blinded then additionally
IP[Blinded].

2. Ordered indices of disclosed attributes: D ⊂ {1, . . . , n},
3. Ordered indices of undisclosed attributes: U ⊂ {1, . . . , n} \ D,
4. The UProve token in form

– [Standard] T = (UIDP , h1, T I, IP, σ′
z, σ

′
c, σ

′
r), or

– [Blinded] T = (TI, IP,Bb).
5. The presentation proof ({Ai}i∈D, a, r0, {ri}i∈U ),
6. [Blinded] The proof of knowledge s1, s2.

Proof Verification:

1. [Standard] Run the V erifyTokenSignature(IP, T ) procedure which veri-
fies (σ′

z, σ
′
c, σ

′
r) (see [8]), or

1. [Blinded] Run V erifySelfBlindableCertificate(Bb, T , s1, s2).
2. xt = ComputeXt(IP, TI),
3. For each i ∈ D, xi = ComputeXi(IP,Ai),
4. Set c = GenerateChallenge(IP, T , a,m,D, {xi}i∈D),
5. [Standard] Extract k = h from T , or
5. [Blinded] Extract k = B1 from T ,
6. Verify that a

?= H((g0gxt
t

∏
i∈D gxi

i )−ckr0(
∏

i∈U gri
i )).

3.5 Verify Self Blindable Certificate

Having as input the system parameters and the issuers parameters IP[Blinded],
the challenge c the blinded token T in particular the values B1, B2, B3, B4, B′

1

and B′
2, check the following proof of knowledge:

Bs1
1 Bs2

2 B−c
3

?= B′
1B

′
2

Now, check whether the certificate was indeed issued by the issuer by verifying
the following equations:

e(B3, p0)
?= e(B4, p

r) and e(B1, p1)
?= e(B2, p)

4 Security Analysis

Since this is a work in progress, we only present an intuition for the security
proof. In particular, we give security arguments for two properties:

1. the adversary, without any U-Prove tokens, cannot create an U-Prove token
that passes the verification,
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2. having k U-Prove tokens, the adversary cannot forge a k + 1 U-Prove token
which is different then each of the k tokens he possesses and that will pass
the verification.

The first statement covers the case when the adversary, without any knowledge
of U-Prove tokens in the system, would like to exploit the extension to pass the
verification. On the other hand, the second statement covers the case when the
adversary would like to exploit the extension to change some attributes in his
U-Prove tokens.

Let us first assume that there exists an adversary that without access to any
U-Prove token, creates a U-Prove token that passes the verification. However,
then we can use such adversary to forge the underlying self-blindable certificates.
Thus, since the self-blindable certificates presented in Subsect. 2.2 are secure
against forgery, as shown in [9], so is our extension.

Now we show that the second statement is valid. Let for i ∈ {1, . . . , k}:

(hi, h2,i, h
b1,i
i h

b2,i
2,i , (hb1,i

i h
b2,i
2,i )z)

be the U-Prove token extensions known to the adversary. Note that hi is the U-
Prove tokens public key which contains all attributes. Without loss of generality
we assume that the adversary would like to change some attributes in token i = 1.
We will now show how he can change the token (h1, h2,1, h

b1,1
1 h

b2,1
2,1 , (hb1,1

1 h
b2,1
2,1 )z)

and the contained in it attributes, in such a way that it will pass the verification.
Obviously, he can blind this token according to the protocol but then the token
contains the same attributes. According to the security proof of the used self-
blindable certificates (see appendix in [9]) the adversary can only change h1 (the
tokens public key) in such a way that h1 =

∏
i∈I hri

i , for I ⊂ {1, . . . , k} and ri

are known to the adversary.
Let us now assume that |I| = 2. It follows that h1 is of the form:

(g0g
x′
1

1 . . . g
x′
n

n g
x′
t

t g0g
x′′
1

1 . . . g
x′′
n

n g
x′′
t

t )α

for some key α, encodings x′
1, . . . , x

′
n of attributes A1, . . . , An and encodings

x′′
1 , . . . , x′′

n of attributes A′
1, . . . , A

′
n. However, a public key of such form will not

pass the standard U-Prove verification. The verifier checks whether:

a
?= H((g0gxt

t

∏

i∈D

gxi
i )−ckr0(

∏

i∈U

gri
i )).

Let us consider one disclosed attribute under base gj , j ∈ {1, . . . , n}. The adver-
sary can choose to disclose x′

j or x′′
j . Without loss of generality, let the adversary

disclose x′′
j . Then, the value (g

x′′
j

j )−c will be canceled by the value (g
x′′
j

j )c, which

will be computed in kr0 . However, note that the value (g
x′
j

j )c will also be com-

puted, since (g
x′
j

j ) is part of the public key k = h1. Note further, that x′
j cannot

be part of the undisclosed attributes since the verifier uses only bases gi for i ∈ U
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and j �∈ U . It follows that the adversary would have to know loggi
(gj) for a i ∈ U

or find a collision for the hash function H (since c depends on the value of a).
The same argumentation works for |I| ∈ {3, . . . , k}. Thus, even if the adver-

sary has k tokens, he cannot create a new U-Prove token that contains a subset
of attributes from the k tokens he possesses.

5 Conclusion

We have shown, that it is possible to create an extension for the U-Prove creden-
tial system that allows to randomize the token. This extension allows to use the
token multiple times in such a way that the verifier cannot link two presentation
proofs of the same token. To assure, the validity of the token we use self-blindable
certificates instead of blind signatures used in the standard specification. To give
some intuition, for the security of this construction, we give a brief rationale.
Future work will include a formal security proof of our extension in the sense
that this extension is as secure as the standard U-Prove specification (which in
fact has no formal security proof).
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Abstract. We analyse security of the scheme proposed in the paper
“Accumulators and U-Prove Revocation” from the Financial Cryptogra-
phy 2013 proceedings. Its authors propose an extension for the U-Prove,
the credential system developed by Microsoft. This extension allows to
revoke tokens (containers for credentials) using a new cryptographic
accumulator scheme. We show that, under certain conditions, there exists
a weakness that allows a user to pass the verification while using a
revoked U-Prove token. It follows that the proposed solution fails to
fulfil the primary goal of revocation schemes.

Recently, a closely related system has been published by Microsoft
Research in “U-Prove Designated-Verifier Accumulator Revocation Exten-
sion, Draft 1 Revision”. Our attack does not work for this scheme, but
the draft lacks formal justification and we cannot exclude problems of this
kind.

Keywords: Anonymous credential · Attribute · U-Prove · Revocation ·
Attack

1 Introduction

Anonymous credentials. In this paper we discuss U-Prove [1] - one of the most
prominent implementations of anonymous credentials. Today, anonymous cre-
dentials is one of the hottest research topics, as they aim to realize the idea
of systems where the privacy is protected “by design”. Recent developments
are driven in particular by increasing (legal) pressure from European Union to
deploy such systems.

Anonymous credential is a cryptographic system in which a person receives an
authentication token from the trust provider. The token confirms some attributes
of the owner, e.g. her or his rights to login to some systems. A holder of such a
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token, say Alice, can use it for authentication. For any subset of attributes A of
the attributes contained in the token she can execute an authentication protocol
with Bob so that:

– she proves that she holds an authentication token with all attributes from A,

however, at the same time

– Bob cannot conclude anything about the attributes not contained in A.

Note that “the attributes not contained in A” may include among others
identity data such as the first name, the family name, and the personal ID
number.

Based on the presented token (and the value of attributes) the verifier can
make appropriate decisions. A good example of an attribute is the legal age
enabling to engage in civil contracts. Note that this attribute should not be the
exact physical age but a logical value true or false indicating whether a given
person reached the age necessary to enter civil contracts.

There are many models of anonymous credentials and subtle differences
between them. The functionality discussed in this paper is possibility to revoke
an authentication token by the token issuer so that it cannot be used anymore
by the token holder.

U-Prove. It is an anonymous credentials system based on the work of Stefan
Brands on e-cash [2] and PKI [3]. The original idea evolved into an anonymous
credential system. It was implemented by Microsoft under the name U-Prove.
For a description of U-Prove and other material we refer the reader to the web
page [1] maintained by Microsoft.

One of the major disadvantages of this system is that the standard U-Prove
specification does not allow to revoke credentials. If a U-Prove token gets stolen,
then the thief can use it freely – the unique security features of anonymous
credentials perfectly protect the thief. If a user receives a U-Prove token for some
attributes, then he can use it indefinitely, in particular after loosing some of the
attributes confirmed by the token. This is a major disadvantage limiting the
application scope, since many attributes are temporal: e.g. status of a student,
employee of a company, customer of a company, inhabitant of a local community
(the attribute enabling to participate actively in democracy on a local level) and
so on. A partial solution of this problem is to use U-Prove tokens with a limited
validity period.

U-Prove extension. During Financial Cryptography’2013, a scheme expanding
U-Prove by revocation procedures has been presented [4]. The solution is fairly
complicated in design – this is witnessed for example by the number of variables
used in algorithm description. It is an extension of the original scheme which
is a very nice property from the business point of view as it does not require
rewriting already developed U-Prove products.
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In September 2013 Microsoft Research published a technical description [5]
closely related to the paper [4]. There some differences between both U-Prove
extensions, however the main idea seems to be the same. Maybe the most impor-
tant visible difference is removing the pairing function (this definitely makes
implementation much easier, since we are more flexible about the choice of the
underlying algebraic structures). On the other hand, it delegates verification of
the presented token back to the system, which is a serious disadvantage from
the usability point of view. Our attack shows that there is another important
difference.

Neither [4] nor [5] contains a complete security proof. Even the information on
the underlying concepts is very sketchy; the form of [5] is closer to an industrial
standard specification than to an academic paper. Therefore our strategy is not
to find a flaw in the security proof (as the details are missing), but rather to find
a possibility to attack given a concrete scheme specification. Perhaps it even
helps to mount an attack as we do not follow the steps of the system designers
and do not share the same intuitions. We also do not attempt to indicate the
necessary corrections - as it is the responsibility of the designers of a product
with strong commercial connotations.

Our Contribution. We show that the extension proposed in [4] has a weakness
in the sense that a revoked person may provide a fake authentication token that
passes authentication despite the fact that this person’s ID is already contained
in the accumulator. “Easily” means here that a simple computer program can
deliver a fake token that would pass the verification. Of course, derivation of
the fake token is different from the original algorithm of creating authentication
token described in [4].

The attack concerns the scheme in the form described in [4]. We do not
claim that this flaw cannot be corrected (it seems that there is an easy patch).
However, at the same time we are far from being able to guarantee that this and
similar constructions are free from other security problems.

In Sect. 2 we present chosen details describing the extension from [4]. In
Sect. 3 we describe the attack against this scheme.

2 U-Prove Revocation Extension from FC’2013

Below we give a brief description of the extension of U-Prove proposed in [4] and
aiming to provide revocation functionality. We describe only the details of the
system and its extension which are essential for understanding the discovered
weakness of the system. For a more detailed description we refer the reader to
the original paper [4].

2.1 Parameters

Beside the standard U-Prove Issuer parameters
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IP = (UIDP , desc(Gq),UIDH, (g0, g1, . . . , gn, gt), (e1, . . . , en), S))

there are parameters related to Blacklist Authority (BA). Namely, BA holds a
secret key δ and the following public parameters:

param = (q,G1,G2,GT , e, P1, P2, Ppub,H,K,G1)

where Ppub = P δ
2 , K = Hδ, G1,H ∈ G1, P2 ∈ G2 and e : G1 × G2 → GT is a

pairing function.

2.2 Blacklist

Instead of a list of identifiers the Blacklist Authority maintains a (public) accu-
mulator holding the identifiers of all revoked users. Each user receives a special
attribute, which is the revocation identifier xID. In addition, a user receives a
witness w = (d,W,Q) that can be used to prove that his xID is not in the
accumulator.

The accumulator is the number V = P
∏k

i=1(δ+xIDi
)

1 , where xID1 , . . . , xIDk
are

the identifiers of the revoked users. All users must update their witness w each
time a new identifier is revoked. To enable updating the witness by the users
themselves, the Blacklist Authority publishes a vector t = (P δ

1 , P δ2

1 , . . . , P δk

1 )
and the revoked identifiers xID1 , . . . , xIDk

.

2.3 Creating a Proof of Not Being Revoked

According to the specification, the standard proof of possession of attributes is
extended in the following way:
First, the following numbers are chosen at random from Zq:

x, u, t1, t2, t3, rx, ru, rt1 , rt2 , rt3 , rβ1 , rβ2 , rβ3 , rd, rd′ .

Then the following numbers are computed:

X := WHt1 , Y := QKt1 , C := Gx
1Hu

A := Grx
1 Hu, R := Gt1

1 Ht2 , S := Gd′
1 Ht3 ,

T1 := G
rt1
1 Hrt2 , T2 := G

rβ1
1 Hrβ2 R−rx , T3 := G

rd′
1 Hrt3 ,

T4 := Hrβ3 S−rd , Γ := X−rxHrβ1 Krt1 P−rd
1 .

The next steps are computing

a := H(hw0(
∏

i∈U gwi),H(X,Y,R, S, T1, T2, T3, T4, Γ, param))

and the challenge

c := GenerateChallenge(IP, T, a,m, ∅,D; {xi}i∈D),
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where GenerateChallenge and the parameters involved (apart from a) are some
U-Prove parameters independent from the revocation part; the numbers w0 and
wi, for i ∈ U , are for the standard U-Prove token and have nothing to do with
revocation. Finally, c and the other parameters are used to generate the following
numbers:

β1 := t1xID, β2 := t2xID, β3 := t3d,
d′ := d−1,
st1 := −ct1 + rt1 , st2 := −ct2 + rt2 , st3 := −ct3 + rt3 ,
sβ1 := −cβ1 + rβ1 , sβ2 := −cβ2 + rβ2 , sβ3 := −cβ3 + rβ3 ,
su := −cu + ru, sx := −cx + rx,
sd := −cd + rd, s′

d := −cd′ + rd′ .

They will be used by the verification procedure presented below to reconstruct
all the arguments of H used to compute a. In fact, some of these values are
related to the Schnorr signatures. Finally, for the revocation part of the proof,
the following tuple is presented:

c, su, sx, sd, sd′ , st1 , st2 , st3 , sβ1 , sβ2 , sβ3 , C,X, Y,R, S

2.4 Verification

Let T be a U-Prove token and let the tuple (c, su, sx, sd, s
′
d, st1 , st2 , st3 , sβ1 , sβ2 , sβ3 ,

C,X, Y,R, S) be its extension part. Apart from the standard verification of T , the
Verifier performs the following operations:

1. compute the following values:

T̃1 = G
st1
1 Hst2 Rc, T̃2 = G

sβ1
1 Hsβ2 R−sx ,

T̃3 = G
sd′
1 Hst3 Sc, T̃4 = G−c

1 Hsβ3 S−sd ,

Ã = Gsx
1 HsuCc, Γ̃ = X−sxHsβ1 Kst1 P−sd

1 (V −1Y )c,

2. verify whether e(Y, P2)
?= e(X,Ppub),

3. verify that for

a := H((g0gxt
t

∏

i∈D

gxi
i )−chro(

∏

i∈U

gri
i ),H(Ã,X, Y,R, S, T̃1, T̃2, T̃3, T̃2, Γ̃ , param)).

we have c = GenerateChallenge(IP, T, a,m, ∅,D; {xi}i∈D).

3 The Weakness in the Extension from FC’2013

In this section we show that having a valid U-Prove token T and the correspond-
ing revocation identifier xID, the adversary can create a non-revocation proof
that passes the verification procedure from Sect. 2.4 even if the identifier xID

has been revoked and included in the accumulator V .
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To do so, the adversary exploits a weakness in the verification procedure.
Namely, it does not verify that the xID used in the non-revocation proof is the
same as the attribute xID in the U-Prove token. To be more specific, there is
no proof of equivalence between those xID-s. Thus, the adversary may use a
valid non-revocation proof for a different token (with a different identifier) or
simply use a self-created non-revocation proof. The specific construction of the
accumulator and verification procedure allows everyone to create a valid proof
(in which we set xID to 0).

We show how to create such a valid non-revocation proof. First, we show how
to compute the parameters X,Y . Then, we show how to create the remaining
parameters so that the non-revocation proof passes the verification test from
Sect. 2.4.

Computing X and Y . Let us define the following polynomial:

f(x) =
∏k

i=1(x + xIDi) = anxn + an−1x
n−1 + . . . + a1x + a0.

Then the accumulator V equals P
f(δ)
1 . Further, we define the following polyno-

mials:
f ′(x) = f(x) − a0 = anxn + an−1x

n−1 + . . . + a1x
g(x) = f ′(x)/x = anxn−1 + an−1x

n−2 + . . . + a1.

Thus, we can compute X := P
g(δ)
1 and Y := P

f ′(δ)
1 using the vector t and

interpolation in the exponent. Note that:

e(Y, P2) = e(P f ′(δ)
1 , P2) = e((P f ′(δ)

1 )δ−1
, P δ

2 ) = e(P g(δ)
1 , Ppub) = e(X,Ppub)

and that V = Y P a0
1 .

In the above procedure the attacker has to know the vector t in order to
perform interpolation in the exponent for computing X and Y . However, there
is an option for the extended U-Prove where t and the revoked identifiers are
not published. Instead, the users could get the current value of the accumulator.
In this case the attack does not work directly.

Nevertheless, the attacker can get the values from P δ
1 , P δ2

1 , . . . , P δk

1 . Assume
that all the revoked identifiers belong to the attacker and the identifiers are
revoked one by one. As the users first become V = P

δ+xID1
1 , the attacker

can compute P δ
1 as V/P

xID1
1 . After the second revocation the users get V =

P
(δ+xID1 )(δ+xID2 )
1 = P δ2

1 · (P δ
1 )xID1+xID2 · P

xID1 ·xID2
1 , so the adversary can easily

compute P δ2

1 . This procedure can be continued. It suffices to know the identi-
ties of the revoked users and the values of the accumulator V to perform the
computations and derive the vector t.

Computing of the Remaining Values. In the previous subsection we have
shown how to compute X and Y . Now we will show how to compute the remain-
ing values. To do so, we perform the following steps:
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1. Choose x1, x3, rx, ru, r′
d, rt1 , rt2 , rt3 , rβ1 , rβ2 , rβ3 at random.

2. Compute:

x2 = a−1
0 , S = Gx2

1 , C = Hx3 ,

R = Hx1
1 , T1 = G

rt1
1 Hrt2 , T2 = G

rβ1
1 Hrβ2 R−rx ,

T3 = G
rd′
1 Hrt3 , T4 = Hrβ3 , Γ = X−rxHrβ1 Krt1 ,

A = Grx
1 Hru .

3. Compute a and c according to the original specification.
4. Compute

sd = −cx−1
2 , s′

d = rd′ − cx2,
st1 = rt1 , st2 = rt2 − cx1, st3 = rt3 ,
sx = rx, su = ru − cx3,
sβ1 = rβ1 , sβ2 = rβ2 , sβ3 = rβ3 .

5. Return (su, sx, sd, s
′
d, st1 , st2 , st3 , sβ1 , sβ2 , sβ3 , C,X, Y,R, S) as the revocation

part of the attribute presentation proof.

Correctness. We will show that the values computes above will pass the ver-
ification from Sect. 2.4. For this purpose we have to show that the verification
procedure will deliver the same values as used for computing a by the adversary:

T̃1 = G
st1
1 Hst2 Rc = G

rt1
1 Hrt2−cx1(Hx1)c = G

rt1
1 Hrt2 = T1,

T̃2 = G
sβ1
1 Hsβ2 R−sx = G

rβ1
1 Hrβ2 R−rx = T2,

T̃3 = G
sd′
1 Hst3 Sc = G

r′
d−cx2

1 Hrt3 (Gx2
1 )c = G

r′
d

1 Hrt3 = T3,

T̃4 = G−c
1 Hsβ3 S−sd = G−c

1 Hrβ3 (Gx2
1 )cx−1

2 = Hrβ3 = T4,

Ã = Gsx
1 HsuCc = Grx

1 Hru−cx3(Hx3)c = Grx
1 Hru = A,

Γ̃ = X−sxHsβ1 Kst1 P−sd
1 (V −1Y )c = X−rxHrβ1 Krt1 P

cx−1
2

1 ((Y P a0
1 )−1Y )c

= X−rxHrβ1 Krt1 P
cx−1

2
1 (P−a0

1 )c = X−rxHrβ1 Krt1 P
cx−1

2
1 P

−cx−1
2

1

= X−rxHrβ1 Krt1 = Γ.

Recall, that X and Y fulfil the equation e(Y, P2) = e(X,Ppub). Thus, we will
pass all steps of the verification related to the revocation extension. As we have
not manipulated the creation of the U-Prove traditional token, it will accepted
as well.

Remarks. The reader might ask what is the magic behind the choice of the
parameters for the fake proof of the non-revoked status. Definitely, first the
parameters for computation of c must be fixed (unless we aim to break the hash
function). Then we have to find the other parameters from the proof that during
the verification would yield the arguments used originally for computing c.
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Our solution has been found by analyzing dependencies. Of course, in a secure
design we have a kind of loop: an attempt to cheat leads to setting the same
value in different ways to satisfy different equations. This is the basic property of
constructions such as Schnorr signatures. Unfortunately, driven by pure intuition
and reverse-engineering methodology (“do not try to analyze first all details of
the attacked system”) we have found a path to set all values in a way to fulfill
all equations in a way different than designed by the authors of the extension.
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Abstract. In some scenarios, especially when visual cryptography [1]
is used, the attacker has no access to an encryption oracle, and thus is
not able to mount chosen-plaintext attacks. Based on the notion of real-
or-random security under chosen-plaintext attacks (ROR-CPA) given by
Bellare et al. [2], we propose the notion of sample-or-random security
under ciphertext-only attacks (SOR-CO). We prove that the notion of
SOR-CO is fundamentally weaker than the notion of ROR-CPA security
and demonstrate the usefulness of our notion by applying it to segment-
based visual cryptography [3]. An additional contribution of this paper
is the construction of a new segment-based visual encryption scheme
with noise based on work by Doberitz [4]. To our knowledge, this is the
first visual encryption scheme which makes use of noise. We conjecture
that it is secure in the sense of SOR-CO security if the key is not used
too often and if the encryption schemes security parameters are chosen
accordingly.

Keywords: Authentication · Visual cryptography · Security model

1 Introduction

In online banking, many banks have come up with several approaches of authen-
tication derived from variations of transaction authentication numbers (TAN).
The user receives a list of TANs beforehand (e.g. by letter post) and has to
authenticate each transaction with one of the numbers from his list. This at
least ensures that an adversary cannot perform transactions by knowing the
user’s login and password. However, this attack is vulnerable to client side attacks
such as Trojan horses or phishing. There are various attempts of banks to over-
come this, such as indexed TANs (iTAN) where the user was asked for a specific
TAN from his list or mobile TANs (mTAN) where a single TAN is created from
transaction data and transmitted via a separate channel. In practice those vari-
ations helped against phishing, but did not succeed against Trojan horses, since
the assumption that the user’s mobile phone is a trusted device did not hold
due to sophisticated Trojan horses which also affected the mobile devices [5].
c© International Financial Cryptography Association 2014
N. Christin and R. Safavi-Naini (Eds.): FC 2014, LNCS 8437, pp. 291–303, 2014.
DOI: 10.1007/978-3-662-45472-5 19
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Other approaches include special devices which are assumed to be trustworthy,
but cause additional costs. Furthermore, the adversary may try to gain also con-
trol over the trusted devices by simulating to the user that the devices need to
updated and connected to the computer already taken over.

Another proposal for secure authentication on untrusted computers is visual
cryptography. Visual cryptography was introduced by Naor and Shamir [1,6,7]
and allows to encrypt a picture by splitting it into n shares in such a way that
someone with k shares is able to reconstruct the image, while k −1 shares reveal
no information about the original image. They proposed to print each share
on a transparency, so that its re-composition can be easily done by humans by
stacking their transparencies without the aid of computers. By using only two
shares, this approach could have one physical transparency which is put in front
of the display of a possibly compromised computer as shown in Fig. 1. By solving
a challenge which is only solvable seeing the composed image it is ensured that
a Trojan horse would only notice the points which the user clicked, but the
malware cannot associate any meaning with it. Specific approaches for online
banking were proposed by Greveler [8] and Bochert [3]. They propose to encrypt
a virtual keypad with visual cryptography. The user has to decrypt the keypad
by aligning a key-transparency on his screen and then has to input his TAN by
clicking on the digits of the virtual keypad.

(a) transparencies side by side (b) transparencies stacked

Fig. 1. Example for visual cryptography with a transparency displayed on a monitor
and a transparency which is physically put in front of the monitor

However, all existing approaches are closely related to encryptions based on
the XOR function which is due to humans not being able to do complex opera-
tions “on the fly”. Thus, for many approaches, the key-transparency may be used
only once in a secure manner. Although there are a number of schemes allowing
to reuse the key-transparency, a satisfying solution for real world scenarios has
not yet been found. Leaving the user in practice with plenty of key-transparencies
and the hassle of finding the appropriate one.
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The general idea of this paper is to examine how key-transparencies for
segment-based visual cryptography can securely be used a couple of times. We
concentrate on the secure transmission of virtual keypads and do not consider
the further protocol for authentication.

1.1 Related Work

Segment-Based Visual Cryptography. The idea of segment-based visual
cryptography was described by Borchert in 2007. He describes a variation of
visual cryptography, where – instead of pixels – segments of a 7-segment dis-
play are encrypted [3]. The most significant advantage of segment-based on
pixel-based visual cryptography is the easier alignment of the key-transparency.
Borchert also gives a more detailed comparison of both variants.

Real-or-RandomSecurity. The idea of real-or-random security originates from
Bellare et al. [2]. The basic idea is that an oracle, the real-or-randomoracle, answers
either the encryption of the queried message or an encryption of a randomly chosen
string of the same length. If the adversary is not able to determine the oracles oper-
ation mode, it is assumed that she is not able to derive any insights from observing
encryptions and the encryption scheme is considered to be secure in the sense of
real-or-random security. The formal definition of real-or-random security is heav-
ily based on the original work of Bellare et al. [2].

Definition 1 (Real-or-Random Oracle ORR). The real-or-random oracle
ORR(·, b) takes as input a message m from the plaintext space M and depending
on b it returns either the encryption Enc(m) of the message m (if b = 1) or an
encryption Enc(r) of an equal-length randomly chosen string r

R← M (if b = 0).

It is understood that the oracle picks any coins that Enc might need if Enc is
randomized, or updates its state appropriately if Enc is stateful.

Definition 2 (ROR-CPA). Let Π = (GenKey,Enc,Dec) be a symmetric encr-
yption scheme, b ∈ {0, 1} and n ∈ N. Let Acpa be an adversary with access
to the real-or-random oracle ORR(·, b). For the security parameter n the adver-
sary’s success probability is

Advror−cpa
Acpa,Π (n)

def
= Pr[Expror−cpa−1

Acpa,Π (n) = 1] − Pr[Expror−cpa−0
Acpa,Π (n) = 1]

where the experiment Expror−atk−b
Acpa,Π (n) = b′ for b ∈ {0, 1} is given as follows:

k ← GenKey(1n) key-generation
b ∈R {0, 1} random selection of b

b′ ← A
ORR(·,b)
cpa adversary tries to determine b′

We define the advantage function of the scheme Π as follows:

Advror−cpa
Π (n, t, qe, μe)

def
= max

Acpa

{
Advror−cpa

Acpa,Π (n)
}
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where the maximum is over all Acpa with time complexity t, each making at most
qe queries to the real-or-random oracle ORR(·, b), totaling at most μe bits. If the
success probability Advror−cpa

Π (n) for any polynomial (in n) bound adversary
is negligible in n, we say the encryption scheme Π is secure in the sense of
ROR − cpa.

2 Sample-or-Random Security

The idea of sample-or-random security is based on real-or-random security and
thus also game-based and considering indistinguishability. Since the adversary
is not always capable of chosen-plaintext attacks, ciphertext-only attacks are
considered. It is only assumed that the encrypted messages follow a certain
format known to the adversary, e.g. a virtual keypad contains the digits from ‘0’
to ‘9’. The same idea as for real-or-random security applies. If the adversary is
not able to distinguish encryptions from samples and encryptions from random
strings, it is assumed that she is not able to derive any insights from observing
encryptions and the encryption scheme is considered to be secure in the sense of
sample-or-random security.

Definition 3 (Sample-or-Random Oracle OSR). The sample-or-random
oracle OSR(b) takes no input and depending on b returns either a set of encryp-
tions Enc(mi) of the messages (m0, . . . , mj) ← samplestruct given by samplestruct

(if b = 1) or an encryption Enc(ri) of an equal-size set of uniformly at random
chosen strings ri

R← M with the same length than the corresponding messages
mi (if b = 0).

Before we give the definition of sample-or-random security, we introduce the
sample structure samplekbd, which represents a randomized virtual keypad:

Definition 4 (Sample Structure samplekbd). Let a‖b denote the concatena-
tion of the strings a and b. We denote the sample composed of one plaintext
message m containing each character γi of the alphabet Γ (with size |Γ |) once
with:

samplekbd ∈R {m | m = γ0‖γ1‖ . . . ‖γ|Γ | ∧ ∀i, j with 0 ≤ i, j ≤ |Γ | . γi �= γj}
Definition 5. (SOR−CO) Let Π = (GenKey,Enc,Dec) be a symmetric encryp-
tion scheme, b ∈ {0, 1} and n ∈ N. Let Aco be an adversary with access to the
sample-or-random oracle OSR(b). Let samplestruct be a function which returns a
finite set of sample plaintexts following the underlying structure struct for each
invocation. For the security parameter n the adversary’s success probability is

Advsor−co
Aco,Π (n)

def
= Pr[Expsor−co−1

Aco,Π (n) = 1] − Pr[Expsor−co−0
Aco,Π (n) = 1]

where the experiment Expsor−co−b
Aco,Π (n) = b′ for b ∈ {0, 1} is given as follows:

k ← GenKey(1n) key-generation
b ∈R {0, 1} random selection of b

b′ ← A
OSR(b)
co (struct) adversary tries to determine b′
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We define the advantage function of the scheme Π as follows:

Advsor−co
Π (n, t, qe, μe)

def
= max

Aco

{
Advsor−co

Aco,Π (n)
}

where the maximum is over all Aco with time complexity t, each making at most
qe queries to the sample-or-random oracle OSR(b), totaling at most μe bits. If
the success probability Advsor−co

Π (n) for any polynomial (in n) bound adversary
is negligible in n, we say the encryption scheme Π is secure in the sense of
SOR − co given the sample structure struct.

3 Relation to Real-or-Random Security

We prove that SOR − CO has a weaker notion of security than ROR − CPA
by showing that: On the one hand, ROR − CPA (see Definition 2) is at least as
strong as SOR − CO. On the other hand, given an encryption scheme Π secure
in the sense of SOR − CO we show how to construct an encryption scheme
Π, which is still secure in the sense of SOR − CO, but not in the sense of
ROR − CPA. The proofs are in general along the lines of the proofs given by
Bellare et al. [2].

Corollary 1. [ROR − CPA ⇒ SOR − CO] If Π is an encryption scheme,
which is secure in the sense of ROR − CPA, then Π is secure in the sense of
SOR − CO.

Proof. Let m be a plaintext message from the encryption system’s plaintext
space M and samplestruct be the sample function returning a set (m0, . . . , mj)
of sample plaintexts following an underlying structure struct for each invocation
of the sample-or-random oracle OSR(b). With a real-or-random oracle ORR(·, b)
the sample-or-random oracle OSR(b) may be simulated by producing a sample
of messages (m0, . . . , mj) ← samplestruct and then asking ORR(·, b) for their
encryption. Thus, security in the sense of ROR − CPA can be seen as security
in the sense of SOR − CO with an additional real-or-random oracle available.

The more challenging part is to show that if there exist encryption schemes
which are secure in the sense of SOR − CO that these are not automatically
secure in the sense of ROR−CPA. To proof this we exploit that the adversaries
considered by SOR−CO are not able to choose the plaintexts for encryption. We
assume there is an encryption scheme Π = (GenKey,Enc,Dec) which is secure in
the sense of SOR − CO. Then, based on Π, we construct an encryption scheme
Π ′ = (GenKey′,Enc′,Dec′) which is also secure in the sense of SOR − CO, but
can easily be broken in the sense of ROR−CPA. For that purpose, we construct
Enc′ such that it marks the encryption of a particular message m′. This gives
the adversary an advantage when asking the real-or-random oracle. To ensure
that Π ′ is still secure in the sense of SOR − CO, the message m′ should only
occur very rarely if strings are chosen either randomly or by the sample structure
struct. Otherwise an adversary may get an additional advantage to attack the
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encryption scheme which renders it insecure in the sense of SOR − CO. We
illustrate the idea by regarding the sample structure samplekbd for which we
assume, that our alphabet Γ for plaintexts consists of n+1 characters represented
by numbers from 0 to n and that the ciphertexts’ alphabet includes ‘0’ and ‘1’.
We regard the following algorithms for Π ′ = (GenKey′,Enc′,Dec′), assumed
Π = (GenKey,Enc,Dec) is secure in the sense of SOR − CO given the sample
structure samplekbd.

Algorithm GenKey′(1n): Algorithm Enc′
k(m): Algorithm Dec′

k(c′):
k ← GenKey(1n) c ← Enck(c) c′ = α1‖α2‖ . . . ‖α|c′|
return k if m = 0 . . . 0 c := α2‖ . . . ‖α|c′|

then c′ := 0‖c m := Deck(c)
else return m

c′ := 1‖c
return c′

Π ′ works almost like Π. When the encryption function is invoked with the
particular message m′ – here n + 1 zeros – the decryption is prefixed with ‘0’.
The encryption of all other messages is prefixed with ‘1’. While this does almost
not effect the security in the sense of SOR − CO, an adversary of the ROR −
CPA security model is able to explicitly ask the encryption oracle for m′ and
determine the oracle’s operation mode. Should the adversary gain an advantage
by knowing that the encryption of the special message m′ is not part of the
domain of Π ′, the special answer may be given only with a certain probability
or stages may be added. It remains to show the two emerging lemmas:

Lemma 1. Π ′ = (GenKey′,Enc′,Dec′) is not secure in the sense of ROR −
CPA.

Proof. We exploit the built-in weakness of Π ′ by asking the oracle for the encryp-
tion of the message m′. If the encryption is prefixed with ‘0’ we conclude that
the oracle is in ‘real mode’ otherwise we conclude it encrypts random strings. If
the encryption is prefixed with ‘1’ we can be sure. However, if the encryption is
prefixed with ‘0’, the oracle may nevertheless operate in random mode with a
probability of 1

(n+1)n+1 . Thus, the resulting probabilities lead to the adversary’s
non-negligible advantage and Π ′ is not secure in the sense of ROR − CPA:

Advror−cpa
Acpa,Π′ (n) = Pr[Expror−cpa−1

Acpa,Π′ (n) = 1] − Pr[Expror−cpa−0
Acpa,Π′ (n) = 1]

= 1 − 1
(n + 1)n+1

− 0

Lemma 2. Π ′ = (GenKey′,Enc′,Dec′) is secure in the sense of SOR−CO given
the sample structure samplekbd.

Proof. When the oracle is in ‘sample mode’ the modification does not come to
play, since m′ is not part of the sample. Otherwise, we already concluded that
the probability that a ‘random mode’ oracle prefixes an encryption with ‘0’ is
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1
(n+1)n+1 . That means when the oracle is in ‘random mode’, an adversary has
an additional chance of receiving m′. However, since the probability is negligible
and the adversary is polynomially limited, her additional advantage Adv� is
negligible which leads to the estimation:

Advsor−co
Aco,Π′(n) = Pr[Expsor−co−1

Aco,Π′ (n) = 1] − Pr[Expsor−co−0
Aco,Π′ (n) = 1]

≤ Pr[Expsor−co−1
Aco,Π (n) = 1] + Adv� − Pr[Expsor−co−0

Aco,Π (n) = 1]

= Advsor−co
Aco,Π (n) + Adv�

Due to the assumption that Π is secure in the sense of SOR−CO , Advsor−co
A,Π (n)

is negligible and so is Adv�. Therefore, Advsor−co
A,Π′ (n) is also negligible and Π ′

secure in the sense of SOR − CO given the sample structure samplekbd.

The message m′ needs to be chosen depending on the given sample structure
and the encryption scheme Π. However, depending on the sample, it is not
always possible to come back to strings of a certain length. E.g. when the sample
structure consists of a set of messages. Then it is possible to add stages to the
encryption function in such a way that a special combination of plaintexts –
which is not part of the sample – triggers the oracle’s special answer.

Corollary 2. [SOR−CO � ROR−CPA] If there exists an encryption scheme
Π which is secure in the sense of SOR − CO, then there exists an encryption
scheme Π ′ which is secure in the sense of SOR−CO but not secure in the sense
of ROR − CPA.

Proof. Corollary 2 follows from Lemmas 1 and 2.

Theorem 1. Security in the sense of SOR−CO is a weaker notion than security
in the sense of ROR − CPA.

Proof. Theorem 1 follows from Corollarys 1 and 2.

Thus, we have shown that the two security models give different notions of
security and SOR − CO is weaker than ROR − CPA.

4 Application of Sample-or-Random Security
to Encryption Schemes

In this section we take a look at some segment-based visual encryption schemes
and evaluate if the result from applying the sample-or-random security model is
in agreement with the intuitive notion of security. We focus on the encryption
of virtual keypads with the corresponding sample samplekbd (cf. Definition 4).
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(a) 7-segment (b) VC 7-segment (c) Cipher c

+

(d) Key k

=

(e) Message m

Fig. 2. Segment-based visual cryptography on 7-segment displays

4.1 7-Segment Displays

Borchert [3] describes a variation of visual cryptography, where – instead of
pixels – segments of a 7-segment display (cf. Fig. 2a) were encrypted. Each digit
can be displayed by switching the appropriate individual segments ‘on’ and ‘off’.
Applying visual cryptography, each segment has two representations (left/right
or lower/upper) and the segment is visible if the segment’s positions match
on cipher and key (cf. Fig. 2b). Figures 2c to e show a ciphertext, a key and
the corresponding plaintext message when stacking the slides on top of each
other. It is easy to see that if the plaintext message is , key and ciphertext
have to be identical, e.g. both Fig. 2c or d. We denote this encryption scheme
with Π7seg.

Intuitive Notion of Security. Since there are only 10 possible digits, after
eavesdropping a valid ciphertext, an adversary is able to reduce the number of
possible keys from 128 (27, the size of the key space) to 10 for each segment.
Decrypting with any other key would not result in a valid digit, because the
7-segment coding is not a closed encoding scheme. Thus, as in pixel-based visual
cryptography it should not be secure to re-use a key twice.

Sample-or-Random Security. We notice that when using the same key and
regarding the number of different segments of two encryptions based on 7-
segment displays of the sample structure samplekbd they differ in an even number
of positions:

Lemma 3. Let m = γ0, . . . , γn and m′ = γ′
0, . . . , γ

′
n be two messages from the

sample structure samplekbd and let c = α0, . . . , αn respectively c′ = α′
0, . . . , α

′
n

be their encryptions with Π7seg. Then the number of different segments of the
ciphertexts is always even:

∑n
i=0 αi ⊕ α′

i = 0 mod 2.

Proof. Let s respectively s′ denote the 7-segment encodings of the messages m
respectively m′ and let ↔ denote the identity function. If both segments are
equal, the segment is visible. Obviously c ⊕ c′ = (s ↔ K) ⊕ (s′ ↔ K) = s ⊕ s′
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holds. Thus, the difference of two ciphertexts encrypted with the same key is
independent of the key. Since each sample message contains the same encodings,
s is a permutation of s′. It can easily be seen that when changing the position
of two characters in s, for each segment switched off, another segment needs to
be switched on. Thus the difference’s parity of two messages from the sample
structure samplekbd is independent of the character’s permutation of the message
and therefore always even.

Theorem 2. The segment-based visual encryption scheme based 7-segment dis-
plays is not secure in the sense of SOR − CO for two ciphertexts (qe = 2) given
the sample structure samplekbd.

Proof. The adversary succeeds with the following strategy. She asks the oracle
for two ciphertexts and determines the sum of segmental XORing them. If the
sum is even, she guesses that the oracle is in ‘sample mode’, if it is odd she
guesses it is in ‘random mode’. The corresponding probabilities are as follows:

If the oracle is in ‘sample mode’ (b = 1), the sum will always be even and
thus the adversary will always be right (cf. Lemma3).

If the oracle is in ‘random mode’ (b = 0), the sum will be odd only in
half of the cases. Thus, the adversary’s guess is in half of the cases correct:
Advsor−co

Aco,Π7seg
(n) = Pr[Expsor−co−1

Aco,Π7seg
(n) = 1]−Pr[Expsor−co−0

Aco,Π7seg
(n) = 1] = 1− 1

2 .
Thus, her advantage is not negligible and appropriate to our intuition, Π7seg is
not secure in the sense of SOR − CO given the sample structure samplekbd.

4.2 Encryptions Based on Dice Codings

Doberitz [4] describes a variation of segment-based visual cryptography, where –
instead of a 7-segment display – a coding based on dots is chosen. The user has
to count the number of visible dots – like counting dots from game dices, hence
the name dice coding. She also presented a user study showing that users get well
along with 9 dots. Since this allows us to build a virtual keypad, in the following
we regard dice codings with 9 dots. Figure 3a shows the full dot matrix. When the
principles of visual cryptography are applied, each dot has two representations
(left/right) and the dot is visible if the dot’s positions match on cipher and
key (cf. Fig. 3b). Figures 3c to e show a ciphertext, a key and the corresponding
plaintext message ‘5’ when stacking the slides on top of each other. It is easy to
see that if the plaintext message is ‘9’, key and ciphertext have to be identical,
e.g. both Fig. 3c or d. We denote this encryption scheme with Πdice.

(a) 9-Dice (b) VC 9-Dice (c) Cipher c

+

(d) Key k

=

(e) Message m

Fig. 3. Segment-based visual cryptography based on dice codings
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Intuitive Notion of Security. The scheme based on dice codings is closed,
there are no undecodable plaintext results. However, the number of possible
encodings follows a binomial distribution, there is only one possibility to encode
‘0’ or ‘9’, but there are 126 possibilities to encode ‘4’ or ‘5’ (cf.

(
9
4

)
).

Moreover, if virtual keypads are regarded, the segments itself are still closed,
but since each segment has to be an encoding of a different digit, the plaintext
message itself does not cover the complete message space. Therefore, for a virtual
keypad containing each digit from ‘0’ to ‘9’ once, 26 ciphertexts are sufficient to
reduce the number of possible keys to two [9].

Sample-or-Random Security. In fact, it shows that it does not make a big
difference if the virtual keypad is encoded with a 7-segment display or with a
9-dice coding.
Lemma 4. Let m and m′ be two messages from the sample structure samplekbd

and let c respectively c′ be their encryptions with ΠDICE. Then the number of
different dots of the ciphertexts c and c′ is always even.

Proof. The proof essentially goes along the lines of the proof of Lemma 3.

Theorem 3. The segment-based visual encryption scheme based on dice codings
ΠDICE is not secure in the sense of SOR−CO for two ciphertexts (qe = 2) given
the sample structure samplekbd.

Proof. The proof is analog to the proof of Theorem2.

4.3 Encryptions Based on Dice Codings with Noise

The enhanced version of a visual encryption scheme based on dice codings aims
to enlarge the amount of information an adversary needs to recover information
from eavesdropped ciphertexts. The basic idea is to add noise to the ciphertexts.
If both possible positions of a dot are covered by the key, noise is taken out.
Since the adversary does not know which of the dots is noise, this renders an
additional difficulty for her. To our knowledge, this is the first visual encryption
scheme which makes use of noise.

The full dot matrix for the encoding stays unchanged (cf. Fig. 3a). Figure 4a
shows the enlarged matrix which is the basis for constructing ciphertexts and
keys. Figures 4b to d show a ciphertext, a key and the corresponding plaintext
message ‘4’ when stacking the slides on top of each other. The ciphertext still
consists of a dot at each pair of positions. The key still contains dots with two
representations (left/right), but additional contains blackened blocks without
any dots. When deciphering, the dot is visible if the key does not contain a
blackened block at the considered position and the dot’s positions match on
cipher and key. If the plaintext message is ‘9’, key and ciphertext have to be
identical for all positions where the key contains dots. For the blackened blocks,
the ciphertext may contain a dot either on the left or the right position. We
denote this encryption scheme with Π�

dice, the maximum number of visible dots
with the encoding parameter n, and the number of blackened blocks with the
security parameter ν.
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(a) VC 9-dice + (b) Cipher c

+

(c) Key k

=

(d) Message m

Fig. 4. Visual cryptography based on dice codings with noise (n = 9, ν = 7)

IntuitiveNotion of Security. The security of the segment-based visual encryp-
tion scheme based on dice codings with noise Π�

DICE(ν) strongly depends on the
amount of noise added. If ν = 0 no noise is added and thus ΠDICE = Π�

DICE(0).
For all other values of ν, the noise additionally stretches the binomial distribution
of the different encodings by the factor 2ν (e.g. for digit d to

(
9
d

) · 2ν). Since the
number of possible encodings of all digits are multiplied, this does not concern its
ratio, but makes it more difficult to discover encryptions of ‘0’ and ‘9’.

Sample-or-Random Security. If the security parameter ν > 0, the attack of
considering the parity of changed dots does not work anymore. Assumed ν = 1
then the parity is flipped if the noise dots of the ciphertexts do not match, which
is true in half of the cases. Thus, if the oracle is in ‘sample mode’ (b = 1), the
sum will be even in half of the cases and be odd in the other half of the cases.
If the oracle is in ‘random mode’ (b = 0), the sum will still be in half of the
cases odd and half of the cases even. Therefore, the adversary has no advantage
following the described attack. However, for a formal proof, it would be necessary
to regard all possible attacks. Therefore, we conclude with a conjecture.

Conjecture 1. Let Π�
DICE(ν) be a segment-based visual encryption scheme based

on dice codings with noise with the encoding parameter n and the security
parameter ν, let qe be a number of ciphertexts and let samplestruct be a sample
function. Then there exists a N so that ∀ν ≥ N the encryption scheme Π�

DICE(ν)
is secure for qe ciphertexts in the sense of SOR − CO security.

It is reasonable to assume the conjecture is true, because even for a sample which
consists of a fixed message string m, the adversary has to differ between noisy
and meaningful dots in the ciphertext. The probability to determine the noise,
when the dots containing the encryption of the message are fixed, depends on
the number of ciphertexts qe and the security parameter ν. If qe is fixed, there is
a certain point N and for all ν ≥ N the position of the noise is indeterminable.

Remark 1. Assume an application for Π�
DICE, such as online banking. Then N

denotes how much noise one has to add to securely use the key transparency qe

times. After the key transparency is used that often, it is thrown away and a new
one is used for the next qe ciphertexts. The usability of the scheme for ν ≥ N is
unconsidered here. However, given a certain amount of noise ν, one may derive
the closely related question how often a key transparency may securely reused.
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5 Conclusion and Future Work

Based on the observation that existing game-based security models for indistin-
guishability are too strong and do not suit the requirements for visual encryption
schemes, we defined the notion of sample-or-random ciphertext-only (SOR −
CO) security. We also showed that the SOR − CO security model gives a
weaker notion of security than the real-or-random under chosen-plaintext attacks
(ROR − CPA) security model. Another security model which comes to mind
is to require the attacker to distinguish two different sample structures. Then
sample-or-random security may be seen as a special case of sampleA-or-sampleB
security. Thus, an open question is whether there are other notions of security
when CPA-security seems to be out of reach and which of them is the ‘most
meaningful’.

Another open question is, whether the notion of SOR−CO security is useful
for pixel-based cryptography. Since it is difficult to formally model the represen-
tation of symbols by pixels, it is unclear whether it is of use here.

It would also be desirable, given a sample structure samplestruct to have
a proof for all n, ν, qe that encryption schemes from the class of segment-based
visual encryption schemes based on dice codings with noise are secure/insecure in
the sense of sample-or-random ciphertext-only indistinguishability (SOR−CO).
Where n is the encoding parameter (maximum number of visible dots), ν is the
security parameter (number of noise dots), and the number qe represents the
number of samples available to the adversary.

Another interesting question is whether there are displays similar to the 7-
segment display which only have meaningful configurations. A more user-friendly
encoding scheme would ease the user’s task. However, it is unclear how to con-
struct such a display without the need that the user has to learn new symbols.

Further research is needed, when embedding the encrypted virtual keypad
in secure protocols. For example, if the last account numbers and the trans-
fer’s amount are encrypted, the adversary may not be able to mount a chosen-
plaintext attack, but may have plaintext/ciphertext pairs for certain parts of the
ciphertext. Thus, an extended security model may be necessary to judge on the
full protocol.
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Abstract. SSL and HTTPS is currently a hotly debated topic – partic-
ularly the weakest link property of the CA based system has been heavily
criticized. This has become even more relevant in the light of recent spy-
ing revelations. While there are several proposals how the CA system
could be improved or replaced, none of these solutions is receiving wide-
spread adoption, and even in a best case scenario it would take years
to replace the current system. In this paper we examine a root prob-
lem of the weakest-link property and propose a simple stop-gap measure
which can improve the security of HTTPS immediately. Currently, over
400 trusted entities are contained in each of the common trust stores
of various platforms and operating systems. To find out which of these
trusted root certificates are actually needed for the HTTPS ecosystem,
we analyzed the trust stores of Windows, Linux, MacOS, Firefox, iOS
and Android, discuss the interesting differences and conduct an exten-
sive analysis against a database of roughly 47 million certificates collected
from HTTPS servers. We found that of the 426 trusted root certificates,
only 66 % were used to sign HTTPS certificates. We discuss the benefits
and risks involved in removing the other 34 % of trusted roots. On the
whole, we argue that this removal is an important first step to improve
HTTPS security.

1 Introduction

The TLS/SSL protocol is one of the mainstays of Internet security. However,
unrest is growing as more large-scale compromises and real-world MITM attacks
are discovered. This reflects the fact that the current certificate authority based
public key infrastructure (CA-PKI) is a prominent example of a weakest-link
security system: Since all trusted root CAs can issue certificates for any domain,
an attacker can pick the weakest or most coercible CA to target for an attack –
and a single vulnerable, malicious or coercible CA undermines the security of the
entire system. To make matters worse, these attacks can go unnoticed quite eas-
ily. According to the EFF’s SSL Observatory [1], current browsers trust roughly
1500 different CAs from roughly 650 different organizations.
c© International Financial Cryptography Association 2014
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DOI: 10.1007/978-3-662-45472-5 20
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Although the collection of trusted CA certificates, called trust store, can in
theory be configured by the user, it is de facto the operating system and browser
vendors that issue the trust in the CAs. And while there is a broad consensus for
a set of common CAs that are trusted by all common vendors, all vendors trust
additional uncommon CAs that are not trusted by other vendors. Particularly in
light of recent spying revelations, the inclusion of these uncommon CAs should
be analyzed and if possible unneeded CAs should be removed.

This is a common-sense step which, surprisingly, is not actively being pursued
by any of the companies responsible for the decisions on who we trust. There is
a very small community of power-users who manually remove CAs they think
they do not need and some tutorials on how this can be done, however, the
decision on which CAs should be removed is based on anecdotal evidence and
gut instinct.

As we will show in the course of this paper, a broad majority of HTTPS servers
use only CA certificates which are in all major trust stores to sign their server cer-
tificate. This makes perfect sense: Only by using a CA trusted by all platforms
can a server administrator be sure that no user receives warning messages. In con-
trast, an adversary may be fine with an attack working only under, e.g. Windows.
Therefore, those uncommon CA certificates are still a security threat.

This is especially true since an attacker could identify the client’s platform by
analyzing the choice and order of supported cipher suites in the TLS handshake.
If those match a vulnerable platform, a MITM attack is launched; otherwise the
connection would be forwarded to the legitimate server. Such an attack could go
undetected for a very long time. Additionally, a CA that is present only in a few
trust stores may not be subject to as much rigorous auditing as a common CA.

In this paper we conduct a scientific analysis of which CAs are trusted
on which platforms and correlate this data with 48 million certificates from
Durumeric et al. that were collected by periodically scanning port 443 using
ZMAP [2]. Based on this analysis, we identify 148 CA candidates that are never
used to sign HTTPS server certificates. Following an in-depth analysis of these
certificates, we create a list of CAs that can be removed from users’ trust stores
without hampering their everyday Internet activities while significantly reduc-
ing the attack surface against them. While this reduction of attack surface does
not replace the need to find an improved certificate validation strategy, it is a
very simple and extremely low cost measure which can be applied with minimal
effort and should thus be considered as a first step to improve the security of
SSL. We evaluate our reduced set of trust against two months’ worth of traffic
analysis in our university’s network and show that there were no cases in which
our proposed improvements would have caused any problems to ours users.

1.1 Outline

In Sect. 2 we highlight previous and parallel efforts to making SSL and the CA-
PKI more secure. Section 3 describes our technical setup. In Sect. 4 we show
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which trust stores include which and how many certificates as well as how many
certificates are present in every major trust store. Based on those findings, we
propose a set of 140 CA certificates that can be removed from trust stores in
Sect. 5. Section 6 concludes the paper and outlines future work.

2 Related Work

There have been various approaches and attempts to improve the CA-PKI sys-
tem. Perspectives [3] and Convergence [4] use network perspectives and multi-
path probing to validate certificates and were suggested as a way to replace
CAs completely. Both approaches need an additional network connection, which
significantly impacts performance during connection establishment. Other
approaches like Certificate Transparency [5], Sovereign Keys [6], or AKI [7] aim
to control the PKI by keeping track of which CA issued which certificate. TACK
[8] combines pinning with elegant key rollover. Finally, DNS DANE [9] focuses
on putting certificates directly in the DNS record. While elegant, this requires
the roll-out of DNSSEC, which also suffers from adoption problems [10]. All
of these approaches fundamentally change the way validation is done in TLS.
However, the deployment of such a new system is a huge effort. In this paper,
we focus on improving the security of the CA-PKI on the short term, offering
solutions that can be deployed today to provide additional security benefits to
individual users immediately.

Akhawe et al. [11] looked at click-through rates for SSL warning messages
in browsers and found that users ignore one quarter to one third of all vali-
dation errors. Based on a large dataset of TLS handshakes, Akhawe et al. [12]
aimed to reduce the number of warning messages that are due to configuration
or administration errors. By relaxing the validation algorithm, i.e. allowing a
certificate that was issued for a certain domain to also be used for the www sub
domain they were able to reduce the number of warnings the end user has to deal
with.

In a related effort to reduce the trust put into CAs, Kasten et al. [13] ana-
lyzed which CAs usually sign for which TLDs and suggest restricting CA signing
capabilities based on their signing history. They show that this can be effec-
tive, however, their system also requires some fundamental changes to the CA
system.

3 Technical Setup

In order to evaluate which CAs could potentially be removed, we ran extensive
analyses and simulations to assert that our recommendations would not lead to
false positive SSL warnings. We used two different data sets for the analysis:
a collection of certificates from Internet-wide ZMAP scans (the ZMAP data-
base) [2], as well as all CA certificates found in trust stores (the trust store
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database). Additionally, we used a collection of two months’ worth of TLS hand-
shakes collected in our university’s network in order to assert that the reduced
set of CAs is still capable of validating all certificates our users encounter.

The ZMAP database consists of approximately 48 million certificates col-
lected in periodical scans of port 443 in 2012 and 2013. For each certificate in
the ZMAP database, the chain from the leaf certificate to a self-signed root
was rebuilt by validating the signature of the child certificate with the parent’s
public key. This step was important as, according to RFC 5280 [14], HTTPS
servers only need to supply intermediate CAs, not the trusted root CA. With
the reconstructed chain, our dataset is independent of the server administrators’
configurations.

For the trust store database, we scraped certificates from twelve trust stores
used in smart phone operating systems (Android, BlackBerry, iOS), Linux dis-
tributions (CentOS, Debian, Gentoo, openSUSE, Ubuntu), as well as Mozilla
Firefox, OpenBSD, OS X and Windows 8. Google Chrome does not have a trust
store of its own but rather uses the trust store of the underlying operating sys-
tem. Since Apple has the same policies for iOS as for OS X, both of those trust
stores contain the same CA certificates. Table 1 shows the size of the trust stores
we analyzed. Our further analysis is based on these datasets.

4 Trusted Root CA Certificates

The set of CA certificates included in different trust stores varies significantly.
While there is a core set of 114 certificates that are included in all major trust
stores (Windows, OS X, iOS, Android, Mozilla), only 28 CA certificates are
present in all eleven trust stores (counting iOS and OS X as one), c.f. Fig. 1.

Fig. 1. How many certificates are included in 11 (all), 10, . . . , trust stores?
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4.1 Windows Trust Store

With 377 certificates, the Windows trust store is the largest by far. Moreover, of
the 202 CA certificates included in only one trust store, 168 are included only in
the Windows trust store. This is partially due to the fact that the Windows trust
store also contains a large number of CA certificates used for other purposes like
email encryption (S/MIME) or code signing. It is possible for the Windows trust
store to restrict the purpose a CA certificate can be used for, however, this is
hardly done in practice. This unfortunately means that all these CAs are also
trusted for HTTPS connections.

However, users may not notice how many CAs they trust, as additional CA
certificates may be downloaded from the Microsoft servers as needed. Certifi-
cates can be inspected and manipulated using either the Microsoft Management
Console or through the certmgr.exe command line tool.

4.2 OS X and iOS Trust Store

In OS X, administration of CA certificates is done through either the Keychain
app or the security command line tool. Although the trust for a CA certificate
can be customized to e.g. never trust the certificate for SSL, no certificate has
those restrictions enabled by default. Furthermore, Apple includes their Apple
Root Certificate Authority certificate in the iOS and OS X trust stores, which
has never been used to sign a certificate used for HTTPS.

4.3 Linux/OpenBSD Trust Stores

On Linux and OpenBSD, the certificates are usually stored in a directory. By
default this is /etc/ssl/certs/. While this makes adding and deleting certifi-
cates trivial, it is not possible to restrict the purpose of the CA certificate, for
instance, to only use it for code signing.

However, the trust stores of Linux distributions are more consensus-driven:
No CA certificates appear in only one trust store on these platforms. On the
other side, OpenBSD is the only trust store that still includes an old CAcert
Class 3 Root, while all other trust stores (that trust CAcert) include a newer
CA certificate.

4.4 Mobile Trust Stores (Android, BlackBerry)

According to our measurements, trust stores on mobile devices tend to be both
smaller in size (146 CA certificates for Android, 90 for BlackBerry), and have
less unused CA certificates. Further, none of these trust stores have CA cer-
tificates that no one else trusts. This shows that it is possible to build a trust
store focusing on small size and consensus while supporting all CAs needed for
HTTPS.
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Table 1. Used and unused CA certificates in trust stores.

Platform Total Unused To be Unknown Purpose Restrictions

certs certs removed purpose restrictable? used?

Windows 377 122 114 8 � —

Mozilla 172 23 15 8 � —

OS X/iOS 207 46 38 8 � —

Ubuntu 159 23 15 8 — —

Debian 159 23 15 8 — —

Gentoo 159 23 15 8 — —

Android 146 15 7 8 — —

openSUSE 144 14 6 8 — —

CentOS 120 16 10 6 — —

BlackBerry 90 14 7 7 — —

OpenBSD 60 17 14 3 — —

Total 431 148 140 8

4.5 Restricting the Purpose of CA Certificates

The Windows and OS X trust stores theoretically allow restricting CA certifi-
cates so that they can only be used for specific purposes like code signing, SSL,
S/MIME, etc. However, we did not find any purpose-restricted CA certificates.
While Windows and OS X do not use this sensible option, Linux does not offer
it at all.

5 Removing Unneeded CAs

Roughly 34 % of all CA certificates are never used for signing HTTPS certificates.
Obviously certificates could be used for other purposes and HTTPS is not the
only (although most prominent) use of TLS. However: these 148 certificates
can be used for signing certificates and thus for launching a MITM attack. By
distrusting these CAs for SSL connections, the number of potential weakest links
is reduced in a simple and straightforward manner.

Instead of removing only non-signing CAs, we further checked in how many
trust stores the CAs are included. However, this only makes a difference for very
few CA certificates: Of the 148 unused certificates, 140 are not included in all
twelve trust stores, and 140 are not included in all major trust stores (Windows,
OS X, iOS, Android, Mozilla).

Based on these results, we make two recommendations: conservative and
very conservative. In the conservative recommendation, we propose that users
distrust (remove/restrict) all CAs that have never signed an HTTPS certificate.
This would lead to the removal of 148 CAs over all trust stores. We consider this
a safe choice, since it is based on the ZMAP datasets and thus no known HTTPS
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certificate would create a false positive warning. Our very conservative recom-
mendation only removes those 140 CAs which are not contained in the trust
stores of Microsoft, Apple, Google, and Mozilla. Table 1 shows how many cer-
tificates could be removed from which trust store. While both recommendations
are safe in relation to the ZMAP dataset, the very conservative recommendation
is safer with respect to the possible use of a previously unused CA for signing a
HTTPS certificate. However, it should be noted that especially the CAs included
in all the major trust stores but have never been seen to sign an HTTPS certifi-
cate could be considered a risk factor for government coercion. The number of
these CAs per trust store is listed in the Unknown Purpose column of Table 1.

5.1 Potential Problems and Current Solutions

Problem: False Positive Warnings. Removing CA certificates from the trust
store could have annoying and – in the long term – potentially dangerous conse-
quences. If users encounter a certificate that was ultimately signed by a removed
CA, they will see a warning. No matter whether the users click through the warn-
ing message or stop using the site, this would encourage habituation of warning
messages and further weaken the effectiveness of SSL warnings – at least for that
site (c.f. [15,16]). Therefore, when removing CA certificates, care must be taken
that no legitimate certificates become invalid.

Solution. We ensured this by using a current, extensive database of HTTPS
certificates that represents the current SSL landscape. Additionally, we evaluated
our solution on a database of 130 million SSL handshakes and found that the
proposal would not invalidate any previously valid certificates.

Problem: CA Certificates are Used for Other Purposes than SSL. As
described above, our database only includes certificates for HTTPS servers. Thus
CA certificates that are only used for code signing, IPSec gateways, or S/MIME
would go unnoticed, be removed and could break functionality.

Solution. We counter this problem in two different ways. For the browser-based
trust stores, there does not seem to be a reason to include CAs that do not sign
HTTPS certificates, so they can simply be removed. For the Windows and OS X
trust stores we recommend removing the HTTPS capabilities of those certificates
(c.f. Fig. 2). This is a conservative approach which still leaves the user open to
MITM attacks for protocols such as S/MIME, however, further research is needed
to determine the relevance of CAs for other protocols. Until then, breaking (non-
HTTPS) SSL functionality by removing CAs too aggressively does not seem like
a good idea. One caveat lurks on the Windows platform starting with Windows
7. From 7 on, Microsoft only ships a small set of CAs during the installation,
but may load additional CAs on demand. This presents a unnecessary danger
for the user, since it is not possible to restrict the capabilities of CAs which have
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(a) Disabling a certificate in OS X (b) Disabling a certificate in Mozilla
Firefox

Fig. 2. Disabling certificates for the purpose of SSL/HTTPS

not been downloaded yet. To counter this, we trigger the download of all CAs
trusted by Windows and then edit the trust settings. This prevents them from
being downloaded on demand with more capabilities than they need.

A critical exception to our approach is Linux which is not capable of restrict-
ing what a trusted CA can do: It is only possible to remove the CA entirely,
which endangers any browser relying on the OS trust store. Interestingly, while
Google’s Chrome browser relies on the OS trust store on Windows and OS X,
they use their own approach on Linux. The trust settings for Chrome on Linux
can be configured using certutil, which is part of the NSS command line tools.

The potential problems for mobile devices are still work in progress. Both
iOS and Android also use CA certificates for other protocols, such as RADIUS.
Thus there could potentially be problems if CAs are removed solely because they
have never signed a HTTPS certificate.

6 Conclusion

In this paper we argued for the removal of CA certificates that do not sign any
certificates used in HTTPS connections from desktop and browser trust stores. We
based our analysis on an Internet-wide dataset of 48 million HTTPS certificates
and compared them to trust stores from all major browser and OS vendors. We
were able to identify 140 CA certificates included in twelve trust stores from all
major platforms that are never used for signing certificates used in HTTPS. Based
on these findings, we suggest to remove or restrict these CA certificates. Using two
months’ worth of TLS handshake data from our university network, we confirmed
that removing these certificates from users’ trust stores would not result in a single
HTTPS warning message. Thus, this action provides a simple and low-cost real-
world improvement that users can implement right now to make their HTTPS
connections more secure. We are working on creating tools and scripts to automate
this process for different browsers and operating systems.
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Our current list of CAs we recommend for removal is a conservative one. It
includes all CAs that have never signed a HTTPS certificate. In future work,
we would like to analyze the trade-off between false positives and the size of
the trust store, as well as look into mechanisms to restrict the capabilities of
certificates on the Android platform.
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Abstract. In August 2013, the Tor network experienced a sudden, dras-
tic reduction in performance due to the Mevade/Sefnit botnet. This bot-
net ran its command and control server as a Tor hidden service, so that
all infected nodes contacted the command and control through Tor. In
this paper, we consider several protocol changes to protect Tor against
future incidents of this nature, describing the research challenges that
must be solved in order to evaluate and deploy each of these methods. In
particular, we consider four technical approaches: resource-based throt-
tling, guard node throttling, reuse of failed partial circuits, and hidden
service circuit isolation.

1 Introduction

In August, 2013 the Tor anonymity network saw a rapid spike in the number of
directly connecting users, due to the large “mevade” click-fraud botnet running
its command and control (C&C) as a Tor Hidden Service. Figure 1(a) shows
that estimated daily clients increased from under 1 million to nearly 6 million in
three weeks. Figure 1(b) shows the effects on performance: measured download-
ing times for a 50 KiB file doubled, from 1.5 s to 3.0 s.

However, the amount of traffic being carried by the network did not change
dramatically. The primary cause of the problems seems to be the increased
processing load on Tor relays caused by the large increase in key exchanges
required to build anonymous encrypted tunnels, or circuits. When a Tor client
connects to the network, it sends a create cell to a Tor node, called a guard,
which contains the first message ga in a Diffie-Hellman key exchange, called an
“onion skin”; the node receiving the create cell computes the shared key gab

and replies with the second message gb, creating a 1-hop circuit. After this, the
client iteratively sends onion skins in extend cells to the end of the circuit,
which extracts the onion skins and sends them in create cells to the next relay,
until all three hops have exchanged keys.

– Extending a circuit – decrypting an “onion skin” and participating in a Diffie-
Hellman key exchange – is sufficiently compute expensive that busy relays can
become CPU-bound.

Work done while on sabbatical with the Tor Project.
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Fig. 1. (a) Estimated daily Tor users, and (b) Measured 50 KiB download times, in
seconds, 18 August to 13 September 2013

– The hidden service protocol – explained in Sect. 2 – causes at least three
circuits to be built every time a bot connects.

– When onion skins exceed the processing capacity of a relay, they wait in
decryption queues, causing circuit building latencies to increase.

– Queued onion skins eventually time out either at the relay or the client, caus-
ing the entire partial circuit to fail, causing more onion skins to be injected
to the network.

In response to this, the Tor Project released a modified version (0.2.4.17-
rc) that prioritizes processing of onionskins using the more efficient ntor [8]
key exchange protocol. Adoption of this release has helped the situation: as
Fig. 1 shows, measured download 50 KiB times as of late September decreased
to roughly 2.0 s. Figure 2 shows that failed circuit extensions using tor version
0.2.4.17-rc range between 5 % and 15 %, while circuit extensions using the stable
release, version 0.2.3.25, range between 5 % and 30 %.

In this paper, we consider long-term strategies to ease the load on the net-
work and reduce the impact on clients, and describe the challenges in evaluating
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Fig. 2. Hourly measured failure rates, starting 27 Sept. 2013, of extend cells

and deploying these schemes. We assess these strategies with the security goal of
ensuring the availability of Tor under the threat of a botnet that uses hidden ser-
vices as its primary C&C channel, keeping in mind that a “long-term” strategy
must contend with a botnet that could be deployed in response to these strate-
gies, where the behavior of both the botnet and the Tor software can change
adaptively to circumvent mitigation mechanisms.

2 Background: Tor Hidden Services

The Tor network provides a mechanism for clients to anonymously provide ser-
vices (e.g., websites) that can be accessed by other users through Tor. We briefly
review the protocol for this mechanism:

1. The hidden service (HS) picks a public “identity key” PKS and associated
secret key SKS . The HS then computes an “onion identifier” oS = H(PKS)
using a cryptographic hash function H. Currently, the hash function H is
the output of SHA1, truncated to 80 bits. This 10-byte identifier is base32-
encoded to produce a 16-byte .onion address that Tor users can use to con-
nect to HS, such as 3g2upl4pq6kufc4m.onion.

2. The HS constructs circuits terminating in at least three different relays, and
requests these relays to act as its introduction points (IPs).

3. The HS then produces a “descriptor,” signed using the SKS , that lists PKS

and its IPs. This descriptor is published through a distributed hash ring of
Tor relays, using oS and a time period τ as an index.

4. A client connects to the HS by retrieving the descriptor using oS and τ , and
building two circuits: one circuit terminates at an IP and the other terminates
at a randomly-selected relay referred to as the rendezvous point (RP). The
client asks the IP to send the identity of the RP to the HS.

5. The HS then builds a circuit to the RP, which connects the client and HS.
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Since lookups to the distributed hash ring are performed through circuits as well,
and each descriptor has three redundant copies, a client connecting to a hidden
service could require building up to 6 circuits; to reduce this load, clients cache
descriptors and reuse rendezvous circuits any time a request is made less than
ten minutes after the previous connection.

3 Can We Throttle by Cost?

Since the primary concern from the point of view of the other users of Tor is
the rate at which botnet nodes consume the collective computing resources of
the relays, one set of potential solutions is to attempt to throttle or otherwise
limit the rate of requests from the botnet. Two key points to recall in evaluating
solutions from this class are that (i) in many ways the botnet has more resources
available than the set of all regular Tor clients and (ii) neither bots nor the
C&C server are constrained to follow the standard Tor algorithms, although the
current implementations may do so.

One way to control the rate at which circuit building requests enter the
network is by making it costly to send them. Tor could do this by requiring
proof of the expenditure of a scarce resource, for example, human attention,
processor time, bitcoins, and so on. If the cost to build a circuit or connect to
a hidden service can be correctly allocated it could be the case that ordinary
users and services can easily afford the cost while the price for a botnet becomes
prohibitive. Depending on the resource used, correctly allocating the cost is an
important research question; we consider the problem for Proof of Work (CPU-
based) and CAPTCHA (human attention-based) systems below.

Besides the cost allocation problem, another technical challenge is ensuring
that resources can’t be double-spent, so that each resource expenditure in a
given time period only authorizes a single circuit or hidden service connection.
Several approaches exist, but each would require further investigation:

– Make the unit of pay cover a single circuit extension and have one of the
relays extending the circuit issue a challenge back to the client, which then
must be answered before the create (or extend) cell is processed, similar to
the scheme described by Barbera et al. [3]. This has the unfortunate side effect
of adding an extra round-trip time to every circuit-building request. Finding
a way to hide this extra round-trip time could make it a viable alternative,
for some resources.

– Relay descriptors could include “puzzle specifications” that describe what
the challenge will be for a given time period, requiring a method to prevent
“precomputing” a batch of payments before the time period; how to solve this
problem is an open question.

– Another method would use an extra trusted server that verifies resource expen-
ditures and issues relay- and time period-specific signed tokens, similar to rip-
coins [12] or the tokens in BRAIDS [10]. Using blinded tokens would limit the
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trust required in the server so that it can’t compromise anonymity, and relay-
specificity would allow each relay to verify that tokens aren’t double-spent.
However, this adds an extra signature-verification to the task of onion-skin
processing and another server and key that must be maintained.

Proof of Work (Proves Once More Not to Work?). When the resource
in question is processor time and challenges are, e.g. hashcash [2] targets, the
cost allocation strategy should dictate that the hidden service must pay a cost
for each connection, since bots clients and normal hidden service clients will
have essentially identical use profiles (from the point of view of relays) and
computational resources. On the other hand, the C&C hidden server(s) will
collectively initiate many more circuits than any single “normal” hidden server.

The key security challenge when considering an adaptive botmaster’s response
to this approach is the “chain-proving” attack (by analogy to chain voting [11]).
In this attack, the C&C server solves the first challenge it receives when a bot
contacts the hidden service, but then on each additional challenge, the previous
bot is asked to solve the puzzle in time to allow the next bot to connect. In prin-
ciple the difference in latencies (caused by the need to pass a puzzle to the bot
through Tor) could potentially be detected, but an adaptive botmaster could
well build shorter circuits, and employ multiple bots in an effort to reduce the
time needed to solve a “proof of work” puzzle.

CAPTCHAs. If CAPTCHAs are used to verify expenditure of human atten-
tion, the relative cost allocation should change to favor the client: clients of most
hidden services will have human users, while hidden servers will not. This raises
additional technical problems, such as how CAPTCHAs can be served through
Tor without a GUI interface, how a user’s solution can be transferred to the hid-
den service without violating privacy or allowing overspending, and how to deal
with the needs of completely headless services where neither the HS client nor
the HS server have a user’s attention to give. An additional complication arises
if the CAPTCHAs have linguistic or cultural components, allowing relays to
potentially deduce information about anonymized users based on the throttling
status of their circuits.

Another technical challenge to deploying CAPTCHAs is dealing with mildly
computationally expensive automated solvers. Typical commercially-deployed
CAPTCHAs can be solved with success rates on the order of 10 % per challenge
[1,7], and the typical service mitigates this by temporarily blacklisting an IP
address after a small number of attempts. With anonymous users, this becomes a
more challenging problem to solve; without blacklisting a bot can simply attempt
as many CAPTCHAs as necessary to obtain an automated solution.

4 Can We Throttle at the Entry Guard?

A more direct approach would be to simply have guard nodes rate-limit the
number of extend cells they will process from a given client. If the entry guard
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won’t process the extend cell needed to build a circuit, the hidden server can’t
flood the network with onion-skins. Notice that this measure won’t prevent bots
from flooding the network with circuit requests; it simply makes the network
ineffective from the botmaster’s standpoint and thus, motivates botmasters to
find some other C&C channel that causes less stress on the Tor network.

Effective circuit throttling at the guard node faces a number of challenges,
however. Biryukov et al. [4] found that the most popular hidden services see over
1000 requests per hour; if we assume that these hidden services won’t modify
Tor’s default behavior, then guard nodes need to allow each client to extend
over 300 circuits per hour; but since there are currently over 1200 relays acting
as guards, a single C&C server run by an adaptive botmaster could build 360
000 circuits per hour at this rate. We could decrease the cap and try to make it
easier for busy hidden servers to increase their guard count, but this significantly
increases the chance that a hidden server chooses a compromised guard and can
be deanonymized.

One possibilty would be to use assigned guards. In this approach, ordinary
clients would pick guards as usual, and guards would enforce a low rate-limit

)b()a(

)d()c(

Fig. 3. Results of guard throttling: 20 relays, 200 clients, 500 bots. (a) 5 MiB download
times, (b) Circuit build times, (c) Total bytes read (d) circuit failures
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rdefault on circuit extensions, for example 30 circuits per hour.1 Clients that
need to build circuits at a higher rate rserver – say, 2000 per hour – could fol-
low a cryptographic protocol that would result in a verifiable token that assigns
a deterministic, but unpredictable, guard node for the OP when running on a
given IP address. These OPs could then show this token to the assigned guard
and receive a level of service sufficient for a busy hidden server, but not for
a flood of circuit extensions. An example of this type of protocol appears as
Protocol 3 (Sect. 3.3) in the BRAIDS design by Jansen et al. [10]. The rates
rdefault and rserver could appear in the network consensus, to allow adjustments
for the volume of traffic in the network. Figure 3 shows the result of simulating
this strategy with rdefault = 10 and rserver = 2000 using the shadow simula-
tor [9]; despite nearly identical bandwidth usage, the throttled simulation has
performance characteristics similar to the simulation with no botnet.

An additional technical challenge associated with guard throttling is the need
to enforce the use of entry guards when building circuits. If the C&C server joins
the network as a relay, create cells coming from the hidden service would be
indistinguishable from create cells coming from other circuits running through
the relay, effectively circumventing the rate limit. In principle this could be
detected by a distributed monitoring protocol, but designing secure protocols
of this type that avoid adversarial manipulation has proven to be a difficult
challenge.

5 Can We Reuse Failed Partial Circuits?

Part of the problem caused by the heavy circuit-building load is that when a
circuit times out, the entire circuit is destroyed. This means that for every failed
create, at least three new create cells will be added to the network’s load.
If we model the entire Tor network as having probability p of having a create
cell timeout, then the expected number of create cells needed to successfully
build a circuit will be the X0 satisfying the linear system:

X0 = pX0 +(1 − p)X1 +1
X1 = pX0 +(1 − p)X2 +1
X2 = pX0 +1 ,

where Xi is the expected number of cells to complete a partial circuit with i

hops. This gives us X0 = p2−3p+3
(1−p)3 .

Conceptually, we can reduce this load by re-using a partially-built circuit,
e.g. when a timeout occurs, we truncate the circuit and attempt to extend from
the current endpoint. In this case, the expected number of create cells needed
to build a circuit will be simply X ′

0 = 3
1−p . Figure 4 shows plots of both functions.

We can see that for high enough failure rates, this change causes a substantial
1 Naturally, finding the right number to use for this default rate is also an interesting

research challenge: a very low rate-limit could prevent bots from flooding the network
but might also disrupt legitimate hidden service clients.
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Fig. 4. Expected onion-skin load per circuit created, for failure rate p

reduction in load for the network. Figure 2 shows typical failure rates for a stable
(TAP) and release candidate (ntor) roughly one month after the beginning of
the botnet event; we can see that at the observed failure rates ranging from
10 %–25 %, reusing partial circuits would reduce the load on the network by
10–30%.

Of course, this model ignores the fact that failure probabilities are neither
static nor uniform across the entire Tor network, and the fact that many nodes
use “create fast” cells to exchange a first-hop key without using Diffie-Hellman
key exchange. Reducing the load introduced by failures will also reduce the
rate of circuit failures overall, but since CPU capacities vary widely across the
Tor network (and load balancing is by the essentially uncorrelated bandwidth
of nodes) the size of the actual effect due to this change is difficult to predict.
Further evaluation will be needed. Additionally, this change would also somewhat
increase the power of selective denial of service attacks [6], although such attacks
typically only become noticeably effective in situations where we would already
consider Tor to be compromised.

6 Can We Isolate Hidden Service Circuits?

Another approach to protect the regular users of the Tor network from resource
depletion by a hidden-service botnet would be to isolate hidden service onion-skin
processing from ordinary processing. By introducing a mechanism that allows
relays to recognize that an extend or create cell is likely to carry hidden
service traffic, we could provide a means to protect the rest of the system from
the effects of this traffic, by scheduling priority or simple isolation.

An example of how this might work in practice is to introduce new nohs-
extend/nohs-create cell types with the rule that a circuit that is created with
an nohs-create cell will silently drop a normal extend cell, or any of the cell
types associated with hidden services. If relays also silently drop nohs-extend
cells on circuits created with ordinary create cells, then nohs-create cir-
cuits are guaranteed not to carry hidden service traffic. Updated clients would
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then create all circuits with nohs-create unless connecting to a hidden ser-
vice. When a sufficient number of clients and relays update their Tor version,
a consensus flag could be used to signal relays to begin isolating processing of
ordinary create cells. For example, these cells might only be processed in the
last 20 ms of each 100 ms period, leaving 80 % of processing capacity available for
regular traffic. The flag could be triggered when hidden service circuits exceed
a significant fraction of all circuits in the network.2

This solution protects the network and typical users from a massive botnet
hidden service, but would, unfortunately, intensify the effect on users of legit-
imate hidden services in time periods when an attack was detected. As with
guard throttling, the intended effect would thus be to encourage botmasters to
develop C&C channels that do not stress the Tor hidden service ecosystem, while
providing stronger protection against botnet clients flooding the network.

One privacy concern related to this approach is that as the network upgrades
to versions of Tor supporting nohs-create, identification of hidden-service traf-
fic approaches deterministic certainty. By contrast, current hidden service cir-
cuits follow traffic patterns that allow them to be identified with high statistical
confidence [5] only. Because (excluding botnet traffic) the base rates of hidden
service traffic compared to all other traffic are low, this will also decrease the
privacy of hidden service users. One potential mitigation mechanism would be to
have clients only use nohs-create when the consensus flag for hidden service
isolation is activated, which would indicate that hidden service clients would
already have a large anonymity set.

7 Conclusion

Although this document has described several possibilities that either limit the
attractiveness of Tor Hidden Services as a mechanism for C&C communication
or limit the impact of these services on other users of Tor, all of the approaches
present research challenges for the security community in some way. We hope
that this short paper will encourage new research in this direction.
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Abstract. We describe a case-control study to identify risk factors that
are associated with higher rates of webserver compromise. We inspect
a random sample of around 200 000 webservers and automatically iden-
tify attributes hypothesized to affect the susceptibility to compromise,
notably content management system (CMS) and webserver type. We
then cross-list this information with data on webservers hacked to serve
phishing pages or redirect to unlicensed online pharmacies. We find that
webservers running WordPress and Joomla are more likely to be hacked
than those not running any CMS, and that servers running Apache
and Nginx are more likely to be hacked than those running Microsoft
IIS. Furthermore, using a series of logistic regressions, we find that a
CMS’s market share is positively correlated with website compromise.
Finally, we examine the link between webservers running outdated soft-
ware and being compromised. Contrary to conventional wisdom, we find
that servers running outdated versions of WordPress (the most popu-
lar CMS platform) are less likely to be hacked than those running more
recent versions. We present evidence that this may be explained by the
low install base of outdated software.

Keywords: Content-management systems · Webserver security ·
Case-control study · Cybercrime · Security economics

1 Introduction

Each month many thousands of websites are compromised by criminals and
repurposed to host phishing websites, distribute malware, and peddle counter-
feit goods. Despite the substantial harm imposed, the number of infected web-
sites has remained stubbornly high. While many agree that the current level
of Internet security is unacceptably low, there is no consensus on what coun-
termeasures should be adopted to improve security or where limited resources
should be focused. One key reason we are in such a sorry state is that measuring
security outcomes (and what factors drive them) is hard. In part, this is because
those who fall victim to cybercrime often prefer not to speak out. But it is also
because security mechanisms are deployed in the wild, where it can be impossible
c© International Financial Cryptography Association 2014
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to design a randomized controlled experiment isolating the effect of a particular
countermeasure to evaluate effectiveness.

However, even when controlled experiments are not feasible, other techniques
may still be usefully applied. In this paper, we apply a widely-used method
from epidemiology, called a case-control study, in order to better understand
the factors driving webserver insecurity. Working backwards from data on secu-
rity incidents and a control sample, we can identify risk factors associated with
compromise. This in turn can help defenders better allocate scarce defensive
resources to do the most good.

We investigate many observable characteristics of webservers that may affect
the likelihood of compromise. Chief among them is whether or not they run a
content management system (CMS), an application that simplifies the creation
of web content. Some of the more popular CMSes, such as Joomla and Word-
Press, are consistently exploited to give a miscreant control over the webserver.
Additional characteristics include the server type (e.g., Apache), the hosting
country, and whether or not the webserver has demonstrated savviness in secure
administration practices.

We identify these characteristics in two compromised populations (webservers
used to host phishing pages and to engage in search-redirection attacks), as well
as a control sample of non-infected webservers. Using the case-control method, we
identify risk factors by calculating odds ratios and constructing a series of logistic
regressions. Key findings include identifying which CMSes are at greater risk of
compromise, demonstrating that CMS popularity is correlated with available
exploits and higher rates of compromise, and presenting evidence that outdated
WordPress installations are at lower risk of compromise than more recent ones
because outdated versions are less popular.

Notably, our analysis focuses on security outcomes, not security levels. For
instance, we do not claim that running outdated software makes a webserver
less “hackable”. Rather, by studying compromise data, we can report on what
factors affect the likelihood of actually being hacked. We hope that our results
demonstrate to others measuring cybercrime the value in employing case-control
studies to evaluate outcomes.

The rest of the paper is organized as follows. Section 2 articulates our research
questions and describes the data collection methodology. Section 3 presents our
empirical results, which we sum up in Sect. 4. We present related work in Sect. 5
and discuss limitations, conclusions and opportunities for future work in Sect. 6.

2 Methodology

We begin by setting out the key research questions in Sect. 2.1, then outline the
case-control study design in Sect. 2.2. We discuss the data collection and classifi-
cation approach in Sect. 2.3. The collected data and analysis scripts are publicly
available for replication purposes at doi:10.7910/DVN/25608. The methodology
is a key contribution of the paper, since applying case-control studies to cyber-
security is new, and, we believe, a promising way to measure security in many
other contexts.
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2.1 Research Questions

We investigate three categories of research questions about factors that may
influence webserver compromise: software type, software market share, and web-
server hygiene.

Most generally, we hypothesize that there are measurable differences in com-
promise rates according to the type of software run on webservers.

H0: Running a CMS is a positive risk factor1 for compromise.
H0b: (corollary) Some CMS types are risk factors for compromise.
H1: Some server types are risk factors for compromise.

There are several reasons why servers running CMSes may be compromised
more often. First, CMSes simplify configuration by reducing technical barriers,
which means that they are often administered by non-experts. This could lead to
a greater chance for server misconfiguration. Second, CMS platforms are a form
of software monoculture, exhibiting common vulnerabilities in both the under-
lying code and the default configurations. We also expect some CMS platforms
to be more secure than others.

We also anticipate that there will be differences in compromise rates based
on the type of server software used. This is because there are different amounts
of exploitable vulnerabilities present in the underlying code bases. Additionally,
some applications (including CMSes) run only or primarily on particular server
types, and each application has its own susceptibility to compromise.

Furthermore, we suspect that a key driving force behind the variation in
compromise rates across software types is the software’s market share. When
more webservers run a particular type of software, they collectively become a
more attractive target for miscreants. The cost of crafting new exploits can
be amortized over many more infections for more popular software. While many
would agree with such logic on software types, we hypothesize that the same logic
also applies to different versions of the same software: more popular software
versions tend to be targeted more often than less popular ones. We suspect
this is true even when the less popular version is more outdated and has more
vulnerabilities.

H2: CMS market share is a positive risk factor for webserver compromise.
H2b: (corollary) Outdated software with limited market penetration is a nega-

tive risk factor for compromise.
H2c: (corollary) The number of exploits available for a type of software is a

positive risk factor for compromise.

Our final group of hypotheses involve the individual security practices of
webserver administrators. We believe that, independent of the software running
on a webserver, adopting security best practices that improve server “hygiene”
can influence the likelihood of compromise.
1 In this paper, a positive risk factor is actually a bad thing, as it indicates greater

odds of compromise. By contrast, a negative risk factor indicates lower odds of
compromise.
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H3: Actively hiding detailed software version information is a negative risk fac-
tor for compromise.

H4: Running a webserver on a shared hosting platform is a positive risk factor
for compromise.

H5: Setting the HTTPONLY cookie, which protects against cross-site scripting
attacks, is a negative risk factor for compromise.

We note that there are other reasons why a webserver could be put at greater
risk of being hacked than just the factors discussed above. For example, admin-
istrator competence (not captured by the hygiene indicators) certainly plays a
role. Security policies also matter: lax password policies or practices could lead
to compromise. Finally, the value of the target influences what gets hacked: high-
reputation websites, for instance, are targeted for compromise more frequently
in search-redirection attacks [1].

Population: .com
domains

Case: Phishing
dataset

Control: Webserver
dataset

Exposed: CMS
Type

Not Exposed: No
CMS

Exposed: CMS
Type

Not Exposed: No
CMS

(a) Case-control study design, demonstrated for phishing
dataset and CMS type as risk factor.

.COM
90 million

Phish
15 961

12 682
Webserver
Dataset
210 496

(b) Venn diagram demonstrates how
we join webserver and phishing
datasets.

Fig. 1. We join the webserver and compromise datasets to compare risk factors with
outcomes.

We have chosen not to examine the impact of these additional factors in the
present study. We decided to focus on CMSes, server software, and webserver
hygiene indicators for three reasons. First, as explained above, there is substan-
tial evidence that these factors strongly affect compromise rates (e.g., the large
number of exploits available that target CMSes). Second, we have restricted
ourselves to factors that could manageably be observed directly and in an auto-
mated fashion. By contrast, many of the factors that we chose not to study
are not directly observable, such as a company’s password policy. Factors that
require extensively crawling or fuzzing a domain to observe, such as inferring
firewall policies, are also excluded because they cannot be carried out at suf-
ficient scale. Third, we have restricted ourselves to factors that appear in our
sample population with sufficient frequency. In particular, we investigated many
of the risk factors from [2] and found the vast majority of them to occur too
infrequently to include in our study. It is our view that the methods of analysis
presented here could in fact be applied to additional factors, but we defer the
task to future work.
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2.2 Case-Control Study Design

In a case-control study typically used in epidemiology, data on those afflicted
with a disease are compared against as similar a population as possible of those
not afflicted [3]. For example, in the seminal case-control study that uncovered
the link between smoking and lung cancer, Doll and Arthur surveyed British
doctors about their smoking habits, then compared it against data collected sub-
sequently on doctors’ mortality rates [4]. They found that doctors who smoked
were much more likely to die than doctors who did not. In general, case-control
studies work by comparing two populations, one with a condition (the ‘case’) to
one without who are otherwise similar (the ‘control’). Researchers can then work
backwards to identify important risk factors by comparing the relative incidence
of different characteristics in the case and control populations.

Similarly, we sample a population of webservers and compare them to other
populations of webservers that have been compromised. Figure 1a demonstrates
the design for the phishing dataset. We start with a comparable webserver pop-
ulation – domains registered in .com. We then assign the .com domains from the
phishing dataset as the case and the domains from the webserver dataset as the
control. We can then treat characteristics such as CMS type, server type and
hosting country as potential risk factors. (We explain how each of these datasets
and risk factors are collected in the next subsection below.) Figure 1b shows a
Venn diagram that explains how the phishing and webserver datasets are joined.
A similar approach is used for the search-redirection attacks dataset and the
webserver dataset.

Note that with case-control data, we do not make any claims about the overall
incidence of compromise in the population. This is because we compare two
different samples (the compromised and broader samples). Instead, we analyze
the prevalence of compromise relative to the occurrence of risk factors such as
CMS type.

2.3 Data Collection Overview

Control Population: Webserver Sample. To answer our research questions,
we need a random sample of webservers; however, obtaining a perfectly repre-
sentative sample of all webservers is not possible since there is no global list
available from which to sample. According to Verisign, there are over 252 mil-
lion registered domains [5], but most zone files listing domains are not made
public. Instead, we take a random sample of domains listed in the .com zone file.
While limited to a single TLD, it is worth noting that .com comprises nearly
half of all registered domains, and it is used by websites in many countries.
Furthermore, .com domains include websites from a wide range of popularities.
Thus, we feel that sampling from .com is broad enough to be representative of
all webservers online.

We sampled webservers over a period of 9 days, obtaining information on
210 496 domains selected at random from the .com zone file downloaded January
15, 2013. We chose this sample size to ensure that it would likely include enough
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websites running CMSes with at least 1 % market share. This, in turn, improves
the chances of obtaining statistically significant results.

We remove all free hosting and URL shortening services (where the URLs
are likely set up purposely by the criminals) from our collection. Finally, we refer
to the trimmed sample of .com domains as the webserver dataset.

Case Populations: Compromised Webservers. We consider two sources
of data on webserver compromise. First, we examine an amalgamated “feed” of
phishing URLs, comprising real-time reports from two firms that remove phish-
ing websites on behalf of banks, a large brand owner, the crowdsourced list from
PhishTank [6], and the Anti-Phishing Working Group’s community feed [7]. We
examined 97 788 distinct URLs from 29 682 domains impersonating 1 098 dif-
ferent brands reported between November 20, 2012 and January 7, 2013 in the
phishing dataset. According to [8], 94 % of domains used for phishing during this
period were compromised websites. Nearly all of the remainder are highly-ranked
sites that we excluded as described below.

The second dataset on webserver compromise came from websites observed
to be engaging in search-redirection attacks. Here, websites with high reputation
are hacked and reconfigured to surreptitiously channel traffic from search engines
to unlicensed pharmacies. We obtained the dataset gathered by the authors
of [1], who updated their system to detect advanced forms of cookie-based redi-
rection as described in [9]. The dataset includes web search results from 218
pharmaceutical-related search terms. Webservers are included in the list if they
are observed to redirect to a third-party website and subsequently found to
engage in cloaking. The search-redirection attacks dataset includes 58 516 dis-
tinct URLs gathered between October 20, 2011 and December 27, 2012. These
correspond to 10 677 unique domains, 6 226 of which have a .com TLD.

Extracting Webserver Risk Factors. The head of an HTML webpage often
contains metadata about the webpage in so-called meta tags. One piece of infor-
mation that many content management system (CMS) authors (and text editors)
include is a “generator” tag. This optional tag generally contains the text edi-
tor type, content management system, version number and/or any special CMS
themes used. For example, a website running WordPress version 3.2.1 might con-
tain the tag <meta name=‘‘generator’’ content=‘‘WordPress 3.2.1’’>.
We downloaded a copy of the HTML for the top-level webpage on a given domain,
and then parsed the HTML to extract the tag.

We then attempted to identify the CMS, if any, along with the version infor-
mation if included. We used manually crafted regular expressions to complete
the task. We focused on the top 13 CMSes with at least 1.0 % of CMS market
share as of January 2013 according to W3Techs [10]. These 13 CMSes collectively
comprise 88.4 % of all websites using CMSes. We could identify CMS type for 9
of the top 13 (84.6 % of all CMSes). We also included 3 more CMSes, each with
less than 1.0 % of market share.
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However, we cannot solely rely on generator tags to classify websites by CMS.
For instance, most websites running Drupal, one of the most popular CMSes,
do not display generator information in their metadata. Consequently, in addi-
tion to gathering generator information, we ran a number of regular expressions
corresponding to 3 of the 4 most popular CMSes against the dataset. Appen-
dix A compares our custom approach to several off-the shelf tools for CMS
identification.

To identify server software, we collected the packet headers along with the
HTML code. In each header was a line specifying the server such as Server:
Microsoft-IIS/7.5. From this we extracted the server type and version number.
We also fetched the IP address of the server and mapped this to the country of
origin using MaxMind [11].

Reducing False Positives in the Infection Datasets. Not all of the URLs
in the compromise datasets are from hacked webpages. For the phishing dataset,
we deem any URL to be a false positive if the URL does anything other than
impersonate another website. For the search-redirection attacks dataset, we clas-
sify any URL as a false positive if the destination website following redirection
appears related to the source website (e.g., ilike.com redirects to myspace.com,
which bought the company).

Since the false positive rates for phishing are consistently higher than for
search-redirection attacks, we developed automated techniques to discard web-
sites that were errantly placed on these lists. We removed all FQDNs that redi-
rected to legitimate US-based banks2 and other known non-banks frequently
targeted by phishing, such as paypal.com, amazon.com and facebook.com. We
also generated a sequence of regular expressions that detected Microsoft Outlook
Web Applications and coupon websites and checked them against the HTML we
downloaded previously. These initial steps reduced our overall false positive rate
for the phishing dataset from 9.4 % to 5.0 %. To further improve, we manually
inspected all URLs in the Alexa top million sites and excluded any false pos-
itives from further consideration, yielding final false positive rates of 2.3 % for
phishing and 4.3 % for search-redirection attacks. These false positive rates were
calculated by inspecting a stratified random sample by Alexa rank.

3 Empirical Results

Having detailed our methodological approach, we now turn to the results. In
Sect. 3.1 we use odds ratios and in Sect. 3.2 we use logistic regression to identify
which server characteristics are associated with higher and lower rates of com-
promise. Then in Sect. 3.3 we focus on how outdated software affects compromise
in WordPress installs.
2 Found on the FDIC website [12].

http://ilike.com
http://myspace.com
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3.1 Finding Risk Factors for Compromise

Odds are defined by the ratio of the probability that an event will occur to
the probability it will not occur. For example, if p = 0.2, then the odds are
p

1−p = 0.2
0.8 = 0.25. Odds express relative probabilities. Odds ratios compare the

odds of two events, each occurring with different probabilities.
In case-control studies, odds ratios compare the odds of a subject in the

case population exhibiting a risk factor to the odds of a subject in the control
population exhibiting a risk factor. Consider the four cases:

Case (afflicted) Control (not afflicted)
Has risk factor pCaseRF pCtlRF

No risk factor pCaseRF pCtlRF

The odds ratio, then, is the following product of probabilities:

odds ratio (OR) =
pCaseRF/pCaseRF

pCtlRF/pCtlRF

=
pCaseRF ∗ pCtlRF

pCaseRF ∗ pCtlRF

An odds ratio of 1 means that there is no difference in proportions of the risk
factor among the case and control groups. An odds ratio greater than 1 indicates
that those in the case group are more likely to exhibit the risk factor (so-called
positive risk factors). By contrast, an odds ratio less than 1 indicates that those
in the case group are less likely to exhibit the risk factor (indicating a negative
risk factor).

Odds Ratio Results. Table 1 reports odds ratios for different CMS and server
types for both compromise datasets. We computed odds ratios for webservers
running each of the major CMSes compared to webservers not running any CMS.
For the phishing dataset, some less popular CMSes fare better than not using a
CMS, but the more popular CMSes are positive risk factors. WordPress, Joomla
and Zen Cart had increased odds of compromise, while Blogger, TYPO3 and
Homestead reduced risk. This supports hypothesis H0b, but partially refutes
hypothesis H0 that using any CMS increases the odds of compromise. For search-
redirection attacks, CMSes are either as bad or worse than not using a CMS,
supporting H0. Notably, the odds ratios for Joomla and WordPress are even
higher than for phishing. The WordPress odds ratio jumps from 4.4 phishing to
17 for search-redirection attacks; for Joomla, the jump is from 7 to nearly 24!

For some smaller CMSes, the evidence for phishing and search-redirection
attacks is mixed. Homestead has a negative risk factor for phishing and search-
redirection attacks dataset. TYPO3 and Blogger are negative for phishing, but
TYPO3 has a positive risk factor for search-redirection attacks, whereas Blogger
is not statistically significant.

We note that the larger CMSes tend to be the strongest positive risk factors
for compromise, according to both datasets. This supports hypothesis H2 that
CMS market share is positively correlated with compromise, but more analysis
is needed.
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Table 1. Odds ratios for varying CMS and server types.

Content Management System (CMS) Type
Risk Odds Phishing dataset Risk Odds Search-redirection attacks dataset
factor ratio 95% CI # Phish # Not phish factor ratio 95% CI # Redir. # Not redir.

No CMS 1.00 8 747 190 305 1.00 2 260 190 314
WordPress + 4.44 (4.24, 4.65) 2 673 13 101 + 17.18 (16.20, 18.22) 2 674 13 106
Joomla + 7.11 (6.62, 7.63) 1 106 3 384 + 23.96 (22.05, 26.04) 963 3 385
Drupal 0.79 (0.58, 1.04) 46 1 279 + 6.59 (5.33, 8.07) 100 1 279
Zen Cart + 4.84 (3.26, 6.96) 33 149 2.35 (0.71, 5.56) 4 149
Blogger – 0.28 (0.13, 0.52) 8 637 1.08 (0.49, 2.02) 8 637
TYPO3 – 0.14 (0.03, 0.37) 3 481 + 4.23 (2.72, 6.24) 24 481
Homestead – 0.04 (0.00, 0.18) 1 607 – 0.16 (0.01, 0.69) 1 607

Server Type
Risk Odds Phishing dataset Risk Odds Search-redirection attacks dataset
factor ratio 95% CI # Phish # Not phish factor ratio 95% CI # Redir. # Not redir.

Microsoft IIS 1.00 1 002 60 495 1.00 193 60 497
Apache + 5.44 (5.10, 5.81) 10 549 117 017 + 14.12 (12.26, 16.36) 5 276 117 031
Nginx + 2.24 (2.01, 2.50) 507 13 649 + 8.63 (7.26, 10.30) 376 13 649
Yahoo – 0.62 (0.41, 0.89) 27 2 634 1.57 (0.85, 2.64) 13 2 634
Google 0.63 (0.35, 1.03) 14 1 359 1.88 (0.84, 3.57) 8 1 359

For server software type, we compute risk factors relative to Microsoft IIS,
the second-most popular server software. Apache and Nginx are positive for both
phishing and search-redirection attacks. Note that we are not making any claims
about the relative security levels of the different software classes. All software
contains vulnerabilities, and we are not taking sides on the debate over whether
open- or closed-source software has fewer unpatched holes [13]. Instead, our
results simply show that, relative to software popularity, criminals tend to use
Apache and Nginx more for perpetrating their crimes than Microsoft IIS.

3.2 Explaining Why Compromise Rates Vary

We now present logistic regressions to study why websites are compromised. We
run four regressions in all: two for webservers running a CMS (one each for the
phishing and search-redirection attacks datasets) and two for webservers not
running any CMS (one for each compromise dataset). We run the additional
regressions because some explanatory variables only apply to CMSes, but many
of the variables measuring security signals apply regardless of whether or not a
webserver uses a CMS.

We group the following explanatory variables into three categories: CMS
market share, webserver hygiene and server attributes.

CMS Market Share

# Servers: We took market share for each CMS from [10] as of January 1, 2013
and multiplied it by population of registered .com domains (106.2 million) and
estimated server response rate (85 %) [5]. This variable was omitted for non-CMS
regressions.
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Webserver Hygiene

HTTPONLY cookie: We checked the header for an HTTPONLY cookie used to protect
against cross-site-scripting attacks. We interpret setting this cookie as a positive
signal of overall server hygiene. Checking for this cookie was one measure of
server hygiene also used in [2].

Server Version Visible: We analyzed the server headers for any version infor-
mation regarding the server, whether it be Apache 2 or Apache 2.2.22. This is
a Boolean variable which is true if the server gave any potentially valid version
information.

Shared Hosting: We counted the number of times we observed an IP address
in the combined webserver and compromised datasets. We deem a domain to be
part of a shared host if 10 domains resolve to the same IP address. A recent Anti-
Phishing Working Group report presents evidence that some attackers target
shared hosting in order to simultaneously infect many domains [8].

Server Attributes

Country: We took the top ten countries from the combined dataset and com-
pared each of them the domains hosted in all the other countries in the dataset.

Server Type: This categorical variable looks at the type of server software
a webserver is running. We only consider the 5 most popular types: Apache,
Microsoft IIS, Nginx, Google, and Yahoo.

The model takes the following form:

log
pcomp

1 − pcomp
= c0 +c1 lg (# Servers) + c2 HTTPONLY + c3 Server Vsn?

+c4 Shared Hosting? + c5 Country + c6 Server type + ε

Table 2 shows the results from these four regressions. CMS popularity is
positively correlated with compromise in the phishing dataset. Each doubling of
the number of webservers running the CMS increases the odds of compromise by
9 %, supporting hypothesis H2. The result is inconclusive for search-redirection
attacks, but the trend is similar. Also, Appendix B studies the link between
market share and exploitability. The analysis in Appendix B shows that the
number of exploits is also a positive risk factor for being hacked to serve phishing
pages, which supports H2c.

We consider hygiene variables next. We do not observe any consistent evi-
dence that hiding server information promotes or inhibits compromise, so we
can neither refute nor support H3. Setting an HTTPONLY cookie appears to be a
negative risk factor for being compromised, but we need more data to support
the associated hypothesis H5.

Running on a shared host is a positive risk factor for being hacked to serve
phishing pages, which supports H4 and findings from [8]. However, we note
that it is a negative risk factor for being hacked for search-redirection attacks.
It appears that cybercriminals engaged in phishing have adopted different tech-
niques for infecting webservers than those carrying out search-redirection attacks.
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Table 2. Table of coefficients for logistic regressions comparing rate of compromise to
many explanatory variables.

CMS No CMS
Phish Search-redirection attacks Phish Search-redirection attacks

coef. odds p-value coef. odds p-value coef. odds p-value coef. odds p-value
Intercept -4.77 0.01 < 0.0001 -4.10 0.02 < 0.0001 -4.11 0.02 < 0.0001 -5.99 0.00 < 0.0001

lg # Svrs 0.09 1.09 < 0.0001 0.02 1.02 0.16
HTTPONLY 0.22 1.25 0.06 -0.83 0.44 < 0.0001 -0.87 0.42 < 0.0001 0.15 1.17 0.12
No Svr Vsn -0.15 0.86 0.0001 0.10 1.11 0.01 0.04 1.04 0.09 0.32 1.38 < 0.0001
Shared Host 0.95 2.58 < 0.0001 -1.58 0.21 < 0.0001 0.28 1.32 < 0.0001 -1.27 0.28 < 0.0001

Apache 1.49 4.45 < 0.0001 1.48 4.38 < 0.0001 1.80 6.06 < 0.0001 1.37 3.94 < 0.0001
Nginx 0.59 1.80 0.003 1.37 3.93 < 0.0001 0.70 2.00 < 0.0001 1.43 4.19 < 0.0001
Yahoo -0.34 0.72 0.59 2.72 15.12 < 0.0001 -0.54 0.58 0.009 -0.02 0.98 0.97
Google -1.50 0.22 0.0003 -0.81 0.44 0.10 -0.36 0.70 0.35 0.25 1.29 0.67
Other 1.92 6.84 < 0.0001 0.83 2.30 0.0009 0.81 2.24 < 0.0001 0.96 2.62 < 0.0001

Model fit: χ2 = 1 353, p < 0.0001 χ2 = 1 825, p < 0.0001 χ2 = 5 937, p < 0.0001 χ2 = 2 113, p < 0.0001

Further investigation shows that there is a correlation between being on a shared
host and having a low or no Alexa rank: 13 % of the top 10M, 26 % of the
next 10M, and 55 % of websites without an Alexa rank are hosted on a shared
host (from our combined webserver and search-redirection attacks dataset). This
result could signal that search-redirection attacks attackers target higher ranked
pages, which makes sense in light of [1], which showed that compromised websites
with a higher PageRank stay in search results longer.

Previous results from webservers in Sect. 3.1 are similar to those in this
regression – notably that Apache and Nginx webservers remain positive risk
factors compared to Microsoft IIS in all cases.

Finally, we note that there is more consistency between the regressions exam-
ining CMSes and no CMSes than there is between regressions for phishing and
search-redirection attacks. The results for the shared host variable are the same,
regardless of whether a CMS is used, as are the results for server types and
most countries. Only the practice of hiding detailed server version information
was very inconsistent, being a negative risk factor for phishing on CMSes and a
negative risk factor for search-redirection attacks when no CMS is used.

3.3 Does Outdated Software Get Hacked More?

A best practice for webserver security is to run the most recent version of software
available, as updates tends to plug security holes as well as add new features. For
instance, Google notifies webmasters via its Webmaster Tools when it detects
outdated server software as a way to improve security [14]. However, updating
server software can be a nuisance, due to cross-dependencies, poor interfaces
and the demands of maintaining uptime. Consequently, many webservers run
software that is many months, or even years, out of date. The security firm
Sucuri Labs even runs a website [15] that names and shames websites running
woefully outdated CMS or server software.
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But we wondered whether or not servers running outdated software actually
do get compromised more often than those that do not. We hypothesize that the
opposite is usually true: that outdated webservers are compromised less often
provided that most other webservers are already upgraded. To test this and
related hypotheses, we restrict ourselves to the servers running WordPress. This
is for two reasons: WordPress is the most popular content management system
and, by default, WordPress installs provide detailed version information ordered
straightforwardly.

Odds Ratios for Major Version Differences. First, we investigated whether
servers running WordPress that hid version information were at less risk of com-
promise (to test hypothesis H3). The results are shown in the first row of the
table in Fig. 2c. In fact, hiding WordPress version is a positive risk factor for
being hacked for phishing pages. This contradicts the frequently held view that
hiding detailed version information improves security, and it instead lends cre-
dence to the view that publishing information helps defenders more than attack-
ers. For instance, WordPress and Google send out reminder emails to server
administrators to update their software, but those who obscured their generator
version for security reasons do not receive the reminders. We also note that even
though we looked at version information through the generator tag, attackers
oftentimes try their hack on any server running WordPress, regardless of what
version it says it is. We see no statistically significant effect for search-redirection
attacks, though the trend is similar.

There are differing degrees of outdated software. For servers with version
information, we first compared the risk facing servers at the most recent version
(3.5.1 during our collection time) to running any other version of WordPress.
Running the most up-to-date version is a positive risk factor for being hacked
for search-redirection attacks. This too goes against conventional wisdom, and
indirectly supports hypothesis H2 since the most recent version is also the most
popular one.

We also looked at the difference in major versions, ignoring version 1 since we
only had 7 instances in our combined datasets. We compared all of WordPress
2.* and WordPress 3.* against WordPress installs with no version information.
We see that WordPress 3.* installs face more risk of being hacked to serve phish-
ing pages than WordPress 2.*. We observe similar but statistically insignificant
results for search-redirection attacks.

Chi-Squared Test for Risk Across Subversions. The odds ratios just dis-
cussed offer initial evidence that being out of date reduces the risk of infection
for webservers running WordPress, at least when comparing major versions. We
now drill down and investigate differences across WordPress subversions (e.g.,
WordPress 3.3.*). Figure 2a plots the relative frequency of servers in our web-
server and compromise datasets running each WordPress subversion. Note the
different scales to the vertical axes – the left axis tracks the frequency in the web-
server dataset while the right axis is used for the two compromise datasets. We
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Fig. 2. Exploring the relationship between WordPress version and the incidence of
webserver compromise.

first observe that more outdated subversions are indeed less popular compared
to the most recent subversions. We also see that the compromise rate roughly
follows the popularity of the subversion, but with substantial variation and lower
compromise rates for more outdated versions.

But are the differences in compromise rates statistically significant? We can
answer that using a χ2 test, but first, we can inspect the differences visually using
the mosaic plot in Fig. 2b. The vertical axis shows for each version the propor-
tion of compromised webservers (either phishing or search-redirection attacks)
compared to the proportion of uncompromised webservers (from the webserver
dataset). The horizontal axis is scaled so that the area of each cell matches the
frequency of each category. For instance, the dark blue cell in the bottom right
corner shows the proportion of webservers running WordPress Version 3.5.* that
have been compromised. This plot shows that the fraction compromised falls
steadily as the subversions grow more outdated. It also shows that the collective
proportion of outdated servers is still quite substantial.

Finally, the cells are lightly shaded if the difference in proportion for being
compromised is statistically significant at the 95 % confidence interval accord-
ing to the χ2 test, and over 99 % confidence interval if darkly shaded. Red cells
are underrepresented and blue cells are overrepresented. We can see that most
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of the WordPress 2.* versions are statistically overrepresented in the webserver
dataset and underrepresented in the compromise datasets. WordPress 3.0 and 3.3
are also overrepresented in the compromise datasets and underrepresented in the
webserver dataset. The most recent, WordPress 3.5, is the only subversion over-
represented in the phish dataset and underrepresented in the webserver dataset.
These findings support hypothesis H2b that unpopular outdated CMSes are
negative risk factors for compromise. It is also consistent with our findings from
the odds ratios that the most recent version is the most at risk of compromise.

Logistic Regressions. The final check we make comparing compromise rates
in WordPress versions is to run a simple logistic regression comparing the pop-
ularity of a version to the compromise rate in the phishing dataset.

# Servers: We took the market share for each WordPress subversion from
[10] as of January 1, 2013 and multiplied it by population of registered .COM
domains (106.2 million) and the estimated server response rate (85 %) from [5].

log
pcomp

1 − pcomp
= c0 + c1 lg (# Servers) + ε.

The logistic regression yields the following results:

These results show that each time the number of servers running the same
subversion of WordPress doubles, the risk of the server being hacked to serve
phishing pages increases by 20 %. This offers further evidence supporting H2.

4 Discussion

We now sum up the results of the prior sections by first revisiting the original
hypotheses and second discussing how the results can be leveraged by security
engineers.

Evaluating ResearchQuestions. We summarize the analysis of the previous section
by returning to the original research questions.

H0 (Running a CMS pos. RF) Supported for search-redirection attacks, not
uniformly for phishing

H0b (Some CMS types are RFs) Broadly supported
H1 (Some server types are RFs) Broadly supported
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H2 (CMS market share pos. RF) Broadly supported, across all CMSes and
across WordPress subversions

H2b (Outdated unpopular software neg. RF) Supported across WordPress sub-
versions

H2c (# exploits pos. RF) Supported
H3 (Hiding version info neg. RF) Contradicted
H4 (Shared hosting pos. RF) Supported for phishing, contradicted for search-

redirection attacks
H5 (HTTPONLY cookie pos. RF) Inconclusive

Many hypotheses are broadly supported, especially that server type and CMS
market share are positive risk factors. We find less support for hypothesis H0
that all CMSes exhibit higher rates of compromise; instead, most CMSes, espe-
cially the popular ones, are positive risk factors for compromise. Finally, it does
not appear that hiding version information is a negative risk factor in most
circumstances, but it is unclear how often it may be a positive risk factor.

Making the Results Actionable. So what can be made of these results? At a high
level, the findings can help reduce information asymmetries regarding security
outcomes for different webserver configurations [16]. By making security out-
comes such as compromise incidents more directly comparable across platforms,
we can help others make more informed decisions about the relative risks posed.
Publishing such data can also motivate software developers to improve the secu-
rity of their code.

We have seen, however, that not all “name-and-shame” policies are consistent
with empirical observation. Notably, efforts to call out websites running outdated
software are misguided, since they obscure our finding that up-to-date servers
tends to be hacked more often. Instead, relative metrics such as odds ratios can
be used to identify the worst offenders and apply peer pressure to improve. They
can also be used as positive reinforcement by encouraging everyone to improve
compared to others.

For the system administrator, our results can be applied in two ways. First,
the results can be used to make better choices when choosing among available
software types and configuration. Second, after systems have been deployed, the
findings can be used to manage heterogeneous configurations (e.g., environments
with multiple CMSes and server software types). Here, administrators can priori-
tize how defensive countermeasures such as attack detection should be deployed.
Security policies could even be set in accordance with the observed relative risk.

More broadly, we have demonstrated a general method of studying how web-
server characteristics affect the risk of compromise. The methods presented here
can be applied to other characteristics if the data can be collected. Furthermore,
odds ratios help to identify relationships that should be tested further using
experimental methods.
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5 Related Work

While often challenging to carry out, substantial progress has been made over
the past several years in conducting large-scale measurements of cybercrime.
Some work is particularly relevant due to the results from studying the secu-
rity of webservers. For instance, Doupe et al. describe a state-aware fuzzer in
which they evaluate vulnerabilities in CMS platforms [17]. Scholte et al. study
vulnerabilities in CMS platforms, though they do not relate vulnerabilities to
exploits or observed compromise [18]. Nikiforakis et al. crawl many webpages on
top webservers to measure the quality of third-party JavaScript libraries running
on the webservers [2].

Another series of papers are relevant to the compromise datasets we study.
For example, Wang et al. performed a large-scale study of cloaking, which is often
caused by search-redirection attacks [19]. Notably, the authors dealt with false
positives using clustering. While our data source on search-redirection attacks
focuses exclusively on redirections to unlicensed pharmacies [1], the attack tech-
nique is general [20].

A number of studies deploy methods in common with our own. Notably,
Lee describes the use of a small case-control study to identify characteristics
that predispose academics to spear-phishing attempts [21]. We adopt one of the
signals of security hygiene used by [2], while Pitsillidis et al. measure the purity
of spam feeds in a manner consistent with how we detect false positives in our
compromise datasets [22].

Many studies have been primarily descriptive in nature, though some have
managed to tease out the factors affecting the prevalence and success of attacks.
For instance, Ransbotham connected vulnerability information with intrusion
detection system data to show that open-source software tends to be exploited
faster than closed-source software following vulnerability disclosure [23].

Our work is distinguished from prior work in two ways. First, we focus exten-
sively on the relationship between webserver characteristics, notably CMS type
and market share, and compromise. Second, we use the case-control method to
understand the characteristics of large cybercrime datasets.

6 Concluding Remarks

We have presented a case-control study identifying several webserver character-
istics that are associated with higher and lower rates of compromise. We joined
two datasets on phishing and search-redirection attacks with a large sample of
webservers, then automatically extracted several characteristics of these web-
servers hypothesized to affect the likelihood the webserver will be compromised.

Supported by statistical methods of odds ratios and logistic regression mod-
els, we found that certain server types (notably Apache and Nginx) and content
management systems (notably Joomla and WordPress) face higher odds of com-
promise, relative to their popularity. We also found that a key driving factor
behind which CMSes are targeted most is the underlying popularity of the plat-
form. We presented evidence that this was true across CMS types, as well as
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for less popular but outdated subversions of WordPress. In many respects, this
finding can be thought of as a webserver-based corollary to the old truism for
desktop operating systems that Macs are more secure than PCs because they
have less market share.

There are a number of limitations to the present study that can be addressed
in future work. First, the findings of case-control studies should be complemented
by other forms of experimentation that directly isolate explanatory factors when
possible. It is our hope that our findings may be further validated using different
approaches.

Another limitation of the current study is that there is a delay between the
time of reported compromise and the identification of risk factors. It is possible
that some of the webservers may have changed their configurations before all
indicators could be gathered. There is a trade-off between collecting large data
samples and the speed at which the samples can be collected. In this paper, we
emphasized size over speed. In future work, we aim to close the gap between
compromise and inspection to improve the accuracy of our CMS and software
classifications.

Other opportunities for further investigation include carrying out a longi-
tudinal study of these risk factors over time. Incorporating additional sources
of compromise data, notably servers infected with drive-by-downloads, could be
worthwhile. We would like to construct a control sample for domains other than
.com, since others have shown that different TLDs such as .edu are frequently
targeted [1].

Finally, we are optimistic that the case-control method employed here may
be applied to many other contexts of cybercrime measurement. It is our hope
that doing so will lead to deeper understanding of the issues defenders should
prioritize.
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SPAWAR Systems Center Pacific via contract number N66001-13-C-0131. This paper
represents the position of the authors and not that of the aforementioned agencies.

A Comparison of Methods to Identify CMS Type

While a number of tools provide CMS detection as part of more general-purpose
web-service fingerprinters (e.g., BlindElephant [24], WhatWeb [25] and the
WordPress-specific Plecost [26]), we opted to build the custom CMS detector
described above to improve efficiency and accuracy over existing tools. Both
BlindElephant and Plecost issue many HTTP requests to characterize each
server. We ruled these tools out because we needed a lightweight solution that
could quickly detect CMS type and version for hundreds of thousand webservers.
Like our method, WhatWeb issues a single HTTP request per server (at its low-
est “aggressiveness” level). Combined with its multi-threaded design, WhatWeb
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should offer fast identification of CMS versions. We therefore decided to evaluate
its performance and accuracy compared to our own system.

We selected 2 000 random URLs from the webserver dataset and attempted
to identify the CMS type using our system and WhatWeb’s. In terms of effi-
ciency, we were surprised to find that WhatWeb took nearly twice as long to
finish, despite being multithreaded. We speculate that the difference in speed
can be attributed to its general-purpose nature. We also found that our system
was substantially more accurate, identifying the correct CMS on more websites
and having far fewer inaccurate classifications. We manually inspected all dis-
agreements between WhatWeb and our tool in order to establish the following
detection, false positive and false negative rates:

Method FN Rate FP Rate TN Rate TP Rate # Results

WhatWeb 40.7 % 6.1 % 74.3 % 59.3 % 1 297

Our Method 5.4 % 0.1 % 99.0 % 92.2 % 1 674

Based on these findings, we conclude that our custom method is best-suited
to the task of identifying CMS type.

B Does CMS Popularity Affect Exploitability?

Results from the Subsect. 3.1 showed that the some of the most popular CMS
platforms, notably WordPress and Joomla, are compromised disproportionately
often. We now dig a bit deeper to see if there is a statistically robust connection
between CMS popularity and compromise. Before inspecting the compromise
rates directly, we first compare CMS popularity to the number of readily-available
exploits targeting the CMS platform.

For this analysis, we considered many more CMSes than in other sections.
We consider all 52 CMS platforms tracked in [10]. These additional CMSes all
have very small market shares, and so not enough registered in our datasets
to include in the other analysis. For each CMS we collected the following two
indicators:

# Servers: We took the market share for each CMS from [10] as of January 1,
2013 and multiplied it by population of registered .com domains (106.2 million)
and the estimated server response rate (85 %) from [5].

# Exploits: The Exploit Database [27] is a search engine that curates working
and proof-of-concept exploits from a variety of sources, including the popular
penetration-testing tool Metasploit. We searched the Exploit Database for each
CMS and recorded the number of hits as a measure of how “exploitable” each
CMS is. We discarded any results not matching the searched-for CMS. We deem
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this to be a more accurate measure of attacker interest in and the “hackabil-
ity” of a content management system than would be counting the vulnerabili-
ties reported for a CMS. Unlikely many vulnerabilities, exploits provide directly
actionable information to compromise machines.

We hypothesize that the number of exploits available for a CMS depends
directly on the number of servers in use. Because both variables are highly
skewed, we apply a log transformation to each. Here is the statement of the
linear regression:

lg (# Exploits) = c0 + c1 lg (# Servers) + ε.

The regression yields the following results:

coef. 95 % conf. int. Significance

Intercept −8.53 (−3.37, −13.69) p = 0.002

lg(# Servers) 0.64 (0.33, 0.95) p = 0.0001

Model fit: R2 = 0.23

Indeed, this simple linear model has a reasonably good fit. While there is
additional unexplained variation, this lends indirect support to H2. Due to the
collinearity of these variables, we only use one of them (# Servers) in our regres-
sions in this paper.
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Abstract. Many mobile and wireless authentication systems are prone
to relay attacks whereby two non co-presence colluding entities can sub-
vert the authentication functionality by simply relaying the data between
a legitimate prover (P) and verifier (V). Examples include payment sys-
tems involving NFC and RFID devices, and zero-interaction token-based
authentication approaches. Utilizing the contextual information to deter-
mine P-V proximity, or lack thereof, is a recently proposed approach to
defend against relay attacks. Prior work considered WiFi, Bluetooth,
GPS and Audio as different contextual modalities for the purpose of
relay-resistant authentication.

In this paper, we explore purely ambient physical sensing capabili-
ties to address the problem of relay attacks in authentication systems.
Specifically, we consider the use of four new sensor modalities, ambi-
ent temperature, precision gas, humidity, and altitude, for P-V proximity
detection. Using an off-the-shelf ambient sensing platform, called Sen-
sordrone, connected to Android devices, we show that combining these
different modalities provides a robust proximity detection mechanism,
yielding very low false positives (security against relay attacks) and very
low false negatives (good usability). Such use of multiple ambient sen-
sor modalities offers unique security advantages over traditional sensors
(WiFi, Bluetooth, GPS or Audio) because it requires the attacker to
simultaneously manipulate the multiple characteristics of the physical
environment.

Keywords: Relay attacks · Proximity detection · Environmental
sensors

1 Introduction

Many mobile and wireless systems involve authentication of one communicat-
ing party (prover P) to the other (verifier V). Such authentication typically
takes the form of a challenge-response mechanism whereby V proves the pos-
session of the key K that it pre-shares with P by encrypting or authenticating
c© International Financial Cryptography Association 2014
N. Christin and R. Safavi-Naini (Eds.): FC 2014, LNCS 8437, pp. 349–364, 2014.
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a random challenge (using K) sent by P. Example instances include payment
transactions between NFC/RFID devices and point-of-sale systems, and zero-
interaction authentication [4] scenarios between a token and a terminal (e.g.,
phone and laptop, or car key and car). Unfortunately, the security and usabil-
ity benefits provided by these authentication systems can be relatively easily
subverted by means of different forms of relay attacks which involve two non
co-present colluding attackers to simply relay the protocol messages back and
forth between P and V.

One scenario for such relay attacks [9,13,15] is applicable to zero-interaction
authentication. Here, an attacker (ghost) relays the challenge from V to a col-
luding entity (leech). The leech then relays the received challenge to P, and the
response from P in the other direction. This way a ghost and leech pair can
succeed in impersonating as P. Another scenario relates to payment tokens and
point-of-sale readers. It involves a malicious reader and an unsuspecting pay-
ment token owner intending to make a transaction [6,8]. In this scenario, the
malicious reader, serving the role of a leech and colluding with the ghost, can
fool the owner of the payment token P into approving to V a transaction which
she did not intend to make (e.g., paying for a diamond purchase made by the
adversary in a jewellery store while the owner only intends to pay for food at a
restaurant). The main difference in the two scenarios relates to user awareness –
in the first scenario, the user does not intend to authenticate at all, whereas, in
the second scenario, the user does intend to authenticate but ends up authorizing
a different transaction than the one she intends to.

A known defense to relay attacks, commonly found in research literature, is
the use of distance bounding protocols. A distance bounding protocol is a cryp-
tographic challenge-response authentication protocol which allows the verifier to
measure an upper-bound of its distance from the prover [1]. Using this protocol,
V can verify whether P is within a close proximity thereby detecting both ter-
rorist fraud and mafia fraud attacks. [8,9]. However, these protocols may not be
currently feasible on commodity devices (such as NFC phones, car keys, payment
tokens) due to their high sensitivity to time delay or need for special-purpose
hardware.

Recent research suggests a potentially more viable defense to relay attacks,
capitalizing upon the emerging sensing capabilities of modern devices (P and V)
[10,11,18,29]. The idea is to use the on-board device sensors to extract contextual
information based on which P-V proximity, or lack thereof, could be determined.
Prior work demonstrated the promising feasibility of using different types of
sensors for this purpose, including WiFi [29], GPS [10], and Audio [11].

In this paper, we explore purely ambient physical sensing capabili-
ties present on upcoming devices to address the problem of relay attacks in
authentication systems. More specifically, we consider the use of four new sensor
modalities, ambient temperature, precision gas, humidity, and altitude, for P-V
proximity detection. Using an off-the-shelf ambient sensing platform, called Sen-
sordrone1, connected to Android devices, we show that combining these different
1 http://www.sensorcon.com/sensordrone/

http://www.sensorcon.com/sensordrone/
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modalities provides a robust proximity detection mechanism, yielding very low
false positives (security against relay attacks) and very low false negatives (good
usability). Such use of multiple ambient sensor modalities offers unique security
advantages over traditional sensors (WiFi, GPS, Bluetooth or Audio) because it
requires the attacker to simultaneously manipulate the multiple characteristics
of the physical environment. These ambient sensors also yield rapid response
times and very low battery consumption, whereas traditional sensors can have
noticeable scanning times and battery drainage. These ambient sensors may
also be seamlessly combined to work with traditional sensors to further improve
security.

To demonstrate the feasibility of our approach, we use an additional envi-
ronmental sensing platform (Sensordrone). However, the devices participating in
the protocol themselves (P and V) may be equipped with various environmental
sensors in the future [3,32]. Android platform already supports broad category
of environmental sensors that includes barometer, photometer and thermometer
[17] such that phones and other devices that come equipped with these sensors
will already have an interface to provide data to corresponding application.
Our Contributions: The main contributions of this paper are as follows:

– Environmental Sensors for Relay Attack Prevention: We present the first
exploration of the use of purely environmental sensors for relay attack pre-
vention in mobile and wireless systems. Given that these sensors are already
available on many smartphones in the form of extension devices [26], our work
shows how such sensors can be effectively leveraged for relay attack security
once they become commonplace in the near future (either in embedded or
extension form).

– Experiments and Multiple Modality Combinations: We design a simple data
collection application, utilizing Sensordrone, that allows us to collect the data
at different locations and demonstrate the feasibility of our approach with four
different sensor modalities and off-the-shelf classifiers. We report on several
experiments to evaluate our approach. Our results suggest that although each
individual sensor modality may not provide a sufficient level of security and
usability for the targeted applications, multiple modality combinations result
in a robust relay attack defense (low false positives) as well as good usability
(low false negatives).

2 Related Work

The main idea of zero interaction authentication is that legitimate entities, i.e.
P and V, should be in physical proximity at the authentication moment. There
are some examples of the system such as card/mobile payment system, dual
factors authentication e.g. PhoneAuth [5] or zero interaction authentication to
lock/unlock terminal e.g. BlueProximity.2

2 http://sourceforge.net/projects/blueproximity/

http://sourceforge.net/projects/blueproximity/
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Distance bounding techniques [1] that were proposed as a solution to relay
attack have some limitations mentioned in previous works such as its difficulty to
deploy on commodity devices [11] and its dependence on low-level implementa-
tion which is vulnerable to attackers [10,14]. An alternative solution using ambi-
ent environment has been investigated recently. This is based on the assumption
that P and V will have similar ambient environment when they are co-present
whereas they will see significant differences in their respective ambient environ-
ments when they are not co-present. Some prior works rely on commodity devices
which are equipped with various traditional sensors such as WiFi, Bluetooth, and
sound microphones.

Radio Frequency (RF) sensing (WiFi, Bluetooth etc.) is a commonly used
sensor modality for co-presence detection. For example, Varshavsky et al. [29]
proposed the use of the common radio environment (WiFi) as a basis to deriving
shared secret between co-located devices. They introduced an algorithm Amigo
that extends the Diffie-Hellman key exchange with verification of co-present
devices. Each device generates a signature based on sensed radio environment
data after performing a Diffie-Hellman key exchange and shares it with the other
device for proximity verification. Krumm and Hinckley [16] proposed “NearMe”
that uses WiFi for proximity detection. GPS is also a radio-based sensor used
for location detection.

Halevi et al. [11] developed techniques using ambient audio and light for prox-
imity detection. They analyzed different methods such as time-based, frequency-
based and time-frequency based similarity detection using raw audio data. Their
results show that ambient sound is slightly better than ambient light. Other
audio based context sensing approaches include [20,24]. Nguyen et al. in [19]
used pattern based audio alignment to detect and compare ambient audio to
provide secure communication between mobile phones. Schurmann and Sigg [24]
also presented secure communication based on ambient audio.

A solution based on sensing the purely physical environment holds the promise
of being fast and energy-efficient. Narayanan et al. [18] mention the possibility of
using some physical environmental sensors but do not report any concrete exper-
iments or techniques.

3 Background and Overview

In this section, we review the proximity-based authentication approach that
forms the focus of this paper and the underlying threat model, followed by an
overview of our relay attack defense based on ambient multi-sensing.

3.1 Functional Model for Proximity-Based Authentication

Figure 1 shows a general model of proximity-based authentication. The model
consists of a prover P who wants to authenticate itself to verifier V and convince
V that it is close to P. The authentication process between P and V is typically
run when they are in close proximity to each other. V makes use of a back-
end “comparator” function to make the authentication decision (it could reside
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Fig. 1. A functional model of proximity based authentication.

on the verifier device or on a remote machine such as a bank server in the
case of payment transactions). P and V have pre-shared secret keys K and
K ′, respectively, with the comparator. In an authentication session, V sends
a challenge to P which computes a response based on the challenge and K.
P returns the response to V which uses the comparator function to decide if
response is acceptable.

This functional model is applicable to various real-world scenarios such as
payment at a point-of-sale (POS) terminal and zero interaction authentication
(ZIA) for access control to locking/unlocking a car or a desktop computer. In the
payment scenario, the payment card plays the role of P, and the POS terminal
plays the role of V. The issuer of the payment card plays the role of the com-
parator. In ZIA the user token (key or mobile phone) acts as P and the terminal
(car or desktop computer) plays the role of V. The comparator functionality is
integrated in the terminal itself and therefore K ′ is not needed.

3.2 Threat Model

We assume a standard Dolev-Yao adversary model [7] where the adversary A
has complete control over all communication channels. However, A is not able to
compromise P, V or the comparator, i.e., none of the legitimate entities involved
in the protocol have been tampered with or compromised. The goal of A is to
carry out relay attack by convincing V that the P is nearby when in fact P is
far away. Figure 2 shows how A, in the form of a relay-attack duo (Ap,Av) can
relay messages between the legitimate P and V with Ap acting as a dishonest
verifier and Av acting as a dishonest prover.

3.3 Our Approach: Relay Attack Defense with Ambient
Multi-sensing

Figure 1 shows our countermeasure against relay attack which is based on the
natural assumption that two entities will sense similar ambient environments
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Fig. 2. Relay attack in proximity based authentication.

when they are co-present. When P sends an authentication trigger to V, they
both start sensing their respective contexts using ambient physical sensor modal-
ities, resulting in CP and CV , respectively, as the sensed data. This sensor data
may be acquired using an additional (uncompromised) device, connected over
a secure channel, to P and V (such as Sensordrone) or via the sensors embed-
ded within P and V. We consider physical ambient sensor modalities, such as
temperature, precision gas, humidity and altitude. P will attach CP to response.
Similarly V will convey CV along with challenge in its message to the com-
parator. In case multiple sensors are used (say n), CP would be the vector
CP1, CP2, ..., CPn, and similarly, CV would be the vector CV1, CV2, ..., CVn.

Using the keys K,K ′, the comparator can recover and validate CP and CV ,
and compare them (in addition checking that response matches challenge). We
recall that in scenarios where the comparator is integrated with V, K ′ is not
used.

Figure 2 illustrates the presence of the relay attack duo A =(Ap,Av). Assum-
ing that A cannot subvert the integrity of context sensing and the comparator
can reliably tell the difference between co-presence and non co-presence by exam-
ining CP and CV , our countermeasure based on context sensing will thwart a
Dolev-Yao A. In the rest of this paper, we describe our experiments to evaluate
whether a comparator can reliably distinguish co-presence and non co-presence
based on context information CP and CV sensed using physical ambient sensors.

4 Sensor Modalities

We explore the use of various ambient sensor modalities to determine whether
two devices are co-present or not. In this paper, we are focusing on ambient tem-
perature, precision gas, humidity and altitude, and combinations thereof, which
are readily provided by Sensordrone (see Fig. 3). In this section, we describe the
functioning details of these sensors.
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Fig. 3. Sensordrone device with different sensors (ambient temperature, precision gas,
humidity and altitude are utilized in this paper). Device dimensions: 2.67 × 1.10 ×
0.49 inch3.

Ambient temperature: It is the temperature in a given localized surrounding.
Ambient temperature of different locations might be different as it changes with
sensor being indoors or outdoors, and differs from one room to another with Air
Conditioning adjusted at different levels. We recorded the current temperature,
in Celsius scale, at different locations. Sensordrone uses silicon bandgap sensor
to record the ambient temperature. The principle of the bandgap sensor is that
the forward voltage of a silicon diode is temperature-dependent [31].
Humidity: It is the amount of moisture in the air which is used to indicate the
likelihood of precipitation or fog. Humidity can serve as the contextual infor-
mation about the location since the amount of water vapor present in the envi-
ronment may differ when moving from one location to the other. Capacitive
Polymeric Sensor is used to detect the humidity of the surrounding. It consists
of a substrate (glass, ceramic or silicon) on which a thin film of polymer or metal
oxide is deposited between two conductive electrodes. The change in the dielec-
tric constant of a capacitive humidity sensor is nearly directly proportional to
the relative humidity of the surrounding environment [22].
Precision Gas: Ambient air consists of various gases, primarily Nitrogen and
Oxygen. The gaseous content of a particular location may differ from that of
another location. The Sensordrone device comes with pre-calibrated Carbon
Monoxide (CO) sensor, which measures the CO content of the atmosphere. We
used the default calibration of the device that monitors CO to get the con-
text information of the location. The values were measured in “ppm (parts per
million)”.
Altitude and Pressure: Atmospheric Pressure of a particular location is the
pressure caused by the weight of air at that location above the measurement
point. With increase or decrease in elevation, the weight of air above the loca-
tion changes and so does the pressure at that location. Although the variation
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of pressure can be obtained from the altitude, it changes drastically with the
weather. Hence, pressure at a location can serve as an indicator for that location
and time. In our experiments, the pressure was recorded in “mmHg (millimeter
of Mercury)” using Micro electromechanical (MEMS) Pressure Sensor. When
there is a change in pressure from the air on a diaphragm within the sensor, the
piezoresistive sensors senses the change with alternating piezoelectric current
which is used to determine the actual pressure.

This is also used to determine the altitude. Since the pressure value at any
given location is directly proportional to the amount of gases above the device
and the amount of gases above the device is inversely proportional to the alti-
tude, the altitude value can be derived from the pressure sensor using the Eq. 1.
The units for station pressure must be converted to millibars (mb) or hectopas-
cals (hPa) before using following expression to convert the pressure values into
altitude [21].

haltitude = {1 − (
Pstation

1013.25
)0.190284} ∗ 145366.45 (1)

The haltitude measurements are in feet, and are multiplied by 0.3048 to con-
vert them to meters.

Although Sensordrone provides both pressure and altitude readings, we only
use altitude to classify the location as altitude is derived from pressure. We
found that as the readings are taken at a more precise scale, the classifiers result
improves. In our dataset, we measured pressure in mmHg and altitude in m.
The pressure values did not vary much and were not very useful in providing
accuracy to the classifier while altitude provided a clear difference between two
locations allowing classifier to more accurately make predictions.

Excluded Sensors: Although there are other sensors available on the Sensor-
drone device, we did not use the data from those sensors for two reasons: either
they did not convey information about the ambient context or may not work
when blocked. The sensors excluded from our experiments include:
Object Temperature: This sensor uses Infrared to obtain the temperature of a
nearby object (line of sight object temperature). The application of this sen-
sor includes measuring the temperature of coffee cup or that of an oven. This
measures the information about a specific object but not about the ambient
environment.

Recently, Urien and Piramuthu [28] proposed the use of such an object
temperature sensor to defend against relay attacks. In their approach, surface
temperature of the prover measured by the prover and the verifier is used comple-
mentary to distance-based validation measured by round-trip times. This is an
interesting idea complementary to our approach, which may be used to combine
device-specific physical characteristics with environment-specific characteristics.
Illuminance (Light): Ambient light intensity might seem like a useful modality
to convey the environmental information. Given the fact that light sensors are
already present in most of the current smartphones and tablets, this is an appeal-
ing capability to obtain the environment information. In fact, this attribute was
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investigated by Halevi et al. in [11], who claimed that it can provide reason-
ably robust way of proximity detection. However, its use suffers from the fact
that light intensity greatly varies depending upon the position of the source of
light and the light sensor facing towards it. Also, the devices will not provide
light measurements when their sensors are blocked, such as when the devices are
stowed inside purses or backpacks.
Proximity Capacitance and External Voltage: The proximity capacitance sensor
is basically for touch sensing or proximity detection like when used on touch
pads or capacitive touch screens. The device detects changes in capacitive flux if
there is a material within a close proximity of the sensor. The sensor is capable
of estimating distances to an object as well as detecting minute changes in water
content of the material [25]. The external voltage sensor gives the measure of
a battery voltage level. None of these sensors reflect the ambient context and,
hence, are not useful for our purpose.

5 Experiments and Results

We developed a simple prototype for Android devices to evaluate our P-V co-
presence detection approach using different ambient sensor modalities. We col-
lected data from different locations. We used two Sensordrone devices along with
two android phones (Samsung Galaxy Nexus and Samsung Galaxy S IV) to col-
lect the data. Sensordrone sends the sensor readings to phone via Bluetooth.
The phone is just a user interface (UI) for the Sensordrone device (the UI shown
in Fig. 4) and does not play any role in altering the sensor values. Our app on
the phone records the Sensordrone readings to a file for further analysis.

5.1 Data Collection

The main goal here is to identify if two devices are co-present or not using
the sensor data. We collect the data from two devices and use a classifier to
determine if these devices are at the same location or at different locations. For
this, we needed to collect the sensor data when the devices are in close physical
proximity as well as when they are at different locations.

To collect the sensor data described in Sect. 4, we modified the original app
provided in [23] to record the data to a file for further analysis (UI is shown in
Fig. 5). The data from all the sensors used in our experiments (ambient temper-
ature, precision gas, humidity, and altitude) was recorded and labeled according
to the location and time of the place. The data was also marked how the device
was held, i.e., either in hand or in pocket (although this information was not used
in our current experiments; it can be useful when working with the light sensor
in the future). The experiment was conducted in a variety of places, not just
confined to labs and typical university offices. The locations included: parking
lots, office premises, restaurants, chemistry labs, libraries as well as halls with
live performance and driving on interstate highways. We collected a total of 207
samples at 21 different locations. The different samples collected from the same
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Fig. 4. Original Sensordrone app dis-
playing sensor values

Fig. 5. Modified Sensordrone app to
record the sensor values

place are “paired” to generate co-presence data instances whereas those from
different places are paired to generate non-copresence data instances. We ended
up with 21320 instances of which 20134 instances belonging to non co-presence
class and 1186 instances belonging to co-presence class.

5.2 Feature Calculation and Analysis Methodology

Let Li and Lj be a sensor reading captured by two devices at locations i and j.
The Hamming distance is calculated as follows:

D(i, j) = |Li − Lj | (2)

Given a sensor modality k (k is in range of (1, n) where n is the number
of sensor modalities) and L

(k)
i and L

(k)
j from two samples, we have D(k)(i, j) =

|L(k)
i − L

(k)
j |. With the data corresponding to n modalities, we obtain a feature

vector of n elements of D(k)(i, j) | 1 ≤ k ≤ n.
We consider co-presence detection as a classification task and carry out our

investigation using the Weka data mining tool [12]. All experiments have been
performed using ten-fold cross validation and Multiboost [30] as the classifier.
We choose Random Forest [2] as the weak learners in all experiments since it
performs best among different base learners we have tried with our dataset (e.g.,
Simple Logistics, J48, and Random Forest). From each experiment, we record
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the 2× 2 confusion matrix, containing the number of True Positives (TP), True
Negatives (TN), False Positives (FP) and False Negatives (FN). We denote co-
presence class to be the positive class, and non co-presence to be the negative
class.

We use the F -measure (Fm), false negative rate (FNR), and false positive
rate (FPR) to measure the overall classification performance (Eqs. 3–5).

Fm = 2 ∗ precision ∗ recall

precision + recall
, (3)

precision =
TP

TP + FP
, recall =

TP

TP + FN
(4)

FNR =
FN

FN + TP
, FPR =

FP

FP + TN
(5)

Classifiers produce reliable results when the data is balanced over all classes.
Our dataset is highly biased towards the non co-presence class which is 17 times
larger than the co-presence class. Therefore, we generate balanced data for clas-
sification by randomly partitioning the non co-presence class into 17 subsets.
Each such subset together with the co-presence class constitutes a resampled set
for classification. We run experiments with 10 resampled sets, chosen randomly.

Each of the different sensors alone may not be fully effective for the purpose
of co-presence detection, and therefore, we also explore whether combinations of
different sensors improve the classification accuracy. To analyze which combina-
tion provides the best result, we would need to analyze all 15 different combina-
tions of four different sensors. However, to reduce the underlying computations,
we first analyze the accuracy provided by each individual sensor. Then we com-
bine best two modalities and view how the accuracy of the classifier changes.
We keep on adding the modalities to see the change in the accuracy until all the
modalities are fed into the classifier for co-presence detection.

5.3 Results

The results of experiments for different combinations of modalities are provided
in Table 1. They suggest that, although each individual modality on its own
does not perform sufficiently well for the purpose of co-presence detection, com-
binations of modalities, especially combining all the modalities together, is quite
effective, with very low FNR and FPR, and high overall Fm. Altitude performs
the best in classifying single modality, and also ranked the best by Chi-squared
attribute evaluation but still has unacceptable FNR and FPR (FNR = 8.57%,
FPR = 16.25%, Fm = 0.881) for our targeted applications demanding high
usability and high security. The result of the combination of all modalities is
clearly the best (FNR = 2.96%, FPR = 5.81%, Fm = 0.957. The interme-
diary combinations of different modalities used in experiments are also based
on the ranks of each modality (evaluated by Chi-squared test). The results for
the best combinations, Humidity-Altitude and Humidity-Gas-Altitude, are also
presented in Table 1.
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Table 1. Classification results for different combinations of environmental sensors

FNR (%) FPR (%) Precision Recall Fm

Single sensor modality

Temperature (T) 23.74 32.40 0.705 0.763 0.733

Precision Gas (G) 15.26 30.36 0.739 0.847 0.790

Humidity (H) 16.25 29.81 0.740 0.838 0.786

Altitude (A) 8.57 16.25 0.851 0.914 0.881

Combination of multiple sensor modalities

HA 7.93 9.85 0.905 0.921 0.913

HGA 5.30 6.83 0.934 0.947 0.940

THGA 2.96 5.81 0.944 0.970 0.957

6 Discussion

Having demonstrated the feasibility of our approach to relay attack prevention,
we now provide a discussion of several other key aspects relevant to our proposal.

6.1 Response Time

The response time of our approach based on environmental sensors is negligible
as we require only one sample for each sensor which can be instantaneously
polled at the time of authentication. As such, the approach would not incur
any delay by incorporating the contextual sensor data into the authentication
process for proximity detection. This is one of the key advantages of our scheme
over the use of traditional sensors, such as WiFi, GPS, and Bluetooth, which
need considerable time to scan the context [27].

6.2 Battery Power Consumption

All the sensors we have used are low-power sensors, and are turned on all the
time in the Sensordrone device. Enabling these sensors data stream will have
minimal influence on the power consumption [25]. The Gas Sensors comes with
pre-calibrated for Carbon Monoxide (CO), which is what we used in our exper-
iments. Enabling the CO data stream will have minimal influence on power
consumption while enabling other gas sensors may use a lot of power.

6.3 Adversarial Settings

The modalities used in this paper are purely environmental (i.e., they directly
measure the natural environmental characteristics). Therefore, it might be very
difficult for an adversary to manipulate these modalities so as to bypass the
proximity detection mechanism. It may be challenging to change the outside
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temperature but adversary may change the room temperature using Air Con-
ditioning or heater. To change the humidity, adversary needs to change the
moisture content of the environment. This could also be hard to achieve when
devices are outside. Although, the adversary can change the humidity of the
room, he still needs to control it such a way that both devices get the reading
within a threshold. The attack assertions might be similar for pressure, altitude
and precision gas modalities. An adversary may have to fill up the room with
heavier or lighter gases inside a room to change the pressure/altitude readings
while he can fill up room with the gas used for measurement (Carbon monoxide
in our experiment) to alter the precision gas reading.

Since we are using more than one modality in our approach (ideally all,
when available), changing only one of the modality is not going to work for an
adversary. The adversary needs to change multiple modalities simultaneously for
successful attack. This could present a significant challenge for the adversary. As
the number of modalities to be altered by an adversary is increased, the likelihood
of being noticed by the users also increases.

6.4 Privacy

In settings where a third-party comparator (such as a bank server) is used for
making approval decisions, a natural concern is about the privacy of the user,
such as location privacy. The information provided should not be specific enough
to reveal the user’s exact location while it should be precise enough to verify that
he is in close proximity with other device to which it is compared to. The other
approaches that have been studied to prevent relay attack use either artificial
(WiFi [16,18], GPS, Bluetooth) or semi-natural (audio [11,20,24]) modalities.
Such modalities, when analyzed, can reveal the location of a user compromising
the privacy of the user. For example, a user when connected to the WiFi hotspot/
Bluetooth devices of clinic or a club will provide the information that he is
connected to the WiFi/Bluetooth devices of that area. Even an audio sample of
few seconds can reveal the location if a user is in a concert or in a class attending
a lecture. Audio snippets (although short) may also reveal the conversations a
user might be having at the time of authentication.

In contrast to traditional sensors, environmental modalities may not reveal
such potentially sensitive information about the users unless the user is at specific
locations with unique and fixed environmental characteristics, such as being at
the top of Mt. Everest where the altitude is 8848 m. Even revealing multiple
modalities to the remote server may not reveal much information about the
user’s location or user’s conversations. Further work is needed to ascertain the
level of privacy environmental sensors can provide.

6.5 Other Sensors

We demonstrated the feasibility of using four different modalities to provide the
ambient information about the location. However, the set of modalities is not
limited to ones we explored. It is also possible to incorporate other sensor types,
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such as odor sensors, to provide the environment information while not revealing
the user’s exact location. The modalities that we used in our experiment are all
environmental whilst it is also possible to use them in conjunction with artificial
modalities such as WiFi, Bluetooth, GPS, and Audio [27].

7 Conclusions

In this paper, we developed a co-presence detection approach based on infor-
mation collected from multiple different environmental sensors. This approach is
geared for preventing relay attacks, a significant threat to many proximity-based
authentication systems. While each individual sensor does not seem sufficient
for the security and usability requirements of the targeted applications, their
combinations form a robust relay attack defense. The other key advantages of
our approach include: security (manipulating multiple environmental attributes
simultaneously could be a challenging task for the attacker), efficiency (fast
response time and negligible power drainage), and privacy (user-specific sensi-
tive information may not be leaked or may be hard to infer).
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Award, and a US NSF grant (CNS-1201927). We thank the FC’14 anonymous reviewers
for their useful feedback.
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Abstract. Two-factor authentication (2FA) schemes aim at strength-
ening the security of login password-based authentication by deploying
secondary authentication tokens. In this context, mobile 2FA schemes
require no additional hardware (e.g., a smartcard) to store and handle
the secondary authentication token, and hence are considered as a rea-
sonable trade-off between security, usability and costs. They are widely
used in online banking and increasingly deployed by Internet service
providers. In this paper, we investigate 2FA implementations of several
well-known Internet service providers such as Google, Dropbox, Twitter
and Facebook. We identify various weaknesses that allow an attacker
to easily bypass them, even when the secondary authentication token is
not under attacker’s control. We then go a step further and present a
more general attack against mobile 2FA schemes. Our attack relies on
cross-platform infection that subverts control over both end points (PC
and a mobile device) involved in the authentication protocol. We apply
this attack in practice and successfully circumvent diverse schemes: SMS-
based TAN solutions of four large banks, one instance of a visual TAN
scheme, 2FA login verification systems of Google, Dropbox, Twitter and
Facebook accounts, and the Google Authenticator app currently used by
32 third-party service providers. Finally, we cluster and analyze hundreds
of real-world malicious Android apps that target mobile 2FA schemes and
show that banking Trojans already deploy mobile counterparts that steal
2FA credentials like TANs.

Keywords: Two-factor authentication · Smartphones security · Bank-
ing trojans · Cross-platform infection

1 Introduction

The security and privacy threats through malware are constantly growing both
in quantity and quality. In this context the traditional login/password authen-
tication is considered insufficiently secure for many security-critical applications
c© International Financial Cryptography Association 2014
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such as online banking or login to personal accounts. Two-factor authentication
(2FA) schemes promise a higher protection level by extending the single authen-
tication factor, i.e., what the user knows, with other authentication factors such
as what the user has (e.g., a hardware token or a smartphone), or what the user
is (e.g., biometrics) [37].

Even if one device/factor (e.g., PC) is compromised – a typical scenario nowa-
days – the chance of the malware to gain control over the second device/factor
(e.g., mobile device) simultaneously is considered to be very low.

While the biometric-based authentication is relatively expensive and raises
privacy concerns, One Time Passwords (OTPs) offer a promising alternative for
2FA systems. For instance, hardware-based tokens such as OTP generators [35]
are less costly, but still generate additional expenses for users and are inconve-
nient, particularly when the user needs to carry additional hardware tokens for
different organizations (e.g., for accounts at several banks). On the other hand,
2FA schemes that use mobile devices (such as smartphones) to handle OTPs
have become popular recently, and have been adapted by many banks and large
service providers. These mobile 2FA schemes are considered to provide an appro-
priate trade-off between security, usability and cost, and will be the focus of this
paper.

A prominent example of mobile 2FA are SMS-based TAN systems (known
as mTAN, smsTAN, mobileTAN and a like). Their goal is to mitigate account
abuse even if the banking login credentials have been compromised, e.g., by a
PC-based banking Trojan. Here, the service provider (i.e., the bank) generates
a Transaction Authentication Number (TAN), which is a transaction-dependent
OTP, and sends it over SMS to the customer’s phone. The user/customer needs
to confirm a banking transaction by entering this TAN into the other device
(typically a PC). Alternatively, visual TAN schemes encrypt and encode the
TAN into a 2D barcode (visual cryptogram) which is displayed on the customer’s
PC from where it is photographed and decrypted by the corresponding app on
the smartphone. SMS-based TAN schemes are widely deployed worldwide (USA,
UK, China, Europe)1. Further, some large European banks have already adapted
visual-based TANs systems recently [9,19,20].

Moreover, mobile 2FA is increasingly used by the global service providers such
as Google, Twitter and Facebook at user login to mitigate the massive abuse
of their services. Users need their login credentials and an OTP to complete
the login process. The OTPs are sent to the smartphone via SMS messages or
over the Internet connection. In addition, some providers offer apps that can
generate OTPs on client-side, a convenient setup without the need for out-of-
band communication.

Goal, Contributions and Outline. The main goal of our paper is to investi-
gate and evaluate the security of various mobile 2FA schemes that are currently
deployed in practice and are used by millions of customers/users.

1 Also by the world’s biggest banks such as Bank of America, Deutsche Bank,
Santander in UK, ING in the Netherlands, and ICBC in China.
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Single-infection attacks on mobile 2FA schemes. We investigate the deployed
mobile 2FA of Google, Twitter, Facebook and Dropbox service providers (Sect. 3).
We point out their conceptual and implementation-specific security weaknesses
and show how malware can bypass them, even when a single device, a PC, is
infected. For example, some providers allow the user to deactivate 2FA without
the need to verify this transaction with 2FA – an easy way for PC malware to cir-
cumvent the scheme. Other providers offer master passwords, which as we show,
can be stolen and then be used to authenticate without using an OTP. Moreover,
we found a weakness in the OTP generation scheme of Google which reduces the
entropy of generated OTPs. We further show how to exploit Google Authentica-
tor, a mobile 2FA login protection app used by dozens of service providers.

A more general 2FA attack based on dual infections: Then we turn our attention
to more sophisticated attacks of general nature, and show that even if one of
the devices (involved in a 2FA) is infected by malware, it can infect the other
device with a cross-platform infection in realistic adversary settings (Sect. 4).
We demonstrate the feasibility of such attacks by prototyping PC-to-mobile
and mobile-to-PC cross-platform attacks. Our concept significantly enhances
the well-known banking Trojans ZeuS/ZitMo [31] or SpyEye/SpitMo [6]. In con-
trast to these attacks that need to lure users by phishing, our technique does not
require any user interaction and is completely stealthy. Once both devices are
infected, the adversary can bypass various instantiations of mobile 2FA schemes,
which we show by prototyping attacks against SMS-based and visual transac-
tion authentication solutions of banks and login verification schemes of various
Internet providers.

2FA malware in the wild. Finally, to underline the importance to redesign mobile
2FA systems, we cluster and reverse engineer hundreds of real-world malicious
apps that target mobile 2FA schemes (Sect. 5). Our analysis confirms, for exam-
ple, that banking Trojans already deploy mobile counterparts which allow to
steal 2FA credentials like TANs.

2 Background

Mobile 2FA schemes can be classified according to (i) what is protected with the
second authentication token (the OTP), and (ii) how the OTP is generated.

What does 2FA protect? 2FA schemes are widely deployed in two major appli-
cation areas of online banking and login authentication. Online banking systems
use TANs (Transaction Authentication Numbers) as an OTP to authenticate
transactions submitted by the user to the bank. TANs are typically crypto-
graphically bound to the transaction data and are valid only for the given trans-
action. Recently, 2FA login schemes were also deployed by large Internet service
providers such as Google, Apple, Dropbox, Facebook, to name but a few. These
systems use OTPs during the user authentication process to mitigate attacks on
user passwords, such as phishing and keyloggers.
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Where are OTPs generated? OTP can be either generated locally on the client
side (e.g., on the mobile device of the user), or by the service provider on
server-side with an OTP transfer to the user via an out-of-band (OOB) channel.
Client-side OTP generation algorithms may, for example, rely on a shared secret
and time synchronization between the authentication server and the client, or
on a counter-based state that is shared between the client and the server. This
approach allows the OTP to be generated offline, as no communication with the
server is required.

In contrast, server-side generated OTPs use OOB channels to transmit an
OTP from the server to the client. The most popular direct OOB is SMS messag-
ing over cellular networks, which offers a high availability for users, as normally
any mobile phone is capable of receiving SMS messages. However, SMS-based
services incur additional costs, hence, many service providers propose alterna-
tive solutions which use the Internet for direct transmission of the OTP with
no additional costs. For example, a mobile app could receive an encrypted OTP
from the server over the Internet and then decrypt and display the OTP to the
user. As a downside, Internet-based OTP transfers require the customer’s phone
to be online during the authentication process.

An alternative to online apps is an indirect OOB channel between a mobile
app and a server via the user’s PC. This solution uses the PC’s Internet connec-
tion to deliver an encrypted OTP from the server to the PC, and a side-channel
to transfer the OTP from the PC to the mobile phone for further decryption. For
example, the server can generate and encrypt an OTP (or a nonce) and transfer
it to the PC in form of a visual cryptogram and display it on a web site2. To
get this value, a mobile device then scans and decrypts the cryptogram. As the
transferred value is encrypted on the server side and decrypted on the mobile
device, the PC cannot obtain it in plain text. This solution does not require the
mobile phone to be online. In practice, this technique is used by visual TAN
solutions which increasingly gain popularity in online banking [9,19,20].

3 Single-Infection Attacks on Mobile 2FA

In this section, we analyze the security of mobile 2FA systems in face of compro-
mised computers. We consider mobile 2FA schemes as secure if an adversary who
compromised only a user’s PC (but has no control over a mobile device) can-
not authenticate in the name of the user. Such an attacker model is reasonable,
as assuming a trustworthy PC would eliminate the need in utilizing a separate
device to handle the secondary authentication credential.

3.1 Low-Entropy OTPs

In the following, we analyze the strength of OTPs generated by the four service
providers under analysis. In general, low-entropy passwords are vulnerable to
2 Alternatively, the server can send a secret value to be used in OTP generation on

the client side rather than an OTP itself.
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Table 1. Collection of one-time-passwords

Service Number of Number of Collection Average

provider collected OTPs unique OTPs interval, min. OTP value

Dropbox 1564 1561 15 507809

Google 659 654 30 559851

Twitter 775 772 15 505883

brute-force attacks. We thus seek to understand if the generated OTPs fulfill
basic randomness criteria. For this, we implemented a process to automatically
collect OTPs from Twitter, Dropbox and Google. We had to exclude the Face-
book service from this particular test, as our test accounts were blocked after
collecting only a few OTPs – presumably to keep SMS-related costs manageable.

To automate the collection process of OTPs, we implemented host software
that initiates the login verification and submits the login credentials, while a
mobile counterpart monitors incoming SMS messages on the mobile device and
extracts OTPs into a database. The intercepted OTP is then used to complete
the authentication process at the PC. We repeat this procedure periodically.
We used a collection time interval of 15 min for Dropbox and Twitter, but had
to increase it to 30 min for Google to avoid our account from being blocked.
In total, we collected 1564 (Dropbox), 659 (Google) and 775 (Twitter) OTPs.
All investigated services create 6-digit OTPs represented in decimal format. We
provide the collection details in Table 1 and a graphical representation of the
collected OTPs in Appendix A.

While the OTPs generated by Dropbox and Twitter passed standard ran-
domness tests, we observed that Google OTPs never start with a ‘0’ digit. Leav-
ing out 1/10th of all possible OTP values reduces the entropy of the generated
passwords, as the number of possible passwords is reduced by 10 % from 106 to
106 − 105.

3.2 Lack of OTP Invalidation

We made another important observation concerning invalidation of OTPs. We
noticed that – if we do not complete the 2FA process – Google repeatedly created
the same OTP for consecutive authentication trials. Google only invalidates
OTPs (i) after an hour, or (ii) after a user successfully completed 2FA. We
tested that the OTPs repeat even if the IP address, browser and OS version of
the user who wants to log in changes. An attacker could exploit this weakness to
capture an OTP, while at the same time preventing the user from submitting
the OTP to the service provider. This way, the captured OTP remains valid.
The adversary can then re-use the OTP in a separate login session, as Google
will still expect the same OTP – even for a different session. Similar man-in-
the-browser attacks are also possible if OTPs are invalidated, but add a higher
practical burden to the attacker.
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3.3 2FA Deactivation

If 2FA is used for login verification, users can typically opt-in for the 2FA feature.
In the following, we investigate how users (or attackers) can opt-out from the 2FA
feature. Ideally, disabling 2FA would require further security checks. Otherwise
we risk that PC malware can hijack existing sessions in order to disable 2FA.

We therefore analyzed the deactivation process for the four service providers.
We created an account per provider, logged in to these accounts, enabled 2FA
and – to delete any session information – signed out and logged in again. We
observed that when logged in, users of Google and Facebook services can dis-
able 2FA without any additional authentication. Twitter and Dropbox addition-
ally require user name and password. None of the investigated service providers
requested an OTP to authorize this action. Our observations imply that the 2FA
schemes of the evaluated providers can be bypassed by PC malware without the
need to compromise the mobile device. PC malware can wait until a user logs
in, then hijack the session and disable 2FA in the user’s account settings. If
additional login credentials are required to confirm this operation (as required
by Twitter and Dropbox), the PC malware can re-use credentials that can be
stolen, e.g., by key logging or by a man-in-the-browser attack.

3.4 2FA Recovery Mechanisms

While 2FA schemes promise improved security, they require users to have their
mobile devices with them to authenticate. This issue may affect usability, as
users may lose control over their accounts if control over their mobile device is
lost (e.g., if the device is lost, stolen or temporarily unavailable due to discharged
battery). To address this issue, service providers enable a recovery mechanism
which allows users to retain control over their account in absence of their mobile
device. On the downside, attackers may misuse the recovery mechanism and be
also able to gain control over user’s account without compromising user’s mobile
device.

Among the evaluated providers, Twitter does not provide any recovery mech-
anism. Dropbox uses a so-called recovery password, a 16-symbols-wide random
string in a human-readable format, which appears in the account settings and is
created when the user enables 2FA. Facebook and Google use another recovery
mechanism. They offer the user an option to generate a list of ten recovery OTPs,
which can be used when she has no access to her mobile device. The list is stored
in the account settings, similar to the recovery passwords of Dropbox. Dropbox
and Google do not require any additional authentication before allowing access
to this information, while Facebook additionally asks for the login credentials.

As the account settings are available to users after they logged in, these
recovery credentials (OTPs and passwords) can be accessed by malware that
hijacks user sessions. For example, a PC-residing malware can access this data by
waiting until the user signs in to her account. Hijacking the session, the malware
can then obtain the recovery passwords from the web page in the account settings
– bypassing the additional check for login credentials (as in the case of Facebook).
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3.5 OTP Generator Initialization Weaknesses

Schemes with client-side generated 2FA OTPs, such as Google Authenticator
(GA), rely on pre-shared secrets. The distribution process of pre-shared secrets
is a valuable attack vector. We analyzed the initialization process of the GA
app, which is used by dozens of services including Google Mail, Facebook or
Outlook.com.

The GA initialization begins when the user enables GA-based authentication
in her account settings. The service provider generates a QR code which is dis-
played to the user (on the PC) and should be scanned by the user’s smartphone.
The QR code contains all information necessary to initialize GA with user-
specific account details and pre-shared secrets. We analyzed the QR code sent
by Facebook and Google during initialization process and identified the struc-
ture of the QR code. It includes details as the type of the scheme (counter-based
vs. time-based), service and account identifier, a counter (only for counter-based
mode), the length of the generated OTP and the shared secret. Further, all this
data is presented in clear text. To check if any alternative initialization scheme
is supported by GA, we reverse engineered the app with the JEB Decompiler
and analyzed the app internals. We didn’t identify any alternative initializa-
tion routines, which indicates that all 32 service providers using GA use this
initialization procedure.

Unfortunately, a PC-residing malware can intercept the initialization message
(clear text encoded as an QR code). The attacker can then initialize her own
version of the GA and can generate valid OTPs for the target account.

4 Dual-Infection Attacks on Mobile 2FA

In this section we use cross-platform infection attacks in the context of mobile
2FA schemes. We show that given one compromised device, either PC or a mobile
phone, an attacker is able to compromise another one by launching a cross-
platform infection attack. Our proof-of-concept prototypes (Sect. 4.1) show that
such attacks are feasible and, hence, it is not reasonable to exclude them from
the adversary model of mobile 2FA schemes. When both 2FA devices are com-
promised, the attacker can steal both authentication tokens and impersonate the
legitimate user, with no matter what particular instantiation of mobile 2FA is
used. To support our statement, we implement attacks against different instan-
tiations of mobile 2FA schemes deployed by banks and popular Internet service
providers (Sect. 4.2).

4.1 Cross-Platform Infection Attacks

In the following we demonstrate the feasibility of cross-platform attacks by devel-
oping two prototypes: PC-to-mobile cross-platform attack in LAN/WLAN net-
works and mobile-to-PC attack during tethering. We first specify assumptions
and then describe corresponding attack scenarios. Our attack implementations
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target Android 2.2.1 for the mobile device and Windows 7 for the PC. A detailed
description of the attack implementation is available in the extended version of
this paper [21].

Assumptions. We assume that one of the 2FA devices, either PC or a mobile
phone, is compromised. This assumption is reasonable given high rate of infected
PCs and recent increase in infection rate for mobile devices [38]. Further, it is
a state-of-the art assumption for mobile 2FA schemes. We further assume that
the second device, either mobile device or PC, suffers from a vulnerability which
allows the attacker to gain control over the code execution. The probability for
such vulnerabilities is quite high for both, mobile and desktop operating systems.
As a reference, the National Vulnerability Database [2] lists more than 55,000
discovered information security vulnerabilities and exposures for mainstream
platforms. Despite decades of history, these vulnerabilities are a prevalent attack
vector and pose a significant threat to modern systems [39].

PC-to-Mobile Infection in LAN/WLAN Networks. LAN/WLAN net-
works are often used at home, at work or in public places, such as hotels, cafés
or airports. Users often connect both, their PCs and mobile devices to the same
network (e.g., in home networks). To perform cross-platform infection in the
LAN/WLAN network, the malicious device (either the PC or the mobile device,
depending on which device was primarily infected) becomes a man-in-the-middle
(MITM) between the target device and the Internet gateway in order to infect
the target via malicious payloads. To become a MITM, techniques such as ARP
cache poisoning [5] or a rogue DHCP server [25] can be used. Next, the MITM
supplies an exploit to the victim which results in code injection and remote code
execution. For our implementation, we used a rogue DHCP server attack to
become a MITM. The PC advertises itself as a network gateway and becomes a
MITM when its malicious DHCP configuration is accepted by the mobile device.

As the MITM, the PC can manipulate Internet traffic supplied to the mobile
device. When the user opens the browser in his mobile device and navigates to
any web page, the request is forwarded to the PC due to the network configu-
ration of the mobile device specifying the PC as a gateway. The malicious PC
does not provide the requested page, but supplies a malicious page containing
an exploit triggering a vulnerability in the web-browser. In our prototype we
used a use-after-free vulnerability CVE-2010-1759 in WebKit, the web engine
of the Android browser. Further, we perform a privilege escalation to root by
triggering the vulnerability CVE-2011-1823 in the privileged Android’s volume
manager daemon process.

Mobile-to-PC Infection During Tethering Sessions. Tethering allows
sharing the Internet connection of the mobile device with other devices such
as laptops. During tethering sessions the mobile device is mediating the Internet
traffic of the PC, hence it is already a MITM and can reply any HTTP request
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originating from the PC with a malicious web page containing an exploit. In our
implementation, we exploited the vulnerability CVE-2012-4681 in JRE that was
introduced in Java 7 which allowed us to disable the security manager of Java
and achieve execution of arbitrary Java code. Further, to gain privileges sufficient
for intercepting login credentials, we additionally exploited a flaw (CVE-2010-
3338) in the Windows Task Scheduler that allowed us to elevate privileges to
administrative rights.

4.2 Bypassing Different Instantiations of Mobile 2FA Schemes

In the following, we present instantiations of dual-infection attacks against wide
range of mobile 2FA schemes. Particularly, we prototyped attacks against SMS-
based TAN schemes of several banks, bypassed 2FA login verification systems
of popular Internet service providers, defeated the visual TAN authentication
scheme of Cronto and circumvented Google Authenticator. Overall, our proto-
types demonstrate successful attacks against mobile 2FA solutions of different
classes (cf. Sect. 2).

Schemes with Server-Side Generated OTPs and Direct OOB. A direct
OOB channel between the remote server and the mobile device can be realized
either based on HTTPS, or via SMS messages. SMS-based channel is predominat-
ing and is widely used for TAN schemes in online banking (e.g., it is deployed by
banks in Germany, Spain, Switzerland, Austria, Poland, Holland, Hungary, USA
and China). Further, SMS-based OTP-based login verification systems became
recently popular and got deployed by a variety of online service providers such
as Dropbox, Facebook, Microsoft, Google and Apple.

To bypass these schemes, our malware steals login credentials (i.e., PIN or
password) from the computer before they are transferred to the web server of
the bank or the service provider. The malware then also obtains the secondary
credential, an OTP or TAN, by intercepting SMS messages on the mobile device.

In our attack implementation, we leverage a man-in-the-browser attack to
steal the login credential from the PC. Particularly, we use DLL injection3

to inject a library into the address space of the browser and hook functions
to redirect legitimate function calls to the malicious function residing within the
injected DLL. In this way, we can intercept function calls containing the user cre-
dentials as plaintext parameters, i.e., before they are sent via encrypted HTTPS
communication.

In order to intercept SMS messages, our mobile malware acts as a MITM
between the GSM modem and the telephony stack of Android and intercepts all
SMS messages of interest (so that the user does not receive them), while it for-
wards all other SMS messages for “normal” use. Furthermore, we implement an
SMS-based command & control protocol between the adversary and the mobile
device. The protocol can be used to (de)activate interception of OTPs or TANs
or to specify the destination of their forwarding.
3 http://securityxploded.com/dll-injection-and-hooking.php

http://securityxploded.com/dll-injection-and-hooking.php
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We successfully evaluated our prototype on online banking deployments of
four large international banks that use the SMS-based TAN schemes4. We also
implemented and successfully tested the attack against the 2FA login verification
systems of Dropbox, Facebook, Google and Twitter. Adding further services is
little effort for an attacker, showing the conceptual weakness of current server-
side generated OTPs.

Schemes with Server-Side Generated OTPs and Indirect OOB. A
prominent example of the scheme with indirect OOB channel are visual TAN
solutions, which have been adapted by some large European banks recently [9,
20]. To bypass the scheme, the malware should leak a login credential from the
PC. Further, it could either monitor the mobile device for the received cryp-
togram and steal OTP as soon as it is generated by the app, or steal keys stored
within the app. We opted for the latter option, as it does not require the mobile
malware to be persistent once the key material is stolen.

We successfully crafted such an attack against the demo version5 of Cronto
visual transaction signing solution – the CrontoSign app (v. 5.0.3). The app
stores its keys in a file in the application directory, which can be accessed by
our privileged malware. We used the stolen file to replace analogous file on
another (assumed to be adversarial) phone with CrontoSign demo app installed.
We then used the man-in-the-browser attack (as described above) to steal login
credentials from the PC and initiated our own login session. We started the
transaction, received the cryptogram via the HTTPS connection and scanned
it with our adversarial phone. The app produced correct OTP, which was used
then to successfully complete authentication.

Schemes with Client-Side Generated OTPs. Schemes with client-side gen-
erated OTPs do not require an OOB channel to transfer the OTP from the server
to the client. Instead, an OTP generator produces the same OTP on both the
client and the server side.

The generation algorithm is seeded with a secret that is shared between the
server and the mobile client. Typically, the shared secret is exchanged via postal
mail or is transferred over HTTPS to the user’s PC (as used by the GA app;
cf. Sect. 3.5). The generation algorithm further requires a pseudo-random input
like a nonce to randomize the output value of each run. The OTP generation
algorithms use different nonce values: Some rely on time synchronization between
the server and the client and use the time epoch, others use a counter with a
shared state, while a third variant utilizes the previously generated OTP as a
nonce.

We select Google Authenticator (GA) as our attack target due to its wide
deployment. As of Oct 2013, it is used by 32 service providers, among them
4 We keep the names of these banks confidential due to responsible disclosure.
5 We stress that we used a publicly available demo version of CrontoSign for our

analysis, while commercial versions were not subject of our investigation.
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Google, Microsoft, Facebook, Amazon and Dropbox. The GA app supports
counter-based and time-based credential generation algorithms. In either case,
it stores all the security-sensitive parameters (such as the seed and a nonce) for
the OTP generation in an application-specific database.

To bypass the scheme, our PC-based malware steals login authentication cre-
dentials. Our mobile malware also steals the database file stored in the applica-
tion directory. We copied the database on another mobile device with an installed
GA app and were able to generate the same OTPs as the victim.

5 Real-World 2FA Attacks

Until now, we have drafted attacks that enable attackers to circumvent mobile
2FA systems completely automated. In this section, we analyze real-world mal-
ware in order to shed light onto how attackers already bypass 2FA schemes in
the wild.

5.1 Dataset

Our real-world malware analysis is based on a diverse set of Android mal-
ware samples obtained from different sources. We analyze malware from the
Malgenome [41] and Contagiodump6 projects. In addition, we obtain a random
set of malicious Android files from VirusTotal. Note that we aim to analyze
malware that attacks 2FA schemes. We thus filter on malware that steals SMS
messages, i.e., malware that has the permission to read incoming SMS messages.
In addition, we only analyze apps which were labeled as malicious by at least
five anti-virus vendors. Our resulting dataset consists of 207 unique malware
samples.

5.2 Malware Analysis Process

We use a multi-step analysis of Android malware samples. First, we dynamically
analyze the malware in an emulated Android environment. Dynamic analysis
helps us to focus on the malware’s behavior when an SMS message is received.
Second, to speed up manual static analysis, we cluster the analysis reports to
group similar instances. Third, we manually reverse engineer malware samples
from each cluster to identify malicious behavior.

Dynamic Malware Analysis. We dynamically analyze the malware samples
by running each APK file in an emulated Android environment. In particular, we
modified the Dalvik Virtual Machine of an Android 2.3.4 system to log method
calls (including parameters and return values) within an executed process. We
aim to observe malicious behavior when SMS messages are received, i.e., we are
not interested in the overall behavior of an app. We therefore trigger this behavior
6 see http://contagiominidump.blogspot.de/.

http://contagiominidump.blogspot.de/
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by simulating incoming SMS messages while the malware is executed. To filter
on the relevant behavior, the analysis reports contain only the method calls that
followed the SMS injection. This way, we highlight code that is responsible for
sniffing and stealing SMS messages, while we ignore irrelevant code parts (such
as 3rd-party libraries). Also in the case the malware bundles benign code (e.g.,
a repacked benign app), our analysis report does not contain potentially benign
code parts. We stop the dynamic analysis 60 seconds after we injected the SMS
message.

The analysis reports consist of tuples with the format:

rline = < cls,method, (p1, ..., px), rval >, whereas cls represents the class
name, method is the method name, rval is the return type/value tuple, and pi
is a list of parameter type/value tuples. rline is one line in the report.

Report Clustering. We then use hierarchical clustering to group similar reports
in order to speed up the manual reverse engineering process. Intuitively, we want
to group samples into a cluster if they have a similar behavior when intercepting
an SMS message. We define the similarity between to samples as the normalized
Jaccard Similarity between two reports A and B, i.e., sim(A,B) = |A∩B|

|A∪B| , whereas
the reportsA andB are interpreted as sets of (unordered) report lines. Two report
lines are considered equal if the class name, method name, number and type of
parameters and return types are equal. We calculate the distances between all
malware samples and group them to one cluster if the distance d = 1−sim(A,B)
is lower than a cut-off-threshold of 40 %. In other words, two samples are cluster
together if they share at least 40 % of the method calls when receiving an SMS
message.

Classification. Given the lack of ground truth for malware labels, we chose to
manually assign labels to the resulting clusters. We use off-the-shelf Java byte-
code decompilers such as JD-GUI or Androguard to manually reverse engineer
each three samples of the 10 largest clusters to classify the malware into families.

5.3 Analysis Results

Clustering of the 207 samples finished in 3 seconds and revealed 21 malware clus-
ters and 45 singletons. We will describe the most prominent malware clusters in
the following. Table 2 (see appendix) details the full clustering and classification
results.

AndroRAT, a (former open-source) Remote Administration Tool for Android
devices, forms the largest cluster in our analysis with 16 unique malware sam-
ples. Attackers use the flexibility of AndroRAT to create custom SMS-stealing
apps, for example, in order to adapt the C&C network protocol or data leakage
channels. Next to AndroRAT, also the app counterparts of the banking Tro-
jans (ZitMo for ZeuS, SpitMo for SpyEye, CitMo for Citadel) are present in
our dataset. Except SpitMo.A, these samples leak the contents of SMS messages
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via HTTP to the botmaster of the banking Trojans. Two SpitMo variants have
a C&C channel that allowed to configure the C&C server address or dropzone
phone number, respectively.

We further identified four malicious families that forward SMS messages to a
hard-coded phone number. We labeled a cluster RusSteal, as the malware samples
specifically intercept TAN messages with Russian contents. Except RusSteal,
none of the families includes code that is related to specific banking Trojans.
Instead, the apps blindly steal all SMS messages, usually without further filter-
ing, and hide the messages from the smartphone user. The apps could thus be
coupled interchangeably to any PC-based banking Trojan.

Our analysis shows that malware has already started to target mobile 2FA,
especially in the case of SMS-based TAN schemes for banks. We highlight that
we face a global problem, and next to the Russian-specific Trojans that we found,
incidents in many other countries worldwide have been reported [16,17,26]. The
emergence of toolkits such as AndroRAT will ease the development of malware
targeting specific 2FA schemes. Until now, these families largely rely on manual
user installation, but as we have shown, automated cross-platform infections
are possible. This motivates further research to foster more secure mobile 2FA
schemes.

6 Countermeasures and Trade-Offs

This section describes countermeasures against the aforementioned attacks.

Dedicated Hardware Tokens. Our attacks affect mobile 2FA schemes, while
2FA schemes that rely on dedicated hardware tokens remain intact. Dedicated
tokens have a lower complexity than mobile phones and thus provide a smaller
attack surface for software-based attacks – although they may still be vulnerable
to attacks such as brute-force against the seed value [10] or information leaks
from security servers [7]. In addition, hardware tokens have higher deployment
costs and scalability issues, especially if users have accounts at several banks
they would need multiple tokens.

Secure Out-of-Band Channel. An alternative to dedicated hardware tokens
is a system utilizing a more secure OOB channel. For example, service providers
could use fixed telephony networks as OOB channel for communicating OTPs to
customers. Phone devices used in fixed networks do not typically run third party
(untrusted) code and do not have feature-rich communication interfaces, hence
they are unlikely to be compromised. However, such a solution would limit the
mobility of users, and further, devices used in fixed phone networks may undergo
technological changes that decrease their security.

Leveraging Secure Hardware on Mobile Platforms. A more flexible alter-
native to dedicated hardware tokens is utilizing general-purpose secure hardware
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available on mobile devices for OTP protection. For instance, ARM processors
feature the ARM TrustZone technology [13] and Texas Instruments processors
have the M-Shield security extensions [14]. Furthermore, SIM cards or mobile
platforms may include embedded Secure Elements (SE) (e.g., available on NFC-
enabled devices) or support removable SEs (e.g., secure memory cards [24]
attached via a microSD slot). Such secure hardware can establish a trusted execu-
tion environment (TEE) on the device to run security-sensitive code (such as user
authentication) in isolation from the rest of the system, such as early approaches
in Google Wallet [1] and PayPass [8]. However, most available TEEs are not open
to third-party developers. For instance, SEs available on SIM cards are con-
trolled by network operators and processor-based TEEs such as TrustZone and
M-Shield are controlled by phone manufacturers. In addition, solutions utilizing
SIM-based SEs would be limited to customers of a particular network operator,
while secure memory cards can be used only with devices featuring a microSD
slot.

Communication Integrity. Cross-platform infection attacks as discussed in
Sect. 4.1 can be defeated by deploying standard countermeasures against MITM
attacks. For example, one could enforce HTTPS or tunnel HTTP over a remote
trusted VPN. However, the former solution would require changes on all Internet
servers currently providing HTTP connections (which is infeasible), while the
latter solution adds a significant overhead. Moreover, it is not clear which party
is trustworthy to host such a proxy. An orthogonal approach is to have logically
disjoint networks (e.g., via VLANs) for mobile devices and stationary computers,
so that the mobile devices cannot communicate with the user PCs and vice versa
and some infection scenarios (such as our DHCP-based attack) fail accordingly.

Detection of Suspicious Mobile Apps. SMS-stealing apps exhibit suspicious
characteristics or behavior that can be detected by defenders. For example, with
static analysis it may be possible to classify suspicious sets of permissions or
to identify receivers for events of incoming SMS messages [42], but only if the
malicious code is not dynamically loaded. Similarly, taint tracking may help
to detect information leakage [22], but adds a significant overhead and can be
evaded with implicit data flows [27]. Using behavioral analysis, one could detect
SMS receivers that consume or forward TAN-related SMS. More strictly, one
could even disable the feature of consuming SMS messages in the mobile OS
so that an attacker cannot hide the SMS messages that he triggered. However,
all these security measures need to consider that the attacks we described are
not limited to run in user space. For example, we have shown that we can steal
OTPs before any app running in user space is noticed about events such as
an incoming SMS message. Consequently, the aforementioned solutions can in
principle be evaded by attackers, similarly to the arms-race as in PC-based anti-
virus systems.
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7 Related Work

In this section we survey previous research on mobile 2FA schemes, on attacks
against SMS-based TAN systems and on cross-platform infections.

Mobile 2FA Schemes. Balfanz et al. [15] aim to prevent misuse of the smart-
card plugged into the computer by malware without user knowledge. They pro-
pose replacing the smartcard with a trusted handheld device which asks the
user for permission before performing sensitive operations. Aloul et al. [11,12]
utilize a trusted mobile device as an OTP generator or as a means to estab-
lish OOB communication channel to the bank (via SMS). Mannan et al. [28]
propose an authentication scheme that is tolerant against session hijacking, key-
logging and phishing. Their scheme relies on a trusted mobile device to perform
security-sensitive computations. Starnberger et al. [36] propose an authentication
technique called QR-TAN which belongs to the class of visual TAN solutions.
It requires the user to confirm transactions with the trusted mobile using visual
QR barcodes. Clarke et al. [18] propose to use a trusted mobile device with a
camera and OCR as a communication channel to the mobile. The Phoolproof
phishing prevention solution [32] utilizes a trusted user cellphone in order to
generate an additional token for online banking authentication.

All these solutions assume that the user’s personal mobile device is trust-
worthy. However, as we showed in this paper, an attacker controlling the user’s
PC can also infiltrate her mobile device by mounting a cross-platform infec-
tion attack, which undermines the assumption on trustworthiness of the mobile
phone.

Attacks on SMS-based TAN Authentication. Mulliner et al. [29] analyze
attacks on OTPs sent via SMS and describe how smartphone Trojans can inter-
cept SMS-based TANs. They also describe countermeasures against their attack,
such a dedicated OTP channels which cannot be easily intercepted by normal
apps. Their attack and countermeasure rely on the assumption that an attacker
has no root privileges, which we argue is not sufficiently secure in the adversary
setting nowadays. Schartner et al. [34] present an attack against SMS-based TAN
solutions for the case when a single device, the user’s mobile phone, is used for
online banking. The presented attack scenario is relatively straightforward as the
assumption of using a single device eliminates challenges such as cross-platform
infection or a mapping of devices to a single user. Many banks already acknowl-
edge this vulnerability and disable TAN-based authentication for customers who
use banking apps.

Cross-Platform Infection. The first malware spreading from smartphone to
PC was discovered in 2005 and targeted Symbian OS [3]. Infection occurred
as soon as the phone’s memory card was plugged into the computer. Another
example of cross-platform infection from PC to the mobile phone is a proof-
of-concept malware which had been anonymously sent to the Mobile Antivirus
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Research Association in 2006 [23,33]. The virus affected the Windows desk-
top and Windows Mobile operating systems and spread as soon as it detected
a connection using Microsoft’s ActiveSync synchronization software. Another
well-known cross-platform infection attack is a sophisticated worm Stuxnet [30]
which spreads via USB keys and targets industrial software and equipment. Fur-
ther, Wang et al. [40] investigated phone-to-computer and computer-to-phone
attacks over USB targeting Android. They report that a sophisticated adversary
is able to exploit the unprotected physical USB connection between devices in
both directions. However, their attack relies on additional assumptions, such as
modifications in the kernel to enable non-default USB drivers on the device, and
non-default options to be set by the user.

Up to now, most cross-system attacks were observed in public networks,
such as malicious WiFi access points [5] or ad-hoc peers advertising free public
WiFi [4]. When a victim connects to such a network, it gets infected and may
start advertising itself as a free public WiFi to spread. In contrast to our scenario,
this attack mostly affects WiFi networks in public areas and targets devices of
other users rather than a second device of the same user. Moreover, it requires
user interaction to join the discovered WiFi network. Finally, the infection does
not spread across platforms (i.e., from PC to mobile or vice versa), but rather
affects similar systems.

8 Conclusion

In this paper, we studied the security of mobile two-factor authentication (2FA)
schemes that have received much attention recently and are deployed in security
sensitive applications such as online banking and login verification. We identified
various ways to evade 2FA schemes without obtaining access to the secondary
authentication token (such as one-time passwords) handled on the mobile device.
The providers can fix these weaknesses by redesigning the 2FA integration into
their services. However, we go beyond that and show a more generic and funda-
mental attack against mobile 2FA schemes by using cross-platform infection for
subverting control over both end points involved in the authentication protocol
(such as PC and a mobile device). We demonstrate practical attacks on SMS-
based TAN schemes of four banks, the visual TAN scheme, SMS-based login
verification schemes of Google, Dropbox, Twitter and Facebook, and the 2FA
scheme based on the popular Google Authenticator app – showing the generality
of the problem.

Our results show that current mobile 2FA have conceptual weaknesses, as
adversaries can intercept the OTP transmission or steal private key material
for OTP generation. We thus see a need for further research on more secure
mobile 2FA schemes that can withstand today’s sophisticated adversary models
in practice.
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A Graphical Representation of OTPs

We plot a 6-digit OTP by plotting its two halves on the x- and y-axis (1000 dots
wide). For example, the OTP “012763” is plotted at x=12 and y=763. Symbols
‘+’ and ‘x’ represent one and two occurrences of the same OTP, respectively.
Empty space at the left side of Fig. 1 means that Google OTPs never start with
a ‘0’ digit.

(a) Dropbox (b) Google (c) Twitter

Fig. 1. Collected OTPs from three service providers

B Mobile Malware Clustering Results

Table 2. Real-world malware families targeting 2FA by stealing SMS messages

Family C&C Leaked TAN via # Samples

AndroRAT TCP TCP 16

ZitMo.A n/a HTTP (GET) 13

SpitMo.A SMS SMS 13

Obfake.A n/a SMS 12

SpitMo.C HTTP HTTP (GET) 6

RusSteal n/a SMS 6

Koomer n/a SMS 5

Obfake.B n/a SMS 4

SpitMo.B n/a HTTP (POST) 3

CitMo.A n/a HTTP (GET) 3
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Abstract. Microblogging services have become popular, especially since
smartphones made them easily accessible for common users. However,
current services like Twitter rely on a centralized infrastructure, which
has serious drawbacks from privacy and reliability perspectives. In this
paper, we present a decentralized privacy-preserving microblogging
infrastructure based on a distributed peer-to-peer network of mobile
users. It is resistant to censorship and provides high availability. Our
solution allows secure distribution of encrypted messages over local radio
links to physically close peers. When redistributing messages, each peer
re-randomizes encryptions to achieve unlinkability. Moreover, we show
the feasibility of our solution using different synchronization strategies.

Keywords: Microblogging·Privacy·Anonymity·Censorship-resistance·
Mobility · Peer-to-peer · Delay-tolerant networking

1 Introduction

Exchanging small text messages in a publish-subscribe manner from one pub-
lisher to many subscribers — also known as microblogging — has become a
popular form of Online Social Networking (OSN) activity. Microblogging services
allow users to send out clear, succinct and informative messages. The commu-
nication is in plaintext, and all widely adopted services (such as Twitter) follow
the client-server model. Unfortunately, these design decisions imply numerous
privacy and security problems, particularly in oppressive political environments.

Current microblogging services are prone to censorship. Due to the central-
ized nature of the services and the messages in plain text, acts of censorship
can easily be performed either by the service providers themselves or external
parties. Furthermore, once a central server becomes unavailable, e.g., due to
regional Internet shut-downs, messages can no longer be sent or received, which
again provides censorship potential. Moreover, all user interactions are known to
the provider, among them all messages sent, all existing subscriptions, the entire
query-patterns of users, etc. Complete data retention facilitates traffic analysis
as well as data mining on the unencrypted messages.
c© International Financial Cryptography Association 2014
N. Christin and R. Safavi-Naini (Eds.): FC 2014, LNCS 8437, pp. 384–396, 2014.
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These problems create a demand for privacy-friendly microblogging services.
In this paper, we propose a private mobile microblogging architecture that
respects the users’ privacy and is resilient to censorship. We rely on the fact
that smartphones are becoming ubiquitous communication devices, which are
equipped with local communication facilities (such as NFC links and ad-hoc
Wifi networks), while having Internet connectivity. Instead of relying on a cen-
tralized infrastructure to exchange messages, our solution is based on a peer-
to-peer architecture, involving mobile peers who exchange messages with each
other using local radio links and a best-effort message synchronization strategy.

Our architecture allows peers to microblog short messages privately using
their smartphones while on-the-go. Messages are transmitted to a group in
encrypted form, so that only peers who are authorized group members can access
them; messages that cannot be read by a peer will nevertheless be forwarded to
guarantee message spread. Multiple replications of messages stored at peers due
to the decentralized message dissemination over point-to-point links increase
censorship-resistance. The use of re-randomizable encryption provides message
unlinkability as well as sender anonymity, because messages get re-randomized
each time before being forwarded.

In the present paper we first introduce our new microblogging architecture,
which uses universal re-encryption to facilitate the unlinkability of exchanged
messages. Subsequently, we argue through simulations that microblog messages
are sufficiently spread within the network of peers and that our architecture
achieves the desired security and privacy goals.

The rest of this paper is structured as follows: In Sect. 2 we describe the pro-
posed architecture with its functionality, state its privacy and security goals and
outline the adversary’s capabilities. In Sect. 3 we discuss our simulation results.
Section 4 elaborates on the fulfillment of privacy, anonymity and censorship-
resistance. Section 5 deals with related work and Sect. 6 concludes.

2 Mobile Private Microblogging

Our proposed microblogging solution Mobile Peer to Mobile Peer (MoP-2-MoP)
builds upon mobile peers that interact with their smartphones using point-to-
point communication links once they are physically close (technically they form
an unstructured peer-to-peer overlay network). We first give an overview of the
architecture, then state the privacy goals along with the adversary model, fol-
lowed by descriptions of the functional components.

2.1 Infrastructure Overview

In our scenario, we consider mobile peers that form a dynamically changing peer-
to-peer network, where the movement patterns correspond to the natural move-
ments of the smartphone owners. All peers maintain a local buffer of encrypted
messages. Whenever two peers are physically close to each other they exchange
messages based on a fixed strategy (described in Sect. 2.6). By this local mes-
sage exchange, the system aims at propagating new messages through the entire
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network. We refer to this process as peer synchronization. In case network seg-
mentation occurs, peers can — as a backup solution — also download messages
from servers using a wide-area communication network (called server synchro-
nization); note that there can be multiple servers, as they only serve as additional
channel to transfer messages.

In order to guarantee confidentiality and unlinkability of messages, they are
encrypted using a variant of the ElGamal encryption scheme that offers the
possibility of re-randomizing ciphertexts without knowledge of the public key
[9]. The sender of a message can designate the message to a certain group by
encrypting it with an appropriate group key; the exchange of group keys is based
on social trust and outlined in Sect. 2.5. Whenever a peer receives messages, it
checks whether he can decrypt them using any available group keys. By default
messages get re-randomized before being sent to other peers during peer syn-
chronizations.

Figure 1 shows a schematic overview of the architecture. Peers are depicted
by a smartphone-like shape, where uindex represent different peers. The dotted
ellipses named Crowd A and Crowd B represent clusters of peers which are
physically close to each other so that peer message synchronization is possible.
Consider the following example: User ui acts as originator of a message; as soon
as ui and uj are close, they initiate a synchronization of their message buffers;
this results in the new messages being spread. This way, the message finally
reaches all other physically close peers in Crowd A (i.e., ul and uk) through peer
synchronizations, depicted as dashed lines. The original encrypted message gets
re-randomized at each hop so that a global adversary cannot link exchanged
messages. A physically distant Crowd B can get the messages via two different
mechanisms. Firstly, peer uk can physically move close to a peer in Crowd B
and initiate a peer synchronization there. Secondly, one member of Crowd A (ul)
can upload his local messages to a server, which offers the possibility of a server
synchronization with any member um of Crowd B. In summary, we assume peer-
based intra-crowd message dispersal, where encrypted messages are spread in
an opportunistic manner using peer synchronization, supplemented by optional
inter-crowd dissemination using server synchronization.

Crowd A

Internet

movement

Crowd B

Node

ui

uj
uk

ul

un

uk
uo

um

Fig. 1. Schematic overview of the MoP-2-MoP architecture.
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2.2 Privacy Goals and Adversary Model

This section details the goals of the architecture and states the adversary model
assumed. The privacy and security goals of the microblogging architecture are:

Anonymity. Sender anonymity is required. An attacker should have no infor-
mation on the originator of a message. Unlinkability of encrypted messages
and opportunistic synchronization achieve this goal.

Privacy. Group memberships of a peer and all messages should be kept confi-
dential. This amounts to some form of receiver anonymity.

Censorship-resistance. No central entity should have the power to censor
messages based on their content, and the message propagation should not
be fully subverted by technical means.

In a basic adversary model we distinguish between wide-area network (WAN)
communication for the server synchronizations, and local point-to-point commu-
nication deployed in the peer-to-peer (P2P) network. We assume that the adver-
sary is not able to break cryptographic primitives. The considered capabilities
in our adversary model are:

– All WANs are under full passive control of the respective operators. The adver-
sary can monitor and log all such communication channels used.

– Shut-downs of WAN infrastructures (“kill-switches”) occur.
– Limited local jamming, monitoring or logging of P2P links is possible.
– P2P peers are not compromised.

In an extended adversary model we assume the existence of a limited number of
malicious peers that control their own communication link and have access to
all local keys. For example, such devices could be compromised by malware.

2.3 Universal Re-encryptable ElGamal

Peers who are not members of a group should not be able to decrypt messages
sent in that group; furthermore, a peer should not be able to learn anything from
messages he cannot decrypt, in particular the used public key. Nevertheless, re-
randomizations of all encrypted messages are needed to achieve unlinkability.
In order to achieve all these requirements, we use a variant of the ElGamal
encryption scheme introduced in [9], which is summarized below.

In a cyclic, multiplicative group of prime order p with neutral element 1,
the ciphertext of a message m encrypted under an ElGamal public key pk =
(g, h) is composed of two parts: (i) an ordinary ElGamal encryption of m and
(ii) a random encryption of the neutral element 1. More precisely, two integers
r1, r2 ∈ Zp are chosen uniformly at random and the ciphertext is computed
as c = (c1, c2, c3, c4) := (gr1 , hr1 · m, gr2 , hr2). The first component (c1, c2) is a
textbook ElGamal encryption of m, while (c3, c4) is a random encryption of the
neutral element 1. To compute a re-randomized ciphertext c′ one chooses two
new random integers t1, t2 ∈ Zp and computes c′ = (c′

1, c
′
2, c

′
3, c

′
4) := (c1 · ct13 , c2 ·
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ct14 , ct23 , ct24 ). Due to the homomorphic properties of ElGamal the tuple (c′
1, c

′
2) is

again an ElGamal encryption of m and (c′
3, c

′
4) is another encryption of 1 (both

under the same pk). Thus, re-randomization is possible using the two ciphertext
tuples, while no knowledge of pk is required. During decryption one can test
whether the ciphertext c′ was encrypted under a certain key pk by decrypting
the tuple (c′

3, c
′
4) and checking if the decrypted value equals one.

2.4 Message Format and Storage

The message format follows the hash-and-encrypt concept to achieve integrity.
A Message Authentication Code (HMAC) is used to achieve authenticity within
the set of group members. A message m consists of a timestamp t concatenated
with the message text msg and their HMAC, i.e., m = t || msg || HMAC(t || msg).

Subsequently, the message is cut into blocks so that each one fits in the
message space of the cipher introduced in Sect. 2.3; all blocks are then encrypted
independently. (Note that due to the required properties of ElGamal, any kind
of hybrid encryption is not possible here; due to the randomized chiphertext
ECB mode is sufficient.)

Each peer maintains a message buffer filled with incoming messages. Upon
receipt of any new message, the peer checks whether it belongs to a group the
peer is a member of. This is done by brute-forcing: the peer tries to decrypt
the message with all private group keys it possesses; if decryption works, the
message belongs to a group the peer is a member of. This brute-force decryption
step is necessary because we refrain from tagging messages with any sort of group
identifier, which would open the possibility of message linking attacks.

2.5 Group and Key Management

We assume that the global system parameters of the encryption scheme are
already present in the implementation of any client. Whenever a new message
group is formed, the responsible peer creates an asymmetric ElGamal key pair,
which identifies the new group. All members of a group are given both the public
key and the secret key of the ElGamal key plus a group-specific secret required
to compute the HMAC for their group messages.

We propose a key propagation mechanism that is based on social trust that
uses existing real world trust relationships between people. Whenever two nodes
are close to each other, one node can “introduce” the other one to a group by
initiating the exchange of the group ElGamal key pair. This key can be sent from
one device to another one using NFC transmission or an optical channel (such as
a barcode that is scanned by the other device). Key revocation is done by forming
new group keys and discarding the old ones. Nevertheless, key management in
our approach is treated as a replaceable black box; more advanced group key
agreement schemes can be implemented in the future. For example, approaches
such as LoKI [3] can be added to the infrastructure, where a key exchange app
in the background automatizes the collection of shared secrets between mobile
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devices, and users can post-hoc establish group keys based on Online Social
Networking friends whom they physically met before.

2.6 Synchronization of Messages

Our architecture supports two synchronization methods, peer syncs and server
syncs, both of which are described subsequently.

Peer synchronization (or peer sync) is the bidirectional exchange of multi-
ple encrypted messages over a point-to-point communication link between two
nodes. Nodes in our scenario do not manage any routing information for peer-
sync operations, but use local communication only for peers within range. A
send buffer is a subset of all messages of a node containing the messages to be
transmitted upon the next peer sync event. We stress that this buffer does not
only contain messages the peer can decrypt to ensure an appropriate spread of all
messages. Four strategies to prioritize messages during peer syncs are proposed:

Best Effort. A fraction p of the send buffer is allocated to messages of groups
the sending peer is a member of; the fraction 1 − p of slots holds other
messages. Both fractions are filled randomly.

Random. The send buffer is filled uniformly at random.
Round Robin. The send buffer is sequentially and block-wise filled with new

messages each time.
Latest Only. Only the latest messages received are put into the send buffer and

sent at the next sync operation.

The used technology for the point-to-point communication allows peers to
initiate a peer sync either manually, automatically, or semi-automatically. A
manual peer sync would require peers to consciously connect their smartphones
with other peers, e.g., by a short-ranged optical link, based on existing social
trust relationships. In automatic mode the peer sync runs in the background on
discovery mode and syncs whenever another peer is available and in reach. In
semi-automatic mode a user maintains either a white-list or black-list of other
peers. Users are thus able to synchronize messages more or less restrictively,
based on how risk-averse they are.

Server synchronization (or server sync) is the option of downloading encrypted
messages from servers to provide an alternative means of message transportation,
since different crowds of nodes are likely to get separated if they are not geograph-
ically close or socially connected. During a server synchronization a node uploads
its send buffer to the server and downloads new messages from it. Servers are only
data sinks that can neither decrypt the messages, nor determine group member-
ships of messages.

3 Simulation

For an assessment of the message propagation in our architecture we imple-
mented a discrete, event-based simulation excluding central servers. If servers
were included, nodes would obtain messages whenever they server-sync. In our
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simulations peers only synchronize their messages amongst themselves using
local point-to-point communication links established when close to each other.
We briefly give an overview of the simulation and discuss its results.

3.1 Simulation Overview

The nodes move on a plane according to generated mobility traces. Their message
group assignments, message synchronizations and message creation events are
simulated based on empiric data. Results are presented for 300 nodes moving
with 1.4m/s on an area of 0.16 km2 over a duration of 7 days. The simulation
runs over 2016 rounds, each representing a time frame of 5 min.

Network initialization. Node mobility traces are computed with the Bonn-
Motion package [1], using its ManhattanGrid mobility pattern, which creates
movements on a regular grid, resembling a street map.1 A square sized 400m ×
400m is used to restrict the mobility. It is populated by 300 nodes, which results
in 530m2 per node, a value in between the population density of a small (253m2,
e.g., Darmstadt) and a larger (820m2, e.g., Berlin) city.

Group assignment. The group memberships of each node are drawn out of
a discrete power-law distribution with exponent α = 2.276 and xmin = 2. The
same applies to the number of groups a node is a member of – values which have
empirically been computed in [10]. They remain fixed once they got initialized.

Peer syncs and local storage. Based on the mobility patterns, the node con-
nectivity is derived, i.e., we determine whether a given pair of nodes is eligible
for a peer sync. We set the maximum distance over which a peer sync can take
place to 25 m (similar to the Bluetooth standard). We limit the number of peer
syncs per node to 2 for each round in order not to exceed the Bluetooth trans-
mission rate. When peer-syncing, nodes exchange a send buffer of 100 messages
drawn according to a fixed synchronization strategy of Sect. 2.6. For the best
effort strategy the probability p was varied and then fixed as p = 0.4 to obtain
most expressive results. Each node’s local storage saves up to 10,000 messages.
The latest incoming messages from a peer sync shift out the oldest messages
received by a node.

Message creation. For the actual simulation runs we sample the message
creation events based on Twitter microblogging data [19]. Each group creates
messages according to the Poisson-distribution with λGroup = 0.21 · |Group|,
|Group| being the number of peers in that group. The sampled values for each
group are distributed uniformly at random across the group members.

3.2 Simulation Results

Group message spread is our main metric, which we define for one group as
σ = msgr

msgc·|Group| , where msgr is the number of group messages received across

1 We used the package’s mobility patterns RandomWaypoint and GaussianMarkov as
well, but due to similar results we only show the results for ManhattanGrid here.
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Fig. 2. Large group message spread. Fig. 3. Small group message spread.

the group (including senders), and msgc is the sum of all messages created in
the group. (Thus, if all group members receive all messages, we have msgc ·
|Group| = msgr and σ = 1.) Figures 2 and 3 present the average group message
spread for all messages created in a six hour window between rounds 72 and 144,
monitored over 300 rounds, together with error bars for selected points in time.2

We averaged over all groups and ran 10 independent simulations. Thereby, we
distinguish large and small groups. The large group class contains two groups
of 190 and 291 members, while the small group class contains the average over
21 groups with 4–6 members. The figures also show different synchronization
strategies.

Overall, both the large and the small groups have a peak message spread
of close to 100 %, although the propagation is significantly slower for the small
groups across all but the Latest Only synchronization strategy.

The Best Effort strategy favors large groups, as expected. An increase of
p to values higher than 0.4 yields extreme degradations in the performance of
the smaller and smallest group, whereas the largest groups profit from a highly
selfish selection of their messages. The Random and the Round Robin strategy
are similar (both of them implement a form of uniform drawing). Interestingly,
however, the Round Robin outperforms the Random strategy most of the time.
The Latest Only strategy has similar propagation dynamics across the small
and the large groups. In summary, the simulations show the feasibility of the
MoP-2-MoP architecture. Different synchronization strategies impact the mes-
sage spread across groups of different sizes. The Best Effort strategy favors large
groups and disrupts the message propagation for small groups. The Latest Only
strategy achieves fast propagation of the messages but might have a detrimental
effect due to the last-in-first-out principle and fixed local storage size.

3.3 Computation Complexity

A major concern is the computational complexity needed for the cryptographic
operations. To test the ElGamal encryption’s computation needs, we have
2 In this period the network is in its operational window, having most buffers filled.
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developed an Android application that decrypts 100 messages, using spongy-
castle3, a repackage for Android of the BouncyCastle Java crypto-library. (Note
that only the second part of the ciphertext needs to be decrypted in order to
determine if the message belongs to a specific group.) The power consumption of
the app was measured using LittleEye4. During our test runs on a Samsung S3
smartphone, the decryption used around 1200 mW and up to 40 % of the CPU.
The decryption time was 1.55 s. Depending on the transfer technology used to
establish pairing between peers, the total amount of energy drained will increase
by 750 mW for Bluetooth and by 2500 mW for WiFi [13].

4 Privacy, Anonymity and Censorship-Resistance

In this section we discuss the extent to which the stated privacy goals are met
for our basic adversary model of Sect. 2.2. Furthermore, we comment on the
extended model. We focus on local communication during peer synchronizations,
since the anonymity of server synchronizations can be achieved through classical
means such as the use of Tor.

Privacy. Privacy refers to the confidentiality of group messages and the group
memberships of a node. Peer syncs guarantee these properties, since the exchanged
messages look completely random and no group memberships can be derived from
the encrypted messages themselves. Moreover, due to the unlinkability and re-
randomization of the transmitted ciphertexts, messages can not be identified,
linked or traced by the adversary. This achieves receiver anonymity.

Yet, local monitoring and communication logging could create a communi-
cation graph of who is performing syncs with whom. Community detection then
reveals communication patterns by showing the connectedness of the nodes and
the frequency of their peer syncs, thus possibly yielding a side-channel for group
affiliations. We leave this for future research.

Sender anonymity. Peer synchronizations are beneficial for sender anonymity.
The original sender as the creator of a new message achieves k-anonymity for a
significant value of k only after a small amount of time. We analyzed the sender
anonymity set sizes obtained in our simulation by retrospectively calculating
the number of nodes from which a receiver could potentially have obtained a
message, assuming a global passive adversary. Figure 4 depicts the development
of the sender anonymity set size over time, averaged over our simulation runs.
The anonymity set size develops according to logistic growth, asymptotically
reaching 100 %, that is the totality of all nodes in the network – and it reaches
about 95 % of the full crowd size after 9 rounds.

Censorship-resistance. The distributed and decentralized peer-to-peer archi-
tecture and redundant message stores are key to make the infrastructure
censorship-resistant. Filtering on a semantic content level is not possible, because
3 https://github.com/rtyley/spongycastle
4 www.littleeye.co

https://github.com/rtyley/spongycastle
www.littleeye.co
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Fig. 4. Sender set fraction of total number of nodes over time.

Fig. 5. Large group with pcensor = 0.5 Fig. 6. Small group with pcensor = 0.5

of the indistinguishability of all ciphertexts. A censor is thus required to block
the communication of a node independently of the messages it sends. For exam-
ple, the adversary can deploy local jammers to render peer synchronizations over
local radio links in its sphere of influence impossible.

We conducted simulations that emulated local jamming. By pcensor we denote
the fraction of the nodes disabled in each round by jamming. For pcensor = 0.50
the group message spread over time is shown in Figs. 5 and 6, again averaged over
10 simulation runs. The results show that the architecture remains functional
with half the nodes disabled per round, albeit with a slower message spread.

Extended adversary model. An attacker able to compromise devices via mal-
ware (such as a trojan with keylogger and root-access) or via social engineering
(e.g., a government bribing group members or introducing its own agents into
a group) leaks the compromised nodes’ group memberships and the content of
messages encrypted under all compromised keys. Group infiltrations thus allow
adversaries to read all the messages in the affected groups. These messages can
subsequently be traced during peer syncs. Note that this also affects the k-
anonymity of the uncompromised groups in case messages of affected and unaf-
fected groups are simultaneously exchanged in a peer sync. Infiltrated groups
need to be re-keyed; that is, a new group key needs to be set up and the old
keys need to be discarded.
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Finally, spam messages can have detrimental effects by flooding the send
buffer of nodes by spam messages. A possible countermeasure for in-group spam-
ming is the use of special spam filters (such as [11]) locally at each node; nodes
would then not forward messages marked as spam. Junk ciphertexts injected
into the network that cannot be decrypted under any group’s key are a denial-
of-service attack that ultimately affects all nodes and cannot be prevented easily.
Devices performing DoS attacks might be blacklisted; the blacklists could be dis-
tributed as special messages in our system.

5 Related Work

Approaches facilitating anonymity in Internet communication include Tor5, using
the concept of onion routing, and Crowds [14], which follows a peer-to-peer app-
roach. In the latter, peers are used to create a cascade over which web transac-
tions are routed in order to achieve sender anonymity; transport encryption is
established between each pair of nodes. However, they both are developed for
unicast fixed-line communication only. In a client-server setting, the Humming-
bird server [5] provides a private microblogging service by obliviously matching
messages to subscribers without learning about plaintext messages. In con-
trast, we aim at building a decentralized and peer-to-peer based microblogging
infrastructure.

Solutions that address anonymity in mobile ad hoc networks (MANETs),
where routing between mobile devices is done in a self-configured manner, include
ALARM [6], a secure-link state based routing protocol which achieves anonymity
and untraceability together with security properties by leveraging group signa-
tures, and MASK [20], an anonymous on-demand routing protocol with unlocata-
bility and untrackability. In the context of vehicular ad hoc networks (VANETs),
where revocable anonymity is needed for liability issues, pseudonymity schemes
are typically used to provide anonymity during normal operation [8].

In delay-tolerant networks (DTNs), which maintain no explicit routing infor-
mation, human mobility and its characteristics (cf. [15]) are leveraged for message
propagation. Su et al. [18] argue based on collected mobility data that effective
routing decisions can be made by only knowing the pair-wise contacts that took
place between nodes, irrespective of mobility models or location information.
Chaintreau et al. [4] empirically show, that the distribution of the intercon-
tact time between devices carried by humans can be approximated by a power
law distribution for durations of up to a day. In Humanets [2], smartphone-
to-smartphone communication is used to more efficiently propagate messages,
while at the same time avoiding the use of mobile telephony networks. In our
approach, we leverage these observations both in our microblogging architecture
and in the simulation.

A number of solutions for content distribution in DTNs have been proposed
(cf. [12,17]). However, propositions focusing on anonymity in such scenarios are
scarce: Fanti et al. [7] propose a mobile microblogging solution with trusted
5 https://www.torproject.org

https://www.torproject.org
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message propagation by the use of social-graphs and private-set intersection
protocols, but do not focus on unlinkability. Rogers et al. [16] focus on secure
communication over diverse networks achieving forward security, but do not
specifically address anonymity. In contrast to these approaches, our architecture
targets strong privacy and anonymity properties.

6 Conclusion

We presented a novel approach for mobile private microblogging, combining
mobility, the peer-to-peer paradigm and local point-to-point communication
links over a delay-tolerant opportunistic network. Our architecture achieves
sender and receiver anonymity and is censorship-resistant. At the same time it
ensures a sufficient message spread. Future work will address scalability and per-
formance issues, both in terms of networking load and on-device computation.
Efficient re-keying of groups is an issue that will be addressed by incorporat-
ing broadcast encryption schemes. Furthermore, we will investigate means to
enhance the robustness of the scheme against malicious nodes.
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Abstract. Léon Walras’ theory of general equilibrium put forth the
notion of tâtonnement as a process by which equilibrium prices are deter-
mined. Recently, Cole and Fleischer provided tâtonnement algorithms for
both the classic One-Time and Ongoing Markets with guaranteed bounds
for convergence to equilibrium prices. However, in order to reach equi-
librium, trade must occur outside of equilibrium prices, which violates
the underlying Walrasian Auction model. We propose a cryptographic
solution to this game theoretic problem, and demonstrate that a secure
multiparty computation protocol for the One-Time Market allows buy-
ers and sellers to jointly compute equilibrium prices by simulating trade
outside of equilibrium. This approach keeps the utility functions of all
parties private, revealing only the final equilibrium price. Our approach
has a real world application, as a similar market exists in the Tokyo Com-
modity Exchange where a trusted third party is employed. We prove that
the protocol is inherently incentive compatible, such that no party has
an incentive to use a dishonest utility function. We demonstrate security
under the standard semi-honest model, as well as an extension to the
stronger Accountable Computing framework.

Keywords: Secure multi-party computation · Privacy preserving pro-
tocol · Tâtonnement · Game Theory

1 Introduction

Open markets balance supply and demand by converging to a price where the
two are equal. For example, oil is a commodity where increasing supply becomes
progressively more expensive, and increasing price reduces demand. Absent other
disturbing factors, oil supply and demand would eventually stabilize. However,
this takes time, and in the meantime prices rise and fall, leading to unneces-
sary investment in uneconomical production based on an expectation of high
prices, or investment in consumption based on expectation of low prices. Faster
convergence or lower volatility in prices can have significant benefits.

Economic models generally accepted as valid representations of real-world
market behavior tend to have underlying computationally tractable algorithms.
c© International Financial Cryptography Association 2014
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It follows naturally to propose that these algorithms could be evaluated by par-
ties to arrive at the result deemed to accurately reflect the outcome of a given
market phenomenon. The work of Cole and Fleischer studies the market equi-
librium problem from an algorithmic perspective, and they give tractable price
update algorithms that do not rely on global information [1].

The algorithms of Cole and Fleischer [1] follow the Walrasian Auction model:
prices are adjusted according to a tâtonnement process, where prices iteratively
rise or fall in response to changes in demand [2]. In the Walrasian Auction model,
trade occurs only once equilibrium has been established. In real-world markets,
it is trade that dictates demand and, thus, how prices are adjusted to converge
toward equilibrium. However, Cole and Fleischer’s algorithms allow trade outside
of equilibrium.

As specified, the Walrasian Auction model is limited to the theoretical domain
unless a trusted third party is invoked to serve as a mediator between the buy-
ers and sellers. Not only must the mediator be trusted to faithfully represent
the interests of all parties involved, it must be trusted with substantial informa-
tion about each party’s private utility function. As a utility function defines a
party’s preferences over goods with respect to both quantity and price, it reveals
valuable information that parties would prefer to keep private. Further, there
are no guarantees that the parties will truthfully report their valuations of the
good. This problem becomes particularly pronounced when independent buyers
collude to reduce the final equilibrium price.

The recent work of Dodis et al. [3] considered a similar game theoretic prob-
lem: implementing the mediator for rational players to arrive at a correlated
equilibrium. In game theory, a correlated equilibrium is selected when a medi-
ator recommends a strategy to each player such that, given the recommended
strategy, no player can improve their utility1 by choosing a different strategy.
Further, the payoff may exist outside the convex hull of standard Nash equi-
libria, yielding more utility than when a mediator is not present. Dodis et al.
demonstrate that secure multiparty computation (SMPC) can replace the medi-
ator with a protocol among the players, removing the necessity of a trusted third
party. In this work, we use SMPC to find Walrasian equilibria without invoking
a mediator or allowing trade to occur prior to arriving at a stable price.

Further, we are able to make strong claims of incentive compatibility. In
the standard security model, a monolithic adversary A corrupts a subset of
the participants. In rational cryptography, each player acts solely in their own
self-interest, and thus have an associated local adversary controlling their devi-
ations [4]. The move to local adversaries has important consequences on the
stability of coalitions for rational player. Not even protocols secure in the mali-
cious model cannot guarantee that a malicious party will not manipulate its
input to the protocol, as a monolithic adversary may force the equilibrium price
to be deflated through centralized control of corrupted parties. We demonstrate
1 A utility function describes an agent’s preferences over outcomes, and can informally

be considered a mapping between events and agent happiness.
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that our protocols are resilient against this behavior in the presence of local,
independent rational adversaries seeking to maximize their utility.

2 Our Contribution

Drawing on recent work from both the cryptographic and game theoretic liter-
ature [5–11], we propose a privacy preserving protocol that allows buyers and
sellers to arrive at an equilibrium price using the tâtonnement process without
trade occurring outside of equilibrium. This approach has the auxiliary benefit
of keeping the utility functions of all parties private; only the final equilibrium
price is revealed. Further, we show that our construction is incentive compatible:
the strategy of reporting truthful private valuations weakly dominates all other
strategies for both buyers and seller.

A protocol that arrives at the equilibrium price for a good is beneficial to both
the buyers and sellers involved. A participant’s utility function must be evaluated
many times throughout the tâtonnement process in order for appropriate price
updates to occur. This is a potential disincentive to engaging in the protocol,
as the participant’s utility function contains their preferences for a good, and
many individual points from their utility function are evaluated and publicly
disclosed. A malicious agent could use this information to alter their behavior
for personal gain. SMPC allows two or more mutually distrustful parties to
engage in a collaborative protocol to compute the result of a function securely
[12,13]. Our approach allows the tâtonnement process to be evaluated privately,
revealing only the final equilibrium price.

SMPC has had real-world use, very much in the scenario we suggest. Bogetoft
et al. [14] deploy a privacy preserving protocol to evaluate a double auction
model for Danish commodity trading. However, they assume that all parties
behave honestly in using the system, and do not explore the possibility that
a malicious party could manipulate the equilibrium price to its advantage. In
fact, they state “we did not explicitly implement any security against cheating
bidders”, although they were only discussing semi-honest vs. malicious behavior
in the traditional sense. Further, the authors surveyed the farmers’ views on
the privacy of their utility functions, and found that nearly all preferred that
information to remain private.

We go well beyond this, exploring lying about the input to the protocol itself :
a behavior that even the malicious model does not prevent. Previous work has
demonstrated this idea, although the authors only consider a two-party protocol,
and showed incentive compatibility only for an approximation of the real-world
problem [15]. We show that this approach can be used to enable SMPC to address
the full range of malicious behavior in a real-world, multi-party problem.

As another example, the Tokyo Commodity Exchange uses the itayose mech-
anism, similar to tâtonnement, to reach equilibrium. In fact, this existing market
circumvents the restriction of disallowed trade until equilibrium is reached by
invoking a trusted third party: an auctioneer that adjusts prices based on excess
demand [16]. Our approach requires no trusted third party, resulting in the min-
imum possible disclosure of information regarding each party’s utility function.
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Thus, there is clear real-world application and tangible benefit from our results,
similar to those of Bogetoft et al. [14].

Note that our model makes a stronger statement than that of a Bayes-Nash
equilibrium, where participants have an incentive to be truthful if and only if
others are acting truthfully as well. We show that acting honestly is the domi-
nant strategy in our protocol regardless of the actions of the other players. The
work by Eaves et al. [16] provides further evidence for our claims of incentive
compatibility, based on the fact that agents engage in the protocol repeatedly.
However, our results hold without the assumption of repeated interaction.

To ensure parties deviating from the protocol will be caught, it is secure under
the accountable computing (AC) framework proposed by Jiang and Clifton [17].
Note that we first show security under the standard semi-honest model, and
then extend this to the AC-framework. The AC-framework provides the ability to
verify that a party correctly followed the protocol; contractual penalties can then
be used to ensure that correctly following the protocol is incentive compatible.
Typical semi-honest protocols provide no such guarantee; a malicious party may
be able to manipulate the protocol to their benefit. Protocols secure under the
malicious model (forcing participants to correctly follow the protocol) typically
have much greater computational cost. By demonstrating security under the
AC-framework, detected deviations are punishable by other participants forcing
the minmax utility2 on the deviating parties [3]. We also use commitments to
ensure that parties use their true utility function with the protocol; this prevents
parties from supplying one input to the protocol (e.g., a low demand) to give an
artificially beneficial price, then purchasing greater quantities at the resulting
price.

We show that the utility functions and actions of all agents remain private,
with the equilibrium price revealed to all agents at the conclusion of the protocol.
The knowledge gain is only the information that can be derived from the result
of the function, and knowledge of the function itself. This satisfies the standard
definition of semi-honest security in that the protocol emulates the existence
of a trusted third party, without actually requiring such an entity [18]. This
property is ideal, as a universally trusted third party rarely exists for a given set
of parties. Our work considers only the case of the oblivious One-Time Market
setting. That is, we consider the market where all parameters are assumed not
to be global information. Rather, agents compute the price updates based solely
on local information.

We begin by defining the market problem and reviewing the oblivious One-
Time Market algorithm in Sect. 3. We review the cryptographic primitives used
in Sect. 4, and give a construction3 based on an additively homomorphic cryp-
tosystem in Sect. 5. Finally, we demonstrate that the resulting protocol is incen-
tive compatible in Sect. 6. All proofs are provided in Appendix A.
2 The minmax punishment approach forces the outcome yielding the minimum utility

to the deviator, while maximizing the utility of the other participants.
3 Our protocol can also be implemented using frameworks for the GMW protocol [12],

such as FairPlayMP [19], VIFF [20] or SEPIA [21].
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3 The Market Problem

Our SMPC protocol computes the equilibrium for a single seller offering a single
good to a set of buyers, which we extend to the general definition of the problem
following the notation from Cole and Fleischer [1]. The market under consid-
eration contains a set of infinitely divisible goods G, where |G| = n, and a set
of agents A, where |A| = m. Agent l has quantity wil of good i at the start of
the protocol and has a corresponding utility function μl(x1l, . . . , xnl) that gives
their preferences for all goods i ∈ G. Note that the initial allocation wil may
consist solely of currency; it is a measure of the agent’s wealth. We make the
simplifying assumption that μl(x1l, . . . , xnl) = Σn

i=1μ(xil); the utility of a basket
of goods is the sum of the utility of each individual good. Each good i has a
collection of prices pi, 1 ≤ i ≤ n. Each agent l selects a basket with xil units of
good i so that ul is a maximum and is affordable given their initial allocation.
That is:

∑n
i=1 xilpi ≤ ∑m

i=1 wilpi. The prices p = (p1, p2, . . . , pn) are in equilib-
rium if the demand for all goods i ∈ G is bounded by the supply for good i:∑m

l=1 xil ≤ ∑m
l=1 wil.

We define wi =
∑

l wil to be the supply of good i, and xi =
∑

l xil to be
the corresponding demand. We define zi = xi − wi to be the excess demand of
good i. At a given set of prices p, the wealth of agent l is vl(p) =

∑
i wilpi. By

definition, w is from the market specification while v, x and z are computed with
respect to the vector of prices. The wealth of an agent l is computed directly
from a given price vector p, whereas x and z are computed by agents maximizing
their utility functions under the constraints imposed by v.

The model put forth by Cole and Fleischer is based upon a series of iterative
price and demand updates. We omit discussion of the proofs of bounded con-
vergence time and refer the reader to their original work [1]. In each iteration r,
the price of a good i ∈ Gr is updated by its price setter using knowledge of only
pi, zi, and their history. Here, a price setter is a virtual entity that governs the
price adjustments. However, the price adjustments are governed by changes in
demand in the algorithms. After the price setters have released the new prices
pr, the buying agents compute the set of goods that maximizes their utility
under the constraint of their wealth given the current prices, vl(p). We consider
only the oblivious One-Time Market price update rule, which is as follows:

pi ← pi · (1 +
1

2�log4 ri� · min{1,
zi

wi
}) (1)

The current round r is bounded prior to the start of the protocol by fixing
the terminal round r∗. At the conclusion of the protocol, we will have computed
the equilibrium price and demand, p∗ and x∗, respectively.

To construct a privacy preserving protocol, we show how buyers compute
their demand based on the current price pi, and how sellers compute the price
update given the demand xi from the buyers. In our privacy preserving protocol,
the buyers compute the update for each round locally to prevent the seller from
learning intermediate prices. Symmetrically, neither the price nor the demand
is known to either the buyers or seller until the conclusion of the protocol.
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Finally, we must account for the fact that zi

wi
may be less than 1, which cannot

be represented properly in the field Zn. To handle this, prices are represented
in integer units corresponding to the minimum increment (e.g., cents). We use
the division protocol δ of Dahl et al. [22] to compute zi

wi
, which we discuss

further in Sect. 4.1. As the degree of Walrasian auction utility functions is 1 with
overwhelming probability [2], all buyers are modeled as having Cobb-Doublas
utility functions. As noted by Cole and Fleischer, under these conditions the
price update rule converges in a single round [1], so r∗ ← 1.

Our work is certainly not the first to apply SMPC principles to economic
and game theory. Previous work has shown that SMPC removes potential disin-
centives from bartering to auctions [23,24]. Additionally, recent work has shown
the potential of combining cryptography with game theoretic principles [5–11].
However, no attempt has been made to remedy the paradox of the Walrasian
Auction model using SMPC techniques. In this way, we not only remove disincen-
tives from engaging in the protocol, we allow the model to exist in reality. That is,
our protocol allows the participants to evaluate the iterative price update func-
tion on the basis of the buyers’ demand without actually revealing the demand
through trade or invoking a trusted third party. Additionally, we show that our
construction constitutes an incentive compatible market with respect to both
buyers and sellers.

We review the One-Time Market Oblivious tâtonnement algorithm proposed
by Cole and Fleischer [1]. The original algorithm is a protocol between a set of
buyers bl ∈ B and a set of sellers sl ∈ S. We assume that for each buyer bl ∈ B
they have an associated utility function μbl(i), where i is the good offered for
sale from S. Recall that the seller S has knowledge of their supply of i, given
by wi. The task of the set of buyers B is to compute the excess demand for
good i, given by zi = xi − wi, where xi = Σlxil is the sum of the demand of all
buyers bl ∈ B. The original protocol by Cole and Fleischer is given formally by
Algorithm 1.

Algorithm 1. Model by Cole and Fleischer
for ri = 0; ri < r; + + ni do

for sl ∈ S do
pi ← pi + 1

2�log4 ri� pi · min{1, zi
wi

}
end for
for all bl ∈ B do

xi ← xi + µbl(pi)
end for
zi ← xi − wi

end for
p∗ = pi
x∗ = xi

return (p∗, x∗)
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The algorithm fixes a price pi for the good, uses the utility functions of the
buyers to determine the excess demand xi at that price, and sets the price for the
next round. The key contribution of Cole and Fleischer is to prove that the given
update rule gives a guaranteed convergence rate. Beyond simply bounding the
number of required rounds, as Walrasian markets typically have Cobb-Douglas
utility functions, the algorithm converges in one round [1].

4 Building Blocks

To build the privacy preserving protocol, we build on a collection of crypto-
graphic primitives.

We require an additively homomorphic public-key encryption scheme E , with
the additional property of semantic security [25]. Such a scheme was proposed
by Paillier [26]. We denote the encryption of some plaintext x with Bob’s public
key as Eb(x), and the decryption of some ciphertext c = Eb(x) as Db(c). We
require that our cryptosystem’s homomorphic property is additive, which means
that the following operations are supported:

Eb(x) · Eb(y) = Eb(x + y), (Eb(x))c ≡ Eb(x)c = Eb(x · c) (2)

Here, c is an unencrypted plaintext constant. Note that we omit the enclosing
parentheses and treat Eb(x) as a distinct term. The construction of the additively
homomorphic encryption scheme allows mathematical operations over encrypted
data to be performed, and provides the foundation for our protocol.

4.1 Division Protocol δ

The price update rule requires computing the quotient of the excess demand and
the supply, xi−wi

wi
. Dahl et al. give a protocol for securely computing integer divi-

sion under the Paillier cryptosystem without requiring a bit-decomposition [22].
For l-bit values, the constant round protocol requires O(l) arithmetic operations
in O(1) rounds.

5 Protocol Construction

We consider a set of k buyers bl ∈ B interacting with a single seller S of a good
i. The protocol π securely implements the functionality f(μ1, · · · , μk, pS) �→
〈p∗, x∗〉. Here, μl is the utility function of buyer bl ∈ B. The full Walrasian
Market (composed of more than a single seller and good) is modeled by instan-
tiating an instance of Protocol 5.1 for each pair of seller and good (S, i), and the
associated set of buyers. Note that our protocol centers around specific utility
functions known as Marshallian or Walrasian demand functions. That is, the
participant’s utility function is modeled as a polynomial, and defines the quan-
tity demanded for a single good over all possible prices. Overwhelmingly, the
degree of a Walrasian demand function will be one [2]. Thus, a buyer’s utility
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function μbi has the form μbi(pi) = cpi where the coefficient c is a constant,
satisfying the definition of a Cobb-Douglas utility function. The final argument
to the functionality is the initial price pi specified by the seller. A Paillier-based
algorithm for computing the Walrasian equilibrium is given by Protocol 5.1. To
increase scalability, this simple ring-based protocol could be replaced with an
implementation using a state-of-the-art framework for the GMW protocol [12],
such as FairPlayMP [19], VIFF [20] or SEPIA [21]. We defer the proof of security
to Appendix A.

Buyers 1 ≤ l ≤ k: All buyers issue commitments (e.g. Pedersen [27]) to their private
utility function coefficients. This is necessary for the verification stage
of the AC-Framework [17].

Seller S: Set pi as the Seller’s initial price for good i.
Set wi as the supply of good i.
Send ES(pi) to all buyers.

Buyer 1 : The first buyer computes the initial demand as ES(xi) ←
μb1 (ES(pi))

†, where μb1 is the initial buyer’s utility function.
The first buyer forwards ES(xi) to the next buyer, so that they can
update the demand xi based on their utility function.

Buyers 1 < l ≤ k: Each buyer updates the demand at the current price pi based on their
utility function μbl by computing ES(xi) ← μbl (ES(pi))

†.
Buyer k: The final buyer bk must perform additional updates before sending

the results of the current round to either buyer 1 (if r < r∗) or the
seller (if the terminal round r∗ has been reached).
The final buyer updates the excess demand zi by computing ES(zi) ←
ES(xi) · ES(wi)

−1.
The final buyer computes the price update coefficient yi ..= zi

wi
, the

fraction of excess demand to supply, using the division protocol of
Dahl et al. [22]: yi ← δ(ES(zi), ES(wi)).

The final buyer updates the current round price pri to pr+1
i by com-

puting ES(pr+1
i ) ← ES(pri ) · ES(yi).

If r = r∗, where r∗ is the final round, buyer bk sends 〈ES(pi), ES(xi)〉
to the seller. Otherwise, this tuple is forwarded to buyer 1 and the
next round begins.

Seller S: After receiving 〈ES(pi), ES(xi)〉 in the final round, the seller com-
putes the equilibrium price p∗ ← DS(ES(pi)) and the final demand
x∗ ← DS(ES(xi)).
The seller forwards p∗ to all of the buyers.

Protocol 5.1. Additively Homomorphic Encryption Algorithm for Tâtonnement

In the next section, we prove that if a player is unable to deviate from the
protocol without being caught (e.g., a protocol secure in the AC-Framework),
then the dominant strategy is for parties to provide their true utility functions.
† Here, we evaluate µbl(ES(pi)) as ES(pi) · ES(c), where c is the buyer’s coefficient

term in µbl .
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6 Incentive Compatibility

We claim that Protocol 5.1 is inherently incentive compatible with respect to
protocol inputs from the perspectives of both buyers and sellers. That is, each
player has no incentive to maliciously modify their actual input (utility function).
We assume that malicious buyers have the option to either inflate or deflate their
demand for a given price relative to their actual utility function. We show that
while this can influence the price, it works to their detriment. We demonstrate
that a seller only sets the initial price, and that their choice does not affect the
final equilibrium price, so deviating provides no utility gain.

6.1 Utility Function Assumptions

In order to simplify the game theoretic analysis of the protocol, we write μ+ to
denote positive utility, μ− to denote negative utility, and μ0 to denote neutral
utility gain. We assume that the magnitude of preference for all μi are equal
(i.e., μ+ + μ− = μ0). Similarly, we assume that με represents only a marginal
utility gain. That is, μ+ > με > μ0.

Additionally, we assume that (pi − p∗
i ) ∈ {μ+, μ−, με}, although this value

depends on how much the reported utility function μ∗
l differs from an agent bl’s

actual utility function μl. Clearly there is an inverse relationship between how
much an agent can under-inflate μ∗

l (which subsequently reduces the equilibrium
price p∗

i ), and the likelihood of a trade occurring between the agent and the seller.
As the agent is involved in the protocol, we assume that they prefer a trade occur.
If not, they would have abstained from the protocol entirely. Thus, it is natural
to assume the agent’s utility function assigns the same range to both of these
preferences. This assumption does not affect our analysis, and is solely to ease
the exposition.

Definition 1. Let rl be the reward that a buyer bl gains by reporting μ∗
l in lieu

of their actual utility function μl. Where p∗
i (resp. pi) is the resulting equilibrium

price when μ∗
l (resp. μl) is reported, bl’s reward is given by:

rl =

⎧
⎨

⎩

(pi − p∗
i ) < 0 : μ∗

l > μl

0 : μ∗
l = μl

(pi − p∗
i ) > 0 : μ∗

l < μl

(3)

We make the natural assumption that each buyer prefers some (possibly
large) quantity of the seller’s good to their initial allocation, otherwise they
would not engage in the protocol.

Definition 2. Define the utility gained through trade as μτ :

μτ =
{

μ+
τ : trade occurs

μ−
τ : trade does not occur (4)
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Similarly, a buyer offering a higher price has increased control over the quan-
tity of the good they can demand, subject to the seller’s supply wi. That is, the
seller prefers to sell to the set of buyers {bl|pl

i ≥ pm
i , l �= m} offering the highest

price. Thus, a highest price buyer bm can command min(wi, wm) units of good
i, where wi is the seller’s supply and wm is the initial allocation of resources for
buyer bm.

Definition 3. Define buyer bl’s utility gained from control over quantity received,
μq,l, as follows:

μq,l =
{

μ+
q,l : ∀m, pl

i > pm
i , l �= m

μ−
q,l : ∀m, pl

i ≤ pm
i , l �= m

(5)

That is, bl receives μ+
q if bl is offering the highest price pi, and μ−

q otherwise.

Definition 4. Let rl be the reward for buyer bl, let μτ,l be bl’s trade utility, and
let μq,l be bl’s quantity control utility. We define bl’s total reward ρl as follows:

ρl = rl + μτ,l + μq,l (6)

Without loss of generality, consider a coalition of buyers with utility func-
tions satisfying the above constraints. Let al = {au, at, ao} denote bl’s action
set, where au denotes under-inflating, ao denotes over-inflating, and at denotes
reporting the buyer’s true utility function ul rather than a modified utility func-
tion u∗

l .
We assume that a rational seller will agree to sell their entire allocation of

goods to the buyer whose utility function ub gives the highest valuation for the
good, thus maximizing their profit. Thus, for all buyers bk /∈ {bl|pl

i ≥ pm
i , l �= m},

we have that μτ,k = μq,k = μ−. Note the following:

– A buyer playing au in the presence of a buyer playing {at, ao} does not have
quantity control

– A buyer playing au in the presence of a buyer playing {at, ao} does not receive
any goods

– A unique buyer playing {at, ao} in the presence of buyers playing only au has
quantity control

We begin by reviewing the formal definition for weakly dominated strategies
as given by Katz [9], where a player can never increase their utility by playing a
weakly dominated strategy.

Definition 5. Given a game Γ = ({Al}k
l=1, {μl}k

l=1), where A = A1 × · · · × Ak

is a set of actions, with a = (a1, . . . , ak) ∈ A being a strategy and {μl} is a set
of utility functions, we say that action a′

l ∈ Al is weakly dominated by al ∈ Al

if μl(al) ≥ μl(a′
l). That is, player Pl never improves their payoff by playing a′

l,
but can sometimes improve their payoff by playing al.
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To show that our construction is incentive compatible, we iteratively delete
weakly dominated strategies to arrive at the stable Nash equilibrium [28]. The
process of iteratively deleting weakly dominated strategies is criticized because,
in some cases, the order of deletion affects the final result [10]. In this analy-
sis, weakly dominated strategies can be removed in an arbitrary order without
affecting the result.

We present a simplified payoff matrix in Table 1. The strategy ao of over-
inflating the utility function is removed for clarity, as au, the strategy of under-
inflating, is a much more intuitive deviation for maximizing utility. However, we
formally demonstrate that ao is weakly dominated in Lemma 1.

Table 1. Total payoff matrix

a′
u a′

t

au (µ+,µ+) (µ−,2µ+)

at (2µ+,µ−) (µ+,µ+)

Lemma 1. The strategy ao of reporting an over-inflated utility function u∗
i is

weakly dominated by at.

Proof. We show that the action of over-inflating the buyer’s true utility function
is weakly dominated by truthfully reporting the utility function, demonstrating
that ao is weakly dominated by at. Recall that buyer bl’s total reward is defined
as ρl = rl+μτ,l+μq,l. For convenience, we will parameterize ρl(·) with the action
being played. This notation is convenient for comparing the total payoff yielded
from different actions.

We begin by deriving the maximum utility that could be gained by playing
ao, the action of over-inflating the true utility function. As buyer bl is playing
ao, we have that μ∗

l > μl. From Eq. 3, we have ρl(ao) = (pi −p∗
i )+μτ,l +μq,l. As

(pi − p∗
i ) < 0, we write μ− for concreteness. Given that bl is over-inflating their

true utility function μl, they are more likely to effect a trade. Clearly the seller
S prefers the higher price p∗

i to bl’s true valuation, pi. By Eq. 2, we have that
ρl(ao) = μ− +μ+

τ,l +μq,l. Similarly, by over-inflating their true utility function, bl

is more likely to have control over the quantity of the good they receive, as they
are offering a higher price. By Eq. 3, we have that: ρl(ao) = μ−+μ+

τ,l+μ+
q,l = μ+.

Thus, we have that max(μl(ao)) = μ+. We now derive the maximum utility that
could be gained by playing at, where buyer bl reports the true utility function
μl. By Eq. 3, we have that ρl(at) = μ0 + μτ,l + μq,l as pi = p∗

i so (pi − p∗
i ) = μ0.

Buyer bl maximizes their utility when a trade occurs, and they can control the
quantity of the good they receive. Following the same derivation that was used
for ao, we have from Eq. 2 that ρl(at) = μ0 + μ+

τ,l + μq,l. Similarly, by Eq. 3 we
have that ρl(at) = μ0 +μ+

τ,l +μ+
q,l = 2μ+. We have that max(μl(at)) = 2μ+, and

it follows that max(μl(at)) > max(μl(ao)). Thus, a buyer always does at least as
well or better by playing at, and we say that at weakly dominates strategy ao.
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Lemma 2. The strategy au of reporting an under-inflated utility function u∗
l is

weakly dominated by at.

Proof. We demonstrate that the action au is weakly dominated by at when
considering both individual buyers and members of a buyer coalition that collude
to lower the equilibrium price p∗.

Consider an individual buyer bl that is not a member of a coalition. As bl

reports μ∗
l , μ

∗
l < μl, by Eq. 3 we have that ρl(au) = (pi − p∗

i ) + μτ,l + μq,l.
Again, as (pi − p∗

i ) > 0, we assume (pi − p∗
i ) = μ+ for concreteness. Similarly,

we assume that under-inflating μl reduces the chances of bl effecting a trade
with S, as bl is offering a lower price. By Eq. 2, we have that ρl(au) = μ+μ−

τ,l +
μq,l. Playing action au also reduces the chances of bl having control over the
quantity of the good received, if any is received at all. By Eq. 3, we have that
ρl(au) = μ+μ−

τ,l + μ−
q,l = μ−. Thus, max(μl(au)) = μ−, and it follows that

max(μl(at)) > max(μl(au)). Thus, a (non-coalition) buyer always does at least
as well or better by playing at, and we say that at weakly dominates strategy au.

We now consider a coalition of unique buyers under-reporting μl as μ∗
l < μl,

colluding to decrease the resulting equilibrium price p∗ of the good. That is,
the coalition is not controlled by a monolithic adversary as is common in the
standard security model: they are independent buyers in competition, modeled
under the local adversary framework of Canetti [4]. In the game theoretic litera-
ture, this is referred to as the cartel problem. Note that the best response of any
member of the coalition is to report μ∗

l + ε for any positive ε. In doing so, they
receive the goods at a price p′ < p∗ while the other coalition members receive no
goods. Applying backward induction, we demonstrate that the best response of
all buyers in a coalition is to report μl, as μ∗

l + ε converges to their true utility
function μl.

Suppose all coalition members agree to collude by reporting μ∗
l < μl, and

all members play this strategy. For any buyer bl in the coalition, we have that
μ∗

l < μl and by Eq. 3 we have that ρl(au) = (pi−p∗
i )+μτ,l+μq,l. As (pi−p∗

i ) > 0,
we set (pi − p∗

i ) = μ+ to denote a positive utility gain. As the coalition consists
of more than a single buyer, all members of the coalition are more likely to
effect a trade. From Eq. 2, we have that ρl(au) = μ+ + μ+

τ,l + μq,l. However,
as all members of the coalition are offering the same price for the good, they
have no control over the quantity of the good they receive. By Eq. 3, we have
that ρl(au) = μ+ + μ+

τ,l + μ−
q,l = μ+. Thus, max(μl(au)) = μ+ for all coalition

members. However, consider the case where a coalition member reports a utility
function μ′

l = μ∗
l + ε, ε > 0. That is, some bl in the coalition increases the price

they are willing to pay for the good by any positive amount ε. From Eq. 3, we
have that

ρl(au + ε) = ((pi − (p∗
i + ε)) + μτ,l + μq,l = μ(+)−ε + μτ,l + μq,l

However, now bl is more likely to effect a trade, as p∗
i + ε > p∗

i . By Eq. 2,
we have that ρl(au + ε) = μ(+)−ε + μ+

τ,l + μq,l. Similarly, bl has control over the
quantity of the good received as bl is offering ε more than the coalition members.
From Eq. 3, we have
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ρl(au + ε) = μ(+)−ε + μ+
τ,l + μ+

q,l > 2μ+ > max(μl(au))

Thus, max(μl(au + ε)) > max(μl(au)), as μ(+)−ε = μ+ + μ−ε > μ0. However, all
coalition members are aware of this fact. Applying backward induction, it is not
difficult to see that action au converges to at by increasing ε until μ∗

l = μl, and
that at weakly dominates au.

Corollary 1. The strategy at of reporting the true utility function ul weakly
dominates {au, ao} for all buyers.

Proof. A buyer’s action set is defined as al ∈ {au, at, ao}. By Lemma 1, we have
that ao is a weakly dominated strategy, and can be eliminated. By Lemma 2,
we have that au is a weakly dominated strategy, and can be eliminated. Thus,
reporting the true utility function μl as denoted by action at is a stable Nash
equilibrium.

Theorem 1. The strategy at of reporting the true utility function ul weakly
dominates {au, ao} for the seller.

Proof. As noted in the original paper, the update protocol converges on the
equilibrium price p∗ from any arbitrary initial price pi [1]. Given that the seller’s
only influence on the equilibrium price is through setting the initial price pi,
there is no incentive to report some p′

i �= pi, as p∗ is unaffected in doing so.

7 Conclusion

We have presented a privacy preserving, incentive compatible market construc-
tion that is secure against malicious parties, going beyond the standard security
model to protect against malicious input to the protocol. To do this, we demon-
strated that by securely computing the Oblivious One-Time Market protocol
given by Cole and Fleischer [1], no agent has an incentive to report false valua-
tions of the goods in the market. Thus, SMPC solves a long-standing problem in
economic theory, as it allows Léon Walras’ tâtonnement process for arriving at
equilibrium to be computed while conforming to the constraints of the Walrasian
Auction model. In this way, trade does not occur outside of equilibrium, and yet
the final equilibrium price is computed and made available to all agents in the
market.

A Security Under the AC-Framework

The Accountable Computing (AC) -framework [17] considers adversaries in the
gap between the semi-honest and malicious models. The AC-framework guaran-
tees that an honest party can catch malicious behavior (unlike Aumann’s covert
model, which requires that such behavior be caught); honest parties can choose
not to verify that behavior is correct (thus saving computation), verify if they
do not trust the results, or probabilistically verify sufficiently often to ensure
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incentives for correct behavior. We now show that our protocol satisfies the con-
ditions necessary under the AC-framework. As part of this, we formally prove
that the protocol is secure under the semi-honest model (Theorem 2), as security
under the standard semi-honest model is a requirement for satisfying security
under the AC-Framework.

The definition as given by Jiang and Clifton [17] is as follows:

Definition 6. (AC-protocol) An AC-protocol Φ must satisfy the following three
requirements:

1. Basic Security: Without consideration of the verification process, Φ satisfies
the security requirements of a SSMC-protocol (a SMC-protocol secure under
the semi-honest model).

2. Basic Structure: The execution of Φ consists of two phases:
– Computation phase: Compute the prescribed functionality and store

information needed for the verification process.
– Verification phase: An honest party (we name such a party as a prover

hereafter) can succeed in verifying an accountable behavior.
3. Sound Verification: Φ is sound providing that the verification phase cannot

be fabricated by a malicious party.

We now demonstrate that Φ satisfies all requirements of the AC-framework.

Theorem 2. Basic Security. Given an adversary A’s private inputs IA and
output OA, A’s view of the protocol can be efficiently simulated.

Proof. We follow the simulation proof of semi-honest security characterized by
Goldreich [18]. Consider the case where A is a buyer. With the exception of A’s
private input and the result of Φ, all messages are encrypted with the seller’s
public key of an additively homomorphic encryption scheme E . It follows natu-
rally that a simulator could generate and send a series of random elements in Z

∗
n2

to A. The encryption scheme E is semantically secure, which implies that A is
unable to distinguish the random elements of Z∗

n2 from true encryptions. Thus,
A’s view of Φ is efficiently simulatable. Consider next the case where A is the
seller. A sees only the final message ES(pi), which is the output of the protocol.
Thus, OA = ES(pi) can be efficiently simulated by encrypting the final result pi

with the seller’s public key (known to the seller/simulator) to get ES(pi). Thus,
Φ does not reveal any additional information to A through the intermediary
messages.

Lemma 3. (Basic Structure: Computation) Φ stores sufficient information to
support the verification phase.

Proof. In the case of the seller S, the initial price pinitial as well as all internal
coin tosses used for encryption are stored. In the case of a buyer, the committed
(e.g. Pedersen’s scheme [27]) coefficients, all encrypted price updates, as well as
all internal coin tosses are stored.
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Lemma 4. (Basic Structure: Verification) An honest party in Φ can succeed in
verifying an accountable behavior while revealing only that information in β.

Proof. Let TΦ represent the entire protocol transcript. Consider the case where
an honest buyer bl wishes to demonstrate accountable behavior. In this case,
all intermediate prices pi are revealed. A verifier uses the internal coin tosses of
bl to reconstruct ES(μbl(pi)). For each committed coefficient cl, we reconstruct
ES(μbl(pi)) ∈ TΦ by computing Πt

j=1ES(cl)pi using the internal coin tosses of
bl. The encryptions of ES(μbl(pi)) will have identical representations in Z

∗
n2 , as

they were generated with the same randomness. Thus, the encrypted elements
can be compared bitwise for equality. If the price updates of bl ∈ TΦ match
the reconstructed values, bl demonstrates accountable behavior. Consider the
case of the seller S. A seller needs to demonstrate that the final decrypted price
pr = DS(ES(pr)) in the final round is equal to the reported final price p∗

r . Any
verifier can compute a seller verification value VS = ES(R2 ·(R1−pr)) = (ES(pr)·
ES(−R1))R2 , where R1, R2 are chosen uniformly at random from Zn, and ask S
to decrypt the value. If R2 · (R1 − pr) = R2 · (R1 − p∗

r), the seller demonstrates
accountable behavior. Each buyer signs ES(pr) to prevent a dishonest buyer
from recanting in order to falsely implicate an honest seller.

Theorem 3. Φ satisfies the sound verification phase.

Proof. Consider the case of a malicious buyer bm. If any of bm’s price updates
were not computed using the committed coefficients of bm’s utility function, the
reconstructed encrypted update will not match the update in TΦ. Further, there
does not exist a series of coin tosses that allow bm to represent an altered update
ES(μ∗

bm
(pi)) as the actual update ES(μbm(pi)) ∈ TΦ, as this would prevent

deterministic decryption. Thus, no malicious buyer bm can forge a legitimate
verification. In the case of a malicious seller Sm, the blinded value of pr prevents
Sm from constructing a response V ′

S �= VS such that some p∗
r can be reported in

lieu of the actual equilibrium price pr.

Theorem 4. Basic Structure (buyer). Let Φ represent Protocol 5.1 for the
Walrasian Auction problem. Assuming an honest majority, an honest buyer can
be verified by any honest party (including an independent verifier) other than the
seller.

Proof. The verifier is provided with the commitment of coefficients by all buyers
(with the majority agreeing). The buyer bl being verified provides their input and
output values of each round; the following buyer bl+1 also provides their input
for each round. bl also provides the random value used in encryption during each
round. The verifier can then duplicate the calculations of bl, ensuring that the
output of each round is consistent with the committed coefficients. If not, bl is
dishonest.

If the output reported by bl does not match the input reported by bl+1, then
either bl is dishonest, or bl+1 is reporting an incorrect value to the verifier. In
the latter case, bl+1 can be required to verify, if it succeeds, then bl is dishonest.
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Theorem 5. Sound Verification (buyer). A rational malicious buyer bl can-
not fabricate verification provided bl+1 is honest.

Proof. If bl+1 correctly reports the value received from bl, then bl must provide
the same value to the verifier, and this must be the value generated from bl’s
input. Generating this input from the output violates the assumption that the
encryption is semantically secure. If bl uses an incorrect input in the protocol
(thus generating a matching output, but not following the protocol), the actual
value and thus the impact on the outcome is completely unpredictable due to
the security of the encryption, violating the assumption of a rational party.

Lemma 5. Φ computes the equilibrium value of the Walrasian Auction model
and stores sufficient information for verification to occur.

Proof. Note that given the set V = {ES(pinitial), ES(winitial)} and the seller S’s
private decryption key DS , the entire protocol can be executed by a participating-
party. By revealing DS , the seller only exposes the verification set V and no other
private data. Given this, the participating-party can verify the correctness of the
output of Φ by retrieving the demand xi −xp from the remaining buyers through
a trivial protocol (where xp is the demand of the participating-party performing
the verification). The participating-party is thus able to execute Φ to verify the
correctness of the equilibrium price p∗.

Theorem 6. Accountability (seller). A rational seller S will not behave dis-
honestly in Φ.

Proof. This follows from the proof of Theorem 1, as the seller’s input has no
effect on the final equilibrium price.

Given the previous two lemma’s, we can conclude that Φ satisfies the Basic
Structure condition.

Theorem 7. Sound Verification. The verification phase of Φ cannot be fab-
ricated by a malicious party.

Proof. At the beginning of Φ, the seller S distributes the set V , where V =
{ES(pinitial), ES(winitial)} to all buyers b ∈ B. It follows naturally that once
this commitment is made, the seller is unable to alter the commitments. Should
the seller provide an erroneous decryption key D∗

S �= DS , the commitments will
decrypt to values p∗

initial �= pinitial and w∗
initial �= winitial which defeats the

seller’s intention to fabricate the verification. Thus, we can conclude that the
seller cannot succeed in fabricating the result of the verification process.

With this, we can conclude that our protocol is secure under the AC-framework,
thus enabling malicious behaviour to be caught and contractual incentives put
into place to ensure that semi-honest behavior is incentive compatible.
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Abstract. Social, technical and business connections can all give rise to
security risks. These risks can be substantial when individual compro-
mises occur in combinations, and difficult to predict when some connec-
tions are not easily observed. A significant and relevant challenge is to
predict these risks using only locally-derivable information.

We illustrate by example that this challenge can be met if some
general topological features of the connection network are known. By
simulating an attack propagation on two large real-world networks, we
identify structural regularities in the resulting loss distributions, from
which we can relate various measures of a network’s risks to its topol-
ogy. While deriving these formulae requires knowing or approximating
the connective structure of the network, applying them requires only
locally-derivable information.

On the theoretical side, we show that our risk-estimating method-
ology gives good approximations on randomly-generated scale-free net-
works with parameters approximating those in our study. Since many
real-world networks are formed through preferential attachment mecha-
nisms that yield similar scale-free topologies, we expect this methodol-
ogy to have a wider range of applications to risk management whenever
a large number of connections is involved.

Keywords: Networks · Security · Topology · Internet · Cyber-insurance

1 Introduction

Networks arise from many different type of real world connections. Computers,
for example, are connected by physical and logical links; businesses provide ser-
vices to one another; and individuals make friends and acquaintances encompass-
ing various implicit levels of trust. While these networks can be very beneficial,
their members may also increase their exposure to risks through participation.
For example, phishing attacks against individuals on Facebook leverage the fact
c© International Financial Cryptography Association 2014
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that you are more likely to click on a link that originates from a friend. Such
attacks leverage the existing trust relation represented by the connections in the
social-networking platform. Online social networks are especially vulnerable to
this type of attack, because the information accessible to our connections can be
collected and used in subsequent attacks.

Businesses and organizations may increase their risk exposure from networks
too. For example, Autonomous Systems (ASs) controlled by Internet Service
Providers (ISPs) routinely form peering relationships in which they agree to
provide transit service to their peers’ customers. These connections enable each
ISP to provide better service to its customers, but the connections also entail
added risk in case one of their peers’ customers is subject to a Denial of Service
(DoS) attack. This was exactly the case when Spamhaus, a major player in
the network security business, received an enormous DoS attack that affected
the upstream ISPs providing Internet access to the company [1]. Fortunately,
Spamhaus was able to combat this attack with the help of the ISPs.

Due to the ubiquity and magnitude of risks related to participation in
networks, especially computer networks, businesses have become increasingly inter-
ested in the availability of insurance policies to mitigate against such risks. Unfor-
tunately, the emergence of a market for cyber-insurance over the last decade has
been painfully slow, motivating calls for a better understanding of risk propagation
in networks [2].

To understand the nature of these types of risks, we need to understand
both the risk propagation mechanism that affects two connected entities, and
the topological structure of the connective network. For many networks, this
latter problem is quite challenging. To give a sense of the complexity from an
insurer’s perspective, suppose that an insurer wants to provide insurance cover-
age to a subset of the nodes within a network, covering all risks that arise within
this network. She may obtain data from all the nodes in the subset including
connections between these nodes. However, because the risk exposure includes
connections outside this subnetwork, in order to calculate the insurance premi-
ums, an insurer would have to know the topology of a much larger part of the
network [3]. This is obviously a very challenging task in practice, as the insurer
would have to collect risk assessment data regarding entities to which she has
no business connection at all.

Our goal in this paper is to find general rules for calculating the risk expo-
sure of sets of nodes within a connected system, that can apply to a wide-range
of networks that emerge in practice. To accomplish this goal, we analyze the
topological structure of two independent real-world networks – one based on
the business relationships between the Internet’s autonomous systems, and the
other based on a subnetwork of the Facebook friendship network. We also gener-
ate random scale-free networks with evolutionary parameters set to approximate
these real-world networks. Finally, we simulate propagation attacks on each net-
work and analyze the resulting loss distributions. We find structural regularities
that apply to all four networks and that can be used to predict the risk very
well. Moreover, we find ways to generate the parameters for these regularities by
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only using data collected from small samples of the network. This implies that
these results can be applied in contexts with little information, as long as the
network in question has similar scale-free properties to the networks examined
in our study.

The rest of the paper is organized as follows. In Sect. 2, we review related
work. In Sect. 3, we describe the network risk propagation model, the two real-
world networks, and the methodology used in our analysis. Section 4 contains
numerical illustrations and results. We discuss these results in Sect. 5. Finally,
we conclude in Sect. 6.

2 Related Work

We review related work in the areas of interdependent security, scale-free net-
works, and cyber-insurance. Interdependent security literature addresses ways in
which risks propagate within a network; and our risk propagation model is taken
from this literature. We use randomly-generated scale-free networks – in addition
to real networks – to validate our structural formulae. Finally, cyber-insurance
serves as a key motivation for our goal of understanding the risk portfolio of
networks in general.

Interdependent Security. The prevalence of risk correlation in network sys-
tems can be extended to include a better understanding of the underlying inter-
dependent nature of networks. That is, the mere vulnerability of a large number
of systems to a particular attack is less significant if an attacker cannot easily
execute a sufficiently broad attack and/or propagation is limited. Interdepen-
dence has been considered in different ways in the academic literature [4]. Var-
ian, for example, studied security compromises that result from the failure of
independently-owned systems to contribute to an overall prevention objective
(i.e., a public good) [5]. In this model, security compromises are often the result
of misaligned incentives. Grossklags et al. extend this work to allow for invest-
ments in system recovery (i.e., self-insurance) and find that it can serve as a
viable investment strategy to sidestep such coordination failures [6–8]. However,
the availability of system recovery will further undermine incentives for collec-
tive security investments. Johnson et al. add the availability of cyber-insurance
to this modeling framework, and identify solution spaces in which these different
investment approaches may be used as bundled security strategies [9]. However,
due to the fact that those models capture primarily two security outcomes (i.e.,
everybody is compromised, or nobody is compromised), they can only serve as
approximate guidance for realistic insurance models.

A second group of economic models derives equilibrium strategies for the par-
titioning of a network in order to contain a propagation. For example, the models
by Aspnes et al. as well as Moscibroda et al. would be applicable to the study
of loss distributions, however, several simplifying assumptions included in those
models would limit the generality of the results [10,11]. Those limitations include
the assumption that every infected node deterministically infects all unprotected
neighbors.
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A third class of propagation models is the class of epidemic models, which
describe how a virus spreads or extinguishes in a network. The results of Kephart
and White [12] are the closest to our analysis. They study one of the simplest of
the standard epidemic models, the susceptible-infected-susceptible (SIS) model,
using various classes of networks. For Erdős-Rényi random graphs, they approx-
imate both the expected value and the variance of the number of infected nodes
using formulae. For the more realistic hierarchical network model, they show
that the expected number of infected nodes does not increase with the size of
the graph. This indicates that, even though variance is typically very high in this
case, catastrophic events are unlikely as the magnitude of losses is low. Pastor-
Satorras and Vespignani analyze real data from computer virus infections in
order to define a dynamical SIS model for epidemic spreading in scale-free net-
works [13]. Egúıluz and Klemm study the spreading of viruses in scale-free net-
works with large clustering coefficient and degree correlation, which they model
as highly clustered scale-free graphs [14]. Pastor-Satorras and Vespignani study
epidemic dynamics in finite-size scale-free networks, and show that, even for
relatively small networks, the epidemic threshold is much smaller than that of
homogeneous systems [15].

Finally, a popular approach to model interdependent risk is taken by Kun-
reuther and Heal, and forms the basis for our analysis [16–18]. The basic premise
of this work is to separately consider the impact of direct attacks and propa-
gated attacks. We explain the propagation details of this model in Sect. 3.1. The
model has been generalized to consider distributions of attack probabilities [19]
and strategic attackers [20]. Similarly, Ogut et al. proposed a related model that
allows for continuous (rather than binary) security investments [21]. Our analy-
sis draws from these extensions by implicitly considering a continuum of risk
parameters to study the distribution of outcomes.

Scale-Free Networks. Many real-world networks are believed to be scale-free,
including social, financial, and biological networks, and the Internet at the AS
level [22]. A scale-free network’s degree distribution is a scale-free power law
distribution, which is generally attributed to robust self-organizing phenomena.
Recent interest in scale-free networks started with [23], in which the Barabási-
Albert (BA) model is introduced for generating random scale-free networks.
The BA model is based on two concepts: network growth and preferential node
attachment. We discuss this model in detail in Sect. 4. Li et al. introduce a new,
mathematically more precise, and structural definition of “scale-free” graphs [24].
Their approach promises to offer rigorous and quantitative alternatives to many
sensational qualitative claims found in the literature. The networks discussed in
our paper satisfy this definition as well.

One important questions addressed by our paper is whether small samples
can be used to predict systematic risks in scale-free networks. Stumpf et al. show
that the degree distributions of randomly sampled subnets of scale-free networks
are not scale-free [25]; thus, subnet data cannot be näıvely extrapolated to every
property of the entire network.
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Cyber-Insurance. A key objective of our work is to allow for a better assess-
ment of the insurability of a networked resource. A functioning market for cyber-
insurance and a good understanding of the insurability of networked resources
both matter, because they signal that stakeholders are able to manage mod-
ern threats [26,27]. However, the market for cyber-insurance is developing at a
frustratingly slow pace due to several key challenges [2].

First, a group of defenders might appear as a particularly appealing target
to an attacker because of a high correlation in their risk profiles. For example,
even though systems may be independently owned and administrated, they may
exhibit similar software configurations leading to so-called monoculture risks
[28,29]. Böhme and Kataria study the impact of correlation which is readily
observable for an insurer and found that the resulting insurance premiums to
make the risks insurable would likely endanger a market for cyber-insurance
[30]. Chen et al. study correlated risks by endogenizing node failure distribution
and node correlation distribution [31]. In their work, they allow for different risk
mitigation measures, but do not consider the impact on the insurability of risks,
different cases of interdependence, or whether an insurer would be able to collect
the necessary data to infer a distribution of failures (i.e., sampling).

Related work on insurance pricing models also informs our analysis of net-
work insurability. Basic pricing literature points to some simple premium cal-
culation principles [32,33]. The simplest premium calculation principle is the
net premium principle (or pure risk premium), which gives the risk premium
as exactly the expected loss. This principle is commonly used in the literature
[32], because actuaries assume that there is no risk if enough independent and
identically-distributed policies are sold. Obviously, the pure risk premium with-
out any (direct or indirect) loading is impractical, as it leads to unacceptably
high probabilities of ruin. The expected value premium principle, the variance
principle, and the standard deviation principle all build on the net premium
principle by adding a constant fraction of the relevant metric (expected value,
variance, or standard deviation, respectively) to the premium. The quantile pre-
mium for a risk threshold ε is the premium required to ensure that the proba-
bility of ruin is at most ε. More modern treatments of insurance often employ
the capital asset pricing model, in which additional time-relative considerations
such as re-investment of premiums in a risk-free market are considered [34]. As
our network model is not time-sensitive, we do not use capital asset pricing, but
rather rely primarily on the more intuitive quantile premium principle.

3 Network Risk Model and Methodology

In this section, we describe our model and methodology. We begin by intro-
ducing the network risk model grounding our analysis. Then, we introduce two
large real-world networks and two additional generated networks. We proceed
to discuss two methods for selecting subsets of nodes from these networks; and
finally, we address computational aspects of the node loss distributions.
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3.1 Network Risk Model

Our risk propagation model builds on the framework for interdependent secu-
rity games introduced by Kunreuther and Heal [16,17]. This model gives loss
probabilities for each node in a network based on a simple risk transfer process.

Risk Propagation. Consider a network of N nodes. Each node is subject to
some direct risk of compromise from outside the network. Node i is directly
compromised with probability pi. If node i becomes directly compromised, this
failure can propagate at most one hop within the network to i’s direct neigh-
bors. If node i is compromised, this failure propagates indirectly to node j with
probability qij . A node that is not directly compromised, but only indirectly
compromised, cannot propagate failure to its neighboring nodes.

Loss Outcomes. A loss outcome is an event in which some nodes are com-
promised and others are not. This loss outcome can be specified by listing the
compromised nodes; and a complete distribution over loss outcomes is a prob-
ability distribution over the subsets of nodes. To make the analysis tractable,
we focus on the projection of this distribution onto the number of compromised
nodes.

To make things more formal, let N be the number of nodes, and suppose
that the model is in a fixed configuration with given probabilities pi and qij
for i, j = 1, . . . N . Let TL be the random variable which counts the number
of compromised nodes in an outcome of the model. Then, a loss distribution
(over the number of compromised nodes) is a set of N + 1 probabilities giving
Pr[TL = k] for k = 0, . . . , N .

3.2 Real-World Networks

Network of Autonomous Systems. In the context of the Internet, an
autonomous system (AS) is a collection of IP routing prefixes having a clearly-
defined routing policy. By analyzing these routing policies, it is possible to con-
struct a network in which each autonomous system is a node, and edges of various
types correspond to traffic-sharing relationships between ASes.

One focus of our study is the network whose nodes consists of autonomous
systems, and whose edges consist of business relationships between them. The
graph is obtained from the Cooperative Association for Internet Data Analysis
(CAIDA) [35]. This network consists of 41 thousand nodes and 121 thousand
links, which results in an average degree of 5.9.

It can be useful to associate autonomous systems with Internet Service
Providers (ISPs), although the comparison is not perfect, as some autonomous
systems are controlled by more than one entity, and some ISPs control multiple
autonomous systems. Nevertheless, the AS network structure has been studied
by many researchers, largely because it serves as a good approximation of the
connective architecture of the Internet at the organizational level.
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Network of Facebook Friends. Facebook is a social-networking platform
that was founded in 2004, and it is the largest of its kind today. A second focus
of our study is the network whose nodes consist of an anonymized collection
of 1.2 million Facebook users, where the edges of the network represent friend
relationships between these users [36,37]. The sample was constructed in a way
to ensure that it is an approximately uniform sample of the entire network. There
are a total of 29.8 million edges between the 1.2 million users, which results in
an average degree of 50.

Random Scale-Free Networks. To frame our network analysis in the
greatest possible generality, we also study randomly-generated scale-free net-
works whose parameters are chosen to approximate the two real-world networks
described above. Prior work has established that many real-world networks have
scale-free properties, meaning roughly that their degree distributions satisfy a
power law. The two real-world networks under our consideration can be easily
shown to have this property. Our generated networks behave in some ways sim-
ilar to the real-world networks, although they differ in their construction and in
a few key measures. We use these generated networks as additional validation
tools for testing the feasibility of our risk prediction formulae.

To generate random networks, we use the Barabási-Albert (BA) model, which
is based on two concepts: network growth and preferential attachment [23]. Net-
work growth means that the number of nodes increases over time, while preferen-
tial attachment means that when a node is added to the network, it is more likely
to connect to nodes that already have a lot of connections. More formally, given
parameters N , m0, and m, the BA model generates random scale-free networks
as follows. First, an initial clique is created by connecting the first m0 nodes to
each other. Then, the remaining N −m0 nodes are added to the network one by
one. Each new node is connected to m existing nodes, each of which is chosen
with a probability proportional to its degree.

3.3 Subsets of Nodes

We study the risk of node subsets in two contexts. First, we assume that, in
practice, we are able to measure the risk of a small number of nodes. For example,
we can use incident reports to this end, which originate from only these nodes.
Second, based on the measured risks of small subsets of nodes, we aim to reliably
predict the risk of larger subsets of nodes, including the whole network.1 We
consider two types of node subsets: random samples and geographical subsets.

We focus primarily on uniform random samples of nodes. These types of
samples can model voluntary incident reports originating from a few nodes, or
they can model the selected clients of an insurance provider. In both cases, we
1 Note that we intentionally do not refer to these subsets of nodes as subnetworks.

The reason for this distinction is that the term subnetwork would suggest that the
links inside the subset inherently play a more important role than links connecting
to the outside, or that these subsets are isolated from the rest of the network.
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assume that the underlying network structure does not affect the node selection.
Consequently, we choose a random sample of n nodes in a very straightforward
way: we draw n nodes without replacement from the set of all nodes, in such a
way that each node has the same probability of being drawn.

Unfortunately, random sampling does not model every scenario. For example,
companies that are located in the same country, or persons with some common
attribute, are more likely to choose the same insurer. In the autonomous systems
network, there is a country identifier for each node. We use these identifiers to
select country subsets, which consist of all the nodes from a single country. In
the Facebook network, there are no such attributes, as the dataset has been
thoroughly anonymized. Thus, we restrict our analysis to random samples in the
Facebook network.

3.4 Computing the Loss Distributions

We determine the probability that a given number of nodes is lost by count-
ing the number of losses in an outcome of the propagation model many times,
and continuing until the probability for each such number approaches a fixed
limit.

More formally, an empirical loss distribution F̂TL can be efficiently computed
as follows:

– Generate n independent loss outcomes TL1, . . . , TLn, each using the following
simulation:
• For each node i, decide randomly whether node i is directly compromised

(or not) according to pi.
• For each directly compromised node i, iterate over all of its non-compromised

neighbors. For each non-compromised neighbor j, decide randomly whether
there is a propagation from node i to node j according to qij .

• The loss outcome is the number of compromised nodes.
– Compute the empirical loss distribution as

F̂TL(k) = the number of outcomes in which at most k nodes are compromised
n .

While prior work has established that directly computing the true distribu-
tion FTL(k) for an arbitrary network is NP-hard [3], in the examples we have
studied, these estimators converge efficiently for both the real-world networks
and their theoretical approximations. Once we know that our simulations con-
verge, the strong law of large numbers then tells us that our results arbitrarily
approximate the true distribution.

We also compute the loss distributions of subsets of nodes. In this case,
we simulate the propagation model for the entire network, but only count the
compromised nodes in the subset. Note that this differs from computing the loss
distribution of the subnetwork induced by the subset, which would incorrectly
assume that the given subset is isolated from the rest of the network.
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4 Analysis and Results

In this section, we analyze each of the two real-world networks (denoted CAIDA
and Facebook, respectively) and the random scale-free networks described in the
previous section (denoted BA CAIDA and BA Facebook, respectively). We simu-
late the loss distribution for each network using the Kunreuther-Heal model with
pi = 0.005 for each i, and qij = 0.1 for each i and j. In [38] it is shown that the
loss distributions retain similar structural properties when varying homogeneous
parameters, with the differences being quantitative rather than qualitative.

We provide a variety of graphs for numerical illustration to facilitate maxi-
mum understanding of risks, but we concentrate our attention in the discussion
on features most relevant to insurance. We focus on the right hand side of the
distribution which indicates the probability of realizing large catastrophic net-
work losses, and for the values of parameters in the charts we concentrate on the
safety loading parameter which shows how much additional capital must be set
aside by the insurer to cover a maximum number of compromised nodes up to a
certain tolerable amount of risk.

We use the binomial distribution as a baseline compared to the loss distri-
butions, for the purpose of measuring the risk of networks. The binomial dis-
tribution serves as a good baseline because this distribution has no correlation
between loss events, and consequently no non-diversifiable risk. Non-diversifiable
risks are caused by correlated events, where the probability of some nodes being
compromised depends on whether another set of nodes has been compromised.
The binomial distribution appears as the loss distribution of a network in which
there are no connections, because in such a system, loss events are independent.
For a fair comparison, we compare each network’s or subset’s loss distribution to
the binomial distribution that has the same size and the same expected number
of compromised nodes.

4.1 Overall Network Loss Distributions

We begin with studying the loss distributions for the complete networks. These
distributions can be seen in Fig. 1. We find that, for every network, the loss
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Fig. 1. Loss distribution of the whole network (solid red) compared to the binomial
distribution that has the same expected number of compromised nodes (dotted green)
(Color figure online).
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Table 1. Statistics of the loss distributions compared to binomial distributions

CAIDA BA CAIDA Facebook BA Facebook

Actual Binom. Actual Binom. Actual Binom. Actual Binom.

Mean 319 319 322 322 34149 34149 34506 34506

Standard deviation 67.3 17.8 45.9 17.9 723.1 182.1 794.5 183.0

Quantile Q(0.999) 740 375 508 379 36414 34712 37487 35071

Safety loading for 0.999 421 56 186 57 2265 563 2981 565

Variance-to-mean ratio 14.23 0.993 6.53 0.992 15.31 0.971 18.29 0.971

distribution differs substantially from the binomial distribution with the same
mean. Recall that a binomial distribution would arise if the propagation proba-
bilities were all zero, so that risks to individual nodes were independent.

Table 1 compares the networks’ loss distributions to the binomial distribu-
tions having the same expected values. For every network, we see a substantial
risk that a large number of nodes is compromised, compared to the binomial dis-
tributions. This indicates that the individual node compromise events are highly
non-independent, resulting in correlations that are not non-negligible even for
large networks. It is also interesting to note that the randomly-generated scale-
free network’s statistics are surprisingly close to the two real-world networks,
especially for the Facebook network.

To illustrate the effect of this additional risk, consider an insurance premium
for the Facebook network based on the näıve assumption of independent events.2

Suppose that the insurance provider would like to keep her probability of ruin
(i.e. the probability that the number of compromised nodes exceeds its expected
value by more than her safety loading) below 0.1%. Thus, she wants to compute
the insurance premium based on the quantile Q(0.999), which means that her
safety loading should be 2265. However, if she uses the binomial distribution
instead, her safety loading is only 563. This has very severe consequences, as her
probability of ruin with this safety loading is two orders of magnitude higher
at 30.6%.

4.2 Loss Distributions of Subsets of Nodes

In the following, we study characteristic properties of our distributions based
on subsets of varying size. Recall that we are not computing loss distributions
on induced subnets, but are rather considering how risk propagation from the
entire network affects a subset of nodes.

Number of Compromised Nodes Versus Number of Nodes. We begin
our analysis with the first moment of the loss distribution, the expected value of
2 As we will later show, this assumption could be wrongly justified by the loss distri-

bution measured on small sample.
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Table 2. Measured constants for the networks

CAIDA BA CAIDA Facebook BA Facebook

Average risk constant C = 0.0077 0.0078 0.0287 0.0290

Dispersion constant A = 0.000322 0.000134 0.000012 0.000015
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Fig. 2. Expected number of compromised nodes as a function of the number of nodes
for random samples (red +) and countries (green x), and trendlines based on the
formulae (solid blue line) (Color figure online).

the number of compromised nodes. For the binomial distribution with parameter
C, the expected number of compromised nodes is a linear function of the number
of nodes, with linear slope C. In Fig. 2, we analyze the relationship between
the expected number of compromised nodes and the number of nodes in the
subset. We find that if the nodes are chosen either as a random sample, or on
a per country basis, then there is still a direct linear relationship similar to the
relationship for the binomial distribution with the same mean. In particular, the
ratio between the number of compromised nodes and the number of nodes is a
constant, denoted by C, whose value for each network can be found in Table 2.
We refer to C as the average risk constant. Formally,

μloss(n) = Cn . (1)

For random samples, there is very little deviation from this constant in every
network. This shows that the average risk of random samples is an unbiased
estimator of the average risk of the entire network. Recall that an unbiased
estimator is an estimator whose expected value is equal to the parameter that
it estimates.

For countries, however, there is some variation in average risk. This variation
depends primarily on the average degree of the nodes in the country, and it is not
correlated to the number of nodes in the country. This can be explained by the
close relationship between a node’s degree and risk due to indirect compromise.

Variance in Number of Compromised Nodes Versus Number of Nodes.
The variance of the binomial distribution with probability C and size n is
σ2
binomial = C(1 − C)n. We analyze the relationship between the variance in

the number of compromised nodes and the number of nodes in the subset using
Fig. 3. We find that for random samples, variance is a quadratic function of the
sample size. The function is given by



428 A. Laszka et al.

0.1

1

10

100

1000

10000

100
10

100

1000

10000

100000

1e+06

1000 10000 100 1000 10000 3000 30000 300000 3000 30000 300000

CAIDA BA CAIDA Facebook BA Facebook

Fig. 3. Variance in the number of compromised nodes as a function of the number
of nodes for random samples (red +), countries (green x), and trendlines for random
samples (solid blue line) and for countries (dotted blue line) based on the formulae
(Colour figure online).

σ2
loss(n) = ACn2 + C(1 − C)n , (2)

where C is the average risk constant defined above, and A is another constant,
which we refer to subsequently as the dispersion constant, whose value for each
network can be found in Table 2.

Notice that the right hand side of Eq. (2) consists of two terms, and that the
second term is equal to the variance of a binomial distribution with the same
mean. This means that the variance of a random sample can be decomposed
into two parts: a quadratic term and the variance of a binomial distribution.
The second one is the inherent variance arising from having multiple nodes in
the sample. This is a baseline variance, which we would see if the nodes were
independent. Since, for risk-mitigation, this is the optimal case where all the
risk is diversifiable, we will refer to this as the diversifiable part of the variance.
The first part, on the other hand, is an extra quadratic term, which is a result
of the risk correlations caused by the network structure. Hence, we will refer to
this as the non-diversifiable part of the variance. Formally,

σ2
loss(n) = ACn2

︸ ︷︷ ︸
non-diversifiable risk

+ σ2
binomial(n)

︸ ︷︷ ︸
diversifiable risk

. (3)

The relationship between variance in the number of compromised nodes and
the number of nodes in country samples does not follow the same trend. These
relationships are more noisy, and are better approximated by a power law of the
form

DnE , (4)

where
D ≈ 0.0022971091 and E ≈ 1.3504067782.

Variance-to-Mean Ratio. The variance-to-mean ratio (VMR) (also called the
index of dispersion) is a normalized measure of the dispersion (i.e., variability
or spread) of a probability distribution. Normalization means that the measure
is independent of the expected value for many distributions (e.g., binomial or
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Fig. 4. Variance-to-mean ratio as a function of the number of nodes for random samples
(red +), countries (green x), and trendlines for random samples (solid blue line) and
for countries (dotted blue line) based on the formulae (Colour figure online).

negative binomial distributions), and even independent of any parameters for
some distributions (e.g., Poisson distribution). The variance-to-mean ratio of
the binomial distribution with probability parameter C is VMRbinomial = 1−C,
regardless of the size of the distribution.

In Fig. 4, we analyze the relationship between the variance-to-mean ratio and
the number of nodes in the subset. We find that for random samples, the rela-
tionship is affine (but non-constant) with slope A and intercept 1−C. Formally,
the variance-to-mean ratio for random samples of size n is given by

VMRloss(n) = An + 1 − C (5)
= An︸︷︷︸

non-diversifiable risk

+ VMRbinomial︸ ︷︷ ︸
diversifiable risk

, (6)

where C and A are the average risk constant and the dispersion constant, respec-
tively.

For country samples, the relationship between VMR and the number of nodes
in the country is again noisy and the relationship is again best approximated by
a power function. Formally, the variance-to-mean ratio for countries of n nodes
is approximated by

D

C
nE−1 , (7)

where C is the average risk constant, and D, E are the constants defined in
Sect. 4.2 above.

4.3 Quantifying Insurability

Safety Loading. Let μ be the expected number of compromised nodes, and
let Q(0.999) denote the number of compromised nodes such that with 99.9%
probability, fewer or equal losses occur. Recall that the safety loading Q(0.999)−
μ is the minimum amount of excess capital required to ensure that the probability
of ruin is at most 0.001. Thus, safety loading is a good measure of how expensive
a subset of nodes is to insure.
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Fig. 5. Safety loading (for 0.999) as a function of size for random samples (red +) and
for binomial distributions having the same average risk (blue x) (Colour figure online).

2.5

5

10

100 1000 10000 3000 30000 300000 3000 30000 300000

CAIDA BA CAIDA Facebook BA Facebook

Fig. 6. Ratio of safety loading (for 0.999) to standard deviation for random samples
(red +) and countries (green x) (Colour figure online).

Figure 5 shows the value of safety loading as a function of the number of
nodes in a subset of the network. Note that the safety loading increases, since
the larger the subset, the more expensive it is to insure.

Safety Loading Versus Standard Deviation. In Fig. 6, we analyze the rela-
tionship between the number of nodes in the subset and the ratio of safety
loading to standard deviation. The results suggest that we can get a reasonable
approximation of safety loading by considering only the standard deviation and
multiplying it by a constant.

In the CAIDA network, the multiplicative constant is between 4 and 6.5 for
all random samples and it is between 5 and 10 for countries. The average ratio
is about 4.9 for random samples and about 6.5 for countries. In the Facebook
network, the ratio is less noisy, the constant is between 3.1 and 3.3 for all samples
sizes.

Since standard deviation is simply the square root of variance, its formula
can be obtained from Eq. (2) and is given by

σloss(n) =
√

ACn2 + C(1 − C)n , (8)

and hence we can estimate safety loading by multiplying this value by an
experimentally-determined constant K (that also depends on the maximum tol-
erable probability of ruin).
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Fig. 7. Relative safety loading (for 0.999) as a function of size for random samples (red
+) and for binomial distributions having the same average risk (blue x) (Colour figure
online).

The safety loading can thus be estimated by the formula:

[Q − μ]loss(n) = K
√

ACn2 + C(1 − C)n . (9)

Relative Safety Loading. Relative safety loading is defined as the ratio of
safety loading to the expected number of compromised nodes. Relative safety
loading is a normalized measure of how expensive the subset is to insure. Figure 7
compares the relative safety loading for 0.999 of random samples and of binomial
distributions.

We can see that the relative safety loading for binomial distributions is
steadily decreasing. For random samples, on the other hand, relative safety load-
ing starts to decrease at the same rate as for the binomial distribution, but the
curve flattens out after the sample size reaches about 2.5 % of the complete
network. The reason is that for smaller sample sizes, the dispersion of the loss
distributions is dominated and determined by the diversifiable terms; however,
as the sample size increases, the non-diversifiable terms – which have higher
exponents – become relatively larger and cause substantial “extra” risk.

5 Discussion

The goal of our analysis is to show how to estimate risk in large networks, using
information from small subsets of the network. We focused on cyber-insurance
as the primary application, but our results can be applied to risk assessment
and mitigation in general. While we analyzed only two real-world networks, the
ubiquity of scale-free properties in many networks suggests our results yield
additional applications.

We confirm the results of [3], which showed that the systematic risk estimated
from even moderately-sized samples in scale-free networks is substantially lower
than that of the complete network; so that näıve extrapolation underestimates
the network’s risk. In this paper, we study the problem in more detail for specific
networks and find structural regularities that can aid in predicting the risk of a
complete network (or larger subsets of it) from information that can be obtained
from smaller samples.
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Specifically, applying the formula for safety loading requires approximating
the constants C, A, and K in Eq. (9). The average risk constant C can be
approximated from a small number of random samples, because the average
risk in a random sample is an unbiased estimator of average risk in the whole
network. The dispersion constant A can be determined experimentally from a
small number of random samples using any two different sample sizes, since
it is the slope of the trendline for the variance-to-mean ratio as a function of
sample size. Finally, the constant K can also be estimated from a small number
of random samples because the ratio of safety loading to standard deviation is
roughly constant for all sample sizes. In summary, to estimate safety loading for
any desired number of nodes, first estimate C, A, and K using small random
samples, and then substitute these values into Eq. (9).

From a cyber-insurance provider’s point of view, our findings can be sum-
marized as follows. First, extreme care has to be taken when estimating the
systematic risk of networks. Learning a complete network’s topology is in prac-
tice impossible as this would require collecting data not only from the insured
nodes, but also from their neighbors, with whom the insurer has no business
relationship. Thus, one has to resort to predicting risk from small samples of
historical data, such as incident reports. We show that this is very challenging,
but nevertheless possible. Second, the insurer’s portfolio should be chosen as
close to a random sample as possible. For example, in the AS network example,
this means that the insurer should aim for a geographically diverse portfolio.

6 Conclusions and Future Work

Our goal in this paper was to identify general rules practitioners can use to better
estimate risks in networks. To achieve this goal, we used the connective struc-
ture of both real-world and randomly-generated scale-free networks to simulate
attacks in which risk propagates subsequently through connections. The real-
world networks – one involving social connections between users of Facebook,
and the other involving business connections between the Internet’s autonomous
systems – had a known structure, but could otherwise be considered somewhat
general representation of real-world networks. We identified structural regular-
ities in these distributions, that allowed us to give predicting formulae for a
variety of network risk measures; and we showed how to apply these formulae
to estimate several risk measures for a large network even when one has only
limited information about the network.

In this paper, our primary analysis of networks was limited to random sam-
ples. In future work, we intend to expand this study to other kinds of samples, for
example, breadth-first search or other forms of grouping similar to our country
samples. We would also like to expand our analysis to consider additional types
of real-world networks whose structure differs from the scale-free variety used in
our study. Finally, we intend to investigate the computability of additional risk
metrics for networks.
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9. Johnson, B., Böhme, R., Grossklags, J.: Security games with market insurance.
In: Baras, J.S., Katz, J., Altman, E. (eds.) GameSec 2011. LNCS, vol. 7037, pp.
117–130. Springer, Heidelberg (2011)

10. Aspnes, J., Chang, K., Yampolskiy, A.: Inoculation strategies for victims of viruses
and the sum-of-squares partition problem. J. Comput. Syst. Sci. 72(6), 1077–1093
(2006)

11. Moscibroda, T., Schmid, S., Wattenhofer, R.: When selfish meets evil: Byzantine
players in a virus inoculation game. In: Proceedings of the Twenty-Fifth Annual
ACM Symposium on Principles of Distributed Computing, pp. 35–44 (2006)

12. Kephart, J., White, S.: Directed-graph epidemiological models of computer viruses.
In: Proceedings of the IEEE Computer Society Symposium on Research in Security
and Privacy, pp. 343–359 (1991)

13. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks.
Phys. Rev. Lett. 86(14), 3200–3203 (2001)
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Abstract. The Bitcoin cryptocurrency records its transactions in a pub-
lic log called the blockchain. Its security rests critically on the dis-
tributed protocol that maintains the blockchain, run by participants
called miners. Conventional wisdom asserts that the mining protocol is
incentive-compatible and secure against colluding minority groups, that
is, it incentivizes miners to follow the protocol as prescribed.

We show that the Bitcoin mining protocol is not incentive-compatible.
We present an attack with which colluding miners obtain a revenue larger
than their fair share. This attack can have significant consequences for
Bitcoin: Rational miners will prefer to join the selfish miners, and the
colluding group will increase in size until it becomes a majority. At this
point, the Bitcoin system ceases to be a decentralized currency.

Unless certain assumptions are made, selfish mining may be feasible
for any group size of colluding miners. We propose a practical modifi-
cation to the Bitcoin protocol that protects Bitcoin in the general case.
It prohibits selfish mining by pools that command less than 1/4 of the
resources. This threshold is lower than the wrongly assumed 1/2 bound,
but better than the current reality where a group of any size can com-
promise the system.

1 Introduction

Bitcoin [23] is a cryptocurrency that has recently emerged as a popular medium
of exchange, with a rich and extensive ecosystem. The Bitcoin network runs at
over 42×1018 FLOPS [9], with a total market capitalization around 12 billion US
Dollars as of January 2014 [10]. Central to Bitcoin’s operation is a global, public
log, called the blockchain, that records all transactions between Bitcoin clients.
The security of the blockchain is established by a chain of cryptographic puzzles,
solved by a loosely-organized network of participants called miners. Each miner
that successfully solves a cryptopuzzle is allowed to record a set of transactions,
and to collect a reward in Bitcoins. The more mining power (resources) a miner
applies, the better are its chances to solve the puzzle first. This reward structure
provides an incentive for miners to contribute their resources to the system, and
is essential to the currency’s decentralized nature.
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The Bitcoin protocol requires a majority of the miners to be honest ; that
is, follow the Bitcoin protocol as prescribed. By construction, if a set of collud-
ing miners comes to command a majority of the mining power in the network,
the currency stops being decentralized and becomes controlled by the colluding
group. Such a group can, for example, prohibit certain transactions, or all of
them. It is, therefore, critical that the protocol be designed such that miners
have no incentive to form such large colluding groups.

Empirical evidence shows that Bitcoin miners behave strategically and form
pools. Specifically, because rewards are distributed at infrequent, random inter-
vals, miners form mining pools in order to decrease the variance of their income
rate. Within such pools, all members contribute to the solution of each cryptop-
uzzle, and share the rewards proportionally to their contributions. To the best
of our knowledge, such pools have been benign and followed the protocol so far.

Indeed, conventional wisdom has long asserted that the Bitcoin mining
protocol is equitable to its participants and secure against malfeasance by a
non-majority attacker (Sect. 7). Barring recently-explored Sybil attacks on trans-
action propagation [4], there were no known techniques by which a minority
of colluding miners could earn disproportionate benefits by deviating from the
protocol. Because the protocol was believed to reward miners strictly in propor-
tion to the ratio of the overall mining power they control, a miner in a large
pool was believed to earn the same revenue as it would in a small pool. Conse-
quently, if we ignore the fixed cost of pool operation and potential economies of
scale, there is no advantage for colluding miners to organize into ever-increasing
pools. Therefore, pool formation by honest rational miners poses no threat to the
system.

In this paper, we show that the conventional wisdom is wrong: the Bitcoin
mining protocol, as prescribed and implemented, is not incentive-compatible. We
describe a strategy that can be used by a minority pool to obtain more revenue
than the pool’s fair share, that is, more than its ratio of the total mining power.

The key idea behind this strategy, called Selfish Mining, is for a pool to
keep its discovered blocks private, thereby intentionally forking the chain. The
honest nodes continue to mine on the public chain, while the pool mines on its
own private branch. If the pool discovers more blocks, it develops a longer lead
on the public chain, and continues to keep these new blocks private. When the
public branch approaches the pool’s private branch in length, the selfish miners
reveal blocks from their private chain to the public.

This strategy leads honest miners that follow the Bitcoin protocol to waste
resources on mining cryptopuzzles that end up serving no purpose. Our analysis
demonstrates that, while both honest and selfish parties waste some resources,
the honest miners waste proportionally more, and the selfish pool’s rewards
exceed its share of the network’s mining power, conferring it a competitive advan-
tage and incentivizing rational miners to join the selfish mining pool.

We show that, above a certain threshold size, the revenue of a selfish pool
rises superlinearly with pool size above its revenue with the honest strategy.
This fact has critical implications for the resulting system dynamics. Once a
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selfish mining pool reaches the threshold, rational miners will preferentially join
selfish miners to reap the higher revenues compared to other pools. Such a selfish
mining pool can quickly grow towards a majority. If the pool tips the majority
threshold (due to the addition of malicious actors aimed at undermining the
system, rational actors wishing to usurp the currency, perhaps covertly, or due
to momentum in pool popularity), it can switch to a modified protocol that
ignores blocks generated outside the pool, to become the only creator of blocks
and reap all the mining revenue. A majority pool wishing to remain covert may
remain a benign monopolist, accepting blocks from third-parties on occasion to
provide the illusion of decentralization, while retaining the ability to reap full
revenue when needed, as well as the ability to launch double-expenditure attacks
against merchants. Either way, the decentralized nature of the currency will have
collapsed, and a single entity, the selfish pool manager, will control the system.

Since a selfish mining pool that exceeds threshold size poses a threat to the
Bitcoin system, we characterize how the threshold varies as a function of message
propagation speed in the network. We show that, for a mining pool with high
connectivity and good control on information flow, the threshold is close to zero.
This implies that, if less than 100% of the miners are honest, the system may not
be incentive compatible: The first selfish miner will earn proportionally higher
revenues than its honest counterparts, and the revenue of the selfish mining pool
will increase superlinearly with pool size.

We further show that the Bitcoin mining protocol will never be safe against
attacks by a selfish mining pool that commands more than 1/3 of the total
mining power of the network. Such a pool will always be able to collect mining
rewards that exceed its proportion of mining power, even if it loses every single
block race in the network. The resulting bound of 2/3 for the fraction of Bitcoin
mining power that needs to follow the honest protocol to ensure that the protocol
remains resistant to being gamed is substantially lower than the 50% figure
currently assumed, and difficult to achieve in practice. Finally, we suggest a
simple modification to the Bitcoin protocol that achieves a threshold of 1/4.
This change is backwards-compatible and progressive; that is, it can be adopted
by current clients with modest changes, does not require full adoption to provide
a benefit, and partial adoption will proportionally increase the threshold.

In summary, the contributions of this work are:

1. Introduction of the Selfish-Mine strategy, which demonstrates that Bitcoin
mining is not incentive compatible (Sect. 3).

2. Analysis of Selfish-Mine, and when it can benefit a pool (Sect. 4).
3. Analysis of majority-pool formation in face of selfish mining (Sect. 5).
4. A simple backward-compatible progressive modification to the Bitcoin proto-

col that would raise the threshold from zero to 1/4 (Sect. 6).

We are unaware of previous work that addresses the security of the blockchain.
We provide an overview of related work in Sect. 7, and discuss the implications
of our results in Sect. 8.
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2 Preliminaries

Bitcoin is a distributed, decentralized crypto-currency [6–8,23]. The users of Bit-
coin are called clients, each of whom can command accounts, known as addresses.
A client can send Bitcoins to another client by forming a transaction and com-
mitting it into a global append-only log called the blockchain. The blockchain
is maintained by a network of miners, which are compensated for their effort in
Bitcoins. Bitcoin transactions are protected with cryptographic techniques that
ensure only the rightful owner of a Bitcoin address can transfer funds from it.

The miners are in charge of recording the transactions in the blockchain,
which determines the ownership of Bitcoins. A client owns x Bitcoins at time t
if, in the prefix of the blockchain up to time t, the aggregate of transactions
involving that client’s address amounts to x. Miners only accept transactions if
their inputs are unspent.

2.1 Blockchain and Mining

The blockchain records the transactions in units of blocks. Each block includes
a unique ID, and the ID of the preceding block. The first block, dubbed the
genesis block, is defined as part of the protocol. A valid block contains a solution
to a cryptopuzzle involving the hash of the previous block, the hash of the
transactions in the current block, and a Bitcoin address which is to be credited
with a reward for solving the cryptopuzzle. This process is called Bitcoin mining,
and, by slight abuse of terminology, we refer to the creation of blocks as block
mining. The specific cryptopuzzle is a double-hash whose result has to be smaller
than a set value. The problem difficulty, set by this value, is dynamically adjusted
such that blocks are generated at an average rate of one every ten minutes.

Any miner may add a valid block to the chain by simply publishing it over
an overlay network to all other miners. If two miners create two blocks with
the same preceding block, the chain is forked into two branches, forming a tree.
Other miners may subsequently add new valid blocks to either branch. When a
miner tries to add a new block after an existing block, we say it mines on the
existing block. This existing block may be the head of a branch, in which case
we say the miner mines on the head of the branch, or simply on the branch.

The formation of branches is undesirable since the miners have to maintain a
globally-agreed totally ordered set of transactions. To resolve forks, the protocol
prescribes miners to adopt and mine on the longest chain.1 All miners add blocks
to the longest chain they know of, or the first one they heard of if there are
branches of equal length. This causes forked branches to be pruned; transactions
in pruned blocks are ignored, and may be resubmitted by clients.
1 The criterion is actually the most difficult chain in the block tree, i.e., the one that

required (in expectancy) the most mining power to create. To simplify presentation,
and because it is usually the case, we assume the set difficulty at the different
branches is the same, and so the longest chain is also the most difficult one.
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We note that block dissemination over the overlay network takes seconds,
whereas the average mining interval is 10 min. Accidental bifurcation is therefore
rare, and occurs on average once about every 60 blocks [12].

When a miner creates a block, it is compensated for its efforts with Bitcoins.
This compensation includes a per-transaction fee paid by the users whose trans-
actions are included, as well as an amount of new Bitcoins that did not exist
before.2

2.2 Pool Formation

The probability of mining a block is proportional to the computational resources
used for solving the associated cryptopuzzle. Due the nature of the mining
process, the interval between mining events exhibits high variance from the point
of view of a single miner. A single home miner using a dedicated ASIC is unlikely
to mine a block for years [31]. Consequently, miners typically organize themselves
into mining pools. All members of a pool work together to mine each block, and
share their revenues when one of them successfully mines a block. While joining
a pool does not change a miner’s expected revenue, it decreases the variance and
makes the monthly revenues more predictable.

3 The Selfish-Mine Strategy

First, we formalize a model that captures the essentials of Bitcoin mining behav-
ior and introduces notation for relevant system parameters. Then we detail the
selfish mining algorithm.

3.1 Modeling Miners and Pools

The system is comprised of a set of miners 1, . . . , n. Each miner i has mining
power mi, such that

∑n
i=1 mi = 1. Each miner chooses a chain head to mine, and

finds a subsequent block for that head after a time interval that is exponentially
distributed with mean m−1

i . We assume that miners are rational; that is, they
try to maximize their revenue, and may deviate from the protocol to do so.

A group of miners can form a pool that behaves as single agent with a
centralized coordinator, following some strategy. The mining power of a pool
is the sum of mining power of its members, and its revenue is divided among
its members according to their relative mining power [30]. The expected relative
revenue, or simply the revenue of a pool is the expected fraction of blocks that
were mined by that pool out of the total number of blocks in the longest chain.
2 The rate at which the new Bitcoins are generated is designed to slowly decrease

towards zero, and will reach zero when almost 21 million Bitcoins are created. Then,
the miners’ revenue will be only from transaction fees.
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3.2 Selfish-Mine

We now describe our strategy, called Selfish-Mine. As we show in Sect. 4, Selfish-
Mine allows a pool of sufficient size to obtain a revenue larger than its ratio
of mining power. For simplicity, and without loss of generality, we assume that
miners are divided into two groups, a colluding minority pool that follows the
selfish mining strategy, and a majority that follows the honest mining strategy
(others). It is immaterial whether the honest miners operate as a single group,
as a collection of groups, or individually.

The key insight behind the selfish mining strategy is to force the honest min-
ers into performing wasted computations on the stale public branch. Specifically,
selfish mining forces the honest miners to spend their cycles on blocks that are
destined to not be part of the blockchain.

Selfish miners achieve this goal by selectively revealing their mined blocks to
invalidate the honest miners’ work. Approximately speaking, the selfish mining
pool keeps its mined blocks private, secretly bifurcating the blockchain and cre-
ating a private branch. Meanwhile, the honest miners continue mining on the
shorter, public branch. Because the selfish miners command a relatively small
portion of the total mining power, their private branch will not remain ahead of
the public branch indefinitely. Consequently, selfish mining judiciously reveals
blocks from the private branch to the public, such that the honest miners will
switch to the recently revealed blocks, abandoning the shorter public branch.
This renders their previous effort spent on the shorter public branch wasted,
and enables the selfish pool to collect higher revenues by incorporating a higher
fraction of its blocks into the blockchain.

Armed with this intuition, we can fully specify the selfish mining strategy,
shown in Algorithm 1. The strategy is driven by mining events by the selfish
pool or by the others. Its decisions depend only on the relative lengths of the
selfish pool’s private branch versus the public branch. It is best to illustrate
the operation of the selfish mining strategy by going through sample scenarios
involving different public and private chain lengths.

When the public branch is longer than the private branch, the selfish mining
pool is behind the public branch. Because of the power differential between the
selfish miners and the others, the chances of the selfish miners mining on their
own private branch and overtaking the main branch are small. Consequently, the
selfish miner pool simply adopts the main branch whenever its private branch
falls behind. As others find new blocks and publish them, the pool updates and
mines at the current public head.

When the selfish miner pool finds a block, it is in an advantageous position
with a single block lead on the public branch on which the honest miners operate.
Instead of naively publishing this private block and notifying the rest of the
miners of the newly discovered block, selfish miners keep this block private to
the pool. There are two outcomes possible at this point: either the honest miners
discover a new block on the public branch, nullifying the pool’s lead, or else the
pool mines a second block and extends its lead on the honest miners.

In the first scenario where the honest nodes succeed in finding a block on the
public branch, nullifying the selfish pool’s lead, the pool immediately publishes
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Algorithm 1. Selfish-Mine
1 on Init
2 public chain ← publicly known blocks
3 private chain ← publicly known blocks
4 privateBranchLen ← 0
5 Mine at the head of the private chain.

6 on My pool found a block
7 Δprev ← length(private chain) − length(public chain)
8 append new block to private chain
9 privateBranchLen ← privateBranchLen + 1

10 if Δprev = 0 and privateBranchLen = 2 then (Was tie with branch of 1)
11 publish all of the private chain (Pool wins due to the lead of 1)
12 privateBranchLen ← 0

13 Mine at the new head of the private chain.

14 on Others found a block
15 Δprev ← length(private chain) − length(public chain)
16 append new block to public chain
17 if Δprev = 0 then
18 private chain ← public chain (they win)
19 privateBranchLen ← 0

20 else if Δprev = 1 then
21 publish last block of the private chain (Now same length. Try our luck)
22 else if Δprev = 2 then
23 publish all of the private chain (Pool wins due to the lead of 1)
24 privateBranchLen ← 0

25 else (Δprev > 2)
26 publish first unpublished block in private block.
27 Mine at the head of the private chain.

its private branch (of length 1). This yields a toss-up where either branch may
win. The selfish miners unanimously adopt and extend the previously private
branch, while the honest miners will choose to mine on either branch, depending
on the propagation of the notifications. If the selfish pool manages to mine
a subsequent block ahead of the honest miners that did not adopt the pool’s
recently revealed block, it publishes immediately to enjoy the revenue of both
the first and the second blocks of its branch. If the honest miners mine a block
after the pool’s revealed block, the pool enjoys the revenue of its block, while
the others get the revenue from their block. Finally, if the honest miners mine
a block after their own block, they enjoy the revenue of their two blocks while
the pool gets nothing.

In the second scenario, where the selfish pool succeeds in finding a second
block, it develops a comfortable lead of two blocks that provide it with some
cushion against discoveries by the honest miners. Once the pool reaches this
point, it continues to mine at the head of its private branch. It publishes one
block from its private branch for every block the others find. Since the selfish pool
is a minority, its lead will, with high probability, eventually reduce to a single
block. At this point, the pool publishes its private branch. Since the private
branch is longer than the public branch by one block, it is adopted by all miners
as the main branch, and the pool enjoys the revenue of all its blocks. This brings
the system back to a state where there is just a single branch until the pool
bifurcates it again.
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4 Analysis

We can now analyze the expected rewards for a system where the selfish pool
has mining power of α and the others of (1 − α).

Figure 1 illustrates the progress of the system as a state machine. The states
of the system represent the lead of the selfish pool; that is, the difference between
the number of unpublished blocks in the pool’s private branch and the length
of the public branch. Zero lead is separated to states 0 and 0’. State 0 is the
state where there are no branches; that is, there is only a single, global, public
longest chain. State 0’ is the state where there are two public branches of length
one: the main branch, and the branch that was private to the selfish miners, and
published to match the main branch. The transitions in the figure correspond
to mining events, either by the selfish pool or by the others. Recall that these
events occur at exponential intervals with an average frequency of α and (1−α),
respectively.

We can analyze the expected rewards from selfish mining by taking into
account the frequencies associated with each state transition of the state machine,
and calculating the corresponding rewards. Let us go through the various cases
and describe the associated events that trigger state transitions.

If the pool has a private branch of length 1 and the others mine one block,
the pool publishes its branch immediately, which results in two public branches
of length 1. Miners in the selfish pool all mine on the pool’s branch, because a
subsequent block discovery on this branch will yield a reward for the pool. The
honest miners, following the standard Bitcoin protocol implementation, mine on
the branch they heard of first. We denote by γ the ratio of honest miners that
choose to mine on the pool’s block, and the other (1−γ) of the non-pool miners
mine on the other branch.

For state s = 0, 1, 2, . . ., with frequency α, the pool mines a block and the
lead increases by one to s + 1. In states s = 3, 4, . . ., with frequency (1 − α),
the honest miners mine a block and the lead decreases by one to s − 1. If the
others mine a block when the lead is two, the pool publishes its private branch,
and the system drops to a lead of 0. If the others mine a block with the lead
is 1, we arrive at the aforementioned state 0’. From 0’, there are three possible
transitions, all leading to state 0 with total frequency 1: (1) the pool mines a
block on its previously private branch (frequency α), (2) the others mine a block
on the previously private branch (frequency γ(1 − α)), and (3) the others mine
a block on the public branch (frequency (1 − γ)(1 − α)).

Fig. 1. State machine with transition frequencies.
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4.1 State Probabilities

We analyze this state machine to calculate its probability distribution over the
state space. We obtain the following equations:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

αp0 = (1 − α)p1 + (1 − α)p2
p0′ = (1 − α)p1
αp1 = (1 − α)p2
∀k ≥ 2 : αpk = (1 − α)pk+1∑∞

k=0 pk + p0′ = 1

(1)

Solving (1) (See our full report for details [14]), we get:

p0 =
α − 2α2

α(2α3 − 4α2 + 1)
(2)

p0′ =
(1 − α)(α − 2α2)
1 − 4α2 + 2α3

(3)

p1 =
α − 2α2

2α3 − 4α2 + 1
(4)

∀k ≥ 2 : pk =
(

α

1 − α

)k−1
α − 2α2

2α3 − 4α2 + 1
(5)

4.2 Revenue

The probability distribution over the state space provides the foundation for
analyzing the revenue obtained by the selfish pool and by the honest miners.
The revenue for finding a block belongs to its miner only if this block ends up
in the main chain. We detail the revenues on each event below.

(a) Any state but two branches of length 1, pools finds a block. The pool appends
one block to its private branch, increasing its lead on the public branch by
one. The revenue from this block will be determined later.

or



Majority Is Not Enough 445

(b) Was two branches of length 1, pools finds a block. The pool publishes its
secret branch of length two, thus obtaining a revenue of two.

(c) Was two branches of length 1, others find a block after pool head. The pool
and the others obtain a revenue of one each — the others for the new head,
the pool for its predecessor.

(d) Was two branches of length 1, others find a block after others’ head. The
others obtain a revenue of two.

(e) No private branch, others find a block. The others obtain a revenue of one,
and both the pool and the others start mining on the new head.

(f) Lead was 1, others find a block. Now there are two branches of length one,
and the pool publishes its single secret block. The pool tries to mine on its
previously private head, and the others split between the two heads. Denote
by γ the ratio of others that choose the non-pool block.
The revenue from this block cannot be determined yet, because it depends
on which branch will win. It will be counted later.

(g) Lead was 2, others find a block. The others almost close the gap as the lead
drops to 1. The pool publishes its secret blocks, causing everybody to start
mining at the head of the previously private branch, since it is longer. The
pool obtains a revenue of two.
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(h) Lead was more than 2, others win. The others decrease the lead, which
remains at least two. The new block (say with number i) will end outside
the chain once the pool publishes its entire branch, therefore the others
obtain nothing. However, the pool now reveals its i’th block, and obtains a
revenue of one.

We calculate the revenue of the pool and of the others from the state prob-
abilities and transition frequencies:

rothers =

Case (c)
︷ ︸︸ ︷
p0′ · γ(1 − α) · 1 +

Case (d)
︷ ︸︸ ︷
p0′ · (1 − γ)(1 − α) · 2 +

Case (e)
︷ ︸︸ ︷
p0 · (1 − α) · 1 (6)

rpool =

Case (b)
︷ ︸︸ ︷
p0′ · α · 2 +

Case (c)
︷ ︸︸ ︷
p0′ · γ(1 − α) · 1 +

Case (g)
︷ ︸︸ ︷
p2 · (1 − α) · 2 +

Case (h)
︷ ︸︸ ︷
P [i > 2](1 − α) · 1 (7)

As expected, the intentional branching brought on by selfish mining leads the
honest miners to work on blocks that end up outside the blockchain. This, in
turn, leads to a drop in the total block generation rate with rpool+rothers < 1. The
protocol will adapt the mining difficulty such that the mining rate at the main
chain becomes one block per 10 min on average. Therefore, the actual revenue
rate of each agent is the revenue rate ratio; that is, the ratio of its blocks out
of the blocks in the main chain. We substitute the probabilities from (2)–(5) in
the revenue expressions of (6)–(7) to calculate the pool’s revenue for 0 ≤ α ≤ 1

2 :

Rpool =
rpool

rpool + rothers
= · · · =

α(1 − α)2(4α + γ(1 − 2α)) − α3

1 − α(1 + (2 − α)α)
. (8)

4.3 Simulation

To validate our theoretical analysis, we compare its result with a Bitcoin pro-
tocol simulator. The simulator is constructed to capture all the salient Bitcoin
mining protocol details described in previous sections, except for the cryptop-
uzzle module that has been replaced by a Monte Carlo simulator that simulates
block discovery without actually computing a cryptopuzzle. In this experiment,
we use the simulator to simulate 1000 miners mining at identical rates. A subset
of 1000α miners form a pool running the Selfish-Mine algorithm. The other min-
ers follow the Bitcoin protocol. We assume block propagation time is negligible
compared to mining time, as is the case in reality. In the case of two branches
of the same length, we artificially divide the non-pool miners such that a ratio
of γ of them mine on the pool’s branch and the rest mine on the other branch.
Figure 2 shows that the simulation results match the theoretical analysis.
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4.4 The Effect of α and γ

When the pool’s revenue given in Eq. 8 is larger than α, the pool will earn more
than its relative size by using the Selfish-Mine strategy. Its miners will therefore
earn more than their relative mining power. Recall that the expression is valid
only for 0 ≤ α ≤ 1

2 . We solve this inequality and phrase the result in the following
observation:

Observation 1. For a given γ, a pool of size α obtains a revenue larger than
its relative size for α in the following range:

1 − γ

3 − 2γ
< α <

1
2
. (9)

We illustrate this in Fig. 2, where we see the pool’s revenue for different γ values
with pool size ranging from 0 (very small pool) to 0.5 (half of the miners). Note
that the pool is only at risk when it holds exactly one block secret, and the
honest miners might publish a block that would compete with it. For γ = 1,
the pool can quickly propagate its one-block branch if the others find their own
branch, so all honest miners would still mine on the pool’s block. In this case,
the pool takes no risk when following the Selfish-Mine strategy and its revenue
is always better than when following the honest algorithm. The threshold is
therefore zero, and a pool of any size can benefit by following Selfish-Mine. In
the other extreme, γ = 0, the honest miners always publish and propagate their
block first, and the threshold is at 1/3. With γ = 1/2 the threshold is at 1/4.
Figure 3 shows the threshold as a function of γ.

We also note that the slope of the pool revenue, Rpool, as a function of
the pool size is larger than one above the threshold. This implies the following
observation:

Fig. 2. Pool revenue using the Selfish-Mine strategy for different propagation factors γ,
compared to the honest Bitcoin mining protocol. Simulation matches the theoretical
analysis, and both show that Selfish-Mine results in higher revenues than the honest
protocol above a threshold, which depends on γ.
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Fig. 3. For a given γ, the threshold α shows the minimum power selfish mining pool
that will trump the honest protocol. The current Bitcoin protocol allows γ = 1, where
Selfish-Mine is always superior. Even under unrealistically favorable assumptions, the
threshold is never below 1/3.

Observation 2. For a pool running the Selfish-Mine strategy, the revenue of
each pool member increases with pool size for pools larger than the threshold.

5 Pool Formation

We have shown that once a selfish pool’s mining power exceeds the threshold,
it can increase its revenue by running Selfish-Mine (Theorem1). At this point,
rational miners will preferentially join the selfish pool to increase their revenues.
Moreover, the pool’s members will want to accept new members, as this would
increase their own revenue (Observation 2). The selfish pool would therefore
increase in size, unopposed by any mechanism, towards a majority. Once a miner
pool, selfish or otherwise, reaches a majority, it controls the blockchain. The
Selfish-Mine strategy then becomes unnecessary, since the others are no longer
faster than the pool. Instead, a majority pool can collect all the system’s revenue
by switching to a modified Bitcoin protocol that ignores blocks generated outside
the pool; it also has no motivation to accept new members. At this point, the
currency is not a decentralized currency as originally envisioned.

6 Hardening the Bitcoin Protocol

Ideally, a robust currency system would be designed to resist attacks by groups of
colluding miners. Since selfish mining attacks yield positive outcomes for group
sizes above the threshold, the protocol should be amended to set the threshold
as high as possible. In this section, we argue that the current Bitcoin protocol
has no measures to guarantee a low γ. This implies that the threshold may
be as low as zero, and a pool of any size can benefit by running Selfish-Mine.
We suggest a simple change to the protocol that, if adopted by all non-selfish
miners, sets γ to 1/2, and therefore the threshold to 1/4. This change is backward
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compatible; that is, any subset of the miners can adopt it without hindering the
protocol. Moreover, it is progressive; that is, any ratio of the miners that adopts
it decreases γ, and therefore increases the threshold.

6.1 Problem

The Bitcoin protocol prescribes that when a miner knows of multiple branches of
the same length, it mines and propagates only the first branch it received. Recall
that a pool that runs the Selfish-Mine strategy and has a lead of 1 publishes its
secret block P once it hears of a competing block X found by a non-pool block.
If block P reaches a non-pool miner before block X, that miner will mine on P .

Because selfish mining is reactive, and it springs into action only after the
honest nodes have discovered a block X, it may seem to be at a disadvantage.
But a savvy pool operator can perform a sybil attack on honest miners by adding
a significant number of zero-power miners to the Bitcoin miner network. These
virtual miners act as advance sensors by participating in data dissemination,
but do not mine new blocks. (Babaioff et al. also acknowledge the feasibility of
such a sybil attack [4]). The virtual miners are managed by the pool, and once
they hear of block X, they ignore it and start propagating block P . The random
peer-to-peer structure of the Bitcoin overlay network will eventually propagate
X to all miners, but the propagation of X under these conditions will be strictly
slower than that of block P . By adding enough virtual nodes, the pool operator
can thus increase γ. The result, as shown in Eq. 9, is a threshold close to zero.

6.2 Solution

We propose a simple, backwards-compatible change to the Bitcoin protocol to
address this problem and raise the threshold. Specifically, when a miner learns
of competing branches of the same length, it should propagate all of them,
and choose which one to mine on uniformly at random. In the case of two
branches of length 1, as discussed in Sect. 4, this would result in half the nodes
(in expectancy) mining on the pool’s branch and the other half mining on the
other branch. This yields γ = 1/2, which in turn yields a threshold of 1/4.

Each miner implementing our change decreases the selfish pool’s ability to
increase γ through control of data propagation. This improvement is independent
of the adoption of the change at other miners, therefore it does not require a
hard fork. This change to the protocol does not introduce new vulnerabilities to
the protocol: Currently, when there are two branches of equal length, the choice
of each miner is arbitrary, effectively determined by the network topology and
latency. Our change explicitly randomizes this arbitrary choice, and therefore
does not introduce new vulnerabilities.

7 Related Work

Decentralized digital currencies have been proposed before Bitcoin, starting
with [11] and followed by peer-to-peer currencies [32,34]; see [5,22] for short
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surveys. None of these are centered around a global log; therefore, their tech-
niques and challenges are unrelated to this work.

Several dozen cryptocurrencies have followed Bitcoin’s success [17,18,33],
most prominently Litecoin [21]. These currencies are based on a global log, which
is extended by the users’ efforts. We conjecture that the essential technique of
withholding blocks for selfish mining can be directly applied to all such systems.

It was commonly believed that the Bitcoin system is sound as long as a
majority of the participants honestly follow the protocol, and the “51 % attack”
was the chief concern [1,20,23]. The notion of soundness for a nascent, distrib-
uted, Internet-wide, decentralized system implies the presence of incentives for
adoption of the prescribed protocol, for such incentives ensure a robust system
comprised of participants other than enthusiastic and altruistic early adopters.
Felten [15] notes that “there was a folk theorem that the Bitcoin system was
stable, in the sense that if everyone acted according to their incentives, the
inevitable result would be that everyone followed the rules of Bitcoin as writ-
ten.” Others [25] have claimed that “the well-known argument – never proven,
but taken on intuitive faith – that a minority of miners can’t control the net-
work is a special case of a more general assumption: that a coalition of miners
with X% of the network’s hash power can make no more than X% of total
mining revenues.” A survey [5] on the technical features responsible for Bit-
coin’s success notes that the Bitcoin design “addresses the incentive problems
most expeditiously,” while Bitcoin tutorials for the general public hint at incen-
tives designed to align participants’ and the system’s goals [27]. More formally,
Kroll, Davey and Felten’s work [19] provides a game-theoretic analysis of Bitcoin,
without taking into account block withholding attacks such as selfish mining,
and argues that the honest strategy constitutes a Nash equilibrium, implying
incentive-compatibility.

Our work shows that the real Bitcoin protocol, which permits block with-
holding and thereby enables selfish mining-style attacks, does not constitute an
equilibrium. It demonstrates that the Bitcoin mining system is not incentive
compatible even in the presence of an honest majority. Over 2/3 of the par-
ticipants need to be honest to protect against selfish mining, under the most
optimistic of assumptions.

A distinct exception from this common wisdom is a discussion of maintaining
a secret fork in the Bitcoin forums, mostly by users3 btchris, ByteCoin, mtgox,
and RHorning [28]. The approach, dubbed the Mining Cartel Attack, is inferior
to selfish mining in that the cartel publishes two blocks for every block published
by the honest nodes. This discussion does not include an analysis of the attack
(apart from a brief note on simulation results), does not explore the danger of
the resulting pool dynamics, and does not suggest a solution to the problem.

The influential work of Rosenfeld [30] addresses the behavior of miners in the
presence of different pools with different rewards. Although it addresses revenue
maximization for miners with a set mining power, this work is orthogonal to
the discussion of Selfish Mining, as it centers around the pool reward system.
3 In alphabetical order.
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Both selfish pools and honest pools should carefully choose their reward method.
Since a large-enough selfish pool would earn more than its mining power, any
fair reward method would provide more reward to its miners, so rational miners
would choose it over an honest pool.

Recent work [4] addresses the lack of incentives for disseminating transactions
between miners, since each of them prefers to collect the transaction fee himself.
This is unrelated to the mining incentive mechanism we discuss.

A widely cited study [29] examines the Bitcoin transaction graph to analyze
client behavior. The analysis of client behavior is not directly related to our work.

The Bitcoin blockchain had one significant bifurcation in March 2013 due to
a bug [2]. It was solved when the two largest pools at the time manually pruned
one branch. This bug-induced fork, and the one-off mechanism used to resolve it,
are fundamentally different from the intentional forks that Selfish-Mine exploits.

In a block withholding attack, a pool member decreases the pool revenue by
never publishing blocks it finds. Although it sounds similar to the strategy of
Selfish-Mine, the two are unrelated, as our work that deals with an attack by
the pool on the system.

Various systems build services on top of the Bitcoin global log, e.g., improved
coin anonymity [22], namespace maintenance [24] and virtual notaries [3,16].
These services that rely on Bitcoin are at risk in case of a Bitcoin collapse.

8 Discussion

We briefly discuss below several points at the periphery of our scope.

System Collapse. The Bitcoin protocol is designed explicitly to be decentralized.
We therefore refer to a state in which a single entity controls the entire currency
system as a collapse of Bitcoin.

Note that such a collapse does not immediately imply that the value of a
Bitcoin drops to 0. The controlling entity will have an incentive to accept most
transactions, if only to reap their fees, and because if it mines all Bitcoins, it has
strong motivation that they maintain their value. It may also choose to remain
covert, and hide the fact that it can control the entire currency. An analysis of a
Bitcoin monopolist’s behavior is beyond the scope of this paper, but we believe
that a currency that is de facto or potentially controlled by a single entity may
deter many of Bitcoin’s clients.

Detecting Selfish Mining. There are two telltale network signatures of selfish
mining that can be used to detect when selfish mining is taking place, but neither
are easy to measure definitively.

The first and strongest sign is that of abandoned (orphaned) chains, where
the block race that takes place as part of selfish mining leaves behind blocks
that were not incorporated into the blockchain. Unfortunately, it is difficult to
definitively account for abandoned blocks, as the current protocol prunes and
discards such blocks inside the network. A measurement tool that connects to
the network from a small number of vantage points may miss abandoned blocks.
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The second indicator of selfish mining activity is the timing gap between suc-
cessive blocks. A selfish miner who squelches an honest chain of length N with
a chain of length N + 1 will reveal a block very soon after its predecessor. Since
normal mining events should be independent, one would expect block discovery
times to be exponentially distributed. A deviation from this distribution would be
suggestive of mining activity. The problems with this approach are that it detects
only a subset of the selfish miner’s behavior (the transition from state 2 to state 0
in the state machine), the signature behavior occurs relatively rarely, and such a
statistical detector may take a long time to accrue statistically significant data.

Measures and Countermeasures. Although miners may choose to collude in a
selfish mining effort, they may prefer to hide it in order to avoid public criticism
and countermeasures. It is easy to hide Selfish-Mine behavior, and difficult to
ban it. A selfish pool may never reveal its size by using different Bitcoin addresses
and IP addresses, and by faking block creation times. The rest of the network
would not even suspect that a pool is near a dangerous threshold.

Moreover, the honest protocol is public, so if a detection mechanism is set
up, a selfish pool would know its parameters and use them to avoid detection.
For instance, if the protocol was defined to reject blocks with creation time
below a certain threshold, the pool could publish its secret blocks just before
this threshold.

A possible line of defense against selfish mining pools is for counter-attackers
to infiltrate selfish pools and expose their secret blocks for the honest miners.
However, selfish pool managers can, in turn, selectively reveal blocks to subsets
of the members in the pool, identify spy nodes through intersection, and expel
nodes that leak information.

Thieves and Snowballs. Selfish mining poses two kinds of danger to the Bitcoin
ecosystem: selfish miners reap disproportionate rewards, and the dynamics favor
the growth of selfish mining pools towards a majority, in a snowball effect. The
system would be immune to selfish mining if there were no pools above the
threshold size. Yet, since the current protocol has no guaranteed lower bound
on this threshold, it cannot automatically protect against selfish miners.

Even with our proposed fix that raises the threshold to 25%, the system
remains vulnerable: there already exist pools whose mining power exceeds the
25% threshold [26], and at times, even the 33% theoretical hard limit. Respon-
sible miners should therefore break off from large pools until no pool exceeds the
threshold size.

Responsible Disclosure. Because of Bitcoin’s decentralized nature, selfish min-
ing can only be thwarted by collective, concerted action. There is no central
repository, no push mechanism and no set of privileged developers; all protocol
modifications require public discussion prior to adoption. In order to promote a
swift solution and to avoid a scenario where some set of people had the benefit
of selective access, we published a preliminary report [14] and explained both
the problem and our suggested solution in public forums [13].
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9 Conclusion

Bitcoin is the first widely popular cryptocurrency with a broad user base and
a rich ecosystem, all hinging on the incentives in place to maintain the criti-
cal Bitcoin blockchain. Our results show that Bitcoin’s mining protocol is not
incentive-compatible. We presented Selfish-Mine, a mining strategy that enables
pools of colluding miners that adopt it to earn revenues in excess of their min-
ing power. Higher revenues can lead new miners to join a selfish miner pool,
a dangerous dynamic that enables the selfish mining pool to grow towards a
majority. The Bitcoin system would be much more robust if it were to adopt
an automated mechanism that can thwart selfish miners. We offer a backwards-
compatible modification to Bitcoin that ensures that pools smaller than 1/4 of
the total mining power cannot profitably engage selfish mining. We also show
that at least 2/3 of the network needs to be honest to thwart selfish mining; a
simple majority is not enough.
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our shepherd Rainer Böhme for his guidance.
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Abstract. Bitcoin, the famous peer-to-peer, decentralized electronic
currency system, allows users to benefit from pseudonymity, by gen-
erating an arbitrary number of aliases (or addresses) to move funds.
However, the complete history of all transactions ever performed, called
“blockchain”, is public and replicated on each node. The data it contains
is difficult to analyze manually, but can yield a high number of relevant
information. In this paper we present a modular framework, BitIodine,
which parses the blockchain, clusters addresses that are likely to belong
to a same user or group of users, classifies such users and labels them,
and finally visualizes complex information extracted from the Bitcoin
network. BitIodine labels users semi-automatically with information on
their identity and actions which is automatically scraped from openly
available information sources. BitIodine also supports manual investiga-
tion by finding paths and reverse paths between addresses or users. We
tested BitIodine on several real-world use cases, identified an address
likely to belong to the encrypted Silk Road cold wallet, or investigated
the CryptoLocker ransomware and accurately quantified the number of
ransoms paid, as well as information about the victims. We release a
prototype of BitIodine as a library for building Bitcoin forensic analysis
tools.

Keywords: Bitcoin · Financial forensics · Blockchain analysis

1 Introduction

Bitcoin is a decentralized monetary system based on an open-source protocol
and a peer-to-peer network of participants that validates and certifies all trans-
actions. It aims to become the digital equivalent of cash, as its transactions do
not explicitly identify the payer nor the payee.

Some features of Bitcoin, such as cryptographically guaranteed security of
transactions, low transaction fees, no set-up costs and no risk of charge-back,
along with its surging conversion rates to USD, convinced several businesses to
adopt it. At the same time, its apparent anonymity and ease of use attracted
also cybercriminals [5], who use it to monetize botnets and extort money (e.g.,
see CryptoLocker case in Sect. 4.3).
c© International Financial Cryptography Association 2014
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Each node of the network must store the entire history of every transaction
ever happened, called blockchain. Although Bitcoin identities are not explicitly
tied to real-world entities, all transactions are public and transparent, and as
each one is tied to the preceding one(s), anyone can reconstruct the flow of
Bitcoin from address to address.

Some bitcoin addresses are known and tied to entities such as gambling sites,
forum users or marketplaces. By analyzing the blockchain and correlating it
with this publicly available meta data, it is possible to find addresses used (e.g.,
for gambling, mining, or for scams). Addresses can be algorithmically grouped
in clusters that correspond with entities that control them (but do not neces-
sarily own them) [1,2,5,9]. Collapsing addresses into clusters simplifies the huge
transaction graph, creating edges that correspond to aggregate transactions (i.e.,
money exchanges) between entities or users. From hereinafter we refer to such
clusters and entities as users. Interestingly, investigators can retrieve valuable
information about an entity from one of its addresses in a simple way.

In existing approaches, clusters are labeled mostly manually, and the whole
process is not automated. In this paper, we propose BitIodine, a collection
of modules to automatically parse the blockchain, cluster addresses, classify
addresses and users, graph, export and visualize elaborated information from the
Bitcoin network. In particular, we devise and implement a classifier module that
labels the clusters in an automated or semi-automated way, by using several web
scrapers that incrementally update lists of addresses belonging to known iden-
tities. We create a feature-oriented database that allows fast queries about any
particular address to retrieve balance, number of transactions, amount received,
amount sent, and ratio of activity concerning labels (e.g., gambling, mining,
exchanges, donations, freebies, malware, FBI, Silk Road), or, in an aggregated
form, for clusters. It is possible to query for recently active addresses, and filter
results using cross filters in an efficient way.

BitIodine has been tested on several real-world use cases: we describe how
we used it to find the transaction that, according to the FBI, was a payment by
Dread Pirate Roberts, founder of the Silk Road, to a hitman to have a person
killed [11]. We find a connection between Dread Pirate Roberts and an address
with a balance exceeding 111,114 BTC1, likely belonging to the encrypted Silk
Road cold wallet. Finally, we investigate the CryptoLocker ransomware, and,
starting by an address posted on a forum by a victim, we accurately quantify the
ransoms paid (around 1226 BTC as of December 15, 2013), and get information
about the victims. In summary, our contributions are:

– A future-proof and easily extendable framework for building complex applica-
tions for forensic analysis of the Bitcoin blockchain: http://miki.it/downloads/
bitiodine.zip and a work-in-progress demo https://bitiodine.net.

– A system that labels clusters/users with little or no supervision.
– We test our system on real-world use cases that include investigations on the

Silk Road and on malware such as CryptoLocker.

1 The common shorthand currency notation for Bitcoin(s).

http://miki.it/downloads/bitiodine.zip
http://miki.it/downloads/bitiodine.zip
https://bitiodine.net


BitIodine: Extracting Intelligence from the Bitcoin Network 459

2 State of the Art and Motivation

Bitcoin transactions [7] do not explicitly identify payers nor payees, as they
are just cryptographically signed messages that “encode” a fund transfer from
one public key to another. No PKI is present. The private keys are needed to
authorize such transfer.

The decentralized paradigm of Bitcoin requires each node of the network
to retain the blockchain (i.e., entire transaction history). All transactions are
public, transparent, and permanently recorded since the origin. Therefore, a lot
of potentially interesting information can be mined from the blockchain. Some
addresses are known and tied to entities, such as for instance gambling sites,
users of the main Bitcoin-related forum, Bitcoin Talk, or Bitcoin-OTC market-
place. By analyzing the blockchain, it is possible to automatically find out how
much an address is used for gambling activities or mining, if it was used for scam-
ming users in the past, if and how it is related to other addresses and entities.
The idea of algorithmically associating Bitcoin addresses to entities controlling
them is described in [1,2]. The first work investigates Bitcoin privacy provisions
in a simulated setting where Bitcoin is used for daily payments, and concludes
that the current implementation of Bitcoin would enable the recovery of user
transaction profiles to a large extent. The second work analyzes the Bitcoin net-
work with data mining and anomaly detection techniques, using simple network
features, to monitor the network for identify thefts.

Reid et al. [9] analyzed the anonymity in Bitcoin and advocated the need
for proper PKI-like mechanisms. The activity of known users can be observed in
detail using passive analysis only, but the authors take into consideration also
active analysis, where an interested party can potentially deploy marked Bitcoins
and collaborate with other users to discover even more information. Mixing
services (e.g., Bitcoin Fog) claim to obfuscate the origin of transactions, thus
increasing the users’ anonymity: their effectiveness is analyzed in [6]. Structural
patterns in the topology and dynamics of the Bitcoin transaction graph that
have implications for the users’ anonymity are shown in [8], whereas [3] collected
precious information about the Silk Road before the seizure by the FBI.

The forensic approach proposed in [5] focuses on investigating the use of
Bitcoin for criminal or fraudulent purposes at scale. Using a small number of
manually labeled transactions, the authors were able to identify major institu-
tions and the interactions between them, and demonstrated that this approach
can shed light on the structure of the Bitcoin economy and how it is used.

3 System Design and Implementation

Figure 1 describes in a simplified way the building blocks of BitIodine and the
interactions between different modules.

The Block Parser reads blocks and transactions from the local .bitcoin
folder populated by the official bitcoind client and exports the blockchain data
to the blockchain DB, which uses a custom relational schema that we designed
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Fig. 1. Building blocks of BitIodine.

to obtain good performance (see Sect. 3.2). This allows for a fast updating of
data from the Bitcoin network.

The goal of the Clusterizer is to find groups of addresses that belong to
the same user. It incrementally reads the blockchain DB and generates-updates
clusters of addresses using two heuristics, detailed in Sect. 3.1. The first heuristic
exploits transactions with multiple inputs, while the second leverages the concept
of “change” in transactions (see Sect. 3.1). These clusters are stored in cluster
files.

A set of Scrapers crawl the web for Bitcoin addresses to be associated to
real users, automatically collecting, generating and updating lists of:

– usernames on platforms, namely Bitcoin Talk forum and Bitcoin-OTC mar-
ketplace (from forum signatures and databases)

– physical coins created by Casascius (https://www.casascius.com) along with
their Bitcoin value and status (opened, untouched)

– known scammers, by automatically identifying users that have significant neg-
ative feedback on the Bitcoin-OTC and Bitcoin Talk trust system.

– shareholders in stock exchanges (currently limited to BitFunder).

Additional lists can be built with a semi-automatic approach which requires user
intervention. In particular, by downloading tagged data from https://blockchain.
info/tags, the tool helps users build lists of gambling addresses, online wallet
addresses, mining pool addresses and addresses which were subject to seizure
by law enforcement authorities. The user can verify tags and decide to put the
most relevant ones in the correct lists. Finally, a scraper uses Mt. Gox trading
APIs to get historical data about trades of Bitcoin for US dollars, and saves
them in a database called trades DB. This module is useful to detect interesting
flows of coins that enter and exit the Bitcoin economy. The interface is easily
expandable, and adding scrapers for new services and websites is easy.

https://www.casascius.com
https://blockchain.info/tags
https://blockchain.info/tags
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The Grapher incrementally reads the blockchain DB and the cluster file to
generate, respectively, a transaction graph and a user graph. In a transaction
graph, addresses are nodes and single transactions are edges. The Grapher has
several applications (e.g., finding successors and predecessors of an address). In
a user graph, users (i.e., clusters) are represented as nodes, and the aggregate
transactions between them are represented as edges.

The Classifier reads the transaction graph and the user graph generated
by the grapher, and proceeds to automatically label both single addresses and
clusters with specific annotations. Examples of labels are Bitcoin Talk and
Bitcoin-OTC usernames, the ratio of transactions coming from direct or pooled
mining, to/from gambling sites, exchanges, web wallets, other known BitcoinTalk
or Bitcoin-OTC users, freebies and donation addresses. There are also boolean
flags, such as one-time address, disposable, old, new, empty, scammer, miner,
shareholder, FBI, Silk Road, killer and malware. A complete list can be found in
[10]. Classification can take place globally on the whole blockchain, or selectively
on a list of specified addresses and clusters of interest. The results are stored in
a database and can be updated incrementally.

The Exporter allows to export and filter (portions of) the transaction graph
and the user graph in several formats, and support manual analysis by finding
simple paths (i.e., paths with no repeated nodes) on such graphs. More precisely,
it can export transactions that occurred inside a cluster, or that originated from a
cluster. It can also find either the shortest, or all the simple paths from an address
to another address, from an address to a cluster, from a cluster to an address, or
between two clusters. Moreover, it can find all simple paths originating from an
address or a cluster (i.e., the subgraph of successors), or to reverse such search,
by identifying the subgraph of predecessors of an address or cluster. Subgraphs
of successors or predecessors can be useful, for instance, in taint analysis, and
can assist manual investigation of mixing services, as we do in Sect. 4.1.

3.1 Algorithms and Analysis Approaches

Let N be the whole Bitcoin network. We denote with nB , nU , nA, respectively,
the total number of blocks, users and addresses in the network. We also denote
as B = {b1, b2, . . . , bnB

} the set of blocks in the network N , and similarly as
U = {u1, u2, . . . , unU

} the set of users and as A = {a1, a2, . . . , anA
} the set of

addresses. We also denote with τi(Si → Ri) a transaction with a unique index
i, and Si ⊆ A and Ri ⊆ A denote the sets of senders’ addresses and recip-
ients’ addresses, respectively. We define T = {τ1(S1 → R1), τ2(S2 → R2), . . . ,
τnT

(SnT
→ RnT

)} as the set of all nT transactions which took place. We also
define T |bi ⊂ T as the subset of all the transactions contained in blocks with
index k ≤ i. Blocks are uniquely identified by indexes starting from 0, for the
genesis block, sequentially increasing as they are appended to the blockchain.

We also define two functions. lastblock: T �→ B, a function that maps the
set of transactions to the set of blocks, such that lastblock(τi) = bi if and only if
bi is the last block relayed by the network N as the transaction τi is broadcast.
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owns: A �→ U , a function that maps the set of addresses to the set of users, such
that owns(ai) = uk if and only if uk owns the private key of ai.

First heuristic: Multi-input transactions grouping. The first heuristic
exploits multi-input transactions. Multi-input transactions occur when a user u
wishes to perform a payment, and the payment amount exceeds the value of each
of the available Bitcoin in u’s wallet. In order to avoid performing multiple trans-
actions to complete the payment, enduring losses in terms of transaction fees,
Bitcoin clients choose a set of Bitcoin from u’s wallet such that their aggregate
value matches the payment and perform the payment through multi-input trans-
actions. This means that whenever a transaction has multiple input addresses,
we can safely assume that those addresses belong to the same wallet, thus to the
same user.

More formally, let τi(Si → Ri) ∈ T be a transaction, and Si = {a1, a2, . . . ,
anSi

}
the set of input addresses. Let also |Si| = nSi

be the cardinality of the
set. If nSi

> 1, then all input addresses belong to the same (previously known or
unknown) user: owns(ai) � uk ∀i ∈ Si.

Second heuristic: shadow address guessing. The second heuristic has to
do with change in transactions. The Bitcoin protocol forces each transaction to
spend, as output, the whole input. This means that the “unspent” output of
a transaction must be used as input for a new transaction, which will deliver
“change” back to the user. In order to improve anonymity, a shadow address is
automatically created and used to collect the change that results from any trans-
action issued by the user. The heuristic tries to predict which one of the output
addresses is actually belonging to the same user who initiated the transaction,
and it does so in two possible ways: the first one is completely deterministic, the
second one exploits a (recently fixed) flaw in the official Bitcoin client.

The completely deterministic and conservative variant works as follows: If
there are two output addresses (one payee and one change address, which is true
for the vast majority of transactions), and one of the two has never appeared
before in the blockchain, while the other has, then we can safely assume that the
one that never appeared before is the shadow address generated by the client to
collect change back.

More formally, let τi(Si → Ri) ∈ T be a transaction, and Ri = {a1, a2, . . . ,
anRi

}
be the set of output addresses (with |Ri| = nRi

being the cardinality of the
set), and let us consider T |lastblock(τi), that is, the set T limited to the last block
at the time of transaction τi. If nRi

= 2, then the output addresses are a1 and a2.
If a1 	∈ T |lastblock(τi) and a2 ∈ T |lastblock(τi), then a1 is the shadow address, and
belongs to the same user uk who owns the input address(es): owns(a1) � uk.

A bug in the src/wallet.cpp file of the official Bitcoin client allows to
improve upon this heuristic. When the client chooses in which slot to put the
shadow address, it passes to GetRandInt the number of payees. Thanks to an
off-by-one error, in the common case of one payee, GetRandInt will always return
0, and the change always ends up in the first output.

For transactions prior the fix was released (Feb 3, 2013), only 6.8 % have
the shadow address provably in the second slot of two-outputs transactions.
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Fig. 2. Statistics about clusters obtained with different heuristics.

Therefore, for transactions before this date we can relax the heuristic, and con-
sider a first output that was previously unseen in any two-output transaction as
a shadow address, regardless of the second one. This allows for a much better
coverage, and generates much more compact clusters of users, as shown in Fig. 2.

3.2 Implementation Details

BitIodine deals with several gigabytes of data and graphs with millions of nodes
and tenths of millions of edges. We used Python 3.3.3rc1 for every module,
except the Block Parser, which is written in C++ for performance reasons.
The block parser is a modified version of the blockparser tool by znort987 2, to
which we added several custom callbacks: our modified version is highly efficient
in exporting all addresses on the network, in performing taint analysis on an
address, and in exporting to SQLite.

We opted for the use of embedded SQLite databases for storing the blockchain
and the features database because it is a zero-configuration, server-less, embed-
ded, stable and compact cross-platform solution. We do not need concurrency
while writing to database files, so the only possible disadvantage does not affect
its use in BitIodine. In designing the custom database schema for BitIodine we
had to find a good balance between size and performance, weighing the use of
indexes (see Sect. 4.4).

The Clusterizer is designed to be incremental, and it is also possible to pause
the generation of clusters at any time, and resume it from where it stopped.

Internally, graphs are handled by NetworkX, which objects can be serialized
and written to a file with ease, and in-memory querying for successors and
predecessors of nodes is efficient. Is it also possible to embed an arbitrary number
of additional data labels to nodes and edges (e.g., we added transaction hashes).

2 http://github.com/znort987/blockparser

http://github.com/znort987/blockparser
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The Exporter supports several output formats, allowing easy pipelining
with visualization software or graph databases.

4 Experiments and Case Studies

The goal of our experiments is to evaluate the correctness (Sects. 4.1–4.3) and the
performance (Sect. 4.4) of BitIodine. Since BitIodine builds novel knowledge,
there is no ground truth data available to validate our findings. However, we
were able to confirm our findings thanks to contextual information found on the
web resources cited in each case study.

4.1 Investigating Activity Involving Dread Pirate Roberts

On October 1st, 2013, 29-year-old Ross William Ulbricht was arrested on sus-
picion of being the creator and operator of the infamous “Silk Road” black
market, under the alias of “Dread Pirate Roberts” (DPR) [11]. From February
6th, 2011 to July 23rd, 2013, sales through the market totaled 9,519,664 BTC
(spread across 1,229,465 transactions), of which 614,305 BTC went directly to
the accused as commissions. Prosecutors said they seized about 173,600 BTC
(approx. USD 30M), in the largest seizure of the digital currency ever.

The seizure happened in two phases. First, 29.6k BTC held in a so called hot
wallet (i.e., an operating pool for the website) were seized. But Ulbricht held
the majority of his funds separately in an encrypted “cold wallet”. Then, on Oct
25th, an additional 144k BTC were seized (around USD 120M).

The seizure was operated by transferring the seized coins to two addresses
controlled by the FBI. These addresses are publicly known3. On the other hand,
the addresses which formed the cold wallet are not public yet (as of Jan 2014).

Using BitIodine alone, we are able to find an interesting connection between
an address known to belong to DPR and 1933phfhK3ZgFQNLGSDXvqCn32k2buXY-
8a, an address with a balance exceeding 111,114 BTC (more than USD 22M),
likely belonging to the cold wallet. The investigation is as follows. DPR used
to post on the Bitcoin Talk forum as altoid : the message at https://bitcointalk.
org/index.php?topic=47811.0 seeks a “lead developer ... [for a] Bitcoin startup”,
and refers to his email address (rossulbricht@gmail.com). In a previous post
(https://bitcointalk.org/index.php?topic=6460.msg94424), he asked help on the
PHP Bitcoin API, pasting one of his addresses, 1LDNLreKJ6GawBHPgB5yfVLB-
ERi8g3SbQS, as a parameter of sendfrom method. This can be found out by
manual investigation.

By running BitIodine on these data points, we found that Ulbricht’s known
address belongs to a cluster of 6 addresses, all empty. Thanks to our path finders
in the Exporter module, we automatically found a connection between the
leaked address and a very wealthy address, 1933phfhK3ZgFQNLGSDXvqCn32k2-
buXY8a, as shown in Fig. 3.

3 1F1tAaz5x1HUXrCNLbtMDqcw6o5GNn4xqX, 1FfmbHfnpaZjKFvyi1okTjJJusN455paPH

https://bitcointalk.org/index.php?topic=47811.0
https://bitcointalk.org/index.php?topic=47811.0
https://bitcointalk.org/index.php?topic=6460.msg94424


BitIodine: Extracting Intelligence from the Bitcoin Network 465

Fig. 3. Connection between DPR’s address and a 111,114 BTC address

The chain is particularly interesting because every address appears in the
blockchain with its first input coming from the previous one in the chain, and
often addresses spend all their inputs to addresses on the right exclusively. In our
opinion, this is a manual, rudimentary mixer or tumbler, and BitIodine found
a meaningful connection between the addresses, leading us to argue (with some
grounding) that 1933 was part of the cold wallet of the Silk Road.

Although this scenario required some manual investigation, it would have
been hard to find significant links between millions of nodes without BitIodine.

4.2 Payment to a Killer?

In March 2013, the Silk Road vendor FriendlyChemist supposedly attempted to
blackmail DPR via Silk Road’s private message system, providing proof that he
had names and addresses of thousands of vendors. He demanded USD 500k for
his silence. DPR asked another user, redandwhite, to “execute” FriendlyChemist,
supplying him/her his full name and address. On March 31st, 2013, after having
agreed on terms, DPR sent redandwhite 1,670 BTC to have FriendlyChemist
killed.

Using BitIodine, we easily identify the transaction4 to the alleged hitman,
by querying the blockchain DB for transactions of 1,670 BTC on that day.
The killer’s address is 1MwvS1idEevZ5gd428TjL3hB2kHaBH9WTL. This 1,670 BTC
transaction is the first input it receives. On April 8, 2013 it receives another 3k
BTC, and on April 12, 2013 another 2,555 BTC. Investigators could not find
any record of somebody in that region being killed around that date or match-
ing that description. This possibly implies that DPR was scammed, and that he
was not the only one.

In this use case, BitIodine helps the investigation by allowing efficient fil-
tering of transactions by amount and date. Remarkably, having no addresses nor
transaction hashes, it would have been hard to spot the transaction manually.

4 4a0a5b6036c0da84c3eb9c2a884b6ad72416d1758470e19fb1d2fa2a145b5601



466 M. Spagnuolo et al.

4.3 Ransomware Investigation with BitIodine

CryptoLocker [4] is a recent ransomware that encrypts the victim’s personal files
with strong encryption. The criminals retain the only copy of the decryption key
on their server and ask for a ransom to be paid with MoneyPak or Bitcoin within
72 h in order to de-crypt the files.

We used BitIodine to detect the CryptoLocker cluster(s), belonging to the
malware authors, and compute some statistics about ransoms paid by the vic-
tims. By searching on Google for extracts of the text in the request by the
malware and by reading a Reddit thread where victims and researchers post
addresses5, we collected several addresses that were known to belong to Cryp-
toLocker. The Classifer confirmed that they belonged to several clusters, which
comprised a total of 2118 addresses. We identified 771 ransoms, for a total of
1226 BTC (approximately USD 1.1M on December 15, 2013). Some addresses
received a single payment, others were reused for several ones. Tables listing the
detailed data are in [10].

Dell SecureWorks Counter Threat Unit Research Team have been moni-
toring the CryptoLocker botnet since Sep 18, 2013 and analyzed various data
sources, including DNS requests, sinkhole data, and client telemetry, publishing
a report [4] overlaying daily infection rates to the ransoms in Bitcoin detected
by BitIodine (Fig. 4). Spikes coinciding with Cutwail spam campaigns that
resulted in increased CryptoLocker infections are indicated in the overlay, includ-
ing the period of high activity from October through mid-November. Likewise,
periodic lulls in activity have occurred frequently, including a span from late
November through mid-December.

Finally, it is interesting to analyze the cluster related to the very first ransom
paid6, on Sep 13, 4 days before the others, because it could be some sort of “test”
of the payment mechanism by the malware authors. BitIodine was not able to

Fig. 4. CryptoLocker infection rate (computed in [4]) plotted vs. ransoms paid in
Bitcoin, computed with BitIodine

5 http://www.reddit.com/r/Bitcoin/comments/1o53hl/disturbing bitcoin virus
encrypts instead of/

6 http://tinyurl.com/cl-first-ransom

http://www.reddit.com/r/Bitcoin/comments/1o53hl/disturbing_bitcoin_virus_encrypts_instead_of/
http://www.reddit.com/r/Bitcoin/comments/1o53hl/disturbing_bitcoin_virus_encrypts_instead_of/
http://tinyurl.com/cl-first-ransom
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associate that cluster to a known identity due to a lack of useful data for that
particular cluster. Manual analysis confirmed that no known nickname was linked
to addresses belonging to that cluster. This is not a limitation: the cluster may
be labelled in the future as new transactions are broadcast.

4.4 Performance Evaluation

The generation of the database takes about 30’ on a Quadruple Extra Large
High-Memory AWS EC2 instance (26 ECUs, 68.4 GB of RAM), and its size is
around 15 GB. The Clusterizer generates 4,077,114 clusters, grouping together
18,153,279 addresses, and takes around 45’ to process the blockchain.

Scalability issues may arise as the blockchain grows, in particular for oper-
ations involving the transaction graph, which has to be loaded in memory. A
solution would be to move the graphs to a graph database such as Neo4j, at the
expense of slower queries (because of slower disk I/O with respect to memory)
and a space occupation on disk almost five times higher. In our tests, a transac-
tion graph updated to Nov 1, 2013 is 7 GB in NetworkX format and more than
30 GB with a Neo4j database. Although Neo4j, thanks to the Cypher Query
Language, allows complex queries that fully exploit graph structures, we opted
for a simpler and leaner in memory solution at this stage.

5 Limitations and Future Work

The main limitation is that the first heuristic presented in Sect. 3.1 works under
the assumption that owners do not share private keys. This does not always hold:
for example, some web wallets have pools that would be mistakenly grouped as
a single user. This is why we defined the owns relation as owns(ai) = uk if and
only if uk owns the private key of ai.

Moreover, the current implementation of the Classifier module needs to
load the transaction graph and the clusters in memory, making classification a
memory-intensive task. Also, BitIodine keeps data in two different fashions:
in a relational database (the blockchain and features database) and in a graph
(transaction and user graphs). This can be seen as redundant. In a future release,
a single, efficient graph solution could replace the relational blockchain DB. In
general, we see an on-disk graph database such as Neo4j needed if BitIodine is
used in production, even with the drawbacks detailed in Sect. 3.2.

Furthermore, currently we label users in a (semi-)automated way by scrap-
ing information on known addresses from the web. In future extensions of this
work, we envision to mine behavioral patterns of users on the network with
unsupervised clustering or classification techniques.

6 Conclusions

BitIodine is a modular framework to parse the Bitcoin blockchain, cluster
addresses likely to belong to a same entity, classify such entities and labels them,
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and visualize complex information extracted from the Bitcoin network. BitIo-
dine can label users and addresses (semi-)automatically thanks to scrapers that
crawl the Web and query exchanges for information, thus allowing to attach
identities to users and trace money flowing through Bitcoin. BitIodine sup-
ports manual investigation by finding (reverse) paths between two addresses or
a user and an address.

On real-world use cases, BitIodine discovered a connection between the Silk
Road founder and an address likely belonging to the encrypted Silk Road cold
wallet. We found the transaction that, according to the FBI, was a payment by
the Silk Road founder to a hitman. Finally, we investigated the CryptoLocker
ransomware, and starting from an address posted by a victim, we accurately
quantified the number of ransoms paid, and obtained information about the
victims, with very limited manual analysis.

We release BitIodine as a framework useful to build (complex) Bitcoin
forensic tools. For example, an engineer at Banca d’Italia (Italy’s central bank) is
currently developing, using BitIodine as a base, VIREXBC (Visual Interactive
REaltime eXplorer), a realtime visualization software of the Bitcoin blockchain
for interactively presenting complex imagery and infographics on the fly.
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Abstract. Over the last 4 years, Bitcoin, a decentralized P2P crypto-
currency, has gained widespread attention. The ability to create pseudo-
anonymous financial transactions using bitcoins has made the currency
attractive to users who value their privacy. Although previous work
has analyzed the degree of anonymity Bitcoin offers using clustering and
flow analysis, none have demonstrated the ability to map Bitcoin add-
resses directly to IP data. We propose a novel approach to creating and
evaluating such mappings solely using real-time transaction traffic col-
lected over 5 months. We developed heuristics for identifying ownership
relationships between Bitcoin addresses and IP addresses. We discuss
the circumstances under which these relationships become apparent and
demonstrate how nearly 1,000 Bitcoin addresses can be mapped to their
likely owner IPs by leveraging anomalous relaying behavior.

Keywords: Bitcoin · Anonymity · CoinSeer

1 Introduction

Bitcoin is a decentralized peer-to-peer crypto-currency first proposed and imple-
mented by Satoshi Nakamoto, a likely pseudonym, in 2009 [1]. It allows end-users
to create pseudo-anonymous financial transactions; instead of disclosing personal
information, users create any number of Bitcoin identities/addresses, in the form
of cryptographic keys, which are used to accept and send bitcoins. We have seen
the perceived anonymity provided by Bitcoin leveraged when Wikileaks was able
to receive over 1,000 “anonymous” Bitcoin donations totaling over 32,000 USD;
other financial institutions, such as Paypal, prevented supporters from making
donations using fiat currencies due to government pressure [2]. We have also seen
the birth and recent death of the Silk Road, a Bitcoin marketplace once called
“the Amazon.com of illegal drugs” [3,4].

Previous studies (discussed in Sect. 3) showed that it may be possible to
cluster Bitcoin identities into distinct entities, track the flow of their bitcoins, and
in some instances deanonymize them using external information like forum posts
where people divulged their Bitcoin identities intentionally. To our knowledge,
there has been no work that has attempted to relate Bitcoin addresses to specific
IPs. The ability to create such mappings is important since there have been
c© International Financial Cryptography Association 2014
N. Christin and R. Safavi-Naini (Eds.): FC 2014, LNCS 8437, pp. 469–485, 2014.
DOI: 10.1007/978-3-662-45472-5 30
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cases where individuals participating in P2P networks have been identified by
law enforcement after their ISPs had been subpoenaed [6]. In this work, we set
out to determine if real-time transaction traffic received from directly connected
peers can alone be used to create Bitcoin address-to-IP mappings. This approach
was inspired by a technique proposed by Dan Kaminsky during the 2011 Black
Hat conference [5].

By analyzing 5 months of data we collected using our custom-built Bitcoin
client, we were able to classify distinct transaction relay patterns and design
heuristics for hypothesizing transaction ownership. We then demonstrated how
Bitcoin address-to-IP mappings can be derived and evaluated using aggregate
statistics from our transaction data. We found that even after applying conser-
vative thresholds, several hundred high-confidence (>90 %) ownership pairings
could still be discovered in our data. Over 1,000 remained if we allowed thresh-
olds to drop to 50 %. We note, however, that the majority of these were obtained
from anomalously relayed transactions, and that normal transaction traffic over-
all proved to be very difficult to deanonymize.

The rest of this paper is organized as follows. Section 2 gives a brief back-
ground of the Bitcoin protocol, while Sect. 3 provides an overview of related
work. In Sect. 4, we discuss CoinSeer, our custom-built Bitcoin client. Section 5
presents several interesting cases we discovered that inspired our later methodol-
ogy. We outline our final approach in Sect. 6, discussing how to create, evaluate,
and prune Bitcoin address-to-IP mappings. In conclusion, Sect. 7 discusses our
results, as well as the caveats and limitations of our method.

2 Background

Bitcoin is a decentralized currency which requires certain participants called
miners to validate financial transactions. In order to prevent people from (a)
using money which does not belong to them, or (b) reusing money which they
have already spent (this is called double-spending), the entire history of these
transactions must be publicly available; this is to avoid a single point of central-
ization. The historical transaction ledger is called the block chain and can be
accessed and scrutinized by anyone. Nothing is encrypted. To protect users’ iden-
tities, IP information is never stored, and cryptographic keys are used instead
of personal information. Bitcoins are sent to and from users’ public keys, which
are often referred to as Bitcoin addresses1. In this way, despite all transactions
being public, the parties involved remain pseudo-anonymous.

2.1 Anatomy of a Transaction

Bitcoins change hands via transactions. A transaction is a data structure that
contains inputs and outputs. The sender of a transaction uses the inputs to
1 Omitting certain details, a Bitcoin address is simply a public key to which a number

of transformations and hashes have been applied. Thus, the terms Bitcoin address
and public key can be used interchangeably.
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Fig. 1. This figure demonstrates how Alice, who owns Bitcoin address A, would create a
new transaction (Transaction 2) which spends bitcoins received earlier (Transaction 1).
Note that the Bitcoin address of the input must match the Bitcoin address of the
referenced output. Note also that the sender of the transaction must sign it with her
private key (denoted in this diagram with the superscript -). We caution that this is a
simplified representation of the internals of a transaction.

claim coins he received in older transactions; he lists the recipient(s) of these
coins within the transaction’s outputs.

For example, if Alice wants to receive 50 bitcoins (BTC) from Bob, she
creates an asymmetric key-pair and gives him her public key, A+. Bob creates a
transaction and encodes Alice’s public key as the recipient of his coins within one
of the transaction’s outputs (Fig. 1, Transaction 1). The next day, Alice wants
to send 20 BTC to Charlie. She creates a new transaction and claims the money
she received from Bob by referencing it in one of the transaction’s inputs (Fig. 1,
Transaction 2). An important caveat of the Bitcoin protocol is that the amount
of bitcoins claimed in an input cannot be specified. In order for Alice to only
send 20 BTC to Charlie, she has to create an extra output to send 30 BTC in
change back to herself (Transaction 2, Output 1). She can then reference this
change in later transactions. After specifying all her outputs, Alice signs the
new transaction with her private key (A−) and includes this signature within
the corresponding input. In this way, ownership of the referenced coins can later
be verified and the transaction’s integrity is protected.

In general, users are encouraged to have many Bitcoin addresses. Thus, Alice
could have sent her change to a different address she owns. Additionally, if she
needed to spend more than 50 BTC, she could have created additional inputs,
each of which would reference older transactions. This is called a multi-input
transaction.

2.2 P2P Relaying

Bitcoin uses a gossip protocol [7] to relay messages across the network. When
a user creates a transaction, he sends it to his directly connected peers. These
peers assess whether the transaction is valid (discussed below). If it is, they
relay it to their peers and the transaction gets propagated through the rest of
the network. If it is not valid, it is simply ignored.

A transaction received from a peer must pass a series of checks before being
further relayed. Besides basic sanity checks to make sure the transaction format
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Table 1. Types of ignored transactions

Type Description

Repeated The transaction has already been relayed recently

Old The transaction is already in the main block chain

Double-spend The transaction attempts to claim an output already claimed by a
previous transaction

Bad signature The input signature(s) cannot be verified (e.g. attempting to spend
someone else’s coins)

Orphan One or more of the outputs claimed by the inputs cannot be found

conforms to the protocol, Table 1 shows common reasons a peer may ignore a
transaction.

3 Related Work

Several academic papers have analyzed the extent of anonymity in Bitcoin. The
majority of them cluster Bitcoin addresses into distinct entities, analyze the flow
of bitcoins among these entities, and in some instances tie entities to identifying
information through external means. To our knowledge, no one has attempted
to deanonymize Bitcoin addresses at the IP level, and no other papers discuss
using actual relay traffic.

The original Bitcoin paper [1] cautioned that although users could hide their
identities behind Bitcoin addresses, the public nature of the transaction ledger
could allow addresses to be linked together. Multi-input transactions, which at
the time could only be created by one user, were cited as a potential means
to clustering multiple Bitcoin addresses into one entity. Reid and Harrigan [8]
downloaded the public transaction ledger (i.e. block chain) and used this method
to cluster Bitcoin addresses into “users”. They created two networks, modeling
the flow of bitcoins among transactions and users, and analyzed their topolo-
gies. The authors showed how these graphs, along with external information
from forum posts, can be used to track a particular target (in this case, a thief).
Ron and Shamir [9] mirrored Reid and Harrigan’s two-graph solution when ana-
lyzing the typical behavior of entities on the Bitcoin network, including how
these entities acquire and spend bitcoins and how they move their funds around
to protect their privacy. Androulaki et al. [10] again took a similar approach,
using data from a simulation of bitcoin usage in a university setting. In addition
to input clustering, the authors used K-means and Hierarchical Agglomerate
Clustering to tie together behavioral patterns. They also clustered inputs with
outputs based on their own heuristic. Meiklejohn et al. [11] also used input and
output clustering to create a set of “users.” They actively interacted with par-
ties on the Bitcoin network to create a list of known Bitcoin addresses for each
party, using this information to assign identities to their clusters. Finally, they
used flow analysis to study interactions among users.
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Other papers did not try to deanonymize Bitcoin users, but instead gave
wholistic analyses of anonymity and proposed some solutions. Ober et al. [12],
using the available transaction history, analyzed what increases and decreases
anonymity in Bitcoin, concluding that clustering is the most important challenge
the community faces. Miers et al. [13], arguing that Bitcoin is not truly anony-
mous, proposed an extension to the protocol that uses cryptography to make
transactions fully anonymous. Barber et al. [14] discussed the various vulnera-
bilities inherent to Bitcoin, finally proposing and outlining a trust-free mixing
service. Moore and Christin [15] cautioned that mixing services, exchanges, and
other centralized intermediaries can pose a major risk to Bitcoin investors since
they can either have a security breach or close and disappear with people’s bit-
coins.

4 CoinSeer: The Need for a Custom Bitcoin Client

Inspired by Dan Kaminsky’s 2011 Black Hat presentation [5], we decided to
analyze traffic patterns on the Bitcoin network to see if it was possible to create
mappings from Bitcoin addresses to IPs. To increase the likelihood of receiving
transactions directly from their creators in a gossip protocol, we had to connect
to all listening peers. We actively collected all data, along with its IP information,
being relayed on the network and stored it for offline processing.

Although numerous Bitcoin clients exist, none of them are specialized for
data collection. Available clients often need to balance receiving and spending
bitcoins, vetting and rejecting invalid transactions, maintaining a user’s wallet,
mining bitcoins, and, perhaps most detrimental to our study, disconnecting from
“poorly-behaving” peers; these were precisely the peers we were interested in.

Because existing software had integrated functionality that interfered with
our goals, we decided to build our own Bitcoin client called CoinSeer, which
was a lean tool designed exclusively for data collection. For 5 months, between
July 24, 2012 and January 2, 2013, CoinSeer created an outbound connection
to every listening peer whose IP address was advertised on the Bitcoin network.
We maintained that connection until either the remote peer hung up or timed
out. In any given hour, we were connected to a median of 2,678 peers; for the
duration of our collection period, we consistently maintained more connections
than the only other Bitcoin superclient we know of - blockchain.info. This data
collection effort required storing 60 GB of data per week.

5 Discovering Anomalous Relay Patterns

When we began analyzing our collected data, we manually looked for interesting
behavior. The following are specific cases that led us to believe that transaction
relay behavior may be used to map Bitcoin addresses to IPs.

Case 1: On August 31, 2012, we received a transaction from a single IP that
was never relayed again. This “single-relayer” transaction is highly unusual for
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a P2P system using a gossip protocol; we would expect to have received it from
the majority of the approximately 2,500 peers we were connected to at the time.
On September 3, 2012, a new transaction with the same inputs and outputs was
relayed network-wide and accepted into the blockchain. Given this information,
can we assume the sole relayer of the first transaction was its creator and thus
owns the Bitcoin addresses inside?

Case 2: On August 22, 2012, a single IP sent us 11,730 unique transactions
within a 74-second window. The median rate we received transactions was only
43 per minute. Because these transactions were already in the block chain, they
were not relayed by anyone else, making them “single-relayer” transactions.
Using connection metadata, we saw that this large transaction dump corre-
sponded with this user upgrading to a newer version of the Bitcoin client he was
using. Could all of these belong to the single relayer?

Case 3: For 52 days, beginning on July 24, 2012, we received the same transac-
tion from a single IP approximately once every hour; no one else on the network
relayed it. The peer then disconnected, only for a new IP to connect and exhibit
the same behavior for the next 23 hours. This occurred again with the appear-
ance of a third IP, finally going silent a day later. Why would a transaction be
continually rerelayed, and what connection does it have to its rerelayers?

6 Methodology

Manually discovering instances of exploitable anomalous behavior proved to be
unscalable. We attempted to generalize the patterns we observed, some of which
were demonstrated by the cases in Sect. 5, in order to come up with a more
algorithmic approach for mapping Bitcoin addresses to the IPs that own them.
This approach requires six phases:

Phase 0 Prune transaction data to remove potential sources of noise.
Phase 1 Using relay patterns we have observed for transactions, hypothesize an

“owner” IP for each transaction.
Phase 2 Break transactions down into their individual Bitcoin addresses. We

do this to create more granular (Bitcoin address, IP) pairings
Phase 3 Compute statistical metrics for our (Bitcoin address, IP) pairings.
Phase 4 Identify pairings that may represent ownership relationships.
Phase 5 Eliminate ownership pairings that fall below our defined thresholds.

6.1 Phase 0: Pruning Transaction Data

By the end of our 5 month collection period, we had relayer information for
5,617,202 transactions. This number included some noise; there were 57,087
transactions whose hashes were advertised but which were never relayed, as well
as 300 that contained a Bitcoin address we could not parse. These were removed
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from consideration. Additionally, we removed 114,100 transactions that exhib-
ited relay patterns which made establishing ownership ambiguous (see Sect. 6.2,
and Fig. 5 in particular).

Our biggest source of potential noise were multi-input transactions. In this
work, we assume that each transaction has only one owner. A multi-input trans-
action can be created by one or multiple, unrelated entities with no way to
distinguish the difference [16]. Other academic works do not acknowledge this
possibility. We argue that not excluding multi-input transactions could lead to
incorrect assumptions being made about the ownership of a Bitcoin address.
To be conservative, we removed all 1,544,509 multi-input transactions from our
dataset, leaving us with 3,901,206 transactions to analyze.

6.2 Phase 1: Hypothesizing Transaction Owner IPs

Phase 1 of our approach involved hypothesizing which of each transaction’s relay-
ers is its owner. This step acts as a bridge to later mapping the Bitcoin addresses
internal to each transaction to owner IPs.

We know that the creator of a single-input transaction owns the input Bitcoin
address (since the transaction must be signed by the corresponding private key2).
Given that Bitcoin uses a gossip protocol and we expect multiple people to relay
a single transaction, how can we determine the IP of its creator?

When a peer either creates or receives a valid transaction, he sends advertise-
ments to all of his peers, all of whom can request and repropagate it. Since we
were connected to thousands of peers, we received a typical transaction between
1,500 and 2,500 times. As demonstrated by the three cases in Sect. 5, we found
that certain transactions exhibited atypical behavior; the transactions from Case
1 and 2 were relayed by only a single IP, while Case 3 demonstrated rerelaying
behavior. Whereas for a typical transaction, we can only hope that the cre-
ator was its first relayer3, anomalies provide additional information that we can
leverage when hypothesizing ownership.

Below, we discuss the 3 distinct relaying patterns exhibited by transactions
within our collected data and the heuristics we used to hypothesize transaction
ownership.

Relay Pattern 1: Multi-Relayer, Non-Rerelayed Transactions. The first
and most common relay pattern involves a transaction being relayed by multiple
people, each of whom relayed the transaction a single time. This is expected
behavior according to the protocol and 3,671,341 (approx. 91.4 %) of our trans-
actions exhibited this relay pattern.

We present an example in Fig. 2 to demonstrate ownership assignment for
transactions exhibiting this relay pattern.

Relay Pattern 2: Single-Relayer Transactions. The second relay pattern
involves a transaction being relayed by a single person. This includes transactions
2 We note that this does not mean the creator owns the funds associated with that

Bitcoin address (see discussion on eWallets in Sect. 7).
3 We discuss why this assumption is flawed in Sect. 7.
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Fig. 2. In the timeline at right, Tx 1 is being relayed once by each IP. Since this is
normal behavior, there is no additional information to exploit. In this case, we simply
choose the first relayer - IP 1 - as the “owner.”

relayed once, as well as transactions that were relayed multiple times by the same
IP. Cases 1 and 2 from Sect. 5 fall into this category. This behavior is highly
unusual for a system using a gossip protocol, and only 101,462 (approx. 2.5 %)
of our transactions exhibited this relay pattern.

This behavior may arise when a peer creates an invalid transaction that its
immediate peers reject. Since we attempt to be a directly connected peer of
every Bitcoin node, we are able to record the transaction despite it not being
relayed on the network. To demonstrate ownership assignment for transactions
exhibiting this relay pattern, we present an example in Fig. 3.

Fig. 3. The timeline at right shows the advertisements of Tx 2. Since only one IP ever
relayed this transaction, there is no ambiguity; we assign the single relayer - IP 3 -
as the “owner.”

Relay Pattern 3: Multi-Relayer, Rerelayed Transactions. The third relay
pattern involves a transaction being relayed by multiple people and retransmit-
ted by at least one of them. Case 3 from Sect. 5 demonstrated this behavior. A
total of 242,503 (approx. 6.04 %) of our transactions exhibited this relay pattern.

The Bitcoin protocol states that a transaction will not be relayed twice by
any node except the sender or recipient of coins in that transaction [17]. By
rerelaying a transaction, an IP exposes its association with at least one of the
keys contained inside. Although this may appear to be a clear way of establish-
ing ownership, we found that many transactions had multiple rerelayers, thus
making ownership assignment ambiguous. Besides the transaction’s creator, any
number of its recipients may also choose to rerelay it. Additionally, all IPs even-
tually “forget” which transactions they have already relayed, leading to some
transactions getting relayed by the whole network in waves.

To remain conservative when hypothesizing ownership, we decided to split
the transactions exhibiting this relay pattern into the following two groups:

1. Relay Pattern 3A: Multi-Relayer, Single Rerelayer Transactions
This group contains transactions relayed by multiple people, where only a
single person rerelayed the transaction. Approximately 3.2 % (128,403) of our
transactions exhibited this relay pattern. Figure 4 provides an example of
ownership assignment for transactions in this group.
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Fig. 4. For Tx 3, everyone but IP 2 is exhibiting the expected behavior of sending the
transaction only once. Since only the sender or recipient of coins in a transaction is
supposed to rerelay that transaction, we assign the single rerelayer - IP 2 - as the
“owner.”

2. Relay Pattern 3B: Multi-Relayer, Multi-Rerelayer Transactions
This group contains transactions relayed by multiple people, where at least
two people rerelayed the transaction. Approximately 2.8 % (114,100) of our
transactions exhibited this relay pattern. Figure 5 provides an example of why
ownership assignment for transactions in this group is ambiguous.

Fig. 5. This is similar to Tx 3, but there are now multiple rerelayers. This makes
ownership assignment more ambiguous. Do we assign it to the first rerelayer, or the
one with the most relays? To err on the side of caution, we removed transactions with
more than one rerelayer from consideration.

6.3 Phase 2: Creating (Bitcoin Address, IP) Pairings

In Phase 2, we pair the owner IPs assigned to each transaction in Phase 1 with
the Bitcoin addresses contained within that transaction. This brings us closer
to our goal of associating Bitcoin addresses with IPs and prepares our data for
statistical analysis.

We begin by splitting every transaction into a set of triplets which consist of:

1. a Bitcoin address from the transaction
2. the IP which we hypothesized owns the transaction, and
3. the unique transaction number we assigned to this transaction

There is a triplet for each unique Bitcoin address found within a transaction.
Because it matters whether a Bitcoin address appears as an input or an output
in a transaction, we keep triplets made from input and output Bitcoin addresses
separate. Figure 6 demonstrates how 3 transactions can be split into correspond-
ing (Bitcoin address, IP, Tx #) triplets.

We note that at the end of Phase 1, our data consisted of 3 groups of trans-
actions, split based on their relaying patterns. For this and subsequent Phases,
the data maintains its relaying pattern split since eventual Bitcoin address-to-
IP mappings obtained from anomalously relayed transactions are arguably more
likely to be correct. For instance, Fig. 7 shows what our data looks like at the
end of this phase.
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Fig. 6. Decomposing transactions into triplets involving their internal Bitcoin
addresses.

Fig. 7. This figure illustrates how our data is split according to Relay Pattern at the
end of Phase 2. It maintains this split in all later phases.

6.4 Phase 3: Computing Pairing Statistics

In Phase 3, we turn our triplet data from Phase 2 into (Bitcoin address, IP)
pairings by aggregating over all transactions within the corresponding dataset
(from Fig. 7). This step serves to identify unique (Bitcoin address, IP) pairings
and compute statistics for the occurrence of each pairing within the dataset.

We can think of a transaction owned by IP i which contains Bitcoin address
b as a “vote” for the pairing between b and i. We can aggregate our triplet data
over these “votes” to form a set of unique (Bitcoin address, IP) pairings, each
with the following metrics:

1. The number of unique transactions owned by IP i that contain Bitcoin address
b within their inputs.

NI(b, i)
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2. The number of unique transactions owned by IP i that contain Bitcoin address
b within their outputs.

NO(b, i)

3. The confidence (probability) that a transaction containing Bitcoin address b
within its inputs is owned by IP i.

CI =
NI(b, i)
NI(b)

4. The confidence (probability) that a transaction containing Bitcoin address b
within its outputs is owned by IP i.

CO =
NO(b, i)
NO(b)

where NI(b) and NO(b) represent the number of unique transactions that contain
Bitcoin address b as an input and output, respectively. After formulating our data
in this way, this problem becomes much like an evaluation of association rules
of the form b → i [18], where CI and CO represent the confidence scores and
NI(b, i) and NO(b, i) gauge the support counts for the rule when the Bitcoin
address is either an input or an output, respectively.

Table 2 shows how the transactions from our example in Fig. 6 would be
transformed into pairings with corresponding computed metrics, assuming those
were the only transactions in the dataset being analyzed.

6.5 Phase 4: Identifying Ownership Pairings

Phase 4 involves interpreting the statistics obtained in Phase 3 to figure out
which pairings may indicate ownership relationships. The relationship between
the Bitcoin address and the IP in a given pairing depends on the region the
pairing maps to on the CI × CO plane. Figure 8 provides a summary of the
interpretations of the different regions on this plane and we explain how we
came to these conclusions below.

Table 2. The table shows how the 3 transactions from Fig. 6 would be transformed
into pairings between Bitcoin addresses and IPs.

Bitcoin address IP address NI(b, i) CI NO(b, i) CO

b1 ip1 2 2/3 = 66.67 % 0 0

b1 ip2 1 1/3 = 33.33 % 0 0

b2 ip1 0 0 2 2/3 = 66.67 %

b2 ip2 0 0 1 1/3 = 33.33 %

b3 ip1 0 0 2 2/3 = 66.67 %

b3 ip2 0 0 1 1/3 = 33.33 %

b4 ip1 0 0 1 1/1 = 100 %
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Fig. 8. Interpretations for the different regions a given (Bitcoin address, IP) pairing
could map to on the CI × CO plane.

Region A. If a pairing (b, i) maps to Region A (CI ≤ 50% ∧ CO > 50%), we
can interpret the high CO as indicating that the majority of transactions sending
money to Bitcoin address b (i.e. where b was an output) were created by IP i.
The low CI indicates that this is not the case for transactions drawing on funds
from b (i.e. where b was an input). There are two situations that can give rise to
this combination of confidence scores:

1. IP i owns Bitcoin address b, using it frequently for receiving change, its own
funds (ex: if it is an offline wallet), or payments from others but rarely drawing
on those funds for future payments.

2. IP i does not own Bitcoin address b but frequently sends money to the person
who does own it. This could indicate a business relationship.

Without additional information to discern between the two cases, we cannot
form conclusions about Region A pairings.

Region B. If a pairing (b, i) maps to Region B (CI > 50% ∧ CO > 50%), we
can say that the high CO and CI indicate that IP i created both the majority of
transactions sending money to Bitcoin address b (i.e. where b was an output) as
well as the majority of transactions spending funds tied to b. This would usually
occur when a user reuses the same Bitcoin address for making payments and
receiving change and thus very likely implies an ownership relationship between
the IP and the Bitcoin address.

Region C. If a pairing (b, i) maps to Region C (CI > 50% ∧ CO ≤ 50%), we
know due to the high CI that IP i created the majority of transactions drawing
on funds from b; however, the low CO signifies that the IP did not create many
transactions that involved receiving money using b. Such a combination would
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occur if a user often sends money from b but does not reuse it for receiving
change. Thus, b would be paired as an output with anyone paying the user,
but not with the user himself. We classify pairings in Region C as ownership
relationships.

Region D. Pairings in Region D (CI ≤ 50% ∧ CO ≤ 50%) do not have high
CI nor CO, which implies that there may be no association between the Bitcoin
addresses and IPs involved. Such pairings are likely the result of noise coming
from incorrect ownership hypotheses in Phase 1.

Final Ownership Regions. In Phase 1, we assigned owner IPs to every trans-
action. These owners were then propagated to our (Bitcoin address, IP) pairings
in Phase 2. The above interpretation only applies if our definition of “owner”
was synonymous with “creator.” For Relay Pattern 1 and 2, this is the case; the
first or only relayer of a transaction likely created it. To find ownership map-
pings within Relay Patterns 1 and 2 data, we thus only keep pairings that map
to Regions B and C. This makes intuitive sense since transaction creators are
associated with inputs and may or may not be associated with outputs, making
CI the only important variable.

For Relay Pattern 3 data, however, the assumption that the “owner” is the
creator is not guaranteed to hold. As we described in Sect. 6.2, transactions
exhibiting rerelaying behavior could have been rerelayed by either their creator
or one of their recipients. Recipients are generally associated with a transaction’s
outputs and may or may not be associated with its inputs, thus making CO the
only important variable. In the event that an IP is the recipient of its assigned
transactions, the interpretations for Regions A and C in Fig. 8 are thus swapped.
Unfortunately, there is no way to know if the IPs assigned as owners to Relay
Pattern 3 transactions were creators or recipients. Since Region B is the only one
where the interpretations overlap for either scenario, we only consider Region B
pairings from Relay Pattern 3 data.

6.6 Phase 5: Eliminating Insignificant Pairings

In our final Phase, we apply thresholds to the statistical metrics of our ownership
pairings from Phase 4 in order to obtain final Bitcoin address-to-IP mappings.
There are two types of thresholds to consider - one on support count and one
on confidence. Support count tells us how statistically significant a pairing is,
while confidence measures the strength of the ownership relationship between
the Bitcoin address and IP.

We found that the vast majority of our (Bitcoin address, IP) pairings had
a support count of 1 (see Table 3). These results are not surprising; to protect
their anonymity, Bitcoin users are encouraged to create a new Bitcoin address for
every transaction, thus decreasing the number of times they may become paired
with any one address. We also note that within data obtained from anomalous
transactions (Relay Pattern 2 and 3), pairings with higher support counts were
slightly more common. We decided to use support count thresholds of 5 and 10.
These cutoffs allow us to be very conservative since they eliminate over 97 %
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Table 3. We see that the vast majority of pairings found in the ownership regions
(Regions B and C for Relay Patterns 1 and 2, and Region B for Relay Pattern 3) of
each dataset had a support count of 1. Choosing 5 and 10 as thresholds allows us to
conservatively eliminate more than 97 % of potentially erroneous pairings.

Dataset Total ownership Probability of pairings Probability of pairings Probability of pairings

region pairings with support count = 1 with support count ≥ 5 with support count ≥ 10

Relay pattern 1 1,678,390 99.411% 0.012% 0.004%

Relay pattern 2 71,714 91.027% 2.047% 1.051%

Relay pattern 3 27,708 76.732% 3.190% 1.660%

of our pairings. They also make sense from a practical standpoint since in the
Bitcoin system, 5 or 10 transactions sent by the same IP containing the same
Bitcoin address are highly infrequent.

Our confidence thresholds were determined by the ownership regions from
Phase 4 (Fig. 8). However, the region boundaries only provided the minimal
thresholds necessary for interpretations. We were interested in seeing how many
ownership pairings would remain as we increased these thresholds to progres-
sively more conservative values. We computed statistics for 7 confidence thresh-
old values for each support count threshold value. The following indicate the
criteria a pairing had to meet in order to avoid elimination.

Relay Pattern 1 and 2: Keep pairing (b, i) iff all the following are met:

1. NI(b, i) ≥ 5 or 10, depending on the computation being run.
2. CI > threshold, where threshold is varied from 50 % to 100 %.

This corresponds to pairings with a support count of at least 5 or 10 that are
found in Regions A and B of Fig. 8.

Relay Pattern 3: Keep pairing (b, i) iff all the following are met:

1. NI(b, i) ≥ 5 or 10, depending on the computation being run.
2. NO(b, i) ≥ 5 or 10, depending on the computation being run.
3. CI > threshold, where threshold is varied from 50 % to 100 %.
4. CO > threshold, where threshold is varied from 50 % to 100 %.

Table 4. These tables indicate the number of pairings found in each dataset which
met the criteria for ownership.

Support ≥ 5 # Ownership Pairings Found

Relay Relay Relay
Confidence Pattern 1 Pattern 2 Pattern 3
Threshold (Normal) (Anomalous) (Anomalous)

> 50% 178 591 393
> 60% 104 585 362
> 70% 68 577 332
> 80% 39 565 288
> 90% 19 544 243
> 95% 17 542 218
> 99% 16 538 188

Support ≥ 10 # Ownership Pairings Found

Relay Relay Relay
Confidence Pattern 1 Pattern 2 Pattern 3
Threshold (Normal) (Anomalous) (Anomalous)

> 50% 53 194 196
> 60% 22 191 183
> 70% 9 190 165
> 80% 5 187 139
> 90% 4 180 121
> 95% 2 178 101
> 99% 1 174 77
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Table 5. These tables indicate the number of unique owner IPs among the final own-
ership pairings from Table 4.

Support ≥ 5 # Unique “Owners”

Relay Relay Relay
Confidence Pattern 1 Pattern 2 Pattern 3
Threshold (Normal) (Anomalous) (Anomalous)

> 50% 50 168 184
> 60% 35 167 170
> 70% 28 165 157
> 80% 19 163 139
> 90% 13 162 115
> 95% 12 162 106
> 99% 11 161 92

Support ≥ 10 # Unique “Owners”

Relay Relay Relay
Confidence Pattern 1 Pattern 2 Pattern 3
Threshold (Normal) (Anomalous) (Anomalous)

> 50% 17 89 120
> 60% 10 88 108
> 70% 6 88 99
> 80% 4 87 83
> 90% 4 87 72
> 95% 2 87 63
> 99% 1 86 50

The thresholds are kept equal for inputs and outputs. This corresponds to pair-
ings with a support count of at least 5 or 10 for both inputs and outputs that
are found in Region B of Fig. 8.

Table 4 shows the final number of ownership pairings for each of our 3 datasets
as we varied the thresholds. Table 5 shows the corresponding number of unique
owner IP addresses involved within these pairings.

7 Conclusion

As we see from Table 4, even when applying highly conservative constraints, we
were able to map between 252 and 1,162 Bitcoin addresses to the IPs that very
likely owned them. From Table 5, we see that these mappings were not simply
the result of one or two misbehaving IPs; at least 100 different “owners” were
associated with Bitcoin addresses that appear to belong to them. This shows that
it is indeed possible to deanonymize some subset of Bitcoin addresses simply by
observing transaction relay traffic.

We note that the vast majority of our final mappings were derived from
Relay Patterns 2 and 3 - anomalous transaction traffic. This implies that either
(1) most users on the Bitcoin network follow the recommendation of creating
a new Bitcoin address for every transaction (thus reducing the support count
for any given mapping to 1), or (2) the heuristic of assigning a transaction’s
ownership to its first relayer is ineffective at best and invalid at worst.

There are indeed several assumptions and caveats to our method. To increase
the likelihood that the creator of each transaction was among our directly con-
nected peers, we tried to connect to all listening nodes4. However, transactions
sent through proxy services such as Tor, I2P, or the tool provided in [19] would
still be assigned to incorrect owners since we cannot establish direct connections
to their true creators. Incorrect ownership would also be assigned for transactions
created by directly connected peers with slow connections, since we may receive
4 We avoided inbound connections to prevent connecting to Tor/I2P nodes. A listening

Bitcoin peer cannot be hidden by Tor or I2P since these technologies only protect
the anonymity of people making outbound connections.
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their transactions from other peers first. Our statistical approach allows us to
be tolerant of incorrect ownership assignments provided that the transactions of
such peers do not always arrive through the same intermediary.

There are also several caveats when using our method in the presence of
centralized Bitcoin entities such as mixing services and eWallets, which both
greatly affect other work in this area that relies on flow analysis.

Mixing Services allow users to send their coins to one set of service-controlled
addresses and receive them back from a set of unrelated addresses. This breaks
any analysis that tries to relate entities by tracking the flow of bitcoins across
transactions. Since we do not attempt to connect different users or find links
between an individual user’s transactions, our method is not affected by mixing
services.

eWallets, much like banks, allow users to create accounts which they can use
to receive and send money. Users never need to download the Bitcoin software
themselves and all of a user’s transactions are made on behalf of the user by
the eWallet service using keys controlled by the service. We caution that using
our method, Bitcoin addresses controlled by an eWallet would be paired with
the eWallet despite the funds actually belonging to a different user. This is
an unavoidable limitation of our approach. However, we argue that mappings
involving eWallet IPs are still valuable since such services can be pressured for
internal client information.

Taking these limitations and our results into account, we conclude that some
degree of deanonymization is possible within the Bitcoin system and we urge
users to take advantage of the many existing recommendations and services
offered to them in order to protect their privacy.
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Abstract. We propose Mixcoin, a protocol to facilitate anonymous pay-
ments in Bitcoin and similar cryptocurrencies. We build on the emergent
phenomenon of currency mixes, adding an accountability mechanism to
expose theft. We demonstrate that incentives of mixes and clients can
be aligned to ensure that rational mixes will not steal. Our scheme is
efficient and fully compatible with Bitcoin. Against a passive attacker,
our scheme provides an anonymity set of all other users mixing coins
contemporaneously. This is an interesting new property with no clear
analog in better-studied communication mixes. Against active attackers
our scheme offers similar anonymity to traditional communication mixes.

1 Introduction

Protecting the privacy of financial transactions has long been a goal of the cryp-
tography community, dating at least to Chaum’s work on anonymous digital
cash using blind signatures [6]. Despite initial excitement, anonymous digital
payments have not seen mass adoption. One reason is that traditional electronic
cash requires a central, trusted entity, typically called a bank.

By contrast, Bitcoin is a relatively young decentralized currency that has
rocketed to popularity with a monetary base worth over US$6 billion in early
2014. Bitcoin can be thought of as a public, distributed ledger that logs all
transactions in order to prevent double spending [22]. Using a proof-of-work
system, the integrity of the ledger is maintained as long as a majority of the
computing power is contributed by honest participants [16].

Bitcoin does not provide true anonymity: transactions involve pseudonymous
addresses, meaning a user’s transactions can often be easily linked together.
Further, if any one of those transactions is linked to the user’s identity, all of her
transactions may be exposed. A small but growing body of academic literature
has found that Bitcoin offers only weak anonymity in practice (see Sect. 2.1).
This has led to the rise of mixing services (or tumblers) which promise to take
a user’s coins and randomly exchange them for other users’ coins to obfuscate
their ownership, though these come with no protection from theft by the service.
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The Bitcoin community is well aware of this issue, leading to much inter-
est in the provision of stronger anonymity. We provide more detail in Sect. 8,
but existing proposals can be thought of in two main groups. First are pro-
posals which provide strong anonymity but require advanced cryptography and
substantial modifications to Bitcoin, like Zerocoin [20], or even a completely
new currency as with Zerocash [4]. Second, there are proposals such as Coin-
Join [17] or CoinSwap [18] which are backwards-compatible with Bitcoin but
have practical complications and may provide smaller anonymity sets. Our goal
is to enable strong anonymity in a simple scheme that can be deployed imme-
diately. Our strategy is to build on the existing phenomenon of mixes, but to
add an independent cryptographic accountability layer. Our main contributions
include:

Accountability. Mixcoin mixes issue signed warranties (Sect. 4) to users which
roughly state: “if Alice sends me v coins by time t1, I will send v coins back to
her by time t2.” A user can then confidently send funds to the mix, knowing
that if the mix misbehaves she can publish this warranty, damaging the mix’s
reputation and (presumably) its business model.

Randomized mixing fees. We show how paying mixes for their services incen-
tivizes honest behavior (Sect. 6), yet fixed fees undermine anonymity when coins
are mixed multiple times. Instead we apply randomized, all-or-nothing fees in
which mixes retain the entire value from a small percentage of transactions. We
show how to generate the requisite randomness in a fair and accountable manner
using the unpredictability of the Bitcoin block chain itself.

Mix indistinguishability. Although users interact with specific mixes, single-use
mix addresses enable a surprising property that passive adversaries can’t deter-
mine which mix a user is interacting with. The anonymity set in this case is then
the set of all users interacting with any mix at the same time.

Mix networks for Bitcoin. Against an active attacker who can break mix indis-
tinguishability, we draw on the experience from anonymous communication net-
works to demonstrate how chaining multiple mixes together can still provide
strong anonymity. There are important differences from communication mixes,
however, which we discuss in Sect. 7.

Our core protocol is a very general design, allowing clients and mixes to
specify a variety of free parameters. We expect that, because anonymity loves
company [10], these parameters will converge to global values (Sect. 7.6). In
particular, we expect mixing to complete in a few hours with mixing fees of less
than 1 % (Sect. 6). Given this modest overhead and the fact that Mixcoin can
be deployed immediately with no changes to Bitcoin itself, it is our hope that
all Bitcoin users will have the opportunity to mix their coins, making strong
financial privacy practical in a decentralized digital currency.
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2 Background

In this section we provide a basic model of Bitcoin. We focus on the properties
required for Mixcoin, which could be implemented on top of any distributed
currency system similar to Bitcoin in these basic respects. We then model today’s
nascent Bitcoin mixes and the attacks they are vulnerable to.

2.1 Bitcoin

Bitcoin can be thought of as a decentralized system which tracks a mapping
between addresses and monetary value denominated in coins. An address, which
we denote κ, is simply a public key. Addresses are pseudonymous: anybody can
create an arbitrary number of addresses for free with no verification. Control
of an address’s private key provides “ownership” of all coins mapped to that
address. The simplest1 Bitcoin transaction is essentially a statement that an
address κin would like to transfer some value v to an address κout, signed by κin.

A distributed consensus protocol maintains a global history of all transactions
to prevent double spending. Transactions are grouped into blocks for efficiency,
which are chained in a linear structure called the block chain. The chain rep-
resents (probabilistic) consensus; at present most Bitcoin users will consider a
transaction confirmed if it appears in a block with at least w = 6 blocks following
it. New blocks are generated roughly once every ten minutes.

Creating new addresses is trivial, but this does not make Bitcoin anonymous
as all transfers are globally (and permanently) visible in the block chain. Several
recent papers have studied ways to link a user’s addresses to each other and to
an external identity [2,19,24,26].

2.2 Current Bitcoin Mixes

To preserve their privacy, some Bitcoin users exchange their coins using mixes,
directly analogous to the concept in communication networks. In the common
implementation a mixing address receives coins from multiple clients and for-
wards them randomly to a fresh address for each client. Several such services
have arisen, typically charging commissions in the 1–3 % range and requiring
manual interaction through a website2 to arrange transactions. A small-scale
study of three mixing services found that in one case, taint analysis was imme-
diately sufficient to link the input and output [21]. In the other two cases, taint
analysis did not succeed but the transaction graph showed rich structure, leaving
open the question of more sophisticated linking attacks. Anecdotal evidence from
user forums include complaints slow mixing times of up to 48 h and low trans-
action volumes leading to users frequently receiving their own coins in return.3

1 Bitcoin transactions may feature multiple inputs and outputs. Bitcoin also features
a limited scripting language allowing more complicated transactions.

2 Some mixing services are only accessible as Tor hidden services.
3 Receiving one’s own coins back from a mix is not necessarily a vulnerability. This

will happen with probability 1
N

in a random permutation of N participant’s coins.
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Reports of theft by mixes are also a significant concern, with the popular Bitcoin
Wiki warning: . . . if the mixing output fails to be delivered or access to funds is
denied there is no recourse. Use at your own discretion.

In contrast to dedicated mixing services, some services with a high preexisting
trust requirement have deployed implicit mixing successfully. For example, the
Silk Road marketplace mediated and mixed all transactions between buyers and
sellers [7], while some “eWallet” services promise that when users withdraw funds
they will receive random coins from the provider’s reserves.

2.3 Mix Networks for Anonymous Communication

Mix networks were introduced by Chaum in 1981 for anonymous communica-
tion [5]. Significant research has analyzed the relationship between design para-
meters, such as route selection and flushing policies, and the resulting anonymity
(see [23] for a survey), much of which is broadly applicable to financial mixing.

Verifiable mixing, beginning with Sako and Killian [27], aims to provide
accountability by mixes issuing a proof that their output is a permutation of
their input, particularly important when users cannot trace their own input
through the mix. In reputable mixing, beginning with [13], each mix provides
proof that each output corresponds to some input, as opposed to the mix itself
originating the message. Unfortunately these lines of research are largely orthog-
onal to the risk of theft in a financial mix. In communication mixes, messages
can be resent, which is not possible in Bitcoin as transactions are irreversible.

3 A Simple Model of Mixing

We start with a client Alice (A) who owns some number of Bitcoins at an address
κin which we assume is linkable to her real world identity. Alice wishes to transfer
some of her funds to a fresh address κout in such a way that it is difficult to link
κout to κin (and hence Alice herself), in exchange for a mixing fee.

Alice will send some of her coins to a mix M , a for-profit entity which will hold
Alice’s funds in escrow for an agreed time period before sending an equal value
to κout. We don’t require M to have any real-world reputation or assets, only
to maintain the same digital identity long enough to build a virtual reputation.
Alice is exposed to two major threats:

Theft. Because mixes routinely send funds to fresh addresses with no transaction
history, it is possible for a malicious mix to send Alice’s funds to its own secret
address κM instead of κout as requested. Though Alice can publicly complain
about the theft and attempt to undermine M ’s reputation, there is no way for
observers to determine which of A or M owns κM and therefore Alice’s claim
could be libelous. For-profit mixes may rationally attempt to undermine trust in
their competitors through false accusations of theft. Because allegations of theft
cannot be proven, it is difficult to determine which mixes are honest.



490 J. Bonneau et al.

Deanonymization. Because the mix learns that the same party owns both
addresses (κin, κout), Alice’s anonymity depends on the mix keeping this pairing
secret forever. A mix which is malicious, compromised, or subpoenaed might
share its records and undermine Alice’s anonymity. Alternately, the mix could
send coins in a non-random manner which reveals the connection to observers.

4 The Mixcoin Protocol

Our goal with Mixcoin is to provide a protocol for mixing with accountability.
Prior to mixing, the mix gives Alice a signed warranty which will enable her to
unambiguously prove if the mix has misbehaved. Dishonest mixes will quickly
have their reputation destroyed and lose business. Security against theft thus
reduces to properly aligning economic incentives of mixes and clients.

However, there is no way to prove that a mix is not storing records sufficient
to deanonymize its clients. Similarly to mix networks for communication, Alice
can mitigate this risk by relaying coins through a series of mixes which must all
collude in order to deanonymize her final output address.

4.1 Assumptions

We assume the availability of multiple mixes Mi, each represented by a warranty-
signing key KMi

. As for-profit enterprises, mixes are motivated to build and
maintain a reputation in KMi

, so it must be used consistently. Unlike mixes, Alice
does not need to maintain any long-term public key nor any public reputation.
Alice must be able to negotiate with the mix over an anonymous and confidential
channel. In practice this will likely be realized by mixes running a dedicated Tor
hidden service, but this is out of scope of the Mixcoin protocol itself.

4.2 Core Protocol

We outline the core Mixcoin protocol in Construction 1 which mixes a single
“chunk” v of Alice’s funds. For effective anonymity, chunk sizes should be stan-
dardized, as discussed in Sect. 7.6. While the core protocol can stand on its own,
typically Alice will need to split her funds into multiple chunks and perform
multiple sequential rounds of mixing for each.

The key accountability mechanism is Alice’s receipt of a signed warranty
prior to mixing. In Step 1 Alice contacts the mix over an anonymous channel
and proposes a set of mixing parameters:

v the value (chunk size) to be mixed
t1 the deadline4 by which Alice must send funds to the mix
t2 the deadline by which the mix must return funds to Alice
κout the address where Alice wishes to transfer her funds

4 Deadlines are specified as block numbers in the Bitcoin block chain, rather than
clock times, to enable unambiguous auditing.
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ρ the mixing fee rate Alice will pay
n a nonce, used to determine payment of randomized mixing fees
w the number of blocks the mix requires to confirm Alice’s payment

If the mix accepts these terms (Step 2a) it generates a fresh escrow address κesc

and sends back a warranty containing all of Alice’s parameters plus κesc, signed
using KM . The mix may also reject Alice’s request for any reason (Step 2b),
though in practice we expect that a reputable mix will abide by a published
policy for acceptable terms. Alice similarly has no obligation to transfer funds
after receiving a warranty. If Alice declines (or forgets) to do so by the deadline
t1 the mix may delete its records and move on.

If Alice does transfer the agreed value v to κesc by the deadline t1 (Step 3),
then the mix is obligated to transfer an equal value to κout by time t2 (unless
the funds are retained as a mixing fee—see Sect. 4.4). If the mix does so faith-
fully (Step 4a), then both parties should destroy their records to ensure forward
anonymity against future data breaches. If the mix fails to transfer the value
v to κout by time t2 (Step 4b),5 then Alice publishes her warranty (Step 5).
Because the warranty is signed by the mix’s long-term key KM and all Bitcoin
transactions are publicly logged, anybody can verify that the mix cheated.

4.3 Freshness of Addresses

Both the mix’s escrow address κesc and Alice’s output address κout should be
fresh addresses created specifically for this mixing. This is required because war-
ranties include neither κin nor κ′

esc, so they will appear to be satisfied as long
as v is transferred on time to κesc and then κout from any address. Thus both
parties should pick addresses with no other possible source of income so that the
other party must themselves pay to fulfill the contract.

4.4 Mixing Fees

A simple approach is to specify a fixed mixing fee rate ρ and have the mix return
(1−ρ) ·v to κout instead of the full v. However, this is problematic for sequential
mixing, as the smaller output value (1−ρ)·v cannot be the input to a subsequent
round of mixing with the same v. This could be addressed by using diminishing
transaction sizes vi = (1 − ρ)i · v for each round i, but this would undermine
the goal (Sect. 7.6) of indistinguishable transfers and limit the anonymity set in
each round to only other transactions at the same round of mixing.

Our solution is randomized mixing fees, whereby with probability ρ the mix
retains the entire value v as a fee, and with probability (1 − ρ) takes no fee at
all. This produces an expected mixing fee rate of ρ and leaves κout with either
5 There is no way in Bitcoin to guarantee a transaction will be included in any specific

block. Therefore in practice mixes will likely require a safety margin of several blocks
to t2 to ensure they can include the transaction before that time.
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Construction 1. A single mixing round between client A and mix M . A owns the

addresses κin and κout and M owns κesc and κ′
esc. The random value X

R← (0, 1) is
computed using Beacon, a pseudorandom function using the Bitcoin block t1 +w plus
the nonce n, and compared to the fee rate ρ. Times t1 and t2 are blocks in the block
chain. Curly brackets ({}K) indicate a digital signature under a signing key K.
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nothing or a full v which can be directly re-mixed. This solution is related to
the idea of electronic lottery tickets [25] used in some micropayment systems.6

The mix must use a publicly verifiable mechanism to randomly choose which
chunks to retain as mixing fees. Specifically, the mix must generate a (ρ, 1 − ρ)-
random bit which neither party can predict but can be audited afterwards for
fairness. This can be done with a public source of randomness called a beacon.

If the beacon is external to Bitcoin (e.g., NIST’s beacon [1] or financial
data [8]), warranties would need to be synchronized to real-world time to enable
auditing. Alternatively, randomness can be extracted from future Bitcoin blocks,
assuming the exact set of future transactions included in each block (as well as
the random nonce used to solve the proof-of-work puzzle) is unknown.7 Because
each block includes the value of the previous block, every transaction during a
confirmation period of w blocks adds randomness.8 The warranty also includes
a nonce n specified by Alice to ensure that the mix will compute an independent
value for all transactions it is managing. Specifically, the mix computes X =
Beacon(t1, w, n) = PRNG (n||Bt1+w), where Bi is the Merkle root of block i in
the block chain and PRNG is a cryptographic pseudorandom number generator
which outputs a value uniformly drawn from the range (0, 1).

The mix retains Alice’s funds only if X ≤ ρ. Because this computation can
be performed by anybody if Alice’s warranty is published, cheating by the mix is
detectable. Furthermore, in normal operation Alice’s warranty (containing n) is
kept secret so observers can’t tell which transactions were retained by the mix.

A drawback of randomized fees is increased variance in the effective mixing
fee rate for users mixing a small number of chunks. To address this, v should be
kept as low as possible so that most users can mix at least v

ρ coins.

4.5 Transaction Fees

In addition to mixing fees, Alice may have to pay transaction fees to Bitcoin
miners to ensure her transactions are included in the block chain.9 Fixed trans-
action fees pose the same problem for anonymity that fixed mixing fees would,
but paying miners randomly would require changes to Bitcoin itself.

Given a source of anonymous coins, Alice could address the problem of
decreasing chunk sizes by “topping up” each chunk after it is mixed using her
pool of anonynmized coins. However, it doesn’t work for Alice to simply mix
one chunk perfectly and then use it top up many other chunks, as this would
publicly link each of those topped up chunks as belonging to the same party.
6 Our motivation to use randomized fees is different from the case of micropayment

systems, which do so to avoid transaction costs from many low-valued payments.
7 A mix might also be a miner, in which case it may attempt to influence the block.

However, such an attack is highly uneconomical given the high reward for mining a
block compared to mixing fees.

8 Though in practice w = 6 is a common standard, we include w as a negotiable
parameter in the warranty to enable flexibility.

9 Some transactions are accepted today without fees, though miners may change this
at any time, which may occur as the minting rate decreases.
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Thus Alice would need a large number of mutually unlinkable addresses holding
transaction-fee sized values useful for topping up. Acquiring these through mix-
ing becomes a recursive problem though, as they themselves would require an
even greater number of unlinkable addresses for their mixing!

Instead, mixes can effectively pay transaction fees both10 for the transfer
from κin to κesc and from κ′

esc to κout. Assuming miners require a minimum
transaction fee τ (with τ � v), Alice can transfer v from κin of which the mix
will receive v − τ at address κesc. The mix can then form an output transaction
with v − τ from some κ′

esc and 2τ from a third address κ∗
esc which the mix

previously retained as a mixing fee, ensuring that κout receives a full v while the
miners still collect a fee of τ for each transaction. Of course, the mixing fee rate
ρ must be increased to cover the mix’s expected outlays on transaction fees.

This poses a problem for mix indistinguishability, which we’ll discuss further
in Sect. 7.2, as at the mix must use the same κ∗

esc to cover transaction fees for
multiple chunks which will then all clearly come from the same mix.

5 Sequential Mixing

Given the above Mixcoin protocol for interacting with a single mix, Alice will
most likely want to send her funds through N independent mixes to protect
her anonymity against the compromise of an individual mix. To do so, Alice can
choose a sequence of N mixes M1, . . .MN and execute the Mixcoin protocol with
each of them in reverse order, instructing each mix Mi to forward her funds to
the escrow address κesci+1 which she previously received from mix Mi+1. After
obtaining N signed warranties,11 Alice then transfers her chunk to κesc1 and if
any mix in the sequence fails to transfer it she can prove it with the appropriate
warranty. One subtlety is that each mix can likely determine which number it is
in the sequence based on timing information, as the later mixes will be contacted
further in advance from when mixing will actually take place.

In practice, Alice most likely wants to transfer some value kv by splitting
into k separate chunks. This means she will need to negotiate a total of kN
warranties with mixes. An important consideration is that each chunk should
travel through an independently-chosen random sequence of mixes. Otherwise,
Alice’s chunks would be exchanged for each other more frequently than would
happen via chance, which would leak information to a potential attacker.

6 Mix Incentives and Mixing Fees

Establishing the mixing fee rate ρ requires considering the dual roles of mixing
fees. First, they can cover direct expenses for mixes such as Bitcoin transaction
10 In pipelined sequential mixing, which we will discuss in Sect. 5, most mixes will need

only pay one transaction fee.
11 Unlike in traditional communication networks, an onion routing approach doesn’t

seem possible due to the interactivity required in Mixcoin.
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fees and electricity bills. Second and most importantly, they provide a mechanism
for mixes to profit from honest behavior and disincentivize mixes from ceasing
operations and absconding with users’ funds. Because higher fees more strongly
incentivize honesty, an interesting property arises that users should avoid mixes
charging less than some minimum acceptable value of ρ.

In a steady-state model, the mix has two choices for any given block in time:
continue to operate honestly until the next block, or abscond and retain all user
funds it holds in escrow. The expected value of either choice scales linearly with
Q, the average amount of money flowing into (and out of) the mix during any one
block. If t̄ is the average time period (in blocks) that the mix holds funds during
a mixing round, then the expected payoff of absconding is E[abscond] = Qt̄.

The expected payoff from choosing to continue would properly be defined
recursively, since the mix is able to play the same game again. However, under
steady state conditions the optimal decision will be the same in every round, so
if the mix initially chooses to continue it will do so indefinitely. Assuming the
mix is exponentially discounting future earnings12 at a rate r (per block), the
net present value of indefinite honest behavior with a fee rate ρ is ρQ

r .
Incentivizing honest behavior therefore requires that ρ

r > t̄. With the inter-
pretation that r for a rational mix is equivalent to the highest available risk-free
rate of return available, this condition is simply that the expected value of fees
collected by a mix during the time it holds funds is greater than the amount
those funds would yield during the same time period if invested.13 This can be
explained by considering that we want an honest mix to continually decided to
“invest” its potential earnings Qt̄ from absconding into continuing to serve as a
mix, earning a return of ρQ during every block.

We can estimate that relatively low mixing fees should suffice to incentivize
honest behavior. Assuming a very attractive rate of return of r ≈ 20% annually
is available to the mix, a mix time of t̄ ≈ 1 h gives a lower bound of ρmin ≈ 2−15.
Even considering a chunk taking a path through 10 consecutive mixes, this still
leaves only an effective fee rate of ≈ 2−12 necessary to discourage absconding.
This suggests that very low mixing fees may be sufficient to cover the risk of
theft.14 Still, actual mixing fees will be dominated by operating costs, suggesting
that any mix which has been operating for a non-trivial period of time is turning
a profit and is unlikely to abscond.

7 Anonymity Properties

We can draw many connections to the extensive literature on mix networks for
communication, dating to the initial proposal of communication mixes [5].
12 The exchange rate of bitcoins may of course be drastically different in the future.

We assume mixes have no private information about the future value of bitcoins and
therefore use its current market price in calculating the net present value.

13 This equivalence ignores the effects of compounding interest, though r and t̄ are
both low enough that (1 + r)t̄ ∼ 1 + rt̄.

14 In practice, absconding may be slightly more appealing due to super-exponential
time discounting by the mix or the risk that business may decline.
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7.1 Threat Model

We focus on an attacker who wants to gain as much information as possible
about the anonymity set of possible pre-mixing input addresses which may have
been the source of the funds held by a final output address κout.

Because the Bitcoin block chain is a permanent, public record of all trans-
actions, every attacker is trivially a global passive adversary, a common attack
model studied for communication mixes.15 Mixing literature also considers
extended attacker capabilities, such as compromising mixes, delaying or block-
ing messages, replaying old messages, or flooding the network with dummy mes-
sages [28]. Replay should be impossible in Mixcoin due to the double spending
prevention in Bitcoin, but flooding and delaying may be possible.

7.2 The Passive Adversary’s View with Mix Indistinguishability

The best-case scenario for Mixcoin is a passive adversary. We assume this adver-
sary can reliably determine with high probability which Bitcoin transactions are
mix traffic, given their size v and their use of one-time escrow addresses. How-
ever, due to their one-time nature, this simple adversary may be unable to link
escrow addresses to specific mixes, a novel property with no apparent precedent
in communication mixes which we call mix indistinguishability.

If this is the case, the adversary is left to observe a sea of apparently iden-
tical escrow addresses and the system appears to function as one universal mix
consisting of all participants using the chunk size v. There are several scenarios
in which mix indistinguishability may fail (which we will discuss in Sect. 7.3) but
the anonymity offered is quite strong in this case.

7.3 Active Adversaries and Distinguishable Mixes

There are several ways that an active attacker might be able to distinguish which
escrow addresses correspond to which mix and hence which mixes are involved in
a chunk’s mixing path. Observe that when Alice sends a chunk from κin to M via
κesc, the client who ultimately receives this chunk will learn that κin interacted
with M . Similarly, the client who sends the chunk to κ′

esc which is eventually
sent to κout will also learn that Alice interacted with M . An active adversary can
exploit this in a flooding attack, learning up to two other addresses interacting
with the same mix for each chunk sent through that mix.

A second attack vector, if mixes are forced pay transaction fees, is that when
a user’s chunk is retained as a mixing fee by mix M it may might be used by
M to pay transaction fees on many other transactions, all of which can then be
linked to M . The effectiveness of this attack depends on the ratio of transaction
fees per chunk τ to average mixing fees per chunk ρv. Mixes will have to spend a
proportion τ

ρv of their mixing fee revenue on transaction fees, so if mixes allocate

15 Tor is notably not designed to withstand attack by a global passive adversary, as
Tor relays provide no mixing of traffic [11].



Mixcoin: Anonymity for Bitcoin with Accountable Mixes 497

a constant proportion of each retained chunk to transaction fees each retained
chunk will pay fees on 1

ρ · τ
ρv other transactions. Since each chunk is retained

with probability ρ, the expected number of transactions identifiable by a given
input transaction is just τ

ρv , which is maximized at 1 if mixing fees are only high
enough to cover transaction fees. Thus for each mixing transaction an active
attacker performs with M , she can link up to (1 − ρ) · 2 + τ

ρv other transactions
to M . Observing the majority of links therefore appears to require an attacker
generate a large portion of the mix’s traffic.

Finally, the attacker may be the mix themselves, or be able compromise the
mix or subpoena its records, which would reveal all input/output pairs.

Against such a strong active attacker who can link every escrow address to its
originating mix, the system appears similar to be a traditional communication
mix network with mixes behaving as stop-and-go mixes [15] with limited pooling
due to the block size. Stop-and-go mixes suffer from low guarantees of anonymity
in periods of low traffic, but implementing other strategies such as threshold
mixes appears very difficult to achieve with our warranty systems as significantly
more information (including the entire set of transactions sent to a mix) would
need to be available to enforce warranties.

7.4 Anonymity Sets and Mix Delay

Regardless of mix distinguishability, there is a trade-off between mixing chunks
with many mixes for a short escrow period each or few mixes with a longer escrow
period. The escrow period is limited by t2 and t1 as specified in the warranty,
with a maximum delay of δmax = t2−t1. Mixes will also require a minimum delay
of δmin = w (typically 6 blocks) to protect against double spending. Picking the
smallest possible t2 = t1 + w allows Alice to afford more rounds of mixing in a
given time period. But this also means that Alice’s anonymity set for the round
consists only of other chunks that were mixed at time exactly t1.

We assume that individual mixes will only issue warranties with a spe-
cific δmax as a matter of policy,16 and will then uniformly at random choose
a delay δ ∈R [w, δmax] before forwarding Alice’s chunk.17 Thus each mixing step
adds lg (Q(δmax − w + 1)) bits of entropy to Alice’s anonymity set, at a delay
of δmax blocks.18 In other words, the entropy of her anonymity set grows by
lg(Q(δmax−w+1))

δmax
per block. It turns out that for w = 6 this expression is maxi-

mized for δmax = 6 for Q ≥ 128 (and δmax = 7 for 13 ≤ Q < 128) so it appears
minimal delays and longer mixing chains are preferable.
16 Allowing different delays per client would open the possibility of free-riding and

make anonymity analysis much more complex [12].
17 Non-uniform distributions such as an exponential distribution are possible, but they

make it difficult to provide a firm bound on the delay as required by the warranty.
18 Because Alice must have already negotiated her mixing warranty for the next round,

each warranty must be delayed by the maximum δmax blocks.
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7.5 Mixing Multiple Chunks

So far we have considered each chunk individually. However, if Alice combines
many mixed chunks to make a payment, her anonymity set will be reduced
to the intersection of the anonymity sets of all chunks. As long as she mixed
those chunks sufficiently at the same time, then those chunks will have the same
anonymity sets, and her payment is still unlinkable.

However, if even one of the chunks travels through a path consisting entirely
of compromised mixes, Alice’s entire payment completely loses anonymity. If
each chunk is routed independently, then with say 25% of mixes compromised,
there is a 2−20 chance of routing a chunk through a chain of 10 compromised
mixes, which may be acceptably low. However this probability increases rapidly
if a greater fraction of mixes are compromised. One way to avoid this would be
to randomly pick a set of mixes for each batch of funds to mix, and to use a
random permutation of that set for each chunks in the batch.

7.6 Convergence of Free Parameters

Our design intentionally leaves many parameters free, such as the chunk size v,
the time delay t2 − t1 and the number of rounds N . Our philosophy is to avoid
embedding these into the protocol as the optimal choices may drift over time as
the mixing ecosystem evolves and the underlying parameters of Bitcoin change.
Yet it is critical for anonymity that a large number of users choose the same
values19 to avoid splitting their anonymity sets based on parameter choices.

As a case study, consider the effect of two different common values of v.
Each will be clearly identifiable in the block chain and hence the anonymity set
for each chunk is limited in the best case to those users who mixed a chunk
of identical size in the same time period. We could attempt to ameliorate this
slightly by hoping that all users mix chunks of both sizes regularly, but this
is quite fragile.20 The best-case scenario for anonymity is if all users choose the
same chunk size. Yet there is an inherent trade-off: setting v too high will exclude
users owning less than v coins,21 while decreasing v will require proportionately
more runs of the protocol and more transactions in the block chain.22

Still, we expect v and other parameters to converge in practice to a common
value (or a small set) for two reasons. First, like with Bitcoin itself most clients
will likely use one of a small number of software implementations which include
reasonable parameters and a popular mix reputation list.
19 Note that the mixing fee rate ρ is unobservable and hence should have no impact on

anonymity and can be chosen independently by different mixes.
20 For example, if chunk sizes α and β are common, a user mixing x = k1α + k2β will

have her anonymity set limited to other users mixing at least k1 chunks of size α
and at least k2 of size β, instead of all users mixing at least x.

21 Additionally, with randomized mixing fees (see Sect. 4.4) users owning only a small
multiple of v may face unacceptably high variance in their fee rate.

22 The Bitcoin community frowns on creating large numbers of low-value transactions
(referred to as dust) because it places a higher verification burden on miners.
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Second and more importantly, all clients have an incentive to choose the
most popular parameters in an application of the “anonymity loves company”
principle [10]. Unilateral variation in a user’s transaction sizes, for example,
could leak information which would help Eve deanonymize Alice’s coins. Thus we
expect Mixcoin users to relatively quickly converge on a global set of parameters.

7.7 Side Channels

Financial mixing introduces several subtle side channels.23 The most obvious is
payment sizes: If Alice receives a very specific amount of Bitcoins at her long-
term address, is observed mixing them, and a day later an equal quantity of
mixed chunks are combined to make a payment, the adversary might plausibly
infer that Alice made the payment.24 This can be addressed if Alice mixes her
incoming funds as soon as she receives them and not immediately prior to making
a payment. Of course, this requires Alice to always carry a balance of mixed funds
and never pay them all out at once.

More subtle issues arise because mixed chunks carry an implicit timestamp
of when they were last mixed. Suppose Alice immediately mixes three large,
equal-sized quantities of income on three specific dates and then later combines
a random subset of her mixed chunks to make a payment. Eve can trace the
outgoing payment to Alice if it contains a mix of chunks from these times and
Alice was the only person mixing at each of them.25 The attack might work even
if Alice wasn’t the only person mixing: if Alice picks a random set of her mixed
chunks, then the proportion of chunks from each time period in the outgoing
payment will correspond to the amount Alice mixed in each time period.

Thus, even perfect mixing can leave Alice’s transactions linkable without
further obfuscation. One defense is for Alice to only make payments using chunks
that were mixed contemporaneously. This works if payments are small enough.
Second, Alice could re-mix all of her chunks every time she receives income. This
destroys the timing information, but is expensive. Third, if Alice has advance
notice before needing to make a payment, she can employ input/output mixing.
Alice mixes her funds as soon as she receives income. When she needs to make a
payment, she mixes a set of (already mixed) chunks totaling the amount she owes.
It introduces a delay in payment equivalent to mixing time, which is why Alice
must have advance notice. Finally, in Appendix A we introduce continual mixing,
a more complex approach which can provide stronger guarantees of anonymity.

8 Related Bitcoin Anonymity Technologies

Several academic proposals have aimed to provide strong anonymity crypto-
graphically. Most prominent is Zerocoin [20], which uses a cryptographic accu-
mulator with zero-knowledge proofs of inclusion to implement a global currency
23 Network-level side channels are out of scope. As noted earlier, we assume that Mix-

coin clients always communicate using a secure anonymity network such as Tor.
24 This is analogous to a packet counting attack in communication mixes.
25 This is analogous to an intersection attack in the mixing literature.
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pool from which users can deposit coins and withdraw random coins without any
trusted parties. Unfortunately Zerocoin and related proposals [4,9] require mod-
ifications to Bitcoin which appear unlikely due to the computational overhead.
Mixcoin, by contrast, can be deployed immediately.

An alternate line of research, mostly arising from the Bitcoin developer com-
munity, is to remove the trust requirement from mixing using more complicated
(but already supported) Bitcoin transaction scripts. For example, Barber et al.’s
“fair exchange” protocol [3] or Maxwell’s CoinSwap [18] allow two parties to
anonymously swap coins with no risk of theft using a multi-step protocol and at
least 4 transactions (compared to 2 in Mixcoin). Both of these protocols could
be used as an alternative to Mixcoin to facilitate mixing with no risk of theft and
mix indistinguishability against a passive attacker and our anonymity analysis
would still apply, including the loss of mix indistinguishability against a flooding
attack. Incorporating transaction fees is another open problem in these protocols
and there doesn’t appear to be a simple way to apply our randomized approach.

Finally, CoinJoin [17] enables k users to atomically transfer funds from their
k input addresses to their k output addresses in a random permutation. Since
the transaction is atomic and requires every participant to sign, there is no risk
of theft. The transaction functions as an implicit mix between the participants.
However arranging the output addresses randomly without users learning the
correspondence for other users’ coins introduces complexity. Overall we expect
CoinJoin might be useful for small-scale mixing but the anonymity offered may
be lower due to the lack of mix indistinguishability.

9 Conclusion

Despite significant interest in providing strong anonymity for Bitcoin, the design
of a robust protocol with that can be deployed without modifications to Bitcoin
has remained an open question. In this paper we proposed Mixcoin, which we
believe meets these goals. Our key innovations are cryptographic accountability,
randomized mixing fees, and an adaptation of mix networks to Bitcoin. We look
forward to engaging with the academic community and the Bitcoin community to
further refine the design and to progress toward implementation and deployment.

We also provide an initial treatment of mixing for financial privacy, a research
area which we expect will be as deep and challenging as mixing for communica-
tion privacy. Many basic properties of communication mixes, such as the ability
to pad or replay messages, don’t exist in a financial setting. Yet interesting new
properties, such as the possibility of indistinguishable mixes, arise. We expect
that ensuring financial privacy, regardless of the underlying mixing protocol, will
require careful consideration of some of the higher-level side channels we have
only briefly explored here.
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A Continual Mixing

A more in-depth defense against some of the side-channel attacks introduced in
Sect. 7.7 is continual mixing, which does not require advance notice of payments.
In addition to avoiding the timing side channel, it actually increases Alice’s
anonymity set. The core idea is that Alice continues mixing her coins until she
is ready to spend them, but at a greatly reduced rate (e.g., one round per
month). Let ΔA be a time period such that Alice is prepared to keep her coins
for time ΔA between receiving them and spending them. Then the continual
mixing algorithm for a chunk c for which initial mixing completes at time t0 is
as follows:

• generate ΔA,c = U [0,ΔA]
• mix c at time ΔA,c and thereafter at ΔA intervals
• mark c as spendable after the first continual mix round.

It is easy to verify that regardless of the timings of the payments received
by Alice, the distribution last mixing times for each of her spendable chunks
is always U [0,ΔA]. This nullifies the timing channel, except for the matter of
picking ΔA. If Alice makes a payment with a random subset of her spendable
chunks, Eve can infer ΔA with high accuracy.

Picking Δ involves a trade-off. From the point of view of a business, if Δ is
too high, it adds latency to the operating cycle and decreases cash flow. If Δ
is too low, it leads to a higher depreciation rate of long-term assets due to the
mixing fees incurred by continual mixing. Further, clients must consider each
others’ choices in picking Δ, since anonymity loves company and highly unusual
values of Δ will help Eve.

Given these constraints, we propose several globally fixed values of Δ: for
instance, a day, a week, a month, and a quarter; each client is free to pick
the value that best suits their operating patterns. Alice can now expect her
anonymity set to be the set of all Mixcoin clients who have the same value of Δ.

Some inference attacks are hard to prevent with any mixing system. For
example, if Alice owes Bob a highly unique amount of money, and neither Alice
nor Bob transacts with any other users, this information is sufficient to link
Alice’s outflow with Bob’s inflow. Unlikely as such situations are for most users
in the real world, they pose a problem for analysis of anonymity of our system.

B Improving Mix Trustworthiness

If a mix cheats, the cheated client can ensure that the mix gets a poor reputation.
But how can a mix build a reputation for trustworthiness? Even if there are no
theft reports against it, it might simply be because the mix doesn’t have much
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volume yet. Further, to the extent that more popular mixes may offer better
anonymity (Sect. 7.3), clients would like to estimate mix transaction volumes.

In this section we discuss ways to better measure, as well as prove, mix trust-
worthiness, and even a mechanism for recourse against cheating mixes. These
are all “out-of-band” and do not require modifications to the Mixcoin protocol.

B.1 External Reputation

While some mix operators may choose to be anonymous, others may be comfort-
able revealing their real-world identity. A bank or trusted community member
could leverage their external reputation to increase trust in their mix service.

B.2 Throttling

Throttling, or rate limiting by the client, lets Alice limit her exposure to a given
mix at any given time. If Alice wants her maximum exposure to M to be E,
she transacts with M at the average rate of E

δmax
per block, where δmax is the

maximum mix delay that she picks for M . If she stops transacting with M as
soon as she detects misbehavior, then M can steal at most E of her coins.

B.3 User Reports

To estimate volume, client users could publish through out-of-band channels,
such as forums, logs containing aggregate statistics about their usage of various
mixes (e.g., “Alice mixed 10,000 chunks through mix M1 in August”). If these
are reputable members of the community (for example, with longstanding active
accounts), observers can be reasonably confident that they are not sybils. Such
reports provide lower bounds on mix volume.

B.4 Mark and Recapture

The mark-and-recapture method for estimating wildlife populations (e.g., [14])
could be used to estimate a mix’s escrow reserves and hence its volume. The
method involves engaging the mix in n transactions over a short period, and
observing what fraction of these get forwarded among the set of corresponding
return transactions. If the transaction volume of the mix is Q, then at any time
the escrow pool contains Q transactions, and the expected number of correspond-
ing returns is approximately n/Q when n is much smaller than Q. The mix may
attempt to inflate this measurement by simulating transactions of sybil clients
and contributing its own funds to the escrow pool. To defeat sybil detection by
transacting with other mixes would incur fees proportional to the inflated vol-
ume. Thus, to inflate the apparent volume to twice the actual amount, the mix
would have to forego its entire profits.
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