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Abstract. Since frequent graph pattern mining was proposed, various ap-
proaches have been suggested by devising efficient techniques or integrating 
graph mining with other mining areas. However, previous methods have limita-
tions that cannot reflect the following important characteristics in the real world 
to their mining processes. First, elements in the real world have their own im-
portance as well as frequency, but traditional graph mining methods do not con-
sider such features. Second, various elements composing graph databases may 
need thresholds different from one another according to their characteristics. 
However, since traditional approaches mine graph patterns on the basis of only 
a single threshold, losses of important pattern information can be caused. Moti-
vated by these problems, we propose a new graph mining algorithm that can 
consider both different importance and multiple thresholds for each element of 
graphs. We also demonstrate outstanding performance of the proposed algo-
rithm by comparing ours with previous state-of-the-art approaches.  

Keywords: Frequent pattern mining, Graph mining, Graph enumeration, Multi-
ple minimum supports, Weight constraint. 

1 Introduction 

Since the concept of frequent graph pattern mining was proposed to overcome the 
limitations of traditional frequent pattern mining approaches that perform mining 
operations with respect to transaction databases composed of simple items only, a 
variety of methods have been devised [1, 3, 5, 6] by suggesting novel techniques for 
performance improvement or effectively integrating graph mining with other mining 
fields. However, previous graph mining methods have faced problems that cannot 
consider the following issues in the real world: 1) the rare item problem [4] that not 
only items or patterns with high supports but also ones with relatively low supports 
may have valuable information, and 2) the different importance problem [7, 8] that 
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elements obtained from the real world have their own importance or weights different 
from one another according to their characteristics. Motivated by these issues, we 
propose a new algorithm that can mine Weighted Rare Graph patterns (WRGs) con-
sidering both different importance and multiple thresholds depending on the features 
of elements, called WRG-Miner. In addition, we demonstrate that our algorithm out-
performs previous state-of-the-art ones through various performance evaluation tests. 

2 Related Work 

In frequent pattern mining, multiple minimum support threshold-based various re-
searches [1, 2, 3, 4] have been conducted to solve the rare item problem. MSApriori 
[4] is an initial solution based on a level-wise manner. After that, a tree search-based 
algorithm, CFP-growth [1], and its advanced version, CFP-growth++ [2], were pro-
posed. Although they are possible to mine rare patterns applying multiple minimum 
support thresholds, they cannot consider different importance characteristics and their 
coverages are limited to simple itemset-based databases. WFIM [8] and WIT [7] are 
tree-based frequent pattern mining algorithms considering importance of items’ own, 
but they cannot solve the rare item problem and process complex data such as graph 
databases. 

As one of the fundamental graph mining algorithms, Gaston [6] is known as the 
most efficient method in terms of runtime speed. The algorithm, which is an effective 
integration of multiple enumeration methods for path, free-tree, and cyclic graph 
forms, improves its mining performance by utilizing its own special techniques and 
list-based data structure. FGM-MMS [3] mines frequent and rare graph patterns by 
applying multiple minimum support constraints in a graph mining environment, but it 
still has a problem that cannot consider different importance or weights for each ele-
ment within graphs. 

3 Mining Weighted Rare Graph Patterns from Graph 
Databases with Multiple Minimum Support Thresholds 

In this section, we describe techniques for applying multiple minimum support 
thresholds and importance characteristics of graph elements into a frequent graph 
mining environment and explain strategies for preventing fatal problems such as pat-
tern losses that can be caused in the mining process. In addition, we also show how 
the proposed algorithm is performed through its overall operational procedure. 

3.1 Employing Element Importance and Multiple Minimum Support 
Thresholds in Frequent Graph Pattern Mining 

Fig. 1 shows an example of a graph database including the information of multiple 
minimum support thresholds and edge weights. To apply different importance for 
each element composing graphs, we consider mining graph patterns from graph data-
bases that assign a different weight value to each edge of graphs. As a result, we can 
obtain a set of graph patterns considering both supports and weights of edges con-
nected among nodes. The weighted support of a graph pattern is calculated as follows. 
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Fig. 1. Example of a graph database with weight and multiple minimum support information 

Definition 1. (Weighted support of a graph pattern) Let VG = {v1, v2, …, vm}, EG = 
{e1, e2, …, en}, and WG = {w1, w2, …, wn} be a set of vertices in a graph pattern, G, a 
set of edges in G, and a set of edge weights in G. Then, the weighted support of G, 
Wsup(G) is calculated as follows: Wsup(G) = Sup(G) * Avg(W), where Sup(G) is a 
support of G and Avg(W) is an average weight of W. If Wsup(G) is not lower than a 
given minimum support threshold, G is regarded as a weighted frequent graph pattern. 

In order to consider the rare item problem in the graph pattern mining area, we 
need multiple minimum support thresholds for each element (vertex and edge) com-
posing a given graph database. 

Definition 2. (Minimum element support threshold)) Let GDB = {Gtr1, Gtr2,…, Gtrk} 
be a given graph database composed of multiple graph transactions, Gtrs, VGDB = {v1, 
v2, …, vx} be a set of separate vertices included in GDB, and EGDB = {e1, e2, …, ey} be 
a set of separate edges in GDB. Then, a minimum element support threshold for each 
element (v or e), δi (1 ≤ i ≤ x + y) is set as a value specified by a user.  

If a weighted support of any element is lower than the corresponding δ value, it be-
comes a useless one. Consequently, the threshold of a graph pattern is determined as 
follows. 

Definition 3. (Minimum graph support threshold) Given a graph pattern, G, a set of 
vertices in G, VG = {v1, v2, …, vn}, and a set of edges in G, EG = {e1, e2, …, em}, a 
minimum graph support threshold for G, MGST(G), is set as the minimum value of all 
the δ values in G. Therefore, if Wsup(G) is lower than MGST(G), it becomes an inva-
lid graph pattern. 

By calculating the threshold for a graph pattern in the above manner, we can consider 
the rarity of the graph’s each element. In other words, only weighted frequent graph 
patterns satisfying their own MGST conditions are finally regarded as valid results. 

3.2 Maintaining the Correctness of the Proposed Algorithm 

Through the aforementioned conditions, we can obtain a set of graph patterns that 
completely consider both the weight and rarity of elements. However, if we simply 
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apply such conditions into the mining process without any additional considerations, 
fatal pattern losses can be caused since these conditions violate the anti-monotone 
property (or the downward closure property). Therefore, to guarantee not only the 
efficiency of the proposed algorithm but also its correctness, we employ 1) an overes-
timated weight method and 2) an underestimated minimum support method. In the 
first method, the maximum edge weight within a given graph database, called MaxW, 
is used instead of the real average weight factor used in Definition 1. That is, given a 
graph pattern, G, multiplying Sup(G) by MaxW, called Wsupover(G), is first applied in 
the mining process. Through such overestimation method, we can maintain the anti-
monotone property and prevent unintended pattern losses by the weight constraints. In 
the second method, among all the thresholds in Definition 2, we set the least value 
that does not violate the property and apply it into the mining process. Let L = {δ1, δ2, 
…, δx} be a list of all the elements’ δ values in GDB that are sorted in the descending 
order of their values. Then, starting from the last element in the list, we check whether 
or not the overestimated weighted support of the element is higher than its own δ 
value. If there is the first element satisfying this condition, its δ value becomes an 
underestimated minimum support threshold, called Least Minimum Support (LMS). 

If any graph pattern does not satisfy the LMS condition, the pattern and all of its 
possible supersets become useless ones; hence, it can permanently be pruned in ad-
vance. Note that graph patterns obtained through the above conditions are candidate 
patterns, not final results. Among them, only partial ones satisfying the corresponding 
MGST conditions in Definition 3 finally become valid results. 

Input : a graph database, GDB, a list of minimum element support thresholds, L 
Output : a set of WRGs, S 
Procedure: WRG-Miner 

01. a set of vertices, V  vertices such that each of their supports ≥ LMS; 
02. a set of edges, E  edges such that each of their supports * MaxW ≥ LMS; 
03. for each vertex, vi in V 
04.    a graph pattern, G  vi; a set of edges, E’  edges that can be attached to vi in E; 
05.    S  S ∪ call WRG-Growth(G, E’); 

Function: WRG-Growth(G,E) 
06. for each edge, ei, in E 
08.    if G is a path or free tree: an expanded graph of G, G’  G ∪ ei and the vertex in ei; 
09.    else if G is a cyclic graph: G’  G ∪ ei;  //only a cyclic edge 
10.    if Wsupover(G’) ≥ LMS 
11.        if Wsup(G’) ≥ MGST(G’), S  S ∪ G’; 
12.        a set of edges, E’  edges that can be attached to G’; 
13.        S  S ∪ call WRG-Growth(G’, E’); 

Fig. 2. Procedure of WRG-miner 

3.3 WRG-Miner Algorithm 

Fig. 2 shows the overall procedure of the proposed algorithm. After finding valid 
vertices and edges from a given graph database (lines 1-2), the algorithm performs 
graph pattern growth processes for mining WRGs with respect to each vertex (lines 3-
5). In this phase, WRG-Miner continues to expand graphs for each edge considering 
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their current states (lines 6-9). For each expanded graph, if the overestimated 
weighted support of the graph is smaller than LMS, it is permanently pruned (line 10). 
If the graph pattern’s real weighted support is not lower than its corresponding MGST 
value, it is regarded as a valid result and the algorithm outputs it (line 11). Once the 
graph pattern has an overestimated weighted support higher than or equal to LMS, 
growth operations for the pattern are recursively conducted regardless of whether it is 
really outputted or not (lines 12-13). 

4 Performance Evaluation 

In this section, the proposed algorithm is compared to FGM-MMS that is a state-of-
the-art graph mining algorithm based on multiple minimum support constraints, and 
Gaston that is a well-known fundamental graph mining algorithm, with respect to real 
datasets, DTP and PTE [5]. Edge weight ranges of the datasets were set between 0.5-
0.8. All the algorithms were written in C++ and executed in an environment with 
3.33GHz CPU, 3GB RAM, and Windows 7 OS. 

 

Fig. 3. Runtime results of DTP and PTE 

 

Fig. 4. Memory usage results of DTP and PTE 

To set the δ value for each element of graph datasets, the methodology employed 
in the literature [1, 2, 3, 4] was applied. That is, for each element, ei, δi = MAX(β * 
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Sup(ei), LS), where LS is the lowest one among all the δ values and is set to the same 
as the threshold of Gaston for reasonable comparisons. β = 1/α (0 < β ≤ 1, 1 ≤ α) is a 
variable that represents how closely the real support of each element is related to its 
own threshold value. That is, as β becomes closer to 1, δ is more likely to be assigned 
as a value more similar to Sup(ei) rather than LS.  

As shown in Figs. 3 and 4, the proposed algorithm guarantees the best runtime and 
memory usage performance regardless of the α settings because it can selectively 
mine more valuable graph patterns considering both rarity and importance of graph 
elements. Moreover, at lower α values, our WRG-Miner has better mining efficiency. 
Meanwhile, Gaston always shows the worst result that is the same regardless of α 
since it cannot consider the rarity of graph patterns. Although FGM-MMS has good 
performance at lower α values, it falls behind the proposed algorithm in every case 
since it does not consider element importance different from one another and has to 
mine all of the possible rare graph patterns regardless of their importance degrees. 

5 Conclusion 

In this paper, we proposed a new approach that mined useful graph patterns with high 
importance and rarity by considering multiple thresholds and weights different from 
each element of graphs. In addition, by devising the techniques for preventing unin-
tended graph pattern losses occurring in the process of applying such conditions, we 
also guaranteed the correctness of out algorithm. The result of performance evaluation 
in this paper reported that out method outperformed the previous state-of-the-art ones 
in terms or both runtime and memory usage. 
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