

© Springer-Verlag Berlin Heidelberg 2015
James J. (Jong Hyuk) Park et al. (eds.), Computer Science and Its Applications,

179

Lecture Notes in Electrical Engineering 330, DOI: 10.1007/978-3-662-45402-2_26

Mining Frequent Graph Patterns Considering Both
Different Importance and Rarity of Graph Elements*

Gangin Lee and Unil Yun**

Department of Computer Engineering, Sejong University, Republic of Korea
ganginlee@sju.ac.kr, yunei@sejong.ac.kr

Abstract. Since frequent graph pattern mining was proposed, various ap-
proaches have been suggested by devising efficient techniques or integrating
graph mining with other mining areas. However, previous methods have limita-
tions that cannot reflect the following important characteristics in the real world
to their mining processes. First, elements in the real world have their own im-
portance as well as frequency, but traditional graph mining methods do not con-
sider such features. Second, various elements composing graph databases may
need thresholds different from one another according to their characteristics.
However, since traditional approaches mine graph patterns on the basis of only
a single threshold, losses of important pattern information can be caused. Moti-
vated by these problems, we propose a new graph mining algorithm that can
consider both different importance and multiple thresholds for each element of
graphs. We also demonstrate outstanding performance of the proposed algo-
rithm by comparing ours with previous state-of-the-art approaches.

Keywords: Frequent pattern mining, Graph mining, Graph enumeration, Multi-
ple minimum supports, Weight constraint.

1 Introduction

Since the concept of frequent graph pattern mining was proposed to overcome the
limitations of traditional frequent pattern mining approaches that perform mining
operations with respect to transaction databases composed of simple items only, a
variety of methods have been devised [1, 3, 5, 6] by suggesting novel techniques for
performance improvement or effectively integrating graph mining with other mining
fields. However, previous graph mining methods have faced problems that cannot
consider the following issues in the real world: 1) the rare item problem [4] that not
only items or patterns with high supports but also ones with relatively low supports
may have valuable information, and 2) the different importance problem [7, 8] that

* This research was supported by the MSIP (Ministry of Science, ICT & Future Planning),

Korea, under ICT/SW Creative research program supervised by the NIPA (National ICT In-
dustry Promotion Agency) (NIPA-2014-H0502-14-3008) and the National Research Founda-
tion of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF No.
2013-005682).

** Corresponding author.

180 G. Lee and U. Yun

elements obtained from the real world have their own importance or weights different
from one another according to their characteristics. Motivated by these issues, we
propose a new algorithm that can mine Weighted Rare Graph patterns (WRGs) con-
sidering both different importance and multiple thresholds depending on the features
of elements, called WRG-Miner. In addition, we demonstrate that our algorithm out-
performs previous state-of-the-art ones through various performance evaluation tests.

2 Related Work

In frequent pattern mining, multiple minimum support threshold-based various re-
searches [1, 2, 3, 4] have been conducted to solve the rare item problem. MSApriori
[4] is an initial solution based on a level-wise manner. After that, a tree search-based
algorithm, CFP-growth [1], and its advanced version, CFP-growth++ [2], were pro-
posed. Although they are possible to mine rare patterns applying multiple minimum
support thresholds, they cannot consider different importance characteristics and their
coverages are limited to simple itemset-based databases. WFIM [8] and WIT [7] are
tree-based frequent pattern mining algorithms considering importance of items’ own,
but they cannot solve the rare item problem and process complex data such as graph
databases.

As one of the fundamental graph mining algorithms, Gaston [6] is known as the
most efficient method in terms of runtime speed. The algorithm, which is an effective
integration of multiple enumeration methods for path, free-tree, and cyclic graph
forms, improves its mining performance by utilizing its own special techniques and
list-based data structure. FGM-MMS [3] mines frequent and rare graph patterns by
applying multiple minimum support constraints in a graph mining environment, but it
still has a problem that cannot consider different importance or weights for each ele-
ment within graphs.

3 Mining Weighted Rare Graph Patterns from Graph
Databases with Multiple Minimum Support Thresholds

In this section, we describe techniques for applying multiple minimum support
thresholds and importance characteristics of graph elements into a frequent graph
mining environment and explain strategies for preventing fatal problems such as pat-
tern losses that can be caused in the mining process. In addition, we also show how
the proposed algorithm is performed through its overall operational procedure.

3.1 Employing Element Importance and Multiple Minimum Support
Thresholds in Frequent Graph Pattern Mining

Fig. 1 shows an example of a graph database including the information of multiple
minimum support thresholds and edge weights. To apply different importance for
each element composing graphs, we consider mining graph patterns from graph data-
bases that assign a different weight value to each edge of graphs. As a result, we can
obtain a set of graph patterns considering both supports and weights of edges con-
nected among nodes. The weighted support of a graph pattern is calculated as follows.

 Mining Frequent Graph Patterns Considering Both Different Importance 181

Fig. 1. Example of a graph database with weight and multiple minimum support information

Definition 1. (Weighted support of a graph pattern) Let VG = {v1, v2, …, vm}, EG =
{e1, e2, …, en}, and WG = {w1, w2, …, wn} be a set of vertices in a graph pattern, G, a
set of edges in G, and a set of edge weights in G. Then, the weighted support of G,
Wsup(G) is calculated as follows: Wsup(G) = Sup(G) * Avg(W), where Sup(G) is a
support of G and Avg(W) is an average weight of W. If Wsup(G) is not lower than a
given minimum support threshold, G is regarded as a weighted frequent graph pattern.

In order to consider the rare item problem in the graph pattern mining area, we
need multiple minimum support thresholds for each element (vertex and edge) com-
posing a given graph database.

Definition 2. (Minimum element support threshold)) Let GDB = {Gtr1, Gtr2,…, Gtrk}
be a given graph database composed of multiple graph transactions, Gtrs, VGDB = {v1,
v2, …, vx} be a set of separate vertices included in GDB, and EGDB = {e1, e2, …, ey} be
a set of separate edges in GDB. Then, a minimum element support threshold for each
element (v or e), δi (1 ≤ i ≤ x + y) is set as a value specified by a user.

If a weighted support of any element is lower than the corresponding δ value, it be-
comes a useless one. Consequently, the threshold of a graph pattern is determined as
follows.

Definition 3. (Minimum graph support threshold) Given a graph pattern, G, a set of
vertices in G, VG = {v1, v2, …, vn}, and a set of edges in G, EG = {e1, e2, …, em}, a
minimum graph support threshold for G, MGST(G), is set as the minimum value of all
the δ values in G. Therefore, if Wsup(G) is lower than MGST(G), it becomes an inva-
lid graph pattern.

By calculating the threshold for a graph pattern in the above manner, we can consider
the rarity of the graph’s each element. In other words, only weighted frequent graph
patterns satisfying their own MGST conditions are finally regarded as valid results.

3.2 Maintaining the Correctness of the Proposed Algorithm

Through the aforementioned conditions, we can obtain a set of graph patterns that
completely consider both the weight and rarity of elements. However, if we simply

182 G. Lee and U. Yun

apply such conditions into the mining process without any additional considerations,
fatal pattern losses can be caused since these conditions violate the anti-monotone
property (or the downward closure property). Therefore, to guarantee not only the
efficiency of the proposed algorithm but also its correctness, we employ 1) an overes-
timated weight method and 2) an underestimated minimum support method. In the
first method, the maximum edge weight within a given graph database, called MaxW,
is used instead of the real average weight factor used in Definition 1. That is, given a
graph pattern, G, multiplying Sup(G) by MaxW, called Wsupover(G), is first applied in
the mining process. Through such overestimation method, we can maintain the anti-
monotone property and prevent unintended pattern losses by the weight constraints. In
the second method, among all the thresholds in Definition 2, we set the least value
that does not violate the property and apply it into the mining process. Let L = {δ1, δ2,
…, δx} be a list of all the elements’ δ values in GDB that are sorted in the descending
order of their values. Then, starting from the last element in the list, we check whether
or not the overestimated weighted support of the element is higher than its own δ
value. If there is the first element satisfying this condition, its δ value becomes an
underestimated minimum support threshold, called Least Minimum Support (LMS).

If any graph pattern does not satisfy the LMS condition, the pattern and all of its
possible supersets become useless ones; hence, it can permanently be pruned in ad-
vance. Note that graph patterns obtained through the above conditions are candidate
patterns, not final results. Among them, only partial ones satisfying the corresponding
MGST conditions in Definition 3 finally become valid results.

Input : a graph database, GDB, a list of minimum element support thresholds, L
Output : a set of WRGs, S
Procedure: WRG-Miner

01. a set of vertices, V vertices such that each of their supports ≥ LMS;
02. a set of edges, E edges such that each of their supports * MaxW ≥ LMS;
03. for each vertex, vi in V
04. a graph pattern, G vi; a set of edges, E’ edges that can be attached to vi in E;
05. S S ∪ call WRG-Growth(G, E’);

Function: WRG-Growth(G,E)
06. for each edge, ei, in E
08. if G is a path or free tree: an expanded graph of G, G’ G ∪ ei and the vertex in ei;
09. else if G is a cyclic graph: G’ G ∪ ei; //only a cyclic edge
10. if Wsupover(G’) ≥ LMS
11. if Wsup(G’) ≥ MGST(G’), S S ∪ G’;
12. a set of edges, E’ edges that can be attached to G’;
13. S S ∪ call WRG-Growth(G’, E’);

Fig. 2. Procedure of WRG-miner

3.3 WRG-Miner Algorithm

Fig. 2 shows the overall procedure of the proposed algorithm. After finding valid
vertices and edges from a given graph database (lines 1-2), the algorithm performs
graph pattern growth processes for mining WRGs with respect to each vertex (lines 3-
5). In this phase, WRG-Miner continues to expand graphs for each edge considering

 Mining Frequent Graph Patterns Considering Both Different Importance 183

their current states (lines 6-9). For each expanded graph, if the overestimated
weighted support of the graph is smaller than LMS, it is permanently pruned (line 10).
If the graph pattern’s real weighted support is not lower than its corresponding MGST
value, it is regarded as a valid result and the algorithm outputs it (line 11). Once the
graph pattern has an overestimated weighted support higher than or equal to LMS,
growth operations for the pattern are recursively conducted regardless of whether it is
really outputted or not (lines 12-13).

4 Performance Evaluation

In this section, the proposed algorithm is compared to FGM-MMS that is a state-of-
the-art graph mining algorithm based on multiple minimum support constraints, and
Gaston that is a well-known fundamental graph mining algorithm, with respect to real
datasets, DTP and PTE [5]. Edge weight ranges of the datasets were set between 0.5-
0.8. All the algorithms were written in C++ and executed in an environment with
3.33GHz CPU, 3GB RAM, and Windows 7 OS.

Fig. 3. Runtime results of DTP and PTE

Fig. 4. Memory usage results of DTP and PTE

To set the δ value for each element of graph datasets, the methodology employed
in the literature [1, 2, 3, 4] was applied. That is, for each element, ei, δi = MAX(β *

184 G. Lee and U. Yun

Sup(ei), LS), where LS is the lowest one among all the δ values and is set to the same
as the threshold of Gaston for reasonable comparisons. β = 1/α (0 < β ≤ 1, 1 ≤ α) is a
variable that represents how closely the real support of each element is related to its
own threshold value. That is, as β becomes closer to 1, δ is more likely to be assigned
as a value more similar to Sup(ei) rather than LS.

As shown in Figs. 3 and 4, the proposed algorithm guarantees the best runtime and
memory usage performance regardless of the α settings because it can selectively
mine more valuable graph patterns considering both rarity and importance of graph
elements. Moreover, at lower α values, our WRG-Miner has better mining efficiency.
Meanwhile, Gaston always shows the worst result that is the same regardless of α
since it cannot consider the rarity of graph patterns. Although FGM-MMS has good
performance at lower α values, it falls behind the proposed algorithm in every case
since it does not consider element importance different from one another and has to
mine all of the possible rare graph patterns regardless of their importance degrees.

5 Conclusion

In this paper, we proposed a new approach that mined useful graph patterns with high
importance and rarity by considering multiple thresholds and weights different from
each element of graphs. In addition, by devising the techniques for preventing unin-
tended graph pattern losses occurring in the process of applying such conditions, we
also guaranteed the correctness of out algorithm. The result of performance evaluation
in this paper reported that out method outperformed the previous state-of-the-art ones
in terms or both runtime and memory usage.

References

[1] Hu, Y.H., Chen, Y.L.: Mining association rules with multiple minimum supports: a new
mining algorithm and a support tuning mechanism. Decision Support Systems 42(1), 1–24
(2006)

[2] Kiran, R.U., Reddy, P.K.: Novel techniques to reduce search space in multiple minimum
supports-based frequent pattern mining algorithms. In: EDBT, pp. 11–20 (2011)

[3] Lee, G., Yun, U.: Frequent Graph Mining Based on Multiple Minimum Support Con-
straints. In: Park, J.J.(J.H.), Adeli, H., Park, N., Woungang, I. (eds.) Mobile, Ubiquitous,
and Intelligent Computing. LNEE, vol. 274, pp. 19–23. Springer, Heidelberg (2014)

[4] Liu, B., Hsu, W., Ma, Y.: Mining association rules with multiple minimum supports. In:
KDD, pp. 337–341 (1999)

[5] Nijssen, S., Kok, J.N.: A quickstart in frequent structure mining can make a difference. In:
KDD, pp. 647–652 (2004)

[6] Samiullah, M., Ahmed, C.F., Fariha, A., Islam, M.R., Lachiche, N.: Mining frequent corre-
lated graphs with a new measure. Expert Systems with Applications 41(4), 1847–1863
(2014)

[7] Vo, B., Coenen, F., Le, B.: A new method for mining Frequent Weighted Itemsets based
on WIT-trees. Expert Systems with Applications 40(4), 1256–1264 (2013)

[8] Yun, U.: On pushing weight constraints deeply into frequent itemset mining. Intelligent
Data Analysis 13(2), 359–383 (2009)

	Mining Frequent Graph Patterns Considering Both Different Importance and Rarity of Graph Elements
	1 Introduction
	2 Related Work
	3 Mining Weighted Rare Graph Patterns from Graph Databases with Multiple Minimum Support Thresholds
	4 Performance Evaluation
	5 Conclusion
	References

