A Framework for Searching Semantic Data
and Services with SPARQL

Mohamed Lamine Mouhoub, Daniela Grigori, and Maude Manouvrier

PSL, Université Paris-Dauphine, 75775 Paris Cedex 16, France
CNRS, LAMSADE UMR 7243
{mohamed.mouhoub, daniela.grigori,maude.manouvrier}@dauphine.fr

Abstract. The last years witnessed the success of Linked Open Data
(LOD) project and the growing amount of semantic data sources avail-
able on the web. However, there is still a lot of data that will not be pub-
lished as a fully materialized knowledge base (dynamic data, data with
limited acces patterns, etc). Such data is in general available through web
api or web services. In this paper, we introduce a SPARQL-driven ap-
proach for searching linked data and relevant services. In our framework,
a user data query is analyzed and transformed into service requests. The
resulting service requests, formatted for different semantic web services
languages, are addressed to services repositories. Our system also fea-
tures automatic web service composition to help finding more answers
for user queries. The intended applications for such a framework vary
from mashups development to aggregated search.

1 Introduction

The last years witnessed the success of Linked Open Data (LOD) project and
the growing amount of semantic data sources available on the web (public sector
data published by several government initiatives, scientific data facilitating col-
laboration, ...). The Linked Open Data cloud, representing a large portion of the
semantic web, comprises more then 2000 datasets that are interlinked by RDF
links, most of them offering a SPARQL endpoint (according to LODstats! as of
May 2014) . To exploit these interlinked data sources, federated query processing
techniques were proposed ([1]). However, as mentioned in [2] there is still a lot
of data that will not be published as a fully materialized knowledge base like:

— dynamic data issued from sensors

— data that is computed on demand depending on a large sets of input data,
e.g. the faster public transport connection between two city points

— data with limited access patterns, e.g. prices of hotels may be available for
specific requests in order to allow different pricing policies.

Such data is in general available through web API or web services. In order
to allow services to be automatically discovered and composed, research works

! http://stats.1od2.eu/

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 123-138, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

http://stats.lod2.eu/

124 M.L. Mouhoub, D. Grigori, and M. Manouvrier

in the domain of the semantic web proposed to use machine-readable semantic
markup for their description. Semantic web services (SWS) approaches include
expressive languages like OWL-S2, WSMO for complex business services or, more
recently, simple vocabularies like MSM to publish various service descriptions as
linked data. Most of the SWS description languages are RDF3-based (such as
OWL-S, MSM) or offer a RDF representation (WSML). Therefore, existing tools
for publishing SWS like iServe* are basically RDF stores that allow access via
SPARQL endpoints and hence, they can be considered also as a part of the LOD.

The integration of LOD data and semantic web services (SWS) offer great
opportunities for creating mashups and searching complementary data (data
that does not exist on the LOD or that is incomplete or not updated). However,
relevant services must be discovered first, and in case they don’t exist, composed
from atomic services. To achieve such a goal, an user should:

— have an awareness of the existing SWS repositories on the web,

— have a knowledge of the heterogeneous SWS description languages,

— express his needs in terms of the vocabulary used by different repositories

— find relevant services from different repositories and use service composition
tools in case a service satisfying his goal does not exist.

As this manual process requires a lot of knowledge and effort for the user,
our goal is to provide a framework for searching data and related services on
the LOD. We are not aware of other federated approaches able to find data and
related services in the LOD. An approach for aggregated search of data and
services was proposed in [3], but it requires building global schemas for data and
services and lacks a full support for the LOD and for semantic queries.

In this paper we make the following contributions:

— a SPARQL-driven framework to search data and related services in the dis-
tributed and dynamic setting characterizing the LOD

— a method to derive a service discovery query from a data query and enrich
it in order to increase the number of retrieved services

— a method to find a web service composition on the fly, containing WS from
different repositories.

The rest of this paper is structured as follows: In section 2, we highlight the
overall functionality of the framework with a motivating scenario and give the
important definitions. Section 3 is dedicated to the service discovery. Service
composition is explained in section 4. The architecture and implementation de-
tails are described in section 5. The last sections are dedicated to the related
works and the conclusion.

2 Data and Service Querying

The goal of our framework is to extend a search of linked data with a service dis-
covery/composition to find relevant services that provide complementary data.

2 http://www.w3.org/Submission/0WL-S
3 http://www.w3.org/RDF/
4 http://iserve.kmi.open.ac.uk/

http://www.w3.org/Submission/OWL-S
http://www.w3.org/RDF/
http://iserve.kmi.open.ac.uk/

A Framework for Searching Semantic Data and Services with SPARQL 125

Such a search often requires distinct queries: a) data queries to lookup in the
LOD to find data b) service requests to discover relevant services in some SWS
repositories and ¢) service composition requests to create relevant service com-
positions in case no single relevant service is found. Our framework searches
for both (data and services) starting from a single query from the user called
the data query, i.e. a query intended to search only for data. From this query,
it automatically issues service requests and finds relevant services or generates
service compositions.

User Interface e
1 /~ Service Reque! ' J—
—__extraction /~ Concept ™

Service Ranking Data Query | @ - - \w,J:‘?‘ﬂ“ﬂB/
(s O — o / similarity

; Service . ServiceQuery “y | - Llookup
uery Processin| .)\ — /
Query g Queries -~ . Generation ©) N —

Fig. 1. Process of discovering services with a data query

Figure 1 shows an overview of our approach to search for services in parallel
to data. When a SPARQL data query is submitted by a user or an agent, two
parallel search processes are launched:

1. Data search process: A process to manage the query answering in the LOD
data sources. These sources are distributed and accessible via SPARQL end-
points. Thus, a SPARQL-federation approach along with the appropriate
optimization and query rewriting techniques is used for this purpose. This
process is out of the scope of this paper.

2. Service search process: A process to discover and possibly compose services
that are relevant to the data query. An analysis of the data query is required
in order to transform it into one or multiple service requests.

SELECT ?person ?book

WHERE {

?person rdf:type dbpedia-owl:Writer ;
dbpedia-owl:award ?prize ;
dbpedia-owl:birthPlace dbpedia:Paris .

?book dbpedia-owl:author “?person ;
dbpedia-owl:isbn ?isbn .}

Listing 1.1. Example Data Query Qp

To explain the motivations and goals of our framework, we consider the fol-
lowing example scenario: A user wants to know all writers born in Paris and
holding a Nobel prize as well as the list of all their books. This query is written
in SPARQL in listing 1. Answers for this query in the LOD might supposedly
find all these writers in DBpedia. However, their published books are not all
listed in DBpedia. In this case, data is not complete and might need to be com-
pleted with full book listings from services like Amazon API, Google Books API,
etc Some of the latter APIs can also provide complementary information on the
books such as the prices, ISBN numbers, etc. In addition, there are some other

126 M.L. Mouhoub, D. Grigori, and M. Manouvrier

relevant services that allow the user to buy a given book given online. However,
if the user wants to buy a given book from a local store, and there is a service
that only takes an ISBN number as input to return the available local stores
that sell this book, in that case, a service composition can be made to return
such information.

2.1 Definitions

To better explain the details of service search we first give the following defini-
tions for the context of the search in this section.

SPARQL Query Overview : A SPARQL query can be seen as a set of one or
many graph patterns composed of nodes and edges. Nodes represent variables
(prefixed by a ’?’) or concrete values (resource URIs, Literals) and edges repre-
sent properties that link nodes in a pairwise fashion. A subgraph composed of
two nodes linked by a property edge is called a triple pattern and is read ”subject
property object”. Multiple group graph patterns in SPARQL refers to queries
containing multiple triple blocks separated or contained by UNION, OPTIONAL,
brackets, etc. In case there is a single graph pattern, it is called a basic graph
pattern.

Nodes and Concepts (n,c,) : We define a node n € N in the context of a
query as a part of tuple (n,c,) where ¢, is its corresponding concept formally
defined by: (n,¢p) : (n € N, ¢, = Concept(n)).

A node is either a named variable or a concrete element of a triple pattern (a
Literal or a resource URI).

A Concept is the reference rdfs:class that is used to describe the rdf:type of a
node in its reference ontology ©. It is obtained with the function Concept(n).

Data Query (Qp) : A data query @Qp is a SPARQL query composed of sets of
triple patterns and selection variables. It is basically written by the user to fetch
data from LOD that match these triples. Listing 1 shows an example of a data
query for the provided example above. In this paper, we only consider SELECT
queries that have a unique basic graph pattern.

Service Request (Rs) : Given a user SPARQL query @ p, a service request
Ry = (Inp,Outp) is a couple of two sets Inp, Outp created by analyzing Qp
in order to extract inputs and outputs that could be considered as parameters
of a service request to find relevant services for Qp. Inp = {(n,cy)} is a set of
service inputs provided implicitly by the user in @)p in form of Literals or URIs
in the triple patterns of the WHERE clause. Outp = {(n,cy)} is a set of service
outputs that are explicitly requested by the user in the query in form of variables
in the SELECT clause. More details are provided in section 4.1

A Framework for Searching Semantic Data and Services with SPARQL 127

Service Descriptions (D) : In a service collection S, every service s is de-
scribed by Dy = (Ing, Outg) where Ing is the set of inputs needed for a service
s and QOutg is the set of outputs provided by the service. A service description
can be in any known SWS formalism that is RDF/OWL based and that de-
scribes the functional and the non-functional features of a service. Currently in
our work, we are only interested in the inputs and outputs of a service which
are parts of the functional features.

Similar Concepts (e,) : For a given concept of a node ¢,,, there exists a set of
one or more equivalent (similar) concepts e, = Similar(c,) where Similar(c,)
is a function that returns the similar concepts of a given concept defined in
its ontology by one of the following rdfs:property predicates: a) owl:sameAs b)
owl:equivalentClass and c¢) rdfs:subClass0f in either directions.

Service Query (Qs) : Similarly in the Qp definition above, the service query is
a SPARQL query written to select relevant services from their SWS repositories
via their SPARQL endpoints . It consists of sets of triple patterns that match the
inputs and outputs of Rs with inputs and outputs of a service in S. The triples
of Qs follow the SWS description model used by the repositories to describe
services.

3 Service Discovery with SPARQL

To deal with the heterogeneity of the SWS descriptions and the distributed
deployments of repositories containing them, we choose to issue service requests
in SPARQL queries and adapt them to each description model based on the
following assumptions: a) the data in question adheres to the principles of linked
data as defined in [4] b) SWS are described by RDF based languages such as
OWL-S or MSM|[5], ¢) SWS repositories offer access via SPARQL endpoints to
their content.

In addition, existing SWS repositories such as iServe are accessible via SPARQL
endpoints. This allows to select SWS and perform explicit RDF entailment
on their descriptions to extend the search capabilities. The RDF entailment
is done explicitly by rewriting SPARQL queries since the existing implemen-
tations SPARQL engines don’t offer this feature. Furthermore, using SPARQL
allows to deal with the heterogeneous SWS descriptions more effectively without
intermediate mapping tools.

We distinguish two kinds of service queries that can be relevant depending on
the goal of the discovery. For a given service request R, extracted from a data
query @ p, the user may want to find one of following kinds of services:

1. Services that provide all the information requested by the user, i.e provide
all the requested outputs regardless of the given inputs. However, the more
a service consumes the inputs of the request, the more relevant it is. For
example, taking into account the location as input returns data that concerns

128 M.L. Mouhoub, D. Grigori, and M. Manouvrier

this location. Such services would be useful as an alternative or an additional
data source to the LOD data. They are obtained by applying Strategy#1:
Strategy#1(Rs, Ds) : {Yo € Outp : 0 € Outg}[= (Outp C Outg)]

A specialization of this strategy, called Strategy#1czact, restricts the rel-
evance on services that, in addition, consume only and only all the given
inputs Inp.

Strategy#lezact(Rs, Ds) + {Vig € Inp,Vis € Ing,Yo4 € Outp : iq €
Ing Nis € Inp ANog € Outg}[= (Inp = Ing) A (Outp 2 Outg)]

2. Services that consume some of the inputs or the outputs of the request, or
that return some of the inputs or the outputs of the request. Such services
would be useful to: a) provide additional information or services to the data,
b) discover candidate services for a mashup or composition of services that fit
as providers or consumers in any intermediate step of the composition. The
service request for such kind of services is obtained by one of the strategies
bellow that satisfy the following:

Strategy#Qa(Rsa Ds) : (InD NIng 7£ ¢)
Strategy#2y(Rs, Ds) : (Outp NIng # ¢)
Strategy#2.(Rs, Ds) : (Outp N Outs # @)
Strategy#24(Rs, Ds) : (Inp N Outg # ¢)

S

3.1 Service Request Extraction

The data query is analyzed to extract elements that can be used as I/O for a
service request. Outputs are simply the selected variables of the query. Inputs
are the bound values that appear in the triples of the query.

The analysis of the data query Qp allows to extract the inputs and outputs
of Qp using one of the following rules:

1. Variables in the SELECT *, (selection variables) are considered as outputs
04 = (n,null) € Outp. Simply because they are explicitly declared as desired
outputs of the data query.

2. Bindings of subjects or objects in the WHERE clause of @ p, i.e literals and
RDF resources URISs, are considered as inputs iq = (n,null) € Inp. This can
be explained by the fact that a user providing a specific value for a subject
or an object simply wants the final results to depend on that specific value.
The same way, a service requiring some inputs returns results that depend
on these inputs.

The service request extraction consists of populating Inp and Outp with the
nodes of the elements mentioned above. Algorithm 1 gives an overview of the
Service Request Extraction.

The SPARQL operators like OPTIONAL, UNION, FILTER, etc can reveal
the preferences of the user for service discovery and composition. For instance,
the I/O extracted from an Optional block mean that the user doesn’t require
services that necessarily provide/consume the optional parts. Therefore, the ser-
vice request for such a data query is obtained using some of the loose strategies
defined in section 4.

A Framework for Searching Semantic Data and Services with SPARQL 129

Algorithm 1. Service Request Extraction
Input: Qp
Output: Inp,Outp

1: Outp.nodes + GETSELECTVARIABLES(Qp) > Get the output variables
2: triples < GETALLQUERYTRIPLES(QD) > Get all the query triples
3: for each t in triples do

4 if ISCONCRETE(SUBJECT(t)) then > check if URI or literal
5: Inp < Inp U {(SUBJECT(t), null)}

6: else if ISCONCRETE(OBJECT(t)) then

7 if PREDICATE(t) # "rdf : type” then

8: Inp < Inp U {(0BJECT(t), null)}

9: end if
10: end if
11: end for

Listing 1.4 shows an example of a service query extracted from @ p in listing
1.1 using Strategy+#1 to find services that return the same data as the query.

3.2 Semantics Lookup

Once the service request elements are extracted from the query, we try to find
the semantic concepts ¢, that describe the previously extracted nodes with no
concept: (n, null).

Concept Lookup. In general, concepts can either be declared by the user in
the data query (as the user probably specifies what he is looking for) or in a
graph (set of triples) in an rdf store.

The semantics lookup process starts looking for the concept of a node n in the
Q@ p triples. The concept is the concrete value given by a URI and linked to n via
the property rdf : type: i.e. "n rdf : type conceptURI”. In the example query
in listing 1.1, the concept of ?person is given in Qp as dbpedia — owl : Writer,
but the concept of book is not given in Qp

If ¢, is not found in QQp, a concept lookup query ¢, is created to look for the
concept of n in the ontology in which it is suspected to be.

To generate this concept lookup query ¢., we take all the triples from Qp in
which n is involved as a subject or as an object and then insert them in the
WHERE clause of q.. We add a triple pattern "n rdf : type 7type” and set the
?type variable as the SELECT variable of g.. The URLs of the ontology(ies) in
which ¢, can be extracted from the namespaces used in @Qp and are added to
the From clause of the ¢, .

Listing 1.2 shows an example concept lookup query to find the concept of
?book which is not declared in Qp (listing 1.1).

If no concept is found for a given node (most likely because of a non working
namespace URL), then the search space for ¢, to find the missing concepts is
expanded to the other known sources in the LOD.

130 M.L. Mouhoub, D. Grigori, and M. Manouvrier

SELECT “?bookConcept WHERE {
SERVICE <http://dbpedia.org/sparql>{
?book dbpedia-owl:author
?person ;
dbpedia-owl:isbn ?isbn ;
rdf:type “?bookConcept .}}

Listing 1.2. An example query of Con-
cept Lookup in the LOD

SELECT 7?bookConcept

FROM <http://dbpedia.org/ontology/>

WHERE {

dbpedia-owl:author rdfs:domain
?bookConcept .

}

Listing 1.3. An example query of Con-
cept Lookup in Ontology

Similarity Lookup. To extend the service search space, we use the similar
concepts e, of every concept ¢, in the service search queries along with the
original concepts. To find these similar concepts, we use the rules given by the
definition in section 2.1. Based on this definition, we issue a SPARQL query ¢,
like the one in the concept lookup but slightly different by adding a triple that
defines a silimarity link between ¢, and a variable ?similar. The triple pattern
has the form ¢, ?7semanticRelation ?similar where ?semanticRelation is
one of the following properties: a) owl:sameAs, owl:equivalentClass for similar
concepts in other ontologies b) rdfs:subClassOf for hierarchically similar concepts
within the same ontology.

The similarity lookup query g, is executed on the sources used in @Qp as well
as on the other sources of the LOD because the similar concepts can be found
anywhere.

To optimize the search in other sources of the LOD, we use a caching technique
to build an index structure on the go of the LOD sources content. The details
of this caching is described in section 5.

3.3 Service Query Generation

Once all elements of the service request are gathered, service discovery queries are
issued in SPARQL using rewriting templates. Such templates define the structure
and the header of the SPARQL service query. There is a single template per SWS
description formalism, i.e. OWL-S, MSM, etc. For instance, the OWL-S template
defines a header containing triples that match the OWL-S model by specifying
that the desired variable is an OWL-S service which has profiles with specific
inputs/outputs. Listing 1.4 shows an example of a service query for the example
scenario in section 1. It uses an OWL-S template to specify the required input
and output concepts according to the OWL-S service model.

To generate the queries, all concepts ¢,, and their similar concepts e,, for every
node n € Inp U QOutp are put together in a basic graph pattern of in a union
fashion depending on the chosen selection strategy. More specifically, for every
input iq € Inp we write triple patterns to match service inputs with variables
that have ¢, as a concept and accordingly for every output o4 € Outp.

The service search strategies (c.f. section 3) in the way we define them, de-
scribe the how tight(Strategy #1, #1czact) or loose (Strategies #24 4. c,4)the ser-
vice selection must be. Therefore, strict strategies require that one or more inputs
or outputs are matched at the same time, thus, the query triples will be put in

A Framework for Searching Semantic Data and Services with SPARQL 131

a single basic graph pattern. On the other hand, loose strategies require only
partial matching, hence, the query triples are be put in a UNION of multiple
graph patterns.
SELECT DISTINCT ?service WHERE {
?service a service:Service ; service:presents ?profile .
?profile profile:hasOutput 7outputl ;

profile:hasOutput 7output2 .
?outputl process:parameterType dbpedia-owl:Writer .
?output2 process:parameterType dbpedia-owl:Book .
OPTIONAL { ?profile profile:hasInput ?7intputl .

7inputl process:parameterType dbpedia:Place .}

OPTIONAL { ?profile profile:hasInput ?intput2 .
7input2 process:parameterType dbpedia-owl:Award .}}

Listing 1.4. Example Service Query Qs with Strategy#lezact

4 Automatic Service Composition

In the previous section we showed how to make service requests to find relevant
individual services for the data query. However, if no such services exist, service
composition can create relevant composite services for the matter. In this section
we describe our approach to make such compositions automatically.

In the context of our framework, service repositories are part of the LOD as
SPARQL endpoints. Therefore, we think that the least expensive way to perform
a service discovery and composition is on the fly without any pre-processing. This
online composition consists of discovering candidate services at each step of the
composition without a need to have a local index or copy of the service reposito-
ries. We argue that the approaches based on pre-processing the service reposito-
ries often require an expensive maintainability to stay up-to-date. Furthermore,
according to [6], the web services are considerably growing and evolving either
by getting updated, deprecated or abandoned.

However, some optimization based on caching are described further in section
5 to speed-up this online process for the queries that as already been processed
in the past executions.

In this section, we describe our approach for an automatic composition of SWS
based on a service dependency graph and an A*-like algorithm. The first subsec-
tion is dedicated to the Service Dependency Graph while the second describes
the composition algorithm.

4.1 Service Dependency Graph

The Service Dependency Graph (SDG from now on) represents the dependencies
between services based on their inputs and outputs. A service depends on another
if the later provides some inputs for the former. In our work, we consider that
a SDG is specific for each data query because it includes only services related
to that query. In other works, the SDG might represent the dependencies for
all the services in a repository, but this requires a general pre-processing for the
LOD as we stated before.

132 M.L. Mouhoub, D. Grigori, and M. Manouvrier

We use an oriented AND/OR graph structure as in [7] to represent the SDG.
Such a graph is composed of AND nodes - that represent services - and OR nodes
- that represent data concepts - linked by directed edges. We slightly adapt this
representation to include the similarities between concepts of data by : a) Each
OR node contains the set of concepts that are similar to each other b) Each edge
that links an AND node to an OR node is labeled with the concept that matches
the service input/output concept among those in the OR node’s concept set. A
dummy service Ny is linked to outputs nodes of Outp to guarantee that a service
composition provides all the requested outputs.

The AND/OR graph representation of the SDG is more adequate for the
composition problem than ordinary graphs because the constraints on the inputs
of services are explicitly represented by the AND nodes; A service cannot be
executed if some of its inputs are not provided; thus, an AND node cannot be
accessible unless all of its entering edges are satisfied. Furthermore, this graph
has been utilized in a many previous approaches and has proven its efficiency as
shown in [7]. However, a classical graph representation can be used to solve the
composition problem.

To construct the SDG, we use our service discovery approach to find depen-
dencies for each service in a bottom-up approach starting from the services that
provide the final outputs of @ p. In fact, the SGD construction searches for all
services that provide all the unprovided-yet data at one time starting from Outp
nodes. Such a one-time search per iteration allows to reduce the number of ser-
vice requests that are sent to the SWS repositories, hence, boosting the SDG
construction.

For example, to find services that provide O; and/or O, a service request
Rs(null,{O1,02}) is used by applying Strategy#2y.

4.2 Service Composition Algorithm

Upon the construction of the SDG, one or many compositions can be found.
The aim of the service composition algorithm is to find the optimal composition
from the SDG for a given composition request.

For this purpose, we use an A*-like algorithm and adapt it for AND/OR
graphs. Starting from the user input Inp nodes, the algorithm finds the optimal
path to the target node Ny (which is linked to the final outputs Outp). Therefore,
an optimal solution is a path that has the least total cost and that respects the
AND/OR graph structure.

The total cost of a given path is the aggregation of the costs of each step from
a node to another. Generally, the cost at a given step (at an AND node n) in
an A* algorithm is given by the aggregation function: f(n) = g(n) + h(n) where
g(n) is the total cost of the sub-path from the starting point to n and h(n) is a
heuristic that estimates the total cost from the n to the target node Nj.

Since the semantic web services has rich descriptions, the semantics of the
Inputs/Outputs can be used for cost calculation to help finding an optimal so-
lution. Therefore, we rely on the sets of similar concepts inside OR nodes and
on the labels of the edges in SDG. Therefore, the cost of a move from an AND

A Framework for Searching Semantic Data and Services with SPARQL 133

node n; to n; + 1 is determined based on the similarity between the labels of
the input and the output edges of the two AND nodes respectively. If the two
labels (concepts) are the same, then the cost value is null. Otherwise if the
two labels are different but similar concepts (sameAs, sub concepts) then the
cost value is set to 1. This cost calculation can be resumed by the function:
cost(niy1) = sim(cy,, Cn,,,) Where ¢,, is a concept used by the current service,
Cn,,, is used by the next one and:

. 0 if Cp; = Cn;+1
S$1m(Cn,;, Cny; = e S
(Cnes nisa) { 1 if ¢p, = Similar(cp,+1)

(1)

is a function that determines the similarity between two concepts.
From the functions above, the cost of the best known path to the current node
subset is given by the following function:

g(n) = cost(n;) (2)
i=0

where n; are all the accessible services for the next step

The heuristic function h(n) calculates the distance between the current node
and the target AND node ng in the SDG graph. This is justified by the fact
that, a better solution is the one that uses less services.

h(n) = Distance(n,ng) (3)

5 Implementation and Experiments

In this section, we show briefly the architecture of our framework and some
experiments as a proof of concept.

5.1 Framework Architecture

User Interface
=

A o
Service Requester

<>
Servlce Composer

N4 A4 z
FedX Service Query Manager "(ﬁ Cache

< <
LOD i ~° SWS repositories

Fig. 2. Framework Architecture

Figure 2 shows an overview of the architecture of our framework. Through an
interface, SPARQL queries are submitted to the system to be processed for data
search and service search.

134 M.L. Mouhoub, D. Grigori, and M. Manouvrier

The data querying is managed by an external open source SPARQL federator,
FedX [1]. FedX uses its own query rewriting to optimize the data querying for
each source. Therefore, the LOD is a federation of SPARQL endpoints of different
data sources such as DBpedia.

On the service side, queries are processed by the service requester to make ser-
vice requests or service compositions. The SWS repositories which are SPARQL
endpoints as well are considered as a particular part of the LOD. We use our
own federation of SPARQL endpoints to query the SWS repositories separately.
The reason why we don’t simply reuse FedX is because we need specific opti-
mization for service descriptions different than the general purpose optimization
offered by FedX. A brief overview of our optimization is described in the next
subsection.

We have implemented our framework in Java using Apache Jena® framework
to manage SPARQL queries and RDF.

5.2 Optimizing Service Discovery with Cache

In order to optimize the service discovery in terms of response time, we use a
caching for services and concepts. Such a cache indexes all the concepts and
services that has been used in past requests.

We use three different types of cache : a) A cache for similar concepts to
decrease the number the similarity lookup requests. b) A cache to index the
concepts that have been used in the past and the URIs of services and repositories
that use them. c¢) a local RDF repository to keep in cache the descriptions of
services on the go once they are discovered. This later one can be queried directly
via a local SPARQL endpoint.

Maintaining the cache costs much less than maintaining a whole index struc-
ture of all known SWS repositories and does not require any pre-processing prior
to use the framework. Cache maintenance can be scheduled for automatic launch
or triggered manually.

5.3 Experiments and Evaluation

Our main challenge to evaluate our framework is to find suitable benchmarks
that provide SPARQL queries on real world data and to find SWS repositories
of real world services. Furthermore, to properly measure the execution time of
writing service queries from data queries, we need test queries that are more or
less complex and have missing concept declarations.

Unfortunately, to our best knowledge, there is no benchmark that allows us
to fully measure the performance of our framework. Therefore, to prove the
feasibility of our approach to search services on the LOD, we have made an
implementation as a proof-of-concept and some experiments to measure the exe-
cution time of query rewriting from a data query and through semantics lookup

® https://jena.apache.org/

https://jena.apache.org/

A Framework for Searching Semantic Data and Services with SPARQL 135

to write service queries in SPARQL. For experiments we used a set of SPARQL
queries that we wrote manually to have missing concepts.

Figure 3 shows a summary of our experiments on a set of queries. This set
consists of a 10 queries, each with an increasing amount of undefined variables.
We measured separately the total execution time of writing service queries in-
cluding the execution time of the concept lookup process for each query. The
results show that the concept lookup time increases linearly as the number of
undefined variables increase.

We performed a partial evaluation for the effectiveness of our service discovery
on OWL-S-TC® benchmark. Figure 4 show the number of false negatives (<0)and
false positives (>0) of the service discovery on a set of 18 OWL-TC queries
that have been used for evaluation in [3]. We have rewritten these queries in
SPARQL to make them usable within our framework. The results show an overall
good error rate. However, in some queries like Q22, some of the I/O parameters
are very generic which explains the high number of false positives. In order to
avoid such cases, the algorithm must be modified to select services that provide
at least a non-generic I/O parameter. For the false negatives like in Q7, the
reference matching results in OWLS-TC are set based on other features than
I/0 parameters such as the textual description of the service, etc.

1,800 - q
8,) |
1,600 |- |6 .
4, |
1,400 |- .
2, |
1,200 |- .
ODDHUDD 0 lplenle
1 1 1 1 1

2 4 6 8 10 ‘ ‘ ‘ ‘
Q4 Q17 Q22 Q27
Fig. 3. Average execution Time in MS
per number of undefined variables in a
random query

Fig. 4. False Negatives and false Posi-
tives on OWL-S TC queries

6 Related Works

The motivations and research questions of our work are tackled by many recent
works. In fact, our work emerges from a crossing of many research topics in the
semantic web and web services. We'll list few of the most recent and relevant
works to our paper.

5 http://projects.semwebcentral .org/projects/owls—tc/

http://projects.semwebcentral.org/projects/owls-tc/

136 M.L. Mouhoub, D. Grigori, and M. Manouvrier

SPARQL Query Management. Among the works that tackle the query man-
agement in the LOD, SPARQL federation approaches are the most relevant for
our context. FedX[1] is one of the most popular works that has good perfor-
mance results besides the fact that the tool is available in open source. FedX
optimizes the query management by performing a cache-based source selection
and rewriting queries into sub-queries and running them on the selected sources.
Some recent works like [8] introduce some further optimization for FedX and
other works by optimizing the source selection. We are actually using FedX as
a part of our Framework for answering data queries because, as we stated in
section 2, managing data queries is out of the scope of our work in this paper.

Service Discovery. Our context of service discovery involves exclusively the
semantic web services. SWS discovery is the topic of interest of many recent
works and benchmarks as shown in the survey[9]. The SWS discovery approaches
are either semantically based, textual based or hybrid based. The first ones are
the most relevant for our context because we operate on linked data which
is meant to be properly described and linked. Among the recent works, [10]
introduces a repository filtering using SPARQL queries to be used on top of
the existing hybrid discovery approaches. However, in our context, SPARQL
queries are sufficient for performing a service discovery in SWS repositories. In
addition, [10] and the other existing approaches need a service request to operate,
in contrast to our work in which service requests are implicit in a data query
and have to be extracted first.

For discovery evaluation, OWL-S-TC is the reference benchmark for SWS.
However, in our context, we need a benchmark that is based on real-world ser-
vices because we need to find services for data that exists in the LOD. Unfortu-
nately, for the moment, there are only a few SWS to consider in the real world
as stated and agreed on by many researchers [6]. However, there are some tools
such as Karma [11] that allow to wrap classical web APIs into semantic APIs
and therefore help creating new SWS on top of the APIs.

Service Composition. Similarly to service discovery, the automatic composi-
tion of SWS has been the subject of many works, surveys [12] and challenges
(WS-Challenge). In general, the automatic composition algorithms The most
recent works like [13], [7] still use A*-based algorithms to find composition plans
in an SDG graph which is mostly pre-constructed for all known services in a
repository. In our paper we use a service composition approach that is very sim-
ilar to the WSC challenge winner [7] that uses AND/OR graphs. However, we
adapted their approach to take advantage of the semantics in cost calculation
instead of using a static cost calculation (a fixed cost for all nodes).

Search of Data and Services. Our work is inspired by the work in [3] which
aims to look for services that are related to a given query based on keywords
comparison between an SQL-like query and a service ontology. This approach
uses generated semantics for services to expand the search area.

A Framework for Searching Semantic Data and Services with SPARQL 137

Another similar work in [14] called ANGIE consists of enriching the LOD
from RESTful APIs and SOAP services by discovering, composing and invoking
services to answer a user query. However, this work assumes the existence of a
global schema for both data and services which is not the case in the LOD. This
assumption makes ANGIE domain specific and not suitable for general purpose
queries.

Some recent works could complement our work such as [15] which proposes
an approach that uses Karma[l1] to integrate linked data on-the-fly from static
and dynamic sources and to manage the data updates.

7 Conclusion and Perspectives

In this paper we presented a framework for finding data and relevant services
in the LOD using a unique SPARQL query. Our framework helps the user to
find services that he could exploit to construct mashups or to complement the
data found in materialized knowledge bases. We implemented the proposed al-
gorithms and we are evaluating them in terms of efficiency and quality. We plan
to enrich the framework by storing and exploiting user actions (selected services
and compositions for a given data query) in order to improve the efficiency of
the algorithm and the relevance of the retrieved services.

Regarding the previously mentioned issue of lacking real-world SWS,
Karma[l1] or SmartLink[16] can be used to provide our experiments with SWS
from real-world APIs. We plan to use such tools in the future to extend our
experiments and have a clear measure of its effectiveness.

References

1. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: Optimization
techniques for federated query processing on linked data. In: Aroyo, L., Welty, C.,
Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC
2011, Part I. LNCS, vol. 7031, pp. 601-616. Springer, Heidelberg (2011)

2. Speiser, S., Harth, A.: Integrating linked data and services with linked data ser-
vices. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D.,
De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 170-184.
Springer, Heidelberg (2011)

3. Palmonari, M., Sala, A., Maurino, A., Guerra, F., Pasi, G., Frisoni, G.: Aggregated
search of data and services. Information Systems 36(2), 134-150 (2011)

4. Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. Intl. journal on
semantic web and information systems 5(3), 1-22 (2009)

5. Kopecky, J., Gomadam, K., Vitvar, T.: hrests: An html microformat for describing
restful web services. In: IEEE/WIC/ACM Intl. Conf. on. Web Intelligence and
Intelligent Agent Technology, WI-IAT 2008, vol. 1, pp. 619-625. IEEE (2008)

6. Blthoff, F., Maleshkova, M.: Restful or restless - current state of today’s top web
apis. In: 11th ESWC 2014 (ESWC 2014) (May 2014)

7. Yan, Y., Xu, B., Gu, Z.: Automatic service composition using and/or graph. In:
2008 10th IEEE Conf. on E-Commerce Technology and the Fifth IEEE Conf. on
Enterprise Computing, E-Commerce and E-Services, pp. 335-338. IEEE (2008)

138

8.

10.

11.

12.

13.

14.

15.

16.

M.L. Mouhoub, D. Grigori, and M. Manouvrier

Saleem, M., Ngonga Ngomo, A.-C.: HiBISCuS: Hypergraph-based source selec-
tion for SPARQL endpoint federation. In: Presutti, V., d’Amato, C., Gandon,
F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp.
176-191. Springer, Heidelberg (2014)

Ngan, L.D., Kanagasabai, R.: Semantic web service discovery: state-of-the-art and
research challenges. Personal and ubiquitous computing 17(8), 1741-1752 (2013)
Garcia, J.M., Ruiz, D., Ruiz-Cortés, A.: Improving semantic web services discov-
ery using sparql-based repository filtering. Web Semantics: Science, Services and
Agents on the World Wide Web 17, 12-24 (2012)

Taheriyan, M., Knoblock, C.A., Szekely, P., Ambite, J.L.: Rapidly integrating ser-
vices into the linked data cloud. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012,
Part I. LNCS, vol. 7649, pp. 559-574. Springer, Heidelberg (2012)

Syu, Y., Ma, S.P., Kuo, J.Y., FanJiang, Y.Y.: A survey on automated service
composition methods and related techniques. In: 2012 IEEE Ninth Intl. Conf. on.
Services Computing (SCC), pp. 290-297 (June 2012)

Rodriguez-Mier, P., Mucientes, M., Vidal, J.C., Lama, M.: An optimal and com-
plete algorithm for automatic web service composition. Intl. Journal of Web Ser-
vices Research (IJWSR) 9(2), 1-20 (2012)

Preda, N., Suchanek, F.M., Kasneci, G., Neumann, T., Ramanath, M., Weikum,
G.: Angie: Active knowledge for interactive exploration. Proc. of the VLDB En-
dowment 2(2), 1570-1573 (2009)

Harth, A., Knoblock, C.A., Stadtmiiller, S., Studer, R., Szekely, P.: On-the-fly inte-
gration of static and dynamic sources. In: Proceedings of the Fourth International
Workshop on Consuming Linked Data (COLD 2013) (2013)

Dietze, S., Yu, H.Q., Pedrinaci, C., Liu, D., Domingue, J.: SmartLink: A web-based
editor and search environment for linked services. In: Antoniou, G., Grobelnik, M.,
Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC
2011, Part II. LNCS, vol. 6644, pp. 436-440. Springer, Heidelberg (2011)

	A Framework for Searching Semantic Data
and Services with SPARQL

	1 Introduction
	2 Data and Service Querying
	2.1 Definitions

	3 Service Discovery with SPARQL
	3.1 Service Request Extraction
	3.2 Semantics Lookup
	3.3 Service Query Generation

	4 Automatic Service Composition
	4.1 Service Dependency Graph
	4.2 Service Composition Algorithm

	5 Implementation and Experiments
	5.1 Framework Architecture
	5.2 Optimizing Service Discovery with Cache
	5.3 Experiments and Evaluation

	6 Related Works
	7 Conclusion and Perspectives
	References

