Flexible Batch Configuration in Business Processes
Based on Events

Luise Pufahl, Nico Herzberg, Andreas Meyer, and Mathias Weske

Hasso Plattner Institute at the University of Potsdam
{firstname.lastname}@hpi.uni-potsdam.de

Abstract. Organizations use business process management techniques to man-
age their core business processes more efficiently. A recent technique is the syn-
chronization of multiple process instances by processing a set of activities as a
batch — referred to as batch regions, e.g., the shipment of goods of several order
processes at once. During process execution, events occur providing information
about state changes of (a) the business process environment and (b) the business
process itself. Thus, these events may influence batch processing. In this paper,
we investigate how these events influence batch processing to enable flexible and
improved batch region execution. Therefore, we introduce the concept of batch
adjustments that are defined by rules following the Event-Condition-Action prin-
ciple. Based on batch adjustment rules, relevant events are correlated at run-time
to batch executions that fulfill the defined condition and are adjusted accordingly.
We evaluate the concept by a real-world use case.

Keywords: BPM, Batch Processing, Event Processing, Flexible Configuration.

1 Introduction

Companies strive to manage their core business in a process-oriented fashion to be
efficient and stay competitive in the market. For this attempt, business processes are
documented as process models [25]. These process models can also be used for process
automation by a Business Process Management System (BPMS) [18]. Usually, the in-
stances of a process, i.e., the concrete executions, run independently in existing BPMSs,
e.g., [3,4,13]. However, efficient process execution may require bundled processing of
activities of different process instances. Hereby, efficiency refers to costs savings un-
der the trade-off of increasing average waiting times. For instance, in an hospital, a
nurse transports multiple blood samples of patients to the laboratory at once instead of
each separately to save transportation costs. To cope with this challenge, batch activi-
ties were introduced in business processes, e.g., in [1,14,20,21]. In these works, further
application domains as, for instance, logistics and event organization, are discussed.
The recent concept of batch regions [20] enables the synchronization of process in-
stances with similar characteristics for a set of activities. Thereby, several configuration
parameters allow the process designer to individually setup the batch execution, e.g.,
rule-based activation of a batch. However, specifying the rules at design-time does not
guarantee optimal process execution, since expected and unexpected events occurring

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 63-78, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

64 L. Pufahl et al.

during process execution do influence the execution [10]. Reacting on these events and
changing the specified configuration parameters is required for process improvement.

In this paper, we apply event processing techniques to flexibly adapt these configu-
ration parameters at run-time to react in real-time on changes of the business process
execution environment and improve the batch execution. The contributions of this pa-
per are (i) to provide an overview about changes on batch configuration parameters
triggered by events and (ii) to describe a framework that implements the flexible adap-
tation of configuration parameters triggered through event occurrence.

The paper is structured as follows. Section 2 introduces the concepts of batch regions
and event processing before Section 3 presents a motivating example originating from
a real-world scenario in the healthcare domain. It leads to an analysis on how events
may influence batch execution and corresponding requirements in Section 4. Section 5
presents the concept of flexible adaptation of batch regions based on event processing
techniques. In Section 6, the framework is applied to the healthcare scenario from Sec-
tion 3 as evaluation. Section 7 is devoted to related work and Section 8 concludes the

paper.
2 Foundation

Batch Region. A batch region comprises a connected set of activities. For batch pro-
cessing configuration, a batch region contains four configuration parameters: (1) a group-
ing characteristic to cluster process instances to be processed in one batch based on
attribute values of utilized data, (2) an activation rule to determine when a batch may be
processed while balancing the trade-off between waiting time and cost savings, (3) the
maximum batch size indicating the maximum number of entities to be processed, and
(4) the execution order of the processed entities [20].

Each single execution of the batch region is represented by a batch cluster collecting
— based on the grouping characteristic — a number of process instances for synchro-
nization. Thereby, a batch cluster passes multiple states during its lifetime [21]. It is
initialized (state init) upon request of a process instance. The batch cluster transitions
to state ready (enablement), if the activation rule is fulfilled and is then provided to a
resource that decides to start execution at some point in time. The execution is indicated
by state running. If more than one resource is available, several batch cluster can be ex-
ecuted in parallel. After initialization and before execution start, process instances may
still be added until the maximum batch size is reached (state maxloaded). Termination
of all process instances being part of the batch cluster successfully ferminates it.

Collecting multiple objects, e.g., blood samples, may also be done by utilizing loop
or multi-instance structures as specified in the workflow patterns [2]. This requires
to merge multiple process instances into one handling the synchronization. However,
batch regions do not merge instances to retain the single instances autonomy outside
the batch regions. This enables dynamic process instance assignment to batch clusters,
e.g., for run-time cluster adjustments as discussed in this paper or for error handling.

Events. Information about changes or exceptions in the business process environment
are provided by events. Often those events are not stored at one place, but in several
information systems and BPMSs [7]. We refer to events being unstructured and avail-
able in an IT system as raw events. Event processing techniques help to utilize these

Flexible Batch Configuration in Business Processes Based on Events 65

raw events and use them during process execution for process monitoring, adjustment,
and control [5,9, 10]. Structuring raw events according to a certain description referred
to as structured event type, transforms raw events in a first step into normalized events.
Normalized events are the basis for further processing by, for instance, combination,
aggregation, and enrichment by context data [11]. We distinguish two event types being
relevant for flexible batch processing: (a) business events and (b) process events. Busi-
ness events base on normalized events enriched by business context information that
are relevant for all running process instances. In contrast, a process event is correlated
to a specific process instance and thus provides instance-specific information.

3 Motivating Example

The following healthcare process, the blood testing process in Fig. 1, is used to illustrate
the need for flexible batch execution.

Instantiation of the process takes place, if there is a blood test required for a patient
at the ward. First, the blood test order is prepared before a blood sample is taken from
the respective patient. Afterwards, a nurse transports both to the laboratory, where the
blood sample is first prepared for testing. Then, the actual test is conducted by a blood
analysis machine. The laboratory possesses one machine for each type of blood test. As
the blood analysis machines have an interface to the central hospital information system,
the results are published so that they are accessible by the physicians in the respecting
ward. There, they can evaluate the blood test result and can use it for diagnostic.

Process Event: Transport
groupingCharacteristic = Order.ward

sample and order activationRule = Threshold(20 cases, 1h)
to lab started maxBatchSize = 150

executionOrder = parallel

Blood test

needed [Pprepare Take ‘ Transport Evaluate
blood test blood : sample and : blood test —DO
order sample order to lab i result
[S
Business Event:

Business Event: Section B of [ttt it -
Maintenance of blood blood analysis Prepare ! Conduct Publish i
analysis machine is machine is not blood : blood test blood test| |
p[azned available sample i result i
,,,,,,,,,,,,, i

Business Events [] ‘ o0 J e 06 o

activationRule = Threshold(50 cases, 1h)
maxBatchSize = 100
executionOrder = parallel

groupingCharacteristic = Order.testType

Fig. 1. Blood testing process

Within the given process, two batch regions are specified. As several blood test or-
ders incur at a ward, the nurse would not bring each individually to the laboratory. In
fact, a nurse delivers several blood samples together to save transportation cost which
is captured by the first one comprising activity Transport sample and order to lab. The
second batch region comprises activities Conduct blood test and Publish test results
and enables to collect multiple blood samples before a test run on a blood analysis ma-
chine is started to save machine costs. So far, the configuration parameters are defined
at design-time and can not be adapted at run-time. However, changes and exceptions

66 L. Pufahl et al.

within the business process or in its execution environment might require adaptation.
Following, we discuss three example events being of relevance for batch regions in the
blood testing process:

Planned maintenance of a machine: This business event indicates that a maintenance
of a machine is planned. During the maintenance, the machine is not available to con-
duct tests of the specific type. Blood samples in not yet running batch clusters might
expire, because the waiting time of the collected process instances increases by the
maintenance time. Thus, in such situations, the blood analysis should be started shortly
before the maintenance takes place to avoid expired blood samples.

Partly unavailability of a machine: Assume, a blood analysis machine contains four
sections to process blood samples from which one fails. Then, the capacity of the ma-
chine is reduced by one quarter. Hence, the maximum number of process instances
allowed to be contained by a batch cluster should be reduced accordingly.

Transportation of a set of blood samples of the same type is started: Assume, the
timeout is almost reached for a batch cluster while a transportation of blood samples to
the laboratory requiring the same test is started. The respective batch cluster may delay
its activation until the instances arrive to improve cost savings.

These examples show that there exist various situations requiring a flexible adjust-
ment of predefined batch processing behavior in order to (1) reduce costs, (2) avoid
increased waiting time, and (3) ensure correct batch execution, e.g., a reduced capacity
of the task performer. Next, we perform an analysis to set the requirements before we
present our concept in Section 5.

4 Events and Batch Regions

As discussed above, it is valuable for organizations to design batch processing in a flex-
ible manner. Thus, created batch clusters may be adjusted according to the changes of
the process environment as described by business events or process related aspects as
described by process events. Adjustments refer to changes of the batch cluster configu-
ration parameters. Table 1 provides an overview how the configuration parameters (1)
groupingCharacteristic, (2) activationRule, (3) maxBatchSize, and (4) executionOrder
can be adjusted at run-time. More precisely, the table discusses how a parameter can be
changed (type of change), the influence a change has on a batch cluster and its assigned
process instances (influence), and the types of events triggering a specific adjustment
(events indicating) and gives corresponding event examples.

In Table 1, all types of adjustments are considered. Each configuration parameter al-
ways contains a value that can be also undefined for the first three parameters. Usually,
the configuration of a batch cluster is adapted as reaction on an event. In the case of
changing the grouping characteristic, existing batch clusters have to be canceled and
the corresponding process instances need to be reassigned to new ones, because the
data view of the existing clusters do not fulfill the new grouping characteristic. For
example, grouping characteristic Order.ward results in batch clusters with data views
General Surgery and Endoscopic Surgery. If the grouping characteristic is adjusted to
Order.section, the data views above are not valid anymore. Thus, both batch clusters
need to be canceled and their instances reassigned to a cluster with data view Surgery.

Flexible Batch Configuration in Business Processes Based on Events

67

Table 1. Classification on how batch clusters can be changed and by which events

Configuration Type of Influence Events indicating Examples
parameter changes
groupingChar- - aggregate - cancel existing - need for - if staff gets ill, a
acteristic - refine batch cluster and aggregation or nurse has to
- restructure assign process division of batch organize the
instances to new clusters or batch transport of two
clusters cluster restructuring wards
activationRule - adaptrule - adapt configuration - change in avail- - maintenance of
parameter of batch cluster ability of task machine
- use a new performer/material
rule - the arrival/delay of - start of the
instances transport of
several samples
- change of process - blood sample
instance properties expires
maxBatchSize - increase - adapt configuration - a change in the - section of a
- decrease of batch cluster and, capacity of task machine is not
if necessary, remove performer, used available
process instances resource etc.
executionOrder - select other - adapt configuration - change of resource - usage of a
type of of batch cluster or resource type replacement
execution machine acting
differently

Reducing the maximum batch size may result in batch clusters exceeding the newly
set limit. Then, newest assigned process instances are removed from the corresponding
clusters and get assigned to other or new batch clusters accordingly. The concept intro-
duced in the next section covers all changes of Table 1 including these special cases.

As described in Section 2, during a batch cluster’s lifetime, it may pass the states init
- ready - maxloaded - running - terminated. When a task performer starts execution of a
batch cluster, it transitions to state running. From this moment, no adjustments shall be
done on the respective batch cluster anymore. Therefore, we assume that batch clusters
can only be adjusted in states init, ready, or maxloaded.

Having presented multiple types of changes according to the configuration param-
eters and their implications, we derive three requirements to implement above obser-
vations. First, at design-time, event types relevant for batch cluster adjustment need to
be identified (R1). Then, at run-time, occurring events must be correlated to respective
batch clusters (R2) and they need to be adjusted accordingly (R3).

5 Flexible Configuration Based on Events

In the following, we describe the basic idea of our approach by referring to the example
introduced in Section 3. Afterwards, the newly introduced batch adjustments and their
batch adjustment rules are described, before we explain a method for process instance
reassignment and introduce an architecture for realizing the presented approach.

68 L. Pufahl et al.
5.1 Basic Idea

We assume that events are observed by an event processing platform. If a relevant
event is observed, the corresponding batch cluster gets adjusted accordingly, cf. Fig. 2.
Our concept builds on structured events that R

|

1

are a derivation of an event object [16] con- . i B
A
O-x Jie JQ

sisting of an identifier, a timestamp, and

some structured event content, e.g., a set of W
key-value-pairs or a tree-structure expressed maxbatchSize

in extensible markup language (XML). A Process Execution —
structured event type describes a class of Process & BusinessEvents ® ® © @ 08
structured events that have the same for- NormalizedEvents @ @ © 00 @ @

mat. Besides attributes specific for an struc- Fig. 2. Events influence the properties of
tured event, a structured event type consists pach clusters during run-time

of some content description describing the

structure of the event content of a structured event, e.g., by defining the attributes (keys)
or by an XML schema definition (XSD).

We propose an approach that enables run-time flexibility of batch clusters by barch
adjustments following a batch adjustment rule. A batch adjustment is triggered by a
certain event and may result in the adaptation of some parameters of one batch cluster.
The events to react on, the conditions that need to be met, and the adjustments that may
need to be applied are defined in the batch adjustment rule. The structure of a batch ad-
justment rule follows the (E)vent-(C)ondition-(A)ction principle originating from the
database domain [6]. Events to react on are described by their event type, e.g., an event
indicating the maintenance of a machine. The condition information enables the cor-
relation of the event to the corresponding batch cluster, e.g., only the batch clusters
containing process instances with blood samples for this machine. The described action
specifies the particular adjustment of a batch cluster, e.g., the immediate execution.

Model Level Instance Level Model Level

0. 0- 1 1.4

[Batch Adjustment Rule] [Batch Adjustment] [Structured Event| Structured Event Type
} | — | [| 1]
L 1]
7A

J 10| J [J
0. 0.
1 1

Batch Region
-groupingCharacteristic
FactivationRule 1 0.
-maxBatchSize
rexecutionOrder

[Business Event| [Business Event Type|
|]
[| J
|

1..maxBatchSize

[Process Instance] [Process Event| 0. 1 [Process Event Type
[I |
[] J

1 0..

Fig. 3. Class diagram integrating batch region [20] and event processing [11] concepts. The model
level shows the design-time concepts and the instance level shows their run-time implementation.

The connection of events and the batch region concept is illustrated in the class di-
agram of Fig. 3. One batch region can have an arbitrary set of batch adjustment rules
which are provided by the process designer. A batch adjustment rule refers to at least
one structured event type which can be a business or process event type. The structured

Flexible Batch Configuration in Business Processes Based on Events 69

event types describe based on which events a batch adjustment is triggered. If a struc-
tured event occurs which is relevant for a set of batch clusters, then for each batch cluster
one batch adjustment is created. Thus, a batch adjustment rule can have a arbitrary set of
batch adjustments being related to one or several structured events, but each adjustment
is assigned to only one batch cluster. During the lifetime of a batch cluster, it can be
adapted by an arbitrary set of batch adjustments.

5.2 Batch Adjustment Rule and Batch Adjustment

For connecting batch clusters and events during process execution, we introduce the
concepts of batch adjustments and batch adjustment rules. A batch adjustment rule,
following the ECA-principle, describes how and under which conditions a batch cluster
needs to be adjusted during run-time.

The events that need to be considered for an adjustment of a batch cluster are de-
scribed by their event type. For example, a business event type describes the business
events that indicate a planned maintenance of the blood analysis machine, cf. List-
ing 1.1. The event should be provided one machine analysis run before the maintenance
starts so that not started batch clusters can be activated and finished before the main-
tenance start. This information is composed of fine-grained information of normalized
events indicating the maintenance need and the schedule of the service technician.

The business event machineMaintancePlanned,, contains information about the name
of the corresponding machine. Further, it holds an ID and a timestamp as these are
mandatory fields of structured events. The ID of the resulting business event is uniquely
generated (getGUID()) and the timestamp is set to the actual time of creation (get-
Time(now)). The remaining data is collected from two normalized events machineStatus.,
and technicianSchedule,, that need to be correlated. This is done by defining constraints
in the WHERE-clause of the SELECT statement. In the example, it is checked whether
the events target the same machine followed by a check for the maintenance need of the
machine and the action of a planned maintenance by the service technician. As men-
tioned, the event shall be created exactly one machine run before the maintenance

1 machineMaintancePlanned; . extraction =

2 { machineMaintancePlanned,.id = getGuid();

3 machineMaintancePlanned, . timeStamp = getTime (now) ;
4 SELECT

5 machineStatus,, .name ,

6 FROM

7 machineStatus,, ,

8 technicianSchedule ,,

9
10

INTO
machineMaintancePlanned, . MachineName

11 ‘WHERE
12 machineStatus, .name =
13 technicianSchedule , . machineID AND
14 machineStatus,, . status = ”MaintenanceNeeded” AND
15 technicianSchedule, .state = ”planned” AND
16 technicianSchedule,, .time — getTime (now) <= machine (name) . getRuntime () }

Listing 1.1. Definition of the business event type machineMaintancePlanned,, that captures the
information about a maintenance in near future. This event results from events of the machine
itself (event type machineStatus,,) and the technician schedule (event type technicianSchedule,,).

70 L. Pufahl et al.

takes place. Thus, a time constraint is set to create the corresponding business event, if
time until the maintenance is equal or lower to the time needed for a run of the machine
(machine(name).getRuntime() returns the duration of a run of machine name).

This defined event type can be used as trigger for a batch adjustment rule that adapts
the activation rule of batch clusters in case of a maintenance for avoiding expired blood
samples. The proposed batch adjustment rule is shown in Listing 1.2, illustrating its
basic structure. In the condition part of the batch adjustment rule, we ensure that batch
adjustments are only created for batch clusters the event is relevant for. In our exam-
ple, the events of type machineMaintancePlannedy, are relevant for all batch clusters
that are intended to run in time where the maintenance is planned to be conducted.
Those should be started before the maintenance takes place to avoid unnecessary wait-
ing times for the blood samples. The relevant clusters are those that have the same
blood testing type as the blood analysis machine to be maintained and that are not yet
enabled for execution, i.e., in state init. The instances of the blood testing batch region
are grouped based on their blood test type (cf. Fig. 1) with the grouping characteristics
= Order.bloodTestType. Thus, the batch cluster’s data view provides information which
blood test type its assigned process instances requires, e.g., BCI(BloodTestA). The data
view of the batch cluster can be used for the condition, cf. Listing 1.2 line 2 and 3.

EVENT {machineMaintancePlannedy}

CONDITION batchCluster.dataView == machineMaintancePlannedy .name
batchCluster. state == "INIT”

ACTION batchcluster.activationRule=Threshold (50,0h)

AW =

Listing 1.2. Definition of a batch adjustment rule to start batch clusters before a maintenance
takes place.

Based on this example, we can observe that a specific batch cluster or a set of spe-
cific batch clusters for which an event is relevant can be identified based on batch clus-
ter specific characteristics, i.e., (1) data view, (2) current state of the cluster, (3) num-
ber of instances contained in a cluster, and (4) type of instances. If no condition is
described, a batch adjustment is created for all batch clusters which are in the init,
ready, or maxloaded state. Clusters being already accepted by the task performer are
not adapted anymore.

The last part of the batch adjustment rule is the definition of actions that need to be
performed when an event happened and the conditions are fulfilled. These actions can
use information of the underlying events to specify the adjustments of the particular
batch cluster. Referring to our example, the action would be to enable the batch execu-
tion before maintenance, cf. Listing 1.2 line 4. With this action, the activation rule of
the cluster is adjusted so that either 50 blood sample are triggered or the batch cluster
waits 0 hours, meaning that the cluster is immediately enabled to be finished before the
maintenance starts.

Batch adjustment rules are utilized to create batch adjustments for batch cluster. A
batch adjustment holds the ID of the corresponding batch cluster and the action that
need to be taken to change certain parameters of the batch cluster. Applying the batch
adjustment rule of our example, a batch adjustment as shown in Listing 1.3 will be
generated for batch cluster 1234.

Flexible Batch Configuration in Business Processes Based on Events 71

1 batchCluster.id = 1234
2 batchCluster.activationRule = ”Threshold(50,0h)”

Listing 1.3. Exemplary batch adjustment created for batch cluster 1234.

The batch adjustment mentioned above will replace the activation rule Threshold
(50,1h) of batch cluster 1234 by Threshold (50, Oh). With regards to the generation of
batch adjustments, if an event is received, it is immediately checked whether this event
is relevant for any available batch cluster. For each relevant cluster, a batch adjustment
is created. In case that the event is valid for a certain time period, the event is stored.
For each further initialized cluster, it is checked whether this event applies. Upon inval-
idation of the event, it is removed from the event storage. After presenting the structure
of batch adjustment rules and the generation of batch adjustments, the next section dis-
cusses the special case where a batch cluster is not only adapted, but a reassignment of
process instances is necessary.

5.3 Reassignment of Process Instances

A batch adjustment usually results in the adaptation
of the configuration of one batch cluster. Sometimes,
it also triggers (a) the reduction of instances con-
tained by the batch cluster in case of a decreased
maxBatchSize or (b) the cancellation of a batch clus-
ter in case of a changing groupingCharacteristic. Fig.4. Lifecycle of batch cluster ex-
The extended lifecycle of batch clusters with the tended by canceled state

canceled state is shown in Fig. 4; a cancellation is only possible from states init, ready,
and maxloaded. In both cases, process instances have to be reassigned to other or new
batch clusters.

In general, process instances that arrive at a batch region, i.e., the enablement of the
entry activity into the region, are temporarily deactivated and assigned to a queue of the
so-called batch cluster manager in the order of their arrival time (first-in-first-out). The
batch cluster manager organizes the assignment of process instances to batch clusters
and, if necessary, initializes new batch clusters.

If a process instance, in case of an ad- groupingCharacteristic - Order.testType
. . . . activationRule = Threshold(50 cases, 1h)
justment, is reassigned, it should be han- maxBatchsize = 100
executionOrder = parallel

dled prioritized, because it already experi- B e
ences a longer waiting time than newly ar- Prepare | 10ds(o Publish
riving instances at the batch region. Thus, S‘;t:;fe }7"{ blood testH blood test

the to-be reassigned process instance is Vleee=r e |
placed in the front of the queue based on Business Event:

BC1— - .
s ErrorofMachineSection
7/, BloodTestA

its arrival time at the batch region. Then, /5 — Fatch Adjusimens
it is assigned to an existing or new batch l\:I:::Z—;’l‘W

cluster. In the example of Fig. 5, the num-
ber of instances of the batch cluster BC1
have to be reduced because an event indi- Fig.5. Reassignment of process instances in

cated that a section of machine A is not case of a reduced maxBatchSize

Business Events [] o0 60 o ¢ o

72 L. Pufahl et al.

working currently. Then, the newest assigned instances are removed from the size-
reduced cluster. The process instance with the arrival time 10:07 is placed at the be-
ginning of the queue, then the instance with 10:10 is added followed by the newly
arrived instance at 10:36.

Often batch regions have an activation rule with a time constraint which describes
the maximum waiting time for a process instance in a batch cluster. In the example
process of Fig. 5, the threshold rule states that either 50 instances have to be available
or the waiting time of 1h is exceeded to activate the batch cluster. For assuring the
maximum waiting time also for reassigned process instances, we propose the usage
of the batch adjustment concept here. If an instance is added to a batch cluster which
was arrived at the batch region earlier than the batch cluster was created (or one of its
instances), an event is created. This event triggers a batch adjustment which reduces
the time constraint of the batch cluster by the difference between the batch cluster’s
creation time and the reassigned instance arrival time at the batch region.

5.4 Architecture

Next, we present an architecture showing details about a technical implementation to
flexibly adapt batch cluster configurations. Fig. 6 presents the main components and
their interactions as FMC block diagram [12]. The architecture is structured into three
parts: event producer, event processing platform, and process control. The process en-
gine, which controls process execution and batch handling, is an event producer and
consumes event provided by the event processing platform at the same time. Besides
the process engine, several event producers (event sources) can be connected via an
appropriate event adapter to the event processing platform. These can be information
systems as well as databases. The event processing platform normalizes the received
raw events and creates business and process events based on defined rules. Event con-
sumers are connected by an event consumer interface.

Event Producer Event Processing Platform Process Control
Process Engine Process Modeling
" O Event Process
Process Engine I O Normalization Execution

¢ Batch

Batch Cluster Configuration
Manager

0

Batch

H—O-+1 Adjustment

Handler [

Process Engine __|{ Batch Region
Database

Configuration
Fig. 6. Architecture to realize batch adjustments during process execution based on an event pro-
cessing platform

Event Source 1 —OHH

Business Event
Creation

Normalized
Events

Event Consumer Interface

Event Source n

I
Event Adapters

Business and Process
Events

i

Event Source/ Process Event Creation

Process
Repository

Event Source n+1

bl

Process control comprises the process engine and some modeling environment to
create the process model to be executed within the process engine. After creation, a

Flexible Batch Configuration in Business Processes Based on Events 73

process model is stored in the process repository. While modeling a process, batch
regions can be designed. Thereby, the process designer can define batch adjustment
rules used at run-time to adapt the batch regions. Those are saved together with the
process model in the process model repository. During process execution, the process
engine retrieves the process model and the adjustment rules from the repository. For
each designed batch region, the batch cluster manager assigns the process instances
to batch clusters. The batch adjustment handler registers for events that are specified
in the batch adjustment rules of a batch region at the event consumer interface. If the
handler receives a registered event from the event processing platform, then the event is
evaluated and the according action is triggered for the appropriate batch clusters. The
batch adjustment handler has an internal list of all batch clusters which are in state init,
ready, or, maxloaded as these are the only ones that might be affected by events.

6 Evaluation

The approach is evaluated by showing its applicability to a real world use case: the
blood testing scenario introduced in Section 3 with a simulation. As described, the lab-
oratory uses a batch region to synchronize several blood samples for the blood analysis
to save machine costs. The blood analysis machine needs to be maintained regularly
respectively on request. Based on an event informing about the maintenance some time
before it actually starts, the configuration of a running batch cluster can be adjusted.
With the adjustment, the cluster is started in-time to decrease the number of expired
blood samples due to unavailability of the machine. A blood sample expires after a cer-
tain time frame, often 90 to 120 minutes, because the blood structure changes. Then,
the blood sample is not useful for medical analysis. Each expired blood sample causes
costs of taking a new one.

Simulation Setup. For the evaluation, a simulation is used to compare the number of
expired blood samples in case of normal batch execution, i.e., without run-time adap-
tations, to flexible batch execution as presented in this paper. Therefore, the laboratory
part of the blood testing process was implemented as simulation'

with DESMO-J [8], a Java-based framework for discrete event simulation. The sim-
ulation starts with the arrival of process instances, i.e., blood samples, at the laboratory.
Each process instance is terminated after finishing the blood test. At average, using an
exponential distribution, every 12 minutes, a nurse brings 20 &= 5 blood samples (nor-
mally distributed) to the laboratory. For this simulation, we assumed that only one blood
analysis machine exists. One run of the machine for analyzing blood samples takes 25
minutes. At maximum, the machine can handle 100 blood samples in one analysis.

For the simulation, the laboratory selected ThresholdRule(50 instances, 1h) as acti-
vation rule requiring 50 instances or a waiting time of one hour to enable a batch cluster
(cf. Fig. 1). If a batch cluster fulfills this rule, it queues for being processed by the ma-
chine. The machine is already in use for a longer time period. Thus, twice a week, every
3.5 days with a deviation of 1 day, a maintenance is required. For the flexible batch han-
dling, some time before the technician arrives, an event regarding the maintenance is

! The simulation source code and the reports of the different simulation runs are available at
http://bpt.hpi.uni-potsdam.de/Public/FlexibleBatchConfig

http://bpt.hpi.uni-potsdam.de/Public/FlexibleBatchConfig

74 L. Pufahl et al.

provided. When the technician arrives, he is prioritized, but a current analysis on the
machine is not interrupted.

Results. We conducted several simulation runs for two scenarios to compare the im-
pact of flexible batch adjustments. The scenarios differ in the expiration time for blood
samples: 120 minutes and 90 minutes. Fig. 7 and 8 summarize the results of the simu-
lation runs over a period of two years, one diagram for each scenario. In both diagrams,
we compare the results for maintenance times of 45 minutes and 60 minutes (inter-
cept 2 and 3) with the result where no maintenance takes place (intercept 1). The black
bars provide the numbers of expired blood samples, if (1) no adjustments are made at
run-time. The different gray bars (2)-(4) show the results for event triggered batch ad-
justments, if the event is sent 1, 1.5, or 2 times the analysis run, i.e., 25, 37.5, or 50
minutes respectively, before the technician arrives.

If no maintenance would be conducted, 1,738 samples in scenario 1 and 19,913
samples in scenario 2 would expire due to exponential arrival of these blood samples
and resulting waiting times for the machine. If the maintenance is conducted at average
twice a week as indicated above, the number of expired blood samples increases by
14% respectively 29% for 45 and 60 minutes maintenance duration in scenario 1 (cf.
black bars in Fig. 7) and they increase by 13% respectively 41% in scenario 2 (cf. black
bars in Fig. 8).

W (1) Usual [@(2) Event—1.0run earlier m(3)Event—1.5runs earlier m (4) Event — 2.0 runs earlier
2,500

2,000 @
<) N = 2
~ ~ 2] ~

5] o)} — 2} © [t} o S

1,500 @ i 0 g @ 2 = &

-) — e
1,000
500
0
W/o maintenance Maintenance duration: Maintenance duration:
45 min 60 min

Fig. 7. Scenario 1 — 120 min expiration time: Number of expired blood samples in two years for
different simulations

Applying flexible batch adjustments aims at reducing the number of expired blood
samples. The recognition of the event indicating the maintenance directly activates all
initialized batch clusters by changing the activation rule accordingly (cf. line 4 in List-
ing 1.2 in Section 5.2). The impact of the batch adjustment rule with respect to the point
in time the event is sent is shown by the different gray bars (2)-(4). In 9 of 12 cases, we
observe measurable improvements. The highest improvements for the different settings
are mostly observed for the light gray bar ((2) Event 1.0 run earlier). It indicates that
it is most beneficial for reducing the number of expired blood samples to inform about
the maintenance one analysis run before the start of the maintenance. The improvement
is at 13% respectively 20% in scenario 1 for 45 respectively 60 minutes maintenance
time and at over 3% in scenario 2 (60 minutes maintenance). With these numbers, for
scenario 1, we almost compensate for the maintenance.

For scenario 2, shown in Fig. 8, only slight improvements as well as two cases of
no improvements are observed. This may be explained as follows: The arriving event
enables a batch cluster which is then started for the blood analysis. During the analysis,

Flexible Batch Configuration in Business Processes Based on Events 75

M (1) Usual [@(2) Event—1.0 run earlier @ (3) Event—1.5runs earlier M (4) Event — 2.0 runs earlier
30,000

25,000 4 o S
o 0 =}
20,000 S 2 0 2 & Ny &
ful) 2 2 R o G o
15,000 o S N N N
a2
10,000
5,000
0
W/o maintenance Maintenance duration: Maintenance duration:
45 min 60 min

Fig. 8. Scenario 2 — 90 min expiration time: Number of expired blood samples in two years for
different simulations

multiple new samples might arrive, but they are not processed before the maintenance
as the technician is prioritized. Due to the small expiration time of 90 minutes, there
is a good chance that those samples expire. For a maintenance time of 45 minutes, all
samples which arrive 5 minutes after the start of the flexibly enabled cluster expire,
because they have at least 20 minutes waiting time before the maintenance plus 45
minutes maintenance time plus another 25 minutes analysis time summing up to at
least 90 minutes. For 60 minutes maintenance, all samples arriving at least 20 minutes
after the start of the flexibly enabled cluster will expire. Thus, if — due to the arrival
distribution of the blood samples — many samples arrive within these time frames, also
negative results can be observed.

Summarizing above observations, it is important to check the relation between expi-
ration time as well as waiting and maintenance times to decide whether to apply batch
adjustments or not. In case, the relations are appropriate as, for instance, in scenario 1,
applying batch adjustments provides reasonable and measurable improvements.

The simulation results indicate that the waiting time for the technician slightly in-
creases, in average less than a minute. Due to limited space, the reader is referred to
our simulation reports (see footnote 1). If, we take scenario 1, the cost savings due to
reductions in expired blood sample will be higher than the technician costs due to small
increases in the waiting time.

In most cases, we can observe that the number of zero-waitings increases, because
starting an analysis run shortly before the technician arrives, increases the chance that
the run is terminated just upon arrival. However, sometimes a run may only be started
shortly before the technician’s arrival as some other analysis run was still busy. Then,
the technician must wait longer resulting in a higher distribution of waiting times and a
higher total average waiting time.

7 Related Work

In the business process research domain, few works exists to synchronize the execution
of multiple instances. For example in [1, 14,23], the integration of batch processing into
process models is discussed. These works provide limited parameters to configure the
batch execution at design-time, often only the maximum capacity. This also limits op-
portunities to conduct adjustments at run-time. [23] provides some means for flexible
run-time batch control by introducing batch activation by user invocation. Extending

76 L. Pufahl et al.

the options for batch configuration in business processes, [21] introduces batch activi-
ties with three configuration parameters: capacity as the ones above as well, rule-based
activation generalizing the user invocation based on rules, and execution order. One step
forward, [20] extends the parameters by the grouping characteristic to distinguish pro-
cess instances. However, all these works focus on specifications at design-time and do
not support automatic adjustments of the batch configuration at run-time, for instance,
due to changes in the process environment or within the process itself. In this paper,
we extend the concepts presented in [20, 21] to allow run-time flexibility in terms of
configuration adaptation to improve batch processing in business processes. We utilize
events as trigger for taking adjustment actions. These extensions can also be applied to
other works for adapting the configuration parameters offered there.

Batch processing flexibility has also been discussed in other domains as, for example,
the manufacturing domain [17]. Here, batch scheduling is used to schedule a number
of available jobs on a single or on multiple machines for saving set-up costs. Changes
of market factors, e.g., a canceled order, or on the operational level, e.g., breakdowns,
require a rescheduling functionality. In [17], an overview of suitable algorithms is pre-
sented and the need for a framework which combines possibly occurring events with
some reschedule action is discussed. The contributions of this paper can be adjusted to
offer a first approach in this direction: instead of configuration parameter adjustments,
rescheduling action can be used in the batch adjustment rule.

Adoption of process instances during run-time is a widely discovered field. [22] dis-
cusses manual ad-hoc changes of single instances, e.g., to insert, delete, or shift ac-
tivities according a given process model. This provides flexibility for single process
executions but this does not provide possibilities to pool several process instances and
to work on them as a batch. The CEVICHE framework [9] allows to change process
instances automatically during run-time. Similar to this paper, it uses Complex Event
Processing (CEP) to detect changes and exceptions which then trigger dynamic adap-
tation of the BPEL processes. In the same vein, [5] discusses means to integrate CEP
with BPMSs on architectural level and shows how to do this for a BPEL engine. [24]
introduces an approach to discover deviations of process executions and the underlying
process model by using CEP techniques.

In this paper, we use CEP techniques as, for example, described in [7, 15], to create
the necessary business and process events. [7] lists definitions for CEP-related terms,
e.g., event type, that are used in this paper. Based on these works, a framework for
CEP for business processes was introduced [10, 11]. We utilize this framework to allow
dynamic batch activation and configuration rule adaptations as presented in Section 5.
In this paper, we deal with comparably simple rules to correlate events to each other,
to process instances, and to batch clusters. Applying common correlation techniques
extends the correlation capability of the presented approach. One of these techniques,
the determination of correlation sets based on event attributes, is introduced in [19].

8 Conclusion

In this paper, we showed the necessity to synchronize multiple cases in batch clusters
and the requirement of their flexible adjustments during run-time. Therefore, a con-
cept is introduced to apply event processing to batch execution allowing to flexibly

Flexible Batch Configuration in Business Processes Based on Events 77

adjust batch configuration parameters and batch activation based on run-time changes
represented by events. Based on the principle of Event-Condition-Action rules, rele-
vant events are identified and then compared to defined conditions. If the conditions
are fulfilled, the configured actions are executed as a batch adjustment for the corre-
sponding batch cluster. Further, an architecture is presented showing details about a
technical implementation and the components that are necessary to apply the concept
within a process engine. We showed applicability of the introduced concept of batch
adjustments during run-time with a real-world use case of a blood analysis in a hos-
pital’s laboratory. We simulated two years of work in the laboratory and showed that
the application of the presented concept compensates for maintenance interruptions de-
creasing the blood expiration rate by at most 7%. With integrating more information
about the process environment, e.g., the availability of resources, the presented concept
can be extended. Further, techniques to ensure that batch adjustments do not lead to
inconsistencies should be developed. We will investigate this topic in the future.

References

1. van der Aalst, W., Barthelmess, P., Ellis, C., Wainer, J.: Proclets: A Framework for
Lightweight Interacting Workflow Processes. IICIS 10(4), 443—481 (2001)

2. van der Aalst, W.M.P, ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow Pat-
terns. Distributed and Parallel Databases 14(1), 5-51 (2003)

3. Activiti: Activiti BPM Platform, https://www.activiti.org/

4. Bonitasoft: Bonita Process Engine, https://www.bonitasoft.com/

5. Daum, M., Gotz, M., Domaschka, J.: Integrating CEP and BPM: How CEP Realizes Func-
tional Requirements of BPM Applications (Industry Article). In: DEBS, pp. 157-166. ACM
(2012)

6. Dayal, U.: Active Database Management Systems. In: JCDKB, pp. 150-169 (1988)

7. Etzion, O., Niblett, P.: Event Processing in Action. Manning Publications Co. (2010)

8. University of Hamburg, D.o.C.S.: DesmoJ - A Framework for Discrete-Event Modeling and
Simulation, http://desmoj.sourceforge.net/

9. Hermosillo, G., Seinturier, L., Duchien, L.: Using Complex Event Processing for Dynamic
Business Process Adaptation. In: SCC, pp. 466—473. IEEE (2010)

10. Herzberg, N., Meyer, A., Weske, M.: An Event Processing Platform for Business Process
Management. In: EDOC, pp. 107-116. IEEE (2013)

11. Herzberg, N., Weske, M.: Enriching Raw Events to Enable Process Intelligence - Research
Challenges. Tech. Rep. 73, HPI at the University of Potsdam (2013)

12. Knopfel, A., Grone, B., Tabeling, P.: Fundamental Modeling Concepts: Effective Communi-
cation of IT Systems. Wiley (2005)

13. Lanz, A., Reichert, M., Dadam, P.: Robust and flexible error handling in the aristaFlow BPM
suite. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP, vol. 72, pp. 174-189.
Springer, Heidelberg (2011)

14. Liu, J., Hu, J.: Dynamic Batch Processing in Workflows: Model and Implementation. Future
Generation Computer Systems 23(3), 338-347 (2007)

15. Luckham, D.: The Power of Events. Addison-Wesley (2002)

16. Luckham, D., Schulte, R.: Event Processing Glossary - Version 2.0 (July 2011), http://
www . complexevents.com/wp-content/uploads/2011/08/EPTS_Event_
Processing Glossary v2.pdf

https://www.activiti.org/
https://www.bonitasoft.com/
http://desmoj.sourceforge.net/
http://www.complexevents.com/wp-content/uploads/2011/08/EPTS_Event_Processing_Glossary_v2.pdf
http://www.complexevents.com/wp-content/uploads/2011/08/EPTS_Event_Processing_Glossary_v2.pdf
http://www.complexevents.com/wp-content/uploads/2011/08/EPTS_Event_Processing_Glossary_v2.pdf

78

20.

21.

22.

23.

24.

25.

L. Pufahl et al.

. Méndez, C.A., Cerd4, J., Grossmann, I.E., Harjunkoski, I., Fahl, M.: State-of-the-art review

of optimization methods for short-term scheduling of batch processes. Computers & Chem-
ical Engineering 30(6), 913-946 (2006)

. Meyer, A., Pufahl, L., Fahland, D., Weske, M.: Modeling and Enacting Complex Data De-

pendencies in Business Processes. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013.
LNCS, vol. 8094, pp. 171-186. Springer, Heidelberg (2013)

. Motahari-Nezhad, H.R., Saint-Paul, R., Casati, F., Benatallah, B.: Event Correlation for Pro-

cess Discovery from Web Service Interaction Logs. VLDB Journal 20(3), 417-444 (2011)
Pufahl, L., Meyer, A., Weske, M.: Batch Regions: Process Instance Synchronization based
on Data. In: EDOC. IEEE (2014) (accepted for publication)

Pufahl, L., Weske, M.: Batch Activities in Process Modeling and Execution. In: Basu, S.,
Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 283-297. Springer,
Heidelberg (2013)

Reichert, M., Dadam, P.: Enabling Adaptive Process-aware Information Systems with
ADEPT?2. In: Handbook of Research on Business Process Modeling, pp. 173-203. Infor-
mation Science Reference (2009)

Sadiq, S., Orlowska, M., Sadiq, W., Schulz, K.: When Workflows Will Not Deliver: The Case
of Contradicting Work Practice. BIS 1, 69-84 (2005)

Weidlich, M., Ziekow, H., Mendling, J., Giinther, O., Weske, M., Desai, N.: Event-based
monitoring of process execution violations. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.)
BPM 2011. LNCS, vol. 6896, pp. 182-198. Springer, Heidelberg (2011)

Weske, M.: Business Process Management: Concepts, Languages, Architectures. Second
Edition, 2nd edn. Springer (2012)

	Flexible Batch Configuration in Business Processes Based on Events
	1 Introduction
	2 Foundation
	3 Motivating Example
	4 Events and Batch Regions
	5 Flexible Configuration Based on Events
	5.1 Basic Idea
	5.2 Batch Adjustment Rule and Batch Adjustment
	5.3 Reassignment of Process Instances
	5.4 Architecture

	6 Evaluation
	7 Related Work
	8 Conclusion
	References

