
ProcessBase: A Hybrid Process Management

Platform

Moshe Chai Barukh and Boualem Benatallah

School of Computer Science & Engineering
The University of New South Wales, Sydney − Australia

{mosheb,boualem}@cse.unsw.edu.au

Abstract. Traditional structured process-support systems increasingly
prove too rigid amidst today’s fast-paced and knowledge-intensive envi-
ronments. Commonly described as “unstructured” or “semi-structured”
processes, they cannot be pre-planned and likely to be dependent upon
the interpretation of human-workers during process execution. On the
other hand, there has been a plethora of Social and Web 2.0 services to
support workers with enhanced collaboration, however these tools are of-
ten used ad-hoc with little or no customisable process support. In order to
address these challenges, we thus present: “ProcessBase”, an innovative
Hybrid-Processes platform that holistically combines structured, semi-
structured and unstructured activities. Our task-model proposed encap-
sulates a spectrum of process specificity, including: structured to ad-hoc
Web-service tasks, automated rule-tasks, human-tasks as well as lifecy-
cle state-tasks. In addition, our hybrid process-model enables the “evolu-
tion/agility” from unstructured to increasingly structured process design;
as well as the notion of “cases” representing repeatable process patterns
and variations. We further propose an incremental process-knowledge
acquisition technique for curation, which is thereby utilised to facilitate
efficient “re-use” in the form of a context-driven recommendation system.

Keywords: Business Process Management, Hybrid Process, Case Man-
agement, Service Oriented Architecture, Web-Services, Web 2.0.

1 Introduction

Many processes are difficult to model due to the ad-hoc characteristics of these
processes [1], which often cannot be determined before the process begins. While
certain characteristics could be predicted, the actual activities and ordering may
differ. More so, information may only become available during the process, thus
making human-beings and knowledge-workers in control of these processes [2–5].

An emerging discipline to deal with such processes (commonly referred to
as “unstructured” or “semi-structured” processes) is Case-Management. The
importance is well recognised since knowledge-workers who make up 25-40% of
a typical workplace play a vital role on the long-term success of an enterprise
[3]. However, while research in this area correctly highlights the importance
of combining knowledge with process [3], and calls for increased flexibility [4],

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 16–31, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

ProcessBase: A Hybrid-Process Management Platform 17

most existing implementations are yet to embrace these requirements [2]. As a
result, case-management has often only intensely been managed manually, in
circumstances where traditional BPM suites would otherwise prove too rigid.

On the other end of the spectrum, major advances in Web-technology, in-
cluding Web 2.0, crowd- and cloud- computing, has also influenced a new wave
of process-support. Cultivated by the services-oriented paradigm, Software-as-
a-Service (SaaS) tools are extensively being used to complete everyday tasks,
[6, 7]. Albeit there remains significant shortcomings: (i) Firstly, the re-use of such
ready-made Web-apps often implies conforming to the embedded work-process
allowing little room for customisation; (ii) Alternatively, even if a collection of
such tools are used for different portions of the process, this inevitably leads to
“shadow processes” [8], often only informally managed by e-mail or the like; (iii)
Yet if none of the above suffices, a support system would have to be “developed”
from scratch, and even when leveraging existing apps, it still requires consider-
able technical/programming skills; (iv) Finally, without the required skills or lack
of resources, it may likely resort to “homebrewed” solutions (e.g. spreadsheets
and/or office applications), resulting in untidy and hard-to-maintain products.

Not surprisingly, process-support technology has thus typically been portrayed
in two extremes [2, 9]: Either highly structured and almost procedurally executed
processes supported by BPMS, WfMS, ERP, etc.; whilst many unstructured and
ad-hoc processes strive for support from various SaaS tools. The reality how-
ever, is that most processes rarely fit into only one of these two extremes; rather
they usually comprise (sub-)fragments of various types of organisational activi-
ties that include a mix (or spectrum) of structured activities to other activities
that may be very ad-hoc, [9, 10]. Moreover, there exist a variety of process
paradigms/models/representations that are best suited to a specific domain.
For example, BPEL for structured flows, state-models for monitoring, rules for
ad-hoc functionality, etc. While systems may support a partial-hybrid approach
with one or two types, they generally compete rather than leverage inter-domain
support. The main challenge is thus facilitating end-to-end process-support.

To address this, we propose ProcessBase — A Hybrid-Process Management
Platform, consisting of an extensible platform that encourages a new breed of
hybrid-process-driven applications. We define domain-specific types and func-
tions to represent process abstractions from structured to unstructured activities;
which is thereby exposed via a programmatic API in order to provide enhanced
in-App process-support. Moreover, ProcessBase acts as a knowledge-base, for the
efficient “curation” and “re-use” of process-knowledge, supported via a context-
based recommendation system driven by an incremental acquisition technique.
More specifically, we make the following main contributions:
– In Section 3, we begin by analysing the technological landscape, as well
as tracking the evolution from structured to unstructured process support,
with respect to existing work. We use this to demystify the various concepts,
identify key characteristics and provide directives for our proposed work.

– In Section 5, we then propose a domain-specific model for hybrid-processes.
Most importantly, we support: (i) The ability to capture possibly repeatable
“patterns”; whilst also (ii) Allowing the “evolution/agility” from an early

18 M.C. Barukh and B. Benatallah

unstructured to increasingly structure design. We address this by separating
a hybrid-process definition from the actual executional tasks by introduc-
ing a logical layer that enables modularity, virtual-ordering and hierarchy of
activities. Moreover, to support (iii) Case-based “variations” we integrate
the notion of cases and variations. The logical layer thus enables the or-
ganisation of process-knowledge without governing the execution. We model
the executional components as a variety of 5 task-types, aiming to cover the
range of process-specificity, including: Structured (i.e. BPEL) tasks, ECA
Rule-tasks, Human-tasks, Web-services tasks as well as lifecycle State-tasks.

– In Section 6, we propose a novel context-based recommendation system for
more efficient “re-use” of process-knowledge, via an incremental knowledge-
acquisition technique. The first work to propose this, as far as we know.

– In Section 7, we delineate our proposed programmatic Hybrid Process-as-a-
Service (HPaaS) API. In Section 8, we evaluate our work by implementing
the reference scenario over a comparative experimental study. Finally, we
conclude with a summary and directions for future work at Section 9.

2 Motivating Example

Consider the “Software Development Change-Management” process, as illus-
trated in the BPMN model shown in Figure 1.

Create
Change Report Plan & Approve

Implement
Changes

Report
(and Evaluate)X

Reject
Change

No

Yes

Approved?

C
ha

ng
e

M
an

ag
em

en
t

P
ro

ce
ss

+ + + +

Fig. 1. Software Development Change Management Process

While the overall pattern may be followed, the specifics may vary between
case-to-case. For example, a “formal” software-project often view changes as a
non-typical event requiring a strict approval-process. However, even in a “for-
mal” setting, structured activities may exhibit variations, but only based on
preconceived conditions; an example is illustrated in Figure 2.

Schedule CR
Review Meeting

Review CR
Document

Change Plans in X
Reject
Change

No

Yes

Approved?

Review CR X
Reject
Change

No

Yes

Approved?

Justify
Change PlanX

Accept
Change

No

Yes

Changes to
Cost/Schedule?

Verify/Audit
CR Plan & Costing

Justification
X Yes

Approved?

Accept
Change

No

P
ro

je
ct

 M
a

n
a

ge
r

C
h

a
n

ge
 C

o
n

tr
o

l
B

o
a

rd
A

u
d

it
 C

o
m

m
it

te
e

(a)

Large or
Small Project?

Small project Large project
with CCB

 Requires
 Verification?

Not required

Audit Committee
Required

PM

PM

PM

CCB

CCB

Auditor(b)

Fig. 2. (a) Formal Software Project Approval Process; (b) Process Variation Tree

ProcessBase: A Hybrid-Process Management Platform 19

In contrast however, “agile” (e.g. eXtreme programming) software-projects
embrace change and thus are prone to a simplified approval process that could
likely be reduced to a simple human-task, as illustrated in Figure 3. Moreover,
in both cases, certain activities could nonetheless be inherently ad-hoc. For ex-
ample, activities such as: create change report, and implement changes could
directly depend upon the specific project’s development environment. Such as,
a change report could be generated using GoogleDrive, while another project
could depend on a documents uploaded to DropBox. Likewise, some projects
could employ Git while others may use SVN.

Create a HumanTask
to verify and Approve

If Approved Send
Request to DevTeam

After implementation
complete, commit code

New Change Request
Uploaded to DropBox to verify and Approve

Fig. 3. Agile Software Development Change Management Process

3 Background and Related Work in Hybrid-Processes

Transitioning process-support from structured to unstructured domains, requires
harnessing the capabilities that BPM had to offer for its application to unstruc-
tured processes; such that these ad-hoc style processes can be comparably visible,
measurable and managed [8]. Essentially this means bridging the gap between
structured and unstructured processes. We therefore dedicate this section in un-
derstanding the technological evolution and landscape, in order to recognise the
potential gaps, from which we derive the main directives of our proposed work.

BPM vs Rule-based Systems. BPM and rule-based systems are two of the
most conventional archetypical approaches, for structured versus less-structured
support, respectively. BPMSs introduced the process-centricmethodology, and of-
fered a high-level model-driven approach that strongly appealed to non-technical
domain-experts. However it suffered from a vital lack of agility. Rule-systems on
the other hand, while inherently capable of dealing with the executional dynam-
ics of orchestrations, their applicability in non-trivial contexts have meant limited
success, due to the number of rules required to describe a process. The synergy
therefore, between BPM and Rule-based systems has thus often been explored as
a potential way for achieving the best of both worlds.

For instance, in 2008 the OMG joined forces with the BPM community and
released the Semantics of Business Vocabulary and Business Rules (SBVR) stan-
dard. The goal was to express business knowledge in a controlled natural lan-
guage, albeit it did not directly address the formal integration with process mod-
elling diagrams. Vanthienen et al. thus proposed to implement SBVR into the
business process management lifecycle using an SOA approach [11], consisting of
a three-layer architecture. Similarly, Agrawal et al. proposed Semantics of Busi-
ness Process Vocabulary and Process Rules (SBPVR) [12]. Milanovi et al. also
offered to integrate BPMN with R2ML, developing a new modelling language
rBPMN (Rule-based Process Modelling Language) [13], which extended existing
BPMN elements with rule-based properties. Nonetheless these works are yet to

20 M.C. Barukh and B. Benatallah

be well adopted in mainstream, likely because they overarch the extensive range
of business rule-types (i.e. integrity, derivation, reaction and deontic rules), thus
clouding simplicity with over-rich vocabulary and semantics, [4, 8].

Event Driven Business Process Management (EDBPM). In an similar
approach, EDBPM focuses primarily on “event-driven” reaction-rules. The moti-
vation has been to merge BPM with Complex Event-Processing (CEP) platforms
via events produced by the BPM-workflow engine or any associated (and even
distributed) IT services. In addition, events coming from different sources and
formats can trigger a business process or influence its execution thereof; which
could in turn result in another event. Moreover, the correlation of these events in
a particular context can be treated as a complex, business-level event, relevant
for the execution of other business processes. A business process, arbitrarily fine
or coarse grained, can thus be choreographed with other business processes or
services, even cross-enterprise. Examples of such systems include: jBPM [14], and
RunMyProcess [15]. However, these systems are usually implemented where the
respective components sourced from BPM or CEP operate almost independently,
(e.g. event-modeller vs. process-modeller; event-store vs. process-store; rules-
engine vs. process-engine; process-instances vs. rules-instances, etc.). In fact,
the only thing connecting these two systems together is the event-stream at the
low-level, albeit this does not really directly benefit the process-modeller. These
systems also tend to be dominated somewhat by the structured process side (e.g.
a rudimentary process is always required, and even basic changes require restart-
ing the process). They also do not encompass the full range of process-specificity
support, however nonetheless they do provide the crucial step-ahead towards at
least a partial hybrid-process methodology.

Case Management. As mentioned, the “case-management” paradigm has
also been recognised as a promising approach to support semi-structured pro-
cesses. Unlike traditional business-process systems that require the sequence and
routing of activities to be specified at design-time (as otherwise they will not be
supported) - case-management is required to empower the ability to add new
activities at any point during the lifecycle and when the need arises, [4]. At the
same time it also requires the ability to capture possibly repeatable process pat-
terns, and variations thereof [3, 16]. However, although there has been several
efforts to push this, (e.g. OMG is currently working on an appropriate standardi-
sation), at present there are no concrete all-encompassing frameworks capable of
adequately supporting these requirements. Emergent Case Management provides
a slightly more modernised twist, suggesting a bottom-up approach. Bohringer
[2], proposes such a platform which petitions the use of social-software (e.g. tag-
ging, micro-blogging and activity-streams) in a process-based manner. It claims
to empower people to be at the centre of such information systems, where the
goal is to enable users to assign activities and artifacts independent of their rep-
resentation to a certain case, which can be dynamically defined and executed by
users. However, this work is currently only at its concept stage and is yet to be
implemented and tested. Likewise case-management in general is rather yet only
considered “a general approach” rather than being a “mature tool category”.

ProcessBase: A Hybrid-Process Management Platform 21

Characteristics & Requirements for Hybrid-Processes. In light of the
above analysis, we identify the following dimensions that may be used to charac-
terise process-systems. Bridging the technological gap and avoiding fragmented
support thus requires collectively supporting the various facets over a holistic
model. Accordingly, this has precisely been the motivation of our proposed work.

Process Paradigms. Refers to the type of control-structure the process-system
can handle, [17–20]. There are three main facets identified within this dimension:
(A) structured ; (B) semi-structured ; and (C) unstructured.

Process Representation-Models/Languages. Represents the language, model or
interface offered to the process-designer. Again, there are three identified facets:
(A) Activity-centric models the flow of control between activities based on a
specified sequence; (B) Rules-centric define statements that express a business
policy, thus defining or constraining the operations of a “process”, in a declar-
ative manner; and (C) Artifact-centric have tasks (actions or events) defined in
the context of process-related artifacts, as first-class citizens, [21–24].

4 ProcessBase Architecture Overview

Figure 4 illustrates the system design and interaction of the main components
of the ProcessBase system, which are elucidated as follows:

Federated Engine

Generic Service-Access Layer

ServiceBus
Reactive

Rule Engine
BPEL Engine

yyyyyyyyyyyyyyyyyyyyyyyyyyyyy

Logginggg g
Database

Service
Knowledge

Se

Task
Knowledge

Process
Knowledge

Service + Process
Knowledge-Base

Recommendation System Hybrid Process-as-a-Service (HPaaS) API

ServiceBus +
Streams API

extends

Service
API

Users
API

formulates
“context”

derives
“conclusion”

Process
APP

Process
APP

Process
APP

create update
searchrecommend

(process activity feed)

GUI Front-end (prototype)GUI Front end (prototype)

Fig. 4. ProcessBase System Architecture

The Web-Services Layer represents APIs available over the Internet, whose
integration in processes offers vital potential: Services act as rich and real-time
sources of data, as well as, providing functionality (software and tools), infras-
tructure building-blocks, collaboration mechanisms, visualisations, etc.

The ServiceBus components (leveraged from our previous work [6, 7]) acts as
the middleware between outside Web-services and the platform back-end. Most
importantly, it helps solve the inherent heterogeneity challenges: Services may
differ in representation and access protocols, (e.g. SOAP vs. REST); as well as
in message-interchange formats, (e.g. JSON, XML, CSV, or Media files, etc.).
Moreover, APIs are constantly subject to change, (e.g. due to system updates,

22 M.C. Barukh and B. Benatallah

when data-structures are improved, errors fixed or new components introduced).
The ServiceBus overcomes this by utilising our previously proposed Unified Ser-
vices Representation Model (USRM), which abstracts low-level logic and masks
heterogeneity thereby exposing a common access and data-interchange interface.
It relies on service-integration logic organised in the Services Knowledge-Base.

The RuleEngine enables reactive capabilities, via Event-Condition-Action
(ECA) rules. When event patterns are matched, and their conditions are satis-
fied, the specified actions are then fired. Likewise, the BPELEngine component
is delegated for executing and managing BPEL processes, which may represent a
complete or more often a segment of a larger unstructured process. In both cases,
these two engine components are federated with the ServiceBus for detecting and
logging instance as well as activity-level events of running processes.

There are two Storage components: The Knowledge-Base (KB) extends the
Services programming base with knowledge about hybrid-processes. Moreover,
this combined Services+Process KB also maintains incremental knowledge-
capture rules (different from event-rules mentioned earlier). Such a rule serves
to map a process “context” (rule-condition) to an existing process “definition”
(rule-conclusion). In this manner, when a new process starts formulation, and a
similar “context” can be detected, the Recommendation Systemmay suggest
the closest matching process “definition” that could be re-used, either directly, or
to create a template from. The other storage component is the Logging-Database,
which curates ongoing process-instance data and artifacts, such as events and
interactions data from services and tasks, for later analysis and/or processing.

Finally, applications can be written over the programmaticHybrid Process-
as-a-Service (HPaaS) API, which may be embedded into applications. (For
instance, we have implemented a prototypical GUI front-end, for better support.)

5 Domain-Specific Model for Hybrid-Processes

In Figure 5, we presents the overall hybrid-process model:

5.1 Hybrid-Process Definition

At the highest level, a HybridProcess contains a set of logical Activitieswhich
in turn contains a set of functional Tasks. This provides a light-weight definition
model for hybrid-processes. During execution, instance data may be recorded as
ProcessInstanceMessages, which encapsulates a Fact, representing a data ar-
tifact from either an event or action , with various structure depending on its
origin. A process may also require a CorrelationCondition (or set thereof called
a CorrelationSet) to be specified, this is required in order to correctly parti-
tion messages and thus distinctly manage different running process-instance. We
support the following types of correlation-conditions:

– Key/Reference based, refers to two messages being correlated if they share
a field that are equal in value, (e.g. Mx.fi = My.fj);

ProcessBase: A Hybrid-Process Management Platform 23

ProcessInstanceMessage
HProcessID : String
PIMessageID : String
PIMessageBody : Fact

Task
ID : String
Name : String
Description : String

Rule
- - -

HybridProcess
ID : String
Name : String
Description : String
Goals : Set<String>
Created : Date
LastModified : Date

CorrelationSet
ID : String
Name : String
ContextID : String

11

1
*

Activity
ID : String
Name : String
Description : String
Goals : Set<String>
ParentActivity : String
Order : Integer
•createChild() : Activity
•merge(ActivityID : String)
•split(TaskIDs:List<String>)
•swap(ActivityID : String)

1

*

1 1 **

 Process Layer Logical Layer Functional Layer

**

Variation
ID : String
SrcActivity : String
DestActivity : String

1
*

1

1 1

1

EventTypeypypyp

ActionType

FactType

 Process-Instance/Execution Data

ServiceExecution
ServiceID : String
OperationID : String
FeedInstanceID : String
MessageID : String
MessageBody : Field

StateExecution
StateTaskID : String
StateID : String
OldStateID : String
TransitionID : String

Process Instance/Exe

S
S
O
T

HumanTaskExecution
HumanTaskID : String
Creation_date : Date
AuthorID : String
AuthorName : String
SourceType : Sys | Human
Body : Field

BPELExecution
InstanceID : String
ActivityID : String
OldState : String
NewState : String
NewStateTime : Date

Fact
FactID : String
FactType : PIMType
TimeStamp : Date
Sender : String

1

1
**

Case
ID : String
Name : String
Description : String
CaseCondition : String
ParentCaseID : String
HProcessID : String

1

1

1

Service
- - -

BPELProcess
- - -

StateTask
- - -

HumanTask
- - - *1

1
*

*1

CorrelationCondition
ID : String
Name : String
CorrSetID : String
Type : CorrType
LHS : CorrExpression
RHS : CorrExpression

*1
CorrExpression

FactType : Type
StaticCondition :
 List<String>
CorrProperty : Field

Fig. 5. Domain-Specific Model for Hybrid-Processes

– Direct Reference based, refers to when a message Mx can be directly corre-
lated with a message My, by introducing a special uniquely identifiable field

from Mx into My, (e.g. Mx.fi = My.f̂ , where f̂ := fi);
– Semantic based, refers to a special reference-based condition, where a re-
lationship between messages Mx and My can be inferred using semantic-
knowledge that are computed over the relative fields, (e.g. email ≡ e−mail).

5.2 Process Cases and Variations

In the absence of a process-schema based approach, unstructured processes are
usually defined and managed as instance-only. However, even while such unstruc-
tured or ad-hoc processes may not be precisely repeatable, they may often have
recurring elements and “patterns” that could be “re-used”. Moreover, a pattern
could also exhibit various case-based “variations”. This is often expressed as tem-
plates, accessible via a template-library, or derived from existing instances. In
our platform we adopt the latter approach. However, in either case a template

HP1

(goals) ■ change management
■ software-project
■ agile

A1 A2 A3 A4
Case1

Case2

■ receive
request

■ plan &
 approve

■ notify
 dev-team

■ update
 codebase

A5

■ monitoring

A6

A7

exception
handling

unusual
behaviour

T(i)

HP2

sub-case

(goals) ■ change management
■ software-project
■ formal

A2’ sub-activitiesA1 A3 A4

T(j)

HumanTask

BPELProcess

variation

Fig. 6. Example of Hybrid Process Model (showing key nodes and relationships)

24 M.C. Barukh and B. Benatallah

represents a light-weight, customisable at run-time abstraction for organising
process components; unlike process-schemas, which effectively pre-define an ex-
ecutable program. We therefore refer to this layer as the logical layer, as it does
not govern the actual execution/function of the hybrid-process.

To support process “patterns”: An Activity entity represents a logical work-
item, that may: be ordered between one another; contain a sub-activity (or chain
thereof); merge with another activity; split into two sub-activities; as well as
swap ordering if needed. Likewise, in order to support case-based “variations”: we
adopt the notion of Case and Variation. When a new hybrid-process begins it
belongs to a root-case; sub-cases may then be defined which inherit the parent’s
constituent activities and tasks, with the exception of any variations specified.

As an example, consider the first hybrid-process (denoted HP1) shown in
Figure 6, based on the agile change-management process we described earlier.
It contains four activities, and since for an agile project, the plan and approve
activity is implemented using a HumanTask. However, consider now a variation
to this process for a formal software project instead. A new hybrid-process HP2
can be defined as a sub-case, such that all activities are inherited (thus avoiding
replication). However the designer specifies a variation: a new Activity A2’ to
replace the original A2, having the approval task implemented as a BPELProcess
task instead. Similarly, additional activities (such as A5-7) can also be added.

5.3 Functional Tasks

We have identified a set of 5 domain-specific functional tasks that together en-
capsulate the required range of process-specificity:

Automated Rule Task. An automated RuleTask, shown in Figure 7, rep-
resents an ECA-style rule with a set of EventTypes and ActionTypes. A spe-
cialised TemporalEvent is also defined to enable triggering rules at specific times,
or as part of temporal event conditions. Conditions are expressed as the triple
< path expr, comparator, value >. Where a path expr defines the query to reach
the attribute value of the event message instance. While some event-types may
have predefined message-models (e.g. a BPEL instance event), other types of
messages may vary (e.g. from Web-services). However, as mentioned, the het-
erogeneity challenges are solved due to the ServiceBus middleware offering a
uniform message-interchange format, [6, 7]. In the remaining sections for each
task-type we define event and action types that extend the abstract event and
action types defined here.

Rule
ID : String
Name: String
Description : String
ETypes : List<EventTypes>
ATypes : List<ActionTypes>
•onEvent(EventType e) : this
•eventBefore(EventType e1, EventType e2) : this
•eventAfter(EventType e1, EventType e2) : this
•ifCondition(String path_expression,
 Comparator comp, String val) : this
•doAction(ActionType a) : this

Condition
Path_expr : String
Comp : Comparator
Value : String

EventType
Conditions :
 List<Condition>

ActionType

Comparator

EQUAL, CONTAINS
LESSEQ, LESS,
GREATEREQ, GREATER,

EventInstance
ID : String
Type : EventType
Body : Field
Timestamp : Date

tInstance

TemporalEvent
Date : Date
Format(“dd-MMM-yyyy
 HH:mm”)

•getAsString() : String
•getAsCron() : String

Fig. 7. Automated Rule Task Data-Model

ProcessBase: A Hybrid-Process Management Platform 25

Web-Service Task. To enable integration of Web-services, as illustrated in
Figure 8, we define a ServiceTask. This is basically precisely akin to the model
of Service defined in our previous work, [6, 7], we thus omit elaborating on the
details. We support both WSDL and RESTful services, albeit the model could
be abstracted into a unified set of entities, namely: Service, OperationType,
FeedType (reference to a generic feed-endpoint), and FeedInstance (a spe-
cialised instance feed-type, with specific parameters defined, e.g. &id=123).

Service
. . .

FeedType
. . .

FeedInstance
. . .

Tasks.EventTypes.Service.* Tasks.ActionTypes.Service.*

ActionType

yp

ServiceInvoker
AccessToken : String
ServiceName : String
OpName : String
InputMsg : Message

EventType

yp

FeedEntry
FeedInstanceID : String

Fig. 8. Web-Service Task Data-Model

Structured-Process Task. Although well-structured process-support technol-
ogy may not be feasible for a complete overall process, these frameworks are
nonetheless useful in the case of routine and repeatable “fragments” of the over-
all process. We implement this type of task as a BPELProcess, as illustrated in
Figure 9.

Tasks.ActionTypes.BPEL.*Tasks.EventTypes.BPEL.*

BPELProcess
ProcessID : String
ProcessName : String
Version : Integer
Status : String
TotalInstances : Integer
Inst : List<BPELInstances>
Package : List<BPELAsset>

BPELInstance
InstanceID : String
ProcessID : String
Parent : BPELProcess
Status : String
DateStarted : Date
LastActive : Date
TotalInstances : Integer
Activities : List<String>

BPELInstanceEvent
Activity : String
InstanceID : String
ProcessID : String
Type :
 BPELInstanceEventType
Time : Date

BPELAsset
Name : String
Type : FileType
Data : byte[]

EventType ActionType

yp

BPELInstanceEventType
PInstanceID : String

ActivityEnabled

ActivityDisabled

ActivityExecStart

ActivityExecStop

A ti it E St t

ActivityFailure

InstanceCompletedInstanceCompleted

InstanceStarted

InstanceStopped

InstanceTerminated

yp

BPELInstanceActionType

DeployProcess
ProcessID : String

UndeployProcess
ProcessID : String

SuspendInstance
PInstanceID : String

ResumeInstance
PInstanceID : String

TerminateInstance
PInstanceID : String

FaultInstance
PInstanceID : String

RetireProcess
ProcessID : String
Version : Integer

RetireProcess

ActivateProcess
ProcessID : String
Version : Integer

Fig. 9. Structured Process BPEL Task Data-Model

EventType ActionType

Tasks.EventTypes.StateTask.* Tasks.ActionTypes.StateTask.*

StateEntered
StateID : String

StateExited
StateID : String

TransitionActivated
TransitionID : String

StateTaskEventType
STInstanceID : String

State

StateID : String
Name : String
Description : String

•addOnEntry(Rule rule)
•addOnDo(Rule rule)
•addOnExit(Rule rule)

Transition

TransID : String
Name : String
Description : String

•Transition(StateTask a,
 StateTask b)
•addGuard(Rule rule)

StateTask

StateTaskID : String
Name : String
Description : String
Status : StateTaskStatus

•addState(State state)
•addTrans(Transition state)

InstanceStarted

StateTaskInstance

STInstanceID : String
StateTaskID : String

StateTaskActionType

MakeTransition
STInstanceID : String
TransitionID : String

SuspendStateTask
STInstanceID : String

ResumeStateTask
STInstanceID : String

CreateInstance
StateTaskID : String

Fig. 10. Lifecycle State-Task Data-Model

26 M.C. Barukh and B. Benatallah

Lifecycle-State Task. Data and resources are central to any process. How-
ever, since many process systems tend to be activity-centric, data-artifacts ma-
nipulated by these processes are seen as second-class citizens. In contrast, the
“artifact”-centric approach stipulates an artifact modelled to have both an in-
formation and lifecycle model, [22]. We implement this archetype, as a Lifecycle
StateTask as illustrated in Figure 10, consisting of States and Transitions.
Modelled after a finite-state-machine (FSM), there are three kinds of state-
actions (in our model represented as a Rule - where a pure action could just
be with no event or condition): (i) onEntry is activated when the state is en-
tered; (ii) onDo after finishing the entry-action and anytime while in that state;
(iii) onExit when the state is deactivated. Likewise, in FSM terms, a transition
is modelled as an event, guard and action. A guard is effectively a condition,
which thus means we again re-use the notion of Rule which can thereby also be
attributed to the Transition entity.

Human Task. Although there are several options for integrating human-worker
frameworks into our platform, we have chosen to leverage Asana, due to its
popularity, integration with other tools, and ease-of-use [25]. The model for
a HumanTask has been illustrated in Figure 11. The entity Story represents
any change or human/system activity performed during the execution of some
human-task; which we represent in our system as events.

EventType ActionType

FollowerAdded
FollowerID : String
FollowerName : String

AddedToProject
ProjectID : String
ProjectName : String

CommentAdded
CommentText : String

ChangedDueDate
NewDueDate : Date

Ch dD D t

TaskCompleted
CompletionDate : Date

Add dT P j t

TagAdded
TagName : String

Story
Parent_taskID : String
StoryID : String
Creation_date : Date
AuthorID : String
AuthorName : String
Type : Enum(System|Human)
Body : JSONString

HumanTask

HumanTaskID : String
Name : String
Notes : String
Assignee_id : String
Assignee_name : String
Assignee_status : String
Completed : boolean
Due_on : Date
Created_at : Date
Modified_at : Date
Completed_at : Date
Followers :
Map<String,String>
Project_id : String
Workspace_id : String

Tasks.EventTypes.Human.* Tasks.ActionTypes.Human.*

HumanTaskActionType
Parent_taskID : String

CreateTask
Name : String
- - -

UpdateTask
- - -

DeleteTask
- - -

CommentOnTask
Text : String

AddToProject
ProjectID : String

AddFollower
FollowerID : String

Fig. 11. Human-Task Data-Model

6 Context-Based Recommendation System

Current techniques for re-use usually utilise process schema or template libraries.
However, this does not prove efficient with a large and increasing number of
process definitions, cases, and variations. In ProcessBase, we propose a novel
automated recommendation approach based on the currently detected “context”
of a hybrid-process definition. This means given the context, the system may
suggest the closest matching existing process definition, that could then be re-
used and/or customised as required.

ProcessBase: A Hybrid-Process Management Platform 27

A context is matched based on existing process-knowledge. The hybrid-process
model we presented thus far inherently curates this type of knowledge. However
to make the system efficient in responding with a recommendation, we extend our
model with knowledge-acquisition rules (denoted kRules to differentiate from
ECA-rules) to incrementally capture process-knowledge. This means whenever
an existing process is created anew, modified, or sub-case created, a new/updated
context triggers a new knowledge-rule to be incrementally added.

To model kRules, we adopt the knowledge acquisition method Ripple-Down-
Rules (RDR) [26], due to its simplicity, and its successful application in many
other domains. However, it has never been applied to process-knowledge acqui-
sition for the purpose of context-based re-use. We make use out of the Single-
Conclusion RDR (SCRDR) approach, where the general form of this rule has
two main components: if [condition] (i.e. when does the rule apply), do [conclu-
sion] (i.e. what to recommend as a result). The knowledge-rules are organised
in a tree-like hierarchy (in the order they are created). A new rule may be added
as a child to another rule via a true branch (denoted �+, if the current rule
condition validates true but extra conditions are added), or via a false branch
(denoted �±, if the condition does not (fully) match, so a variation of the rule is
created). During evaluation, starting at the top node, the inference engine tests
whether the next rule node is true or false. If a rule node is true, the engine
proceeds with the child nodes and again tests if they are false or true. The last
rule node that evaluates to true is the conclusion given.

Applying this to our model, the kRule condition is thus represented as a
hybrid-process “context”, while the conclusion is a pointer to the matching
hybrid-process, e.g. “HProcess id”. There could in fact be many different di-
mensions to formulate a process-context, for example: (i) the set of goals of the
overall process; (ii) the set of goals of each constituent activity; (iii) the order of
activities; (iv) the hierarchy of activities; (v) the type of Tasks assigned to each
activity, etc. We’ve found the conjunction of the first two sufficient enough to
formulate a viable context, (however, this could be customised as required).

To give an example (shown in Figure 12): Consider a designer starts with a
blank process and simply specifies the process goals “software-project”, “change-
management”. Assuming so far only an agile process has been defined, the system
finds Rule1 and thus recommends HP1 . The designer may then create a sub-case

(Goals) = (change-management &&
 software-project &&
 formal-project
 audit-reporting)

HProcess

Activity(Goals = (receive-request &&
 plan/approve &&
 notify dev-team &&
 update codebase &&

monitoring &&
 audit change plan)

[IF]

[THEN] HProcessID = 3

(Goals) = (change-management &&
 software-project &&
 formal-project)

HProcess

Activity(Goals) = (receive-request &&
 plan/approve &&
 notify dev-team &&
 update codebase

monitoring)

[IF]

[THEN] HProcessID = 2

(Goals) = (<blank>)HProcess
Activity(Goals) = (<blank>)

[IF]

[THEN] HProcessID = null

false (△±)△

(Goals) = (change-management &&
 software-project &&
 agile-project)

HProcess

Activity(Goals) = (receive-request &&
 plan/approve &&
 notify dev-team &&
 update codebase)

[IF]

[THEN] HProcessID = 1

true (△+)

Rule1

Rule2

Rule3

Rule0

Fig. 12. Incremental Knowledge-Rules kRules

28 M.C. Barukh and B. Benatallah

(for a “formal-project”), resulting in a new process HP2 . However, since a new
context has been defined, a new (Rule2) is added, as a variation to the parent. In
another scenario, consider now the designer requires a more sophisticated formal
change-process with auditing. Again, the designer may specify the relevant goals.
This time we assume the process previously exists from someone else. Starting at
the top, Rule1 is checked however, since it evaluates to false , it proceeds down
the “false” branch and encounters Rule2 . Since it evaluates to true , it proceeds
down the “true” branch ending at Rule3 . The system thus recommends HP3 ,
from which a copy/template can be created in order to be re-used.

7 Hybrid-Process-as-a-Service (HPaaS) API

We have exposed ProcessBase over a set of APIs. The benefit of this means
hybrid-processes may be embedded in-Apps, and thus integrated at the program-
matic level. We provide both a Java-client library (for backend integration); as
well as, a RESTful API (suitable for front-end integration). In this section we
show snippets of code highlighting the main features of the platform.

We have organised into two main APIs, as follows: Firstly, the TasksAPI.*

offer CRUD operations over individual tasks (in cases where it could be used
stand-alone and outside any process definition - this could be useful in very
ad-hoc domains); Secondly, the ProcessBase.* API offer CRUD operations on
hybrid-process definitions, in addition to other required operations.

TasksAPI.* ■ String id = create(Task t) : registers the task on the knowledge-base
■ Task task = get(String t_id) : gets the task from the knowledge-base
■ bool result = update(Task t) : updates the task on the knowledge-base
■ bool = result = delete(String t_id) : deletes the task from the knowledge-base

C
R
U
D

■ Fact fact = execute(ActionType at) : executes the specified Action, returns data as a Fact.
■ String sub_id = subscribe(EventType et) : creates a subscription to this Event
■ void addEventListener(sub_id, (@EventCallback)Object, String “handler_id”)
 : registers an event callback handler - such that events are asynchronously “pushed” to the callback

ProcessBase.* ■ String id = create(HybridProcess hp) : registers the hybrid-process on the knowledge-base
■ HybridProcess hp = get(String hp_id) : gets the hybrid-process from the knowledge-base
■ bool result = update(HybridProcess hp) : updates the hybrid-process on the knowledge-base
■ bool result = delete(String hp_id) : deletes the hybrid-process from the knowledge-base

C
R
U
D

■ bool result = suspend(String hp_id) : suspend processing of the specified hybrid-process
■ bool result = resume(String hp_id) : resume processing of the specified hybrid-process
■ HybridProcess hp = createSubCase(String hp_id) : create a sub-case of the h-process
■ HybridProcess hp = createTemplate(String hp_id) : create a template of the h-process
■ HybridProcess hp = createCopy(String hp_id) : create a copy of the specified h-process
■ HybridProcess hp = recommend(HybridProcess hp) : invoke the recommendation system

Using again the examples we described in Sections 5.2 and 6, starting with a
simple/empty process (Line 1), the recommender system can be invoked (Line
2), which finds the closest process being for an “agile” software project. The
designer can modify this by creating a sub-case (or template) (Line 3), and
then proceed to define a new “monitoring” activity, (Lines 4-6). The monitoring
activity posts a tweet-notification (e.g. “thanks for your patience!”), in the event
the approval process has taken longer than 1-week to complete.

ProcessBase: A Hybrid-Process Management Platform 29

1. HybridProcess hp = new HybridProcess.HybridProcessBuilder(“formal_chng_mngmt”)
 .addGoal(“software-project”)
 .addGoal(“change-management”);

2. HybridProcess hp_ = ProcessBase.recommend(hp);
3. hp = ProcessBase.createSubCase(hp_);

4. BPELProcess f_approval = new BPELProcess.BPELProcessBuilder(“formal_approval”)

 .asset(“approval.bpel”);

5. Rule delayed_approval = new Rule.RuleBuilder(“delayed_approval”)
.eventAfter(new TemporalEvent(“0,0,*,*,0”),
 new ..BPEL.InstanceCompleted())
.onCondition(…)
.doAction(new ServiceInvoker(“Twitter”,”postTweet”,…));

6. Activity monitoring = new Activity.ActivityBuilder(“monitoring”)
 .setGoals(“…”)
 .addTask(Twitter) //”Twitter” ServiceTask
 .addTask(approval) //BPELProcess Task
 .addTask(delayed_approval) //Automated Rule Task

7. hp.addActivity(monitoring);
...

8. ProcessBase.create(hp);

8 Evaluation and Analysis

A total of 5 potential platforms were considered: Enhydra Shark, JawFlow, JBoss
jBPM, JOpera, WFMOpen; out of which the top-2 were chosen based on shortest
installation and initial testing time; and quality of user-docs. We conducted 3
experimental studies, each comprising 4 comparative executional alternatives:
(a) ProcessBase; (b) jBPM ; (c) JOpera; and (d) Pure Java code-based solution.

Usability Study. Usability involves the criterion of learnability and efficiency.
The former assessed by the time to install and run the initial tests: ProcessBase
resulted in 26m and 39m respectively; compared to averages of 159m and 193m.
The latter measured as the time to successfully implement the reference scenario:
ProcessBase again proved superior in 72m, in contrast with an average of 203m.

Productivity Study. Given the task was fixed, productivity was measured
based on the total number of lines-of-code (LOC) in order to produce the solu-
tion. The results in Figure 13(a-d), presents a distributed measure of LOC.

(c)

0 100 200 300 400 500 600 700 800

613

0

650

770

0Automated
ECA Rules

Web-Services
Integration

State/Lifecycle
Management

Other

jOpera: Distributed Lines-of-Code (LOC)

Total: 2,033 LOC

Structured
Process Support

0 37.5 75 112.5 150 187.5 225 262.5 300

26

130

180

240

72Automated
ECA Rules

Web-Services
Integration

Structured
Process Support

State/Lifecycle
Management

Ta
sk

-t
yp

e
C

at
eg

or
y

Other

ProcessBase: Distributed Lines-of-Code (LOC)

Total: 648 LOC

0 100 200 300 400 500 600 700 800

720

480

220

380

180Automated
ECA Rules

Web-Services
Integration

Structured
Process Support

State/Lifecycle
Management

Other

JBoss jBPM: Distributed Lines-of-Code (LOC)

Total: 1,980 LOC

(a) (b)

479

313261235

0

100

200

300

400

500

D
es

ig
n

/ I
m

pl
em

en
t

U
se

-C
as

e
(s

ec
s)

ProcessBase JBoss jBPM JOpera Traditional
Programming

(e)

0 112.5 225 337.5 450 562.5 675 787.5 900

568

597

635

878

0Automated
ECA Rules

Web-Services
Integration

Structured
Process Support

State/Lifecycle
Management

Other

Code-based: Distributed Lines-of-Code (LOC)

Total: 2,678 LOC

(d)

Ta
sk

-t
yp

e
C

at
eg

or
y

Fig. 13. Experimental Results of Productivity and Performance Studies

30 M.C. Barukh and B. Benatallah

Performance Study. Finally, we measured the round-trip time (i.e. from when
the change-request was issued, until updates were committed into Git). We re-
peated this study 5 times, taking the median; results as presented in Figure 13(e).

9 Conclusions

The work in this paper as far as we know, proposes the first all-encompassing
complete hybrid-processes platform. Moreover, we propose an architecture where
existing process-support technology (either domain-specific or partial-hybrid)
can be leveraged, rather than compete with each other. In addition, our work
is the first to propose a novel recommendation system using process context-
detection - based on an incremental knowledge acquisition technique. Experimen-
tal results shows superior performance across all evaluated dimensions: usability,
productivity and performance. Above all, we are optimistic this work provides
the foundation for future growth into a new breed of enhanced process-support.

References

1. Marjanovic, O.: Towards is supported coordination in emergent business processes.
Business Process Management Journal 11(5), 476–487 (2005)

2. Böhringer, M.: Emergent case management for ad-hoc processes: A solution based
on microblogging and activity streams. In: Muehlen, M.z., Su, J. (eds.) BPM 2010
Workshops. LNBIP, vol. 66, pp. 384–395. Springer, Heidelberg (2011)

3. BPTrends: Case management - combining knowledge with process (July 2009)
4. de Man, H.: Case management: A review of modelling approaches (January 2009)
5. Holz, H., Rostanin, O., Dengel, A., Suzuki, T., Maeda, K., Kanasaki, K.: Task-

based process know-how reuse and proactive information delivery in tasknavigator.
In: Conference on Information and Knowledge Management, pp. 522–531 (2006)

6. Barukh, M.C., Benatallah, B.: ServiceBase: A programming knowledge-base for
service oriented development. In: Meng, W., Feng, L., Bressan, S., Winiwarter, W.,
Song, W. (eds.) DASFAA 2013, Part II. LNCS, vol. 7826, pp. 123–138. Springer,
Heidelberg (2013)

7. Barukh, M.C., Benatallah, B.: A toolkit for simplified web-services programming.
In: Lin, X., Manolopoulos, Y., Srivastava, D., Huang, G. (eds.) WISE 2013, Part
II. LNCS, vol. 8181, pp. 515–518. Springer, Heidelberg (2013)

8. Olding, E., Rozwell, C.: Expand your bpm horizons by exploring unstructured
processes. Technical Report (2009)

9. Bernstein, A.: How can cooperative work tools support dynamic group process?
bridging the specificity frontier. In: CSCW, pp. 279–288. ACM, New York (2000)

10. Keen, P.G., Morton, M.S.S.: Decision support systems: an organizational perspec-
tive, vol. 35. Addison-Wesley Reading, MA (1978)

11. Vanthienen, J., Goedertier, S.: How business rules define business processes. Busi-
ness Rules Journal 8(3, March) (2007)

12. Agrawal, A.: Semantics of business process vocabulary and process rules. In: Pro-
ceedings of the 4th India Software Engineering Conference, pp. 61–68. ACM (2011)

13. Milanovic, M., Gasevic, D., Wagner, G.: Combining rules and activities for model-
ing service-based business processes. In: 2008 12th Enterprise Distributed Object
Computing Conference Workshops, pp. 11–22. IEEE (2008)

ProcessBase: A Hybrid-Process Management Platform 31

14. JBoss: jbpm, http://www.jboss.org/jbpm/
15. RunMyProcess, https://www.runmyprocess.com/
16. Swenson, K.D., et al.: Mastering the unpredictable. How Adaptive Case Manage-

ment Will Revolutionize the Way That Knowledge Workers Get Things Done
17. Berry, P.M.: Intelligent workflow - state of the art in workflow
18. Manolescu, D.A.: Workflow enactment with continuation and future objects. SIG-

PLAN Not 37(11), 40–51 (2002)
19. Wang, J., Kumar, A.: A framework for document-driven workflow systems. In:

van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005.
LNCS, vol. 3649, pp. 285–301. Springer, Heidelberg (2005)

20. Manolescu, D.: Micro-workflow: A workflow architecture supporting compositional
object-oriented software development. Technical report, USA (2000)

21. Bhattacharya, K., Caswell, N.S., Kumaran, S., Nigam, A., Wu, F.Y.: Artifact-
centered operational modeling. IBM Systems Journal 46(4), 703–721 (2007)

22. Cohn, D., Hull, R.: Business artifacts: A data-centric approach to modeling busi-
ness operations and processes. IEEE Data Eng. Bull. 32(3), 3–9 (2009)

23. Bhattacharya, K., Gerede, C.E., Hull, R., Liu, R., Su, J.: Towards formal analysis
of artifact-centric business process models. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 288–304. Springer, Heidelberg (2007)

24. Bhattacharya, K., et al.: A model-driven approach to industrializing discovery
processes in pharmaceutical research. IBM Syst. J. 44(1), 145–162 (2005)

25. Asana: Asana project managements
26. Richards, D.: Two decades of ripple down rules research. Knowledge Eng. Re-

view 24(2), 159–184 (2009)

http://www.jboss.org/jbpm/
https://www.runmyprocess.com/

	ProcessBase: A Hybrid Process Management
Platform

	1 Introduction
	2 Motivating Example
	3 Background and Related Work in Hybrid-Processes
	4 ProcessBase Architecture Overview

	5 Domain-Specific Model for Hybrid-Processes
	5.1 Hybrid-Process Definition
	5.2 Process Cases and Variations
	5.3 Functional Tasks

	6 Context-Based Recommendation System
	7 Hybrid-Process-as-a-Service (HPaaS) API

	8 Evaluation and Analysis
	9 Conclusions
	References

