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Abstract. In order to address the unreliable nature of service providers,
and the dynamic nature of services (their quality values could change
frequently over time due to various factors), this paper proposes a prob-
abilistic, multi-valued quality model for services, capable of capturing
uncertainty in their quality values by assigning each quality attribute
with multiple potential values (or ranges of values), along with a corre-
sponding probability distribution over these values. The probability dis-
tribution indicates the most likely quality value for an attribute at the
current time step, but also notifies discovery applications of the possibil-
ity of other, possibly worse outcomes, thus ultimately facilitating more
reliable service selection and composition via avoiding services with high
uncertainty. Such uncertainty-aware, multi-valued quality models of ser-
vices are maintained via an agent-based service marketplace, where each
service is associated with a software agent, capable of learning the time-
varying probability distributions of its quality values through applying
online learning techniques, based on the service’s past performance in-
formation. The experiments conducted demonstrate the effectiveness of
the proposed approach.

Keywords: quality of service, probabilistic quality model, adaptive learn-
ing, dynamic environment, agent based marketplace.

1 Introduction

Service-oriented computing (SOC) is a promising paradigm for the sharing of re-
sources and functionalities in open, distributed environments (e.g., the web and
computational Grids). Via exposing such resources and functionalities as ser-
vices [1], and utilising these services as elementary building blocks, this paradigm
supports the rapid and economic development of complex, interoperable dis-
tributed applications.

Open distributed service-based systems, however, usually exhibit high degrees
of dynamism and uncertainty for several reasons, either intentional or uninten-
tional. For example, service providers, being autonomous and self-interested,
may choose to act maliciously and announce false quality of service (QoS) capa-
bilities in order to increase their own profit by attracting more customers. Even
in cases where the providers are fully cooperative, it might be difficult (or simply
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Fig. 1. Agent-augmented service marketplace architecture

not possible) to guarantee specific quality values for a service, because of their
dependency on various run-time factors. For instance, the service response time
at any particular moment could be significantly affected by the provider load
and network traffic at that moment. Such dynamism and uncertainty can lead
to highly undesirable situations during service execution (e.g. unfulfilled quality
promises), and may demand costly corrective actions.

Consequently, as an attempt to minimise quality deviations of services at ex-
ecution time, a number of efforts focus on providing more accurate estimation
of service quality values, based on the available information regarding their past
performance [9–13]. Specifically, assessing a quality attribute for a service is typ-
ically performed by applying some aggregation measure (e.g. a time-weighted
average) to the previously observed values, which are obtained as feedback from
service users, or from service-side monitors. Such a single-valued quality estima-
tion model, however, does not capture the uncertainty in the service’s quality
values, and might produce inaccurate or invalid quality predictions, especially for
attributes with high variance in values. For example, assume the values encoun-
tered in the past regarding the learning time attribute of a knowledge service
are 10, 10, 10, 60, 60, 60 (minutes). Estimating the mean of these values would
produce an expected value of 35 minutes, an imprecise indication of the at-
tribute’s actual outcome. Moreover, such a model is only limited to quantitative
attributes, without the ability to accommodate qualitative cases.

In response, this paper proposes a probabilistic multi-valued quality estima-
tion model, applicable to both numeric and categorical attributes. It captures
uncertainty in quality values by augmenting these values with reliability scores,
allowing more informative reasoning about the various potential quality out-
comes of a service, thus enabling more reliable and proactive service selection.
The responsibility of instantiating such quality models for services is distributed
among a number of learning-enabled software agents, applying online learning
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techniques to update the models on the availability of new service performance
samples, without requiring storage of or iteration over all previous data.

The paper is organised as follows. The proposed agent-based service mar-
ketplace is introduced in Section 2. Section 3 and Section 4 present the basic
(single-valued) service QoS model [7] and the proposed reliability-aware (multi-
valued) extension, respectively. Section 5 provides the online quality learning
algorithm, while Section 6 evaluates its effectiveness through experimental re-
sults. Section 7 discusses related work, and Section 8 concludes the paper.

2 Agent-Augmented Service Marketplace

A basic service marketplace, adopting the classic service-oriented architecture,
provides support for the publication, description, discovery, and invocation of
services, and involves interaction among three roles, the service provider, ser-
vice consumer, and service registry. Specifically, a service provider describes its
service using a standard format, and publishes this description in a public ser-
vice registry so that the service can be discovered by potential clients. A service
consumer searches the service registry to find a required service, and retrieve its
binding details, which are then utilised to locate and invoke the service. Note
that such a consumer could be an end-user application, a matchmaker agent
(returning services that meet specific criteria), or a service composition engine
(aggregating the functionalities of existing services into more sophisticated com-
posite applications in order to fulfil particular high-level goals).

In addition to functional specification, service descriptions could also ref-
erence the quality of service (QoS) characteristics of services, indicating their
non-functional capabilities. These attributes can be generic, such as price and
response time, or domain-dependent, representing specific features and metrics
of a particular domain. The QoS characteristics play an important role in dif-
ferentiating between functionally equivalent services (those overlapping in their
functional capabilities, but possibly varying in their QoS levels), and accommo-
dating the different expectations of users (individuals or organisations). Yet, as
stated earlier, the features advertised by service providers are not necessarily
reliable, due to the untrustworthiness of these providers, and the dynamic na-
ture of service environments, causing the quality values of services to deviate
over time as a result of various environmental factors (which might be difficult
to anticipate by providers). This could result in unfulfilled quality promises by
services, and consequently a number of negative effects on the applications util-
ising these services, including unsatisfied users, money loss, or interruption in
application execution while performing recovery re-planning.

To address this, we propose an extended service registry (see Figure 1), fa-
cilitating more reliable and self-adaptive service descriptions via the utilisa-
tion of software agents, capable of learning the actual QoS characteristics of
services, and adapting their descriptions according to changes. Specifically, a
learning-enabled service agent resides between a service description published
by a provider and any discovery application, and exposes reliability and dy-
namism aware QoS information of the service to the latter by learning such



172 L. Barakat et al.

information based on collected service ratings after each interaction with the
service. The ratings can be collected either directly from consumers via feedback
interfaces, or automatically via appropriate monitors residing at the service side
or over the network. Note that we assume in this paper that the ratings are
honest and objective (false ratings can be handled through appropriate filtering
and reputation mechanisms [15], but this is out of the scope of this paper).

In what follows, we first outline the traditional QoS model of services (the
model corresponding to provider advertisements), and then focus on modelling
the service agent, including an improved QoS model, augmenting the traditional
model with reliability information, and a learning algorithm.

3 Basic QoS Model

The QoS model of a service registered within a marketplace can be defined as a
tuple, (AN, dom, type, value), as detailed below.

AN is the set of quality attributes that characterise the service. For example,
AN = {price, response time, ...}.

dom : AN → 2AV is an attribute domain function, which maps each quality
attribute to its corresponding domain (the possible values of this attribute),
where AV is the set of all possible quality attribute values (the union of the
domains of all quality attributes). For example, dom(price) = R

+.
type : AN → {CTG,DSC,CNT} is an attribute type function, which in-

dicates whether the domain of a quality attribute is categorical (CTG), nu-
meric and discrete (DSC), or numeric and continuous (CNT). For example,
type(price) = CNT.

Finally, value : AN → AV ∪{undefined} is an attribute value function, which
provides the value offered by the service for each quality attribute, such that
∀a ∈ AN, value(a) ∈ dom(a) ∪ {undefined}. For example, value(price) = 10.

Generally, the QoS information of a service can be directly published into
public service registries by the service provider, assessed from monitoring previ-
ous service performance by specialised proxies, or negotiated with the provider
in terms of service level agreements (SLAs).

4 Uncertainty-Aware QoS Model

In order to capture uncertainty in the values that a service might deliver for
the quality attributes at a particular time step t ∈ T , the service agent utilises
a time-dependent, probabilistic model for describing the QoS features of the
service. Specifically, each quality attribute is considered to be a random variable,
and is associated with a probability distribution indicating the likelihood of each
of its possible values at the current moment. Hence, to reflect this, the static
single-valued attribute value function of the basic service model is modified by
the service agent, as follows:

valueag : AN × T → PROB
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such that ∀a ∈ AN, ∀t ∈ T, valueag(a, t) = P (a, t) is the probability distri-
bution over the possible outcomes of attribute a at time step t (with PROB
denoting the set of all possible probability distributions P ). That is,

valueag(a, t) = P (a, t) = {p(a, v, t) | v ∈ domd(a)}
with

∀v ∈ domd(a), p(a, v, t) ∈ [0, 1] ∧
∑

v∈domd(a)

p(a, v, t) = 1 (1)

where p(a, v, t) is the likelihood of attribute a to take on value v at time step
t, and domd(a) is the discretised domain of attribute a. For categorical and
discrete attributes, a ∈ AN s.t. type(a) ∈ {CTG,DSC}, domain domd(a) cor-
responds to the original value space, i.e. domd(a) = dom(a). For continuous
attributes, a ∈ AN s.t. type(a) = CNT, domain domd(a) is obtained via apply-
ing an appropriate discretisation algorithm on the original value space dom(a)
(a simple example is dividing dom(a) into a number of equal ranges, with values
v ∈ domd(a) corresponding to the respective range representatives).

Such a probabilistic, multi-valued modelling of service quality features exposes
more accurate and comprehensive details regarding the expected behaviour of
the service, facilitating more informative and reliable service selection and ac-
commodating the different needs of discovery applications, as opposed to the
single-valued approach, where the discovery application is limited to a single,
possibly inaccurate, summary attribute value. In particular, while general indi-
cations of the quality features may be sufficient for some discovery applications,
others, performing more critical tasks, might favour accounting for the worst
case scenario (i.e. selecting services by analysing the least desirable quality val-
ues that are probable in their cases). Note that, in the proposed approach, the
expected (average) value for a numeric attribute a at time step t, exp(a, t), can
be easily derived from probability distribution P (a, t), as follows:

exp(a, t) =
∑

v∈domd(a)

v × p(a, v, t)

Example.Consider a content provider, in the e-learning domain, offering a learn-
ing object (service) characterised by three quality properties, learning time (LT),
difficulty level (DL), and interactivity type (IT), with:

type(LT) = CNT ∧ dom(LT) = [10, 60]

type(DL) = DSC ∧ dom(DL) = {1, 2, 3, 4, 5}
type(IT) = CTG ∧ dom(IT) = {active, expositive,mixed}

Figure 2 shows example probabilistic value models for the learning object re-
garding the three quality properties, illustrating various uncertainty levels at
time step t, with the highest uncertainty in value corresponding to attribute
DL, where p(DL, v, t) = 0.2 for all values v ∈ {1, 2, 3, 4, 5}.

Note that learning objects meet the conditions of our generic service defini-
tion, since they are self-contained, reusable units of instruction, which are made
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Fig. 2. Probabilistic attribute value function valueag(a, t) for a learning object

available for discovery through dedicated repositories, where their properties are
described using a standard language (e.g. IEEE LOM1).

5 Learning Model

The learning problem of the service agent concerns devising a reliable QoS de-
scription for the service in the presence of uncertainty in the environment, where
service providers might be untrustworthy, and may change their QoS policies
without notification, either intentionally or unintentionally. Such learning is con-
ducted by observing the behaviour of the service over time, and adapting its
description accordingly. Specifically, the cycle of the service agent involves the
following three steps.

(1) Observe. The agent receives new ratings for the service at time step t (e.g.
user feedback after interaction with the service). Let obs(t) = {(a, rating(a, t)) |
a ∈ AN} denotes such ratings, where function rating(a, t) ∈ domd(a) maps
quality attribute a of the service to the value observed for a at time step t.

(2) Learn. The agent utilises the new observation history to update the prob-
ability distributions of the quality values of the service, so that the service be-
haviour is more accurately described for future selection. In other words,

valueag(a, t) = P (a, t) = qoslearn(a,OBSt) (2)

where OBSt = {obs(i)}ti=1 are the past observations of the service up to time t,
and function qoslearn corresponds to the agent’s learning algorithm.

(3) Expose. The agent makes the probability distributions, valueag(a, t), of
the service’s quality attributes a ∈ AN , available to discovery applications as
the best generalisation of the behaviour of the service at time step t.

Next, we define the properties that need to be satisfied by the learning function
qoslearn, followed by a learning algorithm achieving these properties.

5.1 Learner Requirements

Two desirable properties can be identified for a QoS learning algorithm: adap-
tivity and efficiency.

1 http://ltsc.ieee.org/wg12/

http://ltsc.ieee.org/wg12/
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Adaptivity refers to the ability of the learning algorithm to incorporate evolv-
ing data over time. It is required in the context of both stationary and non-
stationary environments.

In a stationary environment, the underlying probability distributions of the
service’s quality values remain constant over time, but might not be known in
advance due to missing, inaccurate, or untrustworthy QoS descriptions from
providers. Hence, since observations of the service’s actual behaviour only arrive
incrementally (are not available at once), the learning algorithm should be able
to increase the accuracy of the predicted quality model with more incoming data.

In a non-stationary environment, the probability distributions of quality val-
ues may experience changes over time, and therefore the learning algorithm
should be able to accommodate these changes on their occurrence. Generally,
probability distribution drifts may follow various patterns. A drift might occur
abruptly, by suddenly switching from one probability distribution to another at
some time step. Examples of such a drift include a significant degradation in
a service’s availability due to an unexpected network problem, or modification
of service characteristics caused by an implementation change (e.g. additional
content is added to the learning object, correspondingly affecting its learning
time, difficulty level, etc). Alternatively, a drift may happen gradually, with the
probability distribution exhibiting smaller differences over a longer time period.
Examples of such a drift include a slow deterioration or improvement in a ser-
vice’s response time with increasing or decreasing load, respectively, during the
day, or a gradual performance degradation of a hardware service due to wearing
out with time.

Efficiency refers to the ability of the learning algorithm to operate in a timely
and memory-effective manner. Specifically, since the learning is conducted at
run time, i.e. while the service is in operation, sensitivity towards time limits
becomes a critical feature to ensure that the learning cycle terminates, and con-
sequently the QoS descriptions of the service are updated, prior to the next
discovery attempt by a service consumer. Moreover, with the potentially contin-
uous and long-lasting data input (for the duration of service operation), memory
consumption is a major concern, and maintaining access to the whole set of past
service data is very costly. In the most efficient form (both in terms of memory
and processing time), data is discarded once the service’s QoS model is updated
upon data arrival, with the update being performed using the latest version
of the model. That is, function qoslearn in Equation 2 should be modified as
follows:

valueag(a, t) = P (a, t) = qoslearn(a, obs(t), P (a, t− 1)) (3)

5.2 Learning Algorithm

For the purpose of instantiating the QoS learning function qoslearn, the ser-
vice agent utilises an algorithm inspired by Policy Hill-Climbing [2], a rational
learning algorithm for finding a policy that maximises an accumulative reward
perceived from the environment. The idea of the proposed algorithm is as fol-
lows. At each learning cycle t ∈ T , and for each quality attribute of the service
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Algorithm 1. Learning model of a service agent

1. Initialise the learning rate δ
2. ∀a ∈ AN , initialise valueag(a, t0) according to the basic QoS model of the service:

2.1. if value(a) �= undefined then

∀v ∈ domd(a), p(a, v, t0) = 1 if v corresponds to value(a)

p(a, v, t0) = 0 otherwise

2.2. else

∀v ∈ domd(a), p(a, v, t0) =
1

|domd(a)|

3. Repeat
3.1. Observe the behaviour of the service, obs(t) = {(a, rating(a, t)) | a ∈ AN}
3.2. Learn more accurate QoS policy, valueag(a, t), for each attribute a ∈ AN :

∀v ∈ domd(a), p(a, v, t) = (1− δ)p(a, v, t− 1) + δ if v = rating(a, t)

p(a, v, t) = (1− δ)p(a, v, t− 1) otherwise

3.3. Expose valueag(a, t) to discovery applications

a ∈ AN , the currently maintained QoS policy valueag(a, t − 1) is improved
according to a learning rate δ ∈ [0, 1], increasing the probability of the value
with the highest utility (i.e. the value v ∈ domd(a) observed for attribute a) at
iteration t. The overall learning model of the service agent is illustrated in Al-
gorithm 1, with the QoS policy re-evaluation rule (i.e. function qoslearn) being
detailed at Line 3.2. It is easy to see that this rule keeps valueag(a, t) constrained
to a legal probability distribution, i.e it satisfies Equation 1.

The agent initialises the QoS policy of each attribute a, valueag(a, t0), accord-
ing to provider advertisements, assigning a probability of 1 to the value indicated
by the provider (Line 2.1 of Algorithm 1). In the case where an attribute is not
instantiated by the provider, equal probabilities are initially assigned to all its
possible values (Line 2.2 of Algorithm 1).

The QoS policy adjustment rule clearly satisfies Equation 3, thus fulfilling
the efficiency requirement, while the choice of the learning factor δ governs
the adaptivity property. Specifically, factor δ determines the rate at which the
past data is forgotten, allowing a gradual discount of the impact of previous
information and enabling responsiveness to more recent observations. As δ tends
to unity, function qoslearn becomes a greedy function, removing the impact of
all previous data up to step t−1, and accounting only for the latest observation.
In contrast, lowering the value of δ decreases responsiveness to new data. Also,
when factor δ is set to 1

t for each learning step t, all old and present observations
are considered equally important. That is, in such a case, function qoslearn is
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equivalent to simply deriving value probabilities from the frequencies of value
occurrences over the entire set of observations up to time t, as illustrated below:

p(a, v, t) =

∑t
i=1 occur(a, v, i)

t
=

∑t−1
i=1 occur(a, v, i) + occur(a, v, t)

t

= (
t− 1

t
)p(a, v, t− 1) + (

1

t
)occur(a, v, t)

where occur(a, v, i) = 1 if value v was observed for attribute a at time step i
(i.e. rating(a, i) = v), and occur(a, v, i) = 0, otherwise. Further analysis of the
effect of different values for factor δ is provided in Section 6.

6 Experiments and Results

In this section, we present an empirical evaluation of the proposed QoS learning
framework, focusing on its performance in terms of producing reliable QoS es-
timates for services, in marketplaces of varying dynamism and uncertainty. The
experiments are conducted on simulated datasets, allowing us to control the
QoS policies of providers and their changes, thus facilitating evaluation under
different settings.

A simulation run consists of a number of learning episodes (or cycles). At each
episode t, the service provider delivers particular values for quality attributes
a ∈ AN , which are observed by the service agent as ratings rating(a, t). The
generation of these quality values (i.e. the evaluation dataset) is governed by
probability distributions valueprov(a, t), representing the provider’s actual QoS
policy for each attribute a at time step t. Table 1 shows two distributions utilised
in our experiments for specifying such policies: distribution Q1 producing a fixed
value vi for attribute a, and normal distribution Q2 over the possible values.
Note that all the results reported are averaged over 100 simulation runs, and
among different attribute types (i.e. categorical, discrete, and continuous). For
simplicity, we only show the results from the perspective of one service and one
quality attribute (other attributes and services exhibit similar trends).

Next, we first outline the strategies to be evaluated (Section 6.1) and the
evaluation measure to be utilised (Section 6.2), followed by experimental results
(Sections 6.3-6.4) and an overall result summary (Section 6.5).

6.1 Learning Strategies

Throughout the presentation of our experimental results, we refer to the follow-
ing learning strategies.

SlideWindow w : this is the sliding window learning strategy, a well known way
of adapting to potential changes in incoming data and accommodating memory
constraints [17]. It is adopted as a memory-based alternative for the purpose of
estimating our model, as follows. At each time step, valueag(a, t) is rebuilt on a
data window of size w storing the most recent w observations, according to the
proportional frequencies of values in this window. Note that, by SlideWindow all,
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Table 1. Generative models of the provider’s actual QoS values

valueprov(a, t) Definition Attribute Type

Q1(a, t)
q(a, v, t) =

{
1 if v = vi

0 if v ∈ domd(a) \ {vi}

s.t. vi ∈ domd(a)

type(a) ∈ {CTG,DSC}

Q2(a, t)

Normal distribution over dom(a), with
mean μ and variance σ2, s.t.

q(a, v, t) =
1

σ
√
2π

b∫
a

e
− (x−μ)2

2σ2 dx

where v ∈ domd(a) corresponds to
range [a, b] in dom(a)

type(a) = CNT

we refer to re-building the model using all the data observed so far, which is
utilised as a baseline in our evaluation.

QoSLearn δ: this is the learning strategy proposed in this paper, utilising a
learning rate δ, with no memory requirement.

6.2 Evaluation Measure

In order to assess the reliability of the QoS model estimated by the service
agent, we need to compare such a model against the actual QoS model of the
provider. In other words, we are interested in quantifying the difference between
the agent’s estimated probability distribution, valueag(a, t) = P (a, t), and the
provider’s actual probability distribution, valueprov(a, t) = Q(a, t), over the val-
ues of attribute a, at any time step t. For this purpose, we adopt the Hellinger
Distance measure [3], which computes the distance, denoted h(P,Q), between
probability distribution P (a, t) = {p(a, v, t) | v ∈ domd(a)}, and probability
distribution Q(a, t) = {q(a, v, t) | v ∈ domd(a)}, as follows:

h(P,Q) =

√√√√1

2

∑

v∈domd(a)

(
√
p(a, v, t)−

√
q(a, v, t))2 ∈ [0,

√
2]

When h(P,Q) = 0, probability distributions P and Q are identical, whereas
h(P,Q) =

√
2 corresponds to the maximum divergence between P and Q. Note

that the Hellinger Distance measure is symmetric, i.e. h(P,Q)= h(Q,P ). Other
probability distribution distances, e.g. the earth mover’s distance (EMD), could
also be utilised here.

6.3 Stationary Marketplace

In a stationary environment, the QoS policy of the service provider for attribute
a remains static over time. Such an environment is simulated by generating
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Fig. 3. Evaluation results in a stationary environment

the observations rating(a, t), for all the time steps t, according to the same
probability distribution valueprov(a, t0) = Q(a, t0), s.t. ∀t, Q(a, t) = Q(a, t0)
(i.e. value vi and mean μ for distributions Q1 and Q2, respectively, remain fixed
for all time steps). Here, we are interested in testing the ability of the proposed
approach to learn probability distribution Q(a, t0), in the following two settings:
Untrustworthy Provider, where the provider acts maliciously and advertises false
capability value(a) for attribute a, i.e. value(a) does not correspond to vi in the
case of actual distribution Q1 (see Table 1), and value(a) differs significantly
from μ in the case of actual distribution Q2 (see Table 1); and Uninstantiated
Attribute, where no performance indication regarding attribute a is available by
the provider, i.e. value(a) = undefined.

Figure 3(a) reports the results of the considered learning strategies. As ex-
pected, SlideWindow all is the best performing strategy, with smaller window
sizes achieving lower accuracy due to excluding relevant observations (all obser-
vations remain relevant in a static environment). By setting the learning rate δ
to a small value of 0.01, the proposed learning strategy, QoSLearn 0.01, keeps
the effect of older observations without necessitating their storage, and man-
ages to approximate the performance of SlideWindow all. However, such a small
learning rate causes slower learning at the beginning, achieving an accuracy of
about 0.2 only after 60 observations, compared to SlideWindow all that achieves
similar accuracy after just 15 observations. This initial learning period is fur-
ther highlighted in Figure 3(b), distinguishing the two cases of Untrustworthy
Provider and Uninstantiated Attribute, and varying the size of the attribute’s
domain domd. As can be seen, the effect of misleading providers generally takes
longer to overcome, especially for a larger domain size, requiring a larger number
of samples to accurately learn the actual underlying distribution.

6.4 Non-stationary Marketplace

In a non-stationary environment, the QoS policy of the service provider for
attribute a changes over time. Two cases are distinguished depending on the
change type, as detailed below.



180 L. Barakat et al.

0

0.1

0.2

0.3

0.4

0.5

1 101 201 301 401 501 601 701 801 901

h(
P,

Q
)

Time Step

(b)

QoSLearn_0.1

QoSLearn_0.05

QoSLearn_0.03

QoSLearn_0.01

Fig. 4. Evaluation results in a dynamic environment (gradual change)

Gradual Change. Here, the generative model of the quality observations,
valueprov(a, t) = Q(a, t), changes slowly at each time step. For distribution Q1,
this is simulated by slightly decreasing the probability of value vi, and corre-
spondingly increasing the probability of another value vj ∈ domd(a) \ {vi}. For
distribution Q2, this is achieved by a slight repositioning of the mean μ.

Figure 4(a) shows the corresponding results of the considered learning strate-
gies. As can be seen, the performance of SlideWindow all slowly deteriorates
with time as older observations become less relevant. Better prediction accu-
racy is obtained when the outdated data is gradually forgotten, favouring more
recent observations, with well-performing strategies corresponding to settings
SlideWindow 100 and QoSLearn 0.03 (note that Figure 4(a) only reports these
settings for reasons of clarity). The effect of different learning rates for the pro-
posed learning strategy is further studied in Figure 4(b), which demonstrates
that setting δ to lower and higher values (in comparison with 0.03) would in-
crease the prediction error due to intensifying the effect of irrelevant data and
the lack of sufficient samples, respectively.

Abrupt Change. Here, the generative model of observations, valueprov(a, t) =
Q(a, t), experiences a considerable change every 200 time steps. Such a change
is simulated by assigning probability 0 to value vi and probability 1 to another
value vj ∈ domd(a) \ {vi} in the case of distribution Q1, and switching to a
significantly different mean μ in the case of distribution Q2.

As depicted in Figure 5(a), strategy QoSLearn 0.05 (as well as SlideWin-
dow 50) achieves a good tradeoff between reactivity and stability, allowing fast
adaptation to a change (h(P,Q) falls below 0.2 in less than 15 time steps) while
assuring high accuracy (h(P,Q) < 0.1) in times of stability. SlideWindow all,
on the other hand, suffers from poor performance, especially after a change
occurrence, where the learned model mostly reflects irrelevant observations. Fig-
ure 5(b) provides further analysis of the performance of strategy QoSLearn δ
between consecutive change points, for various learning rates δ. Clearly, the
larger the learning rate, the quicker the observations are forgotten, resulting in
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Fig. 5. Evaluation results in a dynamic environment (abrupt change)

faster reactivity after a change, but lower performance in stable periods. In con-
trast, smaller learning rates improve the accuracy of the learner due to capturing
enough samples to reflect the current distribution, yet causes slower adaptation
to a change since irrelevant data takes longer to be forgotten.

6.5 Result Summary

The results above demonstrated that, for both SlideWindow w and QoSLearn δ,
appropriate parameter setting plays an important role for achieving accurate
learning of the probability distributions of quality values, and depends on the
environment dynamism. Moreover, the learning-rate-based strategy performs al-
most as good as the memory-based one, while achieving considerable saving in
terms of storage and computation, especially with the increasing dimensionality
and number of services in the marketplace. For instance, given a marketplace
with 1000 services, each with 10 quality attributes, applying QoSLearn δ, as
compared to SlideWindow 100, in a gradually changing environment eliminates
the need for storing and iterating over 100 × 104 quality ratings at each time
step, with the gain increasing in static environments (which require larger win-
dow sizes).

7 Related Work

The dynamism and uncertainty of open distributed service-based systems, where
the QoS features of the comprising services are unreliable and may exhibit high
volatility, have been recognised by many researchers. Existing approaches in this
regard can be categorised into reactive approaches and preventive approaches.

Reactive approaches aim at fault-tolerance during QoS-based service selec-
tion [8] or application execution [4–6], via performing appropriate corrective
actions (e.g. service re-planning) that are triggered in reaction to a change or
erroneous behaviour of a service. Such approaches, however, may suffer from
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undesired effects such as reduced performance due to a high re-planning over-
head, and in some cases, inability to find a satisfactory solution given the already
executed services.

In response, preventive approaches (under which this paper falls) have been
proposed. These aim at fault-avoidance through providing more accurate es-
timation of service quality values (typically from prior observations of service
behaviour), thus allowing the discovery of more suitable services and minimis-
ing quality deviations at run time. A number of such efforts are concerned with
modelling volatility in service response time, very often caused by the network.
In this regard, Dai et al. [11] and Yang et al [12] predict changes in data trans-
mission time (and consequently service response time) through a Semi-Markov
Process. Aschoff et al. [10] model the response time of a service as a random
variable, changing as a result of various factors related to the network and sys-
tem resources (e.g. request queuing time). The exponentially weighted moving
average is utilised for estimating the expected value of this variable at a particu-
lar time step, according to historical data. Similarly, time series modelling based
on ARIMA (AutoRegressive Integrated Moving Average) has been proposed by
Amin et al. [9] for the purpose of QoS forecasting. These approaches, however,
mostly produce a single-valued quantification per quality attribute, and hence
may suffer from inaccurate predictions, do not support reasoning about attribute
value uncertainty, and are not suitable for categorical attributes.

Trust and reputation mechanisms have also been considered for the purpose
of accurate quality predictions [13, 14, 16]. In particular, prior to an interaction
with a service, an assessment of its overall trustworthiness [14, 16] or the trust-
worthiness of each of its QoS dimensions [13] is undertaken, to avoid selecting
services that may not honour their promises. Typically, such an assessment is
performed by producing reputation scores for the service based on feedback col-
lected from its users (e.g. calculating a time-weighted average of past service
ratings). Again, the reputation measures in these approaches are summarised by
single aggregative values, thus suffering form similar limitations as above.

In contrast, we propose a probabilistic, multi-valued estimation model, which
predicts multiple potential outcomes per quality attribute, and augments such
outcomes with uncertainty degrees, thus facilitating more informative reasoning
and reliable service selection. Moreover, it is applicable to both numeric and
categorical attribute types.

8 Conclusion

The paper presented a probabilistic QoS learning model, tailored towards dy-
namic and untrustworthy service environments, where each service is associated
with a software agent, able to learn, based on past performance information,
the uncertainty degrees regarding the service’s quality outcomes in the form of
probability distributions over such outcomes. The learning is both efficient and
adaptable to various degrees of environment dynamism via an appropriate choice
of the learning rate, which is demonstrated through experimental results.
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Future work involves investigating more complex stochastic models for the
dynamic adjustment of the learning rate during the learning process when envi-
ronment dynamics change over time, as well as accommodating the addition of
new quality characteristics. Moreover, we intend to explore the social ability of
software agents (e.g. collaboration among those monitoring services for the same
provider) to improve QoS predictions in the proposed marketplace architecture,
where the role of agents has been limited so far to individual learning.
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