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Abstract. In service computing, online services and the Internet en-
vironment are evolving over time, which poses a challenge to service
composition for adaptivity. In addition, high efficiency should be main-
tained when faced with massive candidate services. Consequently, this
paper presents a new model for large-scale and adaptive service compo-
sition based on multi-agent reinforcement learning. The model integrates
on-policy reinforcement learning and game theory, where the former is
to achieve adaptability in a highly dynamic environment with good on-
line performance, and the latter is to enable multiple agents to work for
a common task (i.e., composition). In particular, we propose a multi-
agent SARSA (State-Action-Reward-State-Action) algorithm which is
expected to achieve better performance compared with the single-agent
reinforcement learning methods in our composition framework. The fea-
tures of our approach are demonstrated by an experimental evaluation.

1 Introduction

As the mainstream paradigm of SOC (Service-oriented Computing), the research
on theories of service composition and related technologies for seamless integra-
tion of business applications is always the core proposition. However, large-scale
service composition faces a multitude of thorny issues, such as, accuracy, inter-
operability, efficiency and adaptability for practical use, if there exist massive
services with similar functionality in a highly-dynamic environment.

Under the premise of validity for service composition, efficiency, adaptability
and optimality of composition in large-scale and dynamic scenarios are especially
significant. First of all, both the complexity of business flows and the quantity of
candidate services may affect the efficiency of the service orchestration. Secondly,
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how to adapt to the services’ internal changes and external dynamic environment
is a grand challenge. Furthermore, how to achieve the optimal aggregated QoS
should also be taken into consideration. Therefore, a novel method should be
proposed to obtain a good balance between those objectives.

Previous studies mainly focus on integer programming, graph planning, rein-
forcement learning (RL) and so on. Ardagna et al. [1] modelled the QoS infor-
mation of candidate services by a multi-channel framework, and then utilized
Mixed Integer Programming (MIP) to obtain the optimal solution. However,
this method only performs well for small-scale problems, and the computing
resource consumption may become prohibitive when faced with large-scale sce-
narios. Beauche et al. [2] used a hierarchical planning approach based on graph
planning and hierarchical task networks to construct adaptive service compo-
sition. However, continuous emergence and demise of services lead to sustained
search of viable services for updating the corresponding planning graph, which is
not suitable for a highly dynamic environment. Jureta et al. [7] proposed a multi
criteria-driven reinforcement learning algorithm to ensure that the system is re-
sponsive to the availability changes of Web services. We also [20] proposed an
adaptive service composition approach based on reinforcement learning method
combined with logic preference. Despite the effectiveness of conventional rein-
forcement learning in achieving adaptability, such methods can not ensure high
efficiency in a large-scale and complex scenario.

As a subdiscipline of distributed artificial intelligence (DAI) [15], multi-agent
techniques have arisen as a viable solution for modularity, more computing
power, scalability and flexibility required by service composition [16]. Some re-
searchers have already applied multi-agent techniques to service composition.
Maamar et al. [11] proposed a web service composition method based on multi
agents and context awareness. Gutierrez-Garcia et al. [5] characterized behavior
of the services with Colored Petri-net, and exploited multi-agent techniques for
services orchestration in the context of cloud computing. Unfortunately, those
methods seldom take self-adaptivity into consideration.

In view of superiority from RL and multi-agent technologies, a natural idea to
achieve self-adaptability in a dynamic environment and maintain acceptable effi-
ciency when faced with massive candidate services is to combine them together,
which has already been discussed in the field of DAI and is called Multi-agent
reinforcement learning (MARL) [15]. On the one hand, RL is a commonly used
machine learning method for planning and optimization in a dynamic environ-
ment [18], which learns by trial-and-error interaction with dynamic environment
and thus has good self-adaptability. On the other hand, multi-agent technology
can compensate for inefficiencies under large-scale and complex scenarios.

In this paper, we propose a new adaptive model that is built upon MARL.
Different from previous work, this new model is based on team Markov Games,
which is more mature and generic for service composition in a multi-agent sce-
nario. To tackle the common problems of agent coordination and equilibrium
selection emerged in a multi-agent environment, we introduce the coordination
equilibrium and fictitious play process to ensure the agents to converge to a
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unique equilibrium when faced with multiple equilibriums. Finally, we have pro-
posed the multi-agent Sarsa algorithm for our multi-agent service composition.
Our contributions are summarized as follows:

— We introduce a TMG-WSC model for service composition with massive can-
didate services in a highly dynamic and complex environment.

— We propose a multi-agent Sarsa algorithm to adapt to the multi-agent service
composition scenarios and achieve a better performance.

— We present the concept of multi-agent service composition that caters for
the distributed environment and big data era.

The reminder of this paper is organized as follows. Section 2 compares our
approach against some related works. Section 3 introduces the problem formu-
lation and basic definitions. Section 4 presents our approach for service compo-
sition based on MARL. In section 5, some experimental results are presented for
evaluating the proposed approach. Finally, the paper is concluded in Section 6.

2 Related Work

In this section, we review some existing works that are most relevant to our
approach, including RL and agent techniques adopted in service composition.

Moustafa et al. [13] proposed a approach to facilitate the QoS-aware ser-
vice composition problem using multi-objective reinforcement learning, but the
method is not very efficient for large-scale service composition scenarios. Our
prior work [20] suffer from the same issue with preceding method.

Xu et al. [22] proposed a multi-agent learning model for service composition,
based on the Markov game and Q-learning with a hierarchical goal structure
to accelerate the searching of states during the learning process. However, their
model may not work well when faced with a complicated goal with more mu-
tual dependencies between each sub-goals as their agents are fixed for certain
service classes. We proposed a multi-agent learning model [19] based on MDP
and knowledge sharing before, however this can not be regarded as a real multi-
agent framework as the MDP is designed for a single agent and does not take
the potential collaboration between agents into consideration.

MARL has strong connections with game theory [4], because the relation be-
tween agents has a great impact on the design of learning dynamics. According
to Claus and Boutilier [4], the MARL can be classified into two forms. The first
one is independent learners (ILs), which just apply RL methods (Q-learning,
Sarsa etc.) and ignore the existence of other agents. The second one is joint
action learners (JALs), which learn their actions in conjunction with others via
integration of RL with a certain kind of Nash equilibrium, just like the coor-
dination equilibrium [3,4]. Consequently, agents coordination and equilibrium
selection are the key issue in MARL for JALs. Wang et al. [21] proposed an
algorithm which can ensure to converge to an optimal equilibrium, but its high
computational cost has limited its practical use.

In this paper, we integrate on-policy reinforcement learning with multi-agent
techniques for services composition. The proposed approach is fundamentally
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different from existing approaches (e.g., [19,22]) as we exploit the coordination
equilibrium and fictitious play process to ensure the agents to converge to a
unique equilibrium. We also propose a multi-agent Sarsa algorithm to achieve
an optimal or suboptimal solution.

3 Problem Formulation

Defnition 1 (Web Service). A Web service is modeled as a pair WS=<
ID,QoS >, where ID is the identifier of the Web service. QoS is a n-tuple
< atty, ..., att, >, where each att;(1 < i <n) denotes a QoS attribute value.

As we use Team Markov Games (TMG) to model multi-agent service com-
position, we first introduce the basis of TMG-based service composition, that is
MDP (Markov Decision Process)-based service composition.

Defnition 2 (MDP-based web service composition (MDP-WSC)). A
MDP-WSC is a 6-tuple MDP-WSC=< S, Sy, S7,A(.), P,R >, where S is a fi-
nite set of the world states; Sy € S is the initial state from which an execution of
the service composition starts; Sy C S is the set of terminal states, indicating an
end of composition execution when reaching one state St € S;; A(s) represents
the set of services that can be executed in state s € S; P is the probability distribu-
tion. When a web service « is invoked, the world makes a transition from its cur-
rent state s to a succeeding state s'. The probability for this transition is labeled
as P(s'|s,a). R is the immediate reward from the environment after executing
an action.

Fig.1 shows a MDP-WSC graph of a composite service for a vacation plan.
It consists of two kinds of nodes, i.e., state nodes and service nodes, which are
represented by open circles and solid circles, respectively. sg is the initial state
node, and nodes with double circles are terminal state nodes, such as s1g. A state
node can be followed by a number of invoked service nodes, labeled with the
transition probability P(s'|s,a). A MDP-WSC transition graph can be created
by using some automatic composition approaches, such as an Al planner [14].

With multiple agents in the environment, the fundamental problem of MDP
is that the approach treats the other agents as a part of the environment and
thus ignores the fact that the decisions of the other agents may influence the
environment state. Then how can we extend the single-agent MDP model and
adjust it for the multi-agent scenarios? One possible solution is to use the multi-
agent Markov decision processes, i.e. Markov games [8].

Defnition 3 (Markov Games). An n-player involved Markov games is mod-
eled as a 5-tuple MG=< a,S, A, T, R >, where a is the set of agents; S is a
finite environment states set; A (A1 X Ay X ... X Ay,) is the joint action, A;(i =
1,...,m) is a discrete available action set of the ith agent; T: S x A — [[(S)
18 the transition function, giving for each state and one action from each agent.
A probability distribution T(s,a1,... an,s") is the probability of state transition
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from joint state s to s', and each agent i(1 < i < n) choose action a; € A;;
R; : S x A — R is the ith agent’s reward function, giving the immediate reward
gained by the ith agent for each set of available actions.

Markov Games is so called team Markov Games when all agents strive for a
common goal and thus share a common reward function. Here we adopt team
Markov Games as all agents work for a common service workflow.

However, Markov Games can not directly replace the MDP model for multi-
agent service composition, because some differences arises when trying to transfer
some concepts in the MDP-WSC model [20] to the new multi-agent environment.

For example, in MDP-WSC, there is only one learning agent, which always
starts from the initial state. If it finally reaches the terminal state, it can get a
full path from the initial state to the terminal state according to its trajectory.

Unfortunately, it is much more complicated in the multi-agent scenario, as
there are a group of learning agents and each one starts from one of the states
randomly instead of a fixed initial state in MDP-WSC model. So even someone
has reached one of the terminal states, we can not claim that they have completed
current learning episode and got the full path, because this “lucky” one may not
start from the initial state, and consequently what it has marched is just part
of the whole path. In order to handle this problem, we need to introduce some
new concepts to fit in the new multi-agent scenario.
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Fig. 1. The MDP-WSC of a Composite Service

Defnition 4 (Candidate Initial State). The  joint  state
So =81 X ... X 8p(85,0=1,...,m, is the state of the ith agent in the team)
is a candidate initial state iff s; = so(1 < i < n), where sq is the initial state of
the MDP-WSC transition graph.

Suppose that a 3-agent group is wandering in Fig.1. If agent 1 starts from sy,
agent 2 starts from s, and agent 3 starts from ss, the joint state s = sg X s X 85
is a so-called Candidate Initial State, because it contains the initial state node
S0, which is the initial state in MDP-WSC transition graph. In contrast, a joint
state s = s1 X s3 X s5 for Fig.1 can not be regarded as a candidate initial state,
because it does not contain any initial state node. Since Candidate Initial State
represents the starting points in the Multi-agent scenario, the question is what
is the ending state. Hence we introduce the concept of Possible Terminal State.
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Defnition 5 (Possible Terminal State). The  joint  state
Sy =81 X oo X 8p(85,8 = 1,...,m, is the state of the ith agent) is a possi-
ble terminal state iff s; = s;(1 < i <n), where s, is among terminal states of
the MDP-WSC transition graph.

More specifically, considering Fig. 1 in a 3-agent setting, where agent 1 starts
from sg, agent 2 starts from so, and agent 3 starts from sg. After some steps,
agent 3 may reach the terminal state node sjg, while agent 1 reaches s; and
agent 2 reaches s4. The joint state s = s1 X s4 X s109 at this time is obviously
a possible terminal state. But it is not a true terminal state for the multi-agent
environment, because the three sub-path sg — s1 , s5 — s4 and sg — s19 can
not form a full path from the initial state sg to the terminal state sig.

Defnition 6 (Passed State Set). The set S, is a passed state set iff S, con-
tains all the states that agents in the team have passed by.

We can display a back trace from the terminal state and check whether it can
stretch back to the initial state using the Passed State Set. Next, we will propose
our multi-agent model called TMG-WSC for service composition, which is based
on Team Markov Games (TMG) and new concepts mentioned before.

Defnition 7 (TMG-based Web Service Composition(TMG-WSC)). 4
TMG-WSC is a T-tuple=< a, S, Sy, Sz, A, T, R >, where a is the set of agents; S
is the discrete set of environment states; Sg is the set containing all the candidate
initial state Sy, and an execution of the composition starts from one state Sy €
So; Sz is the set containing all the possible terminal state S, and an execution
of the composition has a possibility to terminate upon reaching any state in Sy;
A(s) = Ai(s1) X Ax(s2) X ... X Ap(sn) is the finite set of joint actions that can
be executed in joint state s € S, where A;(s;)(i = 1,...,n) is the discrete set of
actions available to the ith agent at state S;; T:Sx Ax S — [0, 1] is the transition
probability function labeled as P(s' | s, A(s)), giving for each joint state and each
joint action; R:S x A — R is the common reward function for all the agents in
the team. When the set of services corresponding to the joint action are invoked
and the environment has changed into the resulting state s’, the team will receive
an immediate reward R(s' | s, A(s)) according to the feedback of this execution.

A TMG-WSC can be visualized as a multi-dimensional transition network
based on the MDP-WSC transition graph. Fig.2 shows a part of the TMG-WSC
transition graph for vacation plan in a 3-agent scenario, which is constructed
based on the MDP-WSC graph in Fig.1.

The solution to a TMG-WSC is a deterministic decision policy, which is de-
fined as a procedure for service selection ws € A by all agents in every state s.
These policies, represented by 7, are actually mappings from states to actions,
defined as 7 : S — A.

Each deterministic policy can uniquely determine a workflow, and therefore
the task of our service composition model is to identify the optimal policy or
workflow that offers the best cumulative reward depending on QoS attributes.
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Fig.2. A Part of the TMG-WSC of a Composite Service

4 Multi-agent On-policy Learning for Composition

The introduced TMG-WSC model allows engineers to integrate multiple alter-
native services into a single service composition. If the complete information of
TMG-WSC is known, the theoretical optimal policy can always be calculated.
However, this hypothesis is not true in practice. We may not have complete
knowledge about the state transition functions and reward functions.

Moreover, both the state transition functions and the reward functions will
change along the time, and the computational cost in a large-scale scenario will
inevitably increase to an intolerable point. To solve the above issues, we propose
an approach based on Multi-agent techniques and Sarsa algorithm in RL to learn
the optimal policy of a TMG-WSC at runtime.

4.1 SARSA

Compared with off-policy learning methods like Q-learning, on-policy learning
methods has an advantage in on-line performance, since the estimation policy,
that is iteratively improved, is also the policy used to control its behavior [17].

Sarsa is a classic on-policy reinforcement learning method. The task of the
learner in Sarsa is to learn a policy that maximizes the expected sum of reward.
The cumulative reward starting from an arbitrary state s; and following a policy
m is defined as Eq.1, where ryy; is the expected reward in each step, and « is a
discount factor.

Vﬂ—(St) =7+ Y kg1 +72*Tt+2+-~-zzvi*7ﬂt+i (1)
=0

Based on Eq.1, we can deduce the reward of action pair < s;, a; >, that is, the
feedback of executing action a; at state s;, which is defined as Eq.2, where s;41
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is the resulting state by executing a; and P(s:41]s¢, at) is the probability distri-
bution, r(s;, a;) represents the immediate reward of taking action a; at state s,
which is defined as Eq.3.

Q(si,a0) = r(se,a0) + 7% > Plserals, ar) # V7 (s141) (2)

St41

& Attt — Atten
(3 (3
Z W Atgmar _ Appmin

3)

Styat

In Eq.3, Att]* represents the observed value of the ith attribute of the service
corresponding to the executed action a;, and A#7 A" represent the max-
imum and minimum values of Att; for all services. w; is the weighting factor.
w; 18 positive if users prefer Att; to be high (e.g. reliability). w; is negative if
preferring Att; to be low (e.g. service fee). m is the number of QoS attributes.

The @ function represents the best possible cumulative reward of executing
a; at s;. We can run dynamic programming (value iteration) by performing the
Bellman back-ups in terms of the Q function as follows:

Q(st,as) = r(se,a) + 7 Y Plsesa]se, ar) * Q(se41,ar41) (4)

St41

Further on, we rewrite this recursive formula in a stochastic version:

Q(st,ar) « (1 —a) * Q(s4, ar) + a* [r(se, ar) + v * Q(St41, ar41)] (5)

a(0<a<l) is the learning ratio, which is an important tuning factor in Sarsa.
The stochastic version does not require a priori knowledge of the transition
probability distribution P or the reward function R. Eq.5 forms the basis of the
Sarsa algorithm, which starts with initial values of Q(s¢, a;), and updates Q(s,
at) recursively using the actual reward received.

More specifically, Q(s;, a¢) is initialized to 0 for all s; and a; at the beginning.
Then, the learning process is performed recursively. The learner starts from the
initial state sg, and takes a sequence of actions following a Boltzmann policy
(which is introduced subsequently) in each learning episode. Q(s¢, a;) is updated
by the real feedback of next state-action pair< s;i1,a;11 > rather than the
maximum estimation value in Q-learning, which means that it is depending on
the engine’s on-line execution and performance. However, Eq.5 is just the single-
agent version. To incorporating Sarsa with multi-agent techniques, we need to
extend Eq.5 for multi-agent scenario.

We first define the reward function in multi-agent framework as follows, which
aggregates the reward values of the services invoked by every agent. n is the
number of agents, s; is the current joint state, a; is the joint action executed.

Attt — At
J
St’ at Z Z Wij * Attmax — Aptmin (6)
)

=1 j=1
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Based on Eq.6, we can plug this and rewrite Eq.5 in a multi-agent form:

Qiyig.in (Styat) — (1— @) * Qiy ig...in (St,at) + a* [R(st,at) + 7% Qiyig...in (St4+1, Gr41)]
(7)

4.2 Equilibrium Coordination

For many Markov games, there is no policy that is un-dominated because the
performance depends critically on the behavior of the other agents. Then, how
can we define a deterministic optimal policy in this case? An natural idea from
the game-theory literature is to define an agent’s optimal behavior as being its
behavior at a Nash equilibrium. Some researchers, like Littman, have already
done such work in the field of MARL [6,9,10]. Here we adopt Littman’s idea and
give the definition of multi-agent optimal policy as follows:

(8,01, ..., an) = Z m(s,a1) * ...k mp(s,an) x Q(s,a1,...,an)

a1,...,0n

= max Q(s,a1,....,an) (8)

ai,...,0n

This definition is based on coordination equilibrium, which means all agents
have precisely the same goal and achieve their maximum possible payoff in co-
ordination team. It is obvious that the equilibrium of a team Markov game is a
Coordination equilibrium as all the players involved strive for a common task.

In view of this, seeking the optimal policy in Team Markov games can be
turned into an old question of optimizing the Q-value. To sum up, we can com-
pute an optimal policy by just applying Sarsa in the multi-agent scenario.

However, another important open problem for Markov games is finding a
general way of selecting an equilibrium when there exists multiple coordination
equilibriums, which is very common in multi-agent scenario [21]. Here we use the
indirect coordination methods to solve the problem, which places bias on action
selection toward actions that are likely to result in good rewards.

An easy and well-understand indirect coordination method for equilibrium
selection in game theory is fictitious play [12]. The key idea of fictitious play is
estimating the empirical distribution of others’ past actions and thus to help the
agents figure out a best response until now. More specially, suppose that ng
is the frequency of agent j invoking action a; in the past, where a is the set of
agents, each j € a and a; € A; (A; represents the set of actions available to the
jth agent). Then, agent i assumes agent j to play action a; with the probability
as FEq. 9. After each round of playing, agent i will update its ng according to

the actions taken by the others in the last round. In a sense, ng reflects the
beliefs an agent has given the historical choices of others.
, cl
P = (9)

bjeA;
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Dov Monderer gives the definition of Fictitious Play Property and also proves
the following theorem in his work [12].

Defnition 8 (Fictitious Play Property). A game has the fictitious play prop-
erty (FPP) if every fictitious play process converges in beliefs to equilibrium.

Theorem 1: Every game with identical payoff functions has the fictitious play
property. o

In view of Theorem 1, we can deduce that the team game where the agents
have common interests has the fictitious play property. Hence, fictitious play
process can be applied in the Team Markov Games and help to converge to a
unique equilibrium surely despite the existence of multiple equilibriums.

To improve the efficiency of the fictitious play process, Young [23] proposed
an optimized version and proved its validity. Based on it, we construct a new
function that combines the Q-value and fictitious play process together for esti-
mating cumulative reward of joint action in TMG-WSC. It is defined as follows,
Ktm,gAj) is a probability model for agent ¢ at the joint state s, based on the ficti-
tious play process. t is the number of times for attending state s. a; is the action
chosen by the ith agent. m is the length of the queue which stores the reduced
joint action a_; of agent i’s opponents in chronological order. ¥(s,a_;) is the
best response for agent ¢'s opponents’ joint action at state s.

Km A
WEQ(s,ai) =y ' é”
Ajev(s,a—i)
1<j<n, j#d

Qij(s) (10)

Finally, we need a learning policy for the learner to execute the TMG-WSC
during the learning. Here we choose the Boltzmann learning policy as it can
better characterize our coordination mechanism and equilibrium selection tech-
nique. The Boltzmann exploration used here can be depicted as follows, T is
temperature parameter, T = T * (0.999)¢, Ty is an initial value, ¢ is the fre-
quency that the learner is in state s;.

eWEQ(Suat)/T
Pr(at|3t) = Z eWEQ(s4,a4)/T (11)
beA

The complete learning process is depicted in Algorithm 1.

5 Simulation Results and Analysis

In this section, we conduct a simulation study to evaluate the properties of our
service composition mechanism. We demonstrate the convergence and efficiency
of multi-agent Sarsa algorithm. We also compare it with single-agent Sarsa and
Q-learning, and analyze the corresponding inherent cause and effect.
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Initialization:
Q¢1,2‘2 ,,,,, m(St,at)
repeat
// for each episode
each agent choose an action a;(i = 1,2, ...,n) based on Eq.11,
and form the joint action a; = a1 X az X -+« X ap;
repeat
// for each step of a episode
1. On-Policy Learning
take joint action a¢, observe R, s¢+1, each agent choose action a based on
Eq.11, and form the joint action at+1 = a1 X az X -+« X an
Q(st,at) +— (1 —a) * Q(st,ar) + a* [R+ 7 Q(st41, ar41)]
St & St+1, At <— Qt+1;
2.Terminal condition check
if s; is a possible terminal state, s; = s1 X s2 X ... X s, then
Create a set named Temp, Temp = {s:},
Create a set named Prev, Prev contains all the
previously passed states of any element in Temp
end if
while S, N Temp # @ and so ¢ Prev do
Temp < Sp N Temp
Prev < all the previous states of any element in Temp
end while
if Prev contains Sp then
This episode is ended
end if
until The current episode is ended
until the cumulative reward matrix converges

Algorithm 1. Multi-agent Sarsa based on TMG-WSC

5.1 Experiment Setting

We randomly generate MDP-WSC transition graphs and use them as the in-
put for the TMG-WSC model, and four QoS attributes are mainly considered
as an example for reward assessment, which are ResponseTime, T hroughput,
Availability and Reliability based on the extended QWS Dataset '. A num-
ber of key parameters are set up for both experiments as follows. The learning
rate « of single-agent algorithm is set to 0.6, the discount factor ~ is set to 0.9
and the e — greedy exploration strategy value is set to 0.6. The experiments are
conducted on an Intel i3-2120 3.30GHz PC with 4GB RAM.

5.2 Result Analysis

1. Effectiveness and Efficiency
The purpose of the first experiment is to examine the ability of the multi-
agent Sarsa algorithm with Boltzmann exploration strategy (abbr. Multi-Sarsa).

! http://www.uoguelph.ca/~qmahmoud/qus/
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We compare the Multi-Sarsa with single-agent Sarsa (abbr.Single-S) and single-
agent Q-learning (abbr. Single-Q) in 4-agent scenario with 100 state nodes and
1000 services for each node. As shown in Fig.3 (a), the proposed Multi-Sarsa al-
gorithm yields higher discounted cumulative rewards and efficiency than Single-
S algorithm, and is closed to the convergence rate of Single-Q. For instance,
Multi-Sarsa converges to the rewards at 17.2, that is higher than Single-S at
15.7. Furthermore, Multi-Sarsa converges at about the 4000th episode, which
is closed to Single-Q at about the 3900th episode. However Single-S is slower
for converging at about the 4500th episodes. Single-S achieves higher discounted
cumulative rewards than Single-Q but performs worse in convergence rate.

Not surprisingly, in Eq.5, the use of a1 introduces additional variance into
the update rule, which may slow convergence rate when compared to Single-Q.
However, differing from off-policy Q-learning method, on-policy Sarsa approach
has stronger convergence guarantees when combined with function approxima-
tion and it has a potential advantage over off-policy methods in its on-line perfor-
mance. In the light of those characteristics, we propose the Multi-Sarsa algorithm
to offset the convergence rate of Single-S by mutual collaboration between each
agents and become closer to the optimal convergence simultaneously in which
multiple agents explore the learning space adequately.

2000 services —e— ||
3000 services --a--
4000 services - -4- -

Mulli-Sarsa_ —e—

discounted cumulative reward
discounted cumulative reward
s

o . . . . . . . 0 . . . . . . .
1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1500 2000 2500 3000 3500 4000 4500 5000
Episodes Episodes

(a) (b)

Fig. 3. (a) Effectiveness and Efficiency Comparison  (b) Different number of services

2. Scalability

The purpose of the second experiment set is to assess the scalability of the
proposed Multi-Sarsa algorithm. We probe the influence of the service, state
and agent number respectively.

Firstly, we vary the number of services for each state node from 2000 to 4000
while fixating the agents number for 4 and state nodes for 100. From Fig.3 (b), we
know that the increasing number of candidate services for each state node may
postpones the convergence. In 2000-service scenario, the Multi-Sarsa converges
at about the 4200th episode, while converging at about the 4500th episode in
3000-service and about the 4700th episode in 4000-service. However, increasing
the number of services does not necessarily mean the corresponding improvement
of service quality, so the rewards may be higher or lower. In a word, Multi-Sarsa
always converge at an acceptable time despite of vast candidate services.
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Fig.4. (a) Different number of state nodes (b) Different number of agents
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Fig. 5. Adaption Testing

Secondly, we fix the agent number and service number of each state node as
4 and 1000 respectively, and vary the state nodes from 200 to 400. As shown in
Fig.4 (a), the bigger number of state nodes corresponds to higher values of the
optimal convergence and a slower convergence rate. In 200-state-node scenario,
the Multi-Sarsa converges at about the 4100th episode with rewards 33.8, and
in 400-state-node, it converges at about the 4500th episode with rewards 61.7.
What’s more, we calculate the deviation of the current convergence rewards from
the optimal convergence rewards in different scenarios by D = ©F g;gCR, where
D represents deviation degree, OPR indicates the optimal convergence rewards,
and CCR is the current convergence rewards. It can be seen from Fig.4 (a),
the D is %17.17 in 300 states nodes, and %22.88 in 400 scenario. That is to
say, the increasing number of state nodes may aggravate the deviation from the
optimality and fall into local optima. Hence, we can conclude that the Multi-
Sarsa has the scalability when face with the increment of states nodes.

Finally, we come to the affect of agents number. We set the state nodes for
100, the services number for 1000 to each state node. From Fig.4 (b), we know
that the more agents involved, the more adequate space exploration will be done,
consequently the discount cumulative rewards is apparently bigger in scenario of
12 and 16 agents. However, the increasing number of agents brings another severe
problem, that is, the communication consumption in the process of fictitious
play. So, 16-agent does not perform better than 12-agent. In brief, 12-agent
may be a compromise for Multi-Sarsa, the increasing number of agents does
not necessarily leads to an improvement in efficiency, and the communication
consumption between agents must be considered as an important factor.
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To sum up, the Multi-Sarsa algorithm can be applied to large-scale service
composition scenarios with good scalability.

3. Adaptivity
To simulate the dynamic environment, we randomly change the QoS values of
candidate services during the learning process. In order to facilitate comparison,
we fixate the number of agent for 4, state nodes for 100, and 1000 services for
each node. We also cause QoS fluctuations between the 2000th episode and the
2500th episode. What’s more, we allocated the sum of changed QoS values to
each candidate services group of each state node averagely. Fig.5 gives clear il-
lustration, no matter how big the volatility of QoS is, the Multi-Sarsa algorithm
can converge by learning deterministically, and merely differentiates in conver-
gence time. In short, the changes do not stop the optimization process, and the
execution polices are still being optimized when the learning process goes on.
In conclusion, Multi-Sarsa does a good performance in large-scale and highly
dynamic environment.

6 Conclusions and Future Directions

In this paper?, we integrate on-policy reinforcement learning with multi-agent
techniques for large-scale and adaptive service composition. First, we propose
the new composition model called TMG-WSC, then utilize Multi-Sarsa algo-
rithm in multi-agent scenario to find the optimal solution which is extended from
single-agent Sarsa. Additionally, to ensure the convergence of the Multi-Sarsa al-
gorithm, we introduce the fictitious play process which assures the unique equi-
librium for equilibrium selection and incorporate it with the Boltzmann learning
policy. Our experiments demonstrate that the proposed Multi-Sarsa performs
well for large-scale and dynamic service composition.

However, we still have some room for optimizing the proposed framework.
Firstly, we do not address the problem of failure services that may lead to entire
paralysis of the composition solution. Therefore, reliability prediction or fault-
tolerant technologies should be taken into the consideration. Secondly, we just
consider the local QoS constraints, while users may only give a global QoS con-
straints, so how to decompose the global QoS constraints to the local is also a
tough challenge. All in all, we will pay more efforts to optimize this framework.
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