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Abstract. DecSerFlow is a declarative language to specify business processes. It
consists of a set of temporal predicates that can be translated into LTL but limited
to finite sequences. This paper focuses on the “conformance problem”: Given
a set of DecSerFlow constraints, is there an execution sequence that satisfies
all given constraints? This paper provides syntactic characterizations of confor-
mance for several subclasses of DecSerFlow constraints. These characterizations
directly lead to efficient (polynomial time) conformance testing. Furthermore, al-
gorithms are developed to generate conforming strings if the set of constraints is
conformable. A conformance analyzer is developed based on the syntactic char-
acterizations and the string generating algorithms. Experiments reveal several in-
teresting factors concerning performance and scalability.

1 Introduction

Enterprises rely on business processes to accomplish business goals (handling a loan
application, etc.) Business process models are either imperative or declarative [12].
Imperative models typically employ graphs (e.g., automata, Petri Nets) to depict how a
process should progress. Declarative models are usually based on constraints [2], they
are flexible and easy to change during design time or runtime [18]. A practical problem
is whether a given set of constraints allows at least one execution. It is fundamental in
business process modeling to test satisfiability of a given set of constraints.

A process execution is a (finite) sequence of activities through time. The declarative
language DecSerFlow [2] uses a set of temporal predicates as a process specification,
The DECLARE system [11] supports design and execution of DecSerFlow processes.
In [14] an orchestrator for a declarative business process called REFlex was developed,
where a subset of DecSerFlow can be expressed by REFlex. In this paper, we study
the following conformance problem: does there exist an execution that satisfies a given
DecSerFlow specification? Clearly efficient conformance testing provides an effective
and efficient help to the user of DECLARE and the scheduler of [14]. Temporal predi-
cates in DecSerFlow can be translated into linear temporal logic (LTL) [13] but limited
to finite sequences. A naive approach to conformance checking is to construct automata
representing individual constraints and determine if their cross product accepts a string.
Complexity of this approach is exponential in the number of given constraints. This
paper aims at efficient comformance checking.

Most DecSerFlow constraints can be categorized into two directions: “response”
(Res), which specifies that an activity should happen in the future, and “precedence”
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(Pre), which specifies that an activity should happen in the past. For each direction,
there are three types of constraints: (1) An ordering constraint Res(a, b) (or Pre(a, b))
for activities a and b specifies that if a occurs, then b should occur in the future (resp.
past). As a practical example of a loan application, if activity “loan approval” hap-
pens, then in the past a “credit check” activity should have happened. (2) An alternating
constraint aRes(a, b) (or aPre(a, b)) specifies that each occurrence of a implies a fu-
ture (resp. past) occurrence of b but before (resp. after) the occurrence of b, a cannot
occur again (i.e., between two occurrences of a, there should exist an occurrence of
b). As an example, if a “house evaluation request” activity happens, a “house evalua-
tion feedback” activity should happen in the future and before receiving the feedback,
the applicant cannot submit another evaluation request, i.e., “request” and “feedback”
should alternate. (3) An immediate constraint iRes(a, b) (or iPre(a, b)) restricts that if a
occurs, then b should immediately follow (resp. occur before). In addition to “response”
and “precedence” constraints, there is a special type of “existence” constraints that only
require occurrences in any order. An existence constraint Exi(a, b) restricts that if a
occurs, then b should occur either earlier or later. In practice, a common existence con-
straint can be that a guest can either choose to pay the hotel expense online then check
in, or check in first and pay the expense later, i.e., Exi(“check in”, “payment”).

In addition to temporal constraints, there may be cardinality requirements on each
activity, i.e., an activity should occur at least once. For example, in an online order
process, “payment” activity is always required to occur; while “shipping” is not (a cus-
tomers may pick up the ordered items in a store).

The contributions of this paper are the following: We present a reduction from gen-
eral DecSerFlow to DecSerFlow “Core” with no existence constraints nor cardinality
requirements (Theorem 2.3). For DecSerFlow Core, we formulate syntactic characteri-
zations (sufficient and necessary for conformance) for constraints involving (1) order-
ing and immediate constraints (Theorem 3.5), (2) ordering and alternating constraints
(Theorem 3.9), (3) alternating and immediate constraints (Theorem 3.20), or (4) only
precedence (or only response) constraints (Theorem 3.23). For the general case, it re-
mains open whether syntactic characterizations exist. Algorithms are also developed
to generate conforming strings when the schema is conformable. Finally, we designed
and implemented a conformance analyzer and our experimental evaluation shows that
(1) the syntactic condition approach is polynomially scalable (in time) comparing with
the exponential-time naive approach using automata, (2) the time complexity of con-
forming string generation varies from polynomial to exponential complexity, and (3)
the increasing number of constraints will increase the time needed of the automata ap-
proach exponentially more than the time needed by the syntactic condition approach.

The remainder of the paper is organized as follows. Section 2 defines DecSerFlow
constraints studied in this paper. Section 3 focuses on different combinations of con-
straints together with their conformance checking and conforming string generation.
A conformance checker is developed and evaluated in Section 4. Related work and
conclusions are provided in Sections 5 and 6, resp. Detailed proofs, some examples,
algorithms, and formal definitions are omitted due to space limitation.
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2 DecSerFlow Constraints

In this section we introduce DecSerFlow constraints, define the conformance problem,
state a straightforward result, and present a reduction to the case of “core” constraints.

LetA be an infinite set of activities, N the set of natural numbers, and A ⊆ A a finite
subset of A. A string over A (or A) is a finite sequence of 0 or more activities in A
(resp.A). A∗ (A∗) the set of all strings over A (resp.A).

A subsequence of a1a2...an is a string ak1ak2 ...akm , where (1) m ∈ N and m � 1, (2)
ki ∈ [1..n] for each i ∈ [1..m], and (3) ki < ki+1 for each i ∈ [1..(m−1)]; a substring is a
subsequence ak1 ak2 ...akm where for each i ∈ [1..(m−1)], ki+1 = ki + 1.

Let A⊆A, a, b ∈A. A (sequence) constraint on a, b is a constraint shown in Fig. 1.

Response Precedence

Ordering
Res(a, b): each occurrence of a is
followed by an occurrence of b

Pre(a, b): each occurrence of a is
preceded by an occurrence of b

Alternating
aRes(a, b): in addition to Res(a, b),
a and b alternate

aPre(a, b): in addition to Pre(a, b),
a and b alternate

Immediate
iRes(a, b): each occurrence of a is imme-
diately followed by an occurrence of b

iPre(a, b): each occurrence of a is imme-
diately preceded by an occurrence of b

Existence Exi(a, b): each occurrence of a implies an occurrence of b

Fig. 1. Summary of Constraints

For ordering precedence constraint Pre(a, b), if “a” occurs in a string, then before
“a”, there must exist a “b”, and between this “b” and “a”, all activities are allowed to
occur. Similarly, for alternating response constraint aRes(a, b), after an occurrence of
“a”, no other a’s can occur until a “b” occurs. For immediate precedence constraint
iPre(a, b), a “b” should occur immediately before “a”. The existence constraints have
no restrictions on temporal orders. Given a constraint c and a string s, denote s |= c if s
satisfies c, for example, s |= Res(a, b), if s = abcadb.

Definition 2.1. A (DecSerFlow) schema is a triple S = (A,C, κ) where A ⊆ A is a finite
set of activities, C a finite set of constraints on activities in A, and κ is a total mapping
from A to {0, 1}, called cardinality, to denote that an activity a ∈ A should occur at least
once (if κ(a) = 1) or no occurrence requirement (if κ(a) = 0).

Definition 2.2. A finite string s over A conforms to schema S = (A,C, κ) if s satisfies
every constraint in C and for each activity a ∈ A, s should contain a for at least κ(a)
times. If a string s conforms to S , s is a conforming string of S and S is conformable.

Conformance Problem: Given a schema S , is S conformable?

A naive approach to solve the conformance problem is to construct an automaton A
for each given constraint c (and each cardinality requirement r, i.e., an actvitiy occurring
at least 0 or 1 times), such that A can accept all strings that satisfy c (resp. accept all
strings that satisfy r) and reject all other strings. Then the conformance problem is
reduced to checking if the cross product of all constructed automata accepts a string.

However, the automata approach yields to exponential complexity in the size of the
input schema. Our goal is to find syntactic conditions to determine conformity that lead
to polynomial complexity.
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For notation convenience, given a DecSerFlow schema S = (A,C, κ), if for each a ∈
A, κ(a) = 1, we simply use (A,C) to denote S .

Theorem 2.3. Given S = (A,C, κ) as a schema, there exists a schema S ′ = (A′,C′) such
that S is conformable iff S ′ is conformable.

Theorem 2.3 shows that conformance of arbitrary schemas can be reduced to con-
formance of schemas where each activity occurs at least once. If each activity in a
given schema occurs at least once, the existence constraints are redundant. In the re-
mainder of this paper, we only focus on schemas with core constraints, i.e., from set
{Res,Pre, aRes, aPre, iRes, iPre} and that each activity occurs at least once.

3 Characterizations for Conformance

3.1 Ordering and Immediate Constraints

This subsection focuses on syntactic characterizations of conformable schemas that
only contain ordering and/or immediate constraints.

For each schema S = (A,C), we construct the causality graph GS of S as a labeled
graph (A, Eor

�, E
or
�, E

al
�, E

al
�, E

im
� , E

im
� ) with the vertex set A and six edge sets where Ex

�
(Ex

�) corresponds to response (resp. precedence) constraints of ordering (x= ‘or’), alter-
nating (x= ‘al’), or immediate (x= ‘im’) flavor. Specifically, for all a, b ∈ A, (a, b) ∈ Eor

�
iff Res(a, b) is in C, (a, b) ∈ Eal

� iff aPre(a, b) ∈ C, (a, b) ∈ Eim
� iff iRes(a, b) ∈ C, and

the other three cases are similar.
Given a causality graph (A, Eor

�, E
or
�, E

al
�, E

al
�, E

im
� , E

im
� ), if an edge set is empty, we

will conveniently omit it; for example, if Eim
� = Eim

� = ∅, we write the causality graph
simply as (A, Eor

�, E
or
�, E

al
�, E

al
�).

For technical development, we review some well-known graph notions. Given a (di-
rected) graph (V, E) with vertex set V and edge set E ⊆V ×V , a path is a sequence
v1v2...vn where n> 1, for each i ∈ [1..n], vi ∈ V , and for each i ∈ [1..(n−1)], (vi, vi+1) ∈ E;
n is the length of the path v1...vn. A path v1...vn is simple if vi’s are pairwise distinct ex-
cept that v1, vn may be the same node. A (simple) cycle is a (resp. simple) path v1...vn

where v1 = vn. A graph is cyclic if it contains a cycle, acyclic otherwise. Given an
acyclic graph (V, E), a topological order of (V, E) is an enumeration of V such that
for each (u, v) ∈E, u precedes v in the enumeration. A subgraph (V ′, E′) of (V, E) is a
graph, such that V ′ ⊆V and E′ ⊆ E ∩ (V ′×V ′). A graph is strongly connected if there
is a path from each node in the graph to each other node. Given a graph G = (V, E)
and a set V ′ ⊆V , the projection of G on V ′, πV ′G, is a subgraph (V ′, E′) of G where
E′ =E ∩ (V ′×V ′). A strongly connected component (V ′, E′) of a graph G = (V, E) is a
strongly connected subgraph G′ = (V ′, E′) of G, such that (1) G′ = πV ′G, and (2) for
each v ∈V −V ′, πV ′∪{v}G is not strongly connected.

To obtain the syntactic conditions for deciding the conformance of ordering and
immediate constraints, we first present a pre-processing upon a given schema, such
that the given schema is conformable if and only if the pre-processed the schema is
conformable, and then show the syntactic conditions upon the pre-processed schemas.

Lemma 3.1. Given a schema S = (A,C) and its causality graph (A, Eor
�, E

or
�, E

al
�, E

al
�,

Eim
� , E

im
� ), for each (u, v) ∈Eim

� ∪ Eim
� , if there exists w ∈ A − {u}, such that (v,w) ∈ Eor

�
(or Eor

�), then for each conforming string s of S , s satisfies Pre(u,w) (resp. Res(u,w)).
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Lemma 3.1 is straightforward. Based on Lemma 3.1, we define the following pre-
processing given a schema.

Definition 3.2. Given a schema S = (A,C), the immediate-plus (or im+) schema of S
is a schema (A,C′) constructed as follows: 1. Initially C′ =C. 2. Repeat the following
steps while C′ is changed: for each distinct u, v,w ∈A, if (1) iPre(u, v) or iRes(u, v) is in
C′ and (2) Pre(v,w) ∈C′ (or Res(v,w) ∈C′), then add Pre(u,w) (resp. Res(u,w)) to C′.

Example 3.3. A schema S has 3 activities, a, b, c, and 4 constraints iRes(a, c), iRes(b,
c), Pre(c, a), and Pre(c, b). Let S ′ be the im+schema of S . According to the definition
of im+schema, in addition to the constraints in S , S ′ also contains constraints: Pre(a, b)
(which is obtained from iRes(a, c) and Pre(c, b)) and Pre(b, a).

It is easy to see that for each given schema, its corresponding im+schema is unique.
The following is a consequence of Lemma 3.1.

Corollary 3.4. A schema is conformable iff its im+schema is conformable.

For reading convenience, we introduce the following notations: let x, y, z be one of
‘or’, ‘al’, ‘im’; we denote Ex

� ∪ Ey
� as Ex∪ y

� and use similar notations Ex∪ y
� or Ex∪ y∪ z

� .

Theorem 3.5. Given a schema S = (A,C) where C contains only ordering and imme-
diate constraints, the im+schema S ′ of S , and the causality graph (A, Eor

�, E
or
�, E

im
� , E

im
� )

of S ′, S is conformable iff the following conditions all hold.

(1). (A, Eor∪ im
� ) and (A, Eor∪ im

� ) are both acyclic,
(2). for each (u, v) ∈Eim

� (or Eim
� ), there does not exist w ∈ A such that w� u and (v,w) ∈

Eim
� (resp. Eim

� ), and
(3). for each (u, v) ∈Eim

� (or Eim
� ), there does not exist w ∈ A such that w� v and (u,w) ∈

Eim
� (resp. Eim

� ).

In Theorem 3.5, Condition (1) restricts that the response or precedence direction does
not form a loop (a loop of the same direction can lead to infinite execution). Conditions
(2) and (3) similarly restrict that the immediate constraints are consistent. For example,
it is impossible to satisfy constraints iRes(a, b) and iRes(a, c), where a, b, c are activities.

Example 3.6 shows the importance of “pre-processing” to obtain im+schemas.

Example 3.6. Let S and S ′ be as stated in Example 3.3. Note that S satisfies all condi-
tions in Theorem 3.5. However, S ′ does not, since Pre(a, b) and Pre(b, a) form a cycle in
Eor∪ im
� , which leads to non-conformability of S . Therefore, a pre-processing to obtain

an im+is necessary when determining conformability.

Given a conformable schema that contains only ordering and immediate constraints,
one question to ask is how to generate a conforming string. To solve this problem, we
first introduce a (data) structure, which is also used in the later sections.

For a schema S = (A,C), let πim(S )= (A,C′) be a schema where C′ is the set of all
immediate constraints in C. The notation πim(S ) holds the projection of S on immediate
constraints. Similarly, let πal(S ) be the projection of S on alternating constraints.

Given a schema S = (A,C), if πim(S ) satisfies the conditions stated in Theorem 3.5,
then for each activity a ∈ A, denote S̄im(a) as a string constructed iteratively as follows:
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(i) S̄im(a)=a initially, (ii) for the leftmost (or rightmost) activity u of S̄im(a), if there
exists v ∈ A such that iPre(u, v) ∈C (resp. iRes(u, v) ∈C), then update S̄im(a) to be vS̄im(a)
(resp. S̄im(a)v), i.e., prepend (resp. append) S̄im(a) with v, and (iii) repeat step (ii) until
no more changes can be made. For each a ∈ A, it is easy to see that S̄im(a) is unique and
is finite. Let Sim(a) be the set of activities that occur in S̄im(a).

Alg. 1 shows the procedure to create a conforming string given a schema with only
ordering and immediate constraints. The main idea of Alg. 1 relies on a topological
order of both the “precedence” and “response” directions (to satisfy the ordering con-
straints); then replace each activity a by S̄im(a) (to satisfy the immediate constraints).

Algorithm 1.

Input: A causality graph (A, Eor
�, E

or
�, E

im
� , E

im
� ) of an im+schema of a schema S that

satisfies all conditions in Theorem 3.5
Output: A finite string that conforms to S

A. Let “a1a2...an” and “b1b2...bn” be topological sequences of (A, Eor∪ im
� ) and

(A, Eor∪ im
� ), resp.

B. Return the string “S̄im(bn)...S̄im(b1)S̄im(a1)...S̄im(an)”.

3.2 Ordering and Alternating Constraints

This subsection focuses on syntactic conditions for conformance of schemas that con-
tain ordering and alternating constraints.

We begin with defining “pre-processing” for schemas such that the original schema
is conformable if and only if the schema after the pre-processing also is. The pre-
processing will also be used in the next subsection.

Definition 3.7. Given a schema S = (A,C) and its causality graph (A, Eor
�, E

or
�, E

al
�, E

al
�,

Eim
� , E

im
� ), the alternating-plus (or al+) schema of S is a schema (A,C′) where

C′ = C ∪ {aPre(v, u) | (u, v) ∈Eal
�, u and v are on a common cycle in (A, Eal

� ∪ Eal
�)}

∪ {aRes(v, u) | (u, v) ∈Eal
�, u and v are on a common cycle in (A, Eal

�∪ Eal
�)}

It is easy to see that for each given schema, its corresponding al+schema is unique.

Lemma 3.8. A schema is conformable iff its al+schema is conformable.

Theorem 3.9. Given a schema S that only contains ordering and alternating constraints,
let S ′ = (A,C) be the al+schema of S and (A, Eor

�, E
or
�, E

al
�, E

al
�) the causality graph of

S ′. S is conformable iff both (A, Eor∪ al
� ) and (A, Eor∪ al

� ) are acyclic.

Example 3.10. Consider a schema with 5 activities, a, b, c, d, e, and constraints in the
form of a graph (A, Eor∪ al

� ∪ Eor∪ al
� ) as shown in Fig. 2, where the edge labels denote

constraint types. Note that its al+schema is itself. The conditions in Theorem 3.9 are
satisfied, thus the schema is conformable. A conforming string is dcebadce. If we add
the constraint aPre(d, b) into the schema, it is no longer conformable since bcd forms a
cycle in (A, Eor∪ al

� ), forcing the subsequence bcd to occur infinitely many times.
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eba cd
Res

Res PreaRes aRes

aPre

Fig. 2. An al+schema example

Alg. 2 presents the procedure to construct a
conforming string given a conformable schema
that contains only ordering and alternating con-
straints. A key step of the Alg. 2 is to first create
a topological order of precedence constraints and that of response constraints, then for
each violated alternating constraint, insert a string to fix the violation.

Algorithm 2.

Input: The causality graph (A, Eor
�, E

or
�, E

al
�, E

al
�) of an al+schema S satisfying condi-

tions of Theorem 3.9
Output: A string that conforms to S

A. Let s� = a1a2...an be a topological order of (A, Eor∪ al
� ) and s� = bnbn−1...b1 a re-

versed topological order of (A, Eor∪ al
� ).

B. For each a ∈A, define R(a) as the set of nodes in A reachable from a through
edges in Eal

� ∪ Eal
� (i.e., each b ∈ R(a) is either a itself or reachable from a in

(A, Eal
� ∪ Eal

�)), and denote R̄�(a) and R̄�(a) the two enumerations of R(a) such
that R̄�(a) and R̄�(a) are subsequences of s� and s�, resp.

C. Let Vns ⊆C be the set of alternating constraints that are not satisfied by s�s�,
and Ens ⊆Vns ×Vns such that an edge (X(a, b), Y(c, d)) is in Ens iff c ∈ R(b), where
X, Y ∈ {aRes, aPre} and a, b, c, d ∈ A. Denote v̄ns to be a topological order of
(Vns, Ens). (It can be shown that (Vns, Ens) is acyclic)

D. For each edge aRes(u, v) (or aPre(u, v)) in Vns in the order of v̄ns, let s� = s�R̄�(v)
(resp. s� = R̄�(v)s�).

E. Return s�s�.

3.3 Immediate and Alternating Constraints

Before discussing conformity for schemas with alternating and immediate constraints,
we define a “pre-processing” for the given al+schema such that the original al+schema
is conformable if and only if after the pre-processing, the schema is conformable.

Lemma 3.11. Given an al+schema S = (A,C) that only contains alternating and im-
mediate constraints, the causality graph (A, Eal

�, E
al
�, E

im
� , E

im
� ) of S , and two activities

u, v ∈ A such that there is a path from v to u in the graph (A, Eal∪ im
� ∪ Eal∪ im

� ), then
(1) iRes(u, v) ∈C implies if a string s satisfies iRes(u, v), then s |= iPre(v, u), and (2)
iPre(u, v) ∈C implies if a string s satisfies iPre(u, v), then s |= iRes(v, u)

Let u and v be as stated in Lemma 3.11. Note that if u and v satisfy the condition
in the lemma, u and v will always “occur together” in a conforming string as if they
were one activity. With such an observation, we can then pre-process a given schema
by “collapsing” such nodes according to in Lemma 3.11. However, two nodes satisfying
Lemma 3.11 does not necessarily mean they are “safe” to be collapsed. For example, if
nodes u and v in some schema are eligible to be combined based on Lemma 3.11 and
there is a node w in the same schema that has constraint iRes(w, u). The collapsing of u
and v implies that iRes(w, v) is also a constraint that should be satisfied. According to
Theorem 3.5, the schema is not satisfiable. Thus, in the following definition, we define
when two nodes are “safe” to collapse (i.e., “collapsable”).
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Definition 3.12. Given an al+schema S = (A,C) that contains only alternating and im-
mediate constraints, and its causality graph (A, Eal

�, E
al
�, E

im
� , E

im
� ), S is collapsable if S

satisfies all of the following.

(1). (A, Eal∪ im
� ) and (A, Eal∪ im

� ) are acyclic,
(2). for each (u, v) ∈Eim

� (or Eim
� ), there does not exist w ∈ A such that w� u and (v,w) ∈

Eim
� (resp. Eim

� ),
(3). for each (u, v) ∈Eim

� (or Eim
� ), there does not exist w ∈ A such that w� v and (u,w) ∈

Eim
� (resp. Eim

� ), and
(4). for each distinct u, v,w ∈A, if (u,w), (v,w) ∈Eim

� or (u,w), (v,w) ∈Eim
� , then there

is no path from w to either u or v in graph (A, Eal∪ im
� ∪ Eal∪ im

� ).

u1 u2 u3

e
b

a

c

d
aPre

aRes iPre
f

Fig. 3. A collapsed schema example

Note that Conditions (1)–(3) in the
above definition are similar to the char-
acterization stated in Theorem 3.5.

Example 3.13. Consider an al+schema
with activities a, b, c, d, e, f , and con-
straints shown in Fig. 3 as (A, Eal∪ im

�
∪ Eal∪ im

� ) where the edge labels denote
types of constraints. (Ignore the dashed boxes labeled u1, u2, u3 for now.) The schema
is collapsable. However, if constraint iPre(a, c) is added to the schema, Condition (4)
(in the collapsability definition) is violated and thus the new schema is not collapsable,
since ( f , c), (a, c) ∈Eim

� and there is a path cda from c to a in (A, Eal∪ im
� ∪ Eal∪ im

� ).

Definition 3.14. Given a collapsable schema S = (A,C) with only alternating and im-
mediate constraints, the collapsed schema of S is a schema (A′,C′) constructed as
follows:

1. Initially A′ = A and C′ = C.
2. Repeat the following steps while (A′,C′) is changed:

i. Let (A′, Eal
�, E

al
�, E

im
� , E

im
� ) be the corresponding causality graph of (A′,C′).

ii. for each u, v ∈ A on a common cycle in (A, Eal∪ im
� ∪ Eal∪ im

� ), If (u, v) ∈ Eim
� or

Eim
� , then (1) remove each X(u, v) or X(v, u) from C′, where X ranges over aRes,

aPre, iRes, and iPre. (2) Create node wuv; let A′ := A′ − {u, v} ∪ {wuv}, and (3)
replace each u and v in C′ by wuv.

It is easy to show that given a collapsable al+schema, the corresponding collapsed
schema is unique. The following lemma (Lemma 3.15) is easy to verify.

Lemma 3.15. Given a collapsable al+schema S with only alternating and immediate
constraints, S is conformable iff its collapsed schema is conformable.

By Corollaries 3.8 and 3.15, conformance checking of a schema that only contains
alternating and immediate constraints can be reduced to the checking of its collapsed
version. Thus, in the remainder of this subsection, we focus on collapsed schemas.

In order to have a clean statement of the necessary and sufficient condition, we in-
troduce a concept of “gap-free”. Essentially, “gap-free” is to deal with a special case of
a schema illustrated in the following Example 3.16.
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Example 3.16. Continue with Example 3.13; note that the schema in Fig. 3 is a col-
lapsed schema. Consider a schema S u2 that only contains activities a, b, and f , together
with the constraints among them shown in Fig. 3 (i.e., a “subschema” bounded by the
dashed box labeled as “u2”). Based on Theorem 3.9, S u2 is conformable and a con-
forming string is ba f . Now consider a schema S u1,2 that only contains activities e, a, b,
and f , together with the constraints among them shown in Fig. 3 (i.e., a “subschema”
bounded by the dashed boxes labeled as “u1” and “u2” together with the constraints
crossing u1 and u2). Due to constraints iRes(e, b) and iPre(e, f ), if S u1,2 is conformable,
then each conforming string of S u1,2 must contain substring “ f eb”. This requirement
leads to some restriction upon schema S u2 , i.e., if we take out activity “e” from S u1,2

and focus on schema S u2 again, one restriction would be: is there a conforming string
of S u2 that contains a substring f b? If the answer is negative, then apparently, S u1,2 is
not conformable, since no substring f eb can be formed.

With the concern shown in Example 3.16, we need a checking mechanism to de-
cide if two activities can occur as a substring (i.e., “gap-free”) in some conforming
string. More specifically, given (A, Eal

�, E
al
�, E

im
� , E

im
� ) as a causality graph of a collapsed

schema S , we are more interested in checking if two activities that in the same strongly
connected component in (A, Eal

� ∪ Eal
�) can form a substring in a conforming string of

S . Note that in Example 3.16, activities a, b, and f are in the same strongly connected
component labeled with u2 in (A, Eal

� ∪ Eal
�).

Definition 3.17. Let S = (A,C) be a schema that only contains alternating constraints
and (A, Eal

�, E
al
�) the causality graph of S , such that (A, Eal

�∪Eal
�) is strongly connected.

Given two distinct activities u, v ∈ A, u, v are gap-free (wrt S ) if for each w, x, y ∈ A,
the following conditions should all hold wrt graph (A, Eal

�):

(a). if there is a path p with length greater than 2 from u to v, the following all hold:
(i). if w is on p, then (u, v) � Eal

�,
(ii). if there is a path from x to u, then (x, v) � Eal

�,
(iii). if there is a path from v to y, then (u, y) � Eal

�,
(iv). if there are paths from x to u and v to y, and then (x, y) � Eal

�, and
(b). if there is a path from v to u, then the following all hold:

(i). if there is a path from x to v, then (x, u) � Eal
�,

(ii). if there is a path from u to y, then (v, y) � Eal
�, and

(iii). if there are paths from x to v and u to y, then (x, y) � Eal
�.

Lemma 3.18. Given a conformable al+schema S = (A,C) that only contains alternating
constraints, the causality graph (A, Eal

�, E
al
�) of S , such that (A, Eal

�∪Eal
�) is strongly con-

nected, and two activities u, v ∈ A, “uv” can appear as a substring in some a conforming
string of S iff u, v are gap-free wrt S .

Given a graph G = (V, E), for each v ∈ V , denote SV(v) to be the set of all the nodes
in the strongly connected component of G that contains v.

Let (A,C) be a collapsed schema and (A, Eal
�, E

al
�, E

im
� , E

im
� ) its causality graph. Con-

sider graph (A, Eal
�∪Eal

�∪Eim
� ∪Eim

� ); given an activity a ∈ A, denote S (a) to be a schema
defined as (SV(a), {aRes(u, v) | (u, v) ∈ Eal

� ∧ SV(a)= SV(u)= SV(v)} ∪ {aPre(u, v) |
(u, v) ∈ Eal

� ∧ SV(a)= SV(u)= SV(v)}).
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Example 3.19. Continue with Example 3.13; consider the schema in Fig. 3. Note that
the schema is a collapsed schema. SV(a)= SV(b)= SV( f ) is the strongly connected com-
ponent of the graph in Fig. 3 with nodes a, b, and f . Moreover, S (a) = S (b)=S ( f ) is
a schema that only contains activities a, b, and f , together with the constraints among
them in Fig. 3.

The following Theorem 3.20 provides a necessary and sufficient condition for con-
formability of schema with only alternating and immediate constraints.

Theorem 3.20. Given a schema S that only contains alternating and immediate con-
straints, S is conformable iff the following conditions all hold.

(1). S is collapsable,
(2). πal(S̃ ) is conformable (recall that πal denotes the “projection” only upon alternating

constraints), where S̃ is the collapsed schema of S , and
(3). Let (A, Eal

�, E
al
�, E

im
� , E

im
� ) be the causality graph of the collapsed schema S̃ , for

each u, v,w ∈ A, if there is a path from u to w in (A, Eim
� ), there is a path from u to v

in (A, Eim
� ), and SV(w) = SV(v) wrt (A, Eal∪ im

� ∪Eal∪ im
� ), then either (1) v, w are gap-

free wrt S (v) if v � w, or (2) v has no outgoing edge in graph (A, Eal∪ im
� ∪ Eal∪ im

� )
if v = w.

Example 3.21. Continue with Example 3.19; consider the schema in Fig. 3. The schema
satisfies the conditions in Theorem 3.20 and is conformable. A conforming string can
be bdac f ebdac f .

Similar to the previous combinations of constraints, given a schema with only order-
ing and alternating constraints, an algorithm to construct a conforming string is desired.
In this case, the algorithm is rather complicated and thus omitted The main idea is that
(1) for each activity a, construct a string that satisfies each constraint “related” to a
as well as each alternating constraint with in a strongly connected component, and (2)
hierarchically link these constructed strings together. In this paper, we only provide an
example of the algorithm.

Example 3.22. Consider the schema shown in Fig. 3. We first construct a string for ac-
tivity e starting with base S̄im(e) = c f eb, where f and b are both in strongly connected
component u2; while c is in u3. According to the property of gap-free for f and b,
there must exist a string that satisfies every constraint in u2 and has f b as a substring;
a possible string could be: s1 = ba f ba f . Similarly, string s2 = dc satisfies every con-
straint in u3 and has c as a substring; then we “glue” the underline parts of s1 and s2 to
each end of S̄im(e) and have badc f eba f . Note that this string satisfies every immediate
constraint containing e and every alternating constraint within u1, u2, and u3. Further,
as there is an alternating precedence constraint from e to b, to satisfy that, we “glue”
the topological order of u2 before badc f eba f , and have ŝ(e) = ba f badc f eba f . Note
that ŝ(e) satisfies every constraint containing e and every alternating constraint within
u1, u2, and u3. In general, for each activity, a string ŝ(∗) is constructed. For example
ŝ(b) = b and ŝ(a) = dca.

The second step is to link these ŝ(∗) strings together. The way to link them is first
constructing a topological order of all the strongly connected components. For example
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in Fig. 3, a topological order is u1u2u3. And within each strongly connected component,
the order of activities can be arbitrary, for example eba f cd. Then, based on the order
eba f cd, we first replace each b that occurs in the under line parts in ŝ(e) by ŝ(b), and we
have ba f badc f eba f . Further, according to the topological order, we replace a that oc-
curs in the under line parts in ba f badc f eba f by ŝ(a) and have bdca f bdcadc f ebdca f .
We repeat these steps and it can be shown that the final string satisfies each constraint.

3.4 Response or Precedence Constraints

In this subsection, we study comformity of either response or precedence constraints
but not combined. The following Theorem 3.23 states the syntactic condition for con-
formity of schemas containing only response constraints or only precedence constraints.

Theorem 3.23. Given a schema S = (A,C) where C contains only response (or only
precedence) constraints, and its causality graph (A, Eor

�, E
al
�, E

im
� ) (resp. (A, Eor

�, E
al
�,

Eim
� )), S is conformable iff the following conditions both hold:

(1). (A, Eor∪ al∪ im
� ) (resp. Eor∪ al∪ im

� ) is acyclic, and
(2). for each (u, v) ∈Eim

� (resp. Eim
� ), there does not exist any w ∈ A such that w� v and

(u,w) ∈Eim
� (resp. Eim

� ).

Example 3.24. Consider a schema S with 5 activities, a, b, c, d, e, and 6 constraints
iRes(a, b), iRes(c, e), iRes(e, d), aRes(b, c) Res(a, e), and Pre(b, d). Based on Theorem
3.23, S satisfies all conditions, thus conformable. A conforming string can be abced.
However, if constraint aRes(d, c) is added, S will not be conformable as the edge set
forms a cycle (violating Condition (1)).

Alg. 3 is used to construct a conforming string from an input schema that satisfies
both conditions in Theorem 3.23. The main idea is again to build a topological order
based on the causality graph and then fix each violated immediate constraint in the
string. Note that the execution of Alg. 3 replies on Theorem 3.23, where Conditions
(1) is to ensure the topological order in Step A is achievable, and Condition (2) is to
guarantee Step B1 is unique.

Algorithm 3.

Input: A causality graph (A, Eor
�, E

al
�, E

im
� ) of a schema S that satisfies both conditions

in Theorem 3.23
Output: A finite string that conforms to S

A. Let string s be a topological order of (A, Eor∪ al∪ im
� ). For each a ∈ A, let ŝ(a) be

the substring s[k]s[k+1]...s[len(s)] of s such that s[k] = a (clearly k ∈ [1..len(s)]). Let
i= 1.

B. While i� len(s), repeat the following step:

B1. If (s[i], v) ∈Eim
� for some v ∈ A and either i= len(s) or s[i+1] � v, then replace

s[i] in s by s[i] ŝ(v).
B2. Increment i = i + 1.

C. Return s.
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Fig. 4. Automata vs Syn. Cond. Fig. 5. Scalability Fig. 6. Scalability (log)

4 Experimental Evaluations

In this section, several experiments are conducted to evaluate the performance of the
syntactic-condition-based conformance checking approaches. Three main types of al-
gorithms are implemented, including: (1) The naive algorithm to check DecSerFlow
conformance using automata (denoted as Chk-A), (2) the syntactic-condition-based
conformance checking algorithms for all four combinations of predicates (denoted as
Chk-Or-Im for ordering and immediate constraints, Chk-Or-Al, Chk-Al-Im, and Chk-
Sin for single direction constraints, i.e., either response or precedence), and (3) all four
conforming string generation algorithms (denoted as Gen-Or-Im, Gen-Or-Al, Gen-Al-
Im, and Gen-Sin). All algorithms are implemented in Java and executed on a com-
puter with 8G RAM and dual 1.7 GHz Intel processors. The data sets (i.e., DecSer-
Flow schemas) used in experiments are randomly generated. Schema generation uses
two parameters: number of activities (#A) and number of constraints (#C), where each
constraint is constructed by selecting a DecSerFlow predicate and two activities in a
uniform distribution. Each experiment records the time needed for an algorithm to com-
plete on an input schema. In order to collect more accurate results, each experiment is
done for 1000 times to obtain an average time result with the same #A and same #C for
schemas having #A < 200, 100 times for schemas having #A ∈ [200, 400), and 10 times
for #A ∈ [400,∞). The reason to have less times of experiments for larger #A is that it
takes minutes to hours for a single algorithm execution with large #A, which makes it
impractical to run 1000 times. We now report the findings.

The automata approach is exponentially more expensive than syntactic conditions

We compared the time needed for the automata and syntactic condition approaches on
checking the same set of schemas that contain only ordering and alternating constraints.
(For other three types of combinations of constraints, the results are similar). The input
schemas have n activities and either n, n

2 , or 2n
3 constraints, where n ranges from 4 to 28.

Fig. 4 shows the results (x-axis denotes the number of activities and y-axis denotes the
time needed in the log scale). It can be observed that for the automata approach, the time
needed is growing exponentially wrt the number of activities/constraints. For a schema
with 28 activities and 28 constraints, it takes more than 3 hours to finish the checking.
However, the syntactic condition approaches (whose complexity is polynomial) can
finish the conformance checking almost instantly. As the times needed for either n, n

2 ,
or 2n

3 constraints are all too close around 1ms, we only use one curve (instead of three)
in Fig. 4 to represent the result for the syntactic conditions approach.
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Fig. 7. String Generation Fig. 8. Str. Gen. / Checking Fig. 9. Changing #Constraints

The syntactic conditions approaches have at most a cubic growth rate in the size of
the input schemas
We compute the times needed for the syntactic condition approaches for input schemas
with n activities and n constraints, n between 50 and 500. Fig. 5 and 6 show the same re-
sult with normal and logarithm scales (resp.) of all four combinations of the constraints.
From the result, the complexity of the syntactic condition approach for alternating and
immediate constraints appears cubic due to the checking of Condition (4) of Definition
3.12 (collapsable); the complexity for ordering and immediate constraints is quadratic
due to the pre-processing to form an im+schema; the complexity for ordering and al-
ternating constraints is linear as the pre-processing (to form an al+schema by detecting
strongly connected components) as well as the acyclicity check of the causality graphs
are linear; finally, the complexity for the constraints of a single direction is also linear.

Conforming string generation requires polynomial to exponential times

With the same experiment setting as above, Fig. 7 shows the time to generate a conform-
ing string for a conformable schema. From the results, all string generating approaches
are polynomial except for the single direction case (i.e, either response or precedence).
According to Alg. 3, the length of a generated string can be as long as 2n, where n is
the number of activities in the given schema. Fig. 8 presents the ratios of the time to
generate a conforming string over the time to check conformance of the same schema
for conformable schemas. The results indicate that the complexity to generate a string
can be polynomially lower (ordering and immediate case), the same (alternating and
immediate case), polynomially higher (ordering and alternating case), and exponen-
tially higher (single direction case) than the corresponding complexity to check con-
formance of the same schema. Note that the curves in Fig. 8 is lower or “smaller” than
dividing “Fig. 7” by “Fig. 5” due to the reason that the data shown in Fig. 7 is only for
the conformable schemas; while the one in Fig. 5 is for general schemas, where non-
conformable schemas can be determined 5 - 15% faster than conformable ones due to
the reason that a non-comformable schema fails the checking if it does not satisfy one
of the conditions (e.g., in Theorem 3.5, there are three conditions to check); while a
comformable schema can pass the check only after all conditions are checked.

Increasing the number of constraints increases more time for the automata approach
than syntactic condition approaches

We compute the time needed for the syntactic condition approaches with input schemas
containing only ordering and immediate constraints with n activities and either n, 2n,
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or n
2 constraints, where n ranges from 50 to 500. (For other three types of combina-

tions of constraints, the results are similar). Fig. 9 shows the three curves for n, 2n,
and n

2 constraints respectively. Comparing the similar settings shown in Fig. 4, there
does not exist an obvious growth in time when the number of constraints grow and the
curves are almost the same. The reason is that the algorithms we used to check confor-
mance and generate strings are graph-based approaches. As #C ∈ [ #A

2 , 2#A], we have
O(#C) = O(#A) that can provide the same complexity. Moreover, if #C < #A

2 , there
will be activities involving in no constraint, which leads to a non-practical setting; if
#C > 2#A, almost all the randomly generated schemas will be non-confomable based
on uniform distribution.

5 Related Work

The work reported here is a part of the study on collaborative systems and choreography
languages [16]. The constraint language studied is a part of DecSerFlow [2], whose
constraints can be translated to LTL [13].

Original LTL [13] is defined for infinite sequences. [15] proved that LTL satisfiability
checking is PSPACE-Complete. A well-know result in [17] shows that LTL is equivalent
to Büchi automata; and the LTL satisfiability checking can be translated to language
emptiness checking. Several complexity results on satisfiability developed for subsets
of LTL. [5] shows that restriction to Horn formulas will not decrease the complexity of
satisfiability checking. [6] investigates the complexity of cases restricted by the use of
temporal operators, their nesting, and number of variables. [4] and [3] provide upper and
lower bounds for different combinations of both temporal and propositional operators.
[7] presents the tractability of LTL only with combination of “XOR” clauses.

For the finite semantics, [8] studies the semantics of LTL upon truncated paths. [10]
provides an exponential-time algorithm to check if a given LTL formula can be satisfied
by a given finite-state model, but the execution is still infinite.

Business process modeling has been studied variously in the last decade ([9,1]). Pre-
vious studies of declarative models focus mostly on formal verification of general prop-
erties involving data, generally, such verification problems have exponential or higher
time complexity (see [9]).

6 Conclusions

This paper studied syntactic characterization of conformance for “core” DecSerFlow
constraints that are reduced from general DecSerFlow constraints. We provided char-
acterizations for (1) ordering and immediate constraints, (2) ordering and alternating
constraints, (3) alternating and immediate constraints, and (4) ordering, alternating, and
immediate constraints with precedence (or response) direction only. The general case
for ordering, immediate, and alternating constraints with both precedence and response
directions remains as an open problem; furthermore, it is unclear if the conformance
problem for DecSerFlow constraints is in PTIME.
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