
Xavier Franch Aditya K. Ghose
Grace A. Lewis Sami Bhiri (Eds.)

 123

12th International Conference, ICSOC 2014
Paris, France, November 3–6, 2014
Proceedings

Service-Oriented
ComputingLN

CS
 8

83
1

Se
rv

ice
s S

cie
nc

e

Lecture Notes in Computer Science 8831

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK
Josef Kittler, UK
Friedemann Mattern, Switzerland
Moni Naor, Israel
Bernhard Steffen, Germany
Doug Tygar, USA

Takeo Kanade, USA
Jon M. Kleinberg, USA
John C. Mitchell, USA
C. Pandu Rangan, India
Demetri Terzopoulos, USA
Gerhard Weikum, Germany

Services Science

Subline of Lectures Notes in Computer Science

Subline Editors-in-Chief

Robert J.T. Morris, IBM Research, USA
Michael P. Papazoglou, University of Tilburg, The Netherlands
Darrell Williamson, CSIRO, Sydney, Australia

Subline Editorial Board

Boualem Bentallah, Australia
Athman Bouguettaya, Australia
Murthy Devarakonda, USA
Carlo Ghezzi, Italy
Chi-Hung Chi, China
Hani Jamjoom, USA
Paul Klint, The Netherlands

Ingolf Krueger, USA
Paul Maglio, USA
Christos Nikolaou, Greece
Klaus Pohl, Germany
Stefan Tai, Germany
Yuzuru Tanaka, Japan
Christopher Ward, USA

Xavier Franch Aditya K. Ghose
Grace A. Lewis Sami Bhiri (Eds.)

Service-Oriented
Computing

12th International Conference, ICSOC 2014
Paris, France, November 3-6, 2014
Proceedings

13

Volume Editors

Xavier Franch
Universitat Politècnica de Catalunya
UPC - Campus Nord, Omega 122, c/Jordi Girona 1-3
08034 Barcelona, Spain
E-mail: franch@essi.upc.edu

Aditya K. Ghose
University of Wollongong
School of Computer Science and Software Engineering
Wollongong, NSW 2522, Australia
E-mail: aditya@uow.edu.au

Grace A. Lewis
Carnegie Mellon Software Engineering Institute
4500 Fifth Ave., Pittsburgh, PA 15213, USA
E-mail: glewis@sei.cmu.edu

Sami Bhiri
Télécom SudParis
9 rue Charles Fourier, 91011 Evry Cedex, France
E-mail: sami.bhiri@gmail.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-662-45390-2 e-ISBN 978-3-662-45391-9
DOI 10.1007/978-3-662-45391-9
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014952601

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Welcome to the proceedings of the 12th International Conference on Service-
Oriented Computing (ICSOC 2014), held in Paris, France, November 3–6, 2014.
ICSOC 2014 was co-organized by Télécom SudParis (Institut Mines-Télécom)
and the Paris Dauphine University. These proceedings contain high-quality re-
search papers that represent the latest results, ideas, and position and vision
statements in the field of service-oriented computing. Since the first occurrence
of the conference more than 10 years ago, ICSOC has grown to become the pre-
mier international forum for academics, industry researchers, and practitioners
to share, report, and discuss their groundbreaking work. ICSOC 2014 continued
along this tradition. In addition to traditional topics such as service-oriented
architecture, service design, service description, and service composition, service
change management is a key topic that reflects the need for services to adapt
to dynamic environments. Cloud service management also naturally appears as
a topic of intersection between service-oriented computing and cloud comput-
ing. This year’s call for papers attracted 180 research and industry submissions
from 31 countries and six continents. The submissions were rigorously evaluated
by three reviewers, followed by a discussion moderated by a senior Program
Committee (PC) member who made a final recommendation in the form of a
meta-review. The PC was composed of 112 world-class experts in service-oriented
computing from 22 different countries. The ICSOC 2014 program featured 25 full
papers (acceptance rate of 13.9%) and 26 short papers. The conference program
was highlighted by two invited keynotes (by Joseph Sifakis from RiSD Labora-
tory EPFL and François Bancilhon from Data Publica), lively panel discussions,
multiple demonstrations, the PhD Symposium, and seven workshops on different
aspects of service-oriented and cloud computing. We would like to express our
gratitude to all individuals, institutions, and sponsors that supported ICSOC
2014. The high-quality program you are about to experience would have not
been possible without the expertise and dedication of our PC and in particular
of our senior PC members. We are grateful for the guidance of the general chair
(Samir Tata), the effort of more than 60 external reviewers, the proceedings
chair (Sami Bhiri), the local organizers (led by Walid Gaaloul and Daniela Grig-
ori) and volunteers, and last but not least to the distinguished members of the
ICSOC Steering Committee. All of them helped to make ICSOC 2014 a success.
Finally, a special word of thanks goes to all researchers, practitioners, and stu-
dents who contributed their presentations, questions, and active participation in
the conference. We hope you enjoy these proceedings!

November 2014 Xavier Franch
Aditya K. Ghose
Grace A. Lewis

Organization

General Chair

Samir Tata Télécom SudParis, France

Advisory Board

Paco Curbera IBM Research, USA
Paolo Traverso ITC-IRST, Italy

Program Chairs

Xavier Franch Universitat Politècnica de Catalunya, Spain
Aditya K. Ghose University of Wollongong, Australia
Grace A. Lewis Carnegie Mellon Software Engineering

Institute, USA

Steering Committee Liaison

Boualem Benatallah University of New South Wales, Australia

Workshop Chairs

Daniela Grigori University of Paris Dauphine, France
Barbara Pernici Politecnico di Milano, Italy
Farouk Toumani Blaise Pascal University, France

Demonstration Chairs

Brian Blake University of Miami, USA
Olivier Perrin University of Lorraine, France
Iman Saleh Moustafa University of Miami, USA

Panel Chairs

Marlon Dumas University of Tartu, Estonia
Henderik A. Proper Henri Tudor Center, Luxembourg
Hong-Linh Truong Vienna University of Technology, Austria

VIII Organization

PhD Symposium Chairs

Djamal Benslimane Claude Bernard University of Lyon 1, France
Jan Mendling WU Vienna, Austria
Nejib Ben Hadj-Alouane ENIT, Tunisia

Publicity Chairs

Kais Klai University of Paris 13, France
Hanan Lutfiyya University of Western Ontario, Canada
ZhangBing Zhou China University of Geosciences, China

Local Organization Chairs

Walid Gaaloul Télécom SudParis, France
Daniela Grigori University of Paris Dauphine, France

Publication Chair

Sami Bhiri Télécom SudParis, France

Web Chairs

Chan Nguyen Ngoc LORIA, France
Mohamed Sellami Ecole des Mines de Nantes, France

Senior Program Committee

Samik Basu Iowa State University, USA
Boualem Benatallah University of New South Wales, Australia
Athman Bouguettaya RMIT University, Australia
Fabio Casati University of Trento, Italy
Flavio De Paoli University of Milano-Bicocca, Italy
Schahram Dustdar Technical University of Vienna, Austria
Mohand-Said Hacid University of Lyon, France
Lin Liu Tsinghua University, China
Heiko Ludwig IBM Research - Almaden, USA
E. Michael Maximilien IBM Cloud Labs, USA
Cesare Pautasso University of Lugano, Switzerland
Barbara Pernici Politecnico di Milano, Italy
Gustavo Rossi National University of La Plata, Argentina

Organization IX

Michael Q. Sheng Adelaide University, Australia
Stefan Tai Technical University of Berlin, Germany
Zahir Tari RMIT University, Australia
Mathias Weske HPI/University of Potsdam, Germany
Jian Yang Macquarie University, Australia
Liang Zhang Fudan University, China

Program Committee

Rafael Accorsi University of Freiburg, Germany
Rama Akkiraju IBM, USA
Alvaro Arenas Instituto de Empresa Business School, Spain
Ebrahim Bagheri Athabasca University, Canada
Luciano Baresi Politecnico di Milano, Italy
Alistair Barros Queensland University of Technology, Australia
Khalid Belhajjame Paris Dauphine University, LAMSADE, France
Salima Benbernou Paris Descartes University, France
Sami Bhiri Télécom SudParis, France
Domenico Bianculli University of Luxembourg, Luxembourg
Walter Binder University of Lugano, Switzerland
Omar Boucelma University of Aix-Marseille, France
Ivona Brandic Vienna University of Technology, Austria
Christoph Bussler Tropo Inc., USA
Manuel Carro IMDEA Software Institute and Technical

University of Madrid, Spain
Wing-Kwong Chan City University of Hong Kong, Hong Kong
Shiping Chen CSIRO ICT, Australia
Lawrence Chung University of Texas at Dallas, USA
Florian Daniel University of Trento, Italy
Shuiguang Deng Zhejiang University, China
Khalil Drira LAAS-CNRS, France
Abdelkarim Erradi Qatar University, Qatar
Rik Eshuis Eindhoven University of Technology,

The Netherlands
Marcelo Fantinato University of Sao Paulo, Brazil
Marie-Christine Fauvet University of Joseph Fourier, France
Joao E. Ferreira University of Sao Paulo, Brazil
Walid Gaaloul Télécom SudParis, France
G.R. Gangadharan IDRBT, India
Dragan Gasevic Athabasca University, Canada
Paolo Giorgini University of Trento, Italy
Claude Godart University of Lorraine, France
Mohamed Graiet ISIMM, Tunisia
Sven Graupner Hewlett-Packard, USA
Daniela Grigori Paris Dauphine University, France

X Organization

Jun Han Swinburne University of Technology, Australia
Peng Han Chongqing Academy of Science and

Technology, China
Bernhard Holtkamp Fraunhofer ISST, Germany
Fuyuki Ishikawa National Institute of Informatics, Japan
Hai Jin Huazhong University of Science and

Technology, China
Dimka Karastoyanova University of Stuttgart, Germany
Hamamache Kheddouci University of Lyon, France
Kais Klai University of Paris 13, France
Ryan Ko University of Waikato, New Zealand
Gerald Kotonya Lancaster University, UK
Patricia Lago VU University Amsterdam, The Netherlands
Frank Leymann University of Stuttgart, Germany
Ying Li Zhejiang University, China
Xumin Liu Rochester Institute of Technology, USA
Alessio Lomuscio Imperial College London, UK
Zaki Malik Wayne State University, USA
Massimo Mecella Sapienza University of Rome, Italy
Lars Moench University of Hagen, Germany
Marco Montali Free University of Bozen-Bolzano, Italy
Michael Mrissa University of Lyon, France
Nanjangud C. Narendra Cognizant Technology Solutions, India
Surya Nepal Commonwealth Scientific and Industrial

Research Organisation, Australia
Srinivas Padmanabhuni Infosys Labs, India
Helen Paik University of New South Wales, Australia
Fabio Patrizi Sapienza University of Rome, Italy
Olivier Perrin Lorraine University, France
Radha Krishna Pisipati Infosys Technologies Limited, India
Marco Pistore Fondazione Bruno Kessler, Italy
Pascal Poizat Paris Ouest University and LIP6, France
Artem Polyvyanyy Queensland University of Technology, Australia
Karthikeyan Ponnalagu IBM Research, India
Mu Qiao IBM Almaden Research Center, USA
Manfred Reichert Ulm University, Germany
Wolfgang Reisig Humboldt University of Berlin, Germany
Hamid Reza Motahari-Nezhad Hewlett-Packard, USA
Colette Roland Paris 1 University, France
Antonio Ruiz-Cortés University of Seville, Spain
Diptikalyan Saha IBM Research, India
Jun Shen University of Wollongong, Australia
Larisa Shwartz IBM T.J. Watson Research Center, USA
Ignacio Silva-Lepe IBM, USA
Sergey Smirnov SAP, Germany

Organization XI

George Spanoudakis City University London, UK
Jianwen Su University of California at Santa Barbara, USA
Giordano Tamburrelli University of Lugano, Switzerland
Roman Vaculin IBM T.J. Watson Research Center, USA
Guiling Wang North China University of Technology, China
Jianwu Wang University of California - San Diego, USA
Yan Wang Macquarie University, Australia
Zhongjie Wang Harbin Institute of Technology, China
Ingo Weber National ICT Australia, Australia
Lai Xu Bournemouth University, UK
Yuhong Yan Concordia University, Canada
Zheng Yan Xidian University, China/Aalto University,

Finland
Jian Yu Auckland University of Technology,

New Zealand
Qi Yu Rochester Institute of Technology, USA
Weiliang Zhao University of Wollongong, Australia
Andrea Zisman City University London, UK

External Reviewers

Imene Abdennadher LAAS-CNRS, Toulouse, France
Husain Aljafer Wayne State University, USA
Nariman Ammar Wayne State University, USA
Mohsen Asadi Simon Fraser University, Canada
Nour Assy Télécom SudParis, France
Yacine Aydi University of Sfax, Tunisia
Fatma Basak Aydemir University of Trento, Italy
George Baryannis University of Crete, Greece
Mahdi Bennara University of Lyon, France
Lubomir Bulej University of Lugano, Switzerland
Mariam Chaabane University of Sfax, Tunisia
Wassim Derguech NUI, Galway, Ireland
Raffael Dzikowski Humboldt University of Berlin, Germany
Soodeh Farokhi Vienna University of Technology, Austria
Pablo Fernández University of Seville, Spain
José Maŕıa Garćıa University of Innsbruck, Austria
Feng Gao NUI, Galway, Ireland
Amal Gassara University of Sfax, Tunisia
Leopoldo Gomez University of Guadalajara, Mexico
Genady Grabarnik St. John’s University, USA
Gregor Grambow Ulm University, Germany
Khayyam Hashmi Wayne State University, USA
Dragan Ivanovic IMDEA Software Institute, Spain
Nesrine Khabou University of Sfax, Tunisia
Fayez Khazalah Wayne State University, USA

XII Organization

David Knuplesch Ulm University, Germany
Indika Kumara Swinburne University of Technology, Australia
Jens Kolb Ulm University, Germany
Andreas Lanz Ulm University, Germany
Drazen Lucanin Vienna University of Technology, Austria
Jordi Marco BarcelonaTech-UPC, Spain
Toni Mastelic Vienna University of Technology, Austria
Andre Moelle Humboldt University of Berlin, Germany
Ralf Nagel Fraunhofer ISST, Germany
Erfan Najmi Wayne State University, USA
Elda Paja University of Trento, Italy
José Antonio Parejo University of Seville, Spain
Andrej Podzimek University of Lugano, Switzerland
Rüdiger Pryss Ulm University, Germany
Robert Prüfer Humboldt University of Berlin, Germany
Lie Qu Macquarie University, Australia
Aubrey J. Rembert IBM Research, USA
Manuel Resinas University of Seville, Spain
Adela del-Rı́o-Ortega University of Seville, Spain
Alessandro Russo Sapienza University of Rome, Italy
Andrea Rosa University of Lugano, Switzerland
Mattia Salnitri University of Trento, Italy
Eric Schmieders Duisburg-Essen University, Germany
Sana Sellami Aix-Marseille University, France
Upendra Sharma IBM Research, USA
Dong-Hoon Shin National Institute of Informatics, Japan

Sebastiano Spicuglia University of Lugano, Switzerland
Sebastian Steinbuss Fraunhofer ISST, Germany
Yutian Sun University of California at Santa Barbara, USA
Jan Sürmeli Humboldt University of Berlin, Germany
Byungchul Tak IBM Research, USA
Alan Tan University of Waikato, New Zealand
Liang Tang LinkedIn Inc., USA
Julian Tiedeken Ulm University, Germany
Mauro Tortonesi University of Ferrara, Italy
Pierre de Vettor University of Lyon, France
Paul de Vrieze Bournemouth University, UK
Quanwang Wu National Institute of Informatics, Japan
Karn Yongsiriwit Télécom SudParis, France
Mo Yu Pennsylvania State University, USA
Ehtesham Zahoor National University of Computer and Emerging

Sciences, FAST-NU, Pakistan
Xiaoming Zheng Macquarie University, Australia
Jun Zou Macquarie University, Australia

Keynote (Abstracts)

Rigorous System Design

Joseph Sifakis

RiSD Laboratory EPFL

joseph.sifakis@epfl.ch

Abstract. We advocate rigorous system design as a coherent and ac-
countable model-based process leading from requirements to implemen-
tations. We present the state of the art in system design, discuss its
current limitations, and identify possible avenues for overcoming them.
A rigorous system design flow is defined as a formal accountable and
iterative process composed of steps, and based on four principles: (1)
separation of concerns; (2) component-based construction; (3) seman-
tic coherency; and (4) correctness-by-construction. We show that the
combined application of these principles allows the definition of rigorous
design flows clearly identifying where human intervention and ingenu-
ity are needed to resolve design choices, as well as activities that can be
supported by tools to automate tedious and error-prone tasks. An imple-
mentable system model is progressively derived by source-to-source auto-
mated transformations in a single host component-based language rooted
in well-defined semantics. Using a single modeling language through-
out the design flow enforces semantic coherency. Correct-by-construction
techniques allow well-known limitations of a posteriori verification to be
overcome and ensure accountability. It is possible to explain, at each
design step, which among the requirements are satisfied and which may
not be satisfied. The presented view has been amply implemented in the
BIP (Behavior, Interaction, Priority) component framework and sub-
stantiated by numerous experimental results showing both its relevance
and feasibility. We show in particular, how distributed implementations
can be generated from BIP models with multiparty interactions by ap-
plication of correct-by-construction transformations.

Applying Data Science to Firmographics

François Bancilhon

Data Publica

francois.bancilhon@data-publica.com

Abstract. Data science is now fashionable and the search for data sci-
entists is a new challenge for headhunters. Even though both terms are
fuzzy and subject to hype and buzzword mania, data science includes
data collection, data cleansing, data management, data analytics, and
data vizualisation, and a data scientist is a person who can master some
or all of these techniques (or sciences). At Data Publica, we are applying
data science to firmographics (firmographics is to organizations what de-
mographics is to people), and we are using firmographics to answer the
needs of B2B sales and marketing departments. This talk will present
the techniques we use and some of the amazing results they produce.

Table of Contents

Research Papers

Business Process Management

Configuration Rule Mining for Variability Analysis in Configurable
Process Models . 1

Nour Assy and Walid Gaaloul

ProcessBase: A Hybrid Process Management Platform 16
Moshe Chai Barukh and Boualem Benatallah

A Multi-objective Approach to Business Process Repair 32
Chiara Di Francescomarino, Roberto Tiella, Chiara Ghidini, and
Paolo Tonella

Memetic Algorithms for Mining Change Logs in Process
Choreographies . 47

Walid Fdhila, Stefanie Rinderle-Ma, and Conrad Indiono

Flexible Batch Configuration in Business Processes Based on Events 63
Luise Pufahl, Nico Herzberg, Andreas Meyer, and Mathias Weske

Automatic Generation of Optimized Workflow for Distributed
Computations on Large-Scale Matrices . 79

Farida Sabry, Abdelkarim Erradi, Mohamed Nassar, and
Qutaibah M. Malluhi

Service Composition and Discovery

A Dynamic Service Composition Model for Adaptive Systems in Mobile
Computing Environments . 93

Nanxi Chen and Siobhán Clarke

Optimal and Automatic Transactional Web Service Composition with
Dependency Graph and 0-1 Linear Programming . 108

Virginie Gabrel, Maude Manouvrier, and Cécile Murat

A Framework for Searching Semantic Data and Services
with SPARQL . 123

Mohamed Lamine Mouhoub, Daniela Grigori, and
Maude Manouvrier

XVIII Table of Contents

Conformance for DecSerFlow Constraints . 139
Yutian Sun and Jianwen Su

Integrating On-policy Reinforcement Learning with Multi-agent
Techniques for Adaptive Service Composition . 154

Hongbing Wang, Xin Chen, Qin Wu, Qi Yu, Zibin Zheng, and
Athman Bouguettaya

Service Design, Description and Evolution

An Agent-Based Service Marketplace for Dynamic and Unreliable
Settings . 169

Lina Barakat, Samhar Mahmoud, Simon Miles, Adel Taweel, and
Michael Luck

Architecture-Centric Design of Complex Message-Based Service
Systems . 184

Christoph Dorn, Philipp Waibel, and Schahram Dustdar

Managing Expectations: Runtime Negotiation of Information Quality
Requirements in Event-Based Systems . 199

Sebastian Frischbier, Peter Pietzuch, and Alejandro Buchmann

C2P :Co-operative Caching in Distributed Storage Systems 214
Shripad J. Nadgowda, Ravella C. Sreenivas, Sanchit Gupta,
Neha Gupta, and Akshat Verma

Detection of REST Patterns and Antipatterns: A Heuristics-Based
Approach . 230

Francis Palma, Johann Dubois, Naouel Moha, and
Yann-Gaël Guéhéneuc

How Do Developers React to RESTful API Evolution? 245
Shaohua Wang, Iman Keivanloo, and Ying Zou

Cloud and Business Service Management

How to Enable Multiple Skill Learning in a SLA Constrained Service
System? . 260

Sumit Kalra, Shivali Agarwal, and Gargi Dasgupta

ADVISE – A Framework for Evaluating Cloud Service Elasticity
Behavior . 275

Georgiana Copil, Demetris Trihinas, Hong-Linh Truong,
Daniel Moldovan, George Pallis, Schahram Dustdar, and
Marios Dikaiakos

Table of Contents XIX

Transforming Service Compositions into Cloud-Friendly Actor
Networks . 291

Dragan Ivanović and Manuel Carro

A Runtime Model Approach for Data Geo-location Checks of Cloud
Services . 306

Eric Schmieders, Andreas Metzger, and Klaus Pohl

Heuristic Approaches for Robust Cloud Monitor Placement 321
Melanie Siebenhaar, Dieter Schuller, Olga Wenge, and
Ralf Steinmetz

Compensation-Based vs. Convergent Deployment Automation for
Services Operated in the Cloud . 336

Johannes Wettinger, Uwe Breitenbücher, and Frank Leymann

Research Papers - Short

Ensuring Composition Properties

On Enabling Time-Aware Consistency of Collaborative
Cross-Organisational Business Processes . 351

Saoussen Cheikhrouhou, Slim Kallel, Nawal Guermouche, and
Mohamed Jmaiel

Weak Conformance between Process Models and Synchronized Object
Life Cycles . 359

Andreas Meyer and Mathias Weske

Failure-Proof Spatio-temporal Composition of Sensor Cloud Services . . . 368
Azadeh Ghari Neiat, Athman Bouguettaya, Timos Sellis, and
Hai Dong

Quality of Services

Probabilistic Prediction of the QoS of Service Orchestrations:
A Truly Compositional Approach . 378

Leonardo Bartoloni, Antonio Brogi, and Ahmad Ibrahim

QoS-Aware Complex Event Service Composition and Optimization
Using Genetic Algorithms . 386

Feng Gao, Edward Curry, Muhammad Intizar Ali, Sami Bhiri, and
Alessandra Mileo

Towards QoS Prediction Based on Composition Structure Analysis and
Probabilistic Models . 394

Dragan Ivanović, Manuel Carro, and Peerachai Kaowichakorn

XX Table of Contents

Semantic Web Services

Orchestrating SOA Using Requirement Specifications and Domain
Ontologies . 403

Manoj Bhat, Chunyang Ye, and Hans-Arno Jacobsen

Estimating Functional Reusability of Services . 411
Felix Mohr

Negative-Connection-Aware Tag-Based Association Mining and Service
Recommendation . 419

Yayu Ni, Yushun Fan, Keman Huang, Jing Bi, and Wei Tan

Service Management

Choreographing Services over Mobile Devices . 429
Tanveer Ahmed and Abhishek Srivastava

Adaptation of Asynchronously Communicating Software 437
Carlos Canal and Gwen Salaün

Handling Irreconcilable Mismatches in Web Services Mediation 445
Xiaoqiang Qiao, Quan Z. Sheng, and Wei Chen

Cloud Service Management

Evaluating Cloud Users’ Credibility of Providing Subjective Assessment
or Objective Assessment for Cloud Services . 453

Lie Qu, Yan Wang, Mehmet A. Orgun, Duncan S. Wong, and
Athman Bouguettaya

Composition of Cloud Collaborations under Consideration of
Non-functional Attributes . 462

Olga Wenge, Dieter Schuller, Ulrich Lampe,
Melanie Siebenhaar, and Ralf Steinmetz

Bottleneck Detection and Solution Recommendation for Cloud-Based
Multi-Tier Application . 470

Jinhui Yao and Gueyoung Jung

Business Service Management

Towards Auto-remediation in Services Delivery: Context-Based
Classification of Noisy and Unstructured Tickets . 478

Gargi Dasgupta, Tapan K. Nayak, Arjun R. Akula,
Shivali Agarwal, and Shripad J. Nadgowda

Table of Contents XXI

ITIL Metamodel . 486
Nelson Gama, Marco Vicente, and Miguel Mira da Silva

Formal Modeling and Analysis of Home Care Plans 494
Kahina Gani, Marinette Bouet, Michel Schneider, and
Farouk Toumani

Effort Analysis Using Collective Stochastic Model . 502
Vugranam C. Sreedhar

Trust

A Novel Equitable Trustworthy Mechanism for Service Recommendation
in the Evolving Service Ecosystem . 510

Keman Huang, Yi Liu, Surya Nepal, Yushun Fan,
Shiping Chen, and Wei Tan

Semantics-Based Approach for Dynamic Evolution of Trust Negotiation
Protocols in Cloud Collaboration . 518

Seung Hwan Ryu, Abdelkarim Erradi, Khaled M. Khan,
Saleh Alhazbi, and Boualem Benatallah

Social Context-Aware Trust Prediction in Social Networks 527
Xiaoming Zheng, Yan Wang, Mehmet A. Orgun, Guanfeng Liu, and
Haibin Zhang

Service Design and Description

Decidability and Complexity of Simulation Preorder for Data-Centric
Web Services . 535

Lakhdar Akroun, Boualem Benatallah, Lhouari Nourine, and
Farouk Toumani

Market-Optimized Service Specification and Matching 543
Svetlana Arifulina, Marie Christin Platenius, Steffen Becker,
Christian Gerth, Gregor Engels, and Wilhelm Schäfer

Designing Secure Service Workflows in BPEL . 551
Luca Pino, Khaled Mahbub, and George Spanoudakis

Industrial Papers

Runtime Management of Multi-level SLAs for Transport and Logistics
Services . 560

Clarissa Cassales Marquezan, Andreas Metzger, Rod Franklin, and
Klaus Pohl

XXII Table of Contents

Single Source of Truth (SSOT) for Service Oriented Architecture
(SOA) . 575

Candy Pang and Duane Szafron

Model for Service License in API Ecosystems . 590
Maja Vukovic, Liangzhao Zeng, and Sriram Rajagopal

Author Index . 599

Configuration Rule Mining for Variability

Analysis in Configurable Process Models

Nour Assy and Walid Gaaloul

Computer Science Department, Telecom SudParis
UMR 5157 CNRS Samovar, France

{firstname.lastname}@telecom-sudparis.eu

Abstract. With the intention of design by reuse, configurable process
models provide a way to model variability in reference models that need
to be configured according to specific needs. Recently, the increasing
adoption of configurable process models has resulted in a large number
of configured process variants. Current research activities are successfully
investigating the design and configuration of configurable process models.
However, a little attention is attributed to analyze the way they are
configured. Such analysis can yield useful information in order to help
organizations improving the quality of their configurable process models.
In this paper, we introduce configuration rule mining, a frequency-based
approach for supporting the variability analysis in configurable process
models. Basically, we propose to enhance configurable process models
with configuration rules that describe the interrelationships between the
frequently selected configurations. These rules are extracted from a large
collection of process variants using association rule mining techniques.
To show the feasibility and effectiveness of our approach, we conduct
experiments on a dataset from SAP reference model.

1 Introduction

With the rapidly changing demands in today’s business requirements, there is
no doubt that new paradigms for managing enterprises’ business processes turn
into a pressing need. In such a highly dynamic environment, seeking reuse [1] and
adaptability [2] become a strong requirement for a successful business process
design. To this end, configurable process models [3] provide a way for modeling
variability in reference models. A configurable process model is a generic model
that integrates multiple process variants of a same business process in a given
domain through variation points. These variation points are referred to as con-
figurable elements and allow for multiple design options in the process model.
A configurable process model needs to be configured according to a specific re-
quirement by selecting one design option for each configurable element. In this
way, an individual process variant is derived without an extra design effort.

Recently, several approaches addressed the problem of building configurable
process models. Some of them propose to merge existing process variants [4–7],
others try to mine one configurable process model from execution logs [8–10].

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 1–15, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

2 N. Assy and W. Gaaloul

These research results highlight the need for means of support to derive indi-
vidual variants as integrated models tend to be complex with a large number
of configurable elements [11]. To fill this gap, some works propose to use ques-
tionnaires [12] or ontologies [13] in order to get business requirements and guide
the configuration process. Others propose to use non functional requirements to
assess configuration decisions on the process performance [14]. Although these
works have made a considerable effort on process variability design and config-
uration, a less attention has been paid to understand the way a configurable
process model is configured. That means which configurations are frequently se-
lected by the users and how configuration decisions may have an impact on others
in the process model. The configurations’ frequencies and interrelationships have
been identified in the requirements for a configurable modeling technique in [3].

In this work, we propose to enhance configurable process models with con-
figuration rules. These rules reveal the frequency and association between the
configuration decisions taken for different variation points in a configurable pro-
cess model. Concretely, we propose to discover from a large collection of process
variants the frequently selected configurations in a configurable process model.
Then, taking advantage of machine learning techniques [15], in particular associ-
ation rule mining, we extract configuration rules between the discovered config-
urations. These rules can be then used to support business analysts to develop
a better understanding and reasoning on the variability in their configurable
process models. For instance, business analysts can manage the complexity of
existing configurable process models by removing or altering the configurations
that were never or rarely selected. Moreover, the automated discovery of the
interrelationships between configuration decisions can assist the configuration
process by predicting next suitable configurations given the selected ones.

The remainder of the paper is organized as follows: in section 2, we present a
running example used throughout the paper to illustrate our approach. Section 3
provides some concepts and definitions needed for our approach. In section 4, we
detail our approach to derive configuration rules using association rule mining
techniques. The validation and experimental results are reported in section 5. In
section 6, we discuss related work and we conclude in section 7.

2 Running Example

Our running example is from SAP reference model for a procurement process
management modeled with the Configurable Event-Driven Process Chain nota-
tion (C-EPC) [3] (see Fig. 1). The EPC notation consists of three elements: event,
function and connector. An event can be seen as a pre- and/or post-condition
that triggers a function. A function is the active element that describes an activ-
ity. Three types of connectors, OR, exclusive OR (XOR) and AND are used to
model the splits and joins. In our example, we index connectors with numbers
in order to distinguish between them. The C-EPC notation adds the config-
urability option for functions and connectors. A configurable function can be in-
cluded or excluded from the model. A configurable connector can change its type

Configuration Rule Mining for Variability Analysis 3

Requirement for
materials

Purchase
Requisition

Purchase
order release

Contract order
release

Shceduling
agreement

release

Purchasing

Inbound
delivery
created

Purchase
order created

Goods
received

V Goods
receipt

Receipt
posted

V

Stores

confirmation
without

differences

TO item
confirmed

Services to
be entered

Service
entry sheet

V

Service
accepted

Service entry
transmitted

Invoice
received

Material
released

V Invoice
verification

Payment to
effect

V

Event Function XOR

V

OR

V

AND
Legend: V

V

x x x

x

x

1 2 3

1

2

3

4

4

Fig. 1. An example of a configurable process model from SAP reference model

Requirement for
materials

Purchase
Requisition

Purchase
requisition

released for
purchase order

Contract order
release

OUX OUX Purchasing OUX

Inbound
delivery for
PO created

Purchase
order created

Goods
received

V Goods
receipt

Receipt
posted

V

Stores OUX

confirmation
without

differences

TO item
confirmed

Do
paymenet

V

Invoice
received

Material
released

V Payment
received

1 2 3

1

2

3

4

4

x

x

Fig. 2. A variant derived from the configurable process model in Fig. 1

(e.g. from OR to AND) or restrict it incoming or outgoing branches. Graphically,
a configurable element is modeled with a thick line.

Returning to our example, the procurement process starts by detecting the
need for new materials. A purchase request is sent to the corresponding provider.
The purchase requisition type (for purchase order, for contract release order
or for scheduling agreement schedule) is evaluated before the purchase starts.
At this stage, either the goods delivery is followed until receiving goods or a
purchase order is created. At the same time, a service entry sheet is created
and transmitted. Last, the invoice is sent to the customer for verification and
payment. We identified five configurable elements in the process: the connectors
“×1”, “×2”, “×3”, “∨”, and the function “invoice verification”. This reference
model is configured and used in a large number of companies that aim at reusing
best practices for modeling their procurement processes.

Assume that a large number of configured process variants has been collected
in a business repository from which we show one process variant in Fig. 2. This
process is derived from the configurable process model in Fig. 1 through the
following configurations:

1. Remove the outgoing branch starting with the event “Scheduling agreement
release” from the configurable “×1”;

2. Change the type of the configurable “∨” to “∧”, and remove the incoming
branch ending with the event “service accepted”;

3. Exclude the function “invoice verification” from the model.

4 N. Assy and W. Gaaloul

In addition, some modifications have been performed on the configured model
according to the company specific requirements such as renaming and/or adding
events and functions. For example, the event “purchase order release” is renamed
to “purchase requisition released for purchase order”.

Using our proposed approach, we target to induce a set of configuration rules
for each configurable element from available process variants. These rules are in
the from of if...then and describe the combinations of the frequently selected con-
figurations. For example, a configuration rule CR1 for the configurable elements
“×1” and “∨” in the process model in Fig. 1 is:

CR1 : < ×, {purchase order release, contract order release} >

S=0.7/C=0.65−−−−−−−−−→ < ∧, {Purchase order created, ∧3} >
(1)

This rule means that:

– The configurable “×1” is frequently configured to a “×” with the outgoing
branches starting with “purchase order release” and “contract order release”;

– The configurable “∨” is frequently configured to an “∧” with the incoming
branches ending with “Purchase order created” and “∧3”;

– S = 0.7 means that in 70% of the process variants, these two configurations
are selected;

– C = 0.65 means that in 65% of the process variants, whenever the first
configuration (that of “×1”) is selected, then the second configuration (that
of “∨”) is also selected.

In the following sections, we give a formal definition for our configuration rules.
Afterwards, we detail our approach for extracting the configuration rules that
explain all possible combinations of the frequently selected configurations in the
configurable process model.

3 Preliminaries

In this section, we present the definition of the business process graph and con-
figurable process model enhanced with our configuration rules definition.

3.1 Business Process Graph

A business process model is a directed graph with labeled nodes. There exist
many notations to represent a business process model such as Event-driven Pro-
cess Chain (EPC), Business Process Modeling Notation (BPMN), Unified Mod-
eling Language (UML), etc. In this work, we abstract from any specific notation
and we represent a process model as a directed graph called business process
graph. This notation is inspired from [4] in which the elements are derived from
the common constructs of existing graphical process modeling notations.

Configuration Rule Mining for Variability Analysis 5

Definition 1. (Business process graph) A business process graph
P = (N,E, T, L) is a labeled directed graph where:

– N is the set of nodes;
– E ⊆ N ×N is the set of edges connecting two nodes;
– T : N → t is a function that assigns for each node n ∈ N a type t where

t depends on the elements’ types for each standard notation. In case of the
EPC notation, t ∈ {event, function, connector}; Throughout the paper, we
refer to functions and events by activities.

– L : N → label is a function that assigns for each node n ∈ N a label such that
if T (n) = event ∨ function, then L(n) is its name, and if T (n) = connector
then L(n) ∈ {∨,∧,×} where ∨ = OR, ∧ = AND and × = XOR.

Let P = (N,E, T, L) be a business process graph. We define the preset and
postset of a connector c ∈ N as the set of elements in its incoming and outgoing
branches respectively.

Definition 2. (preset • c, postset c •) The preset of a connector c ∈ N de-
noted as • c is efined as • c = {n ∈ N : (n, c) ∈ E}. The postset of c denoted as
c • is defined as c • = {n ∈ N : (c, n) ∈ E}.
A connector “c” is a split if |c • | > 1; it is a join if | • c| > 1. For example, in
Fig. 2,×1 •={purchase requisition released for purchase, contract order release};
•∧4 = {∧2, invoice received, material released}. “×1” is a split connector and
“∧4” is a join connector.

3.2 Configurable Process Model

A configurable process model, is a business process graph with configurable el-
ements. A configurable element is an element whose configuration decision is
made at design-time [3]. Configurable elements can be functions and/or connec-
tors. A configurable function can be included (i.e. ON) or excluded (i.e. OFF)
from the process model. A configurable connector has a generic behavior which
is restricted by configuration. A connector can be configured by changing its
type while preserving its behavior and/or restricting its incoming (respectively
outgoing) branches in case of a join (respectively split). Table 1 presents the
set of constraints identified in [3] for the configuration of connectors’ types. A
configurable connector is denoted by [label]c. Each row in the table corresponds
to a configurable connector which can be configured to one or more of the con-
nectors presented in columns. The last column (i.e. Seq) corresponds to a simple
“sequence”. For example, the configurable “∨” can be configured to any con-
nector’s type while a configurable “∧” can be only configured to an “∧”. These
configuration constraints are formalized through the partial order � that spec-
ifies which concrete connector may be used for a given configurable connector.

Definition 3. (partial order �) Let cc be a configurable connector and c be a
normal connector or a sequence (i.e. “Seq”). c � cc iff (L(cc) = “∨”) ∨ (L(cc) =
“× ” ∧ L(c) = “Seq”) ∨ (L(cc) = L(c)).

6 N. Assy and W. Gaaloul

Table 1. Configuration constraints of configurable connectors

∨ ∧ × Seq

∨c � � � �
∧c �
×c � �

Formally, the configuration of a configurable element, i.e. a function or a con-
nector, is defined as:

Definition 4. (Configuration Conf) The configuration of a node nc such
that T (nc) = ‘function’ ∨ ‘connector’ is defined as:

– if T (nc) = ‘function’ then Conf(nc) ∈ {ON,OFF};
– if T (nc) = ‘connector’ then Conf(nc) =< n, •n > (respectively Conf(nc) =

< n, n • >) in case nc is a join (respectively split) connector where:
1. n � nc;
2. •n ⊆ •nc (respectively n • ⊆ nc •) in case nc is a join (respectively split)

connector

For example, the process variant in Fig. 2 is derived from the configurable process
model in Fig. 1 by configuring the “∨c” to: Conf(∨c) =< ∧2, {purchase order cr-
eated, ∧3} >; the configurable function “invoice verification” to: Conf(invoice v-
erification) = OFF ; etc.

Configuration rule. A configuration rule describes an association among the
frequently selected configurations for different configurable elements in a config-
urable process model. It is defined as:

Confh1 , ..., Confhp

S,C−−→ Confb1 , ..., Confbq (2)

where Confhi : 1 ≤ i ≤ p is called the rule head and Confbj : 1 ≤ j ≤ q
is called the rule body. The rule head and body represent the configurations of
different configurable elements in a configurable process model. These configu-
rations are retrieved from a business process repository. A configuration rule is
parameterized by two well known metrics in association rule mining: the Sup-
port S and the Confidence C. The support is the fraction of process variants in
the business process repository that contain the configurations of the rule head
and body. It evaluates the usefulness of a rule. The confidence is the fraction
of process variants that contain the rule body configurations among those that
contain the rule head configurations. It represents the certainty of the rule. Let
� = {Pm : 1 ≤ m ≤ n} be a business process repository. Formally:

S =
|{Phb : 1 ≤ hb ≤ n ∧ Confhi , Confbj ∈ Phb}|

n

C =
|{Phb : 1 ≤ hb ≤ n ∧ Confhi , Confbj ∈ Phb}|

|{Ph : 1 ≤ h ≤ n ∧ Confhi ∈ Ph}|
(3)

Configuration Rule Mining for Variability Analysis 7

where |{Phb : 1 ≤ hb ≤ n ∧ Confhi , Confbj ∈ Pk}| is the number of process
variants in � that contain the configurations in the rule head and body; |{Ph :
1 ≤ h ≤ n ∧ Confhi ∈ Ph}| is the number of process variants that contain the
configurations in the rule head. The semantic of a configuration rule is: if the
configurations in the rule head are selected, then it is highly probably that the
configurations in the rule body are also selected. An example of a configuration
rule is given in (1).

Definition 5. (Configurable process model) A configurable process model is
denoted as P c = (N,E, T, L,B,Conf c, CRc) where:

– N,E, T, L are as specified in Definition 1;
– B : N → {true, false} is a boolean function returning true for configurable

nodes;
– Conf c is the set of valid configurations according to Definition 4;
– CRc is the set of configuration rules.

4 Configuration Rule Mining

In this section, we present our approach for mining configuration rules. Let
P c = (N,E, T, L,B,Conf c, CRc) be a configurable process model and � =
{Pi = (Ni, Ei, Ti, Li) : i ≥ 1} an existing business process repository. First, we
extract from � the set of similar configurations for the configurable elements in
P c (see section 4.1). Then, using association rule mining techniques, we mine
configuration rules from the retrieved similar configurations (see section 4.2).

4.1 Retrieving Similar Configurations

In this step, we extract from each process variant Pi ∈ � the configurations
corresponding to the configurable elements in P c. Nevertheless, retrieving exact
configurations is not realistic as existing process variants may have similar but
not exact parts with the configurable model. Thus, we aim at extracting similar
configurations for the configurable elements. In order to match graph elements,
we compute two similarities: the similarity SimA between activities and the
similarity SimC between connectors.

Activities’ similarity. Let a ∈ N be an activity (function or event) in P c and
a’ ∈ Ni be an activity in the process variant Pi. To compute the similarity SimA

between a and a’, we use a combination of syntactic and semantic similarity
metrics since they are popular for measuring the similarity between activities’
labels in business process models [16]. We use a syntactic similarity based on
Levenshtein distance [17] which computes the number of edit operations (i.e.
insert, delete or substitute a character) needed to transform one string into
another. For the semantic similarity, we use WordNet database [18] which a is
lexical database for English words. The WordNet similarity package includes

8 N. Assy and W. Gaaloul

a set of algorithms for returning the synonyms between two words. We use in
particular the WUP algorithm [19] which measures the relatedness of two words
by considering their depths in WordNet database. After normalizing activities’
labels (i.e. put all characters in lowercase, remove stop words, etc.) the total
similarity is the average of their syntactic and semantic similarities.

SimA(L(a), Li(a’)) =
LD(L(a), Li(a’)) +WUP (L(a), Li(a’))

2
(4)

where 0 ≤ SimA ≤ 1, LD and WUP are functions returning the Levenshtein
distance and the WordNet based similarity respectively between L(a) and Li(a’).
We say that a’ is the best activity matching for a iff: SimA(L(a), Li(a’) ≥
minSimA ∧ �ax ∈ Ni : SimA(L(a), Li(ax)) > SimA(L(a), Li(a’)), where
minSimA is a user specified threshold. For example, in Fig. 1 and 2, the sim-
ilarity between the events “Purchase order release” and “Purchase requisition
released for purchase order” is 0.735. For a minSimA = 0.5,“Purchase order
requisition for purchase order” is the best activity matching for “Purchase order
release” as it has the highest similarity with “Purchase order release”.

Connectors’ similarity. Let c ∈ N be a connector in P c and c’ ∈ Ni be a
connector in Pi. The similarity between connectors cannot be done in the same
way as activities since connectors’ labels do not have linguistic semantics. Hence,
in order to compute the similarity SimC between c and c’, we rely on (1) the
partial order � (see Definition 3) which orders the connectors’ labels based on
their behavior and (2) the postset (respectively preset) similarities in case of split
(respectively join) connectors. The similarity SimC between split connectors is
computed as:

SimC(c, c’) =

{
#BM(c •,c’ •)

|c •| if c’ � c

0 otherwise
(5)

where #BM(c •, c’ •) returns the number of best elements’ matching in c’ •
that correspond to those in c •. The join connectors’ similarity is computed
in the same way but with the consideration of their preset instead of postset.
We say that c’ is the best connector matching for c iff: SimC(c, c’) ≥
minSimC ∧ �cx ∈ Ni : SimC(c, cx) > SimC(c, c’) where minSimC is a user
specified threshold. For example, in Fig. 1 and 2, the similarity between “×1” in
the first process model and “×1” in the second one is SimC(×1,×1) =

2
3 = 0.67.

For a minSimC = 0.5, “×1” in the second process model is the best connector
matching for “×1” in the first one.

Similar functions’/connectors’ configurations. Having defined the similar-
ity metrics for activities and connectors, we show how we retrieve for configurable
elements in P c the similar configurations from each process variant Pi ∈ �.

A configurable function f c ∈ N can be configured to ON or OFF . A config-
uration Conf(f c) = ON is retrieved from a process variant Pi, if there exists a
function f ’ ∈ Ni such that f ’ is the best activity matching for f c. Otherwise,

Configuration Rule Mining for Variability Analysis 9

the configuration Conf(f c) = OFF holds. For example, in our running exam-
ple, for a minSimF = 0.5, the configurable function “Invoice verification” in the
configurable process model in Fig. 1 does not have any best activity matching
in the process variant in Fig. 2. Thus from this process variant, we retrieve the
configuration OFF .

A configurable split (respectively join) connector cc ∈ N can be configured
w.r.t. its type and postset (respectively preset) (see Definition 4). A configuration
Conf(cc) =< c, c • > 1 is retrieved from a process variant Pi:

– if there exists a connector c’ ∈ Ni such that:
1. c’ is the best connector configuration for cc,
2. L(c’) = L(c) and
3. c • is the set of elements in cc • that have best element’ matching in c’ •.

– else if |c • | = 1 and there exists an element e’ ∈ Ni such that e’ is the best
element matching for e ∈ c •. In this case, cc is configured to a “sequence”,
i.e. c = Seq.

For example, for aminSimC=0.5, the configuration Conf(×1)=< ×, {Purchase
order release, contract order release} for the configurable connector “×1” in the
process model in Fig. 1 is retrieved from the process model in Fig. 2 since (1)
“×1” in the second model is the best connector matching for “×1” in the first
model, (2) L(×1) = L(×1) and (3) “Purchase order release” has “Purchase
requisition released for purchase order” as the best activity matching; and “con-
tract order release” has “contract order release” in the second model as the best
activity matching.

4.2 Deriving Configuration Rules

In the previous section (section 4.1), we retrieved for each configurable element
in P c the set of similar configurations found in each process variant in �. In
this section, we use these configurations to mine our configuration rules using
association rule mining techniques.

Association rule mining [20] is one of the most important techniques of data
mining. It aims to find rules for predicting the occurrence of an item based on
the occurrences of other items in a transactional database or other repositories.
It has been first applied to the marketing domain for predicting the items that
are frequently purchased together. Thereafter, it has manifested its power and
usefulness in other areas such as web mining [21] and recommender systems [22].
The Apriori algorithm [23] is one of the earliest and relevant proposed algorithms
for association rule mining.

In our work, we also use the Apriori algorithm for deriving our configuration
rules. In order to be able to apply the Apriori algorithm, we store our retrieved
configurations in a configuration matrix. The configuration matrix is a n×m
matrix where n is the number of process variants in � (i.e. n = |�|) and m is
the number of configurable elements in P c. A row in the configuration matrix

1 We show the case for a split connector.

10 N. Assy and W. Gaaloul

corresponds to one process variant in �. A column corresponds to one config-
urable element in P c. The entry for the row i and the column j contains the
configuration retrieved from Pi ∈ � for the jth configurable element. An exam-
ple of the configuration matrix for the configurable process model in Fig. 1 is
presented in Table 2. For example, the second row corresponds to the configura-
tions retrieved from the process variant in Fig. 2. For clarification purpose, we
refer to the configurations by their identifiers denoted as C[nb]. Table 3 contains
the retrieved configurations’ identifiers for each configurable element.

Table 2. An excerpt of a configuration matrix

Pid invoice
verification

×1 ×2 ×3 ∨

P1 C2 C3 C3 C20 C27

P2 C1 C4 C4 C21 -

P3 C1 C4 C4 - C28

...

Table 3. An excerpt of the retrieved configurations associated to unique identifiers

Nc Conf Confid

invoice verification
OFF C1

ON C2

×1

< ×, {purchase order release, contract order release} > C3

< ×, {purchase order release, scheduling agreemenr release} > C4

... ...

×2

< ×, {purchase order release, contract order release} > C8

< ×, {purchase order release, scheduling agreemenr release} > C9

... ...

×3

< ×, {Inbound delivery created, Purchase order created} > C20

< Seq, {purchase order release} > C21

... ...

∨
< ∧, {Purchase order created, ∧3} > C27

< ×, {purchase order created, Service accepted} > C28

< ×, {Service accepted, ∧3} > C29

... ...

The configuration matrix along with a user specified support and confidence
thresholds are used as inputs by the Apriori algorithm. As output, the Apriori
algorithm returns the set of configuration rules having a support and confidence
above the user’s thresholds. An example of a configuration rule returned by
Apriori for a support S = 0.5 and a confidence C = 0.5 is given in (1).

Configuration Rule Mining for Variability Analysis 11

5 Experimental Results

In order to evaluate the usefulness and effectiveness of our proposed approach,
we conduct experiments on a dataset from SAP reference model which contains
604 process models in EPC notation [24]. These models are not configurable.
To create configurable process models for our experiments, we merge the simi-
lar processes in SAP models into configurable EPC (C-EPC) models using the
merging approach proposed in [4]. To do so, we cluster similar process mod-
els with the Agglomerative Hierarchical Clustering (AHC) algorithm using the
similarity approach presented in [4]. We obtain 40 clusters of similar process
models having a similarity higher than 0.5. Then, each cluster is merged into
one configurable process model. The characteristics of each obtained cluster and
the corresponding configurable models are reported in Table 4.

Table 4. The size statistics of the clusters and the configurable process models

size # configurable
nodes

min max avg. min max avg.

cluster 20.55 25.625 23 0 0 0

configurable model 2 162 34.175 0 36 5.575

In the first experiment, we calculate the amount of reduction in the number
of allowed configurations for a configurable process model using our proposed
approach. Since the exponential growth in the number of allowed configurations
is a source of complexity in a configurable process model, reducing and linking
configuration decisions to the frequently selected ones have a significant impact
on the variability understanding in configurable process models. Therefore, for
each configurable process model, we mine the configuration rules. Then, we com-
pute the amount of reduction which is one minus the ratio between the number
of valid configurations using our configuration rules and the total number of
valid configurations. The amount of reduction is defined as:

R = 1− #CR

#C
(6)

where #CR is the number of configurations using our configuration rules and #C
is the total number of valid configurations. The results reported in Table 5 show
that in average we save up to 70% of allowed configurations which are either
infrequent configurations or never selected in existing process models. Note that
this amount of reduction may vary depending on the selected minSupport and
minConfidence thresholds which are set to 0.5 in our experiments.

In the second experiment, we evaluate the mined configuration rules in order
to extract useful characteristics for the configuration decision. Since configu-
ration rules can be represented as a graph where each node represents a rule

12 N. Assy and W. Gaaloul

Table 5. The amount of reduction

Size #CR #C R

min 2 2 6 0.6

max 162 10.5× 104 70× 104 0.85

Avg. 34.175 1.5× 103 5× 103 0.7
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

E > 0.5 & R
> 0.5

E > 0.5 & R
< 0.5

E < 0.5 & R
< 0.5

E < 0.5 & R
> 0.5

avg. # of configurable elements

avg. # of configurable
elements

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

E > 0.5 & R >
0.5

E > 0.5 & R <
0.5

E < 0.5 & R <
0.5

E < 0.5 & R >
0.5

avg. # of configuration
decisions

avg. # of configurable
elements

0

5

10

15

20

25

30

E > 0.5 & R >
0.5

E > 0.5 & R <
0.5

E < 0.5 & R <
0.5

E < 0.5 & R >
0.5

avg. # of configuration
decisions

avg. # of configurable
elements

Fig. 3. The # of configuration decisions
with varied emission and reception values

head or body and edges represent the implication relation between rules’ head
and body [25], we analyze this graph structure in order to derive interesting
hypothesis for the configuration decision. We borrow the emission and reception
metrics from the social network analysis domain [26] which measure the ratio
of the outgoing and incoming relations respectively of a node in the graph. The
reason for choosing these two metrics in particular is justified by the fact that
a configuration node with a high emission have an impact on a large number
of configurations in the process model. Therefore starting by its configuration
may save the number of configuration decisions that should be taken by the
user. Whereas a configuration node with a high reception depends on a large
number of configurations. Therefore it may be useful to delay the selection of
such configuration. The emission EC and reception RC ratios of a configuration
node are computed as:

EC =
#outC

maxi(#outCi)
RC =

#inC

maxi(#inCi)
(7)

where #outC (respectively #inC) is the number of outgoing (respectively in-
coming) relations of the node C and #maxi(outCi) (respectively #maxi(inCi))
is the maximal number of outgoing (respectively incoming) relations among the
configuration nodes Ci in the graph. Using these two metrics, we select the mod-
els having more than 10 configurable nodes. Then for each configuration node,
we compute its emission, reception and the number of configuration decisions
that must be taken when starting with such configuration. Then, we organized
these nodes in four groups based on their high (> 0.5) or low (< 0.5) reception
and emission. The obtained results are illustrated in Fig. 3. The straight line
represents the average number of configurable elements and the curve line rep-
resents the average number of configuration decisions that must be taken when
starting with a specific group of configuration nodes. These results show that
selecting the configurations with a high reception and a low emission reduce
the number of configuration decisions to 10 while there exist in average 25, 5
configuration decisions (i.e. configurable elements) in the model.

Configuration Rule Mining for Variability Analysis 13

6 Related Work

The limitation and rigid representation of existing business process models have
led to the definition of flexible process models [27]. In this paper, we rely on the
work presented in [3] where configurable process models are introduced. In their
work, the authors define the requirements for a configurable process modeling
technique and propose the configurable EPC notation. They highlight the need
for configuration guidelines that guide the configuration process. These guide-
lines should clearly depict the interrelationships between configuration decisions
and can include the frequency information. In our work, we demonstrate how
using association rule mining techniques, we induce frequency-based configura-
tion rules from existing process variants. These rules describe the association
between the frequently selected configurations.

In order to match existing process models for merging, La Rosa et al. [4] use
the notion of graph edit distance [28]. They compute the score matching using
syntactical, semantic and contextual similarities identified in [16]. In our work,
we propose to use existing process variants in order to analyze the variability in
a configurable process model. This analysis can be used to improve the design
and configuration of the configurable process model. We also use similar metrics
for process model matching. However, instead of matching entire process models,
we only search a matching for configurable elements.

To manage the variability in configurable process models, the researchers have
been inspired from variability management in the field of Software Product Line
Engineering [29]. La Rosa et al. [12] propose a questionnaire-driven approach for
configuring reference models. They describe a framework to capture the system
variability based on a set of questions defined by domain experts and answered
by designers. Their questionnaire model includes order dependencies and domain
constraints represented as logic expressions over facts. The main limitation of
this approach is that it requires the knowledge of a domain expert to define
the questionnaire model. In addition, each change in the configurable process
model requires the update of the questionnaire model by the domain expert. This
task manually performed may affect the configuration framework performance.
While in our work, we propose an automated approach to extract the knowledge
resulted from existing configurations using the well know concept of association
rules. Our configuration rules can serve as a support for domain experts in order
to define and update their configuration models.

Huang et al. [13] propose an ontology-based framework for deriving business
rules using Semantic Web Rule Language (SWRL). They use two types of on-
tologies: a business rule ontology which is specified by a domain expert, and
a process variation points ontology based on the C-EPC language. Using these
ontologies, they derive SWRL rules that guide the configuration process. Differ-
ent from them, we map the configuration process to a machine learning problem
and use association rule mining instead of SWRL based rules in order to derive
configuration rules. Our approach does not require any extra expert’s effort and
can be extended in order to classify the learned configuration rules w.r.t. specific
business requirements.

14 N. Assy and W. Gaaloul

7 Conclusion

In this paper, we present a frequency-based approach for the variability analysis
in configurable process models. We propose to enhance the configurable process
models with configuration rules. These rules describe the combination of the
frequently selected configurations. Starting from a configurable process model
and an existing business process repository, we take advantage of association
rule mining techniques in order to mine the frequently selected configurations as
configuration rules. Experimental results show that using our configuration rules,
the complexity of existing configurable process models is reduced. In addition,
metrics such as emission and reception applied to our configuration rules help
in identifying the configurations that save users’ decisions.

Actually, we are integrating our approach in an existing business process mod-
eling tool, namely Oryx editor. In our fututre work, we target to define most
sophisticated rules for retrieving similar connector’ configurations. Instead of re-
lying only on the connectors’s direct preset and postset, we aim at looking for
k-backward and k-forward similar elements. This in turn, would improve our pre-
processing step and therefore our mined configuration rules. Moreover, we look
for enhancing our configuration rules, besides the frequency, with other useful
information such as the configuration performance, ranking, etc.

References

1. Fettke, P., Loos, P.: Classification of reference models: a methodology and its ap-
plication. Information Systems and eBusiness Management (2003)

2. Schonenberg, H., et al.: Towards a taxonomy of process flexibility. In: CAiSE Fo-
rum, pp. 81–84 (2008)

3. Rosemann, M., van der Aalst, W.M.P.: A configurable reference modelling lan-
guage. Inf. Syst. (2007)

4. Rosa, L., et al.: Business process model merging: An approach to business process
consolidation. ACM Trans. Softw. Eng. Methodol. (2013)

5. Derguech, W., Bhiri, S.: Merging business process variants. In: Abramowicz, W.
(ed.) BIS 2011. LNBIP, vol. 87, pp. 86–97. Springer, Heidelberg (2011)

6. Gottschalk, F., Aalst, W.M., Jansen-Vullers, M.H.: Merging event-driven process
chains. In: OTM 2008 (2008)

7. Assy, N., Chan, N.N., Gaaloul, W.: Assisting business process design with config-
urable process fragments. In: IEEE SCC 2013 (2013)

8. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Mining configurable
process models from collections of event logs. In: Daniel, F., Wang, J., Weber, B.
(eds.) BPM 2013. LNCS, vol. 8094, pp. 33–48. Springer, Heidelberg (2013)

9. Gottschalk, F., Aalst, W.M.P.v.d., Jansen-Vullers, M.H.: Mining Reference Process
Models and their Configurations. In: EI2N08, OTM 2008 Workshops (2008)

10. Assy, N., Gaaloul, W., Defude, B.: Mining configurable process fragments for
business process design. In: Tremblay, M.C., VanderMeer, D., Rothenberger, M.,
Gupta, A., Yoon, V. (eds.) DESRIST 2014. LNCS, vol. 8463, pp. 209–224. Springer,
Heidelberg (2014)

11. Dijkman, R.M., Rosa, M.L., Reijers, H.A.: Managing large collections of business
process models - current techniques and challenges. Computers in Industry (2012)

Configuration Rule Mining for Variability Analysis 15

12. Rosa, M.L., et al.: Questionnaire-based variability modeling for system configura-
tion. Software and System Modeling 8(2), 251–274 (2009)

13. Huang, Y., Feng, Z., He, K., Huang, Y.: Ontology-based configuration for service-
based business process model. In: IEEE SCC, pp. 296–303 (2013)

14. Santos, E., Pimentel, J., Castro, J., Sánchez, J., Pastor, O.: Configuring the vari-
ability of business process models using non-functional requirements. In: Bider, I.,
Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Ukor, R. (eds.) BP-
MDS 2010 and EMMSAD 2010. LNBIP, vol. 50, pp. 274–286. Springer, Heidelberg
(2010)

15. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques, Second Edition (Morgan Kaufmann Series in Data Management Systems).
Morgan Kaufmann Publishers Inc (2005)

16. Dijkman, R.M., et al.: Similarity of business process models: Metrics and evalua-
tion. Inf. Syst. 36(2), 498–516 (2011)

17. Levenshtein, V.I.: Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady (1996)

18. Pedersen, T., Patwardhan, S., Michelizzi, J.: Wordnet: Similarity - measuring the
relatedness of concepts. In: AAAI, pp. 1024–1025 (2004)

19. Wu, Z., Palmer, M.: Verbs semantics and lexical selection. In: ACL 1994 (1994)
20. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of

items in large databases. In: ACM SIGMOD 1993, pp. 207–216 (1993)
21. Fu, X., Budzik, J., Hammond, K.J.: Mining Navigation History for Recommenda-

tion. In: IUI 2000, pp. 106–112 (2000)
22. Lin, W., Alvarez, S.A., Ruiz, C.: Collaborative recommendation via adaptive as-

sociation rule mining. In: Data Mining and Knowledge Discovery (2000)
23. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large

databases. In: VLDB, pp. 487–499 (1994)
24. Keller, G., Teufel, T.: Sap R/3 Process Oriented Implementation, 1st edn. Addison-

Wesley Longman Publishing Co., Inc., Boston (1998)
25. Ertek, G., Demiriz, A.: A framework for visualizing association mining results. In:

Levi, A., Savaş, E., Yenigün, H., Balcısoy, S., Saygın, Y. (eds.) ISCIS 2006. LNCS,
vol. 4263, pp. 593–602. Springer, Heidelberg (2006)

26. Scott, J.P.: Social Network Analysis: A Handbook. SAGE Publications (2000)
27. Bhat, J., Deshmukh, N.: Methods for Modeling Flexibility in Business Processes.

In: BPMDS 2005 (2005)
28. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-

tion of minimum cost paths. IEEE Trans. Systems Science and Cybernetics 4(2),
100–107 (1968)

29. Clements, P.C.: Managing variability for software product lines: Working with
variability mechanisms. In: SPLC, pp. 207–208 (2006)

ProcessBase: A Hybrid Process Management

Platform

Moshe Chai Barukh and Boualem Benatallah

School of Computer Science & Engineering
The University of New South Wales, Sydney − Australia

{mosheb,boualem}@cse.unsw.edu.au

Abstract. Traditional structured process-support systems increasingly
prove too rigid amidst today’s fast-paced and knowledge-intensive envi-
ronments. Commonly described as “unstructured” or “semi-structured”
processes, they cannot be pre-planned and likely to be dependent upon
the interpretation of human-workers during process execution. On the
other hand, there has been a plethora of Social and Web 2.0 services to
support workers with enhanced collaboration, however these tools are of-
ten used ad-hoc with little or no customisable process support. In order to
address these challenges, we thus present: “ProcessBase”, an innovative
Hybrid-Processes platform that holistically combines structured, semi-
structured and unstructured activities. Our task-model proposed encap-
sulates a spectrum of process specificity, including: structured to ad-hoc
Web-service tasks, automated rule-tasks, human-tasks as well as lifecy-
cle state-tasks. In addition, our hybrid process-model enables the “evolu-
tion/agility” from unstructured to increasingly structured process design;
as well as the notion of “cases” representing repeatable process patterns
and variations. We further propose an incremental process-knowledge
acquisition technique for curation, which is thereby utilised to facilitate
efficient “re-use” in the form of a context-driven recommendation system.

Keywords: Business Process Management, Hybrid Process, Case Man-
agement, Service Oriented Architecture, Web-Services, Web 2.0.

1 Introduction

Many processes are difficult to model due to the ad-hoc characteristics of these
processes [1], which often cannot be determined before the process begins. While
certain characteristics could be predicted, the actual activities and ordering may
differ. More so, information may only become available during the process, thus
making human-beings and knowledge-workers in control of these processes [2–5].

An emerging discipline to deal with such processes (commonly referred to
as “unstructured” or “semi-structured” processes) is Case-Management. The
importance is well recognised since knowledge-workers who make up 25-40% of
a typical workplace play a vital role on the long-term success of an enterprise
[3]. However, while research in this area correctly highlights the importance
of combining knowledge with process [3], and calls for increased flexibility [4],

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 16–31, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

ProcessBase: A Hybrid-Process Management Platform 17

most existing implementations are yet to embrace these requirements [2]. As a
result, case-management has often only intensely been managed manually, in
circumstances where traditional BPM suites would otherwise prove too rigid.

On the other end of the spectrum, major advances in Web-technology, in-
cluding Web 2.0, crowd- and cloud- computing, has also influenced a new wave
of process-support. Cultivated by the services-oriented paradigm, Software-as-
a-Service (SaaS) tools are extensively being used to complete everyday tasks,
[6, 7]. Albeit there remains significant shortcomings: (i) Firstly, the re-use of such
ready-made Web-apps often implies conforming to the embedded work-process
allowing little room for customisation; (ii) Alternatively, even if a collection of
such tools are used for different portions of the process, this inevitably leads to
“shadow processes” [8], often only informally managed by e-mail or the like; (iii)
Yet if none of the above suffices, a support system would have to be “developed”
from scratch, and even when leveraging existing apps, it still requires consider-
able technical/programming skills; (iv) Finally, without the required skills or lack
of resources, it may likely resort to “homebrewed” solutions (e.g. spreadsheets
and/or office applications), resulting in untidy and hard-to-maintain products.

Not surprisingly, process-support technology has thus typically been portrayed
in two extremes [2, 9]: Either highly structured and almost procedurally executed
processes supported by BPMS, WfMS, ERP, etc.; whilst many unstructured and
ad-hoc processes strive for support from various SaaS tools. The reality how-
ever, is that most processes rarely fit into only one of these two extremes; rather
they usually comprise (sub-)fragments of various types of organisational activi-
ties that include a mix (or spectrum) of structured activities to other activities
that may be very ad-hoc, [9, 10]. Moreover, there exist a variety of process
paradigms/models/representations that are best suited to a specific domain.
For example, BPEL for structured flows, state-models for monitoring, rules for
ad-hoc functionality, etc. While systems may support a partial-hybrid approach
with one or two types, they generally compete rather than leverage inter-domain
support. The main challenge is thus facilitating end-to-end process-support.

To address this, we propose ProcessBase — A Hybrid-Process Management
Platform, consisting of an extensible platform that encourages a new breed of
hybrid-process-driven applications. We define domain-specific types and func-
tions to represent process abstractions from structured to unstructured activities;
which is thereby exposed via a programmatic API in order to provide enhanced
in-App process-support. Moreover, ProcessBase acts as a knowledge-base, for the
efficient “curation” and “re-use” of process-knowledge, supported via a context-
based recommendation system driven by an incremental acquisition technique.
More specifically, we make the following main contributions:
– In Section 3, we begin by analysing the technological landscape, as well
as tracking the evolution from structured to unstructured process support,
with respect to existing work. We use this to demystify the various concepts,
identify key characteristics and provide directives for our proposed work.

– In Section 5, we then propose a domain-specific model for hybrid-processes.
Most importantly, we support: (i) The ability to capture possibly repeatable
“patterns”; whilst also (ii) Allowing the “evolution/agility” from an early

18 M.C. Barukh and B. Benatallah

unstructured to increasingly structure design. We address this by separating
a hybrid-process definition from the actual executional tasks by introduc-
ing a logical layer that enables modularity, virtual-ordering and hierarchy of
activities. Moreover, to support (iii) Case-based “variations” we integrate
the notion of cases and variations. The logical layer thus enables the or-
ganisation of process-knowledge without governing the execution. We model
the executional components as a variety of 5 task-types, aiming to cover the
range of process-specificity, including: Structured (i.e. BPEL) tasks, ECA
Rule-tasks, Human-tasks, Web-services tasks as well as lifecycle State-tasks.

– In Section 6, we propose a novel context-based recommendation system for
more efficient “re-use” of process-knowledge, via an incremental knowledge-
acquisition technique. The first work to propose this, as far as we know.

– In Section 7, we delineate our proposed programmatic Hybrid Process-as-a-
Service (HPaaS) API. In Section 8, we evaluate our work by implementing
the reference scenario over a comparative experimental study. Finally, we
conclude with a summary and directions for future work at Section 9.

2 Motivating Example

Consider the “Software Development Change-Management” process, as illus-
trated in the BPMN model shown in Figure 1.

Create
Change Report Plan & Approve

Implement
Changes

Report
(and Evaluate)X

Reject
Change

No

Yes

Approved?

C
ha

ng
e

M
an

ag
em

en
t

P
ro

ce
ss

+ + + +

Fig. 1. Software Development Change Management Process

While the overall pattern may be followed, the specifics may vary between
case-to-case. For example, a “formal” software-project often view changes as a
non-typical event requiring a strict approval-process. However, even in a “for-
mal” setting, structured activities may exhibit variations, but only based on
preconceived conditions; an example is illustrated in Figure 2.

Schedule CR
Review Meeting

Review CR
Document

Change Plans in X
Reject
Change

No

Yes

Approved?

Review CR X
Reject
Change

No

Yes

Approved?

Justify
Change PlanX

Accept
Change

No

Yes

Changes to
Cost/Schedule?

Verify/Audit
CR Plan & Costing

Justification
X Yes

Approved?

Accept
Change

No

P
ro

je
ct

 M
a

n
a

ge
r

C
h

a
n

ge
 C

o
n

tr
o

l
B

o
a

rd
A

u
d

it
 C

o
m

m
it

te
e

(a)

Large or
Small Project?

Small project Large project
with CCB

 Requires
 Verification?

Not required

Audit Committee
Required

PM

PM

PM

CCB

CCB

Auditor(b)

Fig. 2. (a) Formal Software Project Approval Process; (b) Process Variation Tree

ProcessBase: A Hybrid-Process Management Platform 19

In contrast however, “agile” (e.g. eXtreme programming) software-projects
embrace change and thus are prone to a simplified approval process that could
likely be reduced to a simple human-task, as illustrated in Figure 3. Moreover,
in both cases, certain activities could nonetheless be inherently ad-hoc. For ex-
ample, activities such as: create change report, and implement changes could
directly depend upon the specific project’s development environment. Such as,
a change report could be generated using GoogleDrive, while another project
could depend on a documents uploaded to DropBox. Likewise, some projects
could employ Git while others may use SVN.

Create a HumanTask
to verify and Approve

If Approved Send
Request to DevTeam

After implementation
complete, commit code

New Change Request
Uploaded to DropBox to verify and Approve

Fig. 3. Agile Software Development Change Management Process

3 Background and Related Work in Hybrid-Processes

Transitioning process-support from structured to unstructured domains, requires
harnessing the capabilities that BPM had to offer for its application to unstruc-
tured processes; such that these ad-hoc style processes can be comparably visible,
measurable and managed [8]. Essentially this means bridging the gap between
structured and unstructured processes. We therefore dedicate this section in un-
derstanding the technological evolution and landscape, in order to recognise the
potential gaps, from which we derive the main directives of our proposed work.

BPM vs Rule-based Systems. BPM and rule-based systems are two of the
most conventional archetypical approaches, for structured versus less-structured
support, respectively. BPMSs introduced the process-centricmethodology, and of-
fered a high-level model-driven approach that strongly appealed to non-technical
domain-experts. However it suffered from a vital lack of agility. Rule-systems on
the other hand, while inherently capable of dealing with the executional dynam-
ics of orchestrations, their applicability in non-trivial contexts have meant limited
success, due to the number of rules required to describe a process. The synergy
therefore, between BPM and Rule-based systems has thus often been explored as
a potential way for achieving the best of both worlds.

For instance, in 2008 the OMG joined forces with the BPM community and
released the Semantics of Business Vocabulary and Business Rules (SBVR) stan-
dard. The goal was to express business knowledge in a controlled natural lan-
guage, albeit it did not directly address the formal integration with process mod-
elling diagrams. Vanthienen et al. thus proposed to implement SBVR into the
business process management lifecycle using an SOA approach [11], consisting of
a three-layer architecture. Similarly, Agrawal et al. proposed Semantics of Busi-
ness Process Vocabulary and Process Rules (SBPVR) [12]. Milanovi et al. also
offered to integrate BPMN with R2ML, developing a new modelling language
rBPMN (Rule-based Process Modelling Language) [13], which extended existing
BPMN elements with rule-based properties. Nonetheless these works are yet to

20 M.C. Barukh and B. Benatallah

be well adopted in mainstream, likely because they overarch the extensive range
of business rule-types (i.e. integrity, derivation, reaction and deontic rules), thus
clouding simplicity with over-rich vocabulary and semantics, [4, 8].

Event Driven Business Process Management (EDBPM). In an similar
approach, EDBPM focuses primarily on “event-driven” reaction-rules. The moti-
vation has been to merge BPM with Complex Event-Processing (CEP) platforms
via events produced by the BPM-workflow engine or any associated (and even
distributed) IT services. In addition, events coming from different sources and
formats can trigger a business process or influence its execution thereof; which
could in turn result in another event. Moreover, the correlation of these events in
a particular context can be treated as a complex, business-level event, relevant
for the execution of other business processes. A business process, arbitrarily fine
or coarse grained, can thus be choreographed with other business processes or
services, even cross-enterprise. Examples of such systems include: jBPM [14], and
RunMyProcess [15]. However, these systems are usually implemented where the
respective components sourced from BPM or CEP operate almost independently,
(e.g. event-modeller vs. process-modeller; event-store vs. process-store; rules-
engine vs. process-engine; process-instances vs. rules-instances, etc.). In fact,
the only thing connecting these two systems together is the event-stream at the
low-level, albeit this does not really directly benefit the process-modeller. These
systems also tend to be dominated somewhat by the structured process side (e.g.
a rudimentary process is always required, and even basic changes require restart-
ing the process). They also do not encompass the full range of process-specificity
support, however nonetheless they do provide the crucial step-ahead towards at
least a partial hybrid-process methodology.

Case Management. As mentioned, the “case-management” paradigm has
also been recognised as a promising approach to support semi-structured pro-
cesses. Unlike traditional business-process systems that require the sequence and
routing of activities to be specified at design-time (as otherwise they will not be
supported) - case-management is required to empower the ability to add new
activities at any point during the lifecycle and when the need arises, [4]. At the
same time it also requires the ability to capture possibly repeatable process pat-
terns, and variations thereof [3, 16]. However, although there has been several
efforts to push this, (e.g. OMG is currently working on an appropriate standardi-
sation), at present there are no concrete all-encompassing frameworks capable of
adequately supporting these requirements. Emergent Case Management provides
a slightly more modernised twist, suggesting a bottom-up approach. Bohringer
[2], proposes such a platform which petitions the use of social-software (e.g. tag-
ging, micro-blogging and activity-streams) in a process-based manner. It claims
to empower people to be at the centre of such information systems, where the
goal is to enable users to assign activities and artifacts independent of their rep-
resentation to a certain case, which can be dynamically defined and executed by
users. However, this work is currently only at its concept stage and is yet to be
implemented and tested. Likewise case-management in general is rather yet only
considered “a general approach” rather than being a “mature tool category”.

ProcessBase: A Hybrid-Process Management Platform 21

Characteristics & Requirements for Hybrid-Processes. In light of the
above analysis, we identify the following dimensions that may be used to charac-
terise process-systems. Bridging the technological gap and avoiding fragmented
support thus requires collectively supporting the various facets over a holistic
model. Accordingly, this has precisely been the motivation of our proposed work.

Process Paradigms. Refers to the type of control-structure the process-system
can handle, [17–20]. There are three main facets identified within this dimension:
(A) structured ; (B) semi-structured ; and (C) unstructured.

Process Representation-Models/Languages. Represents the language, model or
interface offered to the process-designer. Again, there are three identified facets:
(A) Activity-centric models the flow of control between activities based on a
specified sequence; (B) Rules-centric define statements that express a business
policy, thus defining or constraining the operations of a “process”, in a declar-
ative manner; and (C) Artifact-centric have tasks (actions or events) defined in
the context of process-related artifacts, as first-class citizens, [21–24].

4 ProcessBase Architecture Overview

Figure 4 illustrates the system design and interaction of the main components
of the ProcessBase system, which are elucidated as follows:

Federated Engine

Generic Service-Access Layer

ServiceBus
Reactive

Rule Engine
BPEL Engine

yyyyyyyyyyyyyyyyyyyyyyyyyyyyy

Logginggg g
Database

Service
Knowledge

Se

Task
Knowledge

Process
Knowledge

Service + Process
Knowledge-Base

Recommendation System Hybrid Process-as-a-Service (HPaaS) API

ServiceBus +
Streams API

extends

Service
API

Users
API

formulates
“context”

derives
“conclusion”

Process
APP

Process
APP

Process
APP

create update
searchrecommend

(process activity feed)

GUI Front-end (prototype)GUI Front end (prototype)

Fig. 4. ProcessBase System Architecture

The Web-Services Layer represents APIs available over the Internet, whose
integration in processes offers vital potential: Services act as rich and real-time
sources of data, as well as, providing functionality (software and tools), infras-
tructure building-blocks, collaboration mechanisms, visualisations, etc.

The ServiceBus components (leveraged from our previous work [6, 7]) acts as
the middleware between outside Web-services and the platform back-end. Most
importantly, it helps solve the inherent heterogeneity challenges: Services may
differ in representation and access protocols, (e.g. SOAP vs. REST); as well as
in message-interchange formats, (e.g. JSON, XML, CSV, or Media files, etc.).
Moreover, APIs are constantly subject to change, (e.g. due to system updates,

22 M.C. Barukh and B. Benatallah

when data-structures are improved, errors fixed or new components introduced).
The ServiceBus overcomes this by utilising our previously proposed Unified Ser-
vices Representation Model (USRM), which abstracts low-level logic and masks
heterogeneity thereby exposing a common access and data-interchange interface.
It relies on service-integration logic organised in the Services Knowledge-Base.

The RuleEngine enables reactive capabilities, via Event-Condition-Action
(ECA) rules. When event patterns are matched, and their conditions are satis-
fied, the specified actions are then fired. Likewise, the BPELEngine component
is delegated for executing and managing BPEL processes, which may represent a
complete or more often a segment of a larger unstructured process. In both cases,
these two engine components are federated with the ServiceBus for detecting and
logging instance as well as activity-level events of running processes.

There are two Storage components: The Knowledge-Base (KB) extends the
Services programming base with knowledge about hybrid-processes. Moreover,
this combined Services+Process KB also maintains incremental knowledge-
capture rules (different from event-rules mentioned earlier). Such a rule serves
to map a process “context” (rule-condition) to an existing process “definition”
(rule-conclusion). In this manner, when a new process starts formulation, and a
similar “context” can be detected, the Recommendation Systemmay suggest
the closest matching process “definition” that could be re-used, either directly, or
to create a template from. The other storage component is the Logging-Database,
which curates ongoing process-instance data and artifacts, such as events and
interactions data from services and tasks, for later analysis and/or processing.

Finally, applications can be written over the programmaticHybrid Process-
as-a-Service (HPaaS) API, which may be embedded into applications. (For
instance, we have implemented a prototypical GUI front-end, for better support.)

5 Domain-Specific Model for Hybrid-Processes

In Figure 5, we presents the overall hybrid-process model:

5.1 Hybrid-Process Definition

At the highest level, a HybridProcess contains a set of logical Activitieswhich
in turn contains a set of functional Tasks. This provides a light-weight definition
model for hybrid-processes. During execution, instance data may be recorded as
ProcessInstanceMessages, which encapsulates a Fact, representing a data ar-
tifact from either an event or action , with various structure depending on its
origin. A process may also require a CorrelationCondition (or set thereof called
a CorrelationSet) to be specified, this is required in order to correctly parti-
tion messages and thus distinctly manage different running process-instance. We
support the following types of correlation-conditions:

– Key/Reference based, refers to two messages being correlated if they share
a field that are equal in value, (e.g. Mx.fi = My.fj);

ProcessBase: A Hybrid-Process Management Platform 23

ProcessInstanceMessage
HProcessID : String
PIMessageID : String
PIMessageBody : Fact

Task
ID : String
Name : String
Description : String

Rule
- - -

HybridProcess
ID : String
Name : String
Description : String
Goals : Set<String>
Created : Date
LastModified : Date

CorrelationSet
ID : String
Name : String
ContextID : String

11

1
*

Activity
ID : String
Name : String
Description : String
Goals : Set<String>
ParentActivity : String
Order : Integer
•createChild() : Activity
•merge(ActivityID : String)
•split(TaskIDs:List<String>)
•swap(ActivityID : String)

1

*

1 1 **

 Process Layer Logical Layer Functional Layer

**

Variation
ID : String
SrcActivity : String
DestActivity : String

1
*

1

1 1

1

EventTypeypypyp

ActionType

FactType

 Process-Instance/Execution Data

ServiceExecution
ServiceID : String
OperationID : String
FeedInstanceID : String
MessageID : String
MessageBody : Field

StateExecution
StateTaskID : String
StateID : String
OldStateID : String
TransitionID : String

Process Instance/Exe

S
S
O
T

HumanTaskExecution
HumanTaskID : String
Creation_date : Date
AuthorID : String
AuthorName : String
SourceType : Sys | Human
Body : Field

BPELExecution
InstanceID : String
ActivityID : String
OldState : String
NewState : String
NewStateTime : Date

Fact
FactID : String
FactType : PIMType
TimeStamp : Date
Sender : String

1

1
**

Case
ID : String
Name : String
Description : String
CaseCondition : String
ParentCaseID : String
HProcessID : String

1

1

1

Service
- - -

BPELProcess
- - -

StateTask
- - -

HumanTask
- - - *1

1
*

*1

CorrelationCondition
ID : String
Name : String
CorrSetID : String
Type : CorrType
LHS : CorrExpression
RHS : CorrExpression

*1
CorrExpression

FactType : Type
StaticCondition :
 List<String>
CorrProperty : Field

Fig. 5. Domain-Specific Model for Hybrid-Processes

– Direct Reference based, refers to when a message Mx can be directly corre-
lated with a message My, by introducing a special uniquely identifiable field

from Mx into My, (e.g. Mx.fi = My.f̂ , where f̂ := fi);
– Semantic based, refers to a special reference-based condition, where a re-
lationship between messages Mx and My can be inferred using semantic-
knowledge that are computed over the relative fields, (e.g. email ≡ e−mail).

5.2 Process Cases and Variations

In the absence of a process-schema based approach, unstructured processes are
usually defined and managed as instance-only. However, even while such unstruc-
tured or ad-hoc processes may not be precisely repeatable, they may often have
recurring elements and “patterns” that could be “re-used”. Moreover, a pattern
could also exhibit various case-based “variations”. This is often expressed as tem-
plates, accessible via a template-library, or derived from existing instances. In
our platform we adopt the latter approach. However, in either case a template

HP1

(goals) ■ change management
■ software-project
■ agile

A1 A2 A3 A4
Case1

Case2

■ receive
request

■ plan &
 approve

■ notify
 dev-team

■ update
 codebase

A5

■ monitoring

A6

A7

exception
handling

unusual
behaviour

T(i)

HP2

sub-case

(goals) ■ change management
■ software-project
■ formal

A2’ sub-activitiesA1 A3 A4

T(j)

HumanTask

BPELProcess

variation

Fig. 6. Example of Hybrid Process Model (showing key nodes and relationships)

24 M.C. Barukh and B. Benatallah

represents a light-weight, customisable at run-time abstraction for organising
process components; unlike process-schemas, which effectively pre-define an ex-
ecutable program. We therefore refer to this layer as the logical layer, as it does
not govern the actual execution/function of the hybrid-process.

To support process “patterns”: An Activity entity represents a logical work-
item, that may: be ordered between one another; contain a sub-activity (or chain
thereof); merge with another activity; split into two sub-activities; as well as
swap ordering if needed. Likewise, in order to support case-based “variations”: we
adopt the notion of Case and Variation. When a new hybrid-process begins it
belongs to a root-case; sub-cases may then be defined which inherit the parent’s
constituent activities and tasks, with the exception of any variations specified.

As an example, consider the first hybrid-process (denoted HP1) shown in
Figure 6, based on the agile change-management process we described earlier.
It contains four activities, and since for an agile project, the plan and approve
activity is implemented using a HumanTask. However, consider now a variation
to this process for a formal software project instead. A new hybrid-process HP2
can be defined as a sub-case, such that all activities are inherited (thus avoiding
replication). However the designer specifies a variation: a new Activity A2’ to
replace the original A2, having the approval task implemented as a BPELProcess
task instead. Similarly, additional activities (such as A5-7) can also be added.

5.3 Functional Tasks

We have identified a set of 5 domain-specific functional tasks that together en-
capsulate the required range of process-specificity:

Automated Rule Task. An automated RuleTask, shown in Figure 7, rep-
resents an ECA-style rule with a set of EventTypes and ActionTypes. A spe-
cialised TemporalEvent is also defined to enable triggering rules at specific times,
or as part of temporal event conditions. Conditions are expressed as the triple
< path expr, comparator, value >. Where a path expr defines the query to reach
the attribute value of the event message instance. While some event-types may
have predefined message-models (e.g. a BPEL instance event), other types of
messages may vary (e.g. from Web-services). However, as mentioned, the het-
erogeneity challenges are solved due to the ServiceBus middleware offering a
uniform message-interchange format, [6, 7]. In the remaining sections for each
task-type we define event and action types that extend the abstract event and
action types defined here.

Rule
ID : String
Name: String
Description : String
ETypes : List<EventTypes>
ATypes : List<ActionTypes>
•onEvent(EventType e) : this
•eventBefore(EventType e1, EventType e2) : this
•eventAfter(EventType e1, EventType e2) : this
•ifCondition(String path_expression,
 Comparator comp, String val) : this
•doAction(ActionType a) : this

Condition
Path_expr : String
Comp : Comparator
Value : String

EventType
Conditions :
 List<Condition>

ActionType

Comparator

EQUAL, CONTAINS
LESSEQ, LESS,
GREATEREQ, GREATER,

EventInstance
ID : String
Type : EventType
Body : Field
Timestamp : Date

tInstance

TemporalEvent
Date : Date
Format(“dd-MMM-yyyy
 HH:mm”)

•getAsString() : String
•getAsCron() : String

Fig. 7. Automated Rule Task Data-Model

ProcessBase: A Hybrid-Process Management Platform 25

Web-Service Task. To enable integration of Web-services, as illustrated in
Figure 8, we define a ServiceTask. This is basically precisely akin to the model
of Service defined in our previous work, [6, 7], we thus omit elaborating on the
details. We support both WSDL and RESTful services, albeit the model could
be abstracted into a unified set of entities, namely: Service, OperationType,
FeedType (reference to a generic feed-endpoint), and FeedInstance (a spe-
cialised instance feed-type, with specific parameters defined, e.g. &id=123).

Service
. . .

FeedType
. . .

FeedInstance
. . .

Tasks.EventTypes.Service.* Tasks.ActionTypes.Service.*

ActionType

yp

ServiceInvoker
AccessToken : String
ServiceName : String
OpName : String
InputMsg : Message

EventType

yp

FeedEntry
FeedInstanceID : String

Fig. 8. Web-Service Task Data-Model

Structured-Process Task. Although well-structured process-support technol-
ogy may not be feasible for a complete overall process, these frameworks are
nonetheless useful in the case of routine and repeatable “fragments” of the over-
all process. We implement this type of task as a BPELProcess, as illustrated in
Figure 9.

Tasks.ActionTypes.BPEL.*Tasks.EventTypes.BPEL.*

BPELProcess
ProcessID : String
ProcessName : String
Version : Integer
Status : String
TotalInstances : Integer
Inst : List<BPELInstances>
Package : List<BPELAsset>

BPELInstance
InstanceID : String
ProcessID : String
Parent : BPELProcess
Status : String
DateStarted : Date
LastActive : Date
TotalInstances : Integer
Activities : List<String>

BPELInstanceEvent
Activity : String
InstanceID : String
ProcessID : String
Type :
 BPELInstanceEventType
Time : Date

BPELAsset
Name : String
Type : FileType
Data : byte[]

EventType ActionType

yp

BPELInstanceEventType
PInstanceID : String

ActivityEnabled

ActivityDisabled

ActivityExecStart

ActivityExecStop

A ti it E St t

ActivityFailure

InstanceCompletedInstanceCompleted

InstanceStarted

InstanceStopped

InstanceTerminated

yp

BPELInstanceActionType

DeployProcess
ProcessID : String

UndeployProcess
ProcessID : String

SuspendInstance
PInstanceID : String

ResumeInstance
PInstanceID : String

TerminateInstance
PInstanceID : String

FaultInstance
PInstanceID : String

RetireProcess
ProcessID : String
Version : Integer

RetireProcess

ActivateProcess
ProcessID : String
Version : Integer

Fig. 9. Structured Process BPEL Task Data-Model

EventType ActionType

Tasks.EventTypes.StateTask.* Tasks.ActionTypes.StateTask.*

StateEntered
StateID : String

StateExited
StateID : String

TransitionActivated
TransitionID : String

StateTaskEventType
STInstanceID : String

State

StateID : String
Name : String
Description : String

•addOnEntry(Rule rule)
•addOnDo(Rule rule)
•addOnExit(Rule rule)

Transition

TransID : String
Name : String
Description : String

•Transition(StateTask a,
 StateTask b)
•addGuard(Rule rule)

StateTask

StateTaskID : String
Name : String
Description : String
Status : StateTaskStatus

•addState(State state)
•addTrans(Transition state)

InstanceStarted

StateTaskInstance

STInstanceID : String
StateTaskID : String

StateTaskActionType

MakeTransition
STInstanceID : String
TransitionID : String

SuspendStateTask
STInstanceID : String

ResumeStateTask
STInstanceID : String

CreateInstance
StateTaskID : String

Fig. 10. Lifecycle State-Task Data-Model

26 M.C. Barukh and B. Benatallah

Lifecycle-State Task. Data and resources are central to any process. How-
ever, since many process systems tend to be activity-centric, data-artifacts ma-
nipulated by these processes are seen as second-class citizens. In contrast, the
“artifact”-centric approach stipulates an artifact modelled to have both an in-
formation and lifecycle model, [22]. We implement this archetype, as a Lifecycle
StateTask as illustrated in Figure 10, consisting of States and Transitions.
Modelled after a finite-state-machine (FSM), there are three kinds of state-
actions (in our model represented as a Rule - where a pure action could just
be with no event or condition): (i) onEntry is activated when the state is en-
tered; (ii) onDo after finishing the entry-action and anytime while in that state;
(iii) onExit when the state is deactivated. Likewise, in FSM terms, a transition
is modelled as an event, guard and action. A guard is effectively a condition,
which thus means we again re-use the notion of Rule which can thereby also be
attributed to the Transition entity.

Human Task. Although there are several options for integrating human-worker
frameworks into our platform, we have chosen to leverage Asana, due to its
popularity, integration with other tools, and ease-of-use [25]. The model for
a HumanTask has been illustrated in Figure 11. The entity Story represents
any change or human/system activity performed during the execution of some
human-task; which we represent in our system as events.

EventType ActionType

FollowerAdded
FollowerID : String
FollowerName : String

AddedToProject
ProjectID : String
ProjectName : String

CommentAdded
CommentText : String

ChangedDueDate
NewDueDate : Date

Ch dD D t

TaskCompleted
CompletionDate : Date

Add dT P j t

TagAdded
TagName : String

Story
Parent_taskID : String
StoryID : String
Creation_date : Date
AuthorID : String
AuthorName : String
Type : Enum(System|Human)
Body : JSONString

HumanTask

HumanTaskID : String
Name : String
Notes : String
Assignee_id : String
Assignee_name : String
Assignee_status : String
Completed : boolean
Due_on : Date
Created_at : Date
Modified_at : Date
Completed_at : Date
Followers :
Map<String,String>
Project_id : String
Workspace_id : String

Tasks.EventTypes.Human.* Tasks.ActionTypes.Human.*

HumanTaskActionType
Parent_taskID : String

CreateTask
Name : String
- - -

UpdateTask
- - -

DeleteTask
- - -

CommentOnTask
Text : String

AddToProject
ProjectID : String

AddFollower
FollowerID : String

Fig. 11. Human-Task Data-Model

6 Context-Based Recommendation System

Current techniques for re-use usually utilise process schema or template libraries.
However, this does not prove efficient with a large and increasing number of
process definitions, cases, and variations. In ProcessBase, we propose a novel
automated recommendation approach based on the currently detected “context”
of a hybrid-process definition. This means given the context, the system may
suggest the closest matching existing process definition, that could then be re-
used and/or customised as required.

ProcessBase: A Hybrid-Process Management Platform 27

A context is matched based on existing process-knowledge. The hybrid-process
model we presented thus far inherently curates this type of knowledge. However
to make the system efficient in responding with a recommendation, we extend our
model with knowledge-acquisition rules (denoted kRules to differentiate from
ECA-rules) to incrementally capture process-knowledge. This means whenever
an existing process is created anew, modified, or sub-case created, a new/updated
context triggers a new knowledge-rule to be incrementally added.

To model kRules, we adopt the knowledge acquisition method Ripple-Down-
Rules (RDR) [26], due to its simplicity, and its successful application in many
other domains. However, it has never been applied to process-knowledge acqui-
sition for the purpose of context-based re-use. We make use out of the Single-
Conclusion RDR (SCRDR) approach, where the general form of this rule has
two main components: if [condition] (i.e. when does the rule apply), do [conclu-
sion] (i.e. what to recommend as a result). The knowledge-rules are organised
in a tree-like hierarchy (in the order they are created). A new rule may be added
as a child to another rule via a true branch (denoted �+, if the current rule
condition validates true but extra conditions are added), or via a false branch
(denoted �±, if the condition does not (fully) match, so a variation of the rule is
created). During evaluation, starting at the top node, the inference engine tests
whether the next rule node is true or false. If a rule node is true, the engine
proceeds with the child nodes and again tests if they are false or true. The last
rule node that evaluates to true is the conclusion given.

Applying this to our model, the kRule condition is thus represented as a
hybrid-process “context”, while the conclusion is a pointer to the matching
hybrid-process, e.g. “HProcess id”. There could in fact be many different di-
mensions to formulate a process-context, for example: (i) the set of goals of the
overall process; (ii) the set of goals of each constituent activity; (iii) the order of
activities; (iv) the hierarchy of activities; (v) the type of Tasks assigned to each
activity, etc. We’ve found the conjunction of the first two sufficient enough to
formulate a viable context, (however, this could be customised as required).

To give an example (shown in Figure 12): Consider a designer starts with a
blank process and simply specifies the process goals “software-project”, “change-
management”. Assuming so far only an agile process has been defined, the system
finds Rule1 and thus recommends HP1 . The designer may then create a sub-case

(Goals) = (change-management &&
 software-project &&
 formal-project
 audit-reporting)

HProcess

Activity(Goals = (receive-request &&
 plan/approve &&
 notify dev-team &&
 update codebase &&

monitoring &&
 audit change plan)

[IF]

[THEN] HProcessID = 3

(Goals) = (change-management &&
 software-project &&
 formal-project)

HProcess

Activity(Goals) = (receive-request &&
 plan/approve &&
 notify dev-team &&
 update codebase

monitoring)

[IF]

[THEN] HProcessID = 2

(Goals) = (<blank>)HProcess
Activity(Goals) = (<blank>)

[IF]

[THEN] HProcessID = null

false (△±)△

(Goals) = (change-management &&
 software-project &&
 agile-project)

HProcess

Activity(Goals) = (receive-request &&
 plan/approve &&
 notify dev-team &&
 update codebase)

[IF]

[THEN] HProcessID = 1

true (△+)

Rule1

Rule2

Rule3

Rule0

Fig. 12. Incremental Knowledge-Rules kRules

28 M.C. Barukh and B. Benatallah

(for a “formal-project”), resulting in a new process HP2 . However, since a new
context has been defined, a new (Rule2) is added, as a variation to the parent. In
another scenario, consider now the designer requires a more sophisticated formal
change-process with auditing. Again, the designer may specify the relevant goals.
This time we assume the process previously exists from someone else. Starting at
the top, Rule1 is checked however, since it evaluates to false , it proceeds down
the “false” branch and encounters Rule2 . Since it evaluates to true , it proceeds
down the “true” branch ending at Rule3 . The system thus recommends HP3 ,
from which a copy/template can be created in order to be re-used.

7 Hybrid-Process-as-a-Service (HPaaS) API

We have exposed ProcessBase over a set of APIs. The benefit of this means
hybrid-processes may be embedded in-Apps, and thus integrated at the program-
matic level. We provide both a Java-client library (for backend integration); as
well as, a RESTful API (suitable for front-end integration). In this section we
show snippets of code highlighting the main features of the platform.

We have organised into two main APIs, as follows: Firstly, the TasksAPI.*

offer CRUD operations over individual tasks (in cases where it could be used
stand-alone and outside any process definition - this could be useful in very
ad-hoc domains); Secondly, the ProcessBase.* API offer CRUD operations on
hybrid-process definitions, in addition to other required operations.

TasksAPI.* ■ String id = create(Task t) : registers the task on the knowledge-base
■ Task task = get(String t_id) : gets the task from the knowledge-base
■ bool result = update(Task t) : updates the task on the knowledge-base
■ bool = result = delete(String t_id) : deletes the task from the knowledge-base

C
R
U
D

■ Fact fact = execute(ActionType at) : executes the specified Action, returns data as a Fact.
■ String sub_id = subscribe(EventType et) : creates a subscription to this Event
■ void addEventListener(sub_id, (@EventCallback)Object, String “handler_id”)
 : registers an event callback handler - such that events are asynchronously “pushed” to the callback

ProcessBase.* ■ String id = create(HybridProcess hp) : registers the hybrid-process on the knowledge-base
■ HybridProcess hp = get(String hp_id) : gets the hybrid-process from the knowledge-base
■ bool result = update(HybridProcess hp) : updates the hybrid-process on the knowledge-base
■ bool result = delete(String hp_id) : deletes the hybrid-process from the knowledge-base

C
R
U
D

■ bool result = suspend(String hp_id) : suspend processing of the specified hybrid-process
■ bool result = resume(String hp_id) : resume processing of the specified hybrid-process
■ HybridProcess hp = createSubCase(String hp_id) : create a sub-case of the h-process
■ HybridProcess hp = createTemplate(String hp_id) : create a template of the h-process
■ HybridProcess hp = createCopy(String hp_id) : create a copy of the specified h-process
■ HybridProcess hp = recommend(HybridProcess hp) : invoke the recommendation system

Using again the examples we described in Sections 5.2 and 6, starting with a
simple/empty process (Line 1), the recommender system can be invoked (Line
2), which finds the closest process being for an “agile” software project. The
designer can modify this by creating a sub-case (or template) (Line 3), and
then proceed to define a new “monitoring” activity, (Lines 4-6). The monitoring
activity posts a tweet-notification (e.g. “thanks for your patience!”), in the event
the approval process has taken longer than 1-week to complete.

ProcessBase: A Hybrid-Process Management Platform 29

1. HybridProcess hp = new HybridProcess.HybridProcessBuilder(“formal_chng_mngmt”)
 .addGoal(“software-project”)
 .addGoal(“change-management”);

2. HybridProcess hp_ = ProcessBase.recommend(hp);
3. hp = ProcessBase.createSubCase(hp_);

4. BPELProcess f_approval = new BPELProcess.BPELProcessBuilder(“formal_approval”)

 .asset(“approval.bpel”);

5. Rule delayed_approval = new Rule.RuleBuilder(“delayed_approval”)
.eventAfter(new TemporalEvent(“0,0,*,*,0”),
 new ..BPEL.InstanceCompleted())
.onCondition(…)
.doAction(new ServiceInvoker(“Twitter”,”postTweet”,…));

6. Activity monitoring = new Activity.ActivityBuilder(“monitoring”)
 .setGoals(“…”)
 .addTask(Twitter) //”Twitter” ServiceTask
 .addTask(approval) //BPELProcess Task
 .addTask(delayed_approval) //Automated Rule Task

7. hp.addActivity(monitoring);
...

8. ProcessBase.create(hp);

8 Evaluation and Analysis

A total of 5 potential platforms were considered: Enhydra Shark, JawFlow, JBoss
jBPM, JOpera, WFMOpen; out of which the top-2 were chosen based on shortest
installation and initial testing time; and quality of user-docs. We conducted 3
experimental studies, each comprising 4 comparative executional alternatives:
(a) ProcessBase; (b) jBPM ; (c) JOpera; and (d) Pure Java code-based solution.

Usability Study. Usability involves the criterion of learnability and efficiency.
The former assessed by the time to install and run the initial tests: ProcessBase
resulted in 26m and 39m respectively; compared to averages of 159m and 193m.
The latter measured as the time to successfully implement the reference scenario:
ProcessBase again proved superior in 72m, in contrast with an average of 203m.

Productivity Study. Given the task was fixed, productivity was measured
based on the total number of lines-of-code (LOC) in order to produce the solu-
tion. The results in Figure 13(a-d), presents a distributed measure of LOC.

(c)

0 100 200 300 400 500 600 700 800

613

0

650

770

0Automated
ECA Rules

Web-Services
Integration

State/Lifecycle
Management

Other

jOpera: Distributed Lines-of-Code (LOC)

Total: 2,033 LOC

Structured
Process Support

0 37.5 75 112.5 150 187.5 225 262.5 300

26

130

180

240

72Automated
ECA Rules

Web-Services
Integration

Structured
Process Support

State/Lifecycle
Management

Ta
sk

-t
yp

e
C

at
eg

or
y

Other

ProcessBase: Distributed Lines-of-Code (LOC)

Total: 648 LOC

0 100 200 300 400 500 600 700 800

720

480

220

380

180Automated
ECA Rules

Web-Services
Integration

Structured
Process Support

State/Lifecycle
Management

Other

JBoss jBPM: Distributed Lines-of-Code (LOC)

Total: 1,980 LOC

(a) (b)

479

313261235

0

100

200

300

400

500

D
es

ig
n

/ I
m

pl
em

en
t

U
se

-C
as

e
(s

ec
s)

ProcessBase JBoss jBPM JOpera Traditional
Programming

(e)

0 112.5 225 337.5 450 562.5 675 787.5 900

568

597

635

878

0Automated
ECA Rules

Web-Services
Integration

Structured
Process Support

State/Lifecycle
Management

Other

Code-based: Distributed Lines-of-Code (LOC)

Total: 2,678 LOC

(d)

Ta
sk

-t
yp

e
C

at
eg

or
y

Fig. 13. Experimental Results of Productivity and Performance Studies

30 M.C. Barukh and B. Benatallah

Performance Study. Finally, we measured the round-trip time (i.e. from when
the change-request was issued, until updates were committed into Git). We re-
peated this study 5 times, taking the median; results as presented in Figure 13(e).

9 Conclusions

The work in this paper as far as we know, proposes the first all-encompassing
complete hybrid-processes platform. Moreover, we propose an architecture where
existing process-support technology (either domain-specific or partial-hybrid)
can be leveraged, rather than compete with each other. In addition, our work
is the first to propose a novel recommendation system using process context-
detection - based on an incremental knowledge acquisition technique. Experimen-
tal results shows superior performance across all evaluated dimensions: usability,
productivity and performance. Above all, we are optimistic this work provides
the foundation for future growth into a new breed of enhanced process-support.

References

1. Marjanovic, O.: Towards is supported coordination in emergent business processes.
Business Process Management Journal 11(5), 476–487 (2005)

2. Böhringer, M.: Emergent case management for ad-hoc processes: A solution based
on microblogging and activity streams. In: Muehlen, M.z., Su, J. (eds.) BPM 2010
Workshops. LNBIP, vol. 66, pp. 384–395. Springer, Heidelberg (2011)

3. BPTrends: Case management - combining knowledge with process (July 2009)
4. de Man, H.: Case management: A review of modelling approaches (January 2009)
5. Holz, H., Rostanin, O., Dengel, A., Suzuki, T., Maeda, K., Kanasaki, K.: Task-

based process know-how reuse and proactive information delivery in tasknavigator.
In: Conference on Information and Knowledge Management, pp. 522–531 (2006)

6. Barukh, M.C., Benatallah, B.: ServiceBase: A programming knowledge-base for
service oriented development. In: Meng, W., Feng, L., Bressan, S., Winiwarter, W.,
Song, W. (eds.) DASFAA 2013, Part II. LNCS, vol. 7826, pp. 123–138. Springer,
Heidelberg (2013)

7. Barukh, M.C., Benatallah, B.: A toolkit for simplified web-services programming.
In: Lin, X., Manolopoulos, Y., Srivastava, D., Huang, G. (eds.) WISE 2013, Part
II. LNCS, vol. 8181, pp. 515–518. Springer, Heidelberg (2013)

8. Olding, E., Rozwell, C.: Expand your bpm horizons by exploring unstructured
processes. Technical Report (2009)

9. Bernstein, A.: How can cooperative work tools support dynamic group process?
bridging the specificity frontier. In: CSCW, pp. 279–288. ACM, New York (2000)

10. Keen, P.G., Morton, M.S.S.: Decision support systems: an organizational perspec-
tive, vol. 35. Addison-Wesley Reading, MA (1978)

11. Vanthienen, J., Goedertier, S.: How business rules define business processes. Busi-
ness Rules Journal 8(3, March) (2007)

12. Agrawal, A.: Semantics of business process vocabulary and process rules. In: Pro-
ceedings of the 4th India Software Engineering Conference, pp. 61–68. ACM (2011)

13. Milanovic, M., Gasevic, D., Wagner, G.: Combining rules and activities for model-
ing service-based business processes. In: 2008 12th Enterprise Distributed Object
Computing Conference Workshops, pp. 11–22. IEEE (2008)

ProcessBase: A Hybrid-Process Management Platform 31

14. JBoss: jbpm, http://www.jboss.org/jbpm/
15. RunMyProcess, https://www.runmyprocess.com/
16. Swenson, K.D., et al.: Mastering the unpredictable. How Adaptive Case Manage-

ment Will Revolutionize the Way That Knowledge Workers Get Things Done
17. Berry, P.M.: Intelligent workflow - state of the art in workflow
18. Manolescu, D.A.: Workflow enactment with continuation and future objects. SIG-

PLAN Not 37(11), 40–51 (2002)
19. Wang, J., Kumar, A.: A framework for document-driven workflow systems. In:

van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005.
LNCS, vol. 3649, pp. 285–301. Springer, Heidelberg (2005)

20. Manolescu, D.: Micro-workflow: A workflow architecture supporting compositional
object-oriented software development. Technical report, USA (2000)

21. Bhattacharya, K., Caswell, N.S., Kumaran, S., Nigam, A., Wu, F.Y.: Artifact-
centered operational modeling. IBM Systems Journal 46(4), 703–721 (2007)

22. Cohn, D., Hull, R.: Business artifacts: A data-centric approach to modeling busi-
ness operations and processes. IEEE Data Eng. Bull. 32(3), 3–9 (2009)

23. Bhattacharya, K., Gerede, C.E., Hull, R., Liu, R., Su, J.: Towards formal analysis
of artifact-centric business process models. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 288–304. Springer, Heidelberg (2007)

24. Bhattacharya, K., et al.: A model-driven approach to industrializing discovery
processes in pharmaceutical research. IBM Syst. J. 44(1), 145–162 (2005)

25. Asana: Asana project managements
26. Richards, D.: Two decades of ripple down rules research. Knowledge Eng. Re-

view 24(2), 159–184 (2009)

http://www.jboss.org/jbpm/
https://www.runmyprocess.com/

A Multi-objective Approach to Business Process Repair

Chiara Di Francescomarino, Roberto Tiella, Chiara Ghidini, and Paolo Tonella

FBK-irst, Via Sommarive 18 Povo, 38050,Trento, Italy
{dfmchiara,tiella,ghidini,tonella}@fbk.eu

Abstract. Business process model repair aims at updating an existing model so
as to accept deviant (e.g., new) behaviours, while remaining as close as possible to
the initial model. In this paper, we present a multi-objective approach to process
model repair, which maximizes the behaviours accepted by the repaired model
while minimizing the cost associated with the repair operations. Given the repair
operations for full process repair, we formulate the associated multi-objective
problem in terms of a set of pseudo-Boolean constraints. In order to evaluate
our approach, we have applied it to a case study from the Public Administration
domain. Results indicate that it provides business analysts with a selection of
good and tunable alternative solutions.

1 Introduction

Business process model repair can be used to automatically make an existing process
model consistent with a set of new behaviours, so that the resulting repaired model is
able to describe them, while being as close as possible to the initial model [4]. Differ-
ently from process discovery, in which a completely new process is discovered from the
new observed behaviours, process model repair starts from an initial process model and
it incrementally evolves the available model through a sequence of repair operations [4].
Repair operations range from simple insertion and deletion of activities in the model,
to sophisticated sets of operations. In all cases, however, repair operations have a cost:
they add complexity to the repaired models. Business analysts in charge of repairing
existing models with respect to new behaviours are hence forced to choose whether
to accept the increased complexity of a model consistent with all deviant behaviours,
or to sacrifice consistency for a simpler model. In fact, some deviant behaviours may
correspond to exceptional or error scenarios, that can be safely abstracted away in the
process model.

In this work, we propose a multi-objective optimization approach to support business
analysts repairing existing process models. It uses repair operations from state-of-the-
art process repair algorithms to define a multi-objective optimization problem, whose
two objectives are: (1) minimizing the cost of repair (in terms of complexity added to
the repaired model); and, (2) maximizing the amount of new behaviours represented
consistently in the model. We formulate such multi-objective optimization problem in
terms of a set of pseudo-Boolean constraints and we solve it by means of a Satisfia-
bility Modulo Theory (SMT) solver. The result provides business analysts with a set
of Pareto-optimal alternative solutions. Analysts can choose among them based on the
complexity-consistency trade-off that better fits their needs. The approach has been
evaluated on a real life case study.

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 32–46, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

A Multi-objective Approach to Business Process Repair 33

The contribution of the paper is twofold: (i) a multi-objective approach for business
process model repair (Section 3); (ii) the results of our evaluation of the approach on a
real-life case study (Section 4).

2 Background

Inputs to the automated process repair techniques are new process behaviours, which
in modern information systems are captured through new execution traces recorded in
log files, so the problem of automated repair can be stated as the problem of repairing
a process model with respect to a log file [4]. In other words, given an initial process
model M (either manually designed or automatically discovered) and a set of execution
traces T (describing the new behaviours of the system), automated process repair aims
at transforming M into a new model M ′ that is as close as possible to M and that
accepts all traces in T , where an execution trace t ∈ T is a sequence of events (i.e.,
system activities) t = 〈e1, ..., en〉.

Among the different ways in which automated repair can be realized, two main cat-
egories of approaches can be identified in the literature: (i) the approaches performing
repair operations on the initial model M by directly looking at its differences with the
new traces [4]; (ii) the approaches that mine from T one (MT) or more (MT =

⋃
(Mti))

new process models describing the new behaviours, use delta-analysis [1] techniques
for identifying differences between the new mined models and the initial one, M , and
apply repair operations to M [7,6].

In both cases, the differences of the initial process model with respect to the deviant
behaviours (described as execution traces or as mined process models) have to be iden-
tified (see e.g., [4] and [7]). Once such differences have been identified, a set of repair
operations can be applied to the initial model M . The basic operations consist of inser-
tion and deletion of activities in the model. For example, given the extract of Petri Net in
Figure 1 and the execution traces t1 = 〈A,B,D,C〉 and t2 = 〈A,C〉, two basic repair
operations, an insertion o1 and a deletion o2 (see Figure 2) can be applied to the Petri
Net in order to make t1 and t2 accepted by the Petri Net. Since these operations might
remove old behaviours of the net, some approaches (e.g., [4]) tend to be conservative
and to introduce the addition or removal of behaviours only as an optional alternative
to the old behaviours. Figure 3 shows how this can be realized in a Petri Net: the black
transitions represent silent transitions, i.e., transitions that are not observed when the net
is replayed. Note that while preserving old behaviours, repair operations can introduce
extra-behaviours such as the one described by the execution 〈A,D,C〉.

In this work we use a repair technique belonging to the first group of approaches
(repairs based on trace differences) and, in detail, the ProM1 Repair Model plugin. This
plugin implements the approach proposed by Fahland et al. [4] and takes as input a Petri
Net describing the initial model M and a log. A cost is assigned to insertion and dele-
tion operations. Correspondingly, an optimization problem is defined and the lowest-
cost alignment between the process model and the set of input traces is computed. The
outcome is a Petri Net M ′ which is able to accept all traces in T .

1 http://www.promtools.org/prom6/

http://www.promtools.org/prom6/

34 C. Di Francescomarino et al.

Fig. 1. An extract of M described as a Petri Net

Fig. 2. Base repair operations
Fig. 3. Base operations preserving old be-
haviours

On top of this base alignment algorithm and of the insertion and deletion operations
described above, a set of variations are proposed in the approach by Fahland [4]:

Subprocess repair operations. In order to improve the precision of the repaired model
M ′, i.e., to avoid having too many extra-behaviours (besides those in T), a subpro-
cess repair operation is introduced. The idea is that whenever a sequence of inserted
activities occurs at the same place in the model, instead of adding these activities incre-
mentally, they are structured as a subprocess, which is mined starting from the set of
subtraces that maximize the sequence of skipped activities in M . For example, consid-
ering the two traces t3 = 〈A,B,D,E,C〉 and t4 = 〈A,B,E,D,C〉, the subprocess
s1 in Figure 4 is added to the net in Figure 1 to take care of the sequences of activities
〈D,E〉 and 〈E,D〉 that are inserted at the same place, i.e., after B. Moreover, accord-
ing to whether the inserted actions represented by means of the subprocess are executed
at most once, exactly once or more than once in T , a skipping transition is added to the
net, the subprocess is added in sequence or it is nested in a loop block. In our example
the subprocess is executed at most once and therefore a skipping transition that directly
connects B and C is added to the net in Figure 4.

Loop repair operations. In order to improve the simplicity of the repaired model, a
special repair operation is dedicated to the identification of loops in the traces. The
identification of a loop, whose body represents a behaviour already described in the
model, allows the addition of a simple loop back transition instead of a new subprocess
duplicating the behaviour already contained in the initial model. For example, given
the net in Figure 1 and a trace t5 = 〈A,B,C,B,C〉 the silent transition (loop back
transition) in Figure 5 is added to the net, instead of a new subprocess accepting the
second sequence 〈B,C〉.

Remove unused part operations. In order to improve the precision and the simplicity
of the repaired model M ′, the parts of M ′ that are no more used are removed, by
aligning T with M ′ and detecting the parts of the model that do not contribute to the
acceptance of a minimum number of traces.

In this paper we applied our technique on top of the results provided by the state-of-
the-art ProM Repair Model plugin with the default configuration, which has been set
by the authors to values providing the best results, according to their experiments [4].

A Multi-objective Approach to Business Process Repair 35

Fig. 4. An example of subprocess repair op-
eration

Fig. 5. An example of loop repair operation

3 Process Repair as a Multi-objective Optimization Problem

To repair a model, a set of changes A (repair operations) are discovered and applied by
the repair algorithm. Indeed, every subset Ā ⊆ A is able to partially fix the model M ,
so that a subset T̄ ⊆ T of traces is accepted by the partially repaired model. Assuming
that every operation a ∈ A has a cost c(a), we can formulate the problem of trading the
number of traces accepted by the repaired model for the cost of repairing the model as
a multi-objective optimization problem (MOP).

3.1 Multi-objective Optimization

In single-objective optimization, given a set X of alternatives and a function f : X →
Z, which returns a cost (benefit) value associated with each alternative in X , the single-
objective optimization problem consists of finding an element x∗ ∈ X which minimizes
(maximizes) f . Multiple objectives can be expressed through a finite set of functions
{fi : X → Z|i = 1...n} defined on the set X . Solving the optimization problem
intuitively requires to find elements in X that give the best possible values for all the
objective functions fi at the same time. It is often the case that functions fi assume
their minimum/maximum in different points of X so that there is not a single point in
X which simultaneously optimizes all fi. For this reason the concept of Pareto optimum
is introduced:

Definition 1 (MOP). Multi-objective Optimization Problem (MOP) is defined by an
n-tuple of functions (f1, f2, ..., fn) with fi : X → Z and a corresponding n-tuple of
ordering operators on Z (o1, o2, ..., on) where oi ∈ {≤,≥}, o′i ∈ {<,>}.

Definition 2 (Pareto optimum). A point x∗ ∈ X is a Pareto optimum for the MOP
defined by 〈(fi), (oi)〉 if the following two conditions hold:

– ∀i ∈ {1, ..., n}, fi(x∗) oi fi(x) for all x ∈ X ,
– ∃j ∈ {1, ..., n} such that fj(x∗) o′j fj(x), for all x ∈ X .

Definition 3 (Pareto front). The image F ∗ = {(f1(x∗), f2(x∗), ...fn(x∗)|x∗ ∈ X∗}
of the set X∗ of points x∗ which are Pareto optima for the MOP defined by 〈(fi), (oi)〉
is called Pareto front for the MOP.

Thus, a Pareto optimum provides a point that is equal or better than any other point
for all the functions fi and it is better than any other point for at least one function fj .

36 C. Di Francescomarino et al.

The Pareto front is a useful tool to describe the options that a decision maker has at dis-
posal and to identify preferred alternative among the available ones. In particular, when
problems with two objective functions are concerned, a graphical representation of al-
ternative solutions can be obtained by drawing the Pareto front points on the Cartesian
plane. The solutions (points) that are not on the Pareto front are by definition worse at
least in one objective than the solutions on the front and so they can be ignored in the
decision process.

3.2 Process Repair as a MOP

Process model repair can be seen as a MOP if the power set of the repair operations
P(A) is taken as the space of alternative solutions X , i.e. X = {Ā|Ā ⊆ A} and for
every element in X , namely Ā ⊆ A, the following are considered objective functions:

– Number of accepted traces: N(Ā) = |T̄ |, the size of the set T̄ of traces accepted
by the model repaired by the operations in Ā

– Total Cost: C(Ā) =
∑

a∈Ā c(a), the sum of the costs for all repair operations in
subset Ā

where function N(Ā) is to be maximized, while function C(Ā) is to be minimized.
Having expressed process model repairs as a MOP, we can find a solution by follow-

ing the approach in [12], which transforms the MOP into a satisfiability problem. The
method consists of assuming a maximum value C̄ for the total cost function C and a
minimum value N̄ for the number of accepted traces function N , and writing a set of
linear integer equations that describe the process repair problem under the constraints
imposed by C̄ and N̄ . Then, an SMT solver is used to find a solution or to establish that
the problem is infeasible under constraints C̄, N̄ . By varying C̄ and N̄ appropriately
(e.g., incrementing C̄ or decrementing N̄ when no solution is found), the entire Pareto
front can be precisely explored.

Operation Cost Accepted Traces
a1 3 t1, t2
a2 2 t1, t3
a3 4 t2, t3, t4

Fig. 6. An example of repair operations

The first step for us is to trans-
late the problem into a set of pseudo-
boolean constraints (PBCs). A PBC is
a formula involving booleans and lin-
ear integer arithmetics, having the form:∑n

i=1 aixi �B, where: � ∈ {<,≤,= �=
, >,≥}, ai, B ∈ Z, and all xi range over
the set {0, 1}. Figure 6 shows a simple
example of process model repair, including the repair operations, their costs and the
traces accepted by the model repaired by each operation.

The second step is to define, for a set Ā ⊆ A of repair operations, the vector
(α1, α2, ..., αNA) as the boolean-valued variables with the property ai ∈ B iff αi = 1.
In other words, (α1, α2, ..., αNA) gives the characteristic function of Ā. Similarly, for
a set T̄ ⊆ T of traces, T̄ can be characterized by the vector (τ1, τ2, ..., τNT) of the
boolean-valued variables with the property ti ∈ T̄ iff τi = 1. To make the notation
easier to read, we overload the semantics of variables αi and τi, making the assumption
that when used in an integer context the boolean value true is interpreted as the integer
value 1, false as 0.

A Multi-objective Approach to Business Process Repair 37

The constraints on the objective functions “total cost” C and “number of accepted
traces” N can be expressed as PBCs involving the variables αj and τi, respectively:

∑
i=1,...,NA

ciαi ≤ C̄ (1)
∑

i=1,...,NT

τi ≥ N̄ (2)

Let us define the matrix {mij} with i = 1, ..., NT and j = 1, ..., NA such that
mij = 1 if and only if trace ti requires the repair operation aj to be accepted by
the repaired model. The following system of logical formulas model the relationship
between repair operations and accepted traces:

τi ↔
∧

j=1,...,NA∧mij=1

αj , with i = 1, ..., NT (3)

τ1 ↔ α1 ∧ α2

τ2 ↔ α1 ∧ α3

τ3 ↔ α2 ∧ α3

τ4 ↔ α3

Fig. 7. Logical formulas for Figure 6

Figure 7 shows the logical formulas for the
example in Figure 6: the formula in the first
row states that trace t1 is accepted (τ1 is true)
if and only if repair operations a1 and a2 are
applied (α1 ∧α2 are true). Similar conditions
for t2, t3 and t4 are shown in the remaining
rows of the table.

It can be proven that the set of formulas in
Equation (3) is equivalent to the set of PBCs expressed by Equations (4a) and (4b), for
all i = 1, ..., NT . Figure 8 shows the set of PBCs obtained for the example in Figure 7.

τi ≥ 1 +
∑

j=1,...,NA

mij(αj − 1) (4a)

NAτi ≤ NA +
∑

j=1,...,NA

mij(αj − 1) (4b)

τ1 ≥ 1 + (α1 − 1) + (α2 − 1)
τ2 ≥ 1 + (α1 − 1) + (α3 − 1)
τ3 ≥ 1 + (α2 − 1) + (α3 − 1)
τ4 ≥ 1 + (α3 − 1)
3τ1 ≤ 3 + (α1 − 1) + (α2 − 1)
3τ2 ≤ 3 + (α1 − 1) + (α3 − 1)
3τ3 ≤ 3 + (α2 − 1) + (α3 − 1)
3τ4 ≤ 3 + (α3 − 1)

Fig. 8. PBCs expressing the relation between ap-
plied actions and accepted traces for Figure 6

With this transformation, all con-
straints that must be satisfied to solve our
MOP problem are expressed in pseudo-
boolean form. Specifically, the set of
PBCs (1), (2), (4a), and (4b) defines
the model repair problem MRP =
〈{cj}, {mij}, N̄ , C̄〉 of finding a subset
of repair operations that are required to
accept at least N̄ traces with a repair cost
not greater than C̄, given the action costs
{cj} and the relation between actions and
traces specified by matrix {mi,j}.

The problem MRP can be tackled by
a Satisfiability Modulo Theory solver (YICES2 was used in this work). If the problem

2 YICES: http://yices.csl.sri.com/

http://yices.csl.sri.com/

38 C. Di Francescomarino et al.

turns out to be satisfiable, the accepted traces are identified by the true elements of {τi}
and the required repair operations by the true elements of {αj}.

Computing the Pareto front. The Pareto front for the model repair problem MRP can
be computed using Algorithm 1. First (step 1), we compute the point (CT , NT) of the
front with maximum cost. Second (step 2), starting from C = CT and N = NT ,
the maximum allowed cost C is reduced by one and the maximum number N of
traces that can be accepted with that cost is searched, iteratively solving the problem
P (c,m, C,N) while decreasing N until a satisfiable problem is found. When found,
the point (C,N) is added to the set F and every point (C′, N ′) that is dominated by
(C,N) is removed from F ; the cost is reduced by one and the loop is repeated. Upon
exit, the algorithm returns the set of points in the Pareto front.

Algorithm 1. Computing the Pareto front for the Model Repair MOP

Input:
c = c1, ..., cNA vector containing the cost of repair operations,
m = (mij)i=1,...,NT ,j=1,...,NA , matrix specifying what traces are
repaired by what operations

Output:
F , a set of points (C,N) (cost, number of accepted traces),
i.e. the Pareto front for the Model Repair MOP

// step 1: Compute the cost CT to have a model that accepts the whole set of traces
CT =

∑
i=1,...,NA

(ci)
add (CT , NT) to F
// step 2: Follow the Pareto front
C = CT − 1
N = NT

while C > 0 do
while N > 0 do

if MRP problem 〈c,m, C,N〉 is satisfiable then
add (C,N) to F
remove any (C′, N ′) dominated by (C,N) from F
break

end if
N = N − 1

end while
if N = 0 then

break
end if
C = C − 1

end while
return F

A Multi-objective Approach to Business Process Repair 39

4 Experimental Results

In order to evaluate the proposed multi-objective approach, we formulate the following
research questions:

RQ1 Does the Pareto front offer a wide and tunable set of solutions?
RQ2 Does the Pareto front offer solutions that can be regarded as repaired models of

good quality?

RQ1 deals with the number and the variety of different solutions provided by Multi-
objective Repair. In particular, the shape of the Pareto front and the number of the
solutions in the Pareto front determine whether a wide range of alternatives that bal-
ance the two dimensions of interest is offered to business analysts. The Pareto front,
in fact, might consist of points spread uniformly in the interesting region or it may be
concentrated in limited, possibly uninteresting regions of the plane (e.g., near the totally
repaired processes accepting almost all traces in T). In our specific setting the number
of solutions available in the Pareto is dependent on the number of operations needed to
repair the whole set of traces in T . In order to answer this research question, we look at
the number of optimal solutions, as compared to the whole set of repair operations, and
at the shape of the Pareto front.

RQ2 investigates the quality of the repaired models in the Pareto front. Specifically,
two important quality dimensions for repaired models [3] are taken into account: (i)
Precision, i.e., how many new behaviours are introduced in the repaired model with
respect to the real process being modelled; and, (ii) Generality, i.e., how many yet
unobserved behaviours of the real process are accepted by the repaired model.

In the following, we report the case study, the metrics, the experimental procedure,
and the results obtained to positively answer RQ1 and RQ2.

4.1 Process under Analysis

The process used in the case study is a procedure carried out in the Italian Public Ad-
ministration (PA). It deals with the awarding of public tenders by contracting adminis-
trations. Before the winners can be awarded with the final notification, the contracting
administration has to verify whether the winners have all the necessary requirements.
In detail, the procedure is activated when the tender reports and a temporary ranking
are available. According to whether anomalous offers can be accepted or not, a further
step of evaluation is required or the letters for winners, non-winners as well as the result
letter can be directly prepared and entered into the system. At this point, the require-
ments of the temporary winners have to be verified. If such verification is successful, an
award notice is prepared and officially communicated; otherwise, further clarifications
are requested to the temporary winners and the verification is iterated. The award notice
can be published through the Web, through the Council notice board or, if the reward is
greater than a given threshold, it has to go to print.

A Petri net M describing such public tender awarding procedure has been defined
by a team of business experts as part of a local project. M takes into account the “ideal”
procedure described in official documents and is composed of 35 transitions, none of

40 C. Di Francescomarino et al.

which silent, and 32 places. No concurrent behaviours and no routing transitions occur
in M , while there are three alternative choices and a loop, involving 5 routing places3.
Since discrepancies were found between M and the actually observed execution traces
T , a repaired model M ′ was produced from M using the ProM Repair Model plugin.

4.2 Metrics

In order to answer the above research questions, we use precision and generality met-
rics to compare M ′ to a gold standard model GSM . Differently from the initial model
M which did take into account the generic “ideal” procedure described in official doc-
uments, the gold standard GSM has been manually defined by a team of business
analysts working on the real process of a specific institution. It contains all and only
behaviours that are legal in the specific setting. Model GSM contains 49 transitions
and 38 places; it contains some parallel behaviours (2 routing transitions), several alter-
native paths and few loops (21 routing places). Transitions are decorated with transition
probabilities estimated from real process executions.

Precision. Precision (P) of a repaired model M ′ measures the absence of extra-
behaviour in M ′ with respect to the behaviour it should contain. It is computed as
the percentage of execution traces generated by the repaired model and accepted by the
gold standard model GSM :

P (M ′) =
|acc(GSM,TM ′)|

|TM ′ | (5)

where acc(M,T) is the subset of T accepted by M and TM is a set of traces stochas-
tically generated by model M . It should be noticed that in the general case, where no
GSM is available, measuring the precision of a model might be quite difficult and
might involve substantial manual effort. We expect that good models are characterized
by high precision.

Generality. Generality (G) measures the capability of the repaired model M ′ to de-
scribe unobserved behaviours of the real process. We compute it as the percentage of
traces generated by GSM that are accepted by M ′:

G(M ′) =
|acc(M ′, TGSM)|

|TGSM | (6)

where acc(M,T) is the subset of T accepted by M and TM is a set of traces generated
by model M . We expect that good models are characterized by a high generality.

4.3 Experimental Procedure

The procedure followed in our experiments consists of the following steps:

3 Detailed descriptions of the case study are available at the link http://selab.fbk.eu/mor/

A Multi-objective Approach to Business Process Repair 41

1. Trace generation. Two sets of traces T and GT are generated from the gold stan-
dard model GSM (in our experiments, |T | = 100; |GT | = 10). Each trace is
generated by a random execution of the Petri net: at each step, the transition to fire
is chosen according to the probabilities associated with the enabled transitions. The
execution ends when no enabled transitions exist;

2. Model Repair. The set of traces T is used to repair the initial model M , producing
the set A of operations required to fix it. For each operation a ∈ A, its cost c(a),
estimated as the number of transitions added by the repair operation a, and the set
of traces T (a) accepted by the repaired model due to the specific repair operation
a are stored;

3. MRP Solver. The Solver applies Algorithm 1 to obtain the Pareto front. Each point
Pi in the Pareto front is associated with a repaired model Mi;

4. Compliance Computation for Generality. The set of traces GT is used to evaluate
the generality of each repaired model Mi;

5. Trace Generation from Repaired Models. Each model Mi is used to randomly
generate a set TMi (|TMi | = 100), using a uniform distribution of probabilities
associated with the transitions;

6. Compliance Computation for Precision. Traces TMi are checked against GSM
to measure the precision of model Mi.

Stochastic trace generation from GSM and from the repaired models Mi was re-
peated 10 times, to allow for the computation of average and standard deviation of the
experimental metrics for precision and generality.

4.4 Results

Figure 9 shows the Pareto Front obtained by applying Multi-objective Repair to the
presented case study. Each Pareto front point is associated with a model Mi, obtained
by applying a different set of repair operations. The x-axis represents the cost of the
repair operations applied to obtain model Mi, while the y-axis represents the number
of traces in T that are accepted by the repaired model Mi.

The shape of the Pareto front offers an approximately linear set of solutions that
are quite well distributed along the two axes. There are 6 points in the central area of
the plot, distributed two by two along the Pareto front. For each pair, the point with
the lowest cost is clearly associated with a better solution since the more costly solution
accepts just one additional trace. For example,M7 (indicated with an arrow in Figure 9)
and M8 represent a pair of close points. A business analyst, in charge to choose between
the two repaired models, would probably prefer M7, since this solution presents a lower
cost, sacrificing only one trace.

Considering that 16 different repair operations have been identified by the ProM
repair plugin – hence, 216 different sets of operations can be potentially built – the
12 solutions provided by Multi-objective Repair represent, for a business analyst in
charge of repairing the initial model, a good selection of different trade-off solutions,
all ensured to be Pareto-optimal. Manual inspection of the whole space of solutions
would be unaffordable. Based on these considerations, we can answer RQ1 positively.

42 C. Di Francescomarino et al.

Fig. 9. Pareto Front obtained by applying Multi-objective Repair to the awarding of public tenders

Table 1 reports, for each repaired model Mi in the Pareto front, the number of traces
in T accepted by Mi, the cost of the repair operations applied, and the values for preci-
sion and generality. Figure 10 plots the same data as a function of the repair cost. The
low values for precision at increasing repair costs are due to the ProM repair algorithm,
which tends to preserve old behaviours by introducing alternative silent transitions. These
increase the number of extra-behaviours. As a consequence, the trend of the precision
metrics is decreasing when the number of repair operations applied to the model grows.

The opposite trend can be noticed for the generality metrics (blue line in Figure 10).
Starting from very low values for the poorly repaired models, the capability to reproduce
new, unobserved behaviours increases together with the application of repair operations.
It is worth noticing that in our case study the generality value for the repaired model
accepting all traces in T , i.e., M12, is exactly 1. In fact, the trace set T used to repair
the initial model M provides exhaustive coverage of all possible process behaviours.
Of course, this might not be true in the general case.

Table 1. Precision and generality for the models in the Pareto front

of accepted traces Repair operation cost Precision Generality
Avg. Std. dev. Avg. Std. dev.

M1 5 2 1 0 0.04 0.07
M2 15 4 1 0 0.13 0.17
M3 24 6 1 0 0.22 0.08
M4 28 7 0.51 0.04 0.26 0.1
M5 45 9 0.53 0.07 0.41 0.08
M6 46 11 0.29 0.03 0.41 0.1
M7 57 15 0.51 0.04 0.51 0.11
M8 58 17 0.3 0.03 0.51 0.11
M9 72 20 0.4 0.03 0.66 0.1
M10 75 22 0.25 0.02 0.66 0.1
M11 94 26 0.26 0.03 0.98 0.04
M12 100 28 0.13 0.01 1 0

A Multi-objective Approach to Business Process Repair 43

Fig. 10. Precision and average generality plots

The plot in Figure 10 shows that some of the intermediate solutions in the Pareto
front (e.g., M5, M7 and M9) offer quite interesting trade offs between precision and
generality. For example, the repaired model M7 is characterized by a precision and a
generality of 0.51. At the same time, the additional complexity of this model in compar-
ison with the initial model M can be approximately measured by the repair cost (15),
which is half of the total repair cost (28) for the fully repaired model M12. If we can
accept only half of the overall model complexity increase, we get approximately half
precision and generality.

We can conclude that the Pareto front built by Multi-objective Repair provides busi-
ness analysts with a set of tunable and good quality repaired models. The possibility to
consider intermediate solutions (i.e., solutions in the central area of the Pareto plot) and
to choose “how much” to repair the model (hence, how much to increase the model com-
plexity), provides business analysts with a lot of flexibility in the trade-off between model
quality and complexity. Based on these considerations, we can answer RQ2 positively.

4.5 Discussion

We have manually inspected the repaired models in the Pareto front. We found that some
cheap operations (e.g., the introduction of silent transitions, realizing loop back/skipping
activities, or of small subprocesses) enable the acceptance of almost half of the traces
in T (see, e.g., M7), at a cost that is around half of the total repair cost (28). Solutions
located in the upper-right part of the Pareto, instead, are characterized by costly repair
operations dealing with the acceptance of parallel behaviours.

The parallelization of activities and the management of mutually exclusive branches
represent typical examples of challenging behaviours for repair techniques (in our case,
for the approach implemented by the ProM plugin). The low precision values of some
repaired models can be ascribed to these two types of criticalities. Concerning the first

44 C. Di Francescomarino et al.

Fig. 11. Sequentialization of parallel activi-
ties

Fig. 12. Sequentialization of mutually ex-
clusive activities

one (parallelization), indeed, the lack of a dedicated detector for parallel behaviours
causes the insertion of subprocesses in charge of exploring the different interleavings of
the parallel activities. Figure 11 shows a simplified view of this critical setting, which
makes it also clear why extra-behaviours are introduced in the repaired model (e.g.,
〈C,B,D,C〉). Similarly, Figure 12 shows a simplified representation of a particular
case of the second criticality (mutually exclusive branches). When a new activity has
to be added to a block of mutually exclusive branches, it is added in sequence at the
join place as an optional activity, disregarding whether it is a new branch or part of an
existing one. Figure 12 gives an idea of the extra-behaviour introduced in the repaired
model (e.g., 〈A,B, F,E〉).

This analysis gives qualitative indications about the consequence of selecting a so-
lution in the central area of the Pareto front (e.g., M5 or M7). A business analyst can
repair the model at lower costs, while sacrificing execution traces involving more com-
plex (and costly to repair) behaviours, such as parallel behaviours (M7) or both mutually
exclusive and parallel behaviours (M5). The analysis provides also indications for the
improvement of existing model repair algorithms, e.g., the need to introduce special
rules dealing with parallelism and mutual exclusion.

4.6 Threats to Validity

Two main threats to validity can be identified in the presented case study, both related to
the external validity, i.e., to the generalizability of the obtained results. The first threat
concerns the investigation of a single case study. Results related to a single case study
cannot be easily generalized. Nevertheless, the case study under analysis deals with
a real procedure actually executed by Italian PA. The second threat is related to the
specific repair tool and configuration used for identifying the set of repair operations.
Different plugins and configurations would make the results more general. Neverthe-
less, the ProM plugin for process repair used in this work is among the most known in
the literature.

5 Related Work

Reconciling execution information and process models, as done in process model dis-
covery and repair, involves multiple, often contrasting, dimensions. Some works [5]

A Multi-objective Approach to Business Process Repair 45

apply post-processing analysis to simplify the discovered process models, while
preserving the ability of the models to replay all the execution traces used for their
generation. Others [9,3] use evolutionary algorithms to deal with these dimensions.
De Medeiros et al. [9] apply a genetic algorithm to mine process models balancing
the capability to reproduce behaviours traced in execution logs and extra-behaviours.
Their algorithm optimizes a single-objective function, which combines under and over-
generalization. A similar approach is taken by Buijs et al. [3], who use a genetic algo-
rithm to discover a process model that not only balances under and over generalization,
but also takes into account the model simplicity and generality, as well as the distance
from an initial reference model. These works differ from ours because: (i) a new model
is discovered rather than having an initial one repaired; and (ii) a single-objective func-
tion is used to combine all the dimensions to be optimized.

Multi-objective approaches have been applied to various fields of software engineer-
ing. For example, Harman et al. [13] present the first application of multi-objective
optimization to the problem of test case selection. In their work, they study Pareto ef-
ficient genetic algorithms, such as NSGA-II, to maximize code coverage and minimize
test cost during regression testing. Tonella et al. [11] introduce a multi-objective op-
timization algorithm to recover specification models that balance the amount of over-
and under-approximation of application behaviours observed in traces. They show that
multi-objective optimization performs outstandingly better than previous state-of-the-
art approaches. Arito et al. [2] propose the formulation of the multi-objective problem of
Test Suite Minimization (TSM) in terms of a set of pseudo-Boolean constraints. While
our method adopts a similar formalization, the two considered problems differ in terms
of involved constraints: in MRP a trace is accepted if and only if all associated repair
operations are performed on the model, while in TSM each line of code can be executed
by more than one test case, hence including at least one of them is enough to increase
coverage.

Multi-objective optimization approaches have also been applied to the business pro-
cess field, but never to optimize business process model repair. Marchetto et al. [8]
apply a multi-objective technique to reduce intricate process models recovered from
execution logs. In their work, two dimensions are investigated: complexity (measured
in terms of analysts’ understandability) and under-generalization. In Tomasi et al. [10],
a third dimension is added to the two above: the business domain content of recovered
processes. In both cases, the considered dimensions and the goal of the multi-objective
optimization differ from the ones of this work.

6 Conclusions and Future Work

This paper presents a multi-objective approach to process model repair. It builds on top
of state-of-the-art repair approaches and exploits the repair operations they provide to
balance cost (in terms of complexity added to the recovered model) and advantages
(in terms of traces accepted by the repaired model) of applying such operations to the
initial model. Preliminary results, obtained by applying our approach to a real-life case
study, indicate that: (i) the proposed Multi-objective Repair technique provides business
analysts with a good selection of different solutions, all ensured to be Pareto-optimal;
(ii) the returned solutions are tunable and good quality repaired models.

46 C. Di Francescomarino et al.

Future works will be devoted to performing further experiments involving larger case
studies, as well as investigating the use of different configurations and tools for process
model repair.

Acknowledgments. This work is partly funded by the European Union Seventh Frame-
work Programme FP7-2013-NMP-ICT-FOF (RTD) under grant agreement 609190 -
“Subject- Orientation for People-Centred Production”.

References

1. van der Aalst, W.M.P.: Business alignment: Using process mining as a tool for delta analysis
and conformance testing. Requir. Eng. 10(3), 198–211 (2005)

2. Arito, F., Chicano, F., Alba, E.: On the application of SAT solvers to the test suite minimiza-
tion problem. In: Proc. of the 4th Int. Symposium on Search Based Software Engineering
(SSBSE), pp. 45–59 (2012)

3. Buijs, J.C.A.M., La Rosa, M., Reijers, H.A., van Dongen, B.F., van der Aalst, W.M.P.: Im-
proving business process models using observed behavior. In: Cudre-Mauroux, P., Ceravolo,
P., Gašević, D. (eds.) SIMPDA 2012. LNBIP, vol. 162, pp. 44–59. Springer, Heidelberg
(2013)

4. Fahland, D., van der Aalst, W.M.P.: Repairing process models to reflect reality. In: Barros, A.,
Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 229–245. Springer, Heidelberg
(2012)

5. Fahland, D., van der Aalst, W.M.P.: Simplifying mined process models: An approach
based on unfoldings. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS,
vol. 6896, pp. 362–378. Springer, Heidelberg (2011)

6. Gambini, M., La Rosa, M., Migliorini, S., Ter Hofstede, A.H.M.: Automated error correction
of business process models. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011.
LNCS, vol. 6896, pp. 148–165. Springer, Heidelberg (2011)

7. Li, C., Reichert, M., Wombacher, A.: Discovering reference models by mining process vari-
ants using a heuristic approach. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM
2009. LNCS, vol. 5701, pp. 344–362. Springer, Heidelberg (2009)

8. Marchetto, A., Di Francescomarino, C., Tonella, P.: Optimizing the trade-off between com-
plexity and conformance in process reduction. In: Cohen, M.B., Ó Cinnéide, M. (eds.)
SSBSE 2011. LNCS, vol. 6956, pp. 158–172. Springer, Heidelberg (2011)

9. Medeiros, A.K.A.D., Weijters, A.J.M.M.: Genetic process mining: an experimental evalua-
tion. Data Min. Knowl. Discov. 14 (2007)

10. Tomasi, A., Marchetto, A., Di Francescomarino, C.: Domain-driven reduction optimization
of recovered business processes. In: Fraser, G., Teixeira de Souza, J. (eds.) SSBSE 2012.
LNCS, vol. 7515, pp. 228–243. Springer, Heidelberg (2012)

11. Tonella, P., Marchetto, A., Nguyen, C.D., Jia, Y., Lakhotia, K., Harman, M.: Finding the
optimal balance between over and under approximation of models inferred from execution
logs. In: 2012 IEEE Fifth Int. Conf. on. Software Testing, Verification and Validation (ICST),
pp. 21–30. IEEE (2012)

12. Van Veldhuizen, D.A., Lamont, G.B.: Multiobjective evolutionary algorithm test suites. In:
Proc. of the 1999 ACM Symp. on Applied Computing, pp. 351–357. ACM (1999)

13. Yoo, S., Harman, M.: Pareto efficient multi-objective test case selection. In: Proc. of the 2007
Int. Symposium on Software Testing and Analysis, pp. 140–150. ACM (2007)

Memetic Algorithms for Mining Change Logs

in Process Choreographies�

Walid Fdhila, Stefanie Rinderle-Ma, and Conrad Indiono

University of Vienna, Faculty of Computer Science, Vienna, Austria
{Walid.Fdhila,Stefanie.Rinderle-Ma,Conrad.Indiono}@univie.ac.at

Abstract. The propagation and management of changes in process
choreographies has been recently addressed as crucial challenge by sev-
eral approaches. A change rarely confines itself to a single change, but
triggers other changes in different partner processes. Specifically, it has
been stated that with an increasing number of partner processes, the risk
for transitive propagations and costly negotiations increases as well. In
this context, utilizing past change events to learn and analyze the prop-
agation behavior over process choreographies will help avoiding signifi-
cant costs related to unsuccessful propagations and negotiation failures,
of further change requests. This paper aims at the posteriori analysis
of change requests in process choreographies by the provision of mining
algorithms based on change logs. In particular, a novel implementation
of the memetic mining algorithm for change logs, with the appropri-
ate heuristics is presented. The results of the memetic mining algorithm
are compared with the results of the actual propagation of the analyzed
change events.

Keywords: Change Mining, Process Choreographies, Memetic Mining,
Process Mining.

1 Introduction

As a result of easier and faster iterations during the design process and at run-
time, the management of business process changes, their propagation and their
impacts are likely to become increasingly important [1]. Companies with a higher
amount of critical changes list change propagation as the second most frequent
objective. In particular, in around 50% of the critical changes, the change neces-
sity stems from change propagation. Thus critical changes are tightly connected
to change propagation in terms of cause and effects [2].

In practice, companies still struggle to assess the scope of a given change. This
is mainly because a change initiated in one process partner can create knock-on
changes to others that are not directly connected. Failures of change propaga-
tions can become extremely expensive as they are mostly accompanied by costly
negotiations. Therefore, through accurate assessments of change impact, changes

� The work presented in this paper has been funded by the Austrian Science Fund
(FWF):I743.

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 47–62, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

48 W. Fdhila, S. Rinderle-Ma, and C. Indiono

not providing any net benefit can be avoided. Resource requirements and lead
times can be accounted for when planning the redesign process [3]. With early
consideration of derived costs and by preventing change propagation, bears the
potential to avoid and reduce both average and critical changes [2].

Hence it is crucial to analyze propagation behavior, particularly, transitive
propagation over several partners. Note that change propagation might even be
cyclic, i.e., the propagation affects either the change initiator again or one of the
already affected partners. This is mainly due to transitivity; e.g., when a change
propagation to a partner not only results in direct changes he has to apply, but
also leading to redesigns in different parts of his process. In turn, this may have
consequences on the change initiator or a different partner.

This paper is based on change event logs and uses mining techniques to
understand and manage change propagation, and assess how changes propa-
gate between process partners that are not directly connected (cf. Figure 1). A
novel contribution is the implementation of a memetic mining algorithm coupled
with the appropriate heuristics, that enables the mining of prediction models on
change event logs, i.e., no information about the propagation between partners
is provided.

In the following, Section 2 illustrates a motivating example, while Section 3
presents change log formats and gives the global overview of the problem. Section
4 follows up with a set of heuristics for change mining. Based on these heuristics,
we introduce a memetic change mining algorithm in Section 5, which we discuss
and evaluate in Section 6. In Section 7 we discuss related work and conclude in
Section 8.

2 Motivating Example and Preliminaries

A process choreography is defined as a set of business partners collaborating
together to achieve a common goal. Based on [4], we adopt a simplified definition
of a process choreography C := (Π,R) with Π = {πi}i∈P denoting the set of
all processes distributed over a set of partners P and R as a binary function
that returns the set of interactions between pairs of partner; e.g., in terms of
message exchanges. Typical change operations comprise, for example, adding or
removing a set of activities from a process model or modifying the interaction
dependencies between a set of partners. A change operation is described by a
tuple (δ, π) where δ ∈ {Insert, Delete, Replace} is the change operation to be
performed on the partner process model π that transforms the original model π
in a new model π′ [4].

Consider the choreography process scenario as sketched in Figure 1 consisting
of four partners Acquirer, Airline, Traveler, and TravelAgency. In this paper,
we abstract from the notions private and public processes and assume that logs
with change information on all partners exist (e.g. anonymized and collected). The
Acquirer initiates a change of its process (δ, Acq) that requires a propagation to
the direct partner Airline. In order to keep the interaction between Acquirer

and Airline correct and consistent, the Airline has to react on the change by
inserting a new fragment F3 into its process. This insertion, in turn, necessitates a

Memetic Algorithms for Mining Change Logs 49

Acquirer:
πAcq

Airline

Traveler

Travel
Agency

status=accept

δAcq=Replace(F2,F2‘)

Change
Propagation

δAir=Insert(F3) status=accept
resp_date=2013-09-21
resp_time=06:54:09:181
cost=10

Change
Propagation

δT=Delete(F4)
status=accept
resp_date=2013-09-21
resp_time=10:21:03:201
cost=30

δTA=Replace(F5,F5‘)

Change
Propagation

status=reject
resp_date=2013-09-22
resp_time=18:41:27:78
cost=0

Fig. 1. Running Example: process choreography with Change Propagation

propagation to the Traveler that reacts by deleting process fragment F4. Finally,
the change propagates to the TravelAgency that would have to replace fragment
F5 by new fragment F5’. However, as the TravelAgency rejects the change, the
entire change propagation fails. According to [4], such change propagation is de-
fined as a function γ : {Insert, Delete, Replace} ×Π �→ 2{Insert,Delete,Replace}×Π

with γ((δi, πi)) = {(δj, πj)}. γ takes as an input an initial change on a given pro-
cess model and generates the ripple effects on the different partners affected by
the change.

The approach presented in this paper is based on change event logs collected
from different partners. Figure 2 outlines the overall approach and distinguishes
this work from previous ones. In [4], the overall picture of change propagation
in process choreographies has been set out. Also the basic algorithms for change
propagation are provided in [4]. We started analyzing change impacts in pro-
cess choreography scenarios using a priori techniques in [5]. The latter work is
based on the choreography structure only and does not consider information on
previous change propagations that occurred between the partners.

3 Problem Formulation

In this section, we introduce two different change log types and give a global
view on our approach.

3.1 Change Logs in Process Choreographies

Change logs are a common way to record information on change operations ap-
plied during process design and runtime for several reasons such as recovery and
compact process instance representation [6]. For process orchestrations, change
logs have been also used as basis for change mining in business processes in order
to support users in defining future change operations [7].

Change logs can be also used for process choreographies. Here, every change
log contains all individual change requests performed by every partner, where no
propagation information are described in the log. At a certain time, all the public
parts of the change logs owned by the partners participating in the collaboration

50 W. Fdhila, S. Rinderle-Ma, and C. Indiono

Table 1. Change Event Record

Attribute Value

Initial Change ID 15d6b27b

Request time 2014-08-03T00:41:15

Change type Insert

Partner TravelAgency

Magnitude 0.6

Status completed

Response time 2014-08-05T12:32

Table 2. Change Propagation Record

Attribute Value

Initial Change ID 15d6b27b

Request time 2014-08-03T00:41:15

Change type Insert

Partner TravelAgency

Partner target Airline

Derived change ID c25b8c67a

Derived change type Insert

Magnitude 0.6

Status completed

Response time 2014-08-05T12:32

are anonymized [8], normalized, collected and put in one file to be mined. In the
following, we refer to this type of log as CEL (Change Event Log).

In practice, it is also possible to have a change propagation log CPL (i.e.
containing the change requests, their impacts and the propagation information
as well). However, since the processes are distributed, it is not always possible
for a partner to track the complete propagation results of his change requests
(due to transitivity and privacy). To be more generic, we adopt change logs that
contain solely change events CEL (without information about propagations)
to be mined. However, in order to validate our mining approach, and assess
the quality of the mined model from the CEL, we also maintain a log of the
actual propagations CPL. The results of the predicted model from the CEL are
compared and replayed on the CPL propagation events.

Anonymization of the logs represents an important privacy step [8], which is
a trivial operation in a non-distributed setting. In a distributed environment a
consistent anonymization scheme needs to be employed, where for example π2

is consistently labeled as X .
Table 1 describes a sample of a change record. Each record includes informa-

tion about the partner that implemented the change (anonymized), the change
ID and type, the timestamps and the magnitude of the change. The latter is cal-
culated using the number of affected nodes (in the process model), the costs (gen-
erated randomly), and the response time. Other costs can be added as needed.
Table 2 describes a propagation record, with more propagation information.

3.2 Overview

As aforementioned, the main problem is to generate and analyze a propagation
model by mining the change event log CEL, which contains all change events
that occurred on the process partners involved in the choreography. Figure 2
gives a global overview of the main components for managing changes in col-
laborative processes. The first set of components (C3Pro framework) provides
support for specifying, propagating, negotiating, and implementing changes in
choreographies. In particular, the change propagation component calculates the
ripple effects of an initial change on the affected partners and checks the sound-
ness of the collaboration if changes are accepted and implemented. The details

Memetic Algorithms for Mining Change Logs 51

Change
Event Log

(CEL)

Mined
Posteriori

Prediction Model

Change
Propagation Log

(CPL)

Validation

Process
Models

candidate
model #1candidate

model #1
Posteriori
Prediction
Model #1

Memetic Change Mining

N Generations

A Priori Prediction
Model

Described in [5]
Change

Management

Change
Propagation

Change
Negotiation

Change
Implementation

C3Pro Framework

Described in [4]

Fig. 2. Overview of the Approach

of the propagations are stored in the CPL, and all individual change events are
stored in the CEL. Based on the change simulation data, posteriori and a priori
techniques are provided to evaluate and understand the propagation behavior
in the choreography through prediction models. The a priori technique [5] uses
the choreography structure to assess and predict the impact of a change request.
The posteriori technique, described in this paper, generates prediction models by
mining the previously stored change data. Derived models are validated through
a replay of the CPL.

In the CEL, the relationships between the change events are not explicitly
represented. The changes are collected from different partners without any in-
formation if a change on a business partner is a consequence of a change on
another business partner or if they are independent (because of the transitiv-
ity). In order to correlate between the change events and understand the prop-
agation behavior, we adopted different heuristics related to change in process
choreographies.

4 Heuristics

In this section we present 4 groups of heuristics that can be exploited for mining
change events in process choreographies.

Time Related Heuristic (TRH): In connection with process mining [9,10,11],
if two activities a and b whose most occurrences in the log are such as the
completion time of a always precedes the start time for the execution of b, then
we conclude that a precedes b in the process model. If there exist cases where
the execution start time of b occurs before the completion of a, then we can say
that a and b could be in parallel. In change mining, a partner π2 that always
performs changes directly after a partner π1 has changed its process, may lead to
the conclusion that the changes on π2 are the consequences of the changes of π1.
However, this does not always hold true. Indeed, the change events are collected
and merged from different sources, and several independent change requests can
be implemented by different partners at the same time.

In addition, in process execution logs, each trace represents a sequence of
events that refer to an execution case (i.e. an instance of the process execution).

52 W. Fdhila, S. Rinderle-Ma, and C. Indiono

δ22

δ11

δ21

δ12

Δ Δ Δ-ε εε

δ13

δ23

time (t)
t1

t1+Δ

t2

t2+Δ+ε

t3

t3+Δ- ε
L1 (δ11, 1) t1

L3 (δ21, 2) t1+Δ

L4 (δ12, 1) t2

L5 (δ22, 2) t2+Δ+ ε
L6 (δ13, 1) t3

L8 (δ23, 2) t3+Δ-ε

Log File

Operation TimeTrace

ti = change event timestamp
δij = jth change operation on i
Δ = elapsed time
ε = small time interval

change events on 1

change events on 1

L2 (δ31, 3) t1'

L7 (δ43, 4) t3'

Fig. 3. Change Event Log (CEL): Representation over Time

The precedence relationships between events of a same trace are explicit. In
change logs CEL, each trace represents solely one change event. Even if the
timestamps give an explicit precedence relationship between different traces, it
is not possible to directly conclude that they are correlated. For example, we
assume that the actual propagation of two initial change requests on different
partners (δ1, π1) and (δ2, π2) are such that:

– the actual propagation of (δ1, π1) results in (δ3, π3).
– the actual propagation of (δ2, π2) results in (δ4, π4).

Since, in this paper, we consider that we do not have the information about
the propagations, and that each of these change events is logged separately
by the partner which implemented it, then, according to the timestamps, the
merging and ordering of these change events in the CEL may lead to the following
sequence: [(δ1, π1), (δ2, π2), (δ3, π3), (δ4, π4)]. According to this ordering, (δ2, π2)
may be considered as a consequence of (δ1, π1) and (δ4, π4) as a consequence of
(δ1, π1). In order to avoid such erroneous interpretations of the log, we need to
enhance the heuristic with new elements.

Figure 3 illustrates an example of a sample CEL and its representation over
time. The Figure shows a log file containing traces of 8 change events occurred
on process partners π1, π2, π3 and π4 at different times. We assume that the
log is chronologically ordered. According to the timestamps, there is a strict
precedence relationship between the change occurrences on π1 and the change
occurrences on π2. However, we can not directly deduce that the latter are the
effects of the changes on π1. Therefore, it is necessary to find another correlation
between the timestamps that is more relevant regarding the identification of
the propagation patterns. In this sense, we can remark that each time a change
operation δ1 occurs on π1 at time t, there is a change operation δ2 that occurs
on π2 at t+Δ with a variance of ±ε. This deduction holds true when the number
of change occurrences on π2 in the interval [t+Δ− ε, t+Δ+ ε] becomes high,
and when Δ corresponds to the average latency between partners π1 and π2.
The identification of Δ and ε are calculated empirically and should consider the
noise in the event logs (e.g. rare and infrequent behavior).

Window Related Heuristic (WRH): Figure 4 presents another example of
change events extracted from a CEL. For instance, we consider a Replace on
partner Acquirer (A) followed by an Insert on Airline (B), which in turn,
followed by a Delete on the TravelAgency (C). We also consider Γi as the

Memetic Algorithms for Mining Change Logs 53

1 Replace Acquirer t1

CEL Log File

Change Type TimePartnerID

2 Insert Airline t2

3 Delete TravelAgency t3

A B C

time (t)

Max(Γi)

t1 t1+Δ2t1+Δ1

Δ1 Δ2-Δ1

Change events

ΓCti = change event timestamp

 = the window of possible candidates
Δ = elapsed time
Γi = response time of partner i

A = (Replace, Acquirer)

B = (Insert, Airline)

C = (Delete, TravelAgency)

window for possible candidates as change
originators that triggered C.
(C is the consequence of another change)

window for possible candidates
as change consequences of A.
(A is the change originator)

Backward

Forward

Assumptions
IF ΓB ∈ [Δ1-ε, Δ1+ε]
and ΓC ∈ [Δ2-ε, Δ2+ε]
and ΓC ∈ [Δ2-Δ1-ε, Δ2-Δ1+ε]
IF ΓB ∈ [Δ1-ε, Δ1+ε]
and ΓC ∉ [Δ2-ε, Δ2+ε]
and ΓC ∈ [Δ2-Δ1-ε, Δ2-Δ1+ε]
IF ΓB ∈ [Δ1-ε, Δ1+ε]
and ΓC ∉ [Δ2-ε, Δ2+ε]
and ΓC ∉ [Δ2-Δ1-ε, Δ2-Δ1+ε]

Possible Propagation Models

A B C

A B C

A B C

A B C

A B C

A B C

A B C

A B C

A B C

A B C

A B C

A B C

Caption

Probabilistic Model

A B C
P(B/A)=1/2 P(C/B)=1/3

P(C/A)=1/3

A B C
P(B/A)=1/2 P(C/B)=1/2

A B
P(B/A)=1/2

ε = small time interval

Fig. 4. Correlating change events using forward and backward windows

response time of partner i (the average time required by partner i to implement
a change). When mining this log, the first challenge is to know if a change event
is the originator or a consequence of another change. For this purpose, we define
two types of windows; i.e., backward and forward. Given a change event, the
forward window represents all the following change events that can be considered
as effects of its propagation. In contrast, a backward window includes all previous
change events that can be considered as the originators of the change event in
question. For instance, in Figure 4, the forward window of A (i.e., ω+

A), is defined
by the maximum of the response times of all change events (i.e.,Maxi∈P(Γi)).
Indeed, Γi is the time required by a partner to react and implement a change.
So, with respect to A, if a following change event B was implemented at a time
tB such as tB − tA > ΓB, then B cannot be considered as consequence of A. In
turn, if tB− tA < ΓB, then B might be a consequence of A (but not necessarily).

For a given change A, since we know that only change events that respect
this constraint can be considered, then the possible candidate events as conse-
quences of A should be within this window ω+

A = Maxi∈P(Γi). According to
this approach, in Figure 4, the possible change events that can be considered as
effects of A are B and C.

This forward window allows to avoid parsing all change events that come after
A to the end of the log CEL. However, a change event within this window does
not necessarily imply that it is a consequence of A. for example, C is within the
ω+
A window, but ΓC can be such as ΓC < tC − tA < ω+

A or tC − tA < ΓC < ω+
A .

For instance, if we assume that in time scale, tA = 3, ω+
A = 10, tC = 9 and

Γc = 4, then ΓC = 4 < tC − tA = 6 < ω+
A = 10. In this case, C is within the

window of A, but did not occur within its response time tA + ΓC ± ε (ε is a
variance value).

On the other hand, for a given change event C, the backward window ω−
C in-

cludes all possible change events that can be considered as the originators that
triggered C. In this sense, if C is a consequence of another change A, then tC − tA

54 W. Fdhila, S. Rinderle-Ma, and C. Indiono

should be approximately equal to ΓC , and therefore ω−
C = ΓC . However, a change

event A that occurred at tC − ΓC ± ε does not necessarily mean that C is conse-
quence of A. Indeed, both events can be independent.

Back to Figure 4, the table shows the possible propagation models that can
be generated according to the assumptions based on backward and forward win-
dows. In the first assumption, we assume that the response time of B matches
the time of its occurrence after A, and the time of its occurrence with respect
to B. Therefore, C can be seen as a possible consequence of either A or B. In
the same time the occurrence of B after A falls within its response time ΓB, and
therefore B can be possibly a consequence of A. As aforementioned, matching
the timestamps of the change events do not necessarily mean they are correlated,
and then we have to consider the possibility that the events might be indepen-
dent. The possible propagation models are then depicted in the second column,
which, merged together, give the probabilistic model in column 3. In the second
assumption, we assume that C can not be candidate for A (according to its
response time), and therefore the number of possible propagation models is re-
duced to only 4. In the last assumption, C can not be considered as consequence
of both A and B, and then the number of models is reduced to 2.

To conclude, the forward and backward windows can be very useful in reducing
the search space and highlighting the more probable propagation paths between
the change events. In addition, the example of Figure 4 considers only a small
window of events, where each event type occurred only once. In a bigger log, a
same change event (e.g. a Replace on a partner) can occur several times, which
may improve the precision of the probabilistic models.

Change Related Heuristics (CRH): The calculation of the prediction model
could benefit from the relationships between change operation types. Indeed,
from our experience [4], and considering solely the structural and public impacts,
an initial change request of type Insert always generates insertions on the affected
partners, and the same holds for Delete which generates only deletions. However,
the Replace could generate all (three) types of changes. From this we deduce, that
we can not have propagation of the type (Insert, π1) → (Delete∨Replace, π2) or
(Delete, π1) → (Insert ∨ Replace, π2). Using these as punishments, the mining
techniques could reduce the search space and therefore avoid incorrect behavior.

Choreography Model Heuristics (CMH): Another improvement consists
in using the choreography model. The latter sketches all the interactions between
the partners and gives a global overview on the collaboration structure. In this
sense, we can use the dependencies between the partner interactions as a heuristic
to identify transitive propagations (e.g. centrality). More details about heuristics
that stem from the choreography structure can be found in [5]. These heuristics
can be used to improve the mining results. For example, an identified direct
propagation link between two partners through mining could be invalidated if
the partners have no direct interactions together in the choreography model, and
the change type is Delete. Because, unlike the Replace and Insert, the Delete
does not result in new dependencies between the partners.

Memetic Algorithms for Mining Change Logs 55

p
a

rt
n

e
r1

INSERT

DELETE

REPLACE

p
a

rt
n

e
r2

INSERT

DELETE

REPLACE

p
a

rt
n

e
r3

INSERT

DELETE

REPLACE

partner1

IN
S

E
R

T

D
E

L
E

T
E

R
E

P
L

A
C

E

partner2

IN
S

E
R

T

D
E

L
E

T
E

R
E

P
L

A
C

E

0 0 0

0 0 0

0 0 0

partner3

IN
S

E
R

T

D
E

L
E

T
E

R
E

P
L

A
C

E

1 0 0

0 0 0

1 1 0

0 0 0

0 0 0

1 0 0

1 0 0

0 1 0

1 0 0

0 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 0

1 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 0 0

partner1 -
insert

partner2 -
insert

partner1 -
replace

partner3 -
insert

partner2 -
delete

partner1 -
delete

partner2 -
replace

partner3 -
delete

partner3 -
replace

p
a

rt
n

e
r1

INSERT

DELETE

REPLACE

p
a

rt
n

e
r2

INSERT

DELETE

REPLACE

p
a

rt
n

e
r3

INSERT

DELETE

REPLACE

partner1

IN
S

E
R

T

D
E

L
E

T
E

R
E

P
L

A
C

E

partner2

IN
S

E
R

T

D
E

L
E

T
E

R
E

P
L

A
C

E

0 0 0

0 0 0

0 0 0

partner3

IN
S

E
R

T

D
E

L
E

T
E

R
E

P
L

A
C

E

0 0

0 ? 0

? ?

0 0

0 ? 0

? ?

0 0

0 ? 0

? ?

0 0

0 ? 0

? ?

0 0 0

0 0 0

0 0 0

0 0

0 ? 0

? ?

0 0

0 ? 0

? ?

0 0 0

0 0 0

0 0 0

(H1) if p1 == p2: then set all change types to 0

(H2) p1.INSERT: set p2.DELETE and p2.REPLACE to 0

(H3) p1.DELETE: set p2.INSERT and p2.REPLACE to 0

0

0

0

General Change Heuristics

(H4) p1.DELETE:
 if PARTNER_LINK(p1,p2) == 0 &&
 PARTNER_LINK(p2,p1) == 0 then
 set p2.DELETE to 0, otherwise maybe 1

(H5) p1.REPLACE:
 if PARTNER_LINK(p1,p2) == 0 &&
 PARTNER_LINK(p2,p1) == 0 then
 set p2.DELETE to 0, otherwise maybe 1

(H6) p1.REPLACE:
 if PARTNER_LINK(p1,p2) == 0 &&
 PARTNER_LINK(p2,p1) == 0 then
 set p2.REPLACE to 0, otherwise maybe 1

?

?

?

Structural Heuristics derived from Choreography Model

(a) (b) (c)

Fig. 5. (a) Genetic Encoding of a candidate solution (b) Candidate solution in graph
form (c) Visualization of heuristics affecting a candidate solution

The implementation and the evaluation of the proposed heuristics within the
memetic mining is described in the following sections.

5 Memetic Change Propagation Mining

In this section we outline the memetic algorithm for mining change event logs
used to build change propagation models. This core algorithm is enriched with
an implementation of the heuristics sketched out in the previous Section 4. Em-
ploying a change propagation model, predicting the behaviour of change requests
in the choreography becomes possible. Memetic algorithms follow the basic flow
of genetic algorithms (GAs) [12], which are stochastic optimization methods
based on the principle of evolution via natural selection. They employ a popula-
tion of individuals that undergo selection in the presence of variation-inducing
operators, such as mutation and crossover. For evaluating individuals, a fitness
function is used, which affects reproductive success. The procedure starts with
an initial population and iteratively generates new offspring via selection, muta-
tion and crossover operators. Memetic Algorithms are in their core GAs adding
an inner local optimization loop with the goal of maintaining a pool of locally
optimized candidate solutions in each generation [13].

Genetic Encoding: The genetic encoding is the most critical decision about
how best to represent a candidate solution for change propagation, as it affects
other parts of the genetic algorithm design. In this paper, we represent an indi-
vidual as a matrix D that states the change relationships between the partners
(the genotype). Each cell dij in the matrix has a boolean value equal to 1 only
if a change on πi is propagated to πj , and zero otherwise. The matrix is non
symmetric and the corresponding graph for change propagation is directed. This
means that the probabilities of propagating changes from πi to πj and from πj

to πi are not equal. This is due to the fact that the log file may contain more
change propagations from πi to πj than from πj to πi. Figure 5(a) shows the
representation of a candidate solution. Internally, the table rows are collapsed
resulting in a bitstring of length (m×n)2 where n is the number of partners and

56 W. Fdhila, S. Rinderle-Ma, and C. Indiono

m is the number of change operation types (e.g., (3 × 3)2 in the Figure 5(a)).
Figure 5(b) represents the corresponding propagation model graph. Figure 5(c)
shows the importance of the heuristics in reducing the search space and their
effects on candidate solutions.

Initial Population Generation: Two approaches are applicable for generat-
ing an initial population: (i) starting with random change propagation models
by defining random paths for propagating change requests in each of the part-
ners. This generated model may not respect the dependencies defined by the
choreography model. Also considering the complexity of the problem caused by
several constraints, the obtained results prove to be not sufficient. (ii) starting
with an initial good solution using a part of the propagation dependencies ex-
isting in the log file. This solution could represent an incomplete behavior since
some propagation paths of the log are not incorporated into the model. For the
implementation we have chosen approach (ii) as it allows us to start with an
approximate solution using that as the basis for search space exploration.

Heuristics: Here we briefly outline the implemented heuristics extracted from
Section 4.

– H1 (CMH) - A change to a partner’s process (π1) never results in a prop-
agation to him- or herself (e.g. π1 = π2). We can avoid solutions with this
property in the search space by applying this heuristic.

– H2 (CMH) - Through our extensive simulations we can rule out the case
where the originating change is of the type Insert and where the propagated
change type is anything other than Insert (e.g. Delete and Replace).

– H3 (CMH) - Similarly to H2 we can rule out the cases where the originating
change type is Delete, and the propagated change type is anything other than
Delete (e.g. Insert and Replace).

– H4 (CRH) - Rule out propagated changes of type Delete ⇐⇒ the origi-
nating change is of type Delete, and there is no interaction between the two
partners (i.e. R(π1, π2) ∩R(π2, π1) = {∅}, R is defined in Section 2).

– H5 (CRH) - Rule out propagated changes of type Delete ⇐⇒ the orig-
inating change is of type Replace, and there is no interaction between the
two partners (i.e. R(π1, π2) ∩R(π2, π1) = {∅}).

– H6 (CRH) - Rule out propagated changes of type Replace ⇐⇒ the
originating change is of type Replace, and there is no interaction between
the two partners (i.e. R(π1, π2) ∩R(π2, π1) = {∅}).

– H7 - The mutation as well as the crossover operation change a solution
candidate in random ways. We can limit candidates of lower quality by taking
into consideration only those events where both the partner and the change
operation type occur (in pairs) in the change event log.

– H8 (TRH/WRH) - Both the timestamp and the window related heuris-
tics are implemented as H8. The goal of both is to probabilistically find
the correct (i) affected events given an originating event and (ii) originator
given an affected event. This is accomplished via the forward (i.e. ω+

i) as
well as the backward window (i.e. ω−

i) concept to limit the filtering process

Memetic Algorithms for Mining Change Logs 57

for the most probable candidate events. Both windows are determined by
Maxi∈P(Γi), i.e. the maximum average response times over all partner re-
sponse times. For change event candidate selection inside the window, the
individual timestamps are used to determine Δ. For the actual selection, the
variance value ε can be determined empirically. We have opted to base this
value on the candidate partner’s average response time.

Fitness Function: The fitness function measures the quality of a solution in
terms of change propagation according to the change event log CEL. The fitness
score is a major component in (i) parent selection, determining each individual’s
eligibility for generating offspring and (ii) survival selection, determining which
individuals survive into the next generation to pass on their genes. The following
scoring logic is implemented as the fitness function as follows.

fitness = w1 × completeness+ w2 × precision (1)

Where w1 and w2 are weights, the completeness privileges individuals that are
more complete according to the CEL and the precision penalizes propagation
models that have extra behavior according to the CEL. We define ξij as the
probability that a change event type (i.e., Replace, Insert or Delete) on partner
j is a consequence of a change event type on i. This probability is calculated based
on the backward and forward windows, weighted by the number of occurrences
of the same sequence of changes in the CEL. As illustrated in Figure 4, the
individuals are probabilistic models that represent all or a subset of the change
events of the CEL. A node in the propagation model σ is represented by a
tuple (δ, π) containing a change type and a partner. The propagation probability
between nodes i and j in σ is equal to ξij . Then the completeness is given by
the following weighted equation:

completeness = w11 ×
∑

i∈σ (δi, πi)∑
i∈CEL (δi, πi)

+ w12 ×
∑

i,j=1..n

ξij × φij with φij =

⎧
⎨

⎩

1 if(i, j) ∈ σ

0 otherwise

(2)

The first term concerns the percentage of traces of the CEL that are represented
by the predicted model, while the second term calculates the percentage of the
identified correlations between change events in the CEL that are considered by
the propagation model. The attributes w11 and w12 are the weights given to each
term of the equation.

precision =
∑

i,j=1..n

(k × ξij − 1) × φij with φij =

⎧
⎨

⎩

1 if(i, j) ∈ σ

−1 otherwise
(3)

The precision penalizes individuals with extra behavior (noise), by accumulating
appropriate negative scores for propagation paths with very low propagation
probabilities. The variable k is used to define when an event is considered to be
noise; e.g., k=5, means propagation edges with probabilities less then 1/5=0.2
are considered as noise. Therefore, models containing several propagation paths
with probabilities lower than 0.2 are classified as bad models. In this equation,
we used a simple linear function to penalize noise k×ξij −1, but can be changed
to a more complex function (e.g. logarithmic). k is determined empirically.

58 W. Fdhila, S. Rinderle-Ma, and C. Indiono

6 Discussion and Evaluation

In this section we briefly describe the data set as well as the experimental setup in
order to evaluate the memetic change mining algorithm coupled with the propsed
heuristics for building change propagationmodels from change event logs (σCEL).

6.1 Data Set

The data used in this paper are obtained through our C3Pro change propagation
prototype1. During the simulation process, we generated change requests of type
Replace, Insert and Delete. In total, 17068 change requests were created with
an average of 682.7 requests per partner resulting in 49754 change propagation
records in the CPL with an average of 2.9 derived propagations per initiated
change request. In total 66822 change event records were generated and logged
in the CEL. The logged data are in CSV format.

6.2 Benchmark Results

For the benchmark, the goal was on one hand to observe the effects of the ap-
plied heuristics on reducing the search space and on the other hand to validate
the resulting mined model. Towards the former, each inclusion of a new heuris-
tic should increase the maximal achievable score, as it takes less time to find
an improved candidate solution. The benchmark was conducted in the following
manner: (1) We start with creating distinct CEL slices with differing partner
sizes of the range [3, 16]. Λ = {λi}i∈[3,16] (2) Then we define the heuristic sets
to benchmark. The heuristic set None means we do not apply any heuristics,
which practically reduces the memetic algorithm into a genetic algorithm. A
heuristic set H1-H3 means we apply heuristics H1, H2 and H3 within the local

Table 3. Benchmark Results: Memetic Mining of Change Logs. P=Partner Size.
G=Generation. Score values are in range [−∞, 1] (inclusive), where 1 represents the
best possible validation score.

P=3 P=9 P=15

G=1 G=10 G=20 G=1 G=10 G=20 G=1 G=10 G=20

Heuristics

None -48.74 -48.26 -27.80 -268.75 -226.71 -186.64 -553.90 -502.61 -476.96

H1 -38.08 -30.03 -22.96 -241.34 -197.63 -168.61 -520.53 -482.92 -449.32

H1-H2 -25.94 -20.24 -17.17 -138.19 -106.18 -88.86 -337.45 -289.14 -250.25

H1-H3 0.73 0.78 0.80 0.50 0.55 0.56 0.54 0.55 0.55

H1-H4 0.72 0.76 0.75 0.53 0.58 0.55 0.57 0.55 0.61

H1-H5 0.72 0.77 0.75 0.56 0.50 0.64 0.60 0.62 0.56

H1-H6 0.72 0.77 0.80 0.50 0.63 0.63 0.62 0.65 0.67

H1-H7 0.72 0.78 0.77 0.65 0.67 0.56 0.71 0.73 0.72

H1-H8 0.71 0.77 0.75 0.65 0.68 0.70 0.71 0.73 0.75

1 http://www.wst.univie.ac.at/communities/c3pro/index.php?t=downloads

http://www.wst.univie.ac.at/communities/c3pro/index.php?t=downloads

Memetic Algorithms for Mining Change Logs 59

(a) (b)

Fig. 6. Mined change propagation models (a) via CPL and (b) via CEL

optimization loop of the memetic algorithm. We have several such heuristic sets
as can be observed by the rows in Table 3. (3) Each heuristic set is loaded
into the memetic algorithm and executed on the change logs in Λ for up to 20
generations in turn. (4) For validating the mined model, we derive a propagation
model from the CPL (i.e. σCPL), and compare it to the mined model (i.e. σCEL)
by applying the following scoring function:

fitnessvalidation = completeness× precision− penalites (4)

precision =
Nb extra propagation paths

Nb total propagation paths
(5)

completeness =
Nb valid traces

Nb total traces
(6)

This validation function returns score values in the range [−∞, 1], where 1 rep-
resents the best possible validation score, meaning the two models are identical.
We repeat this process ten times, storing the average score into the respective
cells in Table 3. Underlined values are the best scores identified for each column.

We can generally observe the following: regardless of the employed heuristics,
with each increasing partner size we obtain a lower quality candidate, except
in the case where H8 is introduced. This behaviour signals the positive effects
of time related heuristics (TRH) as well as window related heuristics (WRH).
Similarly, with each increasing generation, the best candidate solution score in-
creases. This holds true, except in cases where the survival selection routine
(tournament selection) misses the current best candidate solution, resulting in a
lower fitness score. Finally, we can indeed conclude that the proposed heuristics
reduce the search space, as the quality of the best candidate solutions increase
as more heuristics are added to the memetic change mining algorithm.

In terms of validation, Figure 6(b) shows the mined change propagation model
using the described memetic change mining algorithm (on the CEL) with pa-
rameters: partners = 3, heuristics H1-H6 applied, and generation = 20. In con-
trast, Figure 6(a) represents the change propagation extracted from the CPL.
According to Table 3, the average validation score of these two models are 0.72.

60 W. Fdhila, S. Rinderle-Ma, and C. Indiono

The differences between these two models are visually illustrated in the annota-
tions in Figure 6(b). As can be seen in that figure, the memetic change mining
algorithm could find a good approximation for the prediction model, showing
only three extraneous edges (i.e. (Replace, π8) → (Delete, π9), (Replace, π8) →
(Delete, π7) and (Delete, π7) → (Delete, π9)). Our proposed memetic change
mining algorithm fared well in this instance. As more partners are added, more
candidates are included as potential consequences, leading to bigger models with
more extraneous edges.

7 Related Work

Only few approaches have been proposed to compute the changes and their prop-
agation in collaborative process settings [4,14,15,16]. Most of these approaches
use either the public parts of the partner processes or the choreography/collab-
oration model; i.e., the global view on all interactions, to calculate the derived
changes. They mainly calculate the public parts to be changed, but cannot an-
ticipate the impacts on the private parts, which in turn, could engage knock-on
effects on other partners. Besides, in some collaboration scenarios, a partner may
have access to only a subset of the partner processes, and consequently could
not estimate the transitive effects of the change propagation.

Change impact analysis has been an active research area in the context of large
complex systems and software engineering [17,18,19,20]. As pointed out in [5], we
studied these approaches, but found major differences to the problem discussed in
this paper. One difference is based on the different structure of the underlying sys-
tems. Moreover, the use of the structured change propagation logs combined with
memetic as well as genetic mining has not been employed before in these fields.

There exist approaches on impact analysis of change propagation within chore-
ographies, i.e., [19,21]. However, they do not consider previous change propaga-
tion experience to enhance the prediction models.

Also they do not take into consideration the different metrics related to the
specific structure of business process choreographies. Our previous work [5] on
analyzing change impacts in collaborative process scenarios is based on the chore-
ography structure only, i.e., it does not take into consideration any information
on previously applied changes.

8 Conclusion

Being able to predict the change propagation behavior in collaborative process
scenarios can contribute to time as well as cost reductions, which can deter-
mine the overall success of the cooperative process execution. Towards this end
we have shown a memetic change mining approach for building a posteriori
prediction models based on change event logs (CEL). This approach helps in
cases where change propagation logs (CPL) (i.e. those logs which include com-
plete propagation information) are lacking. In addition to the CEL as input, we
have proposed a set of heuristics embedded in the memetic change algorithm

Memetic Algorithms for Mining Change Logs 61

to guide the candidate selection process towards higher quality ones. The con-
ducted benchmarks and validation of the mined models (see Table 3) show the
positive effects of the defined heuristics for reducing the search space, thus re-
ducing the exploration time for finding accurate prediction models. Future work
aims at mining change propagation logs (CPL), and analyzing dynamic impacts
of process choreography changes.

References

1. Wynn, D.C., Caldwell, N.H.M., Clarkson, J.: Can change prediction help prioritize
redesign work in future engineering systems? In: DESIGN, pp. 600–607 (2010)

2. Maier, A., Langer, S.: Engineering change management report 2011. Technical
University of Denmark, DTU (2011)

3. Ahmad, N., Wynn, D., Clarkson, P.J.: Change impact on a product and its re-
design process: a tool for knowledge capture and reuse. Research in Engineering
Design 24(3), 219–244 (2013)

4. Fdhila, W., Rinderle-Ma, S., Reichert, M.: Change propagation in collaborative
processes scenarios. In: IEEE CollaborateCom, pp. 452–461 (2012)

5. Fdhila, W., Rinderle-Ma, S.: Predicting change propagation impacts in collabora-
tive business processes. In: SAC 2014 (2014)

6. Rinderle, S., Jurisch, M., Reichert, M.: On deriving net change information from
change logs – The Deltalayer-Algorithm. In: BTW, pp. 364–381 (2007)

7. Günther, C., Rinderle-Ma, S., Reichert, M., van Der Aalst, W., Recker, J.: Using
process mining to learn from process changes in evolutionary systems. International
Journal of Business Process Integration and Management 3(1), 61–78 (2008)

8. Dustdar, S., Hoffmann, T., van der Aalst, W.M.P.: Mining of ad-hoc business
processes with teamlog. Data Knowl. Eng. 55(2), 129–158 (2005)

9. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes, 1st edn. Springer (2011)

10. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Mining configurable
process models from collections of event logs. In: Daniel, F., Wang, J., Weber, B.
(eds.) BPM 2013. LNCS, vol. 8094, pp. 33–48. Springer, Heidelberg (2013)

11. Gaaloul, W., Gaaloul, K., Bhiri, S., Haller, A., Hauswirth, M.: Log-based transac-
tional workflow mining. Distributed and Parallel Databases 25(3), 193–240 (2009)

12. Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Longman Publishing Co. (1989)

13. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Natural Com-
puting. Springer, Berlin (2007)

14. Rinderle, S., Wombacher, A., Reichert, M.: Evolution of process choreographies
in DYCHOR. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp.
273–290. Springer, Heidelberg (2006)

15. Fdhila, W., Rinderle-Ma, S., Baouab, A., Perrin, O., Godart, C.: On evolving
partitioned web service orchestrations. In: SOCA, pp. 1–6 (2012)

16. Wang, M., Cui, L.: An impact analysis model for distributed web service process.
In: Computer Supported Cooperative Work in Design (CSCWD), pp. 351–355
(2010)

17. Bohner, S.A., Arnold, R.S.: Software change impact analysis. IEEE Computer So-
ciety (1996)

62 W. Fdhila, S. Rinderle-Ma, and C. Indiono

18. Giffin, M., de Weck, O., Bounova, G., Keller, R., Eckert, C., Clarkson, P.J.: Change
propagation analysis in complex technical systems. Journal of Mechanical De-
sign 131(8) (2009)

19. Oliva, G.A., de Maio Nogueira, G., Leite, L.F., Gerosa, M.A.: Choreography Dy-
namic Adaptation Prototype. Technical report, Universidade de São Paulo (2012)

20. Eckert, C.M., Keller, R., Earl, C., Clarkson, P.J.: Supporting change processes in
design: Complexity, prediction and reliability. Reliability Engineering and System
Safety 91(12), 1521–1534 (2006)

21. Wang, S., Capretz, M.: Dependency and entropy based impact analysis for service-
oriented system evolution. In: Web Intelligence, pp. 412–417 (2011)

Flexible Batch Configuration in Business Processes
Based on Events

Luise Pufahl, Nico Herzberg, Andreas Meyer, and Mathias Weske

Hasso Plattner Institute at the University of Potsdam
{firstname.lastname}@hpi.uni-potsdam.de

Abstract. Organizations use business process management techniques to man-
age their core business processes more efficiently. A recent technique is the syn-
chronization of multiple process instances by processing a set of activities as a
batch – referred to as batch regions, e.g., the shipment of goods of several order
processes at once. During process execution, events occur providing information
about state changes of (a) the business process environment and (b) the business
process itself. Thus, these events may influence batch processing. In this paper,
we investigate how these events influence batch processing to enable flexible and
improved batch region execution. Therefore, we introduce the concept of batch
adjustments that are defined by rules following the Event-Condition-Action prin-
ciple. Based on batch adjustment rules, relevant events are correlated at run-time
to batch executions that fulfill the defined condition and are adjusted accordingly.
We evaluate the concept by a real-world use case.

Keywords: BPM, Batch Processing, Event Processing, Flexible Configuration.

1 Introduction

Companies strive to manage their core business in a process-oriented fashion to be
efficient and stay competitive in the market. For this attempt, business processes are
documented as process models [25]. These process models can also be used for process
automation by a Business Process Management System (BPMS) [18]. Usually, the in-
stances of a process, i.e., the concrete executions, run independently in existing BPMSs,
e.g., [3,4,13]. However, efficient process execution may require bundled processing of
activities of different process instances. Hereby, efficiency refers to costs savings un-
der the trade-off of increasing average waiting times. For instance, in an hospital, a
nurse transports multiple blood samples of patients to the laboratory at once instead of
each separately to save transportation costs. To cope with this challenge, batch activi-
ties were introduced in business processes, e.g., in [1,14,20,21]. In these works, further
application domains as, for instance, logistics and event organization, are discussed.

The recent concept of batch regions [20] enables the synchronization of process in-
stances with similar characteristics for a set of activities. Thereby, several configuration
parameters allow the process designer to individually setup the batch execution, e.g.,
rule-based activation of a batch. However, specifying the rules at design-time does not
guarantee optimal process execution, since expected and unexpected events occurring

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 63–78, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

64 L. Pufahl et al.

during process execution do influence the execution [10]. Reacting on these events and
changing the specified configuration parameters is required for process improvement.

In this paper, we apply event processing techniques to flexibly adapt these configu-
ration parameters at run-time to react in real-time on changes of the business process
execution environment and improve the batch execution. The contributions of this pa-
per are (i) to provide an overview about changes on batch configuration parameters
triggered by events and (ii) to describe a framework that implements the flexible adap-
tation of configuration parameters triggered through event occurrence.

The paper is structured as follows. Section 2 introduces the concepts of batch regions
and event processing before Section 3 presents a motivating example originating from
a real-world scenario in the healthcare domain. It leads to an analysis on how events
may influence batch execution and corresponding requirements in Section 4. Section 5
presents the concept of flexible adaptation of batch regions based on event processing
techniques. In Section 6, the framework is applied to the healthcare scenario from Sec-
tion 3 as evaluation. Section 7 is devoted to related work and Section 8 concludes the
paper.

2 Foundation

Batch Region. A batch region comprises a connected set of activities. For batch pro-
cessing configuration, a batch region contains four configuration parameters: (1) a group-
ing characteristic to cluster process instances to be processed in one batch based on
attribute values of utilized data, (2) an activation rule to determine when a batch may be
processed while balancing the trade-off between waiting time and cost savings, (3) the
maximum batch size indicating the maximum number of entities to be processed, and
(4) the execution order of the processed entities [20].

Each single execution of the batch region is represented by a batch cluster collecting
– based on the grouping characteristic – a number of process instances for synchro-
nization. Thereby, a batch cluster passes multiple states during its lifetime [21]. It is
initialized (state init) upon request of a process instance. The batch cluster transitions
to state ready (enablement), if the activation rule is fulfilled and is then provided to a
resource that decides to start execution at some point in time. The execution is indicated
by state running. If more than one resource is available, several batch cluster can be ex-
ecuted in parallel. After initialization and before execution start, process instances may
still be added until the maximum batch size is reached (state maxloaded). Termination
of all process instances being part of the batch cluster successfully terminates it.

Collecting multiple objects, e.g., blood samples, may also be done by utilizing loop
or multi-instance structures as specified in the workflow patterns [2]. This requires
to merge multiple process instances into one handling the synchronization. However,
batch regions do not merge instances to retain the single instances autonomy outside
the batch regions. This enables dynamic process instance assignment to batch clusters,
e.g., for run-time cluster adjustments as discussed in this paper or for error handling.

Events. Information about changes or exceptions in the business process environment
are provided by events. Often those events are not stored at one place, but in several
information systems and BPMSs [7]. We refer to events being unstructured and avail-
able in an IT system as raw events. Event processing techniques help to utilize these

Flexible Batch Configuration in Business Processes Based on Events 65

raw events and use them during process execution for process monitoring, adjustment,
and control [5, 9, 10]. Structuring raw events according to a certain description referred
to as structured event type, transforms raw events in a first step into normalized events.
Normalized events are the basis for further processing by, for instance, combination,
aggregation, and enrichment by context data [11]. We distinguish two event types being
relevant for flexible batch processing: (a) business events and (b) process events. Busi-
ness events base on normalized events enriched by business context information that
are relevant for all running process instances. In contrast, a process event is correlated
to a specific process instance and thus provides instance-specific information.

3 Motivating Example

The following healthcare process, the blood testing process in Fig. 1, is used to illustrate
the need for flexible batch execution.

Instantiation of the process takes place, if there is a blood test required for a patient
at the ward. First, the blood test order is prepared before a blood sample is taken from
the respective patient. Afterwards, a nurse transports both to the laboratory, where the
blood sample is first prepared for testing. Then, the actual test is conducted by a blood
analysis machine. The laboratory possesses one machine for each type of blood test. As
the blood analysis machines have an interface to the central hospital information system,
the results are published so that they are accessible by the physicians in the respecting
ward. There, they can evaluate the blood test result and can use it for diagnostic.

Business Event:
Maintenance of blood
analysis machine is

planned

Business Events

Blood test
needed Prepare

blood test
order

Take
blood

sample

Transport
sample and
order to lab

Prepare
blood

sample

Conduct
blood test

Publish
blood test

result

Evaluate
blood test

result

Process Event: Transport
sample and order

to lab started

Business Event:
Section B of

blood analysis
machine is not

available

groupingCharacteristic = Order.testType
activationRule = Threshold(50 cases, 1h)
maxBatchSize = 100
executionOrder = parallel

groupingCharacteristic = Order.ward
activationRule = Threshold(20 cases, 1h)
maxBatchSize = 150
executionOrder = parallel

Fig. 1. Blood testing process

Within the given process, two batch regions are specified. As several blood test or-
ders incur at a ward, the nurse would not bring each individually to the laboratory. In
fact, a nurse delivers several blood samples together to save transportation cost which
is captured by the first one comprising activity Transport sample and order to lab. The
second batch region comprises activities Conduct blood test and Publish test results
and enables to collect multiple blood samples before a test run on a blood analysis ma-
chine is started to save machine costs. So far, the configuration parameters are defined
at design-time and can not be adapted at run-time. However, changes and exceptions

66 L. Pufahl et al.

within the business process or in its execution environment might require adaptation.
Following, we discuss three example events being of relevance for batch regions in the
blood testing process:

Planned maintenance of a machine: This business event indicates that a maintenance
of a machine is planned. During the maintenance, the machine is not available to con-
duct tests of the specific type. Blood samples in not yet running batch clusters might
expire, because the waiting time of the collected process instances increases by the
maintenance time. Thus, in such situations, the blood analysis should be started shortly
before the maintenance takes place to avoid expired blood samples.

Partly unavailability of a machine: Assume, a blood analysis machine contains four
sections to process blood samples from which one fails. Then, the capacity of the ma-
chine is reduced by one quarter. Hence, the maximum number of process instances
allowed to be contained by a batch cluster should be reduced accordingly.

Transportation of a set of blood samples of the same type is started: Assume, the
timeout is almost reached for a batch cluster while a transportation of blood samples to
the laboratory requiring the same test is started. The respective batch cluster may delay
its activation until the instances arrive to improve cost savings.

These examples show that there exist various situations requiring a flexible adjust-
ment of predefined batch processing behavior in order to (1) reduce costs, (2) avoid
increased waiting time, and (3) ensure correct batch execution, e.g., a reduced capacity
of the task performer. Next, we perform an analysis to set the requirements before we
present our concept in Section 5.

4 Events and Batch Regions

As discussed above, it is valuable for organizations to design batch processing in a flex-
ible manner. Thus, created batch clusters may be adjusted according to the changes of
the process environment as described by business events or process related aspects as
described by process events. Adjustments refer to changes of the batch cluster configu-
ration parameters. Table 1 provides an overview how the configuration parameters (1)
groupingCharacteristic, (2) activationRule, (3) maxBatchSize, and (4) executionOrder
can be adjusted at run-time. More precisely, the table discusses how a parameter can be
changed (type of change), the influence a change has on a batch cluster and its assigned
process instances (influence), and the types of events triggering a specific adjustment
(events indicating) and gives corresponding event examples.

In Table 1, all types of adjustments are considered. Each configuration parameter al-
ways contains a value that can be also undefined for the first three parameters. Usually,
the configuration of a batch cluster is adapted as reaction on an event. In the case of
changing the grouping characteristic, existing batch clusters have to be canceled and
the corresponding process instances need to be reassigned to new ones, because the
data view of the existing clusters do not fulfill the new grouping characteristic. For
example, grouping characteristic Order.ward results in batch clusters with data views
General Surgery and Endoscopic Surgery. If the grouping characteristic is adjusted to
Order.section, the data views above are not valid anymore. Thus, both batch clusters
need to be canceled and their instances reassigned to a cluster with data view Surgery.

Flexible Batch Configuration in Business Processes Based on Events 67

Table 1. Classification on how batch clusters can be changed and by which events

Configuration
parameter

Type of
changes

Influence Events indicating Examples

groupingChar-
acteristic

- aggregate
- refine
- restructure

- cancel existing
batch cluster and
assign process
instances to new
clusters

- need for
aggregation or
division of batch
clusters or batch
cluster restructuring

- if staff gets ill, a
nurse has to
organize the
transport of two
wards

activationRule - adapt rule
parameter
- use a new
rule

- adapt configuration
of batch cluster

- change in avail-
ability of task
performer/material
- the arrival/delay of
instances

- change of process
instance properties

- maintenance of
machine

- start of the
transport of
several samples
- blood sample
expires

maxBatchSize - increase
- decrease

- adapt configuration
of batch cluster and,
if necessary, remove
process instances

- a change in the
capacity of task
performer, used
resource etc.

- section of a
machine is not
available

executionOrder - select other
type of
execution

- adapt configuration
of batch cluster

- change of resource
or resource type

- usage of a
replacement
machine acting
differently

Reducing the maximum batch size may result in batch clusters exceeding the newly
set limit. Then, newest assigned process instances are removed from the corresponding
clusters and get assigned to other or new batch clusters accordingly. The concept intro-
duced in the next section covers all changes of Table 1 including these special cases.

As described in Section 2, during a batch cluster’s lifetime, it may pass the states init
- ready - maxloaded - running - terminated. When a task performer starts execution of a
batch cluster, it transitions to state running. From this moment, no adjustments shall be
done on the respective batch cluster anymore. Therefore, we assume that batch clusters
can only be adjusted in states init, ready, or maxloaded.

Having presented multiple types of changes according to the configuration param-
eters and their implications, we derive three requirements to implement above obser-
vations. First, at design-time, event types relevant for batch cluster adjustment need to
be identified (R1). Then, at run-time, occurring events must be correlated to respective
batch clusters (R2) and they need to be adjusted accordingly (R3).

5 Flexible Configuration Based on Events

In the following, we describe the basic idea of our approach by referring to the example
introduced in Section 3. Afterwards, the newly introduced batch adjustments and their
batch adjustment rules are described, before we explain a method for process instance
reassignment and introduce an architecture for realizing the presented approach.

68 L. Pufahl et al.

5.1 Basic Idea

We assume that events are observed by an event processing platform. If a relevant
event is observed, the corresponding batch cluster gets adjusted accordingly, cf. Fig. 2.

Process & Business Events

A B

Process Execution

Normalized Events

groupingCharacteristic
activationRule
maxBatchSize
executionOrder

Fig. 2. Events influence the properties of
batch clusters during run-time

Our concept builds on structured events that
are a derivation of an event object [16] con-
sisting of an identifier, a timestamp, and
some structured event content, e.g., a set of
key-value-pairs or a tree-structure expressed
in extensible markup language (XML). A
structured event type describes a class of
structured events that have the same for-
mat. Besides attributes specific for an struc-
tured event, a structured event type consists
of some content description describing the
structure of the event content of a structured event, e.g., by defining the attributes (keys)
or by an XML schema definition (XSD).

We propose an approach that enables run-time flexibility of batch clusters by batch
adjustments following a batch adjustment rule. A batch adjustment is triggered by a
certain event and may result in the adaptation of some parameters of one batch cluster.
The events to react on, the conditions that need to be met, and the adjustments that may
need to be applied are defined in the batch adjustment rule. The structure of a batch ad-
justment rule follows the (E)vent-(C)ondition-(A)ction principle originating from the
database domain [6]. Events to react on are described by their event type, e.g., an event
indicating the maintenance of a machine. The condition information enables the cor-
relation of the event to the corresponding batch cluster, e.g., only the batch clusters
containing process instances with blood samples for this machine. The described action
specifies the particular adjustment of a batch cluster, e.g., the immediate execution.

-groupingCharacteristic
-activationRule
-maxBatchSize
-executionOrder

Batch Region Batch Cluster

1 0..*

Process Instance

1

0..*

1
11..maxBatchSize

0..1

Batch Adjustment Rule Batch Adjustment

1

0..*

1 0..*

Structured Event Type

0..* 1..*

Structured Event

0..* 1..*

Process Event

Business Event

Process Event Type

Business Event Type

10..*

10..*

0..*1

Model Level Instance Level Model Level

Fig. 3. Class diagram integrating batch region [20] and event processing [11] concepts. The model
level shows the design-time concepts and the instance level shows their run-time implementation.

The connection of events and the batch region concept is illustrated in the class di-
agram of Fig. 3. One batch region can have an arbitrary set of batch adjustment rules
which are provided by the process designer. A batch adjustment rule refers to at least
one structured event type which can be a business or process event type. The structured

Flexible Batch Configuration in Business Processes Based on Events 69

event types describe based on which events a batch adjustment is triggered. If a struc-
tured event occurs which is relevant for a set of batch clusters, then for each batch cluster
one batch adjustment is created. Thus, a batch adjustment rule can have a arbitrary set of
batch adjustments being related to one or several structured events, but each adjustment
is assigned to only one batch cluster. During the lifetime of a batch cluster, it can be
adapted by an arbitrary set of batch adjustments.

5.2 Batch Adjustment Rule and Batch Adjustment

For connecting batch clusters and events during process execution, we introduce the
concepts of batch adjustments and batch adjustment rules. A batch adjustment rule,
following the ECA-principle, describes how and under which conditions a batch cluster
needs to be adjusted during run-time.

The events that need to be considered for an adjustment of a batch cluster are de-
scribed by their event type. For example, a business event type describes the business
events that indicate a planned maintenance of the blood analysis machine, cf. List-
ing 1.1. The event should be provided one machine analysis run before the maintenance
starts so that not started batch clusters can be activated and finished before the main-
tenance start. This information is composed of fine-grained information of normalized
events indicating the maintenance need and the schedule of the service technician.

The business event machineMaintancePlannedb contains information about the name
of the corresponding machine. Further, it holds an ID and a timestamp as these are
mandatory fields of structured events. The ID of the resulting business event is uniquely
generated (getGUID()) and the timestamp is set to the actual time of creation (get-
Time(now)). The remaining data is collected from two normalized events machineStatusn
and technicianSchedulen that need to be correlated. This is done by defining constraints
in the WHERE-clause of the SELECT statement. In the example, it is checked whether
the events target the same machine followed by a check for the maintenance need of the
machine and the action of a planned maintenance by the service technician. As men-
tioned, the event shall be created exactly one machine run before the maintenance

1 mach ineMain tancePlanned b . e x t r a c t i o n =
2 { mach ineMain tancePlanned b . i d = ge tGuid () ;
3 mach ineMain tancePlanned b . t imeStamp = getTime (now) ;
4 SELECT
5 m a c h i n e S t a t u s n . name ,
6 FROM
7 m a c h i n e S t a t u s n ,
8 t e c h n i c i a n S c h e d u l e n

9 INTO
10 mach ineMain tancePlanned b . MachineName
11 WHERE
12 m a c h i n e S t a t u s n . name =
13 t e c h n i c i a n S c h e d u l e n . machineID AND
14 m a c h i n e S t a t u s n . s t a t u s = ” MaintenanceNeeded ” AND
15 t e c h n i c i a n S c h e d u l e n . s t a t e = ” p l a n n e d ” AND
16 t e c h n i c i a n S c h e d u l e n . t ime − getTime (now) <= machine (name) . ge tRun t ime () }

Listing 1.1. Definition of the business event type machineMaintancePlannedb that captures the
information about a maintenance in near future. This event results from events of the machine
itself (event type machineStatusn) and the technician schedule (event type technicianSchedulen).

70 L. Pufahl et al.

takes place. Thus, a time constraint is set to create the corresponding business event, if
time until the maintenance is equal or lower to the time needed for a run of the machine
(machine(name).getRuntime() returns the duration of a run of machine name).

This defined event type can be used as trigger for a batch adjustment rule that adapts
the activation rule of batch clusters in case of a maintenance for avoiding expired blood
samples. The proposed batch adjustment rule is shown in Listing 1.2, illustrating its
basic structure. In the condition part of the batch adjustment rule, we ensure that batch
adjustments are only created for batch clusters the event is relevant for. In our exam-
ple, the events of type machineMaintancePlannedb are relevant for all batch clusters
that are intended to run in time where the maintenance is planned to be conducted.
Those should be started before the maintenance takes place to avoid unnecessary wait-
ing times for the blood samples. The relevant clusters are those that have the same
blood testing type as the blood analysis machine to be maintained and that are not yet
enabled for execution, i.e., in state init. The instances of the blood testing batch region
are grouped based on their blood test type (cf. Fig. 1) with the grouping characteristics
= Order.bloodTestType. Thus, the batch cluster’s data view provides information which
blood test type its assigned process instances requires, e.g., BC1(BloodTestA). The data
view of the batch cluster can be used for the condition, cf. Listing 1.2 line 2 and 3.

1 EVENT {mach ineMain tancePlanned b}
2 CONDITION b a t c h C l u s t e r . da taView == mach ineM ain tancePlanned b . name
3 b a t c h C l u s t e r . s t a t e == ” INIT ”
4 ACTION b a t c h c l u s t e r . a c t i v a t i o n R u l e = T h r e s h o l d (5 0 , 0 h)

Listing 1.2. Definition of a batch adjustment rule to start batch clusters before a maintenance
takes place.

Based on this example, we can observe that a specific batch cluster or a set of spe-
cific batch clusters for which an event is relevant can be identified based on batch clus-
ter specific characteristics, i.e., (1) data view, (2) current state of the cluster, (3) num-
ber of instances contained in a cluster, and (4) type of instances. If no condition is
described, a batch adjustment is created for all batch clusters which are in the init,
ready, or maxloaded state. Clusters being already accepted by the task performer are
not adapted anymore.

The last part of the batch adjustment rule is the definition of actions that need to be
performed when an event happened and the conditions are fulfilled. These actions can
use information of the underlying events to specify the adjustments of the particular
batch cluster. Referring to our example, the action would be to enable the batch execu-
tion before maintenance, cf. Listing 1.2 line 4. With this action, the activation rule of
the cluster is adjusted so that either 50 blood sample are triggered or the batch cluster
waits 0 hours, meaning that the cluster is immediately enabled to be finished before the
maintenance starts.

Batch adjustment rules are utilized to create batch adjustments for batch cluster. A
batch adjustment holds the ID of the corresponding batch cluster and the action that
need to be taken to change certain parameters of the batch cluster. Applying the batch
adjustment rule of our example, a batch adjustment as shown in Listing 1.3 will be
generated for batch cluster 1234.

Flexible Batch Configuration in Business Processes Based on Events 71

1 b a t c h C l u s t e r . i d = 1234
2 b a t c h C l u s t e r . a c t i v a t i o n R u l e = ” T h r e s h o l d (5 0 , 0 h) ”

Listing 1.3. Exemplary batch adjustment created for batch cluster 1234.

The batch adjustment mentioned above will replace the activation rule Threshold
(50,1h) of batch cluster 1234 by Threshold (50, 0h). With regards to the generation of
batch adjustments, if an event is received, it is immediately checked whether this event
is relevant for any available batch cluster. For each relevant cluster, a batch adjustment
is created. In case that the event is valid for a certain time period, the event is stored.
For each further initialized cluster, it is checked whether this event applies. Upon inval-
idation of the event, it is removed from the event storage. After presenting the structure
of batch adjustment rules and the generation of batch adjustments, the next section dis-
cusses the special case where a batch cluster is not only adapted, but a reassignment of
process instances is necessary.

5.3 Reassignment of Process Instances

init ready running terminated

maxloaded canceled

Fig. 4. Lifecycle of batch cluster ex-
tended by canceled state

A batch adjustment usually results in the adaptation
of the configuration of one batch cluster. Sometimes,
it also triggers (a) the reduction of instances con-
tained by the batch cluster in case of a decreased
maxBatchSize or (b) the cancellation of a batch clus-
ter in case of a changing groupingCharacteristic.
The extended lifecycle of batch clusters with the
canceled state is shown in Fig. 4; a cancellation is only possible from states init, ready,
and maxloaded. In both cases, process instances have to be reassigned to other or new
batch clusters.

In general, process instances that arrive at a batch region, i.e., the enablement of the
entry activity into the region, are temporarily deactivated and assigned to a queue of the
so-called batch cluster manager in the order of their arrival time (first-in-first-out). The
batch cluster manager organizes the assignment of process instances to batch clusters
and, if necessary, initializes new batch clusters.

Business Event:
ErrorofMachineSection

Prepare
blood

sample

Conduct
blood test

Publish
blood test

result

77

BC1 –
BloodTestA

10:07

10:10

10:36

Business Events

Batch Adjustment:
maxBatchSize = 100 -25

groupingCharacteristic = Order.testType
activationRule = Threshold(50 cases, 1h)
maxBatchSize = 100
executionOrder = parallel

Fig. 5. Reassignment of process instances in
case of a reduced maxBatchSize

If a process instance, in case of an ad-
justment, is reassigned, it should be han-
dled prioritized, because it already experi-
ences a longer waiting time than newly ar-
riving instances at the batch region. Thus,
the to-be reassigned process instance is
placed in the front of the queue based on
its arrival time at the batch region. Then,
it is assigned to an existing or new batch
cluster. In the example of Fig. 5, the num-
ber of instances of the batch cluster BC1
have to be reduced because an event indi-
cated that a section of machine A is not

72 L. Pufahl et al.

working currently. Then, the newest assigned instances are removed from the size-
reduced cluster. The process instance with the arrival time 10:07 is placed at the be-
ginning of the queue, then the instance with 10:10 is added followed by the newly
arrived instance at 10:36.

Often batch regions have an activation rule with a time constraint which describes
the maximum waiting time for a process instance in a batch cluster. In the example
process of Fig. 5, the threshold rule states that either 50 instances have to be available
or the waiting time of 1h is exceeded to activate the batch cluster. For assuring the
maximum waiting time also for reassigned process instances, we propose the usage
of the batch adjustment concept here. If an instance is added to a batch cluster which
was arrived at the batch region earlier than the batch cluster was created (or one of its
instances), an event is created. This event triggers a batch adjustment which reduces
the time constraint of the batch cluster by the difference between the batch cluster’s
creation time and the reassigned instance arrival time at the batch region.

5.4 Architecture

Next, we present an architecture showing details about a technical implementation to
flexibly adapt batch cluster configurations. Fig. 6 presents the main components and
their interactions as FMC block diagram [12]. The architecture is structured into three
parts: event producer, event processing platform, and process control. The process en-
gine, which controls process execution and batch handling, is an event producer and
consumes event provided by the event processing platform at the same time. Besides
the process engine, several event producers (event sources) can be connected via an
appropriate event adapter to the event processing platform. These can be information
systems as well as databases. The event processing platform normalizes the received
raw events and creates business and process events based on defined rules. Event con-
sumers are connected by an event consumer interface.

Event Source 1

Event Source n

Process Engine

...

Event Source n+1

Event Source m

...

Event Producer

Ev
en

t
Ad

ap
te

rs

Process Event Creation

Normalized
Events

Event Processing Platform

Business Event
Creation

Ev
en

t
Co

ns
um

er
 In

te
rf

ac
e

Event
Normalization

Business and Process
Events

Process
 Repository

Process Control
Process Engine

Process
Execution

Batch Cluster
Manager

Batch
Adjustment

Handler

Process Modeling

Batch
Configuration

Process Engine
Database

Batch Region
Configuration

Fig. 6. Architecture to realize batch adjustments during process execution based on an event pro-
cessing platform

Process control comprises the process engine and some modeling environment to
create the process model to be executed within the process engine. After creation, a

Flexible Batch Configuration in Business Processes Based on Events 73

process model is stored in the process repository. While modeling a process, batch
regions can be designed. Thereby, the process designer can define batch adjustment
rules used at run-time to adapt the batch regions. Those are saved together with the
process model in the process model repository. During process execution, the process
engine retrieves the process model and the adjustment rules from the repository. For
each designed batch region, the batch cluster manager assigns the process instances
to batch clusters. The batch adjustment handler registers for events that are specified
in the batch adjustment rules of a batch region at the event consumer interface. If the
handler receives a registered event from the event processing platform, then the event is
evaluated and the according action is triggered for the appropriate batch clusters. The
batch adjustment handler has an internal list of all batch clusters which are in state init,
ready, or, maxloaded as these are the only ones that might be affected by events.

6 Evaluation

The approach is evaluated by showing its applicability to a real world use case: the
blood testing scenario introduced in Section 3 with a simulation. As described, the lab-
oratory uses a batch region to synchronize several blood samples for the blood analysis
to save machine costs. The blood analysis machine needs to be maintained regularly
respectively on request. Based on an event informing about the maintenance some time
before it actually starts, the configuration of a running batch cluster can be adjusted.
With the adjustment, the cluster is started in-time to decrease the number of expired
blood samples due to unavailability of the machine. A blood sample expires after a cer-
tain time frame, often 90 to 120 minutes, because the blood structure changes. Then,
the blood sample is not useful for medical analysis. Each expired blood sample causes
costs of taking a new one.

Simulation Setup. For the evaluation, a simulation is used to compare the number of
expired blood samples in case of normal batch execution, i.e., without run-time adap-
tations, to flexible batch execution as presented in this paper. Therefore, the laboratory
part of the blood testing process was implemented as simulation1

with DESMO-J [8], a Java-based framework for discrete event simulation. The sim-
ulation starts with the arrival of process instances, i.e., blood samples, at the laboratory.
Each process instance is terminated after finishing the blood test. At average, using an
exponential distribution, every 12 minutes, a nurse brings 20 ± 5 blood samples (nor-
mally distributed) to the laboratory. For this simulation, we assumed that only one blood
analysis machine exists. One run of the machine for analyzing blood samples takes 25
minutes. At maximum, the machine can handle 100 blood samples in one analysis.

For the simulation, the laboratory selected ThresholdRule(50 instances, 1h) as acti-
vation rule requiring 50 instances or a waiting time of one hour to enable a batch cluster
(cf. Fig. 1). If a batch cluster fulfills this rule, it queues for being processed by the ma-
chine. The machine is already in use for a longer time period. Thus, twice a week, every
3.5 days with a deviation of 1 day, a maintenance is required. For the flexible batch han-
dling, some time before the technician arrives, an event regarding the maintenance is

1 The simulation source code and the reports of the different simulation runs are available at
http://bpt.hpi.uni-potsdam.de/Public/FlexibleBatchConfig

http://bpt.hpi.uni-potsdam.de/Public/FlexibleBatchConfig

74 L. Pufahl et al.

provided. When the technician arrives, he is prioritized, but a current analysis on the
machine is not interrupted.

Results. We conducted several simulation runs for two scenarios to compare the im-
pact of flexible batch adjustments. The scenarios differ in the expiration time for blood
samples: 120 minutes and 90 minutes. Fig. 7 and 8 summarize the results of the simu-
lation runs over a period of two years, one diagram for each scenario. In both diagrams,
we compare the results for maintenance times of 45 minutes and 60 minutes (inter-
cept 2 and 3) with the result where no maintenance takes place (intercept 1). The black
bars provide the numbers of expired blood samples, if (1) no adjustments are made at
run-time. The different gray bars (2)-(4) show the results for event triggered batch ad-
justments, if the event is sent 1, 1.5, or 2 times the analysis run, i.e., 25, 37.5, or 50
minutes respectively, before the technician arrives.

If no maintenance would be conducted, 1,738 samples in scenario 1 and 19,913
samples in scenario 2 would expire due to exponential arrival of these blood samples
and resulting waiting times for the machine. If the maintenance is conducted at average
twice a week as indicated above, the number of expired blood samples increases by
14% respectively 29% for 45 and 60 minutes maintenance duration in scenario 1 (cf.
black bars in Fig. 7) and they increase by 13% respectively 41% in scenario 2 (cf. black
bars in Fig. 8).

1,
73

8

1,
97

9

2,
24

3

1,
75

1

1,
86

3

1,
76

9

1,
97

1

1,
73

6 2,
00

9

0

500

1,000

1,500

2,000

2,500

 W/o maintenance Maintenance duration:
45 min

Maintenance duration:
60 min

(1) Usual (2) Event – 1.0 run earlier (3) Event – 1.5 runs earlier (4) Event – 2.0 runs earlier

Fig. 7. Scenario 1 – 120 min expiration time: Number of expired blood samples in two years for
different simulations

Applying flexible batch adjustments aims at reducing the number of expired blood
samples. The recognition of the event indicating the maintenance directly activates all
initialized batch clusters by changing the activation rule accordingly (cf. line 4 in List-
ing 1.2 in Section 5.2). The impact of the batch adjustment rule with respect to the point
in time the event is sent is shown by the different gray bars (2)-(4). In 9 of 12 cases, we
observe measurable improvements. The highest improvements for the different settings
are mostly observed for the light gray bar ((2) Event 1.0 run earlier). It indicates that
it is most beneficial for reducing the number of expired blood samples to inform about
the maintenance one analysis run before the start of the maintenance. The improvement
is at 13% respectively 20% in scenario 1 for 45 respectively 60 minutes maintenance
time and at over 3% in scenario 2 (60 minutes maintenance). With these numbers, for
scenario 1, we almost compensate for the maintenance.

For scenario 2, shown in Fig. 8, only slight improvements as well as two cases of
no improvements are observed. This may be explained as follows: The arriving event
enables a batch cluster which is then started for the blood analysis. During the analysis,

Flexible Batch Configuration in Business Processes Based on Events 75

19
,9

13

22
,4

94

28
,0

23

22
,7

53

27
,1

38

22
,0

85

27
,6

57

22
,7

38

28
,0

21

0

5,000

10,000

15,000

20,000

25,000

30,000

 W/o maintenance Maintenance duration:
45 min

Maintenance duration:
60 min

(1) Usual (2) Event – 1.0 run earlier (3) Event – 1.5 runs earlier (4) Event – 2.0 runs earlier

Fig. 8. Scenario 2 – 90 min expiration time: Number of expired blood samples in two years for
different simulations

multiple new samples might arrive, but they are not processed before the maintenance
as the technician is prioritized. Due to the small expiration time of 90 minutes, there
is a good chance that those samples expire. For a maintenance time of 45 minutes, all
samples which arrive 5 minutes after the start of the flexibly enabled cluster expire,
because they have at least 20 minutes waiting time before the maintenance plus 45
minutes maintenance time plus another 25 minutes analysis time summing up to at
least 90 minutes. For 60 minutes maintenance, all samples arriving at least 20 minutes
after the start of the flexibly enabled cluster will expire. Thus, if – due to the arrival
distribution of the blood samples – many samples arrive within these time frames, also
negative results can be observed.

Summarizing above observations, it is important to check the relation between expi-
ration time as well as waiting and maintenance times to decide whether to apply batch
adjustments or not. In case, the relations are appropriate as, for instance, in scenario 1,
applying batch adjustments provides reasonable and measurable improvements.

The simulation results indicate that the waiting time for the technician slightly in-
creases, in average less than a minute. Due to limited space, the reader is referred to
our simulation reports (see footnote 1). If, we take scenario 1, the cost savings due to
reductions in expired blood sample will be higher than the technician costs due to small
increases in the waiting time.

In most cases, we can observe that the number of zero-waitings increases, because
starting an analysis run shortly before the technician arrives, increases the chance that
the run is terminated just upon arrival. However, sometimes a run may only be started
shortly before the technician’s arrival as some other analysis run was still busy. Then,
the technician must wait longer resulting in a higher distribution of waiting times and a
higher total average waiting time.

7 Related Work

In the business process research domain, few works exists to synchronize the execution
of multiple instances. For example in [1,14,23], the integration of batch processing into
process models is discussed. These works provide limited parameters to configure the
batch execution at design-time, often only the maximum capacity. This also limits op-
portunities to conduct adjustments at run-time. [23] provides some means for flexible
run-time batch control by introducing batch activation by user invocation. Extending

76 L. Pufahl et al.

the options for batch configuration in business processes, [21] introduces batch activi-
ties with three configuration parameters: capacity as the ones above as well, rule-based
activation generalizing the user invocation based on rules, and execution order. One step
forward, [20] extends the parameters by the grouping characteristic to distinguish pro-
cess instances. However, all these works focus on specifications at design-time and do
not support automatic adjustments of the batch configuration at run-time, for instance,
due to changes in the process environment or within the process itself. In this paper,
we extend the concepts presented in [20, 21] to allow run-time flexibility in terms of
configuration adaptation to improve batch processing in business processes. We utilize
events as trigger for taking adjustment actions. These extensions can also be applied to
other works for adapting the configuration parameters offered there.

Batch processing flexibility has also been discussed in other domains as, for example,
the manufacturing domain [17]. Here, batch scheduling is used to schedule a number
of available jobs on a single or on multiple machines for saving set-up costs. Changes
of market factors, e.g., a canceled order, or on the operational level, e.g., breakdowns,
require a rescheduling functionality. In [17], an overview of suitable algorithms is pre-
sented and the need for a framework which combines possibly occurring events with
some reschedule action is discussed. The contributions of this paper can be adjusted to
offer a first approach in this direction: instead of configuration parameter adjustments,
rescheduling action can be used in the batch adjustment rule.

Adoption of process instances during run-time is a widely discovered field. [22] dis-
cusses manual ad-hoc changes of single instances, e.g., to insert, delete, or shift ac-
tivities according a given process model. This provides flexibility for single process
executions but this does not provide possibilities to pool several process instances and
to work on them as a batch. The CEVICHE framework [9] allows to change process
instances automatically during run-time. Similar to this paper, it uses Complex Event
Processing (CEP) to detect changes and exceptions which then trigger dynamic adap-
tation of the BPEL processes. In the same vein, [5] discusses means to integrate CEP
with BPMSs on architectural level and shows how to do this for a BPEL engine. [24]
introduces an approach to discover deviations of process executions and the underlying
process model by using CEP techniques.

In this paper, we use CEP techniques as, for example, described in [7, 15], to create
the necessary business and process events. [7] lists definitions for CEP-related terms,
e.g., event type, that are used in this paper. Based on these works, a framework for
CEP for business processes was introduced [10,11]. We utilize this framework to allow
dynamic batch activation and configuration rule adaptations as presented in Section 5.
In this paper, we deal with comparably simple rules to correlate events to each other,
to process instances, and to batch clusters. Applying common correlation techniques
extends the correlation capability of the presented approach. One of these techniques,
the determination of correlation sets based on event attributes, is introduced in [19].

8 Conclusion

In this paper, we showed the necessity to synchronize multiple cases in batch clusters
and the requirement of their flexible adjustments during run-time. Therefore, a con-
cept is introduced to apply event processing to batch execution allowing to flexibly

Flexible Batch Configuration in Business Processes Based on Events 77

adjust batch configuration parameters and batch activation based on run-time changes
represented by events. Based on the principle of Event-Condition-Action rules, rele-
vant events are identified and then compared to defined conditions. If the conditions
are fulfilled, the configured actions are executed as a batch adjustment for the corre-
sponding batch cluster. Further, an architecture is presented showing details about a
technical implementation and the components that are necessary to apply the concept
within a process engine. We showed applicability of the introduced concept of batch
adjustments during run-time with a real-world use case of a blood analysis in a hos-
pital’s laboratory. We simulated two years of work in the laboratory and showed that
the application of the presented concept compensates for maintenance interruptions de-
creasing the blood expiration rate by at most 7%. With integrating more information
about the process environment, e.g., the availability of resources, the presented concept
can be extended. Further, techniques to ensure that batch adjustments do not lead to
inconsistencies should be developed. We will investigate this topic in the future.

References

1. van der Aalst, W., Barthelmess, P., Ellis, C., Wainer, J.: Proclets: A Framework for
Lightweight Interacting Workflow Processes. IJCIS 10(4), 443–481 (2001)

2. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow Pat-
terns. Distributed and Parallel Databases 14(1), 5–51 (2003)

3. Activiti: Activiti BPM Platform, https://www.activiti.org/
4. Bonitasoft: Bonita Process Engine, https://www.bonitasoft.com/
5. Daum, M., Götz, M., Domaschka, J.: Integrating CEP and BPM: How CEP Realizes Func-

tional Requirements of BPM Applications (Industry Article). In: DEBS, pp. 157–166. ACM
(2012)

6. Dayal, U.: Active Database Management Systems. In: JCDKB, pp. 150–169 (1988)
7. Etzion, O., Niblett, P.: Event Processing in Action. Manning Publications Co. (2010)
8. University of Hamburg, D.o.C.S.: DesmoJ - A Framework for Discrete-Event Modeling and

Simulation, http://desmoj.sourceforge.net/
9. Hermosillo, G., Seinturier, L., Duchien, L.: Using Complex Event Processing for Dynamic

Business Process Adaptation. In: SCC, pp. 466–473. IEEE (2010)
10. Herzberg, N., Meyer, A., Weske, M.: An Event Processing Platform for Business Process

Management. In: EDOC, pp. 107–116. IEEE (2013)
11. Herzberg, N., Weske, M.: Enriching Raw Events to Enable Process Intelligence - Research

Challenges. Tech. Rep. 73, HPI at the University of Potsdam (2013)
12. Knöpfel, A., Gröne, B., Tabeling, P.: Fundamental Modeling Concepts: Effective Communi-

cation of IT Systems. Wiley (2005)
13. Lanz, A., Reichert, M., Dadam, P.: Robust and flexible error handling in the aristaFlow BPM

suite. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP, vol. 72, pp. 174–189.
Springer, Heidelberg (2011)

14. Liu, J., Hu, J.: Dynamic Batch Processing in Workflows: Model and Implementation. Future
Generation Computer Systems 23(3), 338–347 (2007)

15. Luckham, D.: The Power of Events. Addison-Wesley (2002)
16. Luckham, D., Schulte, R.: Event Processing Glossary - Version 2.0 (July 2011), http://

www.complexevents.com/wp-content/uploads/2011/08/EPTS_Event_
Processing_Glossary_v2.pdf

https://www.activiti.org/
https://www.bonitasoft.com/
http://desmoj.sourceforge.net/
http://www.complexevents.com/wp-content/uploads/2011/08/EPTS_Event_Processing_Glossary_v2.pdf
http://www.complexevents.com/wp-content/uploads/2011/08/EPTS_Event_Processing_Glossary_v2.pdf
http://www.complexevents.com/wp-content/uploads/2011/08/EPTS_Event_Processing_Glossary_v2.pdf

78 L. Pufahl et al.

17. Méndez, C.A., Cerdá, J., Grossmann, I.E., Harjunkoski, I., Fahl, M.: State-of-the-art review
of optimization methods for short-term scheduling of batch processes. Computers & Chem-
ical Engineering 30(6), 913–946 (2006)

18. Meyer, A., Pufahl, L., Fahland, D., Weske, M.: Modeling and Enacting Complex Data De-
pendencies in Business Processes. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013.
LNCS, vol. 8094, pp. 171–186. Springer, Heidelberg (2013)

19. Motahari-Nezhad, H.R., Saint-Paul, R., Casati, F., Benatallah, B.: Event Correlation for Pro-
cess Discovery from Web Service Interaction Logs. VLDB Journal 20(3), 417–444 (2011)

20. Pufahl, L., Meyer, A., Weske, M.: Batch Regions: Process Instance Synchronization based
on Data. In: EDOC. IEEE (2014) (accepted for publication)

21. Pufahl, L., Weske, M.: Batch Activities in Process Modeling and Execution. In: Basu, S.,
Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 283–297. Springer,
Heidelberg (2013)

22. Reichert, M., Dadam, P.: Enabling Adaptive Process-aware Information Systems with
ADEPT2. In: Handbook of Research on Business Process Modeling, pp. 173–203. Infor-
mation Science Reference (2009)

23. Sadiq, S., Orlowska, M., Sadiq, W., Schulz, K.: When Workflows Will Not Deliver: The Case
of Contradicting Work Practice. BIS 1, 69–84 (2005)

24. Weidlich, M., Ziekow, H., Mendling, J., Günther, O., Weske, M., Desai, N.: Event-based
monitoring of process execution violations. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.)
BPM 2011. LNCS, vol. 6896, pp. 182–198. Springer, Heidelberg (2011)

25. Weske, M.: Business Process Management: Concepts, Languages, Architectures. Second
Edition, 2nd edn. Springer (2012)

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 79–92, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Automatic Generation of Optimized Workflow
for Distributed Computations on Large-Scale Matrices

Farida Sabry, Abdelkarim Erradi, Mohamed Nassar, and Qutaibah M. Malluhi

KINDI Center for Computing Research
Qatar University

Doha, Qatar
{faridasabry,erradi,mohamad.nassar,qmalluhi}@qu.edu.qa

Abstract. Efficient evaluation of distributed computation on large-scale data is
prominent in modern scientific computation; especially analysis of big data, im-
age processing and data mining applications. This problem is particularly chal-
lenging in distributed environments such as campus clusters, grids or clouds on
which the basic computation routines are offered as web/cloud services. In this
paper, we propose a locality-aware workflow-based solution for evaluation of
large-scale matrix expressions in a distributed environment. Our solution is
based on automatic generation of BPEL workflows in order to coordinate long
running, asynchronous and parallel invocation of services. We optimize the in-
put expression in order to maximize parallel execution of independent opera-
tions while reducing the matrix transfer cost to a minimum. Our approach frees
the end-user of the system from the burden of writing and debugging lengthy
BPEL workflows. We evaluated our solution on realistic mathematical expres-
sions executed on large-scale matrices distributed on multiple clouds.

Keywords: location-aware optimization, distributed computations, BPEL
workflows, large-scale matrices.

1 Introduction

Cloud computing offers an attractive alternative to easily and quickly acquire IT
services such as storage and computation services. Its adoption continues to grow as
companies opt for flexibility, cost savings, performance and scalability. Cloud services
such as Elastic MapReduce offer an attractive platform for outsourcing the storage and
computations on large scale data because of their optimized algorithmic
implementations and access to on-demand large-scale resources. We focus particularly
on matrix algebra computations since they are used in many scientific domains;
including but not limited to analysis of big data, image processing, computer graphics,
information retrieval and data mining applications. The inputs are typically large-scale
matrices and performing math operations (e.g. multiply, inverse, transpose,
add/subtract, dot product…) on them could be long-running. In this paper, we consider
the scenario where several cloud services are offering matrix storage and basic matrix
operations with different service characteristics. Based on availability, quality of
service (QoS), reliability, security and data locality, the optimal decomposition, task

80 F. Sabry et al.

scheduling and task assignment of a mathematical expression vary. We propose
automated workflow generation and execution in order to optimize the response time
of expression evaluation, given the available services and their characteristics, as well
the data locality. Our solution improves the productivity of the users by releasing them
from the tedious task of manually and timely generating and editing the workflows
depending on the input expressions.

The composition could be written using a business workflow language such as
BPEL (Business Process Execution Language) [2] or YAWL (Yet Another Workflow
Language) [3]. Scientific workflow tools like Taverna [4], Kepler [5], and Pegasus [6]
can do similar task; some of them adopt BPEL whereas others use their own language.
We choose BPEL because it is a standard XML based language for specifying a Web
Services composition. It is also used by some scientific workflow systems. A BPEL
process is composed of activities that can be combined through structured operators
that specify the control and data flow that govern the ordering of these activities. BPEL
constructs include messaging activities (e.g. invoke, receive, reply), sequential
execution, conditional branching, structured loops, concurrency constructs (e.g.,
parallel execution, event-action constructs, correlation sets), exception handling (try-
catch blocks). A BPEL engine is responsible for managing the process instances
lifecycle, such as process instance creation, termination, and executing according to the
process definition. The engine is also responsible for binding the partners to specific
Web Services. Many BPEL engines are available as Open Source, such as Apache
ODE [7], and commercial engines such as IBM WebSphere Choreographer [8].

Even though workflows can be used to automatically manage the execution of the
expression computation, the system is not convenient if the end-users (e.g. researchers,
developers) have to manually create a workflow and properly assign the tasks upon the
addition of a new expression. Moreover the optimal execution is dependent on the data
locality of input matrices and the QoS characteristics of the available matrix
computations services. Our system automates the optimization and the generation of a
BPEL workflow for the input expression. The resulting workflow is deployed to a
BPEL workflow engine for execution.

The rest of the paper is organized as follows. Section 2 overviews related work.
Section 3 gives an overview of the proposed method and section 4 presents the details
of the transformation from a mathematical expression to a BPEL workflow and the
optimization process. Section 5 highlights implementation details. Finally, we
conclude and discuss future work in section 6.

2 Related Work

Service composition is closely related to workflow [9]; automatic workflow genera-
tion can be considered a subtask from automated web service composition. The latter
term is considered more general as it includes an extra step of the automatic service
discovery and selection from the set of available services. According to a survey of
automated web services composition [10], this can be done using workflow techniques
or AI planning. The workflow techniques can be further classified as either static or
dynamic [9]. The static techniques mean that the requester should build an abstract
process model before the composition planning starts. Only the selection and binding

 Automatic Generation of Optimized Workflow for Distributed Computations 81

to atomic web services is done automatically. On the other hand, the dynamic compo-
sition both creates process model and selects atomic services automatically. This re-
quires the requester to specify several constraints, including the dependency of atomic
services, the user’s preference and so on. An example for a static workflow generation
approach was implemented in ASTRO project [11].

According to [11], one of the phases for the automatic composition of web services
is the translation between the external and internal languages used by the service
composition system. The external language is used by the service users to express
what they can offer or what they want in a relatively easy manner. For example,
BPMN (Business Process Modeling Notation) to BPEL translation is presented in [12]
where the designer uses BPMN graphical notations to easily describe the process
control flow and data flow and then it gets automatically translated to BPEL. This
work can also be considered static in the sense that BPMN is describing the con-
trol/data flow as input. Similar work was proposed in [13] but using XPDL (XML
Process Definition Language) which is a graph-structured language mainly used in
internal process modeling. However, in this work the generated outputs are abstract
BPEL processes that are not fully executable and deployable and they need some
manual editing to be ready for deployment. Also in [12], it is stated that it cannot
detect all pattern types and the code produced by this transformation lacks readability.

Our approach for automatic workflow generation presented in this paper is consi-
dered dynamic in the sense that the workflow steps and the process model that describes
the control flow and data flow are not input by the requester but they are created auto-
matically according to the parsing of the input expression. Additionally the atomic ser-
vices used for computations are selected based on their functionality and QoS such as
accuracy, reliability, performance and security. We assume that developers/researchers
are using contract-based web service composition; and they are provided with the
WSDLs representing the interfaces of the available services and their characteristics.
Our proposed framework depends on the service-oriented architecture where large-scale
mathematical computations are offered as services and this differs from other distributed
execution engines like MapReduce [23] or DryadLINQ [24].

3 Overview of the Proposed Framework

We can think of the problem of mathematical expression to workflow transformation
with analogy to the compilation process [15]. In software compilation, the compiler
compiles a program into intermediate form, optimizes intermediate form and generates
target code for the running architecture. In hardware compilation, the compiler
compiles an HDL model into a sequencing graph, optimizes the sequencing graph and
generates gate-level interconnection for a cell library [16].

In our framework of distributed mathematical expression evaluation using services
on the web or on the clouds, the end-user (researcher/developer) enters a mathematical
expression (e.g.) following a specific grammar such as XPath grammar
or JEP (Java Expression Parser) [14]. The expression is then compiled to an
intermediate form of a parsed expression tree. This intermediate form is optimized and
then the workflow is generated to coordinate the execution of services on the
distributed environment. We focus on mathematical expressions but the framework can
be extended to more generic computation models.

82 F. Sabry et al.

The main components of our proposed framework are depicted in Fig. 1. First, the
developer/researcher inputs the expression and the resources' references corresponding
to the aliases of the operands (i.e., the location where each operand is stored). A
configuration file specifies additional parameters such as the registry address where the
WSDLs of the services are stored. These WSDLs serve as the interface to the external
cloud services to be invoked or composed in the generated BPEL process. A parser
parses the input mathematical expression into an expression tree. An optimizer then
transforms the tree to a more consolidate form based on data locality of operands and
identifies independent operations that can be done in parallel. The optimizer also
annotates the nodes of the tree based on their types (operands vs. operators). Then the
translator traverses the tree and maps the tree parts to corresponding BPEL activities.
Attributes of these activities like the partner link to the service to invoke, the values of
the input variables to this service and their types are initialized according to the
annotations set by the optimizer. The output of the translator is a BPEL process
accompanied by a deployment descriptor so that it can be deployed to a BPEL engine
for execution. In the next section we present formal definitions and explain in more
details the different steps of the automation process.

4 From Expression to BPEL

Before we go through the automation steps in details, it is important to formally define
the following key terms: computation services, operations, operands and expression
trees.

Definition 1: [Computation Services] are defined as a set of services S = {s1,s2,…sn}, n
≥ 1 where each si S is defined by [id, ,] where id is the unique service
identifier (e.g. the URL of the service) and is a set of operations provided by
si. Each is further defined by its input, output and port type (, ,

) where 1 ≤ j ≤ . is the set of quality of service parameters for each

service si: < , , , where is the set of execution price for all , is
the set of expected execution durations for all , is the reliability and is the
availability of the overall service.

In our framework the service definitions are obtained from a local registry by
parsing the corresponding WSDL files.

Definition 2: [Operators] are the set of predefined tokens representing unary and
binary operations on matrices such as addition, subtraction, multiplication, dot product,
inverse of a matrix and transpose of a matrix: , , , ., , ^ , ′ .

Definition 3: [Operands] are the set of input literals used in the input mathematical
expression, , , . . . where each is an alias for a resource matrix with
metadata (location, nRows, nCols, datatype). The , mapping tuples are stored
to a hash map so-called LM.

 Automatic Generation of Optimized Workflow for Distributed Computations 83

Fig. 1. Mathematical expression to BPEL workflow generation

Definition 4: [Expression Tree] is the binary tree obtained from parsing the input
string expression and is defined by , , where , … is the set of
tree nodes, , , , , , … . represents the
connections between the nodes, where , means is a parent of . The
following conditions apply:

 is the only node with no parents.
 The leaf nodes must belong to .
 Internal nodes belong to O, a hash map OS maps each operator node

 to the service offering this operation and being selected to
do the operation according to data locality, concurrency considerations and
QoS parameters.

 Each node has at most two direct children.
 Methods and get the left and right child of node .

Given these definitions, we discuss next expression-to-BPEL translation steps in
more details.

4.1 Expression Parser

Parsers have undergone significant progress and can now be automatically generated
from a simple specification of the language (i.e., BNF grammar). This can be done
using one of the existing parser generators like YACC, Bison or ANLTR. There are
two main approaches to building parsers that are used in practice: top-down (also
known as recursive descent or LL and its variant LL(*) [17] used by ANTLR) and
bottom-up (aka shift-reduce, LR and its variant LALR used by YACC and Bison).

In our work, we use the open-source JEP which implements the Shunting-yard
algorithm that is considered a bottom-up parser and is used to convert the human-
readable infix notation to RPN (Reverse Polish Notation) that is optimized for

84 F. Sabry et al.

expression evaluation. The output of this step is a left-deep parse tree, an example is
shown in Fig. 2(a).

4.2 Tree Optimization

The goal of tree optimization is to maximize parallel execution of independent opera-
tions within the expression and minimize overall evaluation time. The time is mainly
composed of two factors: the computation time for the operations run by the different
services, and the data transfer time for matrix resources that need to be moved from
one location to another in the distributed environment. As a first step, we assume that
all the servers implement all the operations and have similar computation capabilities
and quality of service characteristics. In this context, the tree execution cost is meas-
ured by the data transfer cost.

For an expression tree of operator nodes and a set S of available servers all
implementing services for these operators, there are possible execution plans to
select services from S to execute the operations. The order in which to invoke these
x operations makes the search space even larger. Using exhaustive search to select
the optimal plan in this space becomes practically impossible when the expression
size increases. We refer to the query optimization problem in distributed databases
that have similar conditions to get an optimal query execution plan [19, 20] where
projection is done before join and joins of collocated tables are done first to decrease
the data to be transferred, cost-optimization techniques are used to choose the optimal
execution plan.

We narrow down the search space using the matrix locality information, where we
favor operations involving collocated matrices. The basic principle is that matrices
that are co-located in storage must be close to each other in the tree whenever it is
possible. To do so, we use properties of commutativity, associativity and distributivity
of the different operators to identify chains of commutative operators (e.g., matrix
addition) and chains of associative operators (e.g., matrix multiplication). We sort the
commutative chains based on the data locations. In this way, collocated matrices
would be close and put into parenthesis to be operands of the same operator. We also
use matrix size as a tie break for associative chains (i.e., we prefer to put together into
parenthesis the operands of which the multiplication leads to smaller-size matrices).
This problem is the same as the matrix chain multiplication problem [18] and has a
well-known dynamic programming solution which we modified its score to favor
doing computations for collocated matrices first.

To simplify the explanation of the optimization procedure we consider as example
the expression and the size-location description shown in Ta-
ble 1. The optimization of this expression is shown in Fig. 2. Fig. 2(a) represents the
tree as output by the parser. In Fig. 2(b) we use the associative property of multiplica-
tion to do D*E first as matrix D and matrix E both belong to server S1 and must be
given priority to decrease data transfer. Similarly the commutative property of addi-
tion is used to swap matrix B and matrix F. Indeed matrix A and matrix F both belong
to server S1 and can be locally added without additional data transfer.

Note that within the same sub-tree, well known compiler optimization techniques
for arithmetic expressions are used to optimize further the execution and identify
independent sequences of operations that can be done in parallel. There are a lot of

 Automatic Generation of Optimized Workflow for Distributed Computations 85

optimization techniques for arithmetic expressions, like tree-height reduction, factori-
zation, expansion and common sub-expression elimination [16, 17]. For example if we
assume all the matrices belong to the same location in Fig. 2(a), tree height reduction
would recognize that the root node must be changed so the tree height would be 4
instead of 6.

After this step is done we apply the following two-phases-traversal algorithm:

1. The first phase: we identify independent sub-trees that can be run in parallel while
traversing down the tree based on the two following conditions:
─ All the nodes of a sub-tree must be hosted by the same server
─ A sub-tree must contain as much nodes as possible. In other words, we expand a

tree until no more nodes can be added.
─ Each sub-tree is annotated according to the hosting server where its operations

would be invoked so that the generated workflow invokes the services for com-
putations of the sub-trees in parallel e.g. Fig. 2(c).

2. The second phase: going up the tree we generate the main meta-tree representing
the final computation steps with annotations added specifying the servers selected
to do each operation. Again the goal is to reduce the data transfer volume. So we
choose the server where most matrices are located. The metric can be merely the
number of matrices but preferably we select the server hosting the maximum sum
of the sizes of the operands.

We analyze the transfer cost in terms of the number of matrix elements which is
practically reflected in the file size. In this simple example the transfer cost is reduced
from 2100100 elements (if re-ordering and optimization algorithm were omitted) to
1001000 elements. This gain is computed given the sizes depicted in Table 1 and
assuming dense matrices. Another factor affecting the selection of services and dis-
cussed extensively in literature is the QoS parameters. For example, QoS parameters
and techniques used in [21] can be applied to choose services with least response time
and price. Currently our prototype is based solely on data locality and data size but we
intend to extend it to QoS optimization as well. The last step is transforming the op-
timized tree, along with the annotations of the selected transfer and computation ser-
vices and obtaining the finally executable BPEL workflow as described next.

Table 1. Example of a distribution of sizes and locations

Matrix
ID

A B C D E F G

Size 1000
*1000

1000
*1000

1000
*1

1
*100

100
*1000

1000
*1000

1000
*1000

Location S1 S2 S2 S1 S1 S1 S2

4.3 BPEL Code Generation

The translation task from the optimized expression tree to BPEL workflow is based on
the mapping rules shown in Fig. 3. In the rules, ou, ov and ol represent operator nodes

86 F. Sabry et al.

and li, lj represent operand nodes. The rules has for mission to map the expression tree
parts to their equivalent BPEL constructs such as assign, invoke, receive, sequence,
and flow. BPEL Assign activity is used to exchange values between incoming and
outgoing message variables. Invoke activity is used to do the service invocation.
Receive activity is to receive an input message or a callback message. Sequence
activity is to group some activities to be done in sequence. Flow activity is used when
different sequences are to be done in parallel. Attributes of these activities like the
partner link to the service to invoke, values of input variables to the service and their
types are initialized according to the annotations values of the nodes (operands and
operators: ,).

Fig. 2. Simple scenario example for tree optimization for
A+B+C*D*E+F+G (A+F) +C*(D*E)+(B+G)

 Automatic Generation of Optimized Workflow for Distributed Computations 87

The output of this transformation is a BPEL process saved to a “.bpel” file, a workflow
interface description saved to a “.wsdl” file. This is because workflow itself is
deployed as a web-service. A deployment descriptor saved to “deploy.xml” is also
generated so that the workflow can be deployed to a BPEL engine for execution.

The translation algorithm of an expression tree T to executable BPEL code that
includes the BPEL constructs to be used and the control flow is shown in Fig. 4. The
algorithm is a post-order traversal for the expression tree T with the mapping rules
shown in Fig. 3 applied. The rule case (c) in Fig. 3(c) is considered the base case used
for the recursive traversal where the tree has an operator as a parent and its two
children are operands , or only left child in case where is a unary
operator. In this case, the mapping is a sequence activity that includes (assign, invoke,
receive). The BPEL assign activity is for assigning input values for the variable used in
the invocation. The invoke activity and then the callback receive activity are to get the
information about the intermediate result location. The attributes of these activities are
determined from the computation services definition S and the mapping. is
the selected service for operation . The , mapping is used to get the
metadata of the input matrices. Case (a) occurs when the two children are operators
which mean that the services in these two paths can be executed in parallel. This
corresponds to the BPEL Flow construct including two sequences for the mapping of
the two children where each child has its own scope. Case (b) occurs when one of the
children is an operator and the other is a literal which means that the mapping of
and will be a Sequence activity. A flow stack is maintained so that during traversal
if case (a) is encountered a Flow activity is pushed into the stack and the two paths
are executed in parallel. The activity is popped out once its left and right children
return.

5 Implementation and Experimentation

We made the prototype for Mathematical Expression to BPEL (ME2BPEL) available
at https://code.google.com/p/me2bpel/. The objective of the system is to generate a
correct, optimized and executable BPEL workflow from the input mathematical ex-
pression and resources' references to aliases used in the expression. The inputs are
WSDL files representing the interface to different web services on different servers
and an expression to be evaluated with metadata about operands used in the expres-
sion provided. The whole system operation can be summarized as follows. First, the
expression is being parsed using JEP API that uses shunting yard algorithm. Then we
detect commutative chains and matrix multiplication chains by traversing the tree.
Matrix multiplication chains and their order of execution are determined using the
modified dynamic programming approach using data locality as well as matrices
sizes. Sorting the commutative chain is done with respect to data locality and the ex-
pression tree structure is updated accordingly with annotating operator nodes for col-
located operands. The rest of operator nodes are then annotated with the location to

88 F. Sabry et al.

execute according to the minimum data transfer criterion. BPEL code generation is
done according to the algorithm in Fig. 4. We modified the unified framework pack-
age [22] for generation and serialization of BPEL constructs. We used web services
using MapReduce for matrix multiplication and addition operations that we used in
[1] for testing. These input WSDLs are read and de-serialized using wsdl4j library.

Fig. 3. Mapping expression tree patterns to the corresponding BPEL constructs where
Mapping(ox) is a recursive function with case (c) as the base case

 Automatic Generation of Optimized Workflow for Distributed Computations 89

Fig. 4. Translation algorithm of expression tree to BPEL workflow

The first experiment is to test for ten different expressions available on the project
page as a sample dataset with different number of literals ranging from 4 to 10. The
data locality optimization is not taken into consideration in this experiment and it is
assumed that the data matrices are stored on the same server offering these web ser-
vices. Results are shown in Fig. 5 with an average speed-up (Tsequential/Tworkflow)
of 1.8. From the results it is clear that the optimized workflow achieve better results
for expressions with larger number of literals and which have operations that can be
done in parallel.

90 F. Sabry et al.

Fig. 5. Optimized workflow execution time vs. the sequential execution time for 10 different
expressions

In the second experiment, we assume matrices are stored on different servers and
according to the data locality optimization step; a service is chosen to execute a certain
operation in an expression tree so that it minimizes the data transfer between servers.
So we compare the time taken for data transfer being logged by the web services under
test between the optimized workflow with web services selection according to data
locality and random web services selection. Fig. 6 shows that for most of the
expressions under test, the data transfer time is less when web services are selected
according to data locality (expression 8 has all its data stored on the same server, that’s
why no data transfer time recorded). Some cases show no improvement; this depends
on the heterogeneity of the distributed data.

6 Conclusion

Web and cloud-based services evaluating large-scale mathematical operations are
typically long running and require the composition of multiple asynchronous
computation services. We proposed an automated workflow generation solution in
order to coordinate and optimize the execution of these services. We show how to
automatically generate workflows for evaluating composed expressions while taking
into account the storage location of input matrices and minimizing the data transfer
between servers. Our solution optimizes the run-time execution of the services
composition by maximizing parallel calls whenever possible. We aim by this
contribution to increase the productivity of the system users (researchers or developers)
and equipping them with a dynamic workflow generation tool, making the system
accessible for non-expert workflow developers.

 Automatic Generation of Optimized Workflow for Distributed Computations 91

For future work, we aim to incorporate QoS-based service selection. This feature
will allow selecting the most appropriate service among functionally-equivalent
computation services having the same score according to data locality and size of input
data but offering different QoS guarantees.

Fig. 6. Data transfer time taken by services selected according to data locality vs. random selec-
tion for different expressions

Acknowledgments. This publication was made possible by a grant from the Qatar
National Research Fund; award number NPRP 09-622-1-090. Its contents are solely
the responsibility of the authors and do not necessarily represent the official views of
the Qatar National Research Fund.

References

1. Nassar, M., Erradi, A., Sabri, F., Malluhi, Q.: Secure Outsourcing of Matrix Operations as
a Service. In: 6th IEEE International Conference on Cloud Computing, pp. 918–925. IEEE
Press (2013)

2. Web Services Business Process Execution Language v2.0, http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

3. Van der Aalst, W.M.P., ter Hofstede, A.: YAWL: Yet Another Workflow Language.
Information Systems 30(4), 245–275 (2005)

4. Taverna Workflow Management System, http://www.taverna.org.uk/
5. Altintas, I., Berkley, C., Jaeger, E., Jones, M.: Ludascher. B., Mock, S.: Kepler: an extens-

ible system for design and execution of scientific workflows. In: Scientific and Statistical
Database Management International Conference, pp. 423–424 (2004)

92 F. Sabry et al.

6. Sonntag, M., Karastoyanova, D., Deelman, E.: BPEL4Pegasus: Combining Business and
Scientific Workflows. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC
2010. LNCS, vol. 6470, pp. 728–729. Springer, Heidelberg (2010)

7. Apache ODE: http://ode.apache.org/
8. WebSphere Application Server Enterprise Process Choreographer,

http://www.ibm.com/developerworks/websphere/
9. Dustdar, S., Schreiner, W.: A survey on web services composition. Journal of Web and

Grid Services 1(1), 1–30 (2005)
10. Rao, J., Su, X.: A Survey of Automated Web Service Composition Methods. In: Cardoso,

J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54. Springer, Heidelberg
(2005)

11. Trainotti, M., Pistore, M., Calabrese, G., Zacco, G., Lucchese, G., Barbon, F., Bertoli,
P.G., Traverso, P.: ASTRO: Supporting Composition and Execution of Web Services. In:
Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 495–501.
Springer, Heidelberg (2005)

12. Ouyang, C., Dumas, M., ter Hofstede, A.H.M., van der Aalst, W.M.P.: Pattern-based trans-
lation of BPMN process models to BPEL web services. International Journal of Web Ser-
vices Research 5(1), 42–62 (2007)

13. Yuan, P., Jin, H., Yuan, S., Cao, W., Jiang, L.: WFTXB: A Tool for Translating Between
XPDL and BPEL. In: 10th IEEE International Conference on High Performance Compu-
ting and Communications, pp. 647–652. IEEE Press (2008)

14. JEP (Java Expression Parser), http://www.singularsys.com/jep
15. Kastner, R., Hosangadi, A., Fallah, F.: Arithmetic Optimization Techniques for Hardware

and Software Design. Cambridge University Press, Cambridge (2010)
16. Bacon, D., Graham, S., Sharp, O.: Compiler Transformations for High-Performance Com-

puting. ACM Computing Surveys 26(4), 345–420 (1994)
17. Parr, T., Fisher, K.: LL(*): The Foundation of the ANTLR Parser Generator. In: Program-

ming Language Design and Implementation Conference (PLDI), pp. 425–436 (2011)
18. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 3rd edn., pp.

370–377. MIT Press (2009)
19. Hameurlain, A.: Evolution of Query Optimization Methods: From Centralized Database

Systems to Data Grid Systems. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA
2009. LNCS, vol. 5690, pp. 460–470. Springer, Heidelberg (2009)

20. Evrendilke, C., Dogac, A., Nural, S., Ozcan, F.: Multidatabase query optimization. Journal
of Distributed and Parallel Databases 5(1), 77–114 (1997)

21. Zeng, L., Benatllah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-Aware
Middleware for Web Services Composition. IEEE Transactions On Software Engineer-
ing 30(5), 311–327 (2004)

22. Unify framework package, Software Languages Lab, Vrije Universiteit Brussel,
http://soft.vub.ac.be/svn-gen/unify/src/org/unify_framework/

23. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters.
Communications of the ACM - 50th anniversary issue 51(1), 107–113 (2008)

24. Yuan, Y., Isard, M., Fetterly, D., Budiu, M., Erlingsson, U., Gunda, P.K., Currey, J.:
DryadLINQ: A system for general-purpose distributed data-parallel computing using a
high-level language. In: OSDI 2008 Proceedings of the 8th USENIX Symposium on Oper-
ating Systems Design and Implementation, pp. 1–14 (2008)

A Dynamic Service Composition Model

for Adaptive Systems in Mobile Computing
Environments

Nanxi Chen and Siobhán Clarke

Distributed Systems Group, SCSS
Trinity College, Dublin, Ireland

nchen@tcd.ie, Siobhan.Clarke@scss.tcd.ie

Abstract. Service-based applications must be adaptable to cope with
the dynamic environments in which they reside. Dynamic service com-
position is a common solution to achieving adaptation, but it is challeng-
ing in mobile ad hoc network (MANET) environments where devices are
resource-constrained and mobile. Existing solutions to dynamic service
composition predefine the multiple configurations that may be possible,
but this requires knowledge of the configurations a-priori. Alternatively,
some solutions provide on-demand composition configurations, but they
depend on central entities which are inappropriate in MANET environ-
ments. We propose a decentralized service composition model, in which
a system dynamically adapts its business process by composing its frag-
ments on-demand, as appropriate to the constraints of the service con-
sumer and service providers. Results show a high composition success
rate for the service compositions in high mobility environments.

Keywords: Service composition·Distributed·MANET·Overlay networks.

1 Introduction

Extensive use of mobile devices, coupled with advances in wireless technology like
Wi-Fi direct, increase the potential for shared ownership applications for mobile
ad hoc networks (MANETs) [6]. Devices can employ computational resources
in a network to accomplish not only data routing tasks but also a complex
user task with value-added services. A widely accepted mechanism to carry out
such user tasks is service-based applications (SBAs), in which complex tasks are
modelled as loosely-coupled networks of services. A SBA provides appropriate
functionalities to consumers by composing cooperating services.

Typical MANET environments are dynamic; mobile SBAs must be adaptable
to cope with potential changes in their dynamic operating environments (e.g.
topology changes, network disconnections or service failures). Centralized service
management for traditional adaptive systems is not applicable to MANETs, as
device mobility is likely to be unpredictable, with devices joining and leaving the
network at any time. There is, therefore, no guarantee that a suitably resource-
rich central node will be available for the duration of a complex service provision.

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 93–107, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

94 N. Chen and S. Clarke

A number of approaches to distributed service composition [2], [15], [24], [25]
have been proposed. They support the specification of a full composition request
as an abstract workflow and distribute it through the network. They can also
partition a workflow into independent parts and then assign these parts to corre-
sponding nodes. However, most workflow-based distributed service composition
approaches have not addressed adaptation in abstract workflows. Thus, existing
systems may fail or have to rediscover service providers, if a service query in such
a request is not matched. Dynamic service compositions [8], [13], [16], cope with
the adaptation problem using task planning algorithms, or graph-theory based
techniques. However, graph-theory based techniques have limited support to an-
alyze multiple input/output (I/O) dependencies among services [13]. Moreover,
existing task planning algorithms either are constrained to sequential composi-
tion or require central knowledge bases.

In this paper, we introduce a service composition algorithm to form and adapt
a full business process for a complex user task on-the-fly, without the requirement
for a central node. Forming a business process relies on a novel overlay network
named Semantic Service Overlay Network (SSON), which clusters semantically
similar nodes and semantically dependent nodes for dynamic composition. On
SSON networks, a service provider can adapt composition requests and gener-
ate potential execution fragments that can be selected to build global execution
paths. New service providers may be discovered to replace any that result in
composition failures or service outages, composing them into the current execu-
tion.

The advantage of this work is that programmers can develop mobile applica-
tions structured based on complex user tasks, instead of concretely specifying
the possible workflows and configurations in advance. In addition, the approach
allows new services not known a-priori to add to the environment at composition
as well as execution time, increasing the composition success rate. The approach
can be used in application scenarios where service providers are intermittent,
or where there are dynamic complex applications with system configurations
that cannot be generated a-priori, such as automotive and wearable mobile de-
vices. Taking examples from the automotive domain, systems can benefit from
cooperation between vehicles to produce information such as forward collision
warning.

The main contribution of this work is a decentralized mechanism to enable
service compositions. Our evaluation compares our service composition approach
with a dynamic service composition model. The results show that service compo-
sitions can be adapted in a decentralized manner and provide a high composition
success ratio.

The reminder of this paper is organized as follows. Section 2 introduces the
system model. Section 3 illustrates a semantic-based mechanism that supports
service composition. Section 4 shows the service composition algorithm and the
strategy of service execution management. Section 5 presents the evaluation and
result. Section 6 discusses related work. Section 7 summaries this work.

A Dynamic Service Composition Model for Adaptive Systems 95

2 System Model Overview

In the service-based environment considered in this paper, a complex user task
can be supported with the collaboration of two or more basic services that are
composed into a composite service. To enable such collaboration, a service com-
position can specify complex user tasks as abstract workflows. In much of the
existing work that relies on abstract workflows, systems execute ordered service
queries individually in a predefined succession [6]. Each of the queries can match
with either one basic service, or trigger a process to generate a composite ser-
vice when there is no service that suffices independently. Such a service matching
scheme can be categorized as one-to-N matching (N≥1). This paper investigates
a novel, decentralized dynamic L-to-M (L≥1, M≥1) matching scheme for service
composition. Instead of matching one service query to N basic service(s), our
service composition model matches L service queries to M services, by adapting
abstract workflows and their concrete implementation details.

Consider a navigation task as an example. This navigation has a service query
list (abstract workflow) including two requirements: a GetLocation service and,
a Navigator service that needs the results of a GetLocation service as input. In
service composition, if a system can only find a Navigator service that uses both
location data and map data as inputs, the system should be able to adapt the
original service query list, by adding a requirement for getting map data.

The theory behind this L-to-M scheme is similar to that of semantic-based ser-
vice compositions [12], but we realize it without needing a centralized reasoning
mechanism, and systems can adapt a completed composition during execution.
This is a non-trivial challenge as it is based on the assumption that no single
node can maintain full knowledge of the network for execution planning. Our
approach relies on local nodes receiving a global composition request, and gen-
erating the potential fragments of the global execution plan. Network knowledge
can be gradually learned through interactions between participating nodes, and
each node can adjust a composition request when new knowledge becomes avail-
able. Our main hypothesis is that decentralized service compositions can reduce
composition failures from mismatched composition requests.

This work is supported by a three-layer composition structure, as illustrated in
Fig.1. Specifically, we have defined an overlay network called a Semantic Service
Overlay Network (SSON). A SSON can be constructed from service descriptions
which are semantically annotated using ontology concepts. We define these con-
cepts using standard taxonomies such as SIC1 to outline the goal of services.
Section 3 elaborates more on how to structure and maintain a SSON.

The lowest layer in the service composition structure is the service layer, which
includes services with annotated service descriptions. In particular, we annotate
the service with its functionality, inputs and outputs. Naturally, these annotated
elements can have different ontology concepts taken from a common standard
ontology. For example, an on-line meal order service can capture concepts such
as: restaurant meals delivery (functionality), address (input) and price (output),

1 http://www.epa.gov/envirofw/html/sic_lkup.html

http://www.epa.gov/envirofw/html/sic_lkup.html

96 N. Chen and S. Clarke

Fig. 1. Overview of Service Composition Model

which are drawn from an online NAICS 2 and Restaurant ontology3. The SSON
layer is built over the service layer, linking different services based on their
semantic similarity and dependency. Services are semantically similar if they
provide similar functionalities or they require similar input data and produce
outputs with similar types. Two services are semantically dependent if one’s
output has the same semantic type as the other’s input. In other words, it is
possible for one to use the others result to execute its own operations. The highest
layer is a user task specification layer where a set of composition requirements
are defined as a task specification, with the SSON layer aggregating appropriate
services for the task specified, as described in Section 4.

For the service model, we describe a service S =< Sid, IN,OUT >, con-
sisting of a service identification Sid and two sets capturing I/O parameters.
Semantic annotations for a service are defined in a Service Annotation Profile
AP =< Sid, AF,AIN,AOUT >, where AF , AIN , and AOUT are ontology con-
cepts mapped to corresponding functionalities and I/O parameters in a service
description. APs inform service compositions about services’ logical semantic in-
terfaces, and can be described by semantically rich data models, such as OWL-S
and SAWSDL.

3 Semantic Service Overlay Network (SSON)

Research on service composition has explored overlay networks underpinning the
service discovery process. There are existing different types of overlay networks
to this end, such as service-specific overlay networks [2], service overlay networks
[13], and semantic overlay networks (SONs) [5]. SSON is an extension of SONs
which were originally explored to improve service discovery performance for Peer-
to-Peer (P2P) networks. A SON is a logical network based on similarities between
peers shared content, which the network uses to organize peers and improve

2 http://www.census.gov/eos/www/naics/index.html
3 http://wise.vub.ac.be/ontologies/restaurant.owl

http://www.census.gov/eos/www/naics/index.html
http://wise.vub.ac.be/ontologies/restaurant.owl

A Dynamic Service Composition Model for Adaptive Systems 97

content-based search. The core notion of a SON is to bunch similar peers, making
query processes discover bunches instead of individual peers for faster locating.
Current research on facilitating distributed service discovery with SONs, like
DHT-SON [18] and SDSD [4], shows a SON can be structured at comparable
cost to that of producing a normal network by using probe messages.

This proposed SSON supports service composition by introducing the idea of
I/O dependencies from service overlay networks [13], [23] which create links be-
tween service providers by matching I/O parameters. A SSON combines service
overlay networks with normal SON activities. I/O parameters-dependent links
can be built as a byproduct of general SONs. A SSON is structured by link-
ing semantically-related services, and the relationship between services can be
classified as similarity or dependency. The former represents two service sharing
similar functionalities like that defined in traditional SONs; the latter indicates
two services with potential I/O data dependencies. Semantic links rely on match-
making techniques to be established.

3.1 Matchmaking Models

In this work, we introduce a deductive matchmaking model (MatchAP), com-
bined with a distributed similarity-based model called ERGOT [19]. ERGOT
uses a similarity function Csim(c1, c2) ∈ [0, 1] that returns whether two on-
tology concepts (c1 and c2) are similar. The MatchAP model explores semantic
connections (similarity and dependency) between two semantic service interfaces
AP1 and AP2. It matches the inputs of AP1 to that of AP2, as well as matching
their outputs and functionalities. It also matches the inputs (respectively, the
outputs) of AP1 to the outputs (respectively, the inputs) of AP2 to determine
any dependency between the two interfaces. We use a matching function [19]
between the parameters in two sets X1 and X2:

ParamSim(X1, X2) =
∑
b∈X2

max
a∈X1

Csim(a, b) (1)

where AP1 =< S1, AF1, AIN1, AOUT1 > and AP2 =<
S2, AF2, AIN2, AOUT2 >. The matching function between two APs can
then be defined by using of Equation1:

MatchAP (AP1, AP2) = αParamSim(AF1, AF2)
+β(ParamSim(AIN1, AIN2) + ParamSim(AOUT1, AOUT2))
+γParamSim(AIN1, AOUT2)

(2)

where the parameters α, β, and γ are used to weight similarity. Depending on val-
ues returned by function MatchAP (AP1, AP2), we state that if MatchAP (AP1,
AP2) is larger than a threshold value Θ, a semantic link can be built between the
services, and they become semantic neighbours to each other. A semantic link
A → B can be ranked. We define five different ranks for semantic links that are
listed below, taking into account their match types, which extend the definition
from a conventional SON [4]:

98 N. Chen and S. Clarke

– R0 same: A and B provide the same functionalities and ask for the same
sets of input data. (e.g. A: Get Location, B: Get Address)

– R1 reqI :A provides the same functionalities withB , but asks for additional
input data with respect to that of B. (e.g. A: Get Location, B: Get Address
by Name and Phone Number)

– R2 share: A and B have shared functionalities. (e.g. A: Navigator, B:
Route Planner)

– R3 dep: A depends on B’s execution result. (e.g. A: Navigator, B: Get Lo-
cation)

– R4 in: A can provide input data to B. (e.g. A: Navigator, B: Route Render)

3.2 SSON Construction

Nodes can join or leave the network over time, so they should be in a position
to discover their semantic neighbours. When a peer joins a new network, it
advertises its services by initializing a probe service request using the information
in the APs of the services and finding its semantic neighbours in the network.
The request also includes a threshold value for semantic matchmaking. Such a
service request query only operates once when the peer joins the network. As
soon as a peer has established semantic links with other peers, other newcomers
are able to take advantage of this peers knowledge through their own probe
service requests. For example, suppose a Navigator service relies on locations
and map data as inputs to generate navigation information between locations.
The semantic links Navigator → Get Location service can be created with a
rank: R3 dep if the latter can provide any of the inputs. Semantic neighbours
are neighbouring logically but physically it is also possible that multiple services
with semantic relations may be published in the same service provider (peer).

Considering peers’ mobility and the dynamic environment in which they re-
side, overlay management protocols like CYCLON [22] and some stabilization
protocols can be used to monitor the neighbours presence and to update the list
of semantic neighbours on peers. Updating the list of semantic neighbours can
trigger system adaptations that will be illustrated in Section 4.3.

4 Decentralized Service Composition

MANET environments cannot guarantee to provide a single, continuously ac-
cessible node to serve a service composition as a central entity because nodes
may leave the network, or otherwise fail. This section introduces an alternative
based on distributing the processing of service compositions, utilizing semantic
links in SSON network.

4.1 Task Model

Complex user tasks are handled by a service composition system that receives
the task’s specification as an input request and composes value-added services.
Our work specifies a task as SC T =< Tid, Tinput, Toutput, δ >, where Tid is the

A Dynamic Service Composition Model for Adaptive Systems 99

request’s identification. The end-to-end inputs and outputs are represented as
two sets: Tinput and Toutput. A set of operations δ is defined that summarise
the task’s goal, and an operation Opti =< Optid, IN,OUT >∈ δ consists of a
specification of operation name (Optid) and I/O parameters (IN and OUT). A
composition request message containing a SC T can be defined as SC Req =<
SC T,Log, Comp Cache >, where Log accumulates message-passing history to
prevent providers repeatedly processing a request for the same workflow. The
Comp Cache is used to resolve service composition for a single operation when
a service for a requested operation is not found. It caches existing services to
discover if a combination from them can match the single operation. In this
work, we define a Composer role in a service composition process. Task requests
can be passed from a composer to its neighbours and adapted by the composer.

Definition 1 : A Composer is a node in a network who decides to participate
in a composition process. It can cooperate with other composers in the network
to dynamically generate and maintain the fragments of global execution paths.
One node becomes a composer as soon as it successfully matches a received com-
position request from other nodes. The node resigns this role when the provided
services have been executed, or no fragment remains in it.

4.2 Distributed Planning

Logical reasoning algorithms like forward- or backward chaining have previously
been used to facilitate semantic-based service composition [12]. General imple-
mentation of reasoning forwards and backwards uses decision trees, for which
systems require a global view of facts (available services) to build. Our approach
leverages a decentralized backward-chaining mechanism to create composition
plans using local knowledge for user tasks. The core function of this planning
process is twofold: a) it aggregates potential providers for a composition request
and dynamically adjusts composition requests hop-by-hop based on new local
knowledge; b) it allows a potential provider to generate a list of fragments for
system configurations. A fragment defines how the potential provider can com-
pose with its semantic neighbours to provide functionalities for the consumer.

Potential Provider Aggregation. When a consumer launches a service com-
position request, a distributed strategy to devise composition plans for this re-
quest, piece by piece, is initiated. Specifically, service consumers initiate a com-
position request from task specifications. As can be seen in Algorithm 1 (a),
an initiator sends the request over the network to discover potential providers
who can produce (or partially produce) the set of requested end-to- end outputs.
Afterwards, it waits for composers sending tokens to it. Each token represents a
discovered plan of a completed execution path, or a completed branch in a par-
allel execution path. The initiator receives tokens, and starts service execution
phases when a complete execution plan emerges (Line 6 in Algorithm 1 (a)).

When a node receives a composition request for the first time, it calls Algo-
rithm 1(b) to decide how its published services could combine to match one or
more operations specified in the request’s task specification. If an operation is

100 N. Chen and S. Clarke

List 1 : Algorithm 1 (a) - Initiator

1 Send SC R
2 Set timer T
3 /* Waiting */
4 if T expires : the composition fails;
5 Receive a token and store it
6 if a complete composition exists : send input data and execute;
7 else : back to step 3;

List 2 : Algorithm 1 (b) - Service provider S

Input: Service Composition Request: SC R
SC R: < Rid, Tinput, Toutput, δ, Log, Comp Cache >,Opti ∈ δ

Output: (i) template information and (ii) an updated request

1 /* Listening */
2 S Receives SC R from Composer Q and log(Log);
3 if ComposerMode S = ON: produceTemplateInfo (SC R); //Output (i)
4 else : for each operation Opt[i]{
5 if S supports no operation: back to step 1;
6 else{ ComposerMode S := ON
7 if S supports Opt[i]’s output type but Opt[i]’s functionality:
8 Strategy 1 - AddtoComp Cache (S);
9 if S (or S+ Comp Cache) can provide full functionality for Opt[i]: {
10 eliminate Opt[i]
11 if Opt[i] is the last operation in a branch : sendToken(Initiator);
12 if S (or S+ Comp Cache) requires extra input data which
13 is not specified in Opt[i]: Strategy 2 - create a new operation;
14 produceTemplateInfo (SC R) } //Output (i)
15 replyToSender(Q)
16 updateTask(SC R, S) //Output (ii)
17 SendOutList :=getSemanticNeighbours(R3 dep)
18 sendRequest (SC R, SendOutList) };
19 };

successfully matched, the node becomes a composer. This new composer then
stores the received request, eliminates the matched operation of the request and
sends out a new request. It also draws up template information for creating con-
figuration fragments. Therefore, the number of operations in a request reduces
hop by hop. If the eliminated operation is the last operation of a workflow branch
in the request, the composer sends a token to the initiator.

A node has a chance to provide a full service for an operation by combining to
other peers in the network when it can only provide a partial service for that op-
eration. To this end, we take into account two situations and apply corresponding
two strategies (Line 8 and Line 13 in Algorithm 1 (b)). These strategies allow
composers to adapt the abstract workflow on-the-fly. To illustrate such adap-
tation in our backward planning process, we present a brief example scenario:
finding a restaurant and routing to it. Table 1 shows the operations defined in the
composition request and the original abstract workflow. It also illustrates avail-
able service providers in the example scenario. We assume there is no provider
in the network that can work alone to serve operation oC .

A Dynamic Service Composition Model for Adaptive Systems 101

Table 1. An example scenario: finding a restaurant and routing to it

Abstract workflow: oA → oB → oC (deduced from the I&O dependencies)

Operations Functionality Input Output

oA Restaurant Recommender Personal profiles A list of restaurant
(food preferences)

oB Get Location Names Addresses
oC Navigator Addresses Audio routing results

Available Functionality Input Output
Providers

Provider A Restaurant Recommender Food preferences A list of restaurant
Provider B Get Address Names Addresses
Provider C Navigator Addresses+Map Text routing results

blocks
Provider Y Text to Audio Plain text Audio stream
Provider X Map cache Name of place Map blocks of the place

Fig. 2. An example of distributed backward task planning (req: a service composition
request. An abstract workflow is implied by the request.)

Fig. 3. Concrete workflow from a global perspective

As can be seen in Fig.2, the abstract workflow (oA → oB → oC) is processed
backward with the forwarding of composition requests. This process starts from
an original composition request sent from the initiator (Arrow 1) to providers
that can produce audio streams. Provider Y receives the request and finds itself
cannot support the full functionality of oC . It applies Strategy 1, caching infor-
mation to indicate its capabilities and forwarding the request to its semantic
neighbours. Provider C gets the request from Provider Y. As shown in Table 1,
Provider C can fully serve oC , but requires extra support on input data. There-
fore, Provider C uses Strategy 2, eliminating oC from the request and adding
a new operation for discovering the required input data. Afterwards, the up-
dated request will be sent out to match the remainder of the operations. A
complete execution path exists after Provider A applies the requests sending
from Provider X and Provider B. During the distributed planning process, the
original abstract workflow (oA → oB → oC) is adapted as shown in Fig.3.

102 N. Chen and S. Clarke

Configuration Fragments Creation. A configuration fragment (CF) indi-
cates the possible position of a service in execution paths by defining the pre-
conditions and the post-conditions of the service’s execution. It is created from
template information that is one of the outputs of Algorithm 1(b). Template in-
formation includes a CF template that defines how many different pre-conditions
and post-conditions the execution of the service has. It also contains a set of
CF update instructions (CFUIs) for maintaining the list of CFs. To create
CFs we propose two notions: Pre-Conditional Neighbours (PreCNs) and Post-
Conditional Neighbours (PostCNs). They are both extracted from a potential
provider’s semantic neighbours. A PreCN or a PostCN has input or output de-
pendence on the potential provider, respectively.

Definition 2 : A CF can be described as CF =< CFid, S Pre, S Post >,
where S Pre represents a set of selected PreCNs as the entries of the CF; S Post
represents a set of selected PostCNs as the exits of the CF; and CFid is an
identification of the CF . An example of a CF for the scenario illustrated in
Table 1 is shown in Fig.4(a).

A CF is created by interactions between composers. A node becomes a com-
poser and gains template information (Output (i) in Algorithm 1(b)). This com-
poser then starts the creation of CFs with this information. The composer re-
gards the composition request sender as one PostCN in the S Post of a CF
and waits for replies from other nodes to select PreCNs for S Pre. If a group
of replies are received and the reply senders can satisfy the CF template in the
template information, a CF is created. If more than one group of reply senders
are available, a list of CF can be made by repeating the creation step.

4.3 Service Execution and Dynamic Adaptation of CFs

Traditional service composition techniques start service executions only after ser-
vice binding has completed. The composition mechanism in this paper combines
the service binding phase and the execution phase. Our previous work on op-
portunistic service composition illustrates a distributed execution model [10], [9]
that allows systems to bind one service provider, directly executing its provided
services, and then forwards the remainder of composition request on to the next
node. The bound provider then waits for other providers to reply with messages
that include their service functionality information. We apply the distributed
execution model in this work with some extensions to discovery mechanisms.
Instead of forwarding the rest of the request, the bound provider (composer)
selects the best matched CF, sending its execution results to the nodes in the
S Post of the CF.

This paper provides dynamic adaptationmechanisms for systems. Global adap-
tation is realized by selecting adaptable local CFs hop-by-hop during service exe-
cution. TheCFs of a composer can be adapted during composition planning phases
and service execution phases. Such adaptation is modelled by a MAPE (Monitor-
Analyze-Plan-Execute) loop, as shown in Fig 4(b). Composers canmonitor adap-
tation trigger events with SSON, analyze these eventswhen they appear and assign

A Dynamic Service Composition Model for Adaptive Systems 103

Fig. 4. (a) An example of the CF for Provider C (Table 1), (b) CFs Adaptation (SN:
Semantic Neighbours)

Table 2. Decentralized adaptation rules (Planning B)

Links Composer’s (A) adaptation actions to the new node (B)

R0 same Action 1 : A clones the CFs and the composition request kept in A to B.
B becomes a composer.

R1 reqI Action 2 : A clones the composition request kept in A to B. B becomes
a composer and calls Algorithm 1(b) to create CFs

R2 share Action 3 : A decides if the functionality it shares with B can support the
composition. If so, do Action 1 or Action 2 depending on the required
input of B

R3 dep Action 4 : A send the composition request updated by A to B. B calls
algorithm 1(b), deciding to take part in the composition or not.

theevent informationto correspondingplanning algorithms.Thesealgorithmsgen-
erate local adaptation plans which are executed to adapt CFs.

Adaptation can be triggered by newly arrived composition requests. When an
existing composer receives a new request for the same composition, it then anal-
yses the request using its historical data (stored requests and existing template
information), and directly generates template information (Planning A in Fig
4(b)). The CFUIs in template information are used to guide the execution of the
adaptation. According to different kinds of new requests, we define four CFUIs
for adaptation: clone, alter, wait and remove. For example, the Provider A in
our example scenario (as shown in Table 1) receives the request< req : oA, oX >,
and creates a CF (CF1 : S Pre = {Initiator}, S Post = {B}). When a new
request < req : oA → oB > is pushed to Provider A, this new request will trigger
adaptation to alter the CF1 to {S Pre = {Initiator}, S Post = {B,X}}.

This approach introduces a decentralized adaptation mechanism (Planning
B in Fig 4(b)) that deals with potential node failures and recently joined nodes
by adapting the CFs stored in composers. Node failures can be leaded by the
selection of invalid CFs during service execution. A CF becomes invalid when
the nodes that are recorded in it cannot be reached. If a semantic neighbour of a

104 N. Chen and S. Clarke

composer leaves the physical network, this absence of the node can be detected
through the management of SSON. The composer removes all the CFs that
contain the absent node. If a composer resigns its role, it sends a message to
all the PreCN and PostCN nodes, asking them to adapt their CFs by removing
invalid CFs. A node can also join the network and engage in the composition at
runtime. If a composer finds a new node in its semantic neighbour list, this new
node can participate in the composition in different ways depending on the rank
of the semantic link established between it and the composer (See Table 2).

5 Evaluation

Our approach maps a composition request to an L-to-M matching scheme to
address the problem where a queried service cannot be matched during service
composition. Solving one-to-one mis-matching has been investigated by several
approaches, for example, discovery algorithms to find more potential providers
and dynamic one-to- more composition [2], [13]. Our direction is similar in that
it tries to compose a basic service to match a single service query. Thus, we
conducted simulations to compare our solution against a Graph-Based (GB) ap-
proach [13]. The GB approach assumes a service provider entering a network by
broadcasting its service information. The network can rely on a central directory
that collects service information and maintains a global service network graph to
receive composition requests. The directory finds a consecutive execution path
out of the graph based on received requests. We measured the composition suc-
cess ratio, which is the number of composition requests that are successfully
processed with execution paths divided by the total number of requests.

We applied a simulation scenario [2] with services of alphabet converters and
joiners. In this scenario, a converter service receives input A and produce output
B (A → B), and a joiner service receives inputs A and B generating C as an
output (A+B → C). We employed 7 alphabets to represent I/O parameters in
the scenario; therefore, there are 21 different converter services and 35 different
joiner services. We used the NS-3 simulator to study the efficiency of our self-
adaptive approach and the GB approach.We simulated both approaches with the
same limitation of the maximum hops of broadcasting during service publishing.
We applied the random walk 2D mobility model, by which we control service
density and the proportion of mobile nodes. The service density is the radio
scope of a node divided by the whole field where all the nodes are located. This
simulation ran 10 rounds with varying numbers for mobile nodes and 9 rounds
with different service densities. Each of them is repeated 100 times with random
providers’ composition requests, and we report the average (see Fig.5). The
number of operations in a request is set to 4. We used Self-Adapt to represent
our approach in the following simulation study.

Fig.5 shows (a) the success ratio results with different service densities, and
(b) the success ratios at 70% service density with the ratio of mobile nodes vary-
ing from 20% to 100%. These two studies only employed the converter services
since the GB approach cannot model services with multiple I/O parameters.

A Dynamic Service Composition Model for Adaptive Systems 105

Fig. 5. The result of the study on composition success ratio

The result (a) shows that Self-Adapt has a higher success ratio, especially when
the density of services is low, because the SSON network, benefited from its
decentralized management, collects and mantains more service information than
the service overlay network used in the GB approach. The result (b) suggests
that Self-Adapt is more successful than the GB approach in high mobility scenar-
ios. Fig.5(c) illustrates the success ratio with varying service density of services,
comparing Self-Adapt using the multiple I/O strategy (see Section 4) with when
it does not use this strategy. It shows that the use of the strategy results in a
higher success ratio.

6 Related Work

Workflow-based adaptive systems [21] choose, or implement services from a pre-
defined abstract workflow that determines the structure of services. The abstract
workflow is implemented as a concrete (executable) workflow by selecting and
composing requested services. Adaptation of concrete workflows has been ex-
plored in the literature [1], [3]. However, these require central entities for com-
position and an explicit static abstract workflow, which is usually created manu-
ally. Decentralized process management approaches [24], [25] explore distributed
mechanisms, like process migration, to manage and update the execution of con-
crete workflows, which is close to our work in terms of service execution. However,
they still need a well- defined system business process at deployment time. In
our approach, the partial workflows that composers generate locally, distribute
over participating service providers during service discovery phases to gradually
devise a global one.

Dynamic service composition can also be reduced to an AI planning problem.
Similar to our solution, decentralized planning approaches [7], [11], [20] form a
global plan through merging fragments of plans that are created by individual
service agents. However, with these approaches, programmers need to provide
an explicitly defined goal for planning. The initial plan can become unreliable
when the environment changes. Automatic re-planning schemes [12], [14], [17]
allow plans to be adapted when matching services are unavailable, but existing
approaches depend on central knowledge bases.

Considerable research effort has targeted dynamic service compositions sup-
porting one-to-M (M > 1) matching while a matching basic service is not lo-
cated. They usually define a composition result as a directed acyclic graph [8],

106 N. Chen and S. Clarke

[13]. The nodes in a DAG represent services, and the edges show compositions
between the collaborating services. Service composition is modelled as a problem
of finding a shortest path (or the one with the lowest cost) from two services in
the DAG. However, existing work has limited support for services with multiple
I/O parameters. In addition, creating such DAG requires the aggregation of ser-
vice specifications from a central registry. Al- Oqily [2] proposed a decentralized
reasoning system for one-to-M (M > 1) matching, which is the closest work to
us. It composes services using a Service-Specific Overlay Network built over P2P
networks and enables self-organizing through management of the network. How-
ever, this approach is based on an assumption that every node in the network
knows its geographic location, as service discovery is realized by broadcasting
a request over its physical neighbours. Geographic locations usually can be ob-
tained from location services like GIS, but these are not readily accessible for
every node in the network. Our approach uses a semantic-based overlay network
to discover logical neighbours instead of geographic ones.

7 Conclusion and Future Work

Distributed service composition approaches allow systems to perform complex
user tasks without central entities, but do not fit well in dynamic environments.
The distributed service composition algorithm proposed in this paper addresses
this dynamic problem by adapting workflows during composition planning pro-
cesses as well as service execution phases. This paper also proposed a SSON
network to underpin such adaptation. The presented evaluation result shows an
improvement of composition success rate comparing to an influential abstract
workflow adaptation scheme for dynamic service composition.

In future work, first, we will investigate the performance of the proposed ap-
proach for different application scenarios and varying composition paths like
liner, parallel and hybrid composition paths. Although this approach provides
a higher success ratio than the GB approach, the cost of maintaining SSON
networks and adaptation processes may outweigh the high success ratio benefits
in some application scenarios. Second, our future research will include an inter-
esting topic for Quality of Service (QoS)-aware adaptation to not only increase
the composition ratio but also provide services with good quality.

References

1. Adams, M., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Worklets:
A service-oriented implementation of dynamic flexibility in workflows. In: Proc.
Int. Conf. on On the Move to Meaningful Internet Systems (2006)

2. Al-Oqily, I., Karmouch, A.: A Decentralized Self-Organizing Service Composition
for Autonomic Entities. ACM Trans. Auton. and Adapt. Syst. (2011)

3. Ardissono, L., Furnari, R., Goy, A., Petrone, G., Segnan, M.: Context-aware work-
flow management. In: Proc. 7th Int. Conf. ICWE (2007)

A Dynamic Service Composition Model for Adaptive Systems 107

4. Bianchini, D., Antonellis, V.D.: On-the-fly collaboration in distributed systems
through service semantic overlay. In: Proc. 10th Int. Conf. Inf. Integr. Web-based
Appl. Serv. (2008)

5. Crespo, A., Garcia-Molina, H.: Semantic overlay networks for p2p systems. Agents
and Peer-to-Peer Computing (2005)

6. Di Nitto, E., Ghezzi, C., Metzger, A., Papazoglou, M., Pohl, K.: A journey to
highly dynamic, self-adaptive service-based applications. Autom. Softw. Eng. 15(3-
4), 313–341 (2008)

7. El Falou, M., Bouzid, M., Mouaddib, A.I., Vidal, T.: A Distributed Planning Ap-
proach for Web Services Composition. In: 2010 IEEE Int. Conf. Web Serv. (2010)

8. Fujii, K., Suda, T.: Semantics-based dynamic service composition. IEEE Journal
on Selected Areas in Communications, 2361–2372 (December 2005)

9. Groba, C., Clarke, S.: Opportunistic service composition in dynamic ad hoc envi-
ronments. IEEE Trans. Services Computing PP(99), 1 (2014)

10. Groba, C., Clarke, S.: Opportunistic composition of sequentially-connected services
in mobile computing environments. In: 2011 IEEE Web Services, ICWS (2011)

11. Helin, H., Klusch, M., Lopes, A., Fernández, A., Schumacher, M., Schuldt, H.,
Bergenti, F., Kinnunen, A.: CASCOM: Context-aware service co-ordination in mo-
bile P2P environments. In: Eymann, T., Klügl, F., Lamersdorf, W., Klusch, M.,
Huhns, M.N. (eds.) MATES 2005. LNCS (LNAI), vol. 3550, pp. 242–243. Springer,
Heidelberg (2005)

12. Hibner, A., Zielinski, K.: Semantic-based dynamic service composition and adap-
tation. In: 2007 IEEE Congress on Services, pp. 213–220 (2007)

13. Kalasapur, S., Kumar, M., Shirazi, B.A.: Dynamic Service Composition in Perva-
sive Computing. In: IEEE Trans. Parallel and Distributed Systems (2007)

14. Klusch, M., Gerber, A.: Semantic web service composition planning with owls-
xplan. In: Proc. 1st Int. AAAI Fall Symp. Agents and the Semantic Web (2005)

15. Martin, D., Wutke, D., Leymann, F.: A Novel Approach to Decentralized Workflow
Enactment. In: 12th Int.IEEE Enterp. Distrib. Object Comput. Conf. (2008)

16. Mokhtar, S., Liu, J.: QoS-aware dynamic service composition in ambient intelli-
gence environments. In: Proc. IEEE/ACM Int. Conf. Autom. Softw. Eng. (2005)

17. Peer, J.: A pop-based replanning agent for automatic web service composition. In:
Proc. 2nd EU Conf. The Semantic Web: Research and Applications (2005)

18. Pirrò, G., Talia, D., Trunfio, P.: A DHT-based semantic overlay network for service
discovery. Future Generation Computer Systems 28(4), 689–707 (2012)

19. Pirrò, G., Trunfio, P., Talia, D., Missier, P., Goble, C.: ERGOT: A Semantic-Based
System for Service Discovery in Distributed Infrastructures. In: 10th IEEE/ACM
Int. Conf. Clust. Cloud Grid Comput. (2010)

20. Poizat, P., Yan, Y.: Adaptive composition of conversational services through graph
planning encoding. In: Proc. 4th Int. Conf. Leveraging Apps. of Formal Methods,
Verification, and Validation - Volume Part II (2010)

21. Smanchat, S., Ling, S., Indrawan, M.: A survey on context-aware workflow adap-
tations. In: Proc. 6th Int. Conf. Adv. Mob. Comput. and Multimed. (2008)

22. Voulgaris, S., Gavidia, D., Steen, M.: CYCLON: Inexpensive Membership Man-
agement for Unstructured P2P Overlays. J. Netw. Syst. Manag. 13 (2005)

23. Wang, M., Li, B., Li, Z.: sFlow: Towards resource-efficient and agile service feder-
ation in service overlay networks. Distributed Computing Systems (2004)

24. Yu, W.: Scalable Services Orchestration with Continuation-Passing Messaging. In:
2009 First Int. Conf. Intensive Applications and Services, pp. 59–64 (April 2009)

25. Zaplata, S., Hamann, K.: Flexible execution of distributed business processes based
on process instance migration. J. Syst. Integr. 1(3) (2010)

Optimal and Automatic Transactional Web

Service Composition with Dependency Graph
and 0-1 Linear Programming

Virginie Gabrel, Maude Manouvrier, and Cécile Murat

PSL Université Paris-Dauphine, LAMSADE UMR CNRS 7243
75775 Paris Cedex 16, France

{gabrel,manouvrier,murat}@lamsade.dauphine.fr

Abstract. In this article, we propose a model based on 0-1 linear pro-
gramming for automatically determining a transactional composite web
service (CWS) from a service dependency graph that optimizes a QoS
measure. The QoS measure used in this model can be either a classical
weighted sum of QoS criteria or a minmax-type criterion (e.g. response
time). The transactional properties are a set of rules that ensures a reli-
able execution of the resulting CWS. The proposed 0-1 linear program is
solved using a standard solver (CPLEX). Our experiments show that this
new exact model surpasses two main related approaches: an approximate
one based on transactional requirements and an exact one, based on 0-1
linear programming (LP), but not dealing with transactional properties.
In a large majority of the test sets used for our experiments, our model
finds a better solution more rapidly than both related approaches and is
able to guarantee its optimality. Moreover, our model is able to find the
optimal solutions of big size test sets, as the ones proposed by the Web
Service Challenge 2009.

Keywords: Reliable web service composition, Service dependency graph,
Integer Linear Programming model, QoS optimization.

1 Introduction

As explained in surveys [1,2], the management of large number of services in the
global Internet creates many open problems, in particular in service composition,
which consists in selecting/identifying several existing services and combining
them into a composite one to produce value-added process.

Many approaches on QoS-aware web service (WS) composition exist, where
QoS represents the quality of the service (e.g. price or response time) – see
for example survey [3]. As explained in [4], the inter-operation of distributed
software-systems is always affected by failures, dynamic changes, availability
of resources, and others. And, as argued by [5], to make service-oriented ap-
plications more reliable, web services must be examined from a transactional
perspective. The execution of a composite WS is reliable if, in case of a compo-
nent WS failure, the negative impacts are negligible for the user [6]. A service

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 108–122, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Optimal Transactional WS Composition with Dependency Graph 109

that does not provide a transactional property might be as useless as a service
not providing the desired functional results. If the composition considers only
functional and QoS requirements, then it is possible that during the execution
the whole system becomes inconsistent in presence of failures. WS composition
only based on transactional properties ensures a reliable execution, but does
not guarantee an optimal QoS composite WS and WS composition only based
on QoS does not guarantee a reliable execution of the resulting composite WS.
Thus, QoS-aware and transactional-aware should be integrated [7].

In this article, we consider the problem qualified by [8] as the most useful and
practical one, which consists in composing services by matching their parameters
(input and output attributes) so that the resulting composite service can produce
a set of output parameters given a set of input ones. For such problem, the service
repository is generally modeled by a Service Dependency Graph (SDG) as defined
in [9] and used by example in [7,10,11,12]. The contribution of this article is a
new 0-1 linear programming-based optimal approach for QoS and transactional-
aware service composition. Experiments show that our model outperforms the
two main related approaches: an approximate one [7], based on transactional
requirements and an exact one [12], based on 0-1 linear programming, but not
dealing with transactional properties.

The rest of the article is structured as follows. Related work is presented in
Section 2. Section 3 presents the context and the definitions. Section 4 presents
our LP model. Constraints dedicated to transactional properties are separated
in a specific Section 5. Section 6 gives experimental results and compare our
model to the most related work. Finally, Section 7 concludes.

2 Related Work

Automatic QoS-aware service composition is subject of numerous studies (see
for example survey [3]). Two approaches must be distinguished. In the first one,
a predefined workflow is supposed to be known. This workflow describes a set of
”abstract” tasks to be performed. Moreover, associated to each task, a set of WS
with similar functionalities (but different QoS and transactional properties) is
also known. The composition problem is then to select one WS per task in order
to respect QoS [13,14] and transactional requirements [6,15,16]. In the second
approach, the existence of a predefined workflow is not assumed. Available WS
are described with a service dependency graph (see for example [7,8,10,11,12,17])
and, the composition problem is to find a sub-graph connecting inputs’ query to
outputs’ query. In this article, we focus on such problem.

Considering QoS-aware composition based on SDG, several methodologies
have been proposed: game theory, AI planning (with AND/OR graph and A∗
algorithm), 0-1 LP (solving with a branch and bound), Petri-Net ... – see a
systematic review in [18]. Concerning 0-1 linear programming approach, a model
is proposed in [12,19], where a composite WS is decomposed into stages (a stage
contains one WS or several WS executed in parallel) and the problem is to select
one or several WS per stages. Thus the number of variables and constraints can

110 V. Gabrel, M. Manouvrier, and C. Murat

be huge since it is proportional to the number of WS and data times the number
of stages. Moreover, the number of stages is not known; only upper bounds can
be chosen (the worst one is to set the number of stages equals to the number
of WS). The size of the model does not allow to solve big size test sets: none
experimental results are given in [19], while, in [12], computational experiments
are performed, for 20 WS and 200 data, taking 200 seconds to find the solution
and, for 100 WS and 800 data, taking 900 seconds.

Some approaches extend QoS-aware composition to transactionnal and QoS-
based approaches (see for example survey [20]). However, to the best of our
knowledge, the approach of [7] is the only one proposing a WS composition al-
gorithm based on service dependency graph integrating both transactional and
QoS requirements. In this approach, the dependency graph is represented by a
colored Petri Net, where places correspond to the data and transitions to the
WS. The proposed algorithm is a greedy-like algorithm locally optimizing the
QoS. In order to limit the execution time, the authors proposed to identify the
WS which are potentially useful to answer the user query. This identification
consists in selecting the transactional paths in the dependency graph, that allow
to obtain an output data needed by the user from the inputs of the query. The
greedy-algorithm then consists in selecting the solution from a smaller depen-
dency graph, only containing the WS which are potentially useful or relevant to
answer the user query.

3 Context and Background Definitions

In this article, the service repository (i.e. the set of available services) is repre-
sented by a directed graph G = (X,U). The set of vertices X can be partitioned
in two sets: S the set of vertices representing WS and, D the set of vertices
representing data. In the following, for all i ∈ S, let us denote by s(i) the WS
represented by vertex i and, for all i ∈ D, d(i) denotes the data represented by
vertex i. The set of directed edges U represents two kinds of dependency: (1)
an edge from i ∈ S to j ∈ D represents the fact that WS s(i) produces data
d(j) (d(j) is an output of s(i)), (2) an edge from i ∈ D to j ∈ S represents the
fact that WS s(j) needs data d(i) to be executed (d(i) is one intput of s(j)).
Thus, in this graph representation, there does not exist any directed edge of the
form: (i, j) with i ∈ S and j ∈ S or, i ∈ D and j ∈ D. Such graph, generally
called a Service Dependency Graph, is used in [7,10,11,12]. An example of SDG
is presented in Fig. 1.

The user query is defined by a set I of input data (with I ⊂ D) corresponding
to the information that the user provides, and a set O of output data represent-
ing the information the user needs (with O ⊂ D). Such query is also used in
[7,10,11,12] for example.

A composite WS (CWS) satisfying the user query, characterized by I and O,
can be represented by a connected sub-graph if and only if: (a) each o ∈ O is
covered by the sub-graph, (b) in this sub-graph, the only vertices without any
predecessor belong to I, (c) if a vertex i ∈ S is covered by the sub-graph, then

Optimal Transactional WS Composition with Dependency Graph 111

all arcs (j, i), with j ∈ D, belong to the sub-graph (indeed each WS s(i) can be
executed if and only if all its input data are available) and, (d) this sub-graph
does not contain any directed cycle.

For example, given the graph of Fig. 1 and the query described by I = {1, 2}
and O = {7, 8}, we can propose different CWS. The CWS {s(16), s(18), s(15)}
is represented by the following sub-graph: {(1, 16), (16, 3), (3, 18), (18, 6), (6, 15),
(15, 7), (15, 8)}. Let us remark that CWS {s(11), s(13), s(15)} is not feasible since
it contains the following conflicting situation: to be executed, s(11) needs d(6)
as input, and d(6) is obtained by executing s(13) which input d(4) is produced
by s(11). In terms of graph, the associated sub-graph {(2, 11), (11, 4), (4, 13),
(13, 6), (6, 11), (6, 15), (15, 7), (15, 8)} satisfies the aforementioned properties (a),
(b) and (c) but does not verify property (d): (11, 4), (4, 13), (13, 6), (6, 11) is a
directed cycle.

Fig. 1. A service dependency graph with D = {1, . . . , 9} and S = {10, . . . , 18}

Given a user query, our problem consists in finding a reliable CWS that op-
timizes its overall QoS.

4 Linear Programming Model for QoS-Aware
Composition

In this article, we model the QoS-aware service composition problem by a 0-
1 linear programming model. Decision variables are defined in Subsection 4.1.
Subsection 4.2 presents the constraints modeling the I/O of each web service,
Subsection 4.3 those implied by the user query, Subsection 4.4 defines the con-
straints linking decision variables and Subsection 4.5 the constraints eliminating
directed cycle. Subsection 4.6 recalls the entire resulting model.

4.1 Decision Variables

We have to introduce three kinds of decision variables:

112 V. Gabrel, M. Manouvrier, and C. Murat

1. wi, associated with each i ∈ S: wi = 1 if i is covered by the sub-graph
(meaning that s(i) belongs to the composite WS) and 0 otherwise,

2. xij associated with each directed edge (i, j) of U : ∀(i, j) ∈ U , xij = 1 if the
directed edge (i, j) belongs to the sub-graph and 0 otherwise,

3. ti ≥ 0 associated with each vertex i ∈ X : ti represents the topological order
of vertex i in the sub-graph.

The objective function is to minimize the following function:
∑

i∈S qiwi, where
qi is the QoS score of WS i. In this article, as in [7,8,12], we use an aggregate
QoS score corresponding to a weighted sum of QoS criteria, computed such that
the lower the score qi, the better the service i.

4.2 Constraints Modeling the Input/Output of Each Service

With the previously introduced variables, two constraints, (C1) and (C2), mod-
eling the I/O of each service, can be written in a linear form. In the following,
for each vertex j, let us denote by Γ−(j) = {i ∈ X : (i, j) ∈ U} its set of
predecessors and, Γ+(j) = {i ∈ X : (j, i) ∈ U} its set of successors.

For all j ∈ S, a WS s(j) is described by its input and output data: s(j) can
be executed if and only if all its input data are available, and s(j) produces a set
of output data. In terms of graph, these relations can be described by imposing
that an arc (j, k) is in the solution (meaning that output data d(k) is computed
by s(j)) if and only if all arcs (i, j), with i ∈ Γ−(j), belong to the solution
(meaning that input data for s(j) are available):

∀j ∈ S, ∀k ∈ Γ+(j),
∑

i∈Γ−(j) xij ≥ |Γ−(j)|xjk (C1)

With such a constraint, if xjk equals to 1, all directed edges entering in vertex j
must belong to the solution (ensuring that all input data for s(j) are available).
Otherwise, if xjk equals to 0, the constraint is relaxed and plays no role.

Considering the graph of Fig. 1, s(11) produces data d(1) and d(4) and needs
data d(2) and d(6) to be executed. Therefore, two constraints must be written for
describing inputs and outputs of s(11): (i) considering output d(1), x2,11+x6,11 ≥
2x11,1 and, (ii) considering output d(4), x2,11+x6,11 ≥ 2x11,4. These constraints
imply that d(1) or d(4) can be computed by s(11) if and only if d(2) and d(6)
are available as inputs for s(11).

For any data d(j) not provided by the user, j ∈ D \ I, d(j) is available when
at least one WS computes it. In the associated graph, the set of WS computing
d(j) exactly corresponds to Γ−(j) inducing the following constraint:

∀j ∈ D \ I, ∀k ∈ Γ+(j),
∑

i∈Γ−(j) xij ≥ xjk (C2)

This constraint imposes that d(j) can be used by s(k) (inducing that variable
xjk is equal to 1) if and only if d(j) has been computed by at least one WS s(i)
(leading to

∑
i∈Γ−(j) xij ≥ 1). When xjk is equal to 0, the constraint plays no

role.
Considering the graph of Fig. 1, d(6) is an output of three WS s(13), s(14)

and s(18), and is an input of three WS s(11), s(15) and s(17). Thus, three

Optimal Transactional WS Composition with Dependency Graph 113

constraints must be written: (i) As input of s(11): x13,6 + x14,6 + x18,6 ≥ x6,11,
(ii) as input of s(15): x13,6 + x14,6 + x18,6 ≥ x6,15 and, (iii) as input of s(17):
x13,6+x14,6+x18,6 ≥ x6,17. Each constraint imposes that d(6) is available if and
only if it has been computed by s(13), s(14) and/or s(18).

4.3 Constraints Implied by the User Query

Each data j ∈ O, needed by the user, must be computed by at least one WS:

∀j ∈ O,
∑

i∈Γ−(j) xij ≥ 1 (C3)

Given the graph of Fig. 1, we consider a user query with O = {7, 8}. d(7)
can be computed by s(14) or s(15), and d(8) by s(15) only. Then, we have:
x14,7 + x15,7 ≥ 1 and x15,8 ≥ 1.

Any data d(j) provided by the user is available, meaning that ∀j ∈ I, ∀k ∈
Γ+(j), arc (j, k) can belong to the resulting sub-graph (xjk ≤ 1). Therefore,
input data provided by the user do not introduce any specific constraints in the
model.

4.4 Constraints Linking Decision Variables

Given a particular query, constraints (C1) to (C3) are sufficient to represent
dependency between data and WS. These constraints only concern variables
x. Thus, we have to introduce the following additional constraints for linking
variables x and w:

∀j ∈ S,
∑

k∈Γ+(j) xjk ≤ |Γ+(j)|wj (C4)

This constraint imposes that wj equals to 1 if at least one directed edge with
initial vertex j belongs to the solution. On the contrary, when no edge of the
form (j, k) belongs to the solution, constraint plays no role since it becomes
|Γ+(j)|wj ≥ 0. In this case, wj can be equal to 1 even if the x values corresponds
to a sub-graph which does not cover the vertex j. However, the value of such a
solution is strictly greater than the value of the solution with the same x values
and wj = 0. Recalling that the objective function is to minimize

∑
i∈S qiwi

(qi > 0 ∀i) such a solution cannot be an optimal one.

4.5 Constraints for Eliminating Directed Cycle

The last family of constraints are introduced for eliminating directed cycle in
the solution. These constraints are classical (initially proposed in [21]) and are
written as follows:

tj − ti ≥ 1− |X |(1− xij) ∀(i, j) ∈ U (C5)
ti = 0 ∀i ∈ I (C6)
0 ≤ ti ≤ |X | − 1 ∀i = 1, . . . , |X |

114 V. Gabrel, M. Manouvrier, and C. Murat

For all i ∈ X , variable ti represents the topological order of vertex i in the sub-
graph. If xij equals to 1, arc (i, j) belongs to the sub-graph and constraint (C5)
becomes: tj − ti ≥ 1. This constraint imposes that WS s(i) is executed (or data
d(i) is obtained) before producing data d(j) (or executing service s(j)). If xij

equals to 0, constraint (C5) becomes: tj − ti ≥ (1 − |X |). Since ti belongs to
[0, |X | − 1], constraint (C5) plays no role even if ti equals to (|X | − 1).

In graph of Fig. 1, we have previously noticed that CWS {s(11), s(13), s(15)}
is not a feasible solution. This CWS is described by variables x11,4 = x4,13 =
x13,6 = x6,11 = 1 and constraints (C5) lead to an unfeasibility: (i) t4 − t11 ≥ 1,
(ii) t13 − t4 ≥ 1, (iii) t6 − t13 ≥ 1 and, (iv) t11 − t6 ≥ 1 =⇒ 0 ≥ 4.

4.6 Resulting Model

The composition problem based on service dependency graph, G = (X,U), can
be represented by the following 0-1 linear program:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∑

i∈S qiwi

s.t.
∑

i∈Γ−(j) xij ≥ |Γ−(j)|xjk ∀j ∈ S, ∀k ∈ Γ+(j) (C1)∑
i∈Γ−(j) xij ≥ xjk ∀j ∈ D \ I, ∀k ∈ Γ+(j) (C2)∑
i∈Γ−(j) xij ≥ 1 ∀j ∈ O (C3)∑
k∈Γ+(j) xjk ≤ |Γ+(j)|wj ∀j ∈ S (C4)

tj − ti ≥ 1− |X |(1− xij) ∀(i, j) ∈ U (C5)
ti = 0 ∀i ∈ I (C6)
0 ≤ ti ≤ |X | − 1 ∀i = 1, . . . , |X |
wi ∈ {0, 1} ∀i ∈ S
xij ∈ {0, 1} ∀(i, j) ∈ U

This model contains |S|+ |U |+ |X | variables and 2|U |+ |S|+ |O| constraints.

In this aforementioned model, the QoS is only considered in the objective
function. This model can easily be extended for taking into account QoS con-
straints. For example, let us consider a budget constraint of the form: the cost
of the composite WS must be lower than C. This QoS constraint can be easily
written as follows:

∑
i∈S ciwi ≤ C with ci being the cost of WS s(i).

This model does not deal with transactional properties. The next section
presents how these properties can be included in our model.

5 Extending Our Model with Transactional Properties

To allow a QoS and transactional WS composition, constraints dealing with WS
transactional properties should be added to the model. Subsection 5.1 defines
the transactional properties and Subsection 5.2 presents the induced constraints.

5.1 Definitions and Context

In this article, we use the more common transactional properties for a WS (see
for example survey [20]): pivot, retriable and compensatable. A WS is pivot (P)

Optimal Transactional WS Composition with Dependency Graph 115

Table 1. Transactional rules of [15]

Transactional property Sequential Parallel
of a WS incompatibility incompatibility

P P ∪ C (rule 1) P ∪ C ∪ PR (rule 2)

PR P ∪ C (rule 3) P ∪ C (rule 4)

C ∅ P ∪ PR (rule 5)

if once it successfully completes, its effects remain for ever and cannot be se-
mantically undone. If it fails, then it has no effect at all. For example, a service
delivering a non refundable and non exchangeable plane ticket is pivot. A WS
is compensatable (C) if it exists another WS, or compensation policies, which
can semantically undo its execution. For example, a service allowing to reserve
a room in a hotel with extra fees in case of cancellation is compensatable. A
WS is retriable if it guarantees a successful termination after a finite number
of invocations. This property is always combined with the two previous one,
defining pivot retriable (PR) or compensatable retriable (CR) WS. For example,
a payment service may be (pivot or compensatable) retriable in order to guar-
antee that the payment succeed. The authors of [15] propose transactional rules
defining the possible combinations of component WS to obtain a reliable (i.e.
a transactional) composite WS. These rules are summarized in Table 1 where
the second and the third columns represent the transactional properties of WS
which are incompatible in a composition with a WS of transactional property of
column 1. For more details about these rules, reader must refer to [15].

Considering the graph G = (X,U) associated to the composition problem, the
transactional property of each WS induces a partition of the subset of vertices
S ⊂ X as follows: S = P ∪ C ∪ PR ∪ CR (each subset is denoted by the
corresponding transactional property). In the graph of Fig. 1, we set the following
partition: P = {12, 16, 17}, C = {10, 13}, PR = {11, 18}, CR = {14, 15}.

Considering a particular query with given inputs and expected outputs, intro-
ducing transactional rules implies that some paths, belonging to the sub-graph,
going from an input to an expected output are eliminated (for example paths
containing two vertices belonging to P – see line 1 in Table 1). Thus, in terms
of our 0-1 linear program, some additional constraints must be introduced in
order to eliminate the solutions which do not respect transactional rules. These
additional constraints of linear form are presented in the following subsection.

5.2 Constraints Induced by Transactional Requirements

For each vertex i ∈ S (corresponding to WS s(i)), we need to identify the sets
of vertices j ∈ S which can be executed after or in parallel with i. Using a
Depth First Search (for DFS algorithm see for example [22]) on G = (X,U),
the following sets Ai and Li can be easily computed. Ai is set of vertices j ∈ S
belonging to the DFS tree with root i. Indeed, if j belongs to the DFS tree
rooted by i, then it exists a path in G from i to j meaning that WS s(j) may

116 V. Gabrel, M. Manouvrier, and C. Murat

be executed after WS s(i). Li is the set of services j ∈ S that can be executed
in parallel of i. Li contains any vertex j ∈ S such that it does not exist any
path from i to j neither from j to i. We have: Li = {j �∈ Ai : i �∈ Aj}. For
example, in graph of Fig. 1, A12 = ∅, L12 = {13, 14, 15, 17, 18} and, A16 =
{10, 11, 12, 13, 14, 15, 17, 18} and L16 = ∅.

Based on Table 1, we must formulate the following constraints (C7) to (C12).
A transactional composite WS contains at most one pivot:∑

i∈P wi ≤ 1 (C7)

For all i ∈ P , if WS s(i) is executed, compensatable WS cannot be executed
afterwards (see line 1 of Table 1). The set of compensatable WS that can be
executed after WS s(i) is represented by Ai ∩ C and the following constraints
can be written:

∀i ∈ P, ti − tj ≥ −|X |(1− wi) ∀j ∈ Ai ∩ C (C8)

Indeed, if the vertex i ∈ P belongs to the sub-graph, then wi = 1 and the
associated constraint becomes ti − tj ≥ 0. Consequently, the order of vertex j is
necessarily lower or equal to the order of vertex i implying that WS s(j) cannot
be executed after WS s(i) (s(j) may be executed before s(i)). If the vertex
i ∈ P is not cover by the sub-graph, then wi = 0 and the associated constraint
becomes ti − tj ≥ −|X |. This constraint plays no role. For example, in graph of
Fig. 1, vertex 16 represents a pivot WS. Vertex 10 represents a compensatable
WS which belongs to A16 (since there exists a path from 16 to 10 in G). Thus,
we have, for example, the following constraint: t16− t10 ≥ −18(1−w16) inducing
that WS s(16) cannot be executed before WS s(10).

For all i ∈ P , if WS s(i) is executed, compensatable WS and pivot retriable
WS cannot be executed in parallel with s(i). The set of vertices representing
compensatable WS and pivot retriable WS executing in parallel of WS s(i) is
(C ∪ PR) ∩ Li. Thus the following constraint must be respected:

∀i ∈ P,
∑

j∈{(C∪PR)∩Li} wj ≤ |(C ∪ PR) ∩ Li|(1− wi) (C9)

If the vertex i ∈ P belongs to the sub-graph, then wi = 1 and the associated
constraint becomes

∑
j∈{(C∪PR)∩Li} wj ≤ 0. Consequently, vertices belonging

to (C ∪PR)∩Li cannot be covered by the sub-graph. Otherwise, when wi = 0,
the associated constraint plays no role. In graph of Fig. 1, vertex 12 represents a
pivot WS. The set of vertices representing WS that can be executed in parallel
with WS s(12) is L12 = {13, 14, 15, 17, 18}. Then we have, for example, the
following constraint: w13 + w18 ≤ 2(1− w12).

For all i ∈ PR, if WS s(i) is executed, pivot WS and compensatable WS
cannot be executed afterwards. The set of pivot or compensatable WS that can
be executed after WS s(i) is represented by Ai ∩ (P ∪ C) and the following
constraints can be written:

∀i ∈ PR, ti − tj ≥ −|X |(1− wi) ∀j ∈ Ai ∩ (P ∪ C) (C10)

Optimal Transactional WS Composition with Dependency Graph 117

In graph of Fig. 1, vertex 11 represents a pivot retriable WS. Vertex 12 represents
pivot WS which belongs to A11 (since it exists a path from 11 to 12 in G). Thus,
we have the following constraint: t11 − t12 ≥ −18(1− w11).

For all i ∈ PR, if WS s(i) is executed, compensatable WS and pivot WS
cannot be executed in parallel. The set of vertices representing pivot or compen-
satable WS executing in parallel of WS s(i) is (C ∪ P) ∩ Li. Thus the following
constraints must be respected:

∀i ∈ PR,
∑

j∈{Li∩(P∪C)}wj ≤ |Li ∩ (P ∪ C)|(1 − wi) (C11)

Finally, for all i ∈ C, only rule 5 must be respected: WS executed in parallel of
WS s(i) cannot be a pivot or a pivot retriable one. Thus, the following constraint
must be respected:

∀i ∈ C,
∑

j∈{Li∩(PR∪P)} wj ≤ |Li ∩ (PR ∪ P)|(1− wi) (C12)

The number of constraints induced by transactional properties is: 1 + 2 | P |
+2 | PR | + | C |, i.e. O(| S |) constraints.

In the following section, we compare our model to the two main related ones:
the linear-programming model of [12] and the approximate approach of [7].

6 Experimental Results

The objectives of our experiments are: without transactional requirements, (i) to
compare our model with another recent model based on 0-1 linear programming
proposed in [12], and (ii) to test our model on the well-known WS composition
benchmark of WS-Challenge 2009 [23], and, with transactional properties, (iii)
to measure the difficulty inducing by transactional requirements, and (iv) to
compare the optimal solution given by our model to the feasible solution obtained
with the approximate algorithm proposed in [7].

6.1 Software Configuration and Test Set Description

The experiments were carried out on a Dell PC with Intel (R) Core TM i7-2760,
with 2,4 Ghz processor and 8 Go RAM, under Windows 7, Java 7 and CPLEX
solver 12.4.

We have two test sets: (a) the WS repositories and the queries of [7] and (b)
the one of WS-Challenge 2009 [23]. In the first test set, there are 10 WS reposi-
tories, where the number of WS varies from 100 to 500 (see the first three lines
of Table 2), and two repositories containing 1000 WS (not presented in Table 2).
The number of data is 20 or 100, representing either sparce (with a small number
of data and many dependencies between WS) or non-sparce dependency graphs
(with many data and few dependencies between WS). Each WS has between
1 and 5 inputs and between 1 and 3 outputs, randomly generated from an on-
tology containing 20 generated elements. A transactional property is randomly

118 V. Gabrel, M. Manouvrier, and C. Murat

associated with each WS. On each WS repository, 10 user queries are randomly
generated by varying the number of inputs and the number of outputs between
1 and 3 and by randomly generating the QoS score of each WS. The second test
set corresponds to the 5 data sets of WS-Challenge1 2009 containing 500, 4000,
8000 and 15000 WS (described by their response time and throughoutput QoS
values) with respectively 1500, 10000, 15000 or 25000 data.

Each 0-1 linear programming problem is solved with CPLEX solver which
uses a branch and bound algorithm to search the optimal solution. We limit the
computation time to 3600 seconds for the first test set and to 300 (limit time
given by WS-Challenge) for the second one. Thus, two situations can occur:
either CPLEX solves the problem in time and, if it exists, the optimal solution
is found and otherwise the absence of solution is proved, or CPLEX is disrupted
by time out. In this last case, either a solution is proposed but its solution status
is unknown (the algorithm cannot prove that this solution is the optimal one
because it has not enough time to explore all the feasible solution set), or no
solution is founded in time (even if a solution exists).

6.2 Experiments without Transactional Requirements

Table 2. Description of the first test set and LP-based model comparison

1 WS repository R1 R2 R3 R4 R5 R7 R8 R9 R10 R11

2 Nb of WS 100 200 300 400 500 100 200 300 400 500

3 Nb of data 20 20 20 20 20 100 100 100 100 100

4 Nb of var. in [12] 1840 2920 3730 4840 5760 4280 5240 6190 7090 8130
5 Nb of var. in Pnew 906 1643 2228 2977 5760 988 1688 2331 2979 3679

6 Nb of const. in [12] 6344 11033 14840 19583 24209 8690 13261 17338 21550 25979
7 Nb of const. in Pnew 1404 2554 3481 4646 24209 1397 2506 3509 4535 5625
8 Nb of const. in PnewT 4609 16490 26064 47206 61241 5064 13165 27953 39422 64483

9 Ratio r 2.8 2.5 2.3 1.1 4 4 2.3 2 2.3 2.14

10 Pnew comp. time (s) 1.1 12.1 2.3 6.7 21.2 0.06 0.2 0.3 1 9.2
11 PnewT comp. time (s) 2 55.6 15.3 80 140.4 0.1 0.6 1.2 7.5 220.7

We first compare our 0-1 linear model, denoted Pnew, to the one published in
[12]. Results are presented in Lines 4 to 7 and in Line 9 of Table 2. In this table,
the ratio r (line 9) is equal to the average value (over 10 queries for a given WS
repository) of the computational time taken by CPLEX for solving the model of
[12] over the one taken for solving Pnew.

Let us recall that in Pnew, the variables represent WS execution order,
input/output WS and data availability. The 0-1 linear program sizes are reason-
able since the numbers of variables and constraints only depend on the depen-
dency graph size (number of vertices and edges). In [12], the model is based on a
decomposition in stages (we choose to set a number of stages equal to 10 for all

1 Data sets available at http://www.it-weise.de/documents/files/wsc05-09.zip

Optimal Transactional WS Composition with Dependency Graph 119

experiments) and program sizes are much greater since the number of variables
and constraints depends on the dependency graph size times the number of stages
(number of constraints and variables are presented in lines 4 to 7 of Table 2).

Consequently, an optimal solution is founded in 3 times faster in average
with Pnew. Moreover, considering big size test sets with 1000 WS and 100 data,
CPLEX solves Pnew at optimality for all the 10 queries (in 266s in average) while
it is not the case for the model presented in [12]. More precisely, for 2 queries,
model of [12] finds the optimal solution but without proving their optimality
status in 3600s, and for one query, it computes a feasible solution with a greater
objective function value. For the 7 queries in which both models can find the
optimal solution, the problem is solving 7.4 times faster with Pnew.

These experimental results prove that our 0-1 linear model is the most efficient
one. It can find the optimal solution of all the considered 100 queries excepted
2 of them.

Table 3. Experiments of our model on the WS-Challenge 2009 (WSC) test sets

WSC test set 1 (500WS) 2 (4000 WS) 3 (8000 WS) 4 (8000 WS) 5 (15000 WS)

To find optimal sol. 0.35s 3.46s 4.23s 22s 27s

To prove optimality 6.65s 5.8s 6.7s > 300s > 300s

We also applied our model on the test sets of WS-Challenge 2009 [23], slightly
adapting it by modifying the objective function in order to optimize the response
time. The transformations are: (1) adding a fictitious vertex f and the fictitious
arcs (i, f), ∀i ∈ O, (2) replacing the objective function by min tf , (3) modifying
constraints (C5) that way: tj − ti ≥ di − T (1 − xij), ∀(i, j) ∈ U , with di the
response time of each WS i (i ∈ 1, . . . , |X |) and T an upper bound, and (4)
deleting variables wj and their corresponding constraints C4 (since they are no
more necessary). Our model finds the optimal solution for all the 5 test sets in less
than 5 minutes (timeout fixed by the WS-Challenge) – see Table 3. Optimality
of the solution can not be proved in 300s for the last two sets. However, the
optimal solution finds for the biggest set is better than the solution proposed in
WS-Challenge 2009. In terms of quality of the solutions, our model is therefore
comparable to the recent related approaches [8,11,17] using the WS-Challenge
data for their experiments. We have to notice that, in this article, we do not
clean the dependency graph by filtering all services relevant for the query and
by discarding the rest as done in the aforementioned approaches. Therefore, our
model always finds the optimal solution while other approach [17] can not always
find it for the biggest data set without any cleaning process. Moreover, as shown
in Section 5.2 and in the next section for experiments, our model can be extended
to take into account transactional properties.

6.3 Experiments with Additional Transactional Requirements

We introduce transactional properties into our model, denoted then PnewT.
Firstly, we analyse the consequences of adding such properties into our model.

120 V. Gabrel, M. Manouvrier, and C. Murat

Computation times taken to solve the problem at optimality are presented in
Lines 10-11 of Table 2. When introducing transactional properties in Pnew, the
number of constraints is multiplied by 6.5 (see Line 8 of Table 2) in average while
the computation times are multiplied by 7 in average. The difficulty inducing by
transactional requirements is important.

Table 4. Comparison between our model and the approximate approach of [7]

1 WS repository R1 R2 R3 R4 R5 R7 R8 R9 R10 R11

2 Comp. time (s) of PnewT 2 55.6 15.3 80 140.4 0.1 0.6 1.2 7.5 220.7
3 (# Queries solved at optimality) (9) (8) (9) (9) (9) (10) (10) (10) (10) (10)

4 # Queries with no solution found 1 0 1 0 1 0 0 0 0 0

5 Comp. time (s) of [7] 2 24.9 86.4 287 786.4 0.16 1.45 4.9 12.1 25.5
6 (# Queries with solution found) (8) (7) (10) (8) (9) (7) (8) (5) (6) (5)

7 Approximate ratio 1.68 1.86 3.53 3 3.3 1 1 1 2.1 1

Secondly, we compare our model with the approximate approach of [7]. When
we compute solutions with this approximate algorithm, two possible results can
be provided: either a solution is proposed (its solution status is unknown), or
no solution is proposed (even if a solution exists). Comparison between our
model and the approximate approach is presented in Table 4. Line 2 contains
the average computation time (in seconds) taken by CPLEX to solve queries at
optimality (the number of these solved queries - at most 10 - is given in paren-
thesis Line 3). Among queries unsolved at optimality in 3600s, PnewT may find
a feasible solution or may not find any solution (see Line 4). Lines 5 and 6
show the results obtained with the approximate algorithm. Line 5 corresponds
to the average computation time to compute a feasible solution (the number of
queries for which the approximate algorithm is able to find a solution is given in
parenthesis Line 6). Line 7 presents the average approximate ratio (approximate
solution value / optimal solution value). Our experimental results show that,
in a large majority of queries, our approach based on the CPLEX branch and
bound algorithm computes more rapidly an optimal solution than the approxi-
mate algorithm. In only one case over more than 100, the approximate algorithm
finds a better solution. The queries on non-sparce SDG (R7 to R11) are easier
to solve at optimality. For R7 and R8 data sets, computation times are very
small: all optimal solutions are found by PnewT in less than 1 second. Queries
on sparce SDG with 20 data (R1 to R5) are much more difficult to solve, the
computation times are important even if, in average, PnewT computes the op-
timal solution more rapidly (for R5, 9 queries are solved at optimality with an
average computation time of 140s while the approximate algorithms needs 786s
to find a feasible solution with a value equals to 3.3 times the optimal value in
average).

Computation times vary a lot with the query. For example, for R2 with an
average computation times of 55.6, the ”harder” query needs 412s to determine
the optimal solution while 5 queries take less than 3s and 2 queries around 10s ;

Optimal Transactional WS Composition with Dependency Graph 121

the 2 remaining queries are not solved at optimality: for one query, PnewT finds
a better solution than one computed by the approximate algorithm (the value is
15% better), and for the other query, PnewT finds a feasible solution while the
approximate algorithm cannot provide any solution. When no solution can be
found by both algorithms, we cannot conclude that no solution exists: either the
approximate algorithm cannot find a feasible solution (it often occurs for queries
of R7 to R11), or CPLEX hasn’t enough time to find a feasible solution. If we
don’t impose time limit, PnewT should be able to find an optimal solution.

Finally we have experimented our model on two WS repositories containing
1000 WS (data sets R6 and R12). R6 contains 20 data and PnewT takes 409s
in average to compute the optimal solution of 8 queries. For the two remaining
queries, PnewT only finds a feasible solution in 3600s for one, and cannot find
any solution for the other, because of timeout. R12 contains 100 data and PnewT
takes 525s in average to compute the optimal solution of only 3 queries. It cannot
find any solution for 4 queries and a feasible solution for the 3 remaining ones,
because of timeout. With this problem size, it becomes hard to solve at optimality
with CPLEX.

7 Conclusion

In this article, we present a 0-1 linear program for automatically determining a
transactional composite WS optimizing QoS from a service dependency graph.
With our model, the QoS and transactional-aware composition problem can be
solved at optimality. As far as we know, it is the first time. With consequent
experimental results, we show that our model dominates an already recent pub-
lished one [12], also based on linear programming for solving the QoS-aware
composition problem without transactional requirement. Our model also finds
all the optimal solutions for the well-known service composition benchmark of
WS-Challenge 2009. Then, we compare our approach, with the only related one
including transactional requirements [7], which is an approximate approach. Ex-
perimental results show that, when an optimal solution exists, our model can
find it generally faster than the related work. However, for big size test sets, a
standard solver like CPLEX is too long to find optimal solution. Specific resolu-
tion methods should be proposed to solve such 0-1 linear programming model.
This topic will be the focus of our future research.

References

1. Issarny, V., Georgantas, N., Hachem, S., Zarras, A., et al.: Service-oriented middle-
ware for the Future Internet: state of the art and research directions. J. of Internet
Services and App. 2(1), 23–45 (2011)

2. Dustdar, S., Pichler, R., Savenkov, V., Truong, H.L.: Quality-aware Service-
oriented Data Integration: Requirements, State of the Art and Open Challenges.
SIGMOD Rec. 41(1), 11–19 (2012)

3. Strunk, A.: QoS-Aware Service Composition: A Survey. In: IEEE ECOWS, pp.
67–74 (2010)

122 V. Gabrel, M. Manouvrier, and C. Murat

4. Liu, A., Li, Q., Huang, L., Xiao, M.: FACTS: A Framework for Fault-Tolerant
Composition of Transactional Web Service. IEEE Trans. on Serv. Comp. 3(1),
46–59 (2010)

5. Badr, Y., Benslimane, D., Maamar, Z., Liu, L.: Guest Editorial: Special Section on
Transactional Web Services. IEEE Trans. on Serv. Comp. 3(1), 30–31 (2010)

6. Gabrel, V., Manouvrier, M., Megdiche, I., Murat, C.: A new 0-1 linear program for
QoS and transactional-aware web service composition. In: IEEE ISCC, pp. 845–850
(2012)

7. Cardinale, Y., Haddad, J.E., Manouvrier, M., Rukoz, M.: CPN-TWS: a coloured
petri-net approach for transactional-QoS driven Web Service composition. Int. J.
of Web and Grid Services (IJWGS) 7(1), 91–115 (2011)

8. Yan, Y., Chen, M., Yang, Y.: Anytime QoS Optimization over the PlanGraph for
Web Service Composition. In: ACM SAC, pp. 1968–1975 (2012)

9. Liang, Q., Su, S.: AND/OR Graph and Search Algorithm for Discovering Compos-
ite Web Services. Int. J. Web Service Res. (IJWSR) 2(4), 48–67 (2005)

10. Gu, Z., Li, J., Xu, B.: Automatic Service Composition Based on Enhanced Service
Dependency Graph. In: IEEE ICWS, pp. 246–253 (2008)

11. Jiang, W., Zhang, C., Huang, Z., Chen, M., Hu, S., Liu, Z.: QSynth: A Tool for
QoS-aware Automatic Service Composition. In: IEEE ICWS, pp. 42–49 (2010)

12. Paganelli, F., Ambra, T., Parlanti, D.: A QoS-aware service composition approach
based on semantic annotations and integer programming. Int. J. of Web Info. Sys.
(IJWIS) 8(3), 296–321 (2012)

13. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: QoS-
Aware Middleware for Web Services Composition. IEEE Trans. on Soft. Eng. 30(5),
311–327 (2004)

14. Yu, T., Zhang, Y., Lin, K.J.: Efficient algorithms for Web services selection with
end-to-end QoS constraints. ACM Trans. on the Web 1, 1–26 (2007)

15. Haddad, J.E., Manouvrier, M., Rukoz, M.: TQoS: Transactional and QoS-aware
selection algorithm for automatic Web service composition. IEEE Trans. on Serv.
Comp. 3(1), 73–85 (2010)

16. Syu, Y., FanJiang, Y.Y., Kuo, J.Y., Ma, S.P.: Towards a Genetic Algorithm Ap-
proach to Automating Workflow Composition for Web Services with Transactional
and QoS-Awareness. In: IEEE SERVICES, pp. 295–302 (2011)

17. Rodriguez-Mier, P., Mucientes, M., Lama, M.: A dynamic qoS-aware semantic web
service composition algorithm. In: Liu,C., Ludwig,H.,Toumani, F.,Yu,Q. (eds.) Ser-
viceOrientedComputing. LNCS, vol. 7636, pp. 623–630. Springer,Heidelberg (2012)

18. Aleti, A., Buhnova, B., Grunske, L., Koziolek, A., Meedeniya, I.: Software Archi-
tecture Optimization Methods: A Systematic Literature Review. IEEE Trans. on
Soft. Eng. 39(5), 658–683 (2013)

19. Yoo, J.J.W., Kumara, S., Lee, D., Oh, S.C.: A Web Service Composition Frame-
work Using Integer Programming with Non-functional Objectives and Constraints.
In: IEEE CEC/EEE, pp. 347–350 (2008)

20. Cardinale, Y., Haddad, J.E., Manouvrier, M., Rukoz, M.: Transactional-aware Web
Service Composition: A Survey. In: Handbook of Research on Non-Functional Prop.
for Service-oriented Sys.: Future Directions, pp. 116–142. IGI Global (2011)

21. Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer Programming Formulation of
Traveling Salesman Problems. J. of ACM 7(4), 326–329 (1960)

22. Aho, A.V., Hopcroft, J.E., Ullman, J.: Data Structures and Algorithms, 1st edn.
Addison-Wesley Longman Pub. Co., Inc. (1983)

23. Kona, S., Bansal, A., Blake, M.B., Bleul, S., Weise, T.: WSC-2009: A Quality of
Service-Oriented Web Services Challenge. In: IEEE CEC, pp. 487–490 (2009)

A Framework for Searching Semantic Data

and Services with SPARQL

Mohamed Lamine Mouhoub, Daniela Grigori, and Maude Manouvrier

PSL, Université Paris-Dauphine, 75775 Paris Cedex 16, France
CNRS, LAMSADE UMR 7243

{mohamed.mouhoub,daniela.grigori,maude.manouvrier}@dauphine.fr

Abstract. The last years witnessed the success of Linked Open Data
(LOD) project and the growing amount of semantic data sources avail-
able on the web. However, there is still a lot of data that will not be pub-
lished as a fully materialized knowledge base (dynamic data, data with
limited acces patterns, etc). Such data is in general available through web
api or web services. In this paper, we introduce a SPARQL-driven ap-
proach for searching linked data and relevant services. In our framework,
a user data query is analyzed and transformed into service requests. The
resulting service requests, formatted for different semantic web services
languages, are addressed to services repositories. Our system also fea-
tures automatic web service composition to help finding more answers
for user queries. The intended applications for such a framework vary
from mashups development to aggregated search.

1 Introduction

The last years witnessed the success of Linked Open Data (LOD) project and
the growing amount of semantic data sources available on the web (public sector
data published by several government initiatives, scientific data facilitating col-
laboration, ...). The Linked Open Data cloud, representing a large portion of the
semantic web, comprises more then 2000 datasets that are interlinked by RDF
links, most of them offering a SPARQL endpoint (according to LODstats1 as of
May 2014) . To exploit these interlinked data sources, federated query processing
techniques were proposed ([1]). However, as mentioned in [2] there is still a lot
of data that will not be published as a fully materialized knowledge base like:

– dynamic data issued from sensors
– data that is computed on demand depending on a large sets of input data,

e.g. the faster public transport connection between two city points
– data with limited access patterns, e.g. prices of hotels may be available for

specific requests in order to allow different pricing policies.

Such data is in general available through web API or web services. In order
to allow services to be automatically discovered and composed, research works

1 http://stats.lod2.eu/

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 123–138, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://stats.lod2.eu/

124 M.L. Mouhoub, D. Grigori, and M. Manouvrier

in the domain of the semantic web proposed to use machine-readable semantic
markup for their description. Semantic web services (SWS) approaches include
expressive languages like OWL-S2, WSMO for complex business services or, more
recently, simple vocabularies like MSM to publish various service descriptions as
linked data. Most of the SWS description languages are RDF3-based (such as
OWL-S, MSM) or offer a RDF representation (WSML). Therefore, existing tools
for publishing SWS like iServe4 are basically RDF stores that allow access via
SPARQL endpoints and hence, they can be considered also as a part of the LOD.

The integration of LOD data and semantic web services (SWS) offer great
opportunities for creating mashups and searching complementary data (data
that does not exist on the LOD or that is incomplete or not updated). However,
relevant services must be discovered first, and in case they don’t exist, composed
from atomic services. To achieve such a goal, an user should:

– have an awareness of the existing SWS repositories on the web,
– have a knowledge of the heterogeneous SWS description languages,
– express his needs in terms of the vocabulary used by different repositories
– find relevant services from different repositories and use service composition

tools in case a service satisfying his goal does not exist.

As this manual process requires a lot of knowledge and effort for the user,
our goal is to provide a framework for searching data and related services on
the LOD. We are not aware of other federated approaches able to find data and
related services in the LOD. An approach for aggregated search of data and
services was proposed in [3], but it requires building global schemas for data and
services and lacks a full support for the LOD and for semantic queries.

In this paper we make the following contributions:

– a SPARQL-driven framework to search data and related services in the dis-
tributed and dynamic setting characterizing the LOD

– a method to derive a service discovery query from a data query and enrich
it in order to increase the number of retrieved services

– a method to find a web service composition on the fly, containing WS from
different repositories.

The rest of this paper is structured as follows: In section 2, we highlight the
overall functionality of the framework with a motivating scenario and give the
important definitions. Section 3 is dedicated to the service discovery. Service
composition is explained in section 4. The architecture and implementation de-
tails are described in section 5. The last sections are dedicated to the related
works and the conclusion.

2 Data and Service Querying

The goal of our framework is to extend a search of linked data with a service dis-
covery/composition to find relevant services that provide complementary data.

2 http://www.w3.org/Submission/OWL-S
3 http://www.w3.org/RDF/
4 http://iserve.kmi.open.ac.uk/

http://www.w3.org/Submission/OWL-S
http://www.w3.org/RDF/
http://iserve.kmi.open.ac.uk/

A Framework for Searching Semantic Data and Services with SPARQL 125

Such a search often requires distinct queries: a) data queries to lookup in the
LOD to find data b) service requests to discover relevant services in some SWS
repositories and c) service composition requests to create relevant service com-
positions in case no single relevant service is found. Our framework searches
for both (data and services) starting from a single query from the user called
the data query, i.e. a query intended to search only for data. From this query,
it automatically issues service requests and finds relevant services or generates
service compositions.

Fig. 1. Process of discovering services with a data query

Figure 1 shows an overview of our approach to search for services in parallel
to data. When a SPARQL data query is submitted by a user or an agent, two
parallel search processes are launched:

1. Data search process: A process to manage the query answering in the LOD
data sources. These sources are distributed and accessible via SPARQL end-
points. Thus, a SPARQL-federation approach along with the appropriate
optimization and query rewriting techniques is used for this purpose. This
process is out of the scope of this paper.

2. Service search process: A process to discover and possibly compose services
that are relevant to the data query. An analysis of the data query is required
in order to transform it into one or multiple service requests.

SELECT ?person ?book
WHERE {
?person rdf:type dbpedia -owl:Writer ;

dbpedia -owl:award ?prize ;
dbpedia -owl:birthPlace dbpedia :Paris .

?book dbpedia -owl:author ?person ;
dbpedia -owl:isbn ?isbn .}

Listing 1.1. Example Data Query QD

To explain the motivations and goals of our framework, we consider the fol-
lowing example scenario: A user wants to know all writers born in Paris and
holding a Nobel prize as well as the list of all their books. This query is written
in SPARQL in listing 1. Answers for this query in the LOD might supposedly
find all these writers in DBpedia. However, their published books are not all
listed in DBpedia. In this case, data is not complete and might need to be com-
pleted with full book listings from services like Amazon API, Google Books API,
etc Some of the latter APIs can also provide complementary information on the
books such as the prices, ISBN numbers, etc. In addition, there are some other

126 M.L. Mouhoub, D. Grigori, and M. Manouvrier

relevant services that allow the user to buy a given book given online. However,
if the user wants to buy a given book from a local store, and there is a service
that only takes an ISBN number as input to return the available local stores
that sell this book, in that case, a service composition can be made to return
such information.

2.1 Definitions

To better explain the details of service search we first give the following defini-
tions for the context of the search in this section.

SPARQL Query Overview : A SPARQL query can be seen as a set of one or
many graph patterns composed of nodes and edges. Nodes represent variables
(prefixed by a ’?’) or concrete values (resource URIs, Literals) and edges repre-
sent properties that link nodes in a pairwise fashion. A subgraph composed of
two nodes linked by a property edge is called a triple pattern and is read ”subject
property object”. Multiple group graph patterns in SPARQL refers to queries
containing multiple triple blocks separated or contained by UNION, OPTIONAL,

brackets, etc. In case there is a single graph pattern, it is called a basic graph
pattern.

Nodes and Concepts (n, cn) : We define a node n ∈ N in the context of a
query as a part of tuple (n, cn) where cn is its corresponding concept formally
defined by: (n, cn) : (n ∈ N, cn = Concept(n)).
A node is either a named variable or a concrete element of a triple pattern (a
Literal or a resource URI).
A Concept is the reference rdfs:class that is used to describe the rdf:type of a
node in its reference ontology Θ. It is obtained with the function Concept(n).

Data Query (QD) : A data query QD is a SPARQL query composed of sets of
triple patterns and selection variables. It is basically written by the user to fetch
data from LOD that match these triples. Listing 1 shows an example of a data
query for the provided example above. In this paper, we only consider SELECT
queries that have a unique basic graph pattern.

Service Request (Rs) : Given a user SPARQL query QD, a service request
Rs = (InD, OutD) is a couple of two sets InD, OutD created by analyzing QD

in order to extract inputs and outputs that could be considered as parameters
of a service request to find relevant services for QD. InD = {(n, cn)} is a set of
service inputs provided implicitly by the user in QD in form of Literals or URIs
in the triple patterns of the WHERE clause. OutD = {(n, cn)} is a set of service
outputs that are explicitly requested by the user in the query in form of variables
in the SELECT clause. More details are provided in section 4.1

A Framework for Searching Semantic Data and Services with SPARQL 127

Service Descriptions (Ds) : In a service collection S, every service s is de-
scribed by Ds = (InS , OutS) where InS is the set of inputs needed for a service
s and OutS is the set of outputs provided by the service. A service description
can be in any known SWS formalism that is RDF/OWL based and that de-
scribes the functional and the non-functional features of a service. Currently in
our work, we are only interested in the inputs and outputs of a service which
are parts of the functional features.

Similar Concepts (en) : For a given concept of a node cn, there exists a set of
one or more equivalent (similar) concepts en = Similar(cn) where Similar(cn)
is a function that returns the similar concepts of a given concept defined in
its ontology by one of the following rdfs:property predicates: a) owl:sameAs b)
owl:equivalentClass and c) rdfs:subClassOf in either directions.

Service Query (Qs) : Similarly in the QD definition above, the service query is
a SPARQL query written to select relevant services from their SWS repositories
via their SPARQL endpoints . It consists of sets of triple patterns that match the
inputs and outputs of Rs with inputs and outputs of a service in S. The triples
of Qs follow the SWS description model used by the repositories to describe
services.

3 Service Discovery with SPARQL

To deal with the heterogeneity of the SWS descriptions and the distributed
deployments of repositories containing them, we choose to issue service requests
in SPARQL queries and adapt them to each description model based on the
following assumptions: a) the data in question adheres to the principles of linked
data as defined in [4] b) SWS are described by RDF based languages such as
OWL-S or MSM[5], c) SWS repositories offer access via SPARQL endpoints to
their content.

In addition, existing SWS repositories such as iServe are accessible via SPARQL
endpoints. This allows to select SWS and perform explicit RDF entailment
on their descriptions to extend the search capabilities. The RDF entailment
is done explicitly by rewriting SPARQL queries since the existing implemen-
tations SPARQL engines don’t offer this feature. Furthermore, using SPARQL
allows to deal with the heterogeneous SWS descriptions more effectively without
intermediate mapping tools.

We distinguish two kinds of service queries that can be relevant depending on
the goal of the discovery. For a given service request Rs extracted from a data
query QD, the user may want to find one of following kinds of services:

1. Services that provide all the information requested by the user, i.e provide
all the requested outputs regardless of the given inputs. However, the more
a service consumes the inputs of the request, the more relevant it is. For
example, taking into account the location as input returns data that concerns

128 M.L. Mouhoub, D. Grigori, and M. Manouvrier

this location. Such services would be useful as an alternative or an additional
data source to the LOD data. They are obtained by applying Strategy#1:
Strategy#1(Rs, Ds) : {∀o ∈ OutD : o ∈ OutS}[=⇒ (OutD ⊆ OutS)]
A specialization of this strategy, called Strategy#1exact, restricts the rel-
evance on services that, in addition, consume only and only all the given
inputs InD.
Strategy#1exact(Rs, Ds) : {∀id ∈ InD, ∀is ∈ InS , ∀od ∈ OutD : id ∈
InS ∧ is ∈ InD ∧ od ∈ OutS}[=⇒ (InD = InS) ∧ (OutD ⊇ OutS)]

2. Services that consume some of the inputs or the outputs of the request, or
that return some of the inputs or the outputs of the request. Such services
would be useful to: a) provide additional information or services to the data,
b) discover candidate services for a mashup or composition of services that fit
as providers or consumers in any intermediate step of the composition. The
service request for such kind of services is obtained by one of the strategies
bellow that satisfy the following:
Strategy#2a(Rs, Ds) : (InD ∩ InS �= φ)
Strategy#2b(Rs, Ds) : (OutD ∩ InS �= φ)
Strategy#2c(Rs, Ds) : (OutD ∩OutS �= φ)
Strategy#2d(Rs, Ds) : (InD ∩OutS �= φ)

3.1 Service Request Extraction

The data query is analyzed to extract elements that can be used as I/O for a
service request. Outputs are simply the selected variables of the query. Inputs
are the bound values that appear in the triples of the query.

The analysis of the data query QD allows to extract the inputs and outputs
of QD using one of the following rules:

1. Variables in the SELECT *, (selection variables) are considered as outputs
od = (n, null) ∈ OutD. Simply because they are explicitly declared as desired
outputs of the data query.

2. Bindings of subjects or objects in the WHERE clause of QD, i.e literals and
RDF resources URIs, are considered as inputs id = (n, null) ∈ InD. This can
be explained by the fact that a user providing a specific value for a subject
or an object simply wants the final results to depend on that specific value.
The same way, a service requiring some inputs returns results that depend
on these inputs.

The service request extraction consists of populating InD and OutD with the
nodes of the elements mentioned above. Algorithm 1 gives an overview of the
Service Request Extraction.

The SPARQL operators like OPTIONAL, UNION, FILTER, etc can reveal
the preferences of the user for service discovery and composition. For instance,
the I/O extracted from an Optional block mean that the user doesn’t require
services that necessarily provide/consume the optional parts. Therefore, the ser-
vice request for such a data query is obtained using some of the loose strategies
defined in section 4.

A Framework for Searching Semantic Data and Services with SPARQL 129

Algorithm 1. Service Request Extraction

Input: QD

Output: InD, OutD
1: OutD.nodes ← GetSelectVariables(QD) � Get the output variables
2: triples ← GetAllQueryTriples(QD) � Get all the query triples
3: for each t in triples do
4: if isConcrete(subject(t)) then � check if URI or literal
5: InD ← InD ∪ {(subject(t), null)}
6: else if isConcrete(object(t)) then
7: if predicate(t) �= ”rdf : type” then
8: InD ← InD ∪ {(object(t), null)}
9: end if
10: end if
11: end for

Listing 1.4 shows an example of a service query extracted from QD in listing
1.1 using Strategy#1 to find services that return the same data as the query.

3.2 Semantics Lookup

Once the service request elements are extracted from the query, we try to find
the semantic concepts cn that describe the previously extracted nodes with no
concept: (n, null).

Concept Lookup. In general, concepts can either be declared by the user in
the data query (as the user probably specifies what he is looking for) or in a
graph (set of triples) in an rdf store.

The semantics lookup process starts looking for the concept of a node n in the
QD triples. The concept is the concrete value given by a URI and linked to n via
the property rdf : type: i.e. ”n rdf : type conceptURI”. In the example query
in listing 1.1, the concept of ?person is given in QD as dbpedia− owl : Writer,
but the concept of book is not given in QD

If cn is not found in QD, a concept lookup query qc is created to look for the
concept of n in the ontology in which it is suspected to be.

To generate this concept lookup query qc, we take all the triples from QD in
which n is involved as a subject or as an object and then insert them in the
WHERE clause of qc. We add a triple pattern ”n rdf : type ?type” and set the
?type variable as the SELECT variable of qc. The URLs of the ontology(ies) in
which cn can be extracted from the namespaces used in QD and are added to
the From clause of the qc .

Listing 1.2 shows an example concept lookup query to find the concept of
?book which is not declared in QD (listing 1.1).

If no concept is found for a given node (most likely because of a non working
namespace URL), then the search space for qc to find the missing concepts is
expanded to the other known sources in the LOD.

130 M.L. Mouhoub, D. Grigori, and M. Manouvrier

SELECT ?bookConcept WHERE {
SERVICE <http://dbpedia .org/sparql >{
?book dbpedia -owl:author
?person ;

dbpedia -owl:isbn ?isbn ;
rdf:type ?bookConcept .}}

Listing 1.2. An example query of Con-
cept Lookup in the LOD

SELECT ?bookConcept
FROM <http://dbpedia .org/ontology />
WHERE {
dbpedia -owl:author rdfs:domain

?bookConcept .
}

Listing 1.3. An example query of Con-
cept Lookup in Ontology

Similarity Lookup. To extend the service search space, we use the similar
concepts en of every concept cn in the service search queries along with the
original concepts. To find these similar concepts, we use the rules given by the
definition in section 2.1. Based on this definition, we issue a SPARQL query qe
like the one in the concept lookup but slightly different by adding a triple that
defines a silimarity link between cn and a variable ?similar. The triple pattern
has the form cn ?semanticRelation ?similar where ?semanticRelation is
one of the following properties: a) owl:sameAs, owl:equivalentClass for similar
concepts in other ontologies b) rdfs:subClassOf for hierarchically similar concepts
within the same ontology.

The similarity lookup query qe is executed on the sources used in QD as well
as on the other sources of the LOD because the similar concepts can be found
anywhere.

To optimize the search in other sources of the LOD, we use a caching technique
to build an index structure on the go of the LOD sources content. The details
of this caching is described in section 5.

3.3 Service Query Generation

Once all elements of the service request are gathered, service discovery queries are
issued in SPARQL using rewriting templates. Such templates define the structure
and the header of the SPARQL service query. There is a single template per SWS
description formalism, i.e. OWL-S, MSM, etc. For instance, the OWL-S template
defines a header containing triples that match the OWL-S model by specifying
that the desired variable is an OWL-S service which has profiles with specific
inputs/outputs. Listing 1.4 shows an example of a service query for the example
scenario in section 1. It uses an OWL-S template to specify the required input
and output concepts according to the OWL-S service model.

To generate the queries, all concepts cn and their similar concepts en for every
node n ∈ InD ∪ OutD are put together in a basic graph pattern of in a union
fashion depending on the chosen selection strategy. More specifically, for every
input id ∈ InD we write triple patterns to match service inputs with variables
that have cn as a concept and accordingly for every output od ∈ OutD.

The service search strategies (c.f. section 3) in the way we define them, de-
scribe the how tight(Strategy #1,#1exact) or loose (Strategies #2a,b,c,d)the ser-
vice selection must be. Therefore, strict strategies require that one or more inputs
or outputs are matched at the same time, thus, the query triples will be put in

A Framework for Searching Semantic Data and Services with SPARQL 131

a single basic graph pattern. On the other hand, loose strategies require only
partial matching, hence, the query triples are be put in a UNION of multiple
graph patterns.

SELECT DISTINCT ?service WHERE {
?service a service :Service ; service :presents ?profile .
?profile profile :hasOutput ?output1 ;

profile :hasOutput ?output2 .
?output1 process :parameterType dbpedia -owl:Writer .
?output2 process :parameterType dbpedia -owl:Book .
OPTIONAL { ?profile profile :hasInput ?intput1 .

?input1 process :parameterType dbpedia :Place .}
OPTIONAL { ?profile profile :hasInput ?intput2 .

?input2 process :parameterType dbpedia -owl:Award .}}

Listing 1.4. Example Service Query QS with Strategy#1exact

4 Automatic Service Composition

In the previous section we showed how to make service requests to find relevant
individual services for the data query. However, if no such services exist, service
composition can create relevant composite services for the matter. In this section
we describe our approach to make such compositions automatically.

In the context of our framework, service repositories are part of the LOD as
SPARQL endpoints. Therefore, we think that the least expensive way to perform
a service discovery and composition is on the fly without any pre-processing. This
online composition consists of discovering candidate services at each step of the
composition without a need to have a local index or copy of the service reposito-
ries. We argue that the approaches based on pre-processing the service reposito-
ries often require an expensive maintainability to stay up-to-date. Furthermore,
according to [6], the web services are considerably growing and evolving either
by getting updated, deprecated or abandoned.

However, some optimization based on caching are described further in section
5 to speed-up this online process for the queries that as already been processed
in the past executions.

In this section, we describe our approach for an automatic composition of SWS
based on a service dependency graph and an A*-like algorithm. The first subsec-
tion is dedicated to the Service Dependency Graph while the second describes
the composition algorithm.

4.1 Service Dependency Graph

The Service Dependency Graph (SDG from now on) represents the dependencies
between services based on their inputs and outputs. A service depends on another
if the later provides some inputs for the former. In our work, we consider that
a SDG is specific for each data query because it includes only services related
to that query. In other works, the SDG might represent the dependencies for
all the services in a repository, but this requires a general pre-processing for the
LOD as we stated before.

132 M.L. Mouhoub, D. Grigori, and M. Manouvrier

We use an oriented AND/OR graph structure as in [7] to represent the SDG.
Such a graph is composed of AND nodes - that represent services - and OR nodes
- that represent data concepts - linked by directed edges. We slightly adapt this
representation to include the similarities between concepts of data by : a) Each
OR node contains the set of concepts that are similar to each other b) Each edge
that links an AND node to an OR node is labeled with the concept that matches
the service input/output concept among those in the OR node’s concept set. A
dummy service N0 is linked to outputs nodes of OutD to guarantee that a service
composition provides all the requested outputs.

The AND/OR graph representation of the SDG is more adequate for the
composition problem than ordinary graphs because the constraints on the inputs
of services are explicitly represented by the AND nodes; A service cannot be
executed if some of its inputs are not provided; thus, an AND node cannot be
accessible unless all of its entering edges are satisfied. Furthermore, this graph
has been utilized in a many previous approaches and has proven its efficiency as
shown in [7]. However, a classical graph representation can be used to solve the
composition problem.

To construct the SDG, we use our service discovery approach to find depen-
dencies for each service in a bottom-up approach starting from the services that
provide the final outputs of QD. In fact, the SGD construction searches for all
services that provide all the unprovided-yet data at one time starting from OutD
nodes. Such a one-time search per iteration allows to reduce the number of ser-
vice requests that are sent to the SWS repositories, hence, boosting the SDG
construction.

For example, to find services that provide O1 and/or O2, a service request
Rs(null, {O1, O2}) is used by applying Strategy#2b.

4.2 Service Composition Algorithm

Upon the construction of the SDG, one or many compositions can be found.
The aim of the service composition algorithm is to find the optimal composition
from the SDG for a given composition request.

For this purpose, we use an A*-like algorithm and adapt it for AND/OR
graphs. Starting from the user input InD nodes, the algorithm finds the optimal
path to the target nodeN0 (which is linked to the final outputs OutD). Therefore,
an optimal solution is a path that has the least total cost and that respects the
AND/OR graph structure.

The total cost of a given path is the aggregation of the costs of each step from
a node to another. Generally, the cost at a given step (at an AND node n) in
an A* algorithm is given by the aggregation function: f(n) = g(n)+ h(n) where
g(n) is the total cost of the sub-path from the starting point to n and h(n) is a
heuristic that estimates the total cost from the n to the target node N0.

Since the semantic web services has rich descriptions, the semantics of the
Inputs/Outputs can be used for cost calculation to help finding an optimal so-
lution. Therefore, we rely on the sets of similar concepts inside OR nodes and
on the labels of the edges in SDG. Therefore, the cost of a move from an AND

A Framework for Searching Semantic Data and Services with SPARQL 133

node ni to ni + 1 is determined based on the similarity between the labels of
the input and the output edges of the two AND nodes respectively. If the two
labels (concepts) are the same, then the cost value is null. Otherwise if the
two labels are different but similar concepts (sameAs, sub concepts) then the
cost value is set to 1. This cost calculation can be resumed by the function:
cost(ni+1) = sim(cni , cni+1) where cni is a concept used by the current service,
cni+1 is used by the next one and:

sim(cni , cni+1) =

{
0 if cni = cni+1

1 if cni = Similar(cni+1)
(1)

is a function that determines the similarity between two concepts.
From the functions above, the cost of the best known path to the current node

subset is given by the following function:

g(n) =

n∑
i=0

cost(ni) (2)

where ni are all the accessible services for the next step
The heuristic function h(n) calculates the distance between the current node

and the target AND node n0 in the SDG graph. This is justified by the fact
that, a better solution is the one that uses less services.

h(n) = Distance(n, n0) (3)

5 Implementation and Experiments

In this section, we show briefly the architecture of our framework and some
experiments as a proof of concept.

5.1 Framework Architecture

Fig. 2. Framework Architecture

Figure 2 shows an overview of the architecture of our framework. Through an
interface, SPARQL queries are submitted to the system to be processed for data
search and service search.

134 M.L. Mouhoub, D. Grigori, and M. Manouvrier

The data querying is managed by an external open source SPARQL federator,
FedX [1]. FedX uses its own query rewriting to optimize the data querying for
each source. Therefore, the LOD is a federation of SPARQL endpoints of different
data sources such as DBpedia.

On the service side, queries are processed by the service requester to make ser-
vice requests or service compositions. The SWS repositories which are SPARQL
endpoints as well are considered as a particular part of the LOD. We use our
own federation of SPARQL endpoints to query the SWS repositories separately.
The reason why we don’t simply reuse FedX is because we need specific opti-
mization for service descriptions different than the general purpose optimization
offered by FedX. A brief overview of our optimization is described in the next
subsection.

We have implemented our framework in Java using Apache Jena5 framework
to manage SPARQL queries and RDF.

5.2 Optimizing Service Discovery with Cache

In order to optimize the service discovery in terms of response time, we use a
caching for services and concepts. Such a cache indexes all the concepts and
services that has been used in past requests.

We use three different types of cache : a) A cache for similar concepts to
decrease the number the similarity lookup requests. b) A cache to index the
concepts that have been used in the past and the URIs of services and repositories
that use them. c) a local RDF repository to keep in cache the descriptions of
services on the go once they are discovered. This later one can be queried directly
via a local SPARQL endpoint.

Maintaining the cache costs much less than maintaining a whole index struc-
ture of all known SWS repositories and does not require any pre-processing prior
to use the framework. Cache maintenance can be scheduled for automatic launch
or triggered manually.

5.3 Experiments and Evaluation

Our main challenge to evaluate our framework is to find suitable benchmarks
that provide SPARQL queries on real world data and to find SWS repositories
of real world services. Furthermore, to properly measure the execution time of
writing service queries from data queries, we need test queries that are more or
less complex and have missing concept declarations.

Unfortunately, to our best knowledge, there is no benchmark that allows us
to fully measure the performance of our framework. Therefore, to prove the
feasibility of our approach to search services on the LOD, we have made an
implementation as a proof-of-concept and some experiments to measure the exe-
cution time of query rewriting from a data query and through semantics lookup

5 https://jena.apache.org/

https://jena.apache.org/

A Framework for Searching Semantic Data and Services with SPARQL 135

to write service queries in SPARQL. For experiments we used a set of SPARQL
queries that we wrote manually to have missing concepts.

Figure 3 shows a summary of our experiments on a set of queries. This set
consists of a 10 queries, each with an increasing amount of undefined variables.
We measured separately the total execution time of writing service queries in-
cluding the execution time of the concept lookup process for each query. The
results show that the concept lookup time increases linearly as the number of
undefined variables increase.

We performed a partial evaluation for the effectiveness of our service discovery
on OWL-S-TC6 benchmark. Figure 4 show the number of false negatives (<0)and
false positives (>0) of the service discovery on a set of 18 OWL-TC queries
that have been used for evaluation in [3]. We have rewritten these queries in
SPARQL to make them usable within our framework. The results show an overall
good error rate. However, in some queries like Q22, some of the I/O parameters
are very generic which explains the high number of false positives. In order to
avoid such cases, the algorithm must be modified to select services that provide
at least a non-generic I/O parameter. For the false negatives like in Q7, the
reference matching results in OWLS-TC are set based on other features than
I/O parameters such as the textual description of the service, etc.

2 4 6 8 10

1,200

1,400

1,600

1,800

Fig. 3. Average execution Time in MS
per number of undefined variables in a
random query

Q4 Q17 Q22 Q27

0

2

4

6

8

Fig. 4. False Negatives and false Posi-
tives on OWL-S TC queries

6 Related Works

The motivations and research questions of our work are tackled by many recent
works. In fact, our work emerges from a crossing of many research topics in the
semantic web and web services. We’ll list few of the most recent and relevant
works to our paper.

6 http://projects.semwebcentral.org/projects/owls-tc/

http://projects.semwebcentral.org/projects/owls-tc/

136 M.L. Mouhoub, D. Grigori, and M. Manouvrier

SPARQL Query Management. Among the works that tackle the query man-
agement in the LOD, SPARQL federation approaches are the most relevant for
our context. FedX[1] is one of the most popular works that has good perfor-
mance results besides the fact that the tool is available in open source. FedX
optimizes the query management by performing a cache-based source selection
and rewriting queries into sub-queries and running them on the selected sources.
Some recent works like [8] introduce some further optimization for FedX and
other works by optimizing the source selection. We are actually using FedX as
a part of our Framework for answering data queries because, as we stated in
section 2, managing data queries is out of the scope of our work in this paper.

Service Discovery. Our context of service discovery involves exclusively the
semantic web services. SWS discovery is the topic of interest of many recent
works and benchmarks as shown in the survey[9]. The SWS discovery approaches
are either semantically based, textual based or hybrid based. The first ones are
the most relevant for our context because we operate on linked data which
is meant to be properly described and linked. Among the recent works, [10]
introduces a repository filtering using SPARQL queries to be used on top of
the existing hybrid discovery approaches. However, in our context, SPARQL
queries are sufficient for performing a service discovery in SWS repositories. In
addition, [10] and the other existing approaches need a service request to operate,
in contrast to our work in which service requests are implicit in a data query
and have to be extracted first.

For discovery evaluation, OWL-S-TC is the reference benchmark for SWS.
However, in our context, we need a benchmark that is based on real-world ser-
vices because we need to find services for data that exists in the LOD. Unfortu-
nately, for the moment, there are only a few SWS to consider in the real world
as stated and agreed on by many researchers [6]. However, there are some tools
such as Karma [11] that allow to wrap classical web APIs into semantic APIs
and therefore help creating new SWS on top of the APIs.

Service Composition. Similarly to service discovery, the automatic composi-
tion of SWS has been the subject of many works, surveys [12] and challenges
(WS-Challenge). In general, the automatic composition algorithms The most
recent works like [13], [7] still use A*-based algorithms to find composition plans
in an SDG graph which is mostly pre-constructed for all known services in a
repository. In our paper we use a service composition approach that is very sim-
ilar to the WSC challenge winner [7] that uses AND/OR graphs. However, we
adapted their approach to take advantage of the semantics in cost calculation
instead of using a static cost calculation (a fixed cost for all nodes).

Search of Data and Services. Our work is inspired by the work in [3] which
aims to look for services that are related to a given query based on keywords
comparison between an SQL-like query and a service ontology. This approach
uses generated semantics for services to expand the search area.

A Framework for Searching Semantic Data and Services with SPARQL 137

Another similar work in [14] called ANGIE consists of enriching the LOD
from RESTful APIs and SOAP services by discovering, composing and invoking
services to answer a user query. However, this work assumes the existence of a
global schema for both data and services which is not the case in the LOD. This
assumption makes ANGIE domain specific and not suitable for general purpose
queries.

Some recent works could complement our work such as [15] which proposes
an approach that uses Karma[11] to integrate linked data on-the-fly from static
and dynamic sources and to manage the data updates.

7 Conclusion and Perspectives

In this paper we presented a framework for finding data and relevant services
in the LOD using a unique SPARQL query. Our framework helps the user to
find services that he could exploit to construct mashups or to complement the
data found in materialized knowledge bases. We implemented the proposed al-
gorithms and we are evaluating them in terms of efficiency and quality. We plan
to enrich the framework by storing and exploiting user actions (selected services
and compositions for a given data query) in order to improve the efficiency of
the algorithm and the relevance of the retrieved services.

Regarding the previously mentioned issue of lacking real-world SWS,
Karma[11] or SmartLink[16] can be used to provide our experiments with SWS
from real-world APIs. We plan to use such tools in the future to extend our
experiments and have a clear measure of its effectiveness.

References

1. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: Optimization
techniques for federated query processing on linked data. In: Aroyo, L., Welty, C.,
Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC
2011, Part I. LNCS, vol. 7031, pp. 601–616. Springer, Heidelberg (2011)

2. Speiser, S., Harth, A.: Integrating linked data and services with linked data ser-
vices. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D.,
De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 170–184.
Springer, Heidelberg (2011)

3. Palmonari, M., Sala, A., Maurino, A., Guerra, F., Pasi, G., Frisoni, G.: Aggregated
search of data and services. Information Systems 36(2), 134–150 (2011)

4. Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. Intl. journal on
semantic web and information systems 5(3), 1–22 (2009)

5. Kopecky, J., Gomadam, K., Vitvar, T.: hrests: An html microformat for describing
restful web services. In: IEEE/WIC/ACM Intl. Conf. on. Web Intelligence and
Intelligent Agent Technology, WI-IAT 2008, vol. 1, pp. 619–625. IEEE (2008)

6. Blthoff, F., Maleshkova, M.: Restful or restless - current state of today’s top web
apis. In: 11th ESWC 2014 (ESWC 2014) (May 2014)

7. Yan, Y., Xu, B., Gu, Z.: Automatic service composition using and/or graph. In:
2008 10th IEEE Conf. on E-Commerce Technology and the Fifth IEEE Conf. on
Enterprise Computing, E-Commerce and E-Services, pp. 335–338. IEEE (2008)

138 M.L. Mouhoub, D. Grigori, and M. Manouvrier

8. Saleem, M., Ngonga Ngomo, A.-C.: HiBISCuS: Hypergraph-based source selec-
tion for SPARQL endpoint federation. In: Presutti, V., d’Amato, C., Gandon,
F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp.
176–191. Springer, Heidelberg (2014)

9. Ngan, L.D., Kanagasabai, R.: Semantic web service discovery: state-of-the-art and
research challenges. Personal and ubiquitous computing 17(8), 1741–1752 (2013)

10. Garćıa, J.M., Ruiz, D., Ruiz-Cortés, A.: Improving semantic web services discov-
ery using sparql-based repository filtering. Web Semantics: Science, Services and
Agents on the World Wide Web 17, 12–24 (2012)

11. Taheriyan, M., Knoblock, C.A., Szekely, P., Ambite, J.L.: Rapidly integrating ser-
vices into the linked data cloud. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012,
Part I. LNCS, vol. 7649, pp. 559–574. Springer, Heidelberg (2012)

12. Syu, Y., Ma, S.P., Kuo, J.Y., FanJiang, Y.Y.: A survey on automated service
composition methods and related techniques. In: 2012 IEEE Ninth Intl. Conf. on.
Services Computing (SCC), pp. 290–297 (June 2012)

13. Rodriguez-Mier, P., Mucientes, M., Vidal, J.C., Lama, M.: An optimal and com-
plete algorithm for automatic web service composition. Intl. Journal of Web Ser-
vices Research (IJWSR) 9(2), 1–20 (2012)

14. Preda, N., Suchanek, F.M., Kasneci, G., Neumann, T., Ramanath, M., Weikum,
G.: Angie: Active knowledge for interactive exploration. Proc. of the VLDB En-
dowment 2(2), 1570–1573 (2009)

15. Harth, A., Knoblock, C.A., Stadtmüller, S., Studer, R., Szekely, P.: On-the-fly inte-
gration of static and dynamic sources. In: Proceedings of the Fourth International
Workshop on Consuming Linked Data (COLD 2013) (2013)

16. Dietze, S., Yu, H.Q., Pedrinaci, C., Liu, D., Domingue, J.: SmartLink: A web-based
editor and search environment for linked services. In: Antoniou, G., Grobelnik, M.,
Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC
2011, Part II. LNCS, vol. 6644, pp. 436–440. Springer, Heidelberg (2011)

Conformance for DecSerFlow Constraints�

Yutian Sun and Jianwen Su

Department of Computer Science, U C Santa Barbara, USA
{sun,sun}@cs.ucsb.edu

Abstract. DecSerFlow is a declarative language to specify business processes. It
consists of a set of temporal predicates that can be translated into LTL but limited
to finite sequences. This paper focuses on the “conformance problem”: Given
a set of DecSerFlow constraints, is there an execution sequence that satisfies
all given constraints? This paper provides syntactic characterizations of confor-
mance for several subclasses of DecSerFlow constraints. These characterizations
directly lead to efficient (polynomial time) conformance testing. Furthermore, al-
gorithms are developed to generate conforming strings if the set of constraints is
conformable. A conformance analyzer is developed based on the syntactic char-
acterizations and the string generating algorithms. Experiments reveal several in-
teresting factors concerning performance and scalability.

1 Introduction

Enterprises rely on business processes to accomplish business goals (handling a loan
application, etc.) Business process models are either imperative or declarative [12].
Imperative models typically employ graphs (e.g., automata, Petri Nets) to depict how a
process should progress. Declarative models are usually based on constraints [2], they
are flexible and easy to change during design time or runtime [18]. A practical problem
is whether a given set of constraints allows at least one execution. It is fundamental in
business process modeling to test satisfiability of a given set of constraints.

A process execution is a (finite) sequence of activities through time. The declarative
language DecSerFlow [2] uses a set of temporal predicates as a process specification,
The DECLARE system [11] supports design and execution of DecSerFlow processes.
In [14] an orchestrator for a declarative business process called REFlex was developed,
where a subset of DecSerFlow can be expressed by REFlex. In this paper, we study
the following conformance problem: does there exist an execution that satisfies a given
DecSerFlow specification? Clearly efficient conformance testing provides an effective
and efficient help to the user of DECLARE and the scheduler of [14]. Temporal predi-
cates in DecSerFlow can be translated into linear temporal logic (LTL) [13] but limited
to finite sequences. A naive approach to conformance checking is to construct automata
representing individual constraints and determine if their cross product accepts a string.
Complexity of this approach is exponential in the number of given constraints. This
paper aims at efficient comformance checking.

Most DecSerFlow constraints can be categorized into two directions: “response”
(Res), which specifies that an activity should happen in the future, and “precedence”

� Supported in part by a grant from Bosch.

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 139–153, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

140 Y. Sun and J. Su

(Pre), which specifies that an activity should happen in the past. For each direction,
there are three types of constraints: (1) An ordering constraint Res(a, b) (or Pre(a, b))
for activities a and b specifies that if a occurs, then b should occur in the future (resp.
past). As a practical example of a loan application, if activity “loan approval” hap-
pens, then in the past a “credit check” activity should have happened. (2) An alternating
constraint aRes(a, b) (or aPre(a, b)) specifies that each occurrence of a implies a fu-
ture (resp. past) occurrence of b but before (resp. after) the occurrence of b, a cannot
occur again (i.e., between two occurrences of a, there should exist an occurrence of
b). As an example, if a “house evaluation request” activity happens, a “house evalua-
tion feedback” activity should happen in the future and before receiving the feedback,
the applicant cannot submit another evaluation request, i.e., “request” and “feedback”
should alternate. (3) An immediate constraint iRes(a, b) (or iPre(a, b)) restricts that if a
occurs, then b should immediately follow (resp. occur before). In addition to “response”
and “precedence” constraints, there is a special type of “existence” constraints that only
require occurrences in any order. An existence constraint Exi(a, b) restricts that if a
occurs, then b should occur either earlier or later. In practice, a common existence con-
straint can be that a guest can either choose to pay the hotel expense online then check
in, or check in first and pay the expense later, i.e., Exi(“check in”, “payment”).

In addition to temporal constraints, there may be cardinality requirements on each
activity, i.e., an activity should occur at least once. For example, in an online order
process, “payment” activity is always required to occur; while “shipping” is not (a cus-
tomers may pick up the ordered items in a store).

The contributions of this paper are the following: We present a reduction from gen-
eral DecSerFlow to DecSerFlow “Core” with no existence constraints nor cardinality
requirements (Theorem 2.3). For DecSerFlow Core, we formulate syntactic characteri-
zations (sufficient and necessary for conformance) for constraints involving (1) order-
ing and immediate constraints (Theorem 3.5), (2) ordering and alternating constraints
(Theorem 3.9), (3) alternating and immediate constraints (Theorem 3.20), or (4) only
precedence (or only response) constraints (Theorem 3.23). For the general case, it re-
mains open whether syntactic characterizations exist. Algorithms are also developed
to generate conforming strings when the schema is conformable. Finally, we designed
and implemented a conformance analyzer and our experimental evaluation shows that
(1) the syntactic condition approach is polynomially scalable (in time) comparing with
the exponential-time naive approach using automata, (2) the time complexity of con-
forming string generation varies from polynomial to exponential complexity, and (3)
the increasing number of constraints will increase the time needed of the automata ap-
proach exponentially more than the time needed by the syntactic condition approach.

The remainder of the paper is organized as follows. Section 2 defines DecSerFlow
constraints studied in this paper. Section 3 focuses on different combinations of con-
straints together with their conformance checking and conforming string generation.
A conformance checker is developed and evaluated in Section 4. Related work and
conclusions are provided in Sections 5 and 6, resp. Detailed proofs, some examples,
algorithms, and formal definitions are omitted due to space limitation.

Conformance for DecSerFlow Constraints 141

2 DecSerFlow Constraints

In this section we introduce DecSerFlow constraints, define the conformance problem,
state a straightforward result, and present a reduction to the case of “core” constraints.

LetA be an infinite set of activities, N the set of natural numbers, and A ⊆ A a finite
subset of A. A string over A (or A) is a finite sequence of 0 or more activities in A
(resp.A). A∗ (A∗) the set of all strings over A (resp.A).

A subsequence of a1a2...an is a string ak1ak2 ...akm , where (1) m ∈ N and m � 1, (2)
ki ∈ [1..n] for each i ∈ [1..m], and (3) ki < ki+1 for each i ∈ [1..(m−1)]; a substring is a
subsequence ak1 ak2 ...akm where for each i ∈ [1..(m−1)], ki+1 = ki + 1.

Let A⊆A, a, b ∈A. A (sequence) constraint on a, b is a constraint shown in Fig. 1.

Response Precedence

Ordering
Res(a, b): each occurrence of a is
followed by an occurrence of b

Pre(a, b): each occurrence of a is
preceded by an occurrence of b

Alternating
aRes(a, b): in addition to Res(a, b),
a and b alternate

aPre(a, b): in addition to Pre(a, b),
a and b alternate

Immediate
iRes(a, b): each occurrence of a is imme-
diately followed by an occurrence of b

iPre(a, b): each occurrence of a is imme-
diately preceded by an occurrence of b

Existence Exi(a, b): each occurrence of a implies an occurrence of b

Fig. 1. Summary of Constraints

For ordering precedence constraint Pre(a, b), if “a” occurs in a string, then before
“a”, there must exist a “b”, and between this “b” and “a”, all activities are allowed to
occur. Similarly, for alternating response constraint aRes(a, b), after an occurrence of
“a”, no other a’s can occur until a “b” occurs. For immediate precedence constraint
iPre(a, b), a “b” should occur immediately before “a”. The existence constraints have
no restrictions on temporal orders. Given a constraint c and a string s, denote s |= c if s
satisfies c, for example, s |= Res(a, b), if s = abcadb.

Definition 2.1. A (DecSerFlow) schema is a triple S = (A,C, κ) where A ⊆ A is a finite
set of activities, C a finite set of constraints on activities in A, and κ is a total mapping
from A to {0, 1}, called cardinality, to denote that an activity a ∈ A should occur at least
once (if κ(a) = 1) or no occurrence requirement (if κ(a) = 0).

Definition 2.2. A finite string s over A conforms to schema S = (A,C, κ) if s satisfies
every constraint in C and for each activity a ∈ A, s should contain a for at least κ(a)
times. If a string s conforms to S , s is a conforming string of S and S is conformable.

Conformance Problem: Given a schema S , is S conformable?

A naive approach to solve the conformance problem is to construct an automaton A
for each given constraint c (and each cardinality requirement r, i.e., an actvitiy occurring
at least 0 or 1 times), such that A can accept all strings that satisfy c (resp. accept all
strings that satisfy r) and reject all other strings. Then the conformance problem is
reduced to checking if the cross product of all constructed automata accepts a string.

However, the automata approach yields to exponential complexity in the size of the
input schema. Our goal is to find syntactic conditions to determine conformity that lead
to polynomial complexity.

142 Y. Sun and J. Su

For notation convenience, given a DecSerFlow schema S = (A,C, κ), if for each a ∈
A, κ(a) = 1, we simply use (A,C) to denote S .

Theorem 2.3. Given S = (A,C, κ) as a schema, there exists a schema S ′ = (A′,C′) such
that S is conformable iff S ′ is conformable.

Theorem 2.3 shows that conformance of arbitrary schemas can be reduced to con-
formance of schemas where each activity occurs at least once. If each activity in a
given schema occurs at least once, the existence constraints are redundant. In the re-
mainder of this paper, we only focus on schemas with core constraints, i.e., from set
{Res,Pre, aRes, aPre, iRes, iPre} and that each activity occurs at least once.

3 Characterizations for Conformance

3.1 Ordering and Immediate Constraints

This subsection focuses on syntactic characterizations of conformable schemas that
only contain ordering and/or immediate constraints.

For each schema S = (A,C), we construct the causality graph GS of S as a labeled
graph (A, Eor

�, E
or
�, E

al
�, E

al
�, E

im
� , E

im
�) with the vertex set A and six edge sets where Ex

�
(Ex

�) corresponds to response (resp. precedence) constraints of ordering (x= ‘or’), alter-
nating (x= ‘al’), or immediate (x= ‘im’) flavor. Specifically, for all a, b ∈ A, (a, b) ∈ Eor

�
iff Res(a, b) is in C, (a, b) ∈ Eal

� iff aPre(a, b) ∈ C, (a, b) ∈ Eim
� iff iRes(a, b) ∈ C, and

the other three cases are similar.
Given a causality graph (A, Eor

�, E
or
�, E

al
�, E

al
�, E

im
� , E

im
�), if an edge set is empty, we

will conveniently omit it; for example, if Eim
� = Eim

� = ∅, we write the causality graph
simply as (A, Eor

�, E
or
�, E

al
�, E

al
�).

For technical development, we review some well-known graph notions. Given a (di-
rected) graph (V, E) with vertex set V and edge set E ⊆V ×V , a path is a sequence
v1v2...vn where n> 1, for each i ∈ [1..n], vi ∈ V , and for each i ∈ [1..(n−1)], (vi, vi+1) ∈ E;
n is the length of the path v1...vn. A path v1...vn is simple if vi’s are pairwise distinct ex-
cept that v1, vn may be the same node. A (simple) cycle is a (resp. simple) path v1...vn

where v1 = vn. A graph is cyclic if it contains a cycle, acyclic otherwise. Given an
acyclic graph (V, E), a topological order of (V, E) is an enumeration of V such that
for each (u, v) ∈E, u precedes v in the enumeration. A subgraph (V ′, E′) of (V, E) is a
graph, such that V ′ ⊆V and E′ ⊆ E ∩ (V ′×V ′). A graph is strongly connected if there
is a path from each node in the graph to each other node. Given a graph G = (V, E)
and a set V ′ ⊆V , the projection of G on V ′, πV ′G, is a subgraph (V ′, E′) of G where
E′ =E ∩ (V ′×V ′). A strongly connected component (V ′, E′) of a graph G = (V, E) is a
strongly connected subgraph G′ = (V ′, E′) of G, such that (1) G′ = πV ′G, and (2) for
each v ∈V −V ′, πV ′∪{v}G is not strongly connected.

To obtain the syntactic conditions for deciding the conformance of ordering and
immediate constraints, we first present a pre-processing upon a given schema, such
that the given schema is conformable if and only if the pre-processed the schema is
conformable, and then show the syntactic conditions upon the pre-processed schemas.

Lemma 3.1. Given a schema S = (A,C) and its causality graph (A, Eor
�, E

or
�, E

al
�, E

al
�,

Eim
� , E

im
�), for each (u, v) ∈Eim

� ∪ Eim
� , if there exists w ∈ A − {u}, such that (v,w) ∈ Eor

�
(or Eor

�), then for each conforming string s of S , s satisfies Pre(u,w) (resp. Res(u,w)).

Conformance for DecSerFlow Constraints 143

Lemma 3.1 is straightforward. Based on Lemma 3.1, we define the following pre-
processing given a schema.

Definition 3.2. Given a schema S = (A,C), the immediate-plus (or im+) schema of S
is a schema (A,C′) constructed as follows: 1. Initially C′ =C. 2. Repeat the following
steps while C′ is changed: for each distinct u, v,w ∈A, if (1) iPre(u, v) or iRes(u, v) is in
C′ and (2) Pre(v,w) ∈C′ (or Res(v,w) ∈C′), then add Pre(u,w) (resp. Res(u,w)) to C′.

Example 3.3. A schema S has 3 activities, a, b, c, and 4 constraints iRes(a, c), iRes(b,
c), Pre(c, a), and Pre(c, b). Let S ′ be the im+schema of S . According to the definition
of im+schema, in addition to the constraints in S , S ′ also contains constraints: Pre(a, b)
(which is obtained from iRes(a, c) and Pre(c, b)) and Pre(b, a).

It is easy to see that for each given schema, its corresponding im+schema is unique.
The following is a consequence of Lemma 3.1.

Corollary 3.4. A schema is conformable iff its im+schema is conformable.

For reading convenience, we introduce the following notations: let x, y, z be one of
‘or’, ‘al’, ‘im’; we denote Ex

� ∪ Ey
� as Ex∪ y

� and use similar notations Ex∪ y
� or Ex∪ y∪ z

� .

Theorem 3.5. Given a schema S = (A,C) where C contains only ordering and imme-
diate constraints, the im+schema S ′ of S , and the causality graph (A, Eor

�, E
or
�, E

im
� , E

im
�)

of S ′, S is conformable iff the following conditions all hold.

(1). (A, Eor∪ im
�) and (A, Eor∪ im

�) are both acyclic,
(2). for each (u, v) ∈Eim

� (or Eim
�), there does not exist w ∈ A such that w� u and (v,w) ∈

Eim
� (resp. Eim

�), and
(3). for each (u, v) ∈Eim

� (or Eim
�), there does not exist w ∈ A such that w� v and (u,w) ∈

Eim
� (resp. Eim

�).

In Theorem 3.5, Condition (1) restricts that the response or precedence direction does
not form a loop (a loop of the same direction can lead to infinite execution). Conditions
(2) and (3) similarly restrict that the immediate constraints are consistent. For example,
it is impossible to satisfy constraints iRes(a, b) and iRes(a, c), where a, b, c are activities.

Example 3.6 shows the importance of “pre-processing” to obtain im+schemas.

Example 3.6. Let S and S ′ be as stated in Example 3.3. Note that S satisfies all condi-
tions in Theorem 3.5. However, S ′ does not, since Pre(a, b) and Pre(b, a) form a cycle in
Eor∪ im
� , which leads to non-conformability of S . Therefore, a pre-processing to obtain

an im+is necessary when determining conformability.

Given a conformable schema that contains only ordering and immediate constraints,
one question to ask is how to generate a conforming string. To solve this problem, we
first introduce a (data) structure, which is also used in the later sections.

For a schema S = (A,C), let πim(S)= (A,C′) be a schema where C′ is the set of all
immediate constraints in C. The notation πim(S) holds the projection of S on immediate
constraints. Similarly, let πal(S) be the projection of S on alternating constraints.

Given a schema S = (A,C), if πim(S) satisfies the conditions stated in Theorem 3.5,
then for each activity a ∈ A, denote S̄im(a) as a string constructed iteratively as follows:

144 Y. Sun and J. Su

(i) S̄im(a)=a initially, (ii) for the leftmost (or rightmost) activity u of S̄im(a), if there
exists v ∈ A such that iPre(u, v) ∈C (resp. iRes(u, v) ∈C), then update S̄im(a) to be vS̄im(a)
(resp. S̄im(a)v), i.e., prepend (resp. append) S̄im(a) with v, and (iii) repeat step (ii) until
no more changes can be made. For each a ∈ A, it is easy to see that S̄im(a) is unique and
is finite. Let Sim(a) be the set of activities that occur in S̄im(a).

Alg. 1 shows the procedure to create a conforming string given a schema with only
ordering and immediate constraints. The main idea of Alg. 1 relies on a topological
order of both the “precedence” and “response” directions (to satisfy the ordering con-
straints); then replace each activity a by S̄im(a) (to satisfy the immediate constraints).

Algorithm 1.

Input: A causality graph (A, Eor
�, E

or
�, E

im
� , E

im
�) of an im+schema of a schema S that

satisfies all conditions in Theorem 3.5
Output: A finite string that conforms to S

A. Let “a1a2...an” and “b1b2...bn” be topological sequences of (A, Eor∪ im
�) and

(A, Eor∪ im
�), resp.

B. Return the string “S̄im(bn)...S̄im(b1)S̄im(a1)...S̄im(an)”.

3.2 Ordering and Alternating Constraints

This subsection focuses on syntactic conditions for conformance of schemas that con-
tain ordering and alternating constraints.

We begin with defining “pre-processing” for schemas such that the original schema
is conformable if and only if the schema after the pre-processing also is. The pre-
processing will also be used in the next subsection.

Definition 3.7. Given a schema S = (A,C) and its causality graph (A, Eor
�, E

or
�, E

al
�, E

al
�,

Eim
� , E

im
�), the alternating-plus (or al+) schema of S is a schema (A,C′) where

C′ = C ∪ {aPre(v, u) | (u, v) ∈Eal
�, u and v are on a common cycle in (A, Eal

� ∪ Eal
�)}

∪ {aRes(v, u) | (u, v) ∈Eal
�, u and v are on a common cycle in (A, Eal

�∪ Eal
�)}

It is easy to see that for each given schema, its corresponding al+schema is unique.

Lemma 3.8. A schema is conformable iff its al+schema is conformable.

Theorem 3.9. Given a schema S that only contains ordering and alternating constraints,
let S ′ = (A,C) be the al+schema of S and (A, Eor

�, E
or
�, E

al
�, E

al
�) the causality graph of

S ′. S is conformable iff both (A, Eor∪ al
�) and (A, Eor∪ al

�) are acyclic.

Example 3.10. Consider a schema with 5 activities, a, b, c, d, e, and constraints in the
form of a graph (A, Eor∪ al

� ∪ Eor∪ al
�) as shown in Fig. 2, where the edge labels denote

constraint types. Note that its al+schema is itself. The conditions in Theorem 3.9 are
satisfied, thus the schema is conformable. A conforming string is dcebadce. If we add
the constraint aPre(d, b) into the schema, it is no longer conformable since bcd forms a
cycle in (A, Eor∪ al

�), forcing the subsequence bcd to occur infinitely many times.

Conformance for DecSerFlow Constraints 145

eba cd
Res

Res PreaRes aRes

aPre

Fig. 2. An al+schema example

Alg. 2 presents the procedure to construct a
conforming string given a conformable schema
that contains only ordering and alternating con-
straints. A key step of the Alg. 2 is to first create
a topological order of precedence constraints and that of response constraints, then for
each violated alternating constraint, insert a string to fix the violation.

Algorithm 2.

Input: The causality graph (A, Eor
�, E

or
�, E

al
�, E

al
�) of an al+schema S satisfying condi-

tions of Theorem 3.9
Output: A string that conforms to S

A. Let s� = a1a2...an be a topological order of (A, Eor∪ al
�) and s� = bnbn−1...b1 a re-

versed topological order of (A, Eor∪ al
�).

B. For each a ∈A, define R(a) as the set of nodes in A reachable from a through
edges in Eal

� ∪ Eal
� (i.e., each b ∈ R(a) is either a itself or reachable from a in

(A, Eal
� ∪ Eal

�)), and denote R̄�(a) and R̄�(a) the two enumerations of R(a) such
that R̄�(a) and R̄�(a) are subsequences of s� and s�, resp.

C. Let Vns ⊆C be the set of alternating constraints that are not satisfied by s�s�,
and Ens ⊆Vns ×Vns such that an edge (X(a, b), Y(c, d)) is in Ens iff c ∈ R(b), where
X, Y ∈ {aRes, aPre} and a, b, c, d ∈ A. Denote v̄ns to be a topological order of
(Vns, Ens). (It can be shown that (Vns, Ens) is acyclic)

D. For each edge aRes(u, v) (or aPre(u, v)) in Vns in the order of v̄ns, let s� = s�R̄�(v)
(resp. s� = R̄�(v)s�).

E. Return s�s�.

3.3 Immediate and Alternating Constraints

Before discussing conformity for schemas with alternating and immediate constraints,
we define a “pre-processing” for the given al+schema such that the original al+schema
is conformable if and only if after the pre-processing, the schema is conformable.

Lemma 3.11. Given an al+schema S = (A,C) that only contains alternating and im-
mediate constraints, the causality graph (A, Eal

�, E
al
�, E

im
� , E

im
�) of S , and two activities

u, v ∈ A such that there is a path from v to u in the graph (A, Eal∪ im
� ∪ Eal∪ im

�), then
(1) iRes(u, v) ∈C implies if a string s satisfies iRes(u, v), then s |= iPre(v, u), and (2)
iPre(u, v) ∈C implies if a string s satisfies iPre(u, v), then s |= iRes(v, u)

Let u and v be as stated in Lemma 3.11. Note that if u and v satisfy the condition
in the lemma, u and v will always “occur together” in a conforming string as if they
were one activity. With such an observation, we can then pre-process a given schema
by “collapsing” such nodes according to in Lemma 3.11. However, two nodes satisfying
Lemma 3.11 does not necessarily mean they are “safe” to be collapsed. For example, if
nodes u and v in some schema are eligible to be combined based on Lemma 3.11 and
there is a node w in the same schema that has constraint iRes(w, u). The collapsing of u
and v implies that iRes(w, v) is also a constraint that should be satisfied. According to
Theorem 3.5, the schema is not satisfiable. Thus, in the following definition, we define
when two nodes are “safe” to collapse (i.e., “collapsable”).

146 Y. Sun and J. Su

Definition 3.12. Given an al+schema S = (A,C) that contains only alternating and im-
mediate constraints, and its causality graph (A, Eal

�, E
al
�, E

im
� , E

im
�), S is collapsable if S

satisfies all of the following.

(1). (A, Eal∪ im
�) and (A, Eal∪ im

�) are acyclic,
(2). for each (u, v) ∈Eim

� (or Eim
�), there does not exist w ∈ A such that w� u and (v,w) ∈

Eim
� (resp. Eim

�),
(3). for each (u, v) ∈Eim

� (or Eim
�), there does not exist w ∈ A such that w� v and (u,w) ∈

Eim
� (resp. Eim

�), and
(4). for each distinct u, v,w ∈A, if (u,w), (v,w) ∈Eim

� or (u,w), (v,w) ∈Eim
� , then there

is no path from w to either u or v in graph (A, Eal∪ im
� ∪ Eal∪ im

�).

u1 u2 u3

e
b

a

c

d
aPre

aRes iPre
f

Fig. 3. A collapsed schema example

Note that Conditions (1)–(3) in the
above definition are similar to the char-
acterization stated in Theorem 3.5.

Example 3.13. Consider an al+schema
with activities a, b, c, d, e, f , and con-
straints shown in Fig. 3 as (A, Eal∪ im

�
∪ Eal∪ im

�) where the edge labels denote
types of constraints. (Ignore the dashed boxes labeled u1, u2, u3 for now.) The schema
is collapsable. However, if constraint iPre(a, c) is added to the schema, Condition (4)
(in the collapsability definition) is violated and thus the new schema is not collapsable,
since (f , c), (a, c) ∈Eim

� and there is a path cda from c to a in (A, Eal∪ im
� ∪ Eal∪ im

�).

Definition 3.14. Given a collapsable schema S = (A,C) with only alternating and im-
mediate constraints, the collapsed schema of S is a schema (A′,C′) constructed as
follows:

1. Initially A′ = A and C′ = C.
2. Repeat the following steps while (A′,C′) is changed:

i. Let (A′, Eal
�, E

al
�, E

im
� , E

im
�) be the corresponding causality graph of (A′,C′).

ii. for each u, v ∈ A on a common cycle in (A, Eal∪ im
� ∪ Eal∪ im

�), If (u, v) ∈ Eim
� or

Eim
� , then (1) remove each X(u, v) or X(v, u) from C′, where X ranges over aRes,

aPre, iRes, and iPre. (2) Create node wuv; let A′ := A′ − {u, v} ∪ {wuv}, and (3)
replace each u and v in C′ by wuv.

It is easy to show that given a collapsable al+schema, the corresponding collapsed
schema is unique. The following lemma (Lemma 3.15) is easy to verify.

Lemma 3.15. Given a collapsable al+schema S with only alternating and immediate
constraints, S is conformable iff its collapsed schema is conformable.

By Corollaries 3.8 and 3.15, conformance checking of a schema that only contains
alternating and immediate constraints can be reduced to the checking of its collapsed
version. Thus, in the remainder of this subsection, we focus on collapsed schemas.

In order to have a clean statement of the necessary and sufficient condition, we in-
troduce a concept of “gap-free”. Essentially, “gap-free” is to deal with a special case of
a schema illustrated in the following Example 3.16.

Conformance for DecSerFlow Constraints 147

Example 3.16. Continue with Example 3.13; note that the schema in Fig. 3 is a col-
lapsed schema. Consider a schema S u2 that only contains activities a, b, and f , together
with the constraints among them shown in Fig. 3 (i.e., a “subschema” bounded by the
dashed box labeled as “u2”). Based on Theorem 3.9, S u2 is conformable and a con-
forming string is ba f . Now consider a schema S u1,2 that only contains activities e, a, b,
and f , together with the constraints among them shown in Fig. 3 (i.e., a “subschema”
bounded by the dashed boxes labeled as “u1” and “u2” together with the constraints
crossing u1 and u2). Due to constraints iRes(e, b) and iPre(e, f), if S u1,2 is conformable,
then each conforming string of S u1,2 must contain substring “ f eb”. This requirement
leads to some restriction upon schema S u2 , i.e., if we take out activity “e” from S u1,2

and focus on schema S u2 again, one restriction would be: is there a conforming string
of S u2 that contains a substring f b? If the answer is negative, then apparently, S u1,2 is
not conformable, since no substring f eb can be formed.

With the concern shown in Example 3.16, we need a checking mechanism to de-
cide if two activities can occur as a substring (i.e., “gap-free”) in some conforming
string. More specifically, given (A, Eal

�, E
al
�, E

im
� , E

im
�) as a causality graph of a collapsed

schema S , we are more interested in checking if two activities that in the same strongly
connected component in (A, Eal

� ∪ Eal
�) can form a substring in a conforming string of

S . Note that in Example 3.16, activities a, b, and f are in the same strongly connected
component labeled with u2 in (A, Eal

� ∪ Eal
�).

Definition 3.17. Let S = (A,C) be a schema that only contains alternating constraints
and (A, Eal

�, E
al
�) the causality graph of S , such that (A, Eal

�∪Eal
�) is strongly connected.

Given two distinct activities u, v ∈ A, u, v are gap-free (wrt S) if for each w, x, y ∈ A,
the following conditions should all hold wrt graph (A, Eal

�):

(a). if there is a path p with length greater than 2 from u to v, the following all hold:
(i). if w is on p, then (u, v) � Eal

�,
(ii). if there is a path from x to u, then (x, v) � Eal

�,
(iii). if there is a path from v to y, then (u, y) � Eal

�,
(iv). if there are paths from x to u and v to y, and then (x, y) � Eal

�, and
(b). if there is a path from v to u, then the following all hold:

(i). if there is a path from x to v, then (x, u) � Eal
�,

(ii). if there is a path from u to y, then (v, y) � Eal
�, and

(iii). if there are paths from x to v and u to y, then (x, y) � Eal
�.

Lemma 3.18. Given a conformable al+schema S = (A,C) that only contains alternating
constraints, the causality graph (A, Eal

�, E
al
�) of S , such that (A, Eal

�∪Eal
�) is strongly con-

nected, and two activities u, v ∈ A, “uv” can appear as a substring in some a conforming
string of S iff u, v are gap-free wrt S .

Given a graph G = (V, E), for each v ∈ V , denote SV(v) to be the set of all the nodes
in the strongly connected component of G that contains v.

Let (A,C) be a collapsed schema and (A, Eal
�, E

al
�, E

im
� , E

im
�) its causality graph. Con-

sider graph (A, Eal
�∪Eal

�∪Eim
� ∪Eim

�); given an activity a ∈ A, denote S (a) to be a schema
defined as (SV(a), {aRes(u, v) | (u, v) ∈ Eal

� ∧ SV(a)= SV(u)= SV(v)} ∪ {aPre(u, v) |
(u, v) ∈ Eal

� ∧ SV(a)= SV(u)= SV(v)}).

148 Y. Sun and J. Su

Example 3.19. Continue with Example 3.13; consider the schema in Fig. 3. Note that
the schema is a collapsed schema. SV(a)= SV(b)= SV(f) is the strongly connected com-
ponent of the graph in Fig. 3 with nodes a, b, and f . Moreover, S (a) = S (b)=S (f) is
a schema that only contains activities a, b, and f , together with the constraints among
them in Fig. 3.

The following Theorem 3.20 provides a necessary and sufficient condition for con-
formability of schema with only alternating and immediate constraints.

Theorem 3.20. Given a schema S that only contains alternating and immediate con-
straints, S is conformable iff the following conditions all hold.

(1). S is collapsable,
(2). πal(S̃) is conformable (recall that πal denotes the “projection” only upon alternating

constraints), where S̃ is the collapsed schema of S , and
(3). Let (A, Eal

�, E
al
�, E

im
� , E

im
�) be the causality graph of the collapsed schema S̃ , for

each u, v,w ∈ A, if there is a path from u to w in (A, Eim
�), there is a path from u to v

in (A, Eim
�), and SV(w) = SV(v) wrt (A, Eal∪ im

� ∪Eal∪ im
�), then either (1) v, w are gap-

free wrt S (v) if v � w, or (2) v has no outgoing edge in graph (A, Eal∪ im
� ∪ Eal∪ im

�)
if v = w.

Example 3.21. Continue with Example 3.19; consider the schema in Fig. 3. The schema
satisfies the conditions in Theorem 3.20 and is conformable. A conforming string can
be bdac f ebdac f .

Similar to the previous combinations of constraints, given a schema with only order-
ing and alternating constraints, an algorithm to construct a conforming string is desired.
In this case, the algorithm is rather complicated and thus omitted The main idea is that
(1) for each activity a, construct a string that satisfies each constraint “related” to a
as well as each alternating constraint with in a strongly connected component, and (2)
hierarchically link these constructed strings together. In this paper, we only provide an
example of the algorithm.

Example 3.22. Consider the schema shown in Fig. 3. We first construct a string for ac-
tivity e starting with base S̄im(e) = c f eb, where f and b are both in strongly connected
component u2; while c is in u3. According to the property of gap-free for f and b,
there must exist a string that satisfies every constraint in u2 and has f b as a substring;
a possible string could be: s1 = ba f ba f . Similarly, string s2 = dc satisfies every con-
straint in u3 and has c as a substring; then we “glue” the underline parts of s1 and s2 to
each end of S̄im(e) and have badc f eba f . Note that this string satisfies every immediate
constraint containing e and every alternating constraint within u1, u2, and u3. Further,
as there is an alternating precedence constraint from e to b, to satisfy that, we “glue”
the topological order of u2 before badc f eba f , and have ŝ(e) = ba f badc f eba f . Note
that ŝ(e) satisfies every constraint containing e and every alternating constraint within
u1, u2, and u3. In general, for each activity, a string ŝ(∗) is constructed. For example
ŝ(b) = b and ŝ(a) = dca.

The second step is to link these ŝ(∗) strings together. The way to link them is first
constructing a topological order of all the strongly connected components. For example

Conformance for DecSerFlow Constraints 149

in Fig. 3, a topological order is u1u2u3. And within each strongly connected component,
the order of activities can be arbitrary, for example eba f cd. Then, based on the order
eba f cd, we first replace each b that occurs in the under line parts in ŝ(e) by ŝ(b), and we
have ba f badc f eba f . Further, according to the topological order, we replace a that oc-
curs in the under line parts in ba f badc f eba f by ŝ(a) and have bdca f bdcadc f ebdca f .
We repeat these steps and it can be shown that the final string satisfies each constraint.

3.4 Response or Precedence Constraints

In this subsection, we study comformity of either response or precedence constraints
but not combined. The following Theorem 3.23 states the syntactic condition for con-
formity of schemas containing only response constraints or only precedence constraints.

Theorem 3.23. Given a schema S = (A,C) where C contains only response (or only
precedence) constraints, and its causality graph (A, Eor

�, E
al
�, E

im
�) (resp. (A, Eor

�, E
al
�,

Eim
�)), S is conformable iff the following conditions both hold:

(1). (A, Eor∪ al∪ im
�) (resp. Eor∪ al∪ im

�) is acyclic, and
(2). for each (u, v) ∈Eim

� (resp. Eim
�), there does not exist any w ∈ A such that w� v and

(u,w) ∈Eim
� (resp. Eim

�).

Example 3.24. Consider a schema S with 5 activities, a, b, c, d, e, and 6 constraints
iRes(a, b), iRes(c, e), iRes(e, d), aRes(b, c) Res(a, e), and Pre(b, d). Based on Theorem
3.23, S satisfies all conditions, thus conformable. A conforming string can be abced.
However, if constraint aRes(d, c) is added, S will not be conformable as the edge set
forms a cycle (violating Condition (1)).

Alg. 3 is used to construct a conforming string from an input schema that satisfies
both conditions in Theorem 3.23. The main idea is again to build a topological order
based on the causality graph and then fix each violated immediate constraint in the
string. Note that the execution of Alg. 3 replies on Theorem 3.23, where Conditions
(1) is to ensure the topological order in Step A is achievable, and Condition (2) is to
guarantee Step B1 is unique.

Algorithm 3.

Input: A causality graph (A, Eor
�, E

al
�, E

im
�) of a schema S that satisfies both conditions

in Theorem 3.23
Output: A finite string that conforms to S

A. Let string s be a topological order of (A, Eor∪ al∪ im
�). For each a ∈ A, let ŝ(a) be

the substring s[k]s[k+1]...s[len(s)] of s such that s[k] = a (clearly k ∈ [1..len(s)]). Let
i= 1.

B. While i� len(s), repeat the following step:

B1. If (s[i], v) ∈Eim
� for some v ∈ A and either i= len(s) or s[i+1] � v, then replace

s[i] in s by s[i] ŝ(v).
B2. Increment i = i + 1.

C. Return s.

150 Y. Sun and J. Su

Fig. 4. Automata vs Syn. Cond. Fig. 5. Scalability Fig. 6. Scalability (log)

4 Experimental Evaluations

In this section, several experiments are conducted to evaluate the performance of the
syntactic-condition-based conformance checking approaches. Three main types of al-
gorithms are implemented, including: (1) The naive algorithm to check DecSerFlow
conformance using automata (denoted as Chk-A), (2) the syntactic-condition-based
conformance checking algorithms for all four combinations of predicates (denoted as
Chk-Or-Im for ordering and immediate constraints, Chk-Or-Al, Chk-Al-Im, and Chk-
Sin for single direction constraints, i.e., either response or precedence), and (3) all four
conforming string generation algorithms (denoted as Gen-Or-Im, Gen-Or-Al, Gen-Al-
Im, and Gen-Sin). All algorithms are implemented in Java and executed on a com-
puter with 8G RAM and dual 1.7 GHz Intel processors. The data sets (i.e., DecSer-
Flow schemas) used in experiments are randomly generated. Schema generation uses
two parameters: number of activities (#A) and number of constraints (#C), where each
constraint is constructed by selecting a DecSerFlow predicate and two activities in a
uniform distribution. Each experiment records the time needed for an algorithm to com-
plete on an input schema. In order to collect more accurate results, each experiment is
done for 1000 times to obtain an average time result with the same #A and same #C for
schemas having #A < 200, 100 times for schemas having #A ∈ [200, 400), and 10 times
for #A ∈ [400,∞). The reason to have less times of experiments for larger #A is that it
takes minutes to hours for a single algorithm execution with large #A, which makes it
impractical to run 1000 times. We now report the findings.

The automata approach is exponentially more expensive than syntactic conditions

We compared the time needed for the automata and syntactic condition approaches on
checking the same set of schemas that contain only ordering and alternating constraints.
(For other three types of combinations of constraints, the results are similar). The input
schemas have n activities and either n, n

2 , or 2n
3 constraints, where n ranges from 4 to 28.

Fig. 4 shows the results (x-axis denotes the number of activities and y-axis denotes the
time needed in the log scale). It can be observed that for the automata approach, the time
needed is growing exponentially wrt the number of activities/constraints. For a schema
with 28 activities and 28 constraints, it takes more than 3 hours to finish the checking.
However, the syntactic condition approaches (whose complexity is polynomial) can
finish the conformance checking almost instantly. As the times needed for either n, n

2 ,
or 2n

3 constraints are all too close around 1ms, we only use one curve (instead of three)
in Fig. 4 to represent the result for the syntactic conditions approach.

Conformance for DecSerFlow Constraints 151

Fig. 7. String Generation Fig. 8. Str. Gen. / Checking Fig. 9. Changing #Constraints

The syntactic conditions approaches have at most a cubic growth rate in the size of
the input schemas
We compute the times needed for the syntactic condition approaches for input schemas
with n activities and n constraints, n between 50 and 500. Fig. 5 and 6 show the same re-
sult with normal and logarithm scales (resp.) of all four combinations of the constraints.
From the result, the complexity of the syntactic condition approach for alternating and
immediate constraints appears cubic due to the checking of Condition (4) of Definition
3.12 (collapsable); the complexity for ordering and immediate constraints is quadratic
due to the pre-processing to form an im+schema; the complexity for ordering and al-
ternating constraints is linear as the pre-processing (to form an al+schema by detecting
strongly connected components) as well as the acyclicity check of the causality graphs
are linear; finally, the complexity for the constraints of a single direction is also linear.

Conforming string generation requires polynomial to exponential times

With the same experiment setting as above, Fig. 7 shows the time to generate a conform-
ing string for a conformable schema. From the results, all string generating approaches
are polynomial except for the single direction case (i.e, either response or precedence).
According to Alg. 3, the length of a generated string can be as long as 2n, where n is
the number of activities in the given schema. Fig. 8 presents the ratios of the time to
generate a conforming string over the time to check conformance of the same schema
for conformable schemas. The results indicate that the complexity to generate a string
can be polynomially lower (ordering and immediate case), the same (alternating and
immediate case), polynomially higher (ordering and alternating case), and exponen-
tially higher (single direction case) than the corresponding complexity to check con-
formance of the same schema. Note that the curves in Fig. 8 is lower or “smaller” than
dividing “Fig. 7” by “Fig. 5” due to the reason that the data shown in Fig. 7 is only for
the conformable schemas; while the one in Fig. 5 is for general schemas, where non-
conformable schemas can be determined 5 - 15% faster than conformable ones due to
the reason that a non-comformable schema fails the checking if it does not satisfy one
of the conditions (e.g., in Theorem 3.5, there are three conditions to check); while a
comformable schema can pass the check only after all conditions are checked.

Increasing the number of constraints increases more time for the automata approach
than syntactic condition approaches

We compute the time needed for the syntactic condition approaches with input schemas
containing only ordering and immediate constraints with n activities and either n, 2n,

152 Y. Sun and J. Su

or n
2 constraints, where n ranges from 50 to 500. (For other three types of combina-

tions of constraints, the results are similar). Fig. 9 shows the three curves for n, 2n,
and n

2 constraints respectively. Comparing the similar settings shown in Fig. 4, there
does not exist an obvious growth in time when the number of constraints grow and the
curves are almost the same. The reason is that the algorithms we used to check confor-
mance and generate strings are graph-based approaches. As #C ∈ [#A

2 , 2#A], we have
O(#C) = O(#A) that can provide the same complexity. Moreover, if #C < #A

2 , there
will be activities involving in no constraint, which leads to a non-practical setting; if
#C > 2#A, almost all the randomly generated schemas will be non-confomable based
on uniform distribution.

5 Related Work

The work reported here is a part of the study on collaborative systems and choreography
languages [16]. The constraint language studied is a part of DecSerFlow [2], whose
constraints can be translated to LTL [13].

Original LTL [13] is defined for infinite sequences. [15] proved that LTL satisfiability
checking is PSPACE-Complete. A well-know result in [17] shows that LTL is equivalent
to Büchi automata; and the LTL satisfiability checking can be translated to language
emptiness checking. Several complexity results on satisfiability developed for subsets
of LTL. [5] shows that restriction to Horn formulas will not decrease the complexity of
satisfiability checking. [6] investigates the complexity of cases restricted by the use of
temporal operators, their nesting, and number of variables. [4] and [3] provide upper and
lower bounds for different combinations of both temporal and propositional operators.
[7] presents the tractability of LTL only with combination of “XOR” clauses.

For the finite semantics, [8] studies the semantics of LTL upon truncated paths. [10]
provides an exponential-time algorithm to check if a given LTL formula can be satisfied
by a given finite-state model, but the execution is still infinite.

Business process modeling has been studied variously in the last decade ([9,1]). Pre-
vious studies of declarative models focus mostly on formal verification of general prop-
erties involving data, generally, such verification problems have exponential or higher
time complexity (see [9]).

6 Conclusions

This paper studied syntactic characterization of conformance for “core” DecSerFlow
constraints that are reduced from general DecSerFlow constraints. We provided char-
acterizations for (1) ordering and immediate constraints, (2) ordering and alternating
constraints, (3) alternating and immediate constraints, and (4) ordering, alternating, and
immediate constraints with precedence (or response) direction only. The general case
for ordering, immediate, and alternating constraints with both precedence and response
directions remains as an open problem; furthermore, it is unclear if the conformance
problem for DecSerFlow constraints is in PTIME.

Conformance for DecSerFlow Constraints 153

References

1. van der Aalst, W.M.P.: Business process management demystified: A tutorial on models, sys-
tems and standards for workflow management. In: Desel, J., Reisig, W., Rozenberg, G. (eds.)
Lectures on Concurrency and Petri Nets. LNCS, vol. 3098, pp. 1–65. Springer, Heidelberg
(2004)

2. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a Truly Declarative Service Flow
Language. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184,
pp. 1–23. Springer, Heidelberg (2006)

3. Artale, A., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: The complexity of clausal
fragments of LTL. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013.
LNCS, vol. 8312, pp. 35–52. Springer, Heidelberg (2013)

4. Bauland, M., Schneider, T., Schnoor, H., Schnoor, I., Vollmer, H.: The complexity of gen-
eralized satisfiability for linear temporal logic. In: Seidl, H. (ed.) FOSSACS 2007. LNCS,
vol. 4423, pp. 48–62. Springer, Heidelberg (2007)

5. Chen, C.C., Lin, I.P.: The computational complexity of satisfiability of temporal horn formu-
las in propositional linear-time temporal logic. Inf. Proc. Lett. 45(3), 131–136 (1993)

6. Demri, S., Schnoebelen, P., Demri, S.E.: The complexity of propositional linear temporal
logics in simple cases. Information and Computation 174, 61–72 (1998)

7. Dixon, C., Fisher, M., Konev, B.: Tractable temporal reasoning. In: Proc. International Joint
Conference on Artificial Intelligence (IJCAI). AAAI Press (2007)

8. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Van Campenhout, D.: Reasoning
with temporal logic on truncated paths. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003.
LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003)

9. Hull, R., Su, J., Vaculín, R.: Data management perspectives on business process manage-
ment: tutorial overview. In: SIGMOD Conference, pp. 943–948 (2013)

10. Lichtenstein, O., Pnueli, A.: Checking that finite state concurrent programs satisfy their linear
specification. In: POPL, pp. 97–107 (1985)

11. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: Declare: Full support for loosely-
structured processes. In: EDOC, pp. 287–300 (2007)

12. Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Imperative versus
declarative process modeling languages: An empirical investigation. In: Daniel, F., Barkaoui,
K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 383–394. Springer,
Heidelberg (2012)

13. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57 (1977)
14. Silva, N.C., de Carvalho, R.M., Oliveira, C.A.L., Lima, R.M.F.: REFlex: An efficient web

service orchestrator for declarative business processes. In: Basu, S., Pautasso, C., Zhang, L.,
Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 222–236. Springer, Heidelberg (2013)

15. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics. J.
ACM 32(3), 733–749 (1985)

16. Sun, Y., Xu, W., Su, J.: Declarative choreographies for artifacts. In: Liu, C., Ludwig, H.,
Toumani, F., Yu, Q. (eds.) Service Oriented Computing. LNCS, vol. 7636, pp. 420–434.
Springer, Heidelberg (2012)

17. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification
(preliminary report). In: LICS, pp. 332–344 (1986)

18. Xu, W., Su, J., Yan, Z., Yang, J., Zhang, L.: An Artifact-Centric Approach to Dynamic
Modification of Workflow Execution. In: Meersman, R., Dillon, T., Herrero, P., Kumar, A.,
Reichert, M., Qing, L., Ooi, B.-C., Damiani, E., Schmidt, D.C., White, J., Hauswirth, M.,
Hitzler, P., Mohania, M. (eds.) OTM 2011, Part I. LNCS, vol. 7044, pp. 256–273. Springer,
Heidelberg (2011)

Integrating On-policy Reinforcement Learning

with Multi-agent Techniques for Adaptive
Service Composition

Hongbing Wang1, Xin Chen1, Qin Wu1, Qi Yu2, Zibin Zheng3,
and Athman Bouguettaya4

1 School of Computer Science and Engineering, Southeast University, China
hbw@seu.edu.cn, {cyceve,bellawu627}@gmail.com

2 College of Computing and Information Sciences, Rochester Institute of Tech, USA
qi.yu@rit.edu

3 Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong, China

zbzheng@cse.cuhk.edu.hk
4 School of Computer Science and Information Technology, RMIT, Australia

athman.bouguettaya@rmit.edu.au

Abstract. In service computing, online services and the Internet en-
vironment are evolving over time, which poses a challenge to service
composition for adaptivity. In addition, high efficiency should be main-
tained when faced with massive candidate services. Consequently, this
paper presents a new model for large-scale and adaptive service compo-
sition based on multi-agent reinforcement learning. The model integrates
on-policy reinforcement learning and game theory, where the former is
to achieve adaptability in a highly dynamic environment with good on-
line performance, and the latter is to enable multiple agents to work for
a common task (i.e., composition). In particular, we propose a multi-
agent SARSA (State-Action-Reward-State-Action) algorithm which is
expected to achieve better performance compared with the single-agent
reinforcement learning methods in our composition framework. The fea-
tures of our approach are demonstrated by an experimental evaluation.

1 Introduction

As the mainstream paradigm of SOC (Service-oriented Computing), the research
on theories of service composition and related technologies for seamless integra-
tion of business applications is always the core proposition. However, large-scale
service composition faces a multitude of thorny issues, such as, accuracy, inter-
operability, efficiency and adaptability for practical use, if there exist massive
services with similar functionality in a highly-dynamic environment.

Under the premise of validity for service composition, efficiency, adaptability
and optimality of composition in large-scale and dynamic scenarios are especially
significant. First of all, both the complexity of business flows and the quantity of
candidate services may affect the efficiency of the service orchestration. Secondly,

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 154–168, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Integrating On-policy Reinforcement Learning with Multi-agent Techniques 155

how to adapt to the services’ internal changes and external dynamic environment
is a grand challenge. Furthermore, how to achieve the optimal aggregated QoS
should also be taken into consideration. Therefore, a novel method should be
proposed to obtain a good balance between those objectives.

Previous studies mainly focus on integer programming, graph planning, rein-
forcement learning (RL) and so on. Ardagna et al. [1] modelled the QoS infor-
mation of candidate services by a multi-channel framework, and then utilized
Mixed Integer Programming (MIP) to obtain the optimal solution. However,
this method only performs well for small-scale problems, and the computing
resource consumption may become prohibitive when faced with large-scale sce-
narios. Beauche et al. [2] used a hierarchical planning approach based on graph
planning and hierarchical task networks to construct adaptive service compo-
sition. However, continuous emergence and demise of services lead to sustained
search of viable services for updating the corresponding planning graph, which is
not suitable for a highly dynamic environment. Jureta et al. [7] proposed a multi
criteria-driven reinforcement learning algorithm to ensure that the system is re-
sponsive to the availability changes of Web services. We also [20] proposed an
adaptive service composition approach based on reinforcement learning method
combined with logic preference. Despite the effectiveness of conventional rein-
forcement learning in achieving adaptability, such methods can not ensure high
efficiency in a large-scale and complex scenario.

As a subdiscipline of distributed artificial intelligence (DAI) [15], multi-agent
techniques have arisen as a viable solution for modularity, more computing
power, scalability and flexibility required by service composition [16]. Some re-
searchers have already applied multi-agent techniques to service composition.
Maamar et al. [11] proposed a web service composition method based on multi
agents and context awareness. Gutierrez-Garcia et al. [5] characterized behavior
of the services with Colored Petri-net, and exploited multi-agent techniques for
services orchestration in the context of cloud computing. Unfortunately, those
methods seldom take self-adaptivity into consideration.

In view of superiority from RL and multi-agent technologies, a natural idea to
achieve self-adaptability in a dynamic environment and maintain acceptable effi-
ciency when faced with massive candidate services is to combine them together,
which has already been discussed in the field of DAI and is called Multi-agent
reinforcement learning (MARL) [15]. On the one hand, RL is a commonly used
machine learning method for planning and optimization in a dynamic environ-
ment [18], which learns by trial-and-error interaction with dynamic environment
and thus has good self-adaptability. On the other hand, multi-agent technology
can compensate for inefficiencies under large-scale and complex scenarios.

In this paper, we propose a new adaptive model that is built upon MARL.
Different from previous work, this new model is based on team Markov Games,
which is more mature and generic for service composition in a multi-agent sce-
nario. To tackle the common problems of agent coordination and equilibrium
selection emerged in a multi-agent environment, we introduce the coordination
equilibrium and fictitious play process to ensure the agents to converge to a

156 H. Wang et al.

unique equilibrium when faced with multiple equilibriums. Finally, we have pro-
posed the multi-agent Sarsa algorithm for our multi-agent service composition.
Our contributions are summarized as follows:

– We introduce a TMG-WSC model for service composition with massive can-
didate services in a highly dynamic and complex environment.

– We propose a multi-agent Sarsa algorithm to adapt to the multi-agent service
composition scenarios and achieve a better performance.

– We present the concept of multi-agent service composition that caters for
the distributed environment and big data era.

The reminder of this paper is organized as follows. Section 2 compares our
approach against some related works. Section 3 introduces the problem formu-
lation and basic definitions. Section 4 presents our approach for service compo-
sition based on MARL. In section 5, some experimental results are presented for
evaluating the proposed approach. Finally, the paper is concluded in Section 6.

2 Related Work

In this section, we review some existing works that are most relevant to our
approach, including RL and agent techniques adopted in service composition.

Moustafa et al. [13] proposed a approach to facilitate the QoS-aware ser-
vice composition problem using multi-objective reinforcement learning, but the
method is not very efficient for large-scale service composition scenarios. Our
prior work [20] suffer from the same issue with preceding method.

Xu et al. [22] proposed a multi-agent learning model for service composition,
based on the Markov game and Q-learning with a hierarchical goal structure
to accelerate the searching of states during the learning process. However, their
model may not work well when faced with a complicated goal with more mu-
tual dependencies between each sub-goals as their agents are fixed for certain
service classes. We proposed a multi-agent learning model [19] based on MDP
and knowledge sharing before, however this can not be regarded as a real multi-
agent framework as the MDP is designed for a single agent and does not take
the potential collaboration between agents into consideration.

MARL has strong connections with game theory [4], because the relation be-
tween agents has a great impact on the design of learning dynamics. According
to Claus and Boutilier [4], the MARL can be classified into two forms. The first
one is independent learners (ILs), which just apply RL methods (Q-learning,
Sarsa etc.) and ignore the existence of other agents. The second one is joint
action learners (JALs), which learn their actions in conjunction with others via
integration of RL with a certain kind of Nash equilibrium, just like the coor-
dination equilibrium [3,4]. Consequently, agents coordination and equilibrium
selection are the key issue in MARL for JALs. Wang et al. [21] proposed an
algorithm which can ensure to converge to an optimal equilibrium, but its high
computational cost has limited its practical use.

In this paper, we integrate on-policy reinforcement learning with multi-agent
techniques for services composition. The proposed approach is fundamentally

Integrating On-policy Reinforcement Learning with Multi-agent Techniques 157

different from existing approaches (e.g., [19,22]) as we exploit the coordination
equilibrium and fictitious play process to ensure the agents to converge to a
unique equilibrium. We also propose a multi-agent Sarsa algorithm to achieve
an optimal or suboptimal solution.

3 Problem Formulation

Defnition 1 (Web Service). A Web service is modeled as a pair WS=<
ID,QoS >, where ID is the identifier of the Web service. QoS is a n-tuple
< att1, ..., attn >, where each atti(1 ≤ i ≤ n) denotes a QoS attribute value.

As we use Team Markov Games (TMG) to model multi-agent service com-
position, we first introduce the basis of TMG-based service composition, that is
MDP (Markov Decision Process)-based service composition.

Defnition 2 (MDP-based web service composition (MDP-WSC)). A
MDP-WSC is a 6-tuple MDP-WSC=< S, S0, Sτ , A(.), P,R >, where S is a fi-
nite set of the world states; S0 ∈ S is the initial state from which an execution of
the service composition starts; Sτ ⊂ S is the set of terminal states, indicating an
end of composition execution when reaching one state Si

τ ∈ Sτ ; A(s) represents
the set of services that can be executed in state s ∈ S; P is the probability distribu-
tion. When a web service α is invoked, the world makes a transition from its cur-
rent state s to a succeeding state s′. The probability for this transition is labeled
as P (s′ |s, α). R is the immediate reward from the environment after executing
an action.

Fig.1 shows a MDP-WSC graph of a composite service for a vacation plan.
It consists of two kinds of nodes, i.e., state nodes and service nodes, which are
represented by open circles and solid circles, respectively. s0 is the initial state
node, and nodes with double circles are terminal state nodes, such as s10. A state
node can be followed by a number of invoked service nodes, labeled with the
transition probability P (s′|s, α). A MDP-WSC transition graph can be created
by using some automatic composition approaches, such as an AI planner [14].

With multiple agents in the environment, the fundamental problem of MDP
is that the approach treats the other agents as a part of the environment and
thus ignores the fact that the decisions of the other agents may influence the
environment state. Then how can we extend the single-agent MDP model and
adjust it for the multi-agent scenarios? One possible solution is to use the multi-
agent Markov decision processes, i.e. Markov games [8].

Defnition 3 (Markov Games). An n-player involved Markov games is mod-
eled as a 5-tuple MG=< a, S,A, T,R >, where a is the set of agents; S is a
finite environment states set; A (A1 ×A2 × ...×An) is the joint action, Ai(i =
1, ..., n) is a discrete available action set of the ith agent; T : S × A → ∏

(S)
is the transition function, giving for each state and one action from each agent.
A probability distribution T (s, a1,...,an,s

′) is the probability of state transition

158 H. Wang et al.

from joint state s to s′, and each agent i(1 ≤ i ≤ n) choose action ai ∈ Ai;
Ri : S ×A → � is the ith agent’s reward function, giving the immediate reward
gained by the ith agent for each set of available actions.

Markov Games is so called team Markov Games when all agents strive for a
common goal and thus share a common reward function. Here we adopt team
Markov Games as all agents work for a common service workflow.

However, Markov Games can not directly replace the MDP model for multi-
agent service composition, because some differences arises when trying to transfer
some concepts in the MDP-WSC model [20] to the new multi-agent environment.

For example, in MDP-WSC, there is only one learning agent, which always
starts from the initial state. If it finally reaches the terminal state, it can get a
full path from the initial state to the terminal state according to its trajectory.

Unfortunately, it is much more complicated in the multi-agent scenario, as
there are a group of learning agents and each one starts from one of the states
randomly instead of a fixed initial state in MDP-WSC model. So even someone
has reached one of the terminal states, we can not claim that they have completed
current learning episode and got the full path, because this “lucky” one may not
start from the initial state, and consequently what it has marched is just part
of the whole path. In order to handle this problem, we need to introduce some
new concepts to fit in the new multi-agent scenario.

A(S0)={Vacation time}
A(S1)={Vacation place}
A(S2)={Flight, Train, Ship}
A(S3)={Airfare}
A(S4)={Interchange, Ship fare}
A(S5)={Train fare}
A(S6)={Train}
A(S7)={Luxury Hotel, Budget Hotel}
A(S8)={Luxury Cost}
A(S9)={Budget Cost}

Fig. 1. The MDP-WSC of a Composite Service

Defnition 4 (Candidate Initial State). The joint state
S0 = s1 × ...× sn(si, i = 1, ..., n, is the state of the ith agent in the team)
is a candidate initial state iff si = s0(1 ≤ i ≤ n), where s0 is the initial state of
the MDP-WSC transition graph.

Suppose that a 3-agent group is wandering in Fig.1. If agent 1 starts from s0,
agent 2 starts from s2, and agent 3 starts from s5, the joint state s = s0×s2×s5
is a so-called Candidate Initial State, because it contains the initial state node
s0, which is the initial state in MDP-WSC transition graph. In contrast, a joint
state s = s1 × s2 × s5 for Fig.1 can not be regarded as a candidate initial state,
because it does not contain any initial state node. Since Candidate Initial State
represents the starting points in the Multi-agent scenario, the question is what
is the ending state. Hence we introduce the concept of Possible Terminal State.

Integrating On-policy Reinforcement Learning with Multi-agent Techniques 159

Defnition 5 (Possible Terminal State). The joint state
Sx = s1 × ...× sn(si, i = 1, ..., n, is the state of the ith agent) is a possi-
ble terminal state iff si = sτ (1 ≤ i ≤ n), where sτ is among terminal states of
the MDP-WSC transition graph.

More specifically, considering Fig. 1 in a 3-agent setting, where agent 1 starts
from s0, agent 2 starts from s2, and agent 3 starts from s9. After some steps,
agent 3 may reach the terminal state node s10, while agent 1 reaches s1 and
agent 2 reaches s4. The joint state s = s1 × s4 × s10 at this time is obviously
a possible terminal state. But it is not a true terminal state for the multi-agent
environment, because the three sub-path s0 → s1 , s2 → s4 and s9 → s10 can
not form a full path from the initial state s0 to the terminal state s10.

Defnition 6 (Passed State Set). The set Sp is a passed state set iff Sp con-
tains all the states that agents in the team have passed by.

We can display a back trace from the terminal state and check whether it can
stretch back to the initial state using the Passed State Set. Next, we will propose
our multi-agent model called TMG-WSC for service composition, which is based
on Team Markov Games (TMG) and new concepts mentioned before.

Defnition 7 (TMG-based Web Service Composition(TMG-WSC)). A
TMG-WSC is a 7-tuple=< a, S, S0, Sx, A, T,R >, where a is the set of agents; S
is the discrete set of environment states; S0 is the set containing all the candidate

initial state S0, and an execution of the composition starts from one state S0
i ∈

S0; Sx is the set containing all the possible terminal state Sx, and an execution
of the composition has a possibility to terminate upon reaching any state in Sx;
A(s) = A1(s1)× A2(s2) × ... × An(sn) is the finite set of joint actions that can
be executed in joint state s ∈ S, where Ai(si)(i = 1, ..., n) is the discrete set of
actions available to the ith agent at state Si; T:S×A×S → [0, 1] is the transition
probability function labeled as P(s′ | s, A(s)), giving for each joint state and each
joint action; R:S ×A → � is the common reward function for all the agents in
the team. When the set of services corresponding to the joint action are invoked
and the environment has changed into the resulting state s′, the team will receive
an immediate reward R(s′ | s, A(s)) according to the feedback of this execution.

A TMG-WSC can be visualized as a multi-dimensional transition network
based on the MDP-WSC transition graph. Fig.2 shows a part of the TMG-WSC
transition graph for vacation plan in a 3-agent scenario, which is constructed
based on the MDP-WSC graph in Fig.1.

The solution to a TMG-WSC is a deterministic decision policy, which is de-
fined as a procedure for service selection ws ∈ A by all agents in every state s.
These policies, represented by π, are actually mappings from states to actions,
defined as π : S → A.

Each deterministic policy can uniquely determine a workflow, and therefore
the task of our service composition model is to identify the optimal policy or
workflow that offers the best cumulative reward depending on QoS attributes.

160 H. Wang et al.

720 ssss

LuxuryCostAirfareaceVacationPl
SASASAA

,,
831

Fig. 2. A Part of the TMG-WSC of a Composite Service

4 Multi-agent On-policy Learning for Composition

The introduced TMG-WSC model allows engineers to integrate multiple alter-
native services into a single service composition. If the complete information of
TMG-WSC is known, the theoretical optimal policy can always be calculated.
However, this hypothesis is not true in practice. We may not have complete
knowledge about the state transition functions and reward functions.

Moreover, both the state transition functions and the reward functions will
change along the time, and the computational cost in a large-scale scenario will
inevitably increase to an intolerable point. To solve the above issues, we propose
an approach based on Multi-agent techniques and Sarsa algorithm in RL to learn
the optimal policy of a TMG-WSC at runtime.

4.1 SARSA

Compared with off-policy learning methods like Q-learning, on-policy learning
methods has an advantage in on-line performance, since the estimation policy,
that is iteratively improved, is also the policy used to control its behavior [17].

Sarsa is a classic on-policy reinforcement learning method. The task of the
learner in Sarsa is to learn a policy that maximizes the expected sum of reward.
The cumulative reward starting from an arbitrary state st and following a policy
π is defined as Eq.1, where rt+i is the expected reward in each step, and γ is a
discount factor.

V π(st) = rt + γ ∗ rt+1 + γ2 ∗ rt+2 + ... =

∞∑
i=0

γi ∗ rt+i (1)

Based on Eq.1, we can deduce the reward of action pair < st, at >, that is, the
feedback of executing action at at state st, which is defined as Eq.2, where st+1

Integrating On-policy Reinforcement Learning with Multi-agent Techniques 161

is the resulting state by executing at and P (st+1|st, at) is the probability distri-
bution, r(st, at) represents the immediate reward of taking action at at state st,
which is defined as Eq.3.

Q(st, at) = r(st, at) + γ ∗
∑
st+1

P (st+1|st, at) ∗ V π(st+1) (2)

r(st, at) =

m∑
i=1

wi ∗ Attat

i −Attmin
i

Attmax
i −Attmin

i

(3)

In Eq.3, Attat

i represents the observed value of the ith attribute of the service
corresponding to the executed action at, and Attmax

i , Attmin
i represent the max-

imum and minimum values of Atti for all services. wi is the weighting factor.
wi is positive if users prefer Atti to be high (e.g. reliability). wi is negative if
preferring Atti to be low (e.g. service fee). m is the number of QoS attributes.

The Q function represents the best possible cumulative reward of executing
at at st. We can run dynamic programming (value iteration) by performing the
Bellman back-ups in terms of the Q function as follows:

Q(st, at) = r(st, at) + γ ∗
∑
st+1

P (st+1|st, at) ∗Q(st+1, at+1) (4)

Further on, we rewrite this recursive formula in a stochastic version:

Q(st, at) ← (1− α) ∗Q(st, at) + α ∗ [r(st, at) + γ ∗Q(st+1, at+1)] (5)

α(0<α<1) is the learning ratio, which is an important tuning factor in Sarsa.
The stochastic version does not require a priori knowledge of the transition
probability distribution P or the reward function R. Eq.5 forms the basis of the
Sarsa algorithm, which starts with initial values of Q(st, at), and updates Q(st,
at) recursively using the actual reward received.

More specifically, Q(st, at) is initialized to 0 for all st and at at the beginning.
Then, the learning process is performed recursively. The learner starts from the
initial state s0, and takes a sequence of actions following a Boltzmann policy
(which is introduced subsequently) in each learning episode. Q(st, at) is updated
by the real feedback of next state-action pair< st+1, at+1 > rather than the
maximum estimation value in Q-learning, which means that it is depending on
the engine’s on-line execution and performance. However, Eq.5 is just the single-
agent version. To incorporating Sarsa with multi-agent techniques, we need to
extend Eq.5 for multi-agent scenario.

We first define the reward function in multi-agent framework as follows, which
aggregates the reward values of the services invoked by every agent. n is the
number of agents, st is the current joint state, at is the joint action executed.

R(st, at) =
n∑

i=1

m∑
j=1

wij ∗
Attat

ij −Attmin
ij

Attmax
ij −Attmin

ij

(6)

162 H. Wang et al.

Based on Eq.6, we can plug this and rewrite Eq.5 in a multi-agent form:

Qi1,i2...in(st, at) ← (1−α)∗Qi1,i2...in(st, at)+α∗ [R(st, at)+γ ∗Qi1,i2...in(st+1, at+1)]
(7)

4.2 Equilibrium Coordination

For many Markov games, there is no policy that is un-dominated because the
performance depends critically on the behavior of the other agents. Then, how
can we define a deterministic optimal policy in this case? An natural idea from
the game-theory literature is to define an agent’s optimal behavior as being its
behavior at a Nash equilibrium. Some researchers, like Littman, have already
done such work in the field of MARL [6,9,10]. Here we adopt Littman’s idea and
give the definition of multi-agent optimal policy as follows:

π∗(s, a1, ..., an) =
∑

a1,...,an

π1(s, a1) ∗ . . . ∗ πn(s, an) ∗Q(s, a1, ..., an)

= max
a1,...,an

Q(s, a1, ..., an) (8)

This definition is based on coordination equilibrium, which means all agents
have precisely the same goal and achieve their maximum possible payoff in co-
ordination team. It is obvious that the equilibrium of a team Markov game is a
Coordination equilibrium as all the players involved strive for a common task.

In view of this, seeking the optimal policy in Team Markov games can be
turned into an old question of optimizing the Q-value. To sum up, we can com-
pute an optimal policy by just applying Sarsa in the multi-agent scenario.

However, another important open problem for Markov games is finding a
general way of selecting an equilibrium when there exists multiple coordination
equilibriums, which is very common in multi-agent scenario [21]. Here we use the
indirect coordination methods to solve the problem, which places bias on action
selection toward actions that are likely to result in good rewards.

An easy and well-understand indirect coordination method for equilibrium
selection in game theory is fictitious play [12]. The key idea of fictitious play is
estimating the empirical distribution of others’ past actions and thus to help the
agents figure out a best response until now. More specially, suppose that Cj

aj

is the frequency of agent j invoking action aj in the past, where a is the set of
agents, each j ∈ a and aj ∈ Aj (Aj represents the set of actions available to the
jth agent). Then, agent i assumes agent j to play action aj with the probability
as Eq. 9. After each round of playing, agent i will update its Cj

aj
according to

the actions taken by the others in the last round. In a sense, Cj
aj

reflects the
beliefs an agent has given the historical choices of others.

Priaj
=

Cj
aj∑

bj∈Aj

C
j
bj

(9)

Integrating On-policy Reinforcement Learning with Multi-agent Techniques 163

Dov Monderer gives the definition of Fictitious Play Property and also proves
the following theorem in his work [12].

Defnition 8 (Fictitious Play Property). A game has the fictitious play prop-
erty (FPP) if every fictitious play process converges in beliefs to equilibrium.

Theorem 1: Every game with identical payoff functions has the fictitious play
property. �

In view of Theorem 1, we can deduce that the team game where the agents
have common interests has the fictitious play property. Hence, fictitious play
process can be applied in the Team Markov Games and help to converge to a
unique equilibrium surely despite the existence of multiple equilibriums.

To improve the efficiency of the fictitious play process, Young [23] proposed
an optimized version and proved its validity. Based on it, we construct a new
function that combines the Q-value and fictitious play process together for esti-
mating cumulative reward of joint action in TMG-WSC. It is defined as follows,
Km

t (Aj)
k is a probability model for agent i at the joint state s, based on the ficti-

tious play process. t is the number of times for attending state s. ai is the action
chosen by the ith agent. m is the length of the queue which stores the reduced
joint action a−i of agent i′s opponents in chronological order. Ψ(s, a−i) is the
best response for agent i′s opponents’ joint action at state s.

WEQ(s, ai) =
∑

Aj∈Ψ(s,a−i)
1≤j≤n,j �=i

Km
t (Aj)

k
Qi,j(s) (10)

Finally, we need a learning policy for the learner to execute the TMG-WSC
during the learning. Here we choose the Boltzmann learning policy as it can
better characterize our coordination mechanism and equilibrium selection tech-
nique. The Boltzmann exploration used here can be depicted as follows, T is
temperature parameter, T = T0 ∗ (0.999)c, T0 is an initial value, c is the fre-
quency that the learner is in state st.

Pr(at|st) = eWEQ(st,at)/T∑
b∈A

eWEQ(st,at)/T
(11)

The complete learning process is depicted in Algorithm 1.

5 Simulation Results and Analysis

In this section, we conduct a simulation study to evaluate the properties of our
service composition mechanism. We demonstrate the convergence and efficiency
of multi-agent Sarsa algorithm. We also compare it with single-agent Sarsa and
Q-learning, and analyze the corresponding inherent cause and effect.

164 H. Wang et al.

Initialization:
Qi1,i2,...,in(st, at)
repeat

// for each episode
each agent choose an action ai(i = 1, 2, ..., n) based on Eq.11,
and form the joint action at = a1 × a2 × · · · × an;
repeat

// for each step of a episode
1. On-Policy Learning
take joint action at, observe R, st+1, each agent choose action a based on
Eq.11, and form the joint action at+1 = a1 × a2 × · · · × an

Q(st, at) ←− (1− α) ∗Q(st, at) + α ∗ [R + γ ∗Q(st+1, at+1)]
st ←− st+1, at ←− at+1;
2.Terminal condition check
if st is a possible terminal state, st = s1 × s2 × ...× sn then

Create a set named Temp, Temp = {st},
Create a set named Prev, Prev contains all the
previously passed states of any element in Temp

end if
while Sp ∩ Temp �= Φ and s0 /∈ Prev do

Temp ← Sp ∩ Temp
Prev ← all the previous states of any element in Temp

end while
if Prev contains S0 then

This episode is ended
end if

until The current episode is ended
until the cumulative reward matrix converges

Algorithm 1. Multi-agent Sarsa based on TMG-WSC

5.1 Experiment Setting

We randomly generate MDP-WSC transition graphs and use them as the in-
put for the TMG-WSC model, and four QoS attributes are mainly considered
as an example for reward assessment, which are ResponseT ime, Throughput,
Availability and Reliability based on the extended QWS Dataset 1. A num-
ber of key parameters are set up for both experiments as follows. The learning
rate α of single-agent algorithm is set to 0.6, the discount factor γ is set to 0.9
and the ε− greedy exploration strategy value is set to 0.6. The experiments are
conducted on an Intel i3-2120 3.30GHz PC with 4GB RAM.

5.2 Result Analysis

1. Effectiveness and Efficiency
The purpose of the first experiment is to examine the ability of the multi-
agent Sarsa algorithm with Boltzmann exploration strategy (abbr. Multi-Sarsa).

1 http://www.uoguelph.ca/~qmahmoud/qws/

http://www.uoguelph.ca/~qmahmoud/qws/

Integrating On-policy Reinforcement Learning with Multi-agent Techniques 165

We compare the Multi-Sarsa with single-agent Sarsa (abbr.Single-S) and single-
agent Q-learning (abbr. Single-Q) in 4-agent scenario with 100 state nodes and
1000 services for each node. As shown in Fig.3 (a), the proposed Multi-Sarsa al-
gorithm yields higher discounted cumulative rewards and efficiency than Single-
S algorithm, and is closed to the convergence rate of Single-Q. For instance,
Multi-Sarsa converges to the rewards at 17.2, that is higher than Single-S at
15.7. Furthermore, Multi-Sarsa converges at about the 4000th episode, which
is closed to Single-Q at about the 3900th episode. However Single-S is slower
for converging at about the 4500th episodes. Single-S achieves higher discounted
cumulative rewards than Single-Q but performs worse in convergence rate.

Not surprisingly, in Eq.5, the use of at+1 introduces additional variance into
the update rule, which may slow convergence rate when compared to Single-Q.
However, differing from off-policy Q-learning method, on-policy Sarsa approach
has stronger convergence guarantees when combined with function approxima-
tion and it has a potential advantage over off-policy methods in its on-line perfor-
mance. In the light of those characteristics, we propose the Multi-Sarsa algorithm
to offset the convergence rate of Single-S by mutual collaboration between each
agents and become closer to the optimal convergence simultaneously in which
multiple agents explore the learning space adequately.

 0

 5

 10

 15

 20

 1000 1500 2000 2500 3000 3500 4000 4500 5000

di
sc

ou
nt

ed
 c

um
ul

at
iv

e
re

w
ar

d

Episodes

Multi-Sarsa
Single-S
Single-Q

 0

 5

 10

 15

 20

 1000 1500 2000 2500 3000 3500 4000 4500 5000

di
sc

ou
nt

ed
 c

um
ul

at
iv

e
re

w
ar

d

Episodes

2000 services
3000 services
4000 services

(a) (b)

Fig. 3. (a) Effectiveness and Efficiency Comparison (b) Different number of services

2. Scalability
The purpose of the second experiment set is to assess the scalability of the
proposed Multi-Sarsa algorithm. We probe the influence of the service, state
and agent number respectively.

Firstly, we vary the number of services for each state node from 2000 to 4000
while fixating the agents number for 4 and state nodes for 100. From Fig.3 (b), we
know that the increasing number of candidate services for each state node may
postpones the convergence. In 2000-service scenario, the Multi-Sarsa converges
at about the 4200th episode, while converging at about the 4500th episode in
3000-service and about the 4700th episode in 4000-service. However, increasing
the number of services does not necessarily mean the corresponding improvement
of service quality, so the rewards may be higher or lower. In a word, Multi-Sarsa
always converge at an acceptable time despite of vast candidate services.

166 H. Wang et al.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1000 1500 2000 2500 3000 3500 4000 4500 5000

di
sc

ou
nt

ed
 c

um
ul

at
iv

e
re

w
ar

d

Episodes

%22.88 deviation from the optimal

%17.17 deviation from the optimal

%15.5 deviation from the optimal

%22.88 deviation from the optimal

%17.17 deviation from the optimal

%15.5 deviation from the optimal

200 states
300 states
400 states

 0

 5

 10

 15

 20

 1000 1500 2000 2500 3000 3500 4000 4500 5000

di
sc

ou
nt

ed
 c

um
ul

at
iv

e
re

w
ar

d

Episodes

8 agents
12 agents
16 agents

(a) (b)

Fig. 4. (a) Different number of state nodes (b) Different number of agents

 0

 5

 10

 15

 20

 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800

di
sc

ou
nt

ed
 c

um
ul

at
iv

e
re

w
ar

d

Episodes

change %1
change %5

change %10

Fig. 5. Adaption Testing

Secondly, we fix the agent number and service number of each state node as
4 and 1000 respectively, and vary the state nodes from 200 to 400. As shown in
Fig.4 (a), the bigger number of state nodes corresponds to higher values of the
optimal convergence and a slower convergence rate. In 200-state-node scenario,
the Multi-Sarsa converges at about the 4100th episode with rewards 33.8, and
in 400-state-node, it converges at about the 4500th episode with rewards 61.7.
What’s more, we calculate the deviation of the current convergence rewards from
the optimal convergence rewards in different scenarios by D = OPR−CCR

OPR , where
D represents deviation degree, OPR indicates the optimal convergence rewards,
and CCR is the current convergence rewards. It can be seen from Fig.4 (a),
the D is %17.17 in 300 states nodes, and %22.88 in 400 scenario. That is to
say, the increasing number of state nodes may aggravate the deviation from the
optimality and fall into local optima. Hence, we can conclude that the Multi-
Sarsa has the scalability when face with the increment of states nodes.

Finally, we come to the affect of agents number. We set the state nodes for
100, the services number for 1000 to each state node. From Fig.4 (b), we know
that the more agents involved, the more adequate space exploration will be done,
consequently the discount cumulative rewards is apparently bigger in scenario of
12 and 16 agents. However, the increasing number of agents brings another severe
problem, that is, the communication consumption in the process of fictitious
play. So, 16-agent does not perform better than 12-agent. In brief, 12-agent
may be a compromise for Multi-Sarsa, the increasing number of agents does
not necessarily leads to an improvement in efficiency, and the communication
consumption between agents must be considered as an important factor.

Integrating On-policy Reinforcement Learning with Multi-agent Techniques 167

To sum up, the Multi-Sarsa algorithm can be applied to large-scale service
composition scenarios with good scalability.

3. Adaptivity
To simulate the dynamic environment, we randomly change the QoS values of
candidate services during the learning process. In order to facilitate comparison,
we fixate the number of agent for 4, state nodes for 100, and 1000 services for
each node. We also cause QoS fluctuations between the 2000th episode and the
2500th episode. What’s more, we allocated the sum of changed QoS values to
each candidate services group of each state node averagely. Fig.5 gives clear il-
lustration, no matter how big the volatility of QoS is, the Multi-Sarsa algorithm
can converge by learning deterministically, and merely differentiates in conver-
gence time. In short, the changes do not stop the optimization process, and the
execution polices are still being optimized when the learning process goes on.

In conclusion, Multi-Sarsa does a good performance in large-scale and highly
dynamic environment.

6 Conclusions and Future Directions

In this paper2, we integrate on-policy reinforcement learning with multi-agent
techniques for large-scale and adaptive service composition. First, we propose
the new composition model called TMG-WSC, then utilize Multi-Sarsa algo-
rithm in multi-agent scenario to find the optimal solution which is extended from
single-agent Sarsa. Additionally, to ensure the convergence of the Multi-Sarsa al-
gorithm, we introduce the fictitious play process which assures the unique equi-
librium for equilibrium selection and incorporate it with the Boltzmann learning
policy. Our experiments demonstrate that the proposed Multi-Sarsa performs
well for large-scale and dynamic service composition.

However, we still have some room for optimizing the proposed framework.
Firstly, we do not address the problem of failure services that may lead to entire
paralysis of the composition solution. Therefore, reliability prediction or fault-
tolerant technologies should be taken into the consideration. Secondly, we just
consider the local QoS constraints, while users may only give a global QoS con-
straints, so how to decompose the global QoS constraints to the local is also a
tough challenge. All in all, we will pay more efforts to optimize this framework.

References

1. Ardagna, D., Pernici, B.: Adaptive service composition in flexible processes. IEEE
Transactions on Software Engineering 33(6), 369–384 (2007)

2. Beauche, S., Poizat, P.: Automated service composition with adaptive planning. In:
Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364,
pp. 530–537. Springer, Heidelberg (2008)

2 This work is partially supported by NSFC Key Project (No.61232007) and Doctoral
Fund of Ministry of Education of China (No.20120092110028).

168 H. Wang et al.

3. Busoniu, L., Babuska, R., De Schutter, B.: A comprehensive survey of multiagent
reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews 38(2), 156–172 (2008)

4. Claus, C., Boutilier, C.: The dynamics of reinforcement learning in cooperative
multiagent systems. In: AAAI/IAAI, pp. 746–752 (1998)

5. Gutierrez-Garcia, J.O., Sim, K.-M.: Agent-based service composition in cloud com-
puting. In: Kim, T.-h., Yau, S.S., Gervasi, O., Kang, B.-H., Stoica, A., Śl ↪ezak, D.
(eds.) GDC and CA 2010. CCIS, vol. 121, pp. 1–10. Springer, Heidelberg (2010)

6. Hu, J., Wellman, M.P.: Multiagent reinforcement learning: theoretical framework
and an algorithm. In: ICML, vol. 98, pp. 242–250. Citeseer (1998)

7. Jureta, I.J., Faulkner, S., Achbany, Y., Saerens, M.: Dynamic web service compo-
sition within a service-oriented architecture. In: IEEE International Conference on
Web Services, ICWS 2007, pp. 304–311. IEEE (2007)

8. Könönen, V.: Asymmetric multiagent reinforcement learning. Web Intelligence and
Agent Systems 2(2), 105–121 (2004)

9. Littman, M.L.: Markov games as a framework for multi-agent reinforcement learn-
ing. In: ICML, vol. 94, pp. 157–163 (1994)

10. Littman, M.L.: Value-function reinforcement learning in markov games. Cognitive
Systems Research 2(1), 55–66 (2001)

11. Maamar, Z., Mostefaoui, S.K., Yahyaoui, H.: Toward an agent-based and context-
oriented approach for web services composition. IEEE Transactions on Knowledge
and Data Engineering 17(5), 686–697 (2005)

12. Monderer, D., Shapley, L.S.: Fictitious play property for games with identical in-
terests. Journal of Economic Theory 68(1), 258 (1996)

13. Moustafa, A., Zhang, M.: Multi-objective service composition using reinforcement
learning. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS,
vol. 8274, pp. 298–312. Springer, Heidelberg (2013)

14. Oh, S.C., Lee, D., Kumara, S.R.: Effective web service composition in diverse and
large-scale service networks. IEEE Transactions on Services Computing 1(1), 15–32
(2008)

15. Panait, L., Luke, S.: Cooperative multi-agent learning: The state of the art. In:
Proceedings of 2005 Autonomous Agents and Multi-Agent Systems(AAMAS),
vol. 11(3), pp. 387–434 (November 2005)

16. Papadopoulos, P., Tianfield, H., Moffat, D., Barrie, P.: Decentralized multi-agent
service composition. Multiagent and Grid Systems 9(1), 45–100 (2013)

17. Rummery, G.A., Niranjan, M.: On-line Q-learning using connectionist systems.
University of Cambridge, Department of Engineering (1994)

18. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction, vol. 1. Cam-
bridge Univ. Press (1998)

19. Wang, H., Wang, X.: A novel approach to large-scale services composition. In:
Ishikawa, Y., Li, J., Wang, W., Zhang, R., Zhang, W. (eds.) APWeb 2013. LNCS,
vol. 7808, pp. 220–227. Springer, Heidelberg (2013)

20. Wang, H., Zhou, X., Zhou, X., Liu, W., Li, W., Bouguettaya, A.: Adaptive service
composition based on reinforcement learning. In: Maglio, P.P., Weske, M., Yang, J.,
Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 92–107. Springer, Heidelberg
(2010)

21. Wang, X., Sandholm, T.: Reinforcement learning to play an optimal nash equilib-
rium in team markov games. In: NIPS, vol. 15, pp. 1571–1578 (2002)

22. Xu, W., Cao, J., Zhao, H., Wang, L.: A multi-agent learning model for service
composition. In: 2012 IEEE Asia-Pacific Services Computing Conference (APSCC),
pp. 70–75. IEEE (2012)

23. Young, H.P.: The evolution of conventions. Econometrica 61(1), 57–84 (1993)

An Agent-Based Service Marketplace

for Dynamic and Unreliable Settings

Lina Barakat, Samhar Mahmoud, Simon Miles, Adel Taweel, and Michael Luck

Department of Informatics, King’s College London, London, UK
{firstname.surename}@kcl.ac.uk

Abstract. In order to address the unreliable nature of service providers,
and the dynamic nature of services (their quality values could change
frequently over time due to various factors), this paper proposes a prob-
abilistic, multi-valued quality model for services, capable of capturing
uncertainty in their quality values by assigning each quality attribute
with multiple potential values (or ranges of values), along with a corre-
sponding probability distribution over these values. The probability dis-
tribution indicates the most likely quality value for an attribute at the
current time step, but also notifies discovery applications of the possibil-
ity of other, possibly worse outcomes, thus ultimately facilitating more
reliable service selection and composition via avoiding services with high
uncertainty. Such uncertainty-aware, multi-valued quality models of ser-
vices are maintained via an agent-based service marketplace, where each
service is associated with a software agent, capable of learning the time-
varying probability distributions of its quality values through applying
online learning techniques, based on the service’s past performance in-
formation. The experiments conducted demonstrate the effectiveness of
the proposed approach.

Keywords: quality of service, probabilistic quality model, adaptive learn-
ing, dynamic environment, agent based marketplace.

1 Introduction

Service-oriented computing (SOC) is a promising paradigm for the sharing of re-
sources and functionalities in open, distributed environments (e.g., the web and
computational Grids). Via exposing such resources and functionalities as ser-
vices [1], and utilising these services as elementary building blocks, this paradigm
supports the rapid and economic development of complex, interoperable dis-
tributed applications.

Open distributed service-based systems, however, usually exhibit high degrees
of dynamism and uncertainty for several reasons, either intentional or uninten-
tional. For example, service providers, being autonomous and self-interested,
may choose to act maliciously and announce false quality of service (QoS) capa-
bilities in order to increase their own profit by attracting more customers. Even
in cases where the providers are fully cooperative, it might be difficult (or simply

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 169–183, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

170 L. Barakat et al.

Fig. 1. Agent-augmented service marketplace architecture

not possible) to guarantee specific quality values for a service, because of their
dependency on various run-time factors. For instance, the service response time
at any particular moment could be significantly affected by the provider load
and network traffic at that moment. Such dynamism and uncertainty can lead
to highly undesirable situations during service execution (e.g. unfulfilled quality
promises), and may demand costly corrective actions.

Consequently, as an attempt to minimise quality deviations of services at ex-
ecution time, a number of efforts focus on providing more accurate estimation
of service quality values, based on the available information regarding their past
performance [9–13]. Specifically, assessing a quality attribute for a service is typ-
ically performed by applying some aggregation measure (e.g. a time-weighted
average) to the previously observed values, which are obtained as feedback from
service users, or from service-side monitors. Such a single-valued quality estima-
tion model, however, does not capture the uncertainty in the service’s quality
values, and might produce inaccurate or invalid quality predictions, especially for
attributes with high variance in values. For example, assume the values encoun-
tered in the past regarding the learning time attribute of a knowledge service
are 10, 10, 10, 60, 60, 60 (minutes). Estimating the mean of these values would
produce an expected value of 35 minutes, an imprecise indication of the at-
tribute’s actual outcome. Moreover, such a model is only limited to quantitative
attributes, without the ability to accommodate qualitative cases.

In response, this paper proposes a probabilistic multi-valued quality estima-
tion model, applicable to both numeric and categorical attributes. It captures
uncertainty in quality values by augmenting these values with reliability scores,
allowing more informative reasoning about the various potential quality out-
comes of a service, thus enabling more reliable and proactive service selection.
The responsibility of instantiating such quality models for services is distributed
among a number of learning-enabled software agents, applying online learning

An Agent-Based Service Marketplace for Dynamic and Unreliable Settings 171

techniques to update the models on the availability of new service performance
samples, without requiring storage of or iteration over all previous data.

The paper is organised as follows. The proposed agent-based service mar-
ketplace is introduced in Section 2. Section 3 and Section 4 present the basic
(single-valued) service QoS model [7] and the proposed reliability-aware (multi-
valued) extension, respectively. Section 5 provides the online quality learning
algorithm, while Section 6 evaluates its effectiveness through experimental re-
sults. Section 7 discusses related work, and Section 8 concludes the paper.

2 Agent-Augmented Service Marketplace

A basic service marketplace, adopting the classic service-oriented architecture,
provides support for the publication, description, discovery, and invocation of
services, and involves interaction among three roles, the service provider, ser-
vice consumer, and service registry. Specifically, a service provider describes its
service using a standard format, and publishes this description in a public ser-
vice registry so that the service can be discovered by potential clients. A service
consumer searches the service registry to find a required service, and retrieve its
binding details, which are then utilised to locate and invoke the service. Note
that such a consumer could be an end-user application, a matchmaker agent
(returning services that meet specific criteria), or a service composition engine
(aggregating the functionalities of existing services into more sophisticated com-
posite applications in order to fulfil particular high-level goals).

In addition to functional specification, service descriptions could also ref-
erence the quality of service (QoS) characteristics of services, indicating their
non-functional capabilities. These attributes can be generic, such as price and
response time, or domain-dependent, representing specific features and metrics
of a particular domain. The QoS characteristics play an important role in dif-
ferentiating between functionally equivalent services (those overlapping in their
functional capabilities, but possibly varying in their QoS levels), and accommo-
dating the different expectations of users (individuals or organisations). Yet, as
stated earlier, the features advertised by service providers are not necessarily
reliable, due to the untrustworthiness of these providers, and the dynamic na-
ture of service environments, causing the quality values of services to deviate
over time as a result of various environmental factors (which might be difficult
to anticipate by providers). This could result in unfulfilled quality promises by
services, and consequently a number of negative effects on the applications util-
ising these services, including unsatisfied users, money loss, or interruption in
application execution while performing recovery re-planning.

To address this, we propose an extended service registry (see Figure 1), fa-
cilitating more reliable and self-adaptive service descriptions via the utilisa-
tion of software agents, capable of learning the actual QoS characteristics of
services, and adapting their descriptions according to changes. Specifically, a
learning-enabled service agent resides between a service description published
by a provider and any discovery application, and exposes reliability and dy-
namism aware QoS information of the service to the latter by learning such

172 L. Barakat et al.

information based on collected service ratings after each interaction with the
service. The ratings can be collected either directly from consumers via feedback
interfaces, or automatically via appropriate monitors residing at the service side
or over the network. Note that we assume in this paper that the ratings are
honest and objective (false ratings can be handled through appropriate filtering
and reputation mechanisms [15], but this is out of the scope of this paper).

In what follows, we first outline the traditional QoS model of services (the
model corresponding to provider advertisements), and then focus on modelling
the service agent, including an improved QoS model, augmenting the traditional
model with reliability information, and a learning algorithm.

3 Basic QoS Model

The QoS model of a service registered within a marketplace can be defined as a
tuple, (AN, dom, type, value), as detailed below.

AN is the set of quality attributes that characterise the service. For example,
AN = {price, response time, ...}.

dom : AN → 2AV is an attribute domain function, which maps each quality
attribute to its corresponding domain (the possible values of this attribute),
where AV is the set of all possible quality attribute values (the union of the
domains of all quality attributes). For example, dom(price) = R+.

type : AN → {CTG,DSC,CNT} is an attribute type function, which in-
dicates whether the domain of a quality attribute is categorical (CTG), nu-
meric and discrete (DSC), or numeric and continuous (CNT). For example,
type(price) = CNT.

Finally, value : AN → AV ∪{undefined} is an attribute value function, which
provides the value offered by the service for each quality attribute, such that
∀a ∈ AN, value(a) ∈ dom(a) ∪ {undefined}. For example, value(price) = 10.

Generally, the QoS information of a service can be directly published into
public service registries by the service provider, assessed from monitoring previ-
ous service performance by specialised proxies, or negotiated with the provider
in terms of service level agreements (SLAs).

4 Uncertainty-Aware QoS Model

In order to capture uncertainty in the values that a service might deliver for
the quality attributes at a particular time step t ∈ T , the service agent utilises
a time-dependent, probabilistic model for describing the QoS features of the
service. Specifically, each quality attribute is considered to be a random variable,
and is associated with a probability distribution indicating the likelihood of each
of its possible values at the current moment. Hence, to reflect this, the static
single-valued attribute value function of the basic service model is modified by
the service agent, as follows:

valueag : AN × T → PROB

An Agent-Based Service Marketplace for Dynamic and Unreliable Settings 173

such that ∀a ∈ AN, ∀t ∈ T, valueag(a, t) = P (a, t) is the probability distri-
bution over the possible outcomes of attribute a at time step t (with PROB
denoting the set of all possible probability distributions P). That is,

valueag(a, t) = P (a, t) = {p(a, v, t) | v ∈ domd(a)}
with

∀v ∈ domd(a), p(a, v, t) ∈ [0, 1] ∧
∑

v∈domd(a)

p(a, v, t) = 1 (1)

where p(a, v, t) is the likelihood of attribute a to take on value v at time step
t, and domd(a) is the discretised domain of attribute a. For categorical and
discrete attributes, a ∈ AN s.t. type(a) ∈ {CTG,DSC}, domain domd(a) cor-
responds to the original value space, i.e. domd(a) = dom(a). For continuous
attributes, a ∈ AN s.t. type(a) = CNT, domain domd(a) is obtained via apply-
ing an appropriate discretisation algorithm on the original value space dom(a)
(a simple example is dividing dom(a) into a number of equal ranges, with values
v ∈ domd(a) corresponding to the respective range representatives).

Such a probabilistic, multi-valued modelling of service quality features exposes
more accurate and comprehensive details regarding the expected behaviour of
the service, facilitating more informative and reliable service selection and ac-
commodating the different needs of discovery applications, as opposed to the
single-valued approach, where the discovery application is limited to a single,
possibly inaccurate, summary attribute value. In particular, while general indi-
cations of the quality features may be sufficient for some discovery applications,
others, performing more critical tasks, might favour accounting for the worst
case scenario (i.e. selecting services by analysing the least desirable quality val-
ues that are probable in their cases). Note that, in the proposed approach, the
expected (average) value for a numeric attribute a at time step t, exp(a, t), can
be easily derived from probability distribution P (a, t), as follows:

exp(a, t) =
∑

v∈domd(a)

v × p(a, v, t)

Example.Consider a content provider, in the e-learning domain, offering a learn-
ing object (service) characterised by three quality properties, learning time (LT),
difficulty level (DL), and interactivity type (IT), with:

type(LT) = CNT ∧ dom(LT) = [10, 60]

type(DL) = DSC ∧ dom(DL) = {1, 2, 3, 4, 5}
type(IT) = CTG ∧ dom(IT) = {active, expositive,mixed}

Figure 2 shows example probabilistic value models for the learning object re-
garding the three quality properties, illustrating various uncertainty levels at
time step t, with the highest uncertainty in value corresponding to attribute
DL, where p(DL, v, t) = 0.2 for all values v ∈ {1, 2, 3, 4, 5}.

Note that learning objects meet the conditions of our generic service defini-
tion, since they are self-contained, reusable units of instruction, which are made

174 L. Barakat et al.

Fig. 2. Probabilistic attribute value function valueag(a, t) for a learning object

available for discovery through dedicated repositories, where their properties are
described using a standard language (e.g. IEEE LOM1).

5 Learning Model

The learning problem of the service agent concerns devising a reliable QoS de-
scription for the service in the presence of uncertainty in the environment, where
service providers might be untrustworthy, and may change their QoS policies
without notification, either intentionally or unintentionally. Such learning is con-
ducted by observing the behaviour of the service over time, and adapting its
description accordingly. Specifically, the cycle of the service agent involves the
following three steps.

(1) Observe. The agent receives new ratings for the service at time step t (e.g.
user feedback after interaction with the service). Let obs(t) = {(a, rating(a, t)) |
a ∈ AN} denotes such ratings, where function rating(a, t) ∈ domd(a) maps
quality attribute a of the service to the value observed for a at time step t.

(2) Learn. The agent utilises the new observation history to update the prob-
ability distributions of the quality values of the service, so that the service be-
haviour is more accurately described for future selection. In other words,

valueag(a, t) = P (a, t) = qoslearn(a,OBSt) (2)

where OBSt = {obs(i)}ti=1 are the past observations of the service up to time t,
and function qoslearn corresponds to the agent’s learning algorithm.

(3) Expose. The agent makes the probability distributions, valueag(a, t), of
the service’s quality attributes a ∈ AN , available to discovery applications as
the best generalisation of the behaviour of the service at time step t.

Next, we define the properties that need to be satisfied by the learning function
qoslearn, followed by a learning algorithm achieving these properties.

5.1 Learner Requirements

Two desirable properties can be identified for a QoS learning algorithm: adap-
tivity and efficiency.

1 http://ltsc.ieee.org/wg12/

http://ltsc.ieee.org/wg12/

An Agent-Based Service Marketplace for Dynamic and Unreliable Settings 175

Adaptivity refers to the ability of the learning algorithm to incorporate evolv-
ing data over time. It is required in the context of both stationary and non-
stationary environments.

In a stationary environment, the underlying probability distributions of the
service’s quality values remain constant over time, but might not be known in
advance due to missing, inaccurate, or untrustworthy QoS descriptions from
providers. Hence, since observations of the service’s actual behaviour only arrive
incrementally (are not available at once), the learning algorithm should be able
to increase the accuracy of the predicted quality model with more incoming data.

In a non-stationary environment, the probability distributions of quality val-
ues may experience changes over time, and therefore the learning algorithm
should be able to accommodate these changes on their occurrence. Generally,
probability distribution drifts may follow various patterns. A drift might occur
abruptly, by suddenly switching from one probability distribution to another at
some time step. Examples of such a drift include a significant degradation in
a service’s availability due to an unexpected network problem, or modification
of service characteristics caused by an implementation change (e.g. additional
content is added to the learning object, correspondingly affecting its learning
time, difficulty level, etc). Alternatively, a drift may happen gradually, with the
probability distribution exhibiting smaller differences over a longer time period.
Examples of such a drift include a slow deterioration or improvement in a ser-
vice’s response time with increasing or decreasing load, respectively, during the
day, or a gradual performance degradation of a hardware service due to wearing
out with time.

Efficiency refers to the ability of the learning algorithm to operate in a timely
and memory-effective manner. Specifically, since the learning is conducted at
run time, i.e. while the service is in operation, sensitivity towards time limits
becomes a critical feature to ensure that the learning cycle terminates, and con-
sequently the QoS descriptions of the service are updated, prior to the next
discovery attempt by a service consumer. Moreover, with the potentially contin-
uous and long-lasting data input (for the duration of service operation), memory
consumption is a major concern, and maintaining access to the whole set of past
service data is very costly. In the most efficient form (both in terms of memory
and processing time), data is discarded once the service’s QoS model is updated
upon data arrival, with the update being performed using the latest version
of the model. That is, function qoslearn in Equation 2 should be modified as
follows:

valueag(a, t) = P (a, t) = qoslearn(a, obs(t), P (a, t− 1)) (3)

5.2 Learning Algorithm

For the purpose of instantiating the QoS learning function qoslearn, the ser-
vice agent utilises an algorithm inspired by Policy Hill-Climbing [2], a rational
learning algorithm for finding a policy that maximises an accumulative reward
perceived from the environment. The idea of the proposed algorithm is as fol-
lows. At each learning cycle t ∈ T , and for each quality attribute of the service

176 L. Barakat et al.

Algorithm 1. Learning model of a service agent

1. Initialise the learning rate δ
2. ∀a ∈ AN , initialise valueag(a, t0) according to the basic QoS model of the service:

2.1. if value(a) �= undefined then

∀v ∈ domd(a), p(a, v, t0) = 1 if v corresponds to value(a)

p(a, v, t0) = 0 otherwise

2.2. else

∀v ∈ domd(a), p(a, v, t0) =
1

|domd(a)|

3. Repeat
3.1. Observe the behaviour of the service, obs(t) = {(a, rating(a, t)) | a ∈ AN}
3.2. Learn more accurate QoS policy, valueag(a, t), for each attribute a ∈ AN :

∀v ∈ domd(a), p(a, v, t) = (1− δ)p(a, v, t− 1) + δ if v = rating(a, t)

p(a, v, t) = (1− δ)p(a, v, t− 1) otherwise

3.3. Expose valueag(a, t) to discovery applications

a ∈ AN , the currently maintained QoS policy valueag(a, t − 1) is improved
according to a learning rate δ ∈ [0, 1], increasing the probability of the value
with the highest utility (i.e. the value v ∈ domd(a) observed for attribute a) at
iteration t. The overall learning model of the service agent is illustrated in Al-
gorithm 1, with the QoS policy re-evaluation rule (i.e. function qoslearn) being
detailed at Line 3.2. It is easy to see that this rule keeps valueag(a, t) constrained
to a legal probability distribution, i.e it satisfies Equation 1.

The agent initialises the QoS policy of each attribute a, valueag(a, t0), accord-
ing to provider advertisements, assigning a probability of 1 to the value indicated
by the provider (Line 2.1 of Algorithm 1). In the case where an attribute is not
instantiated by the provider, equal probabilities are initially assigned to all its
possible values (Line 2.2 of Algorithm 1).

The QoS policy adjustment rule clearly satisfies Equation 3, thus fulfilling
the efficiency requirement, while the choice of the learning factor δ governs
the adaptivity property. Specifically, factor δ determines the rate at which the
past data is forgotten, allowing a gradual discount of the impact of previous
information and enabling responsiveness to more recent observations. As δ tends
to unity, function qoslearn becomes a greedy function, removing the impact of
all previous data up to step t−1, and accounting only for the latest observation.
In contrast, lowering the value of δ decreases responsiveness to new data. Also,
when factor δ is set to 1

t for each learning step t, all old and present observations
are considered equally important. That is, in such a case, function qoslearn is

An Agent-Based Service Marketplace for Dynamic and Unreliable Settings 177

equivalent to simply deriving value probabilities from the frequencies of value
occurrences over the entire set of observations up to time t, as illustrated below:

p(a, v, t) =

∑t
i=1 occur(a, v, i)

t
=

∑t−1
i=1 occur(a, v, i) + occur(a, v, t)

t

= (
t− 1

t
)p(a, v, t− 1) + (

1

t
)occur(a, v, t)

where occur(a, v, i) = 1 if value v was observed for attribute a at time step i
(i.e. rating(a, i) = v), and occur(a, v, i) = 0, otherwise. Further analysis of the
effect of different values for factor δ is provided in Section 6.

6 Experiments and Results

In this section, we present an empirical evaluation of the proposed QoS learning
framework, focusing on its performance in terms of producing reliable QoS es-
timates for services, in marketplaces of varying dynamism and uncertainty. The
experiments are conducted on simulated datasets, allowing us to control the
QoS policies of providers and their changes, thus facilitating evaluation under
different settings.

A simulation run consists of a number of learning episodes (or cycles). At each
episode t, the service provider delivers particular values for quality attributes
a ∈ AN , which are observed by the service agent as ratings rating(a, t). The
generation of these quality values (i.e. the evaluation dataset) is governed by
probability distributions valueprov(a, t), representing the provider’s actual QoS
policy for each attribute a at time step t. Table 1 shows two distributions utilised
in our experiments for specifying such policies: distribution Q1 producing a fixed
value vi for attribute a, and normal distribution Q2 over the possible values.
Note that all the results reported are averaged over 100 simulation runs, and
among different attribute types (i.e. categorical, discrete, and continuous). For
simplicity, we only show the results from the perspective of one service and one
quality attribute (other attributes and services exhibit similar trends).

Next, we first outline the strategies to be evaluated (Section 6.1) and the
evaluation measure to be utilised (Section 6.2), followed by experimental results
(Sections 6.3-6.4) and an overall result summary (Section 6.5).

6.1 Learning Strategies

Throughout the presentation of our experimental results, we refer to the follow-
ing learning strategies.

SlideWindow w : this is the sliding window learning strategy, a well known way
of adapting to potential changes in incoming data and accommodating memory
constraints [17]. It is adopted as a memory-based alternative for the purpose of
estimating our model, as follows. At each time step, valueag(a, t) is rebuilt on a
data window of size w storing the most recent w observations, according to the
proportional frequencies of values in this window. Note that, by SlideWindow all,

178 L. Barakat et al.

Table 1. Generative models of the provider’s actual QoS values

valueprov(a, t) Definition Attribute Type

Q1(a, t)
q(a, v, t) =

{
1 if v = vi

0 if v ∈ domd(a) \ {vi}

s.t. vi ∈ domd(a)

type(a) ∈ {CTG,DSC}

Q2(a, t)

Normal distribution over dom(a), with
mean μ and variance σ2, s.t.

q(a, v, t) =
1

σ
√
2π

b∫
a

e
− (x−μ)2

2σ2 dx

where v ∈ domd(a) corresponds to
range [a, b] in dom(a)

type(a) = CNT

we refer to re-building the model using all the data observed so far, which is
utilised as a baseline in our evaluation.

QoSLearn δ: this is the learning strategy proposed in this paper, utilising a
learning rate δ, with no memory requirement.

6.2 Evaluation Measure

In order to assess the reliability of the QoS model estimated by the service
agent, we need to compare such a model against the actual QoS model of the
provider. In other words, we are interested in quantifying the difference between
the agent’s estimated probability distribution, valueag(a, t) = P (a, t), and the
provider’s actual probability distribution, valueprov(a, t) = Q(a, t), over the val-
ues of attribute a, at any time step t. For this purpose, we adopt the Hellinger
Distance measure [3], which computes the distance, denoted h(P,Q), between
probability distribution P (a, t) = {p(a, v, t) | v ∈ domd(a)}, and probability
distribution Q(a, t) = {q(a, v, t) | v ∈ domd(a)}, as follows:

h(P,Q) =

√√√√1

2

∑
v∈domd(a)

(
√
p(a, v, t)−

√
q(a, v, t))2 ∈ [0,

√
2]

When h(P,Q) = 0, probability distributions P and Q are identical, whereas
h(P,Q) =

√
2 corresponds to the maximum divergence between P and Q. Note

that the Hellinger Distance measure is symmetric, i.e. h(P,Q)= h(Q,P). Other
probability distribution distances, e.g. the earth mover’s distance (EMD), could
also be utilised here.

6.3 Stationary Marketplace

In a stationary environment, the QoS policy of the service provider for attribute
a remains static over time. Such an environment is simulated by generating

An Agent-Based Service Marketplace for Dynamic and Unreliable Settings 179

0

0.1

0.2

0.3

0.4

1 101 201 301 401 501 601 701 801 901

h(
P,

Q
)

Time Step

(a)

SlideWindow_all
SlideWindow_100
QoSLearn_0.05
QoSLearn_0.03
QoSLearn_0.01

0

0.2

0.4

0.6

0.8

1

1 51 101 151 201 251 301 351 401 451 501 551

h(
P,

Q
)

Time Step

(b)
QoSLearn_0.01

Uninstantiated, |domain|=5

Uninstantiated, |domain|=15

Uninstantiated, |domain|=25

Untrustworthy, |domain|=5

Untrustworthy, |domain|=15

Untrustworthy, |domain|=25

Fig. 3. Evaluation results in a stationary environment

the observations rating(a, t), for all the time steps t, according to the same
probability distribution valueprov(a, t0) = Q(a, t0), s.t. ∀t, Q(a, t) = Q(a, t0)
(i.e. value vi and mean μ for distributions Q1 and Q2, respectively, remain fixed
for all time steps). Here, we are interested in testing the ability of the proposed
approach to learn probability distribution Q(a, t0), in the following two settings:
Untrustworthy Provider, where the provider acts maliciously and advertises false
capability value(a) for attribute a, i.e. value(a) does not correspond to vi in the
case of actual distribution Q1 (see Table 1), and value(a) differs significantly
from μ in the case of actual distribution Q2 (see Table 1); and Uninstantiated
Attribute, where no performance indication regarding attribute a is available by
the provider, i.e. value(a) = undefined.

Figure 3(a) reports the results of the considered learning strategies. As ex-
pected, SlideWindow all is the best performing strategy, with smaller window
sizes achieving lower accuracy due to excluding relevant observations (all obser-
vations remain relevant in a static environment). By setting the learning rate δ
to a small value of 0.01, the proposed learning strategy, QoSLearn 0.01, keeps
the effect of older observations without necessitating their storage, and man-
ages to approximate the performance of SlideWindow all. However, such a small
learning rate causes slower learning at the beginning, achieving an accuracy of
about 0.2 only after 60 observations, compared to SlideWindow all that achieves
similar accuracy after just 15 observations. This initial learning period is fur-
ther highlighted in Figure 3(b), distinguishing the two cases of Untrustworthy
Provider and Uninstantiated Attribute, and varying the size of the attribute’s
domain domd. As can be seen, the effect of misleading providers generally takes
longer to overcome, especially for a larger domain size, requiring a larger number
of samples to accurately learn the actual underlying distribution.

6.4 Non-stationary Marketplace

In a non-stationary environment, the QoS policy of the service provider for
attribute a changes over time. Two cases are distinguished depending on the
change type, as detailed below.

180 L. Barakat et al.

0

0.1

0.2

0.3

0.4

0.5

1 101 201 301 401 501 601 701 801 901

h(
P,

Q
)

Time Step

(b)

QoSLearn_0.1

QoSLearn_0.05

QoSLearn_0.03

QoSLearn_0.01

Fig. 4. Evaluation results in a dynamic environment (gradual change)

Gradual Change. Here, the generative model of the quality observations,
valueprov(a, t) = Q(a, t), changes slowly at each time step. For distribution Q1,
this is simulated by slightly decreasing the probability of value vi, and corre-
spondingly increasing the probability of another value vj ∈ domd(a) \ {vi}. For
distribution Q2, this is achieved by a slight repositioning of the mean μ.

Figure 4(a) shows the corresponding results of the considered learning strate-
gies. As can be seen, the performance of SlideWindow all slowly deteriorates
with time as older observations become less relevant. Better prediction accu-
racy is obtained when the outdated data is gradually forgotten, favouring more
recent observations, with well-performing strategies corresponding to settings
SlideWindow 100 and QoSLearn 0.03 (note that Figure 4(a) only reports these
settings for reasons of clarity). The effect of different learning rates for the pro-
posed learning strategy is further studied in Figure 4(b), which demonstrates
that setting δ to lower and higher values (in comparison with 0.03) would in-
crease the prediction error due to intensifying the effect of irrelevant data and
the lack of sufficient samples, respectively.

Abrupt Change. Here, the generative model of observations, valueprov(a, t) =
Q(a, t), experiences a considerable change every 200 time steps. Such a change
is simulated by assigning probability 0 to value vi and probability 1 to another
value vj ∈ domd(a) \ {vi} in the case of distribution Q1, and switching to a
significantly different mean μ in the case of distribution Q2.

As depicted in Figure 5(a), strategy QoSLearn 0.05 (as well as SlideWin-
dow 50) achieves a good tradeoff between reactivity and stability, allowing fast
adaptation to a change (h(P,Q) falls below 0.2 in less than 15 time steps) while
assuring high accuracy (h(P,Q) < 0.1) in times of stability. SlideWindow all,
on the other hand, suffers from poor performance, especially after a change
occurrence, where the learned model mostly reflects irrelevant observations. Fig-
ure 5(b) provides further analysis of the performance of strategy QoSLearn δ
between consecutive change points, for various learning rates δ. Clearly, the
larger the learning rate, the quicker the observations are forgotten, resulting in

An Agent-Based Service Marketplace for Dynamic and Unreliable Settings 181

0

0.1

0.2

0.3

0.4

0.5

198 248 298 348 398

h(
P,

Q
)

Time Step

(b)
QoSLearn_0.2
QoSLearn_0.1
QoSLearn_0.05
QoSLearn_0.03
QoSLearn_0.01

Fig. 5. Evaluation results in a dynamic environment (abrupt change)

faster reactivity after a change, but lower performance in stable periods. In con-
trast, smaller learning rates improve the accuracy of the learner due to capturing
enough samples to reflect the current distribution, yet causes slower adaptation
to a change since irrelevant data takes longer to be forgotten.

6.5 Result Summary

The results above demonstrated that, for both SlideWindow w and QoSLearn δ,
appropriate parameter setting plays an important role for achieving accurate
learning of the probability distributions of quality values, and depends on the
environment dynamism. Moreover, the learning-rate-based strategy performs al-
most as good as the memory-based one, while achieving considerable saving in
terms of storage and computation, especially with the increasing dimensionality
and number of services in the marketplace. For instance, given a marketplace
with 1000 services, each with 10 quality attributes, applying QoSLearn δ, as
compared to SlideWindow 100, in a gradually changing environment eliminates
the need for storing and iterating over 100 × 104 quality ratings at each time
step, with the gain increasing in static environments (which require larger win-
dow sizes).

7 Related Work

The dynamism and uncertainty of open distributed service-based systems, where
the QoS features of the comprising services are unreliable and may exhibit high
volatility, have been recognised by many researchers. Existing approaches in this
regard can be categorised into reactive approaches and preventive approaches.

Reactive approaches aim at fault-tolerance during QoS-based service selec-
tion [8] or application execution [4–6], via performing appropriate corrective
actions (e.g. service re-planning) that are triggered in reaction to a change or
erroneous behaviour of a service. Such approaches, however, may suffer from

182 L. Barakat et al.

undesired effects such as reduced performance due to a high re-planning over-
head, and in some cases, inability to find a satisfactory solution given the already
executed services.

In response, preventive approaches (under which this paper falls) have been
proposed. These aim at fault-avoidance through providing more accurate es-
timation of service quality values (typically from prior observations of service
behaviour), thus allowing the discovery of more suitable services and minimis-
ing quality deviations at run time. A number of such efforts are concerned with
modelling volatility in service response time, very often caused by the network.
In this regard, Dai et al. [11] and Yang et al [12] predict changes in data trans-
mission time (and consequently service response time) through a Semi-Markov
Process. Aschoff et al. [10] model the response time of a service as a random
variable, changing as a result of various factors related to the network and sys-
tem resources (e.g. request queuing time). The exponentially weighted moving
average is utilised for estimating the expected value of this variable at a particu-
lar time step, according to historical data. Similarly, time series modelling based
on ARIMA (AutoRegressive Integrated Moving Average) has been proposed by
Amin et al. [9] for the purpose of QoS forecasting. These approaches, however,
mostly produce a single-valued quantification per quality attribute, and hence
may suffer from inaccurate predictions, do not support reasoning about attribute
value uncertainty, and are not suitable for categorical attributes.

Trust and reputation mechanisms have also been considered for the purpose
of accurate quality predictions [13, 14, 16]. In particular, prior to an interaction
with a service, an assessment of its overall trustworthiness [14, 16] or the trust-
worthiness of each of its QoS dimensions [13] is undertaken, to avoid selecting
services that may not honour their promises. Typically, such an assessment is
performed by producing reputation scores for the service based on feedback col-
lected from its users (e.g. calculating a time-weighted average of past service
ratings). Again, the reputation measures in these approaches are summarised by
single aggregative values, thus suffering form similar limitations as above.

In contrast, we propose a probabilistic, multi-valued estimation model, which
predicts multiple potential outcomes per quality attribute, and augments such
outcomes with uncertainty degrees, thus facilitating more informative reasoning
and reliable service selection. Moreover, it is applicable to both numeric and
categorical attribute types.

8 Conclusion

The paper presented a probabilistic QoS learning model, tailored towards dy-
namic and untrustworthy service environments, where each service is associated
with a software agent, able to learn, based on past performance information,
the uncertainty degrees regarding the service’s quality outcomes in the form of
probability distributions over such outcomes. The learning is both efficient and
adaptable to various degrees of environment dynamism via an appropriate choice
of the learning rate, which is demonstrated through experimental results.

An Agent-Based Service Marketplace for Dynamic and Unreliable Settings 183

Future work involves investigating more complex stochastic models for the
dynamic adjustment of the learning rate during the learning process when envi-
ronment dynamics change over time, as well as accommodating the addition of
new quality characteristics. Moreover, we intend to explore the social ability of
software agents (e.g. collaboration among those monitoring services for the same
provider) to improve QoS predictions in the proposed marketplace architecture,
where the role of agents has been limited so far to individual learning.

References
1. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented Com-

puting: State of the Art and Research Challenges. Computer 40, 38–45 (2007)
2. Bowling, M., Veloso, M.: Rational and Convergent Learning in Stochastic Games.

In: 17th Int. Joint Conf. on Artificial Intelligence, pp. 1021–1026 (2001)
3. Simpson, D.G.: Hellinger Deviance Tests: Efficiency, Breakdown Points, and Ex-

amples. Journal of the American Statistical Association 84, 107–113 (1989)
4. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.:

QoS-aware Middleware for Web Services Composition. IEEE Trans. Softw. Eng. 30,
311–327 (2004)

5. Ardagna, D., Pernici, B.: Adaptive Service Composition in Flexible Processes.
IEEE Trans. Softw. Eng. 33, 369–384 (2007)

6. Canfora, G., Penta, M.D., Esposito, R., Villani, M.L.: QoS-Aware Replanning of
Composite Web Services. In: IEEE Int. Conf. on Web Services, pp. 121–129 (2005)

7. Barakat, L., Miles, S., Poernomo, I., Luck, M.: Efficient Multi-granularity Service
Composition. In: IEEE Int. Conf. on Web Services, pp. 227–234 (2011)

8. Barakat, L., Miles, S., Luck,M.: Efficient AdaptiveQoS-based Service Selection. Ser-
vice Oriented Computing and Applications (2013), doi:10.1007/s11761-013-0149-z

9. Amin, A., Colman, A., Grunske, L.: An Approach to Forecasting QoS Attributes
of Web Services Based on ARIMA and GARCH Models. In: IEEE Int. Conf. on
Web Services, pp. 74–81 (2012)

10. Aschoff, R., Zisman, A.: QoS-driven proactive adaptation of service composition.
In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) Service Oriented Com-
puting. LNCS, vol. 7084, pp. 421–435. Springer, Heidelberg (2011)

11. Dai, Y., Yang, L., Zhang, B.: QoS-driven Self-healing Web Service Composition
Based on Performance Prediction. Journal of Computer Science and Technology 24,
250–261 (2009)

12. Yang, L., Dai, Y., Zhang, B.: Performance Prediction Based EX-QoS Driven Ap-
proach for Adaptive Service Composition. Information Science and Engineering 25,
345–362 (2009)

13. Maximilien, E.M., Singh, M.P.: Agent-based Trust Model Involving Multiple Qual-
ities. In: 4th Int. Joint Conf. on Autonomous Agents and Multiagent Systems, pp.
519–526 (2005)

14. Xu, Z., Martin, P., Powley, W., Zulkernine, F.: Reputation-Enhanced QoS-based
Web Services Discovery. In: IEEE Int. Conf. on Web Services, pp. 249–256 (2007)

15. Vu, L., Hauswirth, M., Aberer, K.: QoS-based Service Selection and Ranking with
Trust and Reputation Management. In: The Cooperative Information System Con-
ference, pp. 446–483 (2005)

16. Malik, Z., Bouguettaya, A.: RATEWeb: Reputation Assessment for Trust Estab-
lishment among Web Services. The VLDB Journal 18, 885–911 (2009)

17. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A Survey on
Concept Drift Adaptation. ACM Computing Surveys 46, 1–37 (2014)

Architecture-Centric Design of Complex
Message-Based Service Systems

Christoph Dorn, Philipp Waibel, and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology, Austria
{dorn,dustdar}@infosys.tuwien.ac.at, philipp.waibel@gmail.com

Abstract. Complex, message-based service systems discourage central
execution control, require extremely loose coupling, have to cope with
unpredictable availability of individual (composite) services, and may
experience a dynamically changing number of service instances. At the
topmost level, the architecture of such a complex system often follows a
messaging style most naturally. A major problem during the design of
these systems is achieving an overall consistent configuration (i.e, ensur-
ing intended message routing across producers, consumers, and brokers).
While orchestration or choreography-based approaches support the de-
sign of individual composite services along a workflow-centric paradigm,
they are an awkward fit for specifying a message-centric architecture.
In this paper, we present an architecture-centric approach to designing
complex service systems. Specifically we propose modeling the system’s
high-level architecture with an architecture description language (ADL).
The ADL captures the message-centric configuration which subsequently
allows for consistency checking. An architecture-to-configuration trans-
formation ensures that the individual deployed services follow the ar-
chitecture without having to rely on a central coordinator at runtime.
Utilizing our provided tool support, we demonstrate the successful ap-
plication of our methodology on a real world service system.

Keywords: Decentralized Composite Services, Architecture Description
Language, Consistency Checking, Message-based Style.

1 Introduction

The last two decades have witnessed the emergence of various techniques for com-
posing complex service systems. Composition approaches based on orchestration
languages such as BPEL [12] and YAWL [1] or those based on choreography lan-
guages such as WS-CDL1 share a common assumption on the underlying system
architecture: namely workflow-like control and data flow among services. Not
all application scenarios, however, fit this workflow-centric scheme and hence
existing approaches are cumbersome to apply. A publish-subscribe architecture
is a better match for a complex service system which (i) discourages centralized
1 Web Services Choreography Description Language
http://www.w3.org/TR/ws-cdl-10/

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 184–198, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://www.w3.org/TR/ws-cdl-10/

Architecture-Centric Design of Complex Message-Based Service Systems 185

execution control, (ii) consumes and provides data rather than method invoca-
tions, (iii) experiences unpredictable service availability, and (iv) must support
a dynamically changing number of service instances.

In this paper we address challenges emerging from the design and configura-
tion efforts of such decentralized, highly decoupled, event-based (composite) ser-
vices. A system architect following a naive approach would specify the individual
(composite) services and wire them up in an ad-hoc manner via message queues.
The resulting message flow might be documented somewhere but the overall
consistency of the ultimately developed services and the deployed message bro-
kers cannot be guaranteed. The ground truth message flow remains implicit in
the configuration of individual services and the utilized message-oriented mid-
dleware (MOM). It is only a matter of time and complexity before the design
and configuration of such a composite system becomes inconsistent. An engineer
engaging in example tasks such as restructuring the message flow, integrating
additional services, deploying additional instances, or adapting services has lit-
tle means to ensure that a particular change leaves the updated system in a
coherent state. Enterprise Application Integration (EAI) patterns [10] guide the
architect in how to structure the overall system but cannot guarantee correct
implementation. Consequently high costs occur in terms of time and invested
resources when attempting to maintain consistency, as well as for detecting and
repairing inconsistencies.

We propose to address this problem through a combination of architecture-
centric composite service specification, separation of message routing aspects
from local invocation-centric message processing, and architecture-to-configura-
tion transformation. Specifically, our approach applies a component and connec-
tor view for describing the high-level, overall complex service system’s
architecture. The components represent individual, composite services while the
connectors represent message brokers. The resulting centralized system architec-
ture serves as the authoritative source for configuring the MOM and each ser-
vice’s publish/subscribe endpoints. Individual services leverage the advantages
of proven technologies such as Enterprise Service Buses (ESB) and workflow en-
gines for processing messages locally. This cleanly separates the responsibility
of designing the overall, distributed architecture from designing its constituent
components. Constraint checks ensure that the architecture itself is consistent.
Ultimately transformations derive the actual technology configuration automat-
ically from the architecture description and thus guarantee consistency.

In support of this approach, our contribution in this paper is four-fold. We
provide (i) an message-centric extension for the Architecture Description Lan-
guage xADL [5] (Sec. 5.2), (ii) message-centric architecture consistency checking
(Sec. 5.3), (iii) tool support through extension of ArchStudio4 [4] (Sec. 6), and
(iv) proof-of-concept architecture-to-configuration transformations for the Ac-
tiveMQ JMS server and the Mule ESB (Sec. 6.1). We applied our approach and
techniques to an industry case study, demonstrating that our methodology is
not only feasible, but also easily applicable in real world situations (Sec. 7).

186 C. Dorn, P. Waibel, and S. Dustdar

2 Motivating Scenario

A parking management system consists of a high number of distributed ser-
vices. Figure 1 depicts a simplified, typical system configuration. Data services
at parking sites provide primarily static and highly dynamic information about
the parking sites structure (e.g., structure layout, spots per vehicle type), proper-
ties (e.g., location, typical occupation level at a given time), the current capacity,
and reserved spots. Filter services obtain these details and bring all messages to a
uniform format for structural data and dynamic change events (i.e., EAI message
translator pattern and the normalizer pattern). Aggregator services maintain a
coherent, property-specific view on the parking structures. For example, one ag-
gregator provides details on all parking structures in a particular region, another
specializes on caravan parking. Ultimately, Point-of-Sales (POS) services serve
particular business cases such as hotels, airports, train stations, rental-car com-
panies, or car-sharing initiatives for reserving parking spots. These POS services
obtain the structural data, and changes thereof from aggregator services but
receive dynamic updates from filter services directly.

Fig. 1. Parking Management Complex Service System comprising, Data Services, Filter
Services, Aggregator Services, and POS Services, as well as message brokers. (Note that
icons are meant to depict services and not servers.)

This scenario reflects the challenges from the introduction. The overall system
relies primarily on asynchronous message exchange. There is no single service
that would logically serve as a central point of control. Individual service partic-
ipants may be disconnected or briefly overloaded and thus temporarily unavail-
able. New services may be introduced anytime but must not affect the remaining
service participants’ interaction nor require their extensive reconfiguration. Our
approach aims at preventing (respectively detecting) following example prob-
lems: a Data service publishing its updates to the wrong topic, respectively a
Filter service reading from the wrong topic; an Aggregator service expecting an
incompatible message type from a filter. Multiple POS services using a single,

Architecture-Centric Design of Complex Message-Based Service Systems 187

shared reply queue for asynchronous requests, or a POS service connecting to a
non-existing request topic.

3 Related Work

Choreography and Orchestration are the two main contemporary paradigms for
addressing design and configuration of complex service systems. Orchestration
languages such as BPEL [12], JOpera [13], or YAWL [1] represent centralized
approaches and thus need a single coordinating entity (i.e., the workflow en-
gine) at runtime. Decentralized orchestration approaches (e.g.,[11,16]) mitigate
this shortcoming through distributing control flow among the participating ser-
vices. While orchestration takes on a single process view including all participat-
ing services, choreography specification languages such as BPEL4Chor [6], Let’s
Dance [17], or MAP [3], on the other hand, aim at a holistic, overarching system
view. Both choreography and orchestration, however, presume a workflow-like
system style, with services playing fixed roles, and being highly available (respec-
tively easily replaceable on the fly). It is rather cumbersome to model complex
service systems that experience dynamically fluctuating service instances, mul-
tiple (a-priori unknown) instances of the same service type, and temporal un-
availability with the languages and approaches outlined above. Our work caters
predominately to systems that more naturally rely on one-way events and less
on request/reply style information exchange. In addition, our approach offers
more flexibility on where to locate and manage coordinating elements by strictly
separating them from services concerned with business logic as well as modeling
them as first class entities. Enterprise Application Integration patterns (EAI)
[10] demonstrate the benefits of message-centric service interaction. Scheibler et
al. [14] provide a framework for executing EAI-centric configurations; however,
by means of a central workflow engine.

At no point are we suggesting that our approach is superior to any of these
existing approaches, methodologies, or technologies. We rather see our work as
focusing on different service system characteristics. We believe that integrating
these existing technologies are well worth investigating as part of future work.
This holds also true for existing research efforts that focus on other qualities
than high-level architectural consistency. Work on integrating QoS or resource
allocation is highly relevant but currently not applicable to our scenarios. Such
approaches [7] typically rely on centralized control and/or exclusively employ
the request/reply invocation pattern.

Our work takes inspiration from significant contributions in the software ar-
chitecture domain. Zheng and Taylor couple architecture-implementation con-
formance with change management in their 1.x mapping methodology [18]. 1.x
mapping focuses primarily on maintaining consistency between an architecture
specification and its underlying Java implementation and how changes are propa-
gated from the architect to the software developer. We follow a similar procedure
by separating high-level architectural design and configuration decisions from the
engineers that implement the actual (composite) services.

188 C. Dorn, P. Waibel, and S. Dustdar

Garcia et al. investigate the issues of architecture-centric consistency bottom-
up [9]. In contrast to our top-down specification of event handling, Garcia et
al. identify message flows from source code of event-based systems implemented
in Java or Scala. Their technique appears also very suitable for recovering the
messaging architecture of an already existing complex service system.

Baresi et al. model publish/subscribe systems for rigorous verification [2].
Their approach requires modeling of a component’s internal publishing/subscrib-
ing behavior in order to evaluate message reliability, ordering, filtering, priorities,
and delays. On the one hand, we do not assume knowledge of precise service in-
ternal behavior at the architectural level, and on the other hand, such analysis
is significantly more fine-grained than required for our purpose.

The SASSY framework [8] targets service system specification by domain ex-
perts through the Service Activity Schema (SAS) language. Inspired by BPMN,
SAS provides OR, XOR, AND gateways, loops, activities, input/output ele-
ments, and external services for specifying the system’s data and control flow.
The resulting specification lacks first class connectors and primarily lends itself
to workflow-style systems.

4 Approach

Our approach to designing and configuring a complex service system consists of
four phases (depicted in Figure 2). First, a high-level architectural component
and connector view identifies the main (composite) services (architecture-level
components), and their interactions via messages (architecture-level interfaces).
Explicit message channels (architecture-level connectors) enable the clear sepa-
ration of interaction concerns from (service) logic concerns [15]. An architect may
model connector-specific properties, configurations, simplify N:M links (become
N:1:M), interaction monitoring, etc when connectors become first class model
elements. In our specific context, the high-level architecture also separates the
responsibility of the overall service system architect from engineers tasked with
the internal design and wiring of the individual services (incl. applied tools such
as ESBs). We apply an existing extensible Architecture Description Language
(xADL) [5] for expressing the high-level architecture. Subsection 5.1 below pro-
vides a short introduction of xADL and its main modeling elements.

At any stage in the architecture modeling, the architect may choose to spec-
ify messaging-specific configuration properties. For connectors, these properties
define messaging middleware-specific details such as channel name, applicable
protocol, or deployment host. For interfaces, these properties include messaging
endpoint related details such as reply channel references, event-centric request
endpoint references, as well as framework-centric properties.

Upon triggering consistency checking, our algorithm iterates through all com-
ponents, connectors, and links that exhibit messaging-specific configurations. It
verifies allowed link cardinalities, missing configuration values, and matching
interface details. For a detailed description of constraints see Subsection 5.3.

For all elements that passed these constraint checks, the system architect may
then trigger architecture-to-configuration transformations. Distinct tool-centric

Architecture-Centric Design of Complex Message-Based Service Systems 189

transformations exist for connectors and components. Connectors plus messaging-
centric configuration become a message broker configuration; in our case a set
of ActiveMQ configurations. Components plus messaging-centric configuration
translate into Mule workflow skeletons (see Subsection 6.1).

Fig. 2. A methodology for designing and configuring complex service systems

Figure 2 displays the four phases in a sequential manner. The system architect
and her co-worker, however, will typically progress through these phases in an
iterative manner. An initial configuration may sufficiently serve for checking
overall consistency and for identifying core individual services. This approach
addresses the four properties of complex service systems outlined earlier in the
introduction:

No centralized execution control. The high-level system architecture con-
stitutes a central, authoritative specification only at design-time. The top-
down specification of message infrastructure and message-centric service end-
points ensures that the decentralized elements remain true to the architecture
at runtime.

Publish/Subscribe interaction. The high-level composite services in this sys-
temareprimarily concernedwith their business logic andnothowmany sources
they receive information from or how many destination in turn are interested
in their processed information. Hence, an event-driven interaction style best
reflects this loose coupling.

Unpredictable service availability. The message-oriented architecture ena-
bles reasoning on the effect of unavailable services. As a durable subscriber,
individual services may process at their own pace without affecting simultane-
ous subscribers. Explicit connector modeling also enable reasoning on where
to host which channels, further decoupling message routing from processing.

190 C. Dorn, P. Waibel, and S. Dustdar

Dynamically fluctuating service instances the system architect may spec-
ify in the architecture that theremay existmultiple instances of particular com-
posite service types, and control their impact on the overall system through
selection of publish-subscribe versus point-to-point channel connectors.

5 Architecture-Centric Design and Configuration

5.1 Background

The extensible Architecture Description Language xADL 2.0 [5] comprises a set
of XML schemas (XSD) explicitly aimed at encouraging simple, domain-specific
model element refinements, extensions, and constraints.2 We will briefly describe
xADL’s main elements that are relevant for our purpose and outline where our
extensions plug into the overall schema hierarchy. The interested reader will find
an extensive discussion of the language’s features in [5].

At its core, xADL provides a component and connector view where connectors
are treated as first class entities (i.e., components and connectors are wired up
via links). It introduces a simple type systems, thus differentiating between Com-
ponent and ComponentType, Connector and ConnectorType, as well as Interface
and InterfaceType. This type-instance hierarchy allows reasoning on common
component (i.e. service) and connector (i.e., message middleware) behavior or
implementation. For our purpose, within the scope of the xADL types schema,
the architect defines general publish-subscribe and point-to-point channel con-
nector types in addition to all the various component types foreseen in the com-
plex service system. ComponentTypes and ConnectorTypes expose Signatures
which in turn may refer to interface types. It is thus possible to distinguish be-
tween provided and required interfaces. A messaging connector type typically
exhibits a signature for sending messages and a signature for retrieving mes-
sages, both according to the same interface type. The xADL structure schema
subsequently exhibits all the component and connector instances including their
specific wiring. Type inheritance is optional.

A second set of schemas target the specification of implementation details.
The abstract implementation schema identifies the plug-in locations where con-
crete implementations subsequently provide technology specific details. Natively
xADL provides only modeling constructs for Java-based implementations de-
ployed on a single JVM. Figure 3 depicts the xADL modeling constructs, their
relations, and our extensions.

5.2 Message-Centric ADL Extension

The main architecture modeling concerns in a message-centric complex service
system are configuration of the messaging middleware, definition of message
channels, direction and type of messages, message request/reply correlation be-
yond generic one-way messages, and messaging middleware access properties.
2 Throughout this paper any reference to xADL always implies xADL version 2.0.

Architecture-Centric Design of Complex Message-Based Service Systems 191

Fig. 3. Simplified xADL schema excerpt including the messaging extensions (dark grey)

To this end, we provide a set of four implementation extensions (see also Figure 3
bottom). The schemas for Channel Implementation and Endpoint Implementa-
tion provide general messaging properties, while Mule Implementation and JMS
Implementation express technology specific properties for Mule and ActiveMQ
respectively. The separation into four schemas also reflect the fact that each
schema applies only to a particular core architecture element.

Channel Implementation (aka EAI message channel pattern) applies to a
Connector element and specifies whether the Connector behaves as a publish-
subscribe channel or point-to-point channel and provides the respective name.

Endpoint Implementation (aka EAI message adapter pattern) applies to an
Interface element associated with a Component (and will be ignored when
the Interface is associated with a Connector). The Durable_Name properties
identifies the subscriber of a durable subscription towards the channel con-
nector. When a component dispatches a message for which is expects a reply,
its sending interface must identify the point-to-point channel where it ex-
pects to eventually receive the reply message from via the Reply_To_Queue
property. To completely specify a request/reply pattern, the requesting com-
ponent exhibits a receiving interface that signals its role via the Connec-
tion_To_Request_Endpoint property. A component may thus exhibit mul-
tiple, unambiguously defined request/reply interface pairs. On the reply-
ing component (within a request/reply pattern), the receiving in interface
points to the replying out interface via the Reply_To_Queue property,
which in turn completes the bi-directional references via the Connection_
To_Request_Endpoint property. The Endpoint_Position_No property al-
lows for specifying an ordering of interfaces.

192 C. Dorn, P. Waibel, and S. Dustdar

Mule Implementation applies to a Component element, indicating that the
component is a composite service, specified by a Mule workflow. The con-
figuration properties comprise the file_id where to save the Mule workflow
skeleton and generic parameter/value AdditionalConfig properties targeted
at Mule. All components with the same file_id end up in the same configu-
ration and thus will be collocated on the same Mule instance.

JMS Implementation applies to a ConnectorType element and configures an
ActiveMQ instance. The Transport_Configuration property specifies at least
one ActiveMQ connection endpoint URL. The optional JMS_Specification_
Version property holds the JMS protocol version, by default 1.1. The op-
tional Persistence_Configuration property captures persistence adapter (de-
fault is kahaDB) and storage directory. Finally, the file_id property deter-
mines which JMS endpoints are hosted on the same ActiveMQ instance.

5.3 Consistency Checks

We have devised an initial set of soft and hard consistency checks that issue warn-
ings and recommendations on how to mitigate the inconsistency. The checks are
restricted to Component, Connectors, ConnectorTypes, and Interfaces refined
with our xADL extensions. Basic checks such as interface direction and type
compatibility are already available in the ArchStudio4 (see Sec. 6).

Most messaging-centric checks apply at the architecture level. We detect when
there exists a link directly between two components or two connectors. Two
connector instances of the same connector type cannot share the same channel
name. Subscriber and publishers would otherwise share the same channel which
is in conflict with the architecture-prescribed distinct channels. Every component
interface can only link to a single connector interface as the interface represents
the message channel at the service side. We recommend that every connector has
exactly one in and one out interface. The use of inout interfaces is discouraged.
Instead a set of separate request and reply queues, thus implying separate in
and out interfaces, unambiguously document the intent of the inout direction.
Our checks warn when multiple message consumers link to the out interface of
a point-to-point channel. Only one nondeterministic subscriber will be able to
obtain the message. We also warn when a publish-subscribe channel (rather than
a point-to-point channel) is used within the scope of a request/reply pattern.
With multiple subscribers to the request topic, multiple responses may occur.

Complementary component level checks ensure the proper use of the message-
centric request/response pattern. A response endpoint (interface) must refer to
its respective, initiating request endpoint (interface), both must exist, reside on
the same component, and may not be identical. Additional tool-centric checks
ensure that the architect provided all required information for transforming the
model to message broker and ESB configuration (see following section 6).

Architecture-Centric Design of Complex Message-Based Service Systems 193

6 Tool Support

6.1 Architecture-to-Configuration Transformation

For the purpose of this paper, we focused on two architecture-to-configuration
transformations. As example for configuring a message-oriented middleware, we
generate the XML-based ActiveMQ Server configuration. A ConnectorType’s
JMS implementation is sufficient for deriving a server’s configuration which
consists of two parts. The Persistence_Configuration determines the persis-
tenceAdapter and all Transport_Configurations determine the set of available
transportConnectors. The transformation also ensures traceability by adding the
connector type’s id as a comment to the configuration files broker element. Note
that the transformation ignores any connectors and thus doesn’t specify what
queues or topics the server will eventually manage as ActiveMQ creates these on
the fly. Ultimately, every connector type with a JMS implementation results in
a separate transportConnector element. Configurations for connector types that
share a file_id are aggregated into a single configuration file and subsequently
end up collocated on the same ActiveMQ server instance.

As example for configuring a service endpoint, we provide the complete mes-
sage specification for a Mule workflow, i.e., a workflow designer may neglect any
message-broker related details and can focus purely on the local message pro-
cessing. The Mule workflow configuration captures components, interfaces, and
their wiring to the various connectors, while the ActiveMQ service configuration
represents only the connector types in complex service system’s architecture.
Each component results in a separate mule workflow specification. The transfor-
mation places all workflow specifications from component with the same file_id
in the same file, and thus collocates them on the same Mule ESB instance. To
this end, the transformation first retrieves all connectors (with channel imple-
mentation) and obtains the JMS configuration from the corresponding connector
type. Each distinct connector type becomes an activemq-connector element. For
each interface, a new [inbound|outbound]-endpoint element obtains the config-
uration properties from the endpoint implementation, the channel name from
the linked connector’s channel implementation, and the respective connector-ref
to the activemq-connector. Our transformation treats two interfaces coupled via
a Connection_To_Request_Endpoint property and Reply_To_Queue property
differently depending on whether they represent the requesting component or the
replying component. In case of the former, the respective two mule endpoints
become wrapped in a request-reply element and a preceding message-properties-
transformer element. In case of the latter, the receiving interface becomes a
inbound-endpoint with an exchange-pattern="request-response" property while
the outgoing interface is ignored. The respective reply endpoint information ar-
rives embedded in the request message at runtime.

6.2 ArchStudio Integration

We realized our approach as a prototype on top of ArchStudio 4 [4], a visual,
Eclipse-based IDE for editing xADL documents. ArchStudio comes with two

194 C. Dorn, P. Waibel, and S. Dustdar

Fig. 4. ArchStudio extension screenshot: schema extension (left), transformation con-
figuration file mapping (top), exemplary inconsistency alerts (inset)

main editors: ArchEdit provides access to the underlying xADL document (in-
cluding all extensions) as a tree, while Archipelago offers a drag-and-drop, point-
and-click interface for placing and wiring up components and connectors. Arch-
Studio foresees the integration of additional functionality through extensions.

Schema Extensions. For the purpose of our approach, it proved sufficient
to extend xADL at the implementation schema level. The additional elements
(recall subsection 5.2) blend in smoothly with the existing user interface, merely
appearing as new implementation options (see Figure 4 left). An existing Arch-
Studio 4 user won’t have to learn any new steps for utilizing our schema exten-
sions. Under the hood, ArchStudio applies its Apigen tool for creating a data
binding library for each xADL schema. ArchEdit and Apigen’s limitations com-
bined result in configuration properties being limited to strings, references, and
complex data structures thereof.

Consistency Checking. We implemented the consistency checker as a ded-
icated component within ArchStudio. The checker raises warnings and errors
during execution, depending on the consistency rule severity. The user may de-
cide to ignore warnings and still continue to configuration transformation later
on. Transformation is disabled, however, in the presence of consistency errors (see
Figure 4 inset). In general, consistency checking is cheap. The consistency algo-
rithm’s runtime complexity is Θ(comp+ l) for architecture components (comp)
and links (l) as rules are either local (e.g., interface properties, interface link
cardinality) or access only a link’s two referenced elements (e.g., compatible

Architecture-Centric Design of Complex Message-Based Service Systems 195

interface direction). Checking the uniqueness of channel names of connectors
deriving from the same connector type is slightly less efficient: the algorithm’s
complexity is Θ(n log n) in the number of connectors.

Transformation. As mentioned above, the actual transformation component
becomes only available after passing all consistency checks. The only user inter-
action with the transformation consists of mapping a component’s and connector
type’s file id to an actual file location (see Figure 4 top).

We are currently in the process of open-sourcing our tool as an ArchStudio4
add-on and will update this paper with a link to the tool website as soon as we
have put together sufficient installation documentation. For now, the extending
xADL schema documents, example architecture model, and corresponding gen-
erated configuration files are available as Supporting Online Material (SOM) at
http://wp.me/P1xPeS-5H.

7 Proof-of-Concept Case Study

We utilized our prototype tool support for developing a parking management
complex service system. The system is similar to the one introduced in the mo-
tivating scenario but for reasons of confidentiality we cannot disclose the actual
system architecture. Any depicted and described architecture excerpts, hence,
closely match the system in structure but exhibit generalized element names and
properties. We briefly report on the development process and respective applica-
tion of our approach to demonstrate not only feasibility but also actual benefit
in a representative, real-world development environment.

Our approach and tool support allows for an iteratively refining system design
methodology. As the architecture goes through various iterations, the architect
gradually assigns implementation elements to components, connectors, and in-
terfaces. Mule workflow developers pick the various components and generated
workflow specification and implement the internal composite service behavior.
Specification and changes need not necessarily flow only from architecture to
configuration. Due to page constraints, we are unable to describe our additional
tool capabilities such as generating the messaging endpoints within pre-existing
Mule workflows (rather than from-scratch workflow generation), non-destructive
change propagation of architecture updates into workflow configurations, and
consistency checking upon changing message-centric elements conducted within
the mule workflow editor. These aspects are subject to future publications. The
architect runs consistency checks in any development phase, after any update
to the architecture or Mule workflow and thus can guarantee that inconsisten-
cies are immediately detected, respectively that the prescribed architecture and
system are in a consistent configuration.

Ultimately, the architect arrives at a model similar to the excerpt in Figure 5.
It contains one composite Filter Service, Aggregator Service, and POS Service
each (for a total of eight Mule workflows), along with the five intermediate mes-
sage queues/topics. The Filter Service comprises of two components: one Mule
workflow for filtering and enhancing dynamic changes events from parking sites

http://wp.me/P1xPeS-5H

196 C. Dorn, P. Waibel, and S. Dustdar

Fig. 5. Evaluation system architecture except: depicting composite service components
(dark/blue) and message broker connectors (light/beige) - ArchStudio screenshot (col-
ors online)

(not shown), and one workflow processing structural events. The composite Ag-
gregator Service comprises three workflows: one for obtaining structural data
(typically provided by more than one Filter Service), one for checking the struc-
tural data for changes relevant to POS services and dispatching those changes,
and one for providing POS services with initial complete state information. A
generic POS Service contains at minimum flows for (i) obtaining initial data (in
this case, the POS service is aware from which Aggregator Service it receives such
initial information), for (ii) receiving structural updates and for (iii) dynamic
data updates. Further locally relevant flows which contain the actual business
logic are irrelevant at this architectural level. Similarly, shared databases serving
multiple flows within a single Mule instance need not be configured at this level
but instead are within the scope of a Mule configuration file. Note also that the
architectural substructures are included for sake of better understanding. Collo-
cation of mule workflows depends solely on specifying the same implementation
file id property.

Tool supported consistency checking pays of even for this small architecture
excerpt. A single execution of the all consistency checks outlined in Section 5.3
on the architecture in Figure 5 results in four architecture-level checks, four
link-specific checks, three connector checks, one connector type check, and six
component checks (including respective interfaces). Remember that an archi-
tecture would need to conduct many more checks when conducting the same
analysis on Mule and ActiveMQ files alone. The ActiveMQ configuration is void
of any topic and queues definitions, thus there exists no authoritative, explicit
connector element. Observing a simple example such as ensuring that a queue
has only a single receiver or that queue/topic names are unique: the architect
needs to traverse the Mule configuration for each queue and topic definition first
to the corresponding Mule messaging endpoint definitions (requiring a detailed
understanding of the configuration file) and then pairwise compare this informa-
tion across all included mule workflows (i.e., n ∗ (n− 1)/2 comparisons, thus 45x
for our use case’s 10 connected component interfaces); a tedious and error-prone
task, especially for larger systems.

Architecture-Centric Design of Complex Message-Based Service Systems 197

Discussion and Limitations

Complex service systems do not necessarily need to exhibit all the challeng-
ing properties listed in the introduction: prohibiting centralized execution con-
trol, consuming and providing data rather than invocations, experiencing unpre-
dictable service availability, and supporting a dynamically changing number of
service instances. Systems that encounter only a subset will equally benefit from
our approach and tools.

Currently, our architecture-to-configurationtransformationproduces onlyMule
workflows and ActiveMQ configurations. The underlying real world development
project underlying our evaluation scenario identified these technologies as suffi-
cient and providing a good balance between a light-weight messaging framework
and the expressive and extensible Mule workflows for composite service design.
Our approach remains valid for other messaging protocols or frameworks as well as
for other service designmethodologies.The architecture-level consistency checking
mechanism remain applicable. Ultimately, supporting other runtime frameworks
does not necessarily require adapting our ArchStudio add-on. For small deviating
tasks, such as generating an OpenJMS server configuration, access to the architec-
ture model via Apigen’s data binding libraries, or directly via the xADL XML file
will be sufficient.

8 Conclusions

We made the case for architecture-centric design of complex, message-based ser-
vice systems. Our approach targets the specification of systems comprising dy-
namically fluctuating instances of message-driven, highly decoupled composite
services with uncertain availability. Our extension to xADL provides the basis
for central specification and consistency checking at design-time, subsequently
achieving consistent run-time configuration without having to rely on a cen-
tral coordinator. Our prototypical tool integrated with ArchStudio4 produces
configurations for the ActiveMQ message broker and Mule workflow endpoints.

Our future work focuses on following two aspects: on the one hand, we plan to
extend the set of supported protocols and tools (e.g., the advanced message queue
protocol AMQP or WS-Notification). It will be especially worthwhile evaluating
how the EAI patterns (currently modeled internally in Mule) may be explicitly
supported by our ADL and subsequently mapped to EAI frameworks such as
Apache Camel. On the other hand, we will investigate additional analysis aspects
such as optimal channel allocation across message-broker instances and their
location in proximity to the various services.

Acknowledgment. This work is partially supported by the European Union
within the SIMPLI-CITY FP7-ICT project (Grant agreement no. 318201).

198 C. Dorn, P. Waibel, and S. Dustdar

References
1. van der Aalst, W., Hofstede, A.H.M.T.: Yawl: Yet another workflow language.

Information Systems 30, 245–275 (2003)
2. Baresi, L., Ghezzi, C., Mottola, L.: On accurate automatic verification of publish-

subscribe architectures. In: Proc. of the 29th International Conference on Software
Engineering, ICSE 2007, pp. 199–208. IEEE Computer Society, Washington, DC
(2007)

3. Barker, A., Walton, C., Robertson, D.: Choreographing web services. IEEE Trans-
actions on Services Computing 2(2), 152–166 (2009)

4. Dashofy, E., Asuncion, H., Hendrickson, S., Suryanarayana, G., Georgas, J., Taylor,
R.: Archstudio 4: An architecture-based meta-modeling environment. In: Compan-
ion to the Proc. of the 29th International Conference on Software Engineering, pp.
67–68. IEEE Computer Society, Washington, DC (2007)

5. Dashofy, E.M., Van der Hoek, A., Taylor, R.N.: A highly-extensible, xml-based ar-
chitecture description language. In: Proceedings of the Working IEEE/IFIP Con-
ference on Software Architecture, pp. 103–112. IEEE (2001)

6. Decker, G., Kopp, O., Leymann, F., Weske, M.: Bpel4chor: Extending bpel for
modeling choreographies. In: IEEE 20th International Conference on Web Services,
pp. 296–303. IEEE Computer Society, Los Alamitos (2007)

7. Dustdar, S., Schreiner, W.: A survey on web services composition. Int. J. Web Grid
Serv. 1(1), 1–30 (2005)

8. Esfahani, N., Malek, S., Sousa, J.P., Gomaa, H., Menascé, D.A.: A modeling lan-
guage for activity-oriented composition of service-oriented software systems. In:
Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 591–605. Springer,
Heidelberg (2009)

9. Garcia, J., Popescu, D., Safi, G., Halfond, W.G.J., Medvidovic, N.: Identifying
message flow in distributed event-based systems. In: Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2013, pp. 367–
377. ACM, New York (2013)

10. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley, Reading (2003)

11. Nanda, M.G., Chandra, S., Sarkar, V.: Decentralizing execution of composite web
services. SIGPLAN Not 39(10), 170–187 (2004)

12. Organization for the Advancement of Structured Information Standards (OASIS):
Web Services Business Process Execution Language (WS-BPEL) Version 2.0 (April
2007), http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

13. Pautasso, C., Heinis, T., Alonso, G.: Jopera: Autonomic service orchestration.
IEEE Data Eng. Bull. 29(3), 32–39 (2006)

14. Scheibler, T., Leymann, F.: A framework for executable enterprise application in-
tegration patterns. In: Mertins, K., Ruggaber, R., Popplewell, K., Xu, X. (eds.)
Enterprise Interoperability III, pp. 485–497. Springer, London (2008)

15. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations,
Theory, and Practice. Wiley (2009)

16. Yildiz, U., Godart, C.: Information flow control with decentralized service compo-
sitions. In: IEEE Int. Conf. on Web Services, pp. 9–17 (July 2007)

17. Zaha, J.M., Barros, A., Dumas, M., ter Hofstede, A.: Let’s dance: A language for
service behavior modeling. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS,
vol. 4275, pp. 145–162. Springer, Heidelberg (2006)

18. Zheng, Y., Taylor, R.N.: Enhancing architecture-implementation conformance with
change management and support for behavioral mapping. In: Proc. of the 34th Int.
Conf. on Software Engineering, ICSE 2012, pp. 628–638. IEEE Press, Piscataway
(2012)

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

Managing Expectations: Runtime Negotiation
of Information Quality Requirements

in Event-Based Systems

Sebastian Frischbier1, Peter Pietzuch2, and Alejandro Buchmann1

1 Technische Universität Darmstadt, Darmstadt, Germany
{frischbier,buchmann}@dvs.tu-darmstadt.de

2 Imperial College London, London, United Kingdom
p.pietzuch@imperial.ac.uk

Abstract. Interconnected smart devices in the Internet of Things (IoT)
provide fine-granular data about real-world events, leveraged by service-
based systems using the paradigm of event-based systems (EBS) for in-
vocation. Depending on the capabilities and state of the system, the in-
formation propagated in EBS differs in content but also in properties like
precision, rate and freshness. At runtime, consumers have different dy-
namic requirements about those properties that constitute quality of in-
formation (QoI) for them. Current approaches to support quality-related
requirements in EBS are either domain-specific or limited in terms of
expressiveness, flexibility and scope as they do not allow participants to
adapt their behavior. We introduce the generic concept of expectations
to express, negotiate and enforce arbitrary requirements about informa-
tion quality in EBS at runtime. In this paper, we present the model of
expectations, capabilities and feedback based on generic properties. Par-
ticipants express requirements and define individual tradeoffs between
them as expectations while system features are expressed as capabilities.
We discuss the algorithms to (i) negotiate requirements at runtime in
the middleware by matching expectations to capabilities and (ii) adapt
participants as well as the middleware. We illustrate the architecture for
runtime-support in industry-strength systems by describing prototypes
implemented within a centralized and a decentralized EBS.

Keywords: event-based systems, quality of information, self-adaptive
systems, runtime negotiation, malleability.

1 Motivation

Having information of adequate quality available at the right time in the right
place is vital for software systems to react to situations or support decisions. Sup-
ply chain management based on the Internet of Things (IoT) and data centre
monitoring are just two examples of reactive systems where information provided
by data sources has to be interpreted and where false alarms, missed events or
otherwise information of inadequate quality carries a cost [18]. Event-based sys-
tems (EBS) and service-oriented architectures (SOA) complement each other

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 199–213, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

200 S. Frischbier, P. Pietzuch, and A. Buchmann

well to leverage those streams of dynamic real-time information in enterprise
software systems and react on meaningful events in a timely manner: software
components can be exposed as services for direct communication while also act-
ing as participants of an EBS to follow an indirect communication model [8,10].
EBS are anonymous, information-centric systems with many-to-many commu-
nication: loosely-coupled software components (publishers) publish notifications
about events they are confident to have detected (e.g., critical workload at node)
as messages which are pushed to interested components (subscribers) by a mid-
dleware. Information exchanged in EBS is characterized by type (e.g., tempera-
tureEvent), content (e.g., temperatureCelsius=50) and quality-related properties
(e.g., rate of publication, confidence, precision, trustworthiness) [14].

Subscribers in EBS require information with sufficient quality of information
(QoI) to decide whether to react or not: being notified too late or causelessly due
to false positive can have severe consequences [18]. Whether some QoI is sufficient
depends on the information’s properties fitting the purpose it is intended to be
used for; this is application-specific and dynamic as it depends on the context
of each subscriber [6]. For example, monitoring data about a virtual machine
delivered at a given rate and confidence might be (i) sufficient for the purpose
of one subscriber while another subscriber might need the same type of data at
a higher rate but would tolerate less confidence; (ii) sufficient for a subscriber as
long as there is no indication of malfunction at the monitored entity - in case of
anomalies the same data is required at high rate for root cause analysis [18].

QoI in EBS depends on the system satisfying individual requirements about
quality-related properties at runtime [4]. Subscribers have to be able to (i) define
requirements about arbitrary quality-related properties of information they want
to consume; (ii) expose individual tradeoffs between those requirements if they
are willing to accept degradations in exchange for getting other requirements
satisfied; (iii) adapt requirements at runtime to reflect changes to their current
situation; and (iv) get feedback about the state of their requirements to decide
if their needs are satisfied or if they have to adapt. At the same time, delivering
information with specific properties comes at a cost for the system as it depends
on the current configuration of available publishers and the middleware [3]. Thus,
the system has to decide at runtime how to satisfy which requirements.

Runtime support for quality-related properties in EBS is currently limited
in terms of expressivity, extensibility and scope; feedback is not provided at
runtime [2,11]. Requirements about quality-related properties in EBS can be
implicitly supported by publishers either by using types that encode quality-
related properties in their name (e.g., CpuUsage_rate50_confidence70), or by
adding metadata to the content of each published message (e.g., rate=50, con-
fidence=70). Subscribers can express their requirements by subscribing to the
type they are interested in using the common API of EBS [22]. However, this
restricts the set of available properties to those determinable by publishers at
design-time, excluding important runtime properties like latency and reliabil-
ity that are provided by the middleware. For encoded types, it would also re-
sult in an unmanageable growth of available types for different combinations of

Managing Expectations: QoI Runtime Negotiation 201

MiddlewarePublisher Subscriber

Advertisements Subscriptions/Unsubscriptions

Capabilities

Feedback

SSS

Expectations

Feedback

E
ve

nt
-b

as
ed

 s
ys

te
m

 (
E

B
S

)

k

onsons

k

oonsons

k

oons

(expectation state)

CapabilitiesCapabilitiesCapabilities

(adaptation advice)

Subscriber

p p

Subscriber

p p

Subscriber

p p

Notifications

Advertisements
Notifications

Concept of expectations

Type
Content

Properties

Fig. 1. Our concept extends the model of EBS (top) with capabilities, expectations
and bidirectional feedback for runtime adaptation (bottom, bold)

quality-properties, as well as, traffic overhead as the same information has to be
processed for multiple encoded types [9]. Systems providing explicit support for
quality-related properties like IndiQoS [9], Adamant [15] or Harmony [28] focus
on a fixed set of middleware-related properties at a low level of abstraction. They
try to satisfy requirements by adapting the middleware on the transport proto-
col level and do not enforce requirements about properties that would require
publishers to adapt at runtime, limiting the scope of runtime flexibility.

In this paper, we propose the concept of expectations as a generic approach
to support QoI in EBS as a first-class citizen and enable participants to adapt
at runtime. Fig. 1 shows how our approach complements the paradigm of EBS.

Our key idea is to define quality-related properties like rate, confidence or
latency in a generic way together with actions that define how those properties
can be adjusted at runtime. Requirements (expectations) and the system state
(capabilities) defined as ranges over such properties can be efficiently matched in
the middleware at runtime to identify the extent to which the system would have
to adapt to satisfy requirements. Based on this assessment, requirements can be
declined or satisfied by adapting the system using platform-specific instantiations
of the associated actions. Subscribers receive feedback about the state of their
requirements while publishers get feedback about the usage of their capabilities,
including advice to adapt if necessary.

For example, application M has to monitor the temperature of a chemical pro-
cess during manufacturing to detect anomalies and trigger a dedicated workflow.
In terms of QoI, M subscribes to notifications for temperatureEvent with an
expectation about rate and confidence: it requires notifications to be of 75-95%
confidence (minimizing false-positives/negatives) while they could be published
at a low rate of 5-10 events/minute. A temperature sensor P, currently publishing
2 events/minute with 90% confidence, is able to publish up to 60 events/minute
with a maximum confidence of 80%, expressing this as capabilities for rate and
confidence. Matching M ’s expectation to available capabilities, the middleware
realizes that P is suitable but has to adapt, advising it to do so.

Subscribers can express requirements and individual tradeoffs between them as
expectations in a consistent and information-centric way over arbitrary properties.

202 S. Frischbier, P. Pietzuch, and A. Buchmann

Publishers expose their general capabilities as well as the state they are currently
operating at to brokers as capabilities. Support for new properties can be realized
by extending the set of available properties, their relationships and by associating
suitable actions for manipulating them at the middleware.

Expressing expectations and capabilities as ranges of accepted and provided
values over properties automates the process of runtime negotiation: matching
requirements to the system state is reduced to a range matching problem be-
tween corresponding properties. Furthermore, requirements become malleable
due to the individual tradeoffs defined by subscribers, giving the system more
degrees of freedom when deciding on the extent of adaptation necessary. Feed-
back enables participants to adapt their behavior at runtime and extends the
scope of supported properties to those influenced by publishers.

The concept of expectations complementary extends the paradigm of EBS with-
out compromising the model of indirect many-to-many communication, making
it backward compatible. As shown in Fig. 1, expectations and capabilities can
be defined independently of advertisements, notifications or subscriptions. They
are matched only at the middleware, preserving the anonymity of the associated
participants necessary for scalability in EBS. Bidirectional feedback enables par-
ticipants to assess their current situation and adapt their behavior at runtime if
necessary. Our concept encompasses related approaches by treating them as ded-
icated actions for enforcing requirements for specific properties.
This paper makes the following contributions to support QoI in EBS:

1. a generic model to express malleable requirements and capabilities for arbi-
trary quality-related properties in EBS at runtime (Sec. 2);

2. algorithms for negotiating requirements at runtime in the middleware by
(i) matching expectations and capabilities to identify satisfied, satisfiable
and unsatisfiable requirements; (ii) deciding on the requirements to satisfy
based on strategies for optimization and load balancing; (iii) enforcing those
requirements by adapting participants, the middleware or both (Sec. 3); and

3. runtime support in industry-strength systems illustrated by prototypes im-
plemented in Java within the centralized ActiveMQ JMS messaging broker
and the decentralized REDS middleware (Sec. 4).

Related work is discussed in Sec. 5 before Sec. 6 concludes with final remarks.

2 Expectations: Support for QoI in EBS

This section describes the challenges supporting QoI in EBS at runtime and our
proposed solution using expectations, capabilities and feedback.

2.1 Background: Event-Based Systems in a Nutshell

Participants in EBS are independent but cooperative software components with
different roles that communicate indirectly using notifications: publishers send

Managing Expectations: QoI Runtime Negotiation 203

advertisements once before they publish notifications to announce the type of
event to be provided. Different kinds of data sources can act as publishers: sen-
sors, services or other software components. Subscribers are components that
express interest about notifications with a specific type or content by registering
subscriptions at the middleware. Subscribers and publishers are fully decoupled
by the middleware. It matches subscriptions to advertisements and processes
notifications from publishers to subscribers based on routing trees, following a
many-to-many communication pattern. The middleware can consist of a single,
centralized message broker or a distributed network of brokers. Brokers perform
efficient en-route filtering and selective forwarding of notifications based on their
content. As the message flow is unidirectional, from publishers to subscribers,
subscribers are anonymous to publishers, and vice versa.

2.2 Challenges Supporting QoI in EBS at Runtime

Support for QoI means to deliver information with specific quality-related prop-
erties that satisfy individual, sometimes vague, requirements while balancing
the costs for provisioning against it [3,18]. EBS are designed for heterogeneous
and dynamic populations: publishers and subscribers can join, leave or change
at runtime. Multiple publishers can provide information of the same type and
content but with different quality-related properties as those depend on each
publisher’s configuration (e.g., available hardware, setup) and can change dy-
namically based on a publisher’s current context (e.g., enforced energy-saving
mode for battery-powered sensors). Information is only propagated by the mid-
dleware in a many-to-many fashion, preventing direct negotiation.

2.3 The Model of Expectations and Capabilities

The basic building blocks of our approach are properties that characterize in-
formation in addition to its content or type. Examples for properties are pre-
cision, rate, transport latency, trustworthiness, order, or confidence [20]. Prop-
erties do not have to be comparable (e.g., trustworthiness vs. order) but they
can be conflicting due to system constraints (e.g., rate vs. latency vs. band-
width). Every property can be modeled over a range or a set of values that
apply a total order (ordinal scale) depending on the semantics of the property.
For example, trust can be modeled over the set {none, low,medium,high}, with
none < low < medium < high; confidence can be modeled using the range
[0%; 100%]; transport latency can be modeled as the number of milliseconds
elapsed since publication using the range [0; ∞]. Each property can be improved
by either maximizing or minimizing it, depending on the semantics of the prop-
erty (e.g., improve latency by minimizing it). A value dominates another value
of the same property if it improves it (e.g., a confidence of 88% dominates a
confidence of 25%, a latency of 300ms dominates a latency of 700ms).
Expectations to express QoI requirements. The context of a subscriber
might change at runtime, affecting requirements about quality-related proper-
ties of notifications but not those about content or type as expressed in the

204 S. Frischbier, P. Pietzuch, and A. Buchmann

subscription (c.f. Sec. 1). We introduce the notion of expectations to encapsulate
quality-related requirements, enabling subscribers to manage their requirements
about quality-related properties at runtime.

Definition 1 (expectation). An expectation describes a malleable set of re-
quirements that a subscriber has about quality-related properties of information
it has subscribed to. Each expectation X e

i consists of a set of tuples (pe, lb, ub)
as well as a utility value X e

i .u which reflects the individual importance of this
expectation for the subscriber and allows a ranking.

Each tuple in X e
i refers to a requirement about a property like rate, confidence

or latency: it is defined as a range of values [pe.lb;pe.ub] that a subscriber would
accept for property pe and the associated event e. By combining different re-
quirements in a single expectation, each subscriber defines a tradeoff between
the ranges of those properties, making the requirements malleable. For exam-
ple, subscriber M with expectation X e

1 = {(rate, 5, 10), (confidence, 75, 95)} ac-
cepts notifications with {rate = 7, confidence = 90} as well as notifications with
{rate = 10, confidence = 80}. A subscriber can associate multiple expectations
with the same subscription to allow for alternative configurations, ranked by
their utility values [27,13]. For example, M needs highly reliable information
(X e

1) but could alternatively do with less reliable information at a higher rate to
compensate false-positives/negatives: X e

2 = {(rate,30,45), (confidence,50,60)}.
Each expectation has a lifecycle that starts with registering it at the broker,

making the system aware of the described requirements. Changes in the con-
text of the subscriber can be reflected by changing the lifecycle of a registered
expectation by updating, suspending/resuming or revoking it. Registered expec-
tations are active unless they are suspended or revoked. When unsubscribing,
all associated expectations are treated as revoked by the broker.

Capabilities to express the system state. In EBS, the system state regard-
ing QoI depends on the extent to which properties are provided by publishers
and supported by brokers. We introduce capabilities to describe this.

Definition 2 (capability). A capability describes the extent to which publisher
j supports property pe. Each capability Ce

j is a tuple (pe,lb,ub,cv,costpe (x)) that
defines (a) the range of values [Ce

j .lb; Ce
j .ub] publisher j in principle is capable

of providing; (b) the value Ce
j .cv within this range that publisher j is currently

operating at; and (c) the cost function costpe(x) for operating at x.

A capability describes the current support for a property by a publisher as
well as the realizable spectrum of values. Providing pe at a specific quality comes
at a cost [3], captured in costpe(). A publisher can provide multiple capabilities
while the same capability can be provided by multiple publishers with different
ranges or costs. Capabilities for some properties like confidence are provided
only by publishers, others depend on assessment and enforcement by the mid-
dleware or a cooperation of publishers and the middleware at runtime (e.g., to
support latency, reliability, order). A capability profile bundles all capabilities of
a publisher for a given event.

Managing Expectations: QoI Runtime Negotiation 205

Definition 3 (capability profile). A capability profile CPe
j is a set of capabil-

ities {Ce
1, . . . , Ce

k} associated with publisher j for events of type e. It consists of
capabilities determined by the publisher itself and those determined by the broker.

A capability profile reflects the full set of capabilities available from a spe-
cific publisher for a given event type and can be matched against expecta-
tions. Capabilities determinable only by the broker are added at runtime. Ca-
pability profiles for the same type of event (CPe) but associated with differ-
ent publishers can be heterogenous in terms of the (i) set of properties (e.g.,
CPe

2 = {rate ∧ latency} ⊂ CPe
1 = {rate ∧ latency ∧ confidence}), (ii) ranges,

and (iii) current values.
A capability profile’s lifecycle starts with registering it at the broker and ends

with revoking it. During runtime, the situation of a publisher might change in
a way that requires updating registered capability profiles without changing the
advertisement. For example, a battery powered sensor runs low on energy and
has to switch to an energy-saving mode, decreasing the rate of publication; or
new resources become available at runtime, improving or adding capabilities
(e.g., higher confidence due to better contextual information [16]).

Feedback to subscribers and publishers. At runtime, publishers and sub-
scribers are able and willing to adapt their behavior if they get feedback about
their actions and the system state. As traditional EBS do not give such feedback
at runtime, participants cannot assess if and how they would have to adapt [11].
We introduce bidirectional feedback from the middleware to participants to pro-
vide them with additional information about their actions and support adap-
tation at runtime. Subscribers get feedback about the state of their active ex-
pectations (satisfied or unsatisfied). They are informed about the reason if an
expectation cannot be satisfied by the system at the time. Reasons are expressed
as tuples (X e

i ,pe,α), describing the value currently provided by the system for
each property that is not satisfied. As soon as the expectation can be satisfied,
the subscriber is notified about the new state. Publishers receive feedback about
each active capability profile’s usage together with advice to adapt their publica-
tions if necessary. This includes the list of capabilities to adapt together with the
required target values, expressed as tuples (CPe

j ,Ce,β). We consider publishers
to be able to adapt automatically at runtime if notified as we show in [13].

3 Negotiating Requirements for QoI in EBS

Using expectations to model requirements about QoI and capabilities to describe
the corresponding system state, requirements negotiation in EBS can be done
automatically at runtime inside the middleware. For every active expectation
associated with a subscription, the middleware has to check if it could deliver
information with quality-related properties that satisfies the expectation and the
associated subscription. This can be possible already with the current state of the
system or after adaptation, depending on the capabilities of publishers providing
notifications that match the subscription in type or content. In some cases,

206 S. Frischbier, P. Pietzuch, and A. Buchmann

however, a requirement cannot be satisfied even after adapting due to limitations
of the system or cost constraints and has to be declined. The remainder of
this section describes the algorithm for matching expectations to capabilities,
outlines how to decide about satisfiable expectations and illustrates how suitable
reactions are selected at runtime by the middleware.

3.1 Matching Expectations to Capabilities

As publishers are described by their capability profile in terms of QoI, the whole
decision problem is reduced to first a set- and then a range-matching problem
between an expectation X e

i and available capability profiles. The result is either
a set of publishers with capability profiles already satisfying X e

i (CandX e
i
) or a

set of publishers that are capable but would have to adapt (CandX e
i
).

The algorithms for matching an expectation X e
i to a set of capability profiles

{CPe
1,. . . ,CPe

l } are shown in Fig. 3. The whole process is performed for a single
expectation at a time. It can be triggered by a subscriber registering/updating
an active expectation or by changes to capability profiles. A changed capability
profile requires checking all expectations affected by it.

We define the following terms and relationships for a property pe of an expec-
tation X e

i and a matching capability Ce
j of a capability profile CPe

j :

Covered property. A property of an expectation is covered if its range over-
laps with the range of a matching capability (i.e., Ce

j .lb ≤ pe.lb ∨ Ce
j .ub ≥

pe.ub) (c.f., Fig. 2 (a)). A property is fully covered if its range is enclosed or
improved by the range of Ce

j (i.e., Ce
j .lb ≥ pe.ub for maximization).

Dominated property. A property of an expectation is dominated if a match-
ing capability’s current value dominates the lower or upper bound of the
property. A property that is dominated is also covered whereas a covered
property is not necessarily dominated (c.f., Fig. 2 (b)).

Satisfiable expectation. An expectation is satisfiable if all its properties are
covered by matching capabilities of at least one capability profile.

Satisfied expectation. An expectation is satisfied if all its properties are dom-
inated by capabilities of a matching capability profile (c.f., Fig. 2 (c)).

Unsatisfied expectation. An expectation is unsatisfied if no matching set of
capabilities exists (i.e., CPe

j ⊂ X e
i ∨CPe

j

⋂ X e
i = ∅) or if at least one property

is not dominated by any matching capability (c.f., Fig. 2 (d)).

Deciding if an expectation is satisfied, satisfiable or unsatisfied does not re-
quire the middleware to compare it with every known capability profile but only
with the most promising ones. Thus, each broker B maintains a SuperSet Se

B

per event type e that represents the skyline [7] of capabilities available at this
broker: For every set of capabilities in CPe it contains those capability profiles
that are as good or better than all other capability profiles known at this bro-
ker in all capabilities and dominating in at least one capability as illustrated in
Fig. 4. The SuperSet is updated with every change to a capability profile.

An expectation X e
i is satisfied (X e

i ∈ Sat) if it is dominated by the SuperSet,
satisfiable (X e

i ∈ Sat) if covered by it and unsatisfiable (X e
i ∈ Sat) if not.

Managing Expectations: QoI Runtime Negotiation 207

Expectation

b) Covered, dominated d) Unsatisfied expectationd) UUUc) Satisfied expectationb) a) Covered, not dominated

Expectation

Property of an

expectation

Corresponding

capability

Fig. 2. Relationship between properties and corresponding capabilities

global: Sat, Sat, Sat,Cand,Cand

function match(X e
i , CPe

1, . . . , CPe
l)

State ← unsatisfied
for all CPe

j ∈ {CPe
1, . . . , CPe

l } do
tS ← CheckState(X e

i , CPe
j)

switch tS do
case satisfiable

CandXe
i
.add(CPe

j)
State ← satisfiable

case satisfied
CandXe

i
.add(CPe

j)
State ← satisfied

end switch
end for

switch State do
case satisfied: Sat.add(X e

i)
case satisfiable: Sat.add(X e

i)
case unsatisfied: Sat.add(X e

i)
end switch

end function

function CheckState(X e
i ,CPe

j)
Satpe , Satpe , Satpe

← ∅
for all pe ∈ X e

i do
if Satisfies(Ce

j .cv,pe) then
Satpe .add(pe)

else if Covers(Ce
j ,pe) then

Satpe .add(pe)
else Sat

pe
.add(pe)

end for

if Sat
pe

�= ∅ then return unsatisfied
else if Satpe = X e

i then return satisfied
else return satisfiable

end function

function Satisfies(v, pe)
if pe.minimize then

if v ≤ pe.ub then return true
if pe.maximize then

if v ≥ pe.lb then return true
return false

end function

Fig. 3. Algorithms in pseudocode for matching expectations to capabilities; function
Covers (checking if pe is covered) is omitted due to space limitation

In a distributed setup, each broker forwards its SuperSet to its directly con-
nected neighbors along the routing tree after modifying it: each contained ca-
pability profile is associated with the forwarding broker, masking the identity
of the locally known provider (i.e., CPe

j → CPe
bk

). Broker-related capabilities
like latency have to be updated as well. Forwarded SuperSets are handled like
capability profiles registered by local clients at each neighboring broker, starting
an iterative update that generates a global skyline at the edge brokers.

Example: Matching in distributed EBS. Consider a distributed EBS with an
acyclic routing topology as shown in Fig. 4 (top), consisting of brokers B and
C, five publishers and four subscribers for events of type e. Expectations and
capabilities are defined over properties pa and pb (improvable by minimization).
Publishers P1 → {CPe

1}, P2 → {CPe
2}, P3 → {CPe

3} register their capability
profiles at broker B (c.f. Fig.. 4 (bottom left)), P4 → {CPe

4} and P5 → {CPe
5}

at broker C. Broker B forwards its SuperSet Se
B = {CPe

1, CPe
2} to broker C,

masking the identity of P1 and P2. Note that Se
C = Se

B as Se
B dominates all other

local capability profiles at broker C. At broker C, the sequentially registered

208 S. Frischbier, P. Pietzuch, and A. Buchmann

Broker B Broker C

Publisher 1

Publisher 2

Publisher 3

Publisher 4

Publisher 5

Subscriber 1

Subscriber 2

Subscriber 4
Capability

Expectation

Subscriber 3

Capability profiles broker B

minimize

minimize

pa

pb
CP1

e

CP2
e

CP3
e

Capability profiles broker C

minimize

minimize

pa

pb

X1
e

X2
e

X3
e

X4
e

X5
e

CPB1

e

CPB2

e

CP4
e

CP5
e

Fig. 4. Example for matching expectations to capabilities in a distributed broker net-
work (top): Broker B forwards the SuperSet of its capability profiles (bottom left) to
broker C where it is merged with the capability profiles of local publishers (CPe

4, CPe
5)

and matched to expectations X e
4 (not satisfied), X e

2 & X e
3 (satisfied), and X e

1 &
X e

5 (satisfiable), (bottom right). Axes show improvement direction.

expectations (S1 → {X e
3 , X e

1 }, S2 → {X e
2 }, S3 → {X e

5 }, S4 → {X e
4 }) are each

matched against Se
C (c.f., Fig. 4 (bottom right)) using Match(X e

i , Se
C) (c.f.,

Fig. 3). This results in: Sat = {X e
3 , X e

2 } (satisfied), Sat = {X e
1 , X e

5 } (satisfiable)
and Sat = {X e

4 } (not satisfiable as it is not covered by any capability profile).

3.2 Deciding on Satisfiable Expectations

The matching algorithm marks an expectation as satisfiable if the system could
satisfy it by self-adaptation. As this comes at a cost, the middleware has to
assess if the expectation should be satisfied or declined. Different optimization
strategies can be applied to such a decision problem [21]. For example, we can
apply a strategy aiming at pareto-optimal states for subscribers: we decline an
adaptation to satisfy X e

i ∈ Sat for subscriber i only if another expectation X ′e
i

is already satisfied for subscriber i (i.e., X ′e
i ∈ Sat) and satisfying X e

i would
be more expensive than the current state; we decide to adapt in all other cases.
Referring to the example in Fig. 4, we assume S1 to register X e

1 after X e
3 has been

satisfied. The middleware would approve satisfying X e
1 by adapting publisher P1

if
∑X e

1
pe

CPe
1.costpe(pe.ub) <

∑X e
3

pe
CPe

1.costpe(pe.lb)

3.3 Select Suitable Adaptations

The last step of the runtime negotiation process is to adapt the system and give
feedback to subscribers. While system adaptation is limited to routing adjustments

Managing Expectations: QoI Runtime Negotiation 209

based on load-balancing strategies for satisfied expectations, approved satisfiable
expectations require further adaptation. In this paper, we focus on runtime adap-
tation to satisfy an expectation X e

i ∈ Sat; adaptation to free up resources or op-
timize system costs is part of future work.

The system adapts to increase (↑) or decrease (↓) properties to turn a suitable
capability profile Ce

j into one satisfying X e
i . This can be achieved by adapting the

middleware itself or by using feedback to advise the publisher associated with Ce
j

to adapt. Actions define dedicated activities such as adaptPublisher. They are
associated with properties as tuples (pe, ↑ ∨ ↓, action, costsaction). Please note
that sequences of actions can be defined as a new action. Alternative actions can
be defined by associating multiple tuples for a property. They can have different
costs but we assume costsaction = 0 if there is no alternative action available.
For example, rate can be decreased by adapting a publisher or by applying a
filter at the broker before delivering notifications to the subscriber [13]. This can
be modeled in our concept by associating two tuples: (rate,↓,adaptPublisher,
costsadaptPublisher) and (rate,↓,applyFilter, costsapplyFilter).

We are currently selecting the least expensive action for a property to apply.
Using other selection strategies at runtime is out of scope of this paper.

4 Implementation

Runtime support for QoI in EBS using expectations and capabilities is realized
by extending the middleware with an ExpectationController and providing ad-
ditional handlers to participants as shown in Fig. 5. We have implemented two
prototypes in Java, extending the ActiveMQ JMS messaging broker1 and the
distributed REDS middleware2. We chose these two platforms for their different
features: ActiveMQ is representative of an industrial-strength messaging system
focussing on high performance, while the modular REDS systems allows us to
exploit routing strategies and broker topologies for adaption. Both systems are
easy to extend without affecting existing code. We use our prototypes to support
QoI at runtime within the open-source monitoring system Ganglia3 [13]. In this
paper, we focus on describing the key components for a single broker setup.

4.1 Broker Extension: ExpectationController

We require access to the broker state for monitoring the system and to ap-
ply broker-related reactions like filtering messages or routing adaptation [12,13].
Thus, we provide ExpectationController as a plugin using BrokerPluginSup-
port on ActiveMQ and as an extended NodeDescriptor class defining a new bro-
ker type on REDS. Other components are implemented in an platform-agnostic
way while platform-specific messages are used to communicate with participants.
An ExpectationController consists of five key components (c.f. Fig. 5 (centre)):
1 https://activemq.apache.org
2 http://zeus.ws.dei.polimi.it/reds/
3 http://ganglia.sourceforge.net/

https://activemq.apache.org
http://zeus.ws.dei.polimi.it/reds/
http://ganglia.sourceforge.net/

210 S. Frischbier, P. Pietzuch, and A. Buchmann

Reaction

ManagerClient
Expectation
Controller

Balancer

Publisher Subscriber

Capability
HandlerClient

Mechanism
Repository

Expectation
HandlerClient

Entities EBS model

QoI runtime support

Coordination (messages)

Participants ParticipantsMiddleware

Expectation
Controller

Balancer MechanismMechanism
Repositoryitepositor

Broker

Resource
Monitor

Reaction
Coordinator

Registry

Fig. 5. Runtime support for QoI in EBS with expectations and capabilities showing
additional components (dark gray) for participants and middleware (gray)

RessourceMonitor monitors the broker’s state and the system’s population, re-
porting changes to the Registry.

Registry stores all expectations and capabilities registered at this broker with
the definitions of available properties and their matching. Changes trigger a
negotiation of requirements at the Balancer.

Balancer matches expectations to capabilities (c.f., Sec. 3) while applying differ-
ent optimization strategies. Triggers ReactionCoordinator upon completion.

ReactionCoordinator selects applicable actions from the MechanismRepository
and coordinates their execution by adapting the broker, advising selected
publishers to adapt using feedback or notifying subscribers.

MechanismRepository stores available actions for specific properties (c.f., Sec.
3.3). Actions are objects implementing generic or platform-specific activities.

4.2 Handlers for Participants

We provide participants with handlers to deal with feedback by the middleware
and use platform-agnostic APIs for managing the lifecycle of expectations and
capabilities: ExpectationHandlerClient allows subscribers to store, load, register,
revoke, update, suspend or resume expectations. CapabilityHandlerClient enables
publishers to store, load, register, revoke or update capabilities and access their
usage statistics; publishers can register to be triggered by adaptation advices.
Otherwise, an optional ReactionManagerClient adapts its associated publisher if
advised by the ReactionCoordinator. For example, within our Ganglia scenario
we implemented it as a wrapper that changes the configuration of each gmond
publisher on the fly before restarting it, realizing adaptation within 26ms.

Expectations and capabilities are stored in XML while property definitions
are separately stored using a key-value syntax. We chose these open formats for
maximum portability. We provide a parser to process instances of expectations
and capabilities with their property definitions in Java as well as a graphical
editor to support the user.

Managing Expectations: QoI Runtime Negotiation 211

5 Related Work

Work done by Keeton et al. [18] on general considerations about information
quality and by Wilkes [27] on balancing requirements with consumers’ utility
has highly influenced our work; Behnel et al. [4] and Appel et al. [1] identify a
basic set of quality guarantees and the levels of abstractions specific to EBS.

Our model has been inspired by complementary work on specifying and cat-
egorizing QoI for sensor networks: Perera et al. [20] support users in search-
ing for sensor data sources using ontologies while the CommonSens middleware
for assisted living by Soberg et al. [26] automatically selects sensors based on
their domain-specific capabilities. Hossain et al. [16] and Bahjat et al. [3] pro-
pose frameworks to quantify QoI in IoT applications focussing on properties like
uncertainty, precision, integrity or timeliness of detection. Bisdikian et al. [6]
try to separate inherent quality attributes from application-specific ones as do
Sachidananda et al. [23]. Our concept generalizes these application- and domain-
specific properties, allowing requirements and capabilities to be expressed in a
consistent and information-centric way.

We see most approaches proposed in the domain of EBS as complementary
to our concept as they provide mechanisms to enforce dedicated quality-related
properties that we can model using expectations: several systems address the
issue of quality of service (QoS), focussing on network-specific properties like
latency or jitter. We refer to [5] for an extensive overview and a more detailed
discussion. Directly related to our work are the reactive middleware systems
IndiQoS, as proposed by Carvalho et al. [9], Adamant by Hoffert [15] and Har-
mony by Yang et al. [28]. They support requirements about latency, reliability
and bandwidth but focus on a closed set of requirements that is resolved on
the transport protocol level only and omit enforcing publisher-related proper-
ties. We expand the scope of runtime support to include the enforcement of
publisher-related properties by runtime adaptation based on feedback and allow
subscribers to expose individual tradeoffs between requirements.

Related topics actively researched on in the area of (cloud-based) SOA are
concepts for service selection as well as the negotiation of quality requirements
and service-level agreements at runtime. We refer to [19,25] for a detailed discus-
sion due to space limitations and would like to focus on two related contributions:
Kattepur et al. [17] define a QoS metric similar to properties in expectations.
However, they focus on interactions in heterogeneous SOA choreographies while
expectations are information-centric; Pernici et al. [21] use fuzzy parameters for
deciding on web service adaptation. Those approaches, however, are based on
direct contracts between service providers and service consumers, often assuming
the existence of explicitly modeled workflows or a central authority for coordi-
nation. They are not directly applicable to the indirect communication model of
anonymous EBS. Integrating them with our concept is part of ongoing work.

212 S. Frischbier, P. Pietzuch, and A. Buchmann

6 Conclusion, Ongoing and Future Work

Event-based systems (EBS) complement SOA and enable enterprises to react to
meaningful events in a timely manner. While quality of information (QoI) is cru-
cial in these information-centric systems, it is supported only to a limited degree
in today’s EBS. We introduce the concept of expectations as a generic model
to express, negotiate and enforce requirements about QoI in EBS at runtime.
Instead of providing a fixed set of supported properties, our solution enables
participants to define and manage requirements about arbitrary quality-related
properties while exposing individual tradeoffs. Requirements are negotiated and
enforced at the middleware by adapting data sources and brokers based on dif-
ferent optimization strategies and platform-specific mechanisms. Ongoing work
focusses on evaluating our prototypic implementations in terms of performance
and scalability using SPEC Research FINCoS4 and the jms2009-PS bench-
mark [24]. Future work investigates interdependent and conflicting properties
(e.g., adapting the system to support order for satisfying one expectation might
lead to increased latency, violating other expectations). We also plan to extend
our model to handle composite properties of expectations and capabilities such
as alternatives [4] (i.e., notifications have to be provided by a number of differ-
ent publishers all supporting a specific set of properties). Security and privacy
aspects are important but orthogonal to our approach and currently out of scope.

Acknowledgements. We thank Stefan Appel, John Wilkes and Kimberly Kee-
ton for their feedback on our work; Pascal Kleber and Erman Turan for their
support in building the prototypes. Funding by German Federal Ministry of Edu-
cation and Research (BMBF) under research grants 01|C12S01V and 01|S12054.

References

1. Appel, S., Sachs, K., Buchmann, A.: Quality of service in event-based systems. In:
22nd GI-Workshop on Foundations of Databases, GvD (2010)

2. Araujo, F., Rodrigues, L.: On QoS-aware publish-subscribe. In: ICDCSW (2002)
3. Bahjat, A., Jiang, Y., Cook, T., La Porta, T.: Quality of information functions for

networked applications. In: PERCOM Workshops (2012)
4. Behnel, S., Fiege, L., Mühl, G.: On quality-of-service and publish-subscribe. In:

ICDCS Distributed Computing Systems Workshops (2006)
5. Bellavista, P., Corradi, A., Reale, A.: Quality of service in wide scale publish/sub-

scribe systems. IEEE Communications Surveys & Tutorials (99), 1–26 (2014)
6. Bisdikian, C., Kaplan, L., Srivastava, M.: On the quality and value of information

in sensor networks. ACM Transactions on Sensor Networks 9(4), 39 (2010)
7. Borzsony, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE (2001)
8. Buchmann, A., Appel, S., Freudenreich, T., Frischbier, S., Guerrero, P.E.: From

calls to events: Architecting future BPM systems. In: Barros, A., Gal, A., Kindler,
E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 17–32. Springer, Heidelberg (2012)

4 http://research.spec.org/tools/overview/fincos.html

http://research.spec.org/tools/overview/fincos.html

Managing Expectations: QoI Runtime Negotiation 213

9. Carvalho, N., Araujo, F., Rodrigues, L.: Scalable QoS-based event routing in
publish-subscribe systems. In: Network Computing and Applications (2005)

10. Frischbier, S., Gesmann, M., Mayer, D., Roth, A., Webel, C.: Emergence as com-
petitive advantage - engineering tomorrow’s enterprise software systems. In: ICEIS
(2012)

11. Frischbier, S., Margara, A., Freudenreich, T., Eugster, P., Eyers, D., Pietzuch,
P.: ASIA: application-specific integrated aggregation for publish/subscribe mid-
dleware. In: Middleware 2012 Posters and Demos Track (2012)

12. Frischbier, S., Margara, A., Freudenreich, T., Eugster, P., Eyers, D., Pietzuch, P.:
Aggregation for implicit invocations. In: AOSD (2013)

13. Frischbier, S., Margara, A., Freundenreich, T., Eugster, P., Eyers, D., Pietzuch, P.:
McCAT: Multi-cloud Cost-aware Transport. In: EuroSys Poster Track (2014)

14. Hinze, A., Sachs, K., Buchmann, A.: Event-based applications and enabling tech-
nologies. In: DEBS (2009)

15. Hoffert, J., Schmidt, D.: Maintaining QoS for publish/subscribe middleware in
dynamic environments. In: DEBS (2009)

16. Hossain, M.A., Atrey, P.K., Saddik, A.E.: Context-aware QoI computation in multi-
sensor systems. In: MASS (2008)

17. Kattepur, A., Georgantas, N., Issarny, V.: QoS analysis in heterogeneous chore-
ography interactions. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC
2013. LNCS, vol. 8274, pp. 23–38. Springer, Heidelberg (2013)

18. Keeton, K., Mehra, P., Wilkes, J.: Do you know your IQ? A research agenda for
information quality in systems. ACM SIGMETRICS Performance Evaluation Re-
view 37(3), 26–31 (2010)

19. Kritikos, K., Pernici, B., Plebani, P., Cappiello, C., Comuzzi, M., Benrernou, S.,
Brandic, I., Kertész, A., Parkin, M., Carro, M.: A survey on service quality de-
scription. ACM Computing Surveys 46(1), 1 (2013)

20. Perera, C., Zaslavsky, A., Christen, P., Compton, M., Georgakopoulos, D.: Context-
aware sensor search, selection and ranking model for internet of things middleware.
In: Mobile Data Management (2013)

21. Pernici, B., Siadat, S.H.: Adaptation of web services based on qoS satisfaction. In:
Maximilien, E.M., Rossi, G., Yuan, S.-T., Ludwig, H., Fantinato, M. (eds.) ICSOC
2010. LNCS, vol. 6568, pp. 65–75. Springer, Heidelberg (2011)

22. Pietzuch, P., Eyers, D., Kounev, S., Shand, B.: Towards a common API for pub-
lish/subscribe. In: DEBS (2007)

23. Sachidananda, V., Khelil, A., Suri, N.: Quality of information in wireless sensor
networks: a survey survey. In: ICIQ (2010)

24. Sachs, K., Appel, S., Kounev, S., Buchmann, A.: Benchmarking publish/subscribe-
based messaging systems. In: Database Systems for Advanced Applications: DAS-
FAA 2010 International Workshops: BenchmarX 2010 (2010)

25. Shi, Y., Chen, X.: A survey on QoS-aware web service composition. In: Multimedia
Information Networking and Security (2011)

26. Soberg, J., Goebel, V., Plagemann, T.: CommonSens: personalisation of complex
event processing in automated homecare. In: ISSNIP (2010)

27. Wilkes, J.: Utility functions, prices, and negotiation. HP Labs HPL-2008-81 (2008)
28. Yang, H., Kim, M., Karenos, K., Ye, F., Lei, H.: Message-oriented middleware with

qoS awareness. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave
2009. LNCS, vol. 5900, pp. 331–345. Springer, Heidelberg (2009)

C2P: Co-operative Caching
in Distributed Storage Systems

Shripad J. Nadgowda1, Ravella C. Sreenivas2, Sanchit Gupta3, Neha Gupta4,
and Akshat Verma1

1 IBM Research, India
{nadgowdas,akshatverma}@in.ibm.com

2 IIT Kharagpur, India
chaitanya.sreenivas@cse.iitkgp.ernet.in

3 IIT Kanpur, India
sanchitg@iitk.ac.in

4 IIT Delhi, India
cs1100230@cse.iitd.ac.in

Abstract. Distributed storage systems (e.g. clustered filesystems - HDFS, GPFS
and Object Stores - Openstack swift) often partition sequential data across stor-
age systems for performance (data striping) or protection (Erasure-Coding) .
This partitioning leads to logically correlated data being stored on different phys-
ical storage devices, which operate autonomously. This un-coordinated opera-
tion may lead to inefficient caching, where different devices may cache segments
that belong to different working sets. From an application perspective, caching
is effective only if all segments needed by it at a given point in time are cached
and a single missing segment may lead to high application latency. In this work,
we present C2P: a middleware for co-operative caching in distributed storage.
C2P uses an event-based architecture to co-ordinate caching across the storage
devices and ensures that all devices cache correlated segments. We have imple-
mented C2P as a caching middleware for hosted Openstack Swift Object Store.
Our experiments show 4-6% improved cache hit and 3-5% reduced disk IO with
minimal resource overheads.

1 Introduction

Distributed storage systems often partition sequential data across storage systems for
performance (data striping) or protection (Erasure-Coding) . Data striping [5][4] is a
technique in which logically sequential data is partitioned into segments and each seg-
ment is stored on different physical storage device(HDD). This helps improve aggregate
I/O performance by allowing multiple I/O requests to be serviced in parallel from differ-
ent devices. Striping has been used in practice by storage controllers to manage HDD
storage arrays for improved performance for more than a decade (e.g., RAID 0 [15])
. Most of the popular enterprise cluster/distributed filesystems IBM GPFS[13], EMC
Isilon OneFS[14], Luster[17] etc. support data striping. Also, popular blob-storage like
Amazon S3[2], Openstack Swift[20], Microsoft Azure[18], Google Cloud Storage[11]
support segmented blob uploads.

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 214–229, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

C2P: Co-operative Caching in Distributed Storage Systems 215

Logically correlated data in storage systems also gets partitioned due to new data
protection techniques like Erasure-Coding (EC)[3][12][24], which deliver higher mean
time between data loss (MTBDL) as compared to RAID. For example, with 9:3 EC data
protection policy, when a new data is written, it is first partitioned into 9 equal-sized seg-
ments. Next, 3 additional code segments are computed from the data segments. These
12 segments are then stored on different storage nodes. Any 9 of these 12 segments then
can be used to satisfy subsequent read requests for the data.This provides availability
of the data for maximum up to 3 disk failures. Thus, either for performance or for re-
dundancy, we are increasingly seeing data segmentation in distributed storage systems
today.

1.1 Our Contributions

In this work, we specifically study and analyze cache efficiency for distributed stor-
age systems. Typically, the placement policy in these systems is to store each segment
on a different storage device/node, which operate autonomously with their own cache
management policies. This leads to inefficient caching across all nodes, where different
devices may cache segments that belong to different working sets. From an application
perspective, caching is effective only if all segments needed by it at a given point in
time are cached and a single missing segment may lead to high application latency.

We build the C2P system, which implements co-operative caching for distributed
storage. C2P implements a reliable communication protocol between the cache con-
trollers of individual storage nodes. Through this protocol, each controller communi-
cates relevant local cache events (not the data) to the peer nodes. Each node leverages
their local cache events and events communicated from peer nodes to implement a co-
ordinated caching policy, which ensures that all the logically co-related segments of
data will remain in the cache. We have implemented C2P for Openstack Swift, which is
one of the most popular object stores. Our experiments show that C2P improves cache
hit for objects by 4-6% and allows 5% of the additional requests to be serve from cache,
with minimal resource overheads.

1.2 Paper Overview

The rest of this paper is organized as follows. We provide some background and mo-
tivate our problem and solution in Section 2. We also discuss the main challenges we
faced, describe the architecture of C2P, and discuss certain key design choices. Sec-
tion 3 describes our implementation of C2P and certain optimizations we performed.
We evaluate C2P and report the results in Section 4. Section 5 discusses related work,
and Section 6 highlights the limitations and other potential applications of C2P. We
finally conclude this paper in Section 7.

2 Design

In this section, we first motivate the need for co-operative caching in distributed storage
systems. We discuss few key design challenges for C2P and our approach.

216 S.J. Nadgowda et al.

Storage Application

A1 B2 C1

A1 B2

A3 B1 C2

B1 C2

A2 C3 B3

A2 C3

Storage Application

A1 B2 C1

A1 B2

A3 B1 C2

A3 B1

A2 B3 C3

A2 B3

(a) (b)

Fig. 1. Distributed Systems with (a) Independent and (b) Co-operative Caches

2.1 Motivation

Let’s consider a distributed storage application with 3 storage nodes as shown in Fig.1.
Each node has a cache capacity to host only 2 segments. We store 3 objects - A, B, C in
this storage system. Each object is segmented into 3 partitions and placed on different
storage nodes as shown. Also, consider the latency to access a segment from cache to be
50ms compared to the disk latency of 200ms. We identify an object access as complete
only when all its segments are read. Hence, access latency is defined as the maximum
time taken to read any segment for the object. Disk IO is measured as the total segments
read from disk across all storage nodes.

Fig.1 (a) shows the cache state at some point in time of a traditional system without
any cache co-ordination and (b) shows the cache state of a co-operative co-ordinated
cache system. At this stage if objects A, B and C are accessed from application, then
we can observe the system characteristics as shown in Tab.1. As we can see, for both
traditional and C2P system total segments hit (6) and miss (3) in the cache are same.
Also, number of disk IOs (3) are same. However, applications experience very different
access latency with the two systems. In the traditional system without any cache co-
ordination, each of the object suffers disk latency (200 ms) in their access. On the other
hand, in a co-operative cache system with co-ordination, we are able to reduce the
access latency for 2 objects (A, B) to cache latency (50 ms) and only 1 object (C) incurs
disk latency. Hence, if all cache controllers are able to achieve a distributed consensus
on the segments to cache, this can lead to improved response time for served objects.

Table 1. Comparison between (a) Independent and (b) Co-operative Caches
Traditional System C2P System

Cache Hits cache Miss Access latency Disk IO Cache Hits Cache Miss Access latency Disk IO
read(A) 2 1 200 1 3 0 50 0
read(B) 2 1 200 1 3 0 50 0
read(C) 2 1 200 1 0 3 200 3

Total 6 3 - 3 6 3 - 3

2.2 Design Challenges and Approach

A key appeal of distributed storage systems is their scale and reliability as there are no
single points of contention or failure. A co-operative caching system needs to ensure
that core distributed nature of the systems is not impacted. Hence, our design space
is restricted to peer-based caching, where caching decision on each node is made in

C2P: Co-operative Caching in Distributed Storage Systems 217

a completely distributed manner in contrast to a central controller that makes caching
decisions. Each cache controller will implement an identical algorithm and the only
change from classical independent cache controller is that each cache controller in C2P
has access to relevant cache events from all peers. This kind of peer-based co-operative
caching poses the following key challenges.

– Distributed Consensus for Cache Management: Each node in the C2P will have
2 sets of cache information - namely Local Cache Metadata or LMD and Remote
Cache Metadata or RMD. LMD on a node is the repository of the cache events
generated by that node while RMD is the repository of the cache events received
from the peer nodes. In an ideal situation, all cache controllers need to arrive at
a consensus on the objects to be cached in a fully distributed manner. Designing a
distributed consensus is challenging and we address this problem by defining global
metrics based on the local metrics and remote metrics. Our defined metrics lead to
consistent values for objects across all storage nodes in a probabilistic sense. This
ensures that even though each cache controller executes a cache eviction policy in
isolation, all of them converge to the same object ordering in most cases.

– Identifying Relevant Events: Every data operation (READ/WRITE/DELETE) has
associated one or more cache event(s). Moreover, same data operation can create
different cache events. E.g. READ request for some data might cause <cache miss
>or <cache hit >event. It is important to snoop these events very efficiently with-
out adding any overhead to the data path. These captured events then need to be
classified into predefined categories. These categories then help implement cache
management policies in C2P system. E.g. prefetching policy would need <cache
miss >category.

– Peer node discovery: A set of nodes are identified as peer if they are hosting the
segments for the same objects. Set of peer nodes is different for each object. Peers
are created dynamically and need to be identified quickly to ensure that relevant
cache events are quickly communicated to peer. We had two design choices here:
1) each node broadcast their events to all nodes but only peer nodes will match and
process those events. 2) each node send the events only to its peer nodes. The former
option clearly had the downside of overloading the network. Consider, a storage
system with 100 nodes where an object with 2 segments is stored will generate
200 events on the network (100 by each node) for each object access. Later option
would certainly minimize this overhead. But it has challenge on how a node will
discover it’s peers for a given object. Storage applications typically decide on the
placement of segments for an object dynamically and also stores this mapping.
Thus, we could have an application-tailored peer node discovery for this purpose.
In C2P we selected the latter option.

– Load-proportional Communication Overhead: Peak load in storage systems are
co-related with high number of cache activities (reads, evictions, writes). Hence,
more cache activities across nodes generate large number of cache events in the
system. As a consequence, the network may become a bottleneck during high load
and lead to inefficient caching. We address this problem by implementing an aggre-
gation scheme, which ensures a communication overhead that is almost oblivious
to application I/O load. In aggregation, cache events are buffered for short duration

218 S.J. Nadgowda et al.

C2P-FS Cache Controller

Segment
Cache

Peer Coordinator Aggregation &
Filter

Message
Sender

Message
Receiver

Message Handler Global
Cache MD

Local
Cache MD

C2P Manager

Ext4 Filesystem

Disk

update update

Peer Node
Discovery

Filesystem Cache C2P Cache Replacement Peer Node coordinator

Fig. 2. Architecture of C2P

before transmitting and multiple cache events to the same peer node are coalesced
together. We also use filtering to prioritize and drop low priority events.

3 Implementation

The design for C2P in itself can be implemented as an extension to any distributed
storage system that supports data segmentation. As a concrete implementation, we have
implemented C2P into a filesystem cache for open-sourced and widely accepted Open-
stack Swift - a highly available, distributed, eventually consistent object/blob store. We
next discuss the implementation details.

3.1 Filesystem Cache

– Filesystem: For implementing C2P into a filesystem cache, we decided to use
Filesystem in user space (FUSE) [10]. FUSE allows us to develop a fully func-
tional filesystem in user’s space with simple API library, and it has a proven track
record of stability. We call our filesystem implementation C2P-FS. In C2P-FS we
have primarily extended read() and write() API calls and other calls are simply
redirected to the lower filesystem.

– Cache: Similar to ”page cache” in traditional filesystem, we have defined ”segment
cache” in C2P-FS. We have implemented cache using a fixed-size shared memory.
Based on size of the workload used during the experiments and heuristics derived
from real world scenarios, we configured cache size to be 128 MB on each storage
node. Further, cache line size is changed from page size to segment size i.e. from
4KB to 1 MB. Thus, C2P-FS cache can hold maximum of 128 segments. This
change in the cache line size is motivated by three facts: 1) swift application is going
to be used for storing/accessing segmented dynamic large objects with segment
size of 1 MB 2) partial object access is not available in swift 3) Thus, any object
IO (GET/PUT) in swift will cause file IOs (read/write) on C2P-FS on each storage
node in the unit of 1 MB. And, having a cache line aligned with the size of IO
request is going to boost the performance for any storage system.

C2P: Co-operative Caching in Distributed Storage Systems 219

Table 2. C2P Data Structures
Event ID Definition

1 (cache replace)
data flushed from the
cache

2 (cache add)
new data added to cache

3 (cache miss)
data is read from disk and
added to cache

4 (cache hit)
data read from the cache

5 (cache delete)
data is deleted from disk
and cache

MD field Definition
path local filepath of the

segment
timestamp local access time of

segment
hitcount local hit count of

segment

MD field Definiition
path local filepath of the

segment
timestamp global access time

of an object
hitcount global hit count of

an object
Object in Cache (OiC) fraction of object’s

all segments present
in the cache

(a) Cache Event Classification
(b) Local cache Metadata
(LMD)

(c) Global Cache Metadata
(GMD)

3.2 Peer Nodes Co-ordination

– Cache Events: We first identified and classified the important cache operations
that needs to be communicated to the peer nodes as shown in Tab.2(a). For each
file IO request in C2P-FS there are going to be one or more cache operations in
cache controller. E.g. if the cache is full and there is a read request for data which
is not present in the cache, then there will be cache miss and cache replacement
operations in cache controller. For each operation, cache controller then generates
a cache event and asynchronously sends it for communication. Cache event is a
tuple with <event id, file path, timestamp>and size less than 100 bytes. Cache
controller also adds this cache event to the Local Cache MD (discussed below).

– Peer nodes discovery: In object stores, data has different namespaces in storage
application (like swift) and filesystem on storage node where it is stored. When
user uploads a data, it is identified as ”/<container(s)>/<objectid>” by swift. And
when it is stored on filesystem is has a filepath like <objectid>/ <timestamp>/
<size>/ <segment>. E.g. for uploading 5 MB data with 1MB segment size user
will have command like ”swift upload mycontainer myfile” and say on storage
nodes node1, node2,...node5 these segments gets stored with filepaths like my-
file /1401080357/ 1000000/ 01, myfile/ 1401080357/ 1000000/ 02 ,../05. Since, we
have a cache implemented at filesystem, in cache events we can only get filepath for
segments. For finding the peer nodes storing the segments for the same objects we
made following two changes: 1) inverse lookup for object path from filepath, we
changed swift-client to add an extra header ”X-Obj-Name:<objpath >” for each
segment. This header gets stored as an xattr of the segment file, which we can read
to get an object path for a segment. 2) We have developed a new swift service called
”swift-discovery” implementing the same protocol as a swift’s ring service. Given
an object path this discovery service returns a list of peer nodes storing the segments
for the same objects and the local filepaths of those segments on the respective
storage nodes. For example, calling discovery service on node1 with filepath my-
file/../01, will return a peer nodes map as node2:myfile/../02, node3:myfile/../03,....

– Message Broker: We use RabbitMQ [22] as a message broker for communicat-
ing cache events between storage nodes. We create one message queue per node.
Then, for a given cache event and list of peer nodes, it publishes each event in
queue of respective peer node. To minimize the network overhead, we implemented

220 S.J. Nadgowda et al.

’Aggregation and Filter’ policy. In aggregation, before publishing the cache event,
we buffer them for short duration of 200 ms. And during this time, if there are more
cache events for the same node, then they are aggregated which reduces the payload
size. While aggregation is an optimization policy, filtering is a throttling policy. In
an overloaded system filtering essentially prioritize and drop some events.

3.3 C2P for Cache Replacement

– Local cache MD: Local cache MD (LMD) is the metadata about the segments
which are currently present in the segment cache. This MD is maintained in a sep-
arate segment of a shared-memory. Each storage node will have their own LMD.
The metadata primarily contains 3 fields as shown in Tab.2(b). When a new seg-
ment is added to the cache (for cache add/miss) a tuple with <path, current time,
1>is added into this MD. Them for every segment read (cache hit) from the cache
this tuple is updated with <current time, hitcount++>. Finally, when a segment
is removed from the cache (cache delete/replaced) the MD is removed. In the ab-
sence of any co-operation between the storage nodes, cache controller on each node
can use this LMD to implement Least Recently Used (LRU) replacement policy as
described in Algo 1.

Algorithm 1. LRU Comparator

1: procedure LRU-COMPARE(candidate a, candidate b)
2: affinityth ← temporal− affinity − threshold
3: if (|a.timestamp− b.timestamp|)<affinityth then
4: if a.timestmap>b.ttimestamp then
5: return 1
6: else a.timestamp<b.timestamp
7: return -1
8: end if
9: end if

10: if a.hitcount>b.hitcount then
11: return 1
12: else a.hitcount<b.hitcount
13: return -1
14: end if
15: return 0
16: end procedure

– Global cache MD: Global cache MD (GMD) on a given storage node is the meta-
data about segments hosted on that storage node and which is communicated from
the peer storage nodes. Note that, the segments in this GMD not necessarily be in
present in the cache but it could also be on the disk as well. Fields of the GMD
are shown in Tab.2(c). When an object is read, all it’s segments will be accessed
generating an cache event for their peer nodes. Also, each node will receive cache
event from all peer nodes for a given segment. <timestamp>is the latest timestamp

C2P: Co-operative Caching in Distributed Storage Systems 221

received from cache event for a segment. <hitcount>for a segment is incremented
for each cache event received. Thus, when an object is accessed, each node hosting
the segments will have Local hitcount =1 and Global hitcount = 5. We normalise
Global hitcount w.r.t Local hitcount to determine an object size i.e. number of seg-
ments for an object. E.g. For Global hitcount = 5 and Local hitcount =1 object size
= Global hitcount / Local hitcount = 5. Finally, Object in Cache (OiC) is the most
critical field from the GMD and is being used to implement C2P cache replace-
ment policy. OiC is defined as the fraction of all segments of an object available
in cache across all peer nodes. Considering that with swift, there won’t be any par-
tial object access, OiC is reset to 1 for any cache add or cache miss event. And
it is recomputed as follows: first segeval is computed as (1/object size) which is
the fractional value for each segment of an object. Then, for every cache replace
event OiC is decremented as (OiC = OiC - segeval). Fig.3 shows along a timeline,
few sample cache events and how those are reflected into GMD state on one of the
storage node for one segment

T1 T2

Fig. 3. GMD State Transition

– Hitcount Decay: We have defined exponentially decay function on hitcount of an
object. If an object is not accessed recently (not within last 60 secs, which is a
heuristically derived period) then, we decrement the current hitcount by factor of
0.8. This decay ensures cache-fairness through normalization of hitcount for objects
which are popular for short period (gets high hitcount in short time).

– C2P Cache Replacement: To demonstrate the effectiveness of co-ordinated caching
in distributed storage systems, we have designed and implemented a cache replace-
ment policy on C2P system named C2P-CR. We have also implemented the LRU
replacement policy to simulate the one in traditional systems. InLRU we sort all the
candidate cache MDs using an LRU-Comparator function as described in Algo. 1.
In this function, we first measure the temporal affinity between the two candidates,
which is essentially difference between their timestamps. If the affinity is less than
a (heuristically derived) threshold, then they are sorted based on their timestamps.
Otherwise, they are sorted from their hitcount. For C2P we have defined a C2P-
Comparator for sorting candidates to be selected for cache replacement as described
in Algo.2. In this we leverage both LMD as well as GMD to select the segment(s)
to be replaced from cache. First Object in Cache(OiC) is computed from GMD as
discussed earlier and candidates are compared based on OiC. If the candidates have
same OiC, then those candidates are sorted using LRU-Comparator. Thus, C2P-CR
is essentially built on top of LRU .

222 S.J. Nadgowda et al.

Algorithm 2. C2P CR Comparator

1: procedure C2P-COMPARE(candidate a, candidate b)
2: if a.OiC>b.OiC then
3: return 1
4: else a.OiC<b.OiC
5: return -1
6: end if
7: return LRU-Compare(a,b)
8: end procedure

4 Evaluation

We evaluate C2P with Openstack Swift Object store. Swift was deployed on a set of 8
VMs running Ubuntu 12.04 LTS. The VMs were hosted on 2 servers each with 24-core
3:07GHz Xeon(R) processor and 64GB memory. Each VM was configured with 2 vC-
PUs, 2 GB memory and a 50 GB disk formatted with ext4 filesystem. We configured 128
MB cache size for C2P-FS on each VM. This cache size was decided based on heuristics
and size of our workloads. We have defined two configurable modes of cache manage-
ment for C2P-FS - namely C:ON and C:OFF. C:ON indicates that co-operative caching
policy is ON for cache replacement on all storage nodes while C:OFF indicates that
each node implements default LRU cache replacement policy. We evaluate C2P based
on several metrics. First, in the baseline experiments, we measured the overhead of our
cache implementation by comparing the performance with native implementation of
fuse. Then, in the case study experiment we specifically measured the cache efficiency
with C2P cache replacement policy against traditional LRU: Least recently used.

We tag all the data access (read) on each of the individual storage node either as
a segment hit or a segment miss. segment hit indicates that the data is read from the
cache while the later indicates that data is read from the disk. More importantly we also
tag each object access. When each segment of an object is a segment hit we identify it
as an Object hit. If there is a segment miss for even a single segment, it is an Object
miss. We further decompose Object miss into Object miss complete and Object miss
partial to indicate whether there is a segment miss for all the segments or some segments
respectively . We define comm latency as the delay between the times when a cache
event is published by any storage node and when it is delivered to peer nodes. We
also measured comm overhead as the number of messages (cache events) generated
per second. Finally, we measured object throughput as size of object (in MB) read per
second.

4.1 Baseline Experiment

In this section, we discuss baseline experiments that we conducted to evaluate the perfor-
mance overhead of our cache implementation with fuse [10] filesystem. We conducted
these experiments in two phases. In the first phase, we used standard swift deployment
wherein each storage node had ext4 filesystem with it’s native LRU cache replacement
policy. In the second phase, we deployed swift with our C2P-FS in C:OFF mode i.e.cache

C2P: Co-operative Caching in Distributed Storage Systems 223

 10

 100

 1000

PUTs
GETs

DELETs

N
um

be
r

of
 o

p/
s

Operation type (logscale)

fs-cache
c2p-cache

Fig. 4. Swiftbench Evaluation

co-operation is disabled and default LRU cache replacement policy is used on storage
nodes to match standard setup. We used Swift-bench [21] which is a standard bench-
marking tool for Openstack Swift. We chose three common IO workloads on any object
store - namely PUT, GET and DELETE for these experiments. We further define the
workload profile with 500 PUTs, 2000 (random) GETs and 500 DELETEs for object
size of 1 MB. Then, we ran this same workload profile in both phases and measured
operation throughput as shown in Fig.4. As we can see, C2P-FS achieves almost the
same throughput as with the standard filesystem deployment for all three kinds of work-
loads. Thus through these baseline experiment we established that our C2P-FS cache
implementation does not incur any performance overhead over a standard swift deploy-
ment. Hence, in the case study experiments below we used C2P-FS in C:OFF mode as
a reference system implementing LRU. Then we compared and contrasted the metric
measurements of C2P system against it.

4.2 Case Study

In case study experiment, we try to motivate application of C2P for distributed storage
system hosting a segmented or striped data for improved cache efficiency.

Data Store: We first uploaded 500 objects of size 5 MB each. During upload, we
split the object with 1 MB segment size using swift’s support for dynamic large object.
Ideally, we would expect each segment to be stored on different storage node. But, swift
uses a ring service for placement which does not guarantee this segment isolation for a
given object. We captured segment placements for all the objects across 8 storage nodes
in a heatmap shown in Fig.5. As we can see for some objects maximum of 4 segments
are stored on a same storage node. We also measured total number of segments stored
on each storage node. Fig.6(b) shows the distribution of all (500 x 5 = 2500) segments
across 8 storage nodes. The distribution is not even across the nodes, and this is typically
true for all the distributed systems.

Access pattern: We used powerlaw to generate a long tail distribution series with
2000 numbers in the range [0:500] which would mimic a real-world application access
pattern. Such series typically identifies a workset which contains few popular objects
that are accessed more frequently as shown in Fig.6(a). We numbered all objects from
the data store from 1-500 and then used this series to identify the object number to

224 S.J. Nadgowda et al.

Fig. 5. Segment Placement heatmap for objects

access. When we access an object, we access it completely i.e. all 5 segments. But, even
for partial access C2P efficiency will be the same. We also measured total segments
accessed across all storage nodes as shown in Fig.6(b). As we can see, there is a large
variation in the access load across storage nodes which is again mostly true for all
distributed storage systems.

 0

 10

 20

 30

 40

 50

 60

 0 100
 200

 300
 400

 500

N
um

be
r

of
 a

cc
es

s

Object ID

 0

 200

 400

 600

 800

 1000

 1200

 1400

node-1

node-2

node-3

node-4

node-5

node-6

node-7

node-8

N
um

 o
f S

eg
m

en
ts

Node ID

stored
accessed

(a) Object access frequency (b)Segment/Access Distribution

Fig. 6. Data Store and Access pattern

Thus, this un-even segment distribution compounded with variant access load creates
an erratic data pressure across storage nodes in distributed storage systems. Thus, there
is a greater need of co-operation to enable highly utilized nodes to mantain their cache
states in consistent with their peer nodes which are less utilized.

C2P: Co-operative Caching in Distributed Storage Systems 225

0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Response Time(s)

C
D

F
 O

f O
bj

ec
ts

lru
c2p−cr

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Response Time(s)

C
D

F
 O

f O
bj

ec
ts

lru
c2p−cr

(a) Multithread (b) Singlethread

Fig. 7. Response Time CDF

Single-threaded Run. In single-threaded run we used a single swift client which would
read objects from the data store following an access pattern. In the results, first we ana-
lyze the most important aspect from application’s point of view i.e. Object hit ratio. As
shown in Fig.8(a) for C2P systems we get almost 6.7% more Object hit in the cache.
Amongst object misses, we measured around 50% reduction for Object miss partial
and 4% increase for Object miss complete. Putting these numbers in perspective, we
note that for applications storing segmented objects, C2P system can help achieve bet-
ter cache efficiency at object level to reduce an application latency. In Fig.7(b), we also
plot cdf of number of objects against their response time. This is an important measure
which can be translated into SLA assurance of a storage system. For example, for SLA
of response time <0.8 sec C2P system has about 6% more objects satisfying the SLA
than the one implementing LRU. Another interesting observation we made here is that,
for cache missed objects response time for C2P is between 0.7s to 0.9s while that for
LRU is between 0.7s to 1.2s. We conjecture that this increased latency for LRU for
cache missed objects is attributed to the increased disk queue length for missed seg-
ments. Fig.8(b) shows the object throughput measured for each object access. It shows
for C2P, most of the objects have either high throughput around 9 MBps (Object hit) or
low throughput around around 4 MBps(Object miss complete). While for LRU there are
many objects with throughput in between (Object miss partial). As mentioned earlier,
for C2P we increases Object miss complete, but that does not necessarily means disk IO
is also increased. To elaborate on this, for each object accessed we also traced segment
hit ratio on each storage node. As shown in Fig.8(c) on each individual storage node we
get more segment hits. In effect, we reduces disk IO on each storage node and overall
we observed about 5% reduced disk IO across all storage nodes which is a very criti-
cal measure for any storage system. Finally, Fig.10 shows the Rabbit MQ’s monitored
state of the message queue. As we can see, C2P system requires around 20 messages/s
to cache event co-ordination and comm latency less than 200 ms. And considering size
of each message is less than 100 Bytes, the network overhead is very minimal.

Multi-threaded Run. In multi-threaded run we used 4 swift clients. We split the ac-
cess pattern of 2000 objects into 4 access patterns of 500. Then, we ran all the 4 clients

226 S.J. Nadgowda et al.

in parallel requesting objects from the respective split-access pattern. Similar to Single-
threaded run, we measured system characteristics across different metrics. Fig.9(a)
shows 4.5% improved Object hit, and amongst object misses 43% reduced Object miss
partial and around 4% increases for Object miss complete. Fig.7(a) shows the cdf of
number of objects against their response time. Again, compared to LRU in C2P we
measured larger % of objects under any given response time. Fig.9(b) shows object
throughput for object access across all 4 clients. We observe similar pattern to that of a
singlethread run. And Fig.9(c) shows segment hit distribution across all storage nodes.
Again, on each storage node we observe better cache hits for C2P, thus reducing the
disk IO by around 3.5% across all nodes. Fig.11 shows comm overhead in the order of
70 messages/s (7KBps) still very minimal. But, now we get comm latency in around
1 second. Comm overhead and latency are observed to be higher than the respective
numbers in the single-threaded run. This is because in multithreaded run, object request
rate is higher being coming from 4 clients in parallel which in turn increases the rate of
cache activities on individual storage nodes, thus cache events are published at a higher
rate. We observed, Object hit for C2P system in this run is slightly less than that in the
single threaded run. This is attributed to the higher comm latency which increases the
delay between cache co-ordination across storage nodes. In out future work, we will try
to minimize this effect of latency on cache efficiency.

 0

 200

 400

 600

 800

 1000

 1200

hitcomplete misscomplete misspartial

N
um

be
r

of
 o

bj
ec

ts

Cache State

lru
c2p

 0

 2

 4

 6

 8

 10

 12

 14

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
hr

ou
gh

pu
t (

M
B

/s
)

Objects

lru
c2p

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

node1

node2

node3

node4

node5

node6

node7

node8

D
at

a
in

 M
B

Storage Nodes

lruhits
c2phits
lrumiss

c2pmiss

(a) Object Cache Hit/Miss (b)Object Throughput (c) Cache Stats on storage nodes

Fig. 8. Single Threaded Data Access Evaluation

 0

 200

 400

 600

 800

 1000

 1200

hitcomplete misscomplete misspartial

N
um

be
r

of
 o

bj
ec

ts

Cache State

lru
c2p

 0

 2

 4

 6

 8

 10

 12

 14

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
hr

ou
gh

pu
t (

M
B

/s
)

Objects

lru
c2p

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

node1

node2

node3

node4

node5

node6

node7

node8

D
at

a
(M

B
)

Node ID

lruhits
c2phits
lrumiss

c2pmiss

(a) Object Cache Hit/Miss (b)Object Throughput (c) Cache Stats on storage nodes

Fig. 9. Multi Threaded Data Access Evaluation

C2P: Co-operative Caching in Distributed Storage Systems 227

Fig. 10. Singlethread run overhead Fig. 11. Multithread run overhead

The maximum value of comm latency for optimal performance of C2P system, is a
function of size of cache on each storage node. Although, it is important to note here
that effectiveness of C2P systems is not limited by comm latency of less than a second.
But, since we had a small cache size on storage nodes,

To summarize the case study results we note: 1) compare to traditional LRU cache
replacement policy, C2P achieves 4-6% increase in the object hits thus reducing the
access latency for more objects. 2) In C2P systems, on each of the comprising storage
nodes cache hits are improved reducing the disk IO by around 3-5%. And 3) event-based
architecture to co-ordinate caching incurs a very minimal network overhead.

5 Related Work

Distributed systems and cache coordination techniques in such systems has been around
for a long time[1][23][7][6][16]. But cache cooperation traditionally been applied in
contexts like scaling or disk IO optimization. To our best knowledge C2P is the first
system designed to maximize cache efficiency of distributed storage hosting segmented
data.
Scale: Memcached[9] is a general-purpose distributed memory caching system. For
a large scale cache requirements, hundreds of nodes are setup. And these nodes then
leverages their memory through memcached to build a large in-memory key-value store
for small chunks of arbitrary data. Facebook probably is the world’s largest user of
memcached[19].
Disk IO optimization: CCM[8] probably is closet to our work. For cluster-based
servers, CCM keeps an accounting information for multiple copies of the same data
(blocks) available in the cache across all nodes. Then, this information is used to for-
ward IO requests between nodes to ensure cache hit. Essentially, they increase network
communication to reduce disk access. Similarly in [1], technique of split caching is
used to avoid disk reads by using the combined memory of the clients as a cooperative
cache. DSC[16] describes the problems of the exposition of one nodes resources to oth-
ers. As they state, cache state interactions and the adoption of a common scheme for
cache management policies are two primary reasons behind the problem. [6] mentions
interesting techniques for data prefetching with Co-Operative Caching. The bottomline
in all these prior work is that - a cache cooperation will happen between the nodes only
if they contains the same data.

In C2P, the primary distinction is that cache cooperation is designed for logically
related data e.g. different segments of the same object. Also, there is no resource expo-
sition between the nodes in the cluster i.e. each node will serve the ONLY IO requests

228 S.J. Nadgowda et al.

for which it is actually hosting the data. Thus, IO requests are not forwarded between
the nodes, but just the cache events are communicated.

6 Limitations and Future Work

C2P design presented in this paper caters to the distributed systems storing segmented
data and ensures better cache efficiency for them. In our current implementation we
have exploited this cache cooperation only for cache replacement policy. We also plan
to implement and exercise cache prefetching for C2P, wherein we can prefetch seg-
ments based on cache events from the peer nodes. We believe such prefetching will
further improve the cache efficiency.

One of the data property we haven’t considered in C2P is - replication. For stor-
age systems, data striping and replication can be applied simulteneously. Here, first we
need to understand placement and access characteristics of such data. Then for these
scenarios, through cache cooperation we can ensure only one copy of the data segment
remains in the cache across all nodes. And these segments in cache might belong to
different replica copy of the data.

Finally, we plan to deploy C2P in some production distributed system and measure
the scalability, overhead for live data.

7 Conclusion

In this paper we present C2P: a coperative caching policy for distributed stoarge sys-
tems. C2P implements a coordination protocol wherein each node communicates their
local cache events to peers. Then based on these additional cache state information of
peers, each node implements a co-ordinated caching policy for cache replacement and
cache prefetching. These policies in turn ensures a consistent caching across nodes for
segments of the data which are logically related. Thus, we can reduce the access latency
for the data and improve the overall performance of the system.

References

1. Adya, A., Castro, M., Liskov, B., Maheshwari, U., Shrira, L.: Fragment reconstruction: Pro-
viding global cache coherence in a transactional storage system. In: Proceedings of the 17th
International Conference on Distributed Computing Systems, pp. 2–11. IEEE (1997)

2. Amazon: Amazon S3, http://aws.amazon.com/s3/
3. Bloemer, J., Kalfane, M., Karp, R., Karpinski, M., Luby, M., Zuckerman, D.: An xor-based

erasure-resilient coding scheme (1995)
4. Cabrera, L.F., Long, D.: Using data striping in a local area network (1992)
5. Cabrera, L.F., Long, D.D.E.: Swift: Using distributed disk striping to provide high i/o data

rates. Computing Systems 4(4), 405–436 (1991)
6. Chi, C.H., Lau, S.: Data prefetching with co-operative caching. In: 5th International Confer-

ence on High Performance Computing, HIPC 1998, pp. 25–32. IEEE (1998)
7. Clarke, K.J., Gittins, R., McPolin, S., Rang, A.: Distributed storage cache coherency system

and method, US Patent 7,017,012 (March 21, 2006)

http://aws.amazon.com/s3/

C2P: Co-operative Caching in Distributed Storage Systems 229

8. Cuenca-Acuna, F.M., Nguyen, T.D.: Cooperative caching middleware for cluster-based
servers. In: Proceedings of the 10th IEEE International Symposium on High Performance
Distributed Computing, pp. 303–314. IEEE (2001)

9. Fitzpatrick, B.: Distributed caching with memcached. Linux Journal 2004(124), 5 (2004)
10. Fuse: Filesystem in Userspace, http://fuse.sourceforge.net/
11. Google: Google Cloud Storage, http://cloud.google.com/Storage
12. Huang, C., Simitci, H., Xu, Y., Ogus, A., Calder, B., Gopalan, P., Li, J., Yekhanin, S., et al.:

Erasure coding in windows azure storage. In: USENIX ATC, vol. 12 (2012)
13. IBM: Introduction to GPFS 3.5 - IBM. RedBook (2012)
14. Isilon, E.: EMC Isilon OneFS: A Technical Overview. White paper (2013)
15. LACIE: RAID Technology. White paper
16. Laoutaris, N., Smaragdakis, G., Bestavros, A., Matta, I., Stavrakakis, I.: Distributed selfish

caching. IEEE Transactions on Parallel and Distributed Systems 18(10), 1361–1376 (2007)
17. Luster: Lustre Filesystem, http://wiki.lustre.org
18. Microsoft: Microsoft Azure, http://azure.microsoft.com
19. Nishtala, R., Fugal, H., Grimm, S., Kwiatkowski, M., Lee, H., Li, H.C., McElroy, R.,

Paleczny, M., Peek, D., Saab, P.: et al.: Scaling memcache at facebook. In: Proceedings of the
10th USENIX conference on Networked Systems Design and Implementation, pp. 385–398.
USENIX Association (2013)

20. Openstack: Openstack Swift, http://swift.openstack.org
21. Openstack: Swiftbench. https://launchpad.net/swift-bench
22. RabbitMQ: RabbitMQ., https://www.rabbitmq.com/
23. Sarkar, P., Hartman, J.H.: Hint-based cooperative caching. ACM Transactions on Computer

Systems (TOCS) 18(4), 387–419 (2000)
24. Weatherspoon, H., Kubiatowicz, J.D.: Erasure coding vs. replication: A quantitative compar-

ison. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429,
pp. 328–337. Springer, Heidelberg (2002)

http://fuse.sourceforge.net/
http://cloud.google.com/Storage
http://wiki.lustre.org
http://azure.microsoft.com
http://swift.openstack.org
https://www.rabbitmq.com/

Detection of REST Patterns and Antipatterns:

A Heuristics-Based Approach

Francis Palma1,2, Johann Dubois1,3, Naouel Moha1,
and Yann-Gaël Guéhéneuc2

1 Département d’informatique, Université du Québec à Montréal, Canada
moha.naouel@uqam.ca

2 Ptidej Team, DGIGL, École Polytechnique de Montréal, Canada
{francis.palma,yann-gael.gueheneuc}@polymtl.ca
3 École supérieure d’informatique, eXia.Cesi, France

johann.dubois@viacesi.fr

Abstract. REST (REpresentational State Transfer), relying on resources
as its architectural unit, is currently a popular architectural choice for
building Web-based applications. It is shown that design patterns—good
solutions to recurring design problems—improve the design quality and
facilitate maintenance and evolution of software systems. Antipatterns,
on the other hand, are poor and counter-productive solutions. There-
fore, the detection of REST (anti)patterns is essential for improving the
maintenance and evolution of RESTful systems. Until now, however, no
approach has been proposed. In this paper, we propose SODA-R (Ser-
vice Oriented Detection for Antipatterns in REST), a heuristics-based
approach to detect (anti)patterns in RESTful systems. We define detec-
tion heuristics for eight REST antipatterns and five patterns, and perform
their detection on a set of 12 widely-used REST APIs including BestBuy,
Facebook, and DropBox. The results show that SODA-R can perform the
detection of REST (anti)patterns with high accuracy. We also found that
Twitter and DropBox are not well-designed, i.e., contain more antipat-
terns. In contrast, Facebook and BestBuy are well-designed, i.e., contain
more patterns and less antipatterns.

Keywords: REST, Antipatterns, Patterns, Design, Heuristics, Detection.

1 Introduction

Over the last decade, there is a paradigmatic shift from the traditional stand-
alone software solutions towards the service-oriented paradigm to design, de-
velop, and deploy software systems [1]. REST (REpresentational State Trans-
fer) [7] architectural style is simpler and more efficient than the traditional
SOAP-based (Simple Object Access Protocol) Web services in publishing and
consuming services [18]. Thus, RESTful services are gaining an increased atten-
tion. Facebook, YouTube, Twitter, and many more companies leverage REST.

However, the increased usage of REST for designing and developing Web-based
applications confronts common software engineering challenges. In fact, likewise

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 230–244, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Detection of REST Patterns and Antipatterns 231

any software system, RESTful systems must evolve to handle new web entities
and resources, i.e., meet new business requirements. Even, the changes in un-
derlying technologies or protocols may force the REST APIs to change. All these
changes may degrade the design of REST APIs, which may cause the introduction
of common poor solutions to recurring design problems—antipatterns—in oppo-
sition to design patterns, which are good solutions to the problems that software
engineers face while designing and developing RESTful systems. Anti(patterns)
might be introduced even in the early design phase of RESTful systems. Antipat-
terns in RESTful systems not only degrade their design but also make their main-
tenance and evolution difficult, whereas design patterns facilitate them [3, 5, 6].

Forgetting Hypermedia [16] is a common REST antipattern that corresponds
to the absence of hypermedia, i.e., links within resource representations. The
absence of such links hinders the state transition of RESTful systems and lim-
its the runtime communication between clients and servers. In contrast, Entity
Linking [6]—the corresponding design pattern—promotes runtime communica-
tion via links provided by the servers within resource representations. By us-
ing such hyper-links, the services and consumers can be more autonomous and
loosely coupled. For REST APIs, the automatic detection of such (anti)patterns
is an important activity by assessing their design (1) to ease their maintenance
and evolution and (2) to improve their design quality.

REST (anti)patterns require a concrete detection approach, to support their rig-
orous analysis, which is still lacking. Despite the presence of several technology-
specific approaches in SCA (Service Component Architecture) and Web services
(e.g., [3, 9–11, 13]), they are not applicable for detecting (anti)patterns in REST.
Indeed, the key differences between REST architecture and other SOA standards
prevents the application of these approaches because: (1) traditional service-
orientation is operations-centric, whereas REST is resources-centric, (2) RESTful
services are on top of JSON (or XML) over HTTP, whereas traditional Web services
are on top of SOAP over HTTP or JMS (Java Message Service), (3) Web services
use WSDL (Web Service Definition Language) as their formal contracts; REST has
no standardised contract except the human-readable documentations, (4) tradi-
tional services are the set of self-contained software artefacts where operations
are denoted using verbs; resources in REST are denoted by nouns and are directly-
accessible objects via URIs, and (5) REST clients use the standard HTTP methods
to interact with resources;Web services clients implement separate client-stubs to
consume services.

Among many others, the differences discussed above motivate us to propose a
new approach, SODA-R (Service Oriented Detection for Antipatterns in REST) to
detect (anti)patterns in RESTful systems. SODA-R is supported by an underlying
framework, SOFA (Service Oriented Framework for Antipatterns) [9] that supports
static and dynamic analyses of service-based systems.

To validate SODA-R, first, we performa thorough analysis of REST (anti)patterns
from the literature [2, 5, 6, 8, 12, 16] and define their detection heuristics. A de-
tection heuristic provides an indication for the presence of certain design issues.
For instance, a heuristic “servers should provide entity links in their responses”,

232 F. Palma et al.

suggests that REST developers need to provide entity links in the responses that
REST clients can use. For such case, we define a detection heuristic to check if the
response header or body contains any resource location or entity links. Follow-
ing the defined heuristics, we implement their concrete detection algorithms, ap-
ply them on widely used REST APIs, and get the list of REST services detected
as (anti)patterns. Our detection results show the effectiveness and accuracy of
SODA-R: it can detect five REST patterns and eight REST antipatterns with an aver-
age precision and recall of more than of 75% on 12 REST APIs including BestBuy,
Facebook, and DropBox.

Thus, the main contributions in this paper are: (1) the definition of detection
heuristics for 13 REST (anti)patterns from the literature, namely [2, 5, 6, 8, 12,
16], (2) the extension of SOFA framework from its early version [9] to allow
the detection of REST (anti)patterns, and, finally, (3) the thorough validation
of SODA-R approach with 13 REST (anti)patterns on a set of 12 REST APIs by
invoking 115 REST methods from them.

The reminder of the paper is organised as follows. Section 2 briefly describes
the contributions from the literature on the specification and detection of SOA

(anti)patterns. Section 3 presents our approach SODA-R, while Section 4 presents
its validation along with detailed discussions. Finally, Section 5 concludes the
paper and sketches the future work.

2 Related Work

It is important to design REST (REpresentational State Transfer) APIs of quality
for building well-maintainable and evolvable RESTful systems. In the literature,
the concept of (anti)patterns are well-recognised as the means to evaluate var-
ious design concerns in terms of quality. Despite of the presence of some REST

(anti)patterns defined recently by the SOA (Service Oriented Architecture) com-
munity, the methods and techniques for their detection are yet to propose.

Indeed, there are few books [2,5,6] that discuss a number of REST patterns. In
addition, a number of online resources [8,12,16] by REST practitioners provide a
high-level overview of REST (anti)patterns and discuss how they are introduced
by developers at design-time. Beyond those contributions, however, the detection
of (anti)patterns require a concrete approach, to support their rigorous analysis,
which is still lacking in the current literature.

For instance, Erl in his book [5] discussed 85 SOA patterns related to service
design and composition. Erl et al. [6] also explained the REST and RESTful

service-orientation, and discussed seven new REST patterns, thus in total, the
catalog defines 92 SOA patterns. Daigneau [2] introduced 25 design patterns for
SOAP (Simple Object Access Protocol) and RESTful services related to the service
interaction, implementation, and evolution. Moreover, various online resources
[8, 12, 16] defined a limited number of REST antipatterns related to API design
with simple examples. All those books and online resources discussed (1) the
solutions to recurring design problems (i.e., patterns) or (2) the bad design
practices (i.e., antipatterns), but none of them discussed their detection.

Detection of REST Patterns and Antipatterns 233

A few contributions are available on the detection of SOA (anti)patterns for
various SOA standards, e.g., SCA (Service Component Architecture) [3, 9–11]
and Web services [13]. To the best of our knowledge, the detection of REST

(anti)patterns, in the literature deserves yet to receive attention. As a contin-
uous effort to investigate diverse SOA technologies with the goal of detecting
REST (anti)patterns, we focus, in this paper, on analysing the REST APIs, both
statically and dynamically.

3 The SODA-R Approach

We propose the SODA-R approach (Service Oriented Detection for Antipatterns
in REST) for the detection of REST (anti)patterns. The steps in SODA-R include:

Step 1. Analysis of Patterns and Antipatterns: This manual step involves
analysing the description of REST (anti)patterns to identify the relevant proper-
ties that characterise them. We use these properties to define detection heuristics.

Step 2. Detection of Patterns and Antipatterns: This semi-automatic step in-
volves the implementation of detection algorithms based on the heuristics defined
in the previous step. Later, we automatically apply these detection algorithms
on a set of REST APIs, which return detected (anti)patterns.

The next sections detail the analysis of REST (anti)patterns, the implementa-
tion of detection algorithms, and the application of the detection algorithms on
REST APIs. The validation of SODA-R is discussed in Section 4.

3.1 Analysis of Patterns and Antipatterns

For the definition of heuristics, we perform a thorough analysis of REST

(anti)patterns by studying their descriptions and examples in the literature
[6, 12, 16, 17]. This analysis helps us to identify the static and dynamic prop-
erties relevant to each REST (anti)pattern. A static property is a property that
is defined on a RESTful service and is obtained statically, i.e., before invoking
the REST methods.

A dynamic property, on the other hand, is obtained after making a service
call to access a resource and can be found in the request/response headers and
bodies, at runtime. For instance, the HTTP request headers Accept and Cache-

Control and their corresponding values, respectively used to set the resource
formats requested by the clients and to set the caching preferences, correspond to
dynamic properties. Similarly, the HTTP response headers Location and Status

and their corresponding values, respectively used to set the new location by
servers and to indicate the current context and status of the action performed
by the server on a client request, also correspond to dynamic properties. Table 1
shows the relevant static and dynamic properties for each (anti)pattern, which
we use and combine in the following section to define detection heuristics.

234 F. Palma et al.

Table 1. Relevant properties of patterns and antipatterns

REST Antipatterns REST Patterns Properties

Breaking Self-descriptiveness – request-header fields; response-header fields

Forgetting Hypermedia Entity Linking http-methods; entity-links; Location

Ignoring Caching Response Caching Cache-Control; Cache-Control; ETag

Ignoring MIME Types Content Negotiation Accept; Content-Type

Ignoring Status Code – http-methods; status; status-code

Misusing Cookies – Cookie; Set-Cookie

Tunnelling Through GET – http-method; request-uri

Tunnelling Through POST – http-method; request-uri

– End-point Redirection Location; status-code

– Entity Endpoint end-points; http-methods

DetectionHeuristicsofRESTAntipatternsandPatterns: Using the static
and dynamic properties, we define detection heuristics of REST (anti)patterns. Fig-
ures 1 and 2 show the detection heuristics defined for the Forgetting Hypermedia
antipattern and the corresponding Entity Linking pattern, respectively.

1: Forget-Hyper-media(response-header, response-body, http-method)
2: body-links[] ← Extract-Entity-Links(response-body)
3: header-link ← response-header.getValue(“Link”)
4: if(http-method = GET and (length(body-links[]) = 0 or header-link = NIL)) or
5: (http-method = POST and (“Location:” �∈ response-header.getKeys() and
6: length(body-links[]) = 0))) then
7: print “Forgetting Hypermedia detected”
8: end if

Fig. 1. Heuristic of Forgetting Hypermedia antipattern

Forgetting Hypermedia [16] is a REST antipattern that identifies the absence of
entity links in the response body or header. In general, for the HTTP GET requests,
the entity links are provided in the response body or header, hence, checking for
the absence of links in the response body (i.e., the size of the array containing
the entity-links is zero) or the absence of link in the response header is sufficient
(line 4, Figure 1). As for the HTTP POST requests, usually the server provides
a location in the response header or links in the response body. Therefore, it
is sufficient to look for the absence of Location in the response header (line
5, Figure 1) or the absence of links in the response body (line 6, Figure 1) to
detect Forgetting Hypermedia antipattern. The corresponding pattern, Entity
Linking [6] (Figure 2) refers to a REST service that provides entity links to follow
in their response bodies or headers. We put the detection heuristics for the seven
other REST antipatterns and four REST patterns on our web site1.

Heuristics are more suitable, in particular for the detection of REST

(anti)patterns, because they are more intuitive. Moreover, the engineer’s knowl-
edge and experience on REST (anti)patterns play a key role in defining heuristics.

3.2 Detection of Patterns and Antipatterns

In this section, we detail the detection of REST (anti)patterns. We show the
different implementation and application steps in Figure 3.

1 http://sofa.uqam.ca/soda-r/

http://sofa.uqam.ca/soda-r/

Detection of REST Patterns and Antipatterns 235

1: Entity-Linking(response-header, response-body, http-method)
2: body-links[] ← Extract-Entity-Links(response-body)
3: header-link ← response-header.getValue(“Link”)
4: if(http-method = GET and (length(body-links[]) ≥ 1 or header-link �= NIL)) or
5: (http-method = POST and (“Location:” ∈ response-header.getKeys() or
6: length(body-links[]) ≥ 1))) then
7: print “Entity Linking detected”
8: end if

Fig. 2. Heuristic of Entity Linking pattern

Fig. 3. Steps of the detection of REST (anti)patterns

Step 2.1: Implementation - From the heuristics defined in the previous
step (in Section 3.1), we manually implement their corresponding detection al-
gorithms. These algorithms are thus conform to detection heuristics that use
and combine static and dynamic properties. We implement also the service in-
terfaces for invoking REST services, and later to analyse their static and dynamic
properties. These interfaces written in Java contain a set of methods mapped
to respective HTTP requests for all REST APIs from their online documentations
(see Table 4). The REST API online documentations comprise of (1) a list of re-
sources, (2) a list of actions to perform on these resources, (3) the HTTP requests
with entity end-points, and (4) a list of parameters for each HTTP request.

Step 2.2: Dynamic Invocation - After we have Java interfaces for REST

APIs, we implement the REST clients to invoke each service by providing the
correct parameter lists. The REST clients must conform to the API documenta-
tions. During the detection time, we dynamically invoke the methods of service
interfaces. From REST point of view, invocation of a method refers to performing
an action on a resource or on an entity. For some method invocations, clients
require to authenticate themselves to the servers. For each authentication pro-
cess, we need to have a user account to ask for the developer credentials to the
server. The server then supplies the user with the authentication details to use
every time to make a signed HTTP request. For instance, YouTube and DropBox
support OAuth 2.0 authentication protocol to authenticate their clients. At the
end of this step, we gather all the requests and responses.

Step 2.3: Application - For the application, we rely on the underlying frame-
work SOFA (Service Oriented Framework for Antipatterns) [9] that enables the
analysis of static and dynamic properties specific to REST (anti)patterns. We au-
tomatically apply the heuristics in the form of detection algorithms on the requests

236 F. Palma et al.

from the clients and responses from the servers, gathered in the previous step. In
the end, we obtain a list of detected REST (anti)patterns.

From its initial version in [9], we further developed the SOFA framework to sup-
port the detection of REST (anti)patterns. SOFA itself is developed based on the
SCA (Service Component Architecture) standard [4] and is composed of several
SCA components. SOFA framework uses FraSCAti [15] as its runtime support. We
added a new REST Handler SCA component in the framework. The REST Handler
component supports the detection of REST (anti)patterns by (1) wrapping each
REST API with an SCA component and (2) automatically applying the detection
heuristics on the SCA-wrapped REST APIs. This wrapping allows us to introspect
each request and response at runtime by using an IntentHandler. The intent
handler in FraSCAti is an interceptor that can be applied on a specific service
to implement the non-functional features, e.g., transaction or logging. When we
invoke a service that uses an IntentHandler, the service call is interrupted and
the intent handler is notified by calling the invoke(IntentJoinPoint)method.
This interruption of call enables us to introspect the requests and responses of
an invoked REST service.

4 Validation

In this section, we want to show the robustness of SODA-R approach, accuracy
of our detection heuristics, and performance of the implemented algorithms.

4.1 Hypotheses

We define three hypotheses to assess the effectiveness of our SODA-R approach.
H1. Robustness: The SODA-R approach is robust. This hypothesis claims that
our SODA-R approach is assessed rigorously on a large set of REST APIs and with
a set of different REST patterns and antipatterns.
H2. Accuracy: The detection heuristics have an average precision of more than
75% and a recall of 100%, i.e., more than three-quarters of detected (anti)patterns
are true positive and we do not miss any existing (anti)patterns. Having a trade-
off between precision and recall, we presume that 75% precision is acceptable
while our objective is to detect all existing (anti)patterns, i.e., 100% recall. This
hypothesis claims the accuracy of the defined detection heuristics and the im-
plemented detection algorithms.
H3. Performance: The implemented algorithms perform with considerably a
low detection times, i.e., on an average in the order of seconds. Through this as-
sumption, we support the performance of the implemented detection algorithms.

4.2 Subjects and Objects

We define heuristics for eight different REST antipatterns and five REST patterns
from the literature. Tables 2 and 3 list those REST antipatterns and patterns

Detection of REST Patterns and Antipatterns 237

Table 2. List of eight REST antipatterns

Breaking Self-descriptiveness: REST developers tend to ignore the standardised headers, formats,
or protocols and use their own customised ones. This practice shatters the self-descriptiveness or
containment of a message header. Breaking the self-descriptiveness also limits the reusability and
adaptability of REST resources [16].

Forgetting Hypermedia: The lack of hypermedia, i.e., not linking resources, hinders the state
transition for REST applications. One possible indication of this antipattern is the absence of URL
links in the resource representation, which typically restricts clients to follow the links, i.e., limits
the dynamic communication between clients and servers [16].

Ignoring Caching: REST clients and server-side developers tend to avoid the caching capability due
to its complexity to implement. However, caching capability is one of the principle REST constraints.
The developers ignore caching by setting Cache-Control: no-cache or no-store and by not providing
an ETag in the response header [16].

Ignoring MIME Types: The server should represent resources in various formats, e.g., xml, json, pdf,
etc., which may allow clients, developed in diverse languages, a more flexible service consumption.
However, the server side developers often intend to have a single representation of resources or rely
on their own formats, which limits the resource (or service) accessibility and reusability [16].

Ignoring Status Code: Despite of a rich set of defined application-level status codes suitable
for various contexts, REST developers tend to avoid them, i.e., rely only on common ones, namely
200, 404, and 500, or even use the wrong or no status codes. The correct use of status codes from
the classes 2xx, 3xx, 4xx, and 5xx helps clients and servers to communicate in a more semantic
manner [16].

Misusing Cookies: Statelessness is another REST principle to adhere—session state in the server
side is disallowed and any cookies violate RESTfulness [7]. Sending keys or tokens in the Set-Cookie
or Cookie header field to server-side session is an example of misusing cookies, which concerns both
security and privacy [16].

Tunnelling Through GET: Being the most fundamental HTTP method in REST, the GET method
retrieves a resource identified by a URI. However, very often the developers rely only on GET method
to perform any kind of actions or operations including creating, deleting, or even for updating a
resource. Nevertheless, HTTP GET is an inappropriate method for any actions other than accessing a
resource, and does not match its semantic purpose, if improperly used [16].

Tunnelling Through POST: This anti-pattern is very similar to the previous one, except that in
addition to the URI the body of the HTTP POST request may embody operations and parameters to
apply on the resource. The developers tend to depend only on HTTP POST method for sending any
types of requests to the server including accessing, updating, or deleting a resource. In general, the
proper use of HTTP POST is to create a server-side resource [16].

collected from the literature, mainly [6, 8, 12, 16, 17]. In Tables 2 and 3, we put
the relevant properties for each antipattern and pattern in bold-italics.

As for the objects in our experiment, we use some widely-used and popular
REST APIs for which their underlying HTTP methods, service end-points, and
authentication details are well documented online. Large companies like Face-
book or YouTube provide self-contained documentations with good example sets.
Table 4 lists the 12 REST APIs that we analysed in our experiment.

4.3 Validation Process

Through the implemented clients, we invoked a total set of 115 methods from
the service interfaces to access resources and received the responses from servers.
Then, we applied the detection algorithms on the REST requests and responses
and reported any existing patterns or antipatterns using our SOFA framework.
We manually validated the detection results to identify the true positives and

238 F. Palma et al.

Table 3. List of five REST patterns
Content Negotiation: This pattern supports alternative resource representations, e.g., in json,
xml, pdf, etc. so that the service consuming becomes more flexible with high reusability. Servers
can provide resources in any standard format requested by the clients. This pattern is applied via
standard HTTP media types and adhere to service loose coupling principle. If not applied at all, this
turns into Ignoring MIME Types antipattern [6].

End-point Redirection: The redirection feature over the Web is supported by this pattern, which
also plays a role as the means of service composition. To redirect clients, servers send a new location
to follow with one of the status code among 301, 302, 307, or 308. The main benefit of this pattern
is—an alternative service remains active even if the requested service end-point is not sound [6].

Entity Linking: This pattern enables runtime communication via links provided by the server in
the response body or via Location: in the response header. By using hyper-links, the servers and
clients can be loosely coupled, and the clients can automatically find the related entities at runtime.
If not properly applied, this pattern turns into Forgetting Hypermedia antipattern [6].

Entity Endpoint: Services with single end-points are too coarse-grained. Usually, a client requires
at least two identifiers: (1) a global for the service itself and (2) a local for the resource or entity
managed by the service. By applying this pattern, i.e., using multiple end-points, each entity (or
resource) of the incorporating service can be uniquely identified and addressed globally [12].

Response Caching: Response caching is a good practice to avoid sending duplicate requests and
responses by caching all response messages in the local client machine. In opposed to Ignoring
Caching antipattern, the Cache-Control: is set to any value other than no-cache and no-store, or
an ETag is used along with the status code 304 [6].

Table 4. List of 12 REST APIs and their online documentations.

REST APIs Online Documentations
Alchemy alchemyapi.com/api/
BestBuy bbyopen.com/developer/
Bitly dev.bitly.com/api.html
CharlieHarvey charlieharvey.org.uk/about/api/
DropBox dropbox.com/developers/core/docs/
Facebook developers.facebook.com/docs/graph-api/
Musicgraph developer.musicgraph.com/api-docs/overview/
Ohloh github.com/blackducksw/ohloh api/
TeamViewer integrate.teamviewer.com/en/develop/documentation/
Twitter dev.twitter.com/docs/api/
YouTube developers.google.com/youtube/v3/
Zappos developer.zappos.com/docs/api-documentation/

to find false negatives. The validation was performed by two professionals who
have knowledge on REST and were not part of the implementation and exper-
iment. We provided them the descriptions of REST (anti)patterns and the sets
of all requests and responses collected during the service invocations. We used
precision and recall to measure our detection accuracy. Precision concerns the
ratio between the true detected (anti)patterns and all detected (anti)patterns.
Recall is the ratio between the true detected (anti)patterns and all existing true
(anti)patterns.

4.4 Results

Table 5 presents detailed detection results for the eight REST antipatterns and five
REST patterns. The table reports the (anti)patterns in the first column followed

Detection of REST Patterns and Antipatterns 239

Fig. 4. Bar-plots of the detection results for eight antipatterns and five patterns. (APIs
are followed by the number of method invocations in parentheses. The acronyms corre-
spond to the (anti)pattern name abbreviation and the numbers represent their detected
instances.)

by the analysed REST APIs in the following twelve columns. For each REST API

and for each (anti)pattern, we report: (1) the total number of validated true
positives with respect to the total detected (anti)patterns by our algorithms,
i.e., the precision, in the first row and (2) the total number of detected true
positives with respect to the total existing true positives, i.e., the recall, in the
following row. The last two columns show, for all APIs, the average precision-
recall and the total detection time for each (anti)pattern. The detailed results
on all the test cases, e.g., 115 methods from 12 REST APIs, are available on our
web site1.

4.5 Overview on the Results

Figure 4 shows the bar-plots of the detection results for the eight antipatterns
and five patterns on the 12 REST APIs.

REST developers are most likely to use their own header fields, data formats,
and protocols, which limit the comprehension and reusability of REST APIs. For
example, among more than 80 instances of detected Breaking Self-descriptiveness
(BSD) antipattern: Facebook (29 instances), DropBox (12 instances), and Best-
Buy (12 instances) were mostly using customised header fields, data formats, and
protocols. Also, Forgetting Hypermedia (FH) antipattern was detected in Face-
book (8 instances) and DropBox (10 instances) APIs. Moreover, Ignoring MIME

Types (IMT) antipattern was detected in Twitter (10 instances) and YouTube
(9 instances) APIs. Among the less frequent antipatterns, Ignoring Status Code

240 F. Palma et al.

(ISC, 2 instances) and Misusing Cookies (MC, 3 instances) were not significantly
observed among the 115 tested methods.

As for REST patterns, Content Negotiation (CN, 70 instances) and Entity
Linking (EL, 62 instances) were most frequently applied by REST developers.
Content Negotiation pattern supports the ability to represent REST resources in
diverse formats (implemented by REST developers) as requested by the clients.
Entity Linking pattern facilitates clients to follow links provided by the servers.
Furthermore, some APIs also applied Response Cashing (RC, 13 instances) and
End-point Redirection (ER, 2 instances) patterns.

Overall, REST APIs that follow patterns tend to avoid corresponding antipat-
terns and vice-versa. For example: BestBuy and Facebook are found involved
respectively in 0 and 8 instances of Forgetting Hypermedia antipattern; however,
these APIs are involved in 11 and 21 corresponding Entity Linking pattern.
Moreover, DropBox, Alchemy, YouTube, and Twitter APIs had 27 instances of
Ignoring Caching antipattern, but they were involved in 8 instances of the cor-
responding Response Cashing pattern. Finally, we found Facebook, DropBox,
BestBuy, and Zappos APIs involved in only 3 instances of Ignoring MIME Types
antipattern, which conversely are involved in more than 55 instances of corre-
sponding Content Negotiation pattern.

In general, among the 12 analysed REST APIs with 115 methods tested and
eight antipatterns, we found Twitter (32 instances of four antipatterns), Drop-
Box (40 instances of four antipatterns), and Alchemy (19 instances of five an-
tipatterns) are more problematic, i.e., contain more antipatterns than others (see
Figure 4). On the other hand, considering the five REST patterns, we found Face-
book (49 instances of four patterns), BestBuy (22 instances of two patterns), and
YouTube (15 instances of three patterns) are well designed, i.e., involve more
patterns than others (see Figure 4).

4.6 Details of the Results

In this section, we discuss three detection results in detail, obtained in our ex-
periment as presented in Table 5.

REST developers tend to rely on their own customised headers, formats, and
protocols, and thus introduce Breaking Self-descriptiveness antipattern. The
analysis on the 12 REST APIs shows that developers used non-standard header
fields and protocols in most APIs including BestBuy, DropBox, Facebook, and
Twitter. For example, Facebook used x-fb-debug and x-fb-rev header fields,
which are mainly used to track a request id for their internal bug manage-
ment purpose. Similarly, we found DropBox using the x-dropbox-request-id

and Twitter using x-tfe-logging-request-* and x-xss-protection header
fields. In general, the designers and implementers often distinguish the standard-
ised and non-standardised header members by prefixing their names with “x-”
(a.k.a. eXperimental). Indeed, the “x-” convention was highly discouraged by the
Internet Society in RFC822 [14]. The manual validation reveals that all our detec-
tion was true positives and we reported all existing non-standard header fields
and protocols, except two in DropBox where the manual validation considered

Detection of REST Patterns and Antipatterns 241

Table 5. Detection results of the eight REST antipatterns and five REST patterns ob-
tained by applying detection algorithms on the 12 REST APIs (numbers in the paren-
theses show total test methods for each API).

R
E
S
T

A
P
I

(
7
)
A
lc
h
e
m

y

(
1
2
)B

e
s
tB

u
y

(
3
)
B
it
ly

(4
)C

h
a
r
li
e
H
a
r
v
e
y

(1
5
)D

r
o
p
B
o
x

(2
9
)F

a
c
e
b
o
o
k

(8
)M

u
s
ic
g
r
a
p
h

(3
)O

h
lo

h

(8
)T

e
a
m

V
ie
w
e
r

(
1
0
)T

w
it
t
e
r

(9
)Y

o
u
T
u
b
e

(7
)Z

a
p
p
o
s

p
r
e
c
is
io

n
-r
e
c
a
ll

(1
1
5
)
T
o
ta

l

A
v
e
r
a
g
e

P
r
e
c
is
io

n
-R

e
c
a
ll

D
e
t
e
c
ti
o
n

T
im

e

REST Antipatterns

Breaking Self- 0/0 12/12 0/0 4/4 12/12 29/29 0/0 3/3 0/0 10/10 9/9 7/7 p 86/86 100%
21.31s

descriptiveness 0/0 12/12 0/0 4/4 12/14 29/29 0/0 3/3 0/0 10/10 9/9 7/7 r 86/88 98.21%

Forgetting 1/1 0/0 2/2 0/0 9/10 8/8 7/7 0/0 3/3 4/4 2/3 0/0 p 36/38 94.58%
19.54s

Hypermedia 1/1 0/0 2/2 0/0 9/9 8/8 7/7 0/0 3/3 4/4 2/2 0/0 r 36/36 100%

Ignoring 7/7 0/0 0/0 0/0 12/12 1/1 0/0 1/1 4/4 8/8 0/0 0/0 p 33/33 100%
18.99s

Caching 7/7 0/0 0/0 0/0 12/12 1/1 0/0 1/1 4/4 8/8 0/0 0/0 r 33/33 100%

Ignoring 2/2 1/1 3/3 4/4 0/0 2/2 8/8 0/0 0/0 10/10 9/9 0/0 p 39/39 100%
19.39s

MIME Types 2/2 1/1 3/3 4/4 0/0 2/2 8/8 0/0 0/0 10/10 9/9 0/0 r 39/39 100%

Ignoring 1/2 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 p 1/2 50%
21.22s

Status Code 1/2 0/0 0/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 r 1/3 25%

Misusing 0/0 0/0 0/0 0/0 0/0 0/0 0/0 3/3 0/0 0/0 0/0 0/0 p 3/3 100%
19.1s

Cookies 0/0 0/0 0/0 0/0 0/0 0/0 0/0 3/3 0/0 0/0 0/0 0/0 r 3/3 100%

Tunnelling 5/7 0/0 0/2 0/0 0/0 0/0 0/1 0/0 0/0 0/0 0/0 0/1 p 5/11 17.86%
28.26s

Through GET 5/5 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 r 5/5 100%

Tunnelling 0/0 0/0 0/0 0/0 5/5 0/0 0/0 0/0 0/0 0/0 0/0 0/0 p 5/5 100%
28.64s

Through POST 0/0 0/0 0/0 0/0 5/5 0/0 0/0 0/0 0/0 0/0 0/0 0/0 r 5/5 100%

REST Patterns

Content 5/5 11/11 0/0 0/0 14/14 26/26 0/0 3/3 5/5 0/0 0/0 7/7 p 71/71 100%
19.63s

Negotiation 5/5 11/11 0/0 0/0 14/14 26/26 0/0 3/3 5/5 0/0 0/0 7/7 r 71/71 100%

Entity 6/6 11/11 1/1 4/4 3/3 21/21 1/1 2/2 1/1 5/5 6/6 4/4 p 65/65 100%
19.90s

Linking 6/6 11/11 1/1 4/4 3/3 21/21 1/1 2/2 1/1 5/5 6/7 4/4 r 65/66 98.81%

End-point 0/0 0/0 0/0 0/0 0/0 1/1 0/0 1/1 0/0 0/0 0/0 0/0 p 2/2 100%
20.36s

Redirection 0/0 0/0 0/0 0/0 0/0 1/1 0/0 1/1 0/0 0/0 0/0 0/0 r 2/2 100%

Entity 1/1 0/0 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 0/0 p 10/10 100%
23.06s

Endpoint 1/1 0/0 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 0/0 r 10/10 100%

Response 0/0 0/0 0/0 0/0 0/0 0/0 0/0 1/1 0/0 0/0 8/8 4/4 p 13/13 100%
19.23s

Caching 0/0 0/0 0/0 0/0 0/0 0/0 0/0 1/1 0/0 0/0 8/8 4/4 r 13/13 100%

Average
p 369/378 89.42%

21.43s
r 369/374 94%

them as non-standard practice. This leads to the precision of 100% and the recall
of 98.21% for this detection.

Any RESTful interaction is driven by hypermedia—by which clients interact
with application servers via URL links provided by servers in resource repre-
sentations [7]. The absence of such interaction pattern is known as Forgetting
Hypermedia antipattern [16], which was detected in eight APIs, namely Bitly,
DropBox, Facebook, and so on (see Table 5). Among the 115 methods tested,
we found 38 instances of this antipattern. Moreover, REST APIs that do not
have this antipattern well applied the corresponding Entity Linking pattern [6],
e.g., Alchemy, BestBuy, and Ohloh, which is a good practice. This observation
suggests that, in practice, developers sometimes do not provide hyper-links in
resource representations. As for the validation, 36 instances of Forgetting Hy-
permedia antipattern were manually validated; therefore, we have an average
precision of 94.58% and a recall of 100%. For Entity Linking pattern, the man-
ual validation confirmed 66 instances whereas we detected a total of 65 instances,

242 F. Palma et al.

all of which were true positives. Thus, we had an average precision of 100% and
a recall of 98.81%.

Caching helps developers implementing high-performance and scalable REST

services by limiting repetitive interactions, which if not properly applied violates
one of the six REST principles [7]. REST developers widely ignore the caching ca-
pability by using Pragma: no-cache or Cache-Control: no-cache header in the re-
quests, which forces the application to retrieve duplicate responses from servers.
This bad practice is known as Ignoring Caching antipattern [16]. In contrast, the
corresponding pattern, Response Caching [6] supports response cacheability. We
detected six REST APIs that explicitly avoid caching capability, namely Alchemy,
DropBox, Ohloh, and so on (see Table 5). On the other hand, cacheability is
supported by YouTube and Zappos, which were detected as Response Caching
patterns. The manual analysis of requests and responses also confirmed these
detections, and we had an average precision and recall of 100%.

4.7 Discussion on the Hypotheses

In this section, we discuss the hypotheses defined in Section 4.1.

H1. Robustness: To validate the SODA-R approach, we performed experiment
on 12 REST APIs including well-known Facebook, BestBuy, DropBox, Twitter,
and YouTube. We analysed 115 methods in the form of HTTP requests from these
APIs and applied detection algorithms of eight common REST antipatterns and
five REST patterns on them. For each request among 115, we analysed individual
request headers and bodies, and the corresponding response headers and bodies.
With such an extensive evaluation and validation, we support our first hypothesis
on the robustness of our SODA-R approach.

H2. Accuracy: As shown in Table 5, we obtained an average recall of 94% and
an average precision of 89.42% on all REST APIs and for all test methods. The
precision ranges from 17.86% to 100%, while we obtained a recall between 25%
and 100% for all REST (anti)patterns. Thus, with an average precision of 89.42%
and a recall of 94%, we can positively support our second hypothesis on the
accuracy of our defined heuristics and implemented detection algorithms.

H3. Performance: The total required time includes: (i) the execution time,
i.e., sending REST requests and receiving REST responses (ranges from 19.1s to
24.55s) and (ii) the time required to apply and run the detection algorithms on
the requests and responses (ranges from 0.004s to 4.312s). Each row in Table
5 (last column) reports the total required detection time for a pattern or an
antipattern, which varies from 19.1s to 28.64s. We performed our experiments
on an Intel Core-i7 with a processor speed of 2.50GHz and 6GB of memory. The
detection time is comparatively very low (on an average 3% of the total required
time) than the execution time. With a low average detection time of 21.43s, we
can positively support our third hypothesis on performance.

Detection of REST Patterns and Antipatterns 243

4.8 Threats to Validity

As future work, we plan to generalise our findings to other REST APIs. How-
ever, we tried to minimise the threat to the external validity of our results by
performing experiments on 12 REST APIs by invoking and testing 115 methods
from them. The detection results may vary based on the heuristics defined for
the REST (anti)patterns. To minimise the threats to the Internal validity, we
made sure that every invocation receives responses from servers with the correct
request URI, and the client authentication done while necessary. Moreover, we
tested all the major HTTP methods in REST, i.e., GET, DELETE, PUT, and POST on
resources to minimise the threat to the internal validity. Engineers may have dif-
ferent views and different levels of expertise on REST (anti)patterns, which may
affect the definition of heuristics. We attempted to lessen the threat to construct
validity by defining the heuristics after a thorough review of existing literature
on the REST (anti)patterns. We also involved two professionals in the intensive
validation of the results. Finally, the threats to reliability validity concerns the
possibility of replicating this study. To minimise this threat, we provide all the
details required to replicate the study, including the heuristics, client requests,
and server responses on our web site1.

5 Conclusion and Future Work

REST (REpresentational State Transfer) is now a popular architectural style for
building Web-based applications. REST developers may apply design patterns or
introduce antipatterns. These REST patterns and antipatterns may respectively:
(1) facilitate and hinder semantically richer communications between clients and
servers, or (2) ease and cause difficult maintenance and evolution.

This paper presented the SODA-R approach (Service Oriented Detection for An-
tipatterns in REST) to define detection heuristics and detect REST (anti)patterns
in REST APIs. The detection of (anti)patterns in REST APIs requires an in-depth
analysis of their design, invocation, and authentication. We applied SODA-R to
define the detection heuristics of five common REST patterns and eight REST an-
tipatterns. Using an extended SOFA framework (Service Oriented Framework for
Antipatterns), we performed an extensive validation with 13 REST (anti)patterns.
We analysed 12 REST APIs and tested 115 methods, and showed the accuracy of
SODA-R with an average precision of 89.42% and recall of 94%.

In future work, we want to replicate SODA-R on other REST APIs and methods
with more REST (anti)patterns. We also intend to enrich the catalog of antipat-
terns and patterns by thoroughly investigating a large set of REST APIs.

Acknowledgements. The authors thank Abir Dilou for initiating the study.
This study is supported by NSERC (Natural Sciences and Engineering Research
Council of Canada) and FRQNT research grants.

244 F. Palma et al.

References

1. Bennett, K., Layzell, P., Budgen, D., Brereton, P., Macaulay, L., Munro, M.:
Service-based Software: The Future for Flexible Software. In: Proceedings of Sev-
enth Asia-Pacific Software Engineering Conference, pp. 214–221 (2000)

2. Daigneau, R.: Service Design Patterns: Fundamental Design Solutions for
SOAP/WSDL and RESTful Web Services. Addison-Wesley (November 2011)

3. Demange, A., Moha, N., Tremblay, G.: Detection of SOA Patterns. In: Basu, S.,
Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 114–130.
Springer, Heidelberg (2013)

4. Edwards, M.: Service Component Architecture (SCA). OASIS, USA (April 2011)
5. Erl, T.: SOA Design Patterns. Prentice Hall PTR (January 2009)
6. Erl, T., Carlyle, B., Pautasso, C., Balasubramanian, R.: SOA with REST: Prin-

ciples, Patterns & Constraints for Building Enterprise Solutions with REST. The
Prentice Hall Service Technology Series from Thomas Erl. (2012)

7. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis (2000)

8. Fredrich, T.: RESTful Service Best Practices: Recommendations for Creating Web
Services (May 2012)

9. Moha, N., Palma, F., Nayrolles, M., Conseil, B.J., Guéhéneuc, Y.-G., Baudry,
B., Jézéquel, J.-M.: Specification and Detection of SOA Antipatterns. In: Liu,
C., Ludwig, H., Toumani, F., Yu, Q. (eds.) Service Oriented Computing. LNCS,
vol. 7636, pp. 1–16. Springer, Heidelberg (2012)

10. Nayrolles, M., Moha, N., Valtchev, P.: Improving SOA Antipatterns Detection in
Service Based Systems by Mining Execution Traces. In: 20th Working Conference
on Reverse Engineering, pp. 321–330 (October 2013)

11. Palma, F., Nayrolles, M., Moha, N., Guéhéneuc, Y.G., Baudry, B., Jézéquel, J.M.:
SOA Antipatterns: An Approach for their Specification and Detection. Interna-
tional Journal of Cooperative Information Systems 22(04) (2013)

12. Pautasso, C.: Some REST Design Patterns (and Anti-Patterns) (October 2009),
http://www.jopera.org/node/442

13. Penta, M.D., Santone, A., Villani, M.L.: Discovery of SOA Patterns via Model
Checking. In: 2nd International Workshop on Service Oriented Software Engineer-
ing: In Conjunction with the 6th ESEC/FSE Joint Meeting, IW-SOSWE 2007, pp.
8–14. ACM, New York (2007)

14. RFC2822: Internet Message Format by Internet Engineering Task Force. Technical
report (2001)

15. Seinturier, L., Merle, P., Rouvoy, R., Romero, D., Schiavoni, V., Stefani, J.B.: A
Component-Based Middleware Platform for Reconfigurable Service-Oriented Ar-
chitectures. Software: Practice and Experience 42(5), 559–583 (2012)

16. Tilkov, S.: REST Anti-Patterns (July 2008),
http://www.infoq.com/articles/rest-anti-patterns

17. Tilkov, S.: RESTful Design: Intro, Patterns, Anti-Patterns (December 2008),
http://www.devoxx.com/

18. Vinoski, S.: Serendipitous Reuse. IEEE Internet Computing 12(1), 84–87 (2008)

http://www.jopera.org/node/442
http://www.infoq.com/articles/rest-anti-patterns
http://www.devoxx.com/

How Do Developers React
to RESTful API Evolution?

Shaohua Wang, Iman Keivanloo, and Ying Zou

Queen’s University, Kingston, Ontario, Canada
shaohua@cs.queensu.ca, {iman.keivanloo,ying.zou}@queensu.ca

Abstract. With the rapid adoption of REpresentational State Trans-
fer (REST), more software organizations expose their applications as
RESTful web APIs and client code developers integrate RESTful APIs
into their applications. When web APIs evolve, the client code devel-
opers have to update their applications to incorporate the API changes
accordingly. However client code developers often encounter challenges
during the migration and API providers have little knowledge of how
client code developers react to the API changes. In this paper, we in-
vestigate the changes among subsequent versions of APIs and classify
the identified changes to understand how the RESTful web APIs evolve.
We study the on-line discussion from developers to the API changes by
analyzing the StackOverflow questions. Through an empirical study, we
identify 21 change types and 7 of them are new compared with exist-
ing studies. We find that a larger portion of RESTful web API elements
are changed between versions compared with Java APIs and WSDL ser-
vices. Moreover, our results show that adding new methods in the new
version causes more questions and views from developers. However the
deleted methods draw more relevant discussions. In general, our results
provide valuable insights of RESTful web API evolution and help service
providers understand how their consumers react to the API changes in
order to improve the practice of evolving the service APIs.

Keywords: REST API, API Evolution, StackOverflow, Social Media.

1 Introduction

Nowadays, on-line users can conduct various tasks such as posting text on Twit-
ter1 through web applications or services. With the rapid emergence of REp-
resentational State Transfer (REST) and high demand of engaging on-line ex-
perience from end-users, software organizations such as Twitter are willing to
open their applications as RESTful web service APIs described in plain HTML
pages [7]. Client code developers often integrate the web APIs into their ap-
plications or services to accelerate their development or stay away from low
level programming tasks [4]. Typically web API providers (e.g., Twitter) evolve
their APIs for various reasons, such as adding new functionality [10]. Client
code developers have no control of web API evolution and have to evolve their

1 https://twitter.com/

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 245–259, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

https://twitter.com/

246 S. Wang, I. Keivanloo, and Y. Zou

client applications or services to incorporate the changes of new versions of web
APIs [4][10]. It causes difficulties to developers to migrate client applications,
since the API client code developers have no knowledge of how the web APIs
evolve [2]. Moreover, API providers are not aware of how client code develop-
ers react to web API evolution. Therefore analyzing and understanding client
code developers’ on-line discussion related to API changes is essential for service
providers to improve API evolution practices. The communication gap between
API providers and client developers should be resolved.

Recently, several research studies have explored the impact of API evolution.
For example, Espinha et al. [4] conduct semi-structured interviews with web
API client developers and mine source code changes of client applications. Li et
al. [10] conduct an empirical study on classifying the changes of web API evolu-
tion, without studying the developers’ reactions to the changes. Understanding
all of the possible types of changes can help developers have a better preparation
for migration. Recently, crowd-sourced resources such as StackOverflow is getting
popular among developers. When studying the new changes of web APIs or solv-
ing a specific software development problem, client code developers start posting
questions or development experience on these crowd-sourced resources instead
of mailing lists or project-specific forums [9][12]. Therefore, crowd-sourced social
media platforms become an excellent source for studying developers’ discussion.
Linares-Vásquez et al. [11] investigate how developers react to the Andorid API
instability in StackOverflow2, a question & answer website for developers to
share experience on software development. They study which types of changes
trigger more questions and more discussion in StackOverflow.

In this paper, we conduct an empirical study on API changes between sub-
sequent versions of web APIs to explore all of the possible types of changes
during API evolution. Since web API source code is usually not publicly avail-
able, we compare web API documentation (i.e., migration guides or reference
documents), and identify changes between subsequent versions of each API.
We further categorize the changes into different change types. Compared with
the change types identified in [10], we identify 7 more types of changes in web
API evolution. Moreover, we explore how client code developers react to identi-
fied types of changes by analyzing developers’ online discussion regarding API
changes. We adopt the analysis approach in [11] for analyzing StackOverflow
posts related to RESTful APIs. To the best of our knowledge, we are the first to
link the analysis of developer discussion in StackOverflow with web API changes.

We conduct our empirical study on 11 web APIs from 9 application domains
and address the following three research questions:

RQ1. What are the change types of web API evolution?
Identifying and understanding all of the possible types of changes of RESTful web
APIs is useful for client code developers to have a better preparation for migrating
their code. We manually compare the API documentation of a web API to iden-
tify the changes [10][3]. We classify the identified changes into 21 change types
and count the number of changes for each change type. Compared with existing
research work, we identify new unreported change types. Our empirical results

2 http://stackoverflow.com/

http://stackoverflow.com/

How Do Developers React to RESTful API Evolution? 247

show that the change type of Adding New Methods has the highest percentage of
the number of total changes (i.e., 41.52% of total changes belongs to Adding New
Methods).

RQ2. Which types of changes trigger more questions from client code
developers?
To understand the difficulties of developers to adopt different types of API
changes, the first step is to identify which types of changes trigger a larger
volume of discussion (i.e., in terms of the number of questions) regarding the
changes from client code developers. We extract the question posts related to
change types of web API evolution in StackOverflow, an online platform for
developers to share software development experience. We investigate the differ-
ences between change types in terms of the average number of question posts
per change from developers. Our empirical results show that the change type
of Adding New Methods attracts more question than other change types do.

RQ3. Which types of changes bring discussion on posted questions
from developers?
When a question post attracts developers’ attention and is worth discussing,
the post starts receiving more answers, comments and views from developers.
Analyzing such question posts regarding API changes is helpful to understand
on which type of problems the developers are stuck. We use the number of
answers, the number of views from developers received by a question and its score
as measurements of the more discussed questions for developers. In RQ2, the
impact of API changes on the volume of discussion is explored. In this question,
we investigate the impact of API changes on the quality of discussion. Our
empirical results show that Deleted Methods generates most discussed questions
in the developer community, and the type of change Adding New Methods draws
the questions with more view counts from developers.

The rest of this paper is organized as follows. Section 2 presents the back-
ground of this study. Section 3 introduces the empirical study setup and re-
search questions. Section 4 discusses threats to validity. Section 5 summarizes
the related literature. Finally, Section 6 concludes the paper and outlines some
avenues for future work.

2 Background

In this section, we introduce the basic structure of web APIs and Question & An-
swer websites.

2.1 Web APIs

The software organizations open their resources (e.g., services or data) by defin-
ing application programming interfaces (APIs) to a request-response message
system [15]. The resources can be data or services provided by the organiza-
tions. The web APIs are usually described in plain HTML web pages. Client
applications access the resources via direct HTTP requests and responses. The
format of the requests and responses can be defined in various protocols, such as

248 S. Wang, I. Keivanloo, and Y. Zou

XML-RPC. A RESTful HTTP request must be associated with one of four
standard HTTP methods: GET, PUT, POST and DELETE. A typical RESTful
HTTP request includes 1) a HTTP method (e.g., GET); 2) a domain address of
API server; 3) a name of RESTful API method; 4) a format of return data; 5)
a set of parameters of the method. The (domain + method name) can also be
referred as resource URL. For example, a Twitter RESTful request of retrieving
the 2 most recent mentions is listed as follows:
GET https://api.twitter.com/1.1/statuses/mentions timeline.json?count=2

GET is the standard HTTP method. api.twitter.com/1.1 is the address of the
API server. statuses/mentions timeline is the method name. json is the format of
return data. count is a parameter specifying the number of tweets to be retrieved.

2.2 Question and Answer Websites

Recently, developers have started posting on Question&Answer (Q&A) websites,
such as StackOverflow, to share their experience in software development or
search for solutions regarding software development. Such Q&A websites has
become an excellent data source for analyzing developers.

Fig. 1. A labeled screen shot of a question titled “What are REST resources?” in
StackOverflow

StackOverflow is one of the top Q&A websites, allows developers to ask a
new question or answer any existing questions, as well as to make a comment
on other developers’ posts. There are three types of posts: question, answer
and comment. Developers can “vote” a post (i.e., a question or answer) up or
down. Every question post has the number of answers received by the question,
possible comments and a score which equals the number of up votes minus
the number of down votes. Fig. 1 illustrates a sample post with the number of

How Do Developers React to RESTful API Evolution? 249

answers, comments and a score. StackOverflow opens its dataset on-line through
StackExchange Data Explorer3. In this paper, we extract developers’ posts in
StackOverflow through StackExchange Data Explorer for analyzing developers’
discussions regarding the evolution of RESTful services.

3 Empirical Study

In this section, we first introduce the setup. Then we discuss the research ques-
tions of our study. For each question, we introduce the motivation of the question,
analysis approach and the findings.

3.1 Study Setup

We conduct our study on public web APIs and StackOverflow posts.

Table 1. Subject Web APIs

API Name Category Versions Studied
Twitter Social Network V1, V1.1
Blogger Blogging V1, V2, V3
Bitly API Service V2, V3
MusicBrainz Music V1, V2
Friendfeed Social Network V1, V2
Tumblr Social Network V1, V2
Sunlight Congress Government V1, V2
OpenStreetMap (OSM) Mapping V0.3, V0.4, V0.5, V0.6
Groupon Shopping V1, V2
Yelp Recommendation V1, V2
New York Times News V1, V2
Article Search (NYT)

Table 2. Number of Posts of Each Web API in StackOverflow

API Name Keyword Number of Posts Retrieved
Twitter twitter 46,646
Blogger blogger 982
Bitly API bit.ly 146
MusicBrainz musicbrainz 39
Friendfeed friendfeed 11
Tumblr tumblr 1,372
Sunlight Congress sunlight 0
OpenStreetMap (OSM) openstreetmap 1,072
Groupon groupon 21
Yelp yelp 108
New York Times newyork 0
Article Search (NYT)

3 https://data.stackexchange.com/

https://data.stackexchange.com/

250 S. Wang, I. Keivanloo, and Y. Zou

Data Collection
Collecting web APIs: To study web API changes, we need different versions of
a web API. We extracted the list of most popular APIs in ProgrammableWeb4

and use them as the candidates of our study. Then, we use the following criteria
to choose web APIs as the subject APIs in our study: 1) The web APIs have
at least two versions, and the API documentation of each version is available
on-line; 2) The web APIs are from different application domains; 3) The web
APIs are from different companies, since we aim to study the various change
types of different development teams. For each selected web API, we study all
of the publicly available versions of the API. We identify the types of web API
changes by comparing the differences between subsequent versions of each API.
We downloaded the web pages describing the web API methods for comparison.
Table 1 shows the information of our subject web APIs.

Collecting the developers’ on-line discussion on web API changes in Stack-
Overflow: We composed SQL scripts and ran these scripts to retrieve posts
related to web APIs through StackExchange Data Explorer5. For each web API,
we defined a keyword and conducted a wild-card search to mine all of the posts
tagged with labels including the keyword [11]. We considered only posts with the
matching labels to exclude possible irrelevant posts. For example, we retrieved
46,646 posts with labels including the “twitter” keyword (e.g., twitter, twitter-
api). Table 2 shows the keywords used and the number of posts retrieved for
each API. All of the posts were retrieved on May 1st, 2014.

3.2 Research Questions

In this sub-section, we present our three research questions. For each research
question, we introduce the motivation of the research question, analysis approach
and findings of the question.
RQ1. What are the change types of web APIs during evolution?
Motivation. Usually, the web API providers conduct various changes on their
APIs between two subsequent versions such as adding new functionality or fix-
ing bugs [10]. The API client developers have to study the API changes and
incorporate the client applications with the changes accordingly. Understand-
ing the types of changes is useful to help client code developers to conduct a
code migration [10]. In this question, we explore the change types during API
evolution.

Analysis Approach. To answer this question, we conduct the following
steps: Step 1: We first identify API changes among subsequent versions of web
APIs. We manually compare API documentation, such as migration guides or
reference documents, of subsequent versions of an API. We process two versions
of a web API in the following steps:

1. We cross-reference two versions of the API and identify any changes made for
all of the API methods. Such changes are considered as API-level changes.

4 http://www.programmableweb.com/
5 https://data.stackexchange.com/

http://www.programmableweb.com/
https://data.stackexchange.com/

How Do Developers React to RESTful API Evolution? 251

Table 3. Summary of API-level Change Types.
Change Type Explanation
Change 1) Entire Format Change: e.g., from XML to JSON
Response Format 2) Structure Change: add, remove or reorganize XML tags

3) Slight Modification: change XML tag or attribute name
e.g., OpenStreetMap API conducted practices 2) and 3).

Change Replace the old version number with new one in URLs
Resource URL e.g., The domain name of Twitter changed from

api.twitter.com/1 to api.twitter.com/1.1.
Change Update existing authN model with new one
Authentication Model e.g., Twitter API v1.1 requires every request to be

authenticated and client applications must use OAuth.
Change 1) Change Limit Window: change the length of window
Rate Limit 2) New Headers and Resp Codes:

update messages showing limit exceeded or status
Delete Unsupport a format:
Response Format e.g., XML is not supported in Twitter API v1.1.
Add Support a new format in new version:
Response Format e.g., NYT Article Search API added JSONP in Version 2.
Add Support a new model but keep old ones:
Authentication Model e.g., MusicBrainz and Blogger API added more models.

2. We focus on changes made on methods such as changing a method name,
adding a new method or deleting a method. Such changes are considered as
method-level changes.

3. We identify any changes made on parameters. Such changes are considered
as parameter-level changes.

Step 2: We summarize and classify the identified changes in Step 1. Then, in order
to identify new change types, we compare the summarized change types of web
APIs with the ones of Web APIs [10], JAVA APIs [3] and WSDL service [5][6].
Step 3: We summarize and count the frequency of each change type to identify
the common practices.

Findings. In total, we identify 21 change types on the eleven studied web
APIs. We divide them into three groups: 1) the API-level change types made on
all of the methods; 2) the method-level change types made on specific methods;
3) the parameter-level change types made on parameters of methods.

Table 3 shows our summary of change types at API-level. All of the change
types in Table 3 are observed based on the comparison of subsequent versions
of a web API. However API providers can support several versions and make
changes on all of the running versions at the same time. For example, on Nov.
2nd, 2012, Twitter changed the format of “withheld in countries” field from a
comma-separated JSON string to an array of uppercase strings [14], which is a
breaking change applicable to all of the versions of Twitter.

Table 4 shows our summary of change types at method-level and Table 5 shows
our summarized change types at parameter-level.We found that the functionality
of several API methods was merged into the functionality of one method, or
the functionality of a method was divided into several methods in the newer

252 S. Wang, I. Keivanloo, and Y. Zou

Table 4. Summary of Method-level Change Types.
Change Type Explanation
Change e.g., We observed this practice from Twitter, Blogger
Method Name MusicBranz, FriendFeed, Yelp and NYT Article Search.
Change The return format of a method can be changed, such as
Response Format returning more values e.g., Twitter method

“GET friendships/lookup”
Change A limit is usually set up on the number of data units
Rate Limit can be retrieved per request. The rate limit can be changed.
Change Different authentication models are set up for different
Authentication Model methods. e.g., to protect critical data, they update

the authN model on methods modifying databases.
e.g., OpenStreetMap and MusicBrainz practiced this.

Change It is different from “Resource URL change” on,
Domain URL API level, because it is only applicable to very few methods.

e.g., the domain name of Twitter method
“POST statuses/update with media” is changed from

upload.twitter to api.twitter.com.
Delete Unsupported methods in new version: e.g., we observe
Method every API practiced this, except for Blogger (v1 to v2),

Yelp and NYT search
Add Support new methods: e.g., we observe every API practiced
Method this, except for Blogger (v1 to v2) and NYT search
Add Add more error codes to specific methods: e.g., Twitter
Error Code Blogger and OpenStreetMap.

version of API [10][3][5]. The web APIs follow a long deprecate-replace-remove
cycle to preserve backward compatibility on “Deprecated” methods. Because we
compare subsequent versions of APIs, the deprecated methods are removed and
new methods are added. Therefore, our way of dealing these three scenarios is
similar to the way in [5], we consider a merged, divided or deprecated method
in older version as a deleted method, and the method replacing them in new
version as an added method in new version. In addition, we observed that some
APIs, such as OpenStreetMap, are added with more resource types and each
resource is associated with a set of methods. In this scenario, we consider the
set of methods as new methods.

We compare our identified change types with the ones of web APIs [10], Java
API [3], and WSDL services [5][6], we found that:

�

�

�

�

The unique API-level change types are Delete Response Format, Add Re-
sponse Format and Change Resource URL. The unique method-level types
are Change Response Format, Change Domain URL, Add Error Code.
The unique parameter-level change type is Change Require Type.

Table 6 shows that the average proportion of changed elements (i.e., Methods
and Parameters) between two consecutive versions of a web API is 82%. However
only 30% of JAVA API elements and 41% of WSDL service elements (i.e., Types
and Operations) are changed compared with two consecutive versions [3][6].

How Do Developers React to RESTful API Evolution? 253

Table 5. Summary of Parameter-level Change Types Made on Parameters

Change Type Explanation
Change Rename parameters with a self-explanatory names
Change Format or Type The return format of using a parameter can be

changed. NYT Article Search practiced.
Change Rate Limit The limit can be raised up or reduced.

e.g., OpenStreetMap raised up a limit.
Change Require Type e.g., require type of “cursor” of “GET friends/ids”

is changed from optional to semi-optional.
Delete Parameter Unsupported some functionalities of a method
Add Parameter Support new functionalities of a method

Table 6. Total Number of Elements Changed Between subsequent Versions

API Name Versions # of Elements # of Elements Proportion(%)
in Latter Version Changed

Twitter v1-v1.1 109 51 47
Blogger v1-v2 12 5 29
Blogger v2-v3 33 33 100
Bitly API v2-v3 74 74 100
MusicBrainz v1-v2 36 36 100
Friendfeed v1-v2 23 17 74
Tumblr v1-v2 21 21 100
Sunlight Congress v1-v2 12 12 100
OpenStreetMap v0.3-v0.4 23 12 52
OpenStreetMap v0.4-v0.5 35 20 57
OpenStreetMap v0.5-v0.6 52 51 91
Groupon v1-v2 8 8 100
Yelp v1-v2 2 2 100
New York Times v1-v2 1 1 100
Article Search
Average 82

�

�

�

	

RESTful web APIs are more change-prone than JAVA APIs and WSDL
services during API evolution.

Table 7 summarizes the number of changes of each change type. The most four
common practices are: Add Method, Delete Method, Change Method Name and
Add Parameter. In total, we identify 460 changes and 191 changes (i.e., 41.52%)
of them belong to Add Method. The API-level change types are not included in
the frequency counting, since they are typically applicable to all of the methods
and including the frequency of API level change types will skew the results.

�

�

�

	

The change type of Add Method makes up the largest proportion (i.e.,
41.52%) of total changes in the studied RESTful services

254 S. Wang, I. Keivanloo, and Y. Zou

Table 7. Frequency of Change Types. Prop. stands for Proportion.

Category
Method Level Parameter Level

Type Count Prop.(%) Type Count Prop.(%)
Change Method Name 53 11.52 Parameter Name 32 6.96

Response Format 7 1.52 Format or Type 13 2.83
Rate Limit 7 1.52 Rate Limit 1 0.22

Authentication Model 10 2.18 Require Type 4 0.87
Domain URL 2 0.43

Delete Method 72 15.65 Parameter 21 4.57
Add New Method 191 41.52 New Parameter 51 11.09

New Error Code 2 0.43

RQ2. Which types of changes trigger more questions from client code
developers?
Motivation. When encountering problems in software development, developers
start using crowd-sourced resources such as StackOverflow instead of using mail-
ing lists or project-specific forums [11]. Therefore, analyzing on-line discussion
regarding API changes in StackOverflow is useful to understand the developers’
difficulties in dealing with different types of API changes. The first step of under-
standing the developer’s challenges is to identify the change types drawing more
discussion (i.e., in terms of the number of questions) than others in StackOver-
flow. By knowing the change types triggering more discussion, RESTful API
providers can arrange their resources to approach such change types carefully to
help client code developers during the client code migration.

Analysis Approach. To answer this question, we analyze the StackOverflow
question posts from Twitter, Blogger, Tumblr and OpenStreetMap, because they
relatively have more posts than the other APIs in our dataset in Section 3.1. To
identify which change types trigger more questions from developers, we conduct
the following steps:

Step 1: we link API changes with StackOverflow posts in the following steps:
1) we obtain a mapping from method-level and parameter-level changes to API
HTTP methods from RQ1. We search for API-related posts containing the API
method names; 2) we remove any special characters such as “/” in a method
name; 3) some methods can be linked with several change types. In this case,
we cannot identify the change types with which StackOverflow posts belong to.
Instead of introducing bias in our results, we remove such methods from our
analysis (i.e., we only have very few such methods). We obtain a mapping chain:
a change type— a set of API methods—a set of Posts.

Step 2: we compute the average number of questions concerning each method.
In this question, we only study the method and parameter level change types,
because such types of changes can be linked with StackOverflow posts through
API method names and introduce less noise in our data than API-level changes.

Step 3: we compute the Mann-Whitney Test and the Cliff’s Delta, a non-
parametric effect size measure [8], to compare the distribution of questions for
different types of changes (i.e., only change types at method and parameter
level) in our study. We follow the guidelines in [8] to interpret the effect size

How Do Developers React to RESTful API Evolution? 255

Fig. 2. Average Number of Questions Per Methods with Different Change Types

Table 8. Questions per Method of Change Types: Manny-Whitney Test (adj. p-value)
and Cliff’s Delta (d) Between Different Change Types. Only Significant Results and
Major Change Types are reported.

Test adj. p-value d
Add Method vs Delete Parameter < 0.01 -0.12 (Small)
Add Method vs Change Method Name < 0.01 0.15 (Small)
Add Method vs Add Parameter < 0.01 -0.57 (Large)
Add Method vs Change Parameter Name < 0.01 -0.48 (Large)
Add Method vs Delete Method < 0.01 0.07 (Small)
Delete Method vs Add Parameter < 0.01 -0.39 (Medium)
Delete Method vs Change Parameter Name < 0.01 -0.36 (Medium)
Delete Parameter vs Add Parameter < 0.01 -0.33 (Medium)
Delete Parameter vs Change Parameter Name < 0.01 -0.29 (Medium)

values: small for d < 0.33 (positive as well as negative values), medium for
0.33 ≤ d < 0.474 and large for d ≥ 0.474.

Findings. Fig. 2 shows that the change type of Add Method draws average 63
questions per change which is higher than other change types. Add Method draw
1.3 times more questions than Delete Method, with a statistically significant dif-
ference (p-value< 0.01) shown in Table 8. Furthermore, the method-level change
types trigger more questions that parameter-level change types. Summarizing
results in Fig. 2 and Table 8, we find that

�

�

Add Method draws more questions than other change types.

RQ3. Which types of changes bring discussion on posted questions
from developers?
Motivation. When a question is worth discussing and attracting developers’
attention due to various reasons (e.g., the question is hard to be solved), the
question post starts receiving more answers, comments and views from develop-
ers. Identifying the change types drawing such questions is helpful to understand
which change types are more related to developers. In RQ2, the impact of change

256 S. Wang, I. Keivanloo, and Y. Zou

Table 9. API Changes Triggering More Discussed Questions
Change Type Average Score Average View Count Average Answer Count
Change Parameter Name 2.4 15 0.5
Add Parameter 1.2 21.4 0.8
Delete Parameter 4.1 15.6 1.4
Add Method 5.8 48.2 2.1
Delete Method 7.8 31 3.1
Change Method Name 4.9 18 0.8

Table 10. Discussed Questions of Change Types: Manny-Whitney Test (adj. p-value)
and Cliff’s Delta (d) Between Different Change Types. Only Significant Results are
reported.

Average Score Test adj. p-value d
Delete Method vs Add Method <0.01 -0.92. (large)
Delete Method vs Add Parameter <0.01 -3.41 (large)
Delete Method vs Change Parameter Name <0.01 -2.44 (large)
Add Method vs Add Parameter <0.01 -2.93 (large)
Average View Count Test adj. p-value d
Add Method vs Delete Method <0.01 -1.21 (large)
Add Method vs Add Parameter <0.01 -2.37 (large)
Add Method vs Change Method Name <0.01 -2.62 (large)
Delete Method vs Delete Parameter <0.01 -1.83 (large)
Average Answer Count Test adj. p-value d
Delete Method vs Add Method <0.01 -1.01 (large)
Delete Method vs Add Parameter <0.01 -3.73 (large)
Delete Method vs Change Method Name <0.01 -3.86 (large)
Delete Method vs Delete Parameter <0.01 -1.82 (large)
Add Method vs Change Method Name <0.01 -2.32 (large)
Add Method vs Add Parameter <0.01 -2.22 (large)

types on the volume of discussion regarding API changes is investigated. In this
question, we analyze the quality of discussion.

Analysis Approach. We compute metrics for each question. We use similar
metrics in [11] for measuring the discussion quality of a question:

– Score: is the difference between up-votes and down-votes.
– View Count: is the number of times the question has been viewed.
– Answer Count: is the number of answers for the question.

Each question post has 3 values and each change type is associated with a set
of questions. Second, based on the results in RQ2, we study 6 change types
causing more questions than other change types: Change Method Name, Delete
Method, Add Method, Delete Parameter, Add Parameter and Change Parameter
Name. We compute the average score, average view count, average answer count
for each change type. Third, to check whether there are significant differences
between the sets of questions associated with different change types, we run
Mann-Whitney test (adj. p-Value) and Cliff’s Delta (d) on the sets of questions.

Findings. Table 9 shows that the questions of Delete Method receive a higher
score and more answers than those related to other change types, questions of

How Do Developers React to RESTful API Evolution? 257

Add Method have a higher view count than those related to the other types.
Table 10 shows that statistical tests confirm the above three findings. The results
suggest that when dealing with the change type of Delete Method, developers
can have more various solutions and more communication with other developers.
However, when learning new methods in the newer version, developers experience
a hard time to find a solution. Our study supports the fact that since deleted
methods can break client applications, client code developers feel the pressure
to update their client applications and start searching for a solution intensively.
�

�

�

	

Questions related to Delete Method are most relevant and discussed in
terms of higher score values and more answers.

4 Threats to Validity

This section discusses the threats to validity of our study following the guidelines
for case study research [16].

Construct validity threats concern the relation between theory and observa-
tion. In this paper, the construct validity threats are mainly from the human
judgment involved in identification and categorization of API changes during
web API evolution. Many research studies (e.g., [3][10]) have conducted manual
analysis of API changes. We set guidelines before we conduct manual study and
we paid attention not to violate any guidelines to avoid the big fluctuation of
results with a change of the experiment conductor.

External validity threats concern the generalization of our findings. In this pa-
per, we only analyze the dataset from StackOverflow. Although StackOverflow
is one of the top Questions&Answer websites for developers and many research
studies (e.g., [11][1]) have been conducted on only StackOverflow, further analy-
sis is desired to claim that our findings of reactions of developers are generalized
well for different Questions&Answer websites, different developer population and
other forums for programming.

Reliability validity threats concern the possibility of replicating this study. We
attempt to provide all the necessary details to replicate our study. The posts
from developers are publicly available on Stack Exchange Data Explorer6. All
the documentation of our subject web APIs are available on-line.

5 Related Work

In this section, we summarize the related work on API changes and developer
discussion in StackOverflow.
Analysis of evolution of Java APIs, WSDL services, and web APIs
Several studies (e.g., [10][3][5]) have studied the API evolution. Li et al. [10]
conduct an empirical study on classifying web API changes. They identify 16
API change patterns. This study is the most similar one to our analysis in re-
search question 1. However our study is based on more web APIs and identifies
7 more change types. Although Li et al. [10] discuss the potential troubles from

6 https://data.stackexchange.com/

https://data.stackexchange.com/

258 S. Wang, I. Keivanloo, and Y. Zou

developers during the migration, they do not conduct any empirical study on the
developers reactions to the changes. Dig et al. [3] conduct a manual analysis on
classification of API changes of Java API evolution. They mainly focus on break-
ing changes due to the refactoring during the evolution. Fokaefs et al. [5] con-
duct an empirical study on the changes, potentially affecting client applications,
of WSDL web service interface evolution using VTracker to differentiate XML
schema by comparing different versions of web service. Furthermore, Fokaefs et
al. [6] introduce a domain-specific differencing method called WSDarwin to com-
pare interfaces of web services described in WSDL or WADL. Romano et al. [13]
propose a tool called WSDLDiff analyzing fine-grained changes by comparing
the versions of WSDL interfaces. However all of the above studies do not ana-
lyze changes of web API evolution and how developers react to the API evolution.

Analysis of Developer Reactions
Espinha et al. [4] explore the impact of common change practices of API evo-
lution on the client applications by conducting semi-structured interviews with
client developers and mining source code changes of client applications, however
their focus is not on identifying change types of web APIs. Linares-Vásquez et
al. investigate how developers react to the Andorid API instability on Stack-
Overflow7 and suggest practices to both API providers and client developers.
A survey [2] conducted among 130 web API clients was published online about
the integration pain from API evolution, and reports some practices (e.g., bad
documentation and randomly change without warnings) causing troubles to de-
velopers. Barua et al. [1] explore the hot topics of software development on
StackOverflow as well as their relationships and trends over time using topic
modeling techniques. The topics of the posts from developers reflect developers’
reactions on specific technologies. In our study, we mostly study the discussions
on the Stack Overflow to know the impact of API changes on developers.

6 Conclusion and Future Work
API changes affect client applications, however it is unclear how the web APIs
evolve and how developers react to the evolution. In this paper, we conduct
an empirical study on identifying and categorizing API changes. We identify 21
change types, and 7 of them (e.g., Add Response Format) are newly discovered
compared with existing research studies. In total, we identify 460 changes of 21
change types, and 41.52% of 460 changes belong to the change type Add Method,
which makes the change type of Add Method the most common API change prac-
tice. Furthermore, our empirical results show that the change type Delete Method
draws more discussed and relevant questions from developers in the community,
and the change type Add Method receives more questions and views from de-
velopers. The identified change types of web API evolution are useful for client
developers to understand the API changes and reduce troubles during client
application migration. Furthermore, understanding the developers’ discussion
regarding change types is useful for API providers to conduct better practices
on releasing new versions to reduce the negative effect of API evolution on client
code developers.

7 http://stackoverflow.com/

http://stackoverflow.com/

How Do Developers React to RESTful API Evolution? 259

In the future, we plan to include more web APIs in our analysis. Further-
more, we want to conduct fine-grained analysis on source code changes of client
applications.

Acknowledgments. The authors would like to thank Pang Pei and Nasir Ali
for their valuable comments on this work.

References

1. Barua, A., Thomas, S.W., Hassan, A.E.: What are developers talking about?
an analysis of topics and trends in stack overflow. Empirical Software Engineer-
ing 19(3), 619–654 (2014)

2. Blank, S.: API integration pain survey results (2014), https://www.yourtrove.

com/blog/2011/08/11/api-integration-pain-survey-results (accessed on
May 18, 2014)

3. Dig, D., Johnson, R.: How do apis evolve? a story of refactoring. Journal of software
maintenance and evolution: Research and Practice 18(2), 83–107 (2006)

4. Espinha, T., Zaidman, A., Gross, H.G.: Web api growing pains: Stories from client
developers and their code. In: 2014 Software Evolution Week-IEEE Conference on
Software Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE),
pp. 84–93. IEEE (2014)

5. Fokaefs, M., Mikhaiel, R., Tsantalis, N., Stroulia, E., Lau, A.: An empirical study
on web service evolution. In: 2011 IEEE International Conference on Web Services
(ICWS), pp. 49–56. IEEE (2011)

6. Fokaefs, M., Stroulia, E.: Wsdarwin: Studying the evolution of web service systems.
In: Advanced Web Services, pp. 199–223. Springer (2014)

7. Gomadam, K., Ranabahu, A., Nagarajan, M., Sheth, A.P., Verma, K.: A faceted
classification based approach to search and rank web apis. In: IEEE International
Conference on Web Services, ICWS 2008, pp. 177–184. IEEE (2008)

8. Grissom, R.J., Kim, J.J.: Effect sizes for research: A broad practical approach.
Lawrence Erlbaum Associates Publishers (2005)

9. Li, H., Xing, Z., Peng, X., Zhao, W.: What help do developers seek, when and how?
In: 2013 20th Working Conference on Reverse Engineering (WCRE), pp. 142–151.
IEEE (2013)

10. Li, J., Xiong, Y., Liu, X., Zhang, L.: How does web service api evolution affect
clients? In: 2013 IEEE 20th International Conference on Web Services (ICWS),
pp. 300–307. IEEE (2013)

11. Linares-Vásquez, M., Bavota, G., Di Penta, M., Oliveto, R., Poshyvanyk, D.: How
do api changes trigger stack overflow discussions? a study on the android sdk. In:
Proceedings of the 22nd International Conference on Program Comprehension, pp.
83–94. ACM (2014)

12. Mamykina, L., Manoim, B., Mittal, M., Hripcsak, G., Hartmann, B.: Design lessons
from the fastest q&a site in the west. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pp. 2857–2866. ACM (2011)

13. Romano, D., Pinzger, M.: Analyzing the evolution of web services using fine-grained
changes. In: 2012 IEEE 19th International Conference on Web Services (ICWS),
pp. 392–399. IEEE (2012)

14. Twitter: Changes to withheld content fields (2014), https://blog.twitter.com/
2012/changes-withheld-content-fields (accessed on May 1, 2014)

15. Wikipedia: Web API (2014), http://en.wikipedia.org/wiki/Web_API (accessed
on May 19, 2014)

16. Yin, R.K.: Case study research: Design and methods. Sage Publications (2014)

https://www.yourtrove.com/blog/2011/08/11/api-integration-pain-survey-results
https://www.yourtrove.com/blog/2011/08/11/api-integration-pain-survey-results
https://blog.twitter.com/2012/changes-withheld-content-fields
https://blog.twitter.com/2012/changes-withheld-content-fields
http://en.wikipedia.org/wiki/Web_API

How to Enable Multiple Skill Learning

in a SLA Constrained Service System?

Sumit Kalra1, Shivali Agarwal2, and Gargi Dasgupta2

1 Indian Institute of Technology, Kanpur, India
sumitk@cse.iitk.ac.in

2 IBM Research, Bengaluru, India
{shivaaga,gaargidasgupta}@in.ibm.com

Abstract. In a knowledge based service system like IT services, the
requirements of skills to service customer requests keep changing with
time. The service workers are expected to learn the required skills very
quickly and become productive. Due to high attrition rate and demand,
service workers are given basic class room training and then rest of the
training is carried out on-job. When a service worker learns multiple skills
simultaneously, learning slows down due to factors like forgetting and
interference. At the same time, the organization needs to meet service
level agreements (SLA). We have developed a model for on-job training
which extends the business process for IT service delivery. The key idea is
to model learning, forgetting and interference in service time estimation
to get realistic service times. Accurate estimation of service time taken by
a service worker to resolve the service tickets helps in resource allocation
and planning decisions for achieving the desired objectives of upskilling
and SLA success. The simulation of execution of the augmented business
process provides insights into what kind of planning and dispatch policies
should be practiced for achieving the desired goals of multi-skill learning
and SLA success.

1 Introduction

A Service System (SS) is an organization composed of (a) the human resources
who perform work, and (b) the processes that drive service interactions so that
the outcomes meet customer expectations [22]. Typically, a service worker (SW)
represents a unit of human resource and a service request (SR) represents a unit
of service work that (s)he is assigned. Hence, management of the SWs in service
provider organizations is crucial. Over the past years, business and education
groups have issued a series of reports indicating that due to rapid technological
changes and increasing global competition, the skill demands of work are con-
tinually rising. Economists studying the changing workplace skill demands, have
found that technological change is ”skill-biased” thereby increasing the demand
for people who have multiple skills. Many businesses are asking employees to
assume multiple roles and because of this shift, hiring has become difficult in
countries in spite of steady unemployment rates.

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 260–274, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

How to Enable Multiple Skill Learning 261

This need for multi-faceted workers entails not only retaining the right skills,
but also transforming the skills of the workers as dictated by the changing busi-
ness requirements. For example, in the IT services domain, it may so happen
that due to a transformation in the customer’s environment, a provider has to
quickly upskill his team. The current team of 10 people who only had expertise
in the Solaris operating system needs to be transformed to a team where both
the operating systems of Windows and Solaris need to be supported. While one
option for the provider is to replace some of the Solaris personnel with new hires
having Windows skills, a better option is to impart new skills to existing SWs
such that they collectively meet the target skill requirements.

There are several approaches for imparting new skills: (a) class room training,
where SWs dedicate training time for a certain duration and incur costs, (b)
shadowing, where SWs observe the work of skilled SWs and learn, or (c) on-job
training, where SWs pick up skills while actually doing the work. The nature
of work in services involves substantial interactions not only with the customer
but also with colleagues. Also, carrying out a task is far more difficult than
simply knowing how to carry out a task. Hence, on-job training following minimal
classroom training is the approach commonly adopted by service providers. As
of today, very little understanding exists on how the on-job training should
be carried out. For example, how does the skill of a SW evolve when one or
multiple new learnings are imparted ? Does this evolution of target skills change
when (s)he already has some existing skills ? How do multiple learnings interfere
with each other ? Can parallel learnings also reinforce ? How should the on-job
training be planned and carried out such that impact to customer service in
terms of service level agreement (SLA) is minimized ?

We have addressed the problem of incorporating on-job training in IT busi-
ness process in this paper. This internalizes many of the questions raised above
for on-job training. Our main contributions are:

1) We have developed an on-job training model based on the Dreyfus model
of skill acquisition [10], the Learn-Forget-Curve-Model(LFCM)[15] and theory
of interference in learning [19]. This model can be used to create a standalone
training process or embedded into existing business processes. The main com-
ponents of the model are service time estimation model, skill distri-
bution policies and finally the dispatch heuristics.
2) The on-job training model has been woven into the IT incident manage-
ment(ITIM) business process as a case study.
3) We have carried out an evaluation of the proposed model using discrete event
simulation.

The evaluation focuses on understanding (i) the role of interference and skill
multiplicity while imparting training for multiple skills simultaneously and (ii)
how do dispatch(work assignment) policies influence learning. The rest of the
paper is organized as follows. Section 2 describes the learning model based on
service times during on-job training. Section 3 explains the skill distribution
and dispatch heuristics components. Section 4 explains how the on-job training

262 S. Kalra, S. Agarwal, and G. Dasgupta

components get integrated into a business process. The evaluation of the training
model as a part of business process is presented in section 4.1 and 4.2. Related
work is discussed in section 5 and we conclude in section 6.

2 Learning Curve and Skill Progression Model

On-job training seems to be an effective way to bridge the gaps between the
new and existing skills. In this scenario, a service worker gets to work on tasks
which require the specific new skills (s)he is expected to be upskilled on and im-
provement in service times is the main observable measure to quantify learning.
While initially the tasks will take longer to complete, as (s)he works on them the
service time to complete tasks become smaller. In specific, authors in [15] have
shown that the reduction in service time with experience follows the power-law 1.
However if there exists breaks between the new-skill tasks assigned to a worker,
forgetting may happen. Also if multiple new skills are being learnt by a worker,
learning interference may creep in among the multiple skills. Both forgetting and
interference slow down the learning process and affect the service time. Keeping
this in mind, the service time model has been designed drawing upon the ex-
isting work on learning and skill acquisition namely, LFCM and Dreyfus model
respectively. We briefly explain the factors that play a role in the service time
estimation below.
Learning Effect on Service Time: During on-job training, when people ini-
tially take-on new skill work, service times are longer. Assuming the difference
between skills could be mapped to a gap function, we state that larger the gap
between the skills, longer becomes the service times. This is modeled as gap
learning factor or glf.
Forgetting Effect on Service Time: Time gaps between task executions
[15]cause forgetting, which in turn has the effect of longer service times. Forget-
ting is proportional to the time gap [13].
Interference Effect on Service Time: When a service worker works on mul-
tiple new skills within the same span of time, the learning of these new skills
interfere with each other. This interference results in lower recall accuracy of
other skills [19] and hence in longer service times.
Skill Level Gap Effect on Service Time: Dreyfus model [10] of skill acqui-
sition models the progression levels as Novice, Advanced beginner, Competent,
Proficient and Expert. The interpretation of each level has been provided in
terms of qualitative translation of each level to the task performance. This model
is very appropriate for on-job training. The service times are least at the expert
level and highest at the beginner’s level. The time taken by a SW at any level to
complete an SR is stochastic and is shown [1] to follow a lognormal distribution
for a single skill.

1 While this is true for manufacturing, the same principle can be applied to any in-
dustry where there is rhythmic and repeatable work, for example, IT service man-
agement.

How to Enable Multiple Skill Learning 263

We now present a service time model that takes into account the above factors.
This represents the skill progression model of a worker as multiple new learnings
are imparted to her.

Let Ts be the service time required by a SW for a SR with particular skill
requirement while working for nth , n > 1, time on the same skill where the SW is
working on the skill after a time gap. TBS is the base service time which denotes
the time taken by service worker when working on the skill for the first time.
TBS is defined for each SW skill level. Let dist be the gap between required skill
level of the SR and the current skill level possessed by SW. If the latter is higher
or equal, dist is 0. The base service time is computed as TBS(1 + log(1+ dist)).
Equations 1, 2 and 3 show the learning model while factoring in the time gap
[13] only. The timeGap is the time spent on resolving SRs with other skills and
the timeUsed is the time spent on resolving SRs with relevant skill. The learning
factor (lf) is a constant [15] which depends the learning pace of the SW. The
gap learning factor (glf) incorporates the lf and γ, 0 ≤ γ < 1, which is function
of timeGap and timeUsed.

γ =
log(1 + timeGap/timeUsed)

logn
(1)

glf = lf ∗ (1− γ) (2)

Ts = TBS ∗ n−glf (3)

There has been sufficient evidence in the literature to indicate that interference
also causes forgetting. To include the interference in this model, we assumed
that the effect of interference is equivalent to stretched time gap. To include the
interference in this model, we used the results from [7] that show that the effect
of interference is equivalent to stretched time gap and modify the Equation 1 as
Equation 4.

γ =
log(1 + (timeGap+interferenceMeter)

timeUsed)

logn
(4)

InterferenceMeter keeps the track of number of times the SW has worked
on other interfering skills since last worked on the current skill. Each increment
denotes a unit of time. This meter is reset to zero every time when SW works
on the skill. If a SW works on the interfered skill less often, then the effect of
interfering skills are more and vice-versa. However, as n increases, the impact of
forgetting and interference reduces.

The quantitative model for skill progression corresponding to the Dreyfus
qualitative model is obtained using time and motion studies. These studies pro-
vide a threshold on quantum of work to be done for being eligible to move to
next skill level. We assume in this work that the SWs are provided basic class-
room training for skills that they have never worked on before to make on-job
training feasible. We shall now describe how to carry out on-job training.

264 S. Kalra, S. Agarwal, and G. Dasgupta

3 How Is On-job Training Performed?

A SS has an existing set of skills according to the current requirements of clients.
The SS periodically updates the target set of skills required based on changes
in existing clients’ requirements and IT infrastructure of new clients. The target
skills may have only a partial overlap with the existing skills in the system.
On-job training is used for transforming the existing skill profiles to the target
skill profiles. We assume, w.l.o.g., that the total workforce remains same and the
transition does not entail hiring. Given this setup, the training problem is solved
in two phases. The first phase is the skill distribution phase that determines the
skills for each SW on which she will be trained. This is a one time decision
process based on heuristics as described in 3.1. The second phase is the dispatch
of an incoming request to a SW as and when it arrives. This phase involves a
continuous decision making process so that SS can achieve the training targets
and ensure SLA success. The first phase fixes the target skills for each SW and
this information is used for the dispatch of SRs upon arrival in the second phase.
The two phases are explained next.

3.1 Skill Distribution

The decision of skill distribution is a preliminary step in carrying out the training.
Table 1 shows the input to the distribution problem. It states the current skills
possessed by three SWs with id SW1, SW2 and SW3. They have 2 skills each.
Last two columns in the table show the new skills required and the required
number of SWs respectively. Here we can see that the skill id 5 is already present
in the current skill profile while others are not. The skill distribution is carried out
by adopting one of the following strategies i) Balance skill load, that is, balance
the number of new skills to be learned per worker, ii) Balance interference, that
is, balance the number of new skills to be learned in terms of interference. We
explain both the strategies with the example input of table 1 . Let us assume that
the pair of skills {5, 7} is highly interfering and other pairs are not interfering.
The output based on strategy (i), where target skills are distributed in such
a manner that each SW gets a chance to learn equal number of new skill, is
shown in second column of Table 2. The output provides the distribution of
target skills per SW. Here, each SW requires to learn two new skills. However,
the output looks different if we distribute using strategy (ii) where target skills
are distributed by minimizing the interference among skills to be learned by a
SW. Third column in the Table 2 shows one such possible distribution where no
SW receives any interfering skill pair. We can observe that in strategy (i), the
SW3 has received skill 7 which is interfering with his existing skill 5, whereas in
strategy (ii), SW3 only gets one new skill to learn as he already knows skill 5
which is not interfering with existing skills.

We would like to add that there can be other heuristics as well for doing skill
distribution. For the purpose of this work, we assume that the skill distribution
is done using one of the strategies. We do not delve deep into the details of the
algorithm as they are straightforward.

How to Enable Multiple Skill Learning 265

Table 1. SWs Current Profile and Target Requirements

Current Profiles Target Requirements

SW Id Skill Ids Skill Id Requirement

SW1 1,2 5 1

SW2 2,3 6 3

SW3 4,5 7 2

Table 2. Skill Distribution Strategies

Balance New Skills Balance Interfering Skills

SW Id Skill Ids Skill Ids

SW1 5,6 6,7

SW2 6, 7 6,7

SW3 6,7 5,6

3.2 Dispatching

The task of carrying out on-job training is equivalent to multiple sequential
invocations of the task of assigning incoming SR to appropriate SW such that
the SLA target is met and up-skilling of all the service worker is maximized.
We have designed two different heuristics(policies) for selection of SW for an
incoming SR which along with the naive policy of SLA Priority can handle
different types of SS’s goals. Simulations can be run for a real life SS to learn
which is the best dispatch policy for the fore-casted demand. We describe the
different policies next but before that, we briefly explain the interpretation of
SLA in terms of timestamps.

SLA is specified by the customers for each incoming SR in terms of expected
date and time of resolution. This is modeled in SS using timestamps according
to the Equation 5.

SLAremain = SRSLATime − SRcompTime (5)

SRSLATime denotes the timestamp by which the SR should be completed in order
to meet SLA, SRcompTime denotes the timestamp when the SR got completed and
SLAremain denotes the time remaining to meet the specified SLA.The positive
value ofSLAremain indicates an SLA success otherwise SLAmiss.TheSRcompTime

is dependent on the expected service time of the SW who is working on it.

Skill-Level Priority Policy: Skill-Level Priority policy aims to maximize the
SLA success, based on the observation that service worker w having matching
skill level with least load, denoted by minLoad, is able to quickly complete the
assigned SR, hence maximizing the SLA success. Each SR in the SW’s queue
contributes to load proportional to the skill level gap between incoming SR
and the SW. A threshold on the queue load determines if a SW is overloaded.

266 S. Kalra, S. Agarwal, and G. Dasgupta

Algorithm 1 formally describes the Skill-Level Priority policy for assigning a
service request SR to assign appropriate service worker w among the pool of
available service workers SWList. Initially Skill-Level Priority policy checks for
all the service workers which have same skill level as required by the SR, are not
overloaded and can meet SLA based on expected service time. Among them, it
finds the least loaded service worker w. The load due to pending SRs in the queue
is denoted by SRPendingQueueLoad. If all the service workers with equal skill
level as required by SR are overloaded or not available, then the policy looks for
the service workers having the same skill required by the SR with one level lower
and higher which are not overloaded and so on. As we have finite skill levels,
the algorithm terminates. If it does not find anyone, then the least loaded SW
is chosen. Amongst the shortlisted SWs, it then computes γ to find who has the
maximum learning potential.

Input: SR, SWList
Output: SWid

id = φ
minLoad = 150
diff = 0
while id = φ AND diff < 4 do

for each wiε SWList do
if abs(SRSkillLevel − wi.SkillLevel) = diff AND wi.overload = false
then

if minLoad > wi.SRPendingQueueLoad then
id = wi.id
minLoad = wi.SRPendingQueueLoad

end

end

end
if id == φ then

diff = diff + 1
end
else

break
end

end
return id

Algorithm 1. Skill-Level Priority Policy Outline

Learning Priority Policy: Learning Priority policy gives more chances to
the service workers with lower skill levels in order to assign them more service
requests and increase their experience and learning. This policy looks at all the
service workers which can complete the SR and meet SLA by calculating the
expected service time and check if it is less than the remaining SLA time. Since
this policy always prefers the service worker with maximum worst case service
time maxWorstServiceT ime who can complete the SR within SLA, there are

How to Enable Multiple Skill Learning 267

higher chances of increasing the skill level of the service worker at the cost of
increasing the probability of missing SLA.

Algorithm 2 formally describes the Learning Priority policy for assigning a
service request SR to assign appropriate service worker w among the pool of
available service workers SWList. Initially Learning Priority policys checks for
all the service workers which have expected service time less than remaining
service time and not overloaded. Among them, it finds the least loaded service
worker w with highest value of worst case service time maxWorstServiceT ime.

Input: SR, SWList
Output: SWid

id = φ
minLoad = 150
maxWorstServiceT ime = 0
for each wiε SWList do

if wi.expectedServiceT ime < SR.SLAremain AND wi.overload = false
then

if minLoad > wi.SRPendingQueueLoad AND
maxWorstServiceT ime < wi.worstServiceT ime then

id = wi.id
minLoad = wi.SRPendingQueueLoad
maxWorstServiceT ime = wi.worstServiceT ime

end

end

end
return id

Algorithm 2. Learning Priority Policy Outline

SLA Priority Policy: The work dispatch based on SLA priority policy mimics
on ground reality of existing service systems. It basically dispatches the SR to
the first available SW who has skills to carry out the work. There is no other
consideration like skill level, learning progress etc. Note that SLA Priority policy
does not compute expected service time according to the learning curve model
of section 2 while choosing the SW as is done by Skill-Level or Learning Priority
policy thus differing from them in a crucial way.

4 Case Study - IT Incident Management

ITIM process is one of the main candidates for on-job training use case in SS,
hence, we chose it for the case study. The IT incident management process
extended with tasks for on-job training is illustrated in Fig. 1. We have built
upon the ITIM process studied in [18] which is revisited briefly as follows. A
problem or issue faced by a business user is reported to a help desk. The help desk
personnel opens an incident ticket in a ticketing tool and records the description
of the issue. Then the incident is assigned to a specific work group based on the

268 S. Kalra, S. Agarwal, and G. Dasgupta

problem described by the user. The incident, once assigned to a work group, is
picked up by an available resource within the work group who then updates the
assignment information indicating the ownership of the incident. The incident
enters the resolution stage. The resource further analyzes the problem in the
ticket, communicates to the business user for more input on the problem, and
resolves the problem. Once an incident is resolved, the resource restores the
functionality of the system as required by the business user. The business user
validates and confirms the service provided by the resource. Once confirmed by
the business user, the incident is closed.

The extension to the existing ITIM process for training is primarily in the
dispatch task. The incident, once assigned to a group, is assessed by a dispatch
engine for the skills that it requires and the load on the SWs that have been
identified to work on those skills. Subsequently, the expected service time for the
shortlisted SWs is computed according to the model in section 2. Then, after
considering the SLA requirements, the engine selects an incident owner following
one of the proposed policies and the incident is dispatched. Once the incident is
resolved, the parameters that track the learning of the SWs are updated and so
is the SLA measurement. The process to initiate the closure of the incident is
also initiated in parallel.

Fig. 1. IT Incident Management Process Extended with On-Job Training Tasks

4.1 Simulation Framework Overview of Enhanced ITIM Process

A discrete event simulation [1] of the ITIM process augmented with training
has been used to gain insights into the proposed training model. A service re-
quest(SR) arrives in the system and is redirected to a service worker (SW) who
resolves it. A valid set of states for a SR is inqueue (default), pending, inservice,
rework or completed and similarly, set of valid state of service worker is defined
as {Available, NotAvailable}. For each SW, we also maintain information such
as existing skills, new skills being learned, working hours shift availability, over-
load status. The expected service time of a SR for each SW is computed using
the learning curve described in section 2. SLA requirements for all customers

How to Enable Multiple Skill Learning 269

are assumed to be: as long as a provider completes 95% of all SRs received every
month within specified hours, the quality of service is deemed adequate. We also
assume that each SR requires single skill like unix, windows, db2 etc. The main
components are described below.

Global Queue: A global queue is maintained which accepts all the incoming
SRs with different priority and different skill requirement. For every SR, we
maintain the information such as priority, SLA deadline, skill and corresponding
level requirement and status as inqueue (default), pending, inservice, rework
or completed. This global queue serves as the input to the dispatching module.

Dispatch Module: The dispatching module accepts SRs from global queue one
by one and uses list of all the SWs in order to search for the most suitable SW
for the current SR based on a policy described in section 3. A policy remains in
force for the period of simulation (say, a month). After identifying the SW, SR is
sent to its queue and the status of the SR is changed from inqueue to pending.
The SRPendingQueueLoad is updated as described in equation 6.

Service Workers’ Queue: A service worker’s queue can have SRs of skill levels
different than his current level. The load value in such a situation is normalized
by having more complex SRs contribute more to the load than the lower level
ones. We assume the normal load of a SR for SW is equal to 20 and the Equation
6 is used to calculate the load due to different levels.

weight = 20 + (SRskill−level − SWskill−level)× 5 (6)

Let curload of a SW denote the load due to pending SRs in the queue. We
calculate whether a SW is overloaded or not as follows:

overloaded =

{
yes if curload ≥ 100
no otherwise

Once SR is assigned to a SW, it remains in pending state in the queue of the
SW till all the SRs which arrived before it are resolved. When SW works on the
SR, the status is updated to inservice. To introduce some failure cases in the
simulation model, where a SW fails to resolve the SR as per requirements, every
SR with 0.01% prbability sent for rework. If the SR being sent for rework, it is
status is updated to rework and placed on the global queue along with recently
arrived SRs. Otherwise, the status is updated to completed.

Learning Parameters and Interference Meter: For simulation purpose, we set
the learning factor lf to 0.1 and timeGap is captured in unit of work hours. We
start an interferenceMeter for each skill for every SW with value 0. Whenever
a SW works on a particular skill, the value of interferenceMeter of skills being
interfered by current skill is incremented. It is reset to 0 for a skill for SW when
he works on that skill.

Statistical data collection and Skill Progression: The framework continuously
collects data such as skill level progression rate, SLA success rate. Skill level
is upgraded after sufficient experience for the skill. In our simulation model,
we assume that after working on 500 SRs of the same skill, SWs skill level is
incremented by 1 with minimum value 1 and maximum value 4. These skill level

270 S. Kalra, S. Agarwal, and G. Dasgupta

from 1 to 4 represents the proficiency of SW as Basic, Developed, Advanced
and Expert respectively. We have adopted a simplified model of skill levels as
proposed in [10].

Workload Generation: Diverse workloads for the simulation are generated
as described below. Given the average inter-arrival time, assuming Poisson dis-
tribution, the workload is generated for a specified number of weeks. For each
arrival, there are associated parameters of priority, skill and skill-level required
to resolve the SR. Here we assume that a SR is assigned to only one SW and that
SWs can have multiple SRs with a limit upto 5 SRs with skill gap 0, pending in
its queue at any given instance of time during simulation. For a particular skill,
the number of current and required SWs is specified as illustrated in table 1.
Dispatch simulation is performed on different combinations of skill distributions
arising out of the two strategies. Under uniform skill load distribution, each SW
gets equal number of skills where as in left (right) skewed skill load distribution,
most of the SWs get less (more) number of skills. Analogously, the workload
consists of left skewed and right skewed distribution of interference load.

Note: It is possible that one skill pair is more interfering than the other pair.
Interference can also be unidirectional. However, there is no quantitative model
for this yet in the literature. In the absence of any quantitative model for inter-
ference load, we consider only presence or absence of interference between two
skills and assume symmetric interference. The value for Interference load is 10
if two skills are not interfering as oppose to value 90, which denotes that the
pair of skills are interfering. The interference load is computed as a summation
of pairwise interference when more than two skills are being learned.

4.2 Simulation Experiments and Results

The training process is simulated under different workloads and policies to un-
derstand the tradeoffs that exist in adopting such a process while delivering
services. The key insights obtained from the experiments are listed below.

Observation 1 (On Skill Load vs. Interference): Skill load and interference
are equally strong deterrents in learning. We carried out experiments with a
target skill profile having high number of skills to be learned uniformly such
that the skills do not interfere (Table 3 Scheme S-2) and compared the learning
time with a target profile where the skills to be learned do not exceed two but
these skills interfere with each other (Table 3 Scheme S-3). In both scenarios, we
find the similar pattern of skill level progression. In Scheme S-1, we kept both
the skill load and interference load to low. The entries in the table show the
percentage of SWs at the levels L1 to L4 at starting of weeks 1, 10, 20 and 40.
These numbers are of Learning First Policy. However, the observation holds in
the other two policies also.

Observation 2 (On Learning Pace): Learning Priority policy aids in uni-
form learning while Skill-Level Priority policy aids in greedy learning. Fig. 2

How to Enable Multiple Skill Learning 271

Table 3. Effect of Skill Load/Interferene Load on skill progression

S-1 S-2 S-3

L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4

1 100 0 0 0 100 0 0 0 100 0 0 0

10 5 80 15 0 100 0 0 0 100 0 0 0

20 0 35 45 20 58 42 0 0 67 33 0 0

40 0 0 25 75 38 55 7 0 36 51 13 0

Fig. 2. Skill progression: High/Low skill load and high/low interference load

Fig. 3. SLA Success Rate Comparison

272 S. Kalra, S. Agarwal, and G. Dasgupta

demonstrates this for two types of workloads. It can be seen in Learning Pri-
ority policy that at any given time more than 90% SWs are distributed at two
consecutive levels but this is not so for the other policies. This is indicative of
uniform learning where the level gap between SWs is not too much at any given
point in time. Skill-Level Priority, however, follows non-uniform learning and
SWs reach the highest level faster compared to the other policies. SLA Priority
is neither uniform nor greedy. The simulations were run for all combinations of
workload and the same trends were observed. We have presented results only for
two distributions for sake of brevity.

Observation 3 (On SLA success): An interesting insight that we got was
that if the dispatch policy tries to prioritize on exact match of skill levels as in
Skill Level Priority, then sharp dips in SLA success rate are likely as shown in
Fig. 3. This happens due to longer SR pending queue.

Applying the Insights: The insights obtained above from simulation runs can
be applied in practice by SSs to achieve desired behavior. We summarize some of
the important practical considerations that emerged from the experiments: i) SS
should adopt Learning Priority policy if uniform learning is more desirable, ii)
If the goal is to promote a competitive environment, Skill-Level Priority policy
is most advisable provided SLAs are relaxed, iii) For efficient learning, the new
skills to be learned per worker should be minimized; and an attempt should be
made to minimize the interfering skills to be learnt per worker.

5 Related Work

In this section, we situate our work within prior research on team and organiza-
tional learning theories, resource planning, human skill evolution and learning.

One of the most recent works that studies multi-skill requirements in service
delivery is [8]. This work studies the problem of optimal skills to train people
on while in this paper we have studied how to train people on multiple skills.
Learning has also been looked at in the context of human resource planning [4],
[3], where there is a need to forecast the future skill mix and levels required, as
well as in context of dynamic environments like call centers[12], where both and
learning and turnover are captured to solve the long and medium term staffing
problem.

There has been a significant body of work focused on teams and their learn-
ings. About two decades back researchers[25,11] studied the effects of organi-
zational structure (i.e. hierarchy, team etc.) on metrics like problem solving,
cost, competition and drive for innovation and also the effect [6] of learning and
turnover on different structures. At the same time, collaborations and communi-
cation with teams have also seen a comprehensive body of research. Carley’s [5]
theory of group stability postulates a relationship between individual’s current
knowledge and her behavior. She also found that a group’s interaction increases

How to Enable Multiple Skill Learning 273

as commonality across knowledge dimensions increases. Very recently [17] pre-
sented the notion of synergy in human teams or how well they work together.

In context of skill evolution, Dibbern et. al [9] captures the dependencies of
expertise, task complexity, support information and learning tasks on learning
effectiveness during Knowledge Transfer. Imparting knowledge with on-the-job
training has also been another popular method for imparting skills. Work in
labor economic theory [2] has attempted to assess how much on-the-job training
is needed for a specific worker, based on his current expertise and learning ability.

In the domain of learning, authors [16] talks about accelerating learning of
agents via human feedback. It is also shown that [24] optimizing skills in isola-
tion does not necessarily benefit their combined operation. According to authors,
how much an individual learns when challenged, depends on the skill level of the
performer and the task complexity. Apart from the learning and forgetting mod-
els ([15,14,20,21]) presented in Section 1, recent work [23] presents interesting
results on how memory consolidation and forgetting processes regulate the mem-
ory capacity, and can mutually improve the effectiveness of learning.

6 Conclusions

We conclude that distribution and dispatch policies play a crucial role in balanc-
ing SLA success and upskilling when performing on-job training. The presence
of interference slows down the learning rate and so does the number of skills to
be learned. As part of future work, we plan to formalize interference model and
study semantic facilitation during training. We also plan to study the training
method in context of other business processes where on-job training is practiced.

References

1. Banerjee, D., Dasgupta, G., Desai, N.: Simulation-based evaluation of dispatching
policies in service systems. In: Winter Simulation Conference (2011)

2. Barron, J., Black, D.A., Loewenstein, M.A.: Job matching and on-the-job training.
Journal of Labor Economics 7(1), 1–19 (1989)

3. Bordoloi, S.: A control rule for recruitment planning in engineering consultancy.
Journal of Productivity Analysis 26(2), 147–163 (2006)

4. Bordoloi, S.K., Matsuo, H.: Human resource planning in knowledge-intensive op-
erations: A model for learning with stochastic turnover. European Journal of Op-
erational Research 130(1), 169–189 (2001)

5. Carley, K.: A Theory of Group Stability. American Sociological Review 56, 331–354
(1991)

6. Carley, K.M.: Organizational learning and personnel turnover. Organization Sci-
ence 3, 20–46 (1992)

7. Das, A., Stuerzlinger, W.: Unified modeling of proactive interference and memoriza-
tion effort: A new mathematical perspective within act-r theory. In: Proceedings of
the Annual Meeting of the Cognitive Science Society, COGSCI 2013, pp. 358–363
(2013)

274 S. Kalra, S. Agarwal, and G. Dasgupta

8. Dasgupta, G.B., Sindhgatta, R., Agarwal, S.: Behavioral analysis of service delivery
models. In: Proceedings of the Service-Oriented Computing - 11th International
Conference, ICSOC 2013, Berlin, Germany, December 2-5, pp. 652–666 (2013)

9. Dibbern, J., Krancher, O.: Individual knowledge transfer in the transition phase of
outsourced softwaremaintenance projects. In: ISB-IBM Service Science Workshop
(2012)

10. Dreyfus, S.E., Dreyfus, H.L.: A Five-Stage Model of the Mental Activities Involved
in Directed Skill Acquisition. Tech. rep. (February 1980), http://stinet.dtic.
mil/cgi-bin/GetTRDoc?AD=ADA084551&Location=U2&doc=GetTRDoc.pdf

11. Jablin, F.M., Putnam, L.L., Roberts, K.H., Porter, L.W. (eds.): Handbook of Or-
ganizational Communication: An Interdisciplinary Perspective. Sage (1986)

12. Gans, N., Zhou, Y.P.: Managing learning and turnover in employee staffing. Oper.
Res. 50(6) (2002)

13. Jaber, M.Y., Bonney, M.: Production breaks and the learning curve: The forget-
ting phenomenon. Applied Mathematical Modelling 20(2), 162–169 (1996), http://
www.sciencedirect.com/science/article/pii/0307904X9500157F

14. Jaber, M.Y., Kher, H.V., Davis, D.J.: Countering forgetting through training and
deployment. International Journal of Production Economics 85, 33–46 (2003)

15. Jaber, M.Y., Sikstrom, S.: A numerical comparison of three potential learning and
forgetting models. International Journal of Production Economics 92(3) (2004)

16. Knox, W.B., Stone, P.: Reinforcement learning from simultaneous human and
mdp reward. In: Proceedings of the 11th International Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2012, vol. 1 (2012)

17. Liemhetcharat, S., Veloso, M.: Modeling and learning synergy for team formation
with heterogeneous agents. In: Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems, AAMAS 2012, vol. 1, pp. 365–374
(2012)

18. Liu, R., Agarwal, S., Sindhgatta, R.R., Lee, J.: Accelerating collaboration in task
assignment using a socially enhanced resource model. In: Daniel, F., Wang, J.,
Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 251–258. Springer, Heidelberg
(2013)

19. Jan Mensink, G., Raaijmakers, J.G.W.: A model for interference and forgetting.
Psychological Review, 434–455 (1988)

20. Nembhard, D.A., Uzumeri, M.V.: Experiential learning and forgetting for manual
and cognitive tasks. International Journal of Industrial Ergonomics 25, 315–326
(2000)

21. Sikstrom, S., Jaber, M.Y.: The power integration diffusion (pid) model for produc-
tion breaks. Journal of Experimental Psychology 8, 118–126 (2002)

22. Spohrer, J., Maglio, P., Bailey, J., Gruhl, D.: Steps toward a science of service
systems. Computer 40(1), 71–77 (2007)

23. Subagdja, B., Wang, W., Tan, A.H., Tan, Y.S., Teow, L.N.: Memory formation,
consolidation, and forgetting in learning agents. In: Proceedings of the 11th In-
ternational Conference on Autonomous Agents and Multiagent Systems, AAMAS
2012, vol. 2 (2012)

24. Urieli, D., MacAlpine, P., Kalyanakrishnan, S., Bentor, Y., Stone, P.: On optimizing
interdependent skills: A case study in simulated 3d humanoid robot soccer. In:
Proc. of 10th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2011) (May 2011)

25. Williamson, O.E.: The economics of organization: The transaction cost approach.
American Journal of Sociology (1981)

http://stinet.dtic.mil/cgi-bin/GetTRDoc?AD=ADA084551&Location=U2&doc=GetTRDoc.pdf
http://stinet.dtic.mil/cgi-bin/GetTRDoc?AD=ADA084551&Location=U2&doc=GetTRDoc.pdf
http://www.sciencedirect.com/science/article/pii/0307904X9500157F
http://www.sciencedirect.com/science/article/pii/0307904X9500157F

ADVISE – A Framework for Evaluating Cloud

Service Elasticity Behavior�

Georgiana Copil1, Demetris Trihinas2, Hong-Linh Truong1, Daniel Moldovan1,
George Pallis2, Schahram Dustdar1, and Marios Dikaiakos2

1 Distributed Systems Group, Vienna University of Technology
{e.copil,d.moldovan,truong,dustdar}@dsg.tuwien.ac.at

2 Computer Science Department, University of Cyprus
{trihinas,gpallis,mdd}@cs.ucy.ac.cy

Abstract. Complex cloud services rely on different elasticity control
processes to deal with dynamic requirement changes and workloads.
However, enforcing an elasticity control process to a cloud service does
not always lead to an optimal gain in terms of quality or cost, due to
the complexity of service structures, deployment strategies, and underly-
ing infrastructure dynamics. Therefore, being able, a priori, to estimate
and evaluate the relation between cloud service elasticity behavior and
elasticity control processes is crucial for runtime choices of appropriate
elasticity control processes. In this paper we present ADVISE, a frame-
work for estimating and evaluating cloud service elasticity behavior.
ADVISE gathers service structure, deployment, service runtime, control
processes, and cloud infrastructure information. Based on this informa-
tion, ADVISE utilizes clustering techniques to identify cloud elastic-
ity behavior produced by elasticity control. Our experiments show that
ADVISE can estimate the expected elasticity behavior, in time, for dif-
ferent cloud services thus being a useful tool to elasticity controllers for
improving the quality of runtime elasticity control decisions.

1 Introduction

One of the key features driving the popularity of cloud computing is elasticity,
that is, the ability of cloud services to acquire and release resources on-demand, in
response to runtime fluctuating workloads. From customer perspective, resource
auto-scaling could minimize task execution time, without exceeding a given bud-
get. From cloud provider perspective, elasticity provisioning contributes to max-
imizing their financial gain while keeping their customers satisfied and reducing
administrative costs. However, automatic elasticity provisioning is not a trivial
task.

A common approach, employed by many elasticity controllers [1, 2] is to
monitor the cloud service and (de-)provision virtual instances when a metric
threshold is violated. This approach may be sufficient for simple service models

� This work was supported by the European Commission in terms of the CELAR FP7
project (FP7-ICT-2011-8 #317790).

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 275–290, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

276 G. Copil et al.

but, when considering large-scale distributed cloud services with various inter-
dependencies, a much deeper understanding of its elasticity behavior is required.
For this reason, existing work [2, 3] has identified a number of elasticity control
processes to improve the performance and quality of cloud services, while addi-
tionally attempting to minimize cost. However, a crucial question still remains
unanswered: which elasticity control processes are the most appropriate for a
cloud service in a particular situation at runtime? Both cloud customers and
providers can benefit from insightful information such as how the addition of a
new instance to a cloud service will affect the throughput of the overall deploy-
ment and individually of each part of the cloud service. Thus, cloud service elas-
ticity behavior knowledge under various controls and workloads is of paramount
importance to elasticity controllers for improving runtime decision making.

To this end, a wide range of approaches relying on service profiling or learning
from historic information [3–5] have been proposed. However, these approaches
limit their decisions to evaluating only low-level VM metrics (e.g., CPU and
memory usage) and do not support elasticity decisions based on cloud service
behavior at multiple levels (e.g., per node, tier, entire service). Additionally, cur-
rent approaches only evaluate resource utilization, without considering elasticity
as a multi-dimensional property composed of three dimensions (cost, quality, and
resource elasticity). Finally, existing approaches do not consider the outcome of
a control process on the overall service, where often enforcing a control process
to the wrong part of the cloud service, can lead to side effects, such as increas-
ing the cost or decreasing performance of the overall service. In our previous
work, we focused on modeling current and previous behavior with the concepts
of elasticity space and pathway [6], or using different algorithms to determine
enforcement times in observed behavior (e.g., with change-point detection), but
without modeling expected behavior of different service parts, in time.

In this paper, we focus on addressing the limitations above by introducing the
ADVISE (evAluating clouD serVIce elaSticity bEhavior) framework, which esti-
mates cloud service elasticity behavior by utilizing different types of information,
such as service structure, deployment strategies, and underlying infrastructure
dynamics, when applying different external stimuli (e.g., elasticity control pro-
cesses). At the core of ADVISE is a clustering-based evaluation process which
uses these types of information for computing expected elasticity behavior, in
time, for various service parts. To evaluate ADVISE effectiveness, experiments
were conducted on a public cloud platform with a testbed comprised of two dif-
ferent cloud services. Results show that ADVISE outputs the expected elasticity
behavior, in time, for different services with a low estimation error rate. ADVISE
can be integrated by cloud providers alongside their elasticity controllers to im-
prove their decision quality, or used by cloud service providers to evaluate and
understand how different elasticity control processes impact their services.

The rest of this paper is structured as follows: in section 2 we model rele-
vant information regarding cloud services. In section 3, we present the elasticity
behavior evaluation process. In section 4, we evaluate ADVISE framework effec-
tiveness. In section 5 we discuss related work. Section 6 concludes this paper.

ADVISE – A Framework for Evaluating Cloud Service Elasticity Behavior 277

Fig. 1. Elasticity capabilities exposed by different elastic objects

2 Cloud Service Structural and Runtime Information

2.1 Cloud Service Information

To follow existing common service descriptions [7], we refer to a cloud application
in our study as a cloud service. A cloud service can be decomposed into service
topologies (e.g., a business tier, or a part of a workflow) which represent a group
of semantically connected service units. A service unit (e.g., a web service) rep-
resents a module offering computation or data capabilities. In order to refer to
these cloud service structures globally, we use the term Service Parts (SP).

We extend the conceptual cloud service representation model proposed in [8]
with a rich set of information types for determining cloud elasticity behavior.
Fig. 1 depicts the extensions we made (white background) to include elasticity
control processes, service part behaviors and service parts. Overall, this represen-
tation contains: (i) Structural Information, describing the architectural struc-
ture of the application to be deployed on the cloud, (ii) Infrastructure System
Information, describing runtime information regarding resources allocated by
the cloud service from the underlying cloud platform, and (iii) Elasticity In-
formation, which is associated with both structural and infrastructure system
information for describing elasticity metrics, requirements, and capabilities.

Elasticity information is composed of elasticity metrics, elasticity require-
ments, and elasticity capabilities, each of them being associated to different SPs
or infrastructure resources. Elasticity Capabilities are grouped together as Elas-
ticity Control Processes (ECPs), as described in the next subsection, and inflict
specific elasticity behaviors upon enforcement on different SPs, which we model
as Service Part Behaviors. We model SP behaviors, since controllers must de-
termine the effect of enforcing an ECP at different levels (e.g., before allocating
a new database node, the effect at the database service topology and at the en-
tire cloud service level should also be determined). Conceptually, a Service Part

278 G. Copil et al.

Fig. 2. Elasticity capabilities exposed by different elastic objects

Behavior, denoted as BehaviorSPi , for a specific SPi in a defined period of time
[start, end], contains all the metrics, MSPi

a , being monitored for SPi. Therefore,
the behavior of a cloud service, denoted as BehaviorCloudService, over a period
of time is defined as the set of all cloud service SP behaviors:

MSPi
a [start, end] = {Ma(tj)|SPi ∈ ServiceParts, j = start, end} (1)

BehaviorSPi [start, end] = {MSPi
a [start, end]|Ma ∈ Metrics(SPi)} (2)

BehaviorCloudService[start, end] = {BehaviorSPi [start, end]|SPi ∈
ServiceParts(CloudService)} (3)

The above information is captured and managed at runtime through an Elas-
ticity Dependency Graph, which has as nodes instances of concepts from the
model presented in Fig. 1 (e.g., Virtual Machine), and relationships (e.g.,
Elasticity Relationship) as edges. The elasticity dependency graph is
populated and continuously updated with (i) pre-deployment information, such
as service topology descriptions (e.g., TOSCA [7]) or profiling information; and
(ii) runtime information such as metric values from monitoring tools or allocated
resources information from cloud provider APIs.

2.2 Elasticity Control Processes

Elasticity capabilities (ECs) are the set of actions associated with a cloud service,
which a cloud service stakeholder (e.g., an elasticity controller) may invoke, and
which affect the behavior of a cloud service. Such capabilities can be exposed
by: (i) different SPs, (ii) cloud providers, or (iii) resources which are supplied by
cloud providers. An EC can be considered as the abstract representation of API
calls, which differ amongst providers and cloud services. Fig. 2 depicts the dif-
ferent subsets of ECs provided for an exemplary web application when deployed
on two different cloud platforms (e.g., Flexiant, and Openstack private cloud),
as well as the ECs exposed by the cloud service and the installed software. In
each of the two aforementioned cloud platforms, the cloud service needs to run
on a specific environment (e.g., Apache Tomcat web server), and all these capa-
bilities, when enforced by an elasticity controller, will have an effect on various
parts of the cloud service. For instance, even if not evident at first sight, elas-
ticity capabilities of a web server topology of the cloud service could also affect
the performance of its database backend.

ADVISE – A Framework for Evaluating Cloud Service Elasticity Behavior 279

Fig. 3. Elastic cloud service evolution

Elasticity Control Processes (ECP) are sequences of elasticity capabilities
ECPi = [ECi1 → ECi2 → ... → ECin], which can be abstracted into higher
level capabilities having predictable effects on the cloud service. An ECP causes
a change in the elasticity dependency graph and in the virtual infrastructure
related information (e.g., change in ECP properties or in the properties of the
VM). For example, in the case of a distributed database backend which is com-
posed of multiple nodes, a scale out ECP , with certain parameters, can apply
for both a Cassandra and an HBase database, with the following ECs: (i) add a
new node, (ii) configure node properties and (iii) subscribe node to the cluster.

2.3 Cloud Service Elasticity during Runtime

To be able to estimate the effects of ECPs upon SPs, we rely on the elastic-
ity dependency graph which captures all the variables that contribute to cloud
service elasticity behavior evolution. Fig. 3 depicts on the left-hand side the
cloud service at a pre-deployment time, where automatic elasticity controllers
know about it only from structural information provided by different sources
(e.g., TOSCA service description). After enforcing a Deployment Process (e.g.,
create machine x, and configure software z), the elasticity dependency graph will
additionally contain infrastructure-related information obtained from the cloud
provider, and elasticity information, obtained from monitoring services showing
the metrics evolution for different SPs. This information is continually updated
during runtime (step 3 in Fig. 3), while for estimating the behavior we make the
assumption that we have complete information (i.e., no information missing).

Infrastructure resources, as mentioned previously, have associated elasticity
capabilities (EC in Fig. 3), that describe the change(s) to be enforced and the
mechanisms for triggering them (e.g., API call assigned to the EC). In addition,
a cloud platform exposes ECs in order to create new resources or instantiate
new services (e.g., increase memory is an EC exposed by a VM, while create
new VM is an EC exposed by the cloud platform). In this context, for being able
to discover the effects that an ECP produces in time, for each SP , taking into
account correlations between metrics, we use the elasticity dependency graph.
We analyze this information to determine the effect of an ECP for all SPs,

280 G. Copil et al.

Fig. 4. Modeling cloud service behavior process

Fig. 5. Relevant timeseries sections to points

regardless on whether the ECP is application specific, or it does not have any
apparent link to other SPs. In fact, as we show in Section 4, the impact of various
ECPs over different SPs and over the entire cloud service is quite interesting.

3 Evaluating Cloud Service Elasticity Behavior

Existing behavior learning solutions [4, 5] learn discrete metric models, without
correlating them with the multiple variables which affect cloud service behavior.
As opposed to them, we are learning the behavior of different cloud service
parts, and their relation to different ECPs, not only with directly linked ones,
and estimating the effect of an ECP , in time, considering the correlations among
several metrics and among several service parts. The Learning Process used to
determine cloud service part behavior is depicted in Fig. 4, and is executed
continuously, refining the previously gathered knowledge base.

3.1 Learning Process

Processing input data. Our learning process takes as input each metric’s
evolution, in time, MSPi

a [start, current] (see Equation 3) from the beginning of
the service execution on the current cloud platform. To evaluate the expected
evolution of metrics in response to enforcing a specific ECP , we select for each
monitored metric, of each service part, a Relevant Timeseries Section (RTS),
in order to compare it with previously encountered MSPi

a [start, current]. The
RTS size strongly depends on the average time needed to enforce an ECP

ADVISE – A Framework for Evaluating Cloud Service Elasticity Behavior 281

(see Section 4.3). Consequently, a metric RTS is a sub-sequence of the MSPi
a ,

from before enforcing an ECP until after the enforcement is over:

RTSSPi

Ma
= MSPi

a [x− δ + ECPtime

2
, x+

δ + ECPtime

2
], (4)

[ECPstartT ime, ECPendTime] ⊂ [x− δ + ECPtime

2
, x+

δ + ECPtime

2
]

, where x is the ECP index and δ is the length of the period we aim to evaluate.
As part of the input pre-processing phase, we represent δ+ECPtime as multi-

dimensional points, BP in Equation 5, in the n-dimensional Euclidian space (see
Fig. 5), where the value for dimension t(j) is the timestamp j of current RTS.

BPSPi
a [j] = RTSSPi

Ma
[t(j)], j = 0, ..., n, BP : MSP �→ Rn, n = δ + ECPtime (5)

Clustering process. To detect the expected behavior, as a possible result
of enforcing an ECP , we construct clusters of behavioral points ClusterSPi

for all SPs and each ECP based on the distance between behavior points as
defined in Equation 6. We do not limit our approach to only considering ECPs
available for the current SPi since, as previously mentioned, enforcing an ECP
to a specific SP may affect the behavior of another SP or the overall cloud
service. The objective function of this process is finding the multi-dimensional
behavior point C(Θ∗), which minimizes the distance among points belonging
to the same cluster Clusterk (see Equation 7). Since the focus of this paper
is not to evaluate the quality of different clustering algorithms, we choose to
use the K-means algorithm, following the practice where the number of clusters
is K =

√
N/2, N being the number of objects. However, as shown in Section

4, even with a simple K-means algorithm, our approach outputs the expected
elasticity behavior with a low estimation error rate.

dist(BP x
a , BP y

a) =

√∑
i

(BP x
a [i]−BP y

a [i])2 (6)

Θ∗ = argmin

K∑
k=0

N∑
i=0

θi,kdist(Clusterk, BPi), θi,k =

{
1 BPi ∈ Clusterk

0 BPi /∈ Clusterk
(7)

After obtaining δ + ECPtime-dimensional point clusters, we construct for each
SPi a correlation matrix, CMSPi [Cx, Cy], where Cx is the centroid of Clusterx,
giving the probability, for all metrics, of clusters from different metrics to ap-
pear together (e.g., increase in data reliability is usually correlated with increase
in cost). An item in the CM represents a ratio between the number of times
the behavior points Cx and Cy were encountered together towards the total
number of behavior points. This matrix is continuously updated when behavior
points move from one cluster to another, or when new ECPs are enforced, thus,
increasing the knowledge base.

282 G. Copil et al.

3.2 Determining the Expected Elasticity Behavior

In the Expected Behavior Generation based on Learning Process step in Fig. 4,
we select latest metrics values for each SPi, M

SPi
a [current− δ, current], and the

ECPξ which the controller is considering for enforcement, or for which the user
would like to know the effects. We find the ExpectedBehavior (see Equation
8) which consists of a tuple of cluster centroids from the clusters constructed
during the Learning Process that are the closest to the current metrics behavior
for the part of the cloud service we are focusing on, and which have appeared
together throughout the execution of the cloud service. The result of this step is,
for each metric of SPi, a list of expected values from the enforcement of ECPξ

(e.g., expected values for each metrics for the case the user would like to deploy
one new web service of type x in the same web application container).

ExpectedBehavior[SPi, BehaviorSPi [current− δ, current], ECPξ] =

{CMa1

ia1
, ..., CMam

iam
|Mam ∈ Metrics(SPi)} (8)

The above process is executed continuously, as shown in Fig. 4, by refining
clusters, re-computing cluster centroids with the time and with the enforcement
of new ECPs. This process is highly flexible and configurable, as we can use
different manners of detecting ECPs (e.g., sent by the elasticity controller), or
other clustering algorithms which lead to different solutions.

4 Experiments

To evaluate the effectiveness of the proposed approach, we have developed the
ADVISE framework1 which incorporates the previously described concepts. Cur-
rent ADVISE version gathers various types of information to populate the elastic-
ity dependency graph, such as: (i) Structural information, from TOSCA service
descriptions; (ii) Infrastructure and application performance information from
JCatascopia [9] and MELA [6] monitoring systems; (iii) Elasticity information
regarding ECPs from the rSYBL [8] elasticity controller where we developed an
enforcement plugin to randomly enforce ECPs on cloud services. To evaluate
the functionality of the ADVISE framework, we established a testbed comprised
of two services deployed on the Flexiant public cloud. On both cloud services,
we enforce random ECPs exposed by different SPs. We do not use a rational
controller, since we are interested in estimating the elasticity behavior for all
SPs as a result of enforcing both good and bad elasticity control decisions.

ADVISE currently receives monitoring information in two formats: (i) as
simple *.csv files, or (ii) automatically pulling monitoring information from
MELA. ADVISE can be used both in service profiling/pre-deployment phase or
during runtime, for various service types, whenever monitoring information and
enforced ECPs are available for generating estimations for various metrics of
service parts.

1 Code & documents: http://tuwiendsg.github.io/ADVISE

http://tuwiendsg.github.io/ADVISE

ADVISE – A Framework for Evaluating Cloud Service Elasticity Behavior 283

Table 1. Elasticity control processes available for the two cloud services

Cloud
Service

ECP
Id

Action Sequence

Video
Service

ECP1 Scale In Application Server Tier: (i) stop the video streaming service, (ii)
remove instance from HAProxy, (iii) restart HAProxy, (iv) stop JCatas-
copia Monitoring Agent, (v) delete instance

ECP2 Scale Out Application Server Tier: (i) create new network interface, (ii)
instantiate new virtual machine, (ii) deploy and configure video streaming
service, (iv) deploy and start JCatascopia Monitoring Agent, (v) add
instance IP to HAProxy, (vi) restart HAProxy

ECP3 Scale In Distributed Video Storage Backend: (i) select instance to remove,
(ii) decommission instance data to other nodes (using Cassandra nodetool
API), (iii) stop JCatascopia Monitoring Agent, (iv) delete instance

ECP4 Scale Out Distributed Video Storage Backend: (i) create new network in-
terface, (ii) instantiate new instance, (iii) deploy and configure Cassandra
(e.g., assign token to node), (iv) deploy and start JCatascopia Monitoring
Agent, (v) start Cassandra

M2M
DaaS

ECP5 Scale In Event Processing Service Unit: (i) remove service from HAProxy,
(ii) restart HAProxy, (iii) remove recursively virtual machine

ECP6 Scale Out Event Processing Service Unit: (i) create new network inter-
face, (ii) create new virtual machine, (iii) add service IP to HAProxy
configuration file

ECP7 Scale In Data Node Service Unit: (i) decommision node (copy data from
virtual machine to be removed), (ii) remove recursively virtual machine

ECP8 Scale Out Data Node Service Unit: (i) create new network interface, (ii)
create virtual machine, (iii) set ports, (iv) assign token to node, (v) set
cluster controller, (vi) start Cassandra

4.1 Experimental Services

The first cloud service is a three-tier web application providing video streaming
services to online users, comprised of: (i) an HAProxy Load Balancer which dis-
tributes client requests (i.e., download, or upload video) across application servers;
(ii) An Application Server Tier, where each application server is an Apache Tom-
cat server containing the video streaming web service; (iii) A Cassandra NoSQL
Distributed Data Storage Backend from where the necessary video content is re-
trieved. We have evaluated the ADVISE framework by generating client requests
under a stable rate, where the load depends on the type of the requests and the
size of the requested video, as shown in the workload pattern in Fig.6.

The second service in our evaluation is a Machine-to-Machine (M2M) DaaS
which processes information originating from several different types of data sen-
sors (e.g., temperature, atmospheric pressure, or pollution). Specifically, the
M2M DaaS is comprised of an Event Processing Service Topology and a Data End
Service Topology. Each service topology consists of two service units, one with
a processing goal, and the other acting as the balancer/controller. To stress this
cloud service we generate random sensor event information (see Fig. 6) which is
processed by the Event Processing Service Topology, and stored/retrieved from

284 G. Copil et al.

Table 2. Elasticity metrics for different service parts

Cloud
Service

SP Name Metrics

Video
Service

Application Server Tier cost, busy thread number, memory uti-
lization, request throughput

Distributed Video Storage Backend cost, CPU usage, memory usage, query
latency

M2M
DaaS

Cloud Service cost per client per hour (Cost/Client/h)

Event Processing Service Topology cost, response time, throughput, number
of clients

Data End Service Topology cost, latency, CPU usage

Fig. 6. Workload applied on the two services

the Data End Service Topology. Tables 1 and 2 list the ECPs associated to each
SP and the monitoring metrics analyzed for the two cloud services respectively.

4.2 Elasticity Behavior Estimation

Online Video Streaming Service. Fig. 7 depicts both the observed and the
estimated behavior for the Application Server Tier of the cloud service when a re-
move application server from tier ECP occurs (ECP1). At first, we observe that
the average request throughput per application server is decreasing. This
is due to two possible cases: (i) the video storage backend is under-provisioned
and cannot satisfy the current number of requests which, in turn, results in
requests being queued; (ii) there is a sudden drop in client requests which in-
dicates that the application servers are not utilized efficiently. We observe that
after the scale in action occurs, the average request throughput and
busy thread number rises which denotes that this behavior corresponds to
the second case where resources are now efficiently utilized. ADVISE revealed
an insightful correlation between two metrics to consider when deciding which
ECP to enforce for this behavior.

Similarly, in Fig. 8 we depict both the observed and the estimated behavior
for the Distributed Video Storage Backend when a scale out action occurs
(add Cassandra node to ring) due to high CPU utilization. We observe that
after the scale out action occurs, the actual CPU utilization decreases
to a normal value as also indicated by the estimation. Finally, from Fig. 7 and 8,

ADVISE – A Framework for Evaluating Cloud Service Elasticity Behavior 285

Fig. 7. Effect of ECP1 on the application server tier

Fig. 8. Effect of ECP4 on the entire video streaming service

we conclude that the ADVISE estimation successfully follows the actual behavior
pattern and that in both cases, as time passes, the curves tend to converge.

M2M DaaS. Fig. 9 shows how an ECP targeting a service unit affects the
entire cloud service. The Cost/Client/h is a complex metric (see Table 2)
which depicts how profitable is the service deployment in comparison to the
current number of users. Although Cost/Client/h is not accurately estimated,
due to the high fluctuation in number of clients, our approach approximates how
the cloud service would behave in terms of expected time and expected metric
fluctuations. This information is important for elasticity controllers to improve
their decisions when enforcing this ECP by knowing how the Cost/Client/h
for the entire cloud service would be affected. Although the CPU usage is not
estimated perfectly, since it is a highly oscillating metric, and it depends on the

286 G. Copil et al.

Fig. 9. Effect of ECP7 on M2M DaaS

Fig. 10. Effect of ECP8 on the data controller service unit

CPU usage at each service unit level, knowing the baseline of this metric can
also help in deciding whether this ECP is appropriate (e.g., for some applications
CPU usage above 90% for a period of time might be inadmissible).

ADVISE can estimate the effect of an ECP of a SP , on a different SP , even if
apparently unrelated. Fig. 10 depicts an estimation on how the Data Controller
Service Unit is impacted by the data transferred at the enforcement of ECP8.
In this case, the controller CPU usage drops, since the new node is added to
the ring, and a lot of effort goes for transferring data to the new node, then it
raises due to the fact that reconfigurations are also necessary on the controller,
following a slight decrease and stabilization. Therefore, even in circumstances of
random workload, ADVISE can give useful insights on how different SPs behave
when enforcing ECPs exposed by other SPs.

ADVISE – A Framework for Evaluating Cloud Service Elasticity Behavior 287

Table 3. Elasticity control processes time statistics

ECP Standard Deviation Average ECP Time (s)

Video
Service

ECP1 0 65
ECP2 0 15
ECP3 0 25
ECP4 1.414 150

M2M
Service

ECP1 4.5 45
ECP2 1.4 20
ECP3 0 20
ECP4 1 75

4.3 ECP Temporal Effect

Table 3 presents the average time required for an ECP to be completed. This
application-specific information is of high importance and affects the decision-
making process of the elasticity controller since it is an indicator of the grace
period which it should await until effects of the resizing actions are noticeable.
Thus, it defines the time granularity of which resizing actions should be taken
into consideration. For example, we observe that the process of adding and con-
figuring a new instance to the video service’s storage backend requires an average
time interval of 150 seconds which is mainly the time required to receive and
store data from other nodes of the ring. If decisions are taken in smaller intervals,
the effects of the previous action will not be part of the current decision process.

4.4 Quality of Results

ADVISE is able to estimate, in time, the elasticity behavior of different SPs by
considering the correlations amongst metrics and the ECPs which are enforced.
To evaluate the quality of our results, we have considered the fact that existing
tools do not produce continuous-time estimations. Thus, we choose to evalu-
ate ADVISE by computing the variance V ar and standard deviation StdDev
(Equation 9), over 100 estimations as the result differs little afterwise.

V armetrici =

∑
(estMetrici − obsMetrici)

2

nbEstimations− 1
, StdDevmetrici =

√
V armetrici(9)

Table 4 presents the accuracy of our results. When comparing the two services,
the Video Service achieves a higher accuracy (smaller standard deviation), since
the imposed workload is considerably stable. Focusing on the M2M DaaS esti-
mation accuracy, we observe that it depends on the granularity at which the
estimation is calculated, and on the ECP . Moreover, the standard deviation
depends on the metrics monitored for the different parts of the cloud service.
For instance, in the case of the M2M Service, the number of clients metric
can be hardly predicted, since we have sensors sending error or alarm-related
information. This is evident for the Event Processing Service Topology, where
the maximum variance for the number of clients is 4.9.

288 G. Copil et al.

Table 4. ECPs effect estimation quality statistics

Cloud
Service

Observed Cloud
Service Part

Elasticity Control
Process

Average Standard
Deviation

Maximum
Variance

Minimum
Variance

Video
Service

Video Service
ECP3 0.23 0.09 0.03

ECP4 0.61 0.99 0.23

Distributed Video
Storage Backend

ECP3 0.28 0.14 0.034

ECP4 0.2 0.042 0.04

Application Server
ECP1 0.43 0.4 0.06

ECP2 0.31 0.47 0.01

M2M
Service

Cloud Service ECP5 0.9 6.65 0.24

Data End Service
Topology

ECP5 0.23 0.35 7.44E-05

Event Processing
Service Topology

ECP7 1.1 4.9 0.046

ECP8 0.76 2.46 0.027

Data Controller
Service Unit

ECP6 0.12 0.25 0

ECP8 0.22 0.41 0

Data Node
Service Unit

ECP5 0.572 0.68 0.32

ECP6 0.573 1.4 0.07

Event Processing
Service Unit

ECP7 1.08 3.59 0.11

ECP8 0.77 1.9 0.14

Overall, even in random cloud service load situations, the ADVISE framework
analyses and provides accurate information for elasticity controllers, allowing
them to improve the quality of control decisions, with regard to the evolution
of monitored metrics at the different cloud service levels. Without this kind of
estimation, elasticity controllers would need to use VM-level profiling informa-
tion, while they have to control complex cloud services. This information, for
each SP , is valuable for controlling elasticity of complex cloud services, which
expose complex control mechanisms.

5 Related Work

Verma et al. [3] study the impact of reconfiguration actions on system perfor-
mance. They observe infrastructure level reconfiguration actions, with actions on
live migration, and observe that the VM live migration is affected by the CPU
usage of the source virtual machine, both in terms of the migration duration
and application performance. The authors conclude with a list of recommen-
dations on dynamic resource allocation. Kaviani et al. [10] propose profiling as
a service, to be offered to other cloud customers, trying to find tradeoffs be-
tween profiling accuracy, performance overhead, and costs incurred. Zhang et
al. [4] propose algorithms for performance tracking of dynamic cloud applica-
tions, predicting metrics values like throughput or response time. Shen et al. [5]
propose the CloudScale framework which uses resource prediction for automat-
ing resource allocation according to service level objectives (SLOs) with mini-
mum cost. Based on resource allocation prediction, CloudScale uses predictive

ADVISE – A Framework for Evaluating Cloud Service Elasticity Behavior 289

migration for solving scaling conflicts (i.e. there are not enough resources for
accommodating scale-up requirements) and CPU voltage and frequency for sav-
ing energy with minimum SLOs impact. Compared with this research work, we
construct our model considering multiple levels of metrics, depending on the
application structure for which the behavior is learned. Moreover, the stress
factors considered are also adapted to the application structure and the elas-
ticity capabilities (i.e. action types) enabled for that application type. Juve et
al. [11] propose a system which helps at automating the provisioning process
for cloud-based applications. They consider two application models, one work-
flow application and one data storage case, and show how for these cases the
applications can be deployed and configured automatically. Li et al. [12] propose
CloudProphet framework, which uses resource events and dependencies among
them for predicting web application performance on the cloud.

Compared with presented research work, we focus not only on estimating the
effect of an elasticity control process on the service part with which it is associ-
ated, but on different other parts of the cloud service. Moreover, we estimate and
evaluate the elasticity behavior of different cloud service parts, in time, because
we are not only interested in the effect after a predetermined period, but also
with the pattern of the effect that the respective ECP introduces.

6 Conclusions and Future Work

We have presented ADVISE framework, which is able to estimate the behavior
of cloud service parts, in time, when enforcing various ECPs, by taking into
consideration different types of information represented through the elasticity
dependency graph. Based on results from two different cloud services, we show
that ADVISE framework is indeed able to advise elasticity controllers about
cloud service behavior, contributing towards improving cloud service elasticity.

As future work, we intend to integrate ADVISE with the rSYBL elasticity
controller [8] and develop new decision mechanisms that take continuous ECP
effects as inputs, taking decisions based on the expected behavior of each SP .

References

1. Al-Shishtawy, A., Vlassov, V.: Elastman: Autonomic elasticity manager for cloud-
based key-value stores. In: Proceedings of the 22nd International Symposium on
High-Performance Parallel and Distributed Computing, HPDC 2013, pp. 115–116.
ACM, New York (2013)

2. Wang, W., Li, B., Liang, B.: To reserve or not to reserve: Optimal online multi-
instance acquisition in IaaS clouds. Presented as part of the 10th International
Conference on Autonomic Computing, Berkeley, CA, USENIX, pp. 13–22 (2013)

3. Verma, A., Kumar, G., Koller, R.: The cost of reconfiguration in a cloud. In:
Proceedings of the 11th International Middleware Conference Industrial Track.
Middleware Industrial Track 2010, pp. 11–16. ACM, New York (2010)

4. Zhang, L., Meng, X., Meng, S., Tan, J.: K-scope: Online performance tracking for
dynamic cloud applications. Presented as part of the 10th International Conference
on Autonomic Computing, Berkeley, CA, USENIX, pp. 29–32 (2013)

290 G. Copil et al.

5. Shen, Z., Subbiah, S., Gu, X., Wilkes, J.: Cloudscale: elastic resource scaling for
multi-tenant cloud systems. In: Proceedings of the 2nd ACM Symposium on Cloud
Computing, SOCC 2011, pp. 5:1–5:14. ACM, New York (2011)

6. Moldovan, D., Copil, G., Truong, H.L., Dustdar, S.: Mela: Monitoring and analyz-
ing elasticity of cloud services. In: 2013 IEEE Fifth International Conference on
Cloud Computing Technology and Science, CloudCom (2013)

7. OASIS Committee Specification Draft 01: Topology and Orchestration Specifica-
tion for Cloud Applications Version 1.0 (2012)

8. Copil, G., Moldovan, D., Truong, H.-L., Dustdar, S.: Multi-level Elasticity Control
of Cloud Services. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013.
LNCS, vol. 8274, pp. 429–436. Springer, Heidelberg (2013)

9. Trihinas, D., Pallis, G., Dikaiakos, M.D.: JCatascopia: Monitoring Elastically
Adaptive Applications in the Cloud. In: 14th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing (2014)

10. Kaviani, N., Wohlstadter, E., Lea, R.: Profiling-as-a-service: Adaptive scalable re-
source profiling for the cloud in the cloud. In: Kappel, G., Maamar, Z., Motahari-
Nezhad, H.R. (eds.) Service Oriented Computing. LNCS, vol. 7084, pp. 157–171.
Springer, Heidelberg (2011)

11. Juve, G., Deelman, E.: Automating application deployment in infrastructure
clouds. In: Proceedings of the 2011 IEEE Third International Conference on Cloud
Computing Technology and Science, CLOUDCOM 2011, pp. 658–665. IEEE Com-
puter Society, Washington, DC (2011)

12. Li, A., Zong, X., Kandula, S., Yang, X., Zhang, M.: Cloudprophet: towards
application performance prediction in cloud. In: Proceedings of theACMSIGCOMM
2011 Conference, SIGCOMM 2011. ACM, New York (2011)

Transforming Service Compositions
into Cloud-Friendly Actor Networks �

Dragan Ivanović1 and Manuel Carro1,2

1 IMDEA Software Institute, Spain
2 School of Computer Science, T. University of Madrid (UPM), Spain

{dragan.ivanovic,manuel.carro}@imdea.org

Abstract. While conversion of atomic and back-end services from centralized
servers to cloud platforms has been largely successful, the composition layer,
which gives the service-oriented architecture its flexibility and versatility, often
remains a bottleneck. The latter can be re-engineered for horizontal and vertical
scalability by moving away from coarser concurrency model that uses transac-
tional databases for keeping and maintaining composition internal state, towards
a finer-grained model of concurrency and distribution based on actors, state mes-
saging, and non-blocking write-only state persistence. In this paper we present
a scheme for automatically transforming the traditional (orchestration-style) ser-
vice compositions into Cloud-friendly actor networks, which can benefit from
high performance, location transparency, clustering, load balancing, and integra-
tion capabilities of modern actor systems, such as Akka. We show how such ac-
tor networks can be monitored and automatically made persistent while avoiding
transactional state update bottlenecks, and that the same networks can be used for
both executing compositions and their testing and simulation.

Keywords: Service Composition, Actor Systems, Cloud Service Provision.

1 Introduction

In recent years, the use of private and public clouds for providing services to users
has proliferated as organizations of all sizes embraced the Cloud as an increasingly
technically mature and economically viable way to reach markets and meet quality re-
quirements on the global scale. This is especially true for simple (atomic and back-end)
services that perform individually small units of work. Such services can be distributed
on different cloud nodes, and the requests are routed to different instances based on node
availability and load balancing. The key enablers here are distributed databases, which
offer high availability and distribution at the price of limited, eventual consistency [7].

Service compositions typically need to store their internal state (point of execution
and state variables) along with the domain-specific user data on which they operate.
That is needed because service compositions may be long-running and may involve

� The research leading to these results has received funding from the EU FP 7 2007-2013 pro-
gramme under agreement 610686 POLCA, from the Madrid Regional Government under CM
project S2013/ICE-2731 (N-Greens), and from the Spanish Ministry of Economy and Compet-
itiveness under projects TIN-2008-05624 DOVES and TIN2011-39391-C04-03 StrongSoft.

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 291–305, 2014.
© Springer-Verlag Berlin Heidelberg 2014

292 D. Ivanović and M. Carro

many internal steps, so that it would be inefficient to let them occupy the scarce server
resources (such as threads and database connections) for the whole duration of their
execution, most of which is typically spent waiting for responses from other services.
Besides, saving the composition state in a persistent store allows resumption after server
restarts or network failures. This leads to an essentially event-driven implementation of
most composition engines, where incoming events (messages or timeouts) either create
new composition instances or wake up dormant ones, which perform a short burst of
processing and then either terminate or go to sleep until the next wake-up event.

However, even when eventual consistency on user data is permitted, any inconsis-
tency in the saved internal state of an executing composition may lead to wrong or
unpredictable behavior, and must be avoided. That is why most service composition
engines, such as Apache ODE [5], Yawl [1], and Orchestra [17], rely on a transactional
database to ensure state consistency of long-running processes. This presents a prob-
lem for scaling the SOA’s composition layer in the Cloud, as concurrent processing of
events within the same composition instance implicitly requires access synchronization,
transactional isolation, and locking or conflict detection on a central database.

In this paper, we argue that SOA’s service composition layer can more successfully
exploit the advantages offered by the Cloud if it is based on state messaging rather than
mutable shared state kept in a database. This means basing the design of composition
engines on well-defined, fine-grained, and Cloud-friendly parallelism and distribution
formalisms, rather than “hacking” the existing centralized implementations.

In Section 2, we motivate our approach and outline it in Section 3. Section 4 presents
the details of the approach, and Section 5 gives some implementation notes and presents
an experimental validation of the approach. We close with conclusions in Section 6.

2 Motivation

r := 0;
while ¬empty(in) do begin

join begin
send head(in) to P;
receive x from P

end and begin
send head(in) to Q;
receive y from Q

end;
r := r+max(x,y);
in := tail(in)

end;
send r to caller

Fig. 1. Sample composition

According to the Reactive Manifesto [4], the ability to
react to events, load fluctuations, failures, and user re-
quirements is the distinguishing mark of reactive soft-
ware components, defined as being readily responsive to
stimuli. In this paper, we try to facilitate some of those
capabilities in service compositions, starting with ser-
vice orchestrations with centralized control flow.

Take, for instance, an example currency exchange
composition whose pseudo-code is shown in Figure 1.
(The syntax and semantics of a sample composition lan-
guage is given in Section 4.1.) This composition takes a
list of amounts in different currencies (in), and tries to
find the maximal amount of Euros to which they can be
converted, using two external currency conversion ser-
vices, P and Q. Each amount/currency pair (head(in))
is sent to P and Q in parallel, and the responses (x and y) add to the result (r) before
continuing with the rest of the input list (tail(in)). Finally, the result is sent to the caller.

To allow the sample composition to scale both up and out, we need to surpass the
limits posed by the shared state store architecture. One way to achieve that is to turn

Transforming Service Compositions into Cloud-Friendly Actor Networks 293

← Composition specification (source code)

Node A Node B Node C

Clustering & load balancing

← Actor network instantiation

← Actor network

Translation

Monitoring

State
Persistence

Fig. 2. Outline of the approach

the logical flow of control within the composition into a message flow, by transforming
the composition into a network of interconnected stateless, reactive components, each
performing a small unit of work, and forwarding results down the logical control flow.
Ideally, slower components would be automatically pooled and load-balanced in order
to enhance throughput, and/or spread between different nodes in a cluster, depending on
available cloud resources. Instead of being kept in a shared data store, the composition
state would be reconstructed from observed messages and pushed to a persistent store
in a write-only, non-blocking manner.

A major challenge – and the main contribution of this paper – is to find a method
for automatically and transparently transforming compositions into such networks of
readily scalable reactive components. The transformation needs to hide the underly-
ing implementation details and preserve semantics of state variables, complex control
constructs (loops and parallel flows), operations on a rich data model, and message
interchange with external services.

We therefore address a similar problem as the concept of Liquid Service Architecture
[8], but targeting specific issues in the composition layer, based on formal models of
composition semantics and semantically correct transformations.

3 Outline of the Approach

Figure 2 shows the outline of the proposed approach. The starting point is a specifica-
tion of a composition, expressed in some composition language. This source code is
translated into an actor network, which expresses the behavior of the composition as
a (statically inferred) collection of stateless, reactive components that perform individ-
ually small units of processing. The translation ensures that the behavior of the actor
network is consistent with the original semantics of the composition.

We use actor systems [12,13,2,3] as the underlying model of concurrent and dis-
tributed computing. Along with π-calculus [16], join-calculus [10], and ambient-calculus
[9], actor systems are one of well known approaches to modeling and reasoning
about concurrent and distributed computations. However, their component and open
asynchronous messaging model makes actor systems closer to the conventional

294 D. Ivanović and M. Carro

S ::= skip | begin S end | x := E (no-op, grouping and assignment)

| if C then S else S | while C do S (conditionals and loops)

| S ; S | join S and S (sequential and parallel flows)

| send E to P | receive x from P (message exchange)

P ::= 〈partner service name 〉
x ::= 〈 identifier 〉

C,E ::= true | false | null | 〈numeral 〉 | 〈 string〉 | x

| f (E, ...,E) | E ◦E (f , ◦ ∈ Builtins)

| {} | {x : E[, x : E]∗} | E{x : E} | E.x (records and fields)

Fig. 3. Abstract syntax of a sample composition language

(e.g., object-oriented and functional) programming languages and facilitates efficient
implementation (cf. Section 5).

At run-time, the actor network is used as a blueprint to instantiate sets of actors that
implement the behavior specified by the network. The instantiated network is deployed
into an actor system, where it can benefit from clustering, load balancing, integration
and other capabilities of the state-of-the-art actor systems. Being stateless and reactive,
the instantiated actors can be scaled both vertically (by organizing them in pools), and
horizontally (by distributing them among different interconnected nodes).

The internal state of the executing compositions is not stored in a database, but is
kept in messages sent and received by the communicating actors. By monitoring these
messages, it is possible to keep an up-to-date snapshot of the state of each executing
composition instance, and to record it to a persistent store.

4 Translating Compositions into Actor Networks

4.1 Sample Composition Language

Figure 3 shows the abstract syntax of a composition language fragment. Our intention
here is not to “invent” a new composition language, but to present a fragment contain-
ing some of the most common control and data handling constructs (found in actual
languages like BPEL) whose semantics – control flow, data operations, and messag-
ing – can be formally specified. Such a formal specification of semantics is crucial for
reasoning about the correctness of our approach.

The composition language fragment includes state updates (assignments), sequential
constructs (such as conditionals and loops), messaging primitives (send and receive),
and join-and parallel flows which wait for both branches to complete. The language is
based on a rich data model that features Boolean, numeric and string literals, the special
null value, as well as records. Expressions include literals, composition state variables,
record constructors, record field accesses, and a set of arithmetic, logical and string
built-ins (always terminating).

Records can be used to represent many other data structures. For instance, a list [A|B]
with the first element A and the remainder B can be modeled with {cons : true, head :

Transforming Service Compositions into Cloud-Friendly Actor Networks 295

{C∧φ | π } S1 {φ ′ | π ′ } {¬C∧φ | π } S2 {φ ′ | π ′ }
{φ | π } if C then S1 else S2 {φ ′ | π ′ } COND {φ | π } skip {φ | π } SKIP

{C∧φ | π } S {φ | π ′ }
{φ | π ′ } while C do S {¬C∧φ | π ′ } LOOP

{φ | π } S1 {φ ′ | π ′ } {φ ′ | π ′ } S2 {φ ′′ | π ′′ }
{φ | π } S1 ; S2 {φ ′′ | π ′′ } SEQ

{φ [x\E] | π } x := E {φ | π } STATE
{φ | π } S1 {φ ′ | π ′ } {φ | π } S2 {φ ′ | π ′ }

{φ | π } join S1 and S2 {φ ′ | π ′ } JOIN

π ′ contains no (← P) π ′′ contains no (�← P)

{φ [x\u] | π ′(u ← P)π ′′ } receive x from P {φ | π ′(u �← P)π ′′ } RECV

φ " E = u π ′′ contains no (→ P) or (�← P)

{φ | π ′π ′′ } send E to P {φ | π ′(u → P)π ′′ } SEND

Fig. 4. Abstract semantics of a fragment of the composition language

A, tail : B}, and the empty list [] with {cons : false}. In turn, records and lists can rep-
resent JSON and XML documents. In examples, we use sans serif font to distinguish
field, built-in and other global names from local names in cursive.

We use a form of axiomatic semantics to specify the meaning of control constructs,
data operations, and message exchanges for the language fragment, with the inference
rules (axiom schemes) shown in Figure 4. The pre- and post-conditions are expressed
in the form {φ | π }, where logic formula φ characterizes the composition state as in
the classic Hoare Logic [14,6], and π is a chronological sequence of outgoing messages
(u → P), incoming unread messages (u ← P), and incoming read messages (u �← P),
where u is a datum. The consequence rule, which states that pre-conditions can always
be strengthened as well as post-conditions weakened, is implicit. Condition {φ ′ | π ′ }
is stronger than {φ | π } iff φ ′ logically implies φ (in the data domain theory), and π is
a (possibly non-contiguous) sub-sequence of π ′.

Rules COND, SKIP, LOOP, SEQ, and STATE are direct analogues of the classical Hoare
Logic rules for sequential programs. The abstract semantics of parallel and-join flow is
given in rule JOIN. The parallel branches are started together, and race conditions on
state variables and partner services are forbidden: variables modified by one branch
cannot be read of modified by the other, and the branches cannot send or receive mes-
sages to or from a same partner service.

In rule RECV, the conditions on π ′ and π ′′ ensure that messages are read in the
order in which they are received, and the condition on π ′′ in rule SEND ensures the
chronological ordering of outgoing messages. The underscores here denote arbitrary
data. The message exchange is asynchronous, and thus the relative ordering of messages
to/from a partner matters more than the absolute ordering of all messages.

4.2 Actor Language

The abstract syntax of a functional actor language is given in Fig. 5, along the lines
of Aga et al. [3] and Varela [18], with some syntactic modifications. Its domain of
values (V) is the same as in the sample composition language, with addition of actor
references (A) used for addressing messages. The expressions (E) extend expressions
in the composition language with functional and actor-specific constructs.

296 D. Ivanović and M. Carro

E ::= L | x | λx → E | E(E) | rec(E) (standard λ -calculus constructs)

| f (E, ...,E) | E ◦E (f ,◦ ∈ Builtins)

| RE | E{x : E} (record of expressions, update)

| match E with T → E[;T → E]∗ end (pattern matching)

| new(E) | stop (actor creation & termination)

| ready(E) | send(E,E) (message reception & dispatch)

L ::= true | false | null | 〈numeral 〉 | 〈string 〉 (primitive value)

V ::= L | A | RV (value)

RΦ ::= {} | {x : Φ [, x : Φ]∗} (record structure)

T ::= x | | L | RT (pattern)

x ::= 〈 identifier 〉 A ::= 〈actor reference 〉

Fig. 5. The basic actor language

Function abstractions and applications from λ -calculus are included together with
the special recursion operator rec. The match construct searches for the first clause
T → E where pattern T matches a given value, and then executes E to the right of “→”.
At least one match must be found. Variables in patterns capture matched values, and
each underscore stands for a fresh anonymous variable. The order of fields in record
patterns is not significant, and matched records may contain other, unlisted fields. Sev-
eral common derived syntactic forms are shown in Table 1.

Construct new creates a new actor with the given behavior, and returns its reference.
An actor behavior is a function that is applied to an incoming message. Construct ready
makes the same actor wait for a new message with the given behavior. Construct send
sends the message given by its second argument to the agent reference to which the first
argument evaluates. Finally, stop terminates the actor.

sink ≡ rec(λ b → λm → ready(b))

cell ≡ rec(λ b → λx → λ m →
match m with

{get: a} → do send(a, x) then ready(b(x));
{set: y} → ready(b(y))

end)

Fig. 6. Two simple actor behaviors

Fig. 6 shows two simple examples of
actor behaviors. The sink behavior sim-
ply accepts a message (m) without doing
anything about it, and repeats itself. The
cell behavior models a mutable cell with
content x. On a ‘get’ message, the cur-
rent cell value x is sent to the designated
recipient a, and the same behavior is re-
peated. On a ‘set’ message, the cell for-
gets the current value x and repeats the same behavior with the new value y. Note how
in both cases the construct rec allows the behavior to refer to itself via b.

Table 1. The derived actor language constructs and abbreviations

Abbreviation Basic construct

let x = E1 in E2 match E1 with x → E2 end
do E1 then E2 match E1 with → E2 end
if E1 then E2 else E3 match E1 with true → E2; → E3 end
E.x match E with {x : y}→ y ; → null end

Transforming Service Compositions into Cloud-Friendly Actor Networks 297

The operational semantics of actor systems is expressed in terms of transitions be-
tween actor configurations. Each actor configuration 〈〈α || μ 〉〉 consists of a set of actors
α and a bag (multiset) μ of messages in transit. Elements of α are written as [E]a, denot-
ing an actor with the unique address (actor reference) a ∈ A and behavior E . Elements
of μ are written as (a ⇐ v), denoting a value v sent to an actor whose reference is a. In
rules, both α and μ are written as unordered sequences without repetition of elements.

We first frame the actor expressions in terms of redexes and reduction contexts,
shown in Figure 7. It can be shown that any actor expression E can be uniquely framed
in the form E�� e�, where E� is a reduction context which contains exactly one hole
(�) which is filled by redex e. A redex is the next sub-expression to be evaluated (and
replaced with the evaluation result, if any) in the left-to-right call-by-value evaluation
strategy. The exceptions are stand-alone values (V) and function abstractions (λ x → E),
which are syntactically valid, but do not denote any meaningful actor behavior.

The transitions defining the operational semantics of the actor language are given in
Figure 8. The purely functional redexes follow the relation “−→λ ” and are reduced lo-
cally within an actor under rule FUN. For instance, APP is β -reduction from λ -calculus,
REC defines the behavior of the recursion operator, UPD defines record updates, and BI

the application of built-ins. Rule MATCH1 fires if there exists a substitution θ of vari-
ables from pattern T which makes T θ identical to the value v that is matched; in that
case, the match expression reduces to the expression Eθ , i.e., E to the right of “→”
with these variable substitutions applied. Rule MATCH2 throws away the first pattern if
a matching substitution cannot be found, and continues with the rest.

The actor redexes are regulated by rules other than FUN. In STOP, any actor that
encounters stop is immediately terminated. Rule NEW creates a new actor which be-
comes ready to execute behavior w given by new, and returns its address a′ to the
creating actor. Rule READY says that whenever an actor executes construct ready, it
blocks if necessary until there is a message v sent to it, and then starts from the scratch
by applying the behavior w given by ready to the message. Finally, rule SEND creates a
new message for the receiver, and returns null on the sender side.

An important characteristic of the actor system semantics is fairness, in the sense
that all enabled transitions eventually fire. In particular, this means that every message
sent to an actor is eventually received, unless the actor is terminated, halted by an error,
or caught in an infinite loop while processing an earlier message.

W ::= V | λx → E

e ::= W (W) | x | f (W, . . . ,W) | W ◦W | rec(W) | RW | W{x : W}
| match W with T → E[; T → E]∗ end | new(W) | stop | ready(W) | send(W,W)

E� ::= � | W (E�) | E�(E) | f (W, . . . ,W,E�,E, . . . ,E) | W ◦E� | E� ◦E

| rec(E�) | {x : W, . . . ,x : W,x : E�,x : E, . . . ,x : E} | W{x : E�} | E�{x : E}
|match E� with T→E[; T →E]∗ end | new(E�) | ready(E�) |send(W,E�) |send(E�,E)

Fig. 7. Reduction contexts and redexes

298 D. Ivanović and M. Carro

w ∈W

(λx → E)(w)−→λ E[x\w]
APP

e ≡ rec(λx → E)

e −→λ E[x\e]
REC

r ≡ {x : , ϕ} v ∈V

r{x : v} −→λ {x : v, ϕ} UPD

f n ∈ Builtins n ≥ 0 [[f n]] : V n →V

f n(v1, . . . ,vn)−→λ [[f n]](v1, . . . ,vn)
BI

v ∈V ∃θ · v ≡ T θ
(match v with T → E[;τ] end)−→λ Eθ

MATCH1

v ∈V � ∃θ · v ≡ Tθ
(match v with T → E;τ end)−→λ (match v with τ end)

MATCH2

e −→λ e′

〈〈α , [E� � e�]a || μ 〉〉 −→ 〈〈α , [E� � e′�]a || μ 〉〉 FUN 〈〈α , [E� �stop�]a || μ 〉〉 −→ 〈〈α || μ 〉〉 STOP

w ∈W a′ ∈ A fresh

〈〈α , [E� �new(w)�]a || μ 〉〉 −→ 〈〈α , [E� �a′�]a, [ready(w)]a′ || μ 〉〉 NEW

w ∈W

〈〈α , [E� � ready(w)�]a || μ,(a ⇐ v)〉〉 −→ 〈〈α , [w(v)]a || μ 〉〉 READY

a′ ∈ A v ∈V

〈〈α , [E� �send(a′, v)�]a || μ 〉〉 −→ 〈〈α , [E� �null�]a || μ,(a′ ⇐ v)〉〉 SEND

Fig. 8. Operational semantics of the actor language

4.3 Translating Compositions into Actor Networks

After explaining the syntax and semantics of the sample composition language and the
actor language, we now proceed with the crucial step in our approach: the transforma-
tion of a service composition into an actor network.

An actor network is a statically generated set of actor message handling expressions
that correspond to different sub-constructs in a composition. At run-time, actor net-
works are instantiated into a set of reactive, stateless actors, which accept, process and
route information to other actors in the network, so that the operational behavior of the
instantiated network is correct with respect to the abstract semantics of the composition
language. The stateless behavior of the actors in an instantiated network enables their
replacement, pooling, distribution, and load-balancing.

For a composition S, by A [[S]] we denote its translation into an actor network, as a
set whose elements have the form �i : Ei or �i �→ � j. Here, �i and � j are (distinct) code
location labels, which are either 0 (denoting composition start), 1 (denoting composition
finish), or are hierarchically structured as �.d, where d is a single decimal digit (denoting
a child of �). Element �i : E means that the behavior of the construct at �i is realized with
actor behavior E over input message m. Element �i �→ � j means that �i is an alias for � j.
Alias �i �→ � j is sound iff A [[S]] contains either � j : E j or �i �→ �k such that �k �→ � j is
sound. Unsound or circular aliases are not permitted.

A [[S]] is derived from the structure of S, by decomposing it into simpler constructs.
Figure 9 shows the translations A [[S′]]�′� for each construct S′ located at �, and immedi-
ately followed by a construct at �′. For the whole composition, A [[S]] =A [[S]]10. Items
P, �, �′, �.1, �.2, etc. are treated as string literals in actor expressions.

The translation of skip simply maps the behavior of location � to that of �′, without
introducing new actors. For other constructs, the structure of the incoming message m
is relevant: m.inst holds the unique ID of the composition instance; m.loc maps loca-
tion labels to actor addresses (discussed below); m.env is a record whose fields are the

Transforming Service Compositions into Cloud-Friendly Actor Networks 299

A [[skip]]�
′
� ={� �→ �′}

A [[x := E]]�
′
� ={� : (send(fget(m.loc, �′), m{env.x : Ē}{from : �}))}

A [[if C then S1 else S2]]
�′
� ={� : (send(fget(m.loc, if C̄ then �.1 else �.2), m{from : �}))}

∪A [[S1]]
�′
�.1 ∪A [[S2]]

�′
�.2

A [[while C then S]]�
′
� ={� : (send(fget(m.loc, if C̄ then �.1 else �′), m{from : �}))}∪A [[S]]��.1

A [[S1 ; S2]]
�′
� ={� �→ �.1}∪A [[S1]]

�.2
�.1 ∪A [[S2]]

�′
�.2

A [[send E to P]]�
′
� ={� : (do send(fget(m.link, P), m{out : Ē}) then

send(fget(m.loc,�′), m{from : �}))}
A [[receive x from P]]�

′
� ={� : (send(fget(m.link, P), m{in : ”x”}{from : �}{to : �′}))}

A [[join S1 and S2]]
�′
� ={� : (let m2 = m{from : �}{loc : fset(m.loc, �.2, new(J [[S1,S2]]

�′
� (m)))}

in do send(fget(m.loc, �.1.1), m2) then send(fget(m.loc, �.1.2), m2))}
∪A [[S1]]

�.2
�.1.1 ∪A [[S2]]

�.2
�.1.2

J [[S1 ,S2]]
�′
� ≡λm → λm1 → ready(λm2 → do send(fget(m.loc, �′),

(S2 writes z̄) (if m1.from ≥ �.1.1 then m{env : m1.env{z : m2.env.z}}
(S1 writes ȳ) else m{env : m2.env{y : m1.env.y}}){from : �.2}) then stop

Fig. 9. Translation of composition constructs as actor networks

composition state variables with their current values; and m.link is a map from available
partner service names to references of the actors which serve as their mailbox inter-
faces. The initial content of m is set up upon the reception of the initiating message
with which the composition is started. For simplicity, we assume that m.env.in holds
the input message, and that the initiating party is by convention called caller.

The translation of an assignment uses the built-in fget to fetch the value of m.loc
associated with �′ (as a string literal). That value is the reference of the next actor in
the flow, to which a message is sent with the modified value of the assigned variable x.
With Ē we denote the result of replacing each state variable name y encountered in E
with m.env.y. Here, as in other translations, we additionally modify the from field in m
to hold the location from which the message is sent.

The translation of the conditional creates two sub-locations, �.1 and �.2 to which it
translates the then- and the else-part, respectively. Then, at run-time the incoming mes-
sage is routed down one branch or another, depending on the value of the condition C̄
(which is rewritten from C in the same way as Ē from E in assignment). The translation
of the while loop is analogous to that of the conditional. When a sequence is translated,
two sub-locations �.1 and �.2 are created and chained in a sequence.

The translations of the messaging primitives rely on partner links in m.link. For send,
the outgoing message is asynchronously sent to the partner link, wrapped in m.out, and
then the incoming message is forwarded to the next location in the flow. For receive,
the partner mailbox is asked to forward m to �′ when the incoming message becomes
available, by placing it in m.env under the name of the receiving variable.

The most complex behavior is for the join construct, which needs to create a transient
join node (at �.2) which collects and aggregates the results of both parallel branches be-
fore forwarding it to �′. The branches are translated at �.1.1 and �.1.2. The branches
receive message m2 whose m2.loc is modified (using the built-in fset) to point to the
transient join node under �.2. Its behavior of is defined by J [[S1,S2]]�

′
� : m is the

300 D. Ivanović and M. Carro

0

0.1 r := 0

0.2

0.2.1 while ¬empty(in) do ...

0.2.1.1

0.2.1.1.1 join ... and ...

0.2.1.1.1.1.1

0.2.1.1.1.1.1.1
send head(in) to P

0.2.1.1.1.1.1.2
receive x from P

0.2.1.1.1.1.2

0.2.1.1.1.1.2.1
send head(in) to Q

0.2.1.1.1.1.2.2
receive y from Q

∗ 0.2.1.1.1.2

0.2.1.1.2

0.2.1.1.2.1 r := r+max(x, y)

0.2.1.1.2.2 in := tail(in)

0.2.2 send r to caller

1
r := 0;
while ¬empty(in) do begin

join begin
send head(in) to P;
receive x from P

end and begin
send head(in) to Q;
receive y from Q

end;
r := r+max(x,y);
in := tail(in)

end;
send r to caller

Fig. 10. Deployment of the example composition between �= 0 and �′ = 1

original incoming message, and m1 and m2 are messages received from the branches.
The outgoing message is based on m, and inherits env from the first branch to termi-
nate, with the added modifications from the other one: the value of each state variable z
written by S2 (or state variable y written by S1) is copied into the resulting environment.

Figure 10 shows the topology of the actor network resulting from the translation
of the our example composition, annotated with location labels and the corresponding
composition constructs, with the message flow indicated with arrows. The transient
node is marked with an asterisk, and the dotted nodes correspond to the sequences and
are aliased to the next node in the flow.

4.4 Actor Network Instantiation and Semantic Correctness

An instantiation of an actor network A [[S]] is a pair 〈Λ , α 〉, where Λ is a (partial)
mapping from locations to actor references, and α a minimal set of actors such that (a)
for each � : E ∈A [[S]], there is [ready(rec(λ b → m → do E then ready(b)))]Λ(�) ∈ α;
and (b) for each �1 �→ �2 ∈ A [[S]], Λ(�1) = Λ(�2). When a new composition instance
is created, its m.loc is set to Λ .

The following theorem is central to validating the correctness of the approach:

Theorem 1. The operational behavior of any instantiation 〈Λ , α 〉 of A [[S]] is correct
with respect to the abstract semantics of S.

The correctness criteria applies to any valid triplet {φ | π } S {φ ′ | ππ ′ } that can
be inferred from the rules in Figure 4 (with the implicit consequence rule), and any
instantiation 〈Λ ,α 〉 of A [[S]]. It requires that whenever S terminates and φ holds on
the input message received at location 0 : (i) exactly one output message (of the same

Transforming Service Compositions into Cloud-Friendly Actor Networks 301

(a)
�i � j �k

=⇒
m

�i � j �k

m
=⇒
m′

�i � j �k

�m m′

(b)
�i � j �k

=⇒
m′

�i � j �k

m′
=⇒
m

�i � j �k

�m m′

(c)
�i � j

�k

�p

m
=⇒
m′

�i � j

�k

�p

m
m′

=⇒
m′′

�i � j

�k

�p

�m
m′

m′′

(d)
�i � j

�k

�p

m′

=⇒
m

�i � j

�k

�p

m
m′

=⇒
m′′

�i � j

�k

�p

�m
m′

m′′

Fig. 11. Example updates of an instance snapshot

instance) is sent to location 1; (ii) φ ′ holds on the output message; and (iii) the messages
sent to and received from the external service mailboxes are compatible with π ′.

The proof of this theorem is based on structural induction of correctness on the
building blocks of S. For each building block, the operational semantics of the actors
in α (augmented with partner mailbox actors) is validated against the pre- and post-
conditions defined in the abstract semantics of the composition language, applied to the
content and the circulation of messages that belong to a same composition instance.

Note that the behavior rec(λ b → m → do E then ready(b)) with which new actors
are created is fully stateless and repetitive, and thus a single actor can be seamlessly
replaced with a load-balanced and possibly dynamically resizable pool of its replicas
attached to the same location, without affecting the semantics of the instantiation.

4.5 Composition State Persistence

By observing all messages sent between actors in the instantiated actor network (with
the addition of partner service mailbox actors), a monitor can keep the current snapshot
of the execution state for each executing instance, distinguished by m.inst. The snapshot
can be represented as a tuple 〈σ , ς 〉, where σ is the stable, and ς the unstable set of
observed messages. The two sets are needed because messages can arrive out of order.

For example, part (a) of Figure 11 treats the case of location � j which needs one
incoming, and produces one outgoing message. When messages come in order, the in-
coming message m from �i is placed in σ and is subsequently replaced with the outgoing
message m′. It may, however, happen, as in Figure 11(b), that the outgoing message m′
is observed first. In that case, it is placed in ς (indicated by the dashed line). When the
incoming message m is observed, it is discarded, and m′ is moved from ς to σ . Two
analogous cases for a location corresponding to a parallel split node, which sends two
outgoing messages, is shown in Figure 11(c)-(d). In these examples, we tacitly merge
the aliased locations together, and include the partner service mailboxes.

After each observation, the stable set of observed messages σ can be written to a
persistent data store, and used for reviving the execution of the instance in case of
a system stop or crash, simply by replaying the messages from σ . This may cause

302 D. Ivanović and M. Carro

0 10000 20000 30000 40000

0
20

40
60

80
10

0
Scaling C:1, P:1

in

st
an

ce
s

0 5000 10000 15000 20000 25000 30000

0
20

40
60

80
10

0

Scaling C:1, P:2

in

st
an

ce
s

0 5000 10000 15000 20000

0
20

40
60

80
10

0

Scaling C:2, P:2

Time [ms]

in

st
an

ce
s

0 5000 10000 15000 20000

0
20

40
60

80
10

0

Scaling C:4, P:2

Time [ms]

in

st
an

ce
s

Fig. 12. Dynamic behavior of the sample composition deployed as an actor network

repetition of some steps (including the external service invocations), whose completion
has not been observed when the last stable set was committed to the persistent store,
but the messages in σ always represent a complete and consistent instance snapshot.

4.6 Use for Testing and Simulation

The presented actor network translation and instantiation scheme, which aims at exe-
cuting compositions in a production environment, can also serve as a basis for service
testing and simulation. Service composition can be tested by observing the messages
between the locations in the actor network to verify pre- and post-conditions at various
points in the composition code. For that purpose, the syntax of composition statements
(S) in Figure 3 can be extended with assertions that express conditions on state variables
and external messages. A testing monitor can then check the conditions at run-time and
compute code and path coverage of the tests.

In a simulation mode, external service mailboxes can be replaced with mock-ups, and
the translation scheme in Figure 9 can be slightly extended to include a new message
field m.time that represents the simulated time. Such a simulation could be used to study
the behavior of the system under different load scenarios, and would have the advantage
of correctly modeling its state, logic, and control flow.

5 Implementation Notes and Experimental Validation

We base our implementation of the proposed approach on Akka [11], a toolkit and
runtime for building concurrent, distributed, and fault tolerant event-driven applications
on the JVM platform. Among other capabilities, Akka enables transparent remote actor

Transforming Service Compositions into Cloud-Friendly Actor Networks 303

creation, supervision and communication between different network nodes, as well as
easily configurable actor pooling and load balancing. Akka also easily integrates with
Apache Camel [15], a versatile integration framework which allows actor systems to
interface with external services and systems using a large number of standard protocols.

To evaluate the potential benefits of the proposed approach with respect to the perfor-
mance of service compositions, we have implemented the sample currency conversion
composition from Figures 1 and 10 as an actor network, which was then instantiated
with different scaling factors, where the composition scaling factor n means that each
logical actor from the actor network is instantiated as a pool of n load-balanced actors.
The external service invoked within the loop has also been implemented in a scalable
manner, with a scaling factor of its own, and with a round-trip invocation time (of a
solitary request in a quiescent system) between 12 ms and 18 ms. In each experimental
run, the composition was fed with 100 input requests (at intervals of 10 ms) with input
lists of size 10, and the messages within the actor network were monitored to reveal
the number of instances awaiting or undergoing processing at different locations in the
network.1

The top-left graph in Figure 12 shows the results for the base configuration, where
the scaling factor for both the composition (C) and the external service (P) is 1, which
means that each actor in C, as well as P, could process one request at a time. The thick
solid rising line gives the number of finished instances over time (i.e., the number of
messages reaching location �′ = 1 in Figure 10). It takes approx. 40 s for the entire train
of 100 input requests to be served. The dashed line shows the backlog of invocations to
P, and the thin solid line shows the backlog of all internal operations in the composition,
such as the control constructs and assignments. As the requests arrive, the backlog of
internal operations quickly builds up, and then recedes as more and more instances
block waiting on P.

Since P represents an obvious bottleneck, a common-sense approach would be to
scale it up. The top-right graph in Figure 12 shows the behavior of a configuration
where the scaling factor for C is kept at 1, and that of P increased to 2. However, it turns
out that in spite of modest performance improvements (cutting the overall execution
time by 17.5% from 40 s to approx. 33 s), C cannot significantly exploit the benefits of
scaling up P without scaling up itself. In fact, the graph shows that the backlog of P now
almost disappears, while the backlog of the internal operations in C now dominates the
dynamics of the system. In this case, the reason for such highly non-linear aggregate
behavior is the effective halving (on the average) of P’s request-response time, which
now becomes shorter than the interval between incoming requests.

The bottom-left graph in Figure 12 shows the case when both C and P have scaling
factor 2. In this case, the composition performance of the system is practically doubled,
with the overall execution time cut from 40 s to approx. 20 s. The bottom-right graph in
Figure 12 suggests that scaling C more than P does not yield significant performance
improvements: an appropriate scaling strategy seems to be using the same scaling factor
for both C and P. Note that in our approach the scaling factor for C can be configured
at will at run-time, without affecting the transformation.

1 The experiment was performed on a Mac Airbook computer with 1.7 GHz Intel Core i5 and
4 GB of RAM, running Mac OS X 10.9.2, Oracle Java 1.7 55, and Akka 2.3.2.

304 D. Ivanović and M. Carro

0 1000 2000 3000 4000

0
20

40
60

80
10

0
Scaling C:10, P:10

Time [ms]

in

st
an

ce
s

0 1000 2000 3000

0
20

40
60

80
10

0

Scaling C:20, P:20

Time [ms]

in

st
an

ce
s

Fig. 13. Limits of performance improvements when increasing the scaling factor

Figure 13 shows how the effects on performance degrade as the common scaling
factor increases. While scaling factors n = 2, n = 4 and n = 10 reduce the overall exe-
cution time almost proportionally by factors 1.993, 3.937, and 9.097, respectively, for
15 ≤ n ≤ 20 the reduction factor remains close to 10.7.

6 Conclusions and Future Work

In this paper we presented an approach for ensuring scalability of service compositions
(focusing on orchestrations with centralized control flow) – with rich control structure
(involving branches, loops and parallel flows), state and data operations – by translat-
ing them in a network of actor behaviors which behaves correctly with respect to the
semantics of the composition specification. Such a network can be instantiated and au-
tomatically scaled up/out by the underlying actor platform (in this case Akka on JVM)
whose remoting and clustering capabilities facilitate deployment in the Cloud.

The experimental results indicate that using this approach the composition can be
easily scaled (in this case vertically) to match the elasticity of the external services and
to yield significant performance improvements. We have also shown how the state of
an executing composition instance can be monitored and pushed to a persistent store in
a non-blocking manner to allow for restoring and continuing a stopped instance. The
same monitoring mechanism can be used for testing the composition on a fine-grained
level against pre- and post-conditions on the composition as a whole and individual
constructs from which it is built, and for computing code and path coverage of a test
suite. Additionally, the scheme can be easily adapted for simulation of service behavior
against different load scenarios.

There are several directions for expanding on the work presented in this paper. The
authors are currently working on expanding the prototype implementation into a system
which allows drop-in of composition definitions and their compilation into actor spec-
ifications, which is parametric with respect to the syntax of the composition language.
Our plan is to support not only orchestration languages based on the procedural, but
also on logical and functional programming paradigms. This can be followed with an
elaboration of a testing framework that integrates automatic generation of test cases and
performance analysis. Another direction would be creating, on the common basis, of an
offline simulation platform that can be complemented with online data to provide fore-
casts of system performance under different load scenarios. Additionally, the underlying

Transforming Service Compositions into Cloud-Friendly Actor Networks 305

actor formalism into which compositions are translated can be used for reasoning about
safety and liveness properties of choreographies involving several orchestrations.

References

1. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Language. In-
formation Systems 30(4), 245–275 (2005)

2. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press,
Cambridge (1986)

3. Agha, G., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for actor computation. Journal
of Functional Programming 7(1), 1–72 (1997)

4. et al., M.D.D.: The reactive manifesto. Web (September 2013),
http://www.reactivemanifesto.org/

5. Apache Software Foundation: Apache ODE Documentation (2013),
https://ode.apache.org/

6. Apt, K.R., De Boer, F.S., Olderog, E.R.: Verification of sequential and concurrent programs.
Springer (2010)

7. Bailis, P., Ghodsi, A.: Eventual consistency today: Limitations, extensions, and beyond.
Commun. ACM 56(5), 55–63 (2013), http://doi.acm.org/10.1145/2447976.2447992

8. Bonetta, D., Pautasso, C.: An architectural style for liquid web services. In: 2011 9th Working
IEEE/IFIP Conference on Software Architecture (WICSA), pp. 232–241 (June 2011)

9. Cardelli, L., Gordon, A.D.: Mobile ambients. Theoretical Computer Science 240(1), 177–
213 (2000)

10. Fournet, C., Gonthier, G.: The join calculus: A language for distributed mobile programming.
In: Barthe, G., Dybjer, P., Pinto, L., Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395, pp.
268–332. Springer, Heidelberg (2002)

11. Gupta, M.: Akka Essentials. Packt Publishing Ltd. (2012)
12. Hewitt, C.: A universal, modular actor formalism for artificial intelligence. In: IJCAI 1973.

IJCAI (1973)
13. Hewitt, C.: Viewing control structures as patterns of passing messages. Artificial Intelli-

gence 8(3), 323–364 (1977)
14. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications of the

ACM 12(10) (1969)
15. Ibsen, C., Anstey, J.: Camel in Action, 1st edn. Manning Publications Co., Greenwich (2010)
16. Milner, R.: Communicating and mobile systems: The pi calculus. Cambridge University

Press (1999)
17. Team, O.: Orchestra User Guide. Bull-SAS OW2 Consortium (October 2011),

http://orchestra.ow2.org/
18. Varela, C.A.: Programming Distributed Computing Systems: A Foundational Approach. MIT

Press (2013)

http://www.reactivemanifesto.org/
https://ode.apache.org/
http://doi.acm.org/10.1145/2447976.2447992
http://orchestra.ow2.org/

A Runtime Model Approach for Data

Geo-location Checks of Cloud Services

Eric Schmieders, Andreas Metzger, and Klaus Pohl

paluno (The Ruhr Institute for Software Technology)
University of Duisburg-Essen, Essen, Germany

{eric.schmieders,andreas.metzger,klaus.pohl}@paluno.uni-due.de

Abstract. Organizations have to comply with geo-location policies that
prescribe geographical locations at which personal data may be stored or
processed. When using cloud services, checking data geo-location poli-
cies during design-time is no longer possible - data geo-location policies
need to be checked during run-time. Cloud elasticity mechanisms dy-
namically replicate and migrate virtual machines and services among
data centers, thereby affecting the geo-location of data. Due to the dy-
namic nature of such replications and migrations, the actual, concrete
changes to the deployment of cloud services and thus to the data geo-
locations are not known. We propose a policy checking approach utilizing
runtime models that reflect the deployment and interaction structure of
cloud services and components. By expressing privacy policy checks as
an st-connectivity problem, potential data transfers that violate the geo-
location policies can be rapidly determined. We experimentally evaluate
our approach with respect to applicability and performance using an
SOA-version of the CoCoME case study.

Keywords: Privacy, Cloud Service Management, Service Governance,
Runtime Checking.

1 Introduction

Privacy regulations such as the EU Data Protection Directive1 constrain the
geographical location of personal data. Therefore, organizations have to comply
with data geo-location policies when storing or processing personal data. For
instance, the EU Data Protection Directive permits organizations to transfer
personal data within the EU only or to such non-EU countries that guarantee
sufficient data protection mechanisms.

In case personal data is stored or processed using cloud services, compliance
with geo-location policies cannot be checked during design-time, it has to be con-
tinuously monitored and checked at runtime. Cloud infrastructures apply repli-
cation as well as migration to databases and data processing services in order
to scale resources on demand and to accomplish performance, availability, and

1 http://eur-lex.europa.eu/

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 306–320, 2014.
© Springer-Verlag Berlin Heidelberg 2014

{eric.schmieders,andreas.metzger,klaus.pohl}@paluno.uni-due.de
http://eur-lex.europa.eu/

Policy Checks Based on Runtime Models 307

cost goals [5,23]. These elasticity mechanisms replicate and migrate virtual ma-
chines and services among data centers, which may lead to dynamic re-locations
of personal data. During design-time, changes to service deployments and con-
sequently to geo-locations of data are unknown and have to be checked during
runtime. For instance, two interacting services process personal data and are ini-
tially deployed on cloud data centers within the EU. For performance reasons,
one service is migrated to a cloud data center located outside the EU. When
both services interact after the migration, they exchange personal data across
the EU-borders and thus violate data geo-location policies.

Privacy checking approaches such as host geo-location [8, 13] consider the
cloud as a black box. These approaches are agnostic to migrations and repli-
cations that may occur behind service interfaces. Approaches on access control
mechanisms [7, 17] neither consider changes of data geo-locations imposed by
migration or replication nor transitive data transfers. In summary, existing ap-
proaches are limited in detecting privacy violations that arise from the combi-
nation of cloud elasticity and service interactions.

In this paper, we systematically analyze cloud service elasticity in combination
with service interactions towards potential policy violations. We propose a novel
policy checking approach based on runtime models that covers the identified
cases of policy violations. The proposed runtime models reflect the deployment
and interaction of cloud services and components. The models are updated when
migrations or replications are applied to the reflected cloud applications. By
expressing the privacy policy checks as an st-connectivity problem on the runtime
models, potential data transfers that violate the geo-location policies can be
rapidly determined. The empirical evaluation indicates that the approach is both
effective and performant.

The remainder of the paper is structured as follows. Sec. 2 systematically
analyzes the changes in the cloud infrastructure that need to be considered to
identify data geo-location violations. Sec. 3 discusses the related work. Sec. 4
introduces our policy checking approach. In Sec. 5 we evaluate our approach
concerning its effectiveness and performance using the CoCoMe case study. Sec.
6 concludes the paper and provides an outlook to future work.

2 Cloud Changes impacting on Data Geo-location
Policies

In this section, we systematically analyze the changes in cloud infrastructures
that need to be covered in order to detect data geo-location violations. In order
to illustrate the different changes, we use the CoCoMe case study.

2.1 CoCoME Case Study

The CoCoME case study [18] describes a typical trading application run by
a supermarket chain. CoCoME has been used in various empirical evaluations
of, e.g., performance predictions and model transformations approaches2. We

2 http://sourceforge.net/apps/trac/cocome/

http://sourceforge.net/apps/trac/cocome/

308 E. Schmieders, A. Metzger, and K. Pohl

employ a variant of CoCoME that has been adapted to the cloud (within a
working group of the DFG Priority Programme ”Design For Future”3 described
in, e.g., [14]). This variant collects shopping transactions of customers in order to
offer payback discounts, thereby involving the storage and processing of personal
data. In the following, we describe the CoCoMe case study in terms of service
and component interactions, the characterization of data, and the definition of
data geo-location policies.

<<datacenter>>

Supermarket Chain DBaaS Provider

Datacenter1

<<vm>>
VM1

<<datacenter>>
Datacenter2
<<vm>>

VM2

<<datacenter>>
Datacenter3
<<vm>>

VM3
<<vm>>

VM4

:CoCoME
:WriteNode :ReadNode :TAAnalysis

Fig. 1. Initial deployment of the CoCoME application

:CoCoME is the core component of the trading application. It is deployed
on virtual machine VM1. :CoCoME provides its features as a service (via an
interface) to a web shop as well as to the local stores of the supermarket chain.
The trading application uses a data-base as a service (DBaaS) provided by a
cloud provider located in Italy. The database is vertically fragmented and dis-
tributed among a write node and a read node (further read nodes may be added
on demand). The :WriteNode stores personal sales data and the :ReadNode
stores anonymized sales data. VM4 executes the transaction analysis compo-
nent :TAAnalysis. :TAAnalysis accesses the WriteNode and collects all log files
of the connected data bases for logging and analysis reasons. Due to the EU-
DPD, the supermarket chain decides that neither personal identifiable data nor
anonymized data (as it may be de-anonymized) shall leave the EU and specifies
a corresponding set of policies.

The initial deployment of the virtual machines is shown in Fig. 1. In the fol-
lowing subsection, we use the case study to illustrate situations in which the
deployment is changed by replication and migration. The changes lead to viola-
tions of data geo-location policies.

2.2 Data Re-location in the Cloud

A virtual machine stores data, receives data from other virtual machines, or
transfers data to them. Further, a virtual machine can be migrated or replicated.

3 http://www.dfg-spp1593.de

http://www.dfg-spp1593.de

Policy Checks Based on Runtime Models 309

Based on these characteristics, cloud elasticity influences data geo-locations (i)
when a virtual machine stores personal data and this virtual machine is migrated
or replicated to a new geo-location (case 1) and (ii) when data is transferred to a
virtual machine by service interactions after migrating or replicating the virtual
machine to a new geo-location. Data may be transferred to the new location by
directly interacting components and services (case 2) or by indirectly interacting
components and services (case 3).

In the following, we examine these three cases that have to be covered to detect
potential violations. This allows us to systematically identify the information
required to perform geo-location checks at runtime (labelled R1 to R8):

– Case 1: A virtual machine that stores personal data is migrated or
replicated across data centers.
In this case, personal data is transferred inside a virtual machine to a remote
location, which may violate data geo-location policies. In our case study,
VM3 is migrated to Datacenter4 located in the US. The migration of the
data base that contains personal data violates the imposed data geo-location
policy for personal sales data. Information required for detecting this case:
information on components storing data (R2) of certain types (R3), informa-
tion on component deployments to physical resources (R4), and information
on the geo-location information of physical resources (R5).

– Case 2: A component A stores personal data and interacts with a
component B. The virtual machine executing B is migrated to a
remote data center.
Personal data might be transferred to the remote location, after B has been
migrated or replicated. Both cases 2 and 3 allow the derivation of data
transfers, which potentially violate geo-location policies. In our case study,
VM4 is migrated to a data center located in the US. Personal sales data
stored at VM2 will be transferred to the :TAAnalysis component located in
the US after the migration. The transfer of personal data to the US violates
the data geo-location policy. Information required for detecting this case:
information R2-5 is required as in case 1. Furthermore, information about
the interaction of the two components is required (R1).

– Case 3: A component A stores personal data and interacts tran-
sitively with a component C. The virtual machine executing C is
replicated or migrated to a remote data center.

Components may transitively interact among several intermediate compo-
nents offered by different providers. Once personal data is transferred to
a third-party service this service may distribute the data to providers not
being aware of the policies applicable to the data. In our case study, VM4
is transferred to a remote data center located in Ireland (other than case
2). VM4 executes the :TAAnalysis component, which logs personal data ac-
cessed from VM2. The data center is connected to a back up service from a
third party (such as Glacier4). The service distributes backup data (including

4 https://aws.amazon.com/glacier/

https://aws.amazon.com/glacier/

310 E. Schmieders, A. Metzger, and K. Pohl

the personal data) among data centers outside the EU, which violates geo-
location policies. Information required for detecting this case: information
R1-5 is required as in case 2. Furthermore, explicit or implicit information
about transitive data transfers among components is required (R6).

Checks covering the three cases have to access the relevant information sum-
marized in Tab. 1.

Table 1. Required information

Required information to carry out runtime checks

R1 Interactions of two components
R2 Access of components to locally stored files
R3 Meta-information of stored or processed data
R4 Information on component deployments on physical resources
R5 Geo-location information of physical resources
R6 Explicit or implicit information on transitive data transfers

3 Related Work

In the related work, we analyze whether existing privacy checking approaches
cover the three data re-location cases. Furthermore, we examine if current run-
time models provide the required information summarized in Tab. 1.

3.1 Privacy Checks during Runtime

Three major directions of checking geo-location policies during runtime have
been investigated in the literature: geo-locating data centers, employing access
control mechanisms, and enforcing elasticity rules. Approaches for checking data
geo-locations based on service interface locations have been proposed in [8,13,19].
Round-trip times of pings sent to the service interfaces are correlated to geo-
graphical information in order to determine the geo-location of data centers. This
allows to determine, whether service interfaces reside at specific geo-locations.
However, the software components behind the service interfaces might be mi-
grated or replicated, while the service interface remains at the same geo-location.
For instance, Hadoop data nodes might be replicated to different locations while
the request handling node is not migrated. Thus, the concept of using round-trip
times of service endpoints to determine data geo-location is not able to cover
the cases 1-3 (Sec. 2.2).

Approaches on access control mechanisms [7, 17] equip cloud services with
mechanisms that permit or grant data access after matching the client char-
acteristics with the data policies. However, access control mechanisms do not
consider changes of data geo-locations imposed by migration or replication of

Policy Checks Based on Runtime Models 311

the service storing the data (case 1). Moreover, data transfers between the client
services and further services are not covered. Transitive data transfers (case 3)
that may lead to policy violations thus remain undetected.

Rules for controlling cloud elasticity have been proposed in [21] as well as
in the MODAClouds5 and Optimis6 projects. Those elasticity rules are defined
during design time. They are utilized to achieve quality goals, such as response
time, energy consumption, cost, and reliability during runtime. However, rules
that implement data geo-location policies have to be defined considering the data
stored by a virtual machine (case 1) as well as the data, which may be transferred
to it (case 2 and 3). Yet, this information is not available during design time (see
Sec. 2.2), and thus defining geo-location rules during design-time is not feasible.

To summarize, none of the existing approaches cover the cases 1-3. The ap-
proaches in [7, 17] cover case 2, but fall short in detecting policy violations re-
sulting from transitive data accesses and cloud elasticity.

3.2 Runtime Models

Work on runtime models utilizes sequence-models [15], workflow models [12,20],
Markov-chains [6], and state machines [1]. These behavioral models include activ-
ities, interactions, and states of reflected applications. Concerning the required
information described in Sec. 2 the utilized runtime models lack information on
data access (R2), meta-information of data (R3), deployment of components to
physical resources (R4), and the geo-location of physical resources (R5).

Architectural runtime models, such as proposed in [2, 10, 11, 16], combine be-
havioral aspects of the system with structural information. The utilized runtime
models reflect components, workflows executed within the components, and the
deployment of components to physical resources. Concerning the required in-
formation, the proposed models lack information on data access (R2), meta-
information of data (R3), and the geo-location of physical resources (R5).

To summarize, current runtime models do not provide the required informa-
tion R1-6 to run checks covering cases 1-3.

4 Runtime Model-Based Policy Checks

In order to address the limitations of current privacy checking approaches, our
approach utilizes runtime models that reflect the deployment and communica-
tion structure of cloud services and components. A data geo-location policy p
codifies which types of data are forbidden to be stored or processed at speci-
fied geographical locations. During runtime, the runtime model G is updated in
case of cloud migration or replication automatically. In turn, such model update
triggers a check of the model against the data geo-location policies, i.e. G |= p.

Below we describe the concepts (meta-model) of the runtime models (Sec. 4.1),
the formalization of geo-location policies (Sec. 4.2), and the implementation of

5 http://www.modaclouds.eu
6 http://www.optimis-project.eu

http://www.modaclouds.eu
http://www.optimis-project.eu

312 E. Schmieders, A. Metzger, and K. Pohl

the policy checks as an st-connectivity problem, and discuss how this covers
cases 1-3 (Sec. 4.3).

4.1 Runtime Model

The concepts for the runtime models underlying our approach are shown in
Fig. 2. The concepts Datacenter, VM, Component, and the relations between
them provide the information on components and their deployments required
to run the policy check (see R4 in Sec. 2). One GeoLocation references several
Datacenter (R5). Modeling this relation is important to facilitate the runtime
check (to be discussed in Sec. 4.3). The Component concept subsumes both
traditional components and services. Components execute processes (Process)
that may interact across components (R1) and data centers. The meta-model
allows defining components that access data through further components and can
represent direct or transitive data transfers (R6). From this relation potential
data transfers are derived.

id:int

id:int
location:GeoLocation

Datacenter

id:int

VM

Component

classification:Classification[*]
contentType:ContentType[*]

Data

accesses accesses

deployed on

hosts

deployed on

1 0..*

NOT_CLASSIF
PERS_IDENT
ANONYMIZED
NON_PERS

<<enumeration>>
Classification

1

1..*

0..*
1

1

0..* 0..*

1..*

DEU
FRA
ITA
USA

<<enumeration>>
GeoLocation

NOT_TYPED
VIDEO_RENT_INF
SALES_INF

<<enumeration>>
ContentType

id:int

Process
0..*

0..*

executes Platform

Service

contains

1 0..*

Fig. 2. Relevant concepts of the runtime model

Processes access data that is stored in the component executing the process
(R2). Anonymized data can potentially be de-anonymized [24]. Furthermore, ac-
cidental or intentional disclosure of different content types is attached to diverse
severities and penalties as stipulated, e.g., in the Video Privacy Protection Act7

and the Health Insurance Portability and Accountability Act8. Consequently,
data may be treated differently with respect to its classification and content. To
support a flexible definition, we enrich the modeled Data entity with a Classifi-
cation and a ContentType (R3).

7 http://www.law.cornell.edu/
8 http://www.cms.gov/

http://www.law.cornell.edu/
http://www.cms.gov/

Policy Checks Based on Runtime Models 313

The runtime model may be created manually during the software design phase
or may be generated from software artifacts (source code, deployment descriptors
etc.) as part of a model-driven engineering process. During runtime, whenever
replication or migration changes the deployment or composition of the reflected
application, the model has to be updated. Due to space limitations we focus on
the presentation and evaluation of the policy checking approach in this paper
and examine the monitoring-driven update of the runtime model structure in
our future work. However, a comprehensive survey on updating runtime models
based on monitoring data can be found in [22].

4.2 Data Geo-location Policy

In approaches such as [8] data geo-location policies are defined in natural lan-
guage. However, we need a formal specification of data geo-location policies in
order to run automized checks. To this end, we define a data geo-location policy
p ∈ P as triple p = (S, T, L), with data classifications S, data content types
T , and geo-locations L (in correspondence to classifications, content types, and
geo-locations specified in the runtime model). A policy p specifies that every
combination S × T × L is forbidden. Using sets S, T , and L rather than sin-
gle elements is a design decision helping to reduce the amount of policies to be
specified.

Policy

NOT_CLASSIF
PERS_IDENT
...

<<enumeration>>
Classification

DEU
FRA
...

<<enumeration>>
GeoLocation

NOT_TYPED
...

<<enumeration>>
ContentType

1..*

0..*

contentTypes

id:int

0..*

1..*
1..* classifications geoLocations

0..*

Fig. 3. Relevant concepts for data geo-location policies

In order to implement the geo-location policy concept, existing technologies
and languages may be used. The elasticity rules presented in [21] specify the
exchange of resources but do not reflect data classifications and content types.
Approaches for specifying data access, e.g., work based on XACML9 and [7],
do not provide entities for specifying data types and geo-location constraints.
However, more generic languages such as WS-Policy10 or WS-Agreement11 do
not provide dedicated expressions to specify data geo-location constraints but
may be extended to formalize the policy concepts described above, such as in [9].

9 http://docs.oasis-open.org/xacml/
10 http://www.w3.org/TR/ws-policy/
11 http://www.ogf.org/documents/GFD.107.pdf

http://docs.oasis-open.org/xacml/
http://www.w3.org/TR/ws-policy/
http://www.ogf.org/documents/GFD.107.pdf

314 E. Schmieders, A. Metzger, and K. Pohl

4.3 Policy Check

The approach specifies the geo-location policy check as an st-connectivity prob-
lem on the runtime model. Solving the st-connectivity problem answers the ques-
tion whether a target node is reachable from a source node in a graph.

To check the reachability, the algorithm selects a subset of geo-location nodes
from the runtime model specified in the policy to be checked. The same is per-
formed for the data nodes. After defining both subsets the algorithm checks if
there is any path from the subset of geo-locations to the subset of data nodes
in the runtime model. If a path exists, it indicates that a potential data transfer
violates the checked policy (as defined by the access semantics of the model).

As an example, Fig. 4 shows a simplified version of the runtime model re-
flecting case 2 (VM4 has been migrated to the US, see Sec. 2.1). There exists
a path with geoLocation(usa) as start node vs and Data(1, [PERS IDENT],
[HEALTH INF]) as target node vt, i.e. personal data may flow into the US.
The existence of this path indicates the violation of the policy described in the
case study (”storing or processing personal data in the USA is forbidden”).

The algorithm of the policy check is shown in Alg. 1.

Algorithm 1. Policy Checking Algorithm

1: function check(G, p)
2: Vs ← GeoLocation(p) ∩GeoLocation(G)
3: Vt ← Data(p) ∩Data(G)
4: for vs ∈ Vs do
5: for vt ∈ Vt do
6: H ← PathFrom(vs, vt, G)
7: if H �= ∅ then
8: return false
9: return true

We choose st-connectivity over generic model checking approaches because
st-connectivity is sufficient to solve the checking problem. Due to their gen-
erality, model checkers have a wide scope of application but also may impose
high performance needs. Thus, runtime checking approaches (such as [3,12,20])
typically propose tailored concepts for solving specific problems. Furthermore,
the st-connectivity problem is NL-complete and thus solvable within polynomial
time (analyzed in Sec. 5). In the following, we describe the foundation of the
geo-location check.

Definition 1. Let G be a directed graph G = (V,E) (as depicted in the example
in Fig. 4). Vertices V are the entities of the runtime model. Edges E are the
relations of the runtime model. Let policy p be defined as triple p = (S, T, L) with
data classifications S, content types T, and geo-locations L.

Policy Checks Based on Runtime Models 315

geoLocation(usa) geoLocation(deu) geoLocation(ita)

Datacenter(1) Datacenter(2) Datacenter(3) Datacenter(4)

VM(1) VM(2) VM(3) VM(4)

Component(1) Component(2) Component(3)

Data(1,
[PERS_IDENT],
[HEALTH_INF])

Component(5)

Process(1)
Process(2) Process(3)

Process(4)

Data(2,
[ANONYMIZED],
[SALES_INF])

Fig. 4. Runtime model instance of case 2

Definition 2. Let Vs be the intersection from geo-locations in G and p with
Vs = {v|v ∈ V ∧GeoLocation(v) ∈ L} serving as start nodes. Let Vt be the subset
of data nodes from G specified in p with Vt = {v|v ∈ V ∧ Classifcation(v) ∈
S ∧ ContentType(v) ∈ T }. Let Hvs,vt = (vs, ..., vt) be a path in G with vs ∈ Vs

and vt ∈ Vt.

With Def. 1 we define the runtime model as graph G and with Def. 2 we
define a path H in G. When searching path H in graph G, modeling the relation
between GeoLocation and Datacenter is important. Based on this, the runtime
model can be transversed from GeoLocation entities Vs to data nodes Vt, which
allows defining the policy check as st-connectivity problem with Def. 3.

Definition 3. Given a graph G and a policy p, we define the model check G |= p
as function f(G, p) : G× {p} → {true, false}

f(G, p) =

{
true : ¬(∃vs∃vt : Hvs,vt , with vs ∈ Vt ∧ vt ∈ Vt)

false : else

where ”true” means the checked equation holds and ”false” means the policy is
violated.

The checking approach covers the data re-location cases 1-3 introduced in Sec.
2:

– Case 1 is covered when both vt and the host where the data reside are at
geo-location vs.

– Case 2 is covered when a component executed at geo-location vs directly
accesses vt from a remote component.

– Case 3 is covered when a component at geo-location vs accesses vt from a
remote component transitively through further components.

316 E. Schmieders, A. Metzger, and K. Pohl

The implementation of the runtime check may base on algorithms for graph
traversal. For instance, basic breadth-first search or depth-first search may be
applied as well as optimized variants such as the A∗ algorithm.

5 Experimental Evaluation

The experimental evaluation aims for analyzing the effectiveness and perfor-
mance of the geo-location policy checking approach. Here, effectiveness refers
to the capability of identifying potential data transfers that may violate data
geo-location constraints. Performance refers to the time consumed for checking
the violations and indicates how timely one may be informed about violations.

The set up of the experiments is based on the combination of a simulated
cloud environment and the prototypical implementation of our approach. The
set up includes a runtime model, a set of data geo-location policies, a prototypical
implementation of the runtime checking approach using depth first search, and
a simulator that simulates replication and migration of virtual machines. We
implemented the runtime and policy meta models as Ecore instances12. The
runtime model reflects the SOA-version of CoCoME (see Sec. 2.1) and includes
22 data centers distributed among five countries, four virtual machines, seven
components, and six processes accessing two different types of personal data.
The simulation environment allows us to run controlled, reproducible functional
tests and to examine policy checking performance without provider limitations
or side effects.

5.1 Experiment on Effectiveness

To determine the effectiveness of our approach, we investigate ”whether the pro-
posed approach correctly identifies potential data transfers that may violate data
geo-location constraints?” To evaluate the expressiveness, we modeled the func-
tionalities of two CoCoME use cases (use case 1 and 7 from the CoCoME-
specification13). In use case 1, a web shop customer adds products to the shop-
ping cart. In use case 7, the sales manager changes the price of a product. Use
case 1 serves as a positive example that includes potential policy violations. Use
case 7 serves as a counterexample as it does not include any policy violation.
We create six equivalence partitions to test the effectiveness of the checking
approach systematically. The six partitions result from defining positive and
negative tests for each of the three data re-location cases (see Sec. 2.2). For each
partition, we define up to three test cases in which we provide the policy checker
with input that corresponds to the specified equivalence partition. For instance,
a valid positive test case of data re-location case 3 includes (i) a runtime model
that reflects the transitive transfer of anonymized sales data into the USA, (ii)
a policy that forbids to store or process anonymized sales data in the USA, and
(iii) the detected policy violation as the expected test result.

12 http://www.eclipse.org/modeling/emf/
13 http://sourceforge.net/projects/cocome/

http://www.eclipse.org/modeling/emf/
http://sourceforge.net/projects/cocome/

Policy Checks Based on Runtime Models 317

Our approach passes the functional tests and thus correctly identifies all three
cases of policy violations. Of course, the generalizability (external validity) of
these findings is limited by the fact that we examined the expressiveness by
means of a single case study. Although CoCoME is used in a multitude of em-
pirical studies, we thus plan to apply our approach to further applications in our
future work.

5.2 Experiment on Performance

In order to explore the performance, we examine ”how the runtime model com-
plexity impacts on the response time of the proposed approach?” To this end, we
stepwise increase the complexity of the runtime model (independent variable)
and measure the response times of the policy checks (dependent variable).

The complexity of a graph with respect to the time consumption of depth
first searches is determined by the numbers of edges within a graph (the runtime
model), which we use as a complexity metric.To stepwise increase the complexity
of the initial model, we iteratively replicate virtual machines and insert new
interactions (reflected in the model). To give an example: the model complexity
of 1000 results from the edges of 68 virtual machines and 119 modeled processes.
We stop the experiment at the complexity of 135183, which results from the
edges of 814 virtual machines and 1414 processes. We execute the Java-based
prototype (SDK 1.6) on a 2,3 GHz Quad-Core i7 machine running OS X 10.

0 20000 40000 60000 80000 100000 120000 140000

0
10

0
20

0
30

0
40

0
50

0
60

0

Model Complexity

Check Duration (ms)

Fig. 5. Measured response times of policy checks

We measure three different situations of runtime policy checking: ”best case”,
”worst case”, and ”typical case”. Fig. 5 shows the measured time consumption
(y-axis) over the model complexity (x-axis). We observed the following:

– In the ”best case” (green flat graph), personal data is stored at a geo-location
and this storage relation is forbidden by one of the policies. The search depth
is low and the checks stop at tb ≤ 1 ms.

318 E. Schmieders, A. Metzger, and K. Pohl

– In the ”worst case” (red graph) the search algorithm has to traverse every
possible path entirely to detect the policy violation. The measured growth in
checking durations of worst cases is of polynomial time as the upper bound
can be described by a quadratic expression (black curve in the figure), i.e.
tw = 1.112× 10−3 ∗ x+ 2.460× 10−8 × x2 with x as model complexity (ex-
pression estimated by non-linear regression). This indicates that the growth
indeed maps to the analytical complexity of the st-connectivity problem.

– The ”typical case” experiment is repeated several times with different seed
values. We observe that the checking durations increase according to tw
(all paths are explored) until a violation occurs. After this, the checking
durations increase linear or remain constant. Durations of the ”typical case”
are within [tb, tw]. Fig. 5 shows one example run (blue bouncing graph). First,
the run duration increases according to tw until the complexity of 12275
at which the checked model exhibits a policy violation. After the violation
occurs, the number of visited nodes required for detecting the violation grows
linear due to replication adding each step up to one node to the search
path. At a complexity of 83847, a service interaction is randomly inserted.
The interaction connects a service located at the excluded geo-location to a
service that processes personal data. This almost reduces the time checking
duration to tb. Further runs of the ”typical case” show similar behaviors.

An amount of more than 800 virtual machines is realistic for large applications
as, for instance, Hadoop-clusters typically utilize several hundreds of data nodes
(see [4]). However, our approach is still able to check the worst case for large
cloud applications (> 500 virtual machines) in less than one second (cf. tb).
Of course, due to the decision to simulate the cloud, the experimental design
may have limitations towards construct validity. There may be further factors
influencing the performance of the approach in a productive cloud environment.
For instance, delays of monitoring data may result from geographical distances
between the monitoring probes and the place where the policy checker resides.
These limitations have to be tackled in future experiments conducted on real
cloud infrastructures.

6 Conclusion and Future Work

We analyzed the problem of checking the compliance of data geo-location poli-
cies for cloud services. We identified and described three cases that may violate
data geo-location policies. These cases result from changes in service interactions
in combination with cloud elasticity. In contrast to existing policy checks, the
proposed approach considers direct and indirect data transfers resulting from
service interactions. Initial experimental evidence indicates that the proposed
approach is able to correctly identify violations and that it may do so - even for
large cloud settings - with very fast response times. As a part of future work,
we plan to apply our approach to other application types as well. Further, we
aim for investigating the approach’s effectiveness in realistic cloud environments.

Policy Checks Based on Runtime Models 319

To this end, we will investigate its violation detection capabilities with respect
to precision, recall, and further evaluation metrics. In addition, we will comple-
ment our approach by leveraging cloud monitoring data to update the proposed
runtime models.

Acknowledgements. This work was partially supported by the DFG (Ger-
man Research Foundation) under the Priority Programme ”SPP1593: Design
For Future – Managed Software Evolution” (grant PO 607/3-1).

References

1. van der Aalst, W., Schonenberg, M., Song, M.: Time prediction based on process
mining. Information Systems 36(2) (Apr 2011)

2. Brosig, F., Huber, N., Kounev, S.: Automated extraction of architecture-level
performance models of distributed component-based systems. In: 2011 26th
IEEE/ACM International Conference on Automated Software Engineering, ASE
(2011)

3. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: A framework for QoS-aware
binding and re-binding of composite web services. Journal of Systems and Software
81(10) (2008)

4. Chen, Y., Alspaugh, S., Katz, R.: Interactive analytical processing in big data
systems: A cross-industry study of MapReduce workloads. Proc. VLDB Endow.
5(12) (August 2012)

5. Copil, G., Moldovan, D., Truong, H.-L., Dustdar, S.: Multi-level elasticity control
of cloud services. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013.
LNCS, vol. 8274, pp. 429–436. Springer, Heidelberg (2013)

6. Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-
time parameter adaptation. In: 31st Internal Conference on Software Engineering
(ICSE) (2009)

7. e-Ghazia, U., Masood, R., Shibli, M.A.: Comparative analysis of access control
systems on cloud. In: 2012 13th ACIS International Conference on Software En-
gineering, Artificial Intelligence, Networking and Parallel Distributed Computing
(SNPD) (2012)

8. Gondree, M., Peterson, Z.N.: Geolocation of data in the cloud. In: Proceedings
of the Third ACM Conference on Data and Application Security and Privacy,
CODASPY 2013. ACM, New York (2013)

9. Gutiérrez, A.M., Cassales Marquezan, C., Resinas, M., Metzger, A., Ruiz-Cortés,
A., Pohl, K.: Extending WS-Agreement to support automated conformity check
on transport and logistics service agreements. In: Basu, S., Pautasso, C., Zhang,
L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 567–574. Springer, Heidelberg
(2013)

10. van Hoorn, A., Rohr, M., Hasselbring, W.: Engineering and continuously operating
self-adaptive software systems: Required design decisions. In: Engels, G., Reussner,
R.H., Momm, C., Stefan, S. (eds.) Design for Future 2009, Karlsruhe, Germany
(November 2009)

11. Huber, N., Brosig, F., Kounev, S.: Modeling dynamic virtualized resource land-
scapes. In: Proceedings of the 8th International ACM SIGSOFT Conference on
Quality of Software Architectures (2012)

320 E. Schmieders, A. Metzger, and K. Pohl

12. Ivanović, D., Carro, M., Hermenegildo, M.: Constraint-based runtime prediction
of sla violations in service orchestrations. In: Kappel, G., Maamar, Z., Motahari-
Nezhad, H.R. (eds.) Service Oriented Computing. LNCS, vol. 7084, pp. 62–76.
Springer, Heidelberg (2011)

13. Juels, A., Oprea, A.: New approaches to security and availability for cloud data.
Commun. ACM 56(2) (February 2013)

14. Jung, R., Heinrich, R., Schmieders, E.: Model-driven instrumentation with kieker
and palladio to forecast dynamic applications. In: Symposium on Software Perfor-
mance: Joint Kieker/Palladio Days 2013. CEUR (2013)

15. Maoz, S.: Using model-based traces as runtime models. Computer 42(10) (2009)
16. von Massow, R., van Hoorn, A., Hasselbring, W.: Performance simulation of

runtime reconfigurable component-based software architectures. In: Crnkovic, I.,
Gruhn, V., Book, M. (eds.) ECSA 2011. LNCS, vol. 6903, pp. 43–58. Springer,
Heidelberg (2011)

17. Park, S., Chung, S.: Privacy-preserving attribute distribution mechanism for ac-
cess control in a grid. In: 21st International Conference on Tools with Artificial
Intelligence (2009)

18. Rausch, A., Reussner, R., Mirandola, R., Plášil, F. (eds.): The Common Compo-
nent Modeling Example. LNCS, vol. 5153. Springer, Heidelberg (2008)

19. Ries, T., Fusenig, V., Vilbois, C., Engel, T.: Verification of data location in cloud
networking. IEEE (December 2011)

20. Schmieders, E., Metzger, A.: Preventing performance violations of service composi-
tions using assumption-based run-time verification. In: Abramowicz, W., Llorente,
I.M., Surridge, M., Zisman, A., Vayssière, J. (eds.) ServiceWave 2011. LNCS,
vol. 6994, pp. 194–205. Springer, Heidelberg (2011)

21. Suleiman, B., Venugopal, S.: Modeling performance of elasticity rules for cloud-
based applications. In: 2013 17th IEEE International Enterprise Distributed Object
Computing Conference (EDOC) (September 2013)

22. Szvetits, M., Zdun, U.: Systematic literature review of the objectives, techniques,
kinds, and architectures of models at runtime. Software & Systems Modeling (De-
cember 2013)

23. Vaquero, L.M., Rodero-Merino, L., Buyya, R.: Dynamically scaling applications in
the cloud. ACM SIGCOMM Computer Communication Review 41(1) (2011)

24. Zang, H., Bolot, J.: Anonymization of location data does not work: A large-scale
measurement study. In: Proceedings of the 17th Annual International Conference
on Mobile Computing and Networking. ACM, New York (2011)

Heuristic Approaches

for Robust Cloud Monitor Placement

Melanie Siebenhaar, Dieter Schuller, Olga Wenge, and Ralf Steinmetz

Technische Universität Darmstadt, Multimedia Communications Lab (KOM),
Rundeturmstr. 10, 64283 Darmstadt, Germany
{firstname.lastname}@KOM.tu-darmstadt.de

Abstract. When utilizing cloud-based services, consumers obtain high
configurable resources with minimal management effort and eliminate
large up-front IT investments. However, this shift in responsibility to
the cloud provider is accompanied by a loss of control for the cloud con-
sumer. By offering SLAs and corresponding monitoring solutions, cloud
providers already try to address this issue, but these solutions are not
considered as sufficient from a consumer’s perspective. Therefore, we de-
veloped an approach that allows to verify compliance with SLAs from
a consumer’s perspective in our former work. Since the monitoring in-
frastructure itself may fail, this approach was enhanced in one of our
subsequent works in order to account for reliability. We introduced the
Robust Cloud Monitor Placement Problem and a formal optimization
model. In this paper, we propose corresponding solution approaches and
evaluate their practical applicability, since the problem is NP-complete.

Keywords: Cloud Computing, Monitoring, Placement, Performance.

1 Introduction

Utilizing services from the cloud, consumers gain a very high level of flexibility.
Configurable computing resources are provided on-demand in a similar manner
like electricity or water [4] at a minimal amount of management effort. However,
this shift in responsibility to the cloud provider bears several risks for the cloud
consumer. Amongst these risks is a loss of control concerning aspects like per-
formance, availability, and security. Quality guarantees in the form of so-called
Service Level Agreements (SLAs) offered by cloud providers aim at lowering this
risk in favor for cloud consumers. Basically, an SLA represents a contract between
a cloud provider and a cloud consumer and defines certain quality levels (e.g.,
lower bounds for performance parameters such as availability) to be maintained
by the cloud provider. In addition, such a contract specifies some penalties for
the cloud provider in case of SLA violations. Nevertheless, the cloud consumers’
perception still is that providers do not sufficiently measure performance against
SLAs [5]. Furthermore, cloud providers often assign the task of violation report-
ing to their customers [11]. But even despite the fact that some cloud providers
also offer consumers corresponding monitoring solutions, these solutions cannot

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 321–335, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

322 M. Siebenhaar et al.

be perceived as an independent evidence base for the detection and documenta-
tion of SLA violations from a consumer’s perspective.

Our previous works ([15], [14]) addressed this issue. We proposed a hybrid
monitoring approach in order to provide reliable means to verify adherence with
SLAs from a consumer’s perspective. This approach focuses on the consumer-
side verification of availability of cloud applications and comprises the placement
of monitoring units on provider and consumer side. Furthermore, we argue that
not only the monitoring quality of such an approach has to be taken into ac-
count, but also the reliability of the monitoring infrastructure itself. This view
was emphasized by our evaluation which revealed the sensitivity of our approach
to network impairments. Therefore, we extended our approach and explored the
placement of monitoring units with respect to current network reliability. As re-
sult, we introduced the Robust Cloud Monitor Placement Problem (RCMPP) as
a new research problem along with a corresponding formal optimization model.
Since the RCMPP is a nonlinear, multi-objective optimization problem, we fur-
ther proposed transformations in order to turn the problem into a linear, single-
objective optimization problem and thus, laying the foundation to exactly solve
the problem using off-the-shelf optimization algorithms.

In this paper, we investigate the applicability of such exact optimization algo-
rithms and also propose new heuristic solution approaches. Due to the fact that
the RCMPP is NP-complete, exact optimization algorithms are very likely to
be inapplicable for real-world scenarios exhibiting large-scale data center infras-
tructures. Hence, we compare the computation time and solution quality of an
exact, ILP-based approach against heuristic solution approaches in order to de-
rive recommendations for their applicability in practice. Furthermore, we extend
our approach to a broker-based scenario and propose the concept of Monitor-
ing Level Agreements (MLAs). In doing so, our extended approach permits an
advanced performance control for cloud consumers.

The remainder of this paper is structured as follows: Section 2 gives an
overview of related work. Section 3 briefly describes our extended approach and
gives an overview of our former work. In Section 4, we propose exact and heuris-
tic solution approaches for the RCMPP and present a corresponding evaluation
in Section 5. In Section 6, the paper closes with a summary and future work.

2 Related Work

Only a few approaches exist which consider a reliable placement of monitoring
units. A distribution of sensor pods on each cloud node in order to enable tenants
to monitor the connectivity between their allocated nodes is proposed by [12].
The authors in [2] follow a different approach and focus on relocatable VMs
in the presence of up to k host failures. For this purpose, the authors propose
different optimization algorithms in order to determine k independent paths from
the monitoring nodes to all other nodes in the network. Concerning networks
in general, [10] aim at minimizing the number of monitoring locations while
taking a maximum of k node/edge failures into account. A related problem also

Heuristic Approaches for Robust Cloud Monitor Placement 323

exists in the field of Operations Research. The fault-tolerant facility location
problem, first studied by [8], tries to connect each city with at least a certain
number of distinct facilities in order to account for failures. However, none of
the related approaches addresses robust monitor placement by jointly considering
current network reliability, monitor redundancy, and resource as well as location
constraints.

3 Performance Control for Cloud Consumers

In this section, we give an overview of our extended approach and align our
former work as well as our new contributions in the context of a broker-based
scenario. Our former work is briefly described in the next sections followed by a
detailed description of our new contributions.

This paper focuses on a broker-based scenario that is based on a cloud mar-
ket model. In such a cloud market, cloud consumers submit their functional and
non-functional requirements for their desired cloud services to brokers, which
constitute mediators between cloud consumers and providers [4]. The brokers
are capable to determine the most suitable cloud providers by querying a service
registry residing in the market. Furthermore, such a broker enables consumers
to negotiate SLAs to be provided by the cloud provider. For this purpose, a
broker acts on behalf of a cloud consumer and conducts SLA negotiations with
cloud providers. Now, in order to be able to verify compliance with SLAs from
a consumer’s perspective later on, the broker can also act on behalf of con-
sumers and apply our proposed monitoring approach during runtime. The ad-
vantage of a broker-based perspective for our approach is the exploitation of
global knowledge. In case that SLA violations are detected, a broker is aware of
the adherence to SLAs of other cloud providers and thus, is able to recommend
alternative cloud providers. In addition, the monitoring information gained at
runtime can be used to initiate SLA re-negotiations or to adapt the properties of
the monitoring approach in order to improve monitoring quality or monitoring
infrastructure reliability.

In the following, we focus on an enterprise cloud consumer utilizing a set of
applications running in different data centers of a cloud provider. In order to
verify the performance guarantees in the form of SLAs obtained from the cloud
provider, the enterprise cloud consumer entrusts the broker which conducted
the SLA negotiations before with the monitoring of the running cloud appli-
cations. As part of such a monitoring service order, we propose the definition
of Monitoring Level Agreements (MLAs) specifying the properties of the mon-
itoring tasks for each application (cf. Section 3.1 for details). The broker then
applies our hybrid monitoring approach and places monitoring units for each
cloud application on provider- as well as on broker-side. Besides the provider-
side monitoring, the broker-side monitoring permits an assessment of the status
of a cloud application from a consumer’s perspective. In order to obtain a robust
monitor placement, the broker can select one of our proposed monitor placement
algorithms according to our investigation in Section 4.

324 M. Siebenhaar et al.

3.1 Hybrid Monitoring Approach and Monitoring Level Agreements

Our hybrid monitoring approach introduced in our former work in [15] focuses
on verifying the availability of cloud applications from a consumer’s perspective,
since availability is one of the very few performance parameters contained in
current cloud SLAs. Nevertheless, other performance parameters can be easily
incorporated in our monitoring approach as well. In order to allow for an in-
dependent assessment of the status of a cloud application and visibility of the
end-to-end performance of cloud applications, we proposed a hybrid monitoring
approach with placements of monitoring units on provider and consumer side.
The latter are now replaced by broker-side placements. Furthermore, such a hy-
brid approach permits to differentiate between downtimes caused by issues on
broker and provider side and thus, enables a broker to filter downtimes that re-
late to cloud provider SLAs. In our hybrid monitoring approach, each monitoring
unit observes predefined services of a cloud application as well as processes of
the underlying VM. For each cloud application, the set of services to be invoked
by a monitoring unit can be defined in advance. Same applies for the system
processes to be observed on VM level. For this purpose, MLAs can specify the
consumer’s requirements concerning all the cloud applications to be monitored.
Besides the services and processes, an amount of redundant monitoring units
to be placed for each application can be defined. Higher numbers of redundant
monitoring units are reasonable for business critical applications, since the prob-
ability that all redundant monitors fail decreases. We also follow this assumption
in our monitor placement approach described in the next section.

3.2 Robust Cloud Monitor Placement

As already stated before, our approach must not only consider monitoring qual-
ity, but also has to account for downtimes of the monitoring infrastructure itself.
Therefore, the monitoring units have to be placed by a broker in the data centers
on provider- and broker-side in such a way that maximizes the robustness of the
monitoring infrastructure. We introduced this problem, denoted as Robust Cloud
Monitor Placement Problem (RCMPP), in our former work in [14]. The corre-
sponding formal model is briefly described in the following. Table 1 shows the
basic entities (upper part) and parameters (lower part) used in the formal model.
Each instance of the RCMPP consists of a set S = {1, ..., n} of data center sites
comprising the set S′′ = {1, ..., d} of data center sites on broker side and the set
S′ = {d+1, ..., n} of data center sites on cloud provider side. On each data center
site s ∈ S on provider and broker side, a set Vs = {1, ..., i} of VMs is running
which constitute candidates for monitor placement. A set of cloud applications
Cs′v′ = {1, ..., j} to be monitored is running on each VM v′ ∈ Vs′ located on
a data center site s′ ∈ S′ on provider side. A set of links L = {l(sv � s′v′)}
interconnects the VMs v ∈ Vs constituting placement candidates with the VMs
v′ ∈ Vs′ of the cloud applications Cs′v′ . Each cloud application c ∈ Cs′v′ has
certain requirements concerning the corresponding monitoring units. These re-
quirements comprise a specific resource demand of rds′v′cr ∈ R+ for a specific

Heuristic Approaches for Robust Cloud Monitor Placement 325

Table 1. Used symbols in the formal model

Symbol Description

S = {1, ..., n} set of n data center sites
S′′ = {1, ..., d} consumer sites, S′′ ⊂ S
S′ = {d+ 1, ..., n} provider sites, S′ ⊂ S
Vs = {1, ..., i} VM candidates for monitor placement on site s ∈ S
Cs′v′ = {1, ..., j} cloud applications to monitor on VM v′ ∈ Vs′ , s

′ ∈ S′

L = {l(sv � s′v′)} links interconnecting VM monitor candidates Vs and
VMs of applications Cs′v′

R = {1, ..., k} set of k considered VM resource types

rds′v′cr ∈ R+ resource demand for monitoring application c ∈ Cs′v′ for
resource r ∈ R

rssvr ∈ R+ resource supply of VM v ∈ Vs for resource r ∈ R
rfs′v′c ∈ N>1 redundancy factor for monitoring application c ∈ Cs′v′

pl(sv�s′v′) ∈ R+ observed reliability for each link l ∈ L
psv ∈ R+ observed reliability for each VM v ∈ Vs

resource type r ∈ R = {1, ..., k} such as CPU power or memory, and a redun-
dancy factor rfs′v′c ∈ N>1, indicating that the cloud application c has to be
monitored by rfs′v′c different monitoring units. In order to account for the re-
liability of the monitoring infrastructure, it has to be noted that the broker is
not aware of the underlying network topologies of the cloud provider and the
Internet service provider. However, we assume that the broker is able to utilize
traditional network measurement tools in order to estimate the end-to-end per-
formance between any pair of VMs that are represented by a given link l ∈ L
in order to determine the observed reliability pl(sv�s′v′) ∈ R+ for a given link
l ∈ L. Furthermore, we assume that the broker can also utilize such measure-
ment tools in order to estimate the reliability psv ∈ R+ of a given VM v ∈ Vs

on a site s ∈ S. Finally, our model must also consider the respective resource
supply of rssvr ∈ R+ each VM v ∈ Vs on a site s ∈ S is able to provide. The
objective of the RCMPP now is to assign rfs′v′c monitoring units for each cloud
application to be monitored on broker and provider side, while maximizing the
reliability of the whole monitoring infrastructure. Hereby, we express the relia-
bility by the probability that at least one of the monitoring units for each cloud
application is working properly. In doing so, the resource constraints of the VMs
must not be exceeded and all monitoring units must be placed. Furthermore,
we incorporate a set of placement restrictions for the monitoring units. First of
all, no monitoring unit is allowed to be placed on the VM of the cloud applica-
tion to be monitored and second, one monitoring unit must be placed on broker
and provider side, respectively. Both restrictions directly follow from our hybrid
monitoring approach. Third, for reasons of fault-tolerance, each monitoring unit
to be placed for a single application must be placed on a different site.

326 M. Siebenhaar et al.

3.3 Formal Model

The corresponding optimization model for the RCMPP is depicted in Model 1
and serves as a starting point for the development of solution algorithms. The
RCMPP constitutes a multi-objective optimization problem, since we want to
maximize the reliability of the monitoring units for each cloud application, si-
multaneously (cf. Equation 1). Each of these potentially conflicting objective
functions expresses the probability pmon

s′v′c(x), that at least one monitoring unit

Model 1. Robust Cloud Monitor Placement Problem

Maximize {pmon
s′v′c(x)|s′ ∈ S′, v′ ∈ Vs′ , c ∈ Cs′v′} (1)

pmon
s′v′c(x) = 1−

∏
s∈S,v∈Vs

(qpathsvs′v′)
xsvs′v′c (2)

qpathsvs′v′ = [(1− psv) + (1− pl(sv�s′v′)) (3)

−(1− psv) (1− pl(sv�s′v′))]

subject to

∑
s∈S,v∈Vs

xsvs′v′c = rfs′v′c (4)

∀s′ ∈ S′, v′ ∈ Vs′ , c ∈ Cs′v′ , rfs′v′c ≥ 2∑
s′∈S′,v′∈Vs′ ,c∈Cs′v′

rds′v′cr xsvs′v′c ≤ rssvr (5)

∀s ∈ S, v ∈ Vs, r ∈ R∑
v∈Vs

xsvs′v′c ≤ 1 (6)

∀s ∈ S, s′ ∈ S′, v′ ∈ Vs′ , c ∈ Cs′v′∑
s∈S,v∈Vs

xsvs′v′c ≥ 1 (7)

∀s′ ∈ S′, v′ ∈ Vs′ , c ∈ Cs′v′ , s = {d + 1, ..., n}∑
s∈S,v∈Vs

xsvs′v′c ≥ 1 (8)

∀s′ ∈ S′, v′ ∈ Vs′ , c ∈ Cs′v′ , s = {1, ..., d}
xsvs′v′c = 0 (9)

∀c ∈ Cs′v′ , s = s′ and v = v′

xsvs′v′c ∈ {0, 1} (10)

∀s ∈ S, v ∈ Vs, s
′ ∈ S′, v′ ∈ Vs′ , c ∈ Cs′v′

Heuristic Approaches for Robust Cloud Monitor Placement 327

for the respective application does not fail. Equation 2 represents this probabil-
ity by 1 minus the probability that all monitors for a specific cloud application
c ∈ Cs′v′ fail. Equation 3 determines the probability to fail (qpathsvs′v′) for a given
monitoring unit of a specific cloud application c ∈ Cs′v′ . Hereby, the reliability
of the VM v ∈ Vs where the monitoring unit is placed as well as the reliability
of the link between this VM and the VM where the cloud application is running
on are considered. Equation 10 defines a set xsvs′v′c of binary decision variables
indicating whether a monitoring unit for a cloud application c ∈ Cs′v′ running
on VM v′ ∈ Vs′ on site s′ ∈ S′ is placed on VM v ∈ Vs running on site s ∈ S.
The vector x in Equation 1 represents all decision variables xsvs′v′c. In order to
ensure that rfs′v′c redundant monitoring units monitor the corresponding cloud
application, Equation 4 has been added to the model. Equations 7 and 8 account
for the hybrid monitoring approach and specify that at least one monitoring unit
has to be placed on broker and provider side, respectively. Equation 5 prevents
the exceeding of the resource supplies of each VM v ∈ Vs and Equation 6 ensures
that each monitoring unit for a given application c ∈ Cs′v′ is placed on a different
data center site. Last, but not least, a monitoring unit is not allowed to be placed
on the VM where the corresponding application is running (cf. Equation 9).

The RCMPP is a multi-objective optimization problem, hence, no unique
solution can be obtained. Furthermore, as can be seen from Equation 2 in
Model 1, it also constitutes a nonlinear problem. Although approaches exist
for solving multi-objective optimization problems, these approaches only yield
pareto-optimal solutions and typically require some kind of preference structure
concerning the set of solutions as input. Since defining a preference structure,
e.g., in the form of a lexicographic preference order with regard to all applica-
tions to be monitored, is very exhausting on a large data center scale, we aim
for a solution approach focusing on a single-objective.

4 Exact and Heuristic Solution Approaches

This section describes an exact ILP-based solution approach as well as two
heuristics in order to solve the RCMPP. The heuristic algorithms are partly
inspired from existing solution approaches (e.g., [6], [9]) for the related gener-
alized assignment problem and its bottleneck version. A direct application of
existing heuristics is not feasible, since no full mapping exists from the RCMPP
to an existing optimization problem. Furthermore, since the RCMPP is NP-
complete, ILP-based algorithms will also not be able to find solutions for large-
scale problems. Therefore, the development of new heuristics is required. Our
heuristics consist of an opening procedure (Greedy), which aims to find a first
feasible solution, and an improvement procedure (TSearch) aiming to improve
an initial solution. Hence, we obtain two different heuristics in total: Greedy and
Greedy+TSearch (denoted as GTSearch).

328 M. Siebenhaar et al.

Model 2. Robust Cloud Monitor Placement Problem after Transformation

Minimize z (11)

subject to

qlogs′v′c(x) ≤ z (12)

∀s′ ∈ S′, v′ ∈ Vs′ , c ∈ Cs′v′ , z ∈ R

qlogs′v′c(x) =
∑

s∈S,v∈Vs

xsvs′v′c log(qpathsvs′v′) (13)

qpathsvs′v′ = [(1− psv) + (1− pl(sv�s′v′)) (14)

−(1− psv) (1− pl(sv�s′v′))]

qpathsvs′v′ > 0 ∀s ∈ S, v ∈ Vs, s
′ ∈ S′, v′ ∈ Vs′ (15)

4.1 Integer Linear Programming (ILP)-Based Approach

In order to turn the RCMPP into a linear, single-objective optimization problem,
we proposed a set of transformations in our former work in [14]. The transfor-
mations are briefly summarized in the following.

First of all, the maximization problem is turned into a minimization problem.
This can be achieved by considering the complementary objectives of the for-
mer Model 1, i.e., the probability qmon

s′v′c(x) that all monitors fail for each cloud
application. The first step enables a subsequent linearization of the problem by
taking the logarithm of both sides (this approach is also followed by [1]). Our
last step is based on a worst-case analysis, where we aim to minimize the worst
possible outcome. For this purpose, we apply a so-called minimax strategy [7],
which turns the initial set of objective functions into a single objective function
that aims to minimize the maximum probability of all qmon

s′v′c(x). In doing so, a
new decision variable z ∈ R expressing this maximum value is introduced. In
addition, |Cs′v′ | new constraints ∀s′ ∈ S′, v′ ∈ Vs′ are added to the constraints
of our former Model 1. The resulting linear, single-objective optimization prob-
lem is depicted in Model 2. Please note, that the initial constraints have been
neglected due to lack of space. Furthermore, we assume qpathsvs′v′ > 0, since no sys-
tem is without failure. The resulting problem represents a mixed-integer linear
programming problem that can be solved exactly using off-the-shelf algorithms
such as branch-and-bound [6].

4.2 Greedy Algorithm

Algorithm 3 describes our opening procedure. This algorithm is inspired by
the steepest ascent approach (cf. [6]), which is typically applied in local search
procedures. However, although local search algorithms belong to the group of
improvement procedures, the idea behind our Greedy algorithm is very similar.

Heuristic Approaches for Robust Cloud Monitor Placement 329

Algorithm 3. Greedy Heuristic

input: connections C, vm capacities V, application monitor requirements R
output: monitor placements P
1: procedure Greedy(C, V , R)
2: P ← {}
3: sortdescrel(C)
4: for all c ∈ C do
5: app ← app(c)
6: sourcevm ← source(c)
7: targetvm ← target(c)
8: if app ∈ R then
9: violation ← checkconstraints(app, sourcevm, targetvm,V, R,P)
10: if violation �= TRUE then
11: P = P ∪ {c}
12: update(app, sourcevm, targetvm,V, R)
13: end if
14: n ← remunits(app,R)
15: if n = 0 then
16: R ← R/ {app}
17: end if
18: end if
19: end for
20: l ← size(R)
21: if l > 0 then
22: P ← NULL � no feasible solution could be found
23: end if
24: return P
25: end procedure

In each step, the Greedy algorithm tries to improve the partial solution obtained
so far to a maximum extent. For this purpose, the set of connections between
each VM (sourcevm) where a cloud application (app) to be monitored is run-
ning and each VM (targetvm) constituting a candidate for monitor placement
is sorted according to decreasing reliability values (line 3). Afterwards, we ex-
plore the connections in descending order (line 4). In each step, if all redundant
monitoring units for each application have not been placed so far (line 8), we
examine, whether we can place a monitoring unit on the targetvm of the current
connection. For this purpose, we check, whether any constraints of the RCMPP
are violated when the placement is realized. In case that no violation is detected
(line 10), we can add the current connection to the result set of final placements
(line 11) and update the auxiliary data structures (line 12). If all redundant
monitoring units have been placed for a given application, this application is re-
moved from the set R of monitor requirements (line 16). The Greedy algorithm
continues to explore further connections until all monitoring units have been
placed for each application (line 21).

330 M. Siebenhaar et al.

Algorithm 4. Tabu Search Algorithm

input: initial solution S, iteration limit max, connections C, vm capacities V,
application monitor requirements R

output: monitor placements P
1: procedure TSearch(S, C, V , R)
2: T ← {}, mp ← FALSE, r ← 1
3: bestobjval ← compobjval(S,C)
4: while r <= max do
5: update(T)
6: if mp = TRUE then
7: i ← 0
8: else
9: i ← i+ 1
10: end if
11: if i < size(R) then
12: b ← bottleneckapp(i, S, C)
13: else
14: return P � no improvement can be found anymore
15: end if
16: AM ← {}
17: PM ← placedmonitors(b)
18: for all pm ∈ PM do
19: NBSWAP ← swapneighbourhood(pm)
20: NBSHIFT ← shiftneighbourhood(pm)
21: N ← NBSWAP ∪NBSHIFT

22: AM ← admissiblemoves(pm,N, V, R,P)
23: end for
24: sortdescobjval(AM)
25: for all am ∈ AM do
26: if (am /∈ T)or(objval(am) > bestobjval) then
27: domove(am)
28: T ← T ∪ {am}
29: if (objval(am) > bestobjval) then
30: bestobjval ← objval(am)
31: end if
32: mp ← TRUE
33: break
34: end if
35: end for
36: r ← r + 1
37: end while
38: return P
39: end procedure

4.3 Tabu Search Algorithm

Our tabu search algorithm is depicted in Algorithm 4 and is inspired by the work
from Karsu and Azizoglu [9], who proposed a tabu search-based algorithm for

Heuristic Approaches for Robust Cloud Monitor Placement 331

the multi-resource agent bottleneck generalised assignment problem. However,
the problem they consider deals with workload balancing over a set of agents
over multiple periods.

The TSearch algorithm constitutes an improvement procedure, hence, requires
an initial solution S as starting point. Our Greedy algorithm can be applied for
this purpose. The TSearch algorithm then tries to improve the initial solution
over a number of iterations until a predefined number of iterations is reached
(line 4). In each iteration, the TSearch algorithm determines a so-called neigh-
bourhood based on the current solution. Basically, a neighbourhood of a given
solution is a set of solutions that can be obtained by performing so-called moves.
Thereby, a move typically consists of dropping and adding one or more parts
(monitor placements in this case) of the current solution. In the TSearch al-
gorithm, we make use of a combined shift and swap neighbourhood (lines 20
and 19). That is, each move either constitutes in shifting a monitoring unit to
a different VM or two monitoring units swapping places. For the determination
of the neighbourhoods, the TSearch algorithm starts from the cloud application
exhibiting the worst total reliability for its monitoring units placed (line 12)
and thus, having a pivotal role for the calculation of the lower bound z in our
optimization model. We denote this cloud application as bottleneck application.
However, in case that no shift or swap of at least one of the monitoring units
of the bottleneck application is feasible during an iteration, we select the cloud
application with the second worst total reliability for its monitoring units placed
in the next iteration (line 9). At the end of each iteration, we determine the
set of admissible moves with respect to the constraints of the RCMPP among
the solutions in the neighbourhood (line 22). From the set of admissible moves,
we then either select the move with the highest improvement or lowest decrease
with respect to the objective value of the current solution. For this purpose, the
list of admissible moves is sorted in decreasing order of objective values (line 24).
This is a typical approach when following a tabu search-based procedure. Also a
decrease is accepted in order to obtain a different solution, so that the algorithm
does not get stuck in a local optimum. However, in order to prevent that the
algorithm is running in circles, a global tabu list is maintained (line 2) that for-
bids the last moves to be performed again for a predefined number of subsequent
iterations. Only in case that a move that is currently part of the tabu list would
yield a better solution than the current best solution found so far, this move is
performed despite being part of the tabu list (line 26).

5 Performance Evaluation

We have implemented our solution approaches in Java and conducted an eval-
uation in order to assess their applicability for real-world scenarios. For the
implementation and evaluation of the ILP-based approach, we used the JavaILP
framework1 and the commercial solver framework IBM ILOG CPLEX2.

1 http://javailp.sourceforge.net/
2 http://www.ibm.com/software/integration/optimization/cplex-optimizer

http://javailp.sourceforge.net/
http://www.ibm.com/software/integration/optimization/cplex-optimizer

332 M. Siebenhaar et al.

Table 2. Independent variables and values used in the evaluation

Independent Variable Symbol and Values

Number of sites: |S′|, |S′′| ∈ {2, 3, 4}
Number of VMs: |Vs| ∈ {4, 5, 6, 7, 8}
Number of applications: |Cs′v′ | ∈ {1, 2, 3}
Redundancy factor: rfs′v′c ∈ {2, 3, 4}

5.1 Evaluation Methodology

In order to assess the practical applicability of our approaches, we examine
the two dependent variables computation time and solution quality. Solution
quality is expressed by the objective value achieved by a solution approach be-
ing transformed into the corresponding downtime in seconds on a yearly basis.
Furthermore, we consider four independent variables, namely, the total number
of data center sites on broker and provider side, the number of VMs on each
site, the number of cloud applications concurrently running on each VM, and
the redundancy factor for the placement of the monitoring units. As evaluation
methodology, we follow a fractional factorial design [3]. That is, at each point
in time, we only vary one independent variable while keeping the other indepen-
dent variables fixed. Hence, the impact of each independent variable on the two
dependent variables is measured separately. In total, the evaluation consists of
14 test cases depicted in Table 2, each comprising 100 randomly generated prob-
lems. For the generation of the problems, we incorporate realistic data including
VM capacities and availability guarantees from the specifications of Amazons
EC2 VM offers3, as well as packet loss statistics from the PingER project4 to
model link reliability. In addition, we consider only one resource type, CPU,
since our early experiments have shown that CPU is the primary determinant
for placing the monitoring units. Furthermore, we choose each application out
of three application types, each exhibiting different CPU requirements for the
monitoring units to be placed. We also obtained the CPU requirements from
our early experiments. Synthetic VM workloads based on the work by [13] are
used to determine the remaining VM resource supplies. Each problem was solved
using our three solution approaches. In addition, we added a random solution
approach, which conducts a random placement of the monitoring units, while
only considering adherence with all constraints. For the solution of each problem
and each optimization approach, we set a timeout of 5 minutes, which can be
perceived as a realistic value in the context of our broker-based scenario and
on-demand cloud service provisioning. For the GTSearch heuristic, we set the
maximum number of iterations to 1000 and the tabu tenure to 50 based on [9].

3 http://aws.amazon.com/ec2/
4 http://www-iepm.slac.stanford.edu/pinger/

http://aws.amazon.com/ec2/
http://www-iepm.slac.stanford.edu/pinger/

Heuristic Approaches for Robust Cloud Monitor Placement 333

GREEDY GTSEARCH ILP

2 3 4

1

10

100

1000

10000

100000
co

m
pu

ta
tio

n
tim

e
(m

s)

Fig. 1. No. of sites

GREEDY GTSEARCH ILP

4 5 6 7 8

1

10

100

1000

10000

co
m

pu
ta

tio
n

tim
e

(m
s)

Fig. 2. No. of VMs

GREEDY GTSEARCH ILP

1 2 3

1

10

100

1000

10000

100000

co
m

pu
ta

tio
n

tim
e

(m
s)

Fig. 3. No. of applications

GREEDY GTSEARCH ILP

2 3 4

1

10

100

co
m

pu
ta

tio
n

tim
e

(m
s)

Fig. 4. Redundancy factor

RANDOM GREEDY GTSEARCH ILP

1 2 3
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

do
w

nt
im

e
(s

)

Fig. 5. No. of applications

GREEDY GTSEARCH ILP

1 2 3
0

100

200

300

400

500

600

700

800

900

do
w

nt
im

e
(s

)

Fig. 6. No. of applications (magnified view)

5.2 Simulation Results

Figures 1 to 6 depict selected results of the evaluation. Please note the logarith-
mic scale in the first four figures.

When using the ILP approach, the computation time shows an exponential
growth with increasing problem size, e.g., 100ms up to 10000ms in Fig. 1. How-
ever, this effect is considerably less when increasing the redundancy factor. All in

334 M. Siebenhaar et al.

all, the exponential growth underlines the fact that the RCMPP is NP-complete.
Hence, the applicability of the ILP approach in practice is very limited, since
the size of the problems considered in the evaluation is relatively small. Never-
theless, the ILP approach can serve as a baseline in order to assess the heuristic
approaches. In comparison to the ILP approach and the GTSearch heuristic, the
Greedy heuristic performs best with respect to computation time and yields a
linear growth with increasing problem size. The GTSearch heuristic also shows
smaller values in computation time than the ILP approach. This effect is most
pronounced when the number of cloud applications increases (cf. Fig. 3). How-
ever, the GTSearch heuristic exhibits no linear growth with respect to problem
size like the Greedy heuristic (cf. Fig. 2). Therefore, a further improvement of
this heuristic with respect to computation time will be considered in future
work, since this heuristic performs best, besides the ILP approach, with respect
to solution quality (cf. Fig. 5). In comparison, the Greedy heuristic although
showing the best computation times performs worse regarding solution quality
with increasing complexity of the problem (cf. Fig. 6 for a magnified view). Nev-
ertheless, the Greedy heuristic still achieves a considerably large improvement
over a random placement. The results of a random placement of monitoring units
are depicted in Fig. 5 and emphasize the need for heuristic solutions. Without
conducting any optimization, the monitoring units would end up, e.g., with a
downtime of 25 minutes (on a yearly basis) in contrast to a few seconds when
using the other approaches in case of 3 cloud applications deployed on each VM.
A result which is unacceptable when business critical applications are utilized.

6 Summary and Outlook

When using resources from the cloud, the shift of responsibility to the cloud
provider is attended with a loss of control for cloud consumers. Hence, we have
developed an approach to monitor compliance with SLAs from a consumer’s
perspective in our former work and introduced the Robust Cloud Monitor Place-
ment Problem (RCMPP), since the monitoring system itself may also fail. In this
paper, we investigated three different solution approaches for the RCMPP: an
ILP-based approach, a Greedy heuristic, and the Greedy heuristic in conjunction
with a tabu search-based improvement procedure (GTSearch). Our simulation
results confirmed the practical inapplicability of the ILP-based approach. Nev-
ertheless, it was used as a baseline for assessing the developed heuristics. All in
all, only the GTSearch heuristic is able to achieve near optimal results, but ex-
hibits no linear growth in computation time in contrast to the Greedy heuristic.
Therefore, we will explore the improvement of our heuristics in future work.

Acknowledgments. This work was supported in part by the German Federal
Ministry ofEducation andResearch (BMBF)under grant no. “01|C12S01V” in the
context of the Software-Cluster project SINNODIUM (www.software-cluster.
org), theGermanResearchFoundation (DFG) in the CollaborativeResearchCen-
ter (SFB) 1053 –MAKI, and the E-Finance Lab Frankfurt amMain e.V. (http://
www.efinancelab.com).

www.software-cluster.org
www.software-cluster.org
http://www.efinancelab.com
http://www.efinancelab.com

Heuristic Approaches for Robust Cloud Monitor Placement 335

References

1. Andreas, A.K., Smith, J.C.: Mathematical Programming Algorithms for Two-Path
Routing Problems with Reliability Considerations. INFORMS Journal on Comput-
ing 20(4), 553–564 (2008)

2. Bin, E., Biran, O., Boni, O., Hadad, E., Kolodner, E., Moatti, Y., Lorenz,
D.: Guaranteeing High Availability Goals for Virtual Machine Placement. In:
31st International Conference on Distributed Computing Systems (ICDCS), pp.
700–709 (2011)

3. Box, G.E.P., Hunter, J.S., Hunter, W.G.: Wiley, 2nd edn. (2005)
4. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud Computing

and Emerging IT Platforms: Vision, Hype, and Reality for Delivering Computing
as the 5th Utility. Future Generation Computer Systems 25(6), 599–616 (2009)

5. CSA, ISACA: Cloud Computing Market Maturity. Study Re-
sults. Cloud Security Alliance and ISACA (2012), http://www.

isaca.org/Knowledge-Center/Research/ResearchDeliverables/Pages/

2012-Cloud-Computing-Market-Maturity-Study-Results.aspx (last access:
May 30, 2014)

6. Hillier, F.S., Liebermann, G.J.: Inroduction to Operations Research, 8th edn.
McGraw-Hill (2005)

7. Jensen, P.A., Bard, J.F.: Appendix A: Equivalent Linear pROGRAMS. In:
Supplements to Operations Research Models and Methods. John Wiley and
Sons (2003), http://www.me.utexas.edu/~jensen/ORMM/supplements/units/lp_
models/equivalent.pdf (last access: May 30, 2014)

8. Kamal, J., Vazirani, V.V.: An Approximation Algorithm for the Fault Tolerant
Metric Facility Location Problem. In: Jansen, K., Khuller, S. (eds.) APPROX
2000. LNCS, vol. 1913, pp. 177–182. Springer, Heidelberg (2000)

9. Karsua, Z., Azizoglua, M.: The Multi-Resource Agent Bottleneck Generalised As-
signment Problem. International Journal of Production Research 50(2), 309–324
(2012)

10. Natu, M., Sethi, A.S.: Probe Station Placement for Robust Monitoring of Networks.
Journal of Network and Systems Management 16(4), 351–374 (2008)

11. Patel, P., Ranabahu, A., Sheth, A.: Service Level Agreement in Cloud Computing.
Tech. rep., Knoesis Center, Wright State University, USA (2009)

12. Sharma, P., Chatterjee, S., Sharma, D.: CloudView: Enabling Tenants to Monitor
and Control their Cloud Instantiations. In: 2013 IFIP/IEEE International Sympo-
sium on Integrated Network Management (IM 2013), pp. 443–449 (2013)

13. Shrivastava, V., Zerfos, P., Lee, K.W., Jamjoom, H., Liu, Y.H., Banerjee, S.:
Application-aware Virtual Machine Migration in Data Centers. In: Proceedings
of the 30th IEEE International Conference on Computer Communications (INFO-
COM 2011), pp. 66–70 (April 2011)

14. Siebenhaar, M., Lampe, U., Schuller, D., Steinmetz, R.: Robust Cloud Monitor
Placement for Availability Verification. In: Helfert, M., Desprez, F., Ferguson, D.,
Leymann, F., Muoz, V.M. (eds.) Proceedings of the 4th International Conference
on Cloud Computing and Services Science (CLOSER 2014), pp. 193–198. SciTe
Press (April 2014)

15. Siebenhaar, M., Wenge, O., Hans, R., Tercan, H., Steinmetz, R.: Verifying the
Availability of Cloud Applications. In: Jarke, M., Helfert, M. (eds.) Proceedings
of the 3rd International Conference on Cloud Computing and Services Science
(CLOSER 2013), pp. 489–494. SciTe Press (May 2013)

http://www.isaca.org/Knowledge-Center/Research/ResearchDeliverables/Pages/2012-Cloud-Computing-Market-Maturity-Study-Results.aspx
http://www.isaca.org/Knowledge-Center/Research/ResearchDeliverables/Pages/2012-Cloud-Computing-Market-Maturity-Study-Results.aspx
http://www.isaca.org/Knowledge-Center/Research/ResearchDeliverables/Pages/2012-Cloud-Computing-Market-Maturity-Study-Results.aspx
http://www.me.utexas.edu/~jensen/ORMM/supplements/units/lp_models/equivalent.pdf
http://www.me.utexas.edu/~jensen/ORMM/supplements/units/lp_models/equivalent.pdf

Compensation-Based vs. Convergent
Deployment Automation for Services Operated

in the Cloud

Johannes Wettinger, Uwe Breitenbücher, and Frank Leymann

Institute of Architecture of Application Systems, University of Stuttgart, Stuttgart,
Germany

{wettinger,breitenbuecher,leymann}@iaas.uni-stuttgart.de

Abstract. Leading paradigms to develop and operate applications such
as continuous delivery, configuration management, and the merge of de-
velopment and operations (DevOps) are the foundation for various tech-
niques and tools to implement automated deployment. To expose such
applications as services (SaaS) to users and customers these approaches
are typically used in conjunction with Cloud computing to automatically
provision and manage underlying resources such as storage or virtual ma-
chines. A major class of these automation approaches follows the idea of
converging toward a desired state of a resource (e.g., a middleware com-
ponent deployed on a virtual machine). This is achieved by repeatedly
executing idempotent scripts until the desired state is reached. Because
of major drawbacks of this approach, we present an alternative deploy-
ment automation approach based on compensation and fine-grained snap-
shots using container virtualization. We further perform an evaluation
comparing both approaches in terms of difficulties at design time and
performance at runtime.

Keywords: Compensation, Snapshot, Convergence, Deployment Automa-
tion, DevOps, Cloud Computing.

1 Introduction

Cloud computing [10,21,7] can be used in different setups such as public, private,
and hybrid Cloud environments to efficiently run a variety of kinds of applica-
tions, exposed as services (SaaS). Prominent examples are Web applications,
back-ends for mobile applications, and applications in the field of the “internet
of things”, e.g., to process large amounts of sensor data. Users of such services
based on Cloud applications expect high availability and low latency when inter-
acting with a service. Consequently, the applications need to scale rapidly and
dynamically to serve thousands or even millions of users properly. To implement
scaling in a cost-efficient way the application has to be elastic, which means that
application instances are provisioned and decommissioned rapidly and automat-
ically based on the current load. Cloud providers offer on-demand self-service
capabilities, e.g., by providing corresponding APIs to provision and manage re-
sources such as virtual machines, databases, and runtime environments. These

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 336–350, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Compensation-Based vs. Convergent Deployment Automation 337

capabilities are the foundation for scaling applications and implementing elas-
ticity mechanisms to run them efficiently in terms of costs. Moreover, users of
services operated in the Cloud expect fast responses to their changing and grow-
ing requirements as well as fixes of issues that occur. Thus, underlying applica-
tions need to be redeployed frequently to production, e.g., several times a week.
Development and operations need to be tightly coupled to enable such frequent
redeployments. DevOps [5,3] aims to eliminate the split between developers and
operations to automate the complete deployment process from the source code in
version control to the production environment. Today, the DevOps community
follows a leading paradigm to automate the deployment, namely to implement
idempotent scripts to converge resources toward a desired state. Because this
approach has some major drawbacks we propose an alternative approach based
on compensation. Our major contributions are presented in this paper:

– We present the fundamentals of state-of-the-art deployment automation ap-
proaches and point out existing deficiencies and difficulties

– We propose an alternative approach to implement deployment automation
based on compensation on different levels of granularity to improve the effi-
ciency and robustness of script execution

– We further show how compensation actions can be automatically derived at
runtime to ease the implementation of compensation based on snapshots

– We evaluate the compensation-based deployment automation approach based
on different kinds of applications operated in the Cloud and exposed as ser-
vices

The remainder of this paper is structured as follows: based on the funda-
mentals showing state-of-the-art deployment automation approaches (Sect. 2),
focusing on convergent deployment automation, we present the problem state-
ment in Sect. 3. To tackle the resulting challenges, Sect. 4 presents approaches
to implement compensation-based deployment automation. Our evaluation of
compensation-based deployment automation is presented and discussed in Sect. 5
and Sect. 6. Finally, Sect. 7 presents related work and Sect. 8 concludes this pa-
per.

2 Fundamentals

The automated deployment of middleware and application components can be
implemented using general-purpose scripting languages such as Perl, Python, or
Unix shell scripts. This is what system administrators and operations personnel
were primarily using before the advent of DevOps tools providing domain-specific
languages [2] to create scripts for deployment automation purposes. We stick to
the following definition 1 for a script to be used for automating operations,
especially considering deployment automation:

Definition 1 (Operations Script). An operations script (in short script) is
an arbitrary executable to deploy and operate middleware and application compo-
nents by modifying the state of resources such as virtual machines. Such a state

338 J, Wettinger, U. Breitenbücher, and F. Leymann

modification could be the installation of a software package, the configuration of
a middleware component, etc. A script consists of a sequence of actions such as
command statements that implement state modifications.

Technically, a script can be implemented imperatively (e.g., using general-
purpose scripting languages) or declaratively (e.g., using domain-specific lan-
guages [2]). In case of using a declarative language, the concrete imperative
command statements and their sequential ordering has to be derived in a pre-
processing step before the actual execution. As an alternative to scripts, com-
piled programs could be used, based on portable general-purpose programming
languages such as Java. However, this would decrease the flexibility and may
have performance impact, because the source code has to be compiled after each
change.

Resource
(e.g., a virtual machine, a container, etc.)

Desired State
(e.g., WordPress

running on Ubuntu)

Original State
(e.g., plain Ubuntu)

Run script
to reach

desired state

If error occurs on
execution of AX

Inconsistent State
(e.g., only database is

running)

Script

Action A1

Action A2

Action A3

…

A

If script is idempotent
 run script again to

converge resource to
desired state

Fig. 1. Script to transfer or converge a resource toward a desired state

Fig. 1 shows the basic usage of scripts: several actions Ax are specified in the
script that are command statements (install package “mysql”, create directory
“cache”, etc.) to transfer a particular resource such as a virtual machine (VM)
or a container [15,17] into a desired state. For instance, the original state of the
virtual machine could be a plain Ubuntu operating system (OS) that is installed,
whereas the desired state is a VM that runs a WordPress blog1 on the Ubuntu
OS. Consequently, a script needs to execute commands required to install and
configure all components (Apache HTTP server, MySQL database server, etc.)
that are necessary to run WordPress on the VM.

This is a straightforward implementation of deployment automation. However,
this approach has a major drawback: in case an error occurs during the execution
1 WordPress: http://www.wordpress.org

http://www.wordpress.org

Compensation-Based vs. Convergent Deployment Automation 339

of the script, the resource is in an unknown, most probably inconsistent state. For
instance, the MySQL database server is installed and running, but the installa-
tion of Apache HTTP server broke, so the application is not usable. Thus, either
manual intervention is required or the whole resource has to be dropped and a
new resource has to be provisioned (e.g., create a new instance of a VM image)
to execute the script again. This is even more difficult in case the original state
is not captured, e.g., using a VM snapshot. In this case manual intervention is
required to restore the original state. This is error-prone, time-consuming, costly,
and most importantly even impossible in cases where the original state is not
documented or captured. Since errors definitely occur in Cloud environments,
e.g., if the network connection breaks during the retrieval of a software package,
it is a serious challenge to implement full and robust deployment automation.

This is why the DevOps community provides techniques and tools to imple-
ment convergent deployment automation: its foundation is the implementation
of idempotent scripts [4], meaning the script execution on a particular resource
such as a VM can be repeated arbitrarily, always leading to the same result
if no error occurs; if an error occurs during execution and the desired state
is not reached (i.e., resource is in an unknown state) the script is executed
again and again until the desired state is reached. Thus, idempotent scripts
can be used to converge a particular resource toward a desired state without
dropping the resource as shown in Fig. 1. With this approach the resource
does not get stuck in an inconsistent state. DevOps tools such as Chef [11]
provide a declarative domain-specific language to define idempotent actions
(e.g., Chef resources2) that are translated to imperative command statements
at runtime, depending on the underlying operating system. For instance, the
declarative statement “ensure that package apache2 is installed” is translated
to the following command on an Ubuntu OS: apt-get -y install apache2; on
a Red Hat OS, the same declarative statement is translated to yum -y install
apache2. Imperative command statements can also be expressed in an idem-
potent manner. For instance, a simple command to install the Apache HTTP
server on Ubuntu (apt-get -y install apache2) is automatically idempotent
because if the package apache2 is already installed, the command will still
complete successfully without doing anything. Other command statements need
to be adapted such as a command to retrieve the content of a remote Git3
repository: git clone http://gitserver/my_repo. This command would fail
when executing it for a second time because the directory my_repo already
exists. To make the command statement idempotent a minor extension is re-
quired that preventively deletes the my_repo directory: rm -rf my_repo && git
clone http://gitserver/my_repo.

2 Chef resources: http://docs.opscode.com/resource.html
3 Git: http://git-scm.com

http://docs.opscode.com/resource.html
http://git-scm.com

340 J, Wettinger, U. Breitenbücher, and F. Leymann

3 Problem Statement

As discussed in Sect. 2, convergent deployment automation makes the execution
of scripts more robust. However, it may not be the most efficient approach to
repeatedly execute the whole script in case of errors until the desired state is
reached. Furthermore, this approach only works in conjunction with idempotent
scripts. While in most cases it is possible to implement idempotent actions, it can
be challenging and sophisticated to implement fully idempotent scripts without
holding specific state information for each action that was executed. Typical
examples include:

– An action to create a database or another external entity by name, so the
second execution results in an error such as “the database already exists”.

– An action that sends a non-idempotent request to an external service (e.g.,
a POST request to a RESTful API), so the second request most probably
produces a different result.

– An action to clone a Git repository, so the second execution fails because
the directory for the repository already exists in the local filesystem.

Consequently, major efforts need to be invested to create and test idempotent
scripts to ensure their robustness. Moreover, issues may occur, preventing a
resource from converging toward the desired state, so the resource hangs in
an unknown state. As an example, Ubuntu’s apt package manager4 may crash
during the installation of software packages (e.g., in case of a dropped network
connection or a memory bottleneck), so the lock file (ensuring that apt is not
running multiple times in parallel) was not removed. In this case the lock file
needs to be removed manually; otherwise all subsequent executions of apt fail.
Sophisticated monitoring is required to detect such issues at runtime.

In the following Sect. 4 we present compensation-based deployment automa-
tion on the level of scripts and actions as an alternative to the leading convergent
deployment automation approach. Our goal is to increase efficiency and robust-
ness without additional overhead. Moreover, our approach aims to reduce the
complexity of creating scripts by allowing arbitrary non-idempotent actions in
it.

4 Compensation-Based Deployment Automation

The main idea of compensation is to implement an undo strategy that is run in
case an error occurs during the execution of a particular script or action. De-
pending on the level of implementing compensation, either compensation scripts
can be implemented to roll back the work performed by a particular script or
compensation actions can be implemented to undo a single action. In the follow-
ing Sect. 4.1 and Sect. 4.2, we discuss how compensation can be implemented on
these two different levels. Moreover, Sect. 4.3 presents an approach to automat-
ically derive compensation actions at runtime based on fine-grained snapshots.
4 Ubuntu’s apt package manager: http://packages.ubuntu.com/trusty/apt

http://packages.ubuntu.com/trusty/apt

Compensation-Based vs. Convergent Deployment Automation 341

4.1 Compensation on the Level of Scripts

To implement compensation on the level of scripts, a compensation script has to
be implemented for each script to compensate the work performed by the script
itself. For instance, if the script has installed parts of the WordPress application,
the compensation script needs to uninstall these parts in case an error occurs
during the installation. Then, the script runs again. Obviously, a proper retry
strategy needs to be implemented such as defining the maximum number of
retries to deal with situations where a certain issue persists. If the maximum
number of retries is reached the compensation script is executed for the last
time and the error gets escalated to the invoker of the script, e.g., a deployment
plan implemented as a workflow [20].

Resource
(e.g., a virtual machine, a container, etc.)

Desired State
(e.g., WordPress

running on Ubuntu)

Original State
(e.g., plain Ubuntu)

Run script
to reach

desired state

If error occurs on
execution of AX

 run comp. script
 run script again

Inconsistent State
(e.g., only database is

running)

Compensation Script

Script

Action A1

Action A2

Action A3

…

pt
in A

Fig. 2. Compensation script to undo the work performed by a script

Fig. 2 outlines how this coarse-grained way of implementing compensation
works, considering a script as an atomic entity in terms of compensation. As an
example, the following listing shows an extract of a Unix shell script to create a
database and to retrieve the content of a Git repository:
1 #!/ bin/sh
2
3 . . .
4
5 echo "CREATE DATABASE $DBNAME" | mysql −u $USER
6
7 g i t c lone http : // g i t s e r v e r /my_repo

The following extract of a Unix shell script shows how a corresponding com-
pensation script could be implemented:

342 J, Wettinger, U. Breitenbücher, and F. Leymann

1 #!/ bin/sh
2
3 echo "DROP DATABASE $DBNAME" | mysql −u $USER
4
5 rm −r f my_repo
6
7 . . .

The challenge of implementing a compensation script is that the current state
of the corresponding resource is unknown, depending on the point in time the
error occurred during script execution. Consequently, the compensation script
has to consider a lot of potential problems that may occur. This makes a compen-
sation script hard to implement and to maintain. Thus, the following Sect. 4.2
presents a more fine-grained approach to implement compensation on the level
of actions.

4.2 Compensation on the Level of Actions

In contrast to script-level compensation as discussed before, a compensation
action is implemented and attached to each action defined in the script: if an
error occurs during the execution of action Ax, the corresponding compensation
action CAx is run. Then, Ax is executed again to eventually continue with
the following actions. Similar to the script-level compensation a proper retry
strategy needs to be implemented. For instance, the maximum number of retries
for rerunning a particular action Ax needs to be defined. Once this number is
reached all previous actions need to be compensated by running CAx, CAx−1,
. . . , CA1. Then, the error gets escalated to the invoker of the script, e.g., a
workflow. The invoker may perform some clean-up work, e.g., removing VMs
that are in an unknown state. Compared to script-level compensation (Sect. 4.1)
and the convergent approach (Sect. 2) this behavior is more efficient in terms
of execution time because the script is not compensated and rerun as a whole;
only the affected action gets compensated and is then executed again.

Fig. 3 outlines how this fine-grained compensation approach works. Techni-
cally, compensation actions CAx can be defined and attached on the level of
command statements. For instance, the compensation action CA3 attached to ac-
tion A3 that clones a Git repository (git clone http://gitserver/my_repo)
could be the following to remove the cloned repository from the filesystem: rm
-rf my_repo. Another example is sending a PUT request to a RESTful API to
create a resource. For instance, the compensation action may have to send one or
several DELETE requests to the API to remove the created resource and maybe
other resources that were created as a result of the original PUT request. The
following extract of an extended Dockerfile5 (sequence of Unix shell commands)
shows how compensation actions (COMPENSATE statements) can be defined and at-
tached to actions (RUN statements) using cURL6, a simple command-line HTTP
client.
5 Dockerfile reference: http://docs.docker.io/reference/builder
6 cURL: http://curl.haxx.se

http://docs.docker.io/reference/builder

Compensation-Based vs. Convergent Deployment Automation 343

Resource
(e.g., a virtual machine, a container, etc.)

Desired State
(e.g., WordPress

running on Ubuntu)

Original State
(e.g., plain Ubuntu)

Run script
to reach

desired state

Script

Action A1 Compensation Action CA1

Action A2 Compensation Action CA2

Action A3 Compensation Action CA3

… …

If error occurs on execution of
AX run CAX run AX again

 continue with following
actions

A

Inconsistent State
(e.g., only database is

running)

Fig. 3. Compensation actions to undo the work of individual actions

1 . . .
2
3 RUN cu r l −H "Content−Type : app l i c a t i o n/ j son " −X PUT −−data "@$ID . j son "

−u $USER:$PASSWORD http : / / . . . / e n t r i e s /$ID
4
5 COMPENSATE cu r l −X DELETE −u $USER:$PASSWORD http : / / . . . / e n t r i e s /

$ID
6
7 RUN . . .
8 COMPENSATE . . .

Compared to compensation scripts, compensation actions are easier to imple-
ment because only the scope of one particular command statement needs to be
considered. However, it may be tedious to manually implement compensation ac-
tions for each particular action defined in a script. Thus, the following Sect. 4.3
presents a compensation approach to dynamically generate compensation actions
at runtime based on fine-grained snapshots.

4.3 Snapshot-Based Compensation

Action-level compensation as discussed before provides some advantages over
script-level compensation because only the scope of a single action has to be
considered when implementing the compensation logic. However, for scripts with
a huge number of actions, many individual compensation actions have to imple-
mented and attached to the script. Because their creation is time-consuming and
error-prone, plus they are hard to maintain, we need a means to automatically
generate compensation actions. Fig. 4 shows how fine-grained snapshots can be
used to capture and restore an arbitrary state of a resource. This technique can
be used to create a snapshot S0 of the original state and an additional snapshot
S1, S2, . . . for each action A1, A2, . . . that was executed successfully. Moreover,

344 J, Wettinger, U. Breitenbücher, and F. Leymann

a compensation action CAx for each action Ax gets generated automatically at
runtime to restore the snapshot Sx−1 that was created after the previous action
has been executed successfully.

Resource
(e.g., a virtual machine, a container, etc.)

Desired State
(e.g., WordPress

running on Ubuntu)

Original State
(e.g., plain Ubuntu)

Run script
to reach

desired state

Script

… …

If error occurs on execution of
AX run CAX run AX again

 continue with following
actions

Inconsistent State
(e.g., only database is

running)

create S0

A1 ; create S1 CA1 := restore S0

A2 ; create S2 CA2 := restore S1

State
Snapshots

SX

Fig. 4. Snapshot-based compensation of individual actions

Of course, the snapshot-based compensation approach can also be imple-
mented on the level of scripts as discussed in Sect. 4.1. However, this is only
feasible if all actions of a script can be compensated using snapshots and do not
need custom compensation logic such as sending specific requests to external
resources. In this case custom compensation actions have to be attached to the
affected actions. Consequently, the snapshot-based compensation approach can
be used as a fallback to generate compensation actions at runtime for all actions
that do not have a custom compensation action attached. This speeds up the
development of scripts because compensation actions have to be implemented
only for actions that cannot rely on the snapshot-based approach to compensate
their work.

5 Evaluation

Conceptually, we discussed multiple variants of compensation-based deployment
automation in Sect. 4. Our evaluation compares the compensation-based ap-
proach with convergent deployment automation in terms of performance impact
at runtime and difficulties at design time. We implemented the automated de-
ployment of three different kinds of open-source Web applications, covering a
set of wide-spread technologies and middleware to implement such applications.

Compensation-Based vs. Convergent Deployment Automation 345

Node.js
Runtime

Chat Application

Apache HTTP
Server

MySQL
Database

Server

PHP Module

WordPress Application

Ruby Runtime

MySQL
Database

Server

Ruby on Rails
Framework

Redmine Application

Fig. 5. Architectures of three Web applications

Fig. 5 outlines the architectures of the applications, namely a simple Chat Appli-
cation7 based on Node.js, the Ruby-based project management and bug-tracking
tool Redmine8, and WordPress9 to run blogs based on PHP. Each application is
deployed on a clean VM (1 virtual CPU clocked at 2.8 GHz, 2 GB of memory)
on top of the VirtualBox hypervisor10, running a minimalist installation of the
Ubuntu OS, version 14.04.

Table 1. Measurements in clean environment and their standard deviation σ

Application Average Duration (in sec.) Average Memory Usage (in MB)

Clean Deployments Using Chef:
WordPress 211 (σ = 114) 333 (σ = 2)
Chat App 265 (σ = 37) 248 (σ = 1)
Redmine 1756 (σ = 191) 1479 (σ = 4)

Clean Deployments Using Docker:
WordPress 71 (σ = 10) 548 (σ = 1)
Chat App 249 (σ = 7) 478 (σ = 2)
Redmine 741 (σ = 17) 583 (σ = 5)

Technically, we use Chef solo11 version 11.12.4 as a configuration manage-
ment solution to implement convergent deployment automation for all three ap-
plications based on idempotent scripts (Chef cookbooks). Furthermore, we use
Docker12 version 0.9.1 as a container virtualization solution to implement action-
level compensation based on fine-grained container snapshots. Consequently, we
7 Chat Application: http://github.com/geekuillaume/Node.js-Chat
8 Redmine: http://www.redmine.org
9 WordPress: http://www.wordpress.org

10 VirtualBox: http://www.virtualbox.org
11 Chef solo: http://docs.opscode.com/chef_solo.html
12 Docker: http://www.docker.io

http://github.com/geekuillaume/Node.js-Chat
http://www.redmine.org
http://www.wordpress.org
http://www.virtualbox.org
http://docs.opscode.com/chef_solo.html
http://www.docker.io

346 J, Wettinger, U. Breitenbücher, and F. Leymann

Table 2. Measurements in disturbed environment and their standard deviation σ

Application Average Duration (in sec.) Average Memory Usage (in MB)

Disturbed Deployments Using Chef:
WordPress 182 (σ = 84) 334 (σ = 3)
Chat App 394 (σ = 78) 237 (σ = 5)
Redmine 1948 (σ = 262) 1479 (σ = 2)

Disturbed Deployments Using Docker:
WordPress 74 (σ = 6) 779 (σ = 1)
Chat App 258 (σ = 36) 576 (σ = 59)
Redmine 991 (σ = 120) 1260 (σ = 268)

implemented scripts as Dockerfiles (sequence of Unix shell commands) that do
exactly the same as the Chef cookbooks created before, but without being
idempotent. Based on these implementations we run the deployment process
of each application using both Chef and Docker in two different environments:
the clean environment allows the deployment process to run without any errors;
the disturbed environment emulates networking issues and memory bottlenecks
by blocking TCP connections and killing system processes. We run each of the 24
combinations five times, so table 1 and table 2 present the average duration, the
average memory usage, and their standard deviation. Each run is triggered using
the same setup without any pre-cached container images or beneficial prepara-
tions. In the following Sect. 6 we discuss the results of our evaluation based on
the measurements presented in table 1 and table 2 as well as the experience we
gained during the implementation of the scripts following different deployment
automation approaches.

6 Discussion

By analyzing the measurements presented in Sect. 5 we see that the compensation-
based deployment automation approach with snapshots on the level of actions
based on Docker consistently has a better performance in terms of deployment
duration than the convergent approach based on Chef. This shows that repet-
itively executing an idempotent script to reach the desired state is more time-
consuming than using a compensation-based approach on the level of actions.
Moreover, the convergent approach may require more resources because declar-
ative configuration definitions such as Chef cookbooks need to be compiled to
imperative command statements at runtime. However, especially for deployment
processes that have a shorter duration the memory consumption for convergent
deployment automation is less compared to the compensation-based approach.
This manifests the overhead of a snapshot-based approach where fine-grained,

Compensation-Based vs. Convergent Deployment Automation 347

incremental snapshots are cached to quickly restore the state captured after the
last successfully executed action. This happens preventively, even in case the
snapshots are not used, e.g., if no error occurs (clean environment). For longer-
running deployment processes with more memory consumption in general such
as the one of Redmine this overhead becomes less relevant, so in some cases
such as the Docker-based deployment of Redmine the memory usage is even less
compared to the corresponding Chef-based deployment.

In a disturbed environment that may be similar to an error-prone Cloud envi-
ronment, where network issues appear and memory bottlenecks occur, the gap
between the compensation-based and the convergent approach is significantly
larger in terms of deployment duration. In this case compensation clearly out-
performs convergence. Considering the design and implementation of scripts the
compensation-based scripts and actions are easier to implement because they
do not have to be idempotent as in the convergent approach. Moreover, most
compensation actions can be automatically generated at runtime based on snap-
shots, so the implementation of custom compensation actions is not necessary for
most actions. Fine-grained snapshots are also a convenient tool when developing,
testing, and debugging scripts: snapshots can be created at any point in time to
capture a working state and build upon this state, always having the possibility
to quickly restore this state. Without using snapshots the whole script has to be
executed for each test run. This can be time-consuming in case of more complex
scripts that do not terminate after a few seconds already.

7 Related Work

Today, compensation techniques for deploying and managing infrastructure re-
sources, middleware, and application components are mainly used by workflows
on the orchestration level: workflows or plans based on standardized languages
such as BPMN [14] or BPEL [12] are used on a higher level to coordinate the
execution of scripts, API calls etc. [1,6,20]. Fig. 6 provides an overview of a pos-
sible interrelation between higher-level plans (e.g., BPEL workflows) defining
the overarching flow of activities and the scripts SCRy that actually manage
the states STn of the underlying resources Rm that are involved. Compensation
activities can be defined to compensate the work of another activity in case an
error occurs [9,18,8]. In this example the install activity triggers the execution
of script SCR1 on R1. If an error occurs, e.g., during the execution of the install
activity, the attached compensate activity is triggered to run script SCR2, which
could be some kind of compensation script.

As an alternative to workflows, model-based approaches such as application
topology models can be used to orchestrate scripts in a declarative manner. The
Topology and Orchestration Specification for Cloud Applications (TOSCA) [13]
is an emerging standard to specify such models. Moreover, there are provider-
and tooling-specific approaches to build topology templates such as Amazon’s

348 J, Wettinger, U. Breitenbücher, and F. Leymann

CloudFormation13, OpenStack Heat14, and Juju bundles15. All these approaches
utilize scripts for lower-level tasks such as installing and configuring packages
on VMs. Thus, the compensation-based deployment automation approaches pre-
sented in this paper can be combined with any of these higher-level approaches to
ease the development of underlying scripts and to enhance the overall efficiency
and robustness at runtime. Previous work [19,20] shows how to implement sep-
aration of concerns for plans that invoke and orchestrate scripts and services.

Workflow

Resource R1

State
ST1

State
ST2

Script
SCR1

run

install

Script
SCR2

compen-
sate

run

… …

…

Fig. 6. Activities and compensation activities in workflows

8 Conclusions

Convergent deployment automation based on idempotent scripts is the leading
paradigm implemented by wide-spread DevOps tools such as Puppet [16] and
Chef [11]. We discussed the issues and deficiencies of this approach that occur at
design time and at runtime: idempotent scripts are hard to test and to implement;
due to their repetitive execution to converge a resource toward a desired state,
the scripts’ efficiency and robustness is not ideal. Based on these deficiencies
we presented compensation-based deployment automation as an alternative to
the convergent approach. We discussed how to implement compensation on the
level of scripts and on the level of individual actions. Moreover, we showed how
action-level compensation can be implemented using fine-grained snapshots to
minimize the effort of implementing custom compensation actions. Our evalua-
tion of compensation-based deployment automation compared to the convergent
approach showed:

– Compensation is more robust, preventing a resource such as a VM from
hanging in an inconsistent state without converging toward the desired state
anymore

13 Amazon CloudFormation: http://aws.amazon.com/cloudformation
14 OpenStack Heat: http://wiki.openstack.org/wiki/Heat
15 Juju bundles: http://juju.ubuntu.com/docs/charms-bundles.html

http://aws.amazon.com/cloudformation
http://wiki.openstack.org/wiki/Heat
http://juju.ubuntu.com/docs/charms-bundles.html

Compensation-Based vs. Convergent Deployment Automation 349

– Action-level compensation is always more efficient in terms of deployment
duration

– Compensation may consume slightly more memory in some cases
– Compensation is easier to implement because scripts and actions do not have

to be idempotent
– Snapshot-based compensation eases the development of scripts because com-

pensation actions such as restore snapshot Sx can be automatically generated
at runtime for most actions defined in a script

Currently, one major drawback of the compensation-based approach is its
minimalist tooling support. We were using Docker as a container virtualization
solution and Dockerfiles (construction plans for Docker containers) as scripts
that can be compensated based on fine-grained container snapshots. In terms of
future work we plan to extend existing domain-specific languages such as the ones
used by Chef, Puppet, and Docker to seamlessly integrate the compensation ap-
proaches discussed in this paper. For instance, Chef can be extended to capture
and restore fine-grained container snapshots automatically in the background,
moving away from the inefficient strategy of running the whole script again and
again. Another approach would be to automatically generate Dockerfiles from
Chef scripts and then use Docker to execute them based on Docker’s compen-
sation and snapshot capabilities. In addition to deployment we plan to extend
the scope of our research to cover further lifecycle operations that are relevant
after the deployment phase. Existing approaches such as Cloud Foundry16 cen-
tered around the platform-as-a-service model may be the technical foundation
to consider these lifecycle operations such as scaling certain application com-
ponents. Furthermore, we plan to extend our evaluation, including additional
measurements such as the disk storage used for storing snapshots.

Acknowledgments. This work was partially funded by the BMWi project
CloudCycle (01MD11023).

References

1. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F.: Pattern-based Runtime Man-
agement of Composite Cloud Applications. In: Proceedings of the 3rd International
Conference on Cloud Computing and Services Science. SciTePress (2013)

2. Günther, S., Haupt, M., Splieth, M.: Utilizing Internal Domain-Specific Languages
for Deployment and Maintenance of IT Infrastructures. Tech. rep., Very Large Busi-
ness Applications Lab Magdeburg, Fakultät für Informatik, Otto-von-Guericke-
Universität Magdeburg (2010)

3. Humble, J., Molesky, J.: Why Enterprises Must Adopt Devops to Enable Continu-
ous Delivery. Cutter IT Journal 24 (2011)

4. Hummer, W., Rosenberg, F., Oliveira, F., Eilam, T.: Testing Idempotence for In-
frastructure as Code. In: Eyers, D., Schwan, K. (eds.) Middleware 2013. LNCS,
vol. 8275, pp. 368–388. Springer, Heidelberg (2013)

16 Cloud Foundry: http://cloudfoundry.org

http://cloudfoundry.org

350 J, Wettinger, U. Breitenbücher, and F. Leymann

5. Hüttermann, M.: DevOps for Developers. Apress (2012)
6. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: BPMN4TOSCA: A Domain-

Specific Language to Model Management Plans for Composite Applications. In:
Mendling, J., Weidlich, M. (eds.) BPMN 2012. LNBIP, vol. 125, pp. 38–52. Springer,
Heidelberg (2012)

7. Leymann, F.: Cloud Computing: The Next Revolution in IT. In: Photogrammetric
Week 2009. Wichmann Verlag (2009)

8. Liu, F., Danciu, V.A., Kerestey, P.: A Framework for Automated Fault Recov-
ery Planning in Large-Scale Virtualized Infrastructures. In: Brennan, R., Fleck II,
J., van der Meer, S. (eds.) MACE 2010. LNCS, vol. 6473, pp. 113–123. Springer,
Heidelberg (2010)

9. Machado, G.S., Daitx, F.F., da Costa Cordeiro, W.L., Both, C.B., Gaspary, L.P.,
Granville, L.Z., Bartolini, C., Sahai, A., Trastour, D., Saikoski, K.: Enabling Roll-
back Support in IT Change Management Systems. In: IEEE Network Operations
and Management Symposium, NOMS 2008, pp. 347–354. IEEE (2008)

10. Mell, P., Grance, T.: The NIST Definition of Cloud Computing. National Institute
of Standards and Technology (2011)

11. Nelson-Smith, S.: Test-Driven Infrastructure with Chef. O’Reilly Media, Inc. (2013)
12. OASIS: Web Services Business Process Execution Language (BPEL) Version 2.0

(2007)
13. OASIS: Topology and Orchestration Specification for Cloud Applications (TOSCA)

Version 1.0, Committee Specification 01 (2013),
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html

14. OMG: Business Process Model and Notation (BPMN) Version 2.0 (2011)
15. Soltesz, S., Pötzl, H., Fiuczynski, M.E., Bavier, A., Peterson, L.: Container-based

Operating System Virtualization: A Scalable, High-Performance Alternative to Hy-
pervisors. ACM SIGOPS Operating Systems Review 41, 275–287 (2007)

16. Turnbull, J., McCune, J.: Pro Puppet. Apress (2011)
17. Vaughan-Nichols, S.J.: New Approach to Virtualization is a Lightweight. Com-

puter 39(11), 12–14 (2006)
18. Weber, I., Wada, H., Fekete, A., Liu, A., Bass, L.: Automatic Undo for Cloud

Management via AI Planning. In: Proceedings of the Workshop on Hot Topics in
System Dependability (2012)

19. Wettinger, J., Behrendt, M., Binz, T., Breitenbücher, U., Breiter, G., Leymann, F.,
Moser, S., Schwertle, I., Spatzier, T.: Integrating Configuration Management with
Model-Driven Cloud Management Based on TOSCA. In: Proceedings of the 3rd
International Conference on Cloud Computing and Services Science. SciTePress
(2013)

20. Wettinger, J., Binz, T., Breitenbücher, U., Kopp, O., Leymann, F., Zimmermann,
M.: Unified Invocation of Scripts and Services for Provisioning, Deployment, and
Management of Cloud Applications Based on TOSCA. In: Proceedings of the 4th
International Conference on Cloud Computing and Services Science. SciTePress
(2014)

21. Wilder, B.: Cloud Architecture Patterns. O’Reilly Media, Inc. (2012)

http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html

On Enabling Time-Aware Consistency

of Collaborative Cross-Organisational
Business Processes

Saoussen Cheikhrouhou1, Slim Kallel1,
Nawal Guermouche2,3, and Mohamed Jmaiel1

1 ReDCAD Laboratory, University of Sfax, Tunisia
saoussen.cheikhrouhou@redcad.org, slim.kallel@fsegs.rnu.tn,

mohamed.jmaiel@enis.rnu.tn
2 CNRS-LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France

3 Univ de Toulouse, INSA, LAAS, F-31400 Toulouse, France
nawal.guermouche@laas.fr

Abstract. Collaborative Inter-Organisational Business Processes
(IOBPs) are a major step in automating and supporting collaborations
of organisations. In this context, collaborative IOBP are usually
constrained by hard timing requirements. This paper proposes an
approach for analyzing temporal consistency of collaborative IOBPs.
The aim is to verify temporal consistency of IOBP and to provide the
enactment service with largest intervals as starting time windows of the
processes. The proposed approach enables organisations to detect, early
on, temporal inconsistencies that may constitute obstacles towards their
interaction. Indeed, it provides an enactment service, which provides
each partner with information about temporal restrictions to respect by
its own processes in accordance with the overall temporal constraints of
all involved processes.

Keywords: Temporal Constraints, Collaborative Inter-organisational
Business Process (IOBP), Temporal Consistency analysis.

1 Introduction

In today’s organisations, business entities often operate across organisational
boundaries giving rise to inter-organisational collaborations, which have received
a great deal of attention during the last years. The reduction of commercial
barriers helps organisations to create value by combining processes, increasing
speed to market and reaching a bigger market share. On the basis of these
expectations, we can find among others, the following factor: to maximize the
ability to offer competitive products or services within restrictive deadlines.

In the context of such extended collaborations, collaborative inter-
organisational business processes, or IOBP for short, are becoming one of the
dominant elements in designing and implementing complex inter-organisational

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 351–358, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

352 S. Cheikhrouhou et al.

business applications. IOBP are typically subject to conflicting temporal con-
straints of the involved organisations. Hence, temporal consistency of business
processes are one of the important and critical ingredients to consider.

Temporal consistency analysis of IOBP aims at verifying the capability of
a set of processes to interact by exchanging messages in a successful way so
that all the temporal constraints are respected. Among research works which
have investigated the temporal consistency analysis problem, we mention the
work detailed in [1,2] which deals with a collaboration constituted by only two
processes. Moreover, theses works assume that all the processes must start at the
same time. This is very restrictive and does not correspond to real life scenario
applications where processes can belong to different organisations with different
geographic and time zones.

In this paper we tackle the problem of analyzing the temporal consistency of
IOBP. Our purpose is to provide an approach enabling organisations to detect,
early on, temporal inconsistencies that may constitute obstacles towards their
interaction. In case of temporal inconsistencies, our approach provides an enact-
ment service, which allows to define automatically temporal constraints so that
the formed collaborative IOBP will carry out successful timed collaborations.

This paper is organized as follows. A motivating example is introduced in
Section 2. Section 3 presents a brief description of the timed model we consider
and exhibits the proposed consistency analysis approach. A review of related
literature is given in Section 4. Finally, Section 5 concludes.

2 Motivating Example

To illustrate the features of the proposed approach, we introduce a Web shopping
scenario inspired by Amazon [3]. The booking process can be described as follows
: When ordering books on-line, a collaboration between a customer, a seller
company like Amazon and a shipper company like FedEx is established. Fig. 1
shows such a collaboration with the help of an excerpt of an IOBP involving the
processes of different partners. The BPMN 2.0 standard, is used for the depiction
of the IOBP. This latter represents a simple scenario in which the customer sends
an order to the seller, makes payment and expects to receive the items from a
shipper.

As shown in Fig. 1, different temporal constraints can be assigned to business
processes. Theses constraints include duration of activities (e.g., the duration of
the activity Ship products is 24 hours) and deadlines (e.g., DSeller = 35 hours to
denote that the execution of the Seller process takes no longer than 35 hours).

Additionally, dashed lines between activities depict message exchange. For
instance, there is a message exchange between activities Send order of the Cus-
tomer and Receive order of the Seller. In spite each business process is consistent
against its temporal constraints, the IOBP does not intrinsically guarantee the
satisfaction of the whole temporal constraints such as those related to dead-
lines. We see significant potential in proposing a consistency analysis approach.
Indeed, it is clear that considering temporal constraints of the example while
respecting process deadlines is a fastidious and error prone task.

Time-Aware Consistency of Collaborative IOBP 353

Fig. 1. Web shopping collaboration

3 Consistency Analysis of Inter-Organisational Business
Processes

Given the problem description in terms of an IOBP; a set of communicating
processes; enriched with a set of temporal constraints, the aim of the consistency
analysis approach proposed in this paper is to verify temporal consistency of
IOBP. We first describe the formalism of timed graphs, then we present the
consistency checking steps that we propose.

3.1 Timed Business Process Modelling

As the basic modeling formalism we use timed graphs proposed in [1,2]. Fig. 2
shows the representation of a node with its duration, its earliest possible start
and latest allowed end values.

Fig. 2. An activity node in the timed graph

In the sequel of the paper, we refer to activities of the motivating example with
abbreviations using first letters’ name of activities (eg. RSD to denote Receive
shipment details). Fig. 3 exhibits the timed graphs of the processes of different
partners involved in the motivating example, namely the Shipper (PShip), the
Seller (PSel) and the Customer (PCust) processes. For more details about the
calculation of the timed graph, we refer the reader to [1,2].

354 S. Cheikhrouhou et al.

Fig. 3. Timed graphs of the Shipper, the Seller and the Customer processes

3.2 Consistency Checking Steps

The proposed approach consists in two steps.
-Analysing consistency of pairwise processes (Step 1) In order to check if
two processes are temporally consistent, it must be checked if the execution in-
tervals of both communicating activities overlap [2]. Hence, in order to check the
temporal consistency of two communicating activities it must be checked if there
is any temporal interval in which both activities can execute. In this context, we
assume that the communication time is very small, thus, it is negligible.

Pi ↔ Pj
1 denotes that Pi and Pj are two processes exchanging at least one

message, say between activities Ai and Aj . From the calcultaed timed graphs
of both processes, we can deduce Ai.[Ai.eps, Ai.lae] and Aj .[Aj .eps, Aj .lae]. In
order to ensure that both Pi and Pj are consistent, we should ensure that the
execution interval of all communicating activities, for instance Ai and Aj over-
lap [2].

Consider now clock Ci which is reset on the starting time of process Pi.
Consequently, according to Ci, Pj should start executing on a time lag x ∈ Pj/Ci

.
Pj/Ci

denotes the interval delimiting the starting time of process Pj according
to clock Ci while considering only direct communications between Pi and Pj .
This time lag will shift the execution window of the communicating activity,Aj

to be Aj .[Aj .eps+ x,Aj .lae+ x]. The condition of consistency is :

[Aj .eps+ x,Aj .lae+ x]
⋂
[Ai.eps, Ai.lae] �= ∅ (1)

Let x ∈ Pj/Ci
be the set of solutions satisfying the consistency condition (Eq.1).

Pj/Ci
=

{
[minji,maxji] = [Ai.eps−Aj .lae, Ai.lae−Aj .eps] �= ∅ (2.a)

∅ (2.b)

If there is an overlap of the execution interval of communicating activities,
namely Ai and Aj , those activities are temporally consistent (Eq. 2.a). Oth-
erwise, Ai and Aj are temporally inconsistent (Eq. 2.b). Namely, in order to
decide if processes Pi and Pj are temporally consistent, all pairs of communicat-
ing activities, must be temporally consistent[2].

Conversely, if we consider Cj which is reset on the starting time of process
Pj . We should find the following :

1 Equivalent to Pj ↔ Pi because ↔ is commutative.

Time-Aware Consistency of Collaborative IOBP 355

Pi/Cj
=

{
[minij ,maxij] = [−maxji,−minji] if Pj/Ci

�= ∅ (3)

∅ otherwise.

Starting from a set of processes, namely three processes Pi, Pj , and Pk. The
output of step 1 consists in bringing out the starting time bounds of each pairwise
communicating timed processes. as follows :

∀{l,m} ⊂ {i, j, k}, Pl/Cm
is computed.

Step 1 is considered to be completed successfully iff ∀{l,m} ⊂ {i, j, k}, Pl/Cm
�= ∅

and not completed successfully otherwise.
As an example, let’s consider the timed graphs of the shipper (PShip), the seller

(PSel), and the customer (PCust) processes of the motivating example as depicted
in Fig. 3. We are mainly interested in communicating activities, namely activities
that are sender or receiver of the same message e.g. activities ”Send order” (SO)
of customer and ”receive order” (RO) of seller (denoted (SO ↔ RO)) In the
following, we apply Step 1 of the approach on pairwise communicating processes
of the motivating example.

– PCust ↔ PSel:
(SO ↔ RO) : SO.[0 + x, 40 + x]

⋂
RO.[0, 24] �= ∅ then x ∈ [−40, 24]

(ROC ↔ CO) : ROC.[1 + x, 41 + x]
⋂
CO.[1, 26] �= ∅ then x ∈ [−40, 25]

(SB ↔ RB) : RB.[2 + x, 43 + x]
⋂
SB.[9, 34] �= ∅ then x ∈ [−34, 32]

(MP ↔ RP): MP.[4 + x, 46 + x]
⋂
RP.[11, 35] �= ∅ then x ∈ [−35, 31]

Hence, PCust/CSel
= [−34, 24] (i.e. [−40, 24]

⋂
[−40, 25]

⋂
[−34, 32]

⋂
[−35, 31])

– the same applies to PShip ↔ PSel = [3, 32] and PShip ↔ PCust = [−23, 23].

For example, the interval PCust/CSel
= [−34, 24] limits the starting time of the

Customer process PCust to start not earlier than 34 hours before and no later
than 24 hours after the starting time of the Seller process PSel. Assume then
that the process PSel starts at time point 0 and PCust starts at time point -
21 which means that this latter starts execution 21 hours before the process
PSel starts. Since −21 ∈ [−34, 24], the two processes suceed all their communi-
cation and hence they are consistent. Indeed, considering these latter starting
times, we have RO.[0, 24]

⋂
SO.[−21, 19] �= ∅, CO.[1, 26]

⋂
ROC.[−20, 20] �= ∅,

SB.[9, 34]
⋂
RB.[−19, 13] �= ∅, and RP.[11, 35]

⋂
MP.[−17, 25] �= ∅. Neverthe-

less, if the process PCust begins 26 hours after the starting time of process PSel,
we obtain, RO.[0, 24] and SO.[26, 66]. It is clear that [0, 24]

⋂
[26, 66] = ∅, and

the two processes are not consistent since 26 /∈ PCust/CSel
= [−34, 24].

Step 1 is considered to be completed successfully since ∀{l,m} ⊂ {Ship, Sel,
Cust}, Pl/Cm

�= ∅ (see Eq. 3).
Step 1 of our consistency approach considers only direct communication links

between processes. For instance, given direct comminications between processes
Pj and Pi one the one hand and between Pk and Pi on the other. Step 1 computes
the starting times of Pj (Pj/Ci

) and Pk (resp. Pk/Ci
) related to the starting time

of Pi. In such a way, we have not yet considered the indirect communication

356 S. Cheikhrouhou et al.

between Pj and Pk; for the calculation of both Pj/Ci
and Pk/Ci

. Supposing at

least one communication between processes Pj and Pk, additional calculations
must be performed in order to adjust the intervals Pj/Ci

and Pk/Ci
accordingly;

which will be the main focus of Step 2.
- Analyzing consistency of multiple processes (Step 2)
The aim of Step 2 is to gather solutions for temporal inconsistencies while

considering all involved processes in the IOBP (i.e. all communications between
the processes). Indeed, it provides a set of constraints on the starting time of
processes such that if each process satisfies the constraint, the whole collabora-
tion is still possible to be successfully carried out. Step 2 requires that Step 1
be completed successfully.

In an inter-organisational business process, we can deduce implicit temporal
relations beyond those resulting from direct communications between Pj and Pi.
We argue that the communication between processes Pj and Pk, has an impact
on both time intervals Pj/Ci

and Pk/Ci
.

In our approach, the transitivity behavior of the temporal relationships intro-
duced by Allen in [4] helps to deduce a new interval Pj

′
/Ci

from the two intervals

Pj/Ck
and Pk/Ci

(the result of Step1). Pj
′
/Ci

denotes the interval delimiting

the starting time of process Pj related to the start of process Pi (related to
clock Ci) while considering indirect communication links between processes
Pi and Pj (precisely, the communication between Pj and Pk and between Pk

and Pi). Given Pj/Ck
= [minjk,maxjk] and Pk/Ci

= [minki,maxki], Pj
′
/Ci

is

calculated as follows: Pj
′
/Ci

= [minjk +minki,maxjk +maxki].

As a result, we introduce Pj
IOBP
/Ci

to denote the resulting interval delimiting
the starting time of process Pj regarding the starting time of process Pi while
considering both direct and indirect communication links as follows :

Pj
IOBP
/Ci

= Pj/Ci

⋂
Pj

′
/Ci

(4)

Given processes Pi, Pj , and Pk on which we have already conducted Step 1
of the approach. The output of step 2 of our algorithm consists in bringing out
the starting time bounds of each process Pl regarding another process Pm while
considering all communication links between Pi, Pj , and Pk as follows :

∀{l,m} ⊂ {i, j, k}, Pl
IOBP
/Cm

is computed.

Consider again the timed graphs of the shipper (PShip), the seller (PSel), and
the customer (PCust) processes of the motivating example as depicted in Fig. 3.
Provided also with the starting time intervals resulting from Step 1 of our ap-
proach, namely, PShip/CSel

= [3, 32], PCust/CSel
= [−34, 24], and PShip/CCust

=

[−23, 23]. Let’s conduct now Step 2 of the approach.
P IOBP
Ship /CSel

= PShip/CSel

⋂
P

′
Ship/CSel

= [3, 32]
⋂
[−57, 47] = [3, 32]. (

P
′
Ship/CSel

= [−57, 47] = [−23−34, 23+24] deduced from PShip/CCust
= [−23, 23]

and PCust/CSel
= [−34, 24]). The same applies to P IOBP

Cust /CSel
= [−20, 24].

Time-Aware Consistency of Collaborative IOBP 357

Step 2 of the proposed approach has tightened the intervals PCust/CSel
=

[−34, 24] to be P IOBP
Cust /CSel

= [−20, 24] and has no impact on PShip/CSel
since

P IOBP
Ship /CSel

= [3, 32]. The aim behind Step 2 is to omit some starting time points

leading to consistent pairwise processes while considering only direct communi-
cation links between processes but fail to ensure consistent IOBP. Let’s analyze
the consistency of the IOBP after conducting Step 2 on the motivating example
for the same starting time points presented above (suppose that PSel starts at
time point 0 and PCust starts at time point -21). As argued in Step 1, PSel

and PCust are consistent since all execution intervals of their communicating ac-
tivities overlap. Neverthless, these starting times fail eventual communications
between PShip and PCust. Given P IOBP

Ship /CSel
= [3, 32], the execution time win-

dow of the activity Notify Customer (NC) balance between NC.[28, 33] (for the
starting time 3) and NC.[57, 62] (for the starting time 32) and there is no even-
tual overlap with RSN.[-14, 27]. Hence, we can conclude that PShip and PCust

are not consistent and the IOBP is not consistent anymore. If we consider now
the intervals resulting from Step2, the proposed approach ensures that it exists
starting time points leading to consistent inter-organisational business process.
For instance, PSel starts at time point 0, PShip starts at time point 4, and PCust

starts at time point -15. Indeed, all of execution intervals of all communicating
activities of the IOBP overlap.

4 Related Work

The approach of Bettini et al. [5] provides temporal constraints reasoning and
management tool offering the consistency checking of temporal requirements in
workflows systems. Second, it monitors workflow activities and predicts their
starting and ending time. Finally it provides the enactment service with useful
temporal information for activity scheduling. Reluctantly, consistency algorithms
have only been defined for activities of a single process and does not consider
collaborative processes exchanging messages.

In [6,7,8,9,10], the authors use temporal properties in order to analyse the timed
compatibility in Web service compositions. Several temporal conflicts are identi-
fied in asynchronous web service interactions. In this approach, the focus has been
on the construction of a correct Web service composition using mediators. Never-
theless, the scope of this approach is limited to the verification of time constraints
only caused by message interaction between services of the process.

In [11], Du et al. present a Petri net-based method to compose Web services
by adding a mediation net to deal with message mismatches. Their approach
implements both timed compatibility checking by generating modular timed
state graphs. Compared to our work, they can only work at service level, and
have limitation to cover the temporal dependencies of involved services in a
business collaboration.

The approach proposed by Eder in [1,2] is closely related to ours since it
uses the concept of timed graphs while analysing the consistency issue in inter-
organisational collaborations. Nevertheless, this work is too restrictive since it

358 S. Cheikhrouhou et al.

assumes that both processes begin at the same time. Furthermore, only the case
with two partners is considered.

5 Conclusion

In this paper, we proposed an approach aiming at discovering temporal inconsis-
tencies thatmay constitute obstacles towards the interaction of business processes.
Additionally, it gathers for solutions to resolve the temporal inconsistencies by
providing each partner with temporal restrictions about the starting time of its
processes in accordance with the overall temporal constraints of all involved pro-
cesses. Consequently, as long as each process starts executing within the specified
time period, the overall temporal constraints of the IOBP will be satisfied. Cur-
rently, we are working on a tool support for the proposed approach based on the
Eclipse BPMN2 modeler.

References

1. Eder, J., Panagos, E., Rabinovich, M.I.: Time Constraints in Workflow Systems.
In: Jarke, M., Oberweis, A. (eds.) CAiSE 1999. LNCS, vol. 1626, pp. 286–300.
Springer, Heidelberg (1999)

2. Eder, J., Tahamtan, A.: Temporal Consistency of View Based Interorganizational
Workflows. In: Kaschek, R., Kop, C., Steinberger, C., Fliedl, G. (eds.) Synchroniza-
tion Techniques for Chaotic Commun. Syst. LNBIP, vol. 5, pp. 96–107. Springer,
Heidelberg (2008)

3. van der Aalst, W.M.P., Weske, M.: The P2P Approach to Interorganizational
Workflows. In: Dittrich, K.R., Geppert, A., Norrie, M. C. (eds.) CAiSE 2001.
LNCS, vol. 2068, pp. 140–156. Springer, Heidelberg (2001)

4. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of
the ACM 26(11), 832–843 (1983)

5. Bettini, C., Wang, X.S., Jajodia, S.: Temporal Reasoning in Workflow Systems.
Distributed and Parallel Databases (2002)

6. Guermouche, N., Godart, C.: Timed Conversational Protocol Based Approach for
Web Services Analysis. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.)
ICSOC 2010. LNCS, vol. 6470, pp. 603–611. Springer, Heidelberg (2010)

7. Guermouche, N., Godart, C.: Timed model checking based approach for web ser-
vices analysis. In: ICWS. IEEE CS (2009)

8. Cheikhrouhou, S., Kallel, S., Guermouche, N., Jmaiel, M.: Enhancing Formal Spec-
ification and Verification of Temporal Constraints in Business Processes. In: Pro-
ceedings of the 11th IEEE International Conference on Services Computing (SCC).
IEEE Computer Society (2014)

9. Kallel, S., Charfi, A., Dinkelaker, T., Mezini, M., Jmaiel, M.: Specifying and Mon-
itoring Temporal Properties in Web Services Compositions. In: ECOWS. IEEE CS
(2009)

10. Guidara, I., Guermouche, N., Chaari, T., Tazi, S., Jmaiel, M.: Pruning Based
Service Selection Approach under Qos and Temporal Constraints. In: ICWS. IEEE
CS (2014)

11. Du, Y., Tan, W., Zhou, M.: Timed compatibility analysis of web service composi-
tion: A modular approach based on petri nets. IEEE Transaction on Automation
Science and Engineering (2014)

Weak Conformance between
Process Models and Synchronized Object Life Cycles

Andreas Meyer and Mathias Weske

Hasso Plattner Institute at the University of Potsdam
{Andreas.Meyer,Mathias.Weske}@hpi.de

Abstract. Process models specify behavioral execution constraints between ac-
tivities as well as between activities and data objects. A data object is character-
ized by its states and state transitions represented as object life cycle. For process
execution, all behavioral execution constraints must be correct. Correctness can
be verified via soundness checking which currently only considers control flow
information. For data correctness, conformance between a process model and its
object life cycles is checked. Current approaches abstract from dependencies be-
tween multiple data objects and require fully specified process models although,
in real-world process repositories, often underspecified models are found. Coping
with these issues, we apply the notion of weak conformance to process models
to tell whether each time an activity needs to access a data object in a particular
state, it is guaranteed that the data object is in or can reach the expected state.
Further, we introduce an algorithm for an integrated verification of control flow
correctness and weak data conformance using soundness checking.

1 Introduction

Business process management allows organizations to specify their processes struc-
turally by means of process models, which are then used for process execution. Process
models comprise multiple perspectives with two of them receiving the most attention
in recent years: control flow and data [22]. These describe behavioral execution con-
straints between activities as well as between activities and data objects. It is usually
accepted that control flow drives execution of a process model. While checking control
flow correctness using soundness [1] is an accepted method, correctness regarding data
and control flow is not addressed in sufficient detail. In this paper, we describe a formal-
ism to integrate control flow and data perspectives that is used to check for correctness.

In order to achieve safe execution of a process model, it must be ensured that every
time an activity attempts to access a data object, the data object is in a certain expected
data state or is able to reach the expected data state from the current one, i.e., data speci-
fication within a process model must conform to relevant object life cycles, where each
describes the allowed behavior of a distinct class of data objects. Otherwise, the execu-
tion of a process model may deadlock. To check for deadlock-free execution in terms
of data constraints, the notion of object life cycle conformance [9, 20] is used. This ap-
proach has some restrictions with respect to data constraint specification, because each
single change of a data object as specified in the object life cycle, we refer to as data
state transition, must be performed by some activity. [21] relaxes this limitation such

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 359–367, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

360 A. Meyer and M. Weske

that several state changes can be subsumed within one activity. However, gaps within
the data constraints specification, i.e., implicit data state transitions, are not allowed al-
though some other process may be responsible of performing a state change of an object,
i.e., these approaches can only check whether an object is in a certain expected state.
We assume that implicit data state transitions get realized by an external entity or by
detailed implementations of process model activities. In real world process repositories,
usually many of those underspecified process models exist, which motivates the intro-
duction of the notion of weak conformance [13]. It allows to also check underspecified
models.

Additionally, in real world, often dependencies between multiple data objects exist;
e.g., an order may only be shipped to the customer after the payment is recognized. Non
of above approaches supports this. Thus, we utilize the concept of synchronized object
life cycles that allows to specify dependencies between data states as well as state tran-
sitions of different object life cycles [16]. Based thereon, we extend the notion of weak
conformance and describe how to compute it for a given process model and the corre-
sponding object life cycles including synchronizations. We utilize the well established
method of soundness checking [1] to check for process model correctness. For mapping
a process model to a Petri net, we utilize an extension covering data constraints [16] to
a widely-used control flow mapping [4] to enable an integrated checking of control flow
and data correctness. Further, fundamentals and preliminaries required in the scope of
this paper are discussed in Section 2 of our report [16].

The remainder is structured as follows. First, we discuss weak conformance in gen-
eral and compare it to existing conformance notions in Section 2 before we introduce
the extended notion of weak conformance in Section 3. Afterwards, we discuss the pro-
cedure for integrated correctness checking in Section 4. Section 5 is devoted to related
work before we conclude the paper in Section 6.

2 Weak Conformance

The notion of weak conformance has been initially proposed in [13] as extension to the
notion of object life cycle conformance [9, 20] to allow the support of underspecified
process models. A fully specified process model contains all reads and writes of data
nodes by all activities. Additionally, each activity reads and writes at least one data
node except for the first and last activities, which may lack reading respectively writing
a data node in case they only create respectively consume a data node.

Table 1. Applicability and time complexity of data
conformance computation algorithms

Attribute [9, 20] [21] [13] this

Full
specification

+ + + +

Underspecification - o + +
Synchronization - - - +

Complexity exp. poly. – exp.

In contrast, underspecified process
models may lack some reads or writes
of data nodes such that they are im-
plicit, performed by some other pro-
cess, or they are hidden in aggregated
activities changing the state multiple
times with respect to the object life
cycle. Though, full support of under-
specified process models requires that
the process model may omit state
changes of data nodes although they are specified in the object life cycle.

Weak Conformance between Process Models and Synchronized Object Life Cycles 361

In this paper, we extend the notion of weak conformance to also support object
life cycle synchronization. First, we compare different approaches to check for confor-
mance between a process model and object life cycles. Table 1 lists the applicability and
specifies the time complexity of the computation algorithms for approaches described
in [9, 20], [21], [13], and this paper. The notion from [9, 20] requires fully specified
process models and abstracts from inter-dependencies between object life cycles by not
considering them for conformance checking in case they are modeled. Conformance
computation is done in polynomial time. In [21], underspecification of process models
is partly supported, because a single activity may change multiple data states at once
(aggregated activity). Though, full support of underspecified process models would re-
quire that the process model may omit data state changes completely although they
are specified in the object life cycle. Synchronization between object life cycles is not
considered in that approach and complexity-wise, it requires exponential time. [13] sup-
ports fully and underspecified process models but lacks support for object life cycle syn-
chronization, which is then solved by the extension described in this section. For [13],
no computation algorithm is given such that no complexity can be derived. The solution
presented in this paper requires exponential time through the Petri net mapping and sub-
sequent soundness checking as described in Section 4. However, state space reduction
techniques may help to reduce the computation time for soundness checking [6]. The
choice of using soundness checking to verify weak conformance allows to check for
control flow soundness as well as weak conformance in one analysis and still allows to
distinguish occurring violations caused by control flow or data flow.

3 The Notion of Weak Conformance

Weak conformance is checked for a process model with respect to the object life cycles
referring to data classes used within the process model. To such concept, we refer as
process scenario h = (m,L, C), where m is the process model, L is the synchronized
object life cycle, and C is the set of data classes. Next, we define several notions for
convenience considerations before we introduce the notion of weak conformance. Let
f ∈ Fm be a data flow edge of process model m indicating either a data object read
or write. With fA and fD, we denote the activity (A) and data node (D) component of
f , respectively. For instance, if f is equal to (a, d), a read, or to (d, a), a write, then
(in both cases) fA = a and fD = d. With ϑ(f), we denote the data state rd involved
in a read (f = (d, a) ∈ F) or write (f = (a, d) ∈ F) operation. We denote the set
of synchronization edges having data state rd as target data state with SEr. Further,
a ⇒m a′ denotes that there exists a path in process model m which executes activity
a ∈ Am before activity a′ ∈ Am. Analogously, s ⇒lc s′ denotes that there exists a
path in the object life cycle lc of data class c which reaches state s ∈ Sc before state
s′ ∈ Sc . Thereby, we assume trace semantics. Due to space limitations, details about
the concepts utilized throughout this paper and especially in this section can be found
in [16], where we introduce the corresponding fundamentals.

Definition 1 (Weak Data Class Conformance). Given process scenario h = (m,L, C),
m = (N,D,Q,C,F, type, μ, ϕ) and L = (L, SE), process model m satisfies weak
conformance with respect to data class c ∈ C if for all f, f ′ ∈ F such that fD = d = f ′

D

362 A. Meyer and M. Weske

with d referring to c holds (i) fA ⇒m f ′
A implies ϑ(f) ⇒lc ϑ(f ′), (ii) ∀se ∈ SEϑ(f ′)

originating from the same object life cycle l ∈ L : ∃ξ(se) == true, and (iii) fA = f ′
A

implies f represents a read and f ′ represents a write operation of the same activity. #

Given a process scenario, we say that it satisfies weak conformance, if the process
model satisfies weak conformance with respect to each of the used data classes. Weak
data class conformance is satisfied, (i),(iii) if for the data states of each two directly
succeeding data nodes referring to the same data class in a process model there exists a
path from the first to the second data state in the corresponding object life cycle and (ii)
if the dependencies specified by synchronization edges with a target state matching the
state of the second data node of the two succeeding ones hold such that all dependency
conjunctions and disjunctions are fulfilled. Two data nodes of the same class are directly
succeeding in the process model, if either (1) they are accessed by the same activity with
one being read and one being written or (2) there exists a path in the process model in
which two different activities access data nodes of the same class in two data states with
no further access to a node of this data class in-between.

4 Computation of Weak Conformance via Soundness Checking

A given process scenario h = (m,L, C) can be checked for weak conformance by
applying the following four steps in sequence:

1. Map the process model m and the synchronized object life cycle L to Petri nets,
2. integrate both Petri nets,
3. post-process the integrated Petri net and transform it to a workflow net system, and
4. apply soundness checking to identify violations within the process scenario h.

Before we discuss these four steps, we recall the notions of preset and postset. A preset
of a transition t respectively a place p denotes the set of all places respectively transi-
tions directly preceding t respectively p. A postset of a transition t respectively a place
p denotes the set of all places respectively transitions directly succeeding t respectively
p.

1—Petri Net Mapping: The process model is mapped to a Petri net following the rules
described in [4] for the control flow and in [16] for the data flow. The mapping of
the synchronized object life cycle is split. First, each single object life cycle l ∈ L is
mapped to a Petri net, which than secondly are integrated utilizing the set of synchro-
nization edges. The mapping of single object life cycles utilizes the fact that Petri nets
are state machines, if and only if each transition has exactly one preceding and one suc-
ceeding place [2]. Thus, each state of an object life cycle is mapped to a Petri net place
and each data state transition connecting two states is mapped to a Petri net transition
connecting the corresponding places.

For each typed synchronization edge, one place is added to the Petri net. If two typed
synchronization edges have the same source and the same dependency type, target the
same object life cycle, and if the corresponding target states each have exactly one in-
coming synchronization edge, both places are merged to one. Similarly, two places are
merged, if two typed synchronization edges have the same target, the same dependency

Weak Conformance between Process Models and Synchronized Object Life Cycles 363

type, and origin from the same object life cycle. The preset of an added place com-
prises all transitions directly preceding the places representing the source and the target
data states of the corresponding synchronization edge. The postset of an added place
comprises all transitions directly preceding the place representing the target state of the
synchronization edge. For currently typed edges, the postset additionally comprises the
set of all transitions directly succeeding the place representing the source state.

For each untyped synchronization edge, one transition is added to the Petri net. If⋂
seT

{src ∪ tgt} �= ∅ for two untyped synchronization edges, i.e., they share one data
state, then both transitions are merged. The preset and postset of each transition com-
prise newly added places; one for each (transitively) involved synchronization edge for
the preset and the postset respectively. Such preset place directly succeeds the transi-
tions that in turn are part of the preset of the place representing the data state from which
the data state transition origins. Such postset place directly precedes the transition repre-
senting the corresponding source or target transition of the typed synchronization edge.

2—Petri Net Integration: First, data states occurring in the object life cycles but not in
the process model need to be handled to ensure deadlock free integration of both Petri
nets. We add one place p to the Petri net, which handles all not occurring states, i.e.,
avoids execution of these paths. Let each qi be a place representing such not occurring
data state. Then, the preset of each transition tj being part of the preset of qi is extended
with place p, if the preset of tj contains a data state which postset comprises more than
one transition in the original Petri net mapped from the synchronized object life cycle.

Read O
in data state

s

O.s

D
C

Fig. 1. Internal places for a
place representing a data state

Each data state represented as place in the Petri net
mapped from the process model consists of a control flow
and a data flow component as visualized in Fig. 1 with
C and D. Within the integrated Petri net, the control flow
component is responsible for the flow of the object life
cycle and the data flow component is responsible for the
data flow in the process model. The integration of both
Petri nets follows three rules, distinguishable with respect
to read and write operations. The rules use the data flow
component of data state places.

(IR-1) A place p from the object life cycle Petri net representing a data state of a
data class to be read by some activity in the process model is added to the preset of
the transition stating that this data node (object) is read in this specific state, e.g., the
preset of transition Read O in data state s is extended with the place representing data
state s of class O, and (IR-2) a new place q is added to the integrated Petri net, which
extends the postset of the transition stating that the data node (object) is read in the
specific state and which extends the preset of each transition being part of the postset
of place p, e.g., the place connecting transition Read O in data state s and the two
transitions succeeding the place labeled O.s. (IR-3) Let v be a place from the object life
cycle Petri net representing a data state of a class to be written by some activity in the
process model. Then a new place w is added to the integrated Petri net, which extends
the preset of each transition being part of the preset of w and which extends the postset
of the transition stating that the data node (object) is written in the specific state. the
Petri net derived from the process model stating this write.

364 A. Meyer and M. Weske

3—Workflow Net System: Soundness checking has been introduced for workflow net
systems [1,12]. Workflow nets are Petri nets with a single source and a single sink place
and they are strongly connected after adding a transition connecting the sink place with
the source place [1]. The integrated Petri net needs to be post-processed towards these
properties by adding enabler and collector fragments. The enabler fragment consists of
the single source place directly succeeded by a transition y. The postset of y comprises
all places representing an initial data state of some object life cycle and the source place
of the process model Petri net. The preset of each place is adapted accordingly.

The collector fragment first consists of a transition t preceding the single sink node.
For each distinct data class of the process scenario, one place pi and one place qi are
added to the collector. Each place pi has transition t as postset1. Then, for each final data
state of some object life cycle, a transition ui is added to the collector. Each transition
ui has as preset the place representing the corresponding data state and some place qi
referring to the same data class. The postset of a transition ui is the corresponding place
pi also referring to the same data class. Additionally, a transition z succeeded by one
place is added to the collector. The place’s postset is transition t. The preset of z is the
sink place of the process model Petri net. The postset of z is extended with each place
qi.

Next, the synchronization places need to be considered. If a typed synchronization
edge involves the initial state of some object life cycle as source, then the correspond-
ing place is added to the postset of transition y of the enabler fragment. For all syn-
chronization edges typed previously, the postset of the corresponding place is extended
with transition t of the collector. If a currently typed synchronization edge involves a
final state of some object life cycle as source, then the corresponding place is added
to the postset of the corresponding transition ui of the collector fragment. Finally, the
semaphore places need to be integrated. Therefore, for each semaphore place, the preset
is extended with transition y from the enabler and the postset is extended with transition
t from the collector fragments. Now, connecting sink and source node, the workflow net
is strongly connected. A workflow net system consists of a workflow net and some ini-
tial marking. The workflow net is given above and the initial marking puts a token into
the single source place and nowhere else.

4—Soundness Checking: Assuming control flow correctness, if the workflow net sys-
tem satisfies the soundness property [1], no contradictions between the process model
and the object life cycles exist and all data states presented in all object life cycles are
implicitly or explicitly utilized in the process model, i.e., all paths in the object life
cycles may be taken. If it satisfies the weak soundness property [12], no contradictions
between the process model and the object life cycles exist but some of the data states
are never reached during execution of the process model. In case, control flow inconsis-
tencies would appear, places and transitions representing the control flow would cause
the violation allowing to distinguish between control flow and data conformance issues.

Validation. The described approach reliably decides about weak conformance of a pro-
cess scenario. It takes sound Petri net fragments as input and combines them with

1 Generally, we assume that addition of one element a to the preset of another element b implies
the addition of b to the postset of a and vice versa.

Weak Conformance between Process Models and Synchronized Object Life Cycles 365

respect to specified data dependencies. Single source and sink places are achieved
through the addition of elements either marking the original source places or collect-
ing tokens from the original final places. Thus, they do not change the behavior of the
process model and the object life cycles, i.e., they do not influence the result.

5 Related Work

The increasing interest in the development of process models for execution has shifted
the focus from control flow to data flow perspective leading to integrated scenarios
providing control as well as data flow views. One step in this regard are object-centric
processes [3,17,23] that connect data classes with the control flow of process models by
specifying object life cycles. [8] introduces the essential requirements of this modeling
paradigm. [9, 20] present an approach, which connects object life cycles with process
models by determining commonalities between both representations and transforming
one into the other. Covering one direction of the integration, [10] derives object life
cycles from process models. Tackling the integration of control flow and data, [14, 15]
enable to model data constraints and to enforce them during process execution directly
from the model. Similar to the mentioned approaches, we concentrate on integrated
scenarios incorporating process models and object life cycles removing the assumption
that both representations must completely correspond to each other. Instead, we set a
synchronized object life cycle as reference that describes data manipulations allowed in
a traditional, i.e., activity-driven, modeled process scenario, e.g., with BPMN [18].

The field of compliance checking focuses on control flow aspects using predefined
rule sets containing, for instance, business policies. However, some works do consider
data. [11] applies compliance checking to object-centric processes by creating pro-
cess models following this paradigm from a set of rules. However, these rules most
often specify control flow requirements. [7] provides a technique to check for confor-
mance of object-centric processes containing multiple data classes by mapping to an
interaction conformance problem, which can be solved by decomposition into smaller
sub-problems, which in turn are solved by using classical conformance checking tech-
niques. [23] introduces a framework that ensures consistent specialization of object-
centric processes, i.e., it ensures consistency between two object life cycles. In contrast,
we check for consistency between a traditional process model and an object life cycle.
Eshuis [5] uses a symbolic model checker to verify conformance of UML activity di-
agrams [19] considering control and data flow perspectives while data states are not
considered in his approach. [9] introduces compliance between a process model and
an object life cycle as the combination of object life cycle conformance (all data state
transitions induced in the process model must occur in the object life cycle) and cov-
erage (opposite containment relation). [21] introduces conformance checking between
process models and product life cycles, which in fact are object life cycles, because a
product life cycle determines for a product the states and the allowed state transitions.
Compared to the notion of weak conformance, both notions do not support data syn-
chronization and both set restrictions with respect to data constraints specification in
the process model.

366 A. Meyer and M. Weske

6 Conclusion

In this paper, we presented an approach for the integrated verification of control flow
correctness and weak data conformance using soundness checking considering depen-
dencies between multiple data classes, e.g., an order is only allowed to be shipped
after the payment was received but needs to be shipped with an confirmed invoice in
one package. Therefore, we utilized the concept of synchronized object life cycles. For
checking data correctness, we use the notion of weak conformance and extended it with
means for object life cycle synchronization. Additionally, we utilized a mapping of a
process model with data constraints to a Petri net and described a mapping of a syn-
chronized object life cycle to a Petri net. Both resulting Petri nets are combined for an
integrated control flow and data conformance check based on the soundness criterion.
With respect to the places or transitions causing soundness violations, we can distin-
guish between control flow and data flow issues and therefore, we can verify the notion
of weak conformance. Revealed violations can be highlighted in the process model and
the synchronized object life cycle to support correction. In this paper, we focused on
the violation identification such that correction is subject to future work.

References

1. van der Aalst, W.M.P.: Verification of Workflow Nets. In: Azéma, P., Balbo, G. (eds.)
ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

2. van der Aalst, W.M.P.: Workflow Verification: Finding Control-Flow Errors Using Petri-Net-
Based Techniques. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Business Process
Management. LNCS, vol. 1806, pp. 161–183. Springer, Heidelberg (2000)

3. Cohn, D., Hull, R.: Business Artifacts: A Data-centric Approach to Modeling Business Op-
erations and Processes. IEEE Data Engineering Bulletin 32(3), 3–9 (2009)

4. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and Analysis of Business Process Mod-
els in BPMN. Information & Software Technology 50(12), 1281–1294 (2008)

5. Eshuis, R.: Symbolic Model Checking of UML Activity Diagrams. ACM Transactions on
Software Engineering and Methodology (TOSEM) 15(1), 1–38 (2006)

6. Fahland, D., Favre, C., Jobstmann, B., Koehler, J., Lohmann, N., Völzer, H., Wolf, K.: In-
stantaneous Soundness Checking of Industrial Business Process Models. In: Dayal, U., Eder,
J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 278–293. Springer,
Heidelberg (2009)

7. Fahland, D., de Leoni, M., van Dongen, B.F., van der Aalst, W.M.P.: Conformance Checking
of Interacting Processes with Overlapping Instances. In: Rinderle-Ma, S., Toumani, F., Wolf,
K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 345–361. Springer, Heidelberg (2011)

8. Künzle, V., Weber, B., Reichert, M.: Object-aware Business Processes: Fundamental Require-
ments and their Support in Existing Approaches. IJISMD 2(2), 19–46 (2011)

9. Küster, J.M., Ryndina, K., Gall, H.C.: Generation of Business Process Models for Object
Life Cycle Compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS,
vol. 4714, pp. 165–181. Springer, Heidelberg (2007)

10. Liu, R., Wu, F.Y., Kumaran, S.: Transforming Activity-Centric Business Process Models into
Information-Centric Models for SOA Solutions. J. Database Manag. 21(4), 14–34 (2010)

11. Lohmann, N.: Compliance by design for artifact-centric business processes. In: Rinderle-
Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 99–115. Springer,
Heidelberg (2011)

Weak Conformance between Process Models and Synchronized Object Life Cycles 367

12. Martens, A.: On Usability of Web Services. In: Web Information Systems Engineering Work-
shops, pp. 182–190. IEEE (2003)

13. Meyer, A., Polyvyanyy, A., Weske, M.: Weak Conformance of Process Models with respect
to Data Objects. In: Services and their Composition (ZEUS), pp. 74–80 (2012)

14. Meyer, A., Pufahl, L., Batoulis, K., Kruse, S., Lindhauer, T., Stoff, T., Fahland, D., Weske,
M.: Automating Data Exchange in Process Choreographies. In: Jarke, M., Mylopoulos, J.,
Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014.
LNCS, vol. 8484, pp. 316–331. Springer, Heidelberg (2014)

15. Meyer, A., Pufahl, L., Fahland, D., Weske, M.: Modeling and Enacting Complex Data Depen-
dencies in Business Processes. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS,
vol. 8094, pp. 171–186. Springer, Heidelberg (2013)

16. Meyer, A., Weske, M.: Weak Conformance between Process Models and Object Life Cycles.
Tech. rep., Hasso Plattner Institute at the University of Potsdam (2014)

17. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification. IBM
Systems Journal 42(3), 428–445 (2003)

18. OMG: Business Process Model and Notation (BPMN), Version 2.0 (January 2011)
19. OMG: Unified Modeling Language (UML), Version 2.4.1 (August 2011)
20. Ryndina, K., Küster, J.M., Gall, H.C.: Consistency of Business Process Models and Object

Life Cycles. In: Kühne, T. (ed.) MoDELS 2006. LNCS, vol. 4364, pp. 80–90. Springer, Hei-
delberg (2007)

21. Wang, Z., ter Hofstede, A.H.M., Ouyang, C., Wynn, M., Wang, J., Zhu, X.: How to Guarantee
Compliance between Workflows and Product Lifecycles? Tech. rep., BPM Center Report
BPM-11-10 (2011)

22. Weske, M.: Business Process Management: Concepts, Languages, Architectures, 2nd edn.
Springer (2012)

23. Yongchareon, S., Liu, C., Zhao, X.: A Framework for Behavior-Consistent Specialization of
Artifact-Centric Business Processes. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012.
LNCS, vol. 7481, pp. 285–301. Springer, Heidelberg (2012)

Failure-Proof Spatio-temporal Composition of Sensor
Cloud Services

Azadeh Ghari Neiat, Athman Bouguettaya, Timos Sellis, and Hai Dong

School of Computer Science and Information Technology, RMIT, Australia

{azadeh.gharineiat,athman.bouguettaya,timos.sellis,

hai.dong}@rmit.edu.au

Abstract. We propose a new failure-proof composition model for Sensor-Cloud
services based on dynamic features such as spatio-temporal aspects. To evaluate
Sensor-Cloud services, a novel spatio-temporal quality model is introduced. We
present a new failure-proof composition algorithm based on D* Lite to handle
QoS changes of Sensor-Cloud services at run-time. Analytical and simulation
results are presented to show the performance of the proposed approach.

Keywords: Spatio-temporal Sensor-Cloud service, spatio-temporal composition,
Sensor-Cloud service composition, spatio-temporal QoS, service re-composition.

1 Introduction

The large amount of real-time sensor data streaming from Wireless Sensor Networks
(WSNs) is a challenging issue because of storage capacity, processing power and data
management constraints [1]. Cloud computing is a promising technology to support the
storage and processing of the ever increasing amount of data [2]. The integration of
WSNs with the cloud (i.e., Sensor-Cloud) [3] provides unique capabilities and oppor-
tunities, particularly for the use of data service-centric applications. Sensor-Cloud is a
potential key enabler for large-scale data sharing and cooperation among different users
and applications.

A main challenge in Sensor-Cloud is the efficient and real-time delivery of sensor
data to end users. The preferred technology to enable delivery is services [4], i.e., sensor
data made available as a service (i.e. Sensor-Cloud service) to different clients over
a Sensor-Cloud infrastructure. The service paradigm is a powerful abstraction hiding
data-specific information focusing on how data is to be used. In this regard, sensor data
on the cloud is abstracted as Sensor-Cloud services easily accessible irrespective of the
distribution of sensor data sources. In this paper, we propose a service-oriented Sensor-
Cloud architecture that provides an integrated view of the sensor data shared on the
cloud and delivered as services.

The “position” and “time” of sensed data are of paramount importance reflecting the
spatio-temporal characteristics. Spatio-temporal features are fundamental to the func-
tional aspect of the Sensor-Cloud. In this regard, we focus on spatio-temporal aspects
as key parameters to query the Sensor-Cloud.

Composition provides a means to aggregate Sensor-Cloud services. In a highly dy-
namic environment such as those found in sensed environments, the non-functional

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 368–377, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Failure-Proof Spatio-temporal Composition of Sensor Cloud Services 369

Fig. 1. The Public Transport Motivation Scenario

properties (QoS) of Sensor-Cloud services may fluctuate [5]. For example, a participant
service may no longer be available or its QoS constraint has been fluctuated at runtime.
As a result, the service may no longer provide the required QoS and fail. Therefore,
the initial composition plan may become non-optimal and needs to be replanned to deal
with the changing conditions of such environments.

This paper focuses on providing an efficient failure-proof spatio-temporal composi-
tion model for Sensor-Cloud services. In particular, new spatio-temporal QoS attributes
to evaluate Sensor-Cloud services based on spatio-temporal properties of the services
are proposed. We propose a failure-proof spatio-temporal combinatorial search algo-
rithm to deal with the affecting component Sensor-Cloud services based on D* Lite
algorithm [6] which is an incremental version of A* algorithm. D* Lite algorithm is
efficient at repairing the plan when the new information about the environment is re-
ceived [10]. Our proposed approach continually improves its initial composition plan
and find the best composition plan from a given source-point to a given destination
point while QoS constraints change.

The rest of the paper is structured as follows: Section 2 presents the proposed spatio-
temporal model for Sensor-Cloud services. Section 3 illustrates the spatio-temporal
QoS model. Section 4 elaborates the details of the proposed failure-proof composition
approach. Section 5 evaluates the approach and shows the experiment results. Section
6 concludes the paper and highlights some future work.

Motivating Scenario

We use a typical scenario from public transport as our motivating scenario. Suppose
Sarah is planning to travel from ‘A’ to ‘B’. She wants to get information about the travel

370 A. Ghari Neiat et al.

services (i.e., buses, trams, trains and ferries) in the city to plan her journey. Different
users may have different requirements and preferences regarding QoS. For example,
Sarah may specify her requirements as maximum walk 300 meters and waiting time 10
minutes at any connecting stop. In this scenario, we assume that each bus (tram / train
/ ferry) has a set of deployed sensors (see Fig. 1). We also assume that there are sev-
eral bus sensor providers (i.e., sensor data providers) who supply sensor data collected
from different buses. Assuming that each sensor data provider owns a subset of a set
of sensors on each bus. In addition, there are several Sensor-Cloud data providers who
supply Infrastructure as a Service (IaaS), i.e., CPU services, storage services, and net-
work services to sensor data providers. Sensor-Cloud service providers make services
available that may query multiple heterogeneous sensor data providers. We assume that
each Sensor-Cloud service provider offers one or more Sensor-Cloud services to help
commuters devise the “ best ” journey plan. Different Sensor-Cloud service providers
may query the same sensor data providers. The quality of services that they provide
may also be different.

In our scenario, Sarah uses the Sensor-Cloud services to plan her journey. It is
quite possible that a single service cannot satisfy Sarah’s requirements. In such cases,
Sensor-Cloud services may need to be composed to provide the best travel plan. The
composer acts on behalf of the end users to compose Sensor-Cloud services from
different Sensor-Cloud service providers.

2 Spatio-temporal Model for Sensor-Cloud Service

To model and access spatio-temporal Sensor-Cloud services, we consider
spatio-temporal dependency constraints between different Sensor-Cloud service opera-
tions. We propose a new formal spatio-temporal model for a Sensor-Cloud service and
Sensor-Cloud service composition.

2.1 Spatio-temporal Model for Atomic Sensor-Cloud Service

We introduce the notion of Sensor-Cloud service based on spatio-temporal aspects. We
discuss the key concepts to model a Sensor-Cloud service in terms of spatio-temporal
features. The Sensor-Cloud service model is formally defined as follows:

– Definition 1: Sensor sen. A sensor seni is a tuple of < id, (loci, tsi)> where
• id is a unique sensor ID,
• (loci, tsi) shows the latest recorded location of sensor seni and timestamp
tsi is the latest time in which sensor data related to Sensor-Cloud service is
collected from sensor seni.

– Definition 2: Sensor-Cloud Service S. A Sensor-Cloud service Si is a tuple of <
id, ISi, FSi, di, Fi, Qi, SENi > where
• id is a unique service ID,
• ISi (Initial State) is a tuple < Ps, ts >, where

∗ Ps is a GPS start-point of Si ,
∗ ts is a start-time of Si.

Failure-Proof Spatio-temporal Composition of Sensor Cloud Services 371

Fig. 2. Spatio-Temporal Composite Sensor-Cloud Service Model

• FSi (Final State) is a tuple < Pe, te >, where
∗ Pe is a GPS end-point of Si,
∗ te is an end-time of Si.

• di represents the intra-dependency between two states from Si meaning that
FSi is invoked after ISi,

• Fi describes a set of functions offered by Si,
• Qi is a tuple < q1,q2, ... , qn >, where each qi denotes a QoS property of Si,
• SENi ={seni|1 � i � m} represents a finite set of sensors seni collecting

sensor data related to Si.
For example, the function of a bus service S65 (F65) can be defined as travelling
from stop 4 at 5:10 pm (i.e., IS65 =< stop 4 , 5 : 10pm >) to stop 54 (i.e.,
FS65 =< stop 54 , 5 : 22pm >) by bus.

2.2 Spatio-temporal Model for Sensor-Cloud Service Composition

In some instances, an atomic Sensor-Cloud service may not fully meet user’s require-
ments. In this case, a composition of services may be required. The main idea for
composing Sensor-Cloud services is spatio-temporal dependencies among services. We
represent a composite Sensor-Cloud service as a directed acyclic graph in which the
nodes are service states (i.e., IS or FS) provided by component services and edges
denote spatio-temporal dependencies among services (Fig. 2).

– Definition 3: Composite Sensor-Cloud Service CS. A composite Sensor-Cloud ser-
vice CS is defined as a tuple < SCS, r, t,D, ς, ξ >

• SCS = {Si|1 � i � n} represents a set of component services in which n is
the total number of component services of CS,

• r and t are user-defined spatial radius and time interval, respectively.
• D = {< Sk, Sl > |1 � k � n∧1 � l � n∧k �= l} represents spatio-temporal

neighbour dependencies between two component services Sk and Sl. A spatio-
temporal neighbour dependency consists of two types of dependencies:
∗ spatial dependency: two services Sk and Sl have spatial dependency if
Sl. Ps is located inside the spatial circle centred at Sk.Pe with a geographic
radius r. For example, the bus stop 4 of bus service 65 has the spatial
dependency with the tram stop 13 of tram service 8 supporting a walk of
300 meters (i.e., r = 300) between the bus stop and tram station.

372 A. Ghari Neiat et al.

∗ temporal dependency: two services Sk and Sl have temporal dependency
if Sl will be executed in a time window t of Sk, i.e., Sk.te ≤ Sl.ts + t. For
example, the bus service 65 arrives in the bus stop 4 within 10 min (t = 10)
before departing the tram service 8 from the tram stop 13.

Sk and Sl have spatio-temporal neighbour dependency, if they are both spa-
tially and temporally dependent.

• ς and ξ are a source-point and a destination-point, respectively.

In the remainder of the paper, the service and composite service are used to refer to a
Sensor-Cloud service and composite Sensor-Cloud service, respectively.

3 Spatio-temporal Quality Model for Sensor-Cloud Service

Multiple Sensor-Cloud providers may offer similar services at varying quality levels.
Given the diversity of service offerings, an important challenge for users is to discover
the ‘right’ service satisfying their requirements. We introduce novel QoS attributes for
services that focus on the spatio-temporal aspects. The proposed quality model is ex-
tensible. For the sake of clarity, we use a limited number of QoS.

3.1 Spatio-temporal Quality Model for Atomic Sensor-Cloud Service

We propose to use spatio-temporal quality criteria which is part of describing the non-
functional aspects of services:

– Service time (st): Given an atomic service S, the service time qst(S) measures the
expected time in minutes between the start and destination points. The value of
qst(S) is computed as follows:

qst(S) = S.te − S.ts (1)

– Currency (cur): Currency indicates the temporal accuracy of a service. Given an
atomic service S, currency qcur(S) is computed using the expression
(currenttime − timestamp(S)). Since each service consists of a set of sensors
{sen1, ..., senn}, timestamp(S) will be computed as follows:

timestamp(S) = Avg(tsi) (2)
– Accuracy (acc): Accuracy reflects how a service is assured. For example, a smaller

value of accuracy shows the fewer sensors contribute to the results of the service.
Given an atomic service S, the accuracy qacc(S) is the number of operating sensors
covering the specific spatial area related to S. The value of the qacc(S) is computed
as follows:

0 � Nsen(S)

Tc
� 1 (3)

where Nsen(S) is the expected number of operating sensors in S and Tc is the total
number of sensors covering the spatial area related to S. Nsen(S) can be estimated
based on the number of sen in S. We assume that Tc is known. It is also assumed
that all sensors have the same functionalities and accuracy. For example, sensor
data related to the bus service S65 is collected from 4 sensors (Nsen = 4) from 20
sensors (Tc = 20) deployed on a bus where is the spatial area related to S65.

Failure-Proof Spatio-temporal Composition of Sensor Cloud Services 373

3.2 Spatio-temporal Quality Model for Composite Sensor-Cloud Service

The quality criteria defined above are in the context of atomic services. Aggregation
functions are used to compute the QoS of the composite service. Table 1 presents these
aggregation functions:

– Service time: The service time of a composite service is the sum of the service time
of all its component services in addition to the transition time trans between two
component services. The transition time is computed as follows:

trans =

n−1∑
j=1

(S(j+1).start-time− Sj .end-time) (4)

where Sj and Sj+1 are two subsequent component services and S1.end-time is the
start time of a query Qt.

– Currency: The currency value of a composite service is the average of the currency
of all the selected services.

– Accuracy: The accuracy value for a composite service is the product of the accuracy
of all its component services.

Table 1. QoS Aggregation Functions

QoS attribute Service Time Currency Accuracy

Aggregation Function
m∑

i=1

qst(Si) + trans

∑m
i=1 qcur(Si)

m

m∏

i=1

qacc(Si)

4 Failure-Proof Spatio-temporal Composition Approach

When a service experiences significant quality fluctuation at runtime, an established
composition plan may no longer be optimal. There are two situations in which a com-
position may become non-optimal. First, when QoS constraints of a component service
violate or a component service may no longer be available at runtime and the composi-
tion may fail. Second, when a component service may provide better QoS and a more
optimal composition plan may be provided. In such situations, all compositions that
include the affecting service should adapt to the fluctuation.

We propose a heuristic algorithm called Spatio-Temporal A* (STA*) algorithm [7]
which is a variation of A* offering an optimal composition plan. STA* differs on neigh-
bour and search cost functions. In [7], we present a new spatio-temporal index data
structure based on a 3D R-tree [8] to organize and access services. The nodes of the
3D R-tree represent actual services. We define a new neighbour function to find spatio-
temporal neighbour services (i.e. candidate services) of a service, called
Spatio-TemporalSearch algorithm, based on a 3D R-tree [7]. We also define the search
cost function f-score as follows:

f -score[S] = g-score[S] + h-score[S] (5)

374 A. Ghari Neiat et al.

where g-score calculates the QoS utility score [9] of selected services from the source-
point ς to the current service and heuristic function h-score estimates the Euclidean
distance between the end-point of candidate service S and the destination-point ξ.

In this section, we propose a novel failure-proof service composition approach based
on spatio-temporal aspects of services to support real-time response to fluctuation
of QoS attributes. We introduce a new heuristic algorithm based on D* Lite, called
STD*Lite. D* Lite is a dynamic shortest path finding algorithm that has been exten-
sively applied in mobile robot and autonomous vehicle navigation. D* Lite is capable
of efficiently replanning paths in changing environment [10]. Whenever the QoS values
of component services in the initial composition plan significantly change at runtime,
STD*Lite recomputes a new optimal composition plan from its current position to the
destination. Without loss of generality, we only consider temporal QoS fluctuations in
service time qst. In our approach, the existence of a temporal QoS change is ascertained
by measuring the value of difference τ between the measured qst of a service at runtime
and its promised qst. If τ is more than a defined threshold ε, a QoS change has occurred.

STD*Lite algorithm , like STA*, maintains an estimate g-score for each service S
in the composition plan. Since STD*Lite searches backward from the destination-point
to the source-point, g-score estimates the QoS utility score of the optimal path from S
to the destination. It also maintains a second kind of estimates called rhs value which
is one step lookahead of g-score. Therefore, it is better informed than g-score and
computed as follows:

rhs(S) =

{
0 S.Pe = ξ

minS′∈SuccNeighboursList(S)(trans(S
′, S) + g-score(S′)) S.Pe �= ξ

(6)

where trans(S′, S) is the transition time between S’ and S and SuccNeighboursList
is the set of successor neighbours of the service S. The rationale of using neighbours is
that the optimal plan from S to the destination must pass through one of the neighbours
of S. Therefore, if we can identify the optimal plans from any of the neighbours to
the destination, we can compute the optimal plan for S. The successor neighbours of a
service S are identified through Spatio-TemporalSearch algorithm in [7].

By comparing g-score and rhs, the algorithm identifies all affecting, called inconsis-
tent, component services. A service is called locally consistent iff its rhs value equals
to its g-score value, otherwise it is called locally inconsistent. A locally inconsistent
service falls into two categories: underconsistent (if g-score(S) < rhs(S)) and over-
consistent (if g-score(S) > rhs(S)). A service is called underconsistent if its QoS
values degrades. In such a situation, the QoS values of affecting services should be
updated and the composition plan should adapt to the violations. Moreover, a service
is called overconsistent if its QoS values become better. An overconsistent service im-
plies that a more optimal plan can be found from the current service. When a service
is inconsistent, the algorithm updates all of it’s neighbours and itself again. Updating
services makes them consistent.

Algorithm 1 presents the details of STD*Lite algorithm. The algorithm generates
an optimal initial composition plan like a backward STA* search {Line 33-42}. If the
QoS values of component services change after generating the initial composition plan,
STD*Lite updates the inconsistent (i.e., affecting) component services and expands
the services to recompute a new optimal composition plan {43-47}. All inconsistent

Failure-Proof Spatio-temporal Composition of Sensor Cloud Services 375

services are then inserted in a priority queue CandidateQueue to be updated and made
consistent. STD*Lite avoids redundant updates through updating only the inconsistent
services which are necessary to modify, while A* updates all of the plan. The priority
of an inconsistent service in CandidateQueue is determined by key value as follows:

key(S) = [k1(S), k2(S)]
= [min(g-score(S), rhs(S)) + h-score(Sstart, S), min(g-score(S), rhs(S))]

(7)

The keys are compared in a lexicographical order. The priority of key(S) < key(S′)
, iff k1(S) < k1(S

′) or k1(S) = k1(S
′) and k2(S) < k2(S

′). The heuristics in k1
serves in the same way as f -score in STA*. The algorithm applies this heuristic to
ensure that only the services either newly overconsistent or newly underconsistent that
are relevant to repairing the current plan are processed. The inconsistent services are
selected in the order of increasing priority which implies that the services which are
closer to the Sstart (i.e. less h-score value) should be processed first. Note that as the
algorithm tracks the execution of the composition plan, the start service Sstart becomes
the current running service of the plan. Therefore, when a QoS value fluctuates, a new
optimal plan is computed from the original destination to the new start service (i.e.
current service).

The algorithm finally recompute a new optimal plan by calling ComputePlan() func-
tion {48}. ComputePlan() expands the local inconsistent services on CandidateQueue
and updates g-score and rhs values and add them to or remove them from Candidate-
Queue with their corresponding keys by calling UpdateService() function {4-15}.

When ComputePlan() expands an overconsistent service, it sets g-score value of the
service equals to its rhs value to make it locally consistent {20}. Since rhs values
of predecessor neighbours of a service are computed based on the g-score value of
the service, any changes of its g-score value can effect the local consistency of its
predecessor neighbours. As a result, predecessor neighbours {19} of an inconsistent
service should be updated {21-23}.

When ComputePlan() expands an underconsistent service, it sets g-score value of
the service to infinity to make it either overconsistent or consistent {25}. The predeces-
sor neighbour services of the service need also to be updated {26-28}. ComputePlan()
expands the services until the key value of the next service to expand is not less than
the key value of Sstart and Sstart is locally consistent {17}.

5 Experiments Results

We conduct a set of experiments to assess the effectiveness of the proposed approach
over different QoS fluctuation ratio. We run our experiments on a 3.40 GHZ Intel Core
i7 processor and 8 GB RAM under Windows 7. To the best of our knowledge, there is
no spatio-temporal service test case to be used for experimental purposes. Therefore,
we focus on evaluating the proposed approach using synthetic spatio-temporal services.

In our simulation, 1000 nodes are randomly distributed in a 30 km × 30 km region.
The radius for neighbour search r as 0.5% of the specified region. All experiments are
conducted 1000 times and the average results are computed. Each experiment starts
from a different source and destination which are randomly generated. Two spatio-
temporal QoS attributes of the syntactic service instances are randomly generated with

376 A. Ghari Neiat et al.

Algorithm 1. STD*Lite [basic version]

1: procedure CALCULATEKEY(S)
2: return [min(g-score(S), rhs(S))

+h-score(Sstart, S),min(g-score(S), rhs(S))]
3: end procedure
4: procedure UPDATESERVICE(S)
5: if S.Pe �= ξ then
6: SuccNeighboursList = Spatio-TemporalSearch(G,

RT, S.pe , S.te, r, t)
7: rhs(S) = minS′∈SuccNeighboursList

(trans(S’,S)+ g-score(S’))
8: end if
9: if S ∈ CandidateQueue then
10: CandidateQueue.remove(S)
11: end if
12: if g-score(S) �= rhs(S) then
13: CandidateQueue.insert(S,CalculateKey(S))
14: end if
15: end procedure
16: procedure COMPUTEPLAN()
17: while minS∈CandidateQueue(key(S))<

key(Sstart) or rhs(Sstart) �= g-score(Sstart) do
18: CandidateQueue.remove(S with minimum key)
19: PredNeighboursList = Spatio-TemporalSearch(G,

RT, S.ps, S.ts-t, r, t)
20: if g-score(S) > rhs(S) then g-score(S) = rhs(S)
21: for all S’ ∈ PredNeighboursList do
22: UpdateService(S)
23: end for

24: else
25: g-score(S) = ∞
26: for all S’ ∈ PredNeighboursList ∪ S do
27: UpdateService(S)
28: end for
29: end if
30: end while
31: end procedure
32: procedure MAIN()
33: CandidateQueue = ∅

34: for all services S do
35: g-score(S) = rhs(S) = ∞
36: end for
37: rhs(Sdestination) = 0
38: CandidateQueue.insert(Sdestination,

CalculateKey(Sdestination))
39: ComputePlan()
40: if g-score(Sstart) = ∞ then
41: print ”there is no plan”
42: end if
43: while Sstart �= Sdestination do
44: Runtime monitoring to find the affecting ser-

vices
45: for all affecting services S do
46: UpdateService(S)
47: end for
48: ComputePlan()
49: end while
50: end procedure

a uniform distribution from the following intervals: qacc ∈ [0, 1] and qcur ∈ [60, 1440].
The qst is assigned based on the distance between Ps and Pe considering a fixed speed.
The remaining parameters are also randomly generated using a uniform distribution.

5 10 15 20 25 30

100

101

102

103

104

QoS Fluctuation Ratio (%)

C
om

pu
ta

tio
n

tim
e

(m
s)

1000 services
10000 services

100000 services

Fig. 3. Computation time vs. fluctuation ratio

We test the performance of STD*Lite in terms of computation time with the number
of services varying from among 1000, 10000 and 100000. For each group of services, we
also vary the QoS fluctuation ratio from 5 to 30 %. The QoS fluctuation ratio indicates
that the ratio of the number of affecting services over the total number of services. For
example, a fluctuation ratio of 10% denotes that the service time of 10% of the total
number of services change at runtime. Fig. 3 shows STD*Lite performs very efficiently on
a large number of services (i.e., less than 100 ms on 100000 services). The computation
time increases along with the number of services, which is an expected result. It can
be seen that the similar computation time is achieved regardless of the QoS fluctuation

Failure-Proof Spatio-temporal Composition of Sensor Cloud Services 377

ratio. The slight difference (i.e., less than 10 ms over 100000 services) shows the relative
stability of our approach when QoS is highly violated.

6 Conclusion

This paper proposes a novel approach for failure-proof composition of Sensor-Cloud
services in terms of spatio-temporal aspects. We introduce a new failure-proof spatio-
temporal combinatorial search algorithm based on D* Lite to replan a composition plan
in case of QoS changes. We conduct preliminary experiments to illustrate the perfor-
mance of our approach. Future work includes implementing a prototype and test it with
real-world applications with focusing on building Sensor-Clouds for public transport.

References

1. Hossain, M.A.: A survey on sensor-cloud: architecture, applications, and approaches. Inter-
national Journal of Distributed Sensor Networks (2013)

2. Lee, K., Murray, D., Hughes, D., Joosen, W.: Extending sensor networks into the cloud using
amazon web services. In: 2010 IEEE International Conference on Networked Embedded
Systems for Enterprise Applications (NESEA), pp. 1–7. IEEE Press (2010)

3. Rajesh, V., Gnanasekar, J., Ponmagal, R., Anbalagan, P.: Integration of wireless sensor
network with cloud. In: 2010 International Conference on Recent Trends in Information,
Telecommunication and Computing (ITC), pp. 321–323. IEEE Press (2010)

4. Carey, M.J., Onose, N., Petropoulos, M.: Data services. Communications of the ACM 55(6),
86–97 (2012)

5. Ben Mabrouk, N., Beauche, S., Kuznetsova, E., Georgantas, N., Issarny, V.: Qos-aware ser-
vice composition in dynamic service oriented environments. In: Bacon, J.M., Cooper, B.F.
(eds.) Middleware 2009. LNCS, vol. 5896, pp. 123–142. Springer, Heidelberg (2009)

6. Koenig, S., Likhachev, M.: D* lite. In: AAAI/IAAI, pp. 476–483 (2002)
7. Ghari Neiat, A., Bouguettaya, A., Sellis, T., Ye, Z.: Spatio-temporal composition of sen-

sor cloud services. In: 21th IEEE International Conference on Web Services (ICWS), pp.
241–248. IEEE Press (2014)

8. Theoderidis, Y., Vazirgiannis, M., Sellis, T.: Spatio-temporal indexing for large multimedia
applications. In: Proceedings of the Third IEEE International Conference on Multimedia
Computing and Systems, pp. 441–448. IEEE Press (1996)

9. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.: Qos-
aware middleware for web services composition. IEEE Transactions on Software Engineer-
ing 30(5), 311–327 (2004)

10. Koenig, S., Likhachev, M.: Improved fast replanning for robot navigation in unknown terrain.
In: IEEE International Conference on Robotics and Automation, pp. 968–975 (2002)

Probabilistic Prediction of the QoS of Service
Orchestrations: A Truly Compositional

Approach�

Leonardo Bartoloni, Antonio Brogi, and Ahmad Ibrahim

Department of Computer Science, University of Pisa, Italy
{bartolon,brogi,ahmad}@di.unipi.it

Abstract. The ability to a priori predict the QoS of a service orches-
tration is of pivotal importance for both the design of service compo-
sitions and the definition of their SLAs. QoS prediction is challenging
because the results of service invocations is not known a priori. In this
paper we present an algorithm to probabilistically predict the QoS of
a WS-BPEL service orchestration. Our algorithm employs Monte Carlo
simulations and it improves previous approaches by coping with complex
dependency structures, unbound loops, fault handling, and unresponded
service invocations.

Keywords: QoS prediction, service orchestration, WS-BPEL, Monte
Carlo method.

1 Introduction

Quality of Service (QoS) of a service orchestration depend on the QoS of services
it invokes. When selecting and composing various services together, the designer
of an orchestrator has to consider whether the desired composition yields an
overall QoS level which is acceptable for the application. In order to predict QoS
two characteristics of service orchestration must be considered:

– Different results of service invocations. Each invoked service can return a suc-
cessful reply, a fault notification, or even no reply at all. If a fault is returned,
a fault handling routine will be executed instead of the normal control flow.
If no reply is received, the orchestrator may wait forever for a reply (unless
some parallel branch throws a fault). In either case, the resulting QoS of the
composition differs from the case of successful invocation.

– Non-determinism in the workflow. Different runs of the same application can
have different QoS values just because the orchestration control flow is non-
deterministic due to two reasons. Firstly, different runs of the orchestration
can get different service invocation results (success/fault/no reply). It is
worth noting that a service is not always faulty or successful, rather it has a
certain probability of being successful (as guaranteed in its SLA). Secondly,

� Work partly supported by the EU-FP7-ICT-610531 SeaClouds project.

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 378–385, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Probabilistic Prediction of the QoS of Service Orchestrations 379

alternative and iterative control flow structures (if/else and loops) depend
on input data which may differ in different runs. This leads, for instance,
to different numbers of loop iterations or to different branches executed in
a if/else structure. Moreover certain QoS properties of invoked services can
vary from one run to another (e.g., response time).

The objective of this paper is to present an algorithm to probabilistically
predict the QoS of a workflow defining a service orchestration. The inputs of the
algorithm are a WS-BPEL [1] workflow, and probability distributions for the
QoS properties of the services used as well as for branch guard evaluations. The
output of the algorithm is a probability distribution for the QoS properties of the
orchestration. We represent distributions (both input and output) as sampling
functions due to which not only we can compute average/expected values but
also many other statistical properties (e.g., standard deviation or the probability
of QoS not respecting a target SLA) by using the Monte Carlo method [2]. Our
method provides a more accurate representation than traditional sequential and
parallel decomposition, by using a different pair of basic composition functions
which can model more suitably arbitrary dependency structures, unbound loops
and fault handling in a compositional way. Furthermore, our method improves
previous work by providing more accurate predictions by modeling a certain
degree of correlation between parallel branches.

2 Related Work

Various approaches (e.g., [3–9]) have been proposed to determine the QoS of
service compositions.

Cardoso [3] presented a mathematical model and an algorithm to compute the
QoS of a workflow composition. He iteratively reduces the workflow by removing
parallel, sequence, alternative and looping structures according to a set of re-
duction rules, until only one activity remains. However, some workflow complex
dependencies cannot be decomposed into parallel or sequence, as shown in [9].
This kind of approach has been adopted also by others [5, 7, 8], some of whom
(e.g., [4]) tried to overcome such limitation by defining more reduction patterns.

Mukherjee et al. [6,9] presented a algorithm to estimate the QoS of WS-BPEL
compositions. They convert a WS-BPEL workflow into an activity dependency
graph, and assign probabilities of being executed to each activity. In their frame-
work it is possible to treat any arbitrary complex dependency structure as well
as fault driven flow control. However, they do not consider correlation between
activities which do not have a direct dependency, and this in some cases can
yield a wrong result.

Zheng et al. [8] focused on QoS estimation for compositions represented by
service graphs. In their approach however they only marginally deal with par-
allelism, by not considering arbitrary synchronization links (i.e., they restrict
to cases in which is possible to decompose flow -like structures into parallel and
sequences, as in [3]), and they do not take into account fault handling. Moreover,

380 L. Bartoloni, A. Brogi, and A. Ibrahim

they need to fix an upper bound to the number of iterations for cycles, in order
to allow decomposition into acyclic graph. They also assume that service invo-
cations are deterministic, namely services are always successful and their QoS is
not changing from one run to another.

To the best of our knowledge all previous approaches require to know a priori
the exact number of iterations, or at least an upper bound for each loop in order
to estimate QoS values. Also, other approaches rarely take fault handling into
account, and never deal with non-responding services.

3 Determine the QoS of a Service Orchestration

In this section we introduce our algorithm to provide a QoS estimate for a service
orchestration based on the QoS of the services it invokes. Our input workflows
can contain any arbitrary dependency structure (i.e., not only for parallel and
sequential execution patterns), fault handling, unbound loops and can preserves
correlation, for example in diamond dependencies.

Our algorithm uses a structural recursive function that associates each WS-
BPEL activity with a cost structure. This cost structure is a tuple of metadata
chosen accordingly to the QoS values we want to compute. The cost structure
has to carry enough information to allow computation of QoS values and allow
composing it with other costs using the standard WS-BPEL constructs, i.e. it
needs to have a composition function for each WS-BPEL construct. Later we
will show that it is possible to write a composition function for most of WS-
BPEL composition constructs by only requiring two basic operations on the cost
data type. The first is the compositor for independent parallel execution of two
activities. Suppose we have two activities A and B, we assume to be able to
compute the cost of executing both in parallel only knowing the cost of those
activities, by using a given function Both. The second compositor is the one we
use to resolve dependency. If a WS-BPEL construct of A and B introduces some
dependency/synchronization between the two activities, namely we suppose that
it forces the activity B to start after completion of A, we will need to adjust the
cost of B to take into account the dependence introduced by the composition
structure, and we suppose to be able to do it from the costs of A and B by using
a given operation Delay1. For example in our model the Sequence(A,B)
construct is decomposed into a parallel execution of the independent activity
A and the activity B synchronized after A, as such its cost can be written, in
absence of faults, as:

Cost(A) = cA Cost(B) = cB

Cost(Sequence(A,B)) = Both(cA,Delay(cB, cA))

This is similar to what has been done in previous approaches (e.g., [3]) in
which the Flow dependency graph is decomposed into parallel and sequence
1 We use Delay as function name because in most cases this affects only time-based

properties of the dependent activity, such as completion time.

Probabilistic Prediction of the QoS of Service Orchestrations 381

compositions. By choosing Both and Delay as basic composition operators
however we can define cost composition functions for any dependence structure,
while the parallel and sequence decomposition fails for a significantly wide range
of dependency graph allowed by the WS-BPEL Flow construct [9].

Because of the definition it can be verified that functions Both and Delay
need to respect the following properties:

– Both is commutative, i.e. ∀a, b.Both(a, b) = Both(b, a)
– Both is associative, i.e. ∀a, b, c.Both(a,Both(b, c)) = Both(Both(a, b), c)
– Delay is associative, i.e. ∀a, b, c.Delay(a,Delay(b, c)) = Delay(Delay(a, b), c)
– Delay is right-distributive over Both, i.e. ∀a, b, c.Delay(Both(a, b), c)) =

Both(Delay(a, c),Delay(b, c))

We also explicitly name a neutral element Zero (i.e. : Both(A,Zero) = A
and Delay(A,Zero) = A) which can be useful for example to define the All
function, which extend the Both function to any number of parameters:

All([]) = Zero

All(t) = tc

All(h :: t) = Both(h, tc)

3.1 Control Flow Trimming

In WS-BPEL there are two control flow mechanism that will ultimately result
in some activities not being executed: Explicit control flow (IfThenElse state-
ments, iterations, and synchronization <link> status) and faults management.
To effectively resolve such control flow structures and exclude from computa-
tion costs of activities which are not executed, we require to associate additional
metadata to an activity:

– To resolve explicit control flow we assume an environment holding the syn-
chronization <link> status and variable values. We restrict to Boolean vari-
ables in order to keep the size of the environment finite, and thus computable.

– To resolve fault handling we compute also the outcome of an activity, i.e.,
whether an activity is successfully executed or not. We identify three different
outcomes for an activity: the Success outcome, which result in execution
of consequent activities and skipping eventual fault handlers, the Fault
outcome, which on the opposite will result in skipping consequent activities
but executing fault handlers, the Stuck outcome is assigned to activities
where the orchestrator waits for a service which failed to provide a response.

3.2 Statistical Non-determinism

It is not possible to define a deterministic function that given an activity and
an input environment yields its outcome, its cost and the modified environment
because:

– Outcome and cost of Invoke activities are in general non-deterministic,
because they depend on external services.

382 L. Bartoloni, A. Brogi, and A. Ibrahim

– Data dependent control flow can not be evaluated exactly, because data
values are unknown.

We can however define an Eval function which computes a distribution on the
outcome, cost and output environment for a given activity and a given status
of input environment. Many models can be chosen to represent a distribution.
For simplicity we choose sampling functions for this purpose. Sampling functions
are algorithm that extracts random values according to the distribution being
represented, which can be used in a Monte Carlo simulation to retrieve probabil-
ities and expected values. A structural recursive definition of such Eval function
can be given by exploiting the monadic property of distributions, i.e., if an ex-
pression contains some variable whose distribution is known the distribution
for the value of the expression can be computed (by integrating the variable).
For sampling functions this means that it is possible to generate samples for
an expression that contains a random variable for which a sampling function is
available, which can be done by sampling the variable first then replacing its
value inside the expression.

To give a grasp of the algorithm we give an example of the Eval function
for the Scope construct (written using F# [10] programming language). As
the expression depends on two subactivities, it recursively compute the sam-
pling function for needed subactivities, then evaluate it when needed. Here the
Scope(A,H) expression represents a scope activity with inner activity A and
fault handler H, and generator is an entropy source to be used for sampling:
let Eval (Scope(A,H)) env =

fun generator ->
let aSamplingFun = Eval A env
let newEnv,outcome,cost = asamplingFun generator
if outcome = Fault then

let hSamplingFun = Eval newEnv H
let newerEnv,outcome, newCost = hSamplingFun generator
newerEnv,outcome,Both(cost,Delay(newCost,cost))

else
newEnv,outcome,cost

From the flow analysis point of view the Scope activity is very similar to
a Sequence, except that while Sequence executes the second activity only
if the first is successful, in Scope the fault handler is executed only when the
first yields a Fault. For external invocations we expect to have a sampling
function describing the service, which can be written according to the service’s
QoS. Note that if the service has a WS-BPEL description, its sampling function
can be computed in the same way with this algorithm.
let Eval (Invoke(s)) env =

s.getSamplingFunction()

As explicit control flow construct, we implemented deterministic IfThenElse,
whose sampling function evaluates the guard on the environment and then dele-
gates sampling to either of branches. The transition/join conditions in the Flow
model are implemented in a similar fashion. For the While loop construct the
body is sampled until either the guard yields false for the output environment
or a Fault or Stuck result are reached. In this case too we assume the guard

Probabilistic Prediction of the QoS of Service Orchestrations 383

evaluation to be deterministic. Since we do not allow random branching we
introduce random Boolean variable assignment (OpaqueAssign). A random
branching can be emulated by replacing it with a Sequence of random vari-
able assignment followed by the branch instruction. We purposely do not allow
random branching and random transition/join condition evaluation for two rea-
sons: first it simplifies the model by keeping only one construct which introduces
randomness, secondly it makes clear to the user when conditions are correlated
and when they are not. We also allow a deterministic Assign instruction to
perform evaluation of Boolean expressions which are not immediately bound to
a branch instruction.

For Flow we sort all activities according to the link dependencies, then for
each of them we recursively compute sampling functions and generate samples
for each activity outcome, cost and output environment. We store the outcome
and the cost delayed by the cost of all dependencies, evaluate transition con-
ditions, which are deterministic, and store link statuses. This allow us to skip
all activities where one of the dependencies has a Stuck or Fault outcome, or
whose join condition is not satisfied. We assume that there is no race condition
on variables, i.e. if the same variable is used by two activities the two activities
have a dependency relation (i.e. one depends on the other or vice versa), thus we
only keep track of one environment. The Flow activity outcome will be success-
ful if all activities inside it are successful, will be a Fault if at least one of the
activities is faulty, Stuck otherwise. The cost is computed by merging together
all delayed costs for inner activities using Both/All, since the Flow construct
encodes parallel execution. The environment is the one resulting after executing
all activities.

4 Example

To illustrate our approach, we consider a bank customer loan request example
(Figure 1), which is variation of the well-known WS-BPEL loan example [1].
We want to estimate values for the Reliability, amortized expense for successful
execution and average response time of this composition. Let us assume for the
loan example the distribution of variable assignments and invoked services QoS
shown in Table 1.

Table 1. Input distributions

True False
bigAmount 50% 50%

highRisk 60% 40%

(a) Control Flow

Success Fault Stuck
0.1$, 1 sec 79% - -
0.1$, 2 sec 20% - -
0.1$, 0 sec - - 1%

(b) Risk Assessment

Success Fault Stuck
5$, 10 min 30% - -

10$, 20 min 35% - -
15$, 30 min 20% - -
0$, 5 min - 15% -

(c) Approval

The algorithm will start by evaluating the cost and outcome for the outermost
Flow activity and computes delayed costs for the activities in the flow, and then
sums them with the All compositor. Table 2 summarizes six runs of the Eval

384 L. Bartoloni, A. Brogi, and A. Ibrahim

Flow

Sequence

Sequence

Sequence

Reply
Customer

Process End

Link:approvalToReply

Process Start

Receive Customer
Loan Request

bigAmount=True

Link:receiveToAssess Link:receiveToApproval

Invoke
Risk Assessor

Assign highRisk =
(riskAssessment > 10%)

While (Condition=True)

FAULT HANDLER

Scope

Sequence

 Invoke
Loan Approver

Catch All

Change
Endpoint

Assign Condition
= False

Link:assessToApproval

Assign bigAmount=
(LoanRequest>=10,000$)

Assign Condition=True

highRisk=False

bigAmount=False

Link:setMessageToReply

highRisk=True

Fig. 1. Loan Request Example

function on the loan request example. To estimate the required QoS proper-
ties, we will perform a Monte Carlo sampling. Reliability can be determined by
computing the expectation of successCount. Amortized expense and average
response time are divided by reliability to normalize them with respect to the
number of successful executions.

Table 2. Total cost for different runs of the loan example

bigAmount highRisk Risk Assessment Approval(s) Composition

True Success (Zero) Fault (0$, 5 min);
Success (5$, 10 min) Success (5$, 15 min)

False False Success (0.1$, 2 sec) Success (0.1$, 2 sec)
False True Success (0.1$, 1 sec) Success (15$, 30 min) Success (15.1$, 181 sec)

True Success (Zero) Fault (0$, 5 min);
Success (10$, 20 min) Success (10$, 25 min)

True Success (Zero) Success (15$, 30 min) Success (15$, 30 min)
False Stuck (0.1$, 0) Stuck (0.1$, 0)

By computing the above values for the samples of Table 2 we get:
expectedSuccessfulTime = 1

6 · (15 · 60 + 2 + 181 + 25 · 60 + 30 · 60 + 0) = 6003
6 sec

expectedExpense = 1
6 · (5 + 0.1 + 15.1 + 10 + 15 + 0.1) = 45.3

6 $

reliability = 5
6 = 83%

amortizedExpense = 45.3
5 = 9.06$

averageResponseTime = 6003
5 = 1200.6 sec = 20 min 0.6 sec

Probabilistic Prediction of the QoS of Service Orchestrations 385

5 Conclusions

In this paper we have presented a novel approach to probabilistically predict the
QoS of service orchestrations. Our algorithm improves previous approaches by
coping with complex dependency structures, unbound loops, fault handling, and
unresponded service invocations. Our algorithm can be fruitfully exploited both
to probabilistically predict QoS values before defining the SLA of an orches-
tration and to compare the effect of substituting one or more endpoints (viz.,
remote services).

We see different possible directions for future work. One of them is to ex-
tend our approach to model some other WS-BPEL constructs that we have not
discussed in this paper, like Pick and EventHandlers. Another possible exten-
sion could be to allow for cases in which no information at all (not even a branch
execution probability) is available for flow control structures. Similarly the un-
correlated samples restriction imposed on invocations and assignments should
be relaxed. We would also like to be able to specify some degree of correlation
between consecutive samples (e.g., if a service invocations yields a fault because
it is "down for maintenance" we should increase the probability of getting the
same fault in the next invocation).

References

1. Jordan, D., Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B.,
Curbera, F., Ford, M., Goland, Y., et al.: Web services business process execution
language version 2.0. OASIS standard 11 (2007)

2. Dunn, W.L., Shultis, J.K.: Exploring Monte Carlo Methods. Elsevier (2011)
3. Cardoso, A.J.S.: Quality of service and semantic composition of workflows. PhD

thesis, Univ. of Georgia (2002)
4. Jaeger, M., Rojec-Goldmann, G., Muhl, G.: QoS aggregation for web service com-

position using workflow patterns. In: Proceedings of the Eighth IEEE International
Enterprise Distributed Object Computing Conference, EDOC, pp. 149–159 (2004)

5. Ben Mabrouk, N., Beauche, S., Kuznetsova, E., Georgantas, N., Issarny, V.: QoS-
Aware service composition in dynamic service oriented environments. In: Bacon,
J.M., Cooper, B.F. (eds.) Middleware 2009. LNCS, vol. 5896, pp. 123–142. Springer,
Heidelberg (2009)

6. Mukherjee, D., Jalote, P., Gowri Nanda, M.: Determining QoS of WS-BPEL com-
positions. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS,
vol. 5364, pp. 378–393. Springer, Heidelberg (2008)

7. Wang, H., Sun, H., Yu, Q.: Reliable service composition via automatic QoS predic-
tion. In: IEEE International Conference on Services Computing (SCC), pp. 200–207
(2013)

8. Zheng, H., Zhao, W., Yang, J., Bouguettaya, A.: Qos analysis for web service com-
positions with complex structures. IEEE Transactions on Services Computing 6,
373–386 (2013)

9. Mukherjee, D.: QOS IN WS-BPEL PROCESSES. Master’s thesis, Indian Institute
of Technology, Delhi (2008)

10. Syme, D., Granicz, A., Cisternino, A.: Expert F# 3.0, 3rd edn. Apress, Berkeley
(2012)

QoS-Aware Complex Event Service Composition

and Optimization Using Genetic Algorithms�

Feng Gao1, Edward Curry1, Muhammad Intizar Ali1,
Sami Bhiri2, and Alessandra Mileo1

1 INSIGHT Centre,
NUI, Gawaly, Ireland

firstname.lastname@insight-centre.org
2 Computer Science Department,
TELECOM SudParis, France

sami.bhiri@telecom-sudparis.eu

Abstract. The proliferation of sensor devices and services along with
the advances in event processing brings many new opportunities as well
as challenges. It is now possible to provide, analyze and react upon real-
time, complex events about physical or social environments. When exist-
ing event services do not provide such complex events directly, an event
service composition maybe required. However, it is difficult to determine
which compositions best suit users’ quality-of-service requirements. In
this paper, we address this issue by first providing a quality-of-service
aggregation schema for event service compositions and then developing
a genetic algorithm to efficiently create optimal compositions.

Keywords: event service composition, genetic algorithm, quality-of-
service.

1 Introduction

Recent developments in the Internet-of-Things (IoT) services envision “Smart
Cities”, which promise in improving urban performances in terms of sustain-
ability, high quality of life and wiser management of natural resources. Complex
Event Processing (CEP) and event-based systems are important enabling tech-
nologies for smart cities [4], due to the need for integrating and processing high
volumes of real-time physical and social events. However, with the multitude
of heterogeneous event sources to be discovered and integrated [3], it is crucial
to determine which event services should be used and how to compose them
to match non-functional requirements from users or applications. Indeed, non-
functional properties, e.g.: quality-of-service (QoS) properties, can play a pivotal
role in service composition [7].

� This research has been partially supported by Science Foundation Ireland (SFI)
under grant No. SFI/12/RC/2289 and EU FP7 CityPulse Project under grant
No.603095. http://www.ict-citypulse.eu

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 386–393, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://www.ict-citypulse.eu

Complex Event Service Composition and Optimization 387

In this paper, we extend the work in [2], which aims to provide CEP applica-
tions as reusable services and the reusability of those event services is determined
by examining complex event patterns and primitive event types. This paper aims
to enable a QoS-aware event service composition and optimization. In order to
facilitate QoS-aware complex event service composition, two issues should be
considered: QoS aggregation and composition efficiency. The QoS aggregation
for a complex event service relies on how its member events are correlated. The
aggregation rules are inherently different to conventional web services. Efficiency
becomes an issue when the complex event consists of many primitive events, and
each primitive event detection task can be achieved by multiple event services.
This paper addresses both issues by: 1) creating QoS aggregation rules and util-
ity functions to estimate and assess QoS for event service compositions, and 2)
enabling efficient event service compositions and optimization with regard to
QoS constraints and preferences based on Genetic Algorithms.

The remainder of the paper is organized as follows: Section 2 discusses re-
lated works in QoS-aware service planning; Section 3 presents the QoS model
we use and the QoS aggregation rules we define; Section 4 presents the heuristic
algorithm we use to achieve global optimization for event service compositions
based on Genetic Algorithms (GA); Section 5 evaluates the proposed approach;
conclusions and future work are discussed in Section 6.

2 Related Work

The first step of solving the QoS-aware service composition problem is to define a
QoS model, a set of QoS aggregation rules and a utility function. Existing works
have discussed these topics extensively [5,7]. In this paper we extract typical
QoS properties from existing works and define a similar utility function based
on Simple Additive Weighting (SAW). However, the aggregation rules in existing
works focus on conventional web services rather than complex event services,
which has a different QoS aggregation schema. For example, event engines also
has an impact on QoS aggregation, which is not considered in conventional
service QoS aggregation. Also, the aggregation rules for some QoS properties
based on event composition patterns are different to those based on workflow
patterns (as in [5]), which we will explain in details in Section 3.1.

As a second step, different concrete service compositions are created and com-
pared with regard to their QoS utilities to determine the optimal choice. To
achieve this efficiently, various GA-based approaches are developed [8,1,6]. The
above GA-based approaches can only evaluate service composition plans with
fixed sets of service tasks (abstract services) and cannot evaluate composition
plans which are semantically equivalent, but consist of different service tasks,
i.e., service tasks on different granularity levels. A more recent work in [7] ad-
dresses this issue by developing a GA based on Generalized Component Services.
Results in [7] indicate that up to a 10% utility enhancement can be obtained
by expanding the search space. Composing events on different granularity lev-
els is also a desired feature for complex event service composition. However, [7]

388 F. Gao et al.

Table 1. QoS aggregation rules based on composition patterns

Dimensions
Root Node Event Operators

Repetition Sequence And Or

P (E), E(E) =
∑

P (e),
∑

E(e),where e ∈ Eice

Ava(E) =
∏

Ava(e),where e ∈ Eice

S(E) = min{S(e), e ∈ Eice}
L(E) = L(e), e is the last event in Edst avg{L(e), e ∈ Edst}
C(E) =

min{C(e) · f(e), e ∈ Edst}
card(E) · f(E)

max{C(e) · f(e), e ∈ Edst}
f(E)

Acc(E) =
card(E) · f(E)

min{Acc(e)−1 · f(e), e ∈ Edst}
f(E)

max{Acc(e)−1 · f(e), e ∈ Edst}

only caters for Input, Output, Precondition and Effect based service composi-
tions. Complex event service composition requires an event pattern based reuse
mechanism [2].

3 QoS Model and Aggregation Schema

In this section, a QoS aggregation schema is presented to estimate the QoS prop-
erties for event service composition. A utility function is introduced to evaluate
the QoS utility under constraints and preferences.

3.1 QoS Aggregation

In this paper, some typical QoS attributes are investigated, including: latency,
price, bandwidth consumption, availability, completeness, accuracy and security.
A numerical quality vector Q =< L,P,E,B,Ava, C,Acc, S > is used to specify
the QoS measures of an event service with regard to these dimensions. The
Composition Plan is a key factor in aggregating quality vectors for event service
compositions. As in [2], a composition plan contains an event pattern correlating
event services with event operators. Event patterns are modeled as event syntax
trees. In this paper, a step-wise transformation of event syntax tree is adopted
to aggregate QoS properties. Aggregation rules for different QoS dimensions can
be event operator dependent or independent, as shown in Table 1. In Table 1,
E denotes an event service composition. P (E), E(E) etc. denote QoS values of
E . Eice and Edst denotes the set of Immediately Composed Event services and
Direct Sub-Trees the syntax tree of E , respectively. f(E) gives the frequency of
E , card(E) gives the repetition cardinality of the root node in E .

3.2 Event QoS Utility Function

Given a quality vector Q representing the QoS capability of an event service
(composition), we denote q ∈ Q as a quality value in the vector, O(q) as the
theoretical optimum of q, C(q) as the user-defined hard constraint on q and

Complex Event Service Composition and Optimization 389

0 ≤ W (q) ≤ 1 as the weight of q representing users’ preferences. Further, we
distinguish between QoS properties with the positive or negative tendency: Q =
Q+∪Q−, where Q+ = {Ava,R,Acc, S} is the set of properties with the positive
tendency (bigger values the better), and Q− = {L, P,E,B} is the properties
with the negative tendency (smaller values the better). QoS utility U is given
by:

U =
∑ W (qi) · (qi − C(qi))

O(qi)− C(qi)
−
∑ W (qj) · (qj −O(qj))

C(qj)−O(qj)
(1)

where qi ∈ Q+, qj ∈ Q−. U should be maximized for the best candidate.

4 Genetic Algorithm for QoS-Aware Event Service
Composition Optimization

We propose a heuristic method based on Genetic Algorithms (GA) to derive
global optimizations for event service compositions, In our approach, the “fit-
ness” of each solution can be evaluated by the QoS utility function in Equation
(1). Compared to traditional GA-based optimizations for service compositions
(where a composite service is accomplished by a fixed set of service tasks), event
service compositions can have variable sets of sub-event detection tasks. Deter-
mining which event services are reusable to the event service request is resolved
with hierarchies of reusable event services, called an Event Reusability Forest
(ERF) [2]. In this section we elaborate how we utilize the ERF in the genetic
algorithm for optimizing event service composition.

4.1 Population Initialization

Given an complex event service request expressed as a canonical event pattern
ep, we consider the initialization of the population consists of three steps. First,
enumerate all Abstract Composition Plans (ACPs) of ep. An ACP is a compo-
sition plan without concrete service bindings. Second, pick randomly a set of
ACPs. Third, for each chosen ACP, pick randomly one concrete event service
binding for each sub event involved. Then, a set of random Concrete Composition
Plans (CCPs) is obtained. To create ACPs, we mark the reusable nodes of the
event patterns in ERF. A reusable node is denotedNr:Nr ⊆ fcanonical(ep)∧∀n ∈
Nr, ∃ep′ ∈ ERF , ep

′
is reusable to ep on n, as depicted in Figure 1. The ACPs

for any ep can be enumerated by listing all possible combinations of the ACPs
of their immediate reusable sub-patterns. By recursively aggregating those com-
binations, we derive the ACPs for ep.

4.2 Genetic Encodings for Event Syntax Trees

Given a CCP, we first assign global identifiers for the nodes in the event pattern
ep of the CCP. Then we encode each leaf node in ep with its identifier, a service
identifier referring to the service it represents and a string of identifiers indicating
the path of the ancestor nodes of the leaf node, as shown in Figure 2.

390 F. Gao et al.

e3

e1

SEQ

e2

OR

Query

e1

SEQ

e2

type= e4
loc=loc4

e3

e2

e1

type= e3
loc=loc3

type= e2
loc=loc2

type= e1
loc=loc1

Event Service 1

Event Service 2

Event Service 3

Event Service 4

reusable on e3reusable on SEQ

reusable on e1

reusable on e2

Fig. 1. Marking the reusable nodes

e3

e1

SEQ

e2

OR

Query

n1

n2 n3

n4 n5

e3

OR

n6

n7 n8

P_1

e4

P_2

e3

e1

SEQ

e2

OR

n9

n10 n11

n12 n13

Cross Point

Reusable Node

n7:<n6,es1>,
n8:<n6,es2>.

n12:<n9n10,es3>,
n13:<n9n10,es4>,
n11:<n9,es5>.

Cross Over

Picked Leaf

chromosome for P_2

chromosome for P_1

C_1

e3

e1

SEQ

e2

OR

n6

n10 n8

n12 n13

e3

OR

n9

n7
n11

C_2

e4

n12:<n9n10,es3>,
n13:<n9n10,es4>,

n8:<n6,es2>.

n7:<n6,es1>,
n11:<n9,es5>.

chromosome for P_2

chromosome for C_1

ERF Space CCP Space

es1 es2

es3 es4

es5

es3 es4

es2

es1 es5

Fig. 2. Example of genetic encoding and crossover operation

4.3 Crossover and Mutation Operations

Given two genetically encoded parent CCPs P1 and P2, the event pattern speci-
fied in the query Q and the event reusability forest ERF , the crossover algorithm
takes the following steps to produce the children (see example in Figure 2):

1. Pick randomly a leaf node l1 from P1, query the reusable relations stored in
ERF to find the relevant reusable node nr in Q.

2. Starting from l1, search backwards along the prefix of l1 and locate node
n1 ∈ P1, such that the event pattern represented by T (n1) ⊆ P1

1 is a
substitute to T (nr) ⊆ Q, then mark node n1 as the cross point for P1.

3. For all leaf nodes in P2, denoted L2, find l2 ∈ L2 which are also reusable to
Q on nr, or on n

′
r which is a descendant of nr, then, mark the cross point

n2 ∈ P2.
4. If L2 = ∅, it means the sub event pattern T (nr) ∈ Q is not implemented

locally in P2, so there must be at least one leaf node l2 ∈ L2, such that the
event pattern represented by T (l1) ⊆ P1 is reusable to the one represented

1 Given n ∈ P is a node in pattern P , we denote T (n) ⊆ P the sub-tree/sub-pattern
of P with n as its root.

Complex Event Service Composition and Optimization 391

Table 2. Brute-force enumeration vs. genetic algorithm

by T (l2) ⊆ P2. For each such l2, mark the relevant reusable node in Q as
the new nr, and try to find n1 in the prefix of l1 such that T (n1) ⊆ P1 is a
substitute to T (nr) ⊆ Q. If such n1 is found, mark it as the new crossover
point for P1, similarly, mark the new cross point n2 ∈ P2.

5. If n1 or n2 is the root node, do nothing but keep the parents along with
the new generations and give them a 100% chance of selection next time.
Otherwise, swap the sub-trees in P1, P2 whose roots are n1, n2 (and therefore
the relevant genes), resulting in two new CCPs.

The mutation operation changes the composition plan for a leaf node in a
CCP. To do that we select a random leaf node n in a CCP P , and treat the
event pattern of n (possibly a primitive event) as an event query to be composed,
then we use the same random CCP creation process specified in the population
initialization (Section 4.1) to alter its implementation.

5 Evaluation

In this section we present the experimental results of the proposed approaches
based on simulated datasets. The weights of QoS metrics in the preference vector
are equally set to 1.0, and a loose constraint is defined in the query which do
not reject any event service compositions to enlarge the search space.

5.1 Brute-Force Enumeration vs. Genetic Algorithm

In the first experiment, we compare our genetic algorithm with brute-force enu-
merations in terms of the maximum QoS utility obtained and execution time
required.We test both methods over three random event service repositories with
different sizes.The results are shown in Table 2 (“BF” and “GA” indicate the
test for brute-force enumeration and genetic algorithm, receptively. The number
after the dash is the number of candidate event services for each sub-event de-
tection task). From the results in Table 2, we can see that GA based approach

392 F. Gao et al.

(a) Convergence time under various popu-
lation size

(b) Max QoS utility under various popula-
tion size

(c) Convergence time under different selec-
tion factor

(d) Max QoS utility under different selec-
tion factor

Fig. 3. Performances under different population sizes and selection factors

produces about 79% optimal results in much a shorter time, compared with the
brute-force enumerations.

5.2 Convergence Time vs. Degree of Optimization

There are two ways to increase the utility in the GA results: increase the size
of the initial population or the selection probability for the individuals in each
generation. To evaluate the influence of the initial population size and selection
probability, we execute the genetic evolutions with different population sizes and
selection probabilities over the second dataset (BF-5) in Table 2.

Figure 3(a) and Figure 3(b) show the growth of execution time and best QoS
utility retrieved using from 200 to 1200 CCPs as the initial populations. From
the results we can see that the growth of evolution time is (almost) linear to
the size of the initial population. In total, increasing the initial population from
200 to 1200 gains an additional 0.276 (15.6%) QoS utility with the cost of 1344
milliseconds of execution time.

In the tests above, we adopt the Roullete Wheel selection policy with elites.
However, this selection policy results in early extinction of the population. To
produce more generations, we simply increase the selection probability with a

Complex Event Service Composition and Optimization 393

constant 0 ≤ F ≤ 1, we call the additional F the selection factor. Figure 3(c)
and Figure 3(d) show the execution time and best evolution results with different
selection factors from 0 to 0.5.

6 Conclusions and Future Work

In this paper a QoS aggregation schema and utility function is proposed to cal-
culate QoS vectors for event services (compositions) and rank them based on
user-defined constraints and preferences. Then, a genetic algorithm is developed
and evaluated to efficiently create optimal event service compositions. The ex-
perimental results show that the genetic algorithm is scalable, and by leveraging
the trade-off between convergence time and degree of optimization, the algo-
rithm gives 79% to 97% optimized results. As future work, we plan to validate
our approach based on real-world datasets. We also plan to enable adaptive event
compositions based on the GA developed in this paper.

References

1. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: A lightweight approach for
qos-aware service composition. In: Proceedings of 2nd International Conference on
Service Oriented Computing, ICSOC 2004 (2004)

2. Gao, F., Curry, E., Bhiri, S.: Complex Event Service Provision and Composition
based on Event Pattern Matchmaking. In: Proceedings of the 8th ACM International
Conference on Distributed Event-Based Systems. ACM, Mumbai (2014)

3. Hasan, S., Curry, E.: Approximate Semantic Matching of Events for The Internet
of Things. ACM Transactions on Internet Technology, TOIT (2014)

4. Hinze, A., Sachs, K., Buchmann, A.: Event-based applications and enabling tech-
nologies. In: Proceedings of the Third ACM International Conference on Distributed
Event-Based Systems, DEBS 2009, pp. 1:1–1:15. ACM, New York (2009)

5. Jaeger, M., Rojec-Goldmann, G., Muhl, G.: Qos aggregation for web service com-
position using workflow patterns. In: Proceedings of the Eighth IEEE International
Enterprise Distributed Object Computing Conference, EDOC 2004, pp. 149–159
(2004)

6. Karatas, F., Kesdogan, D.: An approach for compliance-aware service selection with
genetic algorithms. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013.
LNCS, vol. 8274, pp. 465–473. Springer, Heidelberg (2013)

7. Wu, Q., Zhu, Q., Jian, X.: Qos-aware multi-granularity service composition based
on generalized component services. In: Basu, S., Pautasso, C., Zhang, L., Fu, X.
(eds.) ICSOC 2013. LNCS, vol. 8274, pp. 446–455. Springer, Heidelberg (2013)

8. Zhang, L.J., Li, B.: Requirements driven dynamic services composition for web
services and grid solutions. Journal of Grid Computing 2(2), 121–140 (2004)

Towards QoS Prediction Based on Composition
Structure Analysis and Probabilistic Models

∗

Dragan Ivanović1, Manuel Carro1,2, and Peerachai Kaowichakorn2

1 IMDEA Software Institute, Spain
2 School of Computer Science, U. Politécnica de Madrid (UPM), Spain

dragan.ivanovic@imdea.org, mcarro@fi.upm.es

Abstract. The quality of service (QoS) of complex software systems, built by
composing many components, is essential to determine their usability. Since the
QoS of each component usually has some degree of uncertainty, the QoS of the
composite system also exhibits stochastic behavior. We propose to compute prob-
ability distributions of the QoS of a service composition using its structure and
the probability distributions of the QoS of the components. We experimentally
evaluate our approach on services deployed in a real setting using a tool to pre-
dict probability distributions for the composition QoS and comparing them with
those obtained from actual executions.

1 Introduction

Analyzing and predicting QoS of service compositions during the design phase makes
it possible to explore design decisions under different environment conditions and can
greatly reduce the amount and cost of maintenance, help the adaptation of software
architectures, and increase overall software quality.

The QoS of a service composition depends both on the QoS of the individual compo-
nents and on the structure of the composition. The effects of the execution environment
also impact the observed QoS, which exhibits a stochastic variability due (among oth-
ers) to changes in network traffic, machine load, cache behavior, database accesses at
a given moment, etc. QoS prediction is notoriously challenging when, as in the case of
service-oriented systems, boundaries and behavior are not fully specified.

Input: transport
if transport == "train"

call SearchTrain
else

call SearchFlight
end

Fig. 1. Simple orchestration

Fig. 1 shows a fragment of a service composition.
Let us assume that we are interested on execution time
and that we know (e.g., from observations) the prob-
ability distribution functions for the response times
of the two services invoked in it (Fig. 2 (a) and (b)),
whose averages are 5 and 3 seconds, respectively. The
average response time for Fig. 1 may actually be sel-
dom observed, as executions cluster around 3 and 5

∗
The research leading to these results has received funding from the EU FP 7 2007-2013 pro-
gram under agreement 610686 POLCA, from the Madrid Regional Government under CM
project S2013/ICE-2731 (N-Greens), and from the Spanish Ministry of Economy and Com-
petitiveness under projects TIN-2008-05624 DOVES and TIN2011-39391-C04-03 StrongSoft.

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 394–402, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

QoS Prediction 395

(a) SearchTrain (b) SearchFlight (c) Overall Result

Fig. 2. Statistical profiles for Fig. 1

seconds. Moreover, this average is not useful to answer questions such as what is the
probability that the answer time is less than 4 seconds, which is interesting to, for ex-
ample, negotiate penalties to compensate for SLA deviations.

If we know the probability that train / plane trips are requested (e.g., 0.3 and 0.7, re-
spectively), we can construct the probability distribution of the QoS of the composition
(Fig. 2 (c)). This result gives much more information and insight on the expected QoS
of the composition, and makes it possible to answer the question presented above.

2 Related Work

The basis for the classical approach to the analysis of QoS for service compositions
[2,1,4] is QoS aggregation. Most approaches focus on the control structure without
considering data operations, and return expected values as result. This falls short to de-
scribe the composition behavior. More recent approaches infer upper and lower bounds
of QoS based on input data and environmental factors [5]. However, bounds often need
to be too large, since services often exhibit a “long-tail” behavior, and bounds do not
capture the shape of the distribution of values, which limits the usefulness of the de-
scription.

Recent proposals [7] work directly with statistical distributions of QoS, but use a very
abstract composition model that is far from existing implementation languages and does
not take into account internal compositions of data and operations, which is bound to
give less accurate results. The work in [6] uses probability distributions to drive SLA
negotiation and optimization. While its focus is complementary to ours, it does not
take into account the relationships between the internal state and data operations of the
composition (including the initial inputs) and its QoS.

3 Probabilistic Interpretation of Compositions

Our method interprets control structures and data operations (Fig. 3) in a probabilistic
domain by computing with discrete probability distributions rather than just with repre-
sentative data points. For each (tuple of) variable(s) there is a mapping ρ which assigns
a probability to each value / tuple. These represent the uncertainty in the QoS of ser-
vices, the values of data items, and the resulting QoS of the composition. The mapping
initially assigns a separate probability distribution for the domain of each variable (in-
cluding QoS metrics). When variables are used together in an expression or a branch
condition, their values may become related and joint probabilities need to be used. The

396 D. Ivanović, M. Carro, and P. Kaowichakorn

C ::= 〈variable〉 := E | call 〈service〉 | if B then C else C | while B do C
| begin C[; C]∗ end | or C[; C]∗ end | and C[; C]∗ end | skip

E ::= 〈numeral〉 | 〈variable〉 | E ◦E (◦ ∈ {+,−,∗,div,mod})
B ::= E δ E | B ∧ B | B ∨ B | ¬B (δ ∈ {>,≥,=, �=,<,≤})

Fig. 3. Abstract syntax for composition constructs

interpretation of every construct starts with a distribution ρ before the construct is ex-
ecuted and produces a ρ ′ after it is executed. ρ ′ describes all possible executions (and
only those) that are consistent with the distribution ρ before the execution.

Let us assume variables x,y ∈ {1,2} and their probability distributions in Fig. 4
and the code in Fig. 5. At the beginning, all the combinations of these two values
are equally probable. The question is what are the probabilities of the possible val-
ues of x and y at the end of the if−then−else; let us call these values x′ and y′. Since
whether x or y are updated depends on their concrete values, not all combinations
of x + 10 and y + 10 are possible. If x′ = 1, it must be y′ = 11, but y′ = 12 is not
possible: y cannot be incremented if x = 1,y = 2. The only valid combinations are
(x′,y′) ∈ {(1,11),(11,2),(2,11),(2,12)} with probability 0.25 each. Then, the values
of x and y have become entangled and need to be described as a joint probability distri-
bution.

3.1 Elements of the Model

The elements that make up our model are: composition structure (to describe control
constructs / data operations), the composition data (including input data and internal
variables), the QoS attributes of interest, and statistical data on the services used in
the composition. The QoS attributes may include execution time, amount of data sent /
received, number of general / specific operations executed, availability, etc. as long as
it can be numerically quantified. Our proposal is parametric on the QoS attribute: we
only require probability distributions for each service and an aggregation operator.

Integer random variables are used to represent both the state of internal variables
(discretized after an abstraction process, if necessary) and of the QoS attribute of inter-
est. Random variables are categorized in three types:

– X = X1X2X3 . . .Xn represents variables in the composition.
– S = S1S2S3 . . .Sm represents the QoS attributes for each service in the composition.
– Q models the behavior of the selected QoS attribute for the composition.

We represent the values of the random variables in the set QXS of N = 1+ n+m
variables with a discrete joint probability distribution ρ : ZN → [0,1] such that

Var. Val. �→ Prob. Val. �→ Prob.
x 1 �→ 0.5 2 �→ 0.5
y 1 �→ 0.5 2 �→ 0.5

Fig. 4. Probability distributions

if x < y then x = x + 10 else y = y + 10 end

Fig. 5. Code to be interpreted in a probabilistic
domain

QoS Prediction 397

∑v∈ZN ρ(v) = 1. If Y1,Y2, . . . ,Yk are distinct variables from QXS which we want to
highlight and V is the ordered set of the N − k remaining variables from QXS, we write

ρ(Y1 = y1,Y2 = y2, ...,Yk = yk,V = v) (1)

to denote the probability that Y1,Y2, . . . ,Yk and V have exactly the values y1,y2, . . .yk ∈
Z and v ∈ ZN−k, respectively. When it is clear from the context we write (1) simply as
ρ(y1,y2, . . . ,yk,v). When it is precisely known that Q = q, X = x and S = s for some
(q,x,s) ∈ ZN , then ρ(q,x,s) = 1, and for all other arguments ρ gives zero.

3.2 Initial Conditions and Independence

The interpretation starts with an initial distribution ρ . We do not enforce independence
(non-entanglement) in this ρ , but we assume it here to simplify the presentation. For
each state variable Xi and service Sj, ρXi : Z→ [0,1] and ρSj : Z→ [0,1] describe resp.
their initial distributions of values and of QoS. ρQ : Z→ [0,1] describes the initial value
for the composition QoS, Q, normally initialized to zero. The aggregate distribution
ρX : Zn → [0,1] (and similarly for ρS : Zm → [0,1]) is computed as

ρX(x1,x2, . . . ,xn) = ρX1(x1)×ρX2(x2)×·· ·×ρXn(xn) (2)

3.3 Assignments and Arithmetic

In an assignment X := E, E may involve any number of variables from X, including X.
The after distribution ρ ′ needs to satisfy the condition ρ ′(x,v)=∑{ρ(u,v) | x=E[u,v]}
where E[u,v] represents the result of E for X = u and V = v. The probability for (x,v)
in ρ ′ aggregates the probabilities of all tuples (u,v) from ρ where the expression E
evaluates to x. For all other tuples, ρ ′ gives zero.

Assignments make the variable to the left of “:=” depend on the variables in E. E.g.,
for X1 :=X2+X3, the independent ρX1(x1) from (2) is replaced with ρ ′

X1|X2,X3
(x1 | x2,x3)

which gives the probability of X1 = x1 given X2 = x2 and X3 = x3. Fig. 6 shows before
and after distributions for the same example of assignment. The after state distribution
ρ ′

X1,X2,X3
is then computed as ρ ′

X1|X2,X3
×ρX2 ×ρX3.

3.4 Service Invocation

A service invocation call si updates the expected QoS Q by composing its initial distri-
bution with the random variable Si representing the QoS of service si. For the case of
execution time it amounts to adding random variables: Q := Q+ Si.

x1 ρX1

0 1.0
x2 ρX2

1 0.3
2 0.5
4 0.2x3 ρX3

0 0.4
1 0.6

x1 x2 x3 ρ ′
X1|X2,X3

1 1 0 1.0
2 1 1 1.0
2 2 0 1.0
3 2 1 1.0
4 4 0 1.0
5 4 1 1.0

x1 x2 x3 ρ ′
X1,X2,X3

1 1 0 0.12
2 1 1 0.18
2 2 0 0.20
3 2 1 0.30
4 4 0 0.08
5 4 1 0.12

Fig. 6. Sample probabilities for X1 := X2 +X3

398 D. Ivanović, M. Carro, and P. Kaowichakorn

x1 x2 xn ρ ′
X1,X2|Xn

1 1 0 0.3 ¬B
2 1 1 0.3 B
2 2 0 0.5 ¬B
3 2 1 0.5 B
4 4 0 0.2 ¬B
5 4 1 0.2 B

x1 x2 xn ρ ′
X1,X2|Xn

ρXn

2 1 1 0.18
3 2 1 0.30
5 4 1 0.12

Σ : 0.60 ← p

x1 x2 xn ρ ′
X1,X2|Xn

ρXn

1 1 0 0.12
2 2 0 0.20
4 4 0 0.08

Σ : 0.40 ← 1−p

Fig. 7. Grouping and splitting under X2 > X1

Other QoS attributes will need specific aggregation operators. For example, avail-
ability will need to be aggregated with × instead of +. If the invoked service gives
value to some variable X, its result value will have to be replaced in the after ρ ′

X.
We assume that the QoS and results of si do not depend on its input data. In our

framework, taking this into account would require to include probability of outputs
given inputs. Although doable, in practice this is a challenge for which we still do not
have a satisfactory solution other than assuming a uniform distribution.

3.5 Sequential Composition

In a sequential composition begin C1; C2; . . . ; Ck end the interpretation of each Ci

computes ρ ′
i from ρi = ρ ′

i−1, and the sequence computes then ρ ′ = ρ ′
k from ρ = ρ0.

3.6 Conditionals

In the construct if B then C1 else C2, we need to determine the probability of each
branch. If v represents the value of all random variables from QXS, the probability of
executing the then part is:

p = ∑{ρ(v) | B[v]} (3)

where B[v] represents the truth value of B. If p = 1 or p = 0, we continue interpreting
C1 or C2, resp. Otherwise, we interpret independently C1 and C2 with initial distribu-
tions ρ1 and ρ2, respectively, which are adjusted so that ∑v∈ZN ρ1(v) = 1 (resp. for ρ2)
according to the probability that B holds:

ρ1(x,v) = ρ(x,v)/p (4) ρ2(x,v) = ρ(x,v)/(1− p) (5)

If ρ ′
1 and ρ ′

2 are the probabilistic interpretations of C1 and C2, the result for the whole
construct will be ρ ′ = p× ρ ′

1 +(1− p)× ρ ′
2. ρ1 and ρ2 are generated by splitting the

values of the variables in the condition B. Rather than filtering ρ in a straightforward
implementation of (3), (4) and (5), we can group and split only the values of the random
variables from X that appear in B. Fig. 7 shows the process using the same variables
as in Fig. 6 for B ≡ X1 > X2. In the central table the probabilities for the then and else
branches are normalized according to the probabilities of B and ¬B, and later split into
two tables according to these two cases.

QoS Prediction 399

3.7 Loops

We restrict ourselves to terminating loops. Loop constructs (Eq. (6) are unfolded into a
conditional, treated according to Section 3.6, and a loop (Eq. (7)):

while B do C1 (6) if B then begin C1; while B do C1 end else skip (7)

Termination ensures that the unfolding is finitary. Existing techniques [3] can decide
termination for many cases.

3.8 Or-Split and And-Split

For conciseness, we will not detail here the and- and or-split rules. We model them
similarly to the sequential composition with two differences:

– The distributions for internal data are not carried over from Ci to Ci+1. The forked
activities are assumed to work in independent environments.

– QoS aggregation differs. In the case of execution time, for the or-split, the total
execution time is the minimum of the Ci; resp. maximum for the and-split.

3.9 Interpreting the Results

Let us recall that we want to answer questions such as what is the value Pr[Q ≤ a]. This
can be computed from the final ρ ′ as Pr[Q ≤ a] = ∑q≤a ∑v ρ ′(q,v), where v is a tuple
of values for all random variables from XS. Questions such as “what is the probability
that the process finishes in (exactly) 3 seconds” are not useful, as it can be argued that
the answer tends to zero. Questions such as “what is the probability that the process
finishes in 2.95 to 3.05 seconds?” are more interesting; the answer can be computed as
Pr[a ≤ Q ≤ b] = Pr[Q ≤ b]−Pr[Q ≤ a] for some a, b.

4 Experimental Validation

The experimental validation focused on execution time and was conducted on fully-
deployed services. We compared actual execution times, obtained from a large number
of repeated executions, with the distribution predicted by a tool.

4.1 Tool Implementation Notes

A fully-functional prototype of the tool has been implemented in Prolog, which gives
excellent capabilities for symbolic representation and manipulation (for the abstract
syntax and the probability distributions) and automatic memory management. The pro-
totype receives the composition code, the values of the observed QoS for the services,
and the expected values of the input variables; it interprets the program in a domain of
probability distributions, and gives as result the expected QoS (time, in our examples)
and, if requested, the distribution of the values of internal variables.

The services were implemented in Java and deployed on Google App Engine. The
orchestration is a client-side Java application that connects to the services. The compo-
sition and the individual services were executed several hundred times to obtain a dis-
tribution ρE of the composition and the distributions ρsi of the services. The distribution

400 D. Ivanović, M. Carro, and P. Kaowichakorn

ρP of the predicted execution time is produced from a single run of the interpreter. In
order to find out the network impact on our results, we measured time both on the client
and on the service to derive:

1. Total (round-trip) execution time (ta), as measured on the client side.
2. Service execution time (te), measured by the service implementation and passed to

the client. This excludes network transmission time.
3. Network transmission time tn = ta − te.

4.2 Experiment One: Matrix Multiplication

begin
x := 0;
while x < 5 do begin

call MatrixMultiplicationService;
x := x + 1

end
end

Fig. 8. Matrix multiplication

This service performs matrix multiplication. It re-
ceives two matrices from the orchestration (Fig. 8)
and returns their product. Large square matrices
(dimensions 500× 500) are used to ensure mean-
ingful execution times.

The multiplication service is called 500 times,
recording ta, te, and tn for each invocation. The
composition is executed 500 times.

4.3 Experiment Two: Sorting
Input: n from 0 to 9
// Sort depending on the mode
if n < 2 then // bubble sort

repeat 10 times:
call BubbleSortService;

else if n < 5 then // quick sort
repeat 10 times:

call QuickSortService;
else // mix sort

repeat 5 times:
call BubbleSortService;

repeat 5 times:
call QuickSortService;

end

Fig. 9. Experiment two: composition structure

Implementations of BubbleSort and the
QuickSort algorithms were deployed.
Both services receive an array of integers
and return a sorted array. The client-side
composition creates ten 1000-element ar-
rays of integers and invokes the services.
To generate service time distributions for
the analyzer, each service is invoked 500
times.

Fig. 9 sketches the composition. Bub-
bleSort is invoked 20% of the times,
QuickSort 30% of the time, and a mix of
both 50% of the time.

4.4 Experimental Results

Fig. 10 displays, for both experiments, the accumulated predicted and actual probability,
i.e. Pr[TP < t] and Pr[TE < t] for the service execution times. Both lines are so close that
it is difficult to distinguish them. While this suggests that the prediction is very accurate,
it does not allow drawing clear conclusions about the prediction accuracy. Therefore we
resorted to a numerical comparison using the Mean Square Error (MSE):

MSE =
1

tmax − tmin

tmax

∑
t=tmin

(Pr[TP < t]−Pr[TE < t])2 (8)

QoS Prediction 401

(a) Matrix multiplication (b) Sorting

Fig. 10. Comparisons for Pr[TPn < t] against Pr[TEn < t]

Table 1. Mean Square Error

Measurement Observed
Probability

Uniform
Probability

Constant
Probability

Experiment 1
Pr[TPa < t] 0.070 0.383 0.577
Pr[TPn < t] 0.012 0.310 0.434
Pr[TPe < t] 0.0003 0.138 0.537

Experiment 2
Pr[TPa < t] 0.006 0.388 0.494
Pr[TPn < t] 0.010 0.306 0.383
Pr[TPe < t] 0.0001 0.126 0.488

The smaller the MSE, the more accurate the prediction is. However, the MSE is just
a number whose magnitude we need to put in context to decide how good is the fitness
we obtain — for example, comparing this number with the fitness obtained with other
prediction techniques. This is not easy due to to the difficulty of installing and running
tools implementing existing proposals.

Therefore we repeated the predictions using as input probability distributions to char-
acterize external services either a single point (for the average approach) or a uniform
distribution ranging from the observed lower to upper bound (for the bounds approach).
We termed these scenarios Constant Probability and Uniform Probability, resp. Table 1
shows the evaluation results. From them it is clear that using the observed probabil-
ity distribution produces much more accurate (for orders of magnitude) predictions.
Most of the prediction errors come from the network characteristics, which are difficult
to control. If the network issues are excluded (Pr[TPe < t]), the predictions show very
promising results with very small MSE.

402 D. Ivanović, M. Carro, and P. Kaowichakorn

References

1. Cardoso, J.: Complexity analysis of BPEL web processes. Software Process: Improvement
and Practice 12(1), 35–49 (2007)

2. Cardoso, J., Sheth, A., Miller, J., Arnold, J., Kochut, K.: Quality of service for workflows
and web service processes. Web Semantics: Science, Services and Agents on the World Wide
Web 1(3), 281–308 (2004),
http://www.sciencedirect.com/science/article/pii/S157082680400006X

3. Cook, B., Podelski, A., Rybalchenko, A.: Proving program termination. Commun.
ACM 54(5), 88–98 (2011)

4. Dumas, M., García-Bañuelos, L., Polyvyanyy, A., Yang, Y., Zhang, L.: Aggregate quality of
service computation for composite services. In: Maglio, P.P., Weske, M., Yang, J., Fantinato,
M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 213–227. Springer, Heidelberg (2010)

5. Ivanović, D., Carro, M., Hermenegildo, M.: Towards Data-Aware QoS-Driven Adaptation for
Service Orchestrations. In: Proceedings of the 2010 IEEE International Conference on Web
Services (ICWS 2010), Miami, FL, USA, July 5-10, pp. 107–114. IEEE (2010)

6. Kattepur, A., Benveniste, A., Jard, C.: Negotiation strategies for probabilistic contracts in web
services orchestrations. In: ICWS, pp. 106–113 (2012)

7. Zheng, H., Yang, J., Zhao, W., Bouguettaya, A.: QoS Analysis for Web Service Composi-
tions Based on Probabilistic QoS. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.)
Service Oriented Computing. LNCS, vol. 7084, pp. 47–61. Springer, Heidelberg (2011)

http://www.sciencedirect.com/science/article/pii/S157082680400006X

Orchestrating SOA Using Requirement

Specifications and Domain Ontologies

Manoj Bhat, Chunyang Ye, and Hans-Arno Jacobsen

Application and Middleware Systems Research Group
Technische Universität München, Germany

{manoj.mahabaleshwar,yec}@tum.de

Abstract. The composition of web services requires process designers to
capture the goals of the service composition in a partial process model.
Manually deriving the partial process model from the requirement specifi-
cations is not trivial.A clearunderstandingof the requirements, interaction
among services, their inputs and outputs are precursors for developing the
partial process models. To reduce the complexity, we propose an approach
to guide process designers in deriving the partial process models by reusing
the knowledge captured in requirement specifications and domain ontolo-
gies. The results of the evaluation shows that our approach is promising in
terms of correctness and completeness.

Keywords: Web service composition, domain ontology, requirements
engineering, knowledge reuse.

1 Introduction

Services Computing is an interdisciplinary field that covers the science and tech-
nology of using computing and information technology (IT) to model, create,
operate, and manage services that bridges the gap between business and IT [1].
Increase in the creation and consumption of web services has made the analy-
sis and generation of composition plan challenging [2]. Approaches that tackle
the issue of service composition require users to capture the service composition
requirements in the form of service templates, service query profiles, or partial
process models [8–10]. The requirements include: list of sub-services, inputs, out-
puts, preconditions and effects (IOPEs) of the sub-services, and the execution
order of these sub-services. Henceforth, we refer to the templates that capture
these requirements as partial process models. The existing approaches assume
that the partial process models are readily available to initiate the service com-
position engine. However, this assumption does not always hold in practice [3].

In this paper, we address the issue of automatically deriving the partial pro-
cess model for service composition. The goal is to reduce the burden of process
designers to a great extent, especially for non-domain experts. Our experiment
discussed in Section 3 indicates that the main challenges for process designers in-
clude: understanding the composition requirements of complex services, correctly
correlating the inputs and outputs of sub-services, and designing the business

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 403–410, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

404 M. Bhat, C. Ye, and H.-A. Jacobsen

logic of the process model. To address these issues, we propose to use domain
ontologies, user stories in the requirement specification documents (RSDs), and
user queries to recommend a set of services along with their inputs, outputs, and
execution order to describe the partial process model.

Ontologies are extensively used in different phases of software engineering [4].
In recent years, organizations are putting in the extra effort for manually creating
domain ontologies due to their significant advantages as a means of knowledge
sharing and reuse. There also exist automatic and semi-automatic approaches
for ontology creation. For instance, LexOnto [5] uses the web services in the
ProgrammableWeb directory [6] to create classification ontologies. As ontologies
are generally available or they can be generated using existing tools, we consider
using ontologies to facilitate the automatic generation of partial process models.

On the other hand, the popularity of agile methodologies has made the use
of user stories to capture requirements a common practice. The user stories are
expressed in a standard format such as “As a role, I want goal so that benefit.” To
simplify the algorithm, we focus only on the user stories. However, our approach
can be generalized to the individual statements in the RSDs.

Since a service composition may involve services from different domains, one
of the main challenges of our approach is to link domain ontologies to handle
requirements from multiple domains. To address this challenge, we extended the
existing approach by Ajmeri et al. [7] that helps requirement analysts visualize
how requirements span across multiple domains. The ontologies are linked using
the semantic similarity of concepts. The linking of ontologies is used to derive a
conceptual model of the requirements to help requirement analysts improve the
completeness of requirements. Furthermore, we use natural language processing
(NLP) to link the concepts in the ontologies with the terms in the user stories
and to classify the concepts as either services or input-output (i/o) of services.
Once the atomic services and their inputs and outputs are identified for a queried
service, the data dependency constraints determine the execution order.

The main contributions of this paper are two-fold. First we propose an ap-
proach to automatically generate the partial process model for service compo-
sition. Our approach complements the ideas behind the existing ontology-based
and NLP-based service composition approaches. Second we realize our approach
as a recommender system that can integrate ontologies and user stories to sub-
stantially reduce the time and effort involved in service composition.

2 Related Work

Artificial Intelligence (AI) Planning and Ontology Based Solutions:
To address the problem of service composition, different planning techniques
have been proposed. These approaches require capturing the requirements as a
partial process model which is given as input to the composition engine. The en-
gine generates a plan by comparing the requirements against the services in the
repository. For instance, in [8] the goals are captured in a goal language and the
planner generates a plan that satisfies these goals. Similarly, in [9] the similarity

SOA Using Req. Specifications and Domain Ontologies 405

between the user requests and the services is computed based on the syntac-
tic, semantic and operational details. Furthermore, Grigori et al. [10] propose a
method to transform the behavior matching of services and user requests to a
graph matching problem. Capturing the requirements in a partial process model
is a non-trivial task. We address this issue in our approach by automatically
deriving the partial process model from the RSDs and the domain ontologies.

Tag-Based Service Composition: The tag-based approaches for service
composition are becoming popular [11]. They are easy to implement and to use.
However, they have their own shortcomings, for instance, tags are usually too
short to carry enough semantic information and most services have only a few
tags. These tags can belong to different types such as content-based, context-
based, attribute, and subjective. This results in a large tag-space and low effi-
ciency and effectiveness in semantic matching. Therefore, these approaches are
oriented towards mashup. They do not address how to generate traditional work-
flows which involve sequentially and parallel executing tasks.

Publish/Subscribe-Based Distributed Algorithm: Hu et al. [12] pro-
pose a distributed algorithm to enable service composition via a content-based
pub/sub infrastructure. Even though the distributed approach seems promis-
ing, it considers matching of services at a syntactic level, whereas our solution
concerns both syntactic and semantic levels.

Service Composition Using NLP: The service composition system pro-
posed in [13] addresses the shortcomings of the existing NLP-based solutions [14].
The solution proposed in [13] comprises of an integrated natural language parser,
a semantic matcher, and an AI planner. The parser extracts the grammatical
relations from the requirements and generates the service prototypes comprising
of process names and input values. The service prototypes are further used by
the semantic matcher to identify services from the repository and the AI plan-
ner generates a composed service. In this approach, a clear set of patterns used
to identify the process names and their input values from the requirements is
not captured. Furthermore, a detailed evaluation of the system with respect to
correctness and completeness of the generated composed services is missing.

Although, there exist a large body of knowledge addressing service discovery
and composition, understanding the technical and domain specific requirements
for process designers to use these approaches still remains a challenge.

3 Case Study of Service Composition

As part of the course curriculum [15], participants are required to complete
a project comprising three milestones (M). In M1, each group is required to
develop three web services. In M2, participants develop a search engine to look
up services from the server. Finally, in M3, each group is required to develop a
Travel Agency (TA) service by composing the existing services.

Out of 76 deployed services in M1, 47 services were correctly implemented.
However, in M3, 8 groups deployed the TA service and only 1 group correctly
implemented the service. The drop in the performance is overwhelming but un-
derstandable. One of the main challenges for the participants was to address

406 M. Bhat, C. Ye, and H.-A. Jacobsen

the problem at a conceptual level. The requirements of M1, to develop atomic
services were straightforward and easy to comprehend. The participants success-
fully developed a conceptual model which helped them implement the services.
On the other hand in M3, the TA service consisted of several sub-services which
were from different domains and implemented by different groups. The partici-
pants were unsuccessful in creating a conceptual model due to the lack of a clear
understanding of the complex relationships among the services.

Fig. 1. Partial process model for TA service

This example shows that manu-
ally creating a correct partial process
model is challenging. Our investiga-
tion indicates that the main difficul-
ties include how to design the business
logic of the process correctly and how
to correlate their inputs and outputs
correctly. If the participants were pre-
sented with a process model as shown
in Figure 1, understanding the com-
position requirements would be easier
and the time and the effort involved
would be substantially reduced.

4 Approach

The challenges that we address in our approach include: mapping of domain
ontologies using semantic similarity mapping approach, identifying if a concept
is a service or an i/o of a service, capturing the data dependency of services, and
integrating the recommendation with user preferences.

Overview: In this section, we briefly introduce how the partial process model
is generated. As shown in Figure 2, the process designer inputs the keywords cor-
responding to the service he plans to develop. He also selects the relevant domain
ontologies and provides the list of user stories to the system. The system maps
the concepts in the domain ontologies to the terms in the user stories and identi-
fies the candidate sub-services. The concepts in the domain ontologies associated
with the candidate services are identified as i/o concepts of sub-services. Users’
past preferences filter the candidate services and tag the i/o concept as either
input to a service or output of a service. Tagging of concepts as inputs and out-
puts of sub-services establishes the data-dependency constraints to determine the
execution order of the sub-services. The process designers’ selection iteratively
updates the user preference repository to improve the recommendations. Process
designers can also suggest the missing concepts to evolve the ontologies, which
are validated by a domain expert before updating the ontologies. The partial
process model created based on the recommendations is further given as input
to the composition engine that retrieves services from the service repositories.

Cross-Domain Ontology Mapping: Ajmeri et al. [7] propose an approach
to identify the concepts that link different ontologies using semantic similar-
ity mapping. The semantic similarity between concepts is calculated based on

SOA Using Req. Specifications and Domain Ontologies 407

Fig. 2. Service composition using user stories and domain ontologies

syntax, sense, and context similarity. The syntactic similarity matches concepts
based on the string equivalence. The sense similarity matches concepts based
on the similar usage sense determined using a set of synonyms called synset [16].
The context similarity matches concepts based on the similarity of their neigh-
borhood. The neighborhood of a concept is determined based on the inheritance
relationships from the parent concept to the child concept. The semantic similar-
ity between the concepts is computed as a weighted mean of syntactic, sense, and
context similarity. The semantically similar concepts identified using the above
approach are the concepts which map two different domain ontologies (cf. [7] for
a detailed description of the cross-domain ontology mapping algorithm).

Identification of Candidate Services: Once the domain ontologies are
linked using the semantic similarity mapping approach, we identify if the con-
cepts in the ontology that are associated with the user query are services. We
use the following criteria in [7] to identify if the concept represents a service: the
concept or its equivalent concept in the ontologies must be present in the user
stories, and the concept or its substring should be part of a verb phrase (VP).
However, if it is part of a noun phrase (NP), it should be prefixed by a VP.

For example, in the user story “As a customer, I want flight booking function-
ality, to book flight from source to destination city” the substring booking of the
concept flight booking is part of a VP and hence the concept flight booking is
suggested as a candidate service. To parse a sentence and to create a constituent
tree of objects, we use the open-source Link Grammar library [17].

service(c1) = USi.contains(c1) and (c1.parseType = “VP” or (c1.parseType
= “NP” and c1.parent.parseType = “VP”)) ? true : false;
where USi is the ith user story; c1.parseType is the tag associated with the
concept c1 w.r.t. parse tree of USi; c1.parent is the parent token in the parse
tree.

Constituent parse tree: (S (PP As (NP a customer)), (S (NP I) (VP want
(NP (NP flight) (VP booking (NP functionality, (PP to (NP book flight)
from source city to destination city.)))))))

Also, if the concept is part of a NP, it should be prefixed by a VP. In the
user story “As a customer, I want to make payment for flight, taxi, and hotel
booking using credit card”, payment is in NP but is prefixed by verb make.

408 M. Bhat, C. Ye, and H.-A. Jacobsen

Identification of Input and Output Parameters: To suggest the i/o of
the identified services, we consider the concepts associated with each of these
services in the ontologies. The associated concepts are referred to as complemen-
tary concepts (CC). We consider 1st and 2nd degree CC. The 1st degree CC is
a concept associated with the service concept directly through an object prop-
erty relationship and the 2nd degree CC is a concept associated with the service
concept via an intermediary concept. The open-source OWL API [18] provides
interfaces to parse the ontologies and to identify the object and data properties.

User Preference Integration: Based on the users’ past preferences of ser-
vices and their i/o, the identified services are filtered and the complementary
concepts are tagged as either inputs or outputs. When the user selects services
from the recommended list, the confidence of these services is incremented. How-
ever, if a service is considered irrelevant for a specific query, the confidence score
of that service is decremented. For a specific query, the recommended services
are sorted based on the confidence score. Similarly, as the user tags the concepts
as either inputs or outputs of a service, the corresponding confidence-input or
confidence-output is incremented. If the user deletes the complementary concept,
the corresponding confidence-input and confidence-output is decremented. For
the subsequent queries, the complementary concept is tagged as input or output
by comparing the score of confidence-input and confidence-output.

Data-flow Analysis: The tagging of complementary concepts as inputs and
outputs of a service establishes the data dependency constraint which helps to
compose the services to meet the requirements of the queried service. For instance
in a Travel Agency service, the output of Flight, Hotel, and Taxi Booking service
are the inputs to the Payment service, indicating that Flight, Hotel, and Taxi
Booking service should be executed before the Payment service.

5 Evaluation

To evaluate the system developed based on the approach discussed in Section 4,
we have considered two practical use-case scenarios which are commonly used
as the benchmark examples for service composition1. We also conducted an em-
pirical study to evaluate the quality of the recommended partial process model.

Empirical Study: We introduced our system in the course assignment which
had the same requirements as the assignment in Section 3. The participants were
assigned groups and each group was required to submit three milestones. M3,
involved developing the TA service by composing other services. The participants
were given a brief introduction on how to use our recommender system.

27 groups deployed their services for M3 and 33% of the groups correctly im-
plemented the service. Services implemented by 44% of the groups failed to pass
the test cases due to syntactical errors such as incorrect variable initialization
and incorrect namespaces. However, these services were complete with respect to
the requirements; in the sense that, the TA services included invocation of all the

1 Due to space limitations, the case studies are available online via
https://sites.google.com/site/wsccs2013

https://sites.google.com/site/wsccs2013

SOA Using Req. Specifications and Domain Ontologies 409

necessary services, assignment of input-output variables and also maintained a
correct execution order. The performance of the groups in this assignment (33%
correctly implemented and 44% partially completed) is significantly higher than
the groups in the assignment discussed in Section 3 (12%).

On completion of the project, 27 groups provided their feedback regarding
the recommender system. A five-point Likert scale [19] is used to capture the
responses. In the five-point scale, 1 indicates strongly disagree, 2 indicates dis-
agree, 3 indicates neutral, 4 represents agree and 5 indicates strongly agree. We
refer to this scale in the following observations (O):

Understanding Service Composition Requirements: O1 : 37% of the
groups strongly agree and 25% of the groups agree that the recommended process
model helps in understanding the requirements of service composition.

Quality: O2 : 40.7% of the groups strongly agree and 14.8% of the groups
agree that the recommended services fulfill the service composition requirements.

O3 : 51.8% of the groups agree and 14.8% of the groups strongly agree that
the data dependency constraints help to define the execution order of services.

O4 : The average rating for the satisfaction of recommended inputs and out-
puts for each of the suggested service is 3.89. 46.8% of the groups strongly agree
that the recommended inputs and outputs for all the suggested services are cor-
rect and complete with respect to the requirements. Moreover, 92% of the groups
rate between 3 to 5 on the scale and only 8% of the groups, rate 1 and 2 on the
scale (strongly disagree and disagree) in O4.

O5 : 59% of the groups indicate that the recommended process model is the
same as the manually created service composition.

Time: O6 : The groups that used the recommender system for developing the
TA service spent on average 9.68 hours less than those groups that did not use
our recommender system.

Difficulty: O7 : The feedback also indicates that the challenges in service
composition are: “understanding the BPEL syntax (48%)”, “handling i/o pa-
rameters in BPEL (30%)”, and “invoking the external services (18%)”, apart
from “constructing the control-flow of the process (26%)” and “understanding
the requirements (11%)”. These results show that although our approach has
addressed the issues related to conceptual modeling of services, some technolog-
ical issues need further effort (e.g., high percentage of failure of services due to
syntactical errors and difficulties in adapting to service specification languages).

6 Conclusions

Our approach, realized as a recommender system derives the partial process
model using domain ontologies and user stories. The observations based on the
evaluation indicate that our approach not only helps in understanding the re-
quirements of service composition but also reduces the time and effort involved
in the development of service composition. Our evaluation is based only on the
case study and the empirical study. In our future work, we plan to extend the
recommender system by integrating a composition engine so as to retrieve de-
sired service compositions in a specific service specification language. Also, in

410 M. Bhat, C. Ye, and H.-A. Jacobsen

our approach, we have only considered data dependency constraint to identify
the execution order of the composed services. Inferring similar constraints and
non-functional requirements (e.g., QoS) on the services would further improve
the recommendations for service composition.

References

1. Yan, Y., Bode, J., McIver, W.: Between service science and service-oriented soft-
ware systems. In: Congress on Services Part II. SERVICES-2 (2008)

2. Xiao, H., Zou, Y., Ng, J., Nigul, L.: An approach for context-aware service discovery
and recommendation. In: ICWS (2010)

3. Srivastava, B., Koehler, J.: Web service composition - current solutions and open
problems. In: ICAPS Workshop on Planning for Web Services (2003)

4. Happel, H.J., Seedorf, S.: Applications of ontologies in software engineering. In:
Proc. of Workshop on SWESE on the ISWC (2006)

5. Arabshian, K., Danielsen, P., Afroz, S.: Lexont: A semi-automatic ontology creation
tool for programmable web. In: AAAI Spring Symposium Series (2012)

6. The Programmable Web, http://www.programmableweb.com
7. Ajmeri, N., Vidhani, K., Bhat, M., Ghaisas, S.: An ontology-based method and tool

for cross-domain requirements visualization. In: Fourth Intl. Workshop on MARK
(2011)

8. Traverso, P., Pistore, M.: Automated composition of semantic web services into
executable processes. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.)
ISWC 2004. LNCS, vol. 3298, pp. 380–394. Springer, Heidelberg (2004)

9. Cardoso, J., Sheth, A.: Semantic e-workflow composition. Intell. Inf. Syst. (2003)
10. Grigori, D., Corrales, J.C., Bouzeghoub, M., Gater, A.: Ranking BPEL processes

for service discovery. IEEE Trans. on Services Comput. (2010)
11. Liu, X., Zhao, Q., Huang, G., Mei, H., Teng, T.: Composing data-driven service

mashups with tag-based semantic annotations. In: ICWS (2011)
12. Hu, S., Muthusamy, V., Li, G., Jacobsen, H.-A.: Distributed automatic service

composition in large-scale systems. In: Second Intl. Conf. on Distributed Event-
Based Syst. (2008)

13. Pop, F.C., Cremene, M., Vaida, M., Riveill, M.: Natural language service compo-
sition with request disambiguation. In: Service-Oriented Comput. (2010)

14. Lim, J., Lee, K.H.: Constructing composite web services from natural language
requests. In: Web Semantics: Science, Services and Agents on the WWW (2010)

15. Introduction to Service Comput., https://sites.google.com/site/sc2012winter
16. Miller, G.A.: WordNet: A lexical database for English. Commun. of the ACM

(1995)
17. Sleator, D.D., Temperley, D.: Parsing English with a link grammar. arXiv preprint

cmp-lg/9508004 (1995)
18. Horridge, M., Bechhofer, S.: The OWL API: A Java API for OWL ontologies.

Semantic Web (2011)
19. Allen, I.E., Seaman, C.A.: Likert scales and data analyses. Quality Progress (2007)

http://www.programmableweb.com
https://sites.google.com/site/sc2012winter

Estimating Functional Reusability of Services

Felix Mohr

Department of Computer Science, University of Paderborn, Germany
felix.mohr@uni-paderborn.de

Abstract. Services are self-contained software components that can be
used platform independent and that aim at maximizing software reuse. A
basic concern in service oriented architectures is to measure the reusabil-
ity of services. One of the most important qualities is the functional
reusability, which indicates how relevant the task is that a service solves.
Current metrics for functional reusability of software, however, either
require source code analysis or have very little explanatory power. This
paper gives a formally described vision statement for the estimation of
functional reusability of services and sketches an exemplary reusability
metric that is based on the service descriptions.

1 Introduction

During the last decade, the focus in software development has moved towards
the service paradigm. Services are self contained software components that can
be used platform independent and that aim at maximizing software reuse.

A basic concern in service oriented architectures is to measure the functional
reusability of the services in general or for specific tasks. Such a metric would
support the analysis of relations between services, allow to estimate the potential
impact of new services, and indicate the suitability of automatization techniques
like composition; Fig. 1 shows this information gain. Usually, we have no knowl-
edge about how services in a network are related; they are merely members of
a homogeneous set (Fig. 1a). Analyzing their specifications helps us recognize
relations between them and identify reuse potential (Fig. 1b).

Surprisingly, there is no metric of which we could say that it is even close to be
satisfactorial in regards of measuring reusability. The main problem is that most
reusability metrics are based on code analysis [7], e.g. the Halstead metric and
others. However, the idea of services is precisely that the implementation needs
not to be available. Reusability metrics for black box components exist [4,9,10]
but are notoriously inexpressive; that is, they do effectively not say anything
about functional reusability even though that was the design goal.

This paper gives a vision statement for the service reusability question and
hints to possible solutions for the problem. Intuitively, the reusability of a service
s is based on the number of problems for which there is a solution that contains
s. Instead of simply using this number directly as a metric for reuse, it should be
somehow weighted, since the complexity and likelihood of occurrence of prob-
lems strongly varies. Unfortunately, it seems to be very hard, or even impossible,

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 411–418, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

412 F. Mohr

(a) No knowledge about services relations (b) Insights in how service are related

Fig. 1. A metric for reusability helps us learn more about how services are related

to effectively compute such a metric in practice. As a consequence, I argue that
the reusability must be estimated by another metric that is reasonably related
to reusability. I give a sketch of an exemplary metric that measures the contri-
bution of services in a service set on the basis of their description. Note that I
use the terms service and component synonymously in this paper, because the
distinguishing feature (way of execution) is irrelevant for us.

Summarizing, this paper contributes to the question of how reusability of
services can be measured. I present a formal problem description for reusability
estimation and give an example for a reusability metric.

The rest of this paper is organized as follows. Section 2 gives a deeper back-
ground for the motivation of this paper. Section 3 introduces the formal problem
definition, and Section 4 sketches one approach to tackle the defined problem.

2 Background and Motivation

First of all, this paper is not about reuse but about reusability; more specifically,
a metric for functional reusability. Reuse means that there is a software artifact
s1 that actually is employing another existing software artifact s2. Reusability,
in contrast, talks about the potential that, for a software artifact s, there is a
set S of yet nonexistent software artifacts that would use s. Hence, reusability
is dedicated to what could be done and not to what is done with a software
component. Much has been said about principles of software reuse and reusabil-
ity [2,3,6,8], but that debate is mostly about how to increase reusability through
sophisticated design. In contrast, I assume a certain service architecture as given
and (try to) estimate the reusability under these conditions.

While metrics for software reuse have been around for decades, most of them
are unsuitable for services [7] and do not contribute to the reusability question.

In contrast to classical reuse metrics, metrics that estimate the functional
reusability of black box components are alarmingly poorly studied. The only two
metrics I am aware of are Washisaki [10] and Rotaru [9]. However, none of the
two has an acceptable expressiveness power, since Washizaki only considers the
existence of meta information and Rotaru only counts the number of parameters
in order to express reusability. A comprehensive and exhaustive survey of these
and other works is found in [1].

Estimating Functional Reusability of Services 413

An important property of development environments that aim at increasing
reuse is that software components are described semantically. We know that two
key activities in component based software development are that components
are (i) stored for later reuse and (ii) identified as candidates for a solution of
a current task [2, 3]. The second step (look-up problem) requires a sufficiently
abstract description of what a component does in order to avoid or reduce reading
natural language documentation or even source code analysis. The latter may
work in very small environments but not in large organizations with hundreds of
components. Hence, reuse, which is the main goal of services, requires a formal
specification that reasonably abbreviates their functional behavior.

Although software is currently rarely semantically described, current trends
in software development suggest that this may change in near future. This can
be mostly observed in a shift in the programming style that is less technical
than before and that tends towards workflows [5]. Business workflow oriented
software is much more suitable for business domain specific descriptions than
former, rather technical component models.

Assuming that this trend continues, this paper presents one way to estimate
software reusability by analyzing semantic descriptions.

3 Problem Description

This section describes the formal frame of this paper. First, I describe my idea of
an ideal reusability metric in terms of composition problems to whose solution
a service may contribute. Second, I explain the obstacles that occur with that
metric and the necessity for alternatives. Third, I introduce the formal service
model that underlies the rest of the paper.

3.1 An Ideal Metric for Functional Reusability

An ideal metric for the functional reusability of a service would be based on
the number of composition problems to whose solution it contributes. This is
because a service is (re)used if and only if there is a program that invokes it. In
the service world, we would call such a program a service composition. A service
composition, in turn, is only created if there is a problem that it solves. If P
is the set of all imaginable (composition) problems, let Ps ⊆ P be the set of
composition problems p ∈ P for which there is a service composition that solves
p and that invokes s .

Instead of just counting the number of problems, consider the probability that
p ∈ Ps occurs at all, which yields the following ideal reusability metric:

r∗(s) =
∑
p∈Ps

probabilityOfOccurrence(p)

This metric only captures the functional reusability and ignores other factors
that may affect the practical suitability of solutions. In fact, non-functional as-
pects may cause that a service s is never part of a chosen solution for problem
p. However, we shall focus on the purely functional aspect here.

414 F. Mohr

The problem set P is usually infinite, but we may expect the metric to con-
verge towards a finite number for every service s . Of course, divergence is an
issue, because there will be probably infinitely many ”potential” problems where
a service s could be part of a solution. However, I think that the number of ac-
tually occurring problems to whose solution a service s may contribute is quite
limited. The probability of occurrence of other problems to whose solution s may
contribute, hence, is either zero or converges to zero very fast. Concludingly, we
may assume that r∗(s) takes a fix value in R+ for every service s .

The reusability of a reference service may normalize the metric. Using service
s∗ as the reference service, the normalized reusability of a service s is:

||r∗||(s) = r∗(s)
r∗(s∗)

This allows us to say that a service is, for example, twice as reusable as the
reference service; this makes the metric more intuitive.

3.2 The Need for Estimation

It is not possible to compute the metric r∗ in practice. Computing Ps requires
to actually solve all composition problems in P under the condition that s is
part of the solution. Even if P is finite, it is probably very large and cannot
efficiently be traversed, not to mention solving a complex composition task in
every iteration. Apart from that, the probability of occurrence is usually not
known and estimating it can be cumbersome.

Consequently, the task is to find a function that estimates the normalized
ideal reusability. Formally, for a set S of services, the task is to find an efficiently
computable function r : S → R+ that comes reasonably close to ||r∗||.

Due to the lack of benchmark possibilities, I argue that it would not be ap-
propriate for this task to speak of approximation. Approximation usually is
associated with an approximation error ε ∈ R+ that describes the maximum dis-
crepancy between the approximation and the optimum. For example, we would
like to have (r(s) − r∗(s))2 < ε for all s ∈ S . It is anything but clear how this
kind of assertions about ||r∗|| can be achieved, so, strictly spoken, we cannot
claim to approximate reusability.

However, it is absolutely possible to define other metrics that, due to some
semantic link to reusability, are indicators for reliability. As a consequence, ap-
proaches for estimating reusability must qualitatively explain why it is reasonable
to believe that they are a reliable indicator of reusability.

3.3 The Formal Framework for the Service Environment

To obtain commonsense about the nature of problems in P , we shall not rely
on natural language descriptions but on formal descriptions. In this paper, I
assume that services are described through inputs, outputs, preconditions, and
effects (IOPE), and where problems are characterized by an initial state and a

Estimating Functional Reusability of Services 415

goal state that must be reached from the initial state through the application of
services.

Definition 1. A service description is a tuple (I ,O ,P ,E). I and O are dis-
joint sets of input and output variables. P and E describe the precondition and
effect of the service in first-order logic formulas without quantifiers or functions.
Variables in P must be in I; variables in E must be in I ∪O.

As an example, consider a service getAvailability that determines the avail-
ability of a book. The service has one input b for the ISBN of a book and one
output a for the availability info; we have I={b} and O={a}. The precondition
is P = Book(b) and requires that the object passed to the input b is known
to have the type Book. The effect is E = HasAvInfo(b, a) and assures that the
object where the output a is stored contains the info whether b is available.

I acknowledge that this formalization may not always be adequate, but it
is the by far most established service description paradigm besides finite state
machines (FSM), and even FSM service representations can often be efficiently
transformed into an IOPE representation. The introduction of a(n even) more
sophisticated formalism is beyond the scope.

Definition 2. A composition problem is a tuple (S , pre, post) where pre is a
precondition that must be transformed into the postcondition post by arranging
services from a set S described as in Def. 1. pre and post are first-order logic
formulas without quantifiers and functions.

For simplicity, I leave a knowledge base out of the model. A knowledge base
is usually used to express ontological information and logical implications in the
model but is not needed to explain the idea of this paper.

4 Estimating Reusability Using Semantic Descriptions

This section gives a brief sketch about one possibility to use semantic service
descriptions to estimate their reusability. A service s is most likely to be reused
if there are many other services that can do something with the effect of s; then
s contributes to those services. This section defines the relevance of a service
based on its contribution to other services and the relevance of those services in
turn. The higher the relevance of a service, the higher the number of problems
that can be solved with it; this relevance is a good estimation for reusability.

4.1 The Service Contribution Graph

We can capture the direct relation of two services in a service contribution graph.
Given a set of services S with descriptions as in Def. 1, a service contribution
graph is a graph (V,E) with exactly one node in V for every service in S and
with an edge (si, sj) ∈ E if and only if at least one literal in the effect of si
and the preconditions sj can be unified. Intuitively, there is a link between from

416 F. Mohr

Fig. 2. An exemplary contribution graph for 6 services

si and sj if the effect of si has something to do with the precondition of sj . A
service contribution graph is directed and usually cyclic.

The service contribution graph exploits the idea that a service composition
contains a service only if it is necessary for a (possibly indirect) successor service
or for the desired result of the entire composition. An edge between u and v
indicates a chance that there may be compositions that invoke v after u. Thereby,
the service contribution graph gives a rough insight into how control flows of
service compositions in this environment could look like.

To give consideration to the fact that contributions of services to the precon-
ditions of other services usually vary, the edges in the service contribution graph
should carry a weight. A weight function w : E → [0, 1] indicates for an edge
(u, v) to which degree service u contributes to v. That is, to which extent the
effects of u cover the preconditions of v. An example is depicted in Fig. 2.

A good implementation for the weight function is a modified leveled matching.
Usually, a leveled matching algorithm determines to which degree the precon-
ditions of services s1 and s2 match and to which degree the effects of s1 and
s2 match. In this case, however, we want to know to which degree the effect of
s1 matches the precondition of s2; the precondition of s1 and the effect of s2
are not of interest here. If preconditions and effects are conjunctions, a basic
matcher could return the percentage of literals in the precondition of s2 that
are contained in the effects of s1. For other precondition structures, the matcher
would need more sophisticated techniques.

The matcher should take into account the explanatory power of the different
description elements. For example, a data type information is much less signifi-
cant for the service description than an ontological concept or even a relation.

4.2 Basic Service Relevance

A basic reusability estimation could measure the recursive contribution of a
service to the preconditions of other services. For example, if a service s1 only
contributes to a service s2 that does not contribute to any other service, s1 is
probably less reusable than a service s3 that contributes to a service s4 that
contributes to five services, each of which contributing to another five services.

Since the contribution graph is usually cyclic, we must be cautious to avoid
an infinite recursion for the relevance metric. We can reasonably avoid infinite

Estimating Functional Reusability of Services 417

recursion by assuming that no service is called twice in one composition. A good
argument to do this is that we want to measure the relevance of a service by
its benefits to other services. Otherwise the relevance of a service value would
be increased only due to the possibility to invoke itself, which does not make
sense. There will be compositions that are excluded by this assumption, but this
should not be the usual case. In addition and in order to reduce computational
efforts, we reduce a bound k ∈ N for the considered recursion depth.

The formal basis for the metric is a composition tree. Every node in that tree
corresponds to a sequence of services, and the root corresponds to the sequence
of length 1 that is just the service s itself. There is an edge from node (s1, . . . , sn)
to node (s1, . . . , sn+1) if (sn, sn+1) is an edge in the contribution graph and if
sn+1 is not already in {s1, . . . , sn}. The relevance of the service s sums up a
default value of each node (here 1), weighted with the multiplied path weights
from that node to the root.

The basic relevance of a service s for depth k is then:

r(s, k) =

{
1 +

∑
s′∈c(s)

w(s, s′) · r(s′, k − 1) if k > 0

1 else

where c(s) are the child nodes of service s in the composition tree1 and w(s, s′)
is the weight of the edge in the contribution graph. Since the maximal recur-
sion depth k will usually be a parameter that is chosen once and then remains
unchanged, let the relevance value of a service be denoted as rk(s) := r(s, k).

4.3 Discussion

The above metric is obviously very rudimentary, but it gives a clue of what a
reusability estimating metric may look like. For example, the constant factor
of a node could be substituted by an expert’s estimation. Also, it would be
a good idea to not only consider the outgoing edges of a service, but also its
incoming edges in the contribution graph. However, compared to the absence of
information as depicted on the left of Fig. 1, this metric already gives very useful
insights. We can argue even for this simple measure that it is an estimator for
reusability: The more compositions that start with a service are imaginable, the
more problems will exist for which that service may be part of a solution.

Note that the alleged redundancy of execution paths that are merely per-
mutations of each other is intended. For example, a service s0 may contribute
to both s1 and s2 while in turn s1 contributes to s2 and vice versa. Thereby,
the relevance of s0 is increased twice, once by s1, s2 and once for s2, s1. This
may seem unreasonable at first, but it is actually quite what we want. The edge
(s1, s2) only has a high weight if s1 contributes for s2 and vice versa. If one of
the paths does not make sense, it will have a low weight anyway and will only
marginally affect the relevance value of s0.

1 More precisely, the last service in the child, since nodes are service sequences.

418 F. Mohr

5 Conclusion

This paper gives a vision statement for metrics of functional reusability of ser-
vices and sketches service relevance as one possible such metric. It defines an ideal
reusability metric and explains why such a metric is usually not computable. The
sketched metric tackles this problem by estimating service reusability through
service relevance, a recursive metric based on the contribution of services to the
preconditions of other services in the network. Its explanatory power is limited
by the quality of the service descriptions.

This paper ismerely afirst step into thedirectionof analyzing functional reusabil-
ity, so there is great potential for future work; I just mention some options. First,
it would be interesting to estimate the reusability of services in a completely dif-
ferent way; for example, we could use a simplification of the service model that
makes the number of composition problems tractable. Second, the presented
metric only works with forward edges in the contribution graph, yet we could
take into account the provision of required service inputs. Third, the weights in
the composition tree could be discounted depending on the depth in order to
consider possible noise between the model and the real services that may affect
composition. Fourth, the proposed metric could be integrated with a learning
approach that collects information about how services are used together.

Acknowledgments. This work was partially supported by the German Re-
search Foundation (DFG) within the Collaborative Research Center ”On-The-
Fly Computing” (SFB 901).

References

1. Fazal-e Amin, A., Oxley, A.: A review of software component reusability assessment
approaches. Research Journal of Information Technology 3(1), 1–11 (2011)

2. Caldiera, G., Basili, V.R.: Identifying and qualifying reusable software components.
Computer 24(2), 61–70 (1991)

3. Cheesman, J., Daniels, J.: UML components. Addison-Wesley, Reading (2001)
4. Choi, S.W., Kim, S.D.: A quality model for evaluating reusability of services in

soa. In: Proceedings of the 10th IEEE Conference on E-Commerce Technology, pp.
293–298. IEEE (2008)

5. Frakes, W.: Software reuse research: status and future. IEEE Transactions on Soft-
ware Engineering 31(7), 529–536 (2005)

6. Frakes, W., Terry, C.: Software reuse: metrics and models. ACM Computing Sur-
veys (CSUR) 28(2), 415–435 (1996)

7. Gill, N.S., Grover, P.: Component-based measurement: few useful guidelines. ACM
SIGSOFT Software Engineering Notes 28(6), 4 (2003)

8. Krueger, C.W.: Software reuse. ACM Computing Surveys 24(2), 131–183 (1992)
9. Rotaru, O.P., Dobre, M.: Reusability metrics for software components. In: Pro-

ceedings of the 3rd ACS/IEEE International Conference on Computer Systems
and Applications, p. 24. IEEE (2005)

10. Washizaki, H., Yamamoto, H., Fukazawa, Y.: A metrics suite for measuring
reusability of software components. In: Proceedings of 5th Workshop on Enterprise
Networking and Computing in Healthcare Industry, pp. 211–223. IEEE (2003)

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 419–428, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Negative-Connection-Aware Tag-Based Association
Mining and Service Recommendation*

Yayu Ni1, Yushun Fan1,*, Keman Huang2, Jing Bi1, and Wei Tan3

1 Tsinghua National Laboratory for Information Science and Technology,
Department of Automation Tsinghua University, Beijing 100084, China

nyy07@mails.tsinghua.edu.cn, {fanyus,bijing}@tsinghua.edu.cn
2 School of Computer Science and Technology, Tianjin University, Tianjin 300072, China

victoryhkm@gmail.com
3 IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA

wtan@us.ibm.com

Abstract. Service recommendation facilitates developers to select services to
create new mashups with large-granularity and added value. Currently, most
studies concentrate on mining and recommending common composition pat-
terns in mashups. However, latent negative patterns in mashups, which indicate
the inappropriate combinations of services, remain largely ignored. By combin-
ing additional negative patterns between services with the already-exploited
common mashup patterns, we present a more comprehensive and accurate mod-
el for service recommendation. Both positive association rules and negative
ones are mined from services’ annotated tags to predict future mashups. The ex-
tensive experiment conducted on real-world data sets shows a 33% enhance-
ment in terms of F1-Score compared to classic association mining approach.

Keywords: Service Recommendation, Negative Mashup Patterns, Tag Collabo-
ration Rules.

1 Introduction

In Web 2.0 era, a growing number of interactive web services have been published on
the Internet. By combing chosen web services, web developers now are able to create
novel mashups (i.e., composite services derived from services) to meet specific func-
tional requirements from web users. This programmable paradigm produces an en-
larging ecosystem of web services and their mashups [1].

Rapid increasing of available online services makes manual selection of suitable
web services a challenging task. Automatic service integration architecture, like SOA
[2], and service recommendation algorithms [3-6] are proposed to facilitate service
selection and integration in mashup completion. Recently, an increasing number of

* Yushun Fan is with Tsinghua National Laboratory for Information Science and Technology,

the Automation Department Tsinghua University, Beijing, 100084 China. (Corresponding,
E-mail: fanyus@tsinghua.edu.cn).

420 Y. Ni et al.

researchers are becoming interested in analyzing and summarizing common service
composition patterns from historical mashups. In order to instruct future mashup crea-
tion, a plenty of mashup pattern models are proposed to enable automatic service
integration [1,7-9]. There are also techniques that focus on finding collaboration rules
between services [4,10,11] and complete service composition based on rule reasoning.

Besides these common patterns or rules, there are also relationships indicating
improper service combinations. Consider two very popular services, “Google App
Engine” and “Yahoo Video Search”, on ProgrammableWeb.com1,2the largest servic-
es/mashups repository on the Internet. Even if both of them have been frequently used
in the creation of thousands of mashups, they’ve never been co-used in the same ma-
shup even once (until Dec. 31th, 2013). In the collaboration network of programmable
ecosystem, there exist a large number of never-collaborate connections between ser-
vices, formally named negative connections in this paper. Straightforwardly, the ever-
collaborate connections among services can be named as positive connections. Based
on the previous work [12,13], the collaboration network is a rare sparse network.
Hence the number of the negative connections are much greater than the positive
connections, which brings the data imbalance problem. On the other hand, some cur-
rent automatic integration techniques just use the positive connections but tend to
ignore all these negative connections, which will lose some useful information.

In order to consider the negative connections in a suitable way to improve the rec-
ommend performance, this paper proposes a novel method to collect negative connec-
tions between services as well as positive ones. The main contribution of this paper is
a novel association mining model based on both positive and negative connections for
service recommendation. More specific:

• We introduce a training dataset generation strategy to collect both positive and
negative connections between services from the collaboration network.

• We propose a rule-based decision tree algorithm, i.e., RuleTree, to mine both posi-
tive and negative tag collaboration rules from the annotated tags of service connec-
tions in the training dataset. A rule scoring strategy, named RuleScore, is presented
to score the collaboration rules. Combing RuleTree and RuleScore, the novel ser-
vice recommendation approach is introduced to recommend service for the user.

Experiments on the real-life ProgrammableWeb dataset shows that, compared with
the classic association-based approach, our negative-connection-aware approach gains
a 33% improvement in terms of F1-Score for service recommendation.

The rest of the paper is organized as follows. Section 2 gives the concepts and
problem formulation of tag-based service recommendation. Section 3 presents the
details of tag-based association model for service recommendation. Section 4 presents
experimental results on mashup ecosystem. Section 5 summarizes the related work
and section 6 concludes the paper.

1 http://www.programmableweb.com

 Negative-Connection-Aware Tag-Based Association Mining 421

2 The Problem Formulation

2.1 Preliminary Definitions

Let , , … , denote all the web services, , , … , denote all
the mashups, and , the collaboration network between services and mashups. If

a mashup is composed by several services , , … , , then , , … , . Let , , . . . , denote all tags that used to annotate ser-
vices and |∀ denote all the subsets of . For an service , its anno-

tated tags are , , . . . , .

Definition 1: Service Connection.
For two services , , a service connection between them is denoted as , , , , where , is a function indicating whether the two services
have ever been co-used or not. If and have ever been co-used in mashups, then , 1; otherwise , 1. Furthermore, is called a positive connec-
tion if , 1; otherwise is called a negative connection.

Definition 2: Service’s Popularity.
Service’s popularity is the function indicating the number of mashups that con-
tain service . Hence: | ∀ | | (1)

where |·| means the number of elements in set.

Definition 3: Tag Collaboration Rule.
A tag collaboration rule , is a combination of two tag se-
quences. Given a service connection , , , , as well as the annotated
tags of services and , then is said to satisfy rule , , formally
denoted as , if

 and or and (2)

2.2 Tag-Based Service Recommendation

For most of the popular online repositories, like ProgrammableWeb.com, each web
service is annotated with several tags to describe its category, functionalities and
properties. Consider two web services published in the repository, denoted as and

. Each service is annotated by a sequence of tags: is annotated by tags ,

and for . The problem of tag-based service recommendation can be de-

fined as follow:
Given two services , with their annotated tags and , find out whether

they will collaborate with each other to construct mashups, based on the potential tag

422 Y. Ni et al.

collaboration rules lying in the historical mashups in the collaboration network , .

3 Tag-Based Association Model for Service Recommendation

3.1 Service Connection Generation

Due to the sparsity of collaboration network and the incompleteness of historical ma-
shup dataset, there is an extreme imbalance between positive and negative samples:
the number of never-collaboration connections is much greater than that of ever-
collaboration ones. Thus, this section proposes a strategy utilizing a service popularity
criterion to collect a balanced set of both positive and negative connections.

For two services and which have been co-used in at least one mashup, a
positive connection between them is generated. Thus given all the historical mashups,
a set of positive service connections can be defined as follow: , , 1 |∀ , , , , 1 (3)

For two services which have never collaborate with each other in the same mashup,
there exist a negative connection among them. Due to the incompleteness of the data-
set, the negative connections cannot be simply considered as the services cannot col-
laborate to compose a mashup. However, if two services are very popular but never
collaborate with each other, it is reasonable to believe that these two services are not
capable to construct a mashup in the near future. Hence this paper defines the nega-
tive connections between popular services as the credible negative connection. Here
the popular service is defined as follow:

Given the popularity threshold , if the service’s popularity is larger than , i.e.
, then this service is popular.

Then a set of credible negative service connections can be generated as follows: , , 1 ∀ , , , ,, , 1 (4)

3.2 Mining Tag Collaboration Rules: RuleTree Algorithm

This section presents a rule-based decision tree algorithm, named RuleTree, to mine
tag collaboration rules from the training set of positive service connections and credi-
ble negative connections. RuleTree algorithm constructs a decision tree which con-
tains collaboration rules as its non-leaf nodes and composability labels, positive or
negative, as its leaf nodes. The RuleTree algorithm contains two steps, which is
shown as follows.

Step 1: Generate Candidate Rules.
A rule can only be considered as a candidate rule that can probably be used to con-
struct the tree, if there is at least one service connection in the training set ⋃ satisfies it. Hence the set of candidate rules can be defined as follows:

 Negative-Connection-Aware Tag-Based Association Mining 423

∀ ∃ ⋃ , (5)

Step 2: Construct Decision Tree.
The construction step of RuleTree algorithm employs a procedure similar with ID3
[14]: at each iteration of the algorithm, the most significant rule is chosen from candi-
date rule set, which could distinguish between positive service connections and nega-
tive connections to achieve the minimal entropy. Hence the detail of training proce-
dure is given as follows:

Algorithm 1. RuleTree: Construct Decision Tree

Require: the connection set

Require: candidate rule set

Require: pre-defined maximal depth of decision tree

RuleTree(, ,):

1. if all samples in are of one class, or , or 0 do
2. if the majority of connections are positive do
3. return the single-node tree with label=1
4. else do
5. return the single-node tree with label=-1
6. else do
7. the rule from that best classifies according to

minimal entropy metric

8. ∀ | , ,
9. return a RuleTree with root node , left branch

Rule_Tree , , 1 and right branch Rule_Tree , , 1

3.3 Scoring Collaboration Rules: RuleScore Algorithm

RuleScore algorithm scores the tag collaboration rules previously found out by Rule-
Tree. RuleScore employs the classic Adaboost algorithm [15] to construct a sequence
of shallow rule-based decision trees whose depths are restricted to 1 and assign each
of these trees with a coefficient indicating its contribution to composability. At each
iteration of main loop, RuleScore constructs a tree over current training dataset of
service connections with current weights and then updates the weights of all training
samples according to the fact whether they are correctly classified by generated rule
stumps. The detail of RuleScore algorithm is given as follows:

Algorithm 2. RuleScore: Score Collaboration Rules

Require: the connection set

Require: candidate rule set

Require: number of maximal iterations

RuleScore(, ,):

1. Initialize every connection of with weight 1 | |⁄
2. Initialize every rule of do with 0
3. for 1, … , do

424 Y. Ni et al.

4. training a tree RuleTree , , 1 over with respect to

the weight distribution where is the root rule of
5. the misclassification rate of over

6. 0.5 ln 1
7.
8. for connection that is correctly classified by do
9.
10. for connection that is misclassified by do
11.

12. return ∀ | 0 as _ ules
3.4 Rule-Based Service Recommendation

Consider two web services and . Given the annotated tags and of them,
as well as the scored collaboration rules _ ules generated by RuleScore, then
the set of scored rules that can be satisfied by , , , is denoted as follows: , ∀ _ | , , , (6)

Hence the composability score of service and can be calculated by summing
up the scores of all satisfied rules , : , ∑∀ , (7)

The more positive rules and less negative rules are satisfied by , , , ,
the greater , is, and two services are more probably composable. Therefore if
the estimated value , 0, then services and are regarded composable,
and if , 0 , then and are considered as none-composable in
mashups.

4 Experiments

An experiment is conducted to evaluate our proposed model compared with some
baselines. This paper employs the real-life dataset of web services and mashups ob-
tained from ProgrammableWeb.com. By removing mashups containing less than two
services and services that never collaborate with others, we obtain a filtered collection
of 1301 services and 3557 mashups (Dec. 31th, 2013).

4.1 Baseline Algorithms

Baseline I: Apriori-based Service Recommendation.
In this approach [11], each mashup is represented as the union of annotated tags of its
component services. Apriori [16] mines positive rules of tags from the transactions of
mashups. Then composability of any two services and is estimated as:

 Negative-Connection-Aware Tag-Based Association Mining 425

, ∑ 1, (8)

where , denotes the rules satisfied by , , and is a weighting coeffi-
cient. If , is greater than a predefined threshold, and are considered as
composable; otherwise not.

Baseline II: RuleTree-based Service Recommendation.
In this approach, service recommendation is made by utilizing decision tree con-
structed by RuleTree algorithm. The maximal height of constructed tree is restricted
to 1000. For every two services with their annotated tags, decision tree returns a bi-
nary value, 0 or 1, indicating whether they can collaborate in mashups.

Baseline III: Subsampling for Negative Service Connections.
In this approach, subsampling technique [17] is utilized to handle the dataset imbal-
ance, instead of popularity-based selection strategy in our proposed model. By ran-
domly sampling without replacement, a portion of negative service connections is
selected for model training to equal the size of positive connection dataset.

4.2 Performance of Service Recommendation

Table 1 shows the average precision, recall and F1-Score values of proposed service
recommendation model in a ten-fold cross validation experiment compared with base-
line algorithms for dataset introduced above. Empirically, the threshold of popularity
for credible negative connections generation is set 10 in the proposed model, and run
20000 iterations for it to stop. The weighting coefficient of Apriori-based approach is
set 0.5, and threshold to determine composability is set 0.4.

Table 1. Performance of Four Recommendation Approaches

Recommendation Approach Precision Recall F1-Score
Apriori-based Recommendation 17.44% 83.58% 0.2885
RuleTree-based Recommendation 70.23% 46.83% 0.5619
Subsampling For Negative
Connection Generation

76.12% 62.57% 0.6868

The Proposed Model 78.85% 66.03% 0.7187

It can be observed that our proposed model has the best performance in terms of

F1-Score, which can be interpreted as a weighted average of the precision and recall.
The classic Apriori algorithm results in an extreme low prediction precision because
of its incapability of modeling negative associations and it misclassifies a large
portion of negative connections as positive ones. Our proposed model outperforms
RuleTree-based approach because of the additional adoption of RuleScore, which
enhances the accuracy of RuleTree by utilizing Adaboost meta-algorithm. Our model
also outperforms the baseline method that utilizing subsampling for negative connec-
tion generation, because popularity-based selection strategy of our model produces a
more credible set of negative connections than random sampling.

426 Y. Ni et al.

5 Related Works

In the researches of automatic service composition, service association learning is
emerging as a new technique for automatic mashup creation. Most current service
association models is on the basis of Apriori algorithm: [4] presents a global
Co-utilization service Ranking (gCAR) strategy using association rules inferred by
Apriori from historical service usage data, to recommend best services for mashup
completion. [7] defines a three-level model of service usage data, from which service
association rules is mined to model service usage patterns based on Apriori algorithm.
[11] uses Apriori to find association rules of social tags and predict future mashups
based on mined rules. [18] utilizes Apriori to mine service association rules from
service logs to build a knowledge repository to instruct mashup creation.

Some researches try to extend Apriori algorithm by including negative rules. [19]
presents a pruning strategy to reduce the size of candidate negative rules, so that the
generation of negative rules can be achieved in an acceptable time. [20] defines a
more generalized form of negative rules and generates both positive and negative
rules based on the correlation metric. However, these researches merely take the posi-
tive samples into consideration, ignoring the latent existence of negative samples.

From a different perspective, we employ both positive service connections and
negative ones generated based on service popularity metric from service collaboration
network. Hence a more comprehensive service association mining model is formed
for automatic service recommendation and gains a better performance.

6 Conclusion

The paper proposes a tag-based association model for service recommendation, com-
bining positive mashup patterns and negative ones. This combination gives a more
comprehensive and meaningful illustration of current trend for mashup creation. To
the best of our knowledge, we are the first to mine negative tag collaboration rules
from service collaboration network, shedding new light on service usage pattern dis-
covery. Our model also produces a more accurate prediction than the well-known
Apriori-based service recommendation approaches, making a great accuracy im-
provement in service collaboration prediction.

In the future work, we plan to develop a distributed version of our model to im-
prove the efficiency of rule mining, which enables it to scale to a massive number of
services and service tags in big data applications.

Acknowledgement. This work is partially supported by the National Natural Science
Foundation of China (No. 61174169, No. 61033005), the National Key Technology
R&D Program (No. 2012BAF15G01) and Doctoral Program Foundation of Institu-
tions of Higher Education of China (No. 20120002110034).

 Negative-Connection-Aware Tag-Based Association Mining 427

References

1. Han, Y., Chen, S., Feng, Z.: Mining Integration Patterns of Programmable Ecosystem with
Social Tags. Journal of Grid Computing, 1–19 (2014)

2. Erl, T.: SOA: principles of service design. Prentice Hall Upper Saddle River (1) (2008)
3. Keman, H., Yushun, F., Wei, T., Xiang, L.: Service Recommendation in an Evolving

Eco-system: A Link Prediction Approach. In: International Conference on Web Services,
pp. 507–514 (2013)

4. Tapia, B., Torres, R., Astudillo, H., Ortega, P.: Recommending APIs for Mashup Comple-
tion Using Association Rules Mined from Real Usage Data. In: International Conference
of the Chilean Computer Science Society, pp. 83–89 (2011)

5. Dou, W., Zhang, X., Chen, J.: KASR: A Keyword-Aware Service Recommendation
Method on MapReduce for Big Data Application. IEEE Transactions on Parallel and
Distributed Systems PP, 1 (2014)

6. Xi, C., Xudong, L., Zicheng, H., Hailong, S.: RegionKNN: A Scalable Hybrid Collabora-
tive Filtering Algorithm for Personalized Web Service Recommendation. In: International
Conference on Web Services, pp. 9–16 (2010)

7. Liang, Q.A., Chung, J.Y., Miller, S., Yang, O.: Service Pattern Discovery of Web Service
Mining in Web Service Registry-Repository. In: IEEE International Conference on
E-Business Engineering, pp. 286–293 (2006)

8. Chien-Hsiang, L., San-Yih, H., I-Ling, Y.: A Service Pattern Model for Flexible Service
Composition. In: International Conference on Web Services, pp. 626–627 (2012)

9. Vollino, B., Becker, K.: Usage Profiles: A Process for Discovering Usage Patterns over
Web Services and its Application to Service Evolution. International Journal of Web
Services Research 10(1), 1–28 (2013)

10. Spagnoletti, P., Bianchini, D., De Antonellis, V., Melchiori, M.: Modeling Collaboration
for Mashup Design. In: Lecture Notes in Information Systems and Organization, pp.
461–469 (2013)

11. Goarany, K., Kulczycki, G., Blake, M.B.: Mining social tags to predict mashup patterns.
In: Proceedings of the 2nd International Workshop on Search and Mining User-Generated
Contents, pp. 71–78 (2010)

12. Keman, H., Yushun, F., Wei, T.: An Empirical Study of Programmable Web: A Network
Analysis on a Service-Mashup System. In: International Conference on Web Services,
pp. 552–559 (2012)

13. Huang, K., Fan, Y., Tan, W.: Recommendation in an Evolving Service Ecosystem
Based on Network Prediction. IEEE Transactions on Automation Science and Engineer-
ing PP, 1–15 (2014)

14. Mitchell, T.: Decision tree learning. Mach. Learn. 414 (1997)
15. Friedman, J., Hastie, T., Tibshirani, R.: Special invited paper. additive logistic regression:

A statistical view of boosting. Annals of Statistics, 337–374 (2000)
16. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of

the 20th International Conference on Very Large Databases, pp. 487–499 (1994)
17. Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., Herrera, F.: A review on ensem-

bles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches.
IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Re-
views 42(4), 463–484 (2012)

428 Y. Ni et al.

18. Bayati, S., Nejad, A.F., Kharazmi, S., Bahreininejad, A.: Using association rule mining to
improve semantic web services composition performance. In: International Conference on
Computer, Control and Communication, pp. 1–5 (2009)

19. Wu, X., Zhang, C., Zhang, S.: Efficient mining of both positive and negative association
rules. ACM Transactions on Information System 22(3), 381–405 (2004)

20. Antonie, M.-L., Zaïane, O.R.: Mining positive and negative association rules: An approach
for confined rules. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.)
PKDD 2004. LNCS (LNAI), vol. 3202, pp. 27–38. Springer, Heidelberg (2004)

Choreographing Services over Mobile Devices

Tanveer Ahmed and Abhishek Srivastava

Indian Instititue of Technology Indore, India
{phd12120101,asrivastava}@iiti.ac.in

Abstract. Owing to the proliferation of web services, service oriented
architecture (SOA) is widely acknowledged as an ideal paradigm for both
enterprise applications and compute intensive scientific processes. In to-
days world, the present scenario of conducting business has found a new
inclination towards the Mobile Device. Mobile devices, however, are con-
strained by battery power, processing capability, availability and network
outages. Achieving service composition in such dynamic environment is
challenging. In this paper, we propose a technique inspired by Electromag-
netism in Physics to enact service choreography over mobile devices. The
focus of the work is to minimize the waiting time and to balance load be-
tween services of a similar kind, thereby preserving battery power. The
technique is validated through a real prototype. We prove the model min-
imized battery consumption and achieved a reduction in the waiting time.

Keywords: Service Composition, Service Oriented Architecture,
Mobile Phones.

1 Introduction

Service oriented architecture owes its popularity to web services and their tem-
poral collaboration, commonly referred to as web service composition. Using web
service composition, an organization can achieve a low operation and mainte-
nance cost. As is evident, the Internet today is constantly evolving towards the
‘Future Internet’ (FI). In the FI, a mobile device is envisioned to become the
center of computation in all aspects of daily and professional life, specially for
the applications related to Internet of Everything1.

At the moment, service orchestration is a widely accepted standard to accom-
plish service composition. In the context of the Future Internet, especially the
IoS and IoT, service orchestration is expected to run into several hurdles. The
biggest problem is: Considering an ultra large scale of the FI, orchestration is not
scalable and the coordination between consumers and providers is impossible [4].
In addition, an orchestrator can become a potential communication bottleneck
and a single point of failure [3]. In this context, we believe service choreography is
‘the’ solution. However, even on a wired network, enacting service choreography
successfully for an ultra large scale Future Internet is a challenge. This is further

1 http://www.cisco.com/web/about/ac79/innov/IoE.html

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 429–436, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://www.cisco.com/web/about/ac79/innov/IoE.html

430 T. Ahmed and A. Srivastava

exacerbated in a wireless setting, where the network is highly unpredictable, un-
certain and error prone. There are several atypical issues, e.g. availability, battery
power, application response time and several others that have to be tackled for
a mobile device. In addition, composition over Mobile Devices, specially those
owned by ordinary people exacerbates the problem even more. In such cases, the
Quality of Experience of a person (both the consumer and provider) must never
be compromised, since good user experience is a valuable asset in the service
industry.

In this paper, we propose a technique customized from physics to enact service
choreography over mobile devices, in particular, Cell Phones. We use the fun-
damental principles of electromagnetism to select a service from a set of similar
services. The focus of the technique is to minimize the waiting time a user re-
quest experiences and at the same time preserve battery power. The foundation
of the work presented here is the proposal of the electric field and the magnetic
field. The proposed electric field is a non-user centered parameter capable of
bypassing the hotspots to help conserve battery power. Further, in the World
of Devices, user centric computation is one of the objectives, therefore magnetic
field is designed to incorporate the preferences of a user in service selection. The
magnetic field uses the intuition of a human being to select services. Thus, the
electric field circumvents congested services and the magnetic field provides a
user centric QoS aware composition parameter. We combine the two fields to
make the dynamic service selection decision.

2 Proposed Model

In the real world, whenever a charged particle, e.g. an electron, moves in an elec-
tromagnetic field, it experiences an electro-magnetic force (EMF). The particle
experiences acceleration (purely electric) and a drift in the direction of motion
perpendicular to both the electric and the magnetic field. If we assume the two
fields to be in the X and Y axes respectively, then the particle will drift in the
Z axis. The Electromagnetic force experienced by the particle is known as the
Lorentz’s force [8].

In this paper, we have taken inspiration from such a phenomenon in the
physical world. In our model, the movement of an electron is analogous to the
control flow between services. We have assumed that each service hosted on a
mobile device offers both electric and magnetic fields, consequently each node
offers an electromagnetic force (EMF) to the next incoming service request.
The EMF offered by a service is the selection criterion in our model. Next, we
present the definitions of Electric and Magnetic Fields, and show how we make
the dynamic service selection decision.

2.1 The Electric Field

To formulate the definition of the electric field, we have used the principle of
potential gradient. In physics, electric field is defined as the rate of change of
potential with respect to displacement [8].

Choreographing Services over Mobile Devices 431

E =
dV

dx
(1)

where, dV is the change in Electric Potential and dx represents the change in
displacement, E is the electric field. The electric potential is the amount of work
done to transfer a unit positive electric charge from one position to another
position.

In the proposed work, the electric potential experienced at a service is defined
in terms of the waiting time experienced at a service node. Mathematically,

Vx(i) = twx(i) (2)

and,
Vy(i+ 1) = twy(i+ 1) (3)

where, twx(i) is the waiting time at a service x realizing the ith step (the current
service/step in the composition), y is the index of the next service to be selected
and twy(i+1) is the waiting time. Here, service y realizes the (i+1)th step (the
next process-step). From equations (1), (2) and (3), the proposed definition of
the electric field offered by a mobile node is:

E(y) =
twx(i)− twy(i+ 1)

td(x(i), y(i + 1))
(4)

where, E(y) is the Electric Field offered by the service realizing the next process
step, td(x(i),y(i+1)) is the data transfer time, defined as “the amount of time
required to pass all the parameters and control from a service at a particular
step to a service at the subsequent step”. In mobile devices, the data transfer
time also represents latency between two individual devices. It can be seen from
the above equation that if a service (realizing the next process step) has less
waiting time, then Electric Field value is high. It is understood that the waiting
time experienced at a service gives a measure of the congestion experienced at
a node. Also, congestion is directly related to battery consumption. Therefore,
selecting services offering a high Electric Field value can help preserve battery
power. Further, driven by this Field requests will be passed to services that are
not overloaded.

2.2 Magnetic Field

From the discussion in the previous sub-section, it is clear that though the Elec-
tric Field is runtime dependent, it is not user-centered. Today, the consumers
are the center of attention in the world of mobile devices. Therefore, ‘User-
Centricity’ has become one of the most important criteria. In the proposed
work, we made an attempt to include this criterion in service composition.

It is a well known fact that human beings have a varied sense of understanding
and perception. Human beings exhibit cognitive bias preferring certain objects
over others. In services computing, if a service is selected via QoS attributes,
then human beings will tend to favor certain properties over others. Therefore,

432 T. Ahmed and A. Srivastava

selecting a service following such a biased approach should not be the ideal way
forward. A feasible strategy would be to select a service based on conscious rea-
soning as well. In other words, the subjective approach of the human being must
be complemented by a reasonable objective approach. The same line of reason-
ing could be applied to services computing i.e. while selecting a service based on
QoS attributes, one must follow a human oriented subjective approach comple-
mented by a reasoning based objective approach. Taking this line of reasoning,
we propose Magnetic Field as a preference and QoS based selection function in-
corporating both the subjective and the objective behavior. An ideal candidate
to merge both the two choices is the subjective-objective weighted approach.
Therefore, the proposed definition of the Magnetic Field is as follows.

M(y) = β ∗ wQ+ (1 − β) ∗ w′Q (5)

where,Q is a matrix containingQoS attributes’ values. w, w’ are the subjective-
objective weight matrices respectively. β is bias parameter in the range [0,1]. The
QoS attributes chosen for weight calculation and the purpose of experimentation
were chosen from attributes commonly found in literature2. The method used to
calculate weights was taken from [7].

2.3 Coalition of Electric and Magnetic Fields

So far we have presented the definitions of the electric field and the magnetic
field. The electric field makes the algorithm congestion aware, thus, aids battery
conservation. It is obvious, the combination strategy of the two fields will play
an important role in service composition and battery conservation. Basically,
the degree of influence each field will have in composition will depend on the
method and the parameter of combination. To combine the two fields, there are
two broad categories: Linear and Non-Linear. In a mobile environment process-
ing capabilities are limited. Therefore, considering simplicity and computational
efficiency, we have chosen a linear combination strategy. It was outlined pre-
viously that a node offering electric and magnetic fields offers electromagnetic
force (EMF). Therefore, the proposed definition of EMF is:

F (y) = α ∗ E(y) + (1− α) ∗M(y) (6)

where, α is a parameter in the range of [0,1] representing biasness towards ei-
ther the Electric Field or the Magnetic Field. Using concepts of classical physics,
the request (control flow) will move to a service node that has the maximum
force value. Therefore, a node is chosen iff it offers the maximum EMF.

∀s ∈ Si; s‘ ∈ Si Fs‘ > Fs; s‘ �= s (7)

where S is a set of all services for a particular process-step, s‘ is the chosen
service, Fs is the EMF offered by a service.

2 https://www.ibm.com/developerworks/library/ws-quality/

https://www.ibm.com/developerworks/library/ws-quality/

Choreographing Services over Mobile Devices 433

Since we are achieving Mobile service composition in a decentralized environ-
ment, therefore EMF values must be exchanged between the participants. In the
proposed work, the exchange mechanism is based on event based updates. The
motivation for event based updates comes from the fact the such an exchange
mechanism allows a throttled load on the underlying network. In mobile devices,
such a throttled load is beneficial owing to power constraints.

Fig. 1. Experimental Workflow

3 Real World Prototype Implementation

A simple composite application, with a list of redundant services shown in Fig. 1
was chosen for the purpose of experimentation. Though, the Figure represent a
simple composition, our motive is to check the feasibility of the model in minimiz-
ing the waiting time and balancing load equally. To demonstrate the feasibility
of the proposed technique in actual deployment, we have developed a prototype
for the mobile device. The procedure for the development and deployment of
web services, with a sample service, has been uploaded on github repository3.
The application container to host the war (Web Archive) files was i-Jetty v3.1.
Services were developed using Java and RESTLET4 framework. Several services
were hosted on multiple Android based devices. The battery consumption was
monitored via the application GSam Battery (it is freely available at Google
play store). The underlying network was the Institute’s own WiFi network.

3.1 Behavior of Completion Time

To test the behavior of completion time, Volunteers, hosting services on their
devices were asked to stay go around their normal business while service compo-
sition was in progress. We tracked the application completion in such a situation.
The corresponding result concerning the application completion time is shown
in Fig. 2.

It is visible from the Figure that the completion times is less, infact it is almost
similar. Therefore, the Instant-Availability constraint is not violated. Moreover,
we can say with concrete proof that the technique didn’t make compromises in
the real world.

3 https://github.com/mb-14/RestDroid
4 http://restlet.org/

https://github.com/mb-14/RestDroid
http://restlet.org/

434 T. Ahmed and A. Srivastava

Fig. 2. Completion Time (seconds)

During experimentation we observed that the latency factor kept varying all
the time. This observation was due to the fact that mobility played a major
role here. Because of the nature of the devices, ignoring such factors during
composition is not the best of ways. In the proposed model, we have considered
this factor. Therefore, the application completion time is less.

3.2 Behavior of Battery Consumption

In this paper, our motive is to respect 1) Battery Constraint 2) Instant Avail-
ability Constraint. We demonstrated the latter was satisfied by having fast ap-
plication completion time. For the former constraint, one of the ways is to have
a low queue size at a service. A low queue is achievable via load balancing. In
this regard, to demonstrate the effect the proposed technique on the battery of a
mobile device, we have experimented in two different ways: 1) Service Composi-
tion without the electric field i.e no load balancing 2) Service composition with
Electric Field. The results concerning the extent of battery consumption for the
former case is shown in Fig. 3 (i-jetty Server), and the results concerning the
observation for the latter scenario is shown in Fig. 4. Owing to space constraints,

Fig. 3. Power Consumption Without Load Balancing

Choreographing Services over Mobile Devices 435

Fig. 4 shows a snapshot of a few devices only. It can be observed from the two
Figures that when there is no load balancing the battery consumption of the
device is high, 17%. This is theoretically expected, since all the service requests
kept arriving at this service node. A lot of work in literature suffer from this
drawback, i.e. repeated selection of a service. Therefore, they violate the battery
power constraint, hence degrade the QoE of a user. Looking at the result in Fig.
4, one can clearly see that the battery consumption saw a significant drop. The
battery consumption in this case varied from 5.7%-10.7%. This reduction is due
to the fact that requests were distributed across devices. Previously we outlined
the effect of congestion on battery consumption. Therefore, efficient distribu-
tion of requests imply a low queue size, consequently a reduced CPU access,
and hence a reduction in power usage. Therefore, in addition to providing a hu-
man oriented QoS aware composition parameter, Magnetic Field, the technique
performed well in preserving the battery life of person’s mobile device.

Fig. 4. Power Consumption With Load Balancing

4 Related Work

Service choreography has become one of most important topics of research in
the service computing field. However, there only a few techniques purely de-
veloped and deployed on real mobile devices. A Technique to enact a service
choreography using the chemical paradigm is proposed in [2], [3]. Fernandez et
al [3] propose executing a workflow using the chemical paradigm. However, the
focus of the proposed middleware is to execute a workflow in wired networks. We
have proposed a physics based approach for the mobile platform. Further, the
authors in [3] do not focus load balancing, dynamic adaptations. A technique
to achieve choreography in peer-peer network is proposed in [2]. The work pre-
sented in [5] studies the effect of QoS metrics in message integrity and accuracy
of choreographies. A self-* framework for configuring and adapting services at
runtime was proposed in [1]. The framework, PAWS, delivered self-optimization
and ensured guaranteed service provisioning even in failures. A comprehensive
review of service choreographies is available in [6]. However, we did not found
any technique with a special focus towards the IoS, let alone a Mobile Device.

5 Conclusion

In this paper, we proposed a technique customized from the behavior of a
charged particle in physics to achieve service choreography over mobile devices.

436 T. Ahmed and A. Srivastava

We developed a prototype and conducted experiments with real mobile devices.
We showed how the developed prototype achieved a low battery consumption.
We achieved a low battery consumption by balancing load between services of
a similar kind. Further, we also showed the model produced a reduction in the
application turnaround time.

References

1. Ardagna, D., Comuzzi, M., Mussi, E., Pernici, B., Plebani, P.: Paws: A framework
for executing adaptive web-service processes. IEEE Software 24(6), 39–46 (2007)

2. Barker, A., Walton, C.D., Robertson, D.: Choreographing web services. IEEE Trans-
actions on Services Computing 2(2), 152–166 (2009)

3. Fernández, H., Priol, T., Tedeschi, C.: Decentralized approach for execution of com-
posite web services using the chemical paradigm. In: 2010 IEEE International Con-
ference on Web Services (ICWS), pp. 139–146. IEEE (2010)

4. Hamida, A.B., Linagora, G., De Angelis, F.G.: Composing services in the future in-
ternet: Choreography-based approach. iBPMS: Intelligent BPM Systems: Intelligent
BPM Systems: Impact and Opportunity, 163 (2013)

5. Kattepur, A., Georgantas, N., Issarny, V.: Qos composition and analysis in recon-
figurable web services choreographies. In: 2013 IEEE 20th International Conference
on Web Services (ICWS), pp. 235–242 (2013)

6. Leite, L.A., Oliva, G.A., Nogueira, G.M., Gerosa, M.A., Kon, F., Milojicic, D.S.: A
systematic literature review of service choreography adaptation. Service Oriented
Computing and Applications 7(3), 199–216 (2013)

7. Ma, J., Fan, Z.P., Huang, L.H.: A subjective and objective integrated approach
to determine attribute weights. European Journal of Operational Research 112(2),
397–404 (1999)

8. Rothwell, E.J., Cloud, M.J.: Electromagnetics. CRC Press (2001)

Adaptation of Asynchronously Communicating

Software

Carlos Canal1 and Gwen Salaün2

1 University of Malaga, Spain
canal@lcc.uma.es

2 University of Grenoble Alpes, Inria, LIG, CNRS, France
gwen.salaun@inria.fr

Abstract. Software adaptation techniques aim at generating new com-
ponents called adapters, which make a set of services work correctly to-
gether by compensating for existing mismatch. Most approaches assume
that services interact synchronously using rendez-vous communication.
In this paper, we focus on asynchronous communication, where services
interact exchanging messages via buffers. We overview a method for au-
tomatically generating adapters in such asynchronous environments.

1 Introduction

Software Adaptation [22,9] is a non-intrusive solution for composing black-box
software services (peers in this paper) whose functionality is as required for the
new system, but that present interface mismatch which leads to deadlock or
other undesirable behaviour when peers are combined. Adaptation techniques
aim at automatically generating new components called adapters, and usually
rely on an adaptation contract, which is an abstract description of how mismatch
can be worked out. All interactions pass through the adapter, which acts as an
orchestrator and makes the involved peers work correctly together by compen-
sating for mismatch. Many solutions have been proposed since the seminal work
by Yellin and Strom [22], see, e.g., [5,7,21,16,13,14]. Most existing approaches as-
sume that peers interact using synchronous communication, that is rendez-vous
synchronizations. Nonetheless, asynchronous communication, i.e., communica-
tion via buffers, is now omnipresent in areas such as cloud computing or Web
development. Asynchronous communication complicates the adapter generation
process, because the corresponding systems are not necessarily bounded and may
result into infinite systems [6].

In this paper, we rely on the synchronizability property [3,18] in order to
propose an approach for generating adapters for peers interacting asynchronously
via (possibly unbounded) FIFO buffers. A set of peers is synchronizable if and
only if the system generates the same sequences of messages under synchronous
and unbounded asynchronous communication, considering only the ordering of
the send actions and ignoring the ordering of receive actions. Synchronizability
can be verified by checking the equivalence of the synchronous version of a given

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 437–444, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

438 C. Canal and G. Salaün

system with its 1-bounded asynchronous version (in which each peer is equipped
with one input FIFO buffer bounded to size 1). Thus, this property can be
analysed using equivalence checking techniques on finite systems.

More precisely, given a set of peers modelled using Labelled Transition Sys-
tems and an adaptation contract, we first reuse existing adapter generation tech-
niques for synchronous communication, e.g., [10,16]. Then, we consider a system
composed of a set of peers interacting through the generated adapter, and we
check whether that system satisfies the synchronizability property. If this is the
case, this means that the system will behave exactly the same whatever bound
we choose for buffers, therefore this adapter is a solution to our composition
problem. If synchronizability is not preserved, a counterexample is returned,
which can be used for refining the adaptation contract, until preserving synchro-
nizability. It is worth observing that the main reason for non-synchronizability
is due to emissions, which are uncontrollable in an asynchronous environment,
hence have to be considered properly in the adaptation contract.

The organization of this paper is as follows. Section 2 defines our models for
peers and introduces the basics on synchronous software adaptation. Section 3
presents our results on the generation of adapters assuming that peers interact
asynchronously. Finally, Section 4 reviews related work and Section 5 concludes.

2 Synchronous Adaptation

We assume that peers are described using a behavioural interface in the form
of a Labelled Transition System. A Labelled Transition System (LTS) is a tuple
(S, s0, Σ, T) where S is a set of states, s0 ∈ S is the initial state,Σ = Σ!∪Σ?∪{τ}
is a finite alphabet partitioned into a set Σ! (Σ?, resp.) of send (receive, resp.)
messages and the internal action τ , and T ⊆ S×Σ×S is the transition relation.

The alphabet of the LTS is built on the set of operations used by the peer
in its interaction with the world. This means that for each operation p provided
by the peer, there is an event p? ∈ Σ? in the alphabet, and for each operation
r required from its environment, there is an event r! ∈ Σ!. Events with the
same name and opposite directions (a!, a?) are complementary, and their match
stands for inter-peer communication through message-passing. Additionally to
peer communication events, we assume that the alphabet also contains a special
τ event to denote internal (not communicating) behaviour. Note that as usually
done in the literature [15,2,20], our interfaces abstract from operation arguments,
types of return values, and exceptions. Nevertheless, they can be easily extended
to explicitly represent operation arguments and their associated data types, by
using Symbolic Transition Systems (STSs) [16] instead of LTSs.

Example 1. We use as running example an online hardware supplier. This ex-
ample was originally presented in [11] and both participants (a supplier and a
buyer) were implemented using the Microsoft WF/.NET technology. Figure 1
presents the LTSs corresponding to both peers. The supplier first receives a re-
quest under the form of two messages that indicate the reference of the requested
hardware (type), and the max price to pay (price). Then, it sends a response

Adaptation of Asynchronously Communicating Software 439

indicating if the request can be replied positively or not (reply). Next, the sup-
plier may receive and reply other requests, or receive an order of purchase on the
last reference requested (buy). In the latter case, a confirmation is sent (ack).
The behaviour of the buyer starts by submitting a request (request). Upon re-
ception of the response (reply), the buyer either submits another request, buys
the requested product (purchase and ack), or ends the session (stop).

Fig. 1. LTS interfaces of supplier (top) and buyer (bottom) peers

As shown in the example, typical mismatch situations appear when event
names do not correspond, the order of events is not respected, or an event in
one peer has no counterpart or matches several events in another one. All these
cases of behavioural mismatch can be worked out by specifying adaptation rules.
Adaptation rules express correspondences between operations of the peers, like
bindings between ports or connectors in architectural descriptions. Rules are
given as adaptation vectors. An adaptation vector (or vector for short) for a
set of peers {P1, . . ., Pn} with Pi = (Si, s

0
i , Σi, Ti), is a tuple 〈e1, . . . , en〉 with

ei ∈ Σi ∪ {ε}, ε meaning that a peer does not participate in the interaction.
In order to unambiguously identify them, event names may be prefixed by

the name of the peer, e.g., Pi : p?, or Pj : r!, and in that case ε can be omitted.
For instance, the vector 〈p1 : a!, p2 : ε, p3 : b?, p4 : c?〉 represents an adaptation
rule indicating that the output event a! from peer p1 should match both input
events b? and c? in p3, and p4 respectively, while peer p2 does not participate in
this interaction. For more details on the syntax and expressiveness of adaptation
vectors, we refer to [10].

An adaptation contract for a set of peers is a set of adaptation vectors for those
peers. Writing the adaptation contract is the only step of our approach which is
not handled automatically. This step is crucial because an inadequate contract
would induce the generation of an adapter that will not make the composition
of peers to behave correctly (for instance, some expected interactions may be
discarded by the adapter, in order to avoid deadlock). However, the adaptation
methodology that we propose (Section 3) is iterative, which helps in writing the
adaptation contract.

440 C. Canal and G. Salaün

Example 2. Going back to our running example, we observe several differences
between both interfaces. For instance, the buyer submits a single message for
each request, while the supplier expects two messages; the name of the message
for carrying out a purchase is not the same, etc. The vectors below are proposed
for composing and adapting the whole system. The correspondence between
request! and messages type? and price? can be achieved using two vectors,
Vreq and Vprice. The mismatch between purchase! and buy? can be solved by
vector Vbuy.

Vreq = 〈b :request!, s :type?〉
Vprice = 〈b :ε, s :price?〉
Vreply = 〈b :reply?, s :reply!〉
Vbuy = 〈b :purchase!, s :buy?〉
Vack = 〈b :ack?, s :ack!〉
In [10,16] we have shown how an adapter can be automatically derived from

a set of interfaces and an adaptation contract. Our approach relies on an en-
coding into process algebra together with on-the-fly exploration and reduction
techniques. The adapter is given by an LTS which, put into a non-deadlock-free
system yields it deadlock-free. All the exchanged events will pass through the
adapter, which can be seen as a coordinator for the peers to be adapted. Code
generation is also supported by our approach, thus BPEL adapters can be auto-
matically synthesised from an adapter LTSs. All these steps are automated by
the Itaca toolset [8]. Notice that the adaptation algorithms in [10,16] generate
synchronous adapters, that is, they assume a synchronous communication model
for peers. In our present work we show how our previous results can be applied
to asynchronous adaptation, where peers communicate asynchronously and are
equipped with an input message buffer.

Example 3. Figure 2 presents the adapter LTS generated for our running exam-
ple. Since the adapter is an additional peer through which all communications
transit, all the messages appearing in the adapter LTS are reversed with re-
spect to those in the peers. Note, for instance, how the adapter receives the
request coming from the buyer, and splits this request into messages carrying
the type and price information. This LTS also shows how the adapter interacts
on different names (purchase? and buy!) to make the communication possible.

Fig. 2. Adapter LTS for the case study

Adaptation of Asynchronously Communicating Software 441

3 Asynchronous Adaptation

Our asynchronous adaptation techniques rely on the synchronizability prop-
erty [3,18]. A set of peers is synchronizable if and only if the system generates
the same sequences of messages under synchronous and unbounded asynchronous
communication, considering only the ordering of the send actions and ignoring
the ordering of receive actions. Focusing only on send actions makes sense for
verification purposes because: (i) send actions are the actions that transfer mes-
sages to the network and are therefore observable, (ii) receive actions correspond
to local consumptions by peers from their buffers and can therefore be consid-
ered to be local and private information. Synchronizability can be verified by
checking the equivalence of the synchronous version of a given system with its
1-bounded asynchronous version (in which each peer is equipped with one input
FIFO buffer bounded to size 1). Thus, this property can be verified using equiva-
lence checking techniques on finite systems, although the set of peers interacting
asynchronously can result in infinite systems.

The synchronizability results directly apply here, considering the adapter as
a peer whose specificity is just that it interacts with all the other peers. It was
proved that checking the equivalence between the synchronous composition and
the 1-bounded asynchronous composition is a sufficient and necessary condition
for branching synchronizability [18]. In the rest of this section, we show how
we reuse the synchronizability property for generating adapters that work in
asynchronous environments.

Given a set of mismatching peers modelled as LTSs and an adaptation contract
(a set of vectors), an adapter LTS can be automatically synthesised as presented
in Section 2. Then, we check whether the adapted synchronous composition and
the 1-bounded adapted asynchronous composition are equivalent. If this is the
case, it means that the system is synchronizable and its observable behaviour will
remain the same whatever bound is chosen for buffers. Thus, the adapter gener-
ated using existing techniques for synchronous communication can be used as is
in an asynchronous context. If the system is not synchronizable, the user refines
the adaptation contract using the diagnostic returned by equivalence checking
techniques. This counterexample indicates the additional behaviour present in
the asynchronous composition and absent in the synchronous one, which invali-
dates synchronizability. The violation of this property has two main causes: either
the adapter does not capture/handle all reachable emissions, or the adapter is
too restrictive wrt. message orderings, e.g., the adapter requires a sequence of
two emissions, which cannot be ensured in the asynchronous composition be-
cause both emissions can be executed simultaneously. We apply iteratively this
process until the synchronizability property is satisfied.

Our approach is supported by several tools: (i) we reuse the Itaca toolbox [8]
for synthesising synchronous adapters, and (ii) we rely on process algebra en-
codings and reuse equivalence checking techniques available in the CADP veri-
fication toolbox [12] for checking synchronizability.

442 C. Canal and G. Salaün

Example 4. As far as our running example is concerned, given the LTSs of the
peers and the set of vectors presented in Section 2, we can automatically generate
the corresponding adapter (Figure 2). However, if we check whether the com-
position of this adapter with the peers’ LTSs satisfies synchronizability, the ver-
dict is false, and we obtain the following counterexample: b:request!, s:type!,
s:price!, s:reply!, b:reply!, and b:stop!, where the very last event appears
in the asynchronous system but not in the synchronous one. Note that synchro-
nizability focuses on emissions, hence the counterexample above contains only
messages sent by a peer to the adapter (b:request!, s:reply!, b:stop!) or
by the adapter to a peer (s:type!, s:price!, b:reply!). This violation is due
to the fact that the emission of stop is not captured by any vector, and con-
sequently it is inhibited in the synchronous system, while it is still possible in
the asynchronous system because reachable emissions cannot be inhibited under
asynchronous communication.

In order to correct this problem, we extend the adaptation contract by adding
the following vector: Vstop = 〈b :stop!, s :ε〉. The corresponding adapter is gener-
ated and shown in Figure 3. The system composed of the two peers interacting
through this adapter turns out to satisfy the synchronizability property. This
means that the adapter can be used under asynchronous communication and
the system will behave exactly the same whatever bound is chosen for buffers or
if buffers are unbounded.

Fig. 3. Adapter LTS generated after addition of Vstop

4 Related Work

Existing proposals for software adaptation present interesting approaches tack-
ling this topic from different points of view. However, most of them assume that
peers interact synchronously, see, e.g., [10,1,17,16,14,4] for a few recent results.
There were a few attempts to generate adapters considering asynchronous com-
munication. Padovani [19] presents a theory based on behavioural contracts to
generate orchestrators between two services related by a subtyping (namely, sub-
contract) relation. This is used to generate an adapter between a client of some
service S and a service replacing S. An interesting feature of this approach is
its expressiveness as far as behavioural descriptions are concerned, with support
for asynchronous orchestrators and infinite behaviour. The author resorts to the

Adaptation of Asynchronously Communicating Software 443

theory of regular trees and imposes two requirements (regularity and contractiv-
ity) on the orchestrator. However, this work does not support name mismatch
nor data-related adaptation. Seguel et al. [21] present automatic techniques for
constructing a minimal adapter for two business protocols possibly involving
parallelism and loops. The approach works by assigning to loops a fixed number
of iterations, whereas we do not impose any restriction, and peers may loop in-
finitely. Gierds and colleagues [13] present an approach for specifying behavioural
adapters based on domain-specific transformation rules that reflect the elemen-
tary operations that adapters can perform. The authors also present a novel way
to synthesise complex adapters that adhere to these rules by consistently sep-
arating data and control, and by using existing controller synthesis algorithms.
Asynchronous adaptation is supported in this work, but buffers/places must be
arbitrarily bounded for ensuring computability of the adapter.

5 Conclusion

Most existing approaches for adapting stateful software focus on systems relying
on synchronous communication. In this paper, we tackle the adapter generation
question from a different angle by assuming that peers interact asynchronously
via FIFO buffers. This complicates the synthesis process because we may have to
face infinite systems when generating the adapter behaviour. Our approach uses
jointly adapter generation techniques for synchronous communication and the
synchronizability property for solving this issue. This enables us to propose an
iterative approach for synthesising adapters in asynchronous environments. We
have applied it in this paper on a real-world example for illustration purposes.

Acknowledgements. This work was partially funded by the European Com-
mission FP7 project SeaClouds (FP7-ICT-2013-10) and by the Spanish Govern-
ment under Project TIN2012-35669.

References

1. van der Aalst, W.M.P., Mooij, A.J., Stahl, C., Wolf, K.: Service Interaction: Pat-
terns, Formalization, and Analysis. In: Bernardo, M., Padovani, L., Zavattaro, G.
(eds.) SFM 2009. LNCS, vol. 5569, pp. 42–88. Springer, Heidelberg (2009)

2. de Alfaro, L., Henzinger, T.A.: Interface Automata. In: Proc. of ESEC/FSE 2001,
pp. 109–120. ACM Press (2001)

3. Basu, S., Bultan, T., Ouederni, M.: Deciding Choreography Realizability. In: Proc.
of POPL 2012, pp. 191–202. ACM (2012)

4. Bennaceur, A., Chilton, C., Isberner, M., Jonsson, B.: Automated Mediator Syn-
thesis: Combining Behavioural and Ontological Reasoning. In: Hierons, R.M., Mer-
ayo, M.G., Bravetti, M. (eds.) SEFM 2013. LNCS, vol. 8137, pp. 274–288. Springer,
Heidelberg (2013)

5. Bracciali, A., Brogi, A., Canal, C.: A Formal Approach to Component Adaptation.
Journal of Systems and Software 74(1), 45–54 (2005)

444 C. Canal and G. Salaün

6. Brand, D., Zafiropulo, P.: On Communicating Finite-State Machines. Journal of
the ACM 30(2), 323–342 (1983)

7. Brogi, A., Popescu, R.: Automated Generation of BPEL Adapters. In: Dan, A.,
Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 27–39. Springer, Heidel-
berg (2006)

8. Cámara, J., Mart́ın, J.A., Salaün, G., Cubo, J., Ouederni, M., Canal, C., Pimentel,
E.: ITACA: An Integrated Toolbox for the Automatic Composition and Adaptation
of Web Services. In: Proc. of ICSE 2009, pp. 627–630. IEEE (2009)

9. Canal, C., Murillo, J.M., Poizat, P.: Software Adaptation. L’Objet 12(1), 9–31
(2006)

10. Canal, C., Poizat, P., Salaün, G.: Model-Based Adaptation of Behavioural Mis-
matching Components. IEEE Trans. on Software Engineering 34(4), 546–563 (2008)

11. Cubo, J., Salaün, G., Canal, C., Pimentel, E., Poizat, P.: A Model-Based Approach
to the Verification and Adaptation of WF/.NET Components. In: Proc. of FACS
2007. ENTCS, vol. 215, pp. 39–55. Elsevier (2007)

12. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: A Toolbox for the
Construction and Analysis of Distributed Processes. In: Abdulla, P.A., Leino,
K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg
(2011)

13. Gierds, C., Mooij, A.J., Wolf, K.: Reducing Adapter Synthesis to Controller Syn-
thesis. IEEE T. Services Computing 5(1), 72–85 (2012)

14. Inverardi, P., Tivoli, M.: Automatic Synthesis of Modular Connectors via Compo-
sition of Protocol Mediation Patterns. In: Proc. of ICSE 2013, pp. 3–12. IEEE /
ACM (2013)

15. Magee, J., Kramer, J., Giannakopoulou, D.: Behaviour Analysis of Software Ar-
chitectures, pp. 35–49. Kluwer Academic Publishers (1999)

16. Mateescu, R., Poizat, P., Salaün, G.: Adaptation of Service Protocols Using Process
Algebra and On-the-Fly Reduction Techniques. IEEE Trans. on Software Engineer-
ing 38(4), 755–777 (2012)

17. Nezhad, H.R.M., Xu, G.Y., Benatallah, B.: Protocol-Aware Matching of Web Ser-
vice Interfaces for Adapter Development. In: Proc. of WWW 2010, pp. 731–740.
ACM (2010)

18. Ouederni, M., Salaün, G., Bultan, T.: Compatibility Checking for Asynchronously
Communicating Software. In: Fiadeiro, J.L., Liu, Z., Xue, J. (eds.) FACS 2013.
LNCS, vol. 8348, pp. 310–328. Springer, Heidelberg (2014)

19. Padovani, L.: Contract-Based Discovery and Adaptation of Web Services. In:
Bernardo, M., Padovani, L., Zavattaro, G. (eds.) SFM 2009. LNCS, vol. 5569,
pp. 213–260. Springer, Heidelberg (2009)

20. Plasil, F., Visnovsky, S.: Behavior Protocols for Software Components. IEEE Trans.
on Software Engineering 28(11), 1056–1076 (2002)

21. Seguel, R., Eshuis, R., Grefen, P.W.P.J.: Generating Minimal Protocol Adaptors for
Loosely Coupled Services. In: Proc. of ICWS 2010, pp. 417–424. IEEE Computer
Society (2010)

22. Yellin, D.M., Strom, R.E.: Protocol Specifications and Components Adaptors.
ACM Trans. on Programming Languages and Systems 19(2), 292–333 (1997)

Handling Irreconcilable Mismatches

in Web Services Mediation�

Xiaoqiang Qiao1, Quan Z. Sheng2, and Wei Chen1

1 Institute of Software, Chinese Academy of Sciences
Beijing, 100190, China

{qxq,wchen}@otcaix.iscas.ac.cn
2 School of Computer Science, the University of Adelaide

Adelaide, SA 5005, Australia
michael.sheng@adelaide.edu.au

Abstract. Service mediation provides an effective way to integrate a
service requester and a service provider, by reconciling the mismatches
between the two. The techniques to assess the mediation degrees of ser-
vices, to analyze irreconcilable mismatches, and to provide resolutions for
irreconcilable behavioral mismatches are therefore essential. To address
these challenges, we introduce in this paper two quantifiable metrics,
called service mediatability and modification complexity, to evaluate the
feasibility and complexity of mediating a requester and a service. We
also propose a pattern-based approach for analyzing service behaviors
that cannot be automatically mediated. We further offer resolutions for
each irreconcilable mismatch pattern, which help developers to adjust
and improve the service behaviors to fulfill the interaction requirements.

1 Introduction

In order to interact seamlessly, a service requester and a Web service should be
compatible both in signature and in behavior [3]. Service mediation is a feasi-
ble technique to deal with incompatible services by introducing extra compo-
nents such as service mediators (or adaptors) [11]. Most existing approaches for
Web service mediation only focus on how to synthesize service mediators semi-
automatically or automatically in the case when services could be mediated. If
there are irreconcilable mismatches, the services are simply considered as “not
mediatable” and no further solution can be taken for mediation.

However, in practice, interactions among many services may not be fully me-
diated due to irreconcilable mismatches. Therefore, it is of great significance for
analyzing and resolving irreconcilable mismatches between Web services. On the
one hand, the irreconcilable information could be readily applied to measure i)
the mediation degree of a given service and ii) the difficulty degree in amend-
ing the service request for a service mediation. Since there are usually multiple

� This work has been partially supported by the National High Technology Research
and Development Program of China (863) under Grant No. 2012AA011204, the
National Natural Science Foundation of China under Grant No. 61100065.

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 445–452, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

446 X. Qiao, Q.Z. Sheng, and W. Chen

candidate services available for a specific request, such a measurement could
be extremely useful for selecting the most suitable service with low cost. On
the other hand, the irreconcilable information could also be used as a guide to
modify the service request in order to mediate some selected Web services.

This paper focuses on services that could not be automatically mediated and
advances the fundamental understanding on Web services mediation by propos-
ing an approach for analyzing and assessing the irreconcilable behaviors of Web
services. The main contributions of our work include: i) the concept of mediata-
bility enabling a quantifiable measurement of mediation degrees between services,
ii) a pattern-based method for analyzing service behaviors that cannot be me-
diated, iii) the corresponding solution for each irreconcilable pattern, and iv) a
research prototype based on the proposed approach.

2 Mediation Degree Assessment for Service Interactions

Our proposed procedure for assessing the mediation degrees of services is il-
lustrated in Fig. 1. First, the mediation model is constructed after defining the
service and message mapping. Next, the mediation model is checked for verifying
the existence of the mediator and calculating the mediatability of the services.
Finally, if a service is mediatable, the corresponding mediator protocol will be
automatically synthesized. Otherwise, a pattern-based analysis of the irreconcil-
able mismatches between the requester and the service will be conducted.

Fig. 1. The procedure of the proposed approach

2.1 Defining Service and Message Mapping

Definition 1. (Service).A service is defined as a triple: S=(Min,Mout,P):

– Min is the finite set of messages that are received by service S, and Mout

is the finite set of messages that are sent by the service;
– P is the interaction protocol of service S �.

We adopt the process concept in Communicating Sequential Processes (CSP)
[4] to model a service protocol. The language of CSP used in this paper is given
in [8]. Message mapping indicates the message correlations between two services.

Handling Irreconcilable Mismatches in Web Services Mediation 447

Definition 2. (Message Mapping). Let interactive services be SA=(MA
in,

MA
out,PA) and SB=(MB

in,MB
out,PB), the message mapping between them com-

prises two sets: Map<A,B> and Map<B,A>.

– Map<A,B>={synthi(mr,MD)|mr∈MB
in,MD⊆MA

out, 1≤ i≤n} is a set of
mapping rules from MA

out to MB
in. mr is a receiving message of service SB

and MD is the set of sending messages of service SA. synthi is the mapping
function to construct mr from MD;

– Similarly, Map<B,A> is a set of mapping rules from MB
out to MA

in �.

Based on the provided message mapping, we can apply behavior checking
methods to determine whether irreconcilable mismatches exist. The mediation
model specifies how two services exchange messages through a mediator, which
could be automatically constructed based on message mapping.

Definition 3. (Mediation Model). Let interactive service protocols be PA

and PB, the mediation model between them is: [Pipes||(PA
M ||PB

M)], where:

– Pipes = (||i≤nPipe mi), here n is the number of the target messages defined
in the message mapping. For each synthi(mr,MD), there exists a corre-
sponding message pipe Pipe mi and its behavior is described as: Pipe mi =
(||j≤lleft?mdj) → synthi → right!mr → SKIP where mdj∈MD, l is the
number of source messages that mr depends on. A message pipe receives
data with its left channel and writes the result message to the right channel.

– PA
M and PB

M are processes that in charge of reading messages from or writing
messages into the corresponding pipes, which could be constructed from PA

and PB respectively by replacing corresponding events based on the rules:
• ∀!m ∈ αPA(or αPB), if m is a source message in the message mapping,
!m ⇒ (||i≤nPipe mi.left!m). Here n is the number of target messages
that depend on m. Otherwise, !m ⇒ WriteNull. WriteNull is used to
indicate that there is no specified reception for the sending message.

• ∀?m ∈ αPA(or αPB), if m is a target message in the message mapping,
?m⇒Pipe m.right?m. Otherwise, ?m ⇒ ReadNull. Likewise, we use
ReadNull event to represent the required message could not be sent by
the partner service. �

We use the deadlock process concept in CSP to check the existence of mediator
and locate the irreconcilable mismatches. To automatically perform the checking
process, we further improve the algorithm in [9] to quantify the mediation degree
of a service.

2.2 Calculating Mediatability

In order to check the mediation model for verifying the mediator existence and
calculating the mediatability, we use algebraic laws of non-deterministic choice
($) to obtain interaction paths, which represent possible interactive processes
between two services in a certain interaction with the aid of the mediator. Due
to space constraints, the details of the algebraic laws are described in [8].

448 X. Qiao, Q.Z. Sheng, and W. Chen

Definition 4. (Interaction Path). Suppose the standard forms of non-deter-
ministic choice of PA

M and PB
M are (pA1 $ pA2 $... $ pAn) and (pB1 $ pB2 $... $ pBl)

respectively, the behavior of PA
M ||PB

M is: (pA1 ||pB1) $ (pA1 ||pB2) $... $ (pA1 ||pBl) $
(pA2 ||pB1)$...$(pAn ||pBl). Each non-deterministic branch sub-protocol of PA

M ||PB
M ,

(pA1 ||pB1), (pA1 ||pB2),..., (pAn ||pBl), is a interaction path between PA
M and PB

M . �

Algorithm 1 shows the procedure to check and record the deadlock events of
each interaction path between the requester and the provided service. Function
move is invoked alternately to traverse all events of the input sub-protocols (line
2). The return value of function move has four types. NoMove indicates no event
is checked during this invocation, while Moved means some events have been
checked in the invocation. SKIP indicates the checking is finished and ReadNull
means a ReadNull is encountered.

Algorithm 1. Deadlock Event Checking

Input: a sub-protocol of PRequester
M : p1, a sub-protocol of PService

M : p2

Output: the deadlock event set: events
1. while (true) do
2. result1:= move (p1), result2 := move (p2);
3. if (result1 = ReadNull ∨ result2 = ReadNull)
4. if (result1 = ReadNull) record (events, p1); end if
5. if (result2 = ReadNull) record (events, p2); end if
6. else if (result1 = NoMove ∧ result2 = NoMove)
7. record (events, p2); record (events, p1);
8. else if (result1 = NoMove ∧ result2 = SKIP)
9. record (events, p1);
10. else if (result2 = NoMove ∧ result1 = SKIP)
11 record (events, p2);
12. else if (result1 = SKIP ∧ result2 = SKIP)
13. return events;
14. end if
15. end while

If either result1 or result2 is ReadNull (line 3), or both of them cannot move
forward (return NoMove, line 6), the corresponding events can cause a deadlock
and should be recorded (i.e., the function record). In order to check the remaining
parts of p1 and p2, we assume the deadlock is resolved and continue the algorithm
(line 2). It is noted that the checking is performed from the perspective of the
requester. In the scenario when both p1 (i.e., the requester) and p2 (i.e., the
service) return NoMove (line 6), the corresponding event in p2 firstly will be
resolved (line 7). If either result is SKIP and the other result is NoMove (line
8 and line 10), all of the remaining events in the corresponding protocol will be
recorded. If both result1 and result2 are SKIP (line 12), the checking procedure
is finished. Algorithm 2 shows the details on function move.

Based on the recording of the deadlock events, we can calculate the mediata-
bility between the requester and the service. The mediatability of one interaction
path is computed as follows:

MDpath = 1− (Ndeadlocks

Ntotal
) (1)

where Ndeadlocks is the number of the recorded deadlock events and Ntotal

is the number of all receiving events in the interaction path. If Ntotal is 0,
(Ndeadlocks

Ntotal
) should be 0. Clearly, the value of the mediatability of one interaction

path lies in the range of 0 and 1.

Handling Irreconcilable Mismatches in Web Services Mediation 449

Algorithm 2. Move

Input: a protocol to be checked: p
Output: the checking result: result
1. if (isSequential(p)) 26. else if (isExternalChoice(p))
2. for each subSequentialProtocol pi do 27. for each subChoiceProtocol pi do
3. result := move(pi); 28. if (isChosen(pi))
4. if (result=SKIP) 29. return move(pi);
5. hasMoved := true; 30. end if
6. else if (result=ReadNull) 31. return NoMove;
7. return ReadNull; 32. end for
8. else if (hasMoved=true∨result=Moved)
9. return Moved; 33. else
10. else return NoMove; 34. for each event ai do
11. end if 35. if (isWriting(ai))
12. end for 36. writePipe(ai);
13. return SKIP ; 37. hasMoved := true;

38. else if (isReading(ai))
14. else if (isParallel(p)) 39. if (canRead(ai))
15. for each subParallelProtocol pi do 40. hasMoved := true;
16. resulti := move(pi); 41. else if (hasMoved)
17. end for 42. return Moved;
18. if (all resulti = SKIP) 43. else return NoMove;
19. return SKIP ; 44. end if
20. else if (∃ resulti = ReadNull) 45. else if (ai = ReadNull)
21. return ReadNull; 46. return ReadNull;
22. else if (∃ resulti = Moved) 47. end if
23. return Moved; 48. end for
24. end if 49. return SKIP ;
25. return NoMove; 50. end if

The mediatability between the requester and the service is calculated using:

MDservice = (
n

Σ
i=1

MDi
path)/n (2)

Here MDi
path is the mediatability of pathi in the mediation model and n is

the number of the interaction paths. Larger values of the mediatability indicate
fewer deadlock events and higher mediation degrees.

2.3 Analyzing Irreconcilable Mismatches

We present here a pattern-based method to further analyze the irreconcilable
behaviors. A mismatch pattern refers to those mismatches that can be reused to
identify the irreconcilable behaviors between services.

The mismatch patterns identified in this paper and their corresponding re-
solving method are presented in Table 1. The interactions between the requester
and the service with these mismatches could not be achieved through automated
mediation method, but only through manual efforts to modify the protocol and
construct the mediator. It is noted that the cost on modifying the requester pro-
tocol may be very different. For example, patterns 2 and 4 need the requester
to improve and offer more interactive messages or branches, the cost involved
will be higher than that of patterns 1 and 5. Since mediatability only measures
the quantity of the deadlock events that need to be modified, and cannot reflect
the cost and difficulty of the modification, we introduce another metric, named
modification complexity. The modification complexity of each atomic operation,
valued between 0 and 1, is listed in Table 2.

450 X. Qiao, Q.Z. Sheng, and W. Chen

Table 1. Irreconcilable mismatch patterns

ID Name Description Illustration
Checking

Resolving Method
Method

1

M
is
si
n
g

R
e
q
u
e
st
e
r
M

e
ss
a
g
e

The service can
not send a mes-
sage that the re-
quester expects
to receive.

The deadlock
events that are
recorded when
result1 is Read-
Null.

The requester deletes
the corresponding
event.

2

M
is
si
n
g

S
e
rv

ic
e
M

e
ss
a
g
e

The requester
can not send a
message that
the service ex-
pects to receive.

The deadlock
events that are
recorded when
result2 is Read-
Null.

The requester adds
the corresponding
event to provide the
required message.

3

Ir
re
c
o
n
c
il
a
b
le

O
rd

e
ri
n
g
M

is
m
a
tc
h

The message
ordering mis-
match that
leads to a circu-
lar dependency.

The deadlock
events that are
recorded when
result1 andresult2
are NoMove.

The requester
switches the ordering
of the messages.

4

M
is
si
n
g
C
h
o
ic
e

B
ra

n
ch

in
R
e
q
u
e
st
e
r

The entire
choice branch
in the service
protocol has no
counterpart.

The deadlock
events belong to
a choice branch
of the service and
the start event
of the branch is
WriteNull.

The requester pro-
vides the required
choice branch.

5

M
is
si
n
g
C
h
o
ic
e

B
ra

n
ch

in
S
e
rv

ic
e

The entire
choice branch
in the requester
protocol has no
counterpart.

The deadlock
events belong to
a choice branch
of the requester
and the start event
of the branch is
WriteNull.

The requester deletes
the required choice
branch.

6

M
is
si
n
g
L
o
o
p

in
R
e
q
u
e
st
e
r

A loop struc-
ture in the
service proto-
col interacts
with a non-loop
structure in
the requester
protocol.

When p2 ends
with the loop flag
while p1 ends
with SKIP, the
receiving events in
the loop structure
would be recorded.

The requester changes
the non-loop structure
into the loop struc-
ture.

7

M
is
si
n
g
L
o
o
p

in
S
e
rv

ic
e

A loop struc-
ture in the re-
quester protocol
interacts with a
non-loop struc-
ture in the ser-
vice protocol.

When p1 ends
with the loop flag
while p2 ends
with SKIP, the
receiving events in
the loop structure
would be recorded.

The requester changes
the loop structure into
the non-loop struc-
ture.

Handling Irreconcilable Mismatches in Web Services Mediation 451

Table 2. Modification Complexities of Atomic Operations

Operation Patterns Complexity

Add an event Pattern 2 and 4 0.8
Delete an event Pattern 1 and 5 0.4

Change the ordering of an event Pattern 3 0.6
Change the execution times of an event Pattern 6 and 7 0.6

Furthermore, the complexity of the control structure makes it difficult to
modify the protocol, which should be also considered in calculating the overall
modification complexity of the requester protocol. The formulas of calculating
complexities for structural operators are shown in Table 3. The recursive struc-
ture involves a decision event and are executed multiple times. For the choice
structures, the influence of the modification on other branches should be con-
sidered. In parallel structure, the execution of different branches should be syn-
chronized. Therefore, these structures introduce extra difficulties to the protocol
modification, and the corresponding weights are assigned to them.

Table 3. Complexity Formulas for Control Structures

Operator Formula Weight

→ MCa→P = MCa + MCP
� MCP1�P2...�Pn

= W� ∗ (MCP1 +MCP2 + ...+MCPn) W� = 1 + (n-1)/n

� MCP1�P2...�Pn = W� ∗ (MCP1 +MCP2 + ...+MCPn) W� = 1 + (n-1)/n

; MCP1;P2...;Pn = MCP1 + MCP2 + ...+ MCPn

|| MCP1||P2...||Pn = W|| ∗ (MCP1 +MCP2 + ...+MCPn) W|| = 1.2

μX · F(P;X) MCμX·F(P;X) = WX ∗ MCP WX = 1.5

3 Prototype Implementation and the Related Work

We have implemented a prototype system to validate the approach proposed in
this paper. It provides editors to graphically specify the service protocol and edit
the message mapping rules. It also provides facilities for the mediator existence
checking. The interface of the prototype system is developed based on the Eclipse
Plug-in technique and wrapped into an Eclipse Rich Client Platform (RCP)
application. Due to space constraints, we will not give the details. Interested
readers are referred to [8].

The works [1,6] analyze the possible types of mismatches between services
and propose mediation patterns for developing mediators. [2,10,11] focus on au-
tomatic synthesis of mediator protocols. [5] adds semantic dependency relation-
ship in the service description and presents a general process to derive concrete
mediators from mediator specifications. However, none of these works analyzes
the irreconcilable behaviors that lead to failure of mediated service interaction.

Nezhad et al. [7] provide some evidences that help to construct missing mes-
sages, and a very recent work by Zhou et al. [12] computes the number of irrec-
oncilable interaction paths using a mechanism called walk computation. In this
paper, we go a step further by focusing on quantitative assessment of media-
tion degree and modification complexity, pattern-based irreconcilable behavior

452 X. Qiao, Q.Z. Sheng, and W. Chen

analysis, and mismatch resolution. Our proposed approach takes irreconcilable
services into consideration when selecting Web services, thus increasing the range
of candidate services. The resolutions for the irreconcilable patterns also reduce
the complexity of manual adjustment for mediated service interactions.

4 Conclusion

In this paper, we advance the existing works on service mediation by proposing an
approach to analyze and measure the irreconcilable behaviors for service
mediation, including a quantifiable metric for measuring mediation degrees, a
pattern-basedmethod for mismatch analysis, a set of resolutions for irreconcilable
patterns, and a further metric for measuring complexity and cost of modification
in service mediation. Our proposed approach, particularly the two metrics, can
also help developers in Web services selection. Our future work will extend the
approach to support more complicated processes and investigate techniques de-
veloped by semantic Web initiatives to automate the service mediation process.

References

1. Benatallah, B., Casati, F., Grigori, D., Nezhad, H.R.M., Toumani, F.: Developing
Adapters for Web Services Integration. In: Pastor, Ó., Falcão e Cunha, J. (eds.)
CAiSE 2005. LNCS, vol. 3520, pp. 415–429. Springer, Heidelberg (2005)

2. Canal, C., Poizat, P., Salaün, G.: Model-Based Adaptation of Behavioral Mis-
matching Components. IEEE Trans. Softw. Eng. 34(4), 546–563 (2008)

3. Dumas, M., Benatallah, B., Nezhad, H.R.M.: Web Service Protocols: Compatibility
and Adaptation. IEEE Data Engineering Bulletin 31(1), 40–44 (2008)

4. Hoare, C.: Communicating Sequential Processes. Prentice-Hall (1985)
5. Kuang, L., Deng, S., Wu, J., Li, Y.: Towards Adaptation of Service Interface Se-

mantics. In: Proc. of the 2009 IEEE Intl. Conf. on Web Services, ICWS 2009 (2009)
6. Li, X., Fan, Y., Madnick, S., Sheng, Q.Z.: A Pattern-based Approach to Protocol

Mediation for Web Services Composition. Info. and Soft. Tech. 52(3), 304–323
(2010)

7. Nezhad, H., et al.: Semi-Automated adaptation of service interactions. In: Proc. of
the 16th Intl. Conf. on World Wide Web, WWW 2007(2007)

8. Qiao, X., Sheng, Q.Z., Chen, W.: Handling irreconcilable mismatches in web ser-
vices mediation. Tech. Rep. TCSE-TR-20140501,
http://otc.iscas.ac.cn/cms/UploadFile/20140731050648880/

9. Qiao, X., Wei, J.: Implementing Service Collaboration Based on Decentralized
Mediation. In: Proc. of the 11th Intl. Conf. on Quality Software, QSIC 2011 (2011)

10. Tan, W., Fan, Y., Zhou, M., Zhou, M.: A Petri Net-Based Method for Compat-
ibility Analysis and Composition of Web Services in Business Process Execution
Language. IEEE Trans. Autom. Sci. Eng. 6(1), 94–106 (2009)

11. Yellin, D.M., Strom, R.E.: Protocol Specifications and Component Adaptors. ACM
Transactions on Programming Languages And Systems 19(2), 292–333 (1997)

12. Zhou, Z., et al.: Assessment of Service Protocol Adaptability Based on Novel Walk
Computation. IEEE Trans. on Systems, Man and Cybernetics, Part A: Systems
and Humans 42(5), 1109–1140 (2012)

http://otc.iscas.ac.cn/cms/UploadFile/20140731050648880/

Evaluating Cloud Users’ Credibility of Providing

Subjective Assessment or Objective Assessment
for Cloud Services

Lie Qu1, Yan Wang1, Mehmet Orgun1, Duncan S. Wong2,
and Athman Bouguettaya3

1 Macquarie University, Sydney, Australia
{lie.qu,yan.wang,mehmet.orgun}@mq.edu.au

2 City University of Hong Kong, Hong Kong, China
duncan@cityu.edu.hk

3 RMIT University, Melbourne, Australia
athman.bouguettaya@rmit.edu.au

Abstract. This paper proposes a novel model for evaluating cloud users’
credibility of providing subjective assessment or objective assessment for
cloud services. In contrast to prior studies, cloud users in our model are
divided into two classes, i.e., ordinary cloud consumers providing sub-
jective assessments and professional testing parties providing objective
assessments. By analyzing and comparing subjective assessments and
objective assessments of cloud services, our proposed model can not only
effectively evaluate the trustworthiness of cloud consumers and reputa-
tions of testing parties on how truthfully they assess cloud services, but
also resist user collusion to some extent. The experimental results demon-
strate that our model significantly outperforms existing work in both the
evaluation of users’ credibility and the resistance of user collusion.

1 Introduction

Due to the diversity and complexity of cloud services, the selection of the most
suitable cloud services has become a major concern for potential cloud con-
sumers. In general, there are three types of approaches which can be adopted
to conduct cloud service evaluation prior to cloud service selection. The first
type is based on cloud users’ subjective assessment extracted from their sub-
jective ratings [5]. The second type is based on objective assessment via cloud
performance monitoring and benchmark testing [10] provided by professional
organizations, such as CloudSleuth1. The third type is based on the comparison
and aggregation of both subjective assessment and objective assessment [7,8].

Whichever type of approaches are adopted, the credibility of cloud users pro-
viding assessments has a strong influence on the effectiveness of cloud service
selection. In cloud environments, cloud users can be generally classified into
two classes according to the different purposes of consuming cloud services. The
first class comprises ordinary cloud consumers whose purpose is to consume a

1 www.cloudsleuth.net

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 453–461, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

www.cloudsleuth.net

454 L. Qu et al.

cloud service having high quality performance and spend as little money as pos-
sible. They usually offer subjective assessment of cloud services through user
feedback. The second class comprises professional cloud performance monitor-
ing and testing parties whose purpose is to offer objective assessment of cloud
services to potential cloud consumers for helping them select the most suitable
cloud services. To the best of our knowledge, there are no prior approaches in the
literature, which can effectively evaluate the credibility of both types of cloud
users in cloud service evaluation.

In this paper, we propose a novel model for evaluating cloud users’ credibility
of providing subjective assessment or objective assessment, where subjective as-
sessment is from ordinary cloud consumers (called Ordinary Consumers, OC for
short), and objective assessment is from professional cloud performance monitor-
ing and testing parties (called Testing Parties, TP for short). The credibility of
OCs and TP s providing subjective assessment or objective assessment is respec-
tively represented by trustworthiness of OCs and reputations of TP s. For an OC,
an authority center computes the relative trustworthiness of the other OC s who
consume the same cloud services as the OC. Relative trustworthiness represents
other OCs’ trustworthiness from the OC’s prospect. The relative trustworthi-
ness can also be affected by the difference of variation trend between the other
OC ’s subjective assessments and TPs’ objective assessments over time. Then,
the authority center selects the OCs who are considered trustworthy enough by
the OC as his/her virtual neighbors according to all the relative trustworthiness
values. The neighborhood relationships of all the OCs form a social network.
The global trustworthiness of an OC on how truthful he/she provides subjective
assessment is computed based on the number of OCs who select him/her as their
virtual neighbor.

In the meantime, the reputation of a TP on providing truthful objective as-
sessment is modeled in a different way based on the difference among the TP ’s
objective assessments, the majority of objective assessments from other TP s
and the majority of subjective assessments from OC s. That implies that the
trustworthiness of OCs and the reputations of TP s can be influenced by each
other. For this reason, our model can resist collusion among cloud users pro-
viding untruthful assessments to some extent. Through our model, a successful
collusion attack would become very difficult in practice since a large number
of cloud users would have to be involved in such collusion. In contrast to the
existing user credibility evaluation model which is based on subjective ratings
only, our experimental results show that our model can significantly improve the
accuracy of evaluating user credibility, and enhance the resistance capability of
user collusion in cloud environments.

2 The Proposed Model

In this section, we first introduce the framework of our proposed model for
evaluating cloud users’ credibility, and then present the details of our model.

Evaluating Cloud Users’ Credibility of Providing Subjective Assessment 455

Fig. 1. The Framework of Our Model

2.1 The Framework

Fig. 1 illustrates the framework of our model consisting of two sub models,
each of which targets one class of cloud users, i.e., OCs or TP s, respectively.
In our framework, subjective assessments for cloud services are extracted from
ratings submitted by ordinary consumers, and objective assessments are offered
by testing parties using their own benchmark testing tools. After that, subjective
assessments and objective assessments will be aggregated in the further cloud
service selection process, e.g., the process specified in [7]. In our framework,
there is an authority center which is in charge of managing assessments of cloud
services and evaluating the trustworthiness and reputation of every OC and
TP . Without loss of generality, we focus on the situation, where both subjective
assessments and objective assessments evaluate one performance aspect of cloud
services. For example, the response time of a cloud service can be quantitatively
tested by TP s. Meanwhile, an OC consuming the same cloud service can also
give his/her subjective ratings for the service response time by sensing how long
the cloud responds to his/her requests. The situation of considering multiple
performance aspects can be modeled based on multi-criteria decision-making,
which will be the object in our future work. In addition, we assume that all
assessments are given in similar circumstances.

2.2 The Sub Model for Computing Trustworthiness of OCs
The basic idea of evaluating trustworthiness of OCs in this sub model is that, an
OC is considered trustworthy to provide truthful subjective assessments if there
are many other OCs or TP s whose subjective assessments or objective assess-
ments are similar to his/hers. To this end, we improve Zhang et al.’s work [9], in
which, an incentive mechanism is proposed based on modeling the credibility of
both buyers and sellers for eliciting truthful ratings of sellers from buyers. Firstly,
a series of multiple ratings commonly employed by most rating systems for cloud
services are employed instead of binary ratings (i.e., “0” and “1”) in Zhang et
al.’s work to express OCs’ subjective assessments. Secondly, in our model, the
trustworthiness of an OC can also be influenced by the reputations of TP s. If
the variation trend of an OC’s subjective assessments over time is more similar
to those of objective assessments from TP s having high reputations, the OC’s
subjective assessments are considered more trustworthy. Finally, in our model,
we apply the PageRank algorithm [6] to compute global trustworthiness of OCs

456 L. Qu et al.

Table 1. A Multiple Fuzzy Rating System [7]

Linguistic Ratings Fuzzy Ratings Crisp Ratings Normalized Ratings (ri)
Very low (VL) (0, 0, 0, 3) 0.75 0

Low (L) (0, 3, 3, 5) 2.75 0.235
Medium (M) (2, 5, 5, 8) 5 0.5
High (H) (5, 7, 7, 10) 7.25 0.765

Very High (VH) (7, 10, 10, 10) 9.25 1

instead of Zhang et al.’s method. The experimental results demonstrate that our
method is fairer than Zhang et al.’s.

Distance Measurement between Multiple Ratings: In this sub model, we
apply the rating system defined in Table 1, which is frequently used in prior liter-
ature, such as [1,7], to express OCs’ subjective assessments. In order to compare
two ratings, we adopt the approach proposed by Li and Wang [2], which maps the
rating space into a trust space, to measure the distance between two ratings. As
shown in Table 1, fuzzy ratings are first converted into crisp ratings through the
signed distance defuzzification method [1]. Then, the crisp ratings are normalized
into the interval [0, 1] according to their values. Due to space limitations, we omit
the detailed procedure of mapping the rating space into the trust space. In short,
a trust space for a service is defined as a triple T = {(t, d, u)|t � 0, d � 0, u �
0, t+d+u = 1}. Through Bayesian Inference and the calculation of certainty and
expected probability based on a number of sample ratings, normalized ratings can
be put into three intervals, i.e., for a normalized rating ri ∈ [0, 1], we have

ri is

⎧⎪⎨
⎪⎩

distrust, if 0 � ri � d;

uncertainty, if d < ri < d+ u;

trust, if d+ u � ri � 1.

A rating in the distrust range means the consumer who gave this rating deems
that the service provider did not provide the service with committed quality, and
we have a contrary conclusion when a rating is in the trust range. A rating in
the uncertainty range means the consumer is not sure whether the service is
provided with committed quality. Here, we call such a range a trust level.

The Trustworthiness of OCs: The computation of the trustworthiness of an
ordinary consumer OCA consists of two steps: in Step 1, the authority center
computes all the other OCs’ relative trustworthiness based on OCA’s own expe-
rience, and selects a fixed number of top OCs according to the descending order
of all their relative trustworthiness values, where these top OCs are considered
as OCA’s virtual neighbors. Here, relative trustworthiness represents other OCs’
trustworthiness from OCA’s prospect. In Step 2, all these neighborhood relation-
ships form a virtual social network, based on which, the global trustworthiness
of all OCs are computed.

The details of these two steps are provided below:

Step 1. Computing Relative Trustworthiness of OCs: Suppose there are
two ordinary consumers denoted as OC and OC′, both of whom consume a group
of cloud services, denoted as {s1, s2, · · · , si, · · · , sl}. The relative trustworthiness
of OC′ based on OC is denoted as RTr(OC ∼ OC′), where OC �= OC′, and
computed as follows:

Evaluating Cloud Users’ Credibility of Providing Subjective Assessment 457

RTr(OC ∼ OC′) = RTP (OC′)×
[ω × Spri(OC ∼ OC′) + (1− ω)× Spub(OC′ ∼ ALL)].

(1)

The details in Eq. (1) are introduced below:
1. Spri(OC ∼ OC′) (private similarity between OC and OC’): All ratings
for a service si rated by OC and OC′ are ordered into two rating sequences,
denoted as−−−→rOC,si and

−−−−→rOC′,si respectively, according to the time when the ratings
are provided. The rating sequences are then partitioned in mutually exclusive
time windows. The length of each time window may be fixed or determined by
the frequency of the submitted ratings for si. Moreover, it should be considerably
small so that the performance of si can hardly change in a time window. After
that, a pair of ratings (rOC,si , rOC′,si), each of which is from its own rating
sequence, is said correspondent only if they are given in the same time window.
If there are more than one correspondent rating pairs in a time window, the
most recent rOC,si and rOC′,si are put together as the correspondent rating pair
for this time window.

Let Nsi denote the total number of correspondent rating pairs for si in all
the time windows, then the total number of such pairs for all cloud services is
computed as Nall =

∑l
i=1 Nsi . If the two ratings of a correspondent rating pair

are in the same trust level, such a pair is said positive, otherwise negative. Thus,
if there are Np positive pairs, then the number of negative pairs is Nall − Np.
a positive correspondent rating pair means the ratings submitted by OC and
OC′ respectively in this time window are similar; A negative pair means quite
different. In Eq. (1), Spri(OC ∼ OC′) is called the private similarity of OC′

which presents the similarity between the ratings provided by OC and OC′, and
computed as follows:

Spri(OC ∼ OC′) =
Np

Nall
. (2)

2. Spub(OC′ ∼ ALL) (public similarity between OC’ and all other OC s):
If there are insufficient correspondent rating pairs between OC and OC′, OC′’s
public similarity, denoted as Spub(OC′ ∼ ALL) in Eq. (1), should be calculated.
The public similarity of OC′ depends on the similarity between his/her ratings
and the majority of ratings submitted by the other OCs. In each time window,
the most recent rOC′,si and the average of the other ratings submitted by the
other OCs for si are put together as a correspondent rating pair, denoted as
(rsi , rOC′,si). Suppose the total number of such correspondent rating pairs for
all cloud services is N ′

all, where there are N
′
p positive pairs. The public similarity

of OC′ is computed as follows:

Spub(OC′ ∼ ALL) =
N ′

p

N ′
all

. (3)

3. ω (weight for private similarity): ω is the weight for how much the
private similarity and the public similarity of OC′ can be trusted if there are
insufficient correspondent rating pairs between OC and OC′. Such a weight can
be calculated based on the Chernoff Bound [4] as follows:

458 L. Qu et al.

Nmin = − 1

2ε2
ln

1− γ

2
, ω =

⎧⎨
⎩

Nall

Nmin
, if Nall < Nmin;

1, otherwise,

(4)

where ε is a small value (e.g., 0.1) representing a fixed maximal error bound
which OC can accept, and γ ∈ (0, 1) is OC’s confidence level about his/her own
subjective assessments.
4. RTP (OC′) (average reputation of similar TPs with OC’): RTP (OC′)
represents the weighted average of reputations of TP s, the variation trends of
whose objective assessments over time are similar to that of OC′’s subjective as-
sessments. Suppose there arem TP s, denoted as {TP1, TP2, · · · , TPj, · · · , TPm},
providing objective assessments for the l cloud services mentioned above. Follow-
ing the time window partition method introduced above, we build correspondent
assessment pairs between OC′’s subjective assessments and TPj’s objective as-
sessments for each cloud service, denoted as (rOC′,si , oaTPj ,si), where oa denotes
the value of objective assessments. All rOC′,si and oaTPj ,si are then put together
to build two assessment sequences ordered by the time of every time window, de-
noted as −−−−→rOC′,si and

−−−−−→oaTPj ,si respectively. After that, each assessment sequence
is converted into a ranking sequence according to the assessment values. Suppose
the converted ranking sequences for −−−−→rOC′,si and

−−−−−→oaTPj ,si are
−−−−→xOC′,si and

−−−−→yTPj ,si

respectively. Then, the similarity, denoted as ρ(OC′ ∼ TPj, si), between these
two ranking sequences are computed via Spearman’s rank correlation coefficient
[3] which is a common method to compute ranking similarity. Hence, the aver-
age similarity of assessment variation trends between OC′ and TPj for all cloud
services can be computed as follows:

ρ(OC′ ∼ TPj) =
1

l

l∑
i=1

ρ(OC′ ∼ TPj , si). (5)

All the TP s with ρ(OC′ ∼ TPj) > 0 are then selected as the TP s whose
objective assessments are similar to OC′’s subjective assessments. Suppose there
are p such TP s for OC′, then the weighted average reputation of these TP s in
Eq. (1) is computed as follows:

RTP (OC′) =
1

p
(

p∑
q=1

ρ(OC′ ∼ TPq)×RTPq), (6)

where RTPq represents TPq’s reputation on how truthfully its objective assess-
ments are offered. The details of such reputations will be introduced later.

Step 2. Computing Global Trustworthiness of OCs: Through Eq. (1),
the authority center selects a fixed number of virtual neighbors for an OC ac-
cording to the descending order of all other OCs’ relative trustworthiness values,
and maintains a virtual social network according to all these neighborhood re-
lationships. Then, we apply the PageRank algorithm [6] in our model. Given a
directed graph of neighborhood relationship G, and an OC is a vertex in G, then
the global trustworthiness of the OC denoted as Tr(OC) is computed as follows:

Tr(OC) =
1− d

N
+ d

G(OC)∑
OCi∈G(OC)

Tr(OCi), (7)

Evaluating Cloud Users’ Credibility of Providing Subjective Assessment 459

where G(OC) is the set of all vertices who select the OC as their neighbor, N is
the total number of vertexes in G and d is a damping factor which is commonly
set to 0.85 in the PageRank algorithm. In our model, Tr(OC) is equivalent to
the probability that a random OC′ selects the OC as his/her neighbor.

2.3 The Sub-model for Computing Reputations of TP s

In the sub model for computing reputations of TP s, every TP offers objective
assessments for the same cloud performance aspect assessed by OCs. The repu-
tation of a TP depends on comparing its objective assessments to the majority of
subjective assessments from OCs and the majority of objective assessments from
other TP s. We assume that there exists a conversion function [7], through which
the values of objective assessments can be converted into normalized ratings in-
troduced in Table 1. Suppose that, for a cloud service si, there is a sequence
of normalized ratings, which is ordered by time and denoted as −−−−→rTPj ,si , corre-
sponding to the sequence of objective assessment values provided by a testing
party TPj . Then,

−−−−→rTPj ,si is partitioned in the same way of time window parti-
tion introduced in Section 2.2. In a time window, for si, there is one normalized
objective rating rTPj ,si from −−−−→rTPj ,si , some subjective normalized ratings from
OCs and some objective normalized ratings from other TP s. Let rTP ,si

denote
the average of the objective ratings for si provided by all TP s except TPj in a
time window, and rOC,si

denote the average of the subjective ratings provided
by all OCs of si in a time window. In each time window, the authority center
gives TPj a reputation payoff to judge its behaviors in the time window. The
reputation payoff matrix is illustrated in Table 2, where “1” means that the two
corresponding ratings in a rating pair are in the same trust level, “0” means in
different trust levels, and εa, εb, εc and εd are the reputation payoffs.

In a time window, the reputation payoff that TPj can obtain depends on four
cases as shown in Table 2:

Table 2. Reputation Payoff Matrix

Cases Payoffs (TPj) (rTPj,si
, rTP,si

) (rTPj,si
, rOC,si

)

1 εa 1 1
2 εb 1 0
3 εc 0 1
4 εd 0 0

Case 1: If rTPj ,si , rTP ,si
and rOC,si

are all in the same trust level, which
means a high probability of TPj providing truthful objective assessments of si.

Cases 2&3: If (rTPj ,si , rTP ,si
) or (rTPj ,si , rOC,si

) is in the same trust level,
but (rTPj ,si , rOC,si

) or (rTPj ,si , rTP ,si
) is not, the probability of TPj provid-

ing truthful objective assessments should be lower than that in Case 1. Because
objective assessments are usually considered more reliable than subjective as-
sessments, the payoff in Case 2 should be higher than that in Case 3.

Case 4: If both (rTPj ,si , rTP ,si
) and (rTPj ,si , rOC,si

) are all in the different
trust levels, then TPj is penalized by giving the least reputation payoff. The
reputation payoffs can be defined in the inequality: εa > εb > εc > εd > 0.

460 L. Qu et al.

0 10 20 30 40 50
0

2

4

6

8
x 10

−3

Days

A
ve

ra
ge

 T
ru

st
w

or
th

in
es

s
of

 O
C

s

0% Collusive Assessments
25% Collusive Assessments
50% Collusive Assessments

0 10 20 30 40 50
0.2

0.3

0.4

0.5

0.6

0.7

Days

A
ve

ra
ge

 R
ep

ut
at

io
n

of
 T

P
s

0% Untruthful Assessments
25% Untruthful Assessments
50% Untruthful Assessments

(a) The Trustworthiness of OCs (b) The Reputations of TP s

Fig. 2. Experimental Results with Collusion

Suppose that the total reputation payoffs that TPj obtains by assessing si
in the total t time windows are denoted as ξTPj ,si , then the reputation of TPj

based on si and the reputation of TPj for all cloud services are computed as
follows:

RTPj ,si =
ξTPj ,si

tεa
, RTPj =

1

l

l∑
i=1

RTPj ,si . (8)

3 Experimental Results

Because no suitable testing environment exists to evaluate our model, we simu-
late a cloud service environment based on our proposed framework. We collect
the data of response time from CloudSleuth for 59 real cloud services. To the best
of our knowledge, there is no data set of subjective assessments published for
those 59 cloud services. Hence, we select 8 similar cloud services from these cloud
services, and then simulate subjective assessments from 300 OCs and objective
assessments from 36 TP s for the 8 cloud services. We simulate the assessment
behavior of all the participants in the cloud environment for a period of 50 sim-
ulated days. The trustworthiness of every OC and the reputation of every TP
are computed and recorded at the end of each day. In our model, a collusion
attack refer to that some users colluding to provide similar untruthful (too high
or too low) assessments for a cloud service in order to manipulate the cloud
service’s reputation, and collusive assessments refers to such similar untruthful
assessments. We require that each OC or TP has his/her/its own percentage of
providing randomly untruthful or collusive assessments.

In our experiments, all theOCs or TP s are divided into three groups. The OCs
or TP s in each group provide different percentages of randomly untruthful or
collusive assessments. We have conducted experiments in many different settings.
The experimental results demonstrate that our model can effectively detect the
OCs or TP s who/which provide randomly untruthful or collusive assessments.
Due to space limitations, we only present the experimental results in Fig. 2
when some OCs provide collusive subjective assessments and some TP s provide
randomly untruthful objective assessments. Fig. 2 demonstrates that the more
collusive assessments/randomly untruthful assessments the OCs/TP s provide,
the lower the trustworthiness of the OCs/the reputations of the TP s.

Next, we test the tolerance of our model, i.e, the maximum percentages of ran-
domly untruthful or collusive assessments that our model can withstand to stay
effective.We compare our model with Zhang et al.’s work [9] and the version of our
model without TP s, i.e., only OCs’ subjective assessments are used to compute

Evaluating Cloud Users’ Credibility of Providing Subjective Assessment 461

their trustworthiness. The experimental results of tolerance in Table 3 shows that
our model with/without TP s can achieve approximately 83%/43% improvement
compared to Zhang et al.’s model in the case of providing randomly untruthful
assessments, and 38%/14% in the case of providing collusive assessments.

Table 3. Randomly Untruthful or Collusive Assessment Tolerance of Different Models

Subjective

Assessments

Models
Zhang et al.’s model [9] Our model without TP s Our model with TP s

Untruthful Assessments 30% 43% 55%
Collusive Assessments 21% 24% 29%

4 Conclusion
We propose a novel model for evaluating cloud users’ credibility of providing
subjective assessment or objective assessment for cloud services. Our model con-
siders two different classes of cloud users (i.e., ordinary users and testing parties).
The trustworthiness of OC s and the reputation of TPs are computed respec-
tively to reflect how truthfully they provide subjective or objective assessments.
Moreover, our model have the ability to resist user collusion to some extent. The
experimental results demonstrate that our proposed model considering both sub-
jective assessment and objective assessment significantly outperform the exist
work considering users’ subjective assessment only.

References

1. Chou, S.Y., Chang, Y.H., Shen, C.Y.: A fuzzy simple additive weighting system un-
der group decision-making for facility location selection with objective/subjective
attributes. EJOR 189(1), 132–145 (2008)

2. Li, L., Wang, Y.: Subjective trust inference in composite services. In: AAAI Con-
ference on Artificial Intelligence (2010)

3. Marden, J.I.: Analyzing and Modeling Ranking Data. Chapman & Hall (1995)
4. Mui, L., Mohtashemi, M., Halberstadt, A.: A computational model of trust and

reputation for e-businesses. In: HICSS, p. 188 (2002)
5. Noor, T.H., Sheng, Q.Z.: Trust as a service: A framework for trust management

in cloud environments. In: Bouguettaya, A., Hauswirth, M., Liu, L. (eds.) WISE
2011. LNCS, vol. 6997, pp. 314–321. Springer, Heidelberg (2011)

6. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
Bringing order to the web. Technical Report 1999-66 (November 1999)

7. Qu, L., Wang, Y., Orgun, M.A.: Cloud service selection based on the aggregation
of user feedback and quantitative performance assessment. In: IEEE International
Conference on Services Computing (SCC), pp. 152–159 (2013)

8. Qu, L., Wang, Y., Orgun, M.A., Liu, L., Bouguettaya, A.: Cloud service selection
based on contextual subjective assessment and objective assessment. In: AAMAS
2014, pp. 1483–1484 (2014)

9. Zhang, J., Cohen, R., Larson, K.: A trust-based incentive mechanism for E-
marketplaces. In: Falcone, R., Barber, S.K., Sabater-Mir, J., Singh, M.P. (eds.)
Trust 2008. LNCS (LNAI), vol. 5396, pp. 135–161. Springer, Heidelberg (2008)

10. Zheng, Z., Wu, X., Zhang, Y., Lyu, M.R., Wang, J.: QoS ranking prediction for
cloud services. IEEE Trans. Parallel Distrib. Syst. 24(6), 1213–1222 (2013)

Composition of Cloud Collaborations under

Consideration of Non-functional Attributes

Olga Wenge, Dieter Schuller, Ulrich Lampe,
Melanie Siebenhaar, and Ralf Steinmetz

TU Darmstadt, KOM, Rundeturmstr. 10, 64283 Darmstadt, Germany
{firstName.lastName}@KOM.tu-darmstadt.de

Abstract. Cloud markets promise virtually unlimited resource supplies.
Some providers set up distributed data centers at different geographical
locations and jurisdictions and may not always be able to offer effectual
physical capacity to serve large customers in one location. A solution
is cloud collaborations, where multiple providers unite to conjointly of-
fer capacities. Both Quality of Service and security properties of such
collaborations will be determined by the “weakest link in the chain”,
therefore resulting in a trade-off between monetary aggregates, cumula-
tive capacity and non-functional attributes of a collaboration. Based on
our previous research, we examine in our paper efficient composition of
cloud collaborations from the broker’s perspective, considering Quality
of Service and security requirements of cloud providers and users. We
propose a Mixed Integer Programming-based heuristic approach CCCP-
HEU.COM with deterministic and stochastic variants and provide its
quantitative evaluation in comparison with our prior optimal approach.

Keywords: cloud computing, collaboration, QoS, security, cloud broker.

1 Introduction

Cloud markets promise unlimited resource supplies, standardized commodities
and proper services in a scalable, pay-as-you-go fashion [1]. Some providers set
up distributed data centers at different geographical locations and jurisdictions
and may not always be able to offer effectual physical capacity to serve large
customers in one location. A solution is cloud collaborations within cloud mar-
kets, i. e., the cooperation of multiple providers to aggregate their resources and
conjointly satisfy users demands. Supposably, such cloud collaborations have
both Quality of Service (QoS) and security impacts. As a user may potentially
be served by any provider within a collaboration, the aggregated non-functional
service attributes (e. g., availability, security protection level, data center loca-
tion) will be determined by the “weakest link in the chain”, i. e., by the provider
with the lowest guarantees. Consideration of country- and industry-specific data
protection laws and regulations is another concern by building cloud collab-
orations, as providers can act in different jurisdictions (the European Union,
Canada, Singapore, or the United States), where data privacy laws differ [4].

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 462–469, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Composition of Cloud Collaborations 463

Based on our previous research [5], we examine the Cloud Collaboration Com-
position Problem (CCCP) with a focus on a broker, who aims to maximize
his/her profit through the composition of cloud collaborations from a set of
providers and assignment of users to these collaborations. In that assignment,
QoS and security requirements, i. e., non-functional attributes, are to be consid-
ered and fulfilled. This work extends the previously introduced exact optimiza-
tion solution approach with a heuristic approach that improves the computa-
tional time in the context of cloud markets.

The remainder of this paper is structured as follows: In Section 2, we briefly
describe the problem and the formal optimization model, we discussed in our
position paper [5]. Section 3 introduces a heuristic approach CCCP-HEU.COM
with deterministic and stochastic variants, which is quantitatively evaluated and
compared with the previous results. Section 4 concludes the paper.

2 Cloud Collaboration Composition Problem

In our work, we take the perspective of a broker, who acts within a cloud market
and unites cloud providers to build cloud collaborations and provides assignment
of cloud users to these collaborations. So, the cloud market consists of a set of
providers P = {1, 2, . . . , P#} and a set of users U = {1, 2, . . . , U#}. We define
resource demand of each user u ∈ U as RDu ∈ R+ units, for which he/she is
willing to pay a total of M+

u ∈ R+ monetary units. Resource supply of each
cloud provider p ∈ P is defined as RSp ∈ R+ units at a total cost of M−

p ∈ R+.
We define QoS and security constraints as non-functional constraints and

distinguish two sets of quantitative A = {1, 2, . . . , A#} and qualitative Â =
{1, 2, . . . , Â#} non-functional attributes. Quantitative attributes represent nu-
merical properties, e. g., availability. Qualitative attributes depict nominal prop-
erties, e. g., applied security policies. The providers make certain guarantees
with respect to the non-functional attributes. For each quantitative attribute
a ∈ A, the value guaranteed by provider p ∈ P is denoted as AGp,a ∈ R.

For each qualitative attribute â ∈ Â, the corresponding information is given by
ÂGp,â ∈ {0, 1}. The users specify certain requirements concerning their non-
functional attributes. With respect to each quantitative attribute a ∈ A, the
value required by user u ∈ U is denoted as ARu,a ∈ R. Likewise, ÂRu,â ∈ {0, 1}
denotes the requirement for each qualitative attribute â ∈ Â, i. e., indicates
whether this attribute is mandatory or not.

Based on these notations, the CCCP can be represented as an optimization
model, as shown in Model 1. We define xu,c and yp,c as the main decision vari-
ables in the model (cf. Equation 11). They are binary and indicate whether user
u or provider p are assigned to collaboration c or not. We introduce y′p,c as auxil-
iary decision variables, which are binary as well and indicate the non-assignment
of a provider p to a collaboration c. Furthermore, za,c and ẑâ,c are defined as real
and binary, respectively, and represent the cumulative value of the non-functional
property a or â, respectively, for collaboration c (cf. Equation 12).

464 O. Wenge et al.

Model 1. Cloud Collaboration Composition Problem

Max. Pr(x, y, y′, z, ẑ) =
∑

u∈U,c∈C

xu,c ×M+
u (1)

−
∑

p∈P,c∈C

yp,c ×M−
p

such that

∑
c∈C

xu,c ≤ 1 ∀u ∈ U (2)

∑
c∈C

yp,c ≤ 1 ∀p ∈ P (3)

yp,c + y′
p,c = 1 ∀p ∈ P, ∀c ∈ C (4)

∑
u∈U

xu,c ×RDu ≤
∑
p∈P

yp,c ×RSp ∀c ∈ C (5)

za,c ≤ yp,c ×AGp,a + y′
p,c ×max

p∈P
(AGp,a) (6)

∀p ∈ P,∀c ∈ C,∀a ∈ A

ẑâ,c ≤ yp,c × ÂGp,â + y′
p,c (7)

∀p ∈ P,∀c ∈ C,∀â ∈ Â

za,c ≥ xu,c × ARu,a ∀u ∈ U,∀c ∈ C,∀a ∈ A (8)

ẑâ,c ≥ xu,c × ÂRu,â ∀u ∈ U,∀c ∈ C,∀â ∈ Â (9)

C = {1, 2, . . . ,min(P#, U#)} (10)

xu,c ∈ {0, 1} ∀u ∈ U,∀c ∈ C (11)

yp,c ∈ {0, 1} ∀p ∈ P, ∀c ∈ C

y′
p,c ∈ {0, 1} ∀p ∈ P,∀c ∈ C (12)

za,c ∈ R ∀a ∈ A,∀c ∈ C

ẑâ,c ∈ {0, 1} ∀â ∈ Â,∀c ∈ C

Composition of Cloud Collaborations 465

The monetary objective function for a broker consists in profit maximization,
i. e., maximization of the difference between the revenue from the served cloud
users and the spending on the used cloud providers (cf. Equation 1).

Equations 2 and 3 make sure that each user and provider are assigned only
to one collaboration simultaneously. Equation 4 determines the inverse variable
y′p,c for each decision variable yp,c (cf. Equations 6 and 7). These equations
determine the cumulative non-functional values for quantitative and qualitative
attributes and are formulated such that quantitative properties are given by the
“worst” value among all providers in a certain collaboration. Equation 5 prevents
the resource demand from exceeding the resource supply. Equations 8 and 9
make sure that users can only be assigned to collaborations with sufficient non-
functional guarantees. Equation 10 defines a set of potential cloud collaborations,
its cardinality is given by the number of users or providers, whichever is lower.

3 Heuristic Optimization Approach CCCP-HEU.KOM

In our previous research [5], we implemented the described model and evaluated
the optimal approach CCCP-EXA.KOM in order to obtain an exact (i. e., profit
maximal) solution. We used a Mixed Integer Program (MIP) and a branch-and-
bound optimization algorithms [2]. The evaluation results indicated that the
computation time of the proposed CCCP exact solution grows in dependence on
the number of market participants and in the worst case it is exponential, thus
indicating the need for development of heuristic approaches. In the following, we
propose a heuristic optimization approach CCCP-HEU.KOM with the improved
computation time. Our CCCP-HEU.KOM approach is based on the Divide-and-
Conquer principle, i. e., we recursively breaking down the CCCP problem into
sub-problems and combine the solutions of sub-problems to provide a solution
to the original problem [3]. It consists of four components (sub-problems):

1. ASSIGN: Assignment of cloud users to cloud providers
2. COLLAB: Building of cloud collaborations
3. RCHECK: Checking of resource constraints
4. COMPOSE: Composition of cloud collaborations

ASSIGN: Assignment of users to providers. In this step, the assignment
of users to providers will be performed with respect to the fulfillment of NFAs -
non-functional requirements of users and non-functional guarantees of providers,
as shown in Algorithm 2. The algorithm starts with two empty lists: assign.Pp

- a list of all assigned users u ∈ U of a provider p, and P̂ - a list of all providers
who can satisfy at least one user. Non-functional guarantees (quantitative AG
and qualitative ÂG) of each provider will be compared with non-functional re-
quirements (quantitative AR and qualitative ÂR) of each user; if a provider p
can fulfill the requirements of a user u (or has even better guarantees), then this
user u will be added to provider’s p list assign.Pp (lines 5-8). Providers who
cannot fulfill requirements of any user will be deleted (line 9). Users who cannot
be served by any provider will be not added to the lists; thus, the number of

466 O. Wenge et al.

users and providers will be reduced. At the end, a set P̂ of NFAs-valid assign-
ments (provider - users) is built with respect to the defined NFAs. Resource
demand/supply constraints are not considered in this step.

COLLAB: Building of collaborations. In this step, we build cloud col-
laborations Ĉ, i. e., we bring together providers, who can serve the same users.
Thereby, Equations 6 and 7 are to be considered, i. e., the aggregated NFAs of
collaborative providers will be defined by the worst ones. The set of valid collabo-
rations is the intersecting set of P̂ . Applying of the intersection can be examined
in two ways: determinictic and stochastic. By the deterministic approach (Al-
gorithm 3), the complete set P̂ will be searched through: all permutations of
users û ∈ Û from the assign.Pp̂ lists will be compared (lines 7-12). Thus, we

have P̂# ∗ 2Û#

possibilities (single provider sets and empty sets are exclusive),
that leads in the worst case to asymptotical exponential runtime for Û , namely

O(P̂ ∗ 2Û#

). By the stochastic approach, we generate a random subset from the
set P̂ (Algorithm 4), where not all permutations are considered. The replace-
ment of the Input (P̂) of Algorithm 3 by the subset generation improves the
algorithm and leads to asymptotical polynomial runtime.

RCHECK: Checking of resource constraints. In this step, we check re-
source constraints (as defined in Model 1). As shown in Algorithm 5, firstly, the
quotients Qû = M+

û /RDû (willingness to pay for a resource unit) will be calcu-

lated for all users from the provider-users assignments list P̂ . These quotients
are then will be sorted in the descending order with respect to our objective
function, namely, profit maximization (lines 5-9). So, the users with the best
willingness to pay will be considered first.

COMPOSE: Composition of cloud collaborations. In this step, the best
composition of cloud collaborations will be selected. As only one collaboration is
allowed for providers and users simultaneously, the duplicates of them must be
eliminated. So, the cloud collaborations with the same collaborative partners will
be examined and the best constellation with respect to the maximum profit for
a broker will be selected. The selected collaborations build then the complete
solution of CCCP - CCCPsol. As shown in Algorithm 6, each collaboration
c ∈ C produces a certain profit PRc. To provide an optimal solution, mostly
profitable collaborations must be selected to fulfill the objective function. We
apply here again the greedy principle and go through all collaborations. In lines
(3-7) the collaborations that include the same collaborative partners will be
compared - and the collaboration with the best profit CCCPbest will be added
to the complete solution CCCPsol. So, the composition of cloud collaborations
occurs in a polynomial time.

3.1 Evaluation

To assess the required computation time of CCCP-HEU.KOM for different prob-
lem sizes and compare it with the exact optimization approach CCCP-EXA.KOM
we provided before in [5], we prototypically implemented our heuristc approach
in Java and used the same set up for our evaluation (JavaILP and IBM ILOG

Composition of Cloud Collaborations 467

Algorithm 2. Assignment

1: Input: set of providers P = {1, 2, . . . , P#}; set of users U = {1, 2, . . . , U#}
2: Output: set NFAs-valid provider-users assignments P̂
3: P̂ = ∅; assign.Pp = ∅
4: for all p ∈ P do
5: for all u ∈ U do
6: if AGp ≥ ARu and ÂGp ≥ ÂRu then � check the NFAs fulfillment
7: assign.Pp = assign.Pp + u � assign user u to provider p
8: if assign.Pp = ∅ then delete p
9: P̂ = P̂ + Pn(assign.Pp)
10: end if
11: end if
12: end for
13: end for

Algorithm 3. Building of collaborations (Full set)

1: Input: set P̂ � set of NFAs-valid provider-users assignments
2: Output: set of collaborations Ĉ
3: Ĉ = ∅
4: for all p̂ ∈ P̂ do
5: intersect assign.Pp̂ with assign.Pp̂+1 � check shared users in assignment lists
6: if intersect �= ∅ then
7: userxsp̂,p̂+1 = intersect(assign.Pp̂/assign.Pp̂+1)
8: Ĉ = Ĉ + ĉp̂,p̂+1(usersp̂,p̂+1) � build collaboration
9: ... � go through all permutations of users u
10: AGĉ = min(AGp̂) and ÂGĉ = min(ÂGp̂) � aggregated NFAs are
11: � determined by the worst ones
12: end if
13: end for

Algorithmus 4. Building of collaborations (Random sub-set)

1: Input: set P̂ � set of NFAs-valid provider-users assignments
2: Output: subsets of P̂
3: size=P̂ .length; P̂ .subset = ∅;
4: for size < counter do
5: for all p̂ do
6: subset = generate random subset from {1...size}
7: P̂ .subset = P̂ .subset+ subset
8: end for
9: counter=counter+1
10: end for

CPLEX framework). We regard computation time as the dependent variable of
our evaluation. As independent variables, we include again the number of consid-
ered users and providers, i. e., U# and P#. Each specific combination of U# and
P# results in a test case. For each test case, we created 100 specific CCCP in-
stances with the according dimensions and used the same parameters. The results

468 O. Wenge et al.

Algorithmus 5. Checking of resources constraints

1: Input: Ĉ
2: Output: set of built collaborations C with valid resources demand/supply
3: R̂Dĉ = 0 � resource demand for collaboration ĉ
4: for all ĉp̂,p̂+1 ∈ Ĉ do
5: for all û ∈ (usersp̂,p̂+1) do � all users in the collaboration ĉp̂,p̂+1

6: calculate Qû = M+
û /RDû � quotients Q - willingness

7: � to pay for a resource unit
8: end for
9: sort û descending according to Qû � sorted list Ûĉ

10: for all û ∈ Ûĉ do
11: if RSĉp̂,p̂+1

= RSp̂ +RSp̂+1 > RDû then

12: R̂Dĉ = R̂Dĉ + R̂Dû

13: if RSĉ = RDû then stop � maximum supply reached
14: end if
15: end if
16: end for
17: end for

Algorithmus 6. Composition of cloud collaborations

1: Input: set of collaborations C
2: Output: solution of CCCP - CCCPsol
3: CCCPsol = ∅; � complete solution
4: for all c ∈ C do
5: if cn ∩ cn+1 �= ∅ then � intersect set of cn and cn+1 not empty
6: CCCPbest = insert c with maxPR(cn, cn+1) � insert the collaboration
7: � with the best profit
8: else
9: CCCPbest = cn
10: CCCPsol = CCCPsol +CCCPbest
11: end if
12: end for

of our evaluation, i. e., the observed ratio of solved instances and the ratio of the
mean computation times in comparison to the CCCP-EXA.KOM approach, are
summarized in Table 1. As can be clearly seen, the mean computation times are
drasticaly improved, and even the test case (12,18) by CCCP-HEUfull.COM (a
heuristic with the full set COLLAB component) takes only 3.46% of the previosly
computation time used by the exact approach. This variant shows rather optimal
ratio of solving instances in all test cases. CCCP-HEUsub.COM (a heuristic with
the sub-set COLLAB component) has better computation times, but the ratio
of the solved instances (from 100 problem instances) goes already down with the
test case (8,8). It explains also drastical improvement in CCCP-HEUsub.COM
computation times for test cases (8,12)-(12,18), as not all solution will be exam-
ined - only in the randomly generated sub-sets.

Composition of Cloud Collaborations 469

Table 1. Evaluation results of CCCP-HEUfull.KOM and CCCP-HEUsub.KOM

Test case Ratio of Ratio of mean

P# , U# solved instances computation times
HEUfull / HEUsub HEUfull / HEUsub

4, 4 100% / 89,79% 0.94% / 0.50%
4, 6 98.23% / 81.78% 1.57% / 0.99%
6, 6 96.56% / 78.19% 1.87% / 1.13%
6, 9 92.47% / 67.77% 2.45% / 1.22%
8, 8 92.33% / 66.81% 2.62% / 1.45%
8, 12 87.34% / 63.93% 2.85% / 0.60%
10, 10 87.26% / 54.87% 3.30% / 0.45%
10, 15 85.20% / 54.84% 3.37% / 0.56%
12, 12 88.30% / 45.16% 3.40% / 0.40%
12, 18 82.52% / 49.96% 3.46% / 0.23%

4 Conclusions

While cloud markets promise virtually unlimited resources, the physical infras-
tructure of cloud providers is actually limited and they may not be able to serve
the demands of large customers. A possible solution is cloud collaborations,
where multiple providers join forces to conjointly serve customers. In this work,
we introduced the corresponding Cloud Collaboration Composition Problem with
our new heuristic optimization approach CCCP-HEU.KOM, as a complement
to our prior exact optimisation approach. Our evaluation results indicated dras-
tic improvement in the computation times, but showed also that the proposed
heuristic optimization approach CCCP-HEU.KOM is still rather limited and
needs further improvements, as a broker acts under rigid time constraints. In
our future work, we aim at the development of heuristic approches with meta-
heuristics and dynamic changes. In addition, we plan to extend the proposed
model with more complex non-functional constraints.

References

1. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud Computing and
Emerging IT Platforms: Vision, Hype, and Reality for Delivering Computing as the
5th Utility. Future Generation Computer Systems 25(6), 599–616 (2009)

2. Hillier, F., Lieberman, G.: Introduction to Operations Research. McGraw-Hill (2005)
3. Jonson, D.S.: A Brief History of Np-completeness. In: Documenta Mathematica

(2012)
4. Wenge, O., Lampe, U., Müller, A., Schaarschmidt, R.: Data Privacy in Cloud

Computing–An Empirical Study in the Financial Industry. In: 20th Americas Con-
ference on Information Systems (AMCIS) (2014)

5. Wenge, O., Lampe, U., Steinmetz, R.: QoS- and Security-Aware Composition of
Cloud Collaborations. In: 4th International Conference on Cloud Computing and
Services Science (CLOSER), pp. 578–583 (2014)

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 470–477, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Bottleneck Detection and Solution Recommendation
for Cloud-Based Multi-Tier Application

Jinhui Yao1 and Gueyoung Jung2

1 Palo Alto Research Center (PARC), USA
jinhui.yao@xerox.com
2 AT&T Research Labs, USA

gjung@research.att.com

Abstract. Cloud computing has gained extremely rapid adoption in the recent
years. In the complex computing environment of the cloud, automatically
detecting application bottleneck points of multi-tier applications is practically
a challenging problem. This is because multiple potential bottlenecks can co-
exist in the system and affect each other while a management system reallocates
resources. In this paper, we tackle this problem by developing a comprehensive
capability profiling of such multi-tier applications. Based on the capability
profiling, we develop techniques to identify the potential resource bottlenecks
and recommend the additional required resources.

Keywords: Cloud, Bottleneck Detection, Multi-tier Application.

1 Introduction

Cloud computing has gained extremely rapid adoption in the recent years. Enterprises
have started to deploy their complex multi-tier web applications into these clouds for
cost-efficiency. Here, the cloud-based multi-tier application consists of multiple soft-
ware components (i.e., tiers) that are connected over inter- and/or intra-
communication networks in data centers. Detecting application bottleneck points of
multi-tier applications is practically a challenging problem, and yet it is a fundamental
issue for system management. Hence, it is desirable to have a mechanism to monitor
the application performance changes (e.g., application throughput changes) and then,
to correlate system resource usages of all components into the application perfor-
mance saturation for system diagnosis.

However, automatically pinpointing and correlating bottlenecked resources are not
trivial. One of important factors we should focus on is that multiple potential bottle-
necks can co-exist typically by oscillating back and forward between distributed re-
sources in the multi-tier applications[6, 9], and they affect each other while a man-
agement system performs resource reallocations to resolve the immediate bottlenecks
observed individually. Therefore, certain potential and critical bottlenecks may not be
timely noticed until other bottlenecks are completely resolved. In this paper, we tackle
this problem by developing a comprehensive capability profiling of such multi-tier

 Bottleneck Detection and Solution Recommendation 471

applications in the cloud. Based on the capability profiling, we develop techniques to
identify the potential resource bottlenecks and recommend the required resources to
provide adequate performance without the bottleneck oscillation between current and
potential bottleneck resources.

Fig. 1. A 3-tier web transaction application and throughput curves of tiers

2 Bottleneck Detection Using Knee Point Detection

The upper part of Figure 1 illustrates a 3-tier web transaction application that consists
of the front-end web server, the middle application servers, and the back-end database
servers. Servers in the middle and the back-end tiers handles web transactions in pa-
rallel. The lower part of Figure 1 illustrates bottleneck patterns of these tiers. The
bottleneck pattern of the application throughput can be described as a knee point of
throughput curve, while the workload to the application increases.

As shown in these bottleneck patterns, despite of the initial rapid increase in the
application throughput, after the knee point, the throughput cannot increase further
because some of system resources of tiers are bottlenecked. Similar bottleneck pat-
terns are shown in all tiers, but at different observation points. This is because a bot-
tleneck in one of the tiers will eventually trigger bottleneck patterns in the other tiers.
With these observations, it is important to first capture such knee points, which
represent the starting point of bottleneck pattern, of all involved tiers and resource
usages of each tier. Then, we can identify the bottleneck causes, in the context of
system resources, by analyzing the temporal relations among the bottleneck patterns
of all tiers and resource.

2.1 Individual Knee Point Detection

The application throughput can be defined as the number of user requests that success-
fully get through all tiers. The throughput of the application will keep increasing as the
load increases until a certain point, after that point, throughput cannot increase further

472 J. Yao and G. Jung

more because the system bottleneck occurs. Figure 2 illustrates the bottleneck pattern
of the throughput. In the figure, we have plotted normalized throughput of the applica-
tion against normalized load to the application. To capture the knee point, our system
first generates a linear line that connects the first measurement point to the last mea-
surement point and then, computes its length (i.e., z in the figure). Second, at each
measurement point according to the measurement window size, we compute the length
of the orthogonal line drawn from the linear line to the measurement point (i.e., the
height hk in the figure, where k is each measurement point). To compute the height of
each measurement point, it generates two lines and computes their lengths (i.e., xk and
yk in the figure). First line is drawn from the first measurement point to the current
measurement point, and the second line is from the current measurement point to the
last measurement point. Then, using cosine rule and sine rule, the height is computed
as following,

hk = xk sin (cos-1((xk
2 + z2 – yk

2)/2xkz))

Finally, the knee point is the measurement point that has the highest height from the
linear line among all measurement points. And this knee point indicates the capability
of this application (i.e., potential bottleneck starting point of the application or the tier
being considered).

Fig. 2. Bottleneck pattern

2.2 Performance Profiling for Identifying the System bottlenecks

In our approach, we capture the change rate of resource usage (i.e., slope) of each re-
source type and the change rate of workload throughput until the capability is reached
(i.e., knee point), while load increases. The resource usage change rate before the knee
point can approximately indicate the degree of contribution of each resource type to the
throughput change and the performance capability. These change rates are directly
used to build our performance model of the multi-tier application, which is used to
infer which resources are the current and potential bottlenecks.

Figure 3 shows the change rates of resource usages and three representative resource
types, while load increases over the time. In this illustration, the change rate of CPU is
higher than memory usage and disk I/O. It can indicate that CPU contributes more to
the workload throughput than memory and disk I/O, and CPU can be bottlenecked first
on its knee point. Note that the knee points of three resource types occur at different
measurement points.

 Bottleneck Detection and Solution Recommendation 473

Fig. 3. The change rates before knee points

As shown in Figure 3, throughput increases until the performance capability is
reached at knee point. The performance capability is determined by some resource
types that consume the most of their available capacities (i.e., bottlenecked).Following
this intuition, one straightforward method to find the bottlenecked resource is to sort
the knee points to find out which one occurs first. However, a more challenging ques-
tion will be to find the capability gap (i.e., resource shortage), between the currently
bottlenecked resources and the required performance. The capability gap will indicate
the additional resource needed for such potential bottleneck resources. And then, it will
indicate when the bottleneck is transferred to the other potential bottleneck resources
after the management system resolves the current bottleneck by allocating the addi-
tional amount of resources. Our system tackles this challenge by defining a quantitative
performance model for each individual resource type to identify its correlation to the
performance capability of application. Specifically, for each resource type j, a quantita-
tive performance model can be defined as,

Tj = f(Uj| (Cj = c,∃j R) ^ (Cr’ = ∞, ∀r’ R, r’ j)) (1)

, where Tj is the application throughput to be achieved with the normalized re-
source usage rate, Uj, over given resource capacity (i.e., Cj = c) of a resource type j. R
is a set of all resource types for the application, and r’ is a resource type in R, where r’
is different resource type from j. We consider r’ has unlimited capacities so that we
can compute the correlation of only j to Tj.

While the throughput of the system is determined by the usage of different resources,
the resource usage itself is driven by the amount of the load that the system is under-
taking. The correlation between the load and the resource usage can be defined as a
linear function (note that the correlation between the load and the resource usage can
be defined as a non-linear function, however, we have focused on the resource usage
before the knee point in our performance modeling, and observed the linear function):

 Uj= αjL + γj (2)

, where L is the amount of load, αj is the change rate of resource usage (e.g., a slope
in a linear function), and γj is an initial resource consumption in the system. We can

474 J. Yao and G. Jung

obtain αj and γj by calibrating the function to fit into actual curve observed. In this
fitting, we use the change rate of resource usage before knee point.

According to Equation 1, the throughput Tj equals to a function of the resource
usage Uj, given that all other resource types have unlimited capacities (i.e., Cr’= ∞).
Therefore, this implies that Tj reaches its maximum when the resource being consi-
dered is completely utilized (e.g.,Uj = 1, when it is normalized). Thus, from Equation
1, we can derive the maximum load , which this resource can undertake at its
knee point, as follows:

 (3)

We can compute the maximum loads of all different types of the resources with the
same way, to produce a set of maximum loads as L , L , L … , L , where n
is the number of resource types in the system. Once we have obtained the set of all
maximum loads, finding the bottleneck resource, intuitively enough, is to find the
resource that has the lowest maximum load, since the resource having the lowest
maximum load has the earliest knee point argmin .

3 Estimating Resource Shortages for Potential Bottlenecks

Using the performance model (Equations 1-3), we can identify the bottleneck in the
current configuration of the multi-tier application. However, other resource types may
potentially become the next immediate bottleneck after an additional amount of the
bottlenecked resource is allocated. Since multiple potential bottlenecks may co-exist
in the system configuration as a form of bottleneck oscillation [6, 9], it is necessary to
evaluate the total shortage of all resource types of interest in order to consistently
achieve the target throughput. These resource shortages indicate the gap between the
amount of resource needed and the amount that is currently utilized.

Based on Equation 1 and 2 in the previous section, we can follow the same intuition
to define the correlation between the load L and the throughput T of each component,
before reaching the knee point of the throughput curve, as a linear function.

 T= L (4)

, where L is the amount of load and is the change rate of throughput. Similarly,
we can obtain by calibrating the function to fit into an actual curve. As mentioned
earlier, the correlation between the load and the application throughput can be defined
as a non-linear function. However, we have focused on the throughput before the knee
point in our performance modeling, and observed the linear function is a good ap-
proximation while calibrating the function. By substituting Equation 4 into Equation 2
in the context of L, we have

 (5)

 Bottleneck Detection and Solution Recommendation 475

In Equation 6, if we define the target throughput as T*, and the required perfor-
mance capability value as of a resource type j (i.e., the usage rate required to

achieve T*), we can replace T and with T* and , respectively, in the equation.
Here, (αj / β) indicates the normalized increase rate of the resource usage to increase a
unit of throughput. Thus, the equation indicates how much resource capability is re-
quired to meet T*. Note that if is more than 1, it indicates that more resource ca-
pability is required to meet T* than currently available in the configuration, and in this
case the normalized resource shortage is thus ∆= - 1. With this equation, the
required capability of component x, defined as , , for the workload and its
throughput goal is a set of such required performance capability values: , = { , , ,…, } (6)

, where n is the number of resource types in the component being considered.
Then, the capability shortage for all corresponding resource types in Equation 6 is
represented as ,∆= { ∆, ∆, ∆,…, ∆}. Similarly, the same method can be ap-
plied to all other components in the multi-tier application.

4 Preliminary Evaluation

To evaluate our approach, we have used an online auction web transaction workload,
called RUBiS (http://rubis.ow2.org) that is deployed as a 3-tier web application includ-
ing Apache web server, Tomcat servlet server, and back-end MySQL database server.
The workload provided by RUBiS package consists of 26 different transaction types
such as “Home,” “Search Category”. Some of transactions need database read or write
transactions, while some of them only need HTML documents. We have created a
database intensive workload by increasing the rate of database read/write to making the
MySQL server tier being bottlenecked.

Figure 4 shows 3 throughput curves of Apache web server, Tomcat server, and
MySQL database server. The figure points out 3 knee points (the red circles in the
figure) that have been computed by the technique described in Section 2.1. The earliest
knee point has been observed in the database tier as shown in the figure, and it correct-
ly indicates the database tier is bottlenecked for the database intensive workload. As
mentioned above, we intentionally set up the workload to make the database server
bottlenecked. Note that throughputs of 3 servers are different since, by workload setup,
some user requests are controlled not to go through all tiers. As shown in Figure 5,
obviously, CPU is the bottlenecked resource type in the current configuration. This can
be identified by computing the earliest knee point, similar with the way of identifying
bottlenecked tier above. Note that the knee points of disk I/O and network I/O are lo-
cated at the last measurement points. This is because there are no obvious knee points
of these resource types, so the last measurement point is used.

Alternatively, we can identify the bottlenecked resource type by computing the max-
imum load that each resource type can handle as described in Section 2.2. The result is
the set {925.5, 2762.5, 15840.4, 79204.4}, which represents {LCPU, LM , LNW , L }
as the maximum load of CPU, memory, network, and disk, respectively. It also shows

476 J. Yao and G. Jung

that CPU is the bottlenecked resource type because LCPU has the lowest maximum
load. When we see the maximum throughput of the database tier in Figure 4, it shows
the similar amount of load at the knee point. Therefore, it indicates that our perfor-
mance model is accurate enough to compute the resource shortage. Note that we have
also measured their source usages in Web and App tiers, and observed significant un-
der-utilizations of all resources so that they have very high maximum loads.

Fig. 4. Knee points of 3-tier application

Fig. 5. Resource usages in the DB tier

5 Related Work

Cloud has gathered pace, as most enterprises are moving toward the agile hosting of
multi-tier applications in public clouds, many researchers have focused on three dif-
ferent research directions: 1) updating application architecture to move from legacy
systems to clouds [3], 2) evaluating different clouds’ functional and non-functional
attributes for allowing cloud users to correctly make a decision on which cloud to host
applications [2, 4, 7, 8], and 3) efficiently orchestrating virtual appliances in a cloud,
which may also include negotiations with cloud users. While some highly related
previous work has principally focused on estimating rudimentary cloud capabilities
using benchmarks [8] and automated performance testing [9],our approach focuses on
the precise characterization of application capabilities in a cloud infrastructure.

Analytical models like [1, 5]have been proposed for bottleneck detection and per-
formance prediction of multi-tier systems. They predict system performance based on
burst workloads and then, determines how much resource to be allocated for each tier
of the application for the target system response time. And there are numerous efforts
that have addressed the challenges of managing cloud application performance. For
example, [10, 11, 12] are based on very detailed understanding of the system resource
utilization characteristics. Performance management solutions like AzureWatch
(http://www.paraleap.com/azurewatch) continuously monitor the utilization of the
various resource types and send a notification once they are saturated.

 Bottleneck Detection and Solution Recommendation 477

6 Conclusion and Future Work

In this paper, we presented an approach to identify the bottleneck resource and to provide the
view of potentially co-existing bottlenecks in the cloud-based multi-tier applications. We de-
veloped a comprehensive modeling to profile the resource capabilities of the target system.
Based on this profiling, we correlated the performance degradations to the resource bottlenecks.
The preliminary evaluation results show that our approach is feasible to be used for bottleneck
detection and resource shortage estimation for cloud recommender system.

References

1. Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P.: Dynamic provisioning of multi-tier internet appli-
cations. In: Int. Conf. on Autonomic Computing, pp. 217–228 (2005)

2. Jayasinghe, D., Malkowski, S., Wang, Q., et al.: Variations in performance and scalability when mi-

grating n-tier applications to different clouds. In: Int. Conf. on Cloud Computing, pp. 73–80 (2011)

3. Chauhan, M.A., Babar, A.M.: Migrating service-oriented system to cloud computing: An experience
report. In: Int. Conf. on Cloud Computing, pp. 404–411 (2011)

4. Cunha, M., Mendonca, N., Sampaio, A.: A declarative environment for automatic performance evalu-

ation in IaaS clouds. In: Int. Conf. on Cloud Computing, pp. 285–292 (2013)

5. Casale, N.M., Cherkasova, G.L., Smirni, E.: Burstiness in multi-tier applications: symptoms, causes,
and new models. In: Int. Conf. on Middleware, pp. 265–286 (2008)

6. Wang, Q., Kanemasa, Y., et al.: Detecting Transient Bottlenecks in n-Tier Applications through Fine-

Grained Analysis. In: Int. Conf. on Distributed Computing Systems, pp. 31–40 (2013)

7. Calheiros, R., Ranjan, R., Beloglazov, A., DeRose, A.C., Buyya, R.: CloudSim: A toolkit for model-
ing and simulation of cloud computing environments and evaluation of resource provisioning algo-
rithms. Software: Practice and Experience 41, 23–50 (2011)

8. Yao, J., Chen, S., Wang, C., Levy, D., Zic, J.: Accountability as a service for the cloud. In: IEEE Int.

Conf. on Services Computing (SCC), pp. 81–88 (2010)

9. Malkowski, S., Hedwig, M., Pu, C.: Experimental evaluation of n-tier systems: Observation and anal-
ysis of multi-bottlenecks. In: Int. Sym. on Workload Characterization, pp. 118–127 (2009)

10. Abdelzaher, T.F., Lu, C.: Modeling and performance control of internet servers. In: Int. Conf. on De-

cision and Control, pp. 2234–2239 (2000)

11. Diao, Y., Gandhi, N., Hellerstein, J.L., Parekh, S., Tilbury, D.M.: Using MIMO feedback control to
enforce policies for interrelated metrics with application to the Apache web server. In: Network Oper-
ation and Management Symposium, pp. 219–234 (2002)

12. Diao, Y., Hu, X., Tantawi, A.N., Wu, H.: An adaptive feedback controller for sip server memory over-

load protection. In: Int. Conf. on Autonomic Computing, pp. 23–32 (2009)

Towards Auto-remediation in Services Delivery:
Context-Based Classification

of Noisy and Unstructured Tickets

Gargi B. Dasgupta, Tapan K. Nayak, Arjun R. Akula,
Shivali Agarwal, and Shripad J. Nadgowda

IBM Research, Bangalore, India
{gaargidasgupta,tapnayak,arakula,shivaaga,nadgowdas}@in.ibm.com

Abstract. Service interactions account for major source of revenue and employ-
ment in many modern economies, and yet the service operations management
process remains extremely complex. Ticket is the fundamental management en-
tity in this process and resolution of tickets remains largely human intensive. A
large portion of these human executed resolution tasks are repetitive in nature
and can be automated. Ticket description analytics can be used to automatically
identify the true category of the problem. This when combined with automated
remediation actions considerably reduces the human effort. We look at monitor-
ing data in a big provider’s domain and abstract out the repeatable tasks from
the noisy and unstructured human-readable text in tickets. We present a novel
approach for automatic problem determination from this noisy and unstructured
text. The approach uses two distinct levels of analysis, (a) correlating different
data sources to obtain a richer text followed by (b) context based classification of
the correlated data. We report on accuracy and efficiency of our approach using
real customer data.

1 Introduction

A Service System (SS) is an organization composed of (a) the resources that support,
and (b) the processes that drive service interactions in order to meet customer expecta-
tions. Due to the labor intensive processes and their complex inter-dependencies, these
environments are often at the risk of missing performance targets.

To mitigate this risk and conforming with the underlying philosophy of “what gets
measured, gets done”, every SS defines a set of measurement tools that provide insights
into the performance of its operational processes. One such set of tools include the event
management and ticketing tools. Event management is a key function for monitoring
and coordinating across several infrastructure components. Ticketing systems record
problems that are logged and resolved in the environment. When integrated with the
event management setup, ticketing systems enable proactive and quick reaction to sit-
uations. Together they help in delivering continuous up-time of business services and
applications.

Figure 1 shows an integrated event management and ticketing system, that traces the
life-cycle of a problem ticket in the customer’s domain. Lightweight agents or probes

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 478–485, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Towards Auto-remediation in Services Delivery 479

Fig. 1. Integrated event management and ticketing system

(shown on the left of Figure 1) are configured to monitor the health of the infrastruc-
ture including servers, storage and network. The collected data is fed into the event
management server (i.e. component 2) whose main functions include: (a) continuous
collection of real time data from probes on endpoints. (b) For each of the data streams,
configure individual event rules to indicate when an event should be triggered. Some
examples of an event rule are: CPU usage is above a utilization threshold, available
disk space is below a space threshold, service not running etc. All the generated events
are stored in event management database which can process up to a million events per
day. All events could be routed to a manual monitoring team (3A). That team monitors
the consoles for alerts, clears the ones that are informational, and raise tickets (4A) in
the Ticket DB for the critical ones. Manual handling of large volume of events results in
an human-intensive component. In contrast, automated handling (3B) of events, enables
auto-clearing of certain classes of bulk alerts. Some event management systems also al-
low remediation actions to be automatically triggered on event occurrence. If the action
is successful the event is auto-cleared and no ticket is created. If not, a ticket is raised
automatically (4B). The path:1-2-3A-4A comprises the manual workflow for event-
to-ticket handling whereas path:1-2-3B-4B comprises auto-ticket handling. At present
majority of the systems continue to operate in manual workflow mode. The main reason
for this is that the auto-ticketing causes large volume of tickets. In the absence of reli-
able auto-clear systems, all tickets have to be manually closed by the monitoring team,
thereby adding more manual work in the system.

Thus in a service delivery environment (SDE), the auto-classification of the ticket
symptom, and auto-remediation through a corrective action is critical. There has been
many relevant works [6], [7], [4], [1], [3], [5] in the area of ticket analytics on struc-
tured and unstructured data. What makes SDE data particularly challenging is that it is
extremely noisy, unstructured and often incomplete. In this paper we present a novel
approach for automatic problem determination from the noisy and unstructured text.

480 G.B. Dasgupta et al.

The work in [1] comes very close to the text classification approach used in our work.
It shows the limitation of SVM-like techniques in terms of scalability and proposes
a notion of discriminative keyword approach. However, it falls short of using context
based analysis to refine the results which is one of the key differentiating factors in
our approach. Another work based on discriminative term approach is [2]. This work
focuses on commonly used text classification data sets rather than service tickets. The
work in [7] approaches the problem by mining resolution sequence data and does not
access ticket description at all. The rest of the paper is organized as follows. Section 2
introduces our 2-step approach for correlating ticket with event data and classifying the
correlated data using context based classification. In Section 3, we present our experi-
mental results and we conclude with Section 4.

2 Analyzing Events and Tickets

2.1 Correlation Model

Because ticket resolutions are completely human generated, the text is often incomplete,
noisy and highly contextual. Hence off-the shelf tools that are domain independent fail
miserably while trying to understand context. However since every ticket originates
from an event, and event data contains regularized text expressions, correlating the event
data with ticket data can improve the classification.

If an event is auto-ticketed, then the automatic methods are reliable enough to ensure
that the ticket identifier mapping exists in event and in the ticket data. In this case
correlation is a simple join operation on ticket numbers. However when tickets are
manually generated, this correlation is lost. Operators creating the tickets often do not
update event data with the ticket numbers. As discussed in section 1 in reality majority
of tickets continue to be generated manually. Hence in the absence of ticket numbers,
for joining events and tickets we need smart correlation methods to decipher the event
which created the ticket. We propose a correlation method based on multiple parameters
and domain information available from the event and ticket information systems.

1. Timestamp: A ticket occurrence is always preceded by an event. Hence we use a
timestamp threshold to narrow down the possible event choices for a ticket. Next,
the following specific identifiers help further narrowing-down the correct original
event.

2. Server Name: Matching server names in the event and ticket problem description
indicate higher probability of correlation.

3. Problem Description: Similar descriptions in ticket and event fields have a higher
probability of correlation. For example, if a ticket and event both describe database
connectivity issues, then they are likely to be correlated. Text descriptions are
matched w.r.t. syntax and context similarity using methods described in the fol-
lowing section.

4. Group: Additional information like application groups can help in event and ticket
correlation. However this information may not be present in all data sources.

When the above heuristic is able to successfully identify the original event, the re-
sulting text is enriched. The event text can be used for generic problem determination

Towards Auto-remediation in Services Delivery 481

while the ticket text gives context specific details. This combination is used for classifi-
cation as described in the following section. In cases where the heuristic fails to identify
the correct relevant event and the confidence is low, we proceed with ticket text only.

2.2 Classification Model

In this section we present our approach to classify the noisy and unstructured event
and/or ticket text to pre-defined output categories. For the rest of this section, we use
the term tickets to refer to both noisy event and ticket text descriptions. Firstly, we
define a logical structure for the unstructured and noisy tickets. Next we categorize and
classify the tickets based on the contextual information in logical structure.

Logical Structure for Unstructured and Noisy Tickets: Semantics is required to un-
derstand the contextual information in tickets. Identification of semantic information in
the unstructured and noisy service delivery tickets is difficult. Furthermore, these tickets
are syntactically ill-formed sentences. Hence we define a logical structure for these tick-
ets as shown in Figure 2. The logical structure contains two sub-structures: category de-
pendent and category independent. Category dependent structure stores the information
corresponding to the specific output category. Category independent structure stores the
information present in ticket which is independent of the output categories. Below we
describe components of each of these two sub-structures.

Fig. 2. Logical structure of Text

(a) Discriminative specific words: help in discriminating a output category from other
categories.

(b) Discriminative generic words: help in discrimination of categories but less specific
in comparison to discriminative specific words.

(c) Context defining words: constitute the contextual keywords. They by themselves do
not help in discrimination but are useful to capture the contextual information of a
category.

(d) Special specific patterns: regular expressions which help in discriminating a output
category from other categories.

(e) Special generic patterns: regular expressions for discrimination but less specific in
comparison to special specific patterns.

482 G.B. Dasgupta et al.

(f) Domain invariant words: help in identifying the contextual information. Context
defining words help in identification of contextual information related to a partic-
ular category, whereas domain invariant words help in identification of contextual
information in general.

(g) Domain invariant patterns: regular expressions which help in identifying the con-
textual information.

Table 1. Sample words and patterns for discriminating Disk C Full category

Category Dependent Category Independent
Context
defining
words

Discriminative
generic words

Discriminative
specific words

Special
generic
patterns

Special
specific
patterns

Domain
invariant
words

Domain
invariant
patterns

physical,
percent,
threshold,
free

storage, space,
volume, full

disk, drive <none> *c:
drive*

too, not,
need

db2,
.com

For example, consider the Disk C Full output category. For discriminating this cat-
egory from other output categories, words such as disk, drive and patterns such as *c:
drive* will help most when compared to words such as percent, threshold, etc (Table 1).
Words such as not, too, db2 help in identification of contextual information.

For each of the pre-defined output categories, we instantiate a logical structure and
populate the fields of the structure with domain specific keywords and patterns (which
we call as domain dictionary). By comparing with the fields of logical structure of a
category, we assign the words/tokens in the ticket to the appropriate fields of logical
structures of the ticket. For a ticket, we define and populate N logical structures corre-
sponding to N output categories. Category independent structure remains same in all
these N logical structures. The following notation is used throughout this paper:
Let ti denotes the ith ticket, Li denotes the set of logical structures of the ticket ti, lik
denotes the kth logical element from the set Li and fjik denotes the jth field in the log-
ical structure lik. We define the pair of any two logical structures (lij , lik) of a ticket ti
as contextually disjoint if, for all the fields in the structure, either of the corresponding
fields is empty. i.e. ∀m, either fmik = empty or fmij = empty. Based on the contextual
disjointness, we categorize the tickets into the following two categories:
(a) Simple Tickets: if all the highly ranked logical structures of a ticket are contextually
disjoint.
(b) Complex Tickets: if any two highly ranked logical structures of a ticket are not con-
textually disjoint.

Classification of simple tickets: We use a linear weight based approach to score the
logical structures of ticket. The output category corresponding to highest scored logical
structure is assigned to the ticket. Weights are assigned to various fields of logical struc-
ture based on their discriminative capability. For example, keywords belonging to dis-
criminative specific words gets higher weight compared to discriminative general words.

Classification of complex tickets: As the logical structures of complex tickets are
not contextually disjoint, linear weight based approaches may fail to discriminate be-
tween the logical structures. Hence we need deeper level of context based analysis to

Towards Auto-remediation in Services Delivery 483

classify complex tickets. We use supervised learning approach to learn the contextual
information from complex tickets. The keywords belonging to various fields of logical
structure of output categories are used as features. Feature weights are assigned based
on the discriminative capability of keywords.

To learn the global contextual information about all the output categories together, a
large amount of training data is required. To circumvent this, we build a separate model
for each category. A model for category i will have the knowledge about whether a
ticket belong to category i or not (local contextual information). We used the Support
Vector Machine (SVM) method with a Radial Basis Function (RBF) Kernel to build the
classification engine. Complex tickets pass through all the individual models of output
categories. Since each individual model knows about tickets belonging to it, globally
all the tickets will be correctly classified.

Using rule/weight based approach for classifying simple tickets increases recall but
can lower the precision. To maintain higher precision, one can further validate the output
of rule based approach using context based analysis to filter out any misclassifications.

3 Evaluation

This section outlines the experimental analysis of the proposed approach. The method-
ologies have been implemented as part of a Ticket Analysis Tool from IBM called
BlueFin and deployed to analyze events and tickets for several key customer accounts.
We evaluate the performance of BlueFin in comparison with another popular ticket
analysis tool SmartDispatch [1], a SVM-based text-classification tool, based on large
datasets from some well-known real customer accounts.

For unbiased evaluation, we randomly select tickets from 7 different accounts and
first manually label them into categories. For the analysis here, we consider 17 different
categories of tickets for classification as shown in Table 2. Finally we choose 5000
tickets labeled with one of these 17 categories as the ground-truth data. To measure the
accuracy, we computed the Precision, Recall and F1-score for each of these category.
Note that in a multi-class or multinomial classification, precision of ith category is the
fraction of tickets classified correctly in i (true positives) out of all tickets classified
as i (sum of true and false positives). Recall of category i is the fraction of tickets
classified correctly as i (true positives) out of all tickets labeled as i in the ground-
truth data (sum of true positives and false negatives). F1-score is the harmonic mean of
precision and recall. Alternatively, these can be computed from the confusion matrix, by
summing over appropriate rows/columns. Note that F1-score is a well-known measure
of classification accuracy. The accuracy measures are computed for both BlueFin and
SmartDispatch and the results are shown in Table 2. In addition, we also compute the
overall accuracy measures for all the categories and present in Figure 3. Observe that the
precision measure for each individual categories and the overall precision are extremely
good for BlueFin. Moreover, it also maintains high recall values and thus the F1-score
and results significantly better performance in comparison to the existing approach in
SmartDispatch for all categories.

The major improvement in precision is attributed to the context based analysis in
BlueFin while the higher recall is due to the enriched text set using event-ticket cor-
relation model. To understand this in detail we look at the confusion matrix of BluFin

484 G.B. Dasgupta et al.

Table 2. Comparison of Precision, Recall and
F1-Score for a labeled dataset

BlueFin SmartDispatch
Category Precision Recall F1-Score Precision Recall F1-Score

Database Space 0.65 0.70 0.67 0.14 0.59 0.22
Non-actionable 0.98 0.98 0.98 0.98 0.67 0.79

Job Failed 0.99 0.21 0.35 1.00 0.04 0.07
Server Down 0.97 0.92 0.94 0.83 0.26 0.39
Agent Offline 0.98 0.98 0.98 0.05 1.00 0.10

CPU Utilization High 0.97 1.00 0.98 0.84 0.96 0.89
Paging/Swap space 0.88 0.98 0.92 0.45 0.98 0.61
Zombie Processes 1.00 0.60 0.75 1.00 0.40 0.57

Network Down 0.98 0.45 0.61 0.31 0.73 0.43
Password Expired 1.00 0.83 0.90 0.99 0.79 0.87
Linux Space Full 0.94 0.98 0.95 0.16 0.07 0.10
Backup Failure 0.85 1.00 0.91 0.59 0.99 0.73

Database Inactive 0.94 0.44 0.59 NA 0.00 NA
Process Missing 0.99 0.38 0.55 NA 0.00 NA

Disk C Full 0.82 1.00 0.90 NA 0.00 NA
Win Non C Drive Full 0.89 0.84 0.86 NA 0.00 NA

Service Alert 1.00 0.59 0.74 NA 0.00 NA

Fig. 3. Comparison of classification
accuracy

(Figure 4) and SmartDispatch (Figure 5). Deeper color shades in cells represent higher
volumes of tickets. The diagonal elements represent the correct classifications and the
non-diagonals are the mis-classified tickets. SmartDispatch has a higher number of
overall mis-classifications. For example, consider the tickets that are originally “Win-
dows non C drive full ”, but are mis-classified as “backup failed”. There are 83 such
mis-classifications in case SmartDispatch while BlueFin has only 11. SmartDispatch
on the other hand, mis-classifies the ticket due to absence of contextual information.
The performance of BlueFin far exceeds smartDispatch in all categories. The reason
smartDispatch underperforms, it only uses discriminative keywords and completely ig-
nores contextual keywords, special patterns, which provides important discriminations
in case of noisy data.

Fig. 4. Confusion matrix for Blufin Fig. 5. Confusion matrix for SmartDispatch

Towards Auto-remediation in Services Delivery 485

4 Conclusion

In this paper, we proposed a novel approach for automatic problem determination from
noisy and unstructured service delivery tickets. Central to our theme is the use of two
distinct levels of analysis, namely, correlation of event and ticket data followed by con-
text based classification of the correlated data to achieve higher precision and improved
recall. Furthermore, we evaluated our approach on real customer data and the results
confirm the superiority of the proposed approach. In the future, we plan to improve the
precision of our approach by using bi-grams, tri-grams etc. as features and the recall by
increasing the size of domain dictionaries.

References

1. Agarwal, S., Sindhgatta, R., Sengupta, B.: Smartdispatch: Enabling efficient ticket dispatch
in an it service environment. In: Proceedings of the 18th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD 2012, pp. 1393–1401. ACM, New
York (2012), http://doi.acm.org/10.1145/2339530.2339744

2. Junejo, K., Karim, A.: A robust discriminative term weighting based linear discriminant
method for text classification. In: Proceedings of the Eighth IEEE International Conference
on Data Mining, ICDM 2008, pp. 323–332. IEEE (2008)

3. Kadar, C., Wiesmann, D., Iria, J., Husemann, D., Lucic, M.: Automatic classification of
change requests for improved it service quality. In: Proceedings of the 2011 Annual SRII
Global Conference, SRII 2011, pp. 430–439. IEEE Computer Society, Washington, DC
(2011), http://dx.doi.org/10.1109/SRII.2011.95

4. Parvin, H., Bose, A., Van Oyen, M.P.: Priority-based routing with strict deadlines and server
flexibility under uncertainty. In: Winter Simulation Conference, WSC 2009, pp. 3181–3188
(2009), http://dl.acm.org/citation.cfm?id=1995456.1995888

5. Potharaju, R., Jain, N., Nita-Rotaru, C.: Juggling the jigsaw: Towards automated problem
inference from network trouble tickets. In: Presented as part of the 10th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 2013), pp. 127–141.
USENIX, Lombard (2013), https://www.usenix.org/conference/nsdi13/
technical-sessions/presentation/potharaju

6. Shao, Q., Chen, Y., Tao, S., Yan, E.A.X., Anerousis, N.: Easyticket: a ticket routing rec-
ommendation engine for enterprise problem resolution. Proc. VLDB Endow. 1, 1436–1439
(2008), http://dx.doi.org/10.1145/1454159.1454193

7. Shao, Q., Chen, Y., Tao, S., Yan, X., Anerousis, N.: Efficient ticket routing by resolution
sequence mining. In: Proceedings of the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 2008, pp. 605–613. ACM, New York (2008),
http://doi.acm.org/10.1145/1401890.1401964

http://doi.acm.org/10.1145/2339530.2339744
http://dx.doi.org/10.1109/SRII.2011.95
http://dl.acm.org/citation.cfm?id=1995456.1995888
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/potharaju
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/potharaju
http://dx.doi.org/10.1145/1454159.1454193
http://doi.acm.org/10.1145/1401890.1401964

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 486–493, 2014.
© Springer-Verlag Berlin Heidelberg 2014

ITIL Metamodel

Nelson Gama1,2,3,*, Marco Vicente2, and Miguel Mira da Silva1,2

1Instituto Superior Tecnico, Lisboa, Portugal
2INOV, Lisboa, Portugal

{nelsongama,marco.vicente,mms}@ist.utl.pt
3CINAV-PT Navy Research Center, Escola Naval, Portugal

nelson.gama@defesa.pt

Abstract. IT Infrastructure Library (ITIL) has become the de facto standard for
IT Service Management (ITSM). Despite the advantages in the adoption of
ITIL’s best practices, some problems have been identified: different interpreta-
tions due to the complexity of concepts with poor specification and formaliza-
tion; different approaches to the same problems; difficulties exchanging process
models in different process model languages. Besides all published work, is still
missing a metamodel expressing the core concepts, their relationship, and con-
straints. In this paper, we propose an ITIL metamodel to reduce conceptual and
terminological ambiguity, addressing the identified problems, namely: (1) de-
scribing the core concepts of ITIL to be used by other approaches; (2) allowing
the integration, exchange, sharing and reutilization of models; and (3) the use of
different modelling languages following the defined principles.

Keywords: ITIL, metamodel, modelling.

1 Introduction

Abstract. IT Infrastructure Library (ITIL) has becoming the de facto standard, current-
ly the most widely accepted framework in the world, for implementing IT Service
Management (ITSM) [1-3].

Despite the advantages in the adoption of ITIL’s best practices, many organizations
follow ITIL’s best practices without a reference model and some problems have been
identified: (1) the complexity of ITIL concepts with poor specification and formaliza-
tion, which leads to misunderstandings about these concepts; (2) different tools and
methodologies that are not harmonized or grounded in a shared reference model lead-
ing to different approaches to the same problems; (3) the exchange of process models
in different process model languages still remains a challenge [4].

Besides all published work and books about ITIL, a metamodel expressing the core
concepts, the relation between them, their constraints and limitations is still missing,
especially with academic support.

Once a model is an instance of a metamodel, an ITIL metamodel will be a model
to shape ITIL. A metamodel of ITIL as an explicit model of constructs and rules,

* Corresponding Author.

 ITIL Metamodel 487

defining logical structures and generating semantics is warranted to specify models
within this defined domain of interest.

In this paper, we propose an ITIL metamodel addressing the identified problems,
namely: (1) describing the core concepts of ITIL so as to be used by other approaches;
(2) allowing the integration, exchange, and reutilization of models developed based
on the proposed metamodel; and (3) the use of different modelling languages follow-
ing the defined principles supported by the metamodel.

2 Related Work

There are a few academic or professional publications concerning the conceptual
modelling or metamodels of IT services. They are mostly process-oriented describing
how to generalize service processes into universal patterns or conceptual models [5].

To define an ITIL metamodel, firstly we analysed the ontological constructs of
ITIL’s model definition from ITIL books, identifying modelling limitations. In gener-
al, the concepts and processes, as well as necessary databases and interfaces, are de-
fined at a high abstraction level [5]. Only a linguistic description of concepts is pro-
vided [1], while its processes are usually depicted as sequences of activities.

We evaluated several ITIL graphical representations searching for the best ap-
proach to represent and relate concepts. We found disparate ad-hoc diagrams, differ-
ent approaches and notations from distinct organizations. These were mainly in-house
sketches, diagrams and flowcharts expressing the ITIL views of its authors. ITIL re-
presentations are often depicted using BPMN [6] but some have also come across
proprietary commercial solutions. In common, all ITIL representations come from
one author’s interpretation of concepts and relationships from a linguistic description
in ITIL books. We acknowledge the added value of these models and tools and we are
not claiming they are incorrect, but instead we pointing out their lack of completeness
and the absence of a common referential – a metamodel providing a uniform basis in
terms of concepts and their relationships.

Afterwards we evaluated some architectural frameworks (MDA core standards [7],
and MOF specification [8]) to develop a model and metamodels. Despite valuable,
these approaches are software development oriented. A rigid perception of “layered
metamodel architecture” may be confused and limitative when considering metamo-
dels to a widespread use [5].

There are many publications and research strands on process metamodel and we al-
so made an overview of published work in this area [4, 5, 9, 10]. However, research
work or professional publications regarding the definition of an ITIL metamodel is
quite limited. Most of them focused on the previous ITIL version (v2) and are mostly
process-oriented, stressing few processes. On the other hand, we did not find a holis-
tic description on how to generalize service lifecycle and neither defining universal
patterns nor conceptual models for ITIL’s concepts.

Despite all valuable work regarding the definition of an ITIL metamodel we did
not identify a proposal focused on the current version of ITIL neither covering the
principal ITIL concepts that allows defining a metamodel. An ITIL metamodel as a

488 N. Gama, M. Vicente, and M.M. da Silva

description of a language’s abstract syntax in order to define a set of constructs that
allows the creation of grammatically valid models [11].

3 Research Problem

ITIL processes, concepts, and relationships are specified in natural language. Without
a formal and commonly accepted semantics, modelling graphical representation is
complex [10]. In addition to the aforementioned problems in ITIL adoption, we iden-
tified some weaknesses in ITIL representation: (1) unclear concepts definition leading
to different interpretations; (2) models developed from a language description and not
from a universal referential; (3) lack in formal notation and representation leading to
loosely depicted graphical diagrams; (4) focus on logical description of processes; (5)
different approaches and methodologies to the same problems, making exchange and
knowledge sharing difficult; (6) lack of holistic visibility and traceability from the
theory; and (7) different approaches to implementations and tools development.

A metamodel of ITIL, as an explicit model of constructs and rules, is still needed
to specify models within this defined domain of interest. The most important contri-
bution of an ITIL metamodel would be the convergence of approaches and applica-
tions of leading vendors and motion towards the ITIL compliant solutions [5].

Metamodels are also closely related to ontologies. Both are often used to describe
relations between concepts [12], allowing us to understand the logical structures and
generating semantics for best practice frameworks [13]. We acknowledge the differ-
ence between ontologies and metamodels, once their characteristics and goals are
different. However, without an ontology, different knowledge representations of the
same domain can be incompatible even when using the same metamodel for their
implementation [14]. While an ontology is descriptive and belongs to the domain of
the problem, a metamodel is prescriptive and belongs to the domain of the solution
[15]. Ontologies provide the semantics, while metamodels provide a visual interpreta-
tion of the syntax of specific languages that approximate as closely as possible to the
ideal representation of the domain [16]. As a semantic model, the relation to the real-
ity and the interrelation of concepts are true if they obey to a mathematical structure
for all axioms and derivation rules of the structure [17]. To the best of our knowledge,
there is no universally accepted ITIL metamodel as a reference that allows the model-
ling development and a language basis for graphical representation.

4 Proposal

Following some previous published work [4, 5, 13, 18, 19] we considered two sepa-
rate orthogonal dimensions of metamodelling: one dimension concerned with lan-
guage definition and the other with representation. A language can be defined as a set
of valid combinations of symbols and rules that constitute the language’s syntax [11].

Firstly, we identified the core concepts from the ITIL glossary [20], by reducing
the concepts to the fundamental ones, with representation needs, that should be part
of the metamodel. To that aim we followed an ontology engineering process [19]

 ITIL Metamodel 489

and analysed ITIL domain, clarifying abstract concepts from ITIL’ books specifica-
tions developing the proposed metamodel. Secondly, we defined linguistically all
concepts for an ontological common understanding adding a mathematic representa-
tion to concepts and relationships. This clarification provided design rules and a mod-
elling process, decreasing the concept’s abstraction but allowing the fundamental dis-
tinction of the concepts relation and interoperability. In a next step, we defined the nota-
tion, clarifying the ontological metamodel and, thus, the metamodel. The metamodel’s
quality was validated through the guidelines of modelling defined by Schutte [17].

4.1 Concepts Identification and Characterization

As stated before, we used an ontology-engineering methodology [19] to identify con-
cepts and relationships from ITIL’s five books and through the collaboration of ITIL
practitioners. We started by defining the domain, the terms, their properties, and pur-
poses. Having identified terms, we created the concepts and determined their relation-
ships, providing the ontological vocabulary and symbols used to define a domain’s
problems and solutions [21, 22].

Since the subjectivity of modelling cannot be eliminated (only managed), a de-
mand for rules that have to be carried out in the modelling process should be found.
Therefore, before developing the metamodel we defined a basis for the development
of a language (metamodelling language capability), identifying the core concepts by
description and, especially, by definition in order to outline the abstract syntax of a
modelling language as follows in Table 1. The language definition (Table 1) clarifies
concepts and provides an ontological clarification through the definition of linguistic
concepts. This proposed metamodel allows a hierarchy of metamodel levels where
each level is “an instance” of the level above. We may have concepts’ extensions that
allow multilevel instantiations establishing its own kind of metalevel definitions.

Table 1. ITIL metamodel core concepts - modelling language

Concept Description Definition

Service

Portfolio

The service portfolio S represents the current complete set of
services. S is a key element and it is used to manage the entire

lifecycle of each service si ∈ S. It includes three categories: (i)

Service Pipeline P with P ⊂ S (proposed or in development); (ii)

Service Catalog C with C ⊂ S (live or available for deployment);

and (iii) Retired Services R with R ⊂ S.

S = {s1, s2, . . . , sn}

 ∃ si ∈ S : si ∈ P ∨ si ∈ C ∨

si ∈ R

Service

A Service si definition covers from an ITIL book to an IT service.
Both cases can share the same metamodel despite having different
levels. A Service si is a vector performed by a Role as defined
as a Contract ci and in function of a Process Π

si ∈ C

si = (,f(Π), ci)

Process
A Process πi from the set of Processes Π is a structured set of
Activities Δ designed to conduct a Service si under a defined Role

 and triggered by an Event εi and delivering an Event εo.

πi ∈ Π

πi = (f(Δ), εi, εo,)

Activity
A set of actions aij designed to achieve a particular result in a
Process πi. An Activity Δ can have one or “n” actions aij.

1 1 Δ

490 N. Gama, M. Vicente, and M.M. da Silva

Table 1. (Continued)

Action
An atom activity αij with defined procedure from a set Αij of
possible actions. Actions can be performed by a Stakeholder or
automatically by an Application Service asi

Αi = {αi1, αi2,…αin}

αi1= f(asi)

Role
A role from a set of roles R is defined as a specific behavior of
a stakeholder σ (a business actor) participating in a defining a set
of responsibilities in a Process π or in a Service si

i = f(σi) ∀ x ∈ R ∃ σ ∈ Σ: R

Stakeholder
A stakeholder σ represents a person in a set of Stakeholders Σ
with a defined Role at a given moment t.

σt = (σ1t, σ2t,…, σnt) ∈ Σt ∀x: σ(x) → (x)

Contract A compromise ci between two or more parties. ci = {OLA, SLA, Agree-

ment, UC}

Event
A set ξ of events ei triggering a Process πi as input of a Process or
eo produced as output, referring any change of state or anything
that happens (internally or externally).

ξ = {ei1,ei2,…ein} ⋃

{eo1,eo2,…eon} ∀ei,o : ei,o ∈ ξ

Application

Service

An externally visible unit of software functionality asi, provided
by one or more components, exposed through well-defined
interfaces, and meaningful to the environment [23]

asi = f(afi)

asi ∈ ASi

Application

Function

A software component afi that provides Functions through an
Application Service asi required by an Action αi. Each Applica-
tion may be part of more than one IT Service. An Application
runs on one or more Infrastructure Service f(σij)

afi = f(σij)

afi ∈ AFi

Infrastructure

Service

Externally visible unit of Infrastructure functionality σij, from the
overall organization’s technologic infrastructure Ιij provided by
one or more Infrastructure Function, exposed as service to the
Application Function.

Ι σij, ,σij Ιij

4.2 Metamodel Representation

We mapped the ITIL concepts in the language’s metamodel. The proposed ITIL me-
tamodel formalizes expressiveness through the definition of concepts and correspond-
ing visual representation as the following graphical representation (Fig. 1). The pro-
posed ITIL metamodel is based on the structure illustrated in Fig. 1, which relies on
concepts presented in Table 1.

5 Demonstration and Evaluation

To demonstrate the widespread use of the proposed ITIL metamodel, we modelled
several models of ITIL [24, 25] (not included due to paper size restrictions) and used
the ITIL metamodel to model ITIL with ArchiMate [26] in the datacentre organiza-
tion of the Portuguese Defence Ministry.

 ITIL Metamodel 491

Fig. 1. Proposed ITIL Metamodel

We used the ArchiMate’s [26] notation to graphically represent the metamodel for no
other reason than making it easy to use, but we may represent the metamodel in any
other notation. This generalization makes it possible to model in different languages,
and the integration and reuse of models.

We have modelled an overview of all ITIL’s five books [24, 25] to understand
which services (and from which books) ITIL can provide to its external environment.
We have also modelled each ITIL book, showing which are the applications ITIL uses
to support its processes, and also the infrastructure components that support those
applications. It provides a top view, having ITIL core processes as a black box system
providing services to the environment while using all the ITIL processes. We mod-
elled each one of ITIL’s processes showing a deeper fine-grained representation,
which allow us to look inside the ITIL’s processes and see all of its individual activi-
ties. These models are consistent, since the processes’ inputs and outputs, business,
application and infrastructure services are the same, although at different granularity
levels. We also mapped the activity sequence of ITIL’s Incident Management process
from two different notations (ArchiMate [26] and BPMN [6]), which matched almost
completely. We realized that it would be harder to integrate two approaches if they
did not speak the same language. Therefore, a common frame of reference provided
by the ITIL metamodel is warranted. Even in the absence of a formal graphical lan-
guage we are able to model ITIL using the proposed metamodel.

For the purpose of our research, a high-level checking of utility, correctness, con-
sistency and completeness of ITIL metamodel has been performed. Schutte [17]
defines guidelines to metamodel’s quality evaluation, which are very similar to the set
of design criteria for ontologies [15]: clarity, coherence, extendibility, minimal encod-
ing bias, and minimal ontological commitment.

Service

Process Role

Activity

Action

StakeholderEvent

Contract

realised by

realises

supported by

supports

triggers

triggered by

Application Infrastructure

Uses

Accessed by Supported by

Supports
Data

Accesses

Used by

Record

realised by

realises

Associated
with

Defines

Defined by

supported by

supports

Associated
with

created by

creates

uses
used by

492 N. Gama, M. Vicente, and M.M. da Silva

To evaluation purposes, we interviewed practitioners from different areas, skills
and nationalities, all with a strong ITIL background. This evaluation allow us to ask
open-ended questions exploring emotions, experiences or feelings that cannot be eas-
ily observed or described via pre-defined questionnaire responses [27]. We concluded
that the models from ITIL metamodel would benefit ITIL implementation.

6 Conclusion

The understanding of ITIL’s concepts and relationships from ITIL referential books is
hard and requires a lot of time and effort. Different organizations and service pro-
viders develop their own models regarding ITIL adoption without a metamodel or a
common referential, making difficult to share and communicate ITIL models between
different stakeholders. We developed an ITIL metamodel providing an academic con-
tribution to this area, which was not available by the time we started this research.

An ITIL metamodel is per se a valuable contribution. However, the main contribu-
tion of this proposal lies in defining a metamodel to help the ITIL adopters with a
universal identification of concepts and relationships among them, independently of
approach, language or tool used. We identified the core concepts of ITIL’s service
lifecycle and the relationship among them, proposing an ITIL metamodel. Our ap-
proach keeps the semantics of the core concepts intact and thus allows for the reuse of
models and reasoning over the customized metamodel.

Our proposed metamodel might represent a basis to model and to implement ITIL.
Moreover, it provides the sharing and the reutilization of the models from one ap-
proach to another, even with different modelling languages, to improve the represen-
tation of ITIL concepts, and to help promote ITIL discussion and validation within the
ITIL community itself.

References

1. Hochstein, A., Zarnekow, R., Brenner, W.: ITIL as Common Practice Reference Model for
IT Service Management: Formal Assessment and Implications for Practice. In: Interna-
tional Conference on e-Technology, e-Commerce and e-Service (EEE 2005), pp. 704–710.
IEEE Computer Society (2005)

2. Correia, A., Abreu, F.B.E.: Integrating IT Service Management within the Enterprise Ar-
chitecture. In: 4th International Conference on Software Engineering Advances (ICSEA),
pp. 553–558. IEEE, Porto (2009)

3. Gama, N., Sousa, P., Mira da Silva, M.: Integrating Enterprise Architecture and IT Service
Management. In: 21st International Conference on Information Systems Development
(ISD 2012), Springer, Prato (2012)

4. Shen, B., Huang, X., Zhou, K., Tang, W.: Engineering Adaptive IT Service Support
Processes Using Meta-modeling Technologies. In: Münch, J., Yang, Y., Schäfer, W. (eds.)
ICSP 2010. LNCS, vol. 6195, pp. 200–210. Springer, Heidelberg (2010)

5. Strahonja, V.: Definition Metamodel of ITIL. Information Systems Development Chal-
lenges in Practice, Theory, and Education 2, 1081–1092 (2009)

6. Object Management Group: Business Process Model and Notation (BPMN). V 2.0 (2011)
7. OMG: MDA Guide Version 1.0. The Object Management Group (OMG) (2003)

 ITIL Metamodel 493

8. OMG: MetaObject Facility (MOF) 2.0 Core Specification Version 2.4.1. OMG Adopted
Specification. The Object Management Group (OMG) (2003)

9. Jantti, M., Eerola, A.: A Conceptual Model of IT Service Problem Management. In: Inter-
national Conference on Service Systems and Service Management (ISSSM 2006), Troyes,
France, vol. 1, pp. 798–803 (2006)

10. Valiente, M.-C., Garcia-Barriocanal, E., Sicilia, M.-A.: Applying an Ontology Approach
to IT Service Management for Business-IT Integration. Knowledge-Based Systems 28,
76–87 (2012)

11. Guizzardi, G.: On Ontology, ontologies, Conceptualizations, Modeling Languages. In:
Vasilecas, O., Ede, J., Caplinskas, A. (eds.) Frontiers in Artificial Intelligence and Appli-
cations, Databases and Information Systems IV, pp. 18–39. IOS Press (2007)

12. Söderström, E., Andersson, B., Johannesson, P., Perjons, E., Wangler, B.: Towards a
Framework for Comparing Process Modelling Languages. In: Pidduck, A.B., Mylopoulos,
J., Woo, C.C., Ozsu, M.T. (eds.) CAiSE 2002. LNCS, vol. 2348, pp. 600–611. Springer,
Heidelberg (2002)

13. Neto, A.N.F., Neto, J.S.: Metamodels of Information Technology Best Practices Frame-
works. Journal of Information Systems and Technology Management (JISTEM) 8,
619–640 (2011)

14. Calero, C., Ruiz, F., Piattini, M.: Ontologies for Software Engineering and Software Tech-
nology. Springer (2006)

15. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing.
International Journal of Human-Computer Studies 43, 907–928 (1995)

16. Baioco, G., Costa, A., Calvi, C., Garcia, A.: IT Service Management and Governance
Modeling an ITSM Configuration Process: A Foundational Ontology Approach. In: Inter-
national Symposium on Integrated Network Management-Workshops (IM 2009)
IFIP/IEEE, New York, pp. 24–33 (2009)

17. Schuette, R., Rotthowe, T.: The Guidelines of Modeling - An Approach to Enhance the
Quality in Information Models. In: Ling, T.-W., Ram, S., Li Lee, M. (eds.) ER 1998.
LNCS, vol. 1507, pp. 240–254. Springer, Heidelberg (1998)

18. Atkinson, C., Kühne, T.: Model-Driven Development: A Metamodeling Foundation. IEEE
Software 20, 36–41 (2003)

19. Ostrowski, L., Helfert, M., Xie, S.: A Conceptual Framework to Construct an Artefact for
Meta-Abstract Design. In: Sprague, R. (ed.) 45th Hawaii International Conference on Sys-
tem Sciences (HICSS), pp. 4074–4081. IEEE, Maui (2012)

20. OGC: ITIL Glossary of Terms, Definitions and Acronyms (2007)
21. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design Science in Information Systems Re-

search. MIS Quarterly 28, 75–105 (2004)
22. Vaishnavi, V.K., William Kuechler, J.: Design Science Research Methods and Patterns:

Innovating Information and Communication Technology. Auerbach Publications, Boston
(2007)

23. Lankhorst, M.: Enterprise Architecture at Work. Springer (2009)
24. Vicente, M., Gama, N., Mira da Silva, M.: Using ArchiMate to Represent ITIL Metamo-

del. In: 15th IEEE Conference on Business Informatics (CBI), IEEE (2013)
25. Vicente, M., Gama, N., da Silva, M.M.: Using archiMate and TOGAF to understand the

enterprise architecture and ITIL relationship. In: Franch, X., Soffer, P. (eds.) CAiSE
Workshops 2013. LNBIP, vol. 148, pp. 134–145. Springer, Heidelberg (2013)

26. The Open Group: ArchiMate 2.0 Specification. Van Haren Publishing (2012)
27. Oates, B.J.: Researching Information Systems and Computing. Sage Publications (2006)

Formal Modeling and Analysis

of Home Care Plans

Kahina Gani, Marinette Bouet, Michel Schneider, and Farouk Toumani

LIMOS, CNRS, Blaise Pascal University, France
{gani,michel.schneider,ftoumani}@isima.fr,

marinette.bouet@univ-bpclermont.fr

Abstract. A home care plan defines all the services provided for a given
patient at his/her own home and permits the coordination of the involved
health care professionals. In this paper, we present a DSL (Domain spe-
cific language) based approach tailored to express home care plans using
high level and user-oriented abstractions. Then we describe how home
care plans, formalized as timed automata, can be automatically gener-
ated from these abstractions. We finally show how verification and moni-
toring of the resulting care plan can be handled using existing techniques
and tools.

Keywords: Timed Automata, Domain Specific Language, Business
Process Management, Home Care Plan, UPPAAL.

1 Introduction

A general trend that can be observed these recent years is to enable as much as
possible patients to stay at their own homes instead of having long-term stays
at hospitals or health establishments. This trend is motivated by obvious social
and economic reasons. Several types of care may be provided at a patient’s home
including health services, specialized care such as parenteral nutrition or activities
related to daily living such as bathing, dressing, toilet, etc. All the medical and
social activities delivered for a given patient according to certain frequencies
are scheduled in a so-called care plan. Hence, the notion of a care plan is a key
concept in home care area. As part of the project Plas’O’Soins1, we are interested
by the problems underlying the design and management of home care plans.

The design of a care plan is however a difficult task. Indeed, process modeling
in the medical field is not trivial because it requires complex coordination and
interdisciplinary cooperation due to involvement of actors from various health
care institutions [7]. Furthermore, care plans are essentially unstructured pro-
cesses in the sense that each patient must have his/her own specific care plan.
Therefore, it is simply not possible to design a unique process capturing in ad-
vance the care plans of all the patients. Another important feature of care plans
lies in their associated complex temporal constraints. Indeed, the design of a

1 http://plasosoins.univ-jfc.fr/

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 494–501, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://plasosoins.univ-jfc.fr/

Formal Modeling and Analysis of Home Care Plans 495

care plan requires the specification of the frequencies of the delivered home care
activities. Such specifications are expressed by healthcare professionals in nat-
ural language, using usually a compact form: Every day morning, each Monday
morning, etc. The home care activities are generally repetitive but may have ir-
regularities or exceptions. Given the crucial role played by temporal constraints
in home care plans, it appears clearly that such specifications could take benefit
from existing theory and tools in the area of timed systems [3]. In this paper,
we use timed automata [1], one of the most used modeling formalism to deal
with timing constraints, as a basis to develop a formal framework to analyze
care plans.

Solving the above problem and supporting design, analysis and verification,
execution and monitoring of home care plan require tackling a number of chal-
lenges. The first challenge consists in the design and modeling of care plans.
Due to the aforementioned features of care plans, it is not feasible to ask home
care professionals to describe directly a care plan using a formal language such
as, for example, timed automata. To cope with this difficulty, we first propose
a DSL (Domain Specific Language) and a user centered specification language
tailored to express home care plans using high level abstractions. We then define
an automatic transformation of user specifications into timed automata. The
resulting automaton is used to support automatic verification and monitoring of
home care plans.

The paper is organized as follows. Section 2 describes the DSL based approach
in which we mainly identify elementary temporal expressions. The general mod-
eling process is presented at section 3 together with the construction of the
proposed automata, i.e., pattern automata, activity automata and care plan au-
tomata. Section 4 presents some verification and monitoring issues. We discuss
the result of this work at section 5.

2 A DSL-Based Approach for Specifying Home Care Plans

The design of a care plan is a complex collaborative process, managed by a pri-
mary medical coordinator and carried out by an interdisciplinary team. In order
to understand such a design process and also to understand how a medical coor-
dinator approaches the problem, we conducted in the context of the Plas’O’Soins
project a thorough on-sites analysis of current practices in the field of home care.

This study showed the central role played by care plans as primary compo-
nents of effective care coordination at patient’s home. It appears therefore appro-
priate to provide tools to assist as much as possible the medical coordinator in
the design of individual care plans as well as automated support for verification
of the plan and monitoring of their executions. This is why in the Plas’O’Soins
project, we propose a DSL based approach, tailored to express home care plans
using high level abstractions.

A domain specific language (DSL) is a language designed to express a solution
to a problem within a specific domain [10]. The proposed DSL provides high
level abstractions that can be used by a medical coordinator to design a care

496 K. Gani et al.

plan for a given patient. The main building block in a care plan is the notion of
activity. Our DSL includes several predefined activities identified by our analysis
of the application domain. Each activity of the care plan is associated with
a set of elementary temporal specifications. These specifications provide the
information about the time when the activity should be performed, expressed
as a quadruplet (Days, Time ranges, Period, Duration). In [6], we proposed a
language that enables to express regular or irregular repetitions of an activity
within some period in a condensed form, similar to that used by doctors. Figure 1

Fig. 1. Specification of activities Toilet and Dress

shows a simple example of a specification using this language. Each row of the
table corresponds to an elementary temporal specification. In the quadruplet
(Days, Time ranges, Period, Duration), Days and Time ranges fields can take
different forms (patterns) to reflect the various possibilities encountered in the
medical world [6]. Combination of elementary specifications permits to express
superposition of different repetitions. Exceptions are introduced via the keyword
except. Roughly speaking, the notion of a legal schedule of a care plan activity is
defined as a sequence of allowed instances of this activity which satisfies the set of
temporal specifications. An appropriate external representation of the care plan
is crucial to facilitate the work of the coordinator. Figure 1 shows the current
GUI (Graphical User Interface) developed to support a coordinator in designing
a care plan using the proposed DSL.

3 General Modeling Process with Timed Automata

As said previously, we used formalism of timed automata (see for details [1])
to model home care plans. We consider in our work timed automata with ε-
transitions (i.e., silent transitions) and invariants (i.e., guards on the states).
The activities of care plans are not instantaneous but have a duration. This
is why we need to capture the notion of duration of an activity in our
timed automaton. This is achieved by considering three kinds of states: the
start states, the waiting states and the execution states. More formally, a
timed automaton used to model home care plans is defined as follows: A =
(S, s0, Σ,X, Inv, T, F,W,E, St) where: S is a finite set of locations or states of
the automaton with s0 the initial state, F ⊆ S is the set of final states, W ⊆ S
is the set of waiting states, E ⊆ S is the set of execution states, and St ⊆ S is
the set of start states. Σ is a finite set of transition labels including {ε}. X is a
finite set of clocks. Inv: S → φ(X) associates an invariant to each state of the
automaton and T ⊆ S ×Σ × φ(X)× 2X × S is a set of transitions.

Formal Modeling and Analysis of Home Care Plans 497

As an example, Figure 2 shows the timed automaton corresponding to an
activity A having a duration d. At the beginning the automaton is at the state
s0 ∈ St then it starts the execution of the activity A when it enters the state
s1 ∈ E. The automaton stays at this state for the whole duration d of the activity
A then it moves to the state s2 ∈ W . The automaton uses the clocks {xd, xt},
invariants and transitions guards to control the execution of the activityA.

Fig. 2. Example of a timed automaton for a task A

We recall that our main objective is to build a care plan automaton for a
given patient. To achieve this objective, we propose a three-steps approach which
consists in: (i) mapping each elementary temporal specification into a pattern
automaton, (ii) combination of pattern automaton to build an Activity automaton,
and (iii) construction of global care plan automaton by composition of activity
automata. These different steps are described below.

3.1 From Elementary Temporal Specifications to Pattern Automata

An elementary temporal specification is based on a temporal pattern chosen
among several ones. We focus in this section on the case of the relative days
pattern (the other patterns are described in [8]). Relative days pattern is used
to express a regular repetition of the activity of the care plan. An example of
relative days pattern can be found in the line 1 of the Figure 1. For each row of
temporality defined for an activity a of the care plan, the corresponding timed
automaton pattern ARD= (S, s0, Σ,X, Inv, T, F,W,E, St) is defined as follows:

– S is a finite set of states, with s0 the initial state. The total number of
states is: NbStates = 3+(NbTimeRanges - 1) ∗ 2 ∗ NbDays+ NbDays where
NbTimeRanges is the number of times ranges and NbDays is the number of
specified Days;

– F is the set of final states. We always have one final state;
– Σ = {Activity name} ∪ {ε} is the set of transition labels;
– X = {xd, xt, xp, xw} is the set of clocks, where xd is used to control the

execution of the activity within a day, xt is used to control the activity
duration, xw is used to control the execution of the activity in a day of the
week and xp is used to control the execution of the activity in a day of the
period. W.l.o.g., we assume that the time unit is the minute;

– Inv ={∀s ∈ S, Inv(s) = (xd ≤ EndT imerange − d) and s ∈ St, Inv(s) =
(xd ≤ 24) and s ∈ W, Inv(s) = (xt ≤ d) and s ∈ E};

– T ⊆ S × Σ ∪ {ε} × φ(X)× 2X × S is the set of transitions. Each transition
corresponds to a day of the week. The number of transitions is: NbTransitions
= 3+(7−NbDays)+NbDays*2+NbTimeRanges-1 ∗ 2 ∗NbDays

498 K. Gani et al.

3.2 Activity Automata

This section gives the principles to construct an activity automaton by com-
bining its associated patterns automata. This construction is illustrated on the
example of the activity Toilet given at Table 1. Given a set of elementary tem-
poral specifications of a given activity (expressed as rows of a table T), the
corresponding activity automaton is built in the following steps:

Table 1. Elementary temporal specifications

Activity Days Time ranges Period Duration

Toilet Monday Thursday Morning 01/01/14-12/31/14 30
Sunday Evening 01/01/14-12/31/14

Table 2. A modified table after step 1

Activity Days Time ranges Period Duration

Toilet Monday Thursday Morning 01/01/14-12/31/14 30
Sunday Evening 01/01/14-12/31/14
Everyday except(Monday None 01/01/14-12/31/14
Thursday Sunday)

– Step 1: Add the following elementary temporal specification to T : Everyday
except(specified Days) this specification is used to scan all days of the period.

– Step 2: Build pattern automaton for each elementary temporal specification
except the last one (i.e., the one added in the previous step).

– Step 3: Build for each pattern automaton A, the corresponding special timed
automaton Â. Informally, Â recognizes timed words that encompass a timed
word of A in sequences where the considered activity can also be executed
anytime between two occurrences of this activity on the word of A.

– Step 4: Build for the added elementary temporal specification the correspond-
ing special timed automaton C̃. C̃ recognizes timed words which enable the
execution of the considered activity at anytime within the exception Days.

– Step 5: Build the intersection of special timed automata constructed at steps
3 and 4. The intersection is achieved following the classical construction de-
fined in [2]. Figure 3 depicts the intersection automaton which encompasses
all the possible schedules of the activity Toilet specified in Table 1.

3.3 Care Plan Automata

A care plan can be also described by means of a timed automaton which is
obtained by composition of activity automata. For this purpose, we define a
specific composition operator which mixes the asynchronous product (or shuf-
fle) on some states and a specific synchronous product on other states (waiting
states) in addition to blocking actions (in the execution states). Blocking is used
to prevent the interleaving of activities in a care plan while synchronization is

Formal Modeling and Analysis of Home Care Plans 499

Fig. 3. Activity timed automaton (intersection of pattern automata)

needed when the activity automata are at waiting states in order to synchronize
the reset of the day and week clocks (respectively, the variables xd and xw).
In particular we propose to synchronize on ε -transitions (with reset) [5] when
their origin states are waiting ones. We will see in what follows a more formal
definition.

Definition 1. (Composition of timed automata) Let A1 = (S1, s10, Σ1,
X1, Inv1, T1, W1, E1, St1) and A2 = (S2, s

2
0, Σ2, X2, Inv2, T2,W2, E2, St2) be

two timed automata. The composition of A1 and A2, denoted A1 × A2, is the
timed automata (S1 ×S2, s

0
1 × s02, Σ1 ∪Σ2, Xs1 ∪X2, Inv, T), where Inv (S1, S2)

= Inv (S1) ∧ Inv (S2) and the transitions T is the union of the following sets:

1. {((s1, s2), ε, φ, λ, (s′1, s′2)) : (s1, ε, φ1,λ1,s
′
1)∈ T1 and (s2,a,φ2, λ2,s

′
2) ∈ T2,

s1 and s2 are both ∈ W }.
2. {((s1, s2), a, φ, λ, (s′1, s′2)): ((s1,a,φ1,λ1,s

′
1) ∈ T1, s2=s′2) or ((s2, a, φ2, λ2,

s′2)∈ T2, s1=s′1), s1 and s2 are both ∈ St }.
3. {((s1, s2), a, φ, λ, (s′1, s′2)): ((s1, a, φ1, λ1, s

′
1)∈ T1, s2=s′2, s2 ∈ W/St, s1 ∈

E) or ((s2, a, φ2, λ2, s
′
2)∈ T2,s1=s′1,s1 ∈ W/St, s2 ∈ E)}.

4. {((s1, s2), a, φ, λ, (s′1, s′2)): ((s1, a, φ1,λ1,s
′
1)∈ T1, s2=s′2, s2 ∈ W, s1 ∈ St)

or ((s2, a, φ2, λ2, s
′
2)∈ T2, s1=s′1, s1 ∈ W, s2 ∈ St)}.

Fig. 4. Care plan timed automaton

Figure 4 shows the result of composition of the Toilet and Injection automata.
The resulting automaton encompasses all the possible schedules of the activities
Toilet and Injection.

500 K. Gani et al.

4 Formal Analysis of Care Plans Using Timed Automata

With a formal model describing the behavior of care plans at hand, it becomes
now possible to handle automatic verification and monitoring of care plans. We
discuss below how to use the proposed framework to verify and monitor the
home care plans using UPPAAL model checker [4].

Realizability of home care plans. It is important to check the realizability of a
care plan, i.e., to check whether or not the activities included in the plan can
be effectively scheduled and performed according to the constraints specified
in the plan. In other words, a care plan is realizable when each activity can
be performed without interruption in the imposed time range in any specified
period. Checking realizability of a care plan can be reduced to the emptiness
problem of the corresponding timed automaton.

Monitoring of home care plans. Note that most of the activities of a care plan
are manual. In current state of affairs, the activities that have been performed
are often recorded manually on paper. Our goal is to enable electronic recording
of executed activities in order to keep track of the execution traces of care plans.
Such information can then be used to monitor care plans. For example, com-
pliance of executions traces w.r.t. a care plan may be checked by reducing this
problem to the membership problem in the timed automata framework. Also,
the monitoring system may be used to detect executions that deviate from the
specification. More generally, a monitoring system can be enhanced with rules
that enable to trigger alerts when particular deviations are detected.

Grouping activities into interventions. Grouping together activities that can be
performed by a same type of actor (nurse, ...etc) and which occur in the same
time range is called Intervention. The concept of intervention is really important
in the sense that, it allows to reduce the waiting time between each activity in
order to avoid multiple movings at the patient’s home. The analysis of activities
to specify interventions is a complex task since it requires to ensure compatibil-
ity of time ranges by taking into account the duration of each activity (multiple
configurations are possible). It is also necessary to ensure that the grouped ac-
tivities can be made by a same type of actor. The composition operator can
be modified in order to incorporate the interventions in the computed car plan
automaton (the obtained automaton is called interventions automaton). This is
achieved by modifying the activity automaton in order to take into account the
Intervention state. In addition, a specific clock variable, denoted Tmax, is added
to control the idle time between the activities within the same intervention. In
fact, the value of Tmax can be used as a parameter that can be defined by the
coordinator and given as input to the composition operator to compute an inter-
ventions automaton. It is necessary to add an additional rule in the definition of
the composition operator to take into account the new state intervention state.
The rule is defined as follows: {((s1, s2), a, φ, λ, (s′1, s′2)): ((s1, a, φ1, λ1, s

′
1)∈ T1,

s2=s′2, s2 ∈ W/E, s1 ∈ Int) or ((s2, a, φ2, λ2, s
′
2) ∈ T2, s1=s′1,s1 ∈ W/St, s2

∈ Int }.

Formal Modeling and Analysis of Home Care Plans 501

5 Discussion

We described in this paper, an approach to generate formal specifications of
home care plans, expressed as timed automata, from a set of high level and user-
oriented abstractions. We briefly discussed then how verification and monitoring
of the resulting care plan can be handled using existing techniques and tools. The
paper focuses on specific pattern (i.e., the relative days pattern). An extension
of this work to the other patterns is described in [8].

Our specification language can easily be extended in order to increase its ex-
pressivity and usability. Extensions are performed by introducing other patterns
for defining elementary temporal expressions. For example, patterns such as n
times per day or per week, would be useful in a medical context.

In this study we considered only the activities of a single care plan relative
to one patient. We intend to combine care plan automata to allow the planifica-
tion of the interventions of several patients. It is necessary to take into account
movements between patient homes and availability of human resources. Some
works [9,11] have already highlighted the interest of automata for the activities
planification. But in these works automata are directly designed by experts. In
our approach, automata would result from high-level specifications produced by
the administrator users.

References

1. Alur, R.: Timed automata. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS,
vol. 1633, pp. 8–22. Springer, Heidelberg (1999)

2. Alur, R., Dill, D.: A theory of timed automata. TCS (1994)
3. Alur, R., Henzinger, T.: Logics and models of real time: A survey. In: de Bakker,

J.W., Huizing, C., de Roever, W.-P., Rozenberg, G. (eds.) REX 1991. LNCS,
vol. 600, pp. 74–106. Springer, Heidelberg (1992)

4. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)

5. Bérard, B., Petit, A., Diekert, V., Gastin, P.: Characterization of the expressive
power of silent transitions in timed automata. Fundam. Inf. (1998)

6. Bouet, M., Gani, K., Schneider, M., Toumani, F.: A general model for specifying
near periodic recurrent activities - application to home care activities. In: e-Health
Networking, Applications Services (Healthcom) (2013)

7. Dadam, P., Reichertand, M., Kuhn, K.: Clinical workflows - the killer application
for process-oriented information systems? Business (2000)

8. Gani, K., Bouet, M., Schneider, M., Toumani, F.: Modeling home care plan. Rap-
port de recherche RR-14-02, Limos, Clermont Ferrand, France (2014)

9. Abdeddäım, Y., Maler, O.: Job-shop scheduling using timed automata. In: Berry,
G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 478–492. Springer,
Heidelberg (2001)

10. Menezes, A.L., Cirilo, C.E., de Moraes, J.L.C., de Souza, W.L., do Prado, A.F.:
Using archetypes and domain specific languages on development of ubiquitous ap-
plications to pervasive healthcare. IEEE Computer Society (2010)

11. Paneka, S., Engella, S., Strsberg, O.: Scheduling and planning with timed au-
tomata. ISPSE, Elsevier (2006)

Effort Analysis Using Collective Stochastic

Model

Vugranam C. Sreedhar

IBM TJ Watson Research Center,
Yorktown Heights, NY, 10598, USA

vugranam@us.ibm.com

Abstract. In this paper we consider the problem of work order (WO)
arrivals and time spent on work orders in service delivery to derive the
asymptotic behavior of a strategic outsourcing contract. We model both
the work order arrivals and time spent on the work orders, also known
as effort, as a collective stochastic process. We use the resulting model
to derive the probability that a contract will exceed the allocated budget
for resolving work orders, and also to calculate the staffing requirement
for resolving work orders.

Keywords: Collective Stochastic Model, Poisson Process, Renewal Pro-
cess, Workload, Effort, Service Delivery.

1 Introduction

Strategic outsourcing (SO) happens when one company outsources part of its
business to another company. A service provider and a service consumer nego-
tiate a contract that outlines different kinds of work that needs to be done in
terms of managing the consumer’s business. A strategic outsourcing company,
such as IBM, manages Information Technology (IT) infrastructure and applica-
tions for many different companies. A breach of contract happens when services
are not delivered as negotiated in the contract. Very often, even when services
are delivered that are in par with what is negotiated in the service level agree-
ments (SLAs), a service consumer can quickly become unhappy when things go
wrong. There are many reasons why a contract can become troubled or risky, in-
curring loss to a service provider. A service provider strives very hard to provide
services that will increase profitability, customer loyalty and customer value. An
SO contract often include SLAs that when violated, the service consumer can
impose penalty on the service provider.

A large service provider, such as IBM, have service delivery centers to manage
several customers. The management of IT of a customer is broken down into
different kinds of work orders (WOs). A work order can be as simple as a request
to change someone’s password to as complex as migrating 100 physical servers
(along with the applications) to a cloud environment. Very often complex WOs
are broken down into smaller WOs that are easy to track and manage. Different
WOs take different amount of time to resolve. A key question is then to ask is:

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 502–509, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Effort Analysis Using Collective Stochastic Model 503

How much time (or effort) is needed, and hence how many full time employees
(FTEs) are needed to resolve work orders, say in a month or a year?

In this article we develop a collective stochastic model (CSM) to determine
the total time or effort, and hence the number of FTEs, needed to resolve work
orders over certain time period such as a month or a year. The main contribution
of this paper is to apply the well established theory of collective stochastic pro-
cess model, and in particular ruin theory developed in actuarial science, to model
services delivery system [7]. Modeling services delivery system is a non-trivial
exercise, and developing mathematical models will allow future researchers to
optimize and gain deeper insights into the complex behavior of services delivery
system. To the best of our knowledge, ours is the first comprehensive attempt
to leverage concepts from actuarial science and ruin theory to model portions of
services delivery system, and in particular, to model effort, contract loss proba-
bility, and staffing requirements.

2 Collective Poisson Model

Work orders arrive one at a time and each work order is independent of each
other. Let {N(t), t ≥ 0} denote the number of work orders that was processed
before time t. We assume that N(0) = 0, and N(t) ≥ 0, ∀t ≥ 0. In other words,
there are no work orders before t = 0, and there cannot be negative number
of work orders. Therefore, N(t) is non-decreasing in t. For s < t, we also have
N(t)−N(s) equals the number of work orders in the time interval (s, t]. We can
now define the nth work order arrival as Tn = inf{t ≥ 0 : N(t) = n} and the
inter-arrival time of work order as An = Tn − Tn−1. The model described above
captures the basic set of assumptions needed to describe a work order arrivals.
It is important to keep in mind that N(n), Tn, and An are all random variables
and for n ≥ 0, they form a stochastic process.

A (homogeneous) Poisson process is a very simple stochastic process that has
two important properties: independence property and stationary property. The
independence property states that for ∀i, j, k, 0 ≤ ti ≤ tj ≤ tk, N(tj) − N(ti)
is independent of N(tk) −N(tj). In other words, the number of events in each
disjoint interval are independent of each other. The stationary property states
that ∀s, t, 0 ≤ s < t, h > 0, N(t)−N(s) and N(t+ h)−N(s+ t) have the same
distribution.

A homogeneous Poisson is too restrictive when we include the time it takes
to resolve a work order. We next assume that the time it takes to resolve a
work order, that is, the effort, itself is a random variable. We use Collective
Poisson Process to model the aforementioned situation. A stochastic process
{X(t), t ≥ 0} is called a collective Poisson process if it can be represented as
follows:

S(t) = C1 + C2 + . . . CN(t) =

N(t)∑
i=1

Ci, t ≥ 0 (1)

504 V.C. Sreedhar

where {N(t), t ≥ 0} is a Poisson process and C1, C2, . . . CN(t) are iid random
variables and are independent of {N(t), t ≥ 0}. Here Ci represents the effort or
time spent on a work order. The total effort during the period (0, t] is then given
by S(t).

3 Renewal Process Model

In this section we extend the Poisson process by assuming the inter-arrival times
for work order arrival using Renewal Process [8]. Let {An, n > 0} be a sequence
of random variable representing the inter-arrival times of work orders, and let
Tn+1 = Tn+An be the arrival times of work orders. We define a renewal process
for {N(t), t ≥ 0} so that

N(t) = max{i ≥ 0 : Ti ≤ t} (2)

= min{i ≥ 0 : Ti+1 > t} (3)

To ensure that the work orders do not all collapse at Ai = 0, we also assume
that P (Ai = 0) < 1. Once again we assume both the independence and station-
ary properties for work order arrivals. It can easily be shown that N(t) as defined
by Equation 2 cannot be infinite for some finite time t [8]. In renewal process the
inter-arrival times An is distributed with a common distribution function FA,
and FA(0) = 0 and Tn = 0. The points {Tn} are called the renewal times. Notice
that the function FA is a Poisson distribution function for Poisson process. Let
us assume that the distribution function FA has mean μ, one can then show the
following result:

lim
t→∞

N(t)

t
=

{
μ−1, if μ < ∞
0, if μ = ∞ (4)

Recall that with collective Poisson process it was simple to derive a model
for aggregated work order (see Equation 1). On the other hand it is almost
impossible to determine the distribution FA for renewal process {N(t), t ≥ 0}. So
we use the central limit theorem to get an approximate work order distribution.
Let 0 < V ar[Ai] < ∞ and μ = E[Ai], then ∀x ∈ �

lim
t→∞P

(
N(t)− tμ−1

√
ct

)
= Φ(x) (5)

where c = μ−3V ar[Ai], and Φ(x) is the standard normal distribution function.
The above results allows us to look for E[N(t)] for which we can use renewal
function. We then define the renewal function as the average number of renewals
in the interval (0, t] as M(t) = E[N(t)] + 1.

Let F (k) denote the k-fold convolution of FA, which is the underlying dis-
tributions of the renewal process {N(t)}. Since {N(t) ≥ k} = {Ak ≤ t} for

Effort Analysis Using Collective Stochastic Model 505

k = 1, 2, . . . we can derive the following result relating the mean value and the
distribution.

M(t) = 1 +

∞∑
k=1

P (N(t) ≥ k)

= 1 +
∞∑
k=1

P (Ak ≤ t)

=

∞∑
k=0

F
(k)
A (t) (6)

The mean or the expected number of renewals M(t) is a non-decreasing and
continuous on � and it uniquely determines the distribution FA. The renewal
function for Poisson process is λt+1. We can now extend the collective Poisson
process model (Equation 1) to collective renewal process model by assuming
N(t) is a renewal process. In actuarial science, the collective renewal process is
often called as the Sparre Anderson Model [9].

4 Effort Size Distribution

In this section we will address the random nature of work order effort size.
Recall that when a system administrator (SA) works on a work order, he or
she will spend some amount time to resolve the issue related to the work order.
The amount of time spent on a work order, called the effort, is itself a random
variable. The effort size depends on various factors including the complexity of
the work order, SA experience, etc. To simplify the presentation we will assume
effort to include all of these marginal costs, and use the term effort size to be
the representative random variable.

We will focus on two kinds of distributions for effort size. First one is the Light-
Tailed Distribution (LTD) and the second one is the Heavy-Tailed Distribution
(HTD). The tail of a distribution F (x) is defined as F̄ (x) = 1 − F (x), which
is nothing more than the upper part of the distribution. It is the tail of the
distributions that dictates that governs both the magnitude and the frequency
of extreme events. The light-tail distribution has more “mild” form of extreme
events, whereas the heavy-tail distribution has more “heavier” form of extreme
events.

A distribution F (x) is called a light-tailed distribution if there exits constants
λ > 0, a > 0 so that F̄ (x) ≤ ae−λx. Light-tailed distribution have “nice” prop-
erties that do not put service delivery in greater risk of contract loss when claim
size exceeds the budgeted. Exponential distribution with λ > 0, Gamma distri-
bution with α > 0, β > 0, and Weibull distribution with β > 0, τ ≥ 1 are some
examples of light-tailed distribution [8].

A distribution F (x) is called a heavy-tailed distribution if there exits con-
stants λ > 0, a > 0 so that F̄ (x) > ae−λx. We can also express heavy-tailed (and
hence light-tailed) distributions using properties of moment generating functions.

506 V.C. Sreedhar

A distribution function F (x) is a heavy-tailed distribution if its moment gen-
erating function Mx(t) = E[etx] is infinite ∀t > 0. Pareto distribution with
α > 0, λ > 0 and Weibull distribution with β > 0, 0 < τ1 are examples of heavy-
tailed distribution. Even though claim size of work orders cannot be infinite, it
is possible for claim sizes to exceed the budget size, which can eventually lead
to troubled contracts.

5 Contract Loss Probabilities

In the previous two sections we developed models for WO arrivals and WO effort.
In this section we will combine the two models to calculate the probability that a
contract will exceed the allocated budget for resolving work orders.1 The Contract
Loss Probability (CLP) gives a good indication of the health of a contract. This
quantity can be used for staffing decision, resource allocation, staff training, and
work order dispatch optimization.

In a typical SO contract during engagement phase, the customer environment
is “discovered” and “analyzed” for sizing the cost of the contract. Various factors,
such as the number of servers, types of servers, number of historical tickets that
were generated and resolved, management process, etc., are used to determine
the cost of the contract. A typical cost model include unit price such as cost
per server per month. The way these unit prices are computed is more of an art
than science. Productivity factors, market competition, economy of scale and
other external factors are also incorporated into the pricing or cost model. Once
a contract is signed, service provider allocate quarterly or monthly budget for
different services of the contract and when operational cost exceeds the allocated
budget, the contract is considered to be “troubled” and management systems
are put in place to track the services.

Let us assume that each client account has a periodic (say, quarterly) budget
q(t) = rt, which is the budget rate, and so q(t) is deterministic. We can then
define the following contract loss process: Z(t) = a+ rt− S(t), t ≥ 0, where a is
some initial base budget allocated for resolving work orders. We can see that if
Z(t) < 0 for some t ≥ 0, then we have a contract loss for that time period, that
is, effort spent exceeds the allocated budget for resolving work orders. Assuming
collective Poisson process, a minimum requirement in determining the contract
budget rate r is then given by r > λE[S], where λ is the Poisson WO arrival
rate. The above condition is called the net profit condition. A safer condition
would be to include a safety factor ρ, so that c > (1 + ρ)λE[S].

We can define the contract loss time as τ0 = inf{t ≥ 0 : S(t) > 0}, and
the contract loss probability as φ(z) = P (τ0 < ∞|S(0) = z) = Pz(τ0 < ∞). If
we assume that X(t) is a collective Poisson process, we can then calculate the
contract loss probability φ(z) as a closed form solution by focusing on the tail

1 It is important to keep in mind that a contract will allocate budget for different
activities, and resolving work order is one of the major activities of a contract. In
this article we will just focus on budget for resolving work orders.

Effort Analysis Using Collective Stochastic Model 507

end of the claim size distribution. Let ψ(t) = 1 − φ(t) denote the tail of the
contract loss probability, then

ψ(t) =
θ

1 + θ

∞∑
n

1

(1 + θ)n
F ∗(n)(t), t ≥ 0 (7)

where F ∗(n) is the n-fold convolution of the distribution function F (x), and θ =
(r
λμ −1), μ = E(Ci), r is the budget rate, and λ is the Poisson arrival rate of the

work orders. Now when the effort sizes are (light-tailed) exponentially distributed
P (Ci > c) = e−c/μ, we can derive the following contract loss probability:

ψ(t) =
1

1 + θ
exp

(
− θ

(1 + θ)μ
t

)
, t ≥ 0 (8)

Notice that we made two assumptions when deriving the above contract loss
probability: (1) work order arrivals follows a Poisson process, and (2) effort or
time spent on work orders follows (light-tailed) exponential distribution.

6 Pricing and Staffing Requirements

A key problem in service delivery is determining the staffing requirement for
handling work orders. We make a simplifying assumption that a staff or a sys-
tem administrator can work one work order at a time, with no multi-tasking
or context switching. Let Π(S) ∈ � denote the budget, and hence staffing re-
quirement, to handle work order effort S. We can then identify the following
properties for calculating the staffing budget for an account:

1. Π(S) ≥ E[S]. In this case we have nonnegative effort loading.

2. If S1 and S2 are independent, then Π(S1 + S2) = Π(S1) +Π(S2)

3. Π(aS) = aΠ(S), and Π(S + a) = Π(S) + a.

4. Let M be the finite maximum effort, then Π(S) ≤ M .

There are several methods for calculating the staffing budget. The Expected
Value principle can be stated as follows [6]: Π(S) = (1 + a)E[S], where a is
a safety loading factor. The expected value budget is very simple, but it does
not take into account the variability in the effort. We can extend this model to
include variability as follows: Π(S) = E[S] + aV ar[S]

One issue with the above Variance principle is that different delivery center
may have custom staffing budget, depending on local labor policy, pay scale,
monetary values, etc. To handle such changes to loading factor, we can use the

following modified Variance principle: Π = E[S] + aV ar[S]
E[S]

508 V.C. Sreedhar

7 Discussion and Related Work

Our focus in this paper is not to develop a new compound stochastic process
model, but to apply concepts from ruin theory in actuarial science for modeling
IT service delivery system, and in particular to model “effort” needed to manage
a customer IT environment, and to understand under what condition a contract
can become troubled. To the best of our knowledge, ours is the first work that
models IT service delivery leveraging ruin theory from actuarial science. A lot
more work is needed to fully model IT services delivery system. Please refer to
the technical report that explains in details on modeling effort, contract loss
probability, and staffing requirements, beyond what is explained in the current
article [10].

IT service delivery is a complex process with many intricate processes, man-
agement systems, people’s behavior, and tool sets. Diao et al. proposed a mod-
eling framework for analyzing interactions among key factors that contribute to
the decision making of staffing skill level requirements [3,4]. The authors develop
a simulation approach based on constructed and real data taking into considera-
tion factors such as scheduling constraints, service level constraints, and available
skill sets. The area of optimal staffing with skill based routing is a mature area.
Analytical methods are typically complex and do not capture full generality of
real IT service delivery systems. The main focus of our paper is not to model the
full generality of IT service delivery system. We focus on developing a compound
stochastic process model to model effort needed to handle service requests. We
focus on understanding the underlying stochastic model for when a contract can
become “troubled”.

Staffing problem based on queuing theory is old problem and several solutions
have been proposed to model in the past. The staffing problem can be simply
stated as the number of staff members or agents required to handle work orders,
such as calls in a call center, as a function of time. Skill based routing problem is
an extension of staffing problem where skills set are incorporated to determine
which staff skill is needed as a function of time [5]. Staffing problem are typically
modeled a queuing problem rather than as a compound stochastic process. Coban
models staffing problem in a service center as a multi-server queuing problem
with preemptive-resume priority service discipline and uses Markov chain to
model [2].

Buco et al describe a method where in they instrument a management system
to capture time and effort when SAs work on work orders [1]. They collect this
information from multiple SAs working on different kinds of WOs. The collected
data is a sample of the universe of IT service environment. One can use the
sampled data to estimate the staffing requirement of a contract.

8 Conclusion

IT services delivery system is a complex system. There has been very little work
done to model such a system, mostly due to lack of mathematical maturity in

Effort Analysis Using Collective Stochastic Model 509

this field. Fortunately, actuarial science and ruin theory provides a foundational
mathematics that can be applied to modeling IT services delivery system. We
have made several simplifying assumptions such as WOs are independent of each
others, all WOs are the same, etc. We are currently refining the mathematics
to relax some of these simplifying assumptions. The resulting analytical model
will become even more complex, and so can use a combination of estimators and
Monte Carlo simulation for understanding the asymptotic behavior of a contract.

References

1. Buco, M., Rosu, D., Meliksetian, D., Wu, F., Anerousis, N.: Effort instrumentation
and management in service delivery environments. In: International Conference on
Network and Service Management, pp. 257–260 (2012)

2. Coban, E.: Deterministic and Stochastic Models for Practical Scheduling Problems.
Ph.D. thesis, Carnegie Mellon University (2012)

3. Diao, Y., Heching, A., Northcutt, D., Stark, G.: Modeling a complex global service
delivery system. In: Winter Simulation Conference, pp. 690–702 (2011)

4. Diao, Y., Lam, L., Shwartz, L., Northcutt, D.: Sla impact modeling for service
engagement. In: International Conference on Network and Service Management,
pp. 185–188 (2013)

5. Gans, N., Koole, G., Mandelbaum, A.: Telephone call centers: tutorial, review and
research prospects.Manufacturing andServiceOperationsManagement 5(2), 79–141
(2013)

6. Geiss, C.: Non-life insurance mathematics (2010),
http://users.jyu.fi/~geiss/insu-w09/insurance.pdf

7. Rolski, T., Schmidli, H., Schmidt, V., Teugels., J.: Stochastic Processes for Insur-
ance and Finance. Wiley (1999)

8. Ross, S.: A First Course in Probability. Pearson Prentice Hall (2006)
9. Sparre, A.: On the collective theory of risk in case of contagion between claims.

Transactions of the XVth International Congress of Actuaries 2(6) (1957)
10. Sreedhar, V.: Effort analysis using collective stochastic model. Tech. rep., IBM

Technical Report (2014)

http://users.jyu.fi/~geiss/insu-w09/insurance.pdf

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 510–517, 2014.
© Springer-Verlag Berlin Heidelberg 2014

A Novel Equitable Trustworthy Mechanism for Service
Recommendation in the Evolving Service Ecosystem

Keman Huang1, Yi Liu2, Surya Nepal3, Yushun Fan2, Shiping Chen3, and Wei Tan4

1 School of Computer Science and Technology, Tianjin University, Tianjin 300072, China
victoryhkm@gmail.com

2 Department of Automation, Tsinghua University, Beijing 100084, China
{yi-liu10,fanyus}@mails.tsinghua.edu.cn

3 CSIRO, Digital Productivity and Services Flagship, Australia
surya.nepal@csiro.au

4 IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA
wtan@us.ibm.com

Abstract. Trustworthy service recommendation has become indispensable for
the success of the service ecosystem. However, traditional trustworthy methods
somehow overlook the service equality which result into a “rich-get-richer” ef-
fect and become a barrier for the novice services to startup and grow. This pa-
per addresses this problem through a novel equitable trustworthy mechanism,
which distinguished the difference between the novice and mature services over
the trustworthy service recommendation. The results based on the real-world
service ecosystem, i.e. ProgrammableWeb, show that our method achieves a
better performance in equality guarantee and white-washing prevention. Thus it
can promote the service ecosystem’s healthy growth in a fair manner.

Keywords: Evolving Service Ecosystem, Equality Trustworthy Recommenda-
tion, Equality Guarantee, White-washing Prevention.

1 Introduction and Related Work

With the wide adoption of Service Oriented Architecture (SOA), more and more ser-
vices are available over the Internet. Many trustworthy recommendation approaches
[1-7] have been proposed to help the developers to select the desirable services
against many other alternatives. Though these approaches have been successful in
addressing this information overload problem to certain extent, most of them some-
how overlook the equality and fairness in the evolving service ecosystem. Firstly, the
assignment of initial trust value to new services, which is known as the trust boot-
strapping issue [8], did not get much attention while it will affect the robustness of the
trust model. Additionally, as only the services with high trust value are recommended
while the new services may not be able to win a consumer’s trust to build the reputa-
tion, these traditional trustworthy mechanisms become barrier for the use of new ser-
vices and result into a “rich-get-richer” effect in the system [5]. Thus how to provide
global equality for both existing services and newcomers becomes important for the
healthy growth of service ecosystem.

 A Novel Equitable Trustworthy Mechanism for Service Recommendation 511

Equality, also known as fairness, has been studied in many disciplines [9]. For the
service ecosystem, we define equality as both existing services and newcomers have a
fair chance of being selected and building trust. Some try to offer fairness from the
bootstrapping aspect [8,10-12]. However, it is non-trivial to assign an equitable boot-
strapping trust value for the new services. Actually, the problem of the unfairness in
the traditional trustworthy methods arises from the situation that the new services
have to compete with the ones which have built trust over time as soon as they enter
the ecosystem. Thus the basic idea here is to split all the services in the same domain
into the novice service queue and the mature service queue so that the new services
only compete with new ones until they grow matured. Difference mechanisms for the
novice and mature services over the four-step trustworthy service recommendation
(trust bootstrapping, service organization, recommendation generation and trust up-
dating) need to be designed to distinguish the difference between them. Hence the
major contributions of this paper can be summarized as follows:

• The formal definition of equality guarantee in the evolving service ecosystem is
presented.

• A four-phase equitable trustworthy recommendation model is proposed to guaran-
tee the global fairness.

• The empirical experiments shows that the proposed approach can achieve a better
performance in equality and promote the healthy growth of the ecosystem.

The remainder of this paper is organized as follows. Section 2 describes the formal
definition of equality guarantee. Section 3 presents the proposed four-phase equitable
trustworthy recommendation model. Section 4 reports the experimental result. Section
5 concludes the paper.

2 Equality Guarantee

Equality measures are based on the proportions of shared resources in the system. In
the service ecosystem, services with the similar functionality will compete with each
other to gain the opportunity of being selected by consumers. As a consequence, in
this paper, the resource in service ecosystem can be defined as the opportunity of
being selected in the composition.

Equality Metric:
Gini Index has been widely used for fairness measure [13]. Here we reuse Gini
Index as service equality metric in a service ecosystem. Suppose S is the set of servic-
es in the service ecosystem. According to the number of resources allocated to each
service, they can be divided into x subset. Let r iS = present the services with i re-

source, then our Gini index is defined as:

 2

1

| |
1 ()

| |

x r i

i

S
Gini

S
=

=
= − (1)

512 K. Huang et al.

Here the function | |∗ refers to the number of item in any given set. Additionally,

in a similar manner to how Shannon defines information, the entropy-based fairness
[14] in the service ecosystem can be defined as:

1

| | | |
log()

| | | |

x r i r i

i

S S
EnFair

S S
= =

=
= − (2)

As the traditional trustworthy recommendation approaches may harm usage diver-
sity and become the entry barrier for the new services, here we also considered the
recommendation diversity which is defined as follows:

| |

| |

RS
ReDi

S
= (3)

Here RS refers to all the unique services which are recommended to the consumers.

White-washing Prevention:
White-washing phenomenon means that services may re-enroll into the ecosystem as
new services to white wash their historical records. Suppose ()iARB s refers to the

allocated resource number of service is if it keeps the same behavior as before,

()iARA s refers to the one after it white-washes its historical information. Thus we can

define the white-washing prevention effect for this service as follows:

()

()
()

i
i

i

ARB s
WWP s

ARA s
= (4)

Then the white-washing prevention effect for the service ecosystem can be consi-
dered as the average of the white-washing prevention effect for each service:

()1

| | ()
i

i

s S i

ARB s
WWP

S ARA s∈
= (5)

If 1WWP > , the system can prevent the white-washing phenomenon. A larger
WWP indicates a better performance in white-washing prevention.

3 Equitable Trustworthy Recommendation Mechanism

In the evolving service ecosystem, new services are published into the ecosystem over
time and the initial trust value is assigned to each service. Then the services with
similar functionality are organized into the same service domain. In order to fulfill the
composition requirements raised by the consumers, the requirements will be decom-
posed into different domains and mapped to the related service domain. The candi-
dates will be selected from the domain and presented to the consumers. Finally, each
service will build its trust based on its usage and feedback. Hence the trustworthy

 A Novel Equitable Trustworthy Mechanism for Service Recommendation 513

service recommendation consists of the following four important steps: trust boot-
strapping, service organization, recommendation generation and trust updating. Notes
that the requirement decomposed and domain mapping are not included as they are
dealt in the same way for both novice and mature services. Hence our equitable trust-
worthy recommendation mechanism (ETRM) works in four steps as follows:

Trust Bootstrapping (TB):
The goal for the trust bootstrapping phase is to assign an initial trust value iniT to the

new services. This paper considers the following strategies:

Default-based Bootstrapping (DB):
The default-based bootstrapping strategy assigns a default trust value to the new ser-
vice [12]. The default value can vary between 0 and 1. If a low initial value is given,
this strategy turns out to be the punishing approach [11].

Adaptive Bootstrapping (AB):
The adaptive bootstrapping approach calculates the initial trust value based on the rate
of maliciousness in the system [8]. Instead of using the maliciousness rate, we
straightforwardly assign the new services with the average trust value in the system.

Service Organization (SO):
The services in each domain are organized into the novice and mature service queues.
Some novices are expected to build enough reputation and grow into matured. Hence,
we need to consider the migration rule to move a novice services into mature:

Migration Principle. Given the trust threshold matureT and the protection time-

window matureA , for the novice service ns , if () || ()mature matureT ns T A ns A≥ ≥ , then

migrate ns into the mature queue.

Here ()T ns refers to the service’s trust, ()A ns refers to the service’s age in the

ecosystem which means the time since it is enrolled into the system.
If the trust threshold is set lower than the initial trust value mature iniT T< or the pro-

tection-time-window is set as 0matureA = , then the organization strategy become the

same as the traditional trustworthy approaches. Hence, the traditional service organi-
zation strategy can be considered as a special case in our proposed model.

Recommendation Generation (RG):
For each requirement of a consumer for a particular functionality in a service domain,
the goal for a recommendation system is to generate k service candidates from the
service domain and then presented to the consumer. This task includes two steps:

Candidate Picking (CP):
In this step, q services with top q trust value in the mature services queue and the
other k-q services with top k-q trust value in the novice services queue are selected to

514 K. Huang et al.

generate the recommendation list. Obviously, the proportion of the mature services in
the recommendation candidates is adjustable to reflect an ecosystem’s principal and
business model. For example, if the system is conservative, q can be very big (even q
= k, where being equivalent to no novice services queue). If the system welcomes and
encourages new services, a smaller q would be selected, e.g., q = k/2.

Recommendation Presentation (RP):
Based on whether the q mature service candidates and the k-q novice service candi-
dates are merged together, two different presentation strategies (ps) to present the
recommendation list to the consumers can be offered:

• Single List Presentation Strategy (SLP): The mature service candidates and the
novice service candidates are merged into a single list. Thus it is “One Domain
One Recommend List”.

• Double List Presentation Strategy (DLP): The mature service candidates and the
novice service candidates are recommended to the consumer separately using two
lists for consumers to select. Thus it is “One Domain Double Recommend List”.

Trust Updating (TU):
The service’s trust is constructed based on its usage. Also as it has temporal sensitivi-
ty and the older perceptions gradually fade, it will evaporate over time. Hence, the
trust updating contains two operations:

Feedback Update (FU):
If a service is selected, it will receive a feedback rating from its consumers. Many
approaches have been proposed to calculate this feedback trust based on the user rat-
ings. Here we use a simple approach from our previous work. Suppose that in time
interval t , the feedback trust for a service is from its thj composition

,t jc is , ()t j iCT s , then its trust after ,t jc occurs is:

 , , 1 ,() (1) () ()t j i t j i t j iT s w T s w CT s−= − + × (6)

where [0,1]w = refers to the weight of the feedback trust which varies from 0 to 1.

Evaporation Update (EU):
The empirical study shows that the service’s trust is temporal sensitivity and will
evaporation over time [5]. Similar to our previous work [4], the evaporation factor can
be obtained via the following equation:

 1() ()t i t iT s T s e λ−
−= × (7)

where ()t iT s refers to the service’s trust at the end of time interval t and λ is the

parameter to control the evaporation speed. Obviously, we can use different λ for
mature and novice services so that the trust values will evaporate in a different speed.

 A Novel Equitable Trustworthy Mechanism for Service Recommendation 515

Hence we note mλ as the evaporation speed control parameter for mature services

and nλ for novice services.

4 Experiments Based on ProgrammableWeb

To examine the performance of the proposed approach and make the simulation expe-
riment fitting with the actual data, the same to our previous work [4], we obtain the
data set from ProgrammableWeb, by far one of the largest online service ecosystem,
which contains 7077 services and 6726 compositions over 86 time intervals. Each
service contains the information such as name, domain and publication date. Each
composition contains the information such as name, creation date, the invoking ser-
vices’ domain list and its visited number as well as the user rating which are used to
calculate the composition’s feedback trust for the invoking services.

As discussed before, by setting the protection-time-window as 0, the proposed
ETRM will reduce to the traditional trustworthy model. The recommendation candi-
dates will all be mature and the presentation strategy will only be SLP. Also, only one
evaporation speed control parameter will be considered. Thus, we can get the tradi-
tional trustworthy models by setting 0matureA = , q k= , ps SLP= , m nλ λ= . Hence

based on the different bootstrapping strategies, we consider the following baselines:

• Tradition Trustworthy with Default Initial Trust

The bootstrapping strategy is set as DB and the initial value iniT is given. If a high

initial value is used, 0.7iniT = , we get the None Approach [12], named as nTTDIT; If

a low initial value is used 0.3iniT = , we get the Punishing Approach [11], named as

pTTDIT.

• Tradition Trustworthy with Adaptive Initial Trust

The bootstrapping strategy is set as AB and the average trust value in the communi-
ty is used as the initial trust value. We get the Adaptive Approach [8], named as TTAA
in this paper.

Result and Discussion

Equitable Guarantee
First of all, we consider the three ETMs which have different parameter combina-
tions. Here, for nETMDIT and pETMDIT, we set the 0.2mature iniT T= + so that the

novice services can move to the mature queue after they build their trust. For the
ETMAA with the adaptive initial strategy, we just use the average trust value over
time as the threshold, which is 0.7 in our experiment. Then we set 15matureA = to

make sure the length of the mature and novice queue in the system is comparable.
The evaporation speed for both mature and novice services are set as 0.005.

516 K. Huang et al.

White-washing-prevention
In order to simulate the white-washing prevention phenomenon, given a time inter-
val wt , all the mature services in the ecosystem are republished. Each service’s status

is set as novice and the initial trust value are assigned to these services. Then, the total
selected frequency of these services after white-washing is collected and the
WWP can be calculated. Here, we set wt as the time interval when the number of the

published compositions is half of the total number over the whole period. In order to
remove the random effect, we run 5 round simulations for each models and the aver-
age WWP is used.

Table 1. Equitable Guarantee Performance Comparision

None Punishing Adaptive

nTTDIT nETMDIT pTTDIT pETMDIT TTAA ETMAA

Gini 0.8394 0.5785 0.8453 0.5883 0.8429 0.6801

EnFair

0.6724 0.8755 0.6687 0.9057 0.6706 0.8088

ReDi 0.1573 0.5335 0.1573 0.4965 0.1573 0.5184

WWP 1.1407 1.3355 1.1439 1.4069 1.1523 1.2124

From Table. 1, we can conclude that the three ETRMs gain better performance
than the traditional trust methods. They achieve a 19.31%~31.08% reduction in Gini
index, 20.61%~30.21% increases in entropy-based fairness and 215.64%~ 239.16%
diversity improvements. This is because of the separation between novice and mature
services that makes the novice services gain an equitable opportunity to be recom-
mended and selected by the consumers for the compositions. Also all the three
ETRMs gain a 5.22%~22.99% higher WWP than the traditional methods. It means
that the white-washing services in our ETRMs g a lower possibility to be reused.

5 Conclusion

The trustworthy service recommendation has become indispensable for the success of
a service ecosystem. However, traditional approaches overlook the service equality
for the usage of services, which harms the extension and growth of the service ecosys-
tem. To our best knowledge, this is the first work to: (a) identify the service equality
problem in the service ecosystem as well as the evaluation metrics including the
equality measurement and the white-washing-prevention effect; (b) propose an equit-
able trustworthy mechanism which distinguishes the difference between mature and
novice services to ensure the equality. The empirical experiments based on Program-
mableWeb show the effectiveness and usefulness of the proposed approach for equali-
ty guarantee and white-washing-prevention.

In the future, we will further work on the affection of the parameter combinations to
the performance and then construct the mathematical model for the equitable trustwor-
thy model as well as the approach to optimize the evolution of service ecosystems.

 A Novel Equitable Trustworthy Mechanism for Service Recommendation 517

Acknowledgement. This work is partially supported by the National Natural Science
Foundation of China under grant No. 61373035.

References

1. Wang, X., Liu, L., Su, J.: Rlm: A general model for trust representation and aggregation.
IEEE Transactions on Services Computing 5(1), 131–143 (2012)

2. Malik, Z., Akbar, I., Bouguettaya, A.: Web Services Reputation Assessment Using a
Hidden Markov Model. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave
2009. LNCS, vol. 5900, pp. 576–591. Springer, Heidelberg (2009)

3. Yahyaoui, H.: A trust-based game theoretical model for Web services collaboration.
Knowl.-Based Syst. 27, 162–169 (2012)

4. Huang, K., Yao, J., Fan, Y., Tan, W., Nepal, S., Ni, Y., Chen, S.: Mirror, mirror, on the
web, which is the most reputable service of them all? In: Basu, S., Pautasso, C., Zhang, L.,
Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 343–357. Springer, Heidelberg (2013)

5. Huang, K., Fan, Y., Tan, W.: Recommendation in an Evolving Service Ecosystem Based
on Network Prediction. IEEE Transactions on Automation Science and Engineering 11(3),
906–920 (2014)

6. Sherchan, W., Nepal, S., Paris, C.: A Survey of Trust in Social Networks. ACM Comput.
Surv. 45(4), 41–47 (2013)

7. Malik, Z., Bouguettaya, A.: Rateweb: Reputation assessment for trust establishment
among web services. The VLDB Journal—The International Journal on Very Large Data
Bases 18(4), 885–911 (2009)

8. Malik, Z., Bouguettaya, A.: Reputation bootstrapping for trust establishment among web
services. IEEE Internet Computing 13(1), 40–47 (2009)

9. Seiders, K., Berry, L.L.: Service fairness: What it is and why it matters. The Academy of
Management Executive 12(2), 8–20 (1998)

10. Yahyaoui, H., Zhioua, S.: Bootstrapping trust of Web services based on trust patterns and
Hidden Markov Models. Knowledge and Information Systems 37(2), 389–416 (2013)

11. Zacharia, G., Moukas, A., Maes, P.: Collaborative reputation mechanisms for electronic
marketplaces. Decis. Support Syst. 29(4), 371–388 (2000)

12. Marti, S., Garcia-Molina, H.: Taxonomy of trust: Categorizing P2P reputation systems.
Computer Networks 50(4), 472–484 (2006)

13. Yitzhaki, S.: On an extension of the Gini inequality index. International Economic
Review, 617–628 (1983)

14. Elliott, R.: A measure of fairness of service for scheduling algorithms in multiuser
systems. In: IEEE Canadian Conference on Electrical and Computer Engineering, pp.
1583–1588 (2002)

Semantics-Based Approach for Dynamic

Evolution of Trust Negotiation Protocols
in Cloud Collaboration

Seung Hwan Ryu1,�, Abdelkarim Erradi1, Khaled M. Khan1, Saleh Alhazbi1,
and Boualem Benatallah2

1 Department of Computer Science & Engineering,
Qatar University, 2713, Doha, Qatar

{deepryu@gmail.com, erradi,k.khan,salhazbi@qu.edu.qa}
2 School of Computer Science & Engineering,

University of New South Wales, Sydney, NSW, 2051, Australia
boualem@cse.unsw.edu.au

Abstract. Many techniques for addressing trust negotiation issues is lit-
tle concerned with managing the dynamic evolution of trust negotiation
protocols (policies), particularly in cases where there exist ongoing nego-
tiations when a protocol has been changed. We propose an approach that
automatically determines how consequences of changing a protocol affect
ongoing negotiations. In particular, our approach allows to capture the
semantics and intention of protocol changes, memorize and apply them
in effectively analyzing the impact of protocol changes on negotiations.

Keywords: Trust Negotiation, Semantics, Content, Evolution, Protocol.

1 Introduction

Collaboration environments have been widely adopted for diverse domains, from
scientific domains to end-user communities on the Web. Recently the resources
sharing among people in collaborative environments have been managed using
cloud computing platforms [1]. In cloud collaboration environments, making ac-
cess control decisions to resources managed in cloud platforms is a hard task
because of the size and dynamics of the users [2,3].

Trust negotiation has been proposed as a viable authorization solution for
addressing the issue [7,3]. A trust negotiation protocol1 describes a negotiation
process between negotiation parties, in the sense that it specifies which creden-
tials (e.g., digital versions of passports or credit cards) a service provider and
users should exchange for the users to access protected resources [6].

Although existing approaches for addressing trust negotiation issues have
made significant progress (see [3] for a recent survey), little work has been
done on the problem of dynamic protocol evolution, which refers to manag-
ing the ongoing negotiations when an existing protocol has been changed. In

� Most of the work was done when the author was as a postdoc at Qatar University.
1 In this paper we use “trust negotiation protocol” and “protocol” interchangeably.

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 518–526, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Semantics-Based Approach for Dynamic Evolution 519

(a) Old protocol P

Contributor

Course

Designer

discloseORCID

Assignment

Editor

discloseAC

Textbook

Editor

disclosePC

LectureSlide

Editor

disclosePC

discloseAC

discloseORCID

Exam

Designer

discloseRID

Reviewer

discloseRID

ORCID: Open Researcher

and Contributor ID

AC: Affilication Credential

PC: Position Credential

RID: Reviewer ID
* image from:

http://images.google.com

(b) Permissions-to-roles mapping

(c) Cloud resources

Role Operation(Resource)

CourseDesigner
Edit (courseOutlines)

Add(comments)

AssignmentEditor
Edit(assignments)

Read(comments)

… …

Reviewer
Edit (all materials)

Add(reviews)

Fig. 1. Protocol P for an education material co-authoring service in cloud collaboration
environments. Credentials are disclosed when exchanging messages.

dynamic collaborative environments, trust negotiation protocols can constantly
over time because the collaboration contexts change. To tackle the problem,
previous works [4,5] proposed techniques that analyze how ongoing negotiations
(instances) are impacted by protocol changes to determine the successful mi-
gration of negotiations, e.g., migration to a new protocol. For this, the authors
focused on protocol level constraints on the message (or credential) sequences
exchanged between negotiation parties. In the constraints, they have not con-
sidered the actual message contents exchanged in the message sequences.

What is missing is a technique that takes into account both the sequence of
messages and their contents as they are interdependent and interrelated. The
consideration of message contents between sequences would be beneficial for
improving the rate of successful replacements, which is critical in minimizing
discomfort and disruptions to active negotiations. In this paper, we extend the
previous works towards more comprehensive management of the dynamic pro-
tocol evolution. In particular, we make the following contributions:

– We present composite change operators that allow to express the semantics
behind applied changes, i.e., a changed message sequence is semantically
equivalent with an original one in terms of message contents (Section 3).

– We show how to enhance the change impact analyses of previous works by
considering the change semantics (Section 4).

– We present the promising results that show we could achieve up to 89% suc-
cessful migration improvement, compared with the prior works (Section 5).

2 Preliminaries

In what follows, we explain the protocol model for representing trust negotiation
protocols and then present an example scenario.

520 S.H. Ryu et al.

Contributor

Course

Designer

discloseORCID

discloseAC&PC

Textbook

Editor

LectureSlide

Editor

disclosePC

discloseAC

discloseORCID

Exam

Designer

discloseRID

Reviewer

discloseAC&RID

(a) Changed protocol P’ (b) Migration strategies

Migration Strategies Description

Continue Active negotiations can continue to run according

to the old protocol. However, in some cases, this

strategy could be inapplicable, e.g., when there are

security holes in the old protocol.

Migration to new

protocol

Active negotiations are migrated to the new

protocol.

Migration to temporary

protocol

Temporary protocols are defined to manage those

active negotiations for which the other strategies

are not applicable.

P: CourseDesigner.discloseAC().disclosePC().TextbookEditor

 P’: CourseDesigner.discloseAC&PC().TextbookEditor

Semantically equivalent sequences in protocols P and P’ ()

Syntactically different sequences in protocol P and P’ ()

P: ExamDesigner.discloseRID().Reviewer

P’:ExamDesigner.discloseAC&RID().Reviewer

(C) Relationships between sequences of P and P’

Fig. 2. Changed protocol P’ for the education material co-authoring service and some
migration strategies applicable to ongoing negotiations

2.1 Trust Negotiation Protocols Modeling

Following previousworks [4,6], wemodel protocols as a finite statemachine (FSM).
FSM consists of states and transitions. States represent the levels of trust that a
service provider establishes during its interaction with clients. As in [6], we map
permissions (privileges) for accessing certain resources (e.g., service operations) to
specific roles (e.g., researchers or administrators), instead of individual users, and
then map such roles to states. Thus, once a client reaches at a state, she can access
some resources with the role associated with the state. On the other hand, transi-
tions are triggered bymessages sent by clients to the provider. In our model, states
are labeled with an assigned role while transitions with a message, corresponding
to the invocation of a service operation.

2.2 An Example: Education Material Co-authoring Collaboration

Consider an education community in cloud collaboration environments. The
community users from different countries, such as lecturers, senior lecturers, and
professors, could collaboratively work with each other and share their knowl-
edge and experiences in preparing education materials (e.g., lecture slides, as-
sessments, online textbooks, etc). These education materials are (i) stored and
managed in the cloud resources, such as Google docs, Dropbox, etc; (ii) shared
and reused by the community users for their teaching purposes. The education
community provides an education material co-authoring service that consists
of several operations, which allow the collaborators to access the education re-
sources in the cloud. The collaborators can invoke different service operations,
based on the levels of trust established between the service provider and users.

Figure 1(a) shows a trust negotiation protocol for the co-authoring service.
The protocol P states that any user is initially in the Contributor state (role).
From there, after providing the ORCID (Open Researcher and Contributor ID),

Semantics-Based Approach for Dynamic Evolution 521

RemoveState

AddTransition

MergeTransition SplitTransition

AddSequentialTransition

MessageSwap

RemoveSequentialTransition

Level 2: Composite change operators

Level 1: Elementary change operators

RemoveTransition

AddState

AddTransition

MapRole

RemoveTransition

AddState

AddTransition

RemoveState

AddTransition
RemoveTransition

RemoveTransition’

AddTransition

AddTransition’

Catching the semantics and intention

for domain-specific changes

Fig. 3. Layered Protocol Change Operators

lecturers can proceed to state TextbookEditor by sending their position credential
(e.g., User.position=Lecturer) and affiliation credential (e.g., User.organization=
QU), while senior lecturers proceed to the same state by sending the credentials
in the opposite order. In addition, professors can proceed to state ExamDesigner
by disclosing their ORCID. Finally, the contributors disclose the reviewer ID
(RID) to proceed to state Reviewer and then can access and review all the edu-
cation materials by invoking the “Edit(all materials)”.

3 Layered Change Operators for Evolving Protocols

This section describes two layered protocol change operators, particularly the
operators used for catching the semantics and intention of protocol changes.

3.1 Elementary and Composite Change Operators

We distinguish two types of change operators, based on different levels of gran-
ularity of changes: elementary and composite change operators (Figure 3). The
elementary change operators are used for generic and fine-granular protocol
changes, e.g., adding a state or a transition. Such operators have been sug-
gested in the past [4,6]. However, it is “not” possible to represent the semantics
and intention behind applied changes using the operators. To fill this gap, we
propose the composite change operators that can be applied for making some
domain or service-specific changes. For example, if a protocol manager swaps
the order in which she receives credentials in a given protocol, she still wants to
make sure that both credentials have been received, regardless of their disclosed
sequence. The composite change operators are derived by grouping elementary
change operators that are executed in sequence.
MergeTransition (State s, State t, Messagesm1, ...,mn): This operator merges
n transitions with messages m1, ...,mn respectively into a single transition with
one message m. It can be applied when (i) a protocol manager wants to modify
a message sequence in protocol P, which consists of several messages required
to proceed from state s to state t, into another sequence in protocol P’, which
consists of only one single message; (ii) she regards the sequences as equivalent,
from the semantic point of view, due to their contents.

522 S.H. Ryu et al.

Example 1. Consider the old protocol (Figure 1(a)) and the new protocol (Fig-
ure 2(a)). Assume that a protocol manager changes the sequence (CourseDesigner.
discloseAC().disclosePC().TextbookEditor) of protocol P to the sequence (CourseD
esigner.discloseAC&PC().TextbookEditor) of protocol P’ by merging two messages
into one message. She applies the composite operator “MergeTransition” to ex-
press the intention on that the two sequences are equivalent semantically.

SplitTransition (State s, State t, Message m): This operator splits a transition
with message m into n transitions with m1, ...,mn. It is applied in the opposite
case of the situation in which the “MergeTransition” operator is applied.
AddSequentialTransition(State s, State t, Message sm): This operator adds
sequentially a transition with message sm between source state s and target
state t. It could be used when protocol P ′ requires an extra message from s to
t, which protocol P does not support.
RemoveSequentialTransition (State s, State t, Message sm): This operator
removes a sequential transition with message sm between source state s and
target state t. It is applied when protocol P needs to receive two messages for
clients to access target state t from source state s while protocol protocol P ′

only requires one of them to grant the access to the same state.
MessageSwap (State s, State t, Messagem1, Messagem2) This operator swaps
two messages m1 and m2 between two states s and t. It is applied in situations
where, though the order of exchanged messages is swapped, a protocol manager
only makes sure that two credentials has been submitted, regardless of the order.

4 Analysis Considering Both Message Sequences and
Their Contents

In contrast to the previous works that only rely on the old and new protocols
for syntactically comparing message sequences in the change impact analysis, we
exploit the semantic equivalence between sequences in terms of message contents.

4.1 Compatibility Properties as Migration Decision Points

As requirements for determining whether an ongoing negotiation is migrateable,
we identify two different degrees of compatibility: sequence and credential com-
patibility. Sequence compatibility is used for detecting the syntactic equivalence
between two message sequences, irrespective of their message contents (i.e., dis-
closed credentials), while the credential compatibility for identifying the seman-
tic equivalence between two different sequences, based on the message contents.
The compatibility properties are further divided as follows:

– Forward Sequence Compatibility (FSC) means that the correct interaction
of active negotiations with a given service should be guaranteed after they
are migrated to a given new protocol.

Example 2. In the old and new protocols P, P’, if a negotiation in state
CourseDesigner of protocol P is migrated to the same state of protocol P’,
a violation of FSC might occur as it could fail to interact with the changed
sequence (path): (CourseDesigner.discloseAC&PC().discloseRID().Reviewer).

Semantics-Based Approach for Dynamic Evolution 523

Comparing

sequences by

considering

the semantics

Change Impact Analysis

IF C= FSC and BSC

Then

New protocol

IF C= FSC and BCC

Then

New protocol

IF C= FCC and BSC

Then

Continue or Temporary protocol

IF C= FSC and BSC

Then

New protocol

IF C= FSC and BSC

Then

New protocol

Replaceability w.r.t

future interaction

IF C= FSC and BCC

Then

New protocol

Semantic replaceability

w.r.t past interaction

IF C= FCC and BSC

Then

Continue or Temporary protocol

Semantic replaceability

w.r.t future interaction

Replaceability w.r.t

past interaction

Semantic backward

state replaceabiltiy
Semantic forward

state replaceabiltiy

State

Replaceabiltiy

Comparing

sequences

syntactically

Fig. 4. Replaceability classes and their corresponding migration rules

– Backward Sequence Compatibility (BSC) means that, when a negotiation is
migrated to the new protocol, the message sequence (followed by the nego-
tiation so far) must be compatible in the context of new protocol.

Example 3. In protocols P, P’, assume there is a negotiation in state Text-
bookEditor of protocol P. If the negotiation has followed the path (Contributor.
discloseORCID().discloseAC()...TextbookEditor), a violation of BSC occurs as
the sequence is not acceptable by the new protocol P’.

– Forward Credential Compatibility (FCC) means that a negotiation can dis-
close all required credentials when it is migrated to a new protocol, even
though it is not guaranteed to correctly interact with a given service.

Example 4. In Example 2, the negotiation is not guaranteed to correctly
interact with the changed path, but it satisfies the FCC property as it can
send all the required credentials {AC, PC, RID} in the context of protocol P’.

– Backward Credential Compatibility (BCC) means that a negotiation has al-
ready disclosed all required credentials, even if it followed the message se-
quence that is incompatible in the context of new protocol.

Example 5. In Example 3, while the negotiation has followed the path in-
compatible with the new protocol, it satisfies the BCC property as it already
sent all the credentials {ORCID, AC, PC} required in protocol P’.

4.2 Analyzing Change Impacts by Different Replaceability Classes

The change impact analysis is based on the notion of replaceability (that is,
determining under what circumstances a new protocol can replace an old one
to satisfy the above compatibility properties). Each replaceability class can be
represented as a migration rule: if [condition] then [conclusion] (Figure 4). Here,
the condition part corresponds to the compatibility properties and the conclu-
sion part to the possible migration strategies, with meaning that all negotiations
satisfying the properties are handled with the specified strategies.

State-based Replaceability When a new protocol can replace an old proto-
col, all negotiations can be safely migrated to the new protocol [5]. If protocols
are not replaceable, we look at the current states of negotiations as follows.

524 S.H. Ryu et al.

State replaceability: This analysis class determines the change-transparent states
where their forward paths (message sequences from the states to the final state)
and backward paths (message sequences from the initial state to the states) are
all the same in old and new protocols. As a migration strategy, we can migrate
all the negotiations in these states to the new protocol as they satisfy both of
the FSC and BSC properties, e.g., in Figure 1(a), like state LectureSlideEditor.
Semantic backward state replaceability: Though a certain state is affected by
some changes, we can regard it as a semantically replaceable state, if all the
changes are the semantic ones, meaning that the changed sequences are seman-
tically equivalent with the original ones in terms of their message contents. For
example, in Figure 1(a), this analysis returns the state TextbookEditor.
Semantic forward state replaceability: Unlike the previous semantic analysis, this
analysis determines the states that have the same backward paths, but the dif-
ferent forward paths (all of the different paths are changed semantically). Note
that the negotiations in such states cannot be migrated directly to the new pro-
tocol as they may not be guaranteed to interact with the semantically changed
path. As possible migration strategies, they can continue to run under the old
protocol, if it is acceptable.

Interaction Path-based Replaceability Note that there are some situations
where we cannot determine the successful migration of negotiations at the state
level, e.g., when migrating negotiations in a certain state might cause the vio-
lations of compatibility properties. In this case, to extract the migrateable ones
from such a state, we further look at their past and future interactions as follows.
Replaceability with respect to a past interaction: This analysis is performedon the
negotiations in the states that have the same forward paths, but different backward
paths (one of them is changed syntactically with the elementary operators). Given
a negotiation, the analysis checks whether its past interaction is compatible in the
context of new protocol. For example, in protocols P, P’, among the negotiations
in the state Reviewer, we extract the ones that only followed the unaffected back-
ward path (Contributor.discloseORCID().disclosePC().discloseAC().dis
closeRID().Reviewer), since they satisfy the FSC and BSC properties.
Semantic replaceability with respect to a past interaction: Even though a certain
negotiation followed an affected backward path, this analysis classifies it as a
migrateable one, if it took one of the semantically changed backward paths.
Replaceability with respect to a future interaction: After all the previous analy-
ses, there remain negotiations in certain states, which followed compatible back-
ward paths, but are not guaranteed to correctly interact with the new protocol.
To identify the negotiations that will take the unaffected forward paths, we can
infer the possible future interactions of them by applying some data mining
techniques to the past interactions of negotiations (see [4] for the details).
Semantic replaceability with respect to a future interaction: Though a certain ne-
gotiation is expected to follow some affected forward paths, this analysis further
examines whether it will only take one of the semantically changed paths. If so,
the negotiation can be migrated to a temporary protocol.

Semantics-Based Approach for Dynamic Evolution 525

Scalability Effectiveness

0

50

100

150

200

250

300

5000 10000 15000 20000 25000

Pair 1

Pair 2

Pair 3

Time (sec)

of negotiations

67% 65% 66% 67% 68%

83%
88% 87% 89% 87%

54% 52% 52% 54% 54%

5000 10000 15000 20000 25000

Pair 1 Pair 2 Pair 3

of negotiations

Fig. 5. Evaluation results. X-axis represents the number of simulated negotiations. Y-
axis represents the time (sec) taken for the replaceability analysis in Figure 5(a) and
the successful migration rate improvement in Figure 5(b).

5 Evaluation

We now present the evaluation results that show how our system can be effec-
tively utilized in the dynamic evolution of protocols.
Evaluation Methodology: We evaluated the performance of change impact (re-
placeability) analysis in terms of the scalability and effectiveness. For this, we
defined three pairs of protocols (each pair consisting of old and new protocols)
with different number of states. For example, in pair one, an old protocol had
18 states and 19 transitions and a new protocol 16 states and 17 transitions. We
populated the system with a number of artificial negotiations (e.g., 5k, 10k, etc).
Results: Figure 5(a) shows the time taken to perform the replaceability analyses
from Section 4.2 for the three pairs of protocols. For example, for 15k negoti-
ations, it took about 100 seconds in performing all the replaceability analyses
on the negotiations and determining which ones are migrateable. As we can see
from the figure, the time taken to complete the analyses grows linearly with
respect to the number of negotiations. In the second evaluation, we measured
how much the rate of successful migration could be improved by considering
the change semantics as an additional knowledge in the replaceability analysis.
Figure 5(b) shows the improvement rate for the protocol pairs. For instance,
for 20k negotiations simulated in the pair two, we could obtain the improvement

rate 89% ((91−48)
48 = 89, where the 48% is the successful migration rate from

the previous works and the 91% is the rate from this work). In the figure, we
can see that we would achieve better migration rate by taking into account the
semantics behind protocol changes.

6 Conclusion

This paper proposed an approach for considering both message sequences and
their contents in managing the dynamic protocol evolution problem. Particularly,
we presented composite change operators for expressing the semantic equivalence
between message sequences. We also proposed the change impact analysis that
considers the change semantics as an additional knowledge.

526 S.H. Ryu et al.

Acknowledgments. This publication was made possible by a grant from the
Qatar National Research Fund; award number NPRP 7-481-1-088. Its contents
are solely the responsibility of the authors and do not necessarily represent the
official views of QNRF.

References

1. Chard, K., Bubendorfer, K., Caton, S., Rana, O.F.: Social cloud computing: A vision
for socially motivated resource sharing. IEEE T. Services Computing 5(4), 551–563
(2012)

2. Lee, A.J., Winslett, M., Basney, J., Welch, V.: The traust authorization service.
ACM Trans. Inf. Syst. Secur. 11(1) (2008)

3. Noor, T.H., Sheng, Q.Z., Zeadally, S., Yu, J.: Trust management of services in cloud
environments: Obstacles and solutions. ACM Comput. Surv. 46(1), 12 (2013)

4. Ryu, S.H., Casati, F., Skogsrud, H., Benatallah, B., Saint-Paul, R.: Supporting the
dynamic evolution of web service protocols in service-oriented architectures. ACM
Transactions on the Web 2(2) (2008)

5. Skogsrud, H., Benatallah, B., Casati, F., Toumani, F.: Managing impacts of security
protocol changes in service-oriented applications. In: ICSE (2007)

6. Skogsrud, H., Nezhad, H.R.M., Benatallah, B., Casati, F.: Modeling trust negotia-
tion for web services. IEEE Computer 42(2) (2009)

7. di Vimercati, S.D.C., Foresti, S., Jajodia, S., Paraboschi, S., Psaila, G., Samarati, P.:
Integrating trust management and access control in data-intensive web applications.
TWEB 6(2), 6 (2012)

Social Context-Aware Trust Prediction in Social

Networks

Xiaoming Zheng1, Yan Wang1, Mehmet A. Orgun1, Guanfeng Liu2,
and Haibin Zhang1

1 Department of Computing,Macquarie University, Sydney, NSW 2109, Australia
{xiaoming.zheng,yan.wang,mehmet.orgun,haibin.zhang}@mq.edu.au

2 School of Computer Science and Technology, Soochow University, China 215006
gfliu@suda.edu.cn

Abstract. Online social networks have been widely used for a large
number of activities in recent years. Utilizing social network information
to infer or predict trust among people to recommend services from trust-
worthy providers have drawn growing attention, especially in online envi-
ronments. Conventional trust inference approaches predict trust between
people along paths connecting them in social networks. However, most
of the state-of-the-art trust prediction approaches do not consider the
contextual information that influences trust and trust evaluation. In this
paper, we first analyze the personal properties and interpersonal proper-
ties which impact trust transference between contexts. Then, a new trust
transference method is proposed to predict the trust in a target context
from that in different but relevant contexts. Next, a social context-aware
trust prediction model based on matrix factorization is proposed to pre-
dict trust in various situations regardless of whether there is a path from
a source participant to a target participant. To the best of our knowledge,
this is the first context-aware trust prediction model in social networks
in the literature. The experimental analysis illustrates that the proposed
model can mitigate the sparsity situation in social networks and gener-
ate more reasonable trust results than the most recent state-of-the-art
context-aware trust inference approach.

Keywords: Social Networks, context, trust prediction, social recom-
mendation.

1 Introduction

In recent years, a growing and large number of users have joined e-commerce,
online employment and social network web sites while online social networks
have proliferated to be the platforms for a variety of rich activities, such as
seeking employees and jobs, and trustworthy recommendations for products and
services. In such activities, trust (the commitment to a future action based on a
belief that it will lead to a good outcome, despite the lack of ability to monitor
or control the environment [2]) is one of the most critical factors for the decision
making of users. It is context dependent and it is rare for a person to have

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 527–534, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

528 X. Zheng et al.

full trust on another in every facet. For example, the case of full trust in all
aspects is less than 1% at popular product review websites of Epinions.com
and Ciao.co.uk [12]. In real life, people’s trust to another is limited to certain
domains.

Trust prediction is the process of estimating a new pair-wise trust relation-
ship between two participants in a context, who are not directly connected by
interactions in the context [14]. Recently, some studies suggest to predict trust
taking into account some kind of social contextual information. Liu et al. [7]
propose a randomized algorithm for searching a sub-network between a source
participant and a target one. In this work, contextual factors, such as social inti-
macy and role impact factor, are taken into account as constraints for searching,
rather than simple trust inference or propagation. Wang et al. [12] propose a
probabilistic social trust model to infer trust along a path in a social network
exploring all available social context information. However, this method only
relies on trust paths and ignores participants off the path who might also have
an impact on the predicted trust.

In the literature, most trust prediction models suffer from the following draw-
backs: (i) The property of trust values has not been studied sufficiently. For
example, the similarity of people’s trust can be modeled not only from the trust
values but also from their distributions [14]. (ii) The diversity of social contexts
is not well dealt with. In real life, the connection between two people can be any
of friendship, family member, business partnership, or classmate etc. Even the
same relationships—say friendship, their interaction frequency and interaction
contexts can be largely different [12]. (iii) The ways to incorporate social infor-
mation require further study as inappropriate introduction of social information
may introduce noise and degrade the trust prediction quality. (iv) Differences
of contextual information are not handled properly. For example, how to model
the relationship of two contexts? To what extent, the trust in context Ci can be
transferred to context Cj?

In order to address the above drawbacks, we first present a social context-
aware network model taking into account both personal properties (i.e., features
extracted from personal preference, habit, expertise and active context revealed
in historical data) and interpersonal properties (i.e., features extracted from
two participants including social relationship, social intimacy, similarity etc.) of
participants. Then, we propose a new approach to compute the trust transferred
from interaction contexts to a target context considering both the properties of
participants and the features of contexts in which they have interactions. Finally,
we modify matrix factorization methods, by introducing indicator functions of
both interaction trust and transferred trust, to predict the trust of a participant
in others’ minds regarding a certain target context.

The main contributions of our work are summarized as follows: (i) we intro-
duce relevant context information into our model; (ii) we propose a context-aware
trust transference method that can mitigate the sparsity problem and enhance
the trust prediction accuracy; and (iii) we propose a matrix factorization based
method that can predict the trust between two participants in a target context
regardless of whether there is a path connecting them.

Social Context-Aware Trust Prediction in Social Networks 529

2 Contextual Social Networks

Context is a multi-faceted concept across different research disciplines with vari-
ous definitions [10]. In this paper, we define context as any information available
for characterizing the participants and the situations of interactions between
them. If participant p1 has an interaction with participant p2, the context about
p1 and p2 in the social society is referred to as the social context, among which
the interaction context refers to any information about the interaction includ-
ing time, place, type of services etc. If p2 recommends a service to p1, then the
information about the service is referred to the target context.

2.1 Social Context

Social context describes the context about participants. Before it can be used
to predict trust of participants, the properties of each aspect must be extracted
modeling the characteristics of participants and the relationship between them.
Therefore, social contexts can be divided into two groups according to the char-
acteristics of each impact factor: personal properties (e.g., role impact factor,
reliability and preference) and interpersonal properties (e.g., preference similar-
ity, social intimacy and existing trust).

Role Impact Factor: Role impact factor (denoted as RIF ci
p1
) has a signif-

icant influence on the trust between participants in a society [7]. It illustrates
the impact of a participant’s social position and expertise on his/her trustwor-
thiness when making recommendations based on that the recommendation from
a person who has expertise in a domain is more credible than others with less
knowledge. There are various ways to calculate the role impact factor in different
domains. For example, the social position between email users is discoverd by
mining the subjects and contents of emails in Enron Corporation1 [4].

Recommendation Reliability: In a certain context, the reliability of rec-
ommendations (RLBci

p1
) measures the rate of a participant’s recommendations

accepted by recommendees [3]. On the dataset MovieLens2, the leave-one-out
approach is used in [3] to calculate the deviation between the predicted rating
and the actual ratings as the reliability of a participant.

Preference: Preference (PSci
p1,p2

) is an individual’s attitude or affinity to-
wards a set of objects in a decision making process [6]. This property may dif-
fer greatly between different contexts in real life. The similarity of two partici-
pants’ preferences can impact the trust between them to some extent [12]. Here,
PSci

p1,p2
= PSci

p2,p1
. It can be calculated from the rating values given by users

using models such as PCC and VSS [8].
Social Intimacy: Social intimacy (SIcip1,p2

) refers to the frequency of connec-
tions between participants in a social network. The degree of social intimacy can
impact trust as people tend to trust these with more intimate social relation-
ships [1]. Here, SIcip1,p2

is not equivalent to SIcip2,p1
. Models like PageRank [11],

are able to calculate the social intimacy degree values.

1 http://www.cs.cmu.edu/~enron/
2 http://movielens.sumn.edu/

http://www.cs.cmu.edu/~enron/
http://movielens.sumn.edu/

530 X. Zheng et al.

p1 p3 p2

p4

p5
0.9 0.6

0.9

0.7

0.9 0.6

0.9

Interaction trust

(a) Social network graph

 p1 p2 p3 p4 p5

p1 0.9

p2 0.7 0.9

p3 0.9 0.6

p4 0.6

p5 0.9

(b) Trust matrix

Fig. 1. The social network in a context

2.2 Social Context Similarity

Interaction context is the information about the situation when the interaction
happens between participants p1 and p2. For example, suppose that p2 has rec-
ommended mobile phones to p1 many times in the past. As a result, p1 trusts
p2 with the value T ci

p1,p2
= 0.8 in the context of mobile phones. Now p2 recom-

mends p1 a laptop. As there is no historical recommendation in the context of
laptops, and there does exist similarity between the contexts of mobile phones
and laptops, we need to calculate the context similarity in order to determine
how much p1 can trust p2 in the target context of recommending laptops. Let
CSci,cj ∈ [0, 1] denote the similarity between two contexts ci and cj . Only when
ci and cj are exactly the same context, CSci,cj = 1. And CSci,cj = 0 indicates
that the information in context ci is not relevant to cj at all and cannot im-
pact participants’ trust in context cj . Here, CSci,cj = CScj ,ci . We adopt the
classification of contexts introduced in [12] with a number of existing methods
to compute similarity [13,12], such as Linear discriminant analysis and context
hierarchy based similarity calculation. In addition, the interaction context cj is
relevant to the interaction context ci if CSci,cj > μ (μ is a threshold, e.g., 0.7),
denoted as ci ∼ cj . Otherwise, if cj is irrelevant to ci, denoted as ci � cj .

2.3 Contextual Presentation of Trust

In order to apply our prediction model on the trust information in different
contexts, we present a contextual trust matrix to represent the contextual in-
formation and social properties. Fig. 1(a) shows a social network graph in a
context ci, in which the arrows between nodes mean the existing trust resulting
from past interactions. In context ci, we construct a Np ×Np matrix R, where
Np is the number of participants. In this 2-D matrix, if we put the trust value
between participants at each context, the structure can be shown as in Fig. 1(b).

The contextual social network graph is shown in Fig. 2(a) with the trust links
in all contexts, where the superscript ci, i = 1...5 indicates the context in which
the trust exists. Taking all contexts into consideration, the matrix R turns into a
Np×Np×Nc matrix as shown in Fig. 2(b), where, Nc is the number of contexts.

In Fig. 1(b) and Fig. 2(b), only the trust vales are shown in the matrix for
illustration purposes. Actually, each element in the matrix is a social property
vector containing all the relative properties discussed in detail in this section.

Social Context-Aware Trust Prediction in Social Networks 531

p5

p1 p3 p2

p4

0.9c1
0.6c1

0.7c1

0.5c3

0.6c1

0.9c1

0.9c1

0.83c4

0.77c1

0.65c2

0.8c2 0.6

0.8c3 0.9c2 0.9c1

Interaction trust

0.7c4

0.7c2

0.7c2

0.8c5

(a) Social network graph

 p1 p2 p3 p4 p5

p1 0.9

p2 0.7 0.9

p3 0.9 0.6

p4 0.6

p5 0.9
Contexts

(b) Contextual trust matrix

Fig. 2. Contextual social network

3 Contextual Trust Prediction

The process to predict the trust between participants px and py in the target
context of cj can be divided into two situations based on available information.
They are discussed in the following subsections.

3.1 Trust Transference between Contexts

The trust in relevant interaction contexts can be transferred to the target con-
text. The result is called transferred trust. This process is trust transference.

As introduced in Section 2, the personal properties and interpersonal proper-
ties can impact how much of the trust in interaction contexts can be transferred
to that in a target context, which is termed as trust transference degree. Thus
the transference degree of trust to py in px’s mind from interaction context ci
to target context cj can be calculated from the following equation:

αci,cj
px,py

= ω1 · PSci
px,py

+ ω2 · SIcipx,py
+ ω3 · CSci,cj (1)

This equation assumes that participant px trusts participant py with the trust
value T ci

px,py
after interactions in context ci in the past. It calculates the trans-

ference degree from the trust in interaction context ci to the trust in target con-
text cj , when participant py makes recommendations to participant px. Here,
{ωi}, i = 1...5 are the weights of the properties that impact the trust of py in
the mind of px, and

∑
i

ωi = 1. Therefore, the trust value to py in the mind of

px regarding the context ci, T
ci
px,py

, can be transferred to the one in the target

context cj by α
ci,cj
px,py · T ci

px,py
.

However, in the target context cj , even if participant px has no interaction
with participant py, px can trust py to some extent primarily due to py’s social
effect and his/her ability to give an appropriate recommendation, which can be
depicted by the role impact factor and recommendation reliability. We use the
term“basic trust” [9] to refer to this kind of trust, which can be formulated as:

BT cj
px,py

= δ1 · RIF cj
py

+ δ2 · RLBcj
py

(2)

where, δ1 + δ2 = 1. Finally, based on the trust in all the interaction contexts C
and the basic trust in the target context cj , the transferred trust representing

532 X. Zheng et al.

p5

p1 p3 p2

p4

0.9 0.6

0.7

0.9 0.6

0.9

0.91 0.75

0.7

0.9 0.8

0.69

Interaction trust
Transferred trust

(a) Social network graph

 p1 p2 p3 p4 p5

p1 0.7 0.69 0.9

p2 0.7 0.9

p3 0.9 0.91 0.6

p4 0.75 0.6

p5 0.8 0.9

(b) Contextual trust matrix

Fig. 3. Contextual social network with transferred trust

how much participant px can trust py in the target context cj can be formulated
as follows:

T̃ cj
px,py

= β1 max
ci∈C

{αci,cj
px,py

· T ci
px,py

}+ β2BT cj
px,py

(3)

where, β1+β2 = 1; max
ci∈C

{·} means the maximum trust value among all the trust

values transferred from relevant contexts without basic trust. These coefficients
can be calculated using leave-one-out approach [3] in the historical data.

3.2 Trust Prediction Using Matrix Factorization

A more complicated situation is to predict trust between a source participant
and a target participant when they have no interaction trust between each other
in both the target context and relevant contexts, but they do have interactions
with other participants respectively. In such a situation, even if all the trust in
all the interaction contexts has been transferred to the target context using the
method introduced in Subsection 3.1, the trust we want to predict in the target
context is still absent. For instance, we want to predict the trust between p2 and
p3 in Fig. 3.

As shown in Fig. 3(b), the trust matrix R is a Np × Np matrix represent-
ing the trust from trusters (recommendees) to trustees (recommenders). The
matrix factorization model maps trust values to a joint latent factor space of
dimensionality l so that each trust value rij in matrix R is the inner product
of truster vector ui ∈ Rl (the relationship between truster i and the l latent
factors) and trustee vector vj ∈ Rl (the relationship between trustee j and the
l latent factors).

rij ≈ uT
i vj (4)

Accordingly, the truster-trustee trust matrix R is modeled as the inner product
of a truster-specific matrix U = {ui} and a trustee-specific matrix V = {vj}.

R ≈ UTV (5)

The factorization process is approximated by minimizing the following equation:

min
U,V

1

2

n∑
i=1

n∑
j=1

(Iij + ηĨij)(rij − uT
i vj)

2 +
λ1

2
||U ||2 +

λ2

2
||V ||2, (6)

Social Context-Aware Trust Prediction in Social Networks 533

where ||.||2F represents the Frobenius norm; Iij is an indicator function of inter-
action trust. Iij = 1 iff participant pi (truster) trusts participant pj (trustee)

in the target context originally, i �= j. Otherwise, Iij = 0. In addition, Ĩij is an-

other indicator function of transferred trust. Ĩij = 1 iff participant pi (truster)
has trust calculated by Eq. (3) to participant pj (trustee), i �= j. Otherwise,

Ĩij = 0. η ∈ [0, 1] is a coefficient controlling the weight of transferred trust. Once
the learning process of the method is achieved by Eq. (6), the trust we want to
predict can be calculated by Eq. (4).

4 Experiments

We evaluate the effectiveness of our model in typical scenarios including the basic
cases of social networks in real world and compare our model with the state-of-
the-art approach social context-aware trust inference (SocialTrust) [12], as well
as the prevalent multiplication strategy (MUL) [5]. Due to space limitations,
only the comparison of trust inference between contexts is presented here.

In real life, a typical situation needing trust prediction is that a recommender
and a recommendee do not have any interactions in the target context cj .
However, they have many interactions in the past in other relevant contexts
Ch = {ci}, i = 1, ...n and i �= j. Without any loss of generality, the trust val-
ues between two participants are generated using a random function in Matlab.
We adopt the coefficients from SocialTrust giving the same weight for each co-
efficient, where applicable, and set ω1 = ω2 = ω3 = 0.333, δ1 = δ2 = 0.5,
β1 = β2 = 0.5, CSc1,c2 = 0.8, CSc1,c3 = 0.1. The context information we used in
this case study can be found in Table 1. In this situation, the trust values to p2

Table 1. Contextual tust to p2 in p1’s mind

ID Context Context Relation Tp1,p2 PSp1,p2 SIp1,p2 RIFp1 RIFp2 RLBp1 RLBp2

c1 Teaching VC c1 ∼ c2 & c1 � c3 ? 0 0 0 0.8 0 0.9
c2 Teaching Java c2 ∼ c1 & c2 � c3 0.7 1 1 0.5 0.8 0.5 0.9
c3 Car repair c3 � c1 & c3 � c2 0.8 1 1 0.5 0.8 0.5 0.9

in p1’s mind calculated by Eq. (3) and SocialTrust are 0.57 and 0.74 respectively.
MUL does not apply in this case, as it does not deal with trust between contexts.

SocialTrust neglects the concept of basic trust while taking the role impact
factor of p1 in the target context c1 into account. In real life, this value should be
0 consistently, because when a participant seeks suggestions from others, he/she
usually has no experience in the target context. Otherwise, he/she has his/her
own trust in the target context already and may not need recommendations.
Therefore, our result is the most reasonable one in this scenario. It fits the case
in real life that, a VC teacher is usually also good at teaching Java, as teaching
Java and teaching VC are similar contexts.

5 Conclusions

As trust prediction is a dynamic and context sensitive process. In this paper, we
have first analyzed the properties that can impact trust transference between

534 X. Zheng et al.

different but relevant contexts. Based on these impact properties, we have pro-
posed a new trust transference method to transfer trust from interaction contexts
to a target context considering personal properties and interpersonal properties.
Then, a social context-aware trust prediction model has been proposed to predict
trust from a source participant to a target participant. The proposed approach
analyzes and incorporates the characteristics of participants’ trust values, and
predicts the missing trust in the target context using modified matrix factoriza-
tion. The conducted experiments show that our proposed model transfers trust
between contexts in a reasonable way and is able to predict trust between source
and target participants.

References

1. Brehm, S.: Intimate relationships. Random House (1985)
2. Golbeck, J., Hendler, J.A.: Inferring binary trust relationships in web-based social

networks. ACM Transactions on Internet Technology 6(4), 497–529 (2006)
3. Jia, D., Zhang, F., Liu, S.: A robust collaborative filtering recommendation algo-

rithm based on multidimensional trust model. JSW 8(1), 11–18 (2013)
4. Klimt, B., Yang, Y.: Introducing the Enron Corpus. In: CEAS (2004)
5. Li, L., Wang, Y., Lim, E.-P.: Trust-oriented composite service selection and discov-

ery. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS,
vol. 5900, pp. 50–67. Springer, Heidelberg (2009)

6. Lichtenstein, S., Slovic, P.: The Construction of Preference. Cambridge University
Press (2006)

7. Liu, G., Wang, Y., Orgun, M.A.: Social context-aware trust network discovery in
complex contextual social networks. In: AAAI, pp. 101–107 (2012)

8. Ma, H., Zhou, D., Liu, C., Lyu, M.R., King, I.: Recommender systems with social
regularization. In: Proceedings of the Fourth ACM International Conference on
Web Search and Data Mining, WSDM 2011, pp. 287–296. ACM (2011)

9. Marsh, S.P.: Formalising Trust as a Computational Concept. Ph.D. thesis, Univer-
sity of Stirling (April 1994)

10. Sherchan, W., Nepal, S., Paris, C.: A survey of trust in social networks. ACM
Comput. Surv. 45(4), 47 (2013)

11. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: Extraction and
mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD 2008,
pp. 990–998. ACM, New York (2008)

12. Wang, Y., Li, L., Liu, G.: Social context-aware trust inference for trust enhance-
ment in social network based recommendations on service providers. World Wide
Web Journal (WWWJ) (2013) (accepted)

13. Zhang, H., Wang, Y., Zhang, X.: Transaction similarity-based contextual trust
evaluation in e-commerce and e-service environments. In: IEEE International Con-
ference on Web Services, pp. 500–507 (2011)

14. Zheng, X., Wang, Y., Orgun, M.A., Zhong, Y., Liu, G.: Trust prediction with prop-
agation and similarity regularization. In: Twenty-Eighth Conference on Artificial
Intelligence, Quebec City, Quebec, Canada, July 27-31 (in press, 2014)

Decidability and Complexity of Simulation

Preorder for Data-Centric Web Services

Lakhdar Akroun1, Boualem Benatallah2,
Lhouari Nourine1, and Farouk Toumani1

1 LIMOS, CNRS, Blaise Pascal University, Clermont-Ferrand, France
{akroun,nourine,ftoumani}@isima.fr

2 CSE, UNSW, Sydney, Australia
boualem.benatallah@gmail.com

Abstract. This paper studies the problem of checking the simulation
preorder for data-centric services. It focuses more specifically on the
underlying decidability and complexity issues in the framework of the
Colombo model [1]. We show that the simulation test is exptime-
complete for Colombo services without any access to the database (noted
ColomboDB=∅) and 2exptime-complete when only bounded databases
are considered (the obtained model is noted Colombobound). This is a
decidability border since we have shown in previous work that the sim-
ulation test for unbounded Colombo is undecidable. Moreover, as a side
effect of this work, we establish a correspondance between ColomboDB=∅,
restricted to equality, and Guarded Variable Automata (GVA) [2]. As a
consequence, we derive EXPTIME-completeness of simulation for GVA.

Keywords: data-centric services, simulation preorder, variable auto-
mata, verification and synthesis.

1 Introduction

Business protocols, and associated representation models (e.g., state machines
[3, 4], , Petri-nets), are used for specifying external behavior of services. They
open the opportunity for formal analysis, verification and synthesis of services.
For example, business protocols have been used as a basis to develop techniques
for compatibility and replaceability analysis of web services [5] and also to study
the web service composition problem [6]. In the aforementioned research works,
the simulation preorder [7] plays a fundamental role to solve the considered
problems. Indeed, simulation preorder enables to formalize the idea that a given
service is able to faithfully reproduce the externally visible behavior of another
service.

Recently, the need of incorporating data as a first-class citizen in business
protocols has been widely recognized and a number of research works has been
carried out in this direction, laying the foundations of a data-centric approach to
web services [1, 8, 9]. Formal models used to describe such specifications, called
data-centric services, are essentially communicating guarded transitions systems

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 535–542, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

536 L. Akroun et al.

in which transitions are used to model either the exchange of messages between
a service and its environment (i.e. a client), or service’s actions (i.e., read, write)
over a global database shared among the existing services. A configuration (or a
state) of a data-centric service is made of a control state of the transition system
augmented with the current instance of the global database. The incorporation of
data turns out to be very challenging since it makes service specifications infinite
which leads, in most cases, to undecidability of many analysis and verification
problems.

In this paper, we investigate the decidability and the complexity issues of
service simulation in the framework of the Colombo model [1]. A Colombo service
is specified as a guarded transition system, augmented with a global database as
well as a set of variables that are used to send and receive messages. Two sources
of infiniteness makes the simulation test difficult in this context: (i) the variables
used by a service range over infinite domains and hence the number of potential
concrete messages that can be received by a service in a given state may be
infinite; (ii) the number of possible initial instances of the global database is
infinite which makes the number of configurations of a service infinite.

In a preliminary work [10], we showed that checking simulation in a Colombo
model with unbounded accesses to the database, called Colombounb, is undecid-
able. To complete the picture and provide a decidability border of simulation
in the Colombo framework, we study in this paper the simulation problem in
the case of Colombo services with bounded databases (i.e. the class of Colombo
services restricted to global databases having a number of tuples that cannot
exceed a given constant k). Such a class is called Colombobound. We show that
the simulation is 2exptime-complete for Colombobound. The proof is achieved
in two steps: (i) first we show that checking simulation is exptime-complete
for Colombo services without any access to the database (called DB-less ser-
vices and denoted ColomboDB=∅). ColomboDB=∅ services are also infinite-state
systems, because they still manipulate variables ranging over infinite domains.
However, a finite symbolic representation of such services can be obtained by
partitioning the original infinite state space into a finite number of equivalence
classes. As a side effect of this work, we establish a correspondence between
ColomboDB=∅, restricted to equality, and Guarded Variable Automata (GVA)
[2]. As a consequence, we derive exptime-completeness of simulation for GVA;
(ii) then we show that the simulation test for Colombobound services exponen-
tially reduces to checking simulation in ColomboDB=∅. The exponential blow-up
is an unavoidable price to pay since we prove that simulation in Colombobound

is 2exptime-complete. For space reasons, the proofs are omitted and are given
in the extended version of this paper [11].
Organization of the paper. We start by giving an overview of the Colombo
framework in Sect.2, then we present our results on ColomboDB=∅ and
Colombobound in Sect.3. Finally, we discuss related work in Sect.4 while we con-
clude in Sect.5.

Simulation Preorder for Data-Centric Web Services 537

2 Overview on the Colombo Model

A world database schema, denoted W , is a finite set of relation schemas hav-
ing the form R(A1, . . . , Ak;B1, . . . , Bn), where the Ais form a key for R. A
world database (or a world instance) is an instance over the schema W . Let
R(A1, . . . , Ak;B1, . . . , Bn) be a relation schema in W , then fR

j (A1, . . . , Ak) is
an access function that returns the j-th element of the tuple t in R identified by
the key (A1, . . . , Ak) (i.e. j ∈ [1, n]). Given a set of constants C and variables
V , the set of accessible terms over C and V is defined recursively to include all
the terms constructed using C, V and the fR

j functions.

Example 1. Figure 1(c) depicts an example of a world database. For example, the
access to the relation Inventory(code, available, warehouse, price) is only possible

through the access function f Inventory
j (code) with j ∈ [1, 3].

?requestOrder(cust, payBy, item, addr)

avail = F / !replyOrder(“fail”)

(a) The guarded automata of a service S1

q0

(avail = T) / no-op

q1

q4

q5

(payBy == CC) ∧ (price > 100) /
! requestCCCheck(cartNum)

approved == T / !requestShip(wh,addr)

approved == F /
! replyOrder(“fail”)

q3

q2

checkItem(item, cust;
avail, wh, price, ord)

(payBy == PREPAID) ∧ (price ≤
100) / requestShip(wh,addr)

q6

q7

checkItem:
 I: item, cust;
 O: avail; wh; price; ord

Effects:
 if (f1Inventory(item) = T) then

avail:= T and
wh := f2Inventory(item) and
price := f3Inventory(item) and
if price > 50 and f1Customers(cust)≠ω

then ord:= new(I, cust) and
insert Orders(ord;item,cust,-)

 else ord:= 0

else avail:= F

(b) Atomic process CheckItem

Inventory (code, availablen warehouse, price)
Customers (cust, name, addr, status)
Orders (ord, item, cust, payment)

(c) Example of a World database schema

?replyCCCheck(approved)

(payBy == PREPAID) ∧ (price >
100) / ! replyOrder(“fail”)

Fig. 1. Example of Colombo service (from [1])

In the Colombo model, service actions are achieved using the notion of atomic
processes. An atomic process is a triplet p = (I, O,CE) where: I and O are
respectively input and output signatures (i.e., sets of typed variables) and CE =
{(θ, E)}, is a set of conditional effects, with:

– Condition θ is a boolean expression over atoms over accessible terms over
some family of constants1 and the input variables u1, . . . , un in I,

– A set of effects E where each effect e ∈ E is a pair (es, ev) with:
• es, effect on world database, is a set of modifications on the global
database (i.e., expressions of the form insert, delete or modify),

1 The symbol ω is used to denote an undefined (or null) value.

538 L. Akroun et al.

• ev, effects on output variables, is a set of assignment statements of the
forms: vj := t, ∀vj ∈ O such that either t = ω or t is an accessible term
over some set of constants and over the input variables u1, . . . , un.

A message type has the form m(p1, . . . , pn) where m is the message name and
p1, . . . , pn are message parameters. Each parameter pi is defined over a domain D
(w.l.o.g., we assume that all the messages parameters are defined over the same
values domain D). The behavior of a Colombo service is given by the notion of
guarded automaton as defined below.

Definition 1. A guarded automaton (GA) of a service S is a tuple GA(S) =
〈Q, δ, q0, F, LStore(S)〉, where :

– Q is a finite set of control states with q0 ∈ Q the initial state,
– F ⊆ Q is a set of final states,
– LStore(S) is a finite set of typed variables,
– the transition relation δ contains tuples (q, θ, μ, q′) where q, q′ ∈ Q, θ is a

condition over LStore (no access to world instance), and μ has one of the
following forms:

• (incoming message) μ =?m(v1, . . . , vn) where m is a message having as
signature m(p1, . . . , pn), and vi ∈ LStore(S), ∀i ∈ [1, n], or

• (send message) μ =!m(b1, . . . , bn) where m is a message having as sig-
nature m(p1, . . . , pn), and ∀i ∈ [1, n], each bi is either a variable of
LStore(S) or a constant, or

• (atomic process invocation) μ = p(u1, . . . , un; v1, . . . , vm, CE) with p an
atomic process having n inputs, m outputs and CE as conditional effects,
and ∀i ∈ [1, n], each ui (respectively, vi) is either a variable of LStore(S)
or a constant.

Semantics. We use the notion of an extended automaton to define the semantics
of a Colombo service. At every point in time, the behavior of an instance of a
Colombo service S is determined by its instantaneous configuration (or simply,
configuration). A configuration of a service is given by a triplet id = (l, I, α)
where l is its current control state, I a world database instance and α is a
valuation over the variables of LStore.

An execution of a service S starts at an initial configuration id0 = (l0, I0, α0),
with l0 the initial control state of GA(S), I0 an arbitrary database over W and

α0(x) = ω, ∀x ∈ LStore(S). Then, a service makes a move denoted idi
μi−→ idj

according to the mechanics defined by the set of transitions of GA(S). More
specifically, given an idi = (li, Ii, αi) and a transition (li, θ, μ, li+1) ∈ δ such

that αi(θ) ≡ true then idi
μi−→ idj where:

– if μ =?m(v1, . . . , vn) then only (v1, . . . , vn) receive new values. The others
variables and the database do no change.

– if μ =!m(b1, . . . , bn) then there is no modification on the variables nor the
database.

– if μ = p(u1, . . . , un; v1, . . . , vm, CE) then

Simulation Preorder for Data-Centric Web Services 539

• if there is no (c, E) ∈ CE where c is verified (or there is more than one)
then there is no modification of the variables nor the database.

• let (c, E) be the unique conditional effects in CE s.t c is verified, and let
(es, ev) be a non-deterministicall chosen element of E, then :
∗ for each statement insert R(t1, . . . , tk, s1, . . . , sl),

delete R(t1, . . . , tk), or modify R(t1, . . . , tk, s1, . . . , sl) in es,
apply the corresponding modifications. The obtained instance is the
database Ii+1.

∗ for all vj := t in ev, execute the affectations, all the other variables
v of LStore(S) do not change.

The semantics of a Colombo service can be captured by the following notion
of an extended infinite state machine.

Definition 2. (extended state machine) Let GA(S) = 〈Q, δ, l0, F, LStore(S)〉
be a guarded automaton of a service S. The associated infinite state machine,
noted E(S), is a tuple E(S) = (Q,Q0,F, Δ) where:

– Q = {(l, I, α)} with l ∈ Q, I a database over W and α a valuation over
the variables of LStore. The set Q contains all the possible configurations of
E(S).

– Q0 = {(l0, I0, α0)}, with I0 an arbitrary database over W and α0(x) = ω,
∀x ∈ LStore(S). Q0 is the infinite set of initial configurations of E(S).

– F = {(lf , I, α) | lf ∈ F}. F is the set of final configurations of E(S).

– Δ is an (infinite) set of transitions of the form τ = (li, Ii, αi)
μi−→ (lj , Ij , αj).

We define now the notion of simulation between two Colombo services.

Definition 3. (Simulation) Let S and S′ be two Colombo services and let
E(S) = (Q,Q0,F, Δ) and E(S′) = (Q′,Q′

0,F
′, Δ′) be respectively their associ-

ated extended state machines.

• Let (id, id′) ∈ Q × Q′. The configuration id = (l, I, α) is simulated by id′ =
(l′, I ′, α′), noted id � id′, iff:
• I = I ′, and
• ∀id μ−→ idj ∈ Δ, there exists id′

μ′
−→ id′l ∈ Δ′ such that μ = μ′ and

idj � id′l
• The extended state machine E(S) is simulated by the extended state machine

E(S′), noted E(S) � E(S′), iff ∀id0 ∈ Q0, ∃id′0 ∈ Q′
0 such that id0 � id′0

• A Colombo service S is simulated by a Colombo service S′, noted S � S′, iff
E(S) � E(S′).

Informally, if S � S′, this means that S′ is able to faithfully reproduce the
external visible behavior of S. The external visible behavior of a service is defined
here with respect to the content of the world database as well as the exchanged
concrete messages (i.e., message name together with the values of the message
parameters). The existence of a simulation relation ensures that each execution
tree of S is also an execution tree of S′ (in fact, a subtree of S′), modulo a
relabeling of control states.

540 L. Akroun et al.

3 Main Results

3.1 DB-Less Services (Colombodb=∅)

We consider the simulation problem in the class of Colombo services without
any access to the database, called DB-less services and denoted ColomboDB=∅.
Let S be a Colombodb=∅ service. The associated state machine is a tuple
E(S) = (Q,Q0,F, Δ). A configuration of E(S) has the form id = (l, ∅, α)
while there is only one initial configuration id0 = (l0, ∅, α0) with α0(x) = ω,
∀x ∈ LStore(S). Moreover, in Colombodb=∅ services, atomic processes can only
assign constants to variables of LStore(S) or affect value of a variable to an-
other. Note that E(S) is still an infinite state system. This is due to the presence
of input messages with parameters taking their values from a possibly infinite
domain. Using a symbolization technique, it is possible however to abstract from
concrete values and hence turns extended machines associated with Colombodb=∅

services into finite state machines. The main idea is to use the notion of regions to
group together states of E(S). Interestingly, the obtained representation, called
Colombodb=∅ region automaton, is a finite state machine and hence a simulation
algorithm can be devised for this case.

Theorem 1. Given two DB-less Colombo services S and S
′
, checking whether

S � S
′
is exptime-complete.

The detailed proof of this theorem is given in the extended version of this pa-
per [11]. As said before starting from a test of simulation between two DB-less
Colombo services S and S

′
, we construct a test of simulation between two cor-

responding (finite) Colombodb=∅ region automaton RS and RS′
. The problem is

clearly exponential because the numbers of symbolic states inRS andRS′
is expo-

nential in the size of the two services S and S′. The proof of hardness is obtained
from a reduction of the problem of the existence of an infinite execution of an al-
ternating Turing machine M working on space polynomially bounded by the size
of the input [12] to a simulation test between two DB-less Colombo services.

3.2 Bounded Services (Colombobound)

We consider now the simulation problem in the setting of a Colombo model
with a bounded global database, denoted Colombobound. A service belonging to
Colombobound is restricted to use during all his executions a global database W
whose size never exceed a given constant k. Given two services S and S

′
, we say

that S is k-bounded simulated by S
′
(noted S �k S

′
) if S

′
does simulate S if

we restrict the attention to executions where the size of the database is at most
equal to k.

Theorem 2. Let S and S′ be two Colombo services, then testing S �k S′ is
2-exptime complete.

The proof of decidability of Theorem 2 is achieved by mapping the k-bound
simulation test S �k S

′
into a standard test of simulation between two DB-less

Colombo services M(S) � M(S
′
). The main idea of the reduction is to encode

the bounded databases into a set of variables.

Simulation Preorder for Data-Centric Web Services 541

4 Related Works

Data-centric services and artifact-centric business processes attracted a lot of
attention from the research community these recent years [8, 9]. Most of these
research works focus on the verification problem. In the context of data-centric
services, the verification problem is undecidable in the general case. Existing
works focus on identification of specific models and restrictions in which the
verification problem can be solved. In [13], the author consider the problem of
verifying artifact system against specifications expressed in quantified temporal
logic. The verification problem is undecidable in the general setting. So, the pa-
per considers a restricted fragment obtained by bounding the number of values
stored in a given execution state of the system. The authors use a specific ab-
straction technique to construct a finite symbolic system which is bisimilar to
the original infinite system. By this way, model checking can be carried out over
the (finite) symbolic model instead of the original infinite artefact system. The
upper bound time complexity of the proposed procedure is doubly exponential.
In [14], the authors study the composition problem for data-centric services us-
ing an approach based on the simulation relation. Like our approach, they prove
the decidability of simulation by bounding the size of database instance, but the
model is less expressive than Colombobound.

Independently from the Web service area, the simulation problem between in-
finite transition systems has been addressed. This problem is undecidable in the
general case but there are few classes, e.g., one-counter nets [15], automate with
finite memory [2], where the problem is known to be decidable. Close to our work,
[16] introduces a new formalismVariable automaton, which is an automatonwhere
transitions are labelled with letters from an alphabet or variables. During an exe-
cution, the values assigned to variables are fixed and only one special variable can
be refreshed (reinitialized). In [2], the authors define a variable automaton where
variables are refreshed at specific states, named FVA (Fresh Variable Automata).
They prove the decidability of the simulation for this model. Then, they extend
FVAmodel with equality guards over variables. The obtainedmodel is calledGVA
(Guarded Variable Automata). The authors show the decidability of the simula-
tion for GVA and provide an upper bound (EXPTIME).

5 Conclusion

We studied decidability and complexity issues related to the simulation problem
in the framework of the Colombomodel. Our results, ranging from exptime to un-
decidability show that the marriage between data and web service business proto-
cols gives rise to some challenging issues. The decidability and complexity results,
exptime-complete for ColomboDB=∅ and 2exptime-complete for Colombobound

are far from being straightforward, due to the fact we are dealing with infinite
state systems. This paper proposed also a symbolic procedure based on the no-
tion of region automata to handle the infiniteness of the framework. Finally, as
side effect of our work, we derived a tight complexity of the simulation problem

542 L. Akroun et al.

for automata over infinite domain, namelyGV A. Our future works will be devoted
to the definition of a generic framework that enables to capture the main features
of data-centric services and which can be used as basis to study the problems un-
derlying formal analysis, verification and synthesis of data-centric services.

References

[1] Berardi, D., Calvanese, D., Giacomo, G.D., Hull, R., Mecella, M.: Automatic
composition of transition-based semantic web services with messaging. In: VLDB,
pp. 613–624 (2005)

[2] Belkhir, W., Chevalier, Y., Rusinowitch, M.: Guarded variable automata over
infinite alphabets. CoRR abs/1304.6297 (2013)

[3] Bultan, T., Fu, X., Hull, R., Su, J.: Conversation specification: A new approach
to design and analysis of e-service composition. In: WWW 2003. ACM (2003)

[4] Benatallah, B., Casati, F., Toumani, F.: Web service conversation modeling: A
cornerstone for e-business automation. IEEE Internet Computing 08, 46–54 (2004)

[5] Benatallah, B., Casati, F., Toumani, F.: Representing, analysing and managing
web service protocols. DKE 58, 327–357 (2006)

[6] Muscholl, A.,Walukiewicz, I.: A lower bound onweb services composition. In: Seidl,
H. (ed.) FOSSACS2007. LNCS, vol. 4423, pp. 274–286. Springer, Heidelberg (2007)

[7] Milner, R.: Communication and concurrency. Prentice-Hall, Inc., Upper Saddle
River (1989)

[8] Hull, R.: Artifact-centric business process models: Brief survey of research results
and challenges. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part II. LNCS,
vol. 5332, pp. 1152–1163. Springer, Heidelberg (2008)

[9] Calvanese, D., De Giacomo, G., Montali, M.: Foundations of data-aware process
analysis: A database theory perspective. In: PODS, pp. 1–12 (2013)

[10] Akroun, L., Benatallah, B., Nourine, L., Toumani, F.: On decidability of simula-
tion in data-centeric business protocols. In: La Rosa, M., Soffer, P. (eds.) BPM
Workshops 2012. LNBIP, vol. 132, pp. 352–363. Springer, Heidelberg (2013)

[11] Akroun, L., Benatallah, B., Nourine, L., Toumani, F.: Decidability and complex-
ity of simulation preorder for data-centric web services (extended version). Tech-
nical report (2014), http://fc.isima.fr/~akroun/fichiers/journal_version_
colombo.pdf

[12] Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. J. ACM 28, 114–133
(1981)

[13] Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of deployed artifact systems
via data abstraction. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.)
ICSOC 2011. LNCS, vol. 7084, pp. 142–156. Springer, Heidelberg (2011)

[14] Patrizi, F., Giacomo, G.D.: Composition of services that share an infinite-state
blackboard (extended abstract). In: IIWEB (2009)

[15] Abdulla, P.A., Cerans, K.: Simulation is decidable for one-counter nets. In: San-
giorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 253–268.
Springer, Heidelberg (1998)

[16] Grumberg, O., Kupferman, O., Sheinvald, S.: Variable automata over infinite al-
phabets. In: Dediu, A.-H., Fernau, H., Mart́ın-Vide, C. (eds.) LATA 2010. LNCS,
vol. 6031, pp. 561–572. Springer, Heidelberg (2010)

http://fc.isima.fr/~akroun/fichiers/journal_version_colombo.pdf
http://fc.isima.fr/~akroun/fichiers/journal_version_colombo.pdf

Market-Optimized Service Specification

and Matching�

Svetlana Arifulina1, Marie Christin Platenius2, Steffen Becker2,
Christian Gerth1, Gregor Engels1, and Wilhelm Schäfer2

1 Department of Computer Science, University of Paderborn, Germany
2 Heinz Nixdorf Institute

University of Paderborn, Germany
{s.arifulina,m.platenius}@upb.de

Abstract. Various approaches in service engineering are based on service
markets where brokers use service matching in order to perform service
discovery. For matching, a broker translates the specifications of provi-
ders’ services and requesters’ requirements into her own specification lan-
guage, in order to check their compliance using a matcher. The broker’s
success depends on the configuration of her language and its matcher be-
cause they influence important properties like the effort for providers and
requesters to create suitable specifications as well as accuracy and runtime
of matching. However, neither existing service specification languages, nor
existingmatching approaches are optimized in suchway. Our approach au-
tomatically provides brokers with an optimal configuration of a language
and its matcher to improve her success in a given market with respect to
her strategy. The approach is based on formalized configuration properties
and a predefined set of configuration rules.

Keywords: Service-Oriented Computing, Service Engineering, Service
Specification, Service Matching, Service Brokers, Service Market.

1 Introduction

Many approaches in service engineering deal with emerging service markets,
where service providers provide software services for trade [10,11]. In order to
buy and use these services, service requesters have to discover services that sat-
isfy their requirements. For this reason, various approaches introduce service
brokers, who serve as intermediaries between requesters and providers [1]. Re-
questers and providers engage such brokers for a successful service discovery
because the brokers have expertise in software services for certain markets [4].
For the discovery, a broker matches the requesters’ requirements specifications
to specifications of the provided services. For this, brokers use a special software
called matcher. The goal of a matcher is based on specifications to determine

� This work was supported by the German Research Foundation (DFG) within the
Collaborative Research Center “On-The-Fly Computing” (CRC 901).

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 543–550, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

544 S. Arifulina et al.

the extent, to which a provider’s service complies with the requesters’ require-
ments. Furthermore, providers and requesters often use different specification
languages. Thus, the broker has to translate their specifications into her own
language, which is supported by a certain matcher. This translation is out of
the scope of this paper as it can be done automatically based on existing ap-
proaches [7].

In the market, different brokers compete with each other for customers [5].
Customers prefer a broker, who delivers most suitable services fast and with
the least possible effort for them. Thus, in order to succeed in this competition,
brokers can distinguish themselves by providing a fast and accurate service dis-
covery with low effort for their customers. For that, brokers have to develop their
own business strategies, which they adjust to the given market. A main part of
this strategy is to find the configuration of a language and a matcher, which is
optimal wrt. the service discovery and the customer’s effort. Depending on the
broker’s strategy and the market characteristics, different configurations can be
optimal because they are subject to multiple trade-offs. For example, a compre-
hensive specification language enables very accurate matching, but it requires
quite a lot of effort for providers and requesters to create such detailed spec-
ifications. In contrast, simpler specifications can be matched much faster, but
matching accuracy may suffer. Therefore, a broker becomes successful if she has
several languages and matchers optimized according to her different strategies in
the given market. However, there are too many different variations of languages
and matchers to explore them manually as it is a tedious and error-prone task.

In this paper, we present a fully automated approach called LM Optimizer.
LM Optimizer supports brokers to find an optimal “language-matcher config-
uration” (LM Config) in a service market. An LM Config refers to a pair of
a service specification language and a corresponding matcher, working on in-
stances of this language. Both the language and the matcher are configured in a
certain manner. Configuration possibilities are determined by five kinds of con-
figuration rules. Depending on the configuration, matching accuracy, matching
runtime, and specification effort can be improved. LM Optimizer takes as an
input market characteristics and the broker strategy described in the form of so-
called configuration properties (CPs). Based on the given CPs, a configuration
procedure applies well-defined configuration rules to configure a holistic service
specification language and its matchers (provided as a part of LM Optimizer).
As an output, the broker receives an LM Config optimal for the given CPs.

To sum up the contribution, our approach provides brokers with an optimal
configuration of a language and a matcher customized for their business strategy
and the given market. This allows brokers to obtain the best possible results in
the service discovery. Thereby, our approach contributes to the development of
successful service markets.

The paper is organized as follows: In the next section, we introduce a running
example. Section 3 presents an overview of our approach, while its details are
explained in Section 4 and 5. Section 6 briefly presents related work and Section 7

Market-Optimized Service Specification and Matching 545

draws conclusions. A longer version of this paper, including an evaluation, has
been published in form of a technical report [2].

2 Running Example

As a running example, we use a service market for University Management

(UM). In this market, customers request software services that facilitate man-
agement tasks at a university. For that, they engage a broker, as shown in Fig. 1.
In the market, three services are available: Course Manager, Exam Manager, and
Room Manager. The broker matches the given requirements to the specifications
of the provided services, in order to find the most suitable one.

Service Market University Management

Broker Course
Manager

Exam
Manager

Room
Manager

Exam
Management
Service

Market:

Non standardized
terminology and processes
Small market

Strategy:

Prefer complex
services

Fig. 1. Example service in the UM market

As shown in Fig. 1, the UM Market has certain characteristics that influence
matching. For example, university structure and its management varies signifi-
cantly from university to university. Therefore, neither terminology nor processes
are standardized for services and their specifications in this market. In addition,
the market is small because there are currently only few offers. According to
the broker’s strategy, this specific broker wants to trade only complex services
because she expects the most profit from them. As a result, the broker needs an
optimal LM Config in order to become as successful as possible.

3 Overview: LM Optimizer

We call our approach for finding an optimal LM Config LM Optimizer. LM

Optimizer is fully automated in order to solve the high effort of finding an
optimal LM Config manually, as elaborated in Section 5.2. Figure 2 provides
an overview of our approach. LM Optimizer takes configuration properties

as an input and delivers an optimal LM Config as an output. The configura-
tion properties represent characteristics of the given market and properties of
the broker strategy. As an output, we obtain an optimal LM Config consisting
of a configured specification language and a set of matchers for it. The match-
ing results delivered by the matcher (based on the service specifications in the
configured language) are optimal for the given configuration properties.

LM Optimizer consists of three parts: (1) A holistic service specification lan-
guage called SSL. (2) A set of matchers called SSL Matchers, which realize

546 S. Arifulina et al.

LM Optimizer

ConfigurationService Specification
Language (SSL)

SSL Matchers
Configuration

Rules
Configuration

Procedure

configuration
properties

optimal
LM Config

Fig. 2. Overview of the Approach

matching for this language. (3) SSL and SSL matchers are configured by the
Configuration, which is responsible for obtaining an optimal LM Config for
the given configuration properties. It consists of a set of configuration rules

and a configuration procedure. The configuration procedure applies the con-
figuration rules for the given configuration properties, in order to configure the
SSL and its matchers optimally. SSL and its matching are described Section 4,
while the configuration part is explained in Section 5.

4 Service Specification Language and Matching

Our service specification language, or SSL, is a holistic service specifica-
tion language designed as a part of LM Optimizer (see Section 3). SSL consists
of eight different service specification aspects which describe different structural,
behavioral, and non-functional properties of a service. Each service specification
aspect consists of a set of language constructs which describe a certain part of
the corresponding service aspect. SSL can be used for comprehensive service
specification in many different markets. For each aspect in the SSL, there is one
matcher that is able to compare specifications of that aspect. A matcher may
implement different matching approaches. Each matcher can run as a matching
step in a so-called matching process. The technical report [2] explains in detail
the SSL, properties of matching steps, and the matching process.

Matching with the SSL delivers matching results of high accuracy as diverse
properties of services are compared. However, the performance of the match-
ing is rather low because comparing all these service properties requires much
computation time. Furthermore, writing specifications, which cover all aspects,
costs providers and requesters a lot of effort. Thus, we propose a mechanism to
configure the SSL and its matchers so that only service properties are consid-
ered, which are essential for matching in the given market according to a certain
broker strategy. Configuration possibilities for the matchers include ordering,
adaption, and weighting of matching steps. Correspondingly, accuracy, runtime,
and effort can be balanced in an optimal way for this market and the broker
strategy.

5 Configuration

In this section, we describe the configuration performed by LM Optimizer. This
includes a set of configuration rules presented in Section 5.1 and a configuration
procedure presented in Section 5.2.

Market-Optimized Service Specification and Matching 547

5.1 Configuration Rules

LM Optimizer uses configuration rules to find an optimal LM Config. Configu-
ration rules contain the knowledge of how certain configuration properties (CPs)
influence service matching with SSL and its matchers. Thus, they determine the
configuration of the SSL and its matchers for an optimal LM Config.

CPs formalize the properties of a market or the broker’s strategy. One ben-
efit of CPs is that the configuration knowledge condensed in the configuration
rules is defined over a formal notation, which can be applied to every market.
Thereby, we leverage market knowledge using a systematic, repeatable approach.
Furthermore, we allow the broker to control the choice of an optimal LM Config
by explicitly setting the relevant CPs. For these CPs, the broker describes her
target market and her strategy by assigning concrete values to them.

Configuration rules are grouped in five types: (1) Selection of specification
aspects – serves to select specification aspects needed in an optimal LM Config.
(2) Selection of language constructs – helps to select language constructs needed
within individual aspects. These two rule types are applied for configuring the
SSL. (3) Configuration of matching process – are applied to determine an optimal
order of matchers based on matcher dependencies and their runtime. (4) Config-
uration of matcher properties – sets certain matcher properties, e.g., a concrete
algorithm of a matcher suitable for the current configuration. (5) Configuration
of aggregation of matching results – puts the focus at certain matching steps,
which are weighted higher during the aggregation in the final matching result.

Table 1 shows some example configuration properties and rules. For an ex-
tended list of rules as well as a complete overview of all configuration possibilities,
refer to our technical report [2].

In order to understand the rationales of the example rules, let us consider
the CP Standardization. A CP serves as a basis for the rules and has a range
defined as a set of values, which can be assigned to that CP. The CP has the
range of true for standardized terminology and processes, terminology only

for a standardized terminology, processes only for standardized processes, and
false for no standard for both. Well-established terminology can replace behav-
ioral specifications of single operations because the semantics of the used names
is commonly understandable. If the processes are standardized, matching of the
order of operations is not needed as the behavior of equally named services is
understood in the same way. Thus, according to Rule 1, Signatures are needed
in an optimal LM Config but no Pre- and Postconditions or Protocols.

In Rule 2, the internal behavior of a service should be matched additionally to
Signatures. For that, we can use Pre- and Postconditions. Protocols have
to be considered as well, in order to match different orders of service operations
in the non-standardized processes. Rule 3 is used to select language constructs
within the Signatures aspect. Due to the lack of standardization in the market,
matching cannot rely on either operation or parameter names. Thus, they should
not be considered for matching.

Example rules configuring the matchers are Rule 4 – Rule 6. Rule 4 states to
decrease all matching thresholds for a market with a small size by 0.2 resulting in

548 S. Arifulina et al.

Table 1. Example configuration rules

Rule no. Rule type Rule definition

Rule 1 Selection of specification aspects Standardization = true → select Signatures
Rule 2 Selection of specification aspects Standardization = false → select Signatures

& Pre-/Postconditions & Protocols
Rule 3 Selection of language constructs Standardization = false → do not consider

Operation and parameter names in Signatures

Rule 4 Configuration of matching process Market size = small → configure:
decrease all thresholds by 0.2

Rule 5 Configuration of matcher properties Standardization = true → use
string similarity matching

Rule 6 Configuration of aggregation of Privacy important = true → configure
matching results privacy weight: multiply with 2

more services returned. Since in a small market, the probability of a perfect match
is rather low, we can receive more matching results by decreasing the thresholds.
In the matching process, matchers with a higher threshold are moved to the be-
ginning because after their execution fewer services have to be matched. Thus,
this decreases the runtime of the matching process. Rule 5 sets the matching al-
gorithm to string similarity matching if the market has standardized terminology
and processes. This allows sparing the runtime because names in the standardized
market are reliable for matching. Rule 6 configures the aggregation of matching
results by increasing the weight of the privacy matching result by the multiplicity
of 2 if privacy is important for the broker in this market.

We rely on the knowledge of a broker to assign reasonable range values to
her CPs. As future work, we plan to introduce measurable metrics for market
properties, which will allow setting the range values at least semi-automatically.

5.2 Configuration Procedure

In this section, we present the part of LM Optimizer responsible for the config-
uration of the SSL and its matchers. It applies the configuration rules to a set
of CPs assigned with concrete values given as input by the broker.

The configuration procedure configures the SSL by building a view on a sub-
set of its specification aspects. Each aspect is also reduced to a subset of its
language constructs. Thus, the whole aspects like Signatures or their language
constructs, e.g., parameter names, can be omitted. Matching of an SSL con-
figuration is limited to aspects and constructs defined in this configuration. We
show three different example configurations in the technical report [2].

There are two phases in the configuration procedure (their order is important
as the configuration of matching steps depends on the preceding selection):

1. Language Configuration: In this phase, the necessary service aspects
are selected by applying the rule types Selection of specification aspects and
Selection of language constructs described in Section 5.1.

2. Matcher Configuration: In this phase, for each selected language aspect,
a corresponding matcher is added as a matching step in the matching process.
The matching process is configured by ordering the matching steps. Then, the
matching algorithms and the aggregation of results are configured.

Market-Optimized Service Specification and Matching 549

LM Optimizer is a fully automated approach as a manual approach cannot
cope with the high theoretical complexity of the configuration procedure. SSL
consists of 8 aspects, where each one has 1 to 10 language constructs to con-
figure with the mean number of 4.4 language constructs per aspect. The mean
number of configurations per service aspect is 148. Including the possibility to
arbitraryly combine these configurations, the number of all possible SSL config-
urations becomes 3.4 · 1010. Then, we compute the number of possible matching
configurations considering that thresholds and weights can be changed in a cer-
tain rate within a given interval. The number of configurations is exponential
in this case. Currently, LM Optimizer supports 128 different language configu-
rations and 256 different matching configurations enabling the choice between
1.6 ·104 LM Configs. These numbers are based on the extended list of rules from
our technical report [2] also containing an evaluation of our approach.

6 Related Work

In the following, we briefly discuss the approaches mostly related to our work.
We also explain why they do not solve the problem we stated in this paper.

Two comprehensive service specification approaches established in academia
are the Unified Specification of Components (UnSCoM) framework [9] and the
Unified Service Description Language (USDL) [3]. These two aim at comprehen-
sive description and matching of a variety of existing service aspects and language
constructs for them. In comparison to our approach, the authors of these two
approaches do not provide any configuration possibilities either of the languages
or of the corresponding matchers. Furthermore, neither the languages nor the
matchers are optimized for any market characteristics or broker strategies.

Di Ruscio et al. propose a framework called BYADL to create a customized
architectural description language (ADL) by tailoring it, e.g., for domain specifics
or operations like analysis or visualization [6]. The authors tailor an ADL by
extending it with another language. In comparison, we configure the SSL by
view building. In addition, we also configure the operation of matching.

Furthermore, there are some configurable service matchers [12]. However, their
configuration possibilities are limited to different signature matching strategies
and not selected automatically. Similarly, there are matchers that configure their
aggregation strategies (but no other features) automatically [8]. Furthermore,
their configuration only influences the matcher but never the specification lan-
guage, and thereby the considered language constructs, as in our approach.

7 Conclusions

In this paper, we presented a fully automated approach LM Optimizer that sup-
ports service brokers to create a language-matcher configuration that is optimal
for a given service market as well as a broker’s strategy. Using this configuration,
a broker can distinguish herself from other brokers competing for customers of
their service discovery commissions. Thereby, LM Optimizer supports brokers

550 S. Arifulina et al.

to be most successful. Three different case studies showed that LM Optimizer
returned configurations with a high quality.

In the future, we want to extend our approach by extending the configuration
rules and the configuration procedure in order to integrate more rules that are
sophisticated. Furthermore, we want to apply our approach to other activities of
a service broker in addition to service matching. For example, we expect tools
for service certification or quality prediction to be configurable in similar ways.

Another field of future work is to adapt a broker’s language matcher config-
uration already in use. Since service markets are changing rapidly [10], a broker
needs to adapt the used matching approaches continuously. For that, the broker
can use our approach to configure the most suitable language and the matcher for
the current changed marker characteristics or the changed strategy. This allows
the broker to remain competitive by being flexible to its changing characteristics.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Archi-
tectures and Applications, 1st edn. Springer (2010)

2. Arifulina, S., Platenius, M.C., Gerth, C., Becker, S., Engels, G., Schäfer, W.: Con-
figuration of Specification Language and Matching for Services in On-The-Fly
Computing. Tech. Rep. tr-ri-14-342, Heinz Nixdorf Institute (2014)

3. Barros, A., Oberle, D. (eds.): Handbook of Service Description: USDL and Its
Methods. Springer, New York (2012)

4. Benatallah, B., Hacid, M.S., Leger, A., Rey, C., Toumani, F.: On automating web
services discovery. The VLDB Journal 14(1), 84–96 (2005)

5. Caillaud, B., Jullien, B.: Chicken & Egg: Competition among Intermediation
Service Providers. The RAND Journal of Economics 34(2), 309–328 (2003),
http://www.jstor.org/stable/1593720

6. Di Ruscio, D., Malavolta, I., Muccini, H., Pelliccione, P., Pierantonio, A.: Devel-
oping next generation adls through mde techniques. In: Proceedings of the ICSE
2010, USA, vol. 1, pp. 85–94 (2010)

7. Kappel, G., Langer, P., Retschitzegger, W., Schwinger, W., Wimmer, M.: Model
Transformation By-Example: A Survey of the First Wave. In: Düsterhöft, A., Klet-
tke, M., Schewe, K.-D. (eds.) Conceptual Modelling and Its Theoretical Founda-
tions. LNCS, vol. 7260, pp. 197–215. Springer, Heidelberg (2012)

8. Klusch, M., Kapahnke, P.: The iSeM Matchmaker: A Flexible Approach for Adap-
tive Hybrid Semantic Service Selection. Web Semantics: Science, Services and
Agents on the World Wide Web 15(3) (2012)

9. Overhage, S.: UnSCom: A Standardized Framework for the Specification of Soft-
ware Components. In: Weske, M., Liggesmeyer, P. (eds.) NODe 2004. LNCS,
vol. 3263, pp. 169–184. Springer, Heidelberg (2004)

10. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Com-
puting: A Research Roadmap. International Journal of Cooperative Information
Systems 17(2), 223–255 (2008)

11. Schlauderer, S., Overhage, S.: How perfect are markets for software services? an
economic perspective on market deficiencies and desirable market features. In:
Tuunainen, V.K., Rossi, M., Nandhakumar, J. (eds.) ECIS (2011)

12. Wei, D., Wang, T., Wang, J., Bernstein, A.: Sawsdl-imatcher: A customizable and
effective semantic web service matchmaker. Web Semantics: Science, Services and
Agents on the World Wide Web 9(4), 402–417 (2011)

http://www.jstor.org/stable/1593720

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 551–559, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Designing Secure Service Workflows in BPEL

Luca Pino, Khaled Mahbub, and George Spanoudakis

Department of Computer Science, City University London, London, United Kingdom
{Luca.Pino.2,K.Mahbub,G.E.Spanoudakis}@city.ac.uk

Abstract. This paper presents an approach that we have developed to support
the design of secure service based applications in BPEL. The approach is based
on the use of secure service composition patterns, which are proven to preserve
composition level security properties if the services that are composed accord-
ing to the pattern satisfy other properties individually. The secure service com-
position patterns are used for two purposes: (a) to analyse whether a given
workflow fragment satisfies a given security property, and (b) to generate com-
positions of services that could substitute for individual services within the
workflow that cause the violation of the security properties. Our approach has
been implemented in a tool that is based on Eclipse BPEL Designer.

1 Introduction

An important concern in the development of a service-based application (SBA) is the
ability to assure that the application will have certain security properties. Assuring
security is important for any application but acutely so in the case of SBAs. Such
applications, in fact, are based on services which might not be under the control of the
SBA provider and can compromise critical security properties (e.g., the integrity and
confidentiality of data passed to, stored or produced, or the availability).
 An increasingly accepted view on how to best assure security is that security prop-
erties should be achieved by design rather than be dealt with as an aftermath concern.
Despite being increasingly adopted in the design of normal software applications
security-by-design is not so well supported in the case of SBAs. SBA design is typi-
cally iterative focusing on the development of an orchestration model to coordinate
the services that will constitute the SBA [3]. During it, it is necessary to discover
services that can fit with the orchestration model that is being designed or, where this
is not possible, to change the orchestration model in a systematic manner in order to
make it fit with the available services whilst preserving required properties.

Existing approaches are effective in discovering individual services (e.g., [1,2,3])
and service compositions that have functionality and quality properties that are com-
patible with SBA designs (e.g., [4,5,6]). However, they do not support effectively the
discovery of individual services and service compositions with required security
properties, and the validation of the overall security of a service orchestration process
when the discovered individual services are composed into it. This paper presents an
approach that we have developed to address this problem.

552 L. Pino, K. Mahbub, and G. Spanoudakis

Our approach supports the design of secure SBAs. It is based on the use of Secure
Service Composition patterns (SSC patterns), which are proven to preserve certain
composition level security properties if the services that are composed according to
the pattern satisfy other properties individually. SSC patterns are used for two pur-
poses: (a) to analyse whether a given workflow fragment satisfies a given security
property, and (b) to generate service compositions that could substitute for individual
services within a workflow that cause the violation of the security properties required
of it. Our approach supports also the replacement of individual services, which violate
given security properties, by other individual services or compositions that are dis-
covered based on properties identified by the patterns. The satisfaction of security
properties at the service level is determined by digital service security certificates. We
implemented our approach in a tool that extends Eclipse BPEL Designer [7].

The paper is structured as follows. Section 2 presents scenarios of secure SBA
process design. Section 3 introduces the SSC patterns. Section 4 presents the valida-
tion and adaptation supported by the SSC patterns. Finally, Section 5 reviews related
work and Section 6 summarizes our approach and outlines directions for future work.

2 Scenarios for Secure Workflow Design

To exemplify our approach, assume an SBA, called StockBroker allowing stock in-
vestors to buy and/or sell stocks in different stock exchanges. Upon receiving a re-
quest from an investor, StockBroker retrieves the investor’s portfolio of stocks, and
fetches the trading values of a selected stock and index of the relevant stock market
(e.g. NASDAQ, Dow Jones). It then matches these values with the preferences of the
investor and contacts different services to carry out the trade and to pay for it.

Fig. 1. The StockBroker BPEL workflow

Fig. 1 shows the workflow that realises StockBroker. This workflow receives a
stock symbol and a stock market index ID; invokes a stock information service (cf.
activity GetStockDetails) to get the details for the given stock in the particular market;
matches these details with preferences (cf. activity AnalysisByPreferences); and, if a
trade order is to be placed, it invokes in parallel the payment service (cf. activity
ProcessPayment) and the trading service (cf. activity TradeStocks)1. Finally, a report
of all results is produced by the reporting service (cf. activity WriteReport).

1 Carrying trading in parallel with payment is possible as clearing of payment transactions can

be completed after the trade transaction has taken place.

GetStock
Details

symbol,
indexID

AnalysisBy
Preferences

stockValues,
indexValues

currentAccount,
paymOrder,
tradingAccount,
stocksOrder

Order?

Process
Payment

Trade
Stocks

currentAccount,
paymOrder

tradingAccount,
stocksOrder tradeResult

paymResult

Write
Report

report

yes

Sequence “ProcessOrder”

 Designing Secure Service Workflows in BPEL 553

In designing secure service workflows, we have identified two scenarios. In the
first scenario (Scenario 1), an SBA designer wants to verify if an external service
operation, used in the workflow through an invoke activity, satisfies a required secu-
rity property. In this scenario, if the service that is currently bound to the activity does
not satisfy the property, support is offered to discover alternative services that would
satisfy the required property and, if no such individual services can be found, to ex-
plore if it is possible to build a composition of other services that satisfies the security
property and could, therefore, be used as a substitute for the original service. An ex-
ample of a composition is shown in Fig. 2. The composition ParallelStockDetails
shown calls two service operations in parallel, namely GetStockValues and Get-
StockMarketIndex.GetStockValues returns the trading value for a stock, identified by
its symbol, and GetStockMarketIndex returns the value of a stock market index.

Fig. 2. Service composition ParallelStockDetails to be substituted for GetStockDetails

The second scenario arises in cases where the SBA designer wishes to verify that a
part of a workflow (as opposed to an individual activity of it) satisfies a given security
property. Workflow fragments are identified (delimited) by a control flow activity. In
the Stock Broker workflow, for instance, a designer might wish to verify whether the
sub sequence of activities designated as ProcessOrder in Fig. 1 preserves the confi-
dentiality of the personal current account information of Stock Investor.

3 Secure Service Composition Patterns

SSC patterns are used to specify how security properties of whole abstract workflows
(i.e., composition level security properties) can be guaranteed via security properties
of the individual services used in the workflow. The causal relation between work-
flow and activity level properties specified in such patterns is formally proven.

An SSC pattern is composed of: (a) an abstract workflow structure (Pattern.WF),
called workflow specification, that indicates how services are to be composed and the
data flows between them; (b) the composition level security property that the pattern
guarantees (Pattern.CSP); and (c) the security properties required of the partner ser-
vices that may be bound to the workflow specification (i.e., to the abstract invoke
activities of the workflow) to guarantee the security property specified in (b) (Pat-
tern.ASP). SSC patterns are expressed as rules of the production system Drools [9], to
enable their application for workflow security validation and adaptation.

In the following, we present an example of an SSC pattern that we have encoded
specifying the effect of composition on the security property of separability. Separability
is a security property introduced in [20] and has been defined as complete independence

GetStock
Values

GetStock
MarketIndex

symb

index indexV

stockV

stockV,
indexV

symb,
index

554 L. Pino, K. Mahbub, and G. Spanoudakis

between high (confidential) and low level (public) sequences of actions. For this property
to hold there should be no interaction between confidential and public sequences of ac-
tions (e.g., running these actions as two separate processes without any communication
between them). The composition of separability, proven in [20,21], is used for specifica-
tion of the SSC pattern in Drools as given in Sect. 4.1.

4 Application of SSC Patterns

SSC patterns are used to infer the security properties that the individual services
should have for the workflow to have another security property as a whole. This al-
lows to: (a) analyse whether a given workflow (or a fragment of it) satisfies a given
security property (security validation); and (b) generate compositions of services that
could substitute for individual services, which prevent the satisfaction of the security
properties required (security driven workflow adaptation). In the following, we pre-
sent the approaches that enable these forms of applications.

4.1 Inferring Security Properties of Workflow Activities

SSC patterns are used to infer the security properties, which have to be satisfied by
the individual activities (services) of a composition, for the whole composition to
satisfy a given security property. In general, there can be zero, one or several alterna-
tive combinations of activity level properties, called security solutions, that can guar-
antee the security property required of the composition. The algorithm that applies
SSC patterns for this purpose is given in Table 1.

Table 1. Algorithm to infer security properties for activities within a composition

Algorithm: INFERSECPROPERTY(WF, RSP, InSolutions): OutSolutions
Inputs: WF – /* workflow specification of a service composition process */

RSP – /* security property requested for WF */
InSolutions– /* list of security solutions used for recursion. Base case: {RSP} */

Output: OutSolutions – /* list of security solutions for the activities in WF */
For each pattern Patt such that Patt.CSP matches RSP do

If Patt.WF /* i.e. the workflow specification of Patt */ matches WF then
For each element E /* i.e. individual activity or a sub-workflow */ of WF do

Properties[E] := security properties for WF.E identified by Patt.ASP
For each security solution S in InSolutions do

S’ := replace RSP by Properties in S
SolutionListPatt := ADD(SolutionListPatt, S’)

For each element E in WF that is a sub-workflow specification do
SolutionListPatt := INFERSECPROPERTY(E, Properties[E], SolutionListPatt)

OutSolutions := ADDALL(OutSolutions, SolutionListPatt)
Endif

Return OutSolutions

As shown in the table, given an input service workflow WF and a required security

property RSP, the algorithm (INFERSECPROPERTIES) tries to apply all the SSC pat-
terns that would be able to guarantee the requested security property RSP. A pattern
is applied if the workflow specification of the pattern (Pattern.WF) matches with WF.

 Designing Secure Service Workflows in BPEL 555

If a pattern matches the workflow, then the security solutions computed up to that
point are updated to replace the requested security property RSP with the security
properties for the matched elements in WF (these can be individual activities or sub-
workflows). If a matched element E of WF is an atomic activity, the process ends
w.r.t it. If E is a sub-workflow, the algorithm is applied recursively for it.

Fig. 3. The workflow patterns of sequence ProcessOrder

As an example of applying INFERSECPROPERTIES consider the case where an SBA
designer wishes to verify that the subprocess ProcessOrder (PO) within the Stock-
Broker process of Fig. 1 preserves the confidentiality of the Stock Investor current
account. This security property can be expressed as separability, with currentAccount
being confidential. ProcessOrder can be seen as a sequential workflow consisting of a
sub-workflow WF’ and the atomic activity WriteReport that follows it (see Fig. 3).
WF’ itself is a parallel workflow involving two atomic activities: ProcessPayment
and TradeStocks.

Table 2. Specification of a pattern in Drools

rule "Separability on Parallel Workflow"
 when
 $wf : Parallel($A1 : act1, $A2 : act2)
 $csp : Property(propertyName == "Separability", subject == $wf, $cspAttr : attributes)
 $solution : Solution(properties contains $csp)
 then
 Solution newSolution = (new Solution($solution).removeProperty($csp);

 Property asp1 = new Property ($csp, "Separability", $A1);
 asp1.getAttributes().put("public", new Subset($cspAttr.get("public")));
 asp1.getAttributes ().put("confidential", new Subset(new Complement($cspAttr.get("public"))));
 newSolution.getProperties().add(asp1);
 insert(asp1);
 Property asp2 = new Property ($csp, "Separability", $A2);
 asp2.getAttributes().put("public", new Subset($cspAttr.get("public")));
 asp2.getAttributes ().put("confidential", new Subset(new Complement($cspAttr.get("public"))));
 newSolution.getProperties().add(asp2);
 insert(asp2);

 insert(newSolution);
end

Write
Report

currentAccount,
paymOrder,

tradingAccount,
stocksOrder

Process
Payment

Trade
Stocks

currentAccount,
paymOrder

tradingAccount,
stocksOrder tradeResult

paymResult
paymResult,
tradeResult report

WF’
WF

WF’

556 L. Pino, K. Mahbub, and G. Spanoudakis

Hence, when INFERSECPROPERTIES is applied on to it, in the first iteration an SSC
pattern for the sequential flow can be applied on WF, returning two security proper-
ties: one for WF’ requiring confidentiality for currentAccount, paymResult and trad-
eResult, and another for WriteReport, requiring confidentiality for paymResult and
tradeResult. The second iteration of the algorithm applies another SSC pattern, but for
the parallel flow, to WF’. In particular INFERSECPROPERTIES applies SSC patterns
specified as rules of the Drools production system [9]. Table 2 shows the specification
of the SSC pattern about separability on parallel flow (see [21]) as a Drools rule.

More specifically, the rule defines that if the workflow ($wf) is a parallel composi-
tion of activities and the composition level security property is separability ($csp) then
the security property of separability is required of the individual activities $A1 and $A2
of the composition (this is expressed by the property asp1 and asp2). Hence, by apply-
ing the rule of the SP pattern to WF’, the algorithm creates and adds two security prop-
erties to the final solution, i.e., asp1 (separability) for currentAccount and paymResult
of ProcessPayment and asp2 (separability) for tradeResult of TradeStocks.

4.2 Validation of Security of Individual Services and Workflow Fragments

In order to validate whether a security property is satisfied by a fragment of a work-
flow, we assume that a fragment consists of a BPEL scope or a control flow (i.e.,
sequence, flow, if-then-else or pick) activity that can contain multiple service invoca-
tions (in the form of invoke activities) and further control flow activities.

Given a request to verify whether a workflow fragment (WF) satisfies a required
security property (RSP), the algorithm INFERSECPROPERTY is applied to identify the
list of alternative security solutions (i.e., combinations of security properties of the
individual services in the fragment) that would guarantee RSP. As explained earlier
INFERSECPROPERTY tries to apply different SSC patterns in order to identify these
alternative solutions. If such solutions exist, each of them is analysed further to check
if the security properties required by it are provided by the services in the fragment.

To validate whether an individual service satisfies the security property required of
it by a security solution, we express the property as a service discovery query and
then use the discovery algorithm described in [8] to match the specification of the
individual service with the query and establish if it satisfies the query or not. In apply-
ing the service discovery process, we assume the existence of machine-readable secu-
rity certificates that indicate the security properties that a service S has [8]. If the in-
dividual service validation succeeds for all the services of the fragment by even one
of the identified security solution, then the fragment is validated. Otherwise, if no
security solution can be found, or if none of the found security solution can be satis-
fied by the services in the fragment, the fragment is reported as not validated.

4.3 Workflow Adaptation

In certain cases, it might be possible to adapt a workflow in order to make it satisfy a
required security property. In our approach, this adaptation can take two forms, by:
(a) replacing individual services in it by other individual services, or (b) replacing

 Designing Secure Service Workflows in BPEL 557

individual services in it by service compositions that are constructed in a way that
guarantees the security property required of the service to be replaced. When a work-
flow fragment is not validated, the SBA designer can compare and select the security
solutions for the workflow fragment found by the validation algorithm. This allows to
replace the security property over the fragment with security properties over the in-
voke activities within it. Once a specific security solution is selected, the service adap-
tation mechanism is triggered to adapt the workflow.

4.4 Implementation of the Approach

Our approach has been implemented in a tool called A-BPEL Designer. This tool is an
extension of BPEL Designer, i.e., an Eclipse plugin [7] that offers comprehensive
support for the editing and deployment of WS-BPEL processes through Eclipse IDE.
In A-BPEL Designer, we have extended BPEL by allowing the specification of secu-
rity properties for invoke or control flow BPEL. A-BPEL Designer offers also support
for validating security properties of individual partner services or workflow fragments
and adapting BPEL processes to ensure security as described. To offer these function-
alities, A-BPEL designer has been integrated with the service discovery engine de-
scribed in [3] and the service composition tool described in [8].

5 Related Work

Research related to the security of service based applications focuses on making se-
cure an SBA, or verifying its security.

A common approach underpinning research in the former area is to secure SBAs
by using additional security services that can enforce the required security properties
[12,13,14]. More specifically, an aspect-oriented version of BPEL, called AO4BPEL
[12], allows the integration of security specifications in a BPEL process. These speci-
fications are then used to indicate security functionalities that are offered by a special
Security Service, and integrate them in the AO4BPEL process.

Sectet [13] is a framework for the implementation of security patterns from design
to the implementation of an orchestration. Sectet enables the design of orchestrations
as UML message flow diagrams, which are converted into workflows and used to gen-
erate stubs for actual orchestrations. In orchestrations, services are wrapped by Policy
Enforcement Points, whose purpose is to provide the required security properties.

PWSSec [14] describes a set of complementary stages to be added to the SBAs de-
velopment phases in order to support security. In particular the WSSecArch is a de-
sign phase that takes care of the indications about which security requirements are
achieved and where they are in the architecture. The approach makes usage of secu-
rity architectural patterns to convert the security requirements into architecture speci-
fications, with external security services providing the security functionalities.

Unlike the above approaches, our approach does not use special types of security
components or services but supports the discovery of normal services and service
compositions that themselves have the security properties required of an SBA.

Attention has been given also to the model based verification of security properties
during the design of orchestrations [15,16,17]. These works usually require a UML

558 L. Pino, K. Mahbub, and G. Spanoudakis

specification of the system, the security threats associated with it and the description
of required properties in order to verify the satisfiability of the latter. Our approach
does not require the specification of threats. Furthermore, it does not perform exhaus-
tive verification since its analysis is driven by specific SSC patterns. This is important
as it makes security analysis more scalable at the expense of loss of completeness.

Some model based approaches [18,19] support also the transformation of from se-
curity requirements into security policies and architectures. This usually happens in
an early design phase that must be followed by a subsequent phase where details
about the implementation have to be worked out. Our approach offers the possibility
to add and address security properties during the workflow design phase, without
requiring designer to have a security background.

The METEOR-S project [10] allows annotation of abstract BPEL process to specify
semantic-aware QoS properties, including security. The annotations are then used to
discover appropriate services for the BPEL process, using an annotated registry. The
Sec-MoSC (Security for Model-oriented Service Composition) tool [11] is an exten-
sion of the Eclipse BPMN Modeller that allows to design BPMN business processes
and to add security properties to them. These two approaches focus only on the valida-
tion single service of security properties, while our approach allows the validation of
workflow fragments and the substitution of services with service compositions.

6 Conclusion

In this paper we have presented an approach supporting the validation of security
properties of BPEL workflows and the security based adaptation of such workflows
during their design. A-BPEL Designer implements this approach in the Eclipse plat-
form through the usage of a service discovery engine.

Our approach is based on Secure Service Composition (SSC) patterns, which en-
code formally proven causal relations between individual service level security prop-
erties and composition level security properties. The validation of workflow security
is based on identifying (through the SSC patterns) the security properties that the
individual partner services need to have for the workflow to have composition level
properties. The identified service level properties are used to check if existing partner
services satisfy them, discover alternative services for them in case they do not, and
discover service compositions satisfying the services if necessary. Our approach sup-
ports also the automatic replacement of security non-compliant services.

Our current implementation supports workflows with sequential, parallel and
choice control activities (i.e., BPEL sequence, flow, if-then-else and pick activities),
and the replacement of individual service invocations. Hence, in its current form, its
application is restricted to non-transactional and stateless services.

Our on-going work focuses on supporting transactional services. We are also con-
ducting performance and scalability tests, in order to compare our results with com-
peting approaches (especially approaches based on full verification of security).

Acknowledgment . The work presented in this paper has been partially funded by the
EU F7 project ASSERT4SOA (grant no.257351).

 Designing Secure Service Workflows in BPEL 559

References

1. Pawar, P., Tokmakoff, A.: Ontology-Based Context-Aware Service Discovery for
Pervasive Environments. In: 1st IEEE International Workshop on Services Integration in
Pervasive Environments (SIPE 2006), in conjunction with IEEE ICPS 2006 (2006)

2. Mikhaiel, R., Stroulia, E.: Examining usage protocols for service discovery. In: Dan, A.,
Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 496–502. Springer, Heidelberg
(2006)

3. Spanoudakis, G., Zisman, A.: Discovering Services During Service Based Systems Design
Using UML. IEEE Trans. on Software Eng. 36(3), 371–389 (2010)

4. Fujii, K., Suda, T.: Semantics-Based Dynamic Web Service Composition. IEEE Journal on
Selected Areas in Communications 23(12), 2361–2372 (2005)

5. Silva, E., Pires, L.F., van Sinderen, M.: On the Support of Dynamic Service Composition
at Runtime. In: Dan, A., Gittler, F., Toumani, F. (eds.) ICSOC/ServiceWave 2009. LNCS,
vol. 6275, pp. 530–539. Springer, Heidelberg (2010)

6. Pino, L., Spanoudakis, G.: Constructing Secure Service Compositions with Patterns. In:
IEEE SERVICES 2012, pp. 184–191. IEEE Press (2012)

7. BPEL Designer Project, http://www.eclipse.org/bpel/
8. ASSERT4SOA Consortium: ASSERTs Aware Service Based Systems Adaptation.

ASSERT4SOA Project, Deliverable D2.3 (2012)
9. Drools – Jboss Community, http://drools.jboss.org

10. Aggarwal, R., Verma, K., et al.: Constraint Driven Web Service Composition in
METEOR-S. In: IEEE SCC 2004, pp. 23–30. IEEE Press (2004)

11. Souza, A.R.R., et al.: Incorporating Security Requirements into Service Composition:
From Modelling to Execution. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-
ServiceWave 2009. LNCS, vol. 5900, pp. 373–388. Springer, Heidelberg (2009)

12. Charfi, A., Mezini, M.: Using aspects for security engineering of web service composi-
tions. In: IEEE ICWS 2005, pp. 59–66. IEEE Press (2005)

13. Hafner, M., Breu, R., et al.: Sectet: An extensible framework for the realization of secure
inter-organizational workflows. Internet Research 16(5), 491–506 (2006)

14. Gutiérrez, C., Fernández-Medina, E., Piattini, M.: Towards a process for web services se-
curity. J. of Research and Practice in Information Technology 38(1), 57–68 (2006)

15. Bartoletti, M., Degano, P., et al.: Semantics-based design for secure web services. IEEE
Trans. on Software Eng. 34(1), 33–49 (2008)

16. Deubler, M., Grünbauer, J., Jürjens, J., Wimmel, G.: Sound development of secure service-
based systems. In: ICSOC 2004, pp. 115–124. ACM, New York (2004)

17. Georg, G., Anastasakis, K., et al.: Verification and trade-off analysis of security properties
in UML system models. IEEE Trans. on Software Eng. 36(3), 338–356 (2010)

18. Menzel, M., Warschofsky, R., Meinel, C.: A pattern-driven generation of security policies
for service-oriented architectures. In: IEEE ICWS 2010, pp. 243–250. IEEE Press (2010)

19. Séguran, M., Hébert, C., Frankova, G.: Secure workflow development from early require-
ments analysis. In: IEEE ECOWS 2008, pp. 125–134. IEEE Press (2008)

20. McLean, J.: A general theory of composition for trace sets closed under selective interleav-
ing functions. In: 1994 IEEE Symp. on Sec. and Privacy, pp. 79–93. IEEE CS Press (1994)

21. Mantel, H.: On the composition of secure systems. In: 2002 IEEE Symp. on Sec. and Pri-
vacy, pp. 88–101. IEEE CS Press (2002)

Runtime Management of Multi-level SLAs
for Transport and Logistics Services

Clarissa Cassales Marquezan1, Andreas Metzger1, Rod Franklin2, and Klaus Pohl1

1 paluno (The Ruhr Institute for Software Technology)
University of Duisburg-Essen, Essen, Germany

{clarissa.marquezan,andreas.metzger,klaus.pohl}@paluno.uni-due.de
2 Kühne Logistics University, Hamburg, Germany and

Kühne + Nagel Management AG, Schindellegi, Switzerland
rod.franklin@the-klu.org

Abstract. SLA management of non-computational services, such as transport
and logistics services, may differ from SLA management of computational ser-
vices, such as cloud or web services. As an important difference, SLA manage-
ment for transport and logistics services has to consider so called frame SLAs.
A frame SLA is a general agreement that constitutes a long-term contract be-
tween parties. The terms and conditions of the frame SLA become the governing
terms and conditions for all specific SLAs established under such a frame SLA.
Not considering the relationships between frame SLAs, specific SLAs and QoS
monitoring information may lead to partial conclusions and decisions, thereby
resulting in avoidable penalties. Based on a real industry case in the transport and
logistics domain, this paper elaborates on a multi-level run-time SLA manage-
ment approach for non-computational services that takes into account those re-
lationships. We describe a cloud-based software component, the BizSLAM App,
able to automatically manage multi-level SLAs by extending SLA management
solutions from service-oriented computing. We demonstrate the feasibility and
usefulness of the SLA management approach in an industrial context.

1 Introduction

Managing Service Level Agreements (SLAs) is an essential task for all kinds of ser-
vices, be they computational (e.g., cloud services or web services) or non-computational
(such as transport and logistics, manufacturing, energy, or agriculture services). The
major goals of SLA management are to monitor, check, and ensure that the expected
QoS attributes are met during service execution. Expected QoS attributes are expressed
in terms of Service Level Objectives (SLOs) that are part of SLAs. In the computational
domain, SLA management has been extensively researched. A diversity of languages
and tools have been developed [24,2,15,16,19].

SLA management for transport and logistics services is just beginning to be investi-
gated [12]. This especially holds true for automating SLA management, which is fos-
tered by the increasing digitization of SLAs of transport and logistics services together
with the need to share SLA information among the participants in a business process.
The transport and logistics domain thus significantly would benefit from the techniques

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 560–574, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Runtime Management of Multi-level SLAs 561

and methods developed by the services community for computational services. This
paper investigates opportunities for extending techniques developed for computational
services to non-computational services in the transport and logistics domain by starting
from an understanding of industry requirements and their potential for automation.

Traditionally, managing computational SLAs involves handling two levels of infor-
mation: (1) QoS monitoring data collected during service execution used, for instance,
to check whether the service-level objectives are met; and (2) the actual SLAs that
specify expected and agreed to service-level objectives.

SLA management for transport and logistics requires an additional level of infor-
mation: (3) terms and conditions of so-called frame SLAs. A frame SLA is a general
agreement that constitutes a long-term agreement (e.g., one year) between parties that
have decided to work together. During this period of time, each request for service
execution creates a specific SLA (which is equivalent to the SLA at level (2) for com-
putational services). The terms and conditions of the frame SLA become the governing
terms and conditions for all specific SLAs established under the frame SLA. In con-
trast to computational services, the frame SLA is the actual legally binding document
between the two partners. The advantage of frame SLAs is that they simplify the ex-
ecution of services that will be delivered in a repeated manner over an extended time
frame. These services can all be executed under the same agreement without having to
renegotiate SLAs and SLOs for each service execution.

To automate the SLA management process for transport and logistics services exe-
cuted under frame agreements requires dedicated solutions capable of handling these
three levels of information at run-time in an automated fashion. It is important to con-
sider the multi-level relationships between frame SLA, specific SLA, and actual QoS
measurements. Otherwise, SLA management may lead to wrong conclusions and deci-
sions that service levels have or have not been met, resulting in inapplicable and avoid-
able penalties. Section 2 elaborates on these problems using industry data, thereby mo-
tivating the industry needs for such automated solutions.

In our previous work [12], we presented an analyzer component for runtime SLA
management of transport and logistics services, providing a computational solution for
automatic SLA checking at run-time. In this paper, we integrate this analyzer compo-
nent into the BizSLAM App, which is developed on top of FIspace.eu, a cloud-based
business collaboration platform [23]. To this end, we (i) define an extensive data model
for transport and logistics services and (ii) implement dedicated user interfaces for man-
aging SLAs. Section 3 introduces the conceptual foundations and features of app as well
as the data model used to express and relate the multiple levels of SLA information. It
also describes how our SLA management approach advances the state of the art.

Section 4 discusses feasibility and usefulness of our SLA management approach,
applying the BizSLAM App prototype to a specific scenario in SLA management.

2 Problem Statement and Industry Needs

Transport and logistics services can account for between 10% to 20% of a country’s
Gross Domestic Product, and CO2 emissions from transport activities amount to 14%
of total greenhouse gas emissions. Therefore, an improvement in how efficiently these

562 C.C. Marquezan et al.

services are provided can dramatically increase competitiveness and sustainability. Ev-
idence suggests that improved management of transport processes through advanced
IT could yield efficiency gains in the range from 10% to 15% [1]. Many opportuni-
ties for employing IT to optimize and improve transport and logistics processes can
be listed, such as better business collaboration support [23], real-time information han-
dling, better transport and logistics planning tools, predictive process management [17],
and enhanced SLA management solutions [9].

In this paper, we focus on enhanced SLA management. More specifically, we look at
transport and logistics service level agreements (or SLAs) and their management dur-
ing the execution of transport and logistics processes. Illustrated by concrete examples
from an industry dataset (available from http://www.s-cube-network.eu/c2k),
we elaborate on the current situation in industry and the key business requirements
for enhanced IT solutions for SLA management in this domain. The industry dataset is
based on Cargo 2000 logs covering five months of business operations. Cargo 2000 is a
standard established by IATA, the International Air Transport Association, enabling the
cross-organizational monitoring of transport processes.

Figure 1 shows the relationship between the actual and planned units of cargo as-
sociated with the transportation processes covered by this dataset. The ”planned” axis
denotes the number of units the logistics service client booked and thus constitutes the
number of units that the logistics service provider was expecting to receive from the
client. This booked value thus forms part of an SLA between the logistics service client
and the logistics service provider. The ”actual” axis indicates the effective cargo units
received by the logistics service provider at the beginning of the air transport service.

From the perspective of the logistics service provider, all the circles off the diagonal
line in Figure 1 would theoretically indicate SLA violations since the actual amount
delivered by the customer does not comply with what has been booked. However,
the aforementioned information is not sufficient to determine whether an actual SLA

Fig. 1. Planned vs. actual weight of cargo for real-world transport processes (adapted from [8])

http://www.s-cube-network.eu/c2k

Runtime Management of Multi-level SLAs 563

violation happened for the transport and logistics service. As discussed in Section 1,
the relationships of the three levels of information must be considered, i.e., how the
actual measured QoS value, the planned value of the specific SLA, and the frame SLA
are related. For instance, assume that the points highlighted by the boxes in Figure 1 are
associated with the same frame SLA. Also, assume that this frame SLA establishes that
a logistics service client may ship up to 25 containers, each with up to 3000 units of
cargo, within the time span of one year. This means that whenever the logistic service
client delivers a container with up to 3000 units to be transported, this delivery complies
with the frame SLA and the cargo should be transported for the fixed price established
under the frame SLA (provided that the number of containers delivered previously does
not exceed the established limit of 25). Above this threshold, the fixed price might not
apply and may thus require re-negotiating the SLAs.

The boxes P1, P2, P3, and P4 in Figure 1 show the actual amount delivered by the
logistics service client (axis Y) versus the planned and reserved amount of cargo to
be transported by the logistics service provider (axis X). An analysis of these points
without factoring in the frame SLA would indicate that points P3 (3000, 3000) and P4
(8000, 8000) do not constitute SLA violations, while P1 (0, 2900) and P2 (2900, 1200)
constitute SLA violations. In this case, penalties should be applied for the service exe-
cution of points P1 and P2. Now, taking into account the frame SLA, we actually reach
a different conclusion: We find that points P1, P2, and P3 do not constitute violations
since the respective amount of cargo in these service executions is under, or equal to,
the amount established in the frame SLA (i.e., 3000 units of cargo). In contrast, the
service execution represented by point P4 does constitute a violation of the frame SLA.

Currently, industry follows a manual process to check whether the SLOs of the spe-
cific agreements (i.e., each individual service execution) conform with the SLOs of the
related frame agreement. The numbers provided by a large company from the transport
and logistics domain show that in a given month up to 100,000 transports may have
to be handled by the logistics service provider [17]. Each of these transports may be
associated with a specific agreement, meaning that the number of specific agreements
to be checked by a large transport and logistics company could reach up to hundreds of
thousands of documents per month. This clearly requires automated support.

The situation faced by industry today, and as presented above, is mainly caused by
the following limitations: First, frame SLA information is currently not available in
real-time to the down-stream individuals in charge of the actual operations of the logis-
tics service providers. Second, there are currently no standards for representing SLAs
in the domain in a structured way. Third, as a consequence from the aforementioned
limitations, the SLA management in the transport and logistics domain is manually per-
formed in a ”post-morten” fashion (i.e., long after the execution of the service). The
remainder of this paper introduces our solution to address these limitations.

3 The BizSLAM App

This section introduces the BizSLAM App, a protoype implementation of a multi-level
SLA management component. We first provide the conceptual foundations for multi-
level SLAs (Section 3.1) and then introduce the key features of the BizSLAM App

564 C.C. Marquezan et al.

(Section 3.2). One key element of the solution is an extensive data model that includes
the major data types found in SLAs for transport and logistics services (Section 3.3).
The section concludes with a discussion of related work (Section 3.4).

3.1 Specifics of Transport and Logistics SLAs

Figure 2 depicts the main concepts of transport and logistics SLAs. Each agreement
consists of three fundamental aspects. First, the association among the Logistics Service
Provider and the Logistics Service Client as illustrated at the top of Figure 2. Second,
SLOs that define the expected quality attributes of a transport and logistics service.
Third, a set of Terms and Conditions including liability and penalty terms that become
applicable once a deviation from the SLOs is identified.

SLA

Frame
SLA

Specific
SLA

SLA

SLO

SLA

1

Frame
SLA

Specific
SLA

Terms and
Conditions

SLO

Atomic
SLO

Aggregated
SLO

0..*

1

1..*

1

Logistics Service
Provider

Logistics Service
Client

1..*

1
1..*

Fig. 2. UML model representing key concepts of Transport and Logistics SLAs

Following from our observations in Section 2, an SLA can either be a Frame SLA
or a Specific SLA. Each Specific SLA is related to exactly one Frame SLA. This also
leads to two types of SLOs specified in the domain: An Atomic SLO defined in a frame
SLA specifies a quality guarantee that has to be met by each of the specific SLAs.
In our example from Section 2, the maximum of 3000 cargo units constitutes such an
atomic SLO. Each specific SLA established under the related frame SLA may only de-
fine a maximum of 3000 cargo units. Another example of an atomic SLO is transit time,
defining a maximum time span during which each individual transport must occur. In
contrast, an Aggregated SLO defined in a frame SLA specifies a quality guarantee in
terms of an accumulative value based on the respective SLOs in the specific SLAs. In
our example from Section 2, the maximum number of 25 containers per year consti-
tutes such an aggregated SLO. This means that the sum of all containers defined in the
specific SLAs may not be more than 25. The two types of SLAs (frame and specific)
together with the two types of SLOs (atomic and aggregated) constitute the core for sup-
porting runtime and automated SLA management for transport and logistics services.

3.2 Features of the App

The main purpose of the BizSLAM App is to make SLOs from frame SLAs and specific
SLAs available during run-time, thereby fostering conformance and consistency checks.

Runtime Management of Multi-level SLAs 565

The BizSLAM App is developed on top of FIspace.eu, a cloud-based business-to-
business collaboration platform [23,17]. The app consists of a front-end and back-end.
The front-end provides a graphical user interface and is realized as a W3C widget using
HTML, CSS and JavaScript. The back-end is implemented in Java and employs the
Spring framework to provide REST APIs for connection with the front-end.

The core capabilities of the BizSLAM App are (1) online access to SLA information
for all participants while respecting privacy and security requirements (SLA Opera-
tions), and (2) real-time detection and signaling of SLA violations (SLA Analytics).

As part of SLA Operations, the BizSLAM App provides support for storing, reading,
deleting, updating, and searching for SLA data. The SLA data stored in the BizSLAM
App is a subset of the legal contract agreed to by the transport and logistics partners.
This subset contains the data (specifically SLOs) to drive the daily activities of transport
and logistics service execution. It is out of the scope of the BizSLAM App to engage in
the actual contracting negotiation and agreement. Instead, the focus lies on making the
agreed SLOs available to participants during runtime. The relevant SLA data is stored
in the form of Linked-USDL documents. To this end, the BizSLAM App employs an
open source, reusable software component1. Details of the data model used for storing
SLA data are discussed in Section 3.3.

As part of SLA Analytics, the BizSLAM App provides services for an automatic
analysis of effective as well as potential SLA violations at runtime. Examples include
the detection of repetitive violations of the agreed SLOs together with recommendations
for changing the terms of the SLA, checking at a very early stage of the transport and
logistics service planning process if the SLOs of a specific SLA comply with the SLOs
of the frame SLA established between the parties, as well as proactive notification about
opportunities to establish or modify SLAs.

One core element of the BizSLAM App is an analyzer component for automated
compliance checks of specific SLAs and frame SLAs. The details of the analyzer com-
ponent have been presented in our previous work [12]. Basically, the analyzer compo-
nent translates SLAs into a Constraint Satisfaction Problem (CSP), as agreement terms
can be naturally expressed as constraints over a service domain.

3.3 SLA Data Model

Currently, there is no ”de facto” standard in the transport and logistics domain that is
able to represent different types of SLAs and the diversity of SLOs. Therefore, based
on experience gathered from interviews and repeated interactions with transport and
logistics partners from industry, we defined an extensive data model for SLAs in that
domain. As a result, the data model consolidates all information relevant for SLA man-
agement of transport and logistics services. Nowadays, such information is scattered
across e-mails, spread sheets, and paper documents.

The data model defines all information constituting a transport and logistics SLA,
called Transport and Logistics SLA Vocabulary. This model allows for the customiza-
tion of the SLA and SLO types to meet the specific requirements of different sectors and
modes of operations in the industry. Primarily, the data model supports the process of

1 http://catalogue.fi-ware.org/enablers/repository-sap-ri

http://catalogue.fi-ware.org/enablers/repository-sap-ri

566 C.C. Marquezan et al.

introducing SLA information during the execution of services. The data model thereby
provides a common frame for expressing SLAs. Based on such a common frame, con-
tract terms (and their definitions) can be announced by the logistics service provider
and agreed on by the logistics service users, thereby ensuring “semantic” equivalence
of the SLOs employed in the various SLAs (e.g., see Section 6 in [21]).

The design of our data model builds upon initial data models proposed by the EU
e-Freight project [7]. It is implemented in Linked-USDL, which is a version of USDL
(the Unified Service Description Language2) that builds upon the Linked Data prin-
ciples and the Web of Data. To this end, we define our Transport and Logistics SLA
Vocabulary as an RDF vocabulary, which is depicted in Figures 3–6. Concepts in green
and purple indicate the extensions we introduced on top of the e-Freight model. Purple
concepts represent transport and logistics concepts defined in existing data models. Blue
concepts represent existing vocabularies adopted by Linked-USDL, such as GoodRela-
tions3 and vCard4. Due to space limitations we focus the following description on the
most important concepts of the data model.

Part A includes the basic concepts for the Transport and Logistics SLA Vocabulary.
The central concept is Contract, which links to all other concepts in the vocabulary (as
explained below). Contract holds the information about the established SLA like issue
date, issue time, validity period, involved parties and so forth. In order to differentiate
between frame and specific SLAs, the ContractType concept is used. The links between

issueDateTime

lcontract:
Identifier

contractId

Owl-time:
Instant

lcontract:
Amount

Xsd:
String

Description

allowedAmount

reservedCapacity

lcontract:
MeasuretotalTransitTimeInterval

maxAllowedWeight

Xsd:
Boolean

multipleLegs

Logistics-codes:
ContractType

contractType

Owl-time:
Interval

Owl-time:
DurationDescription

duration

lcontract:
Period

validityPeriod

appointments

Logistics-codes:
RecurrencePatternCode

recurrencePattern

Logistics-codes:
TimeZone

timeZone

Xsd:
String

Description
ExceptionDateTime

Owl-time:
Instant

AppointmentPeriodpp
lcontract:

Appointment

ern

recurrencesduration

Xsd:
Int

dayOfYear

Owl-time:
DateTimeDescription

lcontract:
Identifier

idrecurrenceDateTime

lcontract:
Recurrence

Owl-time:
Instant

transportationServices

foaf:
Document

contractDocumentRefernce

Logistics-codes:
DocTypeCode

documentType

Xsd:
String

description

lcontract:
Identifier id

issueDateTime

Owl-time:
Instant

versionId

lcontract:
DocumentReference

externalReference

mimeType

Logistics-codes:
MimeTypeCodes

Xsd:
String

descriptionformatCode

Logistics-codes:
FormatCode

fileName

lcontract:
ExternalReference

e

consignments

Gr:

QuantitativeValue

consignmentQuantity

totalTransportHandlingUnitQuantity
totalGoodsItemQuantity

lcontract:
Contract

hasServicePoints
transportServiceTerms

Owl-time:
DurationDescription

hasDuration

Xsd:
String

description

Lcontract:
TransportService

Lc
T

A

B

E

C

D

Gr:
QuantitativeValue

consignmentQuantity

totalTransportHandlingUnitQuantity
totalGoodsItemQuantity

oints
transportServiceTerms

Points

transportationServices

hasServicePoint

Owl-time:
DDuurraattiioonnDDeessccrriippttiioonn

hasDuration

Xsd:
String

description

Lcontract:
TransportService

oints

LLcc
T

Fig. 3. Data model for Transport and Logistics SLAs represented as RDF graph (Part A)

2 http://linked-usdl.org/
3 http://www.heppnetz.de/ontologies/goodrelations/v1
4 http://www.w3.org/Submission/vcard-rdf/

http://linked-usdl.org/
http://www.heppnetz.de/ontologies/goodrelations/v1
http://www.w3.org/Submission/vcard-rdf/

Runtime Management of Multi-level SLAs 567

Xsd:
Boolean

Logistics-codes:

lcontract:
Identifier

lcontract:
Amount

lcontract:
Measure

Xsd:
String

id

lcontract:
Indicator

Gr:
QuantitativeValue

handlingCode

Logistics-codes:
HandlingCode

customsDeclarationId

remarks

specialServiceInstructions

handlingInstructions

deliveryInstructions

summaryDescription

customsClearanceServiceInstructions

declaredCustomsValueAmount

declaredForCarriageValueAmountu

insureanceValueAmount

eV

m

eV

totalInvoiceAmount

consignmentQuantity

totalTransportHandlingUnitQuantity
totalGoodsItemQuantity

hazardousRiskIndicatortor

livestockIndicator
grossVolumeMeasure

loadingLengthMeasure
g

netWeightMeasure

animalFoodIndicator

We

chargeableWeightMeasure

tM

grossWeightMeasure

to
humanFoodIndicatorma

splitConsignmentIndicator

lcontract:
Consignment

din

netVolumeMeasure

A
B

CXsd:
Boolean

Logistics-codes:

Fig. 4. Data model for Transport and Logistics SLAs represented as RDF graph (Part B)

frame SLA and specific SLAs are realized by means of the ServicePoint concept intro-
duced in Part E of the data model.

Part B is designed to enable a very detailed description of the goods that could
be transported under the SLA terms. Nonetheless, the attributes and relationships of
this section of the SLA are not mandatory and can be used according to the needs of
partners establishing the SLA. Examples of concepts that allow for expressing detailed

lcontract:
Measure

specialServiceInstructions

handlingInstructions

deliveryInstructions

customsClearanceServiceInstructions

Quantity

forwarderconsigner f

consignee

carrier

partyIdwebsiteUri

Xsd:
String

name

person
postalAddress

lcontract:
Identifier

id

Xsd:
String

gender

nameSuffix

nationalityId

organizationalDepartment

gr:
BusinessEntity

Logistics-codes:
GenderCode

note

id

addressType

Logistics-codes:
AddressTypeCode

Xsd:
String

postbox
region

district
buildingName

buildingNumber

Gn:
Feature

country

vcard:
adr

namenlcontract:
Party

lcontract:
Amount

Owl-time:
Instant

paymentDueDate
price

bonus

penalty
Lcontract:

A

E

C

lcontract:
Amount

paymentDueDate
price

bonus

ppenaltyy
Lcontract:

lcontract:
Measure

Owl-time:
Instant

specialServiceInstructions

handlingInstructions

deliveryInstructions

customsClearanceServiceInstructions

Quantity

Fig. 5. Data model for Transport and Logistics SLAs represented as RDF graph (Part C)

568 C.C. Marquezan et al.

V

Owl-time:
Interval

Owl-time:
DurationDescription

duration

lcontract:
Period

validityPeriod

s:
timeZone

Description
ExceptionDateTime

AppointmentPeriodAppointment

transportationServices

servicePoint

lcontract:
RoadTransport

lcontract:
RailTransport

lcontract:
AirTransport

hasServicePoints

lcontract:
MaritimeTransport

railCarId

transportationMeans

xsd:
Integer

sequenceNumber
hasTransportationMode

transportServiceTerms

toLocation

messurementTo

messurementFrom

calculationMethod

environmentalEmissions

fromLocation

hasCode

vesselName

licensePlateId trainId

aircraftId
vesselId

Gn:
Feature

journeyId

registrationNationality

Xsd:
StringhasSpecialRemarks

Owl-time:
DurationDescription

hasDuration

Xsd:
String

description

Logistics-code:
EnvironmentalEmissionType

environmentalEmissionType
valueMeasure

Logistics-code:
LoadFactor

fullnessIndicator

 alcucu
Logistics-code:

CalculationMode

calculationMethod

Logistics-code:
LocationCategory

locationCategory

roadTransport
railTransport

airTransport maritimeTransport

lcontract:
Identifier

Xsd:
String

Logistics-code:
TransportMeansType

hasTransportMeansTypeCode

lcontract:
TransportMeans

lcontract:
Identifier

Logistics-code:
TransportationMode

informationUri

lcontract:
Identifier

Lcontract:
TransportService

lcontract:
EmissionCalculationMethod

description

Xsd:
String

name

in
id

vcard:
adr

l

address

Gr:
Location

lcontract:
Measure

description

lcontract:
EnvironmentalEmission

Xsd:
String

TransitTimeIntervallcontract:
ServicePoint

lcontract:
Measure

deliveryTerms

executionTerms

changeCo

transportService

Lcontract:
ExecutionTerm

oints

deliveryLocation

Lcontract:
Terms

Lcontract:
DeliveryTermD

Owl-time:
Interval

Owl-time:
DurationDescription

duration

lcontract:
Period

validityPeriod

ss::
timeZone

Description
ExceptionDateTime

pointmentPeriodppAppointment

ServiceTerms

deliveryTerms

executionTerms

Co

transportService

oCoLcontract:
ExecutionTerm

deliveryLocation

Lcontract:
Terms

Lcontract:
DeliveryTerm

Fig. 6. Data model for Transport and Logistics SLAs represented as RDF graph (Part D)

information of goods include Measure (e.g., volume, weight), Amount (e.g., amount
declared for customs), and Indicators (e.g., hazardous).

Part C describes the parties associated with an SLA. The Party concept and its asso-
ciated concept defines the information about the provider and consumer of the agreed
contract.

Part D depicts the transportation service agreed among the parties of the SLA. The
concepts Transport Service and Service Point are the most relevant in this part of the
vocabulary. The ServicePoint concept is used to specify a single transportation service
(transport leg) with a specific sequence number (also see Part E). We designed the
Transport and Logistics SLA Vocabulary in such a way that two basic representations

ct:
re

servicePoint

lcontract:
Amount

Owl-time:
Interval

Owl-time:
Instant

transportServiceTerms

ime:
escription

executionTerms

deliveryTerms

executionTerms

Xsd:
String

changeConditions

transportUserSpecialTermsansportU

transportServiceProvicerSpecialTerms

changeCochanchchhchan CoLcontract:
ExecutionTerm

specialTerms

lcontract:
Identifierid

deliveryLocation

Lcontract:
Terms

Lcontract:
DeliveryTerm

amountCurrencyId

paymentDueDate

penaltyPeriod

validityPeriod

settlementPeriod

price

bonus

penalty

Lcontract:
PaymentTerm

E

S

servicePoint

transportS

ime:
escription

ct:
re

Fig. 7. Data model for Transport and Logistics SLAs represented as RDF graph (Part E)

Runtime Management of Multi-level SLAs 569

of transport and logistics SLAs can be chosen depending on the actual situation faced
in practice: The first representation uses only one service point to define a transport
and logistics SLA. This means that the SLA specifies SLOs for a single transportation
leg. The granularity of this leg is irrelevant. For example, the leg could be from Turkey
to UK, or from the airport of Amsterdam to the port of Rotterdam. The second rep-
resentation uses multiple service points, each with individual SLOs. In this case, the
vocabulary is able – in a more fine-grained way – to represent SLAs that specify differ-
ent SLOs for each transportation service. For example, if the SLA specifies that goods
from partner P1 should be transported by partner P2 from Turkey to the UK, this may
involve two service points with specific SLOs: one for sea transportation from Turkey
(i.e., the first leg of transportation service), and a second for road transportation once
the goods have arrived in the UK (i.e., the second leg).

Part E associates the terms of the SLA to each Service Point. For each of the service
points certain terms must be defined. Using the previous data models as a basis, we
defined three minimal terms that must be specified for each service point using the
contract vocabulary: payment, delivery, and execution. The ServicePoint concept can
thereby be used to define multi-leg, multi-party, as well as multi-level SLAs.

3.4 Existing Solutions and Related Work

Formalization of contracts and automatic conformance checking of contracts has re-
ceived considerable interest from a wide variety of research areas since the 1980ies [13].
Work includes approaches for automatic monitoring of formalized contracts [25,13] and
for managing multi-party contracts [18]. Recently, contract management has received
attention for the management of SLAs associated with web services and service-based
applications [22,10,15], as well as cloud services [14,5,20,16]. Approaches that use
frameworks such as the ones provided by SLA@SOI [24] and WS-Agreement [19,2]
are also available. In summary, all these aforementioned approaches fail to consider
frame SLAs and thus the relationships between the three levels of information needed
for managing transport and logistics SLAs.

Considering domain-specific approaches for SLA management in transport and lo-
gistics many of those efforts rely on Service Oriented Computing principles and tech-
niques, such as the ones presented in [4,27]. They thus also share the aforemen-
tioned shortcomings. Complementary efforts have addressed the goal of measuring
KPIs among partners in the supply chain. One class of approaches relies on the def-
inition and analysis of contract models for a multi-party collaborative business process,
so-called 3PL (3rd Party Logisitcs) or 4PL services [28]. These types of business pro-
cesses result in a supply chain with collaborative tasks executed by different logistics
partners. However, the approach does not provide facilities for runtime SLA manage-
ment. A different approach developed for transport and logistics services includes a
platform based on a service-oriented approach for managing contracts in 4PL busi-
nesses [3]. The proposed platform is primarily focused on coordinating business pro-
cesses among the different partners but not targeted at managing the SLAs among the
partners. Finally, different ontology representations of transport and logistics services
have been proposed [6,11,26]. They focus on representing services offered by a logis-
tics service provider, match-making for such services and mediation among terms of

570 C.C. Marquezan et al.

different information models used by different logistics partners. Yet, they do not focus
on representing SLA information once an agreement has been established.

In our previous work [12], we presented a first solution for the run-time management
of multi-level transport and logistics services. Specifically, we introduced a computa-
tional solution for automatic SLA checking at run-time that employed WS-Agreement
to formally represent frame and specific SLAs, and that used CSP solvers to check for
inconsistencies. In this paper, we integrate this technical approach into an overall sys-
tems perspective and provide evidence for the industrial relevance, applicability and
usefulness of such an approach in the transport and logistics domain.

4 Feasibility and Usefulness

This section demonstrates the feasibility of the BizSLAM App (Section 4.1) and dis-
cusses the usefulness of applying the App in an industrial context (Section 4.2).

4.1 Feasibility

As described above, the BizSLAM App can be applied to automatically determine in-
consistencies in multi-level SLAs during business operations. Figure 3.4 depicts a real-
world scenario that shows typical inconsistencies that can be detected. In the given sce-
nario, a logistics service client has established a frame SLA A with a logistics service

2013 2014

SLOs

Agreement Date 12.12.2012

Agreement Validity Period 01/01/2013 to 31/12/2013

Logistics Service Client LSC

Logistics Service Provider LSP

Origin Turkey

Destination UK

Transit Time (atomic SLO) <= 25 days

Cargo Units (atomic SLO) <= 3000

SUM of Containers (aggregated SLO) <= 25

Frame SLA A

SLOs

Agreement Date 25/03/2013

Transit Time 20 days

Cargo Units 2000

Containers 10

Specific SLA A.1

SLOs

Agreement Date 12/07/2013

Transit Time 25 days

Amount Cargo 3100

Containers 15

Specific SLA A.2

SLOs

Agreement Date 03/11/2013

Transit Time 23 days

Amount Cargo 2500

Containers 20

Specific SLA A.3

2012

Fig. 8. Inconsistencies between frame and specific agreements

Runtime Management of Multi-level SLAs 571

provider. This scenario defines two atomic SLOs as part of the frame SLA: a maximum
of 25 days Transit Time as well as a maximum of 3000 Cargo Units. In addition, the
frame SLA defines an aggregated SLO that defines 25 as the SUM of Containers to be
transported during the validity period of the frame SLA. For each execution of a trans-
port and logistics service under the frame SLA A, a specific SLA is created. Figure 3.4
shows three such specific SLAs: A.1, A.2 and A.3.

In the scenario depicted in Figure 3.4, two violations occur that are detected by
the BizSLAM App as shown in Figure 4.1. The automated conformance check of the
BizSLAM App detects these violations immediately, i.e., as soon as they occur, and
issues so called pre-violation alerts (the red boxes in Figure 4.1). These alerts inform
the logistics service users that if they insist on the chosen SLOs (e.g., in order to ensure
timely delivery of goods) this might imply penalties for violating the frame SLA at the
end of the validity period of the frame SLA.

Creation of Frame SLA A

Creation of Specific SLA A.2

Creation of Specific SLA A.3

Fig. 9. BizSLAM App detecting inconsistencies between specific and frame agreements

572 C.C. Marquezan et al.

Violation 1: According to the frame SLA, only 3000 cargo units may be transported
for each specific SLA. However, the specific SLA A.2 asks for a cargo volume of 3100
and thus violates the atomic SLO Cargo Units specified in the frame SLA.

Violation 2: A total of 25 containers may be contracted during the validity period of
the frame SLA. When the specific SLA A.3 asks for 20 containers, 25 containers have
already been contracted in the previous specific SLAs A.1 and A.2. Thus, no containers
remain to be contracted under the frame SLA, which in turn means that the specific
SLA A.3 leads to a violation of the aggregated SLO Containers.

As part of our ongoing research we are preparing an empirical evaluation of our
SLA management approach. This includes more sophisticated examples and use cases,
as well as controlled experiments that combine real data from the field with simulation
to assess performance, scalability, effectiveness and accuracy of the BizSLAM App.

4.2 Usefulness

Having access to the multiple levels of SLA information along the whole supply chain
significantly contributes to a better and more efficient planning and execution of trans-
port and logistics services. The data model underlying the BizSLAM App consolidates
all information relevant for SLA management of transport and logistics services. Nowa-
days, such information is scattered across e-mails, spread sheets, and paper documents.
Of course, this data model might not cover all cases of SLOs and relationships of the
entire transport and logistics industry. However, encouraging feedback from industry
partners indicates that the data model covers most of such cases. The organizations
we solicited feedback from represented companies of different size (SMEs and large
companies) and industry sectors (sea, air, and road carriers, as well as forwarders).

Considering the service level violations in the above scenario, current situation in in-
dustry would have seen penalties enforced only long after the logistics service provider
suffered the actual losses. This happens because the conformity check in transport and
logistics agreements is currently a manual process executed only periodically (e.g.,
quarterly, half yearly, annually, etc.). Such manual processes might be viable in a small
company, but in large companies with high volumes of specific agreements such manual
processes become extremely costly. Hence, new online, automated conformity check
mechanisms can drastically improve the timeliness of contract violation detection and
should thus lead to cost reductions.

5 Conclusion

Starting from an identification of industry requirements, this paper presents a runtime
SLA management approach for the transport and logistics domain. Specifically, we in-
troduced and demonstrated the usefulness of a novel software component called BizS-
LAM App that is able to manage SLAs of transport and logistics services at runtime.
The App leveraged SLA management approaches from the service-oriented comput-
ing field and adapted them to fit the specific requirements of the transports and logistic
domain, especially the need to support both frame SLAs and specific SLAs.

The BizSLAM App was developed on top of FIspace.eu, a cloud-based business col-
laboration platform that offers novel business-to-business collaboration facilities. This

Runtime Management of Multi-level SLAs 573

in turn facilitates applying the BizSLAM App capabilities to other non-computational
services, as the platform fosters integrating and combining data, services and Apps
of various business stakeholders. As part of the FIspace.eu platform, we are currently
adapting the BizSLAM App to the agrifood domain, thereby providing facilities to man-
age contracts from food production to consumption.

Acknowledgements. We cordially thank our industry partners of the FInest and FIs-
pace projects for their valuable contributions to the SLA data model. In addition, we
thank Stephan Heyne for supporting us in implementing the Linked-USDL models,
as well as Nadeem Bari for his help in implementing the BizSLAM App. We further
express our gratitude to Antonio Manuel Gutierrez, Manuel Resinas and Antonio Ruiz-
Cortés for earlier collaborations on that subject. Finally, we would like to thank the
anonymous reviewers for their constructive comments that benefited this paper.

This work was partially supported by the EU’s Seventh Framework Programme
(FP7/2007-2013) under grant agreements 285598 (FInest) and 604123 (FIspace).

References

1. Alliance of European Logistics: A technology roadmap for logistics. Technical Report
(October 2013)

2. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T., Pruyne, J.,
Rofrano, J., Tuecke, S., Xu, M.: Web services agreement specification (WS-Agreement).
Specification from the Open Grid Forum (OGF) (March 2007)

3. Augenstein, C., Ludwig, A., Franczyk, B.: Integration of service models – preliminary results
for consistent logistics service management. In: Service Research and Innovation Institute
Global Conference (SRII 2012), San Jose, Calif., USA (2012)

4. Benaissa, M., Boukachour, J., Benabdelhafid, A.: Web service in integrated logistics infor-
mation system. In: Int’l Symposium on Logistics and Industrial Informatics (LINDI 2007).
Wildau, Germany (2007)

5. Cuomo, A., Modica, G.D., Distefano, S., Puliafito, A., Rak, M., Tomarchio, O., Venticinque,
S., Villano, U.: An SLA-based broker for cloud infrastructures. Journal of Grid Comput-
ing 11(1), 1–25 (2013)

6. Dong, H., Hussain, F., Chang, E.: Transport service ontology and its application in the field of
semantic search. In: Int’l Conference on Service Operations and Logistics, and Informatics
(IEEE/SOLI 2008), vol. 1, pp. 820–824 (October 2008)

7. e-Freight project: D1.3b: e-Freight framework – information models (March 2010),
http://www.efreightproject.eu/

8. Feldman, Z., Fournier, F., Franklin, R., Metzger, A.: Proactive event processing in action:
a case study on the proactive management of transport processes (industry article). In: 7th
Int’l Conference on Distributed Event-based Systems (DEBS 2013), Arlington, Texas, USA
(2013)

9. Franklin, R., Metzger, A., Stollberg, M., Engel, Y., Fjørtoft, K., Fleischhauer, R., Marquezan,
C., Ramstad, L.S.: Future Internet technology for the future of transport and logistics. In:
ServiceWave Conference 2011, Future Internet PPP Track, Ghent, Belgium (2011)

10. Goel, N., Kumar, N., Shyamasundar, R.K.: SLA monitor: A system for dynamic monitoring
of adaptive web services. In: 9th European Conference on Web Services (ECOWS 2011),
Lugano, Switzerland (2011)

http://www.efreightproject.eu/

574 C.C. Marquezan et al.

11. Guihua, N., Fu, M., Xia, H.: A semantic mapping system based on e-commerce logistics
ontology. In: World Congress on Software Engineering (WCSE 2009), vol. 2, pp. 133–136
(May 2009)

12. Gutiérrez, A.M., Cassales Marquezan, C., Resinas, M., Metzger, A., Ruiz-Cortés, A., Pohl,
K.: Extending WS-Agreement to support automated conformity check on transport and lo-
gistics service agreements. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013.
LNCS, vol. 8274, pp. 567–574. Springer, Heidelberg (2013)

13. Hvitved, T., Klaedtke, F., Zalinescu, E.: A trace-based model for multiparty contracts. The
Journal of Logic and Algebraic Programming 81(2), 72–98 (2012)

14. Kouki, Y., Ledoux, T.: SLA-driven capacity planning for cloud applications. In: 4th Int’l
Conference on Cloud Computing Technology and Science (CloudCom 2012), Taipei,
Taiwan, pp. 135–140 (2012)

15. Leitner, P., Ferner, J., Hummer, W., Dustdar, S.: Data-driven and automated prediction
of service level agreement violations in service compositions. Distributed and Parallel
Databases 31(3), 447–470 (2013)

16. McConnell, A., Parr, G., McClean, S., Morrow, P., Scotney, B.: A SLA-compliant cloud
resource allocation framework for n-tier applications. In: 1st Int’l Conference on Cloud Net-
working (CLOUDNET 2012), Paris, France (2012)

17. Metzger, A., Franklin, R., Engel, Y.: Predictive monitoring of heterogeneous service-oriented
business networks: The transport and logistics case. In: Service Research and Innovation
Institute Global Conference (SRII 2012), San Jose, Calif., USA (2012)

18. Molina-Jimenez, C., Shrivastava, S., Strano, M.: A model for checking contractual compli-
ance of business interactions. IEEE Trans. on Services Comp. 5(2), 276–289 (2012)

19. Müller, C., Resinas, M., Ruiz-Cortés, A.: Automated analysis of conflicts in WS-Agreement.
IEEE Trans. on Services Comp. PP(99), 1 (2013)

20. Munteanu, V., Fortis, T., Negru, V.: An evolutionary approach for SLA-based cloud resource
provisioning. In: 27th Int’l Conference on Advanced Information Networking and Applica-
tions (AINA 2013), Barcelona, Spain (2013)

21. Papazoglou, M., Pohl, K., Parkin, M., Metzger, M. (eds.): Service Research Challenges and
Solutions for the Future Internet: S-Cube – Towards Mechanisms and Methods for Engineer-
ing, Managing, and Adapting Service-Based Systems. Springer (2010)

22. Rosario, S., Benveniste, A., Jard, C.: Monitoring probabilistic SLAs in web service orches-
trations. In: Int’l Symposium on Integrated Network Management (IM 2009), New York,
USA (2009)

23. Verdouw, C., Beulens, A., Wolfert, S.: Towards software mass customization for business
collaboration. In: Service Research and Innovation Institute Global Conference (SRII 2014),
San Jose, Calif., USA (2014)

24. Wieder, P., Butler, J.M., Theilmann, W., Yahyapour, R. (eds.): Service Level Agreements for
Cloud Computing. Springer (2011)

25. Xu, L., Jeusfeld, M.A.: Pro-active monitoring of electronic contracts. In: Eder, J., Missikoff,
M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 584–600. Springer, Heidelberg (2003)

26. Yahya, B., Mo, J., Bae, H., Lee, H.: Ontology-based process design support tool for vessel
clearance system. In: Int’l Conference on Computers and Industrial Engineering (CIE 2010),
pp. 1–6 (July 2010)

27. Hua, W.Z., Yousen, H., Yun, D.Z., Wei, Z.: SOA-BPM based information system for promot-
ing agility of third party logistics. In: Int’l Conference on Automation and Logistics (ICAL
2009), Shenyang, China (2009)

28. Zhu, Q., Fung, R.: Design and analysis of optimal incentive contracts between fourth-party
and third-party logistics providers. In: Int’l Conference on Automation and Logistics (ICAL
2012), Zhengzhou, China (2012)

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 575–589, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Single Source of Truth (SSOT)
for Service Oriented Architecture (SOA)

Candy Pang and Duane Szafron

Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
{cspang,dszafron}@ualberta.ca

Abstract. Enterprises have embraced Service Oriented Architecture (SOA) for
years. With SOA, each business entity should be the Single Source of Truth
(SSOT) of its data, and offer data services to other entities. Instead of sharing
data through services, many business entities still share data through data repli-
cation. Replicating data causes inconsistencies and interoperability challenges.
Even when there is a single authoritative source, that resolves inconsistencies,
the data copies may end up being out-of-sync and cause errors. This paper de-
scribes how to use a SSOT service to eliminate data replication, enforce data
autonomy, advocate data self-containment, and enhance data maintenance. Both
mutable and immutable SSOT relationships (mappings) are considered. This
paper describes the challenges, solutions, interactions and abstractions between
the SSOT data service providers and the loosely coupled data consumers. It also
assesses the performance and future usage of a SSOT service.

Keywords: Single Source of Truth, Service Composition, Service Oriented
Architecture (SOA), Software Design Concept, Software Engineering.

1 Introduction

Before embracing the Service Oriented Architecture (SOA), enterprises or business
entities used to share data through data replication. Replicating data across multiple
systems gives rise to inconsistencies and interoperability challenges. In some cases,
one of the systems is treated as the “authoritative” source or the Single Source of
Truth (SSOT). The authoritative source’s data is replicated to the clients’ databases,
resulting in data layer synchronization challenges. Independent client’s data transfor-
mation or modification can result in data discrepancies that require manual interven-
tion. A better solution is to hide the data layer from the clients in the SOA.

In the SOA, a SSOT should associate with clients through the service layer, instead
of the data layer. This would alleviate data replication and the related problems. The
authoritative source identified as the SSOT should provide data services for the
clients. In this approach, clients maintain mappings to the SSOT data, but do not rep-
licate the SSOT data. Unfortunately, many enterprises have yet to overhaul data layer
replication into a SSOT service. Lack of experience in SSOT service implementation
may have hindered enterprises from the migration.

576 C. Pang and D. Szafron

This paper describes a SSOT service model for two common data sharing scena-
rios: mutable and immutable data sources. We use two motivating examples to illu-
strate the variants: (a) the management of Postal Codes (PC) and (b) the management
of Electronic Patient Records (EPR). The proposed SSOT service model is useful for
any business entity that maintains full ownership of its data, and does not want the
clients to duplicate its data, but allows data access by restricted queries. The value of
the model will be illustrated by the PC and EPR examples.

Most business applications use addresses. In Canada, Canada Post is the single au-
thoritative agency that manages PCs for mail-delivery addresses. Each address should
have exactly one PC, while each PC covers an area with multiple addresses. Most
business applications collect address information from their customers, and store cus-
tomers’ addresses with PCs in their local databases. Periodically, business applica-
tions also replicate Canada Post’s PCs to their local databases for data-validation
purpose. For example, an application using billing addresses, which require PCs, may
have a Billing_Address table and a Postal_Code table as shown in Fig. 1(a). The
Postal_Code table contains all valid PCs periodically replicated from Canada Post.
Before adding a new address to the Billing_Address table, the application checks the
validity of the provided PC, i.e., whether the PC exists in the Postal_Code table. If so,
the application will add the new address to the Billing_Address table. This process
can only validate the existence of the PC, but it cannot validate whether the PC is
correct for that address. There is a mapping between the PC and the billing address.

Fig. 1. The Postal Codes Use Case

A mapping that changes over time is called a mutable mapping, and a mapping that
does not change is immutable. Canada Post changes PCs from time to time. PCs can
be inserted, updated, deleted, split or merged. The application needs to synchronize
the Postal_Code table with Canada Post, and, if necessary, to correct the PCs in the

 Single Source of Truth (SSOT) for Service Oriented Architecture (SOA) 577

Billing_Address table. Since the PC that is mapped to a billing address can change
over time, the mapping between PC and billing address is an example of a mutable
mapping. Mutable mappings are often subject to synchronization errors. For example,
Canada Post only provides PC changes to subscribers monthly. Therefore, the sub-
scribers’ Postal_Code tables are out-of-sync with Canada Post most of the time. As
shown in Fig. 1(b), when a PC is updated (from A1B 2C3 to A2B 2C3), the corres-
ponding mappings in the Billing_Address table can be updated. However, when a PC
is deleted (from A1B 2C4 to none) or split (from A1B 2C5 to A1B 2C5 and AIB
2C8), there is no simple solution to correct the mappings in the Billing_Address table,
by using the updated PC list.

As a second example, let us consider a regional Electronic Patient Record (EPR)
system that manages patients’ health numbers (PHNs), names and contacts. Each
patient in the region receives services from multiple healthcare providers, with differ-
ent specialties. Each healthcare provider obtains patient information directly from the
patient during the patient’s visit, containing information included in the EPR. Then,
each provider independently stores the patient’s information in its local database. In
this model, a provider-specific patient record may be inconsistent with the regional
EPR. In principle, each provider-specific patient record could be mapped to a corres-
ponding EPR in the regional authoritative system. In this case, the mapping between
an EPR and a provider-specific record is immutable. The mapping is immutable de-
spite the fact that patient’s data may change. For example, when a patient changes
his/her name, the patient’s EPR will be updated, but the patient’s EPR is still mapped
to the same provider-specific record. Therefore, the mapping is immutable.

The SOA paradigm can alleviate data synchronization issues. Clients using data
that already exists in an authoritative source will not replicate the authoritative data in
their local databases. Instead, the authoritative source acts as a SSOT service that
provides clients the authoritative data. In the examples above, Canada Post serves as
the SSOT service for PCs and a regional health authority provides the SSOT service
for EPRs. Clients access PCs and EPRs by invoking SSOT services, without replicat-
ing SSOT data in their local databases. Therefore, clients do not need to manage and
synchronize data with the SSOT. The SSOT can also shield its autonomy from the
clients. We advocate the SSOT service model over data-replication.

This paper is structured as follows. Section 2 and 3 illustrate the challenges and so-
lutions associated with the mutable and the immutable SSOT by the PC and the EPR
use cases respectively. Section 4 evaluates the performance of the SSOT service.
Section 5 describes the related works. Section 6 recommends future works, and Sec-
tion 7 concludes the paper by enumerating SSOT’s benefits.

2 Mutable SSOT Service

A SSOT service that manages mutable mappings is called a mutable SSOT service. In
this case, the mapping between a SSOT record (each individual PC in our example)
and a client application record (each billing address in our example) can change over
time. Clients need to invoke the mutable SSOT service with query criteria. Therefore,
a mutable SSOT service supports at least the query-by-criteria operation.

578 C. Pang and D. Szafron

For example, in the PC use case, Canada Post maintains a mutable PC SSOT ser-
vice that provides a single web service operation, PC-query. The PC-query operation
takes PC query criteria as input. Clients may specify Street Number, Number Suffix,
Unit/Suite Apartment, Street Name, Street Type, Street Direction, City, and/or Prov-
ince as criteria. The PC-query operation returns a set of PCs that match the criteria.

This PC SSOT service can replace data replication. For example, in Fig. 1(a), the
PC column in the Billing_Address table and the Postal_Code table are replicated data
that can be dropped in favor of invoking the PC-query operation provided by the mut-
able PC SSOT service. The PC query criteria will come from the remaining columns
(e.g. Street#, City) in the Billing_Address table. When the application needs the PC of
a billing address, it will use the address data in the Billing_Address table as query
criteria to retrieve the PC from the PC SSOT.

The rest of this section will use the PC use case to illustrate how clients can use a
mutable SSOT service to replace data replication.

2.1 Client-Record Creation

Fig. 1(c) depicts how an application can use mutable SSOT service for data validation
during record creation. In the PC use case, when the application receives a new billing
address from a customer, the application queries the PC SSOT using the customer
address. If the PC SSOT returns a single valid PC, then the address is valid. The ap-
plication proceeds to create a new Billing_Address record for the customer.

If the PC SSOT returns more than one PC, then the customer address is not defini-
tive. For example, if the customer address contains only the city field, then the PC
SSOT will return all the PCs for the city. In principle, the application should not ac-
cept a non-definitive address as a billing address. Therefore, the application would
seek additional address details from the customer. Similarly, if the PC SSOT returns
no PC for the customer address, the application should alert the customer that the
address is invalid and request the user to take remedial action.

In contrast, the data-replication model may allow non-definitive or invalid billing
addresses in the application’s database. Using a mutable SSOT service not only eli-
minates data replication, but also enhances data quality.

Different clients may have different processes for the SSOT response. The applica-
tion in the PC use case expects a single valid PC from the response. Other applica-
tions may iterate the response records to select the most desired result. To support
different clients’ processes, the mutable SSOT query-by-criteria operation may return
additional information. For example, the PC-query operation may return other address
fields (Street Number, Unit/Suite Apartment, Street Name, etc.) in addition to the PC.
Clients can use the additional address fields to filter the response records.

2.2 Client-Record Retrieval

Since the SSOT data is excluded from the clients’ local databases, each client needs to
combine its local data with the SSOT data to compose the complete data records. The
client data retrieval process is depicted in Fig. 1(d).

 Single Source of Truth (SSOT) for Service Oriented Architecture (SOA) 579

In the PC use case, the application first retrieves a Billing_Address record from its
local database, then uses the local address data as query criteria to invoke the PC-
query operation, and retrieve the up-to-date PC from the PC SSOT. If the PC of the
billing address has changed since the last retrieval, then the PC SSOT will return a
different PC from the last retrieval, but it will be the correct PC.

3 Immutable SSOT Service

A SSOT service that manages an immutable mapping is called an immutable SSOT
service. The mapping cannot change over time. Each record in the client application
has a permanent static relationship with a SSOT record. To establish this mapping, a
client record is associated with a SSOT record using a unique permanent single source
of truth identifier (SSOT-ID). A SSOT-ID is conceptually equivalent to the resource
identifier in the Resource Description Framework (RDF) [1] and the unique identifier
in the Representational State Transfer (REST) [2] architecture. Each record represents
a resource in the SSOT. We will use the term resource instead of record since each
SSOT resource may contain multiple child-records. For example, an EPR may contain
multiple names, addresses and phone numbers as child-records. Each resource has a
unique permanent identifier called the SSOT-ID. Clients use the query-by-SSOT-ID
operation to retrieve resource details, which include the child-records.

The rest of this section will illustrate the immutable SSOT service through the EPR
use case. Assume that a clinic application and a pharmacy application both need pa-
tients’ health numbers (PHNs), names and contacts, along with their own provider-
specific data. Traditionally, in the data-replication model, the clinic application would
have a Clinic_Patient table and a Patient_Visit table, and the pharmacy application
would have a Pharmacy_Patient table and a Drug_Dispensing table, as shown in Fig.
2(a). The clinic application assigns a county to each patient using the patient’s home
address, while the pharmacy application does not. In the data-replication model, the
PHNs, names and contacts located in the clinic’s and pharmacy’s databases may have
errors or be inconsistent with the authoritative EPR system. When patients move,
patients must notify the EPR authority, the clinic and the pharmacy individually.

Actually, PHNs, names and contacts are readily available in the regional EPR sys-
tem. An immutable EPR SSOT service can eliminate data replication from the clinic
and the pharmacy databases. After eliminating the replicated EPR data, Fig. 2(b) shows
the new clinic application and pharmacy application tables. In the new Clinic_Patient
and Pharmacy_Patient tables, the EPR columns are replaced by the SSOT-ID column.
Unlike the PC use case, immutable SSOT clients do not routinely use the query-by-
criteria operation to obtain SSOT data. Instead, clients can invoke the query-by-SSOT-
ID operation to retrieve SSOT data from the immutable SSOT service.

Each immutable SSOT service should provide at least four operations: (a) query-
by-criteria, (b) query-by-SSOT-ID, (c) update subscription, and (d) deletion subscrip-
tion. The potential risks of using the immutable SSOT service query-by-criteria op-
eration are illustrated in Section 3.1. The rest of the sub-sections describe different
usages of the immutable SSOT operations.

580 C. Pang and D. Szafron

Fig. 2. The Electronic Health Record Use Case

3.1 Query-by-Criteria

An immutable SSOT service could provide the same query-by-criteria operation as a
mutable SSOT service. Clients could query the SSOT service by criteria and receive a

 Single Source of Truth (SSOT) for Service Oriented Architecture (SOA) 581

correlated set of results matching the criteria. However, in some situations, the im-
mutable SSOT query-by-criteria operation may sustain a privacy violation risk. In the
EPR use case, if the query-by-criteria operation returns all resources matching any
given set of criteria, then any client can browse the EPR data, which violate patients’
privacy. For example, a client may specify Firstname=’JOHN’ as the query criteria
for the EPR SSOT query-by-criteria operation. In response, the EPR SSOT returns all
patients with first name equals ‘JOHN’. The large response set may violate many
patients’ privacy, since many of the set may not be patients of the querying facility.

To avoid browsing, the query-by-criteria operation could specify a maximum
number of returned records (i.e. query-limit). If the response set is larger than the
query-limit, the service would return an error. At which point the client needs to re-
fine the query criteria and queries again.

A safer query-by-criteria operation may also demand more than one query criterion
to avoid brute force hacking. For example, the EPR SSOT query-by-criteria operation
could reject single criterion queries to avoid PHN cracking by querying with random-
ly generated PHN’s until a valid resource is returned.

For further privacy protection, the query-by-criteria response set can be filtered to
contain partial data. The partial data must include the complete SSOT-ID and suffi-
cient information to identify a SSOT resource. Fig. 2(c) shows a set of query criteria
for the EPR SSOT query-by-criteria operation, and one partial response record. The
partial record includes the SSOT-ID and only part of the PHN, address and birthday.
Using the partial record, a client should be able to determine whether the EPR maps
to the targeted patient. Once a partial record is selected, the client can use the SSOT-
ID to retrieve the resource details using the query-by-SSOT-ID operation.

3.2 Query-by-SSOT-ID

If the query-by-criteria operation returns only partial data for privacy protection, the
immutable SSOT service must provide a query-by-SSOT-ID operation, which takes a
SSOT-ID as input. In response to a query-by-SSOT-ID request, the immutable SSOT
provides details of the resource corresponding to the provided SSOT-ID, but only the
details that the client is authorized to see. This allows the SSOT service to distinguish
between client access permissions, providing different information to different facili-
ties, such as pharmacies, clinics and acute-care facilities.

To protect data privacy, the immutable SSOT should include a proper auditing me-
chanism to detect, identify and stop improper browsing behavior or unlawful use of
data. In the EPR use case, if a client continually invokes the EPR SSOT query-by-
SSOT-ID operation with randomly generated or guessed SSOT-IDs, the EPR SSOT
auditing mechanism should detect and deter the client.

Each SSOT-ID is effectively a foreign key to a remote SSOT resource. Since the
SSOT and clients are loosely coupled, the foreign key constraints in the client data
cannot be enforced at the SSOT. An alternate foreign key constraint handling me-
chanism will be discussed in the later sub-sections.

582 C. Pang and D. Szafron

3.3 Client-record Creation

Fig. 2(d) depicts the role of an immutable SSOT service during client record creation.
Using the clinic application in the EPR use case as an illustration, when a patient first
visits the clinic, the clinic application needs the patient’s SSOT-ID. The patient pro-
vides personal data to the clinic. The clinic application invokes the EPR SSOT query-
by-criteria operation with the patient’s data. From the returned set of partial EPRs, the
clinic and patient together identify the correct EPR. With the SSOT-ID from the se-
lected partial EPR, the clinic application invokes the query-by-SSOT-ID operation to
retrieve the portion of the patient’s EPR that is permitted to the clinic. The clinic ap-
plication then assigns a county to the patient according to the patient’s home address
in the EPR. With the patient’s SSOT-ID and assigned county, the clinic application
adds a new record to the Clinic_Patient table for the patient. Similarly, when a patient
first visits the pharmacy, the pharmacy application uses the EPR SSOT query-by-
criteria operation to retrieve a partial EPR of the patient. The pharmacy application
gets the patient’s SSOT-ID from the partial EPR. Since the pharmacy data does not
depend on data in the EPR, the pharmacy application can add a new record to the
Pharmacy_Patient table for the patient with the patient’s SSOT-ID.

3.4 Client-record Retrieval

As with the mutable SSOT service, the immutable SSOT clients need to combine the
SSOT data with the local data to compose complete data records. The data retrieval
process is depicted in Fig. 2(e).

In the EPR use case, when a patient revisits the clinic or the pharmacy, the clinic
and pharmacy applications use the EPR SSOT query-by-criteria operation to retrieve
the patient’s SSOT-ID. With the SSOT-ID, the applications fetch the permission-
filtered EPR with query-by-SSOT-ID. Using the SSOT-ID again, the applications
retrieve patient’s local data from the local databases, i.e. the Clinic_Patient, Pa-
tient_Visit, Pharmacy_Patient and Drug_Dispensing tables in Fig. 2(b). Finally, the
applications combine the EPR and local data to instantiate a complete patient record.

3.5 Constructing SSOT-IDs

Since the SSOT and the clients are loosely coupled, the clients rely on the SSOT-IDs
to be unique and permanent. Therefore, it is important to select a proper data type,
length, format and representation for the SSOT-ID. For example, the Canadian Social
Insurance Number (SIN) has 9 digits. The first digit of the SIN represents the owner’s
residential status. Similarly, a SSOT-ID can have embedded representations. The
design of the SSOT-ID deserves extraordinary attention to ensure uniqueness and
permanency. For example, the SIN is unique, but not permanent. When an owner’s
residential status changes, a new SIN may be assigned. Therefore, SIN is not a good
SSOT-ID candidate. In addition, public data items are not good SSOT-ID candidates.

An SSOT-ID does not need to be a single value. It can also be a composite value, as
long as it is unique and permanent. Part of the SSOT-ID can be a fixed-length sequential

 Single Source of Truth (SSOT) for Service Oriented Architecture (SOA) 583

number, to ensure its uniqueness. Since the SSOT-ID will be shared between systems, it
is recommended that the SSOT-ID take a different format from the SSOT database
standard, so that the SSOT database standard will not be exposed.

Clients store the SSOT-IDs in their local databases. The SSOT-IDs are guaranteed
to be unique and permanent. Therefore, clients may consider using the SSOT-IDs as
the primary keys in their local databases. If the SSOT-ID data type and size do not
match the local database standard, we recommend that the local database create its
own local primary key, and use the SSOT-ID as a foreign key. In the EPR use case,
the Clinic_Patient table could have used the EPR SSOT-ID as the primary key. Since
the primary key of the Clinic_Patient table will be a foreign key of the Patient_Visit
table, the clinic application created its local primary key (PID in the Clinic_Patient
table), to preserve data type consistency between tables.

The clients should also consider whether the sequence of the primary keys matter
to the local business logic. In the EPR use case, it is likely that a portion of the EPR
SSOT-ID is a sequential number. The clinic serves only a relatively small number of
patients in the regional EPR system. Therefore, only a small number of the EPR
SSOT-IDs will be imported into the clinic’s database. If the clinic application uses the
EPR SSOT-IDs as its primary key, then the primary key will have a lot of gaps in its
sequence. In addition, the order of the primary keys will not represent the order in
which patients’ records are added to the clinic’s database.

3.6 Update Subscription

Data updates for an immutable SSOT may affect clients. In the EPR use case, the
clinic application assigns a patient’s county based on a patient’s home address. When
a patient moves, the clinic application may assign a different county for the patient. In
this case, data updates in the EPR SSOT affect the clinic application. On the other
hand, none of the pharmacy application local data depends on the EPR SSOT data.
Therefore, data updates in the EPR SSOT do not affect the pharmacy application.

The SSOT cannot determine how data updates will affect the loosely coupled
clients. Clients are responsible for managing their own data. Therefore, the immutable
SSOT must provide an update subscription operation. If a client is concerned about
data updates in the SSOT, then the client is responsible for subscribing to the SSOT
update service through the update subscription operation.

After a SSOT resource is updated, the SSOT will send an update message with the
SSOT-ID of the updated resource to the subscribers. When the subscriber receives the
update message, the subscriber can check whether the SSOT-ID is referenced locally.
If not, the subscriber can ignore the update message. If the SSOT-ID is referenced
locally, then the subscriber can fetch the resource details using the query-by-SSOT-ID
operation. Based on the latest resource details, the subscriber may update its local data
accordingly. The update subscription process is depicted in Fig. 2(f).

In the EPR use case, the clinic application would subscribe to the EPR SSOT up-
date service. When an EPR is updated, the clinic application will receive an update
message with the SSOT-ID of the updated EPR. The clinic application determines
whether the SSOT-ID is referenced locally. If so, it retrieves the patient details from

584 C. Pang and D. Szafron

the EPR SSOT using the query-by-SSOT-ID operation. Then the clinic application
can determine whether the patient’s latest home address matches the clinic-assigned
county in the local database. If not, it updates the local database accordingly. On the
other hand, the pharmacy application is not affected by EPR updates. Therefore, the
pharmacy application would not subscribe to the EPR SSOT update service. Notice
that the pharmacy still relies on the SSOT for the latest EPR patient information.
However, it does not subscribe for updates since it does not need to update its own
local database, when EPR data changes.

3.7 Deletion Subscription

Just like any other data, the SSOT data can be deleted. Since the SSOT is loosely
coupled with its clients, clients cannot put a foreign key constraint on the SSOT to
restrain the SSOT from deleting data. Instead, the SSOT provides a deletion service.
When a resource is deleted from the SSOT, the SSOT will send a deletion message to
the subscriber. Clients need to determine whether they should subscribe to the SSOT
deletion service using the deletion subscription operation.

In the EPR use case, deleting a patient from the EPR SSOT may create broken
links in the Clinic_Patient and Pharmacy_Patient tables. Therefore, the clinic and
pharmacy applications should both subscribe to the EPR SSOT deletion service.

If the SSOT physically deletes the resource, then the deletion message should con-
tain the last version of the resource before the deletion and the reason for deletion.
Clients can use this information to determine how to handle the deleted data.

In the EPR use case, a patient may move from the region and be deleted from the
EPR SSOT. The clinic and pharmacy applications will receive a deletion message
from the EPR SSOT with the last version of the patient’s EPR. The applications may
store or ignore the EPR in the deletion message. Depending on the reason for dele-
tion, the applications can delete, archive or mark the patient’s local record inactive.

Alternatively, the SSOT may logically delete a resource. In this situation, the dele-
tion message will only contain the resource SSOT-ID and the reason for deletion. The
client can still fetch the logically deleted resource using the query-by-SSOT-ID opera-
tions. The query-by-SSOT-ID operation would return the corresponding resource but
flagged as deleted. The query-by-criteria operation could exclude logically deleted
resources from the response correlated set, or provide them and flag them as deleted.

In the EPR use case, if patients are only logically deleted from the EPR SSOT, the
clinic and pharmacy applications may mark the patient inactive in their local databas-
es. If EPR records are only logically deleted, then clients should always check the
deleted flags on the EPR, since logically deleted records may later be undeleted.

3.8 Additional Operations

An SSOT creation subscription operation is not recommended. If clients can sub-
scribe to SSOT data creation, then clients can replicate the whole SSOT database,
which violates the purpose of using SSOT. Clients should only link to the SSOT re-
sources related to their operational mandates, but not replicate the SSOT data.

In addition to the four mandatory operations, an immutable SSOT service might
provide additional resource create, retrieve, update and delete (CRUD) operations.

 Single Source of Truth (SSOT) for Service Oriented Architecture (SOA) 585

In the EPR use case, if a patient has not registered with the regional EPR SSOT, then
the clinic and pharmacy applications would not find the patient through the query-by-
criteria operation. If the EPR SSOT also provides a patient creation operation, then
the authorized clinic or pharmacy personnel can create SSOT EPRs as needed.

If the clinic or pharmacy personnel are not authorized to create SSOT EPRs, then
the un-registered patients need to register with the EPR authority later. In the mean-
time, the applications can create a local temporary file to store the patient’s data. An
optional column (TEMP FILE#) can be added to the Clinic_Patient and Pharma-
cy_Patient tables to keep track of the temporary file number. In the absence of the
SSOT ID and existence of the TEMP FILE#, the applications will not query the EPR
SSOT for patient’s information, but retrieve data from the local temporary file. After
the patient registers with the EPR SSOT, the applications can insert the EPR SSOT-
ID into the Clinic_Patient and Pharmacy_Patient tables, and delete the temporary file.
At this point, the application returns to normal processing.

4 Performance and Quality-of-Service (QoS)

Despite the data-synchronization challenges, the data-replication model has a perfor-
mance advantage over the SSOT service model. In the SSOT service model, client
applications make extra service invocations to the SSOT during record creation and
retrieval, which may affect user experience. Therefore, we implemented experiments
to evaluate how the extra SSOT service invocations might affect user wait times.

The experiments evaluated delay caused by the SSOT service invocations. They
were conducted on the institution’s network supporting ~40,000 students. The SSOT
service was hosted on a workstation in a departmental subnet. In the experiments,
client applications accessed the SSOT service through Wi-Fi on the institute’s public
network during regular office hours. This condition simulated an enterprise network
supporting multiple sub-divisions.

The experiment results show that if the SSOT service and the client applications
are located within the same enterprise network, then the service invocation costs less
than 20 milliseconds per call. This indicates that users should not notice any perfor-
mance deterioration. If the SSOT service is available across a wide area network, the
performance primarily depends on the transmission delay between the public SSOT
service and the clients. Clients should benchmark the transmission delay to determine
the actual performance effect.

In dynamic web service composition [3], clients select web service providers ac-
cording to their published quality-of-service (QoS) [4]. Even though, SSOT’s clients
will likely access the SSOT service statically, the SSOT service should publish the
following QoS metrics per operation:

─ Operational hours: the regular SSOT servicing hours.
─ Maintenance schedule: the changes and release schedule.
─ Reliability: the SSOT’s ability to perform the operation without errors.
─ Request-processing time: the maximum and average time required for the SSOT

service to complete the operations.

586 C. Pang and D. Szafron

The SSOT may publish additional QoS metrics, such as capacity, performance, ro-
bustness, accuracy and more [3]. Clients can design their usage of the SSOT service
according to the SSOT’s QoS metrics.

If the SSOT service is part of a larger enterprise or jurisdiction, then the SSOT ser-
vice usually has the same operational hours and maintenance schedules as their
clients. Public SSOT services, like Canada Post, are usually available 24x7.

5 Related Work

Most SSOT is implemented on the data layer. Ives et al. [5] suggest synchronizing
distributed data on the data layer. Ives et al. propose a “Collaborative Data Sharing
System (CDSS) [that] models the exchange of data among sites as update propagation
among peers, which is subject to transformation (schema mapping), filtering (based
on policies about source authority), and local revision or replacement of data.” Since
data across multiple sites are continuously “updated, cleaned and annotated”, cross-
site synchronization has to deal with issues such as data correctness, schema and ter-
minology consistence, and timing. These data layer synchronization hurdles highlight
the advantage of our SSOT service model that eliminates data layer synchronization.

Others try to implement SSOT using an Enterprise Service Bus (ESB) [6], in which
a SSOT is defined. Clients duplicate the SSOT data locally, and subscribe to ESB for
SSOT updates. Whenever the SSOT is updated, clients synchronize with the SSOT by
repeating the changes in their local copies. Our SSOT model totally avoids data dup-
lication at the clients’ site.

Instead of a data-centric model for SSOT, some research has turned to artifact-
centric modeling [7]. An artifact is a set of name-value-pairs related to a business
process or task, where data represents business objects. In the artifact-centric model,
each artifact instance is shared between all process participants. The participants get
information from the artifact and change the state of the artifact to accomplish the
process goal. Since the artifacts are shared between process participants, access and
transaction control is necessary. Hull [8] suggests using artifact-centric hubs to facili-
tate communication and synchronization between the participants. Our SSOT service
model does not require complicated facilitation or a centralized hub.

Other researchers have proposed the Personal Information Management (PIM) [9]
model. In our model, the SSOT does not have any knowledge about its clients’ data.
However, the PIM model finds, links, groups and manages clients’ data references to
the source. PIM is a centralized data management model, while SSOT is a distributed
data management model.

Finally, Ludwig et al. [10] propose a decentralized approach to manage distributed
service configurations. The proposed solution uses RESTful services to exchange
configuration data between hosts, and a subscription mechanism to manage changes.
This approach endorses a data perspective similar to an SSOT service, where each
data source maintains self-contained autonomous data. Data is not synchronized
across multiple sites. Sources and clients are statically bound.

 Single Source of Truth (SSOT) for Service Oriented Architecture (SOA) 587

6 Future Work

A mutable SSOT service has one standard operation: query-by-criteria. An immutable
SSOT service has four standard operations: query-by-criteria, query-by-SSOT-ID,
update subscription, and deletion subscription. Based on these standard operations, we
defined Web Service Definition Language (WSDL) extensions for the mu-table and
immutable SSOT services with corresponding templates. Because of the limited
space, we do not include the SSOT WSDL and templates in this paper.

Based on the WSDL extensions and templates, development tools can easily be
created to generate SSOT service source code with corresponding client access code.
These tools can simplify development for programmers, which encourages the use of
SSOT services to replace data-replication. Eclipse is an excellent platform to imple-
ment such tools. There are three additional future work topics.

Maintenance and Upgrades: Every active service goes through changes. Besides
regular change management, services may experience unexpected emergency inci-
dents. When these incidents occur, the clients should be alerted about their occur-
rences, side-effects, recovery progress and estimated recovery times. As suggested by
Ludrig et al. [10] a subscription service can be used to communicate change, mainten-
ance and emergency notices. Protocols and language extensions can be defined for
various types of change, maintenance and emergency activities. Since SSOT intro-
duces a single point of failure, a cloud infrastructure specifically designed for SSOT
can improve its availability.

Local Temporary Cache: If the cost of the SSOT service invocation is a concern,
clients can cache the SSOT resources temporarily. Once a SSOT resource is obtained,
there is a good chance that the client needs the same SSOT resource for related
processes. Therefore, temporarily caching the SSOT resource will likely reduce ser-
vice invocations. The cached SSOT resource can be flushed after a timeout period.
The SSOT update or deletion message should also flush the related resource from the
cache. The caching functionality would ideally be implemented as middleware that
supports the SSOT service architecture.

Schema Synchronization: For existing applications to adopt a SSOT service
model, the existing client applications need to map their local data to the SSOT data.
Both the SSOT and the clients can make use of existing ontology studies, which de-
fine data syntax and semantics for specific industries. For example, HL7 [11] is de-
fined for the health industry; RosettaNet [12] is defined for e-business; EDIFACT
[13] is defined for electronic data interchange. Moving toward standard languages
will benefit the survival and the long term growth of the industry. The SSOT service
model does not define the communication architecture or protocol between the clients
(e.g. between the clinic application and the pharmacy application in the EPR use
case), but adopting the SSOT service model can simplify communication between the
clients. For example, the pharmacy can verify a patient’s prescription with the clinic
by the patient SSOT-ID and avoid multiple drug dispensing.

588 C. Pang and D. Szafron

7 Conclusion

The SSOT service model described in this paper addresses the data-synchronization
problems that arise due to data-layer replication across distributed systems. On the
other hand, the SSOT service model introduces a single point of failure in the system.
Depending on the Service Level Agreement (SLA), the SSOT may need support from
multi-site configurations or cloud-infrastructure with fail-over capability. Although
the data-replication model does not have a single point of failure, it suffers from data-
synchronization and data-inconsistency issues. Data synchronization usually involves
defining a custom peer-to-peer data exchange agreement. The custom agreement
tightly couples the data provider and consumer, which makes switching providers
very costly. Nonetheless, data synchronization usually happens during the overnight
maintenance windows. Data becomes stale between synchronizations. Furthermore,
data replication keeps a full copy of the provider’s data at the clients’ sites. If clients
use only a small portion of the provider’s data, then the clients are wasting resources.
An added benefit of the SSOT service model is that it can control what data each
client is authorized to access, while data replication makes all data available to clients.

The SSOT service model allows the provider and clients to be loosely coupled.
Clients do not need to pledge infrastructure resources for the foreign data. The SSOT
service model also provides up-to-date data. Overall, we believe that the SSOT ser-
vice model can be used to eliminate data replication, enforce data autonomy, advocate
data self-containment, ease data maintenance and enhance data protection. In the long
term, these properties will also increase business adaptability.

Within large enterprises or government agencies, managing large amounts of data
as a single entity is problematic. Decomposing a large data set into smaller autonom-
ous and independently managed data sets can increase flexibility. As in the EPR case,
once the EPR SSOT service is established, a new patient related service can be
created without defining and creating its own patient data set. The new service does
not need to negotiate with other parties regarding data acquisition or synchronization.
The new service can loosely couple with the EPR SSOT and be established quickly.
In addition, the SSOT service model allows each individual service to be self-
contained and maintain its local database. For example, the clinic application and the
pharmacy application in the EPR use case maintain their individual local databases
without sharing data with the EPR system. This characteristic is very important in the
health industry, where patients’ privacy is closely monitored.

The SSOT service model is also applicable to the financial industry. Banking, in-
vestment and insurance businesses are often integrated under one corporation. How-
ever, legislation may require each of these businesses to be separate entities. The
SSOT service model allows the corporation to create a customer SSOT to register
each customer once. Banking, investment and insurance services can run as separate
entities, while being loosely coupled with the customer SSOT service. With the SSOT
service model, new financial services can be introduced more quickly. Similarly, the
SSOT service model can benefit any jurisdiction that provides multiple services.

 Single Source of Truth (SSOT) for Service Oriented Architecture (SOA) 589

References

1. Lasila, O., Swick, R.R.: World Wide and Web Consortium: Resource Description Frame-
work (RDF) Model and Syntax Specification, W3C Recommendation (1998)

2. Fielding, R.T.: Chapter 5 Representational State Transfer (REST), Architectural Styles and
the Design of Network-based Software Architectures, Doctoral dissertation, University of
California, Irvine (2000)

3. Dustdar, S., Schreiner, W.: Survey on Web services Composition. International Journal on
Web and Grid Services 1, 1–30 (2005)

4. Ran, S.: A Model for Web Services Discovery With QoS. ACM SIGecom Exchanges 4(1),
1–10 (2003)

5. Ives, Z., Khandelwal, N., Kapur, A., Cakir, M.: ORCHESTRA: Rapid, Collaborative Shar-
ing of Dynamic Data. In: The 2nd Biennial Conference on Innovative Data Systems
Research (CIDR 2005), Asilomar, CA, USA (2005)

6. Schmidt, M.-T., Hutchison, B., Lambros, P., Phippen, R.: The Enterprise Service Bus:
Making servie-oriented architecture real. IBM Systems Journal 44(4), 781–797 (2005)

7. Nigam, A., Caswell, N.: Business artifacts: An approach to operational specification. IBM
Systems Journal 47(3), 428–445 (2003)

8. Hull, R.: Artifact-Centric Business Process Models: Brief Survey of Research Results and
Challenges. In: OTM 2008, Monterrey, Mexico (2008)

9. Jones, W.: Personal Information Management. Annual Review of Information Science and
Technology 41(1), 453–504 (2007)

10. Ludwig, H., Laredo, J., Bhattacharya, K., Pasquale, L., Wassermann, B.: REST-Based
Management of Loosely Coupled Services. In: The 18th International Conference on
World Wide Web (WWW 2009), Madrid, Spain (2009)

11. HL7 Health Level Seven International, http://www.hl7.org
12. RosettaNet (1999), http://www.rosettanet.org
13. EDIFACT, United Nations Directories for Electronic Data Interchange for Administration,

Commerce and Transport,
http://www.unece.org/trade/untdid/welcome.htm

X. Franch et al. (Eds.): ICSOC 2014, LNCS 8831, pp. 590–597, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Model for Service License in API Ecosystems

Maja Vukovic1, LiangZhao Zeng1, and Sriram Rajagopal2

1IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA
{maja,lzeng}@us.ibm.com

2IBM India, Chennai, India
srirraja@in.ibm.com

Abstract. Rapid growth and consumption of REST APIs is generating new
types of service marketplaces, which are dynamic and complex networks of
providers and consumers. Existing models for software licenses and service
standards, such as WDSL fall short of providing flexible frameworks for cap-
turing the requirements that this newly created environment demands. Gaps ex-
ist in support for multi-pricing agreements across multiple providers and con-
sumers, support for both usage and capacity events and automated generation
and composition of licenses. Developers are accustomed to self-serve model,
where they create and deploy new applications on the Cloud with a few mouse
clicks, employing one or more available APIs. As a result, there is a need to be
able to automatically assess existing licenses, compose new ones and under-
stand their dependencies in order to shorten the time-to-value for new services.
In this paper, we propose a model-driven approach for defining API service
licenses, which provides capabilities to capture business and legal constraints,
enable license metric calculation, QoS calculation and service pricing rules.
We present API SLA analyzer system, which utilizes proposed license model to
uncover SLA violations in real-time.

Keywords: Service License, REST API, Model-driven.

1 Introduction

Simplicity of REST APIs has resulted in rapid development of highly consumable
services [1]. As enterprises continue to expose their core capabilities through APIs
and enable co-creation of novel business capabilities this opens up a set of challenges
in the service-licensing domain. The challenges arise from incomplete models, lack of
automation that leads to inefficiencies in end-to-end management of licenses in API
ecosystems and ability for consumers to systematically assess license terms.

Firstly, existing API licenses are still designed with intention to be human reada-
ble. The legal terminology is not easily understandable by the consumer. As such, it is
impossible for machine to parse, understand and assess licenses. Startups and free-
lancers often customize existing licenses found online. Enterprises rely on legal teams
to swift through the agreements, which is labor intense.

Secondly, there is no longer one-to-one relationship between service provider and
consumer, requiring license model to capture many pricing models and relationships.

 Model for Service License in API Ecosystems 591

Thirdly, management of API licenses is a time-consuming, often manual process,
which can lead to a lot of human errors. With the shorter development cycle and
adoption of DevOps model, manual processing, negotiation and assessment of li-
censes is no longer an option. Furthermore, as developers build new capability and
push them on the Cloud, the licensing model needs to capture both usage-based and
capacity-based models.

The main contributions of this work are:
1. A novel, meta-model for representation of service license description (as an

XML schema) that facilitates automated license generation and composition.
The model provides capabilities to cover comprehensive non-functional prop-
erties of service license, including: business constraints, license metric calcula-
tion, Quality of Service (QoS) calculation and service price rule.

2. We demonstrate the usability of the proposed license model, as part of the pro-
totype that at real-time uncovers Service Level Agreement (SLA) violations
by interfacing and assess the service conditions, in an existing marketplace,
and comparing them against real time metrics.

Next section presents the related work. Section 3 describes our proposed model

and we discuss how it can be used to automate composition of licenses. Section 4
describes the implementation of SLA analyzer that uses our model. Section 5 con-
cludes and outlines future areas of research.

2 Related Work

Software licenses [2] are centered on the capacity-based model, where the focus is on
capacity elements, such as CPU. They are static and data-centric, and computed when
the new deployment is complete. They do capture QoS and SLA guarantees.

Web-Service License Agreement (WSLA) framework [3] was designed to capture
involved parties, SLA parameters, their metrics and algorithms, and service licensing
objectives and the corresponding actions. It does not provide support for automati-
cally creating agreements and it does not capture business and legal terms.

Web Service Agreement Specification (WS-Agreement) [4] provides terms and
language to describe services, their properties, and associated guarantees. It is not a
generic tool for conflict classification. There is no mechanism for deriving service
delivery system based it and claiming a service against the agreement.

Existing efforts addressed compatibility of functional [5,6,7] and non-functional
[8, 9, 10] parameters as part of service selection and matching process.

A number of commercial solutions aim to help consumers understand service li-
censes [11,12,13]. Our prior work presents a classification of common terms and con-
ditions and describes a terms of service management console [14].

592 M. Vukovic, L. Zeng, and S. Rajagopal

3 Service License Model

In this section, we introduce a service license meta-model, shown on Figure 1., which
consists of layers: Information source, Property Function, License Metric and License
Terms and Conditions Metamodel. Details about each layer of the metamodel follow.

3.1 Information Source

The information source meta-model provides constructs for defining the service dep-
loyment and execution information. The deployment information is related to hard-
ware assets that install software. The execution information describes runtime events
that related to execution of software. The runtime event may indicate how many in-
stances are running in a physical server, when the instance is started and terminated,
how many CPU cycles, memory, etc. are consumed, etc. Runtime events also report
the business usage of the service. For example, when a business transaction is in-
itiated, an event with transaction details is created.

By considering business users, we adopt object-oriented model to construct infor-
mation metamodel. On the one hand, the deployment information usually is persisted
in relational database. Therefore, the proposed metamodel provides constructs to map
the deployment information from relational database to object-oriented. In most the
case, the deployment information model are static and common to most of the organi-
zation and service vendors. Therefore, in practice, most of the organization can adopt
pre-defined information model, without creating a new information model from
scratch.

On the other hand, the execution information usually is live events that need to be
processed before persisted in storage. The information metamodel provides constructs
to define the event catalog that can include a collection of event types. It should be
noted that the events that related to service usages could be diverse from different
service vendors. And usually the service vendors provide definition of these events
and event dispatchers that can detect and emit related events in runtime.

3.2 Property Function Metamodel

Property function metamodel provides building blocks to define license terms and
conditions. There are two forms of functions, namely Formula-based Function and
Table-based Function. A formula-based function takes a collection of entities defined
by information metamodel. Its computation logic is defined by an Expression that
takes input parameters as operands to construct an expression string by using opera-
tors. It should be noted that a formula-based function could be considered as an ope-
rand to construct another formula-based function.

3.3 License Metric Metamodel

Above information and property function metamodels provide foundational constructs to
define service license metric. There are two major kinds of license metric: capacity-based

 Model for Service License in API Ecosystems 593

Fig. 1. Simplified UML representation for Service License Metamodel

and usage-based. Capacity-based license metric usually calculates the license require-
ment by considered the capacity of host that installs or executes the service. The license
requirement will not change unless there are hardware upgrades. For example, license
metric that measures total number of CPU cores of the physical server that the software
deploys to. Unlike capacity-based license metrics, usage-based license metrics are
created, calculated and based on live execution event events in realtime fashion. An ex-
ample of usage-based license metric may measure number of transactions the service
executes.

In general, both types of license metrics consist of a LicenseUnit and License Cal-
culations. The license unit defines denominations that are used to measure the license
requirement. In case of capacity-based license metrics, the license unit can be either
defined as formula-based function either fixed value or a property function. For ex-
ample, a license metric bubbled ”NumberOfCore” that uses total number of CPU
cores in the physical server to measure the license entitlement.

In this case the license capacity unit is the fix string “core”. In another example, a
license metric “UserTier” uses number of users as input to map user tiers such as:
from one to ten users is considered as ”tier 1”, and from eleven to hundred users is

AttributeName:String
AttributeType:String
IsKey:Boolean

TypedAttributed

*

EntityName:String
Deployment Entity

EventName:String
Execution Event

*

TableName:String
Data Source

Event Emitter:String
Event Source

1

1

*

1

FunctionName:String
Formula-based Function

FunctionName:String
Table-based Function

*

Boolean Function

ReturnValue:String
RetrunType:String

TableRow

*

*

CapacityUnitName: String
License Capacity UnitLicense Capacity

Calculation LicenseTermName: String
License Term

*

*

MetricName: String
License Metric

ExpressionString:String
Expression

Metric ECA Rule

Information Source

Property Function

License Metric

*

* * * * *

*

*1

1

*

*

*

1 1

*

*

Business ConstraintSLAPrice Rule

Condition

*

*

*

*
*

Price Calculation
*

*
*

Action

License Terms and Conditions

*

ApplicationDomain:String
Deployment Env

594 M. Vukovic, L. Zeng, and S. Rajagopal

considered as “tier 2”. In this case, the table-based function that specifies mapping be-
tween the numbers of users to kinds of tiers can be used to define the license capacity unit.

Similar to license capacity unit, license capacity calculation can also be defined by
formula-based or table-based functions. In the example of “NumberOfCore”, a for-
mula expression CPUii=0

n .numberOfCore that sums up all the CPU cores in the physical

server can be used to define the license capacity calculation. In the expression, the
CPUi.numberOfCore indicates number of cores in each CPU.

In another example, the license metric Processor Value Unit (PVU) maps processor
properties such as processor vendor, brand, type and model number to numerical val-
ue. In this case, the license capacity calculation is defined as table-based function
(shown in Table 1).

Table 1. Table-based Function PVU license metric

3.4 License Terms and Conditions

Above metamodels provide foundational constructs to define license terms and condi-
tions, such as business constrains, service level agreement, and price rules. In the fol-
lowing subsections, details about higher-level constructs are presented.

3.4.1 Business Constraint
Business constraints define the conditions that services can be applicable for execu-
tions. The condition is defined as a Boolean function that is constructed by using for-
mula-based functions operands. Here are some examples of business constraints.

Data privacy protection constraint:
 Service.Execution.DataPrivacyProtection = “Best Effort”;
This business constraint indicates that there is not guarantee on data privacy protec-
tion when service is executed.
Data reliable protection constraints:
 Service.Execution.DataReliable.isRetainDataCopy =”True”;
 Service.Execution.DataReliable.isReliableForLoss =”False”;

Above two constraints indicate that local data copy is retained by the service how-
ever, it will not reliable for data lost.

Brand usage constraints:
Service.Deployment.BrandPermission=”Not specified”;
Service.Deployment.LogoUsage=”Consumer logo”

Above two constraints indicate that when deploying the service, brand permission
is not specified and consumer logo is automatically used.

 Model for Service License in API Ecosystems 595

3.4.2 Service Level Agreement
Service level agreements (SLAs) provide quality guarantee for services. A service
level agreement consists of two components: condition and action. Conditions speci-
fied the range of value for metrics (related to service quality). An example of condi-
tion can be quality guarantee about service availability, such as Availability > 99%.

The action of SLA specify the consequence if service quality guarantee is violated,
which is usually related to payment or pricing rules.

3.4.3 Pricing Rules
Pricing rules specify the calculation of charges when the customers use services.
There are different approaches to charge the service customers, which can include
capacity-based or usage-based calculations. The capacity-based pricing rules provide
the calculation logic according to hardware capacity that service is deployed to. The
usage-based pricing rules provide the calculation logic according to how the service is
used, such as number of invocations.

In our implementation, the metamodel is defined as an XML Schema and an editor
is provided to facilitate creation of service license definition, which is represented as
an XML document.

4 Model in Use

Using the proposed model we have developed the SLA analyzer system, which ana-
lyzes the service licenses based on the agreed and actual availability. It also has the
capability to analyze licenses based on various other parameters, such as business
constraints (e.g. user eligibility and brand permission). User can select one or more
APIs and track their violations in a given time window, as shown on Figure 1. Details
about the input and output of SLA API are shown in Figure 2.

Fig. 2. SLA User Interface Prototype

596 M. Vukovic, L. Zeng, and S. Rajagopal

Fig. 3. Sample I/O and REST

SLA analyzer service – REST input/output:

Input: {"apiID":[<list of API ID],"customerId":"<customer

ID>","timeWindow":<time Window>}

Output:

{"Results":[{"ServiceID":"<Service ID>","SLA":<Agreed

SLA>,"CustomerID":"<Customer

ID>","QoSAlerts":[{"TimeStamp":"<TimeStamp>","QoSAlert":<true|false>

,"QoSValue":<Actual SLA>}]}]}

Sample Input/Output

Input:

{"apiID":["62","209","19"],"customerId":"10","timeWindow":3}

Output:

{"Results":[

{"ServiceID":"62","SLA":99.9,"CustomerID":"10",

"QoSAlerts":[{"TimeStamp":"2013-11-

05","QoSAlert":true,"QoSValue":98.0},

{"TimeStamp":"2013-11-06","QoSAlert":false,"QoSValue":100.0},

{"TimeStamp":"2013-11-07","QoSAlert":false,"QoSValue":100.0}]},

{"ServiceID":"209","SLA":99.0,"CustomerID":"10",

"QoSAlerts":[{"TimeStamp":"2013-11-

05","QoSAlert":true,"QoSValue":92.0},

{"TimeStamp":"2013-11-06","QoSAlert":true,"QoSValue":88.0},

{"TimeStamp":"2013-11-07","QoSAlert":true,"QoSValue":79.0}]},

{"ServiceID":"19","SLA":99.7,"CustomerID":"10",

"QoSAlerts":[{"TimeStamp":"2013-11-

05","QoSAlert":true,"QoSValue":96.0},

{"TimeStamp":"2013-11-06","QoSAlert":false,"QoSValue":100.0},

{"TimeStamp":"2013-11-07","QoSAlert":false,"QoSValue":100.0}]}

]}

 Model for Service License in API Ecosystems 597

5 Conclusion and Future Work

Service license definition and management is becoming an increasingly important
challenge in the ever-growing service marketplaces. Licenses are still manually
created, assessed and composed, which is a very time-consuming effort.

In this paper, we presented a model-driven approach to providing a formal frame-
work for representing service license and capturing both usage and capacity based
events. We presented our initial prototype that exposes license management and SLA
alert capability via API. As such, we believe that our proposed model can help auto-
mate creation, assessment and composition of the service licenses. Moreover, it can
help with license reconciliation and conflict detection. Our future work will focus on
model evaluation, integration of comprehensive composition methods and optimiza-
tion of service licenses in multitenant environments.

References

1. Pautasso, C., Zimmermann, O., Leymann, F.: Restful web services vs. big web services:
making the right architectural decision. In: 17th International Conference on World Wide
Web (2008)

2. Minkyong, K., Han, C., Munson, J., Lei, H.: Management-Based License Discovery for
the Cloud. In: International Conference of Service Oriented Computing (2012)

3. Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service Level
Agreements for Web Services. Journal of Network System Management (2003)

4. Web Services Agreement Specification. Available at:
http://www.ogf.org/documents/GFD.107.pdf

5. Liu, Y., Ngu, A.H., Zeng, L.Z.: QoS computation and policing in dynamic web service se-
lection. World Wide Web (2004)

6. Karmarkar, A., Walmsley, P., Haas, H., Yalcinalp, L.U., Liu, K., Orchard, D., Pasley, J.:
Web service contract design and versioning for SOA. Prentice Hall (2009)

7. Verma, K., Akkiraj, R., Goodwin, R.: Semantic Matching of Web Service Policies. In:
Second International Workshop on Semantic and Dynamic Web Processes (2005)

8. Reiff-Marganiec, S., Yu, H.Q., Tilly, M.: Service Selection Based on Non-functional
Properties. In: International Conference of Service Oriented Computing (2007)

9. Web Services Policy (WS-Policy), http://www.w3.org/Submission/WS-
Policy/

10. Gangadharan, G.R., Comerio, M., Truong, H.-L., D’Andrea, V., De Paoli, F., Dustdar, S.:
LASS – License Aware Service Selection: Methodology and Framework. In: International
Conference of Service Oriented Computing (2008)

11. Digital Trends. Terms and Conditions. Available at:
http://www.digitaltrends.com/topic/terms-and-conditions/

12. 500px’s Terms Of Service Are Kind Of Awesome. TechCrunc Article. Available at:
http://techcrunch.com/2012/04/12/500pxs-terms-ofservice-are-
kind-of-awesome/

13. Terms of Service Didn’t Read. Available at: http://tosdr.org
14. Vukovic, M., Rajagopal, S., Laredo, J.: API Terms and Conditions as a Service. In: IEEE

Service Computing Conference (2014)

Author Index

Agarwal, Shivali 260, 478
Ahmed, Tanveer 429
Akroun, Lakhdar 535
Akula, Arjun R. 478
Alhazbi, Saleh 518
Ali, Muhammad Intizar 386
Arifulina, Svetlana 543
Assy, Nour 1

Barakat, Lina 169
Bartoloni, Leonardo 378
Barukh, Moshe Chai 16
Becker, Steffen 543
Benatallah, Boualem 16, 518, 535
Bhat, Manoj 403
Bhiri, Sami 386
Bi, Jing 419
Bouet, Marinette 494
Bouguettaya, Athman 154, 368, 453
Breitenbücher, Uwe 336
Brogi, Antonio 378
Buchmann, Alejandro 199

Canal, Carlos 437
Carro, Manuel 291, 394
Cheikhrouhou, Saoussen 351
Chen, Nanxi 93
Chen, Shiping 510
Chen, Wei 445
Chen, Xin 154
Clarke, Siobhán 93
Copil, Georgiana 275
Curry, Edward 386

Dasgupta, Gargi 260, 478
da Silva, Miguel Mira 486
Di Francescomarino, Chiara 32
Dikaiakos, Marios 275
Dong, Hai 368
Dorn, Christoph 184
Dubois, Johann 230
Dustdar, Schahram 184, 275

Engels, Gregor 543
Erradi, Abdelkarim 79, 518

Fan, Yushun 419, 510
Fdhila, Walid 47
Franklin, Rod 560
Frischbier, Sebastian 199

Gaaloul, Walid 1
Gabrel, Virginie 108
Gama, Nelson 486
Gani, Kahina 494
Gao, Feng 386
Gerth, Christian 543
Ghidini, Chiara 32
Grigori, Daniela 123
Guéhéneuc, Yann-Gaël 230
Guermouche, Nawal 351
Gupta, Neha 214
Gupta, Sanchit 214

Herzberg, Nico 63
Huang, Keman 419, 510

Ibrahim, Ahmad 378
Indiono, Conrad 47
Ivanović, Dragan 291, 394

Jacobsen, Hans-Arno 403
Jmaiel, Mohamed 351
Jung, Gueyoung 470

Kallel, Slim 351
Kalra, Sumit 260
Kaowichakorn, Peerachai 394
Keivanloo, Iman 245
Khan, Khaled M. 518

Lampe, Ulrich 462
Leymann, Frank 336
Liu, Guanfeng 527
Liu, Yi 510
Luck, Michael 169

Mahbub, Khaled 551
Mahmoud, Samhar 169
Malluhi, Qutaibah M. 79
Manouvrier, Maude 108, 123
Marquezan, Clarissa Cassales 560

600 Author Index

Metzger, Andreas 306, 560
Meyer, Andreas 63, 359
Mileo, Alessandra 386
Miles, Simon 169
Moha, Naouel 230
Mohr, Felix 411
Moldovan, Daniel 275
Mouhoub, Mohamed Lamine 123
Murat, Cécile 108

Nadgowda, Shripad J. 214, 478
Nassar, Mohamed 79
Nayak, Tapan K. 478
Neiat, Azadeh Ghari 368
Nepal, Surya 510
Ni, Yayu 419
Nourine, Lhouari 535

Orgun, Mehmet A. 453, 527

Pallis, George 275
Palma, Francis 230
Pang, Candy 575
Pietzuch, Peter 199
Pino, Luca 551
Platenius, Marie Christin 543
Pohl, Klaus 306, 560
Pufahl, Luise 63

Qiao, Xiaoqiang 445
Qu, Lie 453

Rajagopal, Sriram 590
Rinderle-Ma, Stefanie 47
Ryu, Seung Hwan 518

Sabry, Farida 79
Salaün, Gwen 437
Schäfer, Wilhelm 543
Schmieders, Eric 306
Schneider, Michel 494
Schuller, Dieter 321, 462
Sellis, Timos 368

Sheng, Quan Z. 445
Siebenhaar, Melanie 321, 462
Spanoudakis, George 551
Sreedhar, Vugranam C. 502
Sreenivas, Ravella C. 214
Srivastava, Abhishek 429
Steinmetz, Ralf 321, 462
Su, Jianwen 139
Sun, Yutian 139
Szafron, Duane 575

Tan, Wei 419, 510
Taweel, Adel 169
Tiella, Roberto 32
Tonella, Paolo 32
Toumani, Farouk 494, 535
Trihinas, Demetris 275
Truong, Hong-Linh 275

Verma, Akshat 214
Vicente, Marco 486
Vukovic, Maja 590

Waibel, Philipp 184
Wang, Hongbing 154
Wang, Shaohua 245
Wang, Yan 453, 527
Wenge, Olga 321, 462
Weske, Mathias 63, 359
Wettinger, Johannes 336
Wong, Duncan S. 453
Wu, Qin 154

Yao, Jinhui 470
Ye, Chunyang 403
Yu, Qi 154

Zeng, Liangzhao 590
Zhang, Haibin 527
Zheng, Xiaoming 527
Zheng, Zibin 154
Zou, Ying 245

	Preface
	Organization
	Rigorous System Design
	Applying Data Science to Firmographics
	Table of Contents
	Research Papers
	Business Process Management
	Configuration Rule Mining for VariabilityAnalysis in Configurable Process Models
	1 Introduction
	2 Running Example
	3 Preliminaries
	3.1 Business Process Graph
	3.2 Configurable Process Model

	4 Configuration Rule Mining
	4.1 Retrieving Similar Configurations
	4.2 Deriving Configuration Rules

	5 Experimental Results
	6 Related Work
	7 Conclusion
	References

	ProcessBase: A Hybrid Process ManagementPlatform
	1 Introduction
	2 Motivating Example
	3 Background and Related Work in Hybrid-Processes
	4 ProcessBase Architecture Overview
	5 Domain-Specific Model for Hybrid-Processes
	5.1 Hybrid-Process Definition
	5.2 Process Cases and Variations
	5.3 Functional Tasks

	6 Context-Based Recommendation System
	7 Hybrid-Process-as-a-Service (HPaaS) API
	8 Evaluation and Analysis
	9 Conclusions
	References

	A Multi-objective Approach to Business Process Repair
	1 Introduction
	2 Background
	3 Process Repair as a Multi-objective Optimization Problem
	3.1 Multi-objective Optimization
	3.2 Process Repair as a MOP

	4 Experimental Results
	4.1 Process under Analysis
	4.2 Metrics
	4.3 Experimental Procedure
	4.4 Results
	4.5 Discussion
	4.6 Threats to Validity

	5 Related Work
	6 Conclusions and Future Work
	References

	Memetic Algorithms for Mining Change Logsin Process Choreographies
	1 Introduction
	2 Motivating Example and Preliminaries
	3 Problem Formulation
	3.1 Change Logs in Process Choreographies
	3.2 Overview

	4 Heuristics
	5 Memetic Change Propagation Mining
	6 Discussion and Evaluation
	6.1 Data Set
	6.2 Benchmark Results

	7 Related Work
	8 Conclusion
	References

	Flexible Batch Configuration in Business Processes Based on Events
	1 Introduction
	2 Foundation
	3 Motivating Example
	4 Events and Batch Regions
	5 Flexible Configuration Based on Events
	5.1 Basic Idea
	5.2 Batch Adjustment Rule and Batch Adjustment
	5.3 Reassignment of Process Instances
	5.4 Architecture

	6 Evaluation
	7 Related Work
	8 Conclusion
	References

	Automatic Generation of Optimized Workflowfor Distributed Computations on Large-Scale Matrices
	1 Introduction
	2 Related Work
	3 Overview of the Proposed Framework
	4 From Expression to BPEL
	4.1 Expression Parser
	4.2 Tree Optimization
	4.3 BPEL Code Generation

	5 Implementation and Experimentation
	6 Conclusion
	References

	Service Composition and Discovery
	A Dynamic Service Composition Modelfor Adaptive Systems in Mobile ComputingEnvironments
	1 Introduction
	2 System Model Overview
	3 Semantic Service Overlay Network (SSON)
	3.1 Matchmaking Models
	3.2 SSON Construction

	4 Decentralized Service Composition
	4.1 Task Model
	4.2 Distributed Planning
	4.3 Service Execution and Dynamic Adaptation of CFs

	5 Evaluation
	6 Related Work
	7 Conclusion and Future Work
	References

	Optimal and Automatic Transactional WebService Composition with Dependency Graphand 0-1 Linear Programming
	1 Introduction
	2 Related Work
	3 Context and Background Definitions
	4 Linear Programming Model for QoS-Aware Composition
	4.1 Decision Variables
	4.2 Constraints Modeling the Input/Output of Each Service
	4.3 Constraints Implied by the User Query
	4.4 Constraints Linking Decision Variables
	4.5 Constraints for Eliminating Directed Cycle
	4.6 Resulting Model

	5 Extending Our Model with Transactional Properties
	5.1 Definitions and Context
	5.2 Constraints Induced by Transactional Requirements

	6 Experimental Results
	6.1 Software Configuration and Test Set Description
	6.2 Experiments without Transactional Requirements
	6.3 Experiments with Additional Transactional Requirements

	7 Conclusion
	References

	A Framework for Searching Semantic Dataand Services with SPARQL
	1 Introduction
	2 Data and Service Querying
	2.1 Definitions

	3 Service Discovery with SPARQL
	3.1 Service Request Extraction
	3.2 Semantics Lookup
	3.3 Service Query Generation

	4 Automatic Service Composition
	4.1 Service Dependency Graph
	4.2 Service Composition Algorithm

	5 Implementation and Experiments
	5.1 Framework Architecture
	5.2 Optimizing Service Discovery with Cache
	5.3 Experiments and Evaluation

	6 Related Works
	7 Conclusion and Perspectives
	References

	Conformance for DecSerFlow Constraints
	1 Introduction
	2 DecSerFlow Constraints
	3 Characterizations for Conformance
	3.1 Ordering and Immediate Constraints
	3.2 Ordering and Alternating Constraints
	3.3 Immediate and Alternating Constraints
	3.4 Response or Precedence Constraints

	4 Experimental Evaluations
	5 Related Work
	6 Conclusions
	References

	Integrating On-policy Reinforcement Learningwith Multi-agent Techniques for AdaptiveService Composition
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Multi-agent On-policy Learning for Composition
	4.1 SARSA
	4.2 Equilibrium Coordination

	5 Simulation Results and Analysis
	5.1 Experiment Setting
	5.2 Result Analysis

	6 Conclusions and Future Directions
	References

	Service Design, Description and Evolution
	An Agent-Based Service Marketplacefor Dynamic and Unreliable Settings
	1 Introduction
	2 Agent-Augmented Service Marketplace
	3 Basic QoSModel
	4 Uncertainty-Aware QoS Model
	5 Learning Model
	5.1 Learner Requirements
	5.2 Learning Algorithm

	6 Experiments and Results
	6.1 Learning Strategies
	6.2 Evaluation Measure
	6.3 Stationary Marketplace
	6.4 Non-stationary Marketplace
	6.5 Result Summary

	7 Related Work
	8 Conclusion
	References

	Architecture-Centric Design of Complex Message-Based Service Systems
	1 Introduction
	2 Motivating Scenario
	3 Related Work
	4 Approach
	5 Architecture-Centric Design and Configuration
	5.1 Background
	5.2 Message-Centric ADL Extension
	5.3 Consistency Checks

	6 Tool Support
	6.1 Architecture-to-Configuration Transformation
	6.2 ArchStudio Integration

	7 Proof-of-Concept Case Study
	8 Conclusions
	References

	Managing Expectations: Runtime Negotiation of Information Quality Requirementsin Event-Based Systems
	1 Motivation
	2 Expectations: Support for QoI in EBS
	2.1 Background: Event-Based Systems in a Nutshell
	2.2 Challenges Supporting QoI in EBS at Runtime
	2.3 The Model of Expectations and Capabilities

	3 Negotiating Requirements for QoI in EBS
	3.1 Matching Expectations to Capabilities
	3.2 Deciding on Satisfiable Expectations
	3.3 Select Suitable Adaptations

	4 Implementation
	4.1 Broker Extension: ExpectationController
	4.2 Handlers for Participants

	5 Related Work
	6 Conclusion, Ongoing and Future Work
	References

	C2P:Co-operative Caching in Distributed Storage Systems
	1 Introduction
	1.1 Our Contributions
	1.2 Paper Overview

	2 Design
	2.1 Motivation
	2.2 Design Challenges and Approach

	3 Implementation
	3.1 Filesystem Cache
	3.2 Peer Nodes Co-ordination
	3.3 C2P for Cache Replacement

	4 Evaluation
	4.1 Baseline Experiment
	4.2 Case Study

	5 Related Work
	6 Limitations and Future Work
	7 Conclusion
	References

	Detection of REST Patterns and Antipatterns:A Heuristics-Based Approach
	1 Introduction
	2 Related Work
	3 The SODA-R Approach
	3.1 Analysis of Patterns and Antipatterns
	3.2 Detection of Patterns and Antipatterns

	4 Validation
	4.1 Hypotheses
	4.2 Subjects and Objects
	4.3 Validation Process
	4.4 Results
	4.5 Overview on the Results
	4.6 Details of the Results
	4.7 Discussion on the Hypotheses
	4.8 Threats to Validity

	5 Conclusion and Future Work
	References

	How Do Developers Reactto RESTful API Evolution?
	1 Introduction
	2 Background
	2.1 Web APIs
	2.2 Question and Answer Websites

	3 Empirical Study
	3.1 Study Setup
	3.2 Research Questions

	4 Threats to Validity
	5 Related Work
	6 Conclusion and Future Work
	References

	Cloud and Business Service Management
	How to Enable Multiple Skill Learningin a SLA Constrained Service System?
	1 Introduction
	2 Learning Curve and Skill Progression Model
	3 How Is On-job Training Performed?
	3.1 Skill Distribution
	3.2 Dispatching

	4 Case Study - IT Incident Management
	4.1 Simulation Framework Overview of Enhanced ITIM Process
	4.2 Simulation Experiments and Results

	5 Related Work
	6 Conclusions
	References

	ADVISE – A Framework for Evaluating CloudService Elasticity Behavior
	1 Introduction
	2 Cloud Service Structural and Runtime Information
	2.1 Cloud Service Information
	2.2 Elasticity Control Processes
	2.3 Cloud Service Elasticity during Runtime

	3 Evaluating Cloud Service Elasticity Behavior
	3.1 Learning Process
	3.2 Determining the Expected Elasticity Behavior

	4 Experiments
	4.1 Experimental Services
	4.2 Elasticity Behavior Estimation
	4.3 ECP Temporal Effect
	4.4 Quality of Results

	5 Related Work
	6 Conclusions and Future Work
	References

	Transforming Service Compositions into Cloud-Friendly Actor Networks
	1 Introduction
	2 Motivation
	3 Outline of the Approach
	4 Translating Compositions into Actor Networks
	4.1 Sample Composition Language
	4.2 Actor Language
	4.3 Translating Compositions into Actor Networks
	4.4 Actor Network Instantiation and Semantic Correctness
	4.5 Composition State Persistence
	4.6 Use for Testing and Simulation

	5 Implementation Notes and Experimental Validation
	6 Conclusions and Future Work
	References

	A Runtime Model Approach for DataGeo-location Checks of Cloud Services
	1 Introduction
	2 Cloud Changes impacting on Data Geo-location Policies
	2.1 CoCoME Case Study
	2.2 Data Re-location in the Cloud

	3 Related Work
	3.1 Privacy Checks during Runtime
	3.2 Runtime Models

	4 Runtime Model-Based Policy Checks
	4.1 Runtime Model
	4.2 Data Geo-location Policy
	4.3 Policy Check

	5 Experimental Evaluation
	5.1 Experiment on Effectiveness
	5.2 Experiment on Performance

	6 Conclusion and Future Work
	References

	Heuristic Approachesfor Robust Cloud Monitor Placement
	1 Introduction
	2 Related Work
	3 Performance Control for Cloud Consumers
	3.1 Hybrid Monitoring Approach and Monitoring Level Agreements
	3.2 Robust Cloud Monitor Placement
	3.3 Formal Model

	4 Exact and Heuristic Solution Approaches
	4.1 Integer Linear Programming (ILP)-Based Approach
	4.2 Greedy Algorithm
	4.3 Tabu Search Algorithm

	5 Performance Evaluation
	5.1 Evaluation Methodology
	5.2 Simulation Results

	6 Summary and Outlook
	References

	Compensation-Based vs. Convergent Deployment Automation for Services Operatedin the Cloud
	1 Introduction
	2 Fundamentals
	3 Problem Statement
	4 Compensation-Based Deployment Automation
	4.1 Compensation on the Level of Scripts
	4.2 Compensation on the Level of Actions
	4.3 Snapshot-Based Compensation

	5 Evaluation
	6 Discussion
	7 Related Work
	8 Conclusions
	References

	Research Papers - Short
	Ensuring Composition Properties
	On Enabling Time-Aware Consistencyof Collaborative Cross-OrganisationalBusiness Processes
	1 Introduction
	2 Motivating Example
	3 Consistency Analysis of Inter-Organisational Business Processes
	3.1 Timed Business Process Modelling
	3.2 Consistency Checking Steps

	4 Related Work
	5 Conclusion
	References

	Weak Conformance between Process Models and Synchronized Object Life Cycles
	1 Introduction
	2 Weak Conformance
	3 The Notion ofWeak Conformance
	4 Computation ofWeak Conformance via Soundness Checking
	5 Related Work
	6 Conclusion
	References

	Failure-Proof Spatio-temporal Composition of Sensor Cloud Services
	1 Introduction
	2 Spatio-temporal Model for Sensor-Cloud Service
	2.1 Spatio-temporalModel for Atomic Sensor-Cloud Service
	2.2 Spatio-temporalModel for Sensor-Cloud Service Composition

	3 Spatio-temporal Quality Model for Sensor-Cloud Service
	3.1 Spatio-temporal QualityModel for Atomic Sensor-Cloud Service
	3.2 Spatio-temporal QualityModel for Composite Sensor-Cloud Service

	4 Failure-Proof Spatio-temporal Composition Approach
	5 Experiments Results
	6 Conclusion
	References

	Quality of Services
	Probabilistic Prediction of the QoS of Service Orchestrations: A Truly Compositional Approach
	1 Introduction
	2 Related Work
	3 Determine the QoS of a Service Orchestration
	3.1 Control Flow Trimming
	3.2 Statistical Non-determinism

	4 Example
	5 Conclusions
	References

	QoS-Aware Complex Event Service Compositionand Optimization Using Genetic Algorithms
	1 Introduction
	2 Related Work
	3 QoS Model and Aggregation Schema
	3.1 QoS Aggregation
	3.2 Event QoS Utility Function

	4 Genetic Algorithm for QoS-Aware Event Service Composition Optimization
	4.1 Population Initialization
	4.2 Genetic Encodings for Event Syntax Trees
	4.3 Crossover and Mutation Operations

	5 Evaluation
	5.1 Brute-Force Enumeration vs. Genetic Algorithm
	5.2 Convergence Time vs. Degree of Optimization

	6 Conclusions and Future Work
	References

	Towards QoS Prediction Based on Composition Structure Analysis and Probabilistic Models
	1 Introduction
	2 Related Work
	3 Probabilistic Interpretation of Compositions
	3.1 Elements of the Model
	3.2 Initial Conditions and Independence
	3.3 Assignments and Arithmetic
	3.4 Service Invocation
	3.5 Sequential Composition
	3.6 Conditionals
	3.7 Loops
	3.8 Or-Split and And-Split
	3.9 Interpreting the Results

	4 Experimental Validation
	4.1 Tool Implementation Notes
	4.2 Experiment One: Matrix Multiplication
	4.3 Experiment Two: Sorting
	4.4 Experimental Results

	References

	Semantic Web Services
	Orchestrating SOA Using RequirementSpecifications and Domain Ontologies
	1 Introduction
	2 Related Work
	3 Case Study of Service Composition
	4 Approach
	5 Evaluation
	6 Conclusions
	References

	Estimating Functional Reusability of Services
	1 Introduction
	2 Background and Motivation
	3 Problem Description
	3.1 An Ideal Metric for Functional Reusability
	3.2 The Need for Estimation
	3.3 The Formal Framework for the Service Environment

	4 Estimating Reusability Using Semantic Descriptions
	4.1 The Service Contribution Graph
	4.2 Basic Service Relevance
	4.3 Discussion

	5 Conclusion
	References

	Negative-Connection-Aware Tag-Based AssociationMining and Service Recommendation
	1 Introduction
	2 The Problem Formulation
	2.1 Preliminary Definitions
	2.2 Tag-Based Service Recommendation

	3 Tag-Based Association Model for Service Recommendation
	3.1 Service Connection Generation
	3.2 Mining Tag Collaboration Rules: RuleTree Algorithm
	3.3 Scoring Collaboration Rules: RuleScore Algorithm
	3.4 Rule-Based Service Recommendation

	4 Experiments
	4.1 Baseline Algorithms
	4.2 Performance of Service Recommendation

	5 Related Works
	6 Conclusion
	References

	Service Management
	Choreographing Services over Mobile Devices
	1 Introduction
	2 ProposedModel
	2.1 The Electric Field
	2.2 Magnetic Field
	2.3 Coalition of Electric and Magnetic Fields

	3 Real World Prototype Implementation
	3.1 Behavior of Completion Time
	3.2 Behavior of Battery Consumption

	4 Related Work
	5 Conclusion
	References

	Adaptation of Asynchronously CommunicatingSoftware
	1 Introduction
	2 Synchronous Adaptation
	3 Asynchronous Adaptation
	4 Related Work
	5 Conclusion
	References

	Handling Irreconcilable Mismatchesin Web Services Mediation
	1 Introduction
	2 Mediation Degree Assessment for Service Interactions
	2.1 Defining Service and Message Mapping
	2.2 Calculating Mediatability
	2.3 Analyzing Irreconcilable Mismatches

	3 Prototype Implementation and the Related Work
	4 Conclusion
	References

	Cloud Service Management
	Evaluating Cloud Users’ Credibility of ProvidingSubjective Assessment or Objective Assessmentfor Cloud Services
	1 Introduction
	2 The Proposed Model
	2.1 The Framework
	2.2 The Sub Model for Computing Trustworthiness of OCs
	2.3 The Sub-model for Computing Reputations of TPs

	3 Experimental Results
	4 Conclusion
	References

	Composition of Cloud Collaborations underConsideration of Non-functional Attributes
	1 Introduction
	2 Cloud Collaboration Composition Problem
	3 Heuristic Optimization Approach CCCP-HEU.KOM
	3.1 Evaluation

	4 Conclusions
	References

	Bottleneck Detection and Solution Recommendationfor Cloud-Based Multi-Tier Application
	1 Introduction
	2 Bottleneck Detection Using Knee Point Detection
	2.1 Individual Knee Point Detection
	2.2 Performance Profiling for Identifying the System bottlenecks

	3 Estimating Resource Shortages for Potential Bottlenecks
	4 Preliminary Evaluation
	5 Related Work
	6 Conclusion and Future Work
	References

	Business Service Management
	Towards Auto-remediation in Services Delivery: Context-Based Classification of Noisy and Unstructured Tickets
	1 Introduction
	2 Analyzing Events and Tickets
	2.1 CorrelationModel
	2.2 Classification Model

	3 Evaluation
	4 Conclusion
	References

	ITIL Metamodel
	1 Introduction
	2 Related Work
	3 Research Problem
	4 Proposal
	4.1 Concepts Identification and Characterization
	4.2 Metamodel Representation

	5 Demonstration and Evaluation
	6 Conclusion
	References

	Formal Modeling and Analysisof Home Care Plans
	1 Introduction
	2 A DSL-Based Approach for Specifying Home Care Plans
	3 General Modeling Process with Timed Automata
	3.1 From Elementary Temporal Specifications to Pattern Automata
	3.2 Activity Automata
	3.3 Care Plan Automata

	4 Formal Analysis of Care Plans Using Timed Automata
	5 Discussion
	References

	Effort Analysis Using Collective StochasticModel
	1 Introduction
	2 Collective Poisson Model
	3 Renewal Process Model
	4 Effort Size Distribution
	5 Contract Loss Probabilities
	6 Pricing and Staffing Requirements
	7 Discussion and Related Work
	8 Conclusion
	References

	Trust
	ANovel Equitable Trustworthy Mechanism for Service Recommendation in the Evolving Service Ecosystem
	1 Introduction and Related Work
	2 Equality Guarantee
	3 Equitable Trustworthy Recommendation Mechanism
	4 Experiments Based on ProgrammableWeb
	5 Conclusion
	References

	Semantics-Based Approach for DynamicEvolution of Trust Negotiation Protocolsin Cloud Collaboration
	1 Introduction
	2 Preliminaries
	2.1 Trust Negotiation Protocols Modeling
	2.2 An Example: Education Material Co-authoring Collaboration

	3 Layered Change Operators for Evolving Protocols
	3.1 Elementary and Composite Change Operators

	4 Analysis Considering Both Message Sequences and Their Contents
	4.1 Compatibility Properties as Migration Decision Points
	4.2 Analyzing Change Impacts by Different Replaceability Classes

	5 Evaluation
	6 Conclusion
	References

	Social Context-Aware Trust Prediction in SocialNetworks
	1 Introduction
	2 Contextual Social Networks
	2.1 Social Context
	2.2 Social Context Similarity
	2.3 Contextual Presentation of Trust

	3 Contextual Trust Prediction
	3.1 Trust Transference between Contexts
	3.2 Trust Prediction Using Matrix Factorization

	4 Experiments
	5 Conclusions
	References

	Service Design and Description
	Decidability and Complexity of SimulationPreorder for Data-Centric Web Services
	1 Introduction
	2 Overview on the Colombo Model
	3 MainResults
	3.1 DB-Less Services (Colombodb=∅)
	3.2 Bounded Services (Colombobound)

	4 Related Works
	5 Conclusion
	References

	Market-Optimized Service Specificationand Matching
	1 Introduction
	2 Running Example
	3 Overview: LM Optimizer
	4 Service Specification Language and Matching
	5 Configuration
	5.1 Configuration Rules
	5.2 Configuration Procedure

	6 Related Work
	7 Conclusions
	References

	Designing Secure Service Workflows in BPEL
	1 Introduction
	2 Scenarios for Secure Workflow Design
	3 Secure Service Composition Patterns
	4 Application of SSC Patterns
	4.1 Inferring Security Properties of Workflow Activities
	4.2 Validation of Security of Individual Services and Workflow Fragments
	4.3 Workflow Adaptation
	4.4 Implementation of the Approach

	5 Related Work
	6 Conclusion
	References

	Industrial Papers
	Runtime Management of Multi-level SLAs for Transport and Logistics Services
	1 Introduction
	2 Problem Statement and Industry Needs
	3 The BizSLAM App
	3.1 Specifics of Transport and Logistics SLAs
	3.2 Features of the App
	3.3 SLA Data Model
	3.4 Existing Solutions and RelatedWork

	4 Feasibility and Usefulness
	4.1 Feasibility
	4.2 Usefulness

	5 Conclusion
	References

	Single Source of Truth (SSOT)for Service Oriented Architecture (SOA)
	1 Introduction
	2 Mutable SSOT Service
	2.1 Client-Record Creation
	2.2 Client-Record Retrieval

	3 Immutable SSOT Service
	3.1 Query-by-Criteria
	3.2 Query-by-SSOT-ID
	3.3 Client-record Creation
	3.4 Client-record Retrieval
	3.5 Constructing SSOT-IDs
	3.6 Update Subscription
	3.7 Deletion Subscription
	3.8 Additional Operations

	4 Performance and Quality-of-Service (QoS)
	5 Related Work
	6 Future Work
	7 Conclusion
	References

	Model for Service License in API Ecosystems
	1 Introduction
	2 Related Work
	3 Service License Model
	3.1 Information Source
	3.2 Property Function Metamodel
	3.3 License Metric Metamodel
	3.4 License Terms and Conditions

	4 Model in Use
	5 Conclusion and Future Work
	References

	Author Index

