
Chapter 14
Prosody Control and Variation Enhancement
Techniques for HMM-Based Expressive Speech
Synthesis

Takao Kobayashi

Abstract Natural speech has diverse forms of expressiveness including emotions,
speaking styles, and voice characteristics. Moreover, the expressivity changes de-
pending on many factors at the phrase level, such as the speaker’s temporal emotional
state, focus, feelings, and intention. Thus taking into account such variations in mod-
eling of speech synthesis units is crucial to generating natural-sounding expressive
speech. In this context, two approaches to HMM-based expressive speech synthesis
are described: a technique for intuitively controlling style expressivity appearing in
synthetic speech by incorporating subjective intensity scores in the model training
and a technique for enhancing prosodic variations of synthetic speech using a newly
defined phrase-level context for HMM-based speech synthesis and its unsupervised
annotation for training data consisting of expressive speech.

14.1 Introduction

Synthesizing natural-sounding speech with diverse forms of expressiveness including
emotions, speaking styles, voice characteristics, focuses, and emphases, is a key to
achieving more natural human–computer interactions. In this regard, the promising
results of HMM-based speech synthesis (Erickson 2005; Nose and Kobayashi 2011a;
Schröder 2009; Zen et al. 2009) have recently led to a number of attempts at applying
this approach to expressive speech synthesis using speech corpora recorded under
realistic conditions (Eyben et al. 2012; Koriyama et al. 2011; Maeno et al. 2011;
Obin et al. 2011a, b).

When the target expressiveness consistently appears in every utterance in a corpus,
it can be modeled properly and synthetic speech can be generated with expressiveness
similar to that of the corpus (Yamagishi et al. 2003). Moreover, a style interpolation
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technique (Tachibana et al. 2005) or a multiple regression HMM-based speech syn-
thesis approach (Miyanaga et al. 2004; Nose et al. 2006), called the style control
technique, can be used to strengthen or weaken the intensity of target expressivity
of the synthetic speech. However, the prosodic variation of real expressive speech
is generally much larger than that of simulated speech and is not consistent. In
other words, expressivity changes depending on many factors, such as the speaker’s
temporal emotional state, focus, feelings, and intention at the phrase level. In ad-
dition, its intensity is not constant within a sentence (Cowie and Cornelius 2003;
Doukhan et al. 2011). Thus, incorporating such variations into the modeling of the
HMM-based speech synthesis units will be crucial to generating natural-sounding
expressive speech.

This paper addresses two issues related to modeling and synthesizing expressive
speech in the HMM-based framework. In the following, the expressions of emotions,
speaking styles, prominences, etc., which may appear singly or simultaneously, will
be referred to simply as styles (Miyanaga et al. 2004; Yamagishi et al. 2003).

The first issue is that the original style control technique did not take account of
the style intensities of the respective utterances during the model training phase. The
style intensity is a subjective score of a certain style expressivity given by listeners.
In Miyanaga et al. (2004) and Nose et al. (2006), the style intensity, represented by
a style vector, was assumed to be a fixed value regardless of the variations in style
intensity appearing in respective training samples. This assumption may result in
synthetic speech with consistently lower expressivity than what the user expects, if
the average intensity of the target style in the training data is much lower than what
the user expects. This problem can be alleviated by using subjective style intensity
scores of respective utterances and taking them into account in the model training
of the style control technique. Note that this technique is similar to other adaptive
training approaches (Anastasakos et al. 1996; Gales 2000; Yu et al. 2001).

The second issue is an inevitable impediment to natural-sounding expressive
speech synthesis. In the HMM-based speech synthesis approach, it is possible to
reproduce locally appearing styles or prosodic variations only if the corpus for model
training has been properly annotated and appropriate context labels have been given
(Koriyama et al. 2011; Maeno et al. 2011;Yu et al. 2010). While manually annotating
a corpus might work for this purpose, it is time-consuming and tends to be expensive
and impractical on a large corpus. In addition, even if the cost is acceptable, another
difficulty arises in that consistent annotation of styles, such as emotional expressions,
is not always possible. Alternatively, unsupervised clustering of styles for expres-
sive speech synthesis has been examined as a way of avoiding manual annotation
and categorization of styles (Eyben et al. 2012; Székely et al. 2011). However, since
there is not always an explicit expressiveness in the resultant clusters, users may have
difficulty choosing an appropriate cluster to output the desired expressive speech in
the speech synthesis phase.

In this context, there is an alternative technique for enhancing the prosodic varia-
tions of synthetic expressive speech without requiring the manual annotation of style
information in the model training. An additional context, called the phrase-level F0
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context, can be introduced, and it is defined by the average difference in prosodic
features between the original and synthetic speech of the training sentences. The
advantage of using this newly defined context is that proper annotation can be done
fully automatically without any heuristics. Moreover, the obtained context has an
intuitive prosodic meaning of higher or lower pitch at a certain accent phrase.

14.2 Prosody Control Based on Style Control Technique

14.2.1 Style Control Using Multiple-Regression HMM

Style control is an approach that enables us to intuitively change the style expressivity,
i.e., emotional expressions and/or speaking styles and their intensities appearing in
synthetic speech (Nose and Kobayashi 2011a). The style control technique is based on
the idea of representing the variations of styles by using multiple-regression HMMs
(MRHMMs) (Miyanaga et al. 2004) or multiple-regression hidden semi-Markov
models (MRHSMMs) (Nose et al. 2006).

In the case of using MRHSMM, probability density functions (pdfs) for the output
of the states, i.e., spectral and pitch features, and durations of the states are ex-
pressed using Gaussian pdfs with mean parameters that are assumed to be a multiple
regression of a low-dimensional vector s, i.e.,

μi = Hbi
ξ (14.1)

mi = Hp
i
ξ (14.2)

ξ = [1, s1, s2, . . . , sL]� = [1, s�]� (14.3)

where μi and mi are the mean parameters of the state-output and state-duration
Gaussian pdfs at state i, respectively, and s = [1, s1, s2, . . . , sL]� is a style vector in
a low-dimensional style space. As shown in Fig. 14.1, each axis of the style space
represents a certain style, such as joyful, sad, appealing, or storytelling, and each
component of the style vector represents the expressivity intensity of a specific style.
In addition, Hbi

and Hp
i
are respectively M × (L + 1)- and 1 × (L + 1)-dimensional

regression matrices, where M is the dimensionality of the mean vector μi . These
regression matrices are determined with maximum likelihood (ML) estimation.

In the speech synthesis phase, for an arbitrarily given style vector s, the mean
parameters of each synthesis unit are determined using (14.1) and (14.2). The speech
signal is generated in the same manner as in ordinary HMM-based speech synthesis.
Synthetic speech with a corresponding style intensity can be generated by setting
the style vector to a desired point in the style space. Moreover, we can continuously
and intuitively change the style and expressivity intensity by varying the style vector
gradually along the state or phone transition.
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Fig. 14.1 Example of style spaces and style vectors (indicated by dots) for training data. a 2-D
style space. b 3-D style space

14.2.2 Model Training with Perceptual Style Expressivity

The model training of MRHSMM requires style vectors for respective training speech
samples. A simple choice is using a fixed style vector for each style as is done in
Nose et al. (2006). As shown in Fig. 14.1, one specific vector is set as the style vector
for each style independently of the intensity of expressivity appearing in respective
speech samples, and it is used during the model training. Although it has been shown
that this works well for expressivity control, it may cause a problem wherein we
cannot always obtain synthetic speech with the desired style expressivity when the
perceptual style intensity of the training data is biased, i.e., weaker or stronger than
expected.

An alternative way of setting the style vector is to add the subjective style intensi-
ties into the model training (Nose and Kobayashi 2011b; Nose and Kobayashi 2013).
Specifically, the style intensities perceived for the respective training utterances are
quantified in listening tests and the obtained subjective scores are used as the style
vectors in the model training. This leads to an additional advantage of requiring only
the speech samples of the target style in the modeling of the style and intensity. In
contrast, the technique using fixed style vectors (Nose et al. 2006) needs two or more
styles for the model training.

14.2.3 Example of Style Expressivity Control

Figure 14.2 shows an evaluation of the controllability of style expressivity using the
proposed style control technique (Nose and Kobayashi 2011b). The evaluation used
emotional speech data uttered by a professional female narrator. The speech samples
consisted of 503 phonetically balanced sentences with joyful and sad styles. Nine
participants listened to each utterance in random order and rated the intensity of the
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Fig. 14.2 Average style intensities of synthetic joyful and sad style speech for different style vectors.
SD represents the result for the case of style-dependent HSMM trained without using style intensity
information

style expressivity as “1.5” for strong, “1.0” for standard, “0.5” for weak, and “0”
for not perceivable. The average score of the nine participants was taken to be the
style intensity score. After the subjective scoring, 40 sentences with a perceptual
score of 1.0 were chosen as the test data, since this score was expected to represent
the standard expressivity of the target styles. The other 463 sentences were used as
training data. Speech signals were sampled at a rate of 16 kHz, and STRAIGHT
analysis (Kawahara et al. 1999) with a 5-ms shift was used to extract the spectral
features. A five-state left-to-right model topology was used for the MRHSMM. The
other conditions are detailed in Nose and Kobayashi (2011b).

In the parameter generation, the style vector was changed from 0.4 to 1.6 with an
increment of 0.3. Seven participants listened to a speech sample chosen randomly
from test sentences and rated its style expressivity by comparing it to that of a
reference speech sample whose perceptual scores were 1.0. The reference samples
were vocoded speech in the target style. The rating was a seven-point scale with “1”
for very weak, “4” for similar to that of the reference, and “7” for very strong. The
figure plots average subjective scores against given style vectors with a confidence
interval of 95 %. It can be seen from the figure that the style control technique
enables us to control the style intensity in accordance with the value of the style
vector. Further evaluation results and detailed discussions can be found in Nose and
Kobayashi (2011b, 2013).

14.3 Prosodic Variation Enhancement Using Phrase-Level F0
Context

14.3.1 Phrase-Level Prosodic Contexts

The global and local characteristics of the prosodic features of expressive speech of-
ten differ from those of neutral or reading style speech. Global prosodic features are
generally well modeled using conventional statistical approaches by simply adding
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a global context (Yamagishi et al. 2003). In contrast, it is not easy to model local
variations, typically phrase-level ones, because they are rather diverse, depending
on a variety of factors such as speakers, styles, and other paralinguistic contexts.
Although we can reflect such variations in synthetic speech by using manually anno-
tated speech samples for model training, manual annotation is time-consuming and
impractical for large speech corpora. Moreover, consistent annotation is especially
difficult for expressive speech. As a way of solving this problem, additional contexts
for HMM-based speech synthesis, called phrase-level prosodic contexts, are defined,
and they enables us to annotate training data automatically and enrich the prosodic
variations of synthetic speech (Maeno et al. 2013, 2014). While the phrase-level
prosodic contexts are defined for F0, duration, and power features, the following
deals with only the phrase-level F0 context.

Consider a context labeling process for given training data. Let us assume that
the ordinary context labels including accent phrase boundary information are avail-
able for the HMM-based speech synthesis and that conventional context-dependent
HMMs using those labels are trained in advance. By using the F0s extracted from the
training speech sample and the synthetic speech sample generated from the obtained
HMMs, the average log F0 difference at each accent phrase is expressed as

d = fo − fs (14.4)

where fo and fs are average log F0 values of the original and synthetic speech
within each accent phrase. Then, for a prescribed positive value α, the phrase-level
F0 context is defined as

• “Low” for d < −α

• “Neutral” for − α ≤ d < α

• “High” for d ≥ α.

Finally, every accent phrase is labeled with the above phrase-level F0 context
associated with the value of d.

14.3.2 Automatic Labeling of Phrase-Level F0 Context

In the phrase-level F0 context labeling, an appropriate classification threshold α

should be determined before labeling. For this purpose, an optimal α that minimizes
the F0 error can be chosen using a simple grid search approach. The algorithm for
obtaining the optimal threshold for the phrase-level F0 context is summarized as
follows:

1. Specify a value of α between the possible lower and upper bounds, αs and αe.
2. Perform phrase-level F0 context labeling with the specified α for all training

samples.
3. Train new HMMs using the context labels including the obtained phrase-level

F0 context, and generate F0 sequences for all training samples using the newly
trained HMMs and the context labels.
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4. Calculate the root mean square (RMS) error Eα of log F0s between all the original
and newly synthesized speech samples.

5. Specify a new value of α (αs ≤ α ≤ αe) different from the value used in the
previous iteration and repeat steps 2 to 4.

6. Finally, choose the optimal threshold α∗ that minimizes Eα as

α∗ = arg min
α

Eα. (14.5)

A simple way of performing a grid search is specifying α = αs in the first iteration
and in the nth iteration

α = αs + (n − 1)Δα (α ≤ αe) (14.6)

where α is the increment in each iteration. In addition, the algorithm may use another
F0 error, e.g., the maximum log F0 error, instead of the RMS error.

Note that there is a similar approach to prosodic tagging that uses the difference
between the prosodic features of the generated and original speech (Suni et al. 2012;
Vainio et al. 2005). However, this approach requires manually labeled training data
or empirically determined weights. In contrast, the algorithm described here has
the advantage that the classification threshold for the phrase-level F0 context is
automatically optimized depending on the target expressive corpus without using
any heuristics.

14.3.3 Model Training Example with Optimum Prosodic Labeling

The proposed phrase-level F0 context labeling was applied to two types of Japanese
expressive speech data: appealing speech in sales talk and fairytale speech in sto-
rytelling. Speech samples were recorded under realistic circumstances in which no
speech styles were specified to the speakers and only the target domain (situation)
was made known to them (Nakajima et al. 2010). Appealing style samples were
uttered by a female professional narrator, whereas fairytale style samples were ut-
tered by a male professional narrator. The amounts of speech data of appealing and
fairytale speech were approximately 33 and 52 min, respectively. Speech signals
were sampled at a rate of 16 kHz, and STRAIGHT analysis with a frame shift of
5 ms was applied. A five-state left-to-right HSMM with a no-skip topology was used
for the modeling of acoustic features including F0. The optimal threshold for the
phrase-level F0 context was determined on the basis of fourfold crossvalidation for
each style and by setting αs = 0, αe = 0.3 (519 cent), which is the maximum value
of d for all accent phrases of the training data, and Δα = 0.01 (17 cent). In addition,
since the prosodic variation could affect the current phrase as well as the adjacent
phrases, the phrase-level F0 context labels for the preceding and succeeding accent
phrases as well as the current one were taken into account in the context clustering
process. The other conditions are described in Maeno et al. (2014).
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Table 14.1 RMS log F0 error
(cent) between original and
synthetic speech for test data

Style BASELINE PROPOSED

Appealing 254 201

Fairy tale 359 273

Table 14.1 compares RMS log F0 errors between the original and synthetic speech
for test samples that were not included in the training samples. The entries for
BASELINE represent the results for the model without using the phrase-level F0
context, whereas those for PROPOSED represent the case of using the phrase-level F0
context with the optimum labeling. It can be seen that the F0 distortion significantly
decreased as a result of using the proposed phrase-level F0 context. Fig. 14.3 shows
the F0 contours of the original and synthetic speech for a fairytale style utterance.
The figure shows that the F0 reproducibility is much improved by using phrase-level
F0 context labels in the HMM-based speech synthesis.

14.3.4 Prosodic Variation Enhancement for Expressive Speech
Synthesis

Although the proposed phrase-level F0 context labeling solves the annotation prob-
lems for the training data and improves the F0 reproducibility of expressive synthetic
speech, the technique faces a problem when it is to be applied to text-to-speech (TTS)
systems. That is, the proposed phrase-level F0 context labels are not obtained from
the input text automatically, because they are determined using real utterances of the
target expressive speech, which are not available for arbitrarily input text.

Instead, let us consider the usage of the proposed technique when the phrase-level
F0 context information for the input text is unknown. A typical example of such usage
is when users want to create synthetic speech samples of voice actresses/actors with
higher prosodic variability for audiobook and movie content. In this case, users first
synthesize speech for the target sentence using F0 context labels whose values are all

 100

 200

 300

0 0.7 1.4 2.1 2.8 3.5

F0
 (H

z)

Time (s)

High High Low HighHigh Neutral

ORIGINAL

F0 context

BASELINE PROPOSED

Fig. 14.3 Example of F0 contours generated with the phrase-level F0 context for fairly tale style
speech sample. BASELINE shows the result without using the phrase-level F0 context
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Fig. 14.4 Example of F0 contours before and after changing the F0 context for an appealing style
speech sample. The F0 context in the accent phrase indicated by the shaded region was modified
from “Neutral” to “High”

set to “Neutral.” Synthetic speech obtained under this condition would sometimes
result in poor prosodic variability compared with the real expressive speech. Next,
the users listen to the synthetic speech sample and modify the F0 context of a certain
accent phrase to “High” or “Low” if they want to enhance the F0 variation in that
phrase. Then they synthesize speech again with the modified context labels and check
the resultant synthetic speech. By repeating this procedure, users can obtain better
synthetic speech in terms of F0 variations.

Figure 14.4 illustrates an example of this F0 variation enhancement process. Con-
ditions for the phrase-level F0 context labeling and model training are the same as
described in Sect. 14.3.3. A user first listened to an appealing style synthetic speech
sample generated with the phrase-level F0 context labels being set all “Neutral” (the
F0 contour is denoted as NEUTRAL in the figure). Since the user felt a lack of
prominence in the second accent phrase, its phrase-level context label was changed
to “High” and the speech sample was resynthesized. The figure shows that the re-
sultant F0 contour denoted by MODIFIED became closer to that of the real speech
denoted by ORIGINAL. Further experimental results and detailed discussions are
provided in Maeno et al. (2013, 2014).

14.4 Conclusions

Techniques of prosody control and prosodic variation enhancement were discussed
for HMM-based expressed speech synthesis. First, a brief review of the prosody
control technique based on multiple regression HSMMs (MRHSMM) was given.
Then subjective style intensities was incorporated into the technique to achieve more
intuitive control of the styles. The use of subjective style intensities in the training
of MRHSMMs normalizes the variation of style intensities appearing in the training
data, and this results in an intensity that users would deem normal for the style of
speech (Nose and Kobayashi 2013). Moreover, the training of the MRHSMMs can
be done using only data for a single style by introducing style intensity scores for
the respective training samples.
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Next, an unsupervised labeling technique for phrase-level prosodic variations was
described. The technique can be used to enhance the prosodic variation of synthetic
expressive speech. A new prosodic context, the phrase-level F0 context, for HMM-
based speech synthesis was defined and a fully automatic labeling algorithm for the
newly defined context was described. Experiments on the prosodic context labeling
revealed that the variations in the F0 feature appearing in the training samples were
effectively captured with the proposed technique. Although phrase-level F0 context
labels are unknown for arbitrary input text in practical TTS situations, the technique
enables users to intuitively enhance the prosodic characteristics of a target accent
phrase by manually changing the proposed context label from “Neutral” to “High”
or “Low.”
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