
Chapter 13
Exploiting Alternatives for Text-To-Speech
Synthesis: From Machine to Human

Nicolas Obin, Christophe Veaux and Pierre Lanchantin

Abstract The absence of alternatives/variants is a dramatical limitation of text-
to-speech (TTS) synthesis compared to the variety of human speech. This chapter
introduces the use of speech alternatives/variants in order to improve TTS synthesis
systems. Speech alternatives denote the variety of possibilities that a speaker has
to pronounce a sentence—depending on linguistic constraints, specific strategies of
the speaker, speaking style, and pragmatic constraints. During the training, sym-
bolic and acoustic characteristics of a unit-selection speech synthesis system are
statistically modelled with context-dependent parametric models (Gaussian mixture
models (GMMs)/hidden Markov models (HMMs)). During the synthesis, symbolic
and acoustic alternatives are exploited using a Generalized Viterbi Algorithm
(GVA) to determine the sequence of speech units used for the synthesis. Objective
and subjective evaluations support evidence that the use of speech alternatives sig-
nificantly improves speech synthesis over conventional speech synthesis systems.
Moreover, speech alternatives can also be used to vary the speech synthesis for a
given text. The proposed method can easily be extended to HMM-based speech
synthesis.

13.1 Introduction

Today, speech synthesis systems (unit selection (Hunt and Black 1996), HMM-
based (Zen et al. 2009)) are able to produce natural synthetic speech from text.
Over the last decade, research has mainly focused on the modelling of speech
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Fig. 13.1 Illustration of speech alternatives: human vs. machine

prosody—“the music of speech” (accent/phrasing, intonation/rhythm)—for text-to-
speech (TTS) synthesis. Among them, GMMs/HMMs (Gaussian mixture models and
hidden Markov models) are today the most popular methods used to model speech
prosody. In particular, the modelling of speech prosody has gradually and durably
moved from short-time representations (“frame-by-frame”: Yoshimura et al. 1999;
Zen et al. 2004; Tokuda et al. 2003; Toda and Tokuda 2007;Yan et al. 2009) to the use
of large-time representations (Gao et al. 2008; Latorre and Akamine 2008; Qian et al.
2009; Obin et al. 2011b)). Also, recent researches tend to introduce deep architecture
systems to model more efficiently the complexity of speech (deep neural networks
(Zen et al. 2013)). However, current speech synthesis systems still suffer from a
number of limitations, which consequence into the fact that the synthetic speech
does not totally sound as “human”. In particular, the absence of alternatives/variants
in the synthetic speech is a dramatical limitation compared to the variety of human
speech (see Fig. 13.1 for illustration): for a given text, the speech synthesis system
will always produce exactly the same synthetic speech.

A human speaker can use a variety of alternatives/variants to pronounce a text.
This variety may induce variations in the symbolic (prosodic event: accent, phrasing)
and acoustic (prosody: prosodic contour; segmental: articulation, co-articulation)
speech characteristics. These alternatives depend on linguistic constraints, specific
strategies of the speaker, speaking style, and pragmatic constraints. Current speech
synthesis systems do not exploit this variety during statistical modelling or synthesis.
During the training, the symbolic and acoustic speech characteristics are usually
estimated with a single normal distribution which is assumed to correspond with a
single strategy of the speaker. During the synthesis, the sequence of symbolic and
acoustic speech characteristics are entirely determined by the sequence of linguistic
characteristics associated with the sentence—the most-likely sequence.

In real-world speech synthesis applications (e.g. announcement, storytelling, or
interactive speech systems), expressive speech is required (Obin et al. 2011a; Obin
2011). The use of speech alternatives in speech synthesis may substantially improve
speech synthesis (Bulyko and Ostendorf 2001), and fill the gap of the machine to
the human. First, alternatives can be used to provide a variety of speech candidates
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that may be exploited to vary the speech synthesized for a given sentence. Second,
alternatives can also be advantageously used as a relaxed constraint for the deter-
mination of the sequence of speech units to improve the quality of the synthesized
speech. For instance, the use of a symbolic alternative (e.g. insertion/deletion of a
pause) may conduct to a significantly improved sequence of speech units.

This chapter addresses the use of speech alternatives to improve the quality and
the variety of speech synthesis. The proposed speech synthesis system (ircamTTS)
is based on unit selection, and uses various context-dependent parametric models to
represent the symbolic/acoustic characteristics of speech prosody (GMMs/HMMs).
During the synthesis, symbolic and acoustic alternatives are exploited using a gener-
alized Viterbi algorithm (GVA) (Hashimoto 1987). First, a GVA is used to determine
a set of symbolic candidates, corresponding to the Ksymb. sequences of symbolic
characteristics, in order to enrich the further selection of speech units. For each sym-
bolic candidate, a GVA is then used to determine the Kacou. sequences of speech units
under the joint constraint of segmental and speech prosody characteristics. Finally,
the optimal sequence of speech units is determined so as to maximize the cumulative
symbolic/acoustic likelihood. Alternatively, the introduction of alternatives allows
to vary the speech synthesis by selecting one of the K most likely speech sequences
instead of the most likely one. The proposed method can easily be extended to
HMM-based speech synthesis.

The speech synthesis system used for the study is presented in Sect. 13.2. The use
of speech alternatives during the synthesis, and the GVA are introduced in Sect. 13.3.
The proposed method is compared to various configurations of the speech synthesis
system (modelling of speech prosody, use of speech alternatives), and validated with
objective and subjective experiments in Sect. 13.4.

13.2 Speech Synthesis System

Unit-selection speech synthesis is based on the optimal selection of a sequence
of speech units that corresponds to the sequence of linguistics characteristics
derived from the text to synthesize. The optimal sequence of speech units is gen-
erally determined so as to minimize an objective function usually defined in terms
of concatenation and target acoustic costs. Additional information (e.g. prosodic
events—ToBI labels) can also be derived from the text to enrich the description used
for unit selection.

The optimal sequence of speech units u can be determined by jointly maximizing
the symbolic/acoustic likelihood of the sequence of speech units u = [u1, . . . , uN ]
conditionally to the sequence of linguistic characteristics c = [c1, . . . , cN ]:

u = argmax
u

p(O(u)|c) (13.1)

where O(u) = [Osymb.(u), Oacou.(u)] denotes the symbolic and acoustic character-
istics associated with the sequence of speech units u.
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A suboptimal solution to this equation is usually obtained by factorizing the
symbolic/acoustic characteristics:

usymb. = argmax
usymb.

p(Osymb.(usymb.)|c) (13.2)

uacou. = argmax
u

p(Oacou.(uacou.)|c, usymb.) (13.3)

where usymb. is the symbolic sequence of speech units (typically, a sequence of
prosodic events, e.g. accent and phrasing), and uacou. is the acoustic sequence of
speech units (i.e. a sequence of speech units for unit-selection and a sequence
of speech parameters for HMM-based speech synthesis). This acoustic sequence
of speech units represents the short- (source/filter) and long-term (prosody: F0,
duration) variations of speech over various units (e.g. phone, syllable, and phrase).

In other words, the symbolic sequence of speech units usymb. is first determined,
and then used for the selection of acoustic speech units uacou.. This conventional
approach suffers from the following limitations:

1. Symbolic and acoustic modelling are processed separately during training
and synthesis, which remain suboptimal and may degrade the quality of the
synthesized speech.

2. A single sequence of speech units is determined during synthesis, while the
use of alternatives enlarges the number of speech candidates available, and then
improves the quality of the synthesized speech.

To overcome these limitations, the ideal solution is: the joint symbolic/acoustic
modelling in order to determine the sequence of speech units that is globally op-
timal (Eq. 13.1); and the exploitation of speech alternatives in order to enrich the
search for the optimal sequence of speech units. The present study only addresses
the use of symbolic/acoustic alternatives for speech synthesis. In the present study,
symbolic alternatives are used to determine a set of symbolic candidates usymb. so
as to enrich the further selection of speech units (Eq. 13.2). For each symbolic
candidate, the sequence of acoustic speech units uacou. is determined based on a
relaxed-constraint search using acoustic alternatives (Eq. 13.3). Finally, the optimal
sequence of speech units u is determined so as to maximize the cumulative likelihood
of the symbolic/acoustic sequences.

The use of symbolic/acoustic alternatives requires adequate statistical models that
explicitly describe alternatives, and a dynamic selection algorithm that can manage
these alternatives during speech synthesis. Symbolic and acoustic models used for
this study are briefly introduced in Sects. 13.2.1 and 13.2.2. Then, the dynamic
selection algorithm used for unit selection is described in Sect. 13.3.
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Fig. 13.2 Illustration of the HHMM symbolic modelling of speech prosody for the sentence:
“Longtemps, je me suis couché de bonne heure” (“For a long time I used to go to bed early”). The
intermediate layer illustrates the segmentation of a text into phrases. The terminal layer illustrates
the assignment of accents

13.2.1 Symbolic Modelling

The prosodic events (accent and phrasing) are modelled by a statistical model based
on HMMs (Black and Taylor 1994; Atterer and Klein 2002; Ingulfen et al. 2005;
Obin et al. 2010a, 2010b; Parlikar and Black 2012; Parlikar and Black 2013). A
hierarchical HMM (HHMM) is used to assign the prosodic structure of a text: the
root layer represents the text, each intermediate layer a phrase (here, intermediate
phrase and phrase), and the final layer the sequence of accents. For each intermediate
layer, a segmental HMM and information fusion are used to combine the linguistic
and metric constraints (length of a phrase) for the segmentation of a text into phrases
(Ostendorf and Veilleux 1994; Schmid and Atterer 2004; Bell et al. 2006; Obin et al.
2011c). An illustration of the HHMM for the symbolic modelling of speech prosody
is presented in Fig. 13.2.

13.2.2 Acoustic Modelling

The acoustic (short- and long-term) models are based on context-dependent GMMs
(cf. Veaux et al. 2010; Veaux and Rodet 2011, for a detailed description). Three
different observation units (phone, syllable, and phrase) are considered, and separate
GMMs are trained for each of these units. The model associated with the phone unit
is merely a reformulation of the target and concatenation costs traditionally used in
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Fig. 13.3 Illustration of acoustic alternatives for a given symbolic unit

unit-selection speech synthesis (Hunt and Black 1996). The other models are used
to represent the local variation of prosodic contours (F0 and durations) over the
syllables and the major prosodic phrases, respectively. The use of GMMs allows to
capture prosodic alternatives associated with each of the considered units (Fig. 13.3).

13.3 Exploiting Alternatives

The main idea of the contribution is to exploit the symbolic/acoustic alternatives
observed in human speech. Fig. 13.4 illustrates the integration of symbolic/acoustic
alternatives for speech synthesis. The remainder of this section presents the details
of the generalized Viterbi search to exploit symbolic/acoustic alternatives for TTS
synthesis.

In a conventional synthesizer, the search for the optimal sequence of speech units
(Eq. 13.1) is decomposed in two separate optimisation problems (Eqs. 13.2 and 13.3).
These two equations are generally solved using the Viterbi algorithm. This algorithm
defines a lattice whose states at each time t are the N candidate units. At each time t,
the Viterbi algorithm considers N lists of competing paths, each list being associated
to one of the N states. Then, for each list, only one survivor path is selected for further
extension. Therefore the Viterbi algorithm can be described as a N-list 1-survivor
(N,1) algorithm. The GVA (Hashimoto 1987) consists in a twofold relaxation of the
path selection.

• First, more than one survivor path can be retained for each list.
• Second, a list of competing paths can encompass more than one state.
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symbolic 
alternatives
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Fig. 13.4 Illustration of symbolic/acoustic alternatives for text-to-speech synthesis. The top of the
figure presents three symbolic alternative sequences to a given input text. The bottom of the figure
presents four acoustic alternatives to the symbolic event circled on top. Fundamentally, each text
has symbolic alternative sequence, and each symbolic alternative sequence has acoustic alternative
sequences

An illustration of this approach is given in Fig. 13.5, which shows that the GVA
can retain survivor paths that would otherwise be merged by the classical Viterbi
algorithm. Thus, the GVA can keep track of several symbolic/prosodic alternatives
until the final decision is made.

In this study, the GVA is first used to determine a set of symbolic candidates
corresponding to the Ksymb. most-likely sequences of symbolic characteristics, in
order to enrich the further selection of speech units. For each symbolic candidate, a
GVA is then used to determine the Kacou. most-likely sequences of speech units under
the joint constraint of segmental characteristics (phone model) and prosody (syllable
and phrase models). Finally, the optimal sequence of speech units is determined so
as to maximize the cumulative symbolic/acoustic likelihood.

13.4 Experiments

Objective and subjective experiments were conducted to address the use of speech
alternatives in speech synthesis, with comparison to a baseline (no explicit mod-
elling of speech prosody, no use of speech alternatives) and conventional (explicit
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Fig. 13.5 Illustration of Viterbi Search and Generalized Viterbi Search. The boxes represent
the list of states among which the best S path is selected. For the Viterbi Search, only one path
is retained at all time, and only one survivor is retained during selection. For the Generalized
Viterbi Search, K paths are retained at all time, and K survivors are retained during selection
(alternative candidates, here K = 3). At all time, the Generalized Viterbi Search has a larger
memory than the Viterbi Search

Table 13.1 Description of TTS systems used for the evaluation. Parentheses denote the optional
use of symbolic alternatives in the TTS system

Symbolic Acoustic

Alternatives Prosody Alternatives

Baseline (�) – –

Conventional (�) Syllable/phrase –

Proposed (�) Syllable/phrase �

modelling of speech prosody, no use of speech alternatives) speech synthesis sys-
tems (Table 13.1). In addition, symbolic alternatives have been optionally used for
each compared method to assess the relevancy of symbolic and acoustic alternatives
separately.
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13.4.1 Speech Material

The speech material used for the experiment is a 5-h French storytelling database in-
terpreted by a professional actor, which was designed for expressive speech synthesis.
The speech database comes with the following linguistic processing: orthographi-
cal transcription; surface syntactic parsing (POS and word class); manual speech
segmentation into phonemes and syllables, and automatic labelling/segmentation of
prosodic events/units (cf. Obin et al. 2010b for more details).

13.4.2 Objective Experiment

An objective experiment has been conducted to assess the relative contribution of
speech prosody and symbolic/acoustic alternatives to the overall quality of the TTS
system. In particular, a specific focus will be made on the use of symbolic/acoustic
alternatives.

13.4.2.1 Procedure

The objective experiment has been conducted with 173 sentences of the fairy tale
“Le Petit Poucet” (“Tom Thumb”).
For this purpose, a cumulative log-likelihood has been defined as a weighted in-
tegration of the partial log-likelihoods (symbolic, acoustic). First, each partial
log-likelihood is averaged over the utterance to be synthesized so as to normalize
the variable number of observations used for the computation (e.g. phonemes, sylla-
ble, and prosodic phrase). Then, log-likehoods are normalized to ensure comparable
contribution of each partial log-likelihood during the speech synthesis. Finally, the
cumulative log-likelihood of a synthesized speech utterance is defined as follows:

LL = wsymbolicLLsymbolic + wacousticLLacoustic (13.4)

where LLsymbolic and LLacoustic denote the partial log-likelihood associated with
the sequence of symbolic and acoustic characteristics; and wsymbolic and wacoustic,
corresponding weights.
Finally, the optimal sequence of speech units is determined so as to maximize the
cumulative log-likelihood of the symbolic/acoustic characteristics. In this study,
weights were heuristically chosen as wsymbolic = 1, wphone = 1, wsyllable = 5, and
wphrase = 1; 10 alternatives have been considered for the symbolic characteristics,
and 50 alternatives for the selection of speech units.

13.4.2.2 Discussion

Cumulative likelihood obtained for the compared methods is presented in Fig. 13.6,
with and without the use of symbolic alternatives. The proposed method (modelling
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Fig. 13.6 Cumulative negative log-likelihood (mean and 95 % confidence interval) obtained for the
compared TTS, without (left) and with (right) use of symbolic alternatives

of prosody, use of acoustic alternatives) moderately but significantly outperforms the
conventional method (modelling of prosody, no use of acoustic alternatives); and
dramatically outperforms the baseline method. In addition, the use of symbolic al-
ternatives conducts to a significant improvement regardless of the method considered.
Finally, the optimal synthesis is obtained for the combination of symbolic/acoustic
alternatives with the modelling of speech prosody.

For further investigation, partial likelihoods obtained for the compared methods
are presented in Fig. 13.7, with and without the use of symbolic alternatives. Not
surprisingly, the modelling of speech prosody (syllable/phrase) successfully con-
straints the selection of speech units with adequate prosody, while this improvement
comes with a slight degradation of the segmental characteristics (phone). The use of
acoustic alternatives conducts to an improved speech prosody (significant over the
syllable, not significant over the phrase) that comes with a slight degradation of the
segmental characteristics (nonsignificant). This suggests that the phrase modelling
(as described by Veaux and Rodet 2011) has partially failed to capture relevant varia-
tions, and that this model remains to be improved. Finally, symbolic alternatives are
advantageously used to improve the prosody of the selected speech units, without a
significant change in the segmental characteristics.

13.4.3 Subjective Experiment

A subjective experiment has been conducted to compare the quality of the baseline,
conventional, and proposed speech synthesis systems.
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Fig. 13.7 Partial negative log-likelihoods (mean and 95 % confidence intervals) for the compared
methods, with and without use of symbolic alternatives

13.4.3.1 Procedure

For this purpose, 11 sentences have been randomly selected from the fairy tale,
and used to synthesize speech utterances with respect to the considered systems.
Fifteen native French speakers have participated in the experiment. The experiment
has been conducted according to a crowdsourcing technique using social networks.
Pairs of synthesized speech utterances were randomly presented to the participants
who were asked to attribute a preference score according to the naturalness of the
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95 % confidence interval)
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speech utterances on the comparison mean opinion score (CMOS) scale. Participants
were encouraged to use headphones.

13.4.3.2 Discussion

Figure 13.8 presents the CMOS obtained for the compared methods. The proposed
method is substantially preferred to other methods, which indicates that the use of
symbolic/acoustic alternatives conducts to a qualitative improvement of the speech
synthesized over all other systems. Then, conventional method is fairly preferred
to the baseline method, which confirms that the integration of speech prosody also
improves the quality of speech synthesis over the baseline system (cf. observation
partially reported in Veaux and Rodet 2011).

13.5 Conclusion

In this chapter, the use of speech alternatives/variants in the unit-selection speech
synthesis has been introduced. Objective and subjective experiments support the evi-
dence that the use of speech alternatives qualitatively improves speech synthesis over
conventional speech synthesis systems. The proposed method can easily be extended
to HMM-based speech synthesis. In further studies, the use of speech alternatives
will be integrated into a joint modelling of symbolic/acoustic characteristics so as to
improve the consistency of the selected symbolic/acoustic sequence of speech units.
Moreover, speech alternatives will further be used to vary the speech synthesis for a
given text.



13 Exploiting Alternatives for Text-To-Speech Synthesis: From Machine to Human 201

References

Atterer, M., and E. Klein. 2002. Integrating linguistic and performance-based constraints for assign-
ing phrase breaks. In International Conference on Computational Linguistics, Taipei, Taiwan,
995–998.

Bell, P., T. Burrows, and P. Taylor. 2006. Adaptation of prosodic phrasing models. In Speech
Prosody, Dresden, Germany.

Black, A., and P. Taylor. 1994. Assigning intonation elements and prosodic phrasing for En-
glish speech synthesis from high level linguistic input. In International Conference on Spoken
Language Processing, Yokohama, Japan, 715–718.

Bulyko, I., and M. Ostendorf. 2001. Joint prosody prediction and unit selection for concatenative
speech synthesis. In International Conference on Acoustics, Speech, and Signal Processing,
Salt Lake City, USA, 781–784.

Gao, B., Y. Qian, Z. Wu, and F. Soong. 2008. Duration refinement by jointly optimizing state and
longer unit likelihood. In Interspeech, Brisbane, Australia, 2266–2269.

Hashimoto, T. 1987. A list-type reduced-constraint generalization of the Viterbi algorithm. IEEE
Transactions on Information Theory 33 (6): 866–876.

Hunt, A., and A. Black. 1996. Unit selection in a concatenative speech synthesis system using a
large speech database. In International Conference on Audio, Speech, and Signal Processing,
373–376.

Ingulfen, T., T. Burrows, and S. Buchholz. 2005. Influence of syntax on prosodic boundary
prediction. In Interspeech, Lisboa, Portugal, 1817–1820.

Latorre, J., and M. Akamine. 2008. Multilevel parametric-base F0 model for speech synthesis. In
Interspeech, Brisbane, Australia, 2274–2277.

Obin, N. 2011. MeLos: Analysis and modelling of speech prosody and speaking style. PhD Thesis,
Ircam - UPMC.

Obin, N., P. Lanchantin, A. Lacheret, and X. Rodet. 2010a. Towards improved HMM-based speech
synthesis using high-level syntactical features. In Speech Prosody, Chicago, USA

Obin, N., A. Lacheret, and X. Rodet. 2010b. HMM-based prosodic structure model using rich
linguistic context. In Interspeech, Makuhari, Japan, 1133–1136.

Obin, N., P. Lanchantin, A. Lacheret, and X. Rodet. 2011a. Discrete/continuous modelling of speak-
ing style in HMM-based speech synthesis: Design and evaluation. In Interspeech, Florence, Italy,
2785–2788.

Obin, N., A. Lacheret, and X. Rodet. 2011b. Stylization and trajectory modelling of short and long
term speech prosody variations. In Interspeech, Florence, Italy, 2029–2032.

Obin, N., P. Lanchantin, A. Lacheret, and X. Rodet. 2011c. Reformulating prosodic break model
into segmental HMMs and information fusion. In Interspeech, Florence, Italy, 1829–1832.

Ostendorf, M., and N. Veilleux. 1994. A hierarchical stochastic model for automatic prediction of
prosodic boundary location. Journal of Computational Linguistics 20 (1): 27–54.

Parlikar, A., and A. W. Black. 2012. Modeling pause-duration for style-specific speech synthesis.
In Interspeech, Portland, Oregon, USA, 446–449.

Parlikar, A., and A. W. Black. 2013. Minimum error rate training for phrasing in speech synthesis.
In Speech Synthesis Workshop (SSW), Barcelona, Spain, 13–17.

Qian, Y., Z. Wu, and F. K. Soong. 2009. Improved prosody generation by maximizing joint like-
lihood of state and longer units. In International Conference on Acoustics, Speech and Signal
Processing, Taipei, Taiwan, 3781–3784.

Schmid, H., and M. Atterer. 2004. New statistical methods for phrase break prediction. In
International Conference on Computational Linguistics, Geneva, Switzerland, 659–665.

Toda, T., and K. Tokuda. 2007. A speech parameter generation algorithm considering global variance
for HMM-based speech synthesis. IEICE Transactions on Information and Systems 90 (5):
816–824.



202 N. Obin et al.

Tokuda, K., H. Zen, and T. Kitamura. 2003. Trajectory modeling based on HMMs with the ex-
plicit relationship between static and dynamic features. In European Conference on Speech
Communication and Technology, Geneva, Switzerland, 865–868.

Veaux, C., and X. Rodet. 2011. Prosodic control of unit-selection speech synthesis: A probabilistic
approach. In International Conference on Acoustics, Speech, and Signal Processing, Prague,
Czech Republic, 5360–5363.

Veaux, C., P. Lanchantin, and X. Rodet. 2010. Joint prosodic and segmental unit selection for
expressive speech synthesis. In Speech Synthesis Workshop (SSW7), Kyoto, Japan, 323–327.

Yan, Z.-J., Y. Qian, and F. K. Soong. 2009. Rich context modeling for high quality HMM-based
TTS. In Interspeech, Brighton, UK, 4025–4028.

Yoshimura, T., K. Tokuda, T. Masuko, T. Kobayashi, and T. Kitamura. 1999. Simultaneous modeling
of spectrum, pitch and duration in HMM-based speech synthesis. In European Conference on
Speech Communication and Technology, Budapest, Hungary, 2347–2350.

Zen, H., K. Tokuda, T. Masuko, T. Kobayashi, and T. Kitamura. 2004. Hidden semi-Markov model
based speech synthesis. In International Conference on Spoken Language Processing, Jeju
Island, Korea, 1397–1400.

Zen, H., K. Tokuda, and A. Black. 2009. Statistical parametric speech synthesis. Speech
Communication 51 (11): 1039–1064.

Zen, A., A. Senior, and M. Schuster. 2013. Statistical parametric speech synthesis using deep neural
networks. In International Conference on Acoustics, Speech, and Signal Processing, Vancouver,
Canada, 7962–7966.


	Part III Control of Prosody in Speech Synthesis
	Chapter 13 Exploiting Alternatives for Text-To-Speech Synthesis: From Machine to Human
	13.1 Introduction
	13.2 Speech Synthesis System
	13.2.1 Symbolic Modelling
	13.2.2 Acoustic Modelling

	13.3 Exploiting Alternatives
	13.4 Experiments
	13.4.1 Speech Material
	13.4.2 Objective Experiment
	13.4.2.1 Procedure
	13.4.2.2 Discussion

	13.4.3 Subjective Experiment
	13.4.3.1 Procedure
	13.4.3.2 Discussion


	13.5 Conclusion
	References





