
Chapter 9
Work Function, Contact Potential,
and Kelvin Probe Scanning Force Microscopy

We already used the term work function when we introduced the tunneling barrier
height in STM. The work function can be considered as the energy difference between
the vacuum level and the Fermi level of a metal. Here we will see that also a surface
term contributes to the work function. The work function is a measurable quantity
and the operative definition of the work function is that it is the energy required to
remove an electron from the bulk Fermi level of a metal to a certain distance from
the solid.1

Subsequently, we introduce the contact potential between two metals with dif-
ferent work function, which is used by the Kelvin method for the measurement of
work function differences. In spite of the fact that we have not yet introduced scan-
ning force microscopy in depth, in this chapter we already present the principles of
Kelvin probe scanning force microscopy (KFM), which is the nanoscale variant of
the Kelvin method.

9.1 Work Function

The work function Φ of a metal can be defined as the difference between the energy
of an electron at some distance d outside of a solid Eout and the energy of the highest
occupied electron level (at zero temperature), i.e. the Fermi energy, thus

Φ(d) = Eout(d) − EF. (9.1)

This corresponds to an operative definition of the work function as the minimum
energy to bring an electron from the solid to some distance d outside the solid. The
kinetic energy of the electron outside the solid is considered as zero. Note that with
this definition the work function depends on how far the electron is removed from
the surface.

1 This distance is specific to the actual type of measurement performed.
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As a limiting case, the energy to bring the electron from inside the solid to infinity
can be considered. Let us consider an infinite crystal filling a half space and being
terminated by an infinite surface of specific orientation. If the position of the electron
outside of the solid is infinitely far from the solid Eout will be the vacuum energy at
infinite distance from the surface E∞

vac and the work function results as

Φ = E∞
vac − EF. (9.2)

The usual definition of the work function as difference between vacuum energy and
Fermi energy hides the fact that the vacuum energy depends on the distance of the
electron from the surface.

The work function has two main contributions; one is due to the binding of the
electrons inside a solid. Theoretically, one can consider the binding of the electrons
inside a solid with different levels of sophistication, from the simple nearly free
electron model, the tight binding model, up to ab initio calculations. The essence is
always the same: The electrons are bound to the nuclei and this bonding corresponds
to a lower energy of the electrons in the solid compared to free electrons. A second
contribution to the work function arises due to the passage of the electron through
the surface layer, which we will discuss in the following.

9.2 Effect of a Surface on the Work Function

Before we consider the effect of the surface on the work function, we note that the
effect of the presence of a surface has a negligible effect on the bulk states. Inside the
solid the potential of the positive charges of the nuclei is screened very effectively
by the electrons at distances larger than the Thomas-Fermi screening length [14].
The Thomas-Fermi screening length is usually very small in metals. For instance, in
copper the screening length is only about 0.5 Å. Thus inside the crystal everything
will remain as it was in the infinite bulk crystal since the contribution of the “missing”
atoms at the surface is vanishingly small due to the effective screening inside the
metal. The energy of the highest occupied electronic level in a metal terminated by
a surface will still be EF, as for the infinite crystal.

Now we consider how the changes of the electronic structure at the surface give
rise to an additional contribution to the work function, i.e. we consider the work
needed to bring an electron through the surface layer. Even if we consider a bulk
termination of the surface, which means that the positions of the atom nuclei remain
as in the bulk, i.e. undistorted up to the last atom at the surface, as shown for the 1D
crystal in Fig. 9.1a, the electron charge distribution near the surface deviates from that
in the bulk. Some charge will “spill out” into the vacuum as indicated qualitatively
in Fig. 9.1a. This “spill out” of charge is a quantum mechanical effect, as an electron
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Fig. 9.1 a Charge density in a metal crystal which is modified close to the surface and spills out
towards the vacuum. This behavior can be described qualitatively by a dipole layer of excess charge
density close to the surface. b Energy of an electron as function of the distance d from the surface
resulting from the charge density given in (a). The passage of an electron through the dipole layer
leads to additional work Esurface which has to be done in order to remove an electron from the solid

can reduce its energy when it spreads out over a larger region.2 The “spill out” of
charge at the surface leads to the formation of a charge dipole at the surface with
negative charge “spilling out” towards the vacuum and less negative charge (i.e. a
positive excess charge) inside the crystal close to the surface as indicated in Fig. 9.1a.
The particular way in which the charge distribution at the surface deviates from the
bulk structure depends on the crystal structure at the surface (bulk terminated or
modified, i.e. known as reconstructed). When an electron is removed from the solid,
a contribution to the work function arises from the transfer of the electron through
the dipole layer.

The direction of the field in the dipole layer is (usually) such that an additional
amount of work Esurface has to be done to move an electron through the dipole layer.
The total energy to remove an electron at EF from the solid to some distance d
consists of a bulk contribution (binding energy) plus the work done by the electron
when passing through the dipole layer now reads

2 This can be seen from a simple 1D particle in a box model, where the energy of an electron state
as a function of the quantum number n and size of the box L is

E(L) = �
2π2n2

2meL2 . (9.3)

With increasing L (“spill out” of charge) the energy decreases.
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Φ(d) = Φbulk + Esurface(d). (9.4)

The corresponding energy diagram is shown in Fig. 9.1b. Inside the solid the free
electron approximation is used with the energy levels filled up to the Fermi energy.
When passing through the dipole layer the additional contribution to the energy
Esurface is added. This surface contribution to the work function can be of the order
of up to 1 eV.

The splitting of the work function into different contributions arises from the
different approaches used for each effect. A ab initio quantum mechanical theory
would include all these effects when an electron is moved from inside the crystal to
an distance from the crystal. Besides the influence of the surface which is difficult to
calculate with ab ab initio methods, also the electrostatic potential at larger distances
from the surface is difficult to calculate quantum mechanically. The correlation and
exchange forces outside the surface cannot be calculated quantum mechanically
up to large distances of 100 nm. The electrostatic image potential is often used as
an approximation of the long-range behavior of the exchange-correlation potential
in the vacuum.3 On the other hand, for short distances the unrealistic divergence
of the classical image potential at the surface is avoided by a transition to quantum
mechanical calculations, which describe the region close to the surface better.

The work due to the electrostatic image charges (occurring when an electron is
moved out of the metal) reduces at the distance of 100 nm to 1 % of the value at 1 nm,
and can thus be neglected for larger distances.

In conclusion we have identified three contributions to the work function: the
bulk contribution (binding energy), the surface contribution, and the image charge
contribution. These are the contributions which enter for a distance of the removed
electron up to 100 nm. A further contribution occurs if the electron is removed to
distances comparable to the size of the sample, and results due to external electric
fields, as will be discussed in the next section.

9.3 Surface Charges and External Electric Fields

Now we consider (different from the semi infinite crystal considered so far) a finite
crystal with is terminated by different surfaces, as shown in Fig. 9.2. Different sur-
faces (with different atomic configurations) terminating a crystal, correspond to
different “spill out” of charge. This leads to different surface dipoles and therefore

3 In classical electrostatics it is shown that the force between an electron at distance d from a
conducting plate is the same as the force between the electron and a positive elementary charge
located at a distance 2d from the electron (image charge), i.e.−e2/(4πε02d). Integrating the negative
of this force from infinity to d results in the (image) potential of the electron (relative to a position
at infinity) as

Vimage(d) =
d∫

∞

e2

4πε02r
dr = −e2

4πε0

1

4d
. (9.5)

.
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Fig. 9.2 Due to energy
conservation, zero total work
has to be done in moving an
electron along the closed
path from inside the metal
crystal through surface S1
and back through surface S2.
This argument shows that the
two surfaces S1 and S2,
which are assumed to have
different work functions,
have to be at different
electrostatic potentials. This
different potentials are built
up by corresponding surface
charges

S1

S2

also to different work functions at different surfaces of a crystal. In the following, we
will show that these different work functions at different surfaces of a finite crystal
lead to the presence of net surface charges, and corresponding electric fields.

Let us take an electron on a closed loop from a point inside the crystal to a
position outside of the crystal through surface S1 and back through another surface
S2, as shown in Fig. 9.2. Leaving the crystal through surface S1 requires work E1
(surface work to leave the crystal through surface S1, plus of course also the bulk
contribution to the work function, which we leave out here, since it cancels out later).
If there were no net surface charge, the electric field outside the crystal would vanish
and there would be no work to transfer the electron outside the crystal from surface S1
to surface S2. When the electron is inserted back into the crystal through S2, the work
−E2 (negative of the surface work to leave the crystal through surface S2) is gained.
Closing the path inside the metal does not involve energy, since the electric field
inside a metal is vanishing. Since the work functions of the two surfaces are different
(due to the two different surface contributions to the work function), a perpetuum
mobile could be built gaining the energy difference between the two work functions
(E1 − E2) on each cycle. Since this is clearly impossible, there must be an electric
field outside the crystal against which a compensating amount of work is done as
the electron is carried from S1 to S2. This means the two surfaces must be at two
different electrostatic potentials φ1 and φ2, satisfying the condition

e(φ1 − φ2) = E1 − E2 = Φ1 − Φ2. (9.6)

Since dipole layers cannot yield macroscopic fields outside the crystal these fields
have to arise from net macroscopic electric charges on the surfaces,4 which also lead
to an external electric fields with a range corresponding to the size of the crystal. At
larger distances from the crystal these fields vanish.

4 All net charges are located at the surface of a metal, since the electric field vanishes in the interior
of a metal.
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In the following, we estimate which surface charge density is necessary to
“supply” the necessary energy to compensate for the surface-related work function
difference of the order of about 1 eV when an electron is transferred macroscopic
distances from one metal surface to the other through the outer electric field. For a
rough estimate, we consider a plate capacitor arrangement (d = 1 cm). The surface
charge per area A can be expressed as

ρsurface = Q

A
= VC

A
= V

A

ε0A

d
= Vε0

d
. (9.7)

The resulting surface charge corresponds to ∼5 × 10−8 electrons per surface atom.
This shows that even minute charge densities at the surface lead to considerable
work, since the distance over which the electric field extends are on the order of the
size of the crystal.

Now we will summarize the results on the work to remove an electron from the
solid as a function of the distance d. An electron is considered to be removed from
the highest occupied level at EF . At very short distances from the surface (<1 nm),
the bulk contribution (bonding energy), as well as the surface contribution are the
main contributions to the work. (At surfaces with different electronic structure, the
different surface contributions lead to different work functions Φ1 and Φ2.) For
distances larger than 1 nm from the surface these contributions remain constant. At
distances between 1 and 100 nm the work due to the image charge effect is the
only distance dependent part of the work function. Between ∼100 and ∼1 mm (a
distance corresponding to the sample size) there are no further contributions to the
work function. When the distance of the electron removed from the solid becomes
close to the sample size, the work due to the external electric fields arising from the
previously discussed surface charges contribute to the work.

The work to bring an electron to infinity Φ∞ is independent on the work function
of the surface through which it passed.5 Any differences due to the surface work
are compensated by macroscopic electric fields created by the surface charges at the
different surfaces.

Experimental measurements of the work function are performed at a certain dis-
tance. Since most of the experiments are performed in a distance range between 100
and 1 mm, in which the work function is independent of the distance, usually work
functions are considered as independent of the distance. An exception is scanning
probe microscopy. In scanning tunneling microscopy the distance to which the elec-
tron is transferred out of the solid is very small (<1 nm). Thus the image potential
and even the surface and bulk contributions can be distance dependent at such small
distances. The apparent barrier height Φ in STM is more a parameter than directly
corresponding to the work function. Nevertheless, the apparent tunneling barrier
height is usually referred as “the work function” and also we will use this not correct
wording sometimes.

5 It is always assumed that the electron is at rest, i.e. there is no kinetic energy contribution to the
work.
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9.4 Contact Potential

Now we assume two (different) metals with different work functions which are ini-
tially not connected to each other Fig. 9.3a.6 In this case, both metals share a common
vacuum level, but their Fermi levels are not aligned, due to the different work func-
tions assumed. Suppose now that these two metals are connected (e.g. by a wire)
in such a way that electrons can flow freely from one metal to the other, as shown
in Fig. 9.3b. In this case, both metals share a common Fermi level. Since initially
the two Fermi levels were not yet aligned, electrons flow through the wire from the
metal with the higher Fermi level until equilibrium is reached. However, the charge
transfer in order to align the two Fermi levels does not occur in such a way that half
of the electrons between energy EF,1 and EF,2 flow from metal 2 to metal 1. A very
small transfer of charge builds up a surface charge at the metals and a corresponding
electric field E between them. According to (9.7), over the (macroscopic) distance
d these surface charges induce a potential drop Vcontact, which aligns the Fermi
levels of the metals. Due to the macroscopic distance only minute surface charges
are needed to build up a voltage on the order of the work function difference.

In equilibrium the condition

eVcontact = �Φ (9.8)

holds. The voltage Vcontact is called contact potential, because it occurs if a contact
between the metals is established, for instance by a connecting wire.

9.5 Measurement of Work Function by the Kelvin Method

Equation (9.8) suggests that a simple way to measure the (relative) work function
of a metal is to measure the contact potential (relative to a metal with known work
function) by connecting a voltmeter between the metals. However, this is not possible
since a continuous flow of current (through the voltmeter) would have been produced
without a sustaining source of energy. Lord Kelvin proposed a simple way to measure
contact potentials by a capacitive method which is described in the following. The
two samples are arranged in such a way that the two surfaces form a plate capacitor
and an outer voltage called the compensation voltage Vcomp is applied between the
surfaces (Fig. 9.4). The total potential difference V can be written as

V = Vcontact − Vcomp. (9.9)

6 We assume semi infinite crystals so that no surface charges are present and thus no electric fields
occur outside the crystals. Since in Fig. 9.3a macroscopic distance between both metals is assumed,
the work function rises within 100 nm quasi vertically to Evac = E∞

vac.
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Fig. 9.3 a Potential energy diagram for two metals with work functions Φ1 and Φ2, which are
initially not connected and share thus a common vacuum level. b If the two metals are connected
by a conducting wire, the Fermi levels of the two metals align. A buildup of surface charge leads
to a macroscopic potential gradient compensating the difference between the work functions of
the two metals. c The surface charges and the corresponding electric field E vanish if a voltage
Vcomp = Vcontact = 1

e �Φ is applied between the metals

The charge on the capacitor is accordingly

Q = CV = C
(
Vcontact − Vcomp

)
. (9.10)

If the distance between the capacitor plates d is now modulated sinusoidally (for
instance by a piezoelectric actuator) with a small modulation amplitude a current
results as

I = dQ

dt
= dC

dt

(
Vcontact − Vcomp

)
, (9.11)

since Vcontact is constant and Vcomp varies slowly compared to the modulation voltage.
Therefore, a capacitive current is only induced by a change in the capacitance of the
plate capacitor (C = ε0A/d). The measured current has linear behavior as function of
Vcontact − Vcomp. The current will vanish if Vcontact or equivalently the work function
difference is compensated by the compensation voltage, i.e. if

Vcomp = Vcontact = 1

e
�Φ. (9.12)
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Fig. 9.4 The surfaces of two
metals are brought together
in a plate capacitor
configuration. When the
distance d between the plates
is modulated a charge flow
(capacitive current) can be
measured. When an external
bias potential just
compensates the work
function no current flows
anymore

d=d cos t0

I

Vcomp

No current flows if this condition is fulfilled and also the electric field between the
metals vanishes as shown in Fig. 9.3c. The amplitude of the (capacitive) current
can be measured sensitively using the lock-in detection method as a function of
the compensation voltage. Using this method, the (macroscopic) contact potential
difference between two metals can be measured.

9.6 Kelvin Probe Scanning Force Microscopy (KFM)

While Kelvin probe scanning force microscopy is the microscopic variant of the
Kelvin method, there are also some differences. In the macroscopic Kelvin method
the distance between the two metals is modulated and the resulting capacitive current
is measured, whereas in Kelvin probe scanning force microscopy the voltage between
tip and sample is modulated and the corresponding electric (capacitive) force is
measured.7 For conceptual simplicity we consider a flat surface and the tip is moved
at a constant topographic distance over this surface. However, we consider that the
surface consists of areas with different work functions which we would like to detect.
Our configuration consists of a surface and a tip with a voltage V between them, and
a capacitance C(z) for the tip-sample system. Apart from other forces, there is an
electrical force between the tip and the sample. If we consider the tip-sample system
as a capacitor, the electrical (capacitive) force between tip and sample is the gradient
of the potential energy of the capacitor as

Fel(z, V) = −∂E

∂z
= −1

2

∂C

∂z
V2(t). (9.13)

7 This is done since the force (not the current) is measured in a scanning force microscopy setup.
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Since we assume a scan at constant tip-sample distance, ∂C/∂z is a constant. The
voltage between tip and sample consists of different contributions: the constant con-
tribution Vcontact − Vcomp, and additionally a voltage component which is modulated
at the modulation frequency ωmod resulting in a total voltage between tip and sample
as

V(t) = Vcontact − Vcomp + Vmod cos (ωmodt) (9.14)

Thus the tip-sample force which is proportional to the square of the tip-sample voltage
V(t) results as

Fel(V) = −1

2

∂C

∂z

[
Vcontact − Vcomp + Vmod cos (ωmodt)

]2

= −1

2

∂C

∂z

[(
Vcontact − Vcomp

)2 + 2
(
Vcontact − Vcomp

)
Vmod cos (ωmodt)

+V2
mod cos2 (ωmodt)

]
. (9.15)

The first term in the square bracket is time independent (constant), the second term
is a modulation with the frequency ωmod, while the third term consists (after using a
mathematical identity) of a constant term plus a component at twice the frequency
ωmod. Using the lock-in technique, which we introduced in Chap. 6, the amplitude of
the term at the frequency ωmod can be selectively measured. This component vanishes
if Vcontact − Vcomp = 0. In the practical implementation, a feedback control of Vcomp
keeps the ωmod component of the force at zero. Thus by recording the voltage Vcomp,
which nulls the ωmod component of the force signal ∝ 1

e �Φ − Vcomp, the work
function difference is measured locally on the nanoscale while scanning over the
surface. Due to the modulation of the voltage V , a modulated force is exerted on the
cantilever, which induces a cantilever oscillation at the modulation frequency.

So far we have left out the complication that in a practical implementation of
an SPM setup the tip-sample distance also has to be measured, and to adapt the
setpoint value. In dynamic atomic force microscopy this can be done using a (second)
modulation of the cantilever close to its resonance frequency (as we discuss in detail
in Chap. 14). Thus the cantilever is modulated at two (different) frequencies and two
lock-in detection units detect the oscillation amplitudes at the respective modulation
frequency.

9.7 Summary

• The definition of the work function as the difference between the vacuum level
and the Fermi level, includes also a surface contribution to the work function.

• Due to a “spill out” of charge to the vacuum, a charge dipole occurs at the surface.
A certain amount of work has to be done to move an electron through this dipole
layer. This is the surface contribution to the work function.

http://dx.doi.org/10.1007/978-3-662-45240-0_6
http://dx.doi.org/10.1007/978-3-662-45240-0_14
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• Also a net charge can accumulate at the surface giving rise to a contact potential
between metals with different work functions. The contact potential is the differ-
ence between the work functions.

• The contact potential can be measured using the Kelvin method by modulating the
distance between the surfaces of the metals and measuring the induced capacitive
current.

• In Kelvin probe scanning force microscopy (KFM) the work function can be
measured locally by modulating the tip-sample voltage.
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