
Chapter 5
Electronics for Scanning Probe Microscopy

First we discuss some fundamental issues of electronics, such as voltage divider,
low-pass filter, and operational amplifier. Then we continue to discuss topics more
closely related to scanning probe microscopy such as the current amplifier in scanning
tunneling microscopy and feedback electronics, which in SPM serves to stabilize the
tip-sample distance. We close this chapter on electronics by discussing how digital-
to-analog converters and analog-to-digital converters work in principle.

5.1 Voltage Divider

One of the simplest electronic circuits is the voltage divider, which is shown in
Fig. 5.1a. Applying Kirchhoff’s law and Ohm’s law to this circuit results in the
following equations

Vin = V1 + V2 = I (R1 + R2) (Kirchhoff’s voltage law)

V2 = R2 I = Vout (Ohm’s law) (5.1)

These equations can be solved for

Vout

Vin
= H = R2

R1 + R2
. (5.2)

The output voltage divided by the input voltage is the called transfer function H .
We have assumed here that the output voltage is measured with an infinite inner
resistance, i.e. no current flows at the output. The limiting cases for the transfer
function are H ≈ 1 for R1 � R2 and H ≈ R2/R1 for R1 � R2.
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Fig. 5.1 a Circuit scheme of
a voltage divider. The
transfer function is given by
H = Vout/Vin =
R2/(R1 + R2). b This circuit
is also a voltage divider,
however, now R2 is replaced
by a capacitor and an AC
input voltage is considered.
Thus, we use the complex
impedances Z R and ZC in
order to obtain the transfer
function
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5.2 Impedance, Transfer Function, and Bode Plot

In the previous section, we considered DC voltages and currents. In the AC case, the
voltages and currents can be written in the complex notation as

V = V0ei(ωt+ϕV ), and I = I0ei(ωt+ϕI ). (5.3)

Of course, for ohmic resistors Ohm’s law still reads as V = RI. For capacitances and
inductors the concept of resistance can be extended to a complex impedance, which
is defined as

ZC = 1
iωC for a capacity C, and

ZL = iωL for a inductance L , and of course
ZR = R for a resistor R.

(5.4)

For the impedances, the equivalent of Ohm’s law applies as V = ZI. For AC circuits,
including several impedances Z , the usual Kirchhoff laws apply, and the rules for
parallel and series resistors also hold for impedances, if the quantities are represented
in a complex form.

As an example, we consider the circuit shown in Fig. 5.1b, which is similar to
the voltage divider, except that one resistor is replaced by a capacitor and an AC
input voltage is applied. Thus we consider the complex impedances Z R and ZC . The
transfer function (now dependent on the frequency) can be calculated in analogy to
(5.2) as

H(ω) = Vout

Vin
= ZC I

(Z R + ZC )I
=

1
iωC

R + 1
iωC

= 1

1 + iωRC
. (5.5)

The transfer function is a complex quantity. In the Bode diagram, the absolute value
(modulus) of the complex transfer function and the phase difference between out-
put voltage and input voltage are plotted, as shown in Fig. 5.2a. The corresponding
equations are
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Fig. 5.2 The Bode plot shows the absolute value of the complex transfer function (gain) (a) and the
phase shift of the output relative to the input signal (b). The figure shows the Bode plot of the circuit
in Fig. 5.1b. The behavior of the absolute value of the transfer function (amplitude) approaches the
value one for frequencies lower than the corner frequency, and decreases for higher frequencies,
which is the characteristic of a low-pass filter

|H(ω)| = |Vout|
|Vin| = 1√

1 + ω2 R2C2
, and ϕV = arctan(−ωRC). (5.6)

For frequencies lower than the corner frequency ωc = 1/(RC), the absolute value
of the transfer function approaches unity, i.e. gain |Vout| / |Vin| is one. For frequencies
much larger than ωc the absolute value of the transfer function decreases as 1/ω. At
the corner frequency, the gain has the value 1/

√
2 (which corresponds to −3 dB). In

conclusion, the circuit shown in Fig. 5.1b is a low-pass filter, which transmits signals
up to the frequency ωc with gain one and suppresses signals with higher frequencies.
Another way to express this is that this circuit corresponds to a low-pass filter with
a bandwidth of ωc = 1/(RC).

The phase behavior of this low-pass is shown in Fig. 5.2b. The phase shift is
zero for frequencies much lower than the corner frequency and goes to −90◦ for
frequencies much larger than the corner frequency.

The analysis of the low-pass circuit was one simple example, another one is if the
resistor and the capacitor in Fig. 5.1b are exchanged. This circuit corresponds to a
high-pass filter. Also more complicated circuits can be analyzed using Kirchhoff’s
laws or the rules for impedances in parallel or in series. One requirement for the type
of analysis described in this section is that the input signal Vin is a sinusoidal signal.
If the transfer function for all frequencies is known this characterizes the behavior of
the circuit at all frequencies. This is a basis to obtain the output signal for all periodic
functions via Fourier methods.
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5.3 Output Resistance/Input Resistance

In Fig. 5.3a we consider a device connected to a voltage source. Any kind of signal
source can be replaced by an ideal voltage source with an resistor in series, which
we call output resistance Routput, as shown in Fig. 5.3a. If the output of the signal
source is connected to the input of a device, this can change the output voltage Vout,
being no more identical to the ideal voltage source Vsignal. The voltage Vout depends
also on Rinput, the input resistance of the device connected to the source. The circuit
shown in Fig. 5.3a is (again) a voltage divider. Using (5.2) the output voltage Vout
can be written as

Vout = Vsignal
Rdevice

Rsignal + Rdevice
, (5.7)

and is shown in Fig. 5.3b. It can be seen that the output voltage approaches the signal
voltage if Rinput � Routput.

However, in relevant cases of small signal sources of sensors like photodiodes
(in the case of atomic force microscopy), the inner resistance of the signal Routput
is high. In such cases a so called impedance converter is used, which we discuss
in Sect. 5.5.1 in order to convert the high output resistance of the signal source to a
very low output resistance at the output of the impedance converter, which can be
connected to devices with a modestly low input resistance, always maintaining the
relation Rinput � Routput.

Fig. 5.3 a Signal source,
consisting of an ideal
voltaget source Vsignal and an
output resistance Routput,
connected to a device with
an input resistance,
characterized by the
resistance between the input
and the ground Rinput. b The
output voltage for this circuit
approaches Vsignal only if
Rinput � Routput
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The concept of output resistance and input resistance can be applied in sequence
when connecting electronic circuits one after another. We can assign to each device
in a sequence of devices an input resistance and an output resistance. In order to
avoid the input of the next device modifying the output of the previous device, the
relation the relation Rinput � Routput should be always maintained.

Here we considered the DC, however, the concept of output and input resistances
can be extended to the AC case using the impedance replacing the resistance. Further-
more, this concept can also be used for active devices like circuits with operational
amplifiers, discussed later.

5.4 Noise

If we consider a DC electric signal with some time-dependent fluctuations such as
the current I (t) or the voltage V (t), it can be characterized by its average

〈V 〉 = lim
T →∞

1

T

T∫

0

V (t)dt. (5.8)

Fluctuations of the voltage around this average are called the noise as �V (t) =
V (t) − 〈V 〉. This is still a time-dependent quantity and its average is zero. If the
noise is due to random fluctuations, it is usually characterized by the following time
independent quantity

√〈
�V 2

〉 =

√√√√√ lim
T →∞

1

T

T∫

0

(V (t) − 〈V 〉)2dt . (5.9)

also called root mean square (RMS) noise.
The above considerations about the noise were in the time domain, i.e. consid-

ering the time-dependent signal V (t) and the time-dependent noise �V (t). In the
following, we will consider the frequency dependence of the noise. The frequency
dependence of the noise can be characterized by the power spectral density (PSD)1

N 2
V (ω). An important property of the power spectral density of the noise is that it

relates to the mean square noise as

〈
�V 2

〉
=

∞∫

0

N 2
V ( f )d f = 1

2π

∞∫

0

N 2
V (ω)dω. (5.10)

1 The power spectral density of the noise �V (t) can be defined via the Fourier transform of the

noise as N 2
V (ω) = limT →∞ 1

2πT

∣∣∣∫ T
0 �V (t)e−iωt dt

∣∣∣2
.



82 5 Electronics for Scanning Probe Microscopy

If a detection scheme is used which measures the noise variable only within a certain
(angular frequency) bandwidth Bω = ω2 − ω1 between ω1 and ω2, the mean square
noise can be written as 〈

�V 2
〉
= 1

2π

ω2∫

ω1

N 2
V (ω)dω. (5.11)

This expression can also be considered as defining the noise power spectral density
N 2

V (ω). The noise PSD indicates how much power the noise signal carries in a small

region around ω. The noise amplitude spectral density is defined as NV =
√

N 2
V .

If the noise spectral density is constant between ω1 and ω2 and zero outside, (5.11)
reduces to 〈

�V 2
〉
= 1

2π
(ω2 − ω1)N 2

V (ω), (5.12)

and we obtain √〈
�V 2

〉 = NV
1√
2π

√
Bω. (5.13)

The (constant) noise spectral amplitude density of the noise variable �V is expressed
in the unit of the noise variable per

√
rad · Hz, for instance volt/

√
Hz. The actual

RMS value of the noise variable measured with a specific bandwidth is then given by
the noise amplitude spectral density times the square root of the bandwidth. Note that
the angular frequency bandwidth Bω = ω2 − ω1 is defined as angular frequency, i.e.
in units of rad/s, not cycles/s. Similarly, the unit of the noise power spectral density
N 2

V (ω) is volt2/(rad · Hz). If the natural frequency f is considered, (5.13) reads

√〈
�V 2

〉 = NV
√

B, (5.14)

with B = f2 − f1 and NV in volt/
√

Hz.

5.5 Operational Amplifiers

Since operational amplifiers are used in several parts of STM electronics a brief
introduction to their operation is given. An operational amplifier can be considered
as a “gain block” amplifying the difference between the input voltages (ideally pos-
sessing very high gain). The voltage at the output is the amplified voltage difference
at the inputs. Outside of the gain block there is a feedback network (e.g. consisting
of resistors), which controls the actual gain. Operational amplifiers operated close to
DC have typically the following properties:

• Very high input resistance, with a typical input current of a few pA,
• Very low output resistance, typically a few ohm,
• Very large open-loop voltage gain G (104–106).
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Fig. 5.4 Block diagram of
an operational amplifier
showing the supply voltages
Vs , the input voltages V± and
the output voltage Vout

+

-V-
Vout

Vs+

Vs-

V+

We will show that if these properties of an operational amplifier are met the
characteristics of the amplifier are determined by the feedback network only, not the
gain block itself. We are not concerned with the inner working of the operational
amplifier. A block diagram of an operational amplifier is shown in Fig. 5.4. The
output voltage is the difference of the input voltages multiplied by the open loop
gain G as

Vout = G(V+ − V−). (5.15)

Due to the very high open loop gains of operational amplifies, they are usually not
operated in an “open” configuration, because any voltage difference exceeding the
sub-millivolt range will saturate the output voltage which is limited to the supply
voltage Vs .

5.5.1 Voltage Follower/Impedance Converter

If we connect the output of an operational amplifier to its negative (inverting) input
(Fig. 5.5) and apply a voltage signal to the non-inverting input, we will find that the
output voltage of the op-amp closely follows that input voltage.

In order to find an expression for Vout for the circuit in Fig. 5.5 we start from (5.15)
which states that the output voltage is the difference of the input voltages times the
open loop gain. In our case the positive input voltage V+ is Vin and the negative
feedback voltage V− is due to the negative feedback Vout. Thus (5.15) reads

Vout = G(Vin − Vout), (5.16)

which leads to

Vout = Vin
G

1 + G
. (5.17)

+

-

Vin

Vout

Fig. 5.5 Operational amplifier wired as a voltage follower. A negative feedback is realized by
connecting the output to the negative (inverting) input
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For a large open loop gain, the output voltage is approximately equal to the input
voltage Vout ∼ Vin.

Taking the output voltage of the operational amplifier and coupling it to the invert-
ing input is a technique known as negative feedback. In this circuit the operational
amplifier has the capacity to work in a linear mode, as opposed to merely being fully
saturated (due to the high gain) with no feedback for voltage differences exceeding
the mV range.

Here, as in the other operational amplifier circuits we will discuss, the actual
gain (which is one here) is not determined by the open loop gain of the opera-
tional amplifier but by the outer feedback circuit (which is just a simple connection
between Vout and = V−). One could think that an amplifier with a gain of one is
useless. However, this circuit acts as an impedance converter, since a high input
resistance/impedance (being an intrinsic property of an op-amp) is converted to a
low output resistance/impedance (being another intrinsic properties of an op-amp).

While having “only” a voltage gain of one, the voltage follower has a power
(current) gain. The voltage follower is often used as “buffer” to interface a large
impedance output signal to device with a low impedance (input) load. The voltage
follower as impedance converter acts as “one-way” device for signals, drawing almost
no current from the source supplying its input (because of its high input resistance),
and it can supply a large amount of current to loads with low (input) impedance.

5.5.2 Voltage Amplifier

If we add a voltage divider to the feedback wiring (Fig. 5.6) only a fraction of the
output voltage is fed back to the inverting input. In this case the output voltage is a
multiple of the input voltage.

The gain of this circuit can be calculated taking the basic equation (5.15) into
account. If the output is connected to the inverting input, via a voltage divider network,
V− can be written (using Ohm’s and Kirchhoff’s laws2) as V− = Vout

R1
R1+R2

=
Vout K , and Vin is connected to the positive input V+, then

Vout = G(Vin − KVout). (5.18)

Solving this equation for Vout/Vin, we find

Vout

Vin
= G

1 + KG
. (5.19)

2 Vout = V1 + V2 = I (R1 + R2) = (V1/R1)(R1 + R2) = V− R1+R2
R1

.
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Fig. 5.6 Operation principle
of non-inverting amplifier

+

-

Vin

Vout

R1 R2

V-

V+

If G is very large the gain becomes

Vout

Vin
= 1

K
= 1 + R2

R1
. (5.20)

We can change the voltage gain of this circuit just by adjusting the values of R1
and R2 (changing the ratio of output voltage which is fed back to the inverting input).

While we have used in the basic equation for the operational amplifier (5.15)
together with the analysis of the feedback circuit using Ohm’s and Kirchhoff’s laws,
the analysis of operational amplifier circuits can be simplified using two simple rules.
The rule that the input current of an operational amplifier vanishes we have already
used in our analysis. In the previous two circuits the difference between the inputs
V+ and V− approached zero. This is a general rule, leading to the following two
“golden rules” which simplify the analysis of circuits with operational amplifiers.

• The input current to an operational amplifier vanishes (high input impedance).
• The difference between the inputs V+ and V− approaches zero.

In the following we calculate the output voltage for the circuit shown in Fig. 5.7
using above “golden rules” for operational amplifiers. In this circuit a negative feed-
back is provided through a voltage divider, but the input voltage is applied to the
inverting input and the non-inverting input is grounded. The second “golden rule”
tells us that the voltage at the inverting input is zero. Thus, the inverting input is
referred to in this circuit as a virtual ground, being kept at ground potential (0 V)
by the feedback, yet not directly connected to (electrically common with) ground.
Since the input current to the operational amplifier is zero (first “golden rule”), the
current through R1 and R2 are the same. By applying Ohm’s law to the two resistors
the gain can be calculated as

Fig. 5.7 Circuit of an
inverting amplifier realized
with an operational amplifier

+

-

Vin

Vout

R1 R2

0 V

II 0 V

virtual
ground
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Vout

Vin
= −I R2

I R1
= − R2

R1
. (5.21)

Note that the output voltage always has the opposite polarity of the input voltage.
For this reason, this circuit is referred to as an inverting amplifier.

5.6 Current Amplifier

The tunneling current in STM has very small values, typically 0.01–10 nA. The cur-
rent amplifier is an essential element of an STM since it amplifies the current and
converts it to a voltage. Such amplifiers are called transimpedance amplifiers and
already the circuit shown in Fig. 5.7 can serve as such a current-to-voltage converter.
If we consider the voltage source plus the resistor R1 as a current source, a current of
Iin = Vin/R1 flows to the virtual ground. Since the input current of the operational
amplifier is practically zero (high input resistance), this current flows through the
feedback resistor R2. In the actual current amplifier shown in Fig. 5.8, the input cur-
rent Iin has to flow through the resistor RFB. Therefore, Iin = IFB = −Vout/RFB. Or

Vout = −Iin RFB. (5.22)

The input current is converted to an output voltage with RFB as proportional-
ity factor. As an example: If the feedback resistor has a value of R = 1 G�, one
nanoampere of input current results in an output voltage of 1 V. Due to the high input
resistance of an operational amplifier and its low output resistance, a high input
impedance is converted to a low impedance output which can be processed further.

Up to now we have considered the operational amplifier circuits as DC circuits.
In the following, we consider the AC performance of the current amplifier shown in
Fig. 5.8 and will show that its bandwidth is limited by the stray capacitance Cstray
parallel to the feedback resistor. We use the complex impedance to analyze this AC
circuit. The complex impedances for a resistor R and a capacity R are ZR = R,
and ZC = 1/(iωC), respectively. Since the two impedances in the feedback arm of

+

-
Iin

Vout

RFB

0 V

Cstray

Fig. 5.8 Circuit used as current amplifier in STM. The gain (actually transconductance in V/A) is
proportional to the resistance of the feedback resistor RFB. The bandwidth of this current amplifier
is limited by the stray capacitance Cstray
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the operational amplifier are in parallel, the following expression results for the total
(complex) impedance Z as

1

Z
= 1

ZR
+ 1

ZC
= 1

R
+ iωC. (5.23)

The absolute value of the complex impedance results as

|Z | = R√
1 + (ωRC)2

. (5.24)

Replacing according to (5.22) Vout = −Z Iin, and identifying R with RFB, as well as
C = Cstray results in

Vout = −Iin RFB√
1 + (

ωRFBCstray
)2

. (5.25)

This frequency dependence of the output voltage of the current amplifier is the same
as that of a simple passive low-pass with a resistor and a capacitor. The corner
frequency of such a low pass at which the output voltage drops by 1/

√
2 is fcorner =

1/
(
2πRFBCstray

)
. As an example, if by careful design the stray capacitance can be

reduced to 0.1 pF a bandwidth of 1.5 kHz is obtained for a feedback resistance of
1 G�. The bandwidth of the amplifier is the frequency range which is amplified
without significant loss of the signal (i.e. from DC to fcorner ∼ 1/(2πRFBCstray). It
can be seen that the gain which is proportional to RFB and the bandwidth proportional
to 1/RFB are opposing figures of merit. Increasing the amplification means decreasing
the bandwidth and vice versa. Some numerical examples are given in Table 5.1.

Another figure of merit for amplifiers is the noise. The (RMS) noise induced by
the thermal excitation of the electrons in a resistor R is called Johnson noise [12, 13]
and can be calculated as

Inoise =
√

4kBT B

RFB
. (5.26)

with B being the bandwidth and kB the Boltzmann constant. In Table 5.1 some
numerical values are given.

Table 5.1 Gain, bandwidth
and noise for a current
amplifier with
RFB = 100 M� and
RFB = 1 G�

Cstray = 0.5 pF RFB = 100 M� RFB = 1 G�

Gain 108 V/A 109 V/A

Bandwidth 3 kHz 300 Hz

Noise 0.3 pA 0.1 pA
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5.7 Feedback Controller

In scanning probe microscopy, a feedback controller is used to follow the surface
topography. Before we come to the application of a feedback controller to SPM, we
will consider feedback controllers in general. A general model for a feedback loop
is shown in Fig. 5.9. In the control loop, the system output x is measured constantly
by a sensor, and compared to the setpoint w by subtraction w− x . Depending on this
error signal, the controller determines a system input (control signal) y, which is fed
into the system in order to adjust the system output x to the set-point value w. This
whole operation of the controller acts in a closed feedback loop as shown in Fig. 5.9.
The control loop fulfills the task of adapting the system output to the setpoint in the
presence of disturbing external noise.

Before we turn to the feedback controller of the STM, let us consider (as an
example) a simpler system: the heating system of a house in winter. The simplest
example of a feedback system is the on-off controller. On your thermostat you set a
certain desired temperature (setpoint) w. If the measured temperature x is lower than
w the controller gives a signal y to the system. For the case of the heating system of
a house, y is the heating power which is turned on from zero to a certain power; thus
the radiators heat the rooms until the set point temperature w is reached. Due to the
inertia of the system (i.e. the time delays) the temperature in the rooms will continue
to rise for some time after the heating has been switched off (temperature overshoot),
because the radiators are still warm. You can easily imagine how this cycle continues.
For instance, when the measured temperature x falls below the setpoint temperature
w it will take some time before the radiators become warm. In conclusion, the actual
temperature x fluctuates around the desired temperature w. What controller theory
is all about is to find a smarter way to keep x as close as possible to w. There are two
kinds of time delays in the feedback loop: First the time delay in the system itself
(this delay is large for the case of the heating of the house and much smaller in the
case of STM). For simplicity we will not consider this time delay in the following.
Secondly, there is a time delay due to the controller, which we will consider in the
following.

Fig. 5.9 A general model
for a feedback loop

Setpoint w

+

-

Controller

Error
signal

x

yw-x System

System
input

System
output

Sensor
Feedback

Measured signal
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5.7.1 Proportional Controller

If in the example of the heating system of a house, a heater with a continuously
variable heating power is available (not just on or off), a proportional controller
(P controller) can be realized. For the P controller the output of the controller y is
proportional to the error signal w − x , as

y = K P (w − x). (5.27)

The proportional constant K P is called proportional gain. Since the heating power
is now proportional to the error signal it is obvious that the temperature can be con-
trolled much better with much less overshoot than for the on-off controller. (Actually,
the on-off controller is a P controller with infinite gain K P , which is only limited by
maximum heating power of the heater). Since the output of the controller is instan-
taneously proportional to the error signal, the P controller is a fast reacting type of
controller.

One problem with the proportional controller is that a pure proportional control
will not settle at the set-point value w, but will retain a steady-state error, which is
a function of the proportional gain. This can be qualitatively understood as follows.
If in the example of our heating system we have continuous losses of heat (outside
it is cooler than inside), therefore we need continuous heating power in order to
maintain the setpoint temperature, even if the error signal is zero. However, the
pure proportional controller does not provide this. According to (5.27) the actuating
variable y is zero for zero error signal w − x . This means that the pure proportional
controller cannot reach the setpoint w. The higher the load (i.e. the cooler it is outside)
the greater is the deviation from the set-point value. Increasing the proportional gain
can reduce the deviation but it never goes to zero and high gain can lead to instabilities
(oscillations) in the feedback loop. The deviation between the output x and the
setpoint w is proportional to the heat dissipation (load) and inversely proportional to
the proportional gain K P .

The time delay due to the controller is related to the proportional gain K P . The
greater K P is, the shorter is the time delay of the controller, i.e. the controller can
follow fast. However, a large value of K P also leads to a larger overshoot.

An example of how a P controller can be implemented using an operational
amplifier was shown in Fig. 5.7. The gain constant K P can be modified by changing
the resistances as K P = −R2/R1.

In summary the advantage of the P-controller its fast reaction time, the controller
output is instantaneously directly proportional to the error signal. The disadvantage
of the P controller is the steady-state deviation of the system output from the desired
set-point value.
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5.7.1.1 Integral Controller

The integral controller provides a control signal proportional to the accumulated
deviations from the setpoint. The contribution from the integral term is proportional
to both the magnitude of the error and the duration of the error. Summing the instan-
taneous error over time (integrating the error) corresponds to an accumulated effect
that should have been corrected previously. For the I controller the output of the
controller y is written as

y(t) = K I

t∫

0

(w − x(τ ))dτ . (5.28)

The proportional constant K I is called integral gain. The integral controller elim-
inates the residual steady-state error that occurs with a proportional controller. A
disadvantage of this type of controller is the slow reaction to changes of the input
signal, due to the integration. Of course also the I controller can be made faster
(shorter time delay) by increasing K I , however, this also increases the tendency
towards overshooting and instable and oscillating behavior.

In a variant of the I controller, the integration is not performed from zero, but over
a time interval �t prior to the current time.

5.7.2 Proportional-Integral Controller

In a PI controller the P and the I control signals are added up, as shown in Fig. 5.10.
In this controller, the advantages of both the P and I controllers are combined, while
avoiding their individual disadvantages. Short-term deviations from the setpoint are
compensated fast by the proportional controller and long-term deviations are com-
pensated by the integral controller. This type of controller can regulate the error
signal to zero in steady-state. The output signal can be written as

Fig. 5.10 Schematic of a PI
controller
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Fig. 5.11 Comparison of the step response of different controllers. The setpoint is a step function
which changes from zero to one at time zero. Due to the steady-state error of the P controller the
set point is never reached

y(t) = K P (w − x(t)) + K I

t∫

0

(w − x(τ ))dτ . (5.29)

One way to show the performance of controllers is the step response. Step response
means that the setpoint is changed instantaneously and the reaction of the controller
(and the whole system) to reach the new setpoint is monitored. The step response
of different controllers is compared in Fig. 5.11. The P controller does not reach the
new set-point value, and the I controller alone is quite slow. The PI controller reaches
the setpoint in a reasonable time for an appropriate choice of K P , K I .

5.8 Feedback Controller in STM

In STM or SPM in general the elements in the above-mentioned feedback loop have
the following correspondence (Fig. 5.12).

• The system output x corresponds to the tunneling current, which is converted to a
corresponding voltage by the current amplifier (sensor).

• The setpoint w corresponds to a voltage representing the desired tunneling current.
• The PI controller determines the system input (control variable) y, which is the

voltage to be applied at the z-piezo element in order to change the tip-sample
distance.
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Fig. 5.12 Model of an STM feedback loop

• The most complex part of the feedback loop is the system itself. In the case of
STM, it consists of DA converters, the high-voltage amplifiers (HVA) for the z-
piezo voltage, the z-piezo element for the vertical positioning of the tip, and the
tunneling contact.

• The noise of the z-signal arises due to external mechanical vibrations, the noise
of the amplifiers, and the noise of DA and AD converters.

In STM, the P-part of the controller regulates fast deviations from the setpoint
such as the atomic corrugation or atomic step edges (here the integrator helps to
reach the final value, i.e. eliminates steady-state deviations).

In SPM, there is one effect which excretes the highest load to the feedback con-
troller. Usually the sample is not oriented perfectly parallel to the xy-directions given
by the scanner. This slope is usually the largest height signal in the original STM
data and will be removed by appropriate background subtraction in the final image,
as we will see later. However, the feedback has to follow this slope. As a quantitative
example, if the xy-plane of the scanner and the sample surface are 3◦ off relative to
the sample surface, this slope corresponds to a height of 500 Å for a 1µm wide scan.
This is by far the largest height signal compared to, for instance, a few atomic steps
(3 Å high) in such an image.

The I controller has the advantage that it is less prone to noise. Depending on
the conditions, the measured signal (tunneling current in STM) can be quite noisy.
While the P controller reacts immediately to a noise spike of the measured signal,
an I controller acts as a low-pass averaging out noise spikes.

Now we consider the problem that a feedback loop may become instable and start
to oscillate. If the controller parameters (the gains of the proportional and integral
terms) are chosen incorrectly, the feedback loop can become instable, i.e. its output
starts to oscillate. An important reason for the instability of the feedback loop is the
time delay (reaction) of the system. In our simple example of the heating system
of a house, it takes some time after a deviation of temperature is detected before
the radiators and the air in the house become hot. In the case of the STM, the time
delay of the system is given by the time lag between a change of the z-voltage by the
controller and a corresponding change of the tunneling current. Also the speed of the
controller itself (given by the gains of the proportional and integral terms) is a source
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of time delay. It is intuitively clear that a large gain (heating power) and a long delay
time of the system will give rise to large overshoots and result in an instability with
oscillations of the controller system. A large part of controller theory is concerned
with finding conditions for stability of a feedback loop. Here we will only provide a
very qualitative intuitive discussion of the stability of a feedback loop.

A different way of characterizing the stability of a feedback loop than the analysis
of the step response is to measure the output signal relative to a sinusoidal input signal
(transfer function). The transfer function is the output signal divided by input signal.
The knowledge of the (sinusoidal) output behavior as function of the sinusoidal input
for all frequencies gives complete knowledge of the system response, since any input
signal can be represented as a sum of the sinusoidal functions (Fourier theorem). The
transfer function is a frequency dependent function and consists of an amplitude and
a phase (complex number).

The transfer function of the whole feedback loop can be measured as shown
schematically in Fig. 5.13. Initially the feedback loop is enabled and the STM is
in tunneling operation. Then the (digital) feedback is switched off and the z-piezo
voltage is modulated. The sinusoidal input signal is fed through all analogue com-
ponents of the STM, HV amplifier, piezo actuator, tunneling junction, and current
amplifier, as well as the controller. Then the output signal is measured (amplitude
and phase), which results in the frequency dependent transfer function.

The measured transfer function (amplitude part) of the analogue components of
a particular STM feedback loop is plotted in Fig. 5.14, as system output divided by
system input amplitude as a function of frequency. The characteristics of this transfer
function are the characteristics of a low-pass, and the amplitude drops significantly
above 4 kHz. This corresponds to the bandwidth of the current amplifier, which is the
bandwidth-limiting element of the analogue components in the system. The other
elements of the system, HV amplifier (HVA), piezo actuator, and tunneling junction,
do not limit the bandwidth of the system.

One very simplified condition for an instable feedback loop is the following:
If for a certain frequency the output amplitude is larger than the input amplitude
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Fig. 5.13 Scheme of the measurement of the transfer function
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Fig. 5.14 Measured transfer
function of the analogue
components in the STM
feedback loop: HV amplifier,
piezo actuator, tunneling
junction, and current
amplifier
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(amplitude of the transfer function ≥1) and the phase for this frequency is close to
0◦ the feedback loop will become instable. This means that small deviations from
the setpoint will build up to an oscillation of large amplitude.

5.9 Implementation of an STM Feedback Controller

Feedback controllers are realized via a digital feedback loop nowadays. The tunneling
current is measured by the current amplifier and then the corresponding voltage is
digitized by analog digital converters (ADC), as shown in Fig. 5.15. These converters

DACsADCDSP DSP

STM

YZX Bias

HV
amplifier

Current
amplifier

Data
Commands

Fig. 5.15 Implementation of computer controlled STM electronics
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can have, for instance, an accuracy of 20 bit in a range of ±10 V corresponding to a
step width of 20µV, which is usually far below the noise in the system and therefore
sufficient for all practical purposes.

The actual feedback loop is often realized by a digital signal processor (DSP)
(Fig. 5.15). A DSP is a own computer on which a single user single-task real-time
program runs. From the measured (digitized) current and the current setpoint, the
output, i.e. the actuator voltage for the z piezo motion, is calculated using a digitized
version of a PI controller. Using a digital feedback loop has several advantages. First,
it is very easy to stop the feedback and to perform spectroscopic measurements (i.e. to
run a tunneling voltage ramp or a z-ramp), and also to measure the transfer function.
Another advantage is that the feedback mode can be changed just by changing the
software. The controller algorithm can be changed by a few lines in the DSP program.
Furthermore, non-linear algorithms for noise reduction can be implemented.

An example for a pseudocode implementation of a PI controller is given in the
following.

start
read measured_signal x(t)
error_signal = set_point - measured_signal w − x(t)
integral = integral + error_signal * dt

∫ t
0 (w − x(τ ))dτ

controller_output = KP * error_signal + KI * integral y(t)
goto start
Once the controller output (new z-voltage) is calculated, this number is converted

into an actual voltage by (for instance) 20 bit digital analogue converters (DAC). This
z-voltage (range: ±10 V) is then amplified by a high-voltage amplifier to a range of
typically ±200 V (Fig. 5.15). This is enough to reach the necessary amplitude of
the piezo actuators of a few micrometers. Regarding the resolution, the following
reasoning can be applied: For a piezo constant of 60 Å/V and a high-voltage amplifier
gain of 20 one DAC unit converts to a z-distance of 2 pm, which is usually more than
enough. This means that with the high resolution DA and AD converters available
today the digitization of the input and output quantities is no longer a problem since
it is far below the usual noise limits. Also the tunneling bias voltage is supplied from
the computer via a DAC in order to ramp this voltage in spectroscopic measurements.

When scanning an STM image, the DSP sends the xy-scan data to the DAC.
The voltages for the x- and y-electrodes are finally amplified by the high-voltage
amplifiers. The data about the height of the tip above the surface, i.e. the voltage
applied to the z-piezo, generated by the feedback algorithm running on the DSP, is
sent to the PC. The measurement program takes the height of the STM tip above the
surface and displays it as an image, i.e. in gray scale as a function of x and y.

The digital control of the STM also allows an automated procedure to be used
during the coarse approach of the tip towards the sample. A flow chart for an auto-
mated control could be as shown in (Fig. 5.16). After the automatic coarse approach
a desired current setpoint is chosen and scanning can be started.

The bias voltage between tip and sample (usually between a few millivolts and a
few of volts) can be applied to the sample (sample bias). In this case, the tunneling
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Fig. 5.16 Flow chart of the automatic approach procedure in scanning tunneling microscopy

current is measured relative to the ground. If the sample is grounded, the preamplifier
has to float on a bias potential (tip bias) in order to apply a bias voltage between tip
and sample.

5.10 Digital-to-Analog Converter

In a computer controlled data acquisition and control system, analog data have to be
read to the computer and digital data generated by the computer have to be converted
to analog signals. For instance, in scanning probe microscopy the xy-scan signals
are generated by a computer program (digital values) and have to be converted to
analog signal driving the piezo elements. For this task a digital-to-analog converter
(DAC) is used. Here we describe the principle of how such a device can operate.
However, actual digital-to-analog converters are more sophisticated than the basic
idea explained here.

We assume that the digital signal is already present as voltages (high/low) at
several wires of a connector. As an example, we will consider a four-bit signal in
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Fig. 5.17 Operating
principle of a
digital-to-analog converter
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the following. In Fig. 5.17, the digital signal is represented by switches either open
or closed (−5 V). Each of the lines (switches) has a different weight from 20 to
23 corresponding to the weight of the bit in the binary digital code. If all switches
are open this corresponds to zero (0000), if all wires are connected to −5 V this
corresponds to (binary 1111, i.e. 15). The task is now to convert the digitally coded
voltage values present at the four connectors to 16 analog voltages relative to ground,
ranging, for example, from 0 to 10 V. The resistor following each switch is chosen
such that the current through it (when flowing to ground) corresponds to the weight of
that bit. The least significant bit (20) has, for instance, a 5 k� resistor, corresponding
to a current of 1 mA to ground, while the most significant bit (23) has an 8 times
smaller resistor corresponding to an 8 times higher current of 8 mA in this line.
All the lines are routed to the inverting input of an operational amplifier acting as
a transimpedance amplifier. Since the positive input of the operational amplifier is
on ground, the negative input is the virtual ground, as we have considered before.
At the point where all these lines are brought together the sum of all the currents
flows through RFB. According to (5.22), the analog output voltage at the operational
amplifier is

Uout = −RFBU0

∑
i=all closed switches

1

Ri
. (5.30)

The maximum output voltage can be chosen using a proper value for RFB.

5.11 Analog-to-Digital Converter

In scanning tunneling microscopy, the analog voltage at the output of the current
preamplifier has to be converted to a number (e.g. 16-bit value) proportional to
the analog voltage (tunneling current). For this task, an analog-to-digital converter
(ADC) is used. An ADC can be realized by the comparison of the analog signal
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Fig. 5.18 Operating principle of an analog-to-digital converter

(to be digitized) to a voltage from a digitally generated voltage ramp. The principle
of operation of one simple ADC is shown in Fig. 5.18. A digital voltage ramp is
generated and converted to an analog voltage ramp using a DAC. The value of the
generated voltage ramp is compared to the analog input signal to be digitized using a
comparator. This comparator has a low digital signal as long as the voltage ramp has a
lower voltage than the input voltage. A comparator can be realized by an operational
amplifier without external feedback network. Due to its large open loop gain the
output will always be maximally positive as long as the negative input voltage is
smaller than the voltage at the positive input. The comparator signal changes to
logically high if the voltage ramp exceeds the voltage to be measured (Fig. 5.18).
This end of conversion signal is then fed to the ramp controller in order to stop the
ramp and to read the actual (digital) ramp value. With this digital value of the ramp, a
digital value of the analog input signal is saved and the conversion is stopped. Instead
of ramping up all digital values from zero, also some interval-based algorithm can
be also used in order to find the value closest to the analog input.

5.12 High-Voltage Amplifier

High-voltage amplifiers are needed to drive the piezo elements since the voltages
supplied by the digital-to-analog converters are usually only in the range up to ±10 V
and are not high enough to generate sufficient extensions of the piezo elements of
several micrometers. Therefore, the DAC voltages are amplified up to about 200 V,
which generates the required piezo extensions. We assume here again piezo tubes
as piezo elements. Much higher voltages are not advisable because they can lead
to a depolarization of the piezo material. A reasonable upper limit for the required
bandwidth of the high-voltage amplifiers is the resonance frequency of the piezo
element. You cannot move a piezo element at a frequency higher than its resonance
frequency. Therefore, 50 kHz is an upper limit for the required bandwidth. In practice,
the feedback loop (actually the current amplifier) often has a much lower bandwidth
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in the range between 1 and 10 kHz. In this case, a low-pass filter at the output of the
high-voltage amplifier can be used to reduce the noise. The output noise of the high-
voltage amplifiers should be less than 1 mV. With a typical z-piezo constant of about
50 Å/V, this corresponds to a noise in the extension of the piezo in the z-direction of
0.05 Å, i.e. 5 pm.

The piezo motions during scanning are relatively slow. In order to move inertial
sliders (Sect. 4.2), saw-tooth signals are applied to the piezo elements and the steepest
possible slope of the piezo motion is required. This means a high slew rate (voltage
change per time) of the high-voltage amplifier is required. The achievable slew rate
depends on the capacitive load at the output of the amplifier, i.e. the capacity of the
piezo elements. A high piezo capacity means that a lot of charge has to be pumped
to or from the piezo element. If this has to be done in a short time, a high current
has to flow. Therefore, high-voltage amplifiers driving piezo elements with a high
capacity have to supply a high current in order to achieve a high slew rate. This
can lead to problems of high power dissipation in the leads. This problem with the
high capacitance occurs mostly for monolithic stacks of piezo elements. They have
capacitances in the μF range, while piezo tubes, for instance, have only capacitances
in the nF range.

5.13 Summary

• Operational amplifiers are characterized by a very large input resistance, a very
low output resistance and a very large open loop gain.

• The actual gain of an operational amplifier including a feedback network is deter-
mined by the characteristics of the feedback network, not by the operational ampli-
fier.

• Two golden rules can be applied when analyzing an op-amp circuit: (i) The input
current vanishes. (ii) The voltage difference between the inputs is zero.

• A current amplifier converting the input current to an output voltage can be built
using an operational amplifier. The output voltage depends on the feedback resis-
tance as Vout = −Iin RFB.

• In the proportional controller, the actuating variable is proportional to the error
signal. In the integral controller the actuating variable is proportional to the time
integral over to the error signal.

• The transfer function, output signal divided by the input signal (including ampli-
tude and phase), is used to characterize the frequency response of electronic com-
ponents.

http://dx.doi.org/10.1007/978-3-662-45240-0_4
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