
Chapter 3
Technical Aspects of Scanning Probe
Microscopy

3.1 Piezoelectric Effect

In order to position the probe tip or the sample, piezoelectric elements are used as
actuators. The piezoelectric effect was discovered by the Curie brothers in 1880. A
sketch of their experiment is shown in Fig. 3.1. Tin foils were attached as electrodes
to two sides of a quartz plate. One tin foil was grounded and one connected to an
electrometer. While a force was applied to generate vertical strain, an electrical charge
was detected by the electrometer. The piezoelectric effect is used, for instance, to
ignite pocket lighters (generating the voltage which generates the lightning spark)
and many other technical applications such as sensor technology.

The converse effect occurs if a variable voltage is applied to the foils and a defor-
mation of the crystal results. The converse piezoelectric effect is used in piezoelectric
actuators. Since this deformation is very small and a continuous quantity, deforma-
tions much smaller than the diameter of an atom can be obtained for reasonably small
voltages in the mV range.

In order to apply an external electric field inside the (electrically insulating) piezo-
electric material, metallic electrodes at the surface are used. A voltage applied to the
electrodes induces an electric field in the piezo material (as in a capacitor with a
dielectric) and finally results in an extension of the piezo material. Vice versa, a
strain of the piezo material leads to a surface charge and thus to a charge on the
electrodes, and finally to a voltage between the electrodes.

The piezoelectric effect occurs only for crystals which are not centrosymmetric,
i.e. do not have an inversion center. If an inversion center exists no net electric dipole
moment can be induced inside the unit cell by straining the crystal. If a dipole moment
is present at a position r inside the unit cell, the opposite dipole is also present at the
position −r due to the inversion symmetry and the net dipole moment of the unit cell
is zero. During a directional deformation of a piezoelectric material, microscopic
dipoles are formed inside the crystallographic unit cell. These microscopic dipoles
lead to a charge at the surface of the crystal and a corresponding electric field inside
the crystal. In the converse piezoelectric effect, the crystal unit cell is deformed by an
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Fig. 3.1 Curie brothers’
experiment demonstrating
the piezoelectric effect
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external applied electrical field. An example of a piezoelectric material is crystalline
quartz. Another example of a piezoelectric material used in piezoelectric actuators
is PZT ceramics (lead zirconate titanate Pb[ZrxTi1−x]O3). PZT is piezoelectric and
also ferroelectric, which means that there is a permanent net electric dipole even in
the absence of any externally applied mechanical stress.

In the following, we explain the principle of the piezoelectric effect on the atomic
scale using the example of a PZT unit cell. The unit cell, which is shown schematically
in Fig. 3.2a, consists of Pb2+ at the corners of the unit cell, O2− at face centered
positions on the outer faces of the unit cell, forming an octahedron, and Ti4+ displaced
from the center of the unit cell. In Fig. 3.2b, the unit cell is shown from the side with an
arrow indicating the direction and size of the permanent electric dipole moment. The
electric dipole inside the unit cell results in a net charge at the surfaces (xy-planes) of
the piezoelectric PZT material, as in the case of a capacitor with a dielectric material
inside. The direction along which the permanent dipole moment points is taken as
the z-direction and the material is said to be poled along the z-direction.

When the piezoelectric material is strained in the poling direction (e.g. com-
pressed, as shown in Fig. 3.2c), the magnitude of the electric dipole moment decreases
and correspondingly the electric field inside the material and the surface charge
decrease. This case, where the strain is applied along the poling direction (z-direction)
leading to a voltage between the two opposite xy-surface planes, is called the longi-
tudinal piezoelectric effect.
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Fig. 3.2 a Schematic of the PZT unit cell. b Side view of the PZT unit cell with the dipole induced
by the displaced Ti4+. c Longitudinal piezoelectric effect: upon compression of the unit cell along
the z-axis the dipole is reduced leading to a corresponding change of the surface charge. d Transverse
piezoelectric effect: strain along the x-axis leads, due to the Poisson effect, to a change of the dipole
along the z-direction and a corresponding change of the surface charge. e Shear piezo effect: a shear
strain along the z-direction leads to a change of the x-component of the dipole and a corresponding
change of the surface charge

The case in which the external strain is applied perpendicular to the poling
direction (x-direction) is shown in Fig. 3.2d. In spite of the fact that the crystal is
compressed in the x-direction, no dipole moment occurs in x-direction (nor in the
y-direction), because there is an “inversion symmetry along the x-axis”. For every
atom there is an atom at the −x position inside the unit cell canceling the net dipole
moment along the x-direction. However, due to the Poisson effect any strain in
x-direction also leads to a corresponding transverse strain in the z-direction. This
strain in the z-direction will lead to a change of the dipole moment in z-direction
and to a corresponding change of the surface charge on the xy surface planes. This
piezoelectric effect in which a strain along the x-direction results in a change of the
dipole moment in z-direction is called the transverse piezo effect.

If a shear strain is applied along the z-direction, as shown in Fig. 3.2e, the dipole
turns and induces a change of the component of the dipole moment in the x-direction
and a corresponding build up of surface charge. This effect is called the shear piezo-
electric effect. In the first order, the dipole moment in the z-direction does not change.

Here we discuss the piezoelectric effect. However the reverse reasoning also
applies for the converse piezoelectric effect where a voltage applied to the outer
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metallic electrodes results in a strain. The charge applied to the outer metallic elec-
trodes leads to a change of the dipole moment in the piezoelectric material. This
corresponds to a capacitor with a dielectric, where an charge on the capacitor plates
induces a polarization and a corresponding surface charge. In the case of a piezo-
electric material the dielectric is already polarized without an outer electric field
applied. The change of the dipole moment (change of the polarization) induces in
piezoelectric materials a corresponding strain. This direction of the piezoelectric
effect is relevant for piezoelectric actuators. In the following, we describe the strain
produced in different types of piezoelectric actuators induced by a voltage applied
to their electrodes.

3.2 Extensions of Piezoelectric Actuators

If a voltage �V is applied across a rectangular piece of piezoelectric material
(Fig. 3.3a) of dimensions x, y, and z (poled in z-direction) the external applied electric
field is, due to the plate capacitor configuration, E3 = �V/z. In practical terms the
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Fig. 3.3 a Sketch of a piezo plate (dimensions x, y, and z) poled in the z-direction. Considering the
longitudinal piezo effect, an electric field in the z-direction induced by a voltage �V in z-direction
induces a strain in z-direction, �z. Considering the transverse piezoelectric effect a voltage in the
z-direction also induces a strain in the x-direction, and also of course in y-direction. In this case, the
piezo constant is proportional to the length x of the plate. b Since for the longitudinal piezo effect
the piezo coefficient is independent of the plate thickness z, several plates have to be stacked on top
of each other in order to tune (enhance) the piezo constant. c Photo of piezoelectric stack actuators
made by gluing together single piezo plates. d Monolithic stack actuators with much smaller layer
thickness of about 60µm in this case (reproduced with permission from PI Ceramic [2])
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field is applied to a piece of piezoelectric material via the metallic electrodes at the
surfaces of the piezo element. Often the directions x, y, and z are labeled as 1, 2,
and 3, respectively. The direction of the poling field is labeled as direction 3, or as
the positive z-direction. As a result of the applied electric field, a strain is generated
along the z-direction and also, via the transverse contraction of the material (Poisson
effect), a transverse strain in the x-direction. If a piezo plate as in Fig. 3.3a of thick-
ness z is strained in the z-direction by �z, the corresponding strain is S3 = �z/z.
The strain in x-direction is S1 = �x/x. The same also applies for the y-direction.

The mechanical strain developed in a piezoelectric material is known to be propor-
tional to the applied electric field, with the piezoelectric coefficients as proportionality
constants. The piezoelectric coefficients are material constants which depend, how-
ever, on the direction along which the electric field is applied and on the direction
along which the strain is considered. The piezoelectric coefficients are defined as
the ratios of the strain components (in a certain direction) over the component of
the applied electric field (in a certain direction), for example for the longitudinal
piezo effect

d33 = S3

E3
, and d31 = S1

E3
(3.1)

is the piezoelectric coefficient which applies in the case of the transverse piezoelec-
tric effect. Because strain is a dimensionless quantity, the piezoelectric coefficients
have dimensions of meter/volt. Their values are extremely small. For applications in
scanning probe microscopy, a natural unit is Å/V. Since the voltage difference at the
electrodes and the corresponding charge difference are related to the work �U which
has to be supplied to put charge to the electrodes by �V = �U

�Q , equivalent units for
the piezoelectric coefficients are also coulomb/newton. This is also equivalent to the
induced charge density (C/m2) per applied stress (N/m2).

While the piezoelectric coefficients are material properties the piezo constant is
assigned to a specific actuator element with specific dimensions, and the electric field
applied along a specific direction, and the strain considered in a specific direction.
The piezo constant is the ratio between the amount of motion in a certain direction
and the voltage applied between the electrodes, e.g. �z/�V .

As a first example, a piezoelectric plate shown in Fig. 3.3 serves as our piezoelec-
tric actuator, with the electric field applied along the z-direction (poling direction),
and the strain considered in the z-direction as well. There is also strain present in
the x-direction, which we will analyze later. The piezo constant �z/�V can be
calculated as follows

�z

�V
= �z/z

�V/z
= S3

E3
= d33. (3.2)

The piezo constant for motion of a piezo plate in the z-direction (induced by the
longitudinal piezo effect) is not dependent on the thickness of the piezo plate z. The
z-dependence in (3.2) is canceled out due to same dependence of both the electric
field and the strain on z. This means the piezo coefficient of a plate cannot be tuned
by changing its thickness (or, of course, also the diameter). The only way to tune or
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enhance the length extension per voltage is to stack several piezo plates on top of each
other as shown schematically in Fig. 3.3b. With common electrodes in between the
plates, neighboring plates have to have opposite poling and the electrical connections
to the electrodes have to be as indicated in Fig. 3.3b. A photo of this type of piezo
actuator known as a piezoelectric stack actuator, produced by the company PI, is
shown in Fig. 3.3c. The net displacement is the sum of the displacements of the
individual piezo plates. The dimensions of the piezoelectric stack actuators are very
flexible. Typical dimensions are in the mm range for the thickness of a single plate
and in the cm or even decimeter range for the length of the stack. Quite large piezo
constants can be achieved in this way (corresponding to a displacement of 10µm for
a stack height of 10 mm).

There are actually two types of piezoelectric stack actuators. The first type consists
of plates about half a mm in thickness, which are glued together to form a stack
(Fig. 3.3c). Such stack actuators are characterized by high operating voltages of
up to 1,000 V and low capacitances in the nF range. On the other hand, there are
monolithic stack actuators which are characterized by a much smaller piezoelectric
layer thickness (∼60µm) as shown in Fig. 3.3d. These monolithic actuators are
manufactured using a cofiring technology during sintering. This type of actuator has
a lower operating voltage of about 120 V. The disadvantage of such a piezo actuator
is its quite high capacity, in the µF range. If a quick extension of the actuator is
required, quite high charging currents have to be supplied.

In a different kind of piezoelectric actuator, the extension of a piezo plate in
x-direction due to the transverse piezoelectric effect can be exploited (Fig. 3.3a). The
piezo constant for the motion along the x-axis can be obtained as

�x

�V
= �x/x

�V/z

x

z
= S1

E3

x

z
= d31

x

z
. (3.3)

In this case, the piezo constant depends on the dimensions of the plate. The piezo
constant is proportional to the length x of the piezo element and inversely proportional
to its thickness z. Using the transverse piezo effect, the piezo constant of the actuator
can be tuned by its dimensions. To obtain a large piezo constant a long piezo or
a thin piezo element can be used. However, long, thin piezo elements lead to low
resonance frequencies of the bending vibration, which is disadvantageous for stable
STM operation, as we will see later. For a small thickness, the electric field rises
and may approach the allowed limits of the material. While we have considered a
piezoelectric plate here, the most frequently used shape for a piezoelectric actuator
based on the transverse piezo effect is the piezo tube, which we will consider in detail
later. A piezo tube can be imagined as a plate which is rolled up to form a tube.

Of course, in a piezoelectric plate both piezoelectric effects (the longitudinal and
the transverse) occur simultaneously. In both of the previous cases we focus on one
effect and neglect the other due to the specific direction of the extension we are
looking at. When discussing the longitudinal piezo effect of a plate we focus on the
change of the thickness of the plate and neglect the change in the width of the plate
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Fig. 3.4 a Sketch of a
piezoelectric plate operated
using the shear piezo effect.
b Photo of a single shear
piezo plate (6 mm × 7 mm).
c Photo of a shear piezo
stack (15 mm × 15 mm)
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due to the transverse effect. On the other hand, when we focused on the transverse
extension of a plate, we neglected the change of the thickness of the plate.

In Fig. 3.4a a piezoelectric plate is shown which is poled in the z-direction (hori-
zontal in this case) while the electric field (voltage) is applied along the x-direction,
i.e. vertical. As we have seen in Fig. 3.2e, this configuration leads to a shear strain
along the z-direction �z/x. In this case, the piezo constant is independent of the
dimensions and is called (due to some conventions)

�z

�V
= d15. (3.4)

As in the case of the longitudinal effect, the piezo constant does not depend on the
plate dimensions. Therefore, stacks of shear piezo elements are often used here as
well. Shear piezos are attractive piezo elements as they induce a uniform lateral
motion of their surface. As shown in Fig. 3.4b, shear piezos have a size of only a few
millimeters. If shear piezo elements are stacked onto each other and rotated by 90◦,
motions in two orthogonal directions can be performed as shown in Fig. 3.4c.

3.3 Piezoelectric Materials

Initially, the piezoelectric effect was observed in crystalline materials, for instance in
quartz. However, for use in piezoelectric actuators, single crystals are inconvenient.
Today mostly lead zirconate titanate ceramics (PZT, Pb[ZrxTi1−x]O3) are used as
materials for piezoelectric actuators because ceramics can be formed into various
shapes and because of their large piezo constant. These materials are ferroelectric,
which means they exhibit a permanent electric dipole even in the absence of an
external electric field. The unit cell of PZT has an anisotropic structure below the
Curie temperature, i.e. elongated in one direction as shown in Fig. 3.5a. Above the
Curie temperature, the crystal structure becomes cubic and the material loses its
piezoelectric properties Fig. 3.5b.

Directly after sintering, piezoelectric ceramics does not exhibit a piezoelectric
effect. This is due to two reasons: first the ceramic is a polycrystalline material with



38 3 Technical Aspects of Scanning Probe Microscopy

Pb2+

O2-

Ti4+

Pb2+

O2-

Ti4+

(a) (b)

Fig. 3.5 Unit cell of the PZT crystal structure a below the Curie temperature b above the Curie
temperature

randomly oriented crystallites and second also within a single crystallite there are
different domains. Inside a domain the dipoles within the unit cell are oriented in
parallel, while differently oriented domains exist in one crystallite as in the case
of ferromagnetism. These domains are randomly oriented in the raw piezoelectric
material when it is cooled below the Curie temperature after sintering. Ferroelectric
ceramics become macroscopically piezoelectric when poled. This means an elec-
tric field (>2,000 V/mm) is applied to the piezoelectric ceramics at temperatures
somewhat below the Curie temperature. Close to the Curie temperature the crystal
structure is almost cubic. With a field applied, the electric dipoles can switch (by
motion of the Ti atom) to one of the six possible directions (Fig. 3.5b) which lies
closest to the applied electric field. During poling, the domains can reorient and the
domain walls can also move. These domains stay roughly in alignment after cooling.
The material now has a remanent alignment of the dipoles, which can be degraded
by exceeding the mechanical, thermal and electrical limits of the material.

Some material properties of different piezoelectric materials are listed in Table 3.1.
The PZT nomenclature for the materials in Table 3.1 is an industry standard to which
several companies producing piezoelectric materials refer. However, the numbers
should be considered only as rough estimate since the actual values vary from man-

Table 3.1 Some properties
of piezoelectric materials

Material PZT-5A PZT-5H PZT-8

d31 (Å/V) −1.75 −2.50 −1.00

d33 (Å/V) 3.90 6.50 3.00

d51 (Å/V) 5.70 7.30 3.25

Tc (◦C) 360 220 300

Density (g/cm3) 7.7 7.7 7.6

Young’s modulus (1010 N/m2) 5.7 6.3 8.9

Q 90 100 1,200
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Fig. 3.6 Temperature
dependence of the
piezoelectric constants d31
for PZT-5A piezo ceramic
material relative to the room
temperature value (adapted
from [3])
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ufacturer to manufacturer. The Curie temperature Tc is the temperature above which
the material loses its piezoelectric properties irreversibly (like a ferromagnetic mate-
rial). Each material has a maximum operating temperature specified by the supplier,
which is often well below the Curie temperature. The mechanical quality factor Q
determines the sharpness of the mechanical resonance and the resonance amplitude
of an actuator made from this material.

The material properties of the piezoelectric materials are also temperature-
dependent. Most importantly the piezoelectric coefficients decrease for operation
at low temperatures as shown in Fig. 3.6 [3] for the example of PZT-5A. As a rule of
thumb, the piezo constants are for most piezo materials are roughly a factor of five
lower at the temperature of liquid helium than at room temperature.

3.4 Tube Piezo Element

One central task in scanning probe microscopy is to position the probe with an
accuracy of less than one tenth of an ångström in all three dimensions. The tube
piezo element (or tube scanner) is the most widely used actuator element to move
the probe tip or the sample in order to scan a surface (fine motion). One single
tube piezo element allows motions to be performed in three orthogonal directions.
Further advantages are high piezo constants and high resonance frequencies. The
tube scanner consists of a tube, made of piezoceramics (poled in radial direction),
which is covered inside and outside with metal electrodes. The outer electrode is
divided into four quadrants, as shown in Fig. 3.7. A motion in the z-direction (along
the longitudinal axis) can be achieved by applying a voltage between the inner and
all outer electrodes (Fig. 3.7b). A deflection in the xy-direction is induced by voltages
of opposite polarity applied to the two opposite outer electrodes Fig. 3.7c. Due to the
transverse piezoelectric effect, one segment of the tube extends along the tube axis,
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Fig. 3.7 a Photograph of
several tube piezo elements.
b Schematic side view of a
tube scanner showing the
vertical extension along z.
c Schematic of the lateral
movement in the x-direction
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while the opposite segment shrinks, giving rise to a bending of the upper part of the
tube, as shown in Fig. 3.7c. When a tube scanner is used to scan a tip, the tip (holder)
is mounted axially on top of the tube scanner.

The vertical displacement �L = �z of the top of the tube scanner is calculated
using (3.3) (exchanging the directions x and z), leading to the following piezo constant

�z

�V
= d31

L

h
. (3.5)

In order to obtain the lateral displacement �x of the tube, we assume that the bending
of the tube follows a circular arc as shown in Fig. 3.8. From this figure, we identify

Fig. 3.8 Sketch of the
geometry of a bent piezo
tube with the relevant
parameters
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(due to the definition of the arc length) the bending angle as

α = L

R
. (3.6)

Further, we identify L′ = L + �L, which can also be written as

L′ = α

(
R + Dm

2

)
= L + α

Dm

2
. (3.7)

This results in

α = 2
�L

Dm
, (3.8)

with Dm being the mean diameter of the tube. From Fig. 3.8 we also determine that
the cosine of the bending angle can be written as

R − �x

R
= cos α ≈ 1 − α2

2
. (3.9)

Thus the x-deflection of the tube is given by

�x = Rα2

2
. (3.10)

Replacing R using (3.6) and (3.8) results in the following expression for the
x-deflection of the tube

�x = �LL

Dm
. (3.11)

For the length extension �L of the piezo tube we can make the simplified assumption
that it is the vertical length extension according to (3.5). With this assumption the
piezo constant for the x-deflection results as

�x

�V
= d31L2

Dmh
. (3.12)

A better approximation for the length extension �L, which considers non uniform
stress in the electrodes due to bending, is considered in Appendix A and results in
the following expression for the piezo constant for horizontal bending

�x

�V
= 2

√
2

π

d31L2

Dmh
. (3.13)

This equation corresponds to the bipolar operation of the tube where voltages −�V
and +�V are applied to opposite electrodes.
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Typical dimensions of a piezo tube (PZT-5A) are as follows: length 25.4 mm,
mean diameter 5.84 mm, wall thickness 0.51 mm, which results in a piezo coefficient
for x and y directions of 725 Å/V and for the z-direction of 90 Å/V. The most effective
design parameter to tune the piezo coefficient is the length of the tube, as the xy-piezo
coefficient is quadratically dependent on the tube length.

What we have considered up to now is the deflection of the top of the piezo tube.
However, if a tip is mounted on a scanner tube, it is usually mounted at a distance
Ltip above the center of the piezo tube. In this case, an additional deflection �xtip
results, which can be written according to Fig. 3.8 and using (3.6) and (3.8) as

�xtip = Ltip sin α ≈ Ltipα = Ltip
2�L

Dm
= Ltip

4
√

2

π

d31L�V

Dmh
. (3.14)

Combining this with (3.13), the total piezo constant for the horizontal deflection
results in

�xtot

�V
= �x + �xtip

�V
= 2

√
2

π

d31Lpiezo

Dmh

(
Lpiezo + 2Ltip

)
, (3.15)

denoting the length of the piezo tube as Lpiezo.
One disadvantage of the tube scanner is the fact that x, y and z motions are not

completely decoupled. The x, y motion acts approximately on a sphere. Therefore,
every lateral motion also results in a slight motion in the z-direction and vice versa.
This is because the tube scanner relies on bending and not on linear motion. There is
a method to prevent this coupling [4]. As shown in Fig. 3.9, a z displacement can be
prevented during an xy-motion by an opposite bending in the upper part of the piezo
which now has eight electrodes on the outer side. With this trick, good linearity in
x and y directions is achieved and a coupling with the z-displacement is eliminated.
The disadvantage of this type of scanner is that the scan range in x and y direction is
reduced by a factor of two for a given piezo length.

Fig. 3.9 Instead of an
outside electrode divided
into four segments the outer
electrode has eight segments.
The upper part of the piezo
is bent in the opposite
direction to prevent a
displacement in the
z-direction

+Vx

+Vx -Vx

-Vx
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3.4.1 Resonance Frequencies of Piezo Tubes

Here we summarize equations for the resonance frequencies of tubes, and also of
beams such as those used as cantilevers in atomic force microscopy, taken from [1].
These equations are obtained using the assumptions underlying the (classical) Euler-
Bernoulli beam theory, which are the proportionality of stress and strain (small
bending), as well as the condition that a plane cross section of the beam remains
plane under bending, i.e. shear deformations are ignored. As a boundary condition
it is assumed that one end of the tube (beam) is rigidly fixed to a rigid wall.

The frequency of the lowest longitudinal (axial) vibrational stretching mode of a
rod or tube with one end clamped and one end free is

fstretch = λi

2πL

√
E

ρ
, (3.16)

where L is the length of the beam, ρ is its volume density, and E Young’s modulus.1

The value of λi for the ith resonance is given by λi = π/2 · (2i − 1). For the lowest
resonance (i = 1) the stretching frequency results as

fstretch = 1

4L

√
E

ρ
= c

4L
, (3.17)

where c is the longitudinal velocity of sound, which is given in long rods as c =√
E/ρ. For a mass M at the end of the beam (tube) the following expression holds

for the lowest axial resonance frequency

fstretch ≈ 1

2π

√
AE

ML
, (3.18)

with A being the cross sectional (material-containing) area of the beam (tube).
The resonance frequencies of the bending modes of a beam (perpendicular to the

beam axis) clamped at one end and free at the other end are given by

fbend = λ2
i

2πL2

√
EI

ρA
= λ2

i κ

2πL2

√
E

ρ
. (3.19)

The values for λi are 1.875 and 4.694 for the first two modes, respectively. The
dimensions of the beam enter into the area moment of inertia (also called second
moment of inertia) I = ∫

z2dA, where z is the direction of bending. The expression√
I/A = κ is called the radius of gyration and has the following expressions: for a

1 In tables sometimes also the elastic compliance S is used, which corresponds to the reciprocal of
Young’s modulus.
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circular rod κ = D/4, for a tube κ = √
D2 + d2/4, with D being the outer diameter

and d inner diameter. For a tube with negligible wall thickness κ = D/(2
√

2) results,
and for a beam with rectangular cross section (with width w and thickness t) κ =
1

12 wt3 results for bending in the direction of the thickness.
With an additional mass M at the end of the beam and the mass of the beam m,

the first resonance frequency can be expressed as

fbend = 1

2π

√
3EI

L3(M + 0, 2357m)
. (3.20)

Simple numeric estimates for the resonance frequencies are obtained from these
equations. As an example, we consider the lowest bending frequency of a tube.
Following (3.19) the bending frequency results as

f tube
bend = 0.56

√
D2 + d2

4L2

√
E

ρ
. (3.21)

For a PZT-5A tube with the dimensions length 12 mm, outer diameter 3.2 mm, and
inner diameter 2.2 mm, the calculated resonance frequencies are 56 and 10.1 kHz for
the stretching and the bending mode, respectively. These resonance frequencies can
also be measured experimentally in a setup like the one shown in Fig. 3.10a. An AC
voltage is applied to one of the four outer electrodes. Due to the piezoelectric effect
the tube bends and a voltage is induced by the piezoelectric effect on the opposite
electrode (the two other outer electrodes and the center electrode are grounded, as
shown in Fig. 3.10a). This kind of excitation excites the bending modes. The first
bending resonance is measured at 9.3 kHz (Fig. 3.10b), which corresponds roughly to
the calculated value of 10.1 kHz. The higher frequencies around 42 kHz correspond
to the second bending mode and do not correspond so well to the calculated value
of 62 kHz. Figure 3.10c shows the configuration for the excitation of the stretching
mode. The measured frequency of 49 kHz corresponds roughly to the calculated
frequency of 56 kHz.

Generally, the bending resonance frequencies are overestimated by the equations
for two reasons: the neglect of shear forces in the Euler-Bernoulli theory and the
idealized boundary conditions. At one end, the tube (beam) is considered to be fixed
rigidly to a stiff support. However, the support has some elasticity and, if the tube is
glued to the support, also its elasticity enters into the considerations.

If tube piezos have been depolarized, e.g. by too high temperature, they can
be repolarized by applying a DC voltage between the inner and outer electrodes
(the polarity should be the same as during poling, which is different for different
manufacturers). The necessary voltage depends on the wall thickness of the tube.
An electric field of about twice the coercitive field (cf. Fig. 3.12) should be used for
several hours at room temperature, or rather at elevated temperature but still below
the Curie temperature.
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Fig. 3.10 a Schematic of the measurement setup with an electric excitation of the mechanic oscilla-
tion of a tube piezo element (bending mode). The amplitude of the mechanically excited oscillation
is detected by the piezoelectric effect. b Amplitude of the mechanic oscillation. Resonances are
observed at the first bending mode at 9.3 kHz and at the second bending mode around 42 kHz.
c Schematic setup for the excitation of the stretching mode. d The first stretching resonance fre-
quency is measured at 49 kHz

3.5 Flexure-Guided Piezo Nanopositioning Stages

A further continuously moving nanopositioning system uses flexure guides. It relies
on the elastic deformation of a spring-like structure which confines the motion in
only one direction and is driven by a piezo element. The working principle can be
seen in Fig. 3.11a. In a metal block, small trenches are cut by wire EDM (Electri-
cal Discharge Machining). These trenches are shaped in a meandering way so that
they allow a spring-like motion along one direction for the material inside, while
being stiff along the other directions. A second set of trenches forms flexures to
guide the motion along the orthogonal direction. Stacks of piezo elements (blue in
Fig. 3.11a) are used to move the flexures. Sometimes a mechanical lever is included
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(a) (b)

Piezo
Piezo

Mechanical lever

Fig. 3.11 a Flexure-guided piezo nanopositioning xy-stage. b Flexure-guided piezo stage with an
integrated mechanical lever amplifying the motion

in the flexures (Fig. 3.11b) in order to amplify the motion ranges up to hundreds
of micrometers. Capacitive position sensing detectors can be integrated to allow a
precise measurement of the motion. One disadvantage of the flexure-guided piezo
nanopositioning stages is that they are relatively large.

3.6 Non-linearities and Hysteresis Effects
of Piezoelectric Actuators

The positioning performance of piezoelectric actuators is limited by the effects of
hysteresis and non-linearities, which will be discussed in the following.

3.6.1 Hysteresis

There are mainly two contributions which lead to a strain of a piezoelectric ceramic
in the presence of an outer electric field. The intrinsic effect results from the dis-
placement of the ions inside the crystal lattice in the presence of an electric field, as
shown in Fig. 3.5a. This effect is approximately linear and non-hysteretic.

A second extrinsic contribution results from the reorientation of the ferroelectric
domains present in the crystal lattice. A ferroelectric ceramic consists of sintered
crystallites which have a random orientation of their crystalline lattice. Inside a
crystallite, ferroelectric domains with different orientations exist as follows. As seen
in Fig. 3.5, the Ti ion in the crystal lattice can move in six different directions, and
domains with six different orientations (ferroelectric domains) can exist in the crystal
lattice. The ferroelectric domains with their inner electric field parallel to the outer
applied field have lowest energy and the domains with anti-parallel orientation have
the highest energy. Thus there is an energetic tendency for a reorientation of the
domains parallel to the applied electric field. However, there is also an intrinsic
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Fig. 3.12 The butterfly curve of the piezoelectric material PIC 151 [2] for the applied field and the
displacement, both in 3-direction. The strain is shown in dependence of the applied electric field
for large electric fields. The corresponding polarization of ferroelectric domains is also indicated
in a simplified scheme. The butterfly curve shown here was kindly measured by aixACCT [5]

energetic barrier which has to be overcome by the Ti atom when jumping from one
of the six directions to another one.2 With increasing and decreasing electric field
the sizes of different domains change. Due to the barriers which have to be overcome
to reach a low energy state, the inner state of the system (roughly the volume of each
domain orientation) depends on the history of the system leading to the hysterietic
behavior.

Hysteretic behavior in general means that the response of the system (extension of
the piezo) does not only depend on the external conditions (applied electric field in our
case), but also on the internal state of the system (i.e. its history and here specifically
the state of the domain structure). The hysteresis behavior of a piezoelectric ceramic
is usually shown in a butterfly curve, where the strain is plotted in dependence
of the applied electric field (Fig. 3.12). This figure also shows a schematic sketch
of the polarization in the domains. The domains are considered to be square and
aligned with respect to the applied field. Also only two of the six possible domain
orientations are considered. Point 1 corresponds to saturation polarization where
all domains are aligned and also corresponds to maximum strain. If the electric
field is subsequently reduced to zero the point of remanent polarization is reached
(point 2), where most of the dipoles are still oriented parallel to the outer field.
This state corresponds to a certain remanent strain. Between point 1 and point 2 the
strain is mainly induced by the intrinsic piezoelectric effect. When the electric field
changes orientation the domains also begin to reverse their orientation and the strain
is increasingly also induced by domain reorientation. Approaching point 3, the net

2 In this simplified consideration, we have left out the formation energy of domain walls which
results in the formation of larger domains. Larger domains mean less domain wall energy. A further
contribution in the energy balance is the build up of mechanical strain inside the domains when an
external electric field is applied.
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polarization of the domains is zero. With an increased electric field in the opposite
direction the domains begin to align to the opposite direction and correspondingly
the strain increases again to its maximum value (point 4). When the electric field is
subsequently reversed again, the strain follows a different curve from point 4 to point
5 to point 6 and to point 1. This means that the strain induced by domain reorientation
is subject to hysteresis, i.e. depends not only on the external applied electric field but
also on the history or the internal state of the system.

The butterfly curve shows the large signal response of piezoelectric ceramics.
The working range of piezoelectric materials is between point 1 and point 2 for
unipolar operation. For bipolar operation which is used to drive tube piezo elements
in scanning probe microscopy, point 3 must not be reached because it corresponds
to a depolarization of the piezo. Usually only electric fields substantially below the
point of depolarization should be used.

In Fig. 3.13, smaller voltage signals which are used for scanning in SPM are
shown together with the corresponding displacement. Also here a hysteresis is visible
indicated by the elliptic curves which correspond to voltage sweeps form zero to a
maximal voltage and back to zero (indicated by the arrows). Such a voltage sweep
corresponds to scanning one line in an SPM image. Two effects are observed during
these voltage sweeps: first the displacement is different for increasing and decreasing
voltages and second this hysteresis increases for larger voltage amplitudes.

Due to this hysteretic behavior the piezo constant (displacement divided by volt-
age) is not constant anymore. The piezo “constant” depends on the applied voltage
and also on the history of the system (which voltages were applied before). If we
define the maximum displacement divided by the maximum voltage during one volt-
age sweep as average piezo constant for this voltage sweep, we see that this average
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Fig. 3.13 The displacement induced by an applied voltage also shows hysteretic behavior in a
range up to 200 V for the applied voltage and the displacement, both in 3-direction. The average
piezo constant indicated by the dashed lines increases for increasing voltage amplitudes. Due to this
the piezo constants and the corresponding displacements can vary by 10–25 %. The curves shown
here was kindly measured by aixACCT [5] on a PIC 151 ceramic [2]
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piezo constant increases with the voltage amplitude. This effect results from the
increasing contributions due to extrinsic domain reorientation at larger voltages. The
average piezo constants are indicated by dashed lines in Fig. 3.13 for the two volt-
age sweeps with smallest and largest amplitudes. The average piezo constant for the
smallest and the largest voltage sweeps in Fig. 3.13 differ by about 18 % in this case.
This means that due to the effect of hysterisis the piezo constant and correspondingly
the piezo displacements vary by 10–25 % for different voltages.

This variation (increase) of the piezo constant for larger voltages leads to signifi-
cant image distortions at larger scan sizes, visible for instance when imaging defined
gratings on the scale of several micrometers. The piezoelectric coefficients quoted
by the manufacturers of piezo elements are those in the small voltage limit.

3.6.2 Creep

When considering hysteresis (i.e. the domain orientation in dependence of the applied
electric field), always a very slow, quasi-static change of the electric field was consid-
ered. Since the domain reorientation is an energetically activated process, this process
also depends on time. In the case of an instantaneous change of the electric field,
the domain reorientation (domain wall motion) and the subsequent build-up of strain
(extension of the piezo) do not happen instantaneously but take some time after the
electric field has been established. As a result of a sudden jump in the voltage applied
to the piezo electrodes the change in position is not instantaneous. A certain time
dependence of the position, called creep, is observed. A measurement of creep (dis-
placement as function of time) for short times after an instantaneous voltage jump is
shown in Fig. 3.14. For an ideal piezo actuator without creep the displacement would
occur only at the time of the voltage jump and not change afterward.

In SPM, the creep results in an effect at the turning points of the scanning move-
ments of each scan line. A positive piezo extension still occurs due to creep, while

Fig. 3.14 Creep is the piezo
displacement after an
instantaneous voltage jump.
The curve shown here was
kindly measured by
aixACCT [5] on a PIC 151
ceramic [2]
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the voltage change has already reversed its direction. In the vertical direction creep
occurs after the (rapid) approach of the tip to the sample. During the approach process,
large variations of the z-position are usual and after the approach to the surface a
creep in z results.

Creep and hysteresis are also the reason why in scanning probe methods two
successive scan lines should not be scanned in opposite directions (first line: +x,
second line −x, …) but always in the same direction (first line: +x, second line +x,
…) (no data are acquired while scanning backwards in the −x-direction). For lines
scanned in opposite directions, a mutual shift in the position of up to 20 % would
result due to creep and hysteresis.

3.6.3 Thermal Drift

Thermal drift of the mechanical setup leads to image distortions. This is a general
effect on all mechanical components of the microscope, and is not limited to piezo
elements; specifically, when the sample has been previously annealed (for instance
in the process of sample cleaning). Usually it takes some time after approach before
the thermal drift is reduced sufficiently for imaging. In low temperature experiments
thermal drift is suppressed.

In conclusion, due to all the above mentioned limitations for piezoelectric scan-
ners, scanning probe techniques are generally not suitable tools for a quantitative
measurement of distances in the micrometer range (without careful separate cali-
bration). If atomic resolution is achieved the lateral calibration can be performed by
taking atomically resolved images of a known surface structure. The vertical calibra-
tion is usually performed at (single) monoatomic step edges. If no atomic resolution
is obtained, commercially available calibration grids can be used for horizontal and
vertical calibration.

An absolute calibration of scanners is also possible using interferometric or capac-
itive position sensors. In this case, a closed loop operation can be realized. In a feed-
back loop, the voltage at the piezoelectric actuator is adjusted such that the desired
and measured displacement of the actuator is reached. This is the best way to elimi-
nate all effects of piezo hysteresis and creep. However, the measurement of the piezo
extension results in larger sizes of the piezoelectric actuator. Also an increased num-
ber of cables and additional control electronics are needed. Nowadays, closed loop
operation is standard in atomic force microscopes.

3.7 STM Tip Preparation

Tip preparation is an important point, which defines the resolution of the scanning
tunneling microscope and the quality of the images. The tip should have a minimal
radius of curvature at the end and a narrow diameter to penetrate into trenches and
pits on the surface. The tip material should be stable in high electric fields.
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Tips for STM under ambient conditions are typically made of platinum or a Pt-Ir
wire in order to prevent oxidation of the tip material in air. A more or less sharp tip
can be produced by cutting and/or grinding. These crude tip preparation techniques
are only used for scanning very flat surfaces like graphite. For STM in vacuum,
electrochemically etched tungsten tips are most frequently used. The most common
procedure of electrochemical etching is the DC drop-off method [6]. A tungsten wire
(diameter 0.25 mm) is put into a solution of NaOH (e.g. 5 g NaOH in 50 ml water) and
kept at a positive potential towards a stainless steel counter electrode (Fig. 3.15a). The
etching process takes place predominately near to the surface of the solution. Due to
convection, fresh OH− is supplied from the air-electrolyte interface. The downward
flow of the heavy W anions protects the lower part of the wire in the electrolyte
from the supply of fresh OH−. These specific conditions lead automatically to the
formation of a narrow neck shown in Fig. 3.15a. When the neck is etched thin enough
the wire fractures due to its weight. Additionally, in order to prevent any further
etching, the etching voltage is shut down by the control electronics. The remaining
top part will be used as the tip (Fig. 3.15b) and has to be cleaned with deionized water.
Most often the tip is covered with an oxide layer and contaminations from the etchant.
Thus other in vacuum treatments of the tip, like annealing or field evaporation, are
often applied.

There are several different types in situ (in vacuum) tip treatment. Due to the
fact that the real sharpness of the tip on the atomic scale cannot be accessed these
treatments often have the character of highly empirical procedures. In the following,
some examples of further cleaning and characterization in vacuum are given.

Heating. The freshly etched tip is fixed in a special tip-holder and installed into
a load-lock chamber for transfer to vacuum. Resistive heating of the tip apex can be
performed in order to remove the oxide layer and other contaminations remaining

Fresh OH
-

WO4

W

NaOH

(a) (b)

Fig. 3.15 a Schematic of electrochemical tip etching. b SEM image of an etched tip, original wire
diameter 0.25 mm
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after the chemical etching [7]. A direct current is applied between the tip and a
tungsten wire (diameter 0.5 mm) that touches the tip wire at a point near to the tip
apex. The tip should be heated to a temperature above 800 ◦C for several seconds. The
sharpness of the tip is controlled by the value of the applied voltage required in order
to achieve a certain field emission current from the apex of the tip. It was found that
to obtain an emission current of 1 nA, the applied voltage should not exceed 600 V.
If a higher voltage than 600 V is required the tip has a poor sharpness and has to be
changed. The pressure during this operation should be less than about 10−8 mbar.
After this second step of tip preparation, the tip is introduced into the tunneling
microscope by the transfer system. Another way of heating the tip is heating by
electron bombardment.

Sputtering. Ion bombardment of the tip under vacuum conditions (for instance Ar
ions at several hundred volts) can be used to clean and sharpen the tip.

High field treatment. It is also possible to sharpen the tip during tunneling. The
bias voltage is raised for a short time (for several scan lines) to several volt (negative
at the sample). By this treatment some W atoms may diffuse to the tip apex due to
the non-uniform electric field and form a nanotip.

Tip indentation into metal. It is also possible to reshape a blunt tip by indenting
(pressing) it several nm into a soft metal sample. In this way a new microtip can be
formed. This is also the reason why, when working on metal samples, the tip is rarely
replaced.

3.8 Vibration Isolation

In order to keep the scanning probe stable with respect to the sample with an accuracy
of less than 0.1 Å would (ambitiously) require a vibrational noise level of about a
factor of ten lower than this for the relative motion between tip and sample, i.e.
1 pm. In this case, the usual amplitudes of building vibrations of ∼0.1µm have
to be reduced by a factor of 100,000 for the tip-sample distance. As we will see
in the following, to accomplish this task both good vibration isolation and a rigid
microscope have to be combined.

We will perform the analysis of the vibration isolation in two steps. In the first
step, we will consider the microscope as a rigid construction of mass m and ask:
How can this mass be isolated from outside vibrations? In the second step, we also
consider the microscope itself as a oscillating system where the tip oscillates against
the sample and we ask: How can these tip-sample oscillations be reduced?

3.8.1 Isolation of the Microscope from Outer Vibrations

If the microscope is considered as a rigid mass, outside vibrations are transmitted
from the ground and the air. An effective vibration isolation can be obtained by
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Fig. 3.16 a Vibration
isolation of a microscope
(represented by a mass m)
against external vibrations x1
using a spring suspension.
b Transfer function of the
vibration isolation system for
Qspring = ω0/γ = 5
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a spring suspension (Fig. 3.16a). The microscope assembly (mass m) is fixed to a
spring with spring constant k. This harmonic oscillator has a natural frequency of
ω0 = √

k/m. The oscillating system is damped with a damping factor γ (or the
corresponding quality factor Qspring = ω0/γ). An external (sinusoidal) vibration
x1(t) with amplitude x0

1 and frequency ω (vibration from of the building floor) is
coupled into the system (Fig. 3.16a). As a reaction to this outside forced excitation,
the mass m performs an oscillation x2(t) with amplitude x0

2 at the driving frequency
ω. We refer the motions x1 and x2 relative to a fixed (not oscillating) reference system.
The elastic force on the mass depends on the difference of the positions (x2 − x1).
Thus the restoring force of the spring acting on the mass m is

Fspring = −k(x2 − x1), (3.22)
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In the current case, it is assumed that the frictional damping force depends on the
difference of the velocities3 (ẋ2 − ẋ1). Therefore, the damping force Ffrict is

Ffrict = γm(ẋ2 − ẋ1). (3.23)

The equation of motion for the mass m reads now

ẍ2 + γ(ẋ2 − ẋ1) + ω2
0(x2 − x1) = 0, (3.24)

or reordered slightly
ẍ2 + γẋ2 + ω2

0x2 = γẋ1 + ω2
0x1. (3.25)

For a sinusoidal vibration of the frame x1 can be written in the complex notation
(skipping the tilde)

x1(t) = x0
1eiωt, (3.26)

the steady-state solution for the motion of the mass m is

x2(t) = x0
2eiωt . (3.27)

with x0
1 and x0

2 being complex amplitudes which include a relative phase shift between
the two amplitudes.

Substituting (3.26) and (3.27) into (3.25) we obtain (again using the power of the
complex method: differentiation is just multiplication by iω)

− ω2x2 + iγωx2 + ω2
0x2 = iγωx1 + ω2

0x1. (3.28)

or
(−ω2 + iγω + ω2

0)x0
2eiωt = (iγω + ω2

0)x0
1eiωt . (3.29)

Finally, we obtain
x0

2

x0
1

= ω2
0 + iγω

ω2
0 − ω2 + iγω

. (3.30)

This ratio is still a complex number, since both amplitudes are complex quantities
having a real amplitude and phase. The ratio of the absolute values of the amplitudes
is called the transfer function of the vibration isolation system κspring(ω), which can
be written as

κspring(ω) =
∣∣x0

2

∣∣∣∣x0
1

∣∣ =
√

ω4
0 + γ2ω2

(ω2
0 − ω2)2 + γ2ω2

. (3.31)

3 If the damping medium is at rest relative to a fixed external coordinate system, (i.e. not oscillating
together with x1, as assumed here), the term ẋ1 has to be neglected in the following. This case
applies to a cantilever in atomic force microscopy damped in air.
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The response of the system to a driven oscillation κspring(ω) can be divided into
three regimes (Fig. 3.16b). For ω � ω0 the outside excitation is transmitted with a
transfer function of one, i.e. without any damping. For a frequency close to the natural
frequency of the system (in resonance), the outside excitation is even amplified, i.e.
the vibrations are increased instead of damped. At ω = ω0 the transfer function at
becomes

κspring(ω0) =
√

ω4
0 + γ2ω2

0

γ2ω2
0

=
√

1 + ω2
0

γ2 =
√

1 + Q2
spring. (3.32)

For small damping (γ � ω0 or equivalently Qspring � 1), the transfer function can
be approximated by

κspring(ω0) ≈ ω0

γ
= Qspring. (3.33)

If the Q-factor is very large, the external vibration would be amplified tremendously
at ω0. To avoid such resonance excitation, appropriate damping must be applied.

In the third regime ω � ω0 and γ approaching zero (or correspondingly Qspring
very large), the transfer function (3.31) reduces to

κspring(ω) ≈
(ω0

ω

)2
. (3.34)

This shows that for excitation frequencies ω much larger than the natural frequency
ω0 and for small damping, the external vibrations are suppressed ∼1/ω2. We have
seen that damping (small Q-factor or large γ) avoids resonance excitation. However,
on the other hand damping deteriorates vibration isolation at higher frequencies. The
transfer function becomes asymptotically ∼1/ω for Qspring = 1. In Fig. 3.17 the
transfer function is shown for different values of Qspring. In typical spring suspen-

Fig. 3.17 Transfer function
of a spring suspension
system for different values of
the quality factor Qspring
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sion systems, a compromise between good damping at high frequencies and large
resonance enhancement is chosen for Qspring ≈ 2 − 5.

The best vibration isolation (for instance from building vibrations) is achieved with
the lowest natural frequency of the spring system. Therefore, the natural frequency
of the spring system is the prime parameter of a vibration isolation system. In the
following, we will show that this parameter only depends on the extension length of
the spring �l.

Hooke’s law results in k�l = mg. If we insert the result for m into the equation
for the natural frequency of the system f0 = 1

2π

√
k/m the natural frequency for the

system can be written as

f0 = 1

2π

√
k

�lk/g
= 1

2π

√
g

�l
. (3.35)

To achieve a natural frequency of 1 Hz the spring should be stretched by 25 cm. To
achieve a natural frequency of 0.5 Hz the spring has to be stretched by 1 m. This length
is difficult to integrate in a system. Some reduction of the length of the springs can be
achieved by using pretensioned springs. Such springs are available in principle, but,
it is difficult to manufacture springs which simultaneously feature a high pretension
force and a low natural frequency.

Note that the mass and the spring constant do not enter explicitly into the expres-
sion for the natural frequency. This equation is the same as for a simple pendulum
with length �l. Therefore, a spring suspension system acts as a isolation device for
both vertical and horizontal environmental vibrations.

3.8.2 The Microscope Considered as a Vibrating System

In the second step of our analysis of the vibration isolation, we consider the micro-
scope itself as a vibrating system. While it is wise to couple the sample most rigidly
to the scanner/tip assembly, this (stiff) mechanical loop of the microscope can also
be characterized as a vibrating system with a (quite high) resonance frequency ωSTM
and a damping constant γSTM, or corresponding quality factor QSTM = ωSTM/γSTM
(Fig. 3.18). The softest part in the mechanical loop is the piezo material with a typi-
cal quality factor of 100. Let x2 describe the oscillation of the microscope body (or
sample in Fig. 3.18a), and x3 the vibration of the scanner/tip assembly (Fig. 3.18a).
Here one point is important (which makes life much easier): it is not the vibration
amplitude of the tip x3 (relative to the floor x1) that has to be reduced to a minimum
but only the difference of the motion between tip and sample x3 − x2. Only the rela-
tive motion of the tip relative to the sample counts! The differential equation for the
vibrating tip x3 relative to an external fixed reference is

ẍ3 + γSTM(ẋ3 − ẋ2) + ω2
STM(x3 − x2) = 0. (3.36)
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Fig. 3.18 a The microscope
itself is considered as an
oscillating system
characterized by ωSTM and
γSTM. Tip and sample
oscillate against each other.
b Transfer function κSTM
according to (3.40) for the
microscope with resonance
frequency ωSTM
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The spring force is proportional to x3 − x2 and the frictional force is proportional to
ẋ3 − ẋ2. Using the complex method to solve the differential equation results in

− ω2x3 + iγSTMω(x3 − x2) + ω2
STM(x3 − x2) = 0, (3.37)

or

− ω2x2 − ω2(x3 − x2) + iγSTMω(x3 − x2) + ω2
STM(x3 − x2) = 0. (3.38)

The (complex) ratio of the difference of the amplitudes x0
3 − x0

2 to the amplitude of
the base of the microscope x0

2 is obtained as

x0
3 − x0

2

x0
2

= ω2

ω2
STM − ω2 + iγSTMω

. (3.39)

The transfer function results in

κSTM(ω) =
∣∣∣∣∣
x0

3 − x0
2

x0
2

∣∣∣∣∣ =
√

ω4

(ω2
STM − ω2)2 + γ2

STMω2
. (3.40)
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The resulting transfer function is plotted in Fig. 3.18b and can be approximated by

κSTM(ω) ≈
(

ω

ωSTM

)2

, (3.41)

for ω � ωSTM, and small damping, with ωSTM being the natural frequency of the
STM (mechanical loop between tip and sample). When the excitation frequency ω
is much lower than the natural frequency of the microscope ωSTM, good damping
of the external vibrations is achieved. In Fig. 3.18b we use QSTM = 100, since the
material with the lowest Q-factor in the mechanical loop is the piezo ceramic, which
has a typical mechanical quality factor of about 100.

3.8.3 Combining Vibration Isolation and a Microscope
with High Resonance Frequency

The concept for an effective vibration isolation is to combine the two approaches
and use a low natural frequency for the vibration isolation system and a high natural
frequency for the mechanical loop of the microscope. According to (3.31), a vibration
of the frame with amplitude

∣∣x0
1

∣∣ is transmitted to the STM base with amplitude
∣∣x0

2

∣∣ as

x0
2 = κspringx0

1 . (3.42)

(From now on, we consider the amplitudes as real and omit the absolute signs.) Fur-
thermore the vibration amplitude of the STM base x0

2 induces (according to (3.40))
a relative amplitude between tip and sample of

x0
3 − x0

2 = κSTMx0
2 . (3.43)

In total, an outer vibration of amplitude x0
1 induces a relative tip sample vibration of

amplitude x0
3 − x0

2 as

x0
3 − x0

2 = κSTMx0
2 = κSTMκspringx0

1 . (3.44)

or the total transfer function can be written as

κtotal = x0
3 − x0

2

x0
1

= κSTMκspring. (3.45)

The transfer function of the combined system is the product of the transfer functions
of the individual systems.



3.8 Vibration Isolation 59

Fig. 3.19 Transfer function
of the combined system κtotal
given by the product of the
individual transfer functions
of the spring suspension
system κspring and the STM
itself κSTM for the case of
small damping, i.e.
QSTM = Qspring = 100
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According to (3.34) and (3.41), the total transfer function can be approximated in
the frequency range ω0 < ω < ωSTM as

κtotal ≈
(ω0

ω

)2
(

ω

ωSTM

)2

=
(

ω0

ωSTM

)2

. (3.46)

This behavior of an approximately constant transfer function in between the reso-
nance frequencies ω0 and ωSTM can be seen in Fig. 3.19 in which the transfer function
is shown in the limit of negligible damping (QSTM = Qspring = 100).

If, for example, the natural frequency of the spring suspension system is 1 Hz
and the natural frequency of the STM is 1 kHz, the overall transfer function for
intermediate frequencies has a constant value of 10−6, as shown in Fig. 3.19. If we
would be able to raise the resonance frequency of the STM to 10 kHz the total transfer
function for the transmission of an external vibration to the tip-sample distance would
go to 10−8!

Next we consider more realistic transfer functions by including damping. For
the spring suspension system we consider Qspring = 5, while we assume QSTM =
100. When damping is included the total transfer function is not constant. The total
transfer function according to (3.31) and (3.40) is plotted in Fig. 3.20 together with
the individual transfer functions of the spring suspension and the STM. It is assumed
that the STM mechanical loop can be approximated by a single natural frequency
1,000 times higher than the natural frequency of the spring suspension. With this
assumption, the transfer function stays below the initial desired value of 10−5 up to
ω/ω0 < 40. The quite high values of the transfer function for higher frequencies
(which arises due to the relatively strong damping of the spring suspension) could
be regarded as problematic. However, as we will see in the next section, the driving
amplitude of the exciting floor vibrations decreases at larger frequencies.

In summary, the spring suspension acts as a low-pass for vibrations with frequen-
cies smaller than the natural frequencies of the springω0, while it damps the vibrations
at larger frequencies. On the other hand, the STM assembly acts as a high-pass for
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Fig. 3.20 Transfer function
of the combined system κtotal
which is the product of the
individual transfer functions
of the spring suspension
system κspring and the STM
itself κSTM
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vibrations with a frequency larger than ωSTM, while it damps the vibrations at lower
frequencies. The total transfer function is the product of the transfer functions of
the spring suspension and STM. In order to keep the total transfer function low at
all frequencies, a low natural frequency of the vibration isolation, as well as a high
frequency of the microscope mechanical loop are required.

The necessary damping of a spring suspension system is often performed by
eddy-current damping. When a conductor (usually copper) moves in a magnetic
field, damping forces are generated by eddy currents inside the conductor, as shown
in the schematic in Fig. 3.21a. An example of an eddy-current damping system is

S      N

(a)

(b)

Copper

STM

Long springs
inside tubes

Magnets

m

x1

x2

Fig. 3.21 a Principle of an eddy-current damping system with a magnet next to a conductor in
which the energy is dissipated as eddy currents. b Photo of an eddy-current damping system with
STM
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shown in Fig. 3.21b. The disadvantage of a spring suspension system is the large
size. Another way of damping is to use a stack of metal plates separated by rubber
(e.g. Viton®) pieces, which act as springs and dampers simultaneously. A further
method of vibration isolation is to mount the SPM on pneumatic isolation legs (also
used for optical tables). A typical resonance frequency of such a table is 1–2 Hz, and
a transfer function of smaller than 0.01 can be achieved for frequencies larger than
10 Hz.

3.9 Building Vibrations

Building vibrations are most pronounced in the low frequency range below 10 Hz.
Building vibrations can be influenced by external conditions like nearby railway
lines or motorways. Also inside a building the building vibrations are increased by
compressors, large machines, and ventilation systems. As a general rule the intrinsic
building vibrations are more pronounced in higher floors and correspondingly lowest
in the basement of a building. For this reason, sensitive scanning probe microscopes
can be often found in the basement.

Geophones (accelerometers) are typically used to measure building vibrations.
The quantity measured by these instruments is the velocity. In Fig. 3.22, the velocity
of the building vibrations measured on a floor in a building in Research Center
Jülich is plotted as function of vibration frequency. The general behavior is that the
amplitude deceases with increasing frequency. The highest amplitudes are typically
observed for low frequencies around 1–2 Hz. In Fig. 3.22 a value of v0 ≈ 0.7µm/s is
observed at low frequencies. In order to convert the measured data from the velocity
to oscillation amplitude or acceleration, we recall that

Fig. 3.22 Velocity of the
building vibrations measured
on the floor in a building at
the Research Center in Jülich
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without suspension
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Fig. 3.23 Expected tip-sample vibrational amplitude as a function of frequency, calculated using
the measured building vibrations and the appropriate transfer function from Fig. 3.20. The amplitude
of the building vibrations is shown as a red line. The data are taken from Fig. 3.22 and extrapolated
for higher frequencies. The green and blue curves show the behavior with and without a spring
suspension system, respectively

x = x0 cos(ωt), (3.47)

v = ẋ = −x0ω sin(ωt) := −v0 sin(ωt), (3.48)

a = ẍ = −x0ω
2 cos(ωt). (3.49)

Therefore, the vibration amplitude at 2 Hz is x0 = v0/ω ≈ 50 nm. The corresponding
acceleration is a0 = ωv0 ≈ 10−5 m/s2 ≈ 1µg.4

The measured building vibrations x0
1(ω) can be included in the vibration analy-

sis performed previously. According to (3.44), the relevant tip-sample vibrational
amplitude x0

3 − x0
2 can be expressed as a function of frequency as

x0
3 − x0

2 = κtotal(ω)x0
1(ω). (3.50)

If we multiply the total transfer function by the measured floor vibration amplitude
(derived from Fig. 3.22), the expected tip-sample vibration amplitude arising due to
the floor vibrations is shown in Fig. 3.23. The case where no spring suspension is
invoked is shown as blue line, leading to a roughly constant tip-sample vibration
amplitude of 10−4 nm = 0.1 pm. However, close to the resonance frequency of the
STM the amplitude increases by the usually quite high quality factor of the STM.
This disadvantageous resonance behavior (amplitude up to 0.1 nm) can be suppressed
using a spring suspension system. The tip-sample vibrational amplitude includ-
ing a spring suspension (green curve) suppresses the amplitude at STM resonance

4 Sometimes a factor of 1/
√

2 is included if the root mean square (RMS) amplitude instead of the
peak amplitude is measured.
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frequency, but also leads to a resonance at the eigenfrequency of the spring suspension
system, which has to be suppressed by proper damping of the spring suspension sys-
tem. In this case, the tip-sample vibrations are reduced to values below one picometer
for all frequencies.

3.10 Summary

• Due to the piezoelectric effect a voltage applied to the electrodes of a piezoelectric
element leads to a strain, i.e. a motion of some part of the element.

• The piezo constant describes the sensitivity of a piezoelectric actuator in Å/V.
• The most frequently used piezoelectric actuator element in scanning probe

microscopy is the tube piezo element. It allows x, y, and z-motion with one single
element.

• Problems with piezoelectric actuators are the coupling of lateral and vertical
motion, non-linearity, hysteresis, and creep.

• Sharp STM tips can be fabricated by self-adjusting electrochemical etching.
• The natural frequency of a spring suspension system depends only on the extension

length �l as ω0 =
√

g
�l .

• It is not necessary to minimize the amplitude of the tip vibration and the sample
vibration individually but only the difference between tip and sample position.

• For effective vibration isolation a low natural frequency of the spring suspension
system ω0 is combined with a high natural frequency of the STM assembly ωSTM,
i.e. a stiff mechanical loop between tip and sample.

• The transfer function (i.e. the attenuation of external vibrations) is constant for
small damping κtotal ≈ ( ω0

ωSTM
)2 for ω0 < ω < ωSTM.

• The expected tip-sample vibration amplitude can be calculated by multiplying the
total transfer function by the (measured) building vibration amplitude.
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