
Chapter 2
Harmonic Oscillator

In scanning probe microscopy, vibrations play a central role in several areas.
If, for instance, a scanning tunneling microscope is rests on a table you might won-
der what this has to do with vibrations. However, floor vibrations with amplitudes
of roughly one tenth of a micrometer (100 nm) have to be compared to an amplitude
stability of less than 0.01 nm which is necessary for atomically resolved imaging
in STM. Thus the vibrational noise amplitude is about 10,000 times larger than the
signal to be measured. This means that knowledge about vibrations and vibration
isolation is essential for scanning probe methods. Another area where oscillations
are an important topic is atomic force microscopy. In the dynamical mode of atomic
force microscopy, a cantilever vibrating close to (or at) its resonance frequency is
used as a force detector. The simplest way to study vibrations is to study the harmonic
oscillator. In this chapter we will study the mechanical harmonic oscillator.

2.1 Free Harmonic Oscillator

The simplest example of a harmonic oscillator is a mass on a spring (Fig. 2.1). The
position to which gravity extends the spring in equilibrium is chosen as the point of
zero extension. The displacement relative to this point is called z. The force exerted
by the spring on the mass m during the oscillation is given by Hooke’s law as

F = −kz, (2.1)

with k being the spring constant. If the spring deflection has negative values (z < 0,
longer spring extension), the direction of the force is positive and vice versa. Thus
the minus sign in (2.1) appears because the force exerted by the spring has a direction
opposite to the deflection z. Newton’s second law tells us that the equation of motion
for the mass m is

ma = m
d2z

dt2 = mz̈ = F = −kz. (2.2)
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16 2 Harmonic Oscillator

Fig. 2.1 The simplest
example of a harmonic
oscillator: a mass on a spring
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An ansatz for the solution of the equation of motion (2.2) is z = cos(ω0t) with
ω0 being a parameter which has to be determined.1 We verify that this is a correct
solution by differentiating z two times:

dz

dt
= −ω0 sin(ω0t); d2z

dt2 = −ω2
0 cos(ω0t). (2.3)

Formally (2.2) is solved if ω0 =
√

k
m . But what is the physical significance of ω0?

We know that the cosine function repeats itself if the argument is larger than 2π.
Therefore, the mass makes one complete cycle of oscillation if ω0t = 2π. This time,
we call the period of the oscillation T , and ω0 is given by

ω0 = 2π/T . (2.4)

The angular frequency ω0 is the number of radians through which the oscillation
proceeds per time, while the frequency f0 is the number of oscillations per time
(ω0 = 2π f0). If the mass is larger it takes a longer time for one oscillation and if the
spring constant is stronger the mass will move more quickly. Note that the period
of oscillation (and also ω0) does not depend on how far we stretch the spring at the
beginning. Any solution multiplied by a constant factor is still a solution of (2.2).

We have found a solution to the equation of motion. But is this the only one or
are there more solutions? Also the sine function provides a valid solution. The most
general solution is a linear combination of a sine and a cosine function

z = A cos(ω0t) + B sin(ω0t). (2.5)

There is a more intuitive way to find the general solution. When we used the cosine
function as solution, the oscillation started with the maximum extension at time zero.
However, alternatively also any other time during the oscillation could be chosen as
the start of the oscillation. This shift of the time corresponds to a shift of the phase
of the oscillation (the argument of the cosine function is called phase) by a constant

1 The argument of the cosine is named the phase. The phase increases linearly with time if ω0 is
constant.
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phase shift φ. Thus all solutions are captured if the solution is shifted by a constant
(but arbitrary) phase shift φ, and the general solution results as

z = a cos(ω0t + φ). (2.6)

The two solutions given in (2.5) and (2.6) are in fact equivalent. Using the mathe-
matical identity

cos(α + β) = sin α cos β − cos α sin β, (2.7)

the following relations between A, B in (2.5) and a,φ in (2.6) are obtained

B = a cos φ, A = a sin φ. (2.8)

Moreover, the solutions given in (2.5) and (2.6) are the general solution to the equation
of motion. There are no other solutions.

In the general solution of the equation of motion, we introduced two more
constants: A and B, or a and φ, respectively. How are these constants determined?
They are determined by the initial conditions of the motion. For instance if we start the
motion from a static extension z0, B andφ are zero. Now we determine these constants
for the most general initial condition: z0, v0. The acceleration a(t) cannot be speci-
fied as an initial condition. It is given by the spring constant, mass and z(t) according
to (2.2). We use the form for the general solution given in (2.5) and its derivative

v(t) = −ω0 A sin(ω0t) + ω0 B cos(ω0t). (2.9)

These equations are valid for all times, but we know z and v at time t = 0. If we
insert t = 0 we obtain

z0 = A + B · 0 = A v0 = −ω0 A · 0 + ω0 B = ω0 B. (2.10)

We therefore find that the constants A and B can be determined by the initial condi-
tions as

A = z0 and B = v0/ω0. (2.11)

2.2 Driven Harmonic Oscillator

In dynamic atomic force microscopy, we will consider a cantilever which is exited,
driven or moved with a sinusoidal external excitation amplitude. The simplest model
for this is a harmonic oscillator in which the upper fixing point of the spring (cf.
Fig. 2.1) is oscillated (excited) sinusoidally with zdrive(t) = Adrive cos(ωdrivet). The
resulting force on the mass m is then F = −k(z − zdrive). The equation of motion
results as

ma = mz̈ = −k(z − zdrive). (2.12)
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The driving frequency ωdrive can be different from the natural frequency of the
oscillator ω0. The question arises at which frequency the driven harmonic oscil-
lator will oscillate. At its natural frequency ω0, at the driving frequency ωdrive, or at
some value in between? It turns out that the driven harmonic oscillator will oscil-
late in the steady-state at the driving frequency ωdrive. One special solution for the
equation of motion is

z(t) = A cos(ωdrivet). (2.13)

Inserting this ansatz into the equation of motion (2.12) results in

− mω2
drive A cos(ωdrivet) = −mω2

0 A cos(ωdrivet) + k Adrive cos(ωdrivet). (2.14)

We find that z = A cos(ωdrivet) is a solution of the equation of motion if

A = kAdrive

m(ω2
0 − ω2

drive)
. (2.15)

The special solution (2.13) means that m oscillates at the driving frequency with an
amplitude which depends on the driving frequency and also on the natural frequency
of the oscillator. If ωdrive < ω0 then displacement and driving excitation are in
the same direction. If ωdrive > ω0 then A becomes negative. This is equivalent to
a positive amplitude and a phase shift of −180◦ of the oscillation z(t) relative to
the driving excitation. The amplitude and phase for an undamped driven harmonic
oscillator are shown in (Fig. 2.2). If ωdrive � ω0 the amplitude A approaches the

Fig. 2.2 Amplitude and
phase of an undamped driven
harmonic oscillator as a
function of ωdrive showing a
resonance at ω0
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excitation amplitude Adrive. If ωdrive � ω0 the amplitude approaches zero because
the mass can no longer follow the high frequency of the driving excitation.

As can be seen in Fig. 2.2 the amplitude A approaches infinity if ωdrive approaches
ω0. We will see in the next section that damping of the harmonic oscillator prevents
this “resonance catastrophe”.

2.3 Driven Harmonic Oscillator with Damping

Including damping to the driven harmonic oscillator is a more realistic case which
we consider in the following. An additional friction term has to be included to the
equation of motion (2.12). We consider this term as proportional to the speed at
which the oscillating mass moves Ffrict = mγ ż. Also here we assume an external
exciting amplitude zdrive(t) = Adrive cos(ωt). Here and in the following we replaced
ωdrive ≡ ω, in order to have a simpler notation. The spring force acting on the
oscillating mass is again proportional to the difference between the position of the
mass z and the excitation amplitude zdrive as F = −k(z − zdrive). With this the
equation of motion reads

mz̈ = −mγ ż − k(z − zdrive). (2.16)

Replacing ω2
0 = k/m results in

z̈ + γ ż + ω2
0z = ω2

0zdrive. (2.17)

Solving this equation would be quite difficult without the use of complex numbers.
The trick here is to consider z and zdrive as complex numbers (z̃ and z̃drive) and find
the complex solution for the differential equation. Since the physical quantities are
real and the differential equation is linear, at the end only the real part of z̃ is our
solution. The amplitudes are regarded as complex numbers as

z̃ = Aei(ωt+φ) = Aeiφeiωt = ẑeiωt and z̃drive = Adriveeiωt . (2.18)

Without loss of generality we set the phase shift of the excitation amplitude zdrive
to zero, i.e. Adrive is real, while ẑ is regarded as a complex number with a (real)
phase shift φ and (real) oscillation amplitude A as, ẑ = Aeiφ. The real part of z̃
will later be the real solution for the motion of the mass m. The nice thing about
the complex notation is that differentiation of z̃ is now just multiplication with iω
( dz̃

dt = ẑiωeiωt = iωz̃). This means differentiation in (2.17) (with z → z̃) can
be easily executed and this differential equation converts to the simple algebraic
equation [

(iω)2 ẑ + γ(iω)ẑ + ω2
0 ẑ

]
eiωt = ω2

0 Adriveeiωt . (2.19)
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After dividing both sides by eiωt , we obtain the complex solution

ẑ = ω2
0 Adrive

ω2
0 − ω2 + iγω

. (2.20)

Now the real z is the real part of the complex quantity z̃ as

z = Re(z̃) = Re(ẑeiωt ) = Re(Aei(ωt+φ)). (2.21)

Since A and φ are real, the resulting real position z reads

z = A cos(ωt + φ), (2.22)

with the amplitude A and phase shift φ between excitation amplitude and oscillation
amplitude.

In order to calculate A we recall that ẑ = Aeiφ. Therefore, ẑ ẑ∗ = A2 and A2 can
be written as

A2 = ω4
0 A2

drive(
ω2

0 − ω2 + iγω
) (

ω2
0 − ω2 − iγω

) = ω4
0 A2

drive(
ω2 − ω0

2
)2 + γ2ω2

. (2.23)

Now we introduce as a convenient abbreviation the quality factor Q = ω0/γ. The
physical significance of the quality factor will be elucidated later. This replacement
results in

A2 = ω4
0 A2

drive(
ω2 − ω2

0

)2 + ω2
0ω2

Q2

. (2.24)

Furthermore, the oscillation amplitude A can be written as a function of the normal-
ized frequency ω/ω0 as

A2 = A2
drive(

1 − ω2

ω2
0

)2

+ 1
Q2

ω2

ω2
0

. (2.25)

The phase φ of the oscillation relative to the excitation can be obtained as follows.
In general the phase ϕ of a complex number x = reiϕ can be obtained from the
relation tan ϕ = I m(x)

Re(x)
. In order to calculate the phase φ, we recall that ẑ = Aeiφ.

However, according to (2.20) the real and imaginary parts of 1/ẑ are much easier to
find. Therefore, we write

1

ẑ
= 1

Aeiφ
= 1

A
e−iφ = 1

ω2
0 Adrive

(
ω2

0 − ω2 + iγω
)

. (2.26)



2.3 Driven Harmonic Oscillator with Damping 21

Using the fact that tan(−φ) = − tan φ, we see that

tan φ = −γω

ω2
0 − ω2

= −ω0ω

Q
(
ω2

0 − ω2
) . (2.27)

Also the phase φ can be written as function of the normalized frequency ω/ω0 as

tan φ = − ω
ω0

Q

[
1 −

(
ω
ω0

)2
] . (2.28)

With these results, the amplitude (2.25) and phase (2.28) in the solution (2.22) are
calculated as a function of given variables. The resonance curve in Fig. 2.3 shows the
amplitude and the phase of a driven damped harmonic oscillator. For small driving
frequenciesω � ω0, the motion of the oscillator mass just follows the outer excitation
with a phase approaching zero; i.e. the oscillation is in phase with the excitation. On

Fig. 2.3 Amplitude and
phase of a damped driven
harmonic oscillator as a
function of ω ≡ ωdrive, for
different values of damping
Q = ω0/γ
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the other hand for very large frequencies ω � ω0, the amplitude A approaches zero.
In this case the phase approaches −180◦, i.e. the motion of the oscillator mass is
always in opposite to the excitation.

If we take the limit ω � ω0 in (2.25) we find that the amplitude is proportional to
1/ω2 for small damping, i.e. γ � ω0 or Q � 1. As seen in Fig. 2.3, the smaller the
damping, the higher the maximum amplitude is. For small damping the maximum
of the resonance curve is very close to the resonance frequency of the free harmonic
oscillator ω0. At any driving frequency the phase is smaller than zero, which means
that the oscillator displacement z always lags behind the driving excitation (Fig. 2.3).
The phase at resonance (ω = ω0) is −90◦, while it approaches −180◦ for large
driving frequencies.

The amplitude at the resonance frequency A(ω0) can be obtained using (2.25) as

A(ω0) = Q Adrive, (2.29)

i.e. the amplitude at resonance is Q times higher than the excitation amplitude. For
the case of cantilevers in atomic force microscopy this resonance enhancement of
the excitation amplitude can be quite high. Due to damping in air, Q-factors of 500
are usual for cantilevers in air. In vacuum, quality factors higher than 10,000 can
be reached.

For the case that the oscillation frequency is very close to ω0, i.e. ω ≈ ω0, the
expression for the resonance curve (2.25) can be approximated as

A2 = A2
drive[(

1 + ω
ω0

) (
1 − ω

ω0

)]2 + 1
Q2

ω2

ω2
0

≈ A2
drive

4
(

1 − ω
ω0

)2 + 1
Q2

. (2.30)

In order to obtain this we used the approximations 1+ ω
ω0

≈ 2 and ω2

ω2
0

≈ 1, which

hold if ω ≈ ω0.
An important quantity is the width of the resonance curve. Therefore, we calculate

in the following the frequency ω1/2 at which the amplitude of the oscillation decreases
to 1/

√
2 of its value2 at ω0. This condition for the amplitudes can be written as

A1/2(ω1/2) = 1√
2

A(ω0) = 1√
2

Q Adrive. (2.31)

If we insert ω = ω1/2 in expression (2.30), the following relation results

1

2
A2

1/2(ω1/2) ≈ A2
drive

4
(

1 − ω1/2
ω0

)2 + 1
Q2

≈ 1

2
Q2 A2

drive. (2.32)

2 We use the decrease of the amplitude to 1/
√

2 instead of 1/2, because in this case the energy in
the harmonic oscillator, which is proportional to the square of the amplitude, decreases to one half
of its maximum value.
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Solving this expression for ω1/2 − ω0 results in ω1/2 − ω0 ≈ 1
2

ω0
Q . Since the full

width of the resonance curve is twice this, we obtain

�ω1/2 ≈ ω0

Q
. (2.33)

This means the larger the Q-factor, the narrower the resonance is.
The maximum of the resonance amplitude, which we determine in the following,

lies at a slightly lower frequency thanω0. The maximum of the resonance curve occurs
at the frequency at which the denominator in (2.25) becomes minimal. Differentiating
the denominator of (2.25) with respect to ω/ω0, and equating this derivative to zero
results in the following expression for the frequency ωmax at which the resonance
curve has its maximum

ω2
max = ω2

0

(
1 − 1

2Q2

)
. (2.34)

The corresponding shift of the resonance curve to lower frequencies results as

δω = ω0 − ωmax = ω0

(
1 −

√
1 − 1

2Q2

)
. (2.35)

For the case of an AFM cantilever considered as a harmonic oscillator we estimate
some values for this frequency shift of the resonance curve due to the damping Q
of the cantilever. For a resonance frequency of ω0 = 300 kHz and quality factors
of Q = 10,000 and Q = 300, a frequency shift of 0.8 mHz and 0.8 Hz results,
respectively. These are very small values and correspondingly in most cases we will
neglect this small shift and consider the maximum of the amplitude to be located at
ω0, unless the quality factor is very low.

2.4 Transients of Oscillations

The solution for the damped driven harmonic oscillator (2.22) is the so called steady-
state solution after transients due to the initial conditions have died out. An example
for a transient is an oscillation which starts from rest. The amplitude is initially zero,
builds up after the excitation starts, and reaches the steady-state amplitude in the
limit of large times. The steady-state solution (2.22) does not contain such transients
arising from specific initial conditions.

It can be shown that the general solution of the driven damped harmonic oscilla-
tor is the specific solution (2.22) plus a solution of the corresponding homogeneous
problem. The corresponding homogeneous problem is the damped harmonic oscil-
lator without external driving. Here we do not derive the solution for the damped
oscillator without driving but it should be remembered that this is (for small damping)
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an exponentially decaying oscillation zhom = G exp(−ω0/(2Q)t) cos(ωhomt − φ)

with the oscillation frequency ωhom being slightly lower than the natural frequency
ω0 of the free harmonic oscillator ωhom = ω0

√
1 − 1/(4Q2) and with G and φ as

coefficients specified by the initial conditions.
If we call the specific solution z in (2.22) zs , the general solution for the driven,

damped harmonic oscillator is given as zgeneral = zhom + zs . It is necessary to
include the solution of the damped harmonic oscillator without external driving zhom
since it can describe the transients which are not described by zs . All aspects of zs are
specified in terms of the driving frequency, the driving amplitude, and the phase shift.
Yet we still need some way to impose the constraints given by the initial conditions
z(0) and v(0) in the general solution. The two coefficients G and φ give the freedom
to match the general solution to z(0) and v(0).

As an example we consider as initial condition that the oscillation starts from rest.
In Fig. 2.4 the general solution for the initial condition: starting from rest, is shown to
be composed of the specific solution of the inhomogeneous system (Fig. 2.4a) plus
the solution for the homogeneous system (transient) zhom (Fig. 2.4b). In Fig. 2.4c the
sum of both is shown for the case that ω = ωhom. The specific solution in Fig. 2.4a
is approached within the decay time for the homogeneous solution Fig. 2.4b. The
fact that the situation is not always simple is shown in Fig. 2.4d. Here the driving
frequency deviates from ωhom, which leads to a beating behavior before a steady-state
solution is reached.

hom 1.2 hom

e t/(2Q)
cos( t+ )homcos( t+ )hom

TimeTime

Z
Z

0

0

(a) (b)

(c) (d)

Fig. 2.4 The general solution for a damped driven harmonic oscillator is composed of the specific
solution of the inhomogeneous driven system (steady-state solution), shown in (a) plus the solution
of the homogeneous system without driving (transient), shown in (b). The initial conditions are
chosen such that the general solution satisfies the given initial conditions (start from rest in this
example). c and d show two examples of general solutions (for two different driving frequencies)
starting from rest and approaching the steady-state solution for long times
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If the driven damped oscillator is oscillating in steady-state (Fig. 2.4a) and the
driving amplitude is stopped suddenly, the problem is converted to a homogeneous
one and the oscillator will de-excite as shown in Fig. 2.4b. This is a sinusoidal oscil-
lation with the envelope decreasing as exp(−ω0/(2Q)t). This means that after a time
τ = 2Q/ω0 = TQ/π the amplitude has decreased by 1/e. This characteristic time is
called ring down time and increases with smaller damping. The same time is needed
to build up the steady-state oscillation amplitude after a start from rest.

This time can be expressed in terms of the Q-factor as τ = 2Q/ω0 = TQ/π. This
means that the oscillation builds up (decays) within roughly Q oscillation cycles and
Q can be expressed as

Q = 1

2
τω0. (2.36)

2.5 Dissipation and Quality Factor of a Damped
Driven Harmonic Oscillator

When the mass is initially at rest and an external oscillatory excitation is applied,
energy is successively stored in the oscillator with the buildup of the oscillation (tran-
sient). If the oscillator is finally in a steady-state, the energy stored in the oscillator
is constant and all the energy supplied by the external force ends (on average) up
in the dissipative term. The instantaneous power dissipated is Ffrictv = γmv2 and
varies over one period, as v varies. The mean power consumed by the oscillator in
steady-state can be written as

〈P〉 = 〈Ffrictv〉 = γm〈v2〉. (2.37)

The brackets indicate an averaging over one oscillation period. Since z = A cos(ωt +
φ), differentiation results in v2 = ω2 A2 sin2(ωt + φ). If sin2 is averaged over one
period a factor of one half results. Therefore, the average power results in

〈P〉 = γm〈v2〉 = 1

2
γmω2 A2. (2.38)

With this the energy dissipated per cycle is

Energy dissipated per cycle = 〈P〉T = 〈P〉2π/ω = πγmωA2. (2.39)

Another important quantity is the total energy stored in the oscillator. If we con-
sider driving frequencies close to ω0, the energy stored in the driven oscillator is
approximately the energy of the free oscillator with the same amplitude A

〈E〉 ≈ 1

2
k A2 = 1

2
mω2

0 A2. (2.40)
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The efficiency of an oscillator is defined by how much energy is stored, compared
with how much work is supplied (dissipated) by the external force per oscillation
cycle. This is called the quality factor of the oscillator and is defined by 2π times the
mean energy stored, divided by the energy dissipated per cycle

Q = 2π × Energy stored in the oscillator

Energy dissipated per cycle
. (2.41)

Close to the resonance frequency (ω ≈ ω0), Q can be written using (2.39) and
(2.40) as

Q ≈ ω0

γ
. (2.42)

This is consistent with the abbreviation for Q introduced in the previous section.

2.6 Effective Mass of a Harmonic Oscillator

In this chapter, we always considered an idealized system consisting of a mass-less
spring and a mass m at its end. However, in some cases of practical relevance this
approximation is not fulfilled. For instance, in the case of a cantilever-type spring,
often used in atomic force microscopy, the mass (of the cantilever) is distributed
throughout the whole cantilever (Fig. 2.5b). We introduce the concept of the effective
mass for the example of a coil spring (with mass mspring) and assume that the mass

L

z

M

mspring

vmax

v(z)
dz

(a) (b)

L

z

x z , v(x) (x)

Fig. 2.5 a For a spring with mass mspring, the velocity of a volume element depends on the position,
i.e. v = v(z). The effective mass turns out to be 1/3 of the spring mass. b For a cantilever beam the
deflection and the velocity are non-linear as a function of x
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is distributed homogeneously along its length. In the following, we calculate the
maximum kinetic energy (which corresponds to the total energy) of the spring with
a mass and we do not consider a mass M at the end of the spring.

When calculating the (maximum) kinetic energy of the spring, we regard v(z) as
the maximum velocity during one oscillation cycle. The (maximum) kinetic energy
of a length element dz of the spring is given by

d Ekin = 1

2

mspring

L
v2(z)dz. (2.43)

According to Fig. 2.5a, the velocity distribution along the spring is linear with z and
can be written as v(z) = vmaxz/L , with vmax being the maximum velocity at the end
of the spring, i.e. v(L). Integrating the (maximum) kinetic energy along the spring
results in

Ekin = 1

2

L∫

0

mspring

L
v2(z)dz = 1

2

mspring

L

L∫

0

v2
max

z2

L2 dz

= 1

2

(
1

3
mspring

)
v2

max = 1

2
meffv

2
max. (2.44)

Thus a mass-containing spring is equivalent to a massless spring with an effective
mass meff = 1/3mspring fixed to the end of the spring. If an additional mass M at the
end of a spring is also considered, the effective mass becomes meff = M+1/3mspring.

While we only considered the expression of the kinetic energy here, the same
effective mass also enters into the equations of motion, and thus also into all following
results. For instance, when calculating the natural frequency of a harmonic oscillator
in which the spring contains mass, the effective mass has to be used instead of the
mass M at the end of a massless spring.

For the situation of a cantilever beam the situation is more complicated, because
the deflection z (in reaction to a force applied at the end of the cantilever) is not linear
along the cantilever beam as shown in Fig. 2.5b. According to [1], the bending has
the form z(x) ∝ −x3 +3x2 L . Since a harmonic oscillation is considered throughout
the beam, the velocity distribution along the beam is proportional to the deflection
v(x) = cz(x). The constant of proportionality is determined by the condition v(L) =
vmax as c = vmax/(2L3). Thus the maximum velocity at position x along the beam
results as

v(x) = vmax

2L3

(
−x3 + 3x2 L

)
. (2.45)

Using this expression for the velocity distribution along the beam, the (maximum)
kinetic energy can be obtained by integration along the beam as
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Ekin = 1

2

L∫

0

mcant

L

v2
max

4L6

(
−x3 + 3x2 L

)2
dx = 1

2

(
33

140
mspring

)
v2

max

= 1

2
meffv

2
max. (2.46)

Thus the effective mass for a cantilever beam turns out to be ∼0.2357, instead of
1/3 for a coil spring with a linear extension.

In the case of a cantilever spring, an effective mass has to be used in the equation of
motion and all subsequently derived expressions such as ω0 = √

k/meff . Throughout
this text we use the concept of the harmonic oscillator and denote the mass as m in
order to keep the notation simple. It has to be kept in mind that in fact the appropriate
effective mass haves to be used.

2.7 Linear Differential Equations

At the end of this chapter, we consider some general properties of linear differential
equations with constant coefficients. A homogeneous linear differential equation
up to the second order can be written as

0 = a1x + a2 ẋ + a3 ẍ . (2.47)

The following propositions hold for the homogeneous equation.

• Homogeneity: If x is a solution of the linear differential equation, Cx is also a
solution.

• Superposition: If x1 and x2 are solutions of the linear differential equation, x1 + x2
is also a solution.

• Combining the two, we see that all linear combinations of two solutions are also
solutions.

The corresponding inhomogeneous equations including an external driving force
F(t) can be written as

F(t) = a1x + a2 ẋ + a3 ẍ . (2.48)

If we have a (special) solution of the inhomogeneous equation x1, we can add
any solution x2 of the homogenous (free) equation F(t) = 0 and the sum x =
x1 + x2 will be also a solution of the inhomogeneous system as we see if we add the
inhomogeneous equation and the homogeneous equation as

F(t) = a1(x1 + x2) + a2(ẋ1 + ẋ2) + a3(ẍ1 + ẍ2) = a1x + a2 ẋ + a3 ẍ . (2.49)

Finally, we come to another important property of linear differential equations.
If we have a solution x1 for an external force F1(t) and a second solution x2 for another
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external force F2(t), then a solution for the problem with the force F1(t) + F2(t) is
x1+x2. This superposition principle is remarkable and is the basis for decomposing a
complicated (arbitrary) force into Fourier components and composing the solution of
the problem with a complicated force as a superposition of the solutions obtained for
simple harmonic forces. This is also a late justification for why we only considered
an external excitation (force) of simple harmonic form for the harmonic oscillator.

2.8 Summary

• The free harmonic oscillator has the natural frequency of ω0 =
√

k
m .

• The driven harmonic oscillator oscillates at the driving frequency ω with an ampli-
tude depending on ω and ω0.

• If ω = ω0 the amplitude becomes very large (resonance).
• For the damped driven oscillator the amplitude at resonance is damped with

increasing damping force Ffrict = mγ ż.
• The phase between driving excitation and oscillation is zero if ω � ω0, it is −90◦

if ω = ω0, and −180◦ if ω � ω0.
• The quality factor of the oscillation Q is the ratio between the energy stored in the

oscillator to the energy dissipated per cycle. Q ≈ ω0
γ ≈ ω0

�ω ≈ A(ω0)/Adrive, with
�ω being the width of the resonance curve and Adrive the excitation amplitude.

• The build up or the decay of the steady-state amplitude takes about Q oscillations,
i.e. the corresponding time constant is τ = 2Q/ω0.

• If a spring has a non-negligible mass, the effective mass has to be used in the
equations of the harmonic oscillator.
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