
Chapter 17
Frequency Modulation (FM) Mode
in Dynamic Atomic Force
Microscopy—Non-contact Atomic
Force Microscopy

In Chap. 15 we introduced the intermittent contact mode (tapping mode), which
is a very successful operation mode in dynamic atomic force microscopy. Since
this mode has so many advantages, why should we use any other mode? In this
chapter we introduce the FM detection scheme (often named non-contact atomic
force microscopy) which in some cases has advantages over the tapping mode:
(a) The FM detection scheme can be used with high Q cantilevers (Q >1,000,
occurring in vacuum). For high Q cantilevers the tapping mode results in unaccept-
ably long scanning times. (b) The inelastic dissipation in the tip-sample interaction
can be easily measured during scanning. (c) From the measured data the tip-sample
force can be obtained as a function of the distance.

In the FM detection scheme of AFM the cantilever does not oscillate at a fixed
driving frequency (as in the tapping mode), but always oscillates at resonance. If the
resonance frequency shifts due to a tip-sample interaction, the cantilever oscillation
frequency follows this shift. In the FM mode, the amplitudes are so large that the tip-
sample force cannot be approximated as linear. The frequency shift in the FM mode is
proportional to a weighted average of the tip-sample force over a cantilever oscillation
cycle. For large amplitudes, the frequency shift depends almost exclusively on the
tip-sample interaction at the lower turnaround point. We will describe in detail the
experimental setup and the different FM detection modes and compare the FM and
AM detection modes. The time response in FM detection is not limited for high
quality factors, as it is the case in AM detection. Therefore, the FM detection scheme
can be used for cantilevers with high quality factors, i.e. in vacuum.

17.1 Principles of Dynamic Atomic Force Microscopy II

In Chap. 14, we derived the frequency shift in the limit of small oscillation amplitudes,
i.e. the force was described as linear with the tip-sample distance in the range of the
oscillation amplitude. In this limit, the frequency shift is proportional to the force
gradient. However, for most cases of larger oscillation amplitudes or short-range
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Fig. 17.1 Scheme of the cantilever vibration illustrating the corresponding coordinates

forces this limit does not hold at all. The interaction between tip and sample changes
strongly on the scale of the vibrational amplitude of the cantilever.

In the following, we will consider a driven damped harmonic oscillator under
the influence of a non-linear tip-sample force Fts(d + z). The driving force is given
by an external sinusoidal oscillation zdrive = Adrive cos(ωt) of the cantilever base.
This driving oscillation corresponds to a force Fdrive = kzdrive. In FM detection, the
driving at ωdrive is always applied at the actual resonance frequency1 ω′

0, which we
call ω in the following, i.e. ω = ωdrive = ω′

0. The equation of motion for the driven
damped harmonic oscillator with an external tip-sample force Fts(d + z) added is
written according to (2.17) as

mz̈ + mω0

Qcant
ż + k(z − zdrive − �L) = Fts(d + z). (17.1)

The relevant coordinates are indicated in Fig. 17.1. The zero point for z (z = 0) is
given by the condition that the tip-sample force is compensated by the static cantilever
bending �L , cf. Fig. 14.1 and (14.3). In this case the tip-sample distance is d.

In spite of the fact that a non-linear tip-sample force is included into the
equation of motion, we approximate the solution z(t) by a harmonic oscillation
z(t) = A cos (ωt + φ). Since the oscillation in FM mode is always at resonance,
φ = −90◦ and thus z(t) = A sin (ωt). We will not solve the equation of motion
(17.1), however, we will calculate the shift of the resonance frequency. The relation
between tip-sample force and frequency shift � f is more complicated than the sim-
ple proportional relation between � f and the force gradient obtained in the small
amplitude limit (14.7). For the case of the non-linear tip-sample force, the final result
will be that the frequency shift corresponds to a properly weighted average of the
tip-sample force over an oscillation period.

An expression for the frequency shift can be derived if we insert the explicit
expressions for the harmonic oscillation of the cantilever z(t) and its derivatives as

1 Under the influence of the tip-sample force the resonance frequency of the free cantilever, ω0,
shifts to ω′

0.
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well as the expression for ωdrive into (17.1). Subsequently we multiply (17.1) by
z(t) = A sin ωt and integrate over one period resulting in the following expression

−
T∫

0

mω2 A2 sin2 ωt dt +
T∫

0

mω0

Qcant
A2ω cos ωt sin ωt dt +

T∫

0

k A2 sin2 ωt dt

−
T∫

0

k Adrive A cos ωt sin ωt dt −
T∫

0

k�L A sin ωt dt

=
T∫

0

Fts(d + z(t))A sin ωt dt. (17.2)

Since the integral of cos ωt sin ωt over one period vanishes, the second and fourth
terms on the left side in (17.2) vanish. The last term on the left side vanishes as well,
since it is proportional to an integral of sin ωt over one period. Thus (17.2) can be
written as

(k − mω2)A2

T∫

0

sin2 ωt dt =
T∫

0

Fts(d + z(t))A sin ωt dt. (17.3)

The integral
∫

sin2 ωtdt within the limits from 0 to T can be calculated as 1
2 T = π

ω ,
which results in

(k − mω2)A2 π

ω
=

T∫

0

Fts(d + A sin ωt)A sin ωtdt. (17.4)

The left hand side of (17.4) can be further evaluated as follows

A2π

ω

(
k − mω2

)
= A2mπ

ω

(
k

m
− ω2

)

= A2mπ

ω

(
ω2

0 − ω2
)

= A2mπ

ω
(ω0 + ω) (ω0 − ω) . (17.5)

Since the tip-sample force is considered as a small perturbation, the frequency shift
will be small as well, i.e. ω ≈ ω0 and (ω0 + ω) ≈ 2ω. Thus, the left-hand side of
(17.1) can be further written as

2πm A2(ω0 − ω) = −4π2m A2( f − f0) = −4π2m A2� f. (17.6)

Now also taking the right-hand side of (17.4) into account the following expression
for the frequency shift arises
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� f = − 1

4π2m A2

T∫

0

Fts(d + A sin ωt)A sin ωt dt. (17.7)

The time average of Fts(t) times z(t) over one period can be written as

〈Fts(t) · z(t)〉 ≡ 1

T

T∫

0

Fts(d + A sin ωt)A sin ωt dt. (17.8)

Using the above equation, (17.7) can be rewritten as the following expression for � f
(using T = 1/ f0 and m = k/ω2

0)

� f = − f0

A2k
〈Fts(t) · z(t)〉. (17.9)

The frequency shift is proportional to 〈F · z〉, which is the time average of force
times distance (tip-sample distance) over one oscillation period. The dependence as
f0/k on the resonance frequency and the spring constant is the same as in the small
amplitude limit (14.8). In contrast to the case of small amplitudes, the frequency shift
depends as 1/A2 on the oscillation amplitude.

As a consistency check we insert the force for a harmonic oscillator Fts = −k′z
as an approximation in the case of the small amplitude limit. This results in

〈Fts · z〉 = −〈k′ · z2〉 = 1

T

T∫

0

−k′ A2 cos2 ωtdt = −1

2
k′ A2, (17.10)

which recovers the result of the frequency change found for the small amplitude limit
� f = f0k′/(2k) (cf. 14.8). In analogy to this result for the small amplitude limit an
effective tip-sample spring constant can generally be defined as

k′ ≡ −2〈Fts · z〉
A2 , (17.11)

in order to recover an equation of the same form as in the small amplitude limit
� f = f0k′/(2k).

17.1.1 Expression for the Frequency Shift

When analyzing the time average in (17.10) qualitatively, it can be seen that the parts
of the oscillation path which make the largest contribution to the frequency change
are the turnaround points. Here the velocity is lowest, so the tip stays longest at these
positions (strongest contribution to the integral over time). The equilibrium position
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is passed quickly at the largest velocity, leading to a small contribution to the time
average. This dominant contribution of the turnaround points can be obtained more
quantitatively if we replace the time average in (17.10) by a spatial average. A spatial
average over the positions of the tip in one oscillation cycle is also more appropriate
because the tip-sample force is primarily a function of tip-sample distance. For the
average 〈F · z〉 we wrote in (17.10)

〈Fts(d + z) · z〉 = 1

T

T∫

0

Fts(d + z(t)) · z(t)dt, (17.12)

with z(t) = A sin ωt . In order to convert the time average to a spatial average over
the trajectory, we substitute in (17.12) the variable t by z as

dz

dt
= Aω cos(ωt) = Aω

√
1 − sin2(ωt) = ω

√
A2 − z2. (17.13)

Therefore, the average 〈F · z〉 can be written as

〈Fts(d + z) · z〉 = 1

T

T∫

0

Fts(d + z(t)) · z(t)dt (17.14)

= 2

ωT

+A∫

−A

Fts(d + z) · z√
A2 − z2

dz

= 1

π

+A∫

−A

Fts(d + z) · z√
A2 − z2

dz.

Combining (17.9) and (17.14) the following expression for the frequency shift is
obtained

� f = − f0

πk A2

+A∫

−A

Fts(d + z)
z√

A2 − z2
dz = − f0

πk A2

+A∫

−A

Fts(d + z)g(z)dz.

(17.15)

This can be interpreted as the integral of the tip-sample force from −A to A with
a weighting function g(z). Due to this weighting function, the largest contributions
to the frequency shift come from the regions close to the turnaround points of the
oscillation z = ±A. Here the weighting function diverges (denominator becomes
zero) as seen in Fig. 17.2a. From the weighting function alone a large contribution
to the frequency shift is expected at both turnaround points. However, the second
factor in the integrand of (17.15), the tip-sample force Fts, must also be considered.
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Fig. 17.2 The tip-sample
force, the weighting function
g(z), and their product are
displayed as a function of
distance z for two different
oscillation amplitudes A. In
the large amplitude limit a
the frequency shift signal is
mainly picked up close to the
lower turnaround point of the
oscillation, while in the
smaller amplitude case b
contributions to the
frequency shift are picked up
during the whole oscillation
cycle with the main
contributions coming from
both turnaround points. For
better comparison, the lower
turnaround point is kept
constant in (a) and (b)
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For the situation of a large amplitude shown in Fig. 17.2a the contribution to the
frequency shift at the upper turnaround point z = A is eliminated by the vanishing
tip-sample force Fts. The product of weighting function and tip-sample force, i.e.
the integrand of (17.15) is shown as a green line in Fig. 17.2a. In total, for large
amplitudes the contributions to the frequency shift come only from regions close to
the lower turnaround point.

The case of a smaller oscillation amplitude is shown in Fig. 17.2b. For better
comparability, the lower turnaround point of the oscillation was placed in the same
position as in Fig. 17.2a. In this case, the integrand of (17.15) provides contributions to
all parts of the oscillation cycle, since the force has appreciable values throughout the
oscillation. The largest contributions to the frequency shift arise from both turnaround
points, as shown by the green line in Fig. 17.2b.

Comparing the large amplitude case to the small amplitude case (Fig. 17.2a, b) we
see that for the large amplitude case only the region close to the lower turnaround point
contributes to the frequency shift, while the major part of the oscillation path does
not result in a contribution to the frequency shift. In contrast, for small amplitudes
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contributions to the frequency shift arise from all parts of the oscillation cycle. This
means that for smaller oscillation amplitudes a stronger frequency shift signal is
expected. In addition to this contribution from the integral in (17.15) also the pref-
actor 1/A2 enhances the frequency shift for small amplitudes. If we compare this
amplitude dependence of the frequency shift, we note that in the previously treated
small amplitude limit (14.8) the frequency shift was found to be independent of the
oscillation amplitude. The strength of the signal is one issue, another is the corre-
sponding noise, which also increases with decreasing amplitude, as will be discussed
in Chap. 18. Together, the important figure of merit, the signal-to-noise ratio, will be
obtained.

Due to the antisymmetric behavior of the weighting function with respect to the
point of origin of the oscillation, a constant force will not lead to a frequency shift.
This corresponds to the result obtained in the small amplitude limit that a constant
force induces no frequency shift.

Often the total tip-sample force is considered as a superposition of different force
contributions. Since the force enters linearly in (17.15) the total frequency shift can
be split into contributions arising from the individual forces.

In this chapter, we have considered up to now conservative tip-sample interactions.
In this case, the force is the same for a certain tip-sample distance independent of the
direction of motion either for the approach towards the sample or for the retraction
from the sample. For a dissipative tip sample interaction the forces at a certain point
can be different for approach and retraction and this has to be considered. In this case,
the tip-sample force in (17.15) can be replaced by Fts = (Fts,approach +Fts,retraction)/2
[31, 32].

17.1.2 Normalized Frequency Shift in the Large
Amplitude Limit

Up to now the coordinates have been chosen such that the reference for the position
of the cantilever tip z was the equilibrium position of the cantilever (Fig. 17.1). This
is the position in which the tip-sample force is compensated by the static bending
force of the cantilever, also called the average tip position. In some cases, the lower
turnaround point of the oscillation is a more useful reference point. Therefore, we
now choose as a new distance variable u = z + A in order to describe the tip position
relative to the lower turnaround point (Fig. 17.1). If we substitute z = u − A and
express the tip-sample distance as d + z = d − A + u the frequency shift (17.15)
results in

http://dx.doi.org/10.1007/978-3-662-45240-0_14
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� f = − f0

πk A2

2A∫

0

Fts(d − A + u)(u − A)√
A2 − (u − A)2

du

= − f0

πk A2

2A∫

0

Fts(d − A + u)(u − A)√
(2A − u)u

du. (17.16)

In the following, we consider the limit of a large oscillation amplitude, i.e. the
oscillation amplitude A is much larger than the range of the tip-sample force. In this
case the integrand in (17.15) or (17.16) has appreciable values only at tip positions
very close to the lower turnaround point, as also indicated by the green line in
Fig. 17.2a. The integrand Fts · g becomes negligible for larger values of u which,
however, are still much smaller than A. Therefore, we take the limit u 	 A and
extend the integration limit to infinity, which results in

� f = f0

πk A2

∞∫

0

Fts(d − A + u)A√
2Au

du = f0√
2πk A3/2

∞∫

0

Fts(d − A + u)√
u

du .

(17.17)

The dependences on resonance frequency and spring constant are the same as for
the small amplitude limit (14.8). Furthermore, the frequency shift is proportional to
A−3/2.

The expression for the frequency shift in (17.17) contains two contributions. The
frequency shift depends on the tip-sample force and also on the cantilever and exper-
imental parameters. In order to separate the parameters out, a normalized frequency
shift γ can be defined as

γ = � f
k A3/2

f0
. (17.18)

The normalized frequency shift has the following significance: Multiplying the exper-
imentally measured frequency shift� f by the factor k A3/2/ f0, the expression (17.17)
can be written as

γ = 1√
2π

∞∫

0

Fts(d − A + u)√
u

du . (17.19)

The normalized frequency depends only on an integral over the tip-sample force,
while the dependence on the experimental parameters k, f0, and A is factored out.

The normalized frequency shift is particularly useful in order to compare exper-
imental results obtained using different cantilevers (with different spring constants,
and resonance frequencies) or results obtained using different oscillation amplitudes.
The influence of all these parameters is factored out using the normalized frequency
shift. In Fig. 17.3a measurements on a graphite sample are shown. The frequency
shift is plotted as a function of tip-sample distance. Different frequency shift curves

http://dx.doi.org/10.1007/978-3-662-45240-0_14
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Fig. 17.3 a Experimentally measured frequency shift on a graphite sample as a function of the
average tip-sample distance d for different values of the oscillation amplitude. The curves are shifted
along the horizontal axis in order to make them comparable [33]. b If the normalized frequency
shift is used as vertical axis, all curves for different amplitudes collapse to one curve, showing that
the normalization has factored out the dependence on the amplitude (reproduced with permission
from [33])

are obtained, for different oscillation amplitudes (always using the same cantilever).
According to the previously obtained dependence, the measured frequency shift
increases with decreasing oscillation amplitude. In Fig. 17.3b the normalized fre-
quency shift is plotted, showing that all curves for different amplitudes collapse to
one curve. This demonstrates the usefulness of the normalized frequency shift.

Now we evaluate the normalized frequency shift for a very simple model force
which has a constant value of F0 from the lower turnaround point up to a distance λ
and is zero for larger distances. For this case, the normalized frequency shift can be
evaluated using (17.19) as

γ = F0√
2π

λ∫

0

u−1/2du =
√

2

π
F0

√
λ. (17.20)

To give some numbers: For f0 = 200 kHz, F0 = 2 nN, A = 10 nm, k = 10 N/m
and λ = 0.1 nm a normalized frequency shift of 9 fN

√
m results, corresponding to a

frequency shift of � f = 180 Hz. For an exponentially decaying force

F(z) = F0e−u/λ, (17.21)

the corresponding normalized frequency shift (17.19) can be calculated in the large
amplitude limit as [34]

γ = 1√
2π

F0
√

λ, (17.22)
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which is (apart from a constant factor) the same result as obtained for a constant
force F0 with a range λ, shown in (17.20). Also for other forms of the tip-sample
interaction, such as the Lennard-Jones interaction, the normalized frequency shift
can be found in the literature [34].

17.1.3 Recovery of the Tip-Sample Force

In this chapter, we have derived equations of the (normalized) frequency shift for a
given tip-sample force. Actually the reverse is desirable: It is desirable to recover
the tip-sample force from the measured frequency shift. However, due to the integral
present in (17.15) this equation cannot easily be inverted analytically to a solution
for Fts(� f ). In the small amplitude limit the obtained equation

� f (d) = − f0

2k

∂Fts(d + z)

∂z

∣∣∣∣
z=0

, (17.23)

can be inverted to

Fts(d) = 2k

f0

∞∫

d

� f (z′)dz′. (17.24)

The integration up to infinity shows that the frequency shift should be measured up to
a position relatively far from the surface. For larger oscillation amplitudes, (17.15)
can be inverted using approximations which allow the determination of the force
with an accuracy of 5 % [32, 35].

17.2 Experimental Realization of the FM Detection Scheme

We have mentioned that in the FM detection mode the cantilever oscillation is always
at resonance, i.e. it always follows the resonance frequency which changes under the
influence of the tip-sample force. Now we will describe how this is achieved by the
experimental setup. In this section, we introduce detection schemes which are used
in the FM detection mode. Here it is not the amplitude change that is measured in
response to a shift of the resonance frequency, but rather the shift of the resonance
frequency itself is measured.

17.2.1 Self-excitation Mode

In the self-excitation mode the cantilever itself as a harmonic oscillator is the
frequency-determining element in an oscillator circuit. A positive feedback is used
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Fig. 17.4 Schematic of an FM detection setup operated in the self-excitation mode. In the circuit
the measured cantilever oscillation signal is phase shifted and fed back to the actuator driving
the cantilever. In addition to this (inner) oscillator feedback loop, the measurement of the shift of
the resonance frequency �ω is used in an outer z-feedback feedback loop in order to control the
tip-sample distance

in order to self-excite the cantilever. A schematic of the implementation (Fig. 17.4)
consists of an oscillator loop in which the measured oscillation signal is fed back
(after a phase shift) as the driving signal of the cantilever. We will first discuss some
essentials of this oscillator feedback loop and subsequently discuss its experimental
realization. In addition to this oscillator feedback loop, the measured frequency shift
of the resonance frequency �ω is used in an outer z-feedback feedback loop in order
to control the tip-sample distance.

In a mechanical harmonic oscillator oscillating at resonance there is a phase shift
of −90◦ between the displacement of the cantilever tip and the mechanical excitation,
i.e. the cantilever oscillation is lagging the excitation. In the self-excitation scheme
the measured cantilever oscillation signal is fed back as the excitation signal into the
cantilever driving the piezo actuator (Fig. 17.4). In order to excite the cantilever with
the correct resonance phase, a phase shift of +90◦ has to be applied to the oscillation
signal before feeding it back as the driving signal. This phase shift “compensates”
the −90◦ phase shift between mechanical excitation and oscillation of the cantilever.
For simplicity, we neglect all other phase shifts present in the loop, for instance in the
preamplifier. The detection of the cantilever deflection (by the photodiode and the
preamplifier in the current example) is so fast that the deflection signal is sampled
many times during one oscillation.

Since there is no external oscillator included driving the cantilever, the question
arises as to how the cantilever oscillation is excited in the first place. The cantilever is
thermally excited in a broad frequency range. Thermal excitation can be considered
as white noise, i.e. having frequency components at all frequencies (cf. Chap. 18).
If a frequency component of the thermal noise does not “hit” the resonance, the
oscillation amplitude at this frequency will be small. The frequency component
of the white noise which “hits” the resonance will be amplified Q times due to
the resonance enhancement (transfer function) of a harmonic oscillator at the reso-
nance frequency. Therefore, while uniformly excited over a wide frequency range by

http://dx.doi.org/10.1007/978-3-662-45240-0_18
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thermal noise, a large oscillation amplitude occurs only at the resonance frequency.
Due to this resonance enhancement the self-excitation mode self-excites its oscilla-
tion at the resonance frequency from thermal noise. This self-excitation works best
for cantilevers with high quality factors. In the case of systems with low quality fac-
tors (like measurements in liquids), starting the self exciting oscillation is a problem.
Also if the cantilever has multiple resonances, the self-excitation mode can be a bad
choice. These problems are overcome in the PLL tracking mode of FM detection,
which will be discussed in Sect. 17.2.3.

Another question is: Does the oscillation of the cantilever follow a change of
the resonance frequency in the self-excitation mode? Let us assume an instantaneous
change of the resonance frequency of the cantilever due to a change of the tip-sample
interaction.2 In the self-excitation mode, the cantilever is fed by its own oscillation.
If the phase of the oscillator feedback loop is −90◦, this means that the oscillator is
automatically always fed at its resonance frequency. Due to this driving at resonance
condition, the actual oscillation frequency will adapt to the new resonance frequency
very fast.

This instantaneous adaption of the oscillation to the new resonance frequency
can be demonstrated by including a term describing the self-oscillation loop in the
equation of motion of the harmonic oscillator and subsequently solving this equation
numerically. The self-excitation can be described in the equation of motion (2.17),
replacing the driving term by the feedback term ω2

0/Qz(t − t0) [36]. The equation
of motion for a harmonic oscillator with self-excitation then reads

z̈ + ω0

Q
ż + ω2

0z = ω2
0

Q
z(t − t0). (17.25)

The time shift t − t0, with which the cantilever deflection signal is fed back as the
driving signal z(t − t0), corresponds to a phase shift φ0 = ωt0, which is set to
−90◦. In order to demonstrate the tracking capability of the self-excitation mode,
i.e. the fact that the actual cantilever oscillation frequency follows the change of the
resonance frequency, the numerical solution of the equation of motion is analyzed.
The response of the cantilever oscillation to an instantaneous change of the resonance
frequency from ω0 to ω′

0 is simulated. Does the cantilever oscillation z(t) follow the
resonance frequency shift (tracking capability), and how rapidly is the new steady-
state attained?

In Fig. 17.5 the deflection z(t) obtained from the simulation is shown as a red
line. The quick adaption of the oscillation to the new increased resonance frequency
can be seen from the continuously increasing shift of the red curve relative to the
reference curve (black line), corresponding to an oscillation without a change of the
resonance frequency. In spite of the very large change of the resonance frequency
of �ω/ω0 = 5 × 10−3, no transient occurs at t = 0. This is very different from

2 For the case of AM detection, we have seen in Sect. 14.5 that after a change of the resonance
frequency of the cantilever the new steady-state amplitude and phase are reached only after a large
time constant τcant = 2Q/ω0, corresponding to about Q oscillations.

http://dx.doi.org/10.1007/978-3-662-45240-0_2
http://dx.doi.org/10.1007/978-3-662-45240-0_14
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Fig. 17.5 Deflection z(t) obtained from the simulation of a damped harmonic oscillator with self-
excitation included in the equation of motion. At time t = 0 the resonance frequency of the harmonic
oscillator changes from f0 = 1 MHz by a large value of � f = 5 kHz. The simulated deflection
(red line) is compared to the case without a change of the resonance frequency (black line). The
fast adaption to the higher resonance frequency can be seen by a shift of the red curve with respect
to the black reference curve. In spite of the large frequency shift assumed, the difference between
the two curves is negligible at the time at which the resonance frequency changes (t = 0). This
demonstrates the tracking capability of the self-oscillation mode with a very short time constant

AM detection, where a transient of about Q oscillation occurs before the oscillation
has adapted to the new steady-state. The response of the cantilever oscillation to a
change of the resonance frequency occurs instantaneously without a transient. After
the change of the resonance frequency at t = 0 the amplitude remains constant.
This is the case since the oscillation always remains in resonance. This is different
from the AM case where the oscillation at ωdrive is off-resonance after a change of
the resonance frequency. This leads to a reduced amplitude after a time constant of
about Q oscillations in the AM mode, as seen in Fig. 14.8a.

The reason for the much shorter time constant in the self-excitation mode of the
FM detection compared to the AM detection mode (cf. Sect. 14.5) can alternatively
(to the analysis of the solution of the equation of motion) be rationalized by con-
sidering the change of the energy of the cantilever oscillation upon a change of the
resonance frequency. The reason for the occurrence of the response time is that it
takes time to transfer energy into, or remove energy from, the cantilever system
during a transition to a new state with different amplitude/frequency. In the fol-
lowing, we will compare the energy change during this transition for the AM and
FM modes. The energy difference between the free oscillator and the state with

http://dx.doi.org/10.1007/978-3-662-45240-0_14
http://dx.doi.org/10.1007/978-3-662-45240-0_14
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tip-sample interaction present are compared for the two cases AM detection and FM
detection.3

In the AM mode (e.g. tapping mode), a typical setpoint amplitude is 90 % of the
free amplitude. The energy difference between the free oscillator and the oscillator
with tip-sample interaction present results as

�EAM = Efree − Ets = 1

2
mω2

0 A2 − 1

2
mω2

0(0.9A)2 = 0.19Efree. (17.26)

In FM detection, the change of the energy occurs due to a change of the oscillation
frequency, not the amplitude, which is kept constant in FM detection. A change of
the resonance frequency from ω0 to ω′

0 leads to an energy change of

�EFM = Efree − Ets = 1

2
mω2

0 A2 − 1

2
mω′2

0 A2

= 1

2
mω2

0 A2

(
1 − ω′2

0

ω2
0

)
≈ Efree

2�ω

ω0
. (17.27)

Typical values for the frequency shift in the FM detection mode are �ω/ω0 = 10−4.
Due to the small frequency shifts involved, the energy difference in FM mode is very
small. According to (17.27) the energy change between the free cantilever and the
cantilever under tip-sample interaction is 2 × 10−4 Efree in the FM mode, which is
thousand times smaller than in the AM mode according to (17.26).

According to the definition of the Q-factor in (2.41), a damped harmonic oscillator
can gain/lose roughly 1/Qth of its energy in per cycle Ediss = 2πEosc/Q. Thus for
a Q factor of 10,000 an energy of 6 × 10−4 Efree can be dissipated per cycle, which
is three times more than the energy change occurring in the FM mode. Hence the
FM mode is not limited by slow response times for high Q-factors occurring for
operation under vacuum conditions, as is the case for AM detection.

The fundamental reason for the slow response in AM detection is that a large
energy change is required in order to change the amplitude, while in the FM detection
scheme the energy change due to a change of the oscillation frequency of the sensor is
much smaller, increasing the intrinsic bandwidth of the FM detection scheme. How-
ever, to detect a frequency shift of e.g. �ω = 10−4ω0 and below will require a certain
measurement (averaging) time which reduces the intrinsically high bandwidth.

After clarifying the fundamental issues i.e. phase shift of +90◦ in order to main-
tain the resonance phase, self-excitation of the oscillator from thermal noise, and
the tracking of the shifted resonance frequency, we now discuss the experimental
realization of the outer z-feedback loop.

3 This transition from the free state to the state with tip-sample interaction present (working point)
gives an upper limit for energy changes occurring during scanning. Deviations from the setpoint
values (amplitude/frequency shift) under feedback operation are much smaller than the deviations in
amplitude/frequency shift between the free cantilever and the situation with tip-sample interaction
present.

http://dx.doi.org/10.1007/978-3-662-45240-0_2
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As discussed above, in the self-excitation mode the frequency of the cantilever
oscillation automatically follows the resonance frequency of the cantilever. This
frequency shift is measured by the frequency measurement unit in Fig. 17.4. We
will go into the details of the frequency measurement later. For the moment let us
assume that the frequency measurement unit delivers a voltage signal proportional
to the frequency shift. This frequency shift signal is used as the feedback signal
in order to control the tip-sample distance (z-feedback) in a second outer feedback
loop. A fixed frequency shift is chosen as the setpoint and corresponds to a certain
tip-sample distance. During an xy-scan a height contour of constant frequency shift
is considered as the topography of the sample.

17.2.1.1 Amplitude Control and Dissipation

In FM detection, conservative and dissipative tip-sample interactions can be mea-
sured separately. The conservative part is measured via the measurement of the
frequency shift, as discussed above. A dissipative tip-sample interaction leads to
a reduction of the amplitude at resonance, but does not change the resonance fre-
quency, as discussed in Fig. 14.9. Therefore, in FM detection the conservative tip-
sample interaction and the dissipative tip-sample interaction can be separated by
measuring the frequency shift on the one hand, and the amplitude change on the
other hand. In the actual implementation, the oscillation amplitude is controlled to a
fixed value by adjusting the excitation amplitude. If energy is dissipated by the tip-
sample interaction the oscillation amplitude would decrease. However, an increased
excitation amplitude will restore the desired (setpoint) oscillation amplitude. This
amplitude-controlling part of the self-excitation scheme is included in the setup
shown in Fig. 17.6.

Phase
shift

Amplitude
measurement

Amplitude
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Oscillator feedback loop

z-feedback loop

Frequency shift
measurement

Sample
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z-feedback controller
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Fig. 17.6 Schematic of an FM detection setup operated with self-excitation including the amplitude
control part. The cantilever oscillation amplitude is measured and maintained at a setpoint value
by multiplying the driving signal by a proper multiplication factor. This factor relates to the energy
dissipated by the tip-sample interaction

http://dx.doi.org/10.1007/978-3-662-45240-0_14
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In order to maintain the oscillation amplitude at a certain setpoint value, the
following scheme is applied. The amplitude of the cantilever oscillation signal is mea-
sured by an amplitude detection scheme (amplitude measurement block in Fig. 17.6).
In a simple implementation an RMS-amplitude-to-DC converter can be used, in
which the signal is rectified and low-pass filtered, resulting in a DC voltage propor-
tional to the oscillation amplitude. The difference of this DC voltage to the amplitude
setpoint value is taken as the error signal for an amplitude PI controller. The phase-
shifted driving signal is multiplied by the appropriate amplitude factor obtained from
the PI controller. In this way a constant cantilever oscillation amplitude is maintained
by adjusting of the amplitude of the driving signal.

The amplitude multiplication factor in the amplitude control depends on the tip-
sample dissipation energy as follows. If energy is lost by an increasing tip-sample
dissipation, the oscillation amplitude decreases. This is detected by the amplitude
detection unit and compared to the desired amplitude setpoint. The output of the
amplitude control unit (PI controller) is a multiplication factor by which the driving
signal is multiplied in order to generate a constant cantilever oscillation amplitude.
Therefore, this amplitude multiplication voltage can also serve as an output signal
related to the dissipation. This dissipation signal can be recorded as a free signal dur-
ing a scan. The relation between the oscillation amplitude and the energy dissipated
by the tip-sample interaction is given by (15.18).

The 90◦ phase shift applied in the feedback circuit in order to drive the cantilever at
resonance is an idealization. In practice additional phase shifts of other components
(preamplifier) in the circuit have to be compensated. The phase shift in the box
called the phase shift in Fig. 17.6 is adjusted (deviating from 90◦) in such a way that
a minimum driving amplitude is required in order to establish a certain oscillation
amplitude of the cantilever (resonance condition).

To summarize, in the self-excitation mode the oscillation signal is fed back as the
driving signal with a 90◦ phase shift. This sustains an oscillation which always follows
the resonance frequency of the cantilever quasi instantaneously. The following actual
measurement of this frequency will be discussed next. The amplitude multiplication
factor applied to the measured oscillation signal provides information about the
dissipation of the tip-sample interaction. Due to amplitude control, the cantilever
oscillates at a constant amplitude. With high quality factor sensors, the oscillation
will start by itself excited by thermal noise.

17.2.2 Frequency Detection with a Phase-Locked Loop (PLL)

There are several ways to measure a frequency (shift). In FM AFM the phase-locked
loop detection (PLL) method is used often for this purpose, because with this method
frequency shifts can be measured with high accuracy in a wide frequency range. As a
starting point, we demonstrate that a change of the frequency of an oscillation can be
alternatively expressed as a time-dependent phase. If the frequency of an oscillation is
ω, the oscillation can be written as cos(ωt +φ0). If the oscillation frequency changes

http://dx.doi.org/10.1007/978-3-662-45240-0_15
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at t = 0 form ω to ω+δω, the oscillation can be expressed as cos [(ω + δω) t + φ0].
However, alternatively this expression can be rewritten as

cos [(ω + δω) t + φ0] = cos [ωt + (δωt + φ0)] = cos (ωt + φ(t)) , (17.28)

with φ(t) = δωt + φ0. Thus a frequency change can also be expressed as a time-
dependent phase φ(t) which increases linearly with time, as shown in Fig. 17.7. The
slightest frequency change corresponds to a linearly increasing phase signal. If the
phase φ(t) is zero (or generally constant), the two frequencies are exactly the same.

In the following, the inner working of the frequency shift measurement (box
in Fig. 17.6) will be explained for the case that a PLL is used for the frequency
measurement. In a PLL the frequency of an internal oscillator is controlled to match
(follow) the frequency of the cantilever oscillation.

A PLL used in AFM is shown in Fig. 17.8 and consists of three main components:
a phase detector, a Voltage-Controlled Oscillator (VCO), and a controller. First we
introduce the phase detector and the VCO. Subsequently, their interaction in a phase-
locked loop is described.

In the phase detector, the phase of the cantilever oscillation signal Vcant ∝
cos(ωcantt) is compared to the phase of the signal from the voltage-controlled oscil-
lator Vvco ∝ cos(ωvcot + φ0) and the relative phase φ(t) is detected. In the phase
detector, the two signals are multiplied and due to a mathematical identity the product
can be written as

Vcant · Vvco ∝ 1

2
(cos [(ωcant + ωvco)t + φ0] + cos [(ωvco − ωcant)t + φ0]) .

(17.29)
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Fig. 17.8 The phase-locked loop consists of three main components: a phase detector, a Voltage-
Controlled Oscillator (VCO) and a controller. These are combined to form a feedback loop in which
the phase detector detects the phase difference between the cantilever oscillation signal Vcant and
the VCO signal Vvco. The controller regulates the VCO frequency to a vanishing Vphase. This means
that the VCO frequency adapts the cantilever frequency ωvco = ωcant and the phase between the
cantilever oscillation and the VCO signal is φ0 = 90◦. Thus the frequency of the VCO follows the
cantilever oscillation frequency and a voltage proportional to the frequency shift V�ω is obtained
at the output of the controller

The low-pass filter in the phase detector removes the component with the sum of the
frequencies. Thus the signal at the output of the phase detector results as

Vphase ∝ cos [(ωvco − ωcant)t + φ0] = cos(δωt + φ0) = cos(φ(t)), (17.30)

with δω = ωvco − ωcant. The measured phase signal Vphase has the largest phase
sensitivity for a phase close to 90◦. Therefore, we consider Vphase = 0 as the working
point, corresponding to φ0 = 90◦. Relative to this working point, the cosine function
has a slope of minus one and the phase signal can be approximated (for small δωt)
as Vphase ∝ −δωt . Including a proportionality factor Kpd which converts the phase
into a voltage, the output voltage of the phase detector can be written as

Vphase = Kpd cos
(
δωt + 90◦) ≈ −Kpdδωt. (17.31)

We do not consider the inner working of the voltage-controlled oscillator (VCO)
here. For us the VCO is just a block in which the input voltage V�ω controls the
output frequency linearly relative to the working frequency as

ωvco = ωwork + KvcoV�ω, (17.32)

with the proportionality factor Kvco, converting the input voltage V�ω to a frequency
shift relative to the working frequency. The working frequency is the frequency of
the free cantilever plus the frequency shift setpoint ωwork = ωfree + �ωset.
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Now we discuss the frequency tracking capability of the PLL. For the moment,
we do not consider the PI controller shown in Fig. 17.8 and assume that the phase
signal Vphase is directly fed into the input of the VCO, i.e. Vphase = V�ω . Let us
assume that initially the frequency of the VCO matches the oscillation frequency of
the cantilever, ωvco = ωcant = ωwork and φ0 = 90◦. At this working point Vphase = 0,
which corresponds to the condition of maximum sensitivity for the phase, as shown
above. In this case the input voltage at the VCO vanishes, i.e. V�ω = 0.

Now we consider a change of the actual oscillation frequency of the can-
tilever, which results in a frequency difference δω between the cantilever oscilla-
tion frequency and the VCO frequency. According to (17.31) this frequency dif-
ference leads to a phase difference signal measured by the phase detector Vphase =
Kpd cos (δωt + φ0), which evolves approximately linearly with time. With this input,
the output frequency of the VCO results according to (17.32) as

ωvco = ωwork + Kpd Kvco cos (δωt + φ0) . (17.33)

Directly after the instantaneous frequency shift by �ω, the relations δω = �ω and
φ0 = 90◦ hold. According to (17.33), the linearly increasing phase δωt leads to an
increasing ωvco. This reduces the frequency difference δω between the cantilever
frequency and the frequency of the VCO, i.e. δω < �ω. Any remaining finite
frequency mismatch δω leads over time to an increasing phase δωt bringing the VCO
frequency closer to ωcant. In this way, the VCO frequency adapts to the (changed)
frequency of the cantilever ωwork + �ω. Due to this mechanism the VCO frequency
is said to be locked to the cantilever frequency. In the steady-state ωvco = ωcant and
the frequency mismatch δω = 0 vanishes.4

In the terminology of the PLL: The VCO frequency is locked to the cantilever
oscillation frequency by a phase comparison of both signals in a feedback loop.
Hence, the name phase-locked loop. In this way, the PLL measures the frequency
of the AFM sensor as the voltage V�ω . This voltage, which is proportional to the
frequency shift �ω, is used in the z-feedback loop to control the tip-sample distance.
A certain tip-sample distance corresponds to a certain frequency shift voltage V�ω ,
which is kept constant by the z-feedback loop (Fig. 17.6).

The original cantilever signal is a high-frequency signal close to ω0, which is
modulated to slightly lower or higher frequencies (at a much lower frequency) by
the tip-sample interaction, for instance during scanning of an atomic corrugation
(without z-feedback). The PLL converts this modulated high frequency signal to a

4 While the PLL provides a frequency match ωvco = ωcant, a phase φ0 �= 0 remains. The relation

ωcant = ωwork + �ω
!= ωvco = ωwork + Kpd Kvco cos (δωt + φ0) , (17.34)

results for the condition δω = 0 in

�ω = Kpd Kvco cos φ0. (17.35)

Thus a static phase difference φ0 different from φ0 = 90◦ evolves in order to adapt the VCO
frequency to the changed cantilever frequency.
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low frequency signal proportional to the frequency modulation of the high frequency
signal. This is called FM demodulation and also occurs in an FM radio receiver,
where a high-frequency carrier signal is modulated by a low-frequency audio signal
and the demodulation of the audio signal is desired.

Without the use of the PI controller (not yet applied) the frequency match of the
VCO frequency is achieved by a phase φ0 different from 90◦, as shown in (17.35).
Thus the desired working point at φ0 = 90◦ is left. In order to enforce a vanishing
phase signal (i.e. to maintain the condition φ0 = 90◦) a PI controller is used, which
controls Vphase to zero by generating an appropriate controller output signal V�ω ,
which is used as the input voltage for the voltage-controlled oscillator.

17.2.3 PLL Tracking Mode

We have considered the cantilever as an ideal harmonic oscillator. Due to the non-
ideal properties of the mechanical cantilever oscillator, the cantilever oscillation can
deviate from the ideal sinusoidal shape. Moreover, a cantilever is a 3D object that
has many modes which can sometimes be located at frequencies close to each other.
An excitation of modes close to the desired resonance frequency can also lead to
deviations from a clean sinusoidal oscillation. In order to feed the cantilever with
a very clean sinusoidal signal the PLL tracking mode is often used instead of the
self-excitation mode.

In the PLL tracking mode, the signal at the output of the VCO, which has a very
clean sine shape, is used to excite the cantilever (Fig. 17.9). The cantilever deflection
signal (sensor signal) is fed to the input of the PLL (we neglect the amplitude control
for the moment).

In the following, we analyze the time constants of the PLL tracking mode and
obtain the result that this mode has a larger time constant than the self-excitation
mode. We consider an instantaneous jump of the cantilever resonance frequency due
to a tip-sample interaction from ω0 to ω′

0. Initially after this jump the excitation
frequency (PLL output) still remains at ω0. This corresponds to the situation in the
AM detection mode: excitation at a fixed frequency ω0 and instantaneous change
of the cantilever resonance frequency. For the case of AM detection, we found in
Sect. 14.5 that the amplitude and now more importantly the phase changes with a time
constant of τcant = 2Q/ω0. The PLL detects this slowly changing phase and adapts
the VCO frequency with the time constant τcant to the cantilever frequency.5 Thus

5 This is the case for a PLL with a fast time constant. If the PLL has a time constant longer than
τcant , the PLL time constant will limit the overall time constant.

http://dx.doi.org/10.1007/978-3-662-45240-0_14
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Fig. 17.9 Schematic of an FM AFM control in the PLL tracking mode. In this mode, the sensor is
excited by a very clean sinusoidal driving signal taken from the voltage-controlled oscillator (VCO)

the PLL tracking mode is, compared to the self-excitation mode, a slow detection
mode. As an example, for a Q-factor of 104 and f0 = 150 kHz a time constant
τcant = 130 ms results.

Another disadvantage in using the excitation signal from the PLL is the following.
If the PLL becomes unlocked, the cantilever will no longer be excited at its resonance
and the z-feedback will not work properly anymore. In the self-excitation scheme
the cantilever always oscillates at its resonance frequency independent of the PLL
frequency detection.

The PI controller in the PLL loop (Fig. 17.9) is of specific importance if the VCO
excites a harmonic oscillator (the cantilever) at resonance, as is the case in the PLL
tracking mode.6 Without the PI controller, according to (17.35), any deviation from
the working frequency �ω leads to a constant phase shift φ0 different from 90◦. This
means that the cantilever is excited with a phase deviating from the proper resonance
phase 90◦. Specifically for cantilevers with high Q-factors, even a small phase shift
leads to a driving out of resonance. The desired driving of the cantilever at resonance
can be maintained by the use of a PI controller. Using the PI controller in the PLL
loop, the phase signal (Vphase = cos (δωt + φ0)) is kept at zero by delivering a proper
V�ω signal. Thus with a PI controller both the phase shift of φ0 = 90◦ (driving the
cantilever at resonance) as well as tracking the VCO frequency to the cantilever
frequency (δω = 0) are maintained.

The oscillation amplitude control is usually implemented in the same way as in the
self-excitation mode. In a variant of the PLL tracking mode the oscillation amplitude
is not kept at a constant value, but the sensor excitation amplitude is set to a fixed
value. This mode is called constant excitation mode.

6 In the PLL circuits used for example in communications, the PI controller is often not included.
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17.3 The Non-monotonous Frequency Shift in AFM

FM detection can be operated both in the attractive and also in the repulsive regime
of the tip-sample force. This advantage also involves a disadvantage. The measured
property, the frequency (shift), depends non-monotonously on the tip-sample dis-
tance, as can be seen in Fig. 17.3a and schematically in Fig. 17.10a. Due to this, the
tip-sample distance can only be controlled in a certain range of distances. As shown
in the following, instabilities occur outside of this range.

In STM the measured signal (tunneling current) increases monotonously (expo-
nentially) with decreasing tip-sample distance. This leads to stable feedback, i.e. the
feedback controller “knows what to do”. If the current becomes larger (e.g. due to
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Fig. 17.10 Instabilities arise due to the non-monotonous dependence of the measured frequency
shift as a function of the tip-sample distance. a An instability in the attractive regime at working
point d1 (induced for instance due to a fast scan over a steep step edge (inset)) results at a new
working point at d2 with opposite slope, leading to a wrong direction of the feedback action and
to a crash of the tip into the surface. b Catastrophic events can be prevented by using the absolute
value of the frequency shift as the signal for the feedback. In this case, the working point at d1 is
lost if the tip-sample distance changes suddenly to d2, but instead of a catastrophic tip crash a stable
working point in the repulsive branch at d3 is reached
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moving over a step edge), the tip has to be withdrawn from the sample in order to
recover the desired tip-sample distance. A severe problem arises if the measured
signal changes in a non-monotonous way with the tip-sample distance.

Let us assume that stable feedback is established at the tip-sample distance d1 in
the attractive regime at the frequency setpoint ω1 (point 1 in Fig. 17.10a). Here the
frequency shift �ω(d) has a positive slope. Due to some event, like a steep step edge,
the tip-sample distance can potentially decrease suddenly to d2, corresponding to a
frequency ω2. The feedback would now try to restore the setpoint frequency (shift)
ω1. However, due to the opposite slope of the frequency shift at point 2, the feedback
moves the tip closer and closer to the surface. The feedback “thinks” the tip has to be
moved towards the sample in order to restore the more negative frequency shift ω1.
This will lead to a catastrophic event (positive feedback) in which the tip crashes into
the sample up to the maximum range the piezo element can extend. The change from
one branch of the frequency shift curve to that of the opposite slope can occur for
various reasons: a steep slope in the surface topography, a protrusion on the surface,
noise in the measurement signal and lateral change of the interaction potential (i.e. a
branch of opposite slope is reached for a different lateral tip position on the sample).

Stable feedback can be provided only for a range in which the measured sig-
nal monotonously increases (decreases) with the tip-sample distance. One way to
improve the situation is not to use the frequency shift, but the absolute value of the
frequency shift �ω as the feedback signal, as shown in Fig. 17.10b. If here the work-
ing point at d1 is left, also an instability occurs in the region of opposite (positive)
slope, for instance at point 2. However, in this case no catastrophic event occurs
since the tip approaches the surface only until stable feedback is resumed in the
branch with a negative slope and an unintended stable working point 3 is reached.
Thus, using the absolute value of the frequency shift signal avoids catastrophic tip
crashes and stabilizes the feedback (in the case of an instability) in the repulsive
regime. However, the intended working point in the attractive regime is replaced by
a working point in the repulsive regime.

Another way to cope with this non-monotonous frequency shift is to work in the
constant height mode. In this case no instability will occur, since the feedback is
off. However, the constant height mode can be operated only for very flat surfaces
and under very stable conditions where drift does not change the height, i.e. at low
temperatures.

17.4 Comparison of Different AFM Modes

In the previous chapters, we have discussed several modes of AFM operation, which
we will now compare. In Table 17.1 operating modes are sorted along two coordi-
nates: the operating mode can be static or dynamic and the interaction regime can be
attractive or net-repulsive. Often the static AFM is taken to be synonymous with con-
tact AFM (net repulsive interaction), while dynamic AFM is taken to be synonymous
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Table 17.1 Operating modes of AFM ordered in two “coordinates”: static/dynamic mode and
attractive/net-repulsive interactions

Static AFM Dynamic AFM

Net-repulsive interaction Contact mode: Tapping mode:

Contact k ∼ 1 N/m k ∼ 20–100 N/m

Attractive interaction Non-contact mode: AM/FM non-contact mode:

Non-contact k ∼1 N/m k ∼ 20–106 N/m

with non-contact AFM (attractive interaction). However, also the off-diagonal ele-
ments in Table 17.1 are possible.

The static AFM is usually operated with tip and sample in contact (snap-
to-contact), which corresponds to the upper left entry in the table. However, the
static detection method can also be used in the regime of attractive interaction (non-
contact). For instance, long-range electric or magnetic forces can be measured using
static AFM in the non-contact mode (lower left off-diagonal element in the table).
In this mode possible instabilities can lead to snap-to-contact.

In the dynamic modes, snap-to-contact is avoided and the contact/non-contact
“coordinate” has to be assigned differently. The contact regime can be assigned to
the range where a net repulsive force acts between the tip and sample, while in
non-contact the force between tip and sample is attractive.

In the dynamic modes, we measure changes in the vibrational properties of the
cantilever due to tip-sample interactions. The measured properties include the res-
onance frequency, the oscillation amplitude, and the phase between excitation and
oscillation of the cantilever. The dynamic AFM can either operate in the non-contact
mode (lower right entry in the table) or in the intermittent contact mode (tapping
mode) where a repulsive tip-sample contact is established at the lower turnaround
point of the oscillation (upper right off-diagonal entry in the table). In dynamic mode,
snap-to-contact has to be avoided because no oscillation can be sustained. Therefore,
cantilevers used in the dynamic mode have a higher force constant than cantilevers
used in contact mode, or alternatively the amplitudes used are large.

17.5 Summary

• In the FM detection scheme the oscillation frequency follows the shift of the
resonance frequency, i.e. the cantilever always oscillates at resonance.

• The frequency shift in the FM detection is given as

� f = − f0

A2k
〈Fts(t) · z(t)〉 = − f0

πk A2

+A∫

−A

Fts(d + z)
z√

A2 − z2
dz. (17.36)
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• In the large amplitude limit (amplitude much larger than the range of the tip-sample
force) the normalized frequency shift γ factors the dependence on the experimental
parameters out and is given by

γ = � f
k A3/2

f0
. (17.37)

Thus the normalized frequency shift depends only on an integral over the tip sample
force.

• In the self-excitation scheme the cantilever is self-excited from thermal noise at
the momentary resonance frequency of the cantilever. The cantilever oscillation
signal is measured and fed back (after an appropriate phase shift) as the cantilever
driving signal.

• If in FM detection the amplitude is kept at a constant value (amplitude control),
the corresponding multiplication factor contains information about the tip sample
dissipation.

• In the FM mode the frequency of the cantilever oscillation is usually measured by
a phase-locked loop (PLL). The measured frequency shift signal is used to control
the tip-sample distance via a z-feedback loop.

• In the PLL tracking mode the cantilever driving signal is taken from an oscillator
of the PLL. This has the advantage of driving the cantilever with a very clean
sinusoidal signal.

• The non-monotonous dependence of the frequency shift on the tip-sample distance
can lead to instabilities. These can be prevented by taking the absolute value of
the measured frequency shift as the signal for the z-feedback.

• The response time to adapt the steady-state oscillation signal after an instantaneous
change of the tip-sample interaction is much shorter in the case of FM detection
than for AM detection. Therefore, the FM detection scheme is used for the case
of high Q-factors, i.e. in vacuum.

• The AFM modes can be ordered in two coordinates: static/dynamic and net repul-
sive (contact)/attractive (non-contact). The static AFM in the net repulsive regime
is termed the contact mode and the dynamic mode in the attractive regime is called
the non-contact mode. However, besides these regimes, the static mode can also
be operated in the attractive interaction regime, and the dynamic mode can be
operated in the net repulsive interaction regime (intermittent contact).
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