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Preface

The aim of this textbook is to introduce scanning probe microscopy to graduate
students and others wishing to learn about the subject from fundamental principles.
The original literature is fascinating but hard going; I had a hard time trying to
understand it myself. Therefore this textbook was written in an attempt to save other
people’s time by explaining the topics in a more easily digestible manner.

The first part of this book covers instrumental aspects and summarizes some
basics like the harmonic oscillator. In the parts on atomic force microscopy and
scanning tunneling microscopy, the book concentrates mainly on the principles
of the methods. A few actually measured images and spectra are shown to dem-
onstrate the principles. In reversed historical order, atomic force microscopy is
introduced first since this technique is by far the most frequently used method
today.

This book developed from a series of lectures that I gave for more than five years
at RWTH Aachen University. To this end, it is mainly written with graduate stu-
dents in mind. However, since the treatment in the book goes more into greater
depth than is possible in a lecture, it is my hope that it will also be useful for
professionals in the field, and may serve as a reference book in scanning probe
microscopy laboratories.

This textbook is not a historical survey of the field and thus will not concern
itself with who did what first. I do not cite the original papers unless I feel that they
add something that I could not include here. If as an author you perhaps do not feel
cited properly, then you are in good company since Gerd Binnig and Heinrich
Rohrer are not cited either. No content in this book is originally from me. I learned
everything from the primary and secondary literature, and then reformulated it
continuously in the course of teaching the subject.

I was largely able to resist including my own research in this book, so you will
not find any studies of epitaxy using the scanning tunneling microscope which I
performed over the past years, and no charge transport measurements at the
nanoscale using multi-tip scanning tunneling microscopy, which is my current
research topic. However, I included some details on frequency modulation atomic
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force microscopy, since it is my belief that this technique will become more
important in the future.

First of all, I would like to thank Vasily Cherepanov for his careful preparation
of most of the figures. Moreover, he was regularly my “sparring partner” when
discussing issues that were not clear to me. These discussions helped me a lot in
furthering my understanding. I would like to thank Gerhard Meyer, who introduced
me to scanning probe microscopy in 1990 and has helped me since then in various
circumstances. Also, many thanks to Josef Myslivecek for explaining the lock-in
technique to me so clearly that I included it here in exactly the way he explained it
to me. Irek Morawski introduced me to the FM–AFM technique and the quartz
sensors. I would also like to thank Ruslan Temirov for supplying unpublished
images from his work.

I am grateful to Michael Crommie, Don Eigler, Randy Feenstra, Franz Giessibl,
Markus Heyde, Saw-Wai Hla, Wilson Ho, Gerhard Meyer, Oded Millo, Markus
Morgenstern, Nacho Pascual, Udo Schwarz, Jens Wiebe, and Roland Wiesendanger
for permitting me to reproduce images from their seminal works.

I would like to thank my former students Anna Strozecka, Stefan Korte, Martin
Scheufens, Martin Lanius, Marcus Blab, and Richard Spiegelberg for intense dis-
cussions on various topics and for supplying material from their work. A special
acknowledgement is due to Janet Carter-Sigglow for her language support. I am
grateful to Helmut Stollwerk and Peter Coenen for their continuous support over the
years.

I would also like to thank my son Felix for his help in typesetting some of the
equations in LATEX. My son Paul helped me to solve some equations using a
computer algebra system.

I would like to stay in contact with readers via the webpage www.mprobes.com/
SPMbook. On this page, supplementary material as well as errata will be posted. It
also provides a discussion forum and the opportunity to contact me, in order to
report errors, or ask questions.

Finally, it is my hope that this book will enable the reader to operate a scanning
probe microscope successfully and understand the data obtained with the
microscope.

Jülich, Aachen Bert Voigtländer
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Chapter 1
Introduction

In many areas of science and technology there is a trend toward the nanoscale or
even the atomic level. For instance, electronics is already undergoing a transition
from microelectronics to nanoelectronics. As transistors with critical dimensions
close to the single digit nanometer range are now in production, consumer PCs are
become real nanoelectronic devices. Also in many other areas the progress toward
the nanoscale is under way.

An additional reason for the trend toward the atomic scale is that material proper-
ties are ultimately determined by the atomic structure. In order to understand material
properties it is necessary to go down to the nano or atomic scale. However, since the
atoms are very small 50 years ago most people thought that it will probably never be
possible to have direct access to materials on this scale (Fig. 1.1).

The “grandfather” of nanoscience and nanotechnology was R.P. Feynman. In a
visionary talk in 1959 he postulated the possibility of nanotechnology down to the
very atoms. In his talk entitled “There is Plenty of Room at the Bottom” he did not
use the word “nanotechnolgy” since it had not been coined but he had the idea. This
was very visionary in 1959 and he was not really certain so he phrased his vision
in rhetorical questions and added some conditions. He reassured himself with his
words:

But I am not afraid to consider the final question as to whether, ultimately – in the great
future – we can arrange the atoms the way we want; the very atoms, all the way down!

… when we have some control of the arrangement of things on the small scale we will get an
enormously greater range of possible properties that substances can have, and of different
things that we can do.

What could we do with layered structures with just the right layers? What would the properties
of materials be if we could really arrange the atoms the way we want them?

Feynman already saw the potential of nanotechnology already in 1959 before
anyone else did. Now more than 50 years later it is interesting to see how many of his
predictions have been realized. In some cases things have been realized in a much
simpler fashion than he envisaged. To position things on the nanoscale he envisaged
a cascade of machines of decreasing size, each driving the next smallest one. As was
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B. Voigtländer, Scanning Probe Microscopy,
NanoScience and Technology, DOI 10.1007/978-3-662-45240-0_1

1



2 1 Introduction

Fig. 1.1 Size scale from the
human to the atom
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discovered in 1990, it is possible to go all the way down to the nanoscale and build
structures out of atoms in just one step from the macroscale to the atomic scale using
a scanning tunneling microscope. The full 1959 speech is available on the internet.

Feynman envisaged that nanotechnolgy is possible in principle and would be
very useful, but at that time the technology for imaging and controlling matter at
the nanoscale had not been invented. With improvements in electron microscopy, it
first became possible to image matter on the nanoscale. However, scanning probe
microscopy is today a unique tool on the nanoscale, because it cannot only image
but also structure matter on the nanoscale or even on the atomic scale. In scanning
probe microscopy, a small probe is used to detect the local properties at a surface or
interface down to atomic resolution. By scanning a grid of points on the surface, the
detected properties can be mapped and are usually represented as an image. Because
of the scanning mechanism, all these techniques are summarized as scanning probe
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microscopes (SPM). If the interaction between the probe tip and the substrate is
strong enough the substrate can be modified on the nanoscale.

One important figure of merit in microscopy is the resolution. Figure 1.2 compares
the imaging ranges of different types of microscopy. The resolution of the human
eye reaches down to one tenth of a millimeter. Optical microscopy reaches to slightly
better than one micrometer due to the limitations set by the wavelength of visible light.
Scanning electron microscopy (SEM) reaches to about one nanometer. Transmission
electron microscopy (TEM) is capable of a resolution in the atomic range as are the
various types of scanning probe microscopy.

While the resolution limit is important in microscopy also other characteristics
are essential. For instance, the time to obtain an image, the contrast mechanisms
(topography, chemical contrast …), the surface sensitivity, the working environment
(ambient, vacuum, liquid …), and last but not least the price of the microscope.
Each microscopy technique has its advantages and disadvantages for a particular
application. For instance, if surface sensitivity is required SPM with its excellent
surface sensitivity is the method of choice. If, however, features below the surface
are to be imaged then TEM is the method of choice. If quick imaging within a few
minutes down to the nanoscale is required then SEM should be used.
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1.1 Introduction to Scanning Tunneling Microscopy

Today the scanning probe microscope is a very important tool in nanoscience. The
principle of scanning probe microscopes is to move a sharp tip close to a surface in
order to measure various properties with a spatial resolution on the nanometer or even
atomic scale. The first kind of scanning probe microscope, the scanning tunneling
microscope, (STM) was invented in 1981/1982 by Binnig and Rohrer who received
the Nobel prize in physics 1986 for this invention. The most striking property of this
kind of microscope is that it provides resolution down to the atomic scale in real
space (Fig. 1.3b).

Here is an analogy which shows the precision of an STM working with atomic
resolution. Such instruments are about 10 cm in size and can image with a resolution
of about 1 Å, corresponding to a precision of about 10−9 of its size. Scaling this
precision of 10−9 up to macrosize dimensions would correspond to using a pencil
1,000 km in length to write letters from Cologne (Germany) in a notebook in Rome
(Italy) with 1 mm resolution!

A schematic of an STM, with fine metal tip used as a probe, is shown in Fig. 1.3a. A
voltage is applied between the tip and the (conducting) sample. The tip is approached
toward the sample surface until a current flows. A current (the tunneling current) can
be detected shortly before tip and sample come into direct contact. This happens
at distances between tip and sample of the order of 0.5–1 nm. The tunneling cur-
rent increases monotonously with decreasing tip-sample distance. Thus a certain
measured tunneling current corresponds to a specific tip-sample distance. Since the
tunneling current varies strongly (exponentially) with the tip-sample distance this

x, y, z
canning unitS

Feedback

V

I

(a) (b)

x

y

z

Fig. 1.3 a Schematic of a scanning tunneling microscope (STM). b STM image of the Si(111)
surface. Individual atoms are observed as yellow dots. The rhombic unit cell is indicated by white
lines. Besides the periodic arrangement of the atoms also defects such as single missing atoms can
be observed
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quantity can be used to measure (and control) the tip-sample distance very precisely.
We will see later that a 20 % change in the tunneling current corresponds to a change
in the tip-sample distance of only 0.1 Å. The tip is positioned with such high accu-
racy using piezoelectric actuator elements. The mechanical extension of this actuator
elements is proportional to the voltage applied to their electrodes. In this way, the tip
can be moved in x , y and z directions with sub-ångström resolution.

While the tip is scanned along the surface in x and y directions, a feedback
mechanism constantly adjusts the tip height by approaching or retracting the tip to
a tip-sample distance at which the tunneling current remains constant. If there is an
atomic step at the surface, as shown in Fig. 1.3a, and the tip approaches this step
edge laterally during scanning, the tunneling current will rise due to the smaller
distance between tip and sample. As a reaction to this the feedback circuit will
retract the tip in order to maintain a constant tunneling current, i.e. a constant tip-
sample distance. Recording the feedback signal (tip height) as a function of the lateral
position results in a map (or image) of the tip height, which often corresponds to the
surface topography of the sample surface.

The interpretation of the tip height for constant tunneling current as the topography
of the surface is a first approximation. So-called electronic effects can change this
interpretation. A simplified example of this are atoms on a surface which have the
same height (of their nuclei) but their electronic properties are different in the sense
that one atom has a “higher electrical conductivity” than the other. The atom with the
“higher conductivity” will appear higher (same tunneling current at larger tip-sample
distances) while for the case of the “less conducting atom” the tip has to approach
closer to maintain the same tunneling current.

Figure 1.3b shows an atomically resolved image of a Si(111) surface. Single sili-
con atoms are observed as yellow dots. The operation of an STM can be visualized
experimentally by combining a scanning electron microscope (SEM) with an STM.
The SEM can be used to image the motion of the STM tip during scanning. A
movie of a scanning STM imaged during operation with an SEM can be accessed at
http://www.fz-juelich.de/pgi/pgi-3/microscope.

The tunneling junction (sample-gap-tip) can be treated in different approxima-
tions. Here in the introduction, we consider a simple one-dimensional approximation
for one electron tunneling in order to grasp the very important exponential depen-
dence of the tunneling current on the tip-sample distance. Later we will look more
deeply into the theory of STM.

In quantum mechanics, electrons in a solid are described by a wave function ψ(r).
In the free electron approximation the wave function of an electron of energy E is
an oscillating function. The one-dimensional Schrödinger equation is solved by the
(not normalized) wave function

ψ(z) ∝ e±ikz, k =
√

2me E

�2 . (1.1)

When drawing such a wave function, it should be always remembered that the quan-
tum mechanical wave function is genuinely a complex function, which is difficult to

http://www.fz-juelich.de/pgi/pgi-3/microscope
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Particle wave function
in vacuum

Classically forbidden
region

Solid Solid SolidVacuum Vacuum
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0

Incoming particle
wave function

Particle wave function
past the barrier
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regionEvac
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z
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z

Fig. 1.4 a The top graph shows the potential diagram with a barrier of height Φ and the energy
of an electron Eparticle = EF. The lower graph shows the real part of the electron wave function
with an exponential decay of the wave function in the vacuum region. b The top graph shows the
potential for a solid-vacuum-solid configuration. The lower graph shows the electron wave function
oscillating in front of the barrier, exponentially decaying inside the barrier and again oscillating
past the barrier

draw. Therefore, usually only the real or imaginary part is drawn, as in Fig. 1.4. The
sinusoidal appearance of the real or imaginary part of the wave function should not
make us forget that the absolute value |ψ(z)|2 of such a wave function eikz has the
constant value of one for all z.

In the following, we consider the electrons in a solid with the highest energy
(at the Fermi level EF) and call this energy the particle energy E = Eparticle. The
energy of these electrons at the Fermi level is lower than the energy of free electrons
(the vacuum energy). This energy difference is roughly the bonding energy of the
electrons inside the solid. If the Fermi energy were larger than the vacuum energy,
the electrons would leak out of the solid toward the vacuum. The minimum energy
needed to remove an electron from a solid is called the work function Φ, which is
shown graphically in Fig. 1.4a.

Thus at a surface there is a barrier (work function) preventing the electrons from
leaving the solid to the vacuum level Evac. In classical mechanics, particles cannot
penetrate into a barrier which is higher than their energy. In quantum mechanics,
particles can penetrate into a region with a barrier higher than their energy. An ansatz
with an exponentially decaying wave function inside the barrier (in the vacuum) as
ψ(z) = ψ(0)e−κz leads to a solution of the Schrödinger equation inside this potential
barrier (Fig. 1.4a). The probability of a particle being at a position z inside the barrier
is approximately proportional to |ψ(z)|2

|ψ(z)|2 = |ψ(0)|2e−2κz, κ =
√

2meΦ

�2 . (1.2)
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If after some distance d the vacuum is replaced by another solid this configuration is
already a one-dimensional model of the tunneling junction (electrode-gap-electrode).
A potential diagram for such a tunneling barrier is shown in Fig. 1.4b. Since inside
the solid the vacuum barrier is not present, the solution for the wave function is an
oscillating wave, which is again a solution inside the second solid. This means that in
quantum mechanics the electron has a finite probability in both metals. In the square
barrier model a barrier, of height Φ = Evac − EF and width d is considered. In the
course of the solution of the square barrier problem, the transmission coefficient for
the wave function behind the barrier can be calculated. (This is usually done in the
quantum mechanics course. We will come to this in a later chapter.) The probability
of an electron being observed on the right side of the barrier is proportional to the
absolute square of the wave function at the end of the barrier |ψ(d)|2. A transmission
coefficient T can be defined as

T = |ψ(d)|2
|ψ(0)|2 ≈ e−2κd . (1.3)

The main characteristics are: the transmission coefficient decays exponentially with
the tip-sample distance d and decreases exponentially with the square root of the
work function. If we use the right electrode as the tip, the tip probes the probability
density of the electron states at distance d from the surface. Later we will see that
the tunneling current is proportional to the transmission coefficient.

Evaluating (1.2) using the free electron mass for me and a typical value for the
work function of a metal (Φ ≈ 4.5 eV), 2κ is about 20 nm−1. Thus a variation of
the barrier thickness of 0.1 nm results in a difference in the transmission factor of
an order of magnitude (∼7.4). Hence the tunneling current increases by about an
order of magnitude if the tip approaches by one Å to the sample. This sensitivity
in the tip-sample distance is the reason for the extremely high vertical resolution of
the STM which can reach the picometer regime. Atoms on the tip which protrude
only 2.5 Å (∼one atomic distance) less toward the sample carry only a factor of 150
less current. This means that the majority of the tunneling current is carried by the
“last atom”, which also explains the very high (ultimately atomic) lateral resolution
of the STM.

1.2 Introduction to Atomic Force Microscopy

One disadvantage of STM is that it can be used only for conducting samples since
the tunneling current is the measured quantity. An atomic force microscope can also
be used on insulating samples. The atomic force microscope (AFM) is alternatively
known as the scanning force microscope (SFM). However, here we will use the more
common name atomic force microscope. Instead of the tunneling current, which is
the measured quantity in STM, in an atomic force microscope force microscopy the
force between the tip and sample is measured. In Fig. 1.5, a qualitative sketch of the
force between tip and sample is given. Three different regimes can be distinguished.
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Fig. 1.5 Qualitative
behavior of the force
between tip and sample as
function of tip-sample
distance

0
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Repulsive force

Tip far from
the surface:
No force

(a) If the tip is far away from the surface the force between tip and sample is
negligible. (b) For closer distances an attractive (negative) force between tip and
sample occurs. (c) For very small distances a strong repulsive force between tip and
sample occurs. One problem with this behavior is that the tip-sample force which is
used as measured signal depends non-monotonously on the tip-sample distance, i.e.
for one value of the measured force in the attractive regime there are two tip-sample
distances, point 1 and point 2 on the force distance curve in Fig. 1.5. Care has to
be taken to work only on one of the branches left or right of the minimum in the
force-distance curve on which a monotonous force distance relation holds.

The force between tip and sample can be measured in a static mode using the
deflection of the cantilever on which a tip is mounted. The cantilever acts as a
spring and its deflection is proportional to the tip-sample force. If the stiffness of
the cantilever spring k (spring constant) is known, the force between tip and sample
can be determined by measuring the bending of the cantilever. Hooke’s law gives
F = −kz, where F is the force and z is the distance the cantilever spring is bent
relative to its equilibrium position without the sample present. Figure 1.6 shows a
typical silicon cantilever used as a force sensor in atomic force microscopy with a
sharp tip (probe) at its end. The deflection of the lever is measured for instance using
a laser beam reflected from the back of the cantilever into a split photodiode as shown
in Fig. 1.7.

In the static mode of operation, the surface contour is mapped while scanning by
changing the z-position of the tip in such a way that the tip-sample force and, corre-
spondingly, the tip-sample distance are kept constant. The tip position maintaining
a constant tip-sample distance is recorded as topography signal. In other words: the
feedback loop maintains a constant force between the tip and the sample i.e. con-
stant bending of the cantilever, as shown in Fig. 1.7. The corresponding changes in
the z-position required to maintain a constant tip-sample distance (i.e. constant force)
correspond to the topography of the sample. If the measurements are performed in
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Fig. 1.6 SEM image of a
silicon cantilever used in
atomic force microscopy
with a length of 450µm

Fig. 1.7 Schematics of
atomic force microscopy
operation

Sample

Laser

Split photodiode
Feedback
electronics

x,y scanner

z

z-signal

Cantilever

the repulsive regime of the force-distance curve the operating mode is called contact
mode. The last atoms of the tip are in direct contact with the surface atoms.

The atomic force microscope can also be operated in the so called dynamic mode
with an oscillating cantilever. This dynamic mode is often operated in the attractive
part of the tip-sample interaction. This mode of operation is called the non-contact
mode. This is important when imaging soft samples (for instance polymers or bio-
logical samples), which would be destroyed by a strong tip sample interaction. In
the dynamic mode, the cantilever is excited to vibrate close to its free resonance
frequency. When the atomic force microscope tip approaches the surface, the inter-
action between tip and sample changes the resonance frequency of the cantilever.
The tip-sample force can be represented by a second spring acting in addition to the
cantilever spring. This additional spring leads to a change of the resonance frequency
of the cantilever and correspondingly to a change of the cantilever amplitude. This
change in amplitude can be used as a scheme of force detection and can serve as
the feedback signal for regulating the tip-sample distance. The distance regulation
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will be such that a constant amplitude and therefore a constant force (actually force
gradient, as we will see later) is provided.

The idea of scanning probe methods can be considered more generally. A local
probe is scanned over the surface which can detect physical or chemical properties
with high spatial resolution. These techniques are often called SXM techniques where
“X” stands for some specific interaction between tip and sample.

1.3 A Short History of Scanning Probe Microscopy

It is a strange fact in the history of science that the scanning tunneling microscopy
was invented so late. Nobody was brave enough to dare to think so simple: Use
the blindman’s stick principle all the way down to the atomic scale! The principle
is so simple that there are several projects in which already pupils have built an
STM. All the technical ingredients for an STM were invented long before 1981. The
piezoelectric effect was discovered at the end of the 19th century. The electronics for
the STM is also simple; just a function generator to scan and a feedback controller.
From 1930 on it would have been possible to build an STM as the scanning electron
microscope was invented around this time. But no one dared to do so. This may
be also an encouragement for your scientific carrier: be brave and visionary! Some
important and nevertheless simple things may not have been discovered yet.

Here is a short history of scanning probe microscopy:

• 1972 Development of the Topografiner (precursor of the STM).
• 1981 Construction of the first STM by Binnig, Rohrer, Weibel and Gerber.
• 1982 First image of the atomic structure of the Si(111)-(7×7) surface by Binnig,

Rohrer, Weibel and Gerber.
• 1985 Invention of the atomic force microscope (AFM) by Binnig, Quate and

Gerber.
• 1986 Nobel prize in physics for the invention of the STM awarded to Binnig and

Rohrer.
• 1987 Element-sensitive imaging of GaAs by Feenstra.
• 1990 Optical beam deflection method introduced by Meyer and Amer.
• 1990 First positioning of single atoms on a surface with a low temperature STM

by Eigler.
• 1993 Tapping mode introduced by Zhong, Inniss, Kjoller, and Elings.
• 1995 First atomic resolution with an AFM by Giessibl.
• 1998 First vibrational spectroscopy with the STM by Stipe and Ho.

Today scanning probe microscopes are standard tools in materials science,
physics, chemistry, biology and engineering. Many thousands of these microscopes
are in operation worldwide, and they are as common and as popular as the scanning
electron microscopes.
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1.4 Summary

• In scanning probe microscopy (SPM) a sharp probe tip is scanned over a surface
and properties of the surface are sensed at the nano- or atomic scale.

• Different kinds of microscopes are used for nanoscale imaging (scanning and trans-
mission electron microscopes as well as scanning probe microscopes) and all have
their advantages and disadvantages in terms of resolution, working environment,
contrast mechanisms, time to obtain an image, and price.

• The atomic resolution in scanning tunneling microscopy (STM) results from the
exponential dependence of the tunneling current on the tip-sample distance.

• In STM, during scanning the height of the tip is adjusted by a feedback loop (and
recorded as the topography signal) such that the tunneling current and correspond-
ingly the tip-sample distance is kept constant.

• Atomic force microscopy can be also applied to insulating samples. The deflection
of a small cantilever senses the force between tip and sample.

• In the dynamic operation mode, the cantilever oscillates and the resonance fre-
quency and subsequently the amplitude change due to the force between tip and
sample.
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Chapter 2
Harmonic Oscillator

In scanning probe microscopy, vibrations play a central role in several areas.
If, for instance, a scanning tunneling microscope is rests on a table you might won-
der what this has to do with vibrations. However, floor vibrations with amplitudes
of roughly one tenth of a micrometer (100 nm) have to be compared to an amplitude
stability of less than 0.01 nm which is necessary for atomically resolved imaging
in STM. Thus the vibrational noise amplitude is about 10,000 times larger than the
signal to be measured. This means that knowledge about vibrations and vibration
isolation is essential for scanning probe methods. Another area where oscillations
are an important topic is atomic force microscopy. In the dynamical mode of atomic
force microscopy, a cantilever vibrating close to (or at) its resonance frequency is
used as a force detector. The simplest way to study vibrations is to study the harmonic
oscillator. In this chapter we will study the mechanical harmonic oscillator.

2.1 Free Harmonic Oscillator

The simplest example of a harmonic oscillator is a mass on a spring (Fig. 2.1). The
position to which gravity extends the spring in equilibrium is chosen as the point of
zero extension. The displacement relative to this point is called z. The force exerted
by the spring on the mass m during the oscillation is given by Hooke’s law as

F = −kz, (2.1)

with k being the spring constant. If the spring deflection has negative values (z < 0,
longer spring extension), the direction of the force is positive and vice versa. Thus
the minus sign in (2.1) appears because the force exerted by the spring has a direction
opposite to the deflection z. Newton’s second law tells us that the equation of motion
for the mass m is

ma = m
d2z

dt2 = mz̈ = F = −kz. (2.2)

© Springer-Verlag Berlin Heidelberg 2015
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Fig. 2.1 The simplest
example of a harmonic
oscillator: a mass on a spring
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An ansatz for the solution of the equation of motion (2.2) is z = cos(ω0t) with
ω0 being a parameter which has to be determined.1 We verify that this is a correct
solution by differentiating z two times:

dz

dt
= −ω0 sin(ω0t); d2z

dt2 = −ω2
0 cos(ω0t). (2.3)

Formally (2.2) is solved if ω0 =
√

k
m . But what is the physical significance of ω0?

We know that the cosine function repeats itself if the argument is larger than 2π.
Therefore, the mass makes one complete cycle of oscillation if ω0t = 2π. This time,
we call the period of the oscillation T , and ω0 is given by

ω0 = 2π/T . (2.4)

The angular frequency ω0 is the number of radians through which the oscillation
proceeds per time, while the frequency f0 is the number of oscillations per time
(ω0 = 2π f0). If the mass is larger it takes a longer time for one oscillation and if the
spring constant is stronger the mass will move more quickly. Note that the period
of oscillation (and also ω0) does not depend on how far we stretch the spring at the
beginning. Any solution multiplied by a constant factor is still a solution of (2.2).

We have found a solution to the equation of motion. But is this the only one or
are there more solutions? Also the sine function provides a valid solution. The most
general solution is a linear combination of a sine and a cosine function

z = A cos(ω0t) + B sin(ω0t). (2.5)

There is a more intuitive way to find the general solution. When we used the cosine
function as solution, the oscillation started with the maximum extension at time zero.
However, alternatively also any other time during the oscillation could be chosen as
the start of the oscillation. This shift of the time corresponds to a shift of the phase
of the oscillation (the argument of the cosine function is called phase) by a constant

1 The argument of the cosine is named the phase. The phase increases linearly with time if ω0 is
constant.
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phase shift φ. Thus all solutions are captured if the solution is shifted by a constant
(but arbitrary) phase shift φ, and the general solution results as

z = a cos(ω0t + φ). (2.6)

The two solutions given in (2.5) and (2.6) are in fact equivalent. Using the mathe-
matical identity

cos(α + β) = sin α cos β − cos α sin β, (2.7)

the following relations between A, B in (2.5) and a,φ in (2.6) are obtained

B = a cos φ, A = a sin φ. (2.8)

Moreover, the solutions given in (2.5) and (2.6) are the general solution to the equation
of motion. There are no other solutions.

In the general solution of the equation of motion, we introduced two more
constants: A and B, or a and φ, respectively. How are these constants determined?
They are determined by the initial conditions of the motion. For instance if we start the
motion from a static extension z0, B andφ are zero. Now we determine these constants
for the most general initial condition: z0, v0. The acceleration a(t) cannot be speci-
fied as an initial condition. It is given by the spring constant, mass and z(t) according
to (2.2). We use the form for the general solution given in (2.5) and its derivative

v(t) = −ω0 A sin(ω0t) + ω0 B cos(ω0t). (2.9)

These equations are valid for all times, but we know z and v at time t = 0. If we
insert t = 0 we obtain

z0 = A + B · 0 = A v0 = −ω0 A · 0 + ω0 B = ω0 B. (2.10)

We therefore find that the constants A and B can be determined by the initial condi-
tions as

A = z0 and B = v0/ω0. (2.11)

2.2 Driven Harmonic Oscillator

In dynamic atomic force microscopy, we will consider a cantilever which is exited,
driven or moved with a sinusoidal external excitation amplitude. The simplest model
for this is a harmonic oscillator in which the upper fixing point of the spring (cf.
Fig. 2.1) is oscillated (excited) sinusoidally with zdrive(t) = Adrive cos(ωdrivet). The
resulting force on the mass m is then F = −k(z − zdrive). The equation of motion
results as

ma = mz̈ = −k(z − zdrive). (2.12)
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The driving frequency ωdrive can be different from the natural frequency of the
oscillator ω0. The question arises at which frequency the driven harmonic oscil-
lator will oscillate. At its natural frequency ω0, at the driving frequency ωdrive, or at
some value in between? It turns out that the driven harmonic oscillator will oscil-
late in the steady-state at the driving frequency ωdrive. One special solution for the
equation of motion is

z(t) = A cos(ωdrivet). (2.13)

Inserting this ansatz into the equation of motion (2.12) results in

− mω2
drive A cos(ωdrivet) = −mω2

0 A cos(ωdrivet) + k Adrive cos(ωdrivet). (2.14)

We find that z = A cos(ωdrivet) is a solution of the equation of motion if

A = kAdrive

m(ω2
0 − ω2

drive)
. (2.15)

The special solution (2.13) means that m oscillates at the driving frequency with an
amplitude which depends on the driving frequency and also on the natural frequency
of the oscillator. If ωdrive < ω0 then displacement and driving excitation are in
the same direction. If ωdrive > ω0 then A becomes negative. This is equivalent to
a positive amplitude and a phase shift of −180◦ of the oscillation z(t) relative to
the driving excitation. The amplitude and phase for an undamped driven harmonic
oscillator are shown in (Fig. 2.2). If ωdrive � ω0 the amplitude A approaches the

Fig. 2.2 Amplitude and
phase of an undamped driven
harmonic oscillator as a
function of ωdrive showing a
resonance at ω0
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excitation amplitude Adrive. If ωdrive � ω0 the amplitude approaches zero because
the mass can no longer follow the high frequency of the driving excitation.

As can be seen in Fig. 2.2 the amplitude A approaches infinity if ωdrive approaches
ω0. We will see in the next section that damping of the harmonic oscillator prevents
this “resonance catastrophe”.

2.3 Driven Harmonic Oscillator with Damping

Including damping to the driven harmonic oscillator is a more realistic case which
we consider in the following. An additional friction term has to be included to the
equation of motion (2.12). We consider this term as proportional to the speed at
which the oscillating mass moves Ffrict = mγ ż. Also here we assume an external
exciting amplitude zdrive(t) = Adrive cos(ωt). Here and in the following we replaced
ωdrive ≡ ω, in order to have a simpler notation. The spring force acting on the
oscillating mass is again proportional to the difference between the position of the
mass z and the excitation amplitude zdrive as F = −k(z − zdrive). With this the
equation of motion reads

mz̈ = −mγ ż − k(z − zdrive). (2.16)

Replacing ω2
0 = k/m results in

z̈ + γ ż + ω2
0z = ω2

0zdrive. (2.17)

Solving this equation would be quite difficult without the use of complex numbers.
The trick here is to consider z and zdrive as complex numbers (z̃ and z̃drive) and find
the complex solution for the differential equation. Since the physical quantities are
real and the differential equation is linear, at the end only the real part of z̃ is our
solution. The amplitudes are regarded as complex numbers as

z̃ = Aei(ωt+φ) = Aeiφeiωt = ẑeiωt and z̃drive = Adriveeiωt . (2.18)

Without loss of generality we set the phase shift of the excitation amplitude zdrive
to zero, i.e. Adrive is real, while ẑ is regarded as a complex number with a (real)
phase shift φ and (real) oscillation amplitude A as, ẑ = Aeiφ. The real part of z̃
will later be the real solution for the motion of the mass m. The nice thing about
the complex notation is that differentiation of z̃ is now just multiplication with iω
( dz̃

dt = ẑiωeiωt = iωz̃). This means differentiation in (2.17) (with z → z̃) can
be easily executed and this differential equation converts to the simple algebraic
equation [

(iω)2 ẑ + γ(iω)ẑ + ω2
0 ẑ

]
eiωt = ω2

0 Adriveeiωt . (2.19)
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After dividing both sides by eiωt , we obtain the complex solution

ẑ = ω2
0 Adrive

ω2
0 − ω2 + iγω

. (2.20)

Now the real z is the real part of the complex quantity z̃ as

z = Re(z̃) = Re(ẑeiωt ) = Re(Aei(ωt+φ)). (2.21)

Since A and φ are real, the resulting real position z reads

z = A cos(ωt + φ), (2.22)

with the amplitude A and phase shift φ between excitation amplitude and oscillation
amplitude.

In order to calculate A we recall that ẑ = Aeiφ. Therefore, ẑ ẑ∗ = A2 and A2 can
be written as

A2 = ω4
0 A2

drive(
ω2

0 − ω2 + iγω
) (

ω2
0 − ω2 − iγω

) = ω4
0 A2

drive(
ω2 − ω0

2
)2 + γ2ω2

. (2.23)

Now we introduce as a convenient abbreviation the quality factor Q = ω0/γ. The
physical significance of the quality factor will be elucidated later. This replacement
results in

A2 = ω4
0 A2

drive(
ω2 − ω2

0

)2 + ω2
0ω2

Q2

. (2.24)

Furthermore, the oscillation amplitude A can be written as a function of the normal-
ized frequency ω/ω0 as

A2 = A2
drive(

1 − ω2

ω2
0

)2

+ 1
Q2

ω2

ω2
0

. (2.25)

The phase φ of the oscillation relative to the excitation can be obtained as follows.
In general the phase ϕ of a complex number x = reiϕ can be obtained from the
relation tan ϕ = I m(x)

Re(x)
. In order to calculate the phase φ, we recall that ẑ = Aeiφ.

However, according to (2.20) the real and imaginary parts of 1/ẑ are much easier to
find. Therefore, we write

1

ẑ
= 1

Aeiφ
= 1

A
e−iφ = 1

ω2
0 Adrive

(
ω2

0 − ω2 + iγω
)

. (2.26)
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Using the fact that tan(−φ) = − tan φ, we see that

tan φ = −γω

ω2
0 − ω2

= −ω0ω

Q
(
ω2

0 − ω2
) . (2.27)

Also the phase φ can be written as function of the normalized frequency ω/ω0 as

tan φ = − ω
ω0

Q

[
1 −

(
ω
ω0

)2
] . (2.28)

With these results, the amplitude (2.25) and phase (2.28) in the solution (2.22) are
calculated as a function of given variables. The resonance curve in Fig. 2.3 shows the
amplitude and the phase of a driven damped harmonic oscillator. For small driving
frequenciesω � ω0, the motion of the oscillator mass just follows the outer excitation
with a phase approaching zero; i.e. the oscillation is in phase with the excitation. On

Fig. 2.3 Amplitude and
phase of a damped driven
harmonic oscillator as a
function of ω ≡ ωdrive, for
different values of damping
Q = ω0/γ
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the other hand for very large frequencies ω � ω0, the amplitude A approaches zero.
In this case the phase approaches −180◦, i.e. the motion of the oscillator mass is
always in opposite to the excitation.

If we take the limit ω � ω0 in (2.25) we find that the amplitude is proportional to
1/ω2 for small damping, i.e. γ � ω0 or Q � 1. As seen in Fig. 2.3, the smaller the
damping, the higher the maximum amplitude is. For small damping the maximum
of the resonance curve is very close to the resonance frequency of the free harmonic
oscillator ω0. At any driving frequency the phase is smaller than zero, which means
that the oscillator displacement z always lags behind the driving excitation (Fig. 2.3).
The phase at resonance (ω = ω0) is −90◦, while it approaches −180◦ for large
driving frequencies.

The amplitude at the resonance frequency A(ω0) can be obtained using (2.25) as

A(ω0) = Q Adrive, (2.29)

i.e. the amplitude at resonance is Q times higher than the excitation amplitude. For
the case of cantilevers in atomic force microscopy this resonance enhancement of
the excitation amplitude can be quite high. Due to damping in air, Q-factors of 500
are usual for cantilevers in air. In vacuum, quality factors higher than 10,000 can
be reached.

For the case that the oscillation frequency is very close to ω0, i.e. ω ≈ ω0, the
expression for the resonance curve (2.25) can be approximated as

A2 = A2
drive[(

1 + ω
ω0

) (
1 − ω

ω0

)]2 + 1
Q2

ω2

ω2
0

≈ A2
drive

4
(

1 − ω
ω0

)2 + 1
Q2

. (2.30)

In order to obtain this we used the approximations 1+ ω
ω0

≈ 2 and ω2

ω2
0

≈ 1, which

hold if ω ≈ ω0.
An important quantity is the width of the resonance curve. Therefore, we calculate

in the following the frequency ω1/2 at which the amplitude of the oscillation decreases
to 1/

√
2 of its value2 at ω0. This condition for the amplitudes can be written as

A1/2(ω1/2) = 1√
2

A(ω0) = 1√
2

Q Adrive. (2.31)

If we insert ω = ω1/2 in expression (2.30), the following relation results

1

2
A2

1/2(ω1/2) ≈ A2
drive

4
(

1 − ω1/2
ω0

)2 + 1
Q2

≈ 1

2
Q2 A2

drive. (2.32)

2 We use the decrease of the amplitude to 1/
√

2 instead of 1/2, because in this case the energy in
the harmonic oscillator, which is proportional to the square of the amplitude, decreases to one half
of its maximum value.
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Solving this expression for ω1/2 − ω0 results in ω1/2 − ω0 ≈ 1
2

ω0
Q . Since the full

width of the resonance curve is twice this, we obtain

�ω1/2 ≈ ω0

Q
. (2.33)

This means the larger the Q-factor, the narrower the resonance is.
The maximum of the resonance amplitude, which we determine in the following,

lies at a slightly lower frequency thanω0. The maximum of the resonance curve occurs
at the frequency at which the denominator in (2.25) becomes minimal. Differentiating
the denominator of (2.25) with respect to ω/ω0, and equating this derivative to zero
results in the following expression for the frequency ωmax at which the resonance
curve has its maximum

ω2
max = ω2

0

(
1 − 1

2Q2

)
. (2.34)

The corresponding shift of the resonance curve to lower frequencies results as

δω = ω0 − ωmax = ω0

(
1 −

√
1 − 1

2Q2

)
. (2.35)

For the case of an AFM cantilever considered as a harmonic oscillator we estimate
some values for this frequency shift of the resonance curve due to the damping Q
of the cantilever. For a resonance frequency of ω0 = 300 kHz and quality factors
of Q = 10,000 and Q = 300, a frequency shift of 0.8 mHz and 0.8 Hz results,
respectively. These are very small values and correspondingly in most cases we will
neglect this small shift and consider the maximum of the amplitude to be located at
ω0, unless the quality factor is very low.

2.4 Transients of Oscillations

The solution for the damped driven harmonic oscillator (2.22) is the so called steady-
state solution after transients due to the initial conditions have died out. An example
for a transient is an oscillation which starts from rest. The amplitude is initially zero,
builds up after the excitation starts, and reaches the steady-state amplitude in the
limit of large times. The steady-state solution (2.22) does not contain such transients
arising from specific initial conditions.

It can be shown that the general solution of the driven damped harmonic oscilla-
tor is the specific solution (2.22) plus a solution of the corresponding homogeneous
problem. The corresponding homogeneous problem is the damped harmonic oscil-
lator without external driving. Here we do not derive the solution for the damped
oscillator without driving but it should be remembered that this is (for small damping)
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an exponentially decaying oscillation zhom = G exp(−ω0/(2Q)t) cos(ωhomt − φ)

with the oscillation frequency ωhom being slightly lower than the natural frequency
ω0 of the free harmonic oscillator ωhom = ω0

√
1 − 1/(4Q2) and with G and φ as

coefficients specified by the initial conditions.
If we call the specific solution z in (2.22) zs , the general solution for the driven,

damped harmonic oscillator is given as zgeneral = zhom + zs . It is necessary to
include the solution of the damped harmonic oscillator without external driving zhom
since it can describe the transients which are not described by zs . All aspects of zs are
specified in terms of the driving frequency, the driving amplitude, and the phase shift.
Yet we still need some way to impose the constraints given by the initial conditions
z(0) and v(0) in the general solution. The two coefficients G and φ give the freedom
to match the general solution to z(0) and v(0).

As an example we consider as initial condition that the oscillation starts from rest.
In Fig. 2.4 the general solution for the initial condition: starting from rest, is shown to
be composed of the specific solution of the inhomogeneous system (Fig. 2.4a) plus
the solution for the homogeneous system (transient) zhom (Fig. 2.4b). In Fig. 2.4c the
sum of both is shown for the case that ω = ωhom. The specific solution in Fig. 2.4a
is approached within the decay time for the homogeneous solution Fig. 2.4b. The
fact that the situation is not always simple is shown in Fig. 2.4d. Here the driving
frequency deviates from ωhom, which leads to a beating behavior before a steady-state
solution is reached.

hom 1.2 hom

e t/(2Q)
cos( t+ )homcos( t+ )hom

TimeTime

Z
Z

0

0

(a) (b)

(c) (d)

Fig. 2.4 The general solution for a damped driven harmonic oscillator is composed of the specific
solution of the inhomogeneous driven system (steady-state solution), shown in (a) plus the solution
of the homogeneous system without driving (transient), shown in (b). The initial conditions are
chosen such that the general solution satisfies the given initial conditions (start from rest in this
example). c and d show two examples of general solutions (for two different driving frequencies)
starting from rest and approaching the steady-state solution for long times
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If the driven damped oscillator is oscillating in steady-state (Fig. 2.4a) and the
driving amplitude is stopped suddenly, the problem is converted to a homogeneous
one and the oscillator will de-excite as shown in Fig. 2.4b. This is a sinusoidal oscil-
lation with the envelope decreasing as exp(−ω0/(2Q)t). This means that after a time
τ = 2Q/ω0 = TQ/π the amplitude has decreased by 1/e. This characteristic time is
called ring down time and increases with smaller damping. The same time is needed
to build up the steady-state oscillation amplitude after a start from rest.

This time can be expressed in terms of the Q-factor as τ = 2Q/ω0 = TQ/π. This
means that the oscillation builds up (decays) within roughly Q oscillation cycles and
Q can be expressed as

Q = 1

2
τω0. (2.36)

2.5 Dissipation and Quality Factor of a Damped
Driven Harmonic Oscillator

When the mass is initially at rest and an external oscillatory excitation is applied,
energy is successively stored in the oscillator with the buildup of the oscillation (tran-
sient). If the oscillator is finally in a steady-state, the energy stored in the oscillator
is constant and all the energy supplied by the external force ends (on average) up
in the dissipative term. The instantaneous power dissipated is Ffrictv = γmv2 and
varies over one period, as v varies. The mean power consumed by the oscillator in
steady-state can be written as

〈P〉 = 〈Ffrictv〉 = γm〈v2〉. (2.37)

The brackets indicate an averaging over one oscillation period. Since z = A cos(ωt +
φ), differentiation results in v2 = ω2 A2 sin2(ωt + φ). If sin2 is averaged over one
period a factor of one half results. Therefore, the average power results in

〈P〉 = γm〈v2〉 = 1

2
γmω2 A2. (2.38)

With this the energy dissipated per cycle is

Energy dissipated per cycle = 〈P〉T = 〈P〉2π/ω = πγmωA2. (2.39)

Another important quantity is the total energy stored in the oscillator. If we con-
sider driving frequencies close to ω0, the energy stored in the driven oscillator is
approximately the energy of the free oscillator with the same amplitude A

〈E〉 ≈ 1

2
k A2 = 1

2
mω2

0 A2. (2.40)
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The efficiency of an oscillator is defined by how much energy is stored, compared
with how much work is supplied (dissipated) by the external force per oscillation
cycle. This is called the quality factor of the oscillator and is defined by 2π times the
mean energy stored, divided by the energy dissipated per cycle

Q = 2π × Energy stored in the oscillator

Energy dissipated per cycle
. (2.41)

Close to the resonance frequency (ω ≈ ω0), Q can be written using (2.39) and
(2.40) as

Q ≈ ω0

γ
. (2.42)

This is consistent with the abbreviation for Q introduced in the previous section.

2.6 Effective Mass of a Harmonic Oscillator

In this chapter, we always considered an idealized system consisting of a mass-less
spring and a mass m at its end. However, in some cases of practical relevance this
approximation is not fulfilled. For instance, in the case of a cantilever-type spring,
often used in atomic force microscopy, the mass (of the cantilever) is distributed
throughout the whole cantilever (Fig. 2.5b). We introduce the concept of the effective
mass for the example of a coil spring (with mass mspring) and assume that the mass

L

z

M

mspring

vmax

v(z)
dz

(a) (b)

L

z

x z , v(x) (x)

Fig. 2.5 a For a spring with mass mspring, the velocity of a volume element depends on the position,
i.e. v = v(z). The effective mass turns out to be 1/3 of the spring mass. b For a cantilever beam the
deflection and the velocity are non-linear as a function of x
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is distributed homogeneously along its length. In the following, we calculate the
maximum kinetic energy (which corresponds to the total energy) of the spring with
a mass and we do not consider a mass M at the end of the spring.

When calculating the (maximum) kinetic energy of the spring, we regard v(z) as
the maximum velocity during one oscillation cycle. The (maximum) kinetic energy
of a length element dz of the spring is given by

d Ekin = 1

2

mspring

L
v2(z)dz. (2.43)

According to Fig. 2.5a, the velocity distribution along the spring is linear with z and
can be written as v(z) = vmaxz/L , with vmax being the maximum velocity at the end
of the spring, i.e. v(L). Integrating the (maximum) kinetic energy along the spring
results in

Ekin = 1

2

L∫

0

mspring

L
v2(z)dz = 1

2

mspring

L

L∫

0

v2
max

z2

L2 dz

= 1

2

(
1

3
mspring

)
v2

max = 1

2
meffv

2
max. (2.44)

Thus a mass-containing spring is equivalent to a massless spring with an effective
mass meff = 1/3mspring fixed to the end of the spring. If an additional mass M at the
end of a spring is also considered, the effective mass becomes meff = M+1/3mspring.

While we only considered the expression of the kinetic energy here, the same
effective mass also enters into the equations of motion, and thus also into all following
results. For instance, when calculating the natural frequency of a harmonic oscillator
in which the spring contains mass, the effective mass has to be used instead of the
mass M at the end of a massless spring.

For the situation of a cantilever beam the situation is more complicated, because
the deflection z (in reaction to a force applied at the end of the cantilever) is not linear
along the cantilever beam as shown in Fig. 2.5b. According to [1], the bending has
the form z(x) ∝ −x3 +3x2 L . Since a harmonic oscillation is considered throughout
the beam, the velocity distribution along the beam is proportional to the deflection
v(x) = cz(x). The constant of proportionality is determined by the condition v(L) =
vmax as c = vmax/(2L3). Thus the maximum velocity at position x along the beam
results as

v(x) = vmax

2L3

(
−x3 + 3x2 L

)
. (2.45)

Using this expression for the velocity distribution along the beam, the (maximum)
kinetic energy can be obtained by integration along the beam as
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Ekin = 1

2

L∫

0

mcant

L

v2
max

4L6

(
−x3 + 3x2 L

)2
dx = 1

2

(
33

140
mspring

)
v2

max

= 1

2
meffv

2
max. (2.46)

Thus the effective mass for a cantilever beam turns out to be ∼0.2357, instead of
1/3 for a coil spring with a linear extension.

In the case of a cantilever spring, an effective mass has to be used in the equation of
motion and all subsequently derived expressions such as ω0 = √

k/meff . Throughout
this text we use the concept of the harmonic oscillator and denote the mass as m in
order to keep the notation simple. It has to be kept in mind that in fact the appropriate
effective mass haves to be used.

2.7 Linear Differential Equations

At the end of this chapter, we consider some general properties of linear differential
equations with constant coefficients. A homogeneous linear differential equation
up to the second order can be written as

0 = a1x + a2 ẋ + a3 ẍ . (2.47)

The following propositions hold for the homogeneous equation.

• Homogeneity: If x is a solution of the linear differential equation, Cx is also a
solution.

• Superposition: If x1 and x2 are solutions of the linear differential equation, x1 + x2
is also a solution.

• Combining the two, we see that all linear combinations of two solutions are also
solutions.

The corresponding inhomogeneous equations including an external driving force
F(t) can be written as

F(t) = a1x + a2 ẋ + a3 ẍ . (2.48)

If we have a (special) solution of the inhomogeneous equation x1, we can add
any solution x2 of the homogenous (free) equation F(t) = 0 and the sum x =
x1 + x2 will be also a solution of the inhomogeneous system as we see if we add the
inhomogeneous equation and the homogeneous equation as

F(t) = a1(x1 + x2) + a2(ẋ1 + ẋ2) + a3(ẍ1 + ẍ2) = a1x + a2 ẋ + a3 ẍ . (2.49)

Finally, we come to another important property of linear differential equations.
If we have a solution x1 for an external force F1(t) and a second solution x2 for another
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external force F2(t), then a solution for the problem with the force F1(t) + F2(t) is
x1+x2. This superposition principle is remarkable and is the basis for decomposing a
complicated (arbitrary) force into Fourier components and composing the solution of
the problem with a complicated force as a superposition of the solutions obtained for
simple harmonic forces. This is also a late justification for why we only considered
an external excitation (force) of simple harmonic form for the harmonic oscillator.

2.8 Summary

• The free harmonic oscillator has the natural frequency of ω0 =
√

k
m .

• The driven harmonic oscillator oscillates at the driving frequency ω with an ampli-
tude depending on ω and ω0.

• If ω = ω0 the amplitude becomes very large (resonance).
• For the damped driven oscillator the amplitude at resonance is damped with

increasing damping force Ffrict = mγ ż.
• The phase between driving excitation and oscillation is zero if ω � ω0, it is −90◦

if ω = ω0, and −180◦ if ω � ω0.
• The quality factor of the oscillation Q is the ratio between the energy stored in the

oscillator to the energy dissipated per cycle. Q ≈ ω0
γ ≈ ω0

�ω ≈ A(ω0)/Adrive, with
�ω being the width of the resonance curve and Adrive the excitation amplitude.

• The build up or the decay of the steady-state amplitude takes about Q oscillations,
i.e. the corresponding time constant is τ = 2Q/ω0.

• If a spring has a non-negligible mass, the effective mass has to be used in the
equations of the harmonic oscillator.



Chapter 3
Technical Aspects of Scanning Probe
Microscopy

3.1 Piezoelectric Effect

In order to position the probe tip or the sample, piezoelectric elements are used as
actuators. The piezoelectric effect was discovered by the Curie brothers in 1880. A
sketch of their experiment is shown in Fig. 3.1. Tin foils were attached as electrodes
to two sides of a quartz plate. One tin foil was grounded and one connected to an
electrometer. While a force was applied to generate vertical strain, an electrical charge
was detected by the electrometer. The piezoelectric effect is used, for instance, to
ignite pocket lighters (generating the voltage which generates the lightning spark)
and many other technical applications such as sensor technology.

The converse effect occurs if a variable voltage is applied to the foils and a defor-
mation of the crystal results. The converse piezoelectric effect is used in piezoelectric
actuators. Since this deformation is very small and a continuous quantity, deforma-
tions much smaller than the diameter of an atom can be obtained for reasonably small
voltages in the mV range.

In order to apply an external electric field inside the (electrically insulating) piezo-
electric material, metallic electrodes at the surface are used. A voltage applied to the
electrodes induces an electric field in the piezo material (as in a capacitor with a
dielectric) and finally results in an extension of the piezo material. Vice versa, a
strain of the piezo material leads to a surface charge and thus to a charge on the
electrodes, and finally to a voltage between the electrodes.

The piezoelectric effect occurs only for crystals which are not centrosymmetric,
i.e. do not have an inversion center. If an inversion center exists no net electric dipole
moment can be induced inside the unit cell by straining the crystal. If a dipole moment
is present at a position r inside the unit cell, the opposite dipole is also present at the
position −r due to the inversion symmetry and the net dipole moment of the unit cell
is zero. During a directional deformation of a piezoelectric material, microscopic
dipoles are formed inside the crystallographic unit cell. These microscopic dipoles
lead to a charge at the surface of the crystal and a corresponding electric field inside
the crystal. In the converse piezoelectric effect, the crystal unit cell is deformed by an
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Fig. 3.1 Curie brothers’
experiment demonstrating
the piezoelectric effect

Hinge

Quartz plate
Tin foil

Electrometer
Ground

external applied electrical field. An example of a piezoelectric material is crystalline
quartz. Another example of a piezoelectric material used in piezoelectric actuators
is PZT ceramics (lead zirconate titanate Pb[ZrxTi1−x]O3). PZT is piezoelectric and
also ferroelectric, which means that there is a permanent net electric dipole even in
the absence of any externally applied mechanical stress.

In the following, we explain the principle of the piezoelectric effect on the atomic
scale using the example of a PZT unit cell. The unit cell, which is shown schematically
in Fig. 3.2a, consists of Pb2+ at the corners of the unit cell, O2− at face centered
positions on the outer faces of the unit cell, forming an octahedron, and Ti4+ displaced
from the center of the unit cell. In Fig. 3.2b, the unit cell is shown from the side with an
arrow indicating the direction and size of the permanent electric dipole moment. The
electric dipole inside the unit cell results in a net charge at the surfaces (xy-planes) of
the piezoelectric PZT material, as in the case of a capacitor with a dielectric material
inside. The direction along which the permanent dipole moment points is taken as
the z-direction and the material is said to be poled along the z-direction.

When the piezoelectric material is strained in the poling direction (e.g. com-
pressed, as shown in Fig. 3.2c), the magnitude of the electric dipole moment decreases
and correspondingly the electric field inside the material and the surface charge
decrease. This case, where the strain is applied along the poling direction (z-direction)
leading to a voltage between the two opposite xy-surface planes, is called the longi-
tudinal piezoelectric effect.
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Fig. 3.2 a Schematic of the PZT unit cell. b Side view of the PZT unit cell with the dipole induced
by the displaced Ti4+. c Longitudinal piezoelectric effect: upon compression of the unit cell along
the z-axis the dipole is reduced leading to a corresponding change of the surface charge. d Transverse
piezoelectric effect: strain along the x-axis leads, due to the Poisson effect, to a change of the dipole
along the z-direction and a corresponding change of the surface charge. e Shear piezo effect: a shear
strain along the z-direction leads to a change of the x-component of the dipole and a corresponding
change of the surface charge

The case in which the external strain is applied perpendicular to the poling
direction (x-direction) is shown in Fig. 3.2d. In spite of the fact that the crystal is
compressed in the x-direction, no dipole moment occurs in x-direction (nor in the
y-direction), because there is an “inversion symmetry along the x-axis”. For every
atom there is an atom at the −x position inside the unit cell canceling the net dipole
moment along the x-direction. However, due to the Poisson effect any strain in
x-direction also leads to a corresponding transverse strain in the z-direction. This
strain in the z-direction will lead to a change of the dipole moment in z-direction
and to a corresponding change of the surface charge on the xy surface planes. This
piezoelectric effect in which a strain along the x-direction results in a change of the
dipole moment in z-direction is called the transverse piezo effect.

If a shear strain is applied along the z-direction, as shown in Fig. 3.2e, the dipole
turns and induces a change of the component of the dipole moment in the x-direction
and a corresponding build up of surface charge. This effect is called the shear piezo-
electric effect. In the first order, the dipole moment in the z-direction does not change.

Here we discuss the piezoelectric effect. However the reverse reasoning also
applies for the converse piezoelectric effect where a voltage applied to the outer
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metallic electrodes results in a strain. The charge applied to the outer metallic elec-
trodes leads to a change of the dipole moment in the piezoelectric material. This
corresponds to a capacitor with a dielectric, where an charge on the capacitor plates
induces a polarization and a corresponding surface charge. In the case of a piezo-
electric material the dielectric is already polarized without an outer electric field
applied. The change of the dipole moment (change of the polarization) induces in
piezoelectric materials a corresponding strain. This direction of the piezoelectric
effect is relevant for piezoelectric actuators. In the following, we describe the strain
produced in different types of piezoelectric actuators induced by a voltage applied
to their electrodes.

3.2 Extensions of Piezoelectric Actuators

If a voltage �V is applied across a rectangular piece of piezoelectric material
(Fig. 3.3a) of dimensions x, y, and z (poled in z-direction) the external applied electric
field is, due to the plate capacitor configuration, E3 = �V/z. In practical terms the

(a) (b)

(c) (d)

+ ++++ + -- --- -
++ +++ + -- --- -

++ ++ ++ -- --- -
++ +++ + -- --- -

+ -

x
y

z z+ z
V

Fig. 3.3 a Sketch of a piezo plate (dimensions x, y, and z) poled in the z-direction. Considering the
longitudinal piezo effect, an electric field in the z-direction induced by a voltage �V in z-direction
induces a strain in z-direction, �z. Considering the transverse piezoelectric effect a voltage in the
z-direction also induces a strain in the x-direction, and also of course in y-direction. In this case, the
piezo constant is proportional to the length x of the plate. b Since for the longitudinal piezo effect
the piezo coefficient is independent of the plate thickness z, several plates have to be stacked on top
of each other in order to tune (enhance) the piezo constant. c Photo of piezoelectric stack actuators
made by gluing together single piezo plates. d Monolithic stack actuators with much smaller layer
thickness of about 60µm in this case (reproduced with permission from PI Ceramic [2])
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field is applied to a piece of piezoelectric material via the metallic electrodes at the
surfaces of the piezo element. Often the directions x, y, and z are labeled as 1, 2,
and 3, respectively. The direction of the poling field is labeled as direction 3, or as
the positive z-direction. As a result of the applied electric field, a strain is generated
along the z-direction and also, via the transverse contraction of the material (Poisson
effect), a transverse strain in the x-direction. If a piezo plate as in Fig. 3.3a of thick-
ness z is strained in the z-direction by �z, the corresponding strain is S3 = �z/z.
The strain in x-direction is S1 = �x/x. The same also applies for the y-direction.

The mechanical strain developed in a piezoelectric material is known to be propor-
tional to the applied electric field, with the piezoelectric coefficients as proportionality
constants. The piezoelectric coefficients are material constants which depend, how-
ever, on the direction along which the electric field is applied and on the direction
along which the strain is considered. The piezoelectric coefficients are defined as
the ratios of the strain components (in a certain direction) over the component of
the applied electric field (in a certain direction), for example for the longitudinal
piezo effect

d33 = S3

E3
, and d31 = S1

E3
(3.1)

is the piezoelectric coefficient which applies in the case of the transverse piezoelec-
tric effect. Because strain is a dimensionless quantity, the piezoelectric coefficients
have dimensions of meter/volt. Their values are extremely small. For applications in
scanning probe microscopy, a natural unit is Å/V. Since the voltage difference at the
electrodes and the corresponding charge difference are related to the work �U which
has to be supplied to put charge to the electrodes by �V = �U

�Q , equivalent units for
the piezoelectric coefficients are also coulomb/newton. This is also equivalent to the
induced charge density (C/m2) per applied stress (N/m2).

While the piezoelectric coefficients are material properties the piezo constant is
assigned to a specific actuator element with specific dimensions, and the electric field
applied along a specific direction, and the strain considered in a specific direction.
The piezo constant is the ratio between the amount of motion in a certain direction
and the voltage applied between the electrodes, e.g. �z/�V .

As a first example, a piezoelectric plate shown in Fig. 3.3 serves as our piezoelec-
tric actuator, with the electric field applied along the z-direction (poling direction),
and the strain considered in the z-direction as well. There is also strain present in
the x-direction, which we will analyze later. The piezo constant �z/�V can be
calculated as follows

�z

�V
= �z/z

�V/z
= S3

E3
= d33. (3.2)

The piezo constant for motion of a piezo plate in the z-direction (induced by the
longitudinal piezo effect) is not dependent on the thickness of the piezo plate z. The
z-dependence in (3.2) is canceled out due to same dependence of both the electric
field and the strain on z. This means the piezo coefficient of a plate cannot be tuned
by changing its thickness (or, of course, also the diameter). The only way to tune or
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enhance the length extension per voltage is to stack several piezo plates on top of each
other as shown schematically in Fig. 3.3b. With common electrodes in between the
plates, neighboring plates have to have opposite poling and the electrical connections
to the electrodes have to be as indicated in Fig. 3.3b. A photo of this type of piezo
actuator known as a piezoelectric stack actuator, produced by the company PI, is
shown in Fig. 3.3c. The net displacement is the sum of the displacements of the
individual piezo plates. The dimensions of the piezoelectric stack actuators are very
flexible. Typical dimensions are in the mm range for the thickness of a single plate
and in the cm or even decimeter range for the length of the stack. Quite large piezo
constants can be achieved in this way (corresponding to a displacement of 10µm for
a stack height of 10 mm).

There are actually two types of piezoelectric stack actuators. The first type consists
of plates about half a mm in thickness, which are glued together to form a stack
(Fig. 3.3c). Such stack actuators are characterized by high operating voltages of
up to 1,000 V and low capacitances in the nF range. On the other hand, there are
monolithic stack actuators which are characterized by a much smaller piezoelectric
layer thickness (∼60µm) as shown in Fig. 3.3d. These monolithic actuators are
manufactured using a cofiring technology during sintering. This type of actuator has
a lower operating voltage of about 120 V. The disadvantage of such a piezo actuator
is its quite high capacity, in the µF range. If a quick extension of the actuator is
required, quite high charging currents have to be supplied.

In a different kind of piezoelectric actuator, the extension of a piezo plate in
x-direction due to the transverse piezoelectric effect can be exploited (Fig. 3.3a). The
piezo constant for the motion along the x-axis can be obtained as

�x

�V
= �x/x

�V/z

x

z
= S1

E3

x

z
= d31

x

z
. (3.3)

In this case, the piezo constant depends on the dimensions of the plate. The piezo
constant is proportional to the length x of the piezo element and inversely proportional
to its thickness z. Using the transverse piezo effect, the piezo constant of the actuator
can be tuned by its dimensions. To obtain a large piezo constant a long piezo or
a thin piezo element can be used. However, long, thin piezo elements lead to low
resonance frequencies of the bending vibration, which is disadvantageous for stable
STM operation, as we will see later. For a small thickness, the electric field rises
and may approach the allowed limits of the material. While we have considered a
piezoelectric plate here, the most frequently used shape for a piezoelectric actuator
based on the transverse piezo effect is the piezo tube, which we will consider in detail
later. A piezo tube can be imagined as a plate which is rolled up to form a tube.

Of course, in a piezoelectric plate both piezoelectric effects (the longitudinal and
the transverse) occur simultaneously. In both of the previous cases we focus on one
effect and neglect the other due to the specific direction of the extension we are
looking at. When discussing the longitudinal piezo effect of a plate we focus on the
change of the thickness of the plate and neglect the change in the width of the plate
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Fig. 3.4 a Sketch of a
piezoelectric plate operated
using the shear piezo effect.
b Photo of a single shear
piezo plate (6 mm × 7 mm).
c Photo of a shear piezo
stack (15 mm × 15 mm)
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due to the transverse effect. On the other hand, when we focused on the transverse
extension of a plate, we neglected the change of the thickness of the plate.

In Fig. 3.4a a piezoelectric plate is shown which is poled in the z-direction (hori-
zontal in this case) while the electric field (voltage) is applied along the x-direction,
i.e. vertical. As we have seen in Fig. 3.2e, this configuration leads to a shear strain
along the z-direction �z/x. In this case, the piezo constant is independent of the
dimensions and is called (due to some conventions)

�z

�V
= d15. (3.4)

As in the case of the longitudinal effect, the piezo constant does not depend on the
plate dimensions. Therefore, stacks of shear piezo elements are often used here as
well. Shear piezos are attractive piezo elements as they induce a uniform lateral
motion of their surface. As shown in Fig. 3.4b, shear piezos have a size of only a few
millimeters. If shear piezo elements are stacked onto each other and rotated by 90◦,
motions in two orthogonal directions can be performed as shown in Fig. 3.4c.

3.3 Piezoelectric Materials

Initially, the piezoelectric effect was observed in crystalline materials, for instance in
quartz. However, for use in piezoelectric actuators, single crystals are inconvenient.
Today mostly lead zirconate titanate ceramics (PZT, Pb[ZrxTi1−x]O3) are used as
materials for piezoelectric actuators because ceramics can be formed into various
shapes and because of their large piezo constant. These materials are ferroelectric,
which means they exhibit a permanent electric dipole even in the absence of an
external electric field. The unit cell of PZT has an anisotropic structure below the
Curie temperature, i.e. elongated in one direction as shown in Fig. 3.5a. Above the
Curie temperature, the crystal structure becomes cubic and the material loses its
piezoelectric properties Fig. 3.5b.

Directly after sintering, piezoelectric ceramics does not exhibit a piezoelectric
effect. This is due to two reasons: first the ceramic is a polycrystalline material with
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Fig. 3.5 Unit cell of the PZT crystal structure a below the Curie temperature b above the Curie
temperature

randomly oriented crystallites and second also within a single crystallite there are
different domains. Inside a domain the dipoles within the unit cell are oriented in
parallel, while differently oriented domains exist in one crystallite as in the case
of ferromagnetism. These domains are randomly oriented in the raw piezoelectric
material when it is cooled below the Curie temperature after sintering. Ferroelectric
ceramics become macroscopically piezoelectric when poled. This means an elec-
tric field (>2,000 V/mm) is applied to the piezoelectric ceramics at temperatures
somewhat below the Curie temperature. Close to the Curie temperature the crystal
structure is almost cubic. With a field applied, the electric dipoles can switch (by
motion of the Ti atom) to one of the six possible directions (Fig. 3.5b) which lies
closest to the applied electric field. During poling, the domains can reorient and the
domain walls can also move. These domains stay roughly in alignment after cooling.
The material now has a remanent alignment of the dipoles, which can be degraded
by exceeding the mechanical, thermal and electrical limits of the material.

Some material properties of different piezoelectric materials are listed in Table 3.1.
The PZT nomenclature for the materials in Table 3.1 is an industry standard to which
several companies producing piezoelectric materials refer. However, the numbers
should be considered only as rough estimate since the actual values vary from man-

Table 3.1 Some properties
of piezoelectric materials

Material PZT-5A PZT-5H PZT-8

d31 (Å/V) −1.75 −2.50 −1.00

d33 (Å/V) 3.90 6.50 3.00

d51 (Å/V) 5.70 7.30 3.25

Tc (◦C) 360 220 300

Density (g/cm3) 7.7 7.7 7.6

Young’s modulus (1010 N/m2) 5.7 6.3 8.9

Q 90 100 1,200
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Fig. 3.6 Temperature
dependence of the
piezoelectric constants d31
for PZT-5A piezo ceramic
material relative to the room
temperature value (adapted
from [3])
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ufacturer to manufacturer. The Curie temperature Tc is the temperature above which
the material loses its piezoelectric properties irreversibly (like a ferromagnetic mate-
rial). Each material has a maximum operating temperature specified by the supplier,
which is often well below the Curie temperature. The mechanical quality factor Q
determines the sharpness of the mechanical resonance and the resonance amplitude
of an actuator made from this material.

The material properties of the piezoelectric materials are also temperature-
dependent. Most importantly the piezoelectric coefficients decrease for operation
at low temperatures as shown in Fig. 3.6 [3] for the example of PZT-5A. As a rule of
thumb, the piezo constants are for most piezo materials are roughly a factor of five
lower at the temperature of liquid helium than at room temperature.

3.4 Tube Piezo Element

One central task in scanning probe microscopy is to position the probe with an
accuracy of less than one tenth of an ångström in all three dimensions. The tube
piezo element (or tube scanner) is the most widely used actuator element to move
the probe tip or the sample in order to scan a surface (fine motion). One single
tube piezo element allows motions to be performed in three orthogonal directions.
Further advantages are high piezo constants and high resonance frequencies. The
tube scanner consists of a tube, made of piezoceramics (poled in radial direction),
which is covered inside and outside with metal electrodes. The outer electrode is
divided into four quadrants, as shown in Fig. 3.7. A motion in the z-direction (along
the longitudinal axis) can be achieved by applying a voltage between the inner and
all outer electrodes (Fig. 3.7b). A deflection in the xy-direction is induced by voltages
of opposite polarity applied to the two opposite outer electrodes Fig. 3.7c. Due to the
transverse piezoelectric effect, one segment of the tube extends along the tube axis,
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Fig. 3.7 a Photograph of
several tube piezo elements.
b Schematic side view of a
tube scanner showing the
vertical extension along z.
c Schematic of the lateral
movement in the x-direction
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while the opposite segment shrinks, giving rise to a bending of the upper part of the
tube, as shown in Fig. 3.7c. When a tube scanner is used to scan a tip, the tip (holder)
is mounted axially on top of the tube scanner.

The vertical displacement �L = �z of the top of the tube scanner is calculated
using (3.3) (exchanging the directions x and z), leading to the following piezo constant

�z

�V
= d31

L

h
. (3.5)

In order to obtain the lateral displacement �x of the tube, we assume that the bending
of the tube follows a circular arc as shown in Fig. 3.8. From this figure, we identify

Fig. 3.8 Sketch of the
geometry of a bent piezo
tube with the relevant
parameters
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Ltip
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(due to the definition of the arc length) the bending angle as

α = L

R
. (3.6)

Further, we identify L′ = L + �L, which can also be written as

L′ = α

(
R + Dm

2

)
= L + α

Dm

2
. (3.7)

This results in

α = 2
�L

Dm
, (3.8)

with Dm being the mean diameter of the tube. From Fig. 3.8 we also determine that
the cosine of the bending angle can be written as

R − �x

R
= cos α ≈ 1 − α2

2
. (3.9)

Thus the x-deflection of the tube is given by

�x = Rα2

2
. (3.10)

Replacing R using (3.6) and (3.8) results in the following expression for the
x-deflection of the tube

�x = �LL

Dm
. (3.11)

For the length extension �L of the piezo tube we can make the simplified assumption
that it is the vertical length extension according to (3.5). With this assumption the
piezo constant for the x-deflection results as

�x

�V
= d31L2

Dmh
. (3.12)

A better approximation for the length extension �L, which considers non uniform
stress in the electrodes due to bending, is considered in Appendix A and results in
the following expression for the piezo constant for horizontal bending

�x

�V
= 2

√
2

π

d31L2

Dmh
. (3.13)

This equation corresponds to the bipolar operation of the tube where voltages −�V
and +�V are applied to opposite electrodes.
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Typical dimensions of a piezo tube (PZT-5A) are as follows: length 25.4 mm,
mean diameter 5.84 mm, wall thickness 0.51 mm, which results in a piezo coefficient
for x and y directions of 725 Å/V and for the z-direction of 90 Å/V. The most effective
design parameter to tune the piezo coefficient is the length of the tube, as the xy-piezo
coefficient is quadratically dependent on the tube length.

What we have considered up to now is the deflection of the top of the piezo tube.
However, if a tip is mounted on a scanner tube, it is usually mounted at a distance
Ltip above the center of the piezo tube. In this case, an additional deflection �xtip
results, which can be written according to Fig. 3.8 and using (3.6) and (3.8) as

�xtip = Ltip sin α ≈ Ltipα = Ltip
2�L

Dm
= Ltip

4
√

2

π

d31L�V

Dmh
. (3.14)

Combining this with (3.13), the total piezo constant for the horizontal deflection
results in

�xtot

�V
= �x + �xtip

�V
= 2

√
2

π

d31Lpiezo

Dmh

(
Lpiezo + 2Ltip

)
, (3.15)

denoting the length of the piezo tube as Lpiezo.
One disadvantage of the tube scanner is the fact that x, y and z motions are not

completely decoupled. The x, y motion acts approximately on a sphere. Therefore,
every lateral motion also results in a slight motion in the z-direction and vice versa.
This is because the tube scanner relies on bending and not on linear motion. There is
a method to prevent this coupling [4]. As shown in Fig. 3.9, a z displacement can be
prevented during an xy-motion by an opposite bending in the upper part of the piezo
which now has eight electrodes on the outer side. With this trick, good linearity in
x and y directions is achieved and a coupling with the z-displacement is eliminated.
The disadvantage of this type of scanner is that the scan range in x and y direction is
reduced by a factor of two for a given piezo length.

Fig. 3.9 Instead of an
outside electrode divided
into four segments the outer
electrode has eight segments.
The upper part of the piezo
is bent in the opposite
direction to prevent a
displacement in the
z-direction

+Vx

+Vx -Vx

-Vx
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3.4.1 Resonance Frequencies of Piezo Tubes

Here we summarize equations for the resonance frequencies of tubes, and also of
beams such as those used as cantilevers in atomic force microscopy, taken from [1].
These equations are obtained using the assumptions underlying the (classical) Euler-
Bernoulli beam theory, which are the proportionality of stress and strain (small
bending), as well as the condition that a plane cross section of the beam remains
plane under bending, i.e. shear deformations are ignored. As a boundary condition
it is assumed that one end of the tube (beam) is rigidly fixed to a rigid wall.

The frequency of the lowest longitudinal (axial) vibrational stretching mode of a
rod or tube with one end clamped and one end free is

fstretch = λi

2πL

√
E

ρ
, (3.16)

where L is the length of the beam, ρ is its volume density, and E Young’s modulus.1

The value of λi for the ith resonance is given by λi = π/2 · (2i − 1). For the lowest
resonance (i = 1) the stretching frequency results as

fstretch = 1

4L

√
E

ρ
= c

4L
, (3.17)

where c is the longitudinal velocity of sound, which is given in long rods as c =√
E/ρ. For a mass M at the end of the beam (tube) the following expression holds

for the lowest axial resonance frequency

fstretch ≈ 1

2π

√
AE

ML
, (3.18)

with A being the cross sectional (material-containing) area of the beam (tube).
The resonance frequencies of the bending modes of a beam (perpendicular to the

beam axis) clamped at one end and free at the other end are given by

fbend = λ2
i

2πL2

√
EI

ρA
= λ2

i κ

2πL2

√
E

ρ
. (3.19)

The values for λi are 1.875 and 4.694 for the first two modes, respectively. The
dimensions of the beam enter into the area moment of inertia (also called second
moment of inertia) I = ∫

z2dA, where z is the direction of bending. The expression√
I/A = κ is called the radius of gyration and has the following expressions: for a

1 In tables sometimes also the elastic compliance S is used, which corresponds to the reciprocal of
Young’s modulus.
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circular rod κ = D/4, for a tube κ = √
D2 + d2/4, with D being the outer diameter

and d inner diameter. For a tube with negligible wall thickness κ = D/(2
√

2) results,
and for a beam with rectangular cross section (with width w and thickness t) κ =
1

12 wt3 results for bending in the direction of the thickness.
With an additional mass M at the end of the beam and the mass of the beam m,

the first resonance frequency can be expressed as

fbend = 1

2π

√
3EI

L3(M + 0, 2357m)
. (3.20)

Simple numeric estimates for the resonance frequencies are obtained from these
equations. As an example, we consider the lowest bending frequency of a tube.
Following (3.19) the bending frequency results as

f tube
bend = 0.56

√
D2 + d2

4L2

√
E

ρ
. (3.21)

For a PZT-5A tube with the dimensions length 12 mm, outer diameter 3.2 mm, and
inner diameter 2.2 mm, the calculated resonance frequencies are 56 and 10.1 kHz for
the stretching and the bending mode, respectively. These resonance frequencies can
also be measured experimentally in a setup like the one shown in Fig. 3.10a. An AC
voltage is applied to one of the four outer electrodes. Due to the piezoelectric effect
the tube bends and a voltage is induced by the piezoelectric effect on the opposite
electrode (the two other outer electrodes and the center electrode are grounded, as
shown in Fig. 3.10a). This kind of excitation excites the bending modes. The first
bending resonance is measured at 9.3 kHz (Fig. 3.10b), which corresponds roughly to
the calculated value of 10.1 kHz. The higher frequencies around 42 kHz correspond
to the second bending mode and do not correspond so well to the calculated value
of 62 kHz. Figure 3.10c shows the configuration for the excitation of the stretching
mode. The measured frequency of 49 kHz corresponds roughly to the calculated
frequency of 56 kHz.

Generally, the bending resonance frequencies are overestimated by the equations
for two reasons: the neglect of shear forces in the Euler-Bernoulli theory and the
idealized boundary conditions. At one end, the tube (beam) is considered to be fixed
rigidly to a stiff support. However, the support has some elasticity and, if the tube is
glued to the support, also its elasticity enters into the considerations.

If tube piezos have been depolarized, e.g. by too high temperature, they can
be repolarized by applying a DC voltage between the inner and outer electrodes
(the polarity should be the same as during poling, which is different for different
manufacturers). The necessary voltage depends on the wall thickness of the tube.
An electric field of about twice the coercitive field (cf. Fig. 3.12) should be used for
several hours at room temperature, or rather at elevated temperature but still below
the Curie temperature.
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Fig. 3.10 a Schematic of the measurement setup with an electric excitation of the mechanic oscilla-
tion of a tube piezo element (bending mode). The amplitude of the mechanically excited oscillation
is detected by the piezoelectric effect. b Amplitude of the mechanic oscillation. Resonances are
observed at the first bending mode at 9.3 kHz and at the second bending mode around 42 kHz.
c Schematic setup for the excitation of the stretching mode. d The first stretching resonance fre-
quency is measured at 49 kHz

3.5 Flexure-Guided Piezo Nanopositioning Stages

A further continuously moving nanopositioning system uses flexure guides. It relies
on the elastic deformation of a spring-like structure which confines the motion in
only one direction and is driven by a piezo element. The working principle can be
seen in Fig. 3.11a. In a metal block, small trenches are cut by wire EDM (Electri-
cal Discharge Machining). These trenches are shaped in a meandering way so that
they allow a spring-like motion along one direction for the material inside, while
being stiff along the other directions. A second set of trenches forms flexures to
guide the motion along the orthogonal direction. Stacks of piezo elements (blue in
Fig. 3.11a) are used to move the flexures. Sometimes a mechanical lever is included



46 3 Technical Aspects of Scanning Probe Microscopy

(a) (b)

Piezo
Piezo

Mechanical lever

Fig. 3.11 a Flexure-guided piezo nanopositioning xy-stage. b Flexure-guided piezo stage with an
integrated mechanical lever amplifying the motion

in the flexures (Fig. 3.11b) in order to amplify the motion ranges up to hundreds
of micrometers. Capacitive position sensing detectors can be integrated to allow a
precise measurement of the motion. One disadvantage of the flexure-guided piezo
nanopositioning stages is that they are relatively large.

3.6 Non-linearities and Hysteresis Effects
of Piezoelectric Actuators

The positioning performance of piezoelectric actuators is limited by the effects of
hysteresis and non-linearities, which will be discussed in the following.

3.6.1 Hysteresis

There are mainly two contributions which lead to a strain of a piezoelectric ceramic
in the presence of an outer electric field. The intrinsic effect results from the dis-
placement of the ions inside the crystal lattice in the presence of an electric field, as
shown in Fig. 3.5a. This effect is approximately linear and non-hysteretic.

A second extrinsic contribution results from the reorientation of the ferroelectric
domains present in the crystal lattice. A ferroelectric ceramic consists of sintered
crystallites which have a random orientation of their crystalline lattice. Inside a
crystallite, ferroelectric domains with different orientations exist as follows. As seen
in Fig. 3.5, the Ti ion in the crystal lattice can move in six different directions, and
domains with six different orientations (ferroelectric domains) can exist in the crystal
lattice. The ferroelectric domains with their inner electric field parallel to the outer
applied field have lowest energy and the domains with anti-parallel orientation have
the highest energy. Thus there is an energetic tendency for a reorientation of the
domains parallel to the applied electric field. However, there is also an intrinsic
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Fig. 3.12 The butterfly curve of the piezoelectric material PIC 151 [2] for the applied field and the
displacement, both in 3-direction. The strain is shown in dependence of the applied electric field
for large electric fields. The corresponding polarization of ferroelectric domains is also indicated
in a simplified scheme. The butterfly curve shown here was kindly measured by aixACCT [5]

energetic barrier which has to be overcome by the Ti atom when jumping from one
of the six directions to another one.2 With increasing and decreasing electric field
the sizes of different domains change. Due to the barriers which have to be overcome
to reach a low energy state, the inner state of the system (roughly the volume of each
domain orientation) depends on the history of the system leading to the hysterietic
behavior.

Hysteretic behavior in general means that the response of the system (extension of
the piezo) does not only depend on the external conditions (applied electric field in our
case), but also on the internal state of the system (i.e. its history and here specifically
the state of the domain structure). The hysteresis behavior of a piezoelectric ceramic
is usually shown in a butterfly curve, where the strain is plotted in dependence
of the applied electric field (Fig. 3.12). This figure also shows a schematic sketch
of the polarization in the domains. The domains are considered to be square and
aligned with respect to the applied field. Also only two of the six possible domain
orientations are considered. Point 1 corresponds to saturation polarization where
all domains are aligned and also corresponds to maximum strain. If the electric
field is subsequently reduced to zero the point of remanent polarization is reached
(point 2), where most of the dipoles are still oriented parallel to the outer field.
This state corresponds to a certain remanent strain. Between point 1 and point 2 the
strain is mainly induced by the intrinsic piezoelectric effect. When the electric field
changes orientation the domains also begin to reverse their orientation and the strain
is increasingly also induced by domain reorientation. Approaching point 3, the net

2 In this simplified consideration, we have left out the formation energy of domain walls which
results in the formation of larger domains. Larger domains mean less domain wall energy. A further
contribution in the energy balance is the build up of mechanical strain inside the domains when an
external electric field is applied.
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polarization of the domains is zero. With an increased electric field in the opposite
direction the domains begin to align to the opposite direction and correspondingly
the strain increases again to its maximum value (point 4). When the electric field is
subsequently reversed again, the strain follows a different curve from point 4 to point
5 to point 6 and to point 1. This means that the strain induced by domain reorientation
is subject to hysteresis, i.e. depends not only on the external applied electric field but
also on the history or the internal state of the system.

The butterfly curve shows the large signal response of piezoelectric ceramics.
The working range of piezoelectric materials is between point 1 and point 2 for
unipolar operation. For bipolar operation which is used to drive tube piezo elements
in scanning probe microscopy, point 3 must not be reached because it corresponds
to a depolarization of the piezo. Usually only electric fields substantially below the
point of depolarization should be used.

In Fig. 3.13, smaller voltage signals which are used for scanning in SPM are
shown together with the corresponding displacement. Also here a hysteresis is visible
indicated by the elliptic curves which correspond to voltage sweeps form zero to a
maximal voltage and back to zero (indicated by the arrows). Such a voltage sweep
corresponds to scanning one line in an SPM image. Two effects are observed during
these voltage sweeps: first the displacement is different for increasing and decreasing
voltages and second this hysteresis increases for larger voltage amplitudes.

Due to this hysteretic behavior the piezo constant (displacement divided by volt-
age) is not constant anymore. The piezo “constant” depends on the applied voltage
and also on the history of the system (which voltages were applied before). If we
define the maximum displacement divided by the maximum voltage during one volt-
age sweep as average piezo constant for this voltage sweep, we see that this average
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Fig. 3.13 The displacement induced by an applied voltage also shows hysteretic behavior in a
range up to 200 V for the applied voltage and the displacement, both in 3-direction. The average
piezo constant indicated by the dashed lines increases for increasing voltage amplitudes. Due to this
the piezo constants and the corresponding displacements can vary by 10–25 %. The curves shown
here was kindly measured by aixACCT [5] on a PIC 151 ceramic [2]
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piezo constant increases with the voltage amplitude. This effect results from the
increasing contributions due to extrinsic domain reorientation at larger voltages. The
average piezo constants are indicated by dashed lines in Fig. 3.13 for the two volt-
age sweeps with smallest and largest amplitudes. The average piezo constant for the
smallest and the largest voltage sweeps in Fig. 3.13 differ by about 18 % in this case.
This means that due to the effect of hysterisis the piezo constant and correspondingly
the piezo displacements vary by 10–25 % for different voltages.

This variation (increase) of the piezo constant for larger voltages leads to signifi-
cant image distortions at larger scan sizes, visible for instance when imaging defined
gratings on the scale of several micrometers. The piezoelectric coefficients quoted
by the manufacturers of piezo elements are those in the small voltage limit.

3.6.2 Creep

When considering hysteresis (i.e. the domain orientation in dependence of the applied
electric field), always a very slow, quasi-static change of the electric field was consid-
ered. Since the domain reorientation is an energetically activated process, this process
also depends on time. In the case of an instantaneous change of the electric field,
the domain reorientation (domain wall motion) and the subsequent build-up of strain
(extension of the piezo) do not happen instantaneously but take some time after the
electric field has been established. As a result of a sudden jump in the voltage applied
to the piezo electrodes the change in position is not instantaneous. A certain time
dependence of the position, called creep, is observed. A measurement of creep (dis-
placement as function of time) for short times after an instantaneous voltage jump is
shown in Fig. 3.14. For an ideal piezo actuator without creep the displacement would
occur only at the time of the voltage jump and not change afterward.

In SPM, the creep results in an effect at the turning points of the scanning move-
ments of each scan line. A positive piezo extension still occurs due to creep, while

Fig. 3.14 Creep is the piezo
displacement after an
instantaneous voltage jump.
The curve shown here was
kindly measured by
aixACCT [5] on a PIC 151
ceramic [2]
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the voltage change has already reversed its direction. In the vertical direction creep
occurs after the (rapid) approach of the tip to the sample. During the approach process,
large variations of the z-position are usual and after the approach to the surface a
creep in z results.

Creep and hysteresis are also the reason why in scanning probe methods two
successive scan lines should not be scanned in opposite directions (first line: +x,
second line −x, …) but always in the same direction (first line: +x, second line +x,
…) (no data are acquired while scanning backwards in the −x-direction). For lines
scanned in opposite directions, a mutual shift in the position of up to 20 % would
result due to creep and hysteresis.

3.6.3 Thermal Drift

Thermal drift of the mechanical setup leads to image distortions. This is a general
effect on all mechanical components of the microscope, and is not limited to piezo
elements; specifically, when the sample has been previously annealed (for instance
in the process of sample cleaning). Usually it takes some time after approach before
the thermal drift is reduced sufficiently for imaging. In low temperature experiments
thermal drift is suppressed.

In conclusion, due to all the above mentioned limitations for piezoelectric scan-
ners, scanning probe techniques are generally not suitable tools for a quantitative
measurement of distances in the micrometer range (without careful separate cali-
bration). If atomic resolution is achieved the lateral calibration can be performed by
taking atomically resolved images of a known surface structure. The vertical calibra-
tion is usually performed at (single) monoatomic step edges. If no atomic resolution
is obtained, commercially available calibration grids can be used for horizontal and
vertical calibration.

An absolute calibration of scanners is also possible using interferometric or capac-
itive position sensors. In this case, a closed loop operation can be realized. In a feed-
back loop, the voltage at the piezoelectric actuator is adjusted such that the desired
and measured displacement of the actuator is reached. This is the best way to elimi-
nate all effects of piezo hysteresis and creep. However, the measurement of the piezo
extension results in larger sizes of the piezoelectric actuator. Also an increased num-
ber of cables and additional control electronics are needed. Nowadays, closed loop
operation is standard in atomic force microscopes.

3.7 STM Tip Preparation

Tip preparation is an important point, which defines the resolution of the scanning
tunneling microscope and the quality of the images. The tip should have a minimal
radius of curvature at the end and a narrow diameter to penetrate into trenches and
pits on the surface. The tip material should be stable in high electric fields.



3.7 STM Tip Preparation 51

Tips for STM under ambient conditions are typically made of platinum or a Pt-Ir
wire in order to prevent oxidation of the tip material in air. A more or less sharp tip
can be produced by cutting and/or grinding. These crude tip preparation techniques
are only used for scanning very flat surfaces like graphite. For STM in vacuum,
electrochemically etched tungsten tips are most frequently used. The most common
procedure of electrochemical etching is the DC drop-off method [6]. A tungsten wire
(diameter 0.25 mm) is put into a solution of NaOH (e.g. 5 g NaOH in 50 ml water) and
kept at a positive potential towards a stainless steel counter electrode (Fig. 3.15a). The
etching process takes place predominately near to the surface of the solution. Due to
convection, fresh OH− is supplied from the air-electrolyte interface. The downward
flow of the heavy W anions protects the lower part of the wire in the electrolyte
from the supply of fresh OH−. These specific conditions lead automatically to the
formation of a narrow neck shown in Fig. 3.15a. When the neck is etched thin enough
the wire fractures due to its weight. Additionally, in order to prevent any further
etching, the etching voltage is shut down by the control electronics. The remaining
top part will be used as the tip (Fig. 3.15b) and has to be cleaned with deionized water.
Most often the tip is covered with an oxide layer and contaminations from the etchant.
Thus other in vacuum treatments of the tip, like annealing or field evaporation, are
often applied.

There are several different types in situ (in vacuum) tip treatment. Due to the
fact that the real sharpness of the tip on the atomic scale cannot be accessed these
treatments often have the character of highly empirical procedures. In the following,
some examples of further cleaning and characterization in vacuum are given.

Heating. The freshly etched tip is fixed in a special tip-holder and installed into
a load-lock chamber for transfer to vacuum. Resistive heating of the tip apex can be
performed in order to remove the oxide layer and other contaminations remaining

Fresh OH
-

WO4

W

NaOH

(a) (b)

Fig. 3.15 a Schematic of electrochemical tip etching. b SEM image of an etched tip, original wire
diameter 0.25 mm
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after the chemical etching [7]. A direct current is applied between the tip and a
tungsten wire (diameter 0.5 mm) that touches the tip wire at a point near to the tip
apex. The tip should be heated to a temperature above 800 ◦C for several seconds. The
sharpness of the tip is controlled by the value of the applied voltage required in order
to achieve a certain field emission current from the apex of the tip. It was found that
to obtain an emission current of 1 nA, the applied voltage should not exceed 600 V.
If a higher voltage than 600 V is required the tip has a poor sharpness and has to be
changed. The pressure during this operation should be less than about 10−8 mbar.
After this second step of tip preparation, the tip is introduced into the tunneling
microscope by the transfer system. Another way of heating the tip is heating by
electron bombardment.

Sputtering. Ion bombardment of the tip under vacuum conditions (for instance Ar
ions at several hundred volts) can be used to clean and sharpen the tip.

High field treatment. It is also possible to sharpen the tip during tunneling. The
bias voltage is raised for a short time (for several scan lines) to several volt (negative
at the sample). By this treatment some W atoms may diffuse to the tip apex due to
the non-uniform electric field and form a nanotip.

Tip indentation into metal. It is also possible to reshape a blunt tip by indenting
(pressing) it several nm into a soft metal sample. In this way a new microtip can be
formed. This is also the reason why, when working on metal samples, the tip is rarely
replaced.

3.8 Vibration Isolation

In order to keep the scanning probe stable with respect to the sample with an accuracy
of less than 0.1 Å would (ambitiously) require a vibrational noise level of about a
factor of ten lower than this for the relative motion between tip and sample, i.e.
1 pm. In this case, the usual amplitudes of building vibrations of ∼0.1µm have
to be reduced by a factor of 100,000 for the tip-sample distance. As we will see
in the following, to accomplish this task both good vibration isolation and a rigid
microscope have to be combined.

We will perform the analysis of the vibration isolation in two steps. In the first
step, we will consider the microscope as a rigid construction of mass m and ask:
How can this mass be isolated from outside vibrations? In the second step, we also
consider the microscope itself as a oscillating system where the tip oscillates against
the sample and we ask: How can these tip-sample oscillations be reduced?

3.8.1 Isolation of the Microscope from Outer Vibrations

If the microscope is considered as a rigid mass, outside vibrations are transmitted
from the ground and the air. An effective vibration isolation can be obtained by
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Fig. 3.16 a Vibration
isolation of a microscope
(represented by a mass m)
against external vibrations x1
using a spring suspension.
b Transfer function of the
vibration isolation system for
Qspring = ω0/γ = 5
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a spring suspension (Fig. 3.16a). The microscope assembly (mass m) is fixed to a
spring with spring constant k. This harmonic oscillator has a natural frequency of
ω0 = √

k/m. The oscillating system is damped with a damping factor γ (or the
corresponding quality factor Qspring = ω0/γ). An external (sinusoidal) vibration
x1(t) with amplitude x0

1 and frequency ω (vibration from of the building floor) is
coupled into the system (Fig. 3.16a). As a reaction to this outside forced excitation,
the mass m performs an oscillation x2(t) with amplitude x0

2 at the driving frequency
ω. We refer the motions x1 and x2 relative to a fixed (not oscillating) reference system.
The elastic force on the mass depends on the difference of the positions (x2 − x1).
Thus the restoring force of the spring acting on the mass m is

Fspring = −k(x2 − x1), (3.22)
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In the current case, it is assumed that the frictional damping force depends on the
difference of the velocities3 (ẋ2 − ẋ1). Therefore, the damping force Ffrict is

Ffrict = γm(ẋ2 − ẋ1). (3.23)

The equation of motion for the mass m reads now

ẍ2 + γ(ẋ2 − ẋ1) + ω2
0(x2 − x1) = 0, (3.24)

or reordered slightly
ẍ2 + γẋ2 + ω2

0x2 = γẋ1 + ω2
0x1. (3.25)

For a sinusoidal vibration of the frame x1 can be written in the complex notation
(skipping the tilde)

x1(t) = x0
1eiωt, (3.26)

the steady-state solution for the motion of the mass m is

x2(t) = x0
2eiωt . (3.27)

with x0
1 and x0

2 being complex amplitudes which include a relative phase shift between
the two amplitudes.

Substituting (3.26) and (3.27) into (3.25) we obtain (again using the power of the
complex method: differentiation is just multiplication by iω)

− ω2x2 + iγωx2 + ω2
0x2 = iγωx1 + ω2

0x1. (3.28)

or
(−ω2 + iγω + ω2

0)x0
2eiωt = (iγω + ω2

0)x0
1eiωt . (3.29)

Finally, we obtain
x0

2

x0
1

= ω2
0 + iγω

ω2
0 − ω2 + iγω

. (3.30)

This ratio is still a complex number, since both amplitudes are complex quantities
having a real amplitude and phase. The ratio of the absolute values of the amplitudes
is called the transfer function of the vibration isolation system κspring(ω), which can
be written as

κspring(ω) =
∣∣x0

2

∣∣∣∣x0
1

∣∣ =
√

ω4
0 + γ2ω2

(ω2
0 − ω2)2 + γ2ω2

. (3.31)

3 If the damping medium is at rest relative to a fixed external coordinate system, (i.e. not oscillating
together with x1, as assumed here), the term ẋ1 has to be neglected in the following. This case
applies to a cantilever in atomic force microscopy damped in air.
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The response of the system to a driven oscillation κspring(ω) can be divided into
three regimes (Fig. 3.16b). For ω � ω0 the outside excitation is transmitted with a
transfer function of one, i.e. without any damping. For a frequency close to the natural
frequency of the system (in resonance), the outside excitation is even amplified, i.e.
the vibrations are increased instead of damped. At ω = ω0 the transfer function at
becomes

κspring(ω0) =
√

ω4
0 + γ2ω2

0

γ2ω2
0

=
√

1 + ω2
0

γ2 =
√

1 + Q2
spring. (3.32)

For small damping (γ � ω0 or equivalently Qspring � 1), the transfer function can
be approximated by

κspring(ω0) ≈ ω0

γ
= Qspring. (3.33)

If the Q-factor is very large, the external vibration would be amplified tremendously
at ω0. To avoid such resonance excitation, appropriate damping must be applied.

In the third regime ω � ω0 and γ approaching zero (or correspondingly Qspring
very large), the transfer function (3.31) reduces to

κspring(ω) ≈
(ω0

ω

)2
. (3.34)

This shows that for excitation frequencies ω much larger than the natural frequency
ω0 and for small damping, the external vibrations are suppressed ∼1/ω2. We have
seen that damping (small Q-factor or large γ) avoids resonance excitation. However,
on the other hand damping deteriorates vibration isolation at higher frequencies. The
transfer function becomes asymptotically ∼1/ω for Qspring = 1. In Fig. 3.17 the
transfer function is shown for different values of Qspring. In typical spring suspen-

Fig. 3.17 Transfer function
of a spring suspension
system for different values of
the quality factor Qspring
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sion systems, a compromise between good damping at high frequencies and large
resonance enhancement is chosen for Qspring ≈ 2 − 5.

The best vibration isolation (for instance from building vibrations) is achieved with
the lowest natural frequency of the spring system. Therefore, the natural frequency
of the spring system is the prime parameter of a vibration isolation system. In the
following, we will show that this parameter only depends on the extension length of
the spring �l.

Hooke’s law results in k�l = mg. If we insert the result for m into the equation
for the natural frequency of the system f0 = 1

2π

√
k/m the natural frequency for the

system can be written as

f0 = 1

2π

√
k

�lk/g
= 1

2π

√
g

�l
. (3.35)

To achieve a natural frequency of 1 Hz the spring should be stretched by 25 cm. To
achieve a natural frequency of 0.5 Hz the spring has to be stretched by 1 m. This length
is difficult to integrate in a system. Some reduction of the length of the springs can be
achieved by using pretensioned springs. Such springs are available in principle, but,
it is difficult to manufacture springs which simultaneously feature a high pretension
force and a low natural frequency.

Note that the mass and the spring constant do not enter explicitly into the expres-
sion for the natural frequency. This equation is the same as for a simple pendulum
with length �l. Therefore, a spring suspension system acts as a isolation device for
both vertical and horizontal environmental vibrations.

3.8.2 The Microscope Considered as a Vibrating System

In the second step of our analysis of the vibration isolation, we consider the micro-
scope itself as a vibrating system. While it is wise to couple the sample most rigidly
to the scanner/tip assembly, this (stiff) mechanical loop of the microscope can also
be characterized as a vibrating system with a (quite high) resonance frequency ωSTM
and a damping constant γSTM, or corresponding quality factor QSTM = ωSTM/γSTM
(Fig. 3.18). The softest part in the mechanical loop is the piezo material with a typi-
cal quality factor of 100. Let x2 describe the oscillation of the microscope body (or
sample in Fig. 3.18a), and x3 the vibration of the scanner/tip assembly (Fig. 3.18a).
Here one point is important (which makes life much easier): it is not the vibration
amplitude of the tip x3 (relative to the floor x1) that has to be reduced to a minimum
but only the difference of the motion between tip and sample x3 − x2. Only the rela-
tive motion of the tip relative to the sample counts! The differential equation for the
vibrating tip x3 relative to an external fixed reference is

ẍ3 + γSTM(ẋ3 − ẋ2) + ω2
STM(x3 − x2) = 0. (3.36)
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Fig. 3.18 a The microscope
itself is considered as an
oscillating system
characterized by ωSTM and
γSTM. Tip and sample
oscillate against each other.
b Transfer function κSTM
according to (3.40) for the
microscope with resonance
frequency ωSTM
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The spring force is proportional to x3 − x2 and the frictional force is proportional to
ẋ3 − ẋ2. Using the complex method to solve the differential equation results in

− ω2x3 + iγSTMω(x3 − x2) + ω2
STM(x3 − x2) = 0, (3.37)

or

− ω2x2 − ω2(x3 − x2) + iγSTMω(x3 − x2) + ω2
STM(x3 − x2) = 0. (3.38)

The (complex) ratio of the difference of the amplitudes x0
3 − x0

2 to the amplitude of
the base of the microscope x0

2 is obtained as

x0
3 − x0

2

x0
2

= ω2

ω2
STM − ω2 + iγSTMω

. (3.39)

The transfer function results in

κSTM(ω) =
∣∣∣∣∣
x0

3 − x0
2

x0
2

∣∣∣∣∣ =
√

ω4

(ω2
STM − ω2)2 + γ2

STMω2
. (3.40)
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The resulting transfer function is plotted in Fig. 3.18b and can be approximated by

κSTM(ω) ≈
(

ω

ωSTM

)2

, (3.41)

for ω � ωSTM, and small damping, with ωSTM being the natural frequency of the
STM (mechanical loop between tip and sample). When the excitation frequency ω
is much lower than the natural frequency of the microscope ωSTM, good damping
of the external vibrations is achieved. In Fig. 3.18b we use QSTM = 100, since the
material with the lowest Q-factor in the mechanical loop is the piezo ceramic, which
has a typical mechanical quality factor of about 100.

3.8.3 Combining Vibration Isolation and a Microscope
with High Resonance Frequency

The concept for an effective vibration isolation is to combine the two approaches
and use a low natural frequency for the vibration isolation system and a high natural
frequency for the mechanical loop of the microscope. According to (3.31), a vibration
of the frame with amplitude

∣∣x0
1

∣∣ is transmitted to the STM base with amplitude
∣∣x0

2

∣∣ as

x0
2 = κspringx0

1 . (3.42)

(From now on, we consider the amplitudes as real and omit the absolute signs.) Fur-
thermore the vibration amplitude of the STM base x0

2 induces (according to (3.40))
a relative amplitude between tip and sample of

x0
3 − x0

2 = κSTMx0
2 . (3.43)

In total, an outer vibration of amplitude x0
1 induces a relative tip sample vibration of

amplitude x0
3 − x0

2 as

x0
3 − x0

2 = κSTMx0
2 = κSTMκspringx0

1 . (3.44)

or the total transfer function can be written as

κtotal = x0
3 − x0

2

x0
1

= κSTMκspring. (3.45)

The transfer function of the combined system is the product of the transfer functions
of the individual systems.
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Fig. 3.19 Transfer function
of the combined system κtotal
given by the product of the
individual transfer functions
of the spring suspension
system κspring and the STM
itself κSTM for the case of
small damping, i.e.
QSTM = Qspring = 100
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According to (3.34) and (3.41), the total transfer function can be approximated in
the frequency range ω0 < ω < ωSTM as

κtotal ≈
(ω0

ω

)2
(

ω

ωSTM

)2

=
(

ω0

ωSTM

)2

. (3.46)

This behavior of an approximately constant transfer function in between the reso-
nance frequencies ω0 and ωSTM can be seen in Fig. 3.19 in which the transfer function
is shown in the limit of negligible damping (QSTM = Qspring = 100).

If, for example, the natural frequency of the spring suspension system is 1 Hz
and the natural frequency of the STM is 1 kHz, the overall transfer function for
intermediate frequencies has a constant value of 10−6, as shown in Fig. 3.19. If we
would be able to raise the resonance frequency of the STM to 10 kHz the total transfer
function for the transmission of an external vibration to the tip-sample distance would
go to 10−8!

Next we consider more realistic transfer functions by including damping. For
the spring suspension system we consider Qspring = 5, while we assume QSTM =
100. When damping is included the total transfer function is not constant. The total
transfer function according to (3.31) and (3.40) is plotted in Fig. 3.20 together with
the individual transfer functions of the spring suspension and the STM. It is assumed
that the STM mechanical loop can be approximated by a single natural frequency
1,000 times higher than the natural frequency of the spring suspension. With this
assumption, the transfer function stays below the initial desired value of 10−5 up to
ω/ω0 < 40. The quite high values of the transfer function for higher frequencies
(which arises due to the relatively strong damping of the spring suspension) could
be regarded as problematic. However, as we will see in the next section, the driving
amplitude of the exciting floor vibrations decreases at larger frequencies.

In summary, the spring suspension acts as a low-pass for vibrations with frequen-
cies smaller than the natural frequencies of the springω0, while it damps the vibrations
at larger frequencies. On the other hand, the STM assembly acts as a high-pass for
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Fig. 3.20 Transfer function
of the combined system κtotal
which is the product of the
individual transfer functions
of the spring suspension
system κspring and the STM
itself κSTM
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vibrations with a frequency larger than ωSTM, while it damps the vibrations at lower
frequencies. The total transfer function is the product of the transfer functions of
the spring suspension and STM. In order to keep the total transfer function low at
all frequencies, a low natural frequency of the vibration isolation, as well as a high
frequency of the microscope mechanical loop are required.

The necessary damping of a spring suspension system is often performed by
eddy-current damping. When a conductor (usually copper) moves in a magnetic
field, damping forces are generated by eddy currents inside the conductor, as shown
in the schematic in Fig. 3.21a. An example of an eddy-current damping system is

S      N

(a)

(b)

Copper

STM

Long springs
inside tubes

Magnets

m

x1

x2

Fig. 3.21 a Principle of an eddy-current damping system with a magnet next to a conductor in
which the energy is dissipated as eddy currents. b Photo of an eddy-current damping system with
STM



3.8 Vibration Isolation 61

shown in Fig. 3.21b. The disadvantage of a spring suspension system is the large
size. Another way of damping is to use a stack of metal plates separated by rubber
(e.g. Viton®) pieces, which act as springs and dampers simultaneously. A further
method of vibration isolation is to mount the SPM on pneumatic isolation legs (also
used for optical tables). A typical resonance frequency of such a table is 1–2 Hz, and
a transfer function of smaller than 0.01 can be achieved for frequencies larger than
10 Hz.

3.9 Building Vibrations

Building vibrations are most pronounced in the low frequency range below 10 Hz.
Building vibrations can be influenced by external conditions like nearby railway
lines or motorways. Also inside a building the building vibrations are increased by
compressors, large machines, and ventilation systems. As a general rule the intrinsic
building vibrations are more pronounced in higher floors and correspondingly lowest
in the basement of a building. For this reason, sensitive scanning probe microscopes
can be often found in the basement.

Geophones (accelerometers) are typically used to measure building vibrations.
The quantity measured by these instruments is the velocity. In Fig. 3.22, the velocity
of the building vibrations measured on a floor in a building in Research Center
Jülich is plotted as function of vibration frequency. The general behavior is that the
amplitude deceases with increasing frequency. The highest amplitudes are typically
observed for low frequencies around 1–2 Hz. In Fig. 3.22 a value of v0 ≈ 0.7µm/s is
observed at low frequencies. In order to convert the measured data from the velocity
to oscillation amplitude or acceleration, we recall that

Fig. 3.22 Velocity of the
building vibrations measured
on the floor in a building at
the Research Center in Jülich
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Fig. 3.23 Expected tip-sample vibrational amplitude as a function of frequency, calculated using
the measured building vibrations and the appropriate transfer function from Fig. 3.20. The amplitude
of the building vibrations is shown as a red line. The data are taken from Fig. 3.22 and extrapolated
for higher frequencies. The green and blue curves show the behavior with and without a spring
suspension system, respectively

x = x0 cos(ωt), (3.47)

v = ẋ = −x0ω sin(ωt) := −v0 sin(ωt), (3.48)

a = ẍ = −x0ω
2 cos(ωt). (3.49)

Therefore, the vibration amplitude at 2 Hz is x0 = v0/ω ≈ 50 nm. The corresponding
acceleration is a0 = ωv0 ≈ 10−5 m/s2 ≈ 1µg.4

The measured building vibrations x0
1(ω) can be included in the vibration analy-

sis performed previously. According to (3.44), the relevant tip-sample vibrational
amplitude x0

3 − x0
2 can be expressed as a function of frequency as

x0
3 − x0

2 = κtotal(ω)x0
1(ω). (3.50)

If we multiply the total transfer function by the measured floor vibration amplitude
(derived from Fig. 3.22), the expected tip-sample vibration amplitude arising due to
the floor vibrations is shown in Fig. 3.23. The case where no spring suspension is
invoked is shown as blue line, leading to a roughly constant tip-sample vibration
amplitude of 10−4 nm = 0.1 pm. However, close to the resonance frequency of the
STM the amplitude increases by the usually quite high quality factor of the STM.
This disadvantageous resonance behavior (amplitude up to 0.1 nm) can be suppressed
using a spring suspension system. The tip-sample vibrational amplitude includ-
ing a spring suspension (green curve) suppresses the amplitude at STM resonance

4 Sometimes a factor of 1/
√

2 is included if the root mean square (RMS) amplitude instead of the
peak amplitude is measured.
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frequency, but also leads to a resonance at the eigenfrequency of the spring suspension
system, which has to be suppressed by proper damping of the spring suspension sys-
tem. In this case, the tip-sample vibrations are reduced to values below one picometer
for all frequencies.

3.10 Summary

• Due to the piezoelectric effect a voltage applied to the electrodes of a piezoelectric
element leads to a strain, i.e. a motion of some part of the element.

• The piezo constant describes the sensitivity of a piezoelectric actuator in Å/V.
• The most frequently used piezoelectric actuator element in scanning probe

microscopy is the tube piezo element. It allows x, y, and z-motion with one single
element.

• Problems with piezoelectric actuators are the coupling of lateral and vertical
motion, non-linearity, hysteresis, and creep.

• Sharp STM tips can be fabricated by self-adjusting electrochemical etching.
• The natural frequency of a spring suspension system depends only on the extension

length �l as ω0 =
√

g
�l .

• It is not necessary to minimize the amplitude of the tip vibration and the sample
vibration individually but only the difference between tip and sample position.

• For effective vibration isolation a low natural frequency of the spring suspension
system ω0 is combined with a high natural frequency of the STM assembly ωSTM,
i.e. a stiff mechanical loop between tip and sample.

• The transfer function (i.e. the attenuation of external vibrations) is constant for
small damping κtotal ≈ ( ω0

ωSTM
)2 for ω0 < ω < ωSTM.

• The expected tip-sample vibration amplitude can be calculated by multiplying the
total transfer function by the (measured) building vibration amplitude.



Chapter 4
Scanning Probe Microscopy Designs

Due to the limited range of piezo actuator elements available of only one to several
micrometers, it is necessary to use a coarse approach to bring tip and sample into such
a close distance that the (tube) scanner can be used for the fine motion (up to several
micrometers) during scanning. The task of coarse positioning largely determines the
SPM design since nowadays almost all SPMs use a tube scanner for the fine motion.
Here we concentrate on the general principles of SPM design and take the STM as
an example. Specific aspects concerning atomic force microscopy designs will be
discussed later.

Since the early days of STM, screw mechanisms are often used for the coarse posi-
tioning of the tip. Sometimes these mechanisms are combined with lever mechanisms
in order to reduce the tip-sample motion relative to the screw motion. Nowadays,
this macromechanical positioning is often replaced by micromechanical positioning
using piezo electric actuators. We will describe several types of these most precise
piezo electrically driven nanopositioners.

4.1 Nanoscope

The first commercial atomic force microscope, the nanoscope, which is still available
in a modified form, works with a mechanical coarse approach which can be driven
by a stepper motor [8]. Its scan head consists of an invar cylinder which houses a tube
piezo (Fig. 4.1). Invar is used because it has a similar thermal expansion coefficient,
to that of the piezo material. A tube scanner is used for x , y, and z fine motion. The
tube scanner is segmented into two sections along its axis. The segment closer to
the tip (lower part) is used to control the vertical tip-sample motion (z-direction),
while the upper part is segmented into four quadrants, which allows lateral motion
(xy-scanning) (Fig. 4.1). The z-extension part of the tube piezo element acts as a
lever to enhance the lateral motion. The tip is attached to the side of the tube scanner.
The preamplifier for the tunneling current is located very close to the tip on top
of the invar cylinder. The sample is mounted on a baseplate which supports the

© Springer-Verlag Berlin Heidelberg 2015
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Fig. 4.1 Design principle of
a Nanosope STM [8]
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cylindrical head. The scan head rests on the three hemispherical ends of the screws.
Two of these supporting points form a pivot close to the tip. The third support point
is moved by a fine advance screw. In this way the movement of the tip relative to
the sample is reduced substantially relative to the travel of the fine advance screw.
The motion of the fine advance screw can be controlled by a stepper motor which
allows the approach of the tip towards the sample to be automated. An additional
xy-translation stage built into the base allows macroscopically different regions of
the sample to be imaged.

4.2 Inertial Sliders

While the question of the best SPM design cannot be answered generally because it
depends on the specific application, inertial sliders are very common in SPM designs.
How an inertial slider works in principle can be easily grasped by the following
experiment: Place a sheet of paper on a table and place a coin on the paper. Now
you can move the coin without touching it by shaking the paper on the table with
your hand in a saw-tooth pattern, i.e. quick in one direction and slow in the opposite
direction. The coin will stay in frictional contact with the paper during the slow
movement (small slope part of saw-tooth motion) and move together with the paper.
However, during the steep slope part of the saw-tooth motion the frictional contact
between the coin and the paper will disengage due to its inertia and the coin will not
move (or move only slightly) relative to the table. This simple principle is the basis
for many nanopositioners.

All these inertial sliders consist of two essential parts: a mover which is moved by
a piezo actuator relative to a reference frame and an object to be moved called slider
in the following. This very general configuration of an inertial slider is shown in
Fig. 4.2a. The term inertial slider is used because inertia is important for the function
of these devices. Inertia is the “resistance” of a mass to change its state of motion.
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Fig. 4.2 Operating principle of an inertial slider. a Riding phase: mamover < Fstat
frict = mstat mg.

b Sliding phase: mamover ≥ Fstat
frict . c Inertial slider with spring

Newton’s first law, which is also called the law of inertia, states that if no force acts
on a mass this mass will not change its velocity due to its inertia. In the following
we describe the motions from an external fixed inertial frame. We also assume that
the friction forces do not depend on the velocity but that they are proportional to the
normal force which the slider exerts on the mover.

The force accelerating the slider mass is transmitted from the mover via the
frictional surface to the slider. The slider stays in frictional engagement with the
mover if the static friction force F stat

frict is larger than the force on the slider due to its
acceleration as

m amover = m aslider < F stat
frict = μstat m g, (4.1)

with μstat being the coefficient of static friction of the frictional surface, m the mass
of the slider, and g the gravitational acceleration. Since μstat is of the order of one,
the acceleration of the mover must be roughly smaller than g in order to remain
in frictional engagement. In this phase of motion, called “riding phase”, the slider
moves together with the mover.

The frictional surface remains in static frictional contact if forces smaller than
the threshold force F stat

frict are applied. If however, m amover > F stat
frict the frictional

contact disengages, transforms to a sliding frictional contact and the slider will not
move together with the mover (Fig. 4.2b). The necessary accelerations larger than
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g can be reached by piezoelectric actuators with their resonance frequencies in the
kHz range. If the frictional engagement at the friction surface is lost, only the smaller
kinetic frictional coefficient μkin acts at the frictional surface and the force acting on
the slider reduces to

m aslider = Fkin
frict = μkin m g. (4.2)

The direction of this force due to the kinetic friction (positive/negative) corresponds
to the sign of the relative velocity vmover − vslider.

In Fig. 4.3 the position, the velocity and the acceleration of the mover and slider
relative to an external reference are shown during the “riding phase” and “sliding
phase”. The saw-tooth signal of the mover is approximated by a small slope and a
large slope segment. The sharp corners (which are rounded in reality) give rise to an
acceleration at these points. Due to the small slope of the position in the riding phase,
the peak in the acceleration at time zero is smaller than the threshold acceleration
astat

frict, and the slider stays in frictional engagement with the mover. During the riding
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Fig. 4.3 Position, velocity and acceleration of the mover and the slider during inertial motion as a
function of time relative to an external fixed reference system
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phase, mover and slider are in static frictional contact and move with the same
constant velocity. The acceleration is zero and the position changes linearly for both
the mover and the slider. When the saw-tooth signal changes from the small slope
(“riding phase”) to the steep slope (“sliding phase”), the mover accelerates for a short
time (negative spike in the acceleration, Fig. 4.3c) and the static frictional contact is
lost. After this transient state, the mover acceleration is zero again and the mover
now has a high (constant) velocity, the mover position changes linearly with a large
slope. During the acceleration peak of the mover, which is (much) larger than the
threshold acceleration astat

frict, the slider loses static frictional contact. Now a negative
force due to the kinetic friction acts on the slider according to (4.2). This leads to a
linearly decreasing velocity of the slider. During this deceleration due to the kinetic
friction the position of the slider develops as shown in Fig. 4.3a.

When the velocity of the mover stops (at time 1 in Fig. 4.3) there is another
sharp (this time positive) spike in the acceleration of the mover. The slider continues
to decelerate from the velocity which it acquired during the riding phase until the
slider stops. Now the slider engages with the mover again, i.e. the frictional surface
transforms to static friction. After the completion of a sequence, the slider has moved
relative to the mover by a certain distance as indicated in Fig. 4.3a. In reality, the
sliding phase occurs in a much shorter time relative to the riding phase than shown in
Fig. 4.3. Also the transitions between the different regions are not sharp but rounded
and the acceleration during the steep slope segment of the saw-tooth signal does not
vanish.

Here we note two points resulting from the detailed analysis. First, the motion of
the slider is not zero during the sliding phase, but it decelerates from the velocity
during the riding phase to rest. This deceleration is induced by the kinetic friction
force which acts during the sliding phase. The second point is that during the sliding
phase no acceleration of the mover is required (apart from the initial transient). Also
with zero acceleration during the sliding phase the slider moves relative to the mover.

In most inertial sliders, the force normal to the frictional surface F⊥ is not sup-
plied by the gravitation (as assumed up to now), but by other means like springs
or magnets as shown in Fig. 4.2c. This has the advantage that the inertial slider can
work in any orientation if F⊥ � m g. In this case, the maximal static frictional force
F stat

frict = μstat F⊥ is independent of the mass of the object to be moved and frictional
engagement is lost if

m amover > F stat
frict = μstat F⊥. (4.3)

In order to lose frictional contact (to go into sliding phase) m amover has to be larger
than the static friction force F stat

frict. This means that either the mass m of the slider
or the acceleration of the mover amover has to be large in order to fulfill the relation
m amover > μstat F⊥. There are certain limits to the acceleration of the mover. The
first fundamental limit is that the mover cannot be moved at frequencies higher
than the resonance frequency of the mover (or rather the combined system of piezo
actuator and mover). Another effect which limits the acceleration of the mover is
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the speed at which the power supply of the piezo actuator can pump charge to the
piezo element. The slew rate is the maximal voltage change per time provided by
the power supply for a certain piezo capacity. Assuming now a certain maximum
limit for the acceleration of the mover (given by the resonance frequency or the
slew rate of the power supply), the mass of the slider m is the free parameter which
can be tuned (increased) in order to raise the force m amover above the limit for
sliding μstat F⊥. This means a certain (minimum) mass of the slider is needed for
operation of the inertial slider. In practical applications for nanopositioning systems
a high mass of the slider has several disadvantages. Ideally, the size of inertial sliders
used for nanotechnology should be as small as possible. However, a certain mass
(corresponding also to a certain size of the slider) is needed for operation of the
inertial motion, as stated above. Another reason for a small mass of the slider is that
a large mass also intrinsically leads to undesired low eigenfrequencies (ω0 = √

k/m).
Therefore, the high mass required for the operation of the inertial motion contradicts
the requirement of a small mass for small devices with high eigenfrequencies and
an appropriate compromise between these opposing demands has to be found. Later
we will also introduce nanopositioners which do not rely on inertia.

A practical implementation of an inertial slider as nanopositoner is shown in
Fig. 4.4 [9]. On a baseplate three shear piezo elements are mounted which provide
motion up to about one micrometer in one direction. On top of the shear piezo
elements, (hemi)spherical balls are mounted, usually made of hard materials like
ruby, sapphire, or stainless steel. These three balls correspond to the mover in the
previous discussion. The slider is held by magnetic force on top of the three balls.
Small magnets in the middle of the baseplate exert a force onto the magnetic slider,
which rests firmly on the three balls. The motion of the slider is guided along one
direction by a groove in the slider in which two of the three balls are resting. A
saw-tooth pattern of motion is applied to the piezo elements and leads to a motion of
the slider along one direction, as described above. The step size of an inertial slider
can be chosen down to the nanometer range, but also larger step sizes (micrometer)
are possible and allow quick positioning even in the millimeter range.

Fig. 4.4 Sketch of an
inertial slider (length 35 mm)

Slider

Ball

Magnet

Guiding groove

Support plate

Shear piezo element
Electrical connection
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4.3 Beetle STM

A widely used versatile STM design invented in Jülich by Karl Besocke is the beetle
design [10]. The beetle STM as shown in Fig. 4.5a consists of a baseplate on which
three piezoelectric tubes are mounted. Balls are fixed at the end of the tubes. A ramp
ring divided into three helical sectors rests on the three balls. The sample is mounted
in the middle of the ramp ring. A fourth piezoelectric tube is mounted at the center
of the baseplate and acts as a tube scanner for xyz fine motion and a tip (holder) is
fixed to the scanner piezo. By applying an appropriate synchronous saw-tooth-like
voltage to the outer three segmented piezos, the ramp ring can be rotated by inertial
motion. Changing the voltage quickly (saw-tooth signal) causes the balls to slip on
the ramp due to the inertia of the ramp ring. Thus the sample can be moved towards
the tip by rotation of the ramp ring. Also a horizontal motion of the ramp ring can
be induced by an appropriate inertial motion.

The beetle design has several advantages. One is the compactness of the design
which allows an SPM to be constructed with a very small mechanical loop from the
sample via the outer three piezos to the baseplate and via the scanner tube and the
tip back to the sample. This compactness results in high resonance frequencies and
correspondingly small vibrational noise. Another advantage is that the symmetric
design reduces thermal drift. A thermal expansion in the scanner piezo tube is com-
pensated by a similar expansion in the outer piezos (same material). Also an easy
xy-motion of the sample over several millimeters on the ramp rings is one feature

Fig. 4.5 a Sketch of the
beetle STM design. The
height can be as small as
about 20 mm. b Photo of a
beetle STM with shielded
piezo tubes and without
sample on top. c Variant of
the beetle design with the
scanner tube mounted to the
ramp ring

Ramp ring
SampleBall

Tip

Piezo element
Scanner piezo element

Baseplate

(a)

(b) (c)
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of the beetle design. One disadvantage of the original beetle design was that heavy
(metal) samples, which also need thick leads for heating are not so well accommo-
dated on top of the SPM in the ramp ring. However, the beetle design is very flexible.
It can be turned upside down, so that the ramp ring and the sample are fixed and
the microscope “walks” on the ramp ring. This type is also called “Johnny walker”
design. There are even more variants, for instance (starting from the original design
according to Fig. 4.5a) the tube scanner can be turned upside down and fixed to the
ramp ring (instead of the sample), as shown in Fig. 4.5c. The sample is mounted on
(or below) the baseplate. One disadvantage of the beetle design is the coupling of
xy-motion and z-motion. If the ramp ring is rotated downwards for the approach
(z-motion) this motion is always accompanied by a slight unintentional shift also
in the xy-direction and vice versa. Another disadvantage of the beetle design may
be that due to the rotation of the ramp ring there is no fixed reference frame for the
xy-directions.

4.4 Pan Slider

The Pan slider is an STM design with very high rigidity which is mainly used in
vacuum and cryogenic environments [11]. This STM type is named after Shuheng
Pan, who invented the design. The moving part is a sapphire prism containing a tube
piezo scanner. The stepping is actuated by six shear piezo stacks, as shown in Fig. 4.6.
Four of the shear piezos are mounted on the interior of a Macor body. The other two
are pressed against the sapphire prism by a spring plate. With this construction the
pressure on the six piezo stacks is approximately equalized. The working principle of
this walker is also inertial motion. First the shear piezo elements are moved quickly,
so that the prism does not move (sliding phase). Then the piezos are moved slowly
(riding phase). An appropriate material combination for a reliable slip-stick is given
by an alumina plate mounted on top of the shear piezos. While the original design did
not allow for coarse xy-motion of the sample relative to the tip, it can be upgraded by
an xy-moving table below the sample usually constructed using shear piezo elements.

Fig. 4.6 Pan STM design
using shear piezo elements in
order to move a sapphire
prism on which a tube
scanner is mounted

Sample

Tube scanner

Macor body

Sapphire prism
Shear piezo
stacks

Tip

Spring plate
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4.5 KoalaDrive

The coarse positioning unit takes up most space in a scanning probe microscope.
An ultimately small SPM design can be reached if the coarse approach of the tip
towards the sample is integrated inside the piezo tube (which is used as scanner in
almost all SPMs). However, here the inertial slider principle is not optimal. In order
to function, an inertial slider needs inertia, i.e. a certain mass, which works against
the desired miniaturization. Also the large acceleration required to move an inertial
slider induces a lot of shaking of the whole mechanism. The KoalaDrive, which
avoids all inertial motion was constructed at Jülich by Vasily Cherepanov et al.

The task of the KoalaDrive nanopositioner is to move a rod along its axis, as
shown in Fig. 4.7a. For use in an STM a tip (holder) is fixed to the end of the
rod. The KoalaDrive consists of two tube piezo elements mounted in series, for
instance, one after the other, as shown in Fig. 4.7a. At the ends and between the
two tube piezos, three springs are mounted, holding a central rod. The upper two
springs shown in Fig. 4.7a can be moved by an extension or compression of the
tube piezos along their axes. The working principle of the KoalaDrive relies on
concerted consecutive motions in which the frictional surfaces between a spring
and the rod alternate between static friction and sliding friction. Whenever only one
spring moves, the other two will hold the rod (by static friction) and only at the single

Fig. 4.7 a Working
principle of the KoalaDrive:
concerted interplay between
static friction and sliding
friction. If only one spring
moves, the rod is held
stationary by the other two
(step 1 and step 2). The
motion of the springs during
the different steps of a cycle
is indicated by arrows. If two
springs move
simultaneously, the central
rod moves together with
them (step 3). b Photo of the
KoalaDrive. c A variant of
the KoalaDrive design where
the two piezoelectric tubes
are coaxially stacked into
each other

(a)

(b)
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moving spring will the frictional engagement be lifted and sliding friction will occur.
One cycle of motion is shown in Fig. 4.7a. In step 1 of the cycle, the upper piezo
element contracts and the upper spring goes into sliding friction. The central rod is
kept stationary by the lower two springs, which stay in static friction with the rod.
Subsequently, in step 2 the middle spring moves downwards, while the upper and
the lower spring remain in their positions. For the upper spring, this is realized by a
simultaneous contraction of the lower piezo element and a corresponding expansion
of the upper one, leaving the upper spring unmoved. Also here a single spring (middle
one) moves, while the two others keep the rod fixed. Finally, in step 3 the lower
piezo extends and moves the two upper springs up simultaneously. In this case, the
lower spring goes into sliding friction and the upper two springs move the rod up
(static friction). In simplified terms, the working principle follows the rule: “Two
are stronger than one”. If two springs move simultaneously, the central rod moves
with them. If only one spring moves, the rod is kept stationary by the other two.
Figure. 4.7b shows a photo of a KoalaDrive. The ultracompact KoalaDrive can have
a diameter of less than 2.5 mm and a length smaller than 10 mm. Depending on the
particular application, the design of the KoalaDrive can be modified. If, for instance,
the length of the drive should be small, the two piezo tubes can alternatively be placed
coaxially into each other instead of one after the other, as can be seen in Fig. 4.7c.

One single cycle can induce a motion in the range between severalµm and 100 nm,
which is ideally suited for a coarse approach in scanning probe microscopy. A long
stroke, only limited by the length of the rod, and speeds up to 1 mm/s are possi-
ble. Most other nanopositioners used for tip-sample approach in scanning probe
microscopy use the inertial motion with sawtooth-like signals inducing large accel-
erations causing vibrations in the system. The operating mode of the KoalaDrive is
quasi-static (one cycle can even last several seconds) leading to a continuous motion
without shaking, thus avoiding large accelerations. Avoiding steep slope signals also
means fewer demands on the power supply (no high slew rate needed) and for the
cabling (no high currents flow). Movies of the motion of the KoalaDrive measured
using an SEM during one cycle of motion are available on the internet at www.
mprobes.com/koaladrive.html. These real-time movies show the motion of a scan-
ning tunneling microscope (STM) tip attached to the central rod. The KoalaDrive is
ultra high vacuum compatible and works at cryogenic temperatures (down to liquid
helium temperatures), as well as in magnetic fields.

In the next step, the KoalaDrive can be used to build an ultracompact STM.
The KoalaDrive is used for the tip-sample coarse approach and is integrated into a
segmented scanning tube piezo element used for the xyz-scanning fine motion as
shown in Fig. 4.8a. The STM is completed by attaching a tip (plus tip holder) to the
central rod and an outer frame, which holds the sample, as shown in Fig. 4.8a. Since
the coarse approach mechanism is integrated into the piezoelectric tube scanner, no
extra space for the coarse approach is required. Thus, this design leads to an STM of
minimal size: A complete STM scanner can be integrated inside a piezo tube of 6 mm
outer diameter and 12 mm length. In Fig. 4.7b, a photograph of an actual KoalaDrive
STM is shown. The use of the KoalaDrive makes the scanning probe microscopy
design ultracompact and leads accordingly to high mechanical stability.

www.mprobes.com/koaladrive.html
www.mprobes.com/koaladrive.html
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Fig. 4.8 a Design of an STM using the KoalaDrive leading to an STM of minimal size. b Photograph
of an actual KoalaDrive STM

4.6 Tip Exchange

Unfortunately, an initially sharp STM tip degrades when used for some time. If the
tip is used under ambient conditions it can be replaced straightforwardly by bending
the tip wire slightly and inserting it into the cannula of a syringe. In the simplest case,
this syringe needle is already part of the STM and attached in or at the scan piezo
element. When working in vacuum the (tungsten) wire itself cannot be handled, but
the tip wire is mounted in a tip holder, which can be transferred into vacuum and
grabbed there, usually by a modified sample holder adapted to hold a tip holder.
Finally, the tip holder (with tip) is inserted into the STM in vacuum using a wobble
stick or another kind of manipulator. The easiest way of inserting a tip holder into
an STM is if the receptacle at the STM includes a small magnet which guides the tip
holder (made of magnetic material) to its desired position. Often a fork mechanism
(or gripper mechanism) is used to release the tip holder from the manipulator when
it is in position in the STM. Instead of magnetic forces also a spring mechanism can
be used to fix a tip holder in the STM.

4.7 Summary

• Coarse approach is the approach between the tip and sample from the macro-
scopic range down to the range covered by the tube scanner. The coarse approach
determines the SPM design.

• Inertial sliders are actuated by a saw-tooth signal applied to the piezoelectric
elements. During the slow slope part of the signal, the slider moves together with
the support, while during the steep slope part of the signal the slider disengages
from the support and does not move together with the support due to its inertia.
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This leads to a relative motion between slider and support in the micrometer range
and below for every step.

• In the Beetle SPM, the rotation of an inclined ramp ring by inertial motion leads
to an approach between tip and sample.

• In the Pan SPM design, the linear motion of a sapphire prism by inertial motion
leads to an approach between tip and sample.

• The KoalaDrive nanopositioner avoids inertial motion, but uses alternating
movements of three springs holding a central rod, which in turn holds the STM
tip. The operating principle provides smooth travel and avoids the shaking which
is intrinsically present if nanopositioners based on inertial motion with saw-tooth
driving signals are used. The KoalaDrive used as a coarse approach can be inte-
grated into an xyz-scanning piezo element and results in an ultracompact STM
design of high mechanical stability.



Chapter 5
Electronics for Scanning Probe Microscopy

First we discuss some fundamental issues of electronics, such as voltage divider,
low-pass filter, and operational amplifier. Then we continue to discuss topics more
closely related to scanning probe microscopy such as the current amplifier in scanning
tunneling microscopy and feedback electronics, which in SPM serves to stabilize the
tip-sample distance. We close this chapter on electronics by discussing how digital-
to-analog converters and analog-to-digital converters work in principle.

5.1 Voltage Divider

One of the simplest electronic circuits is the voltage divider, which is shown in
Fig. 5.1a. Applying Kirchhoff’s law and Ohm’s law to this circuit results in the
following equations

Vin = V1 + V2 = I (R1 + R2) (Kirchhoff’s voltage law)

V2 = R2 I = Vout (Ohm’s law) (5.1)

These equations can be solved for

Vout

Vin
= H = R2

R1 + R2
. (5.2)

The output voltage divided by the input voltage is the called transfer function H .
We have assumed here that the output voltage is measured with an infinite inner
resistance, i.e. no current flows at the output. The limiting cases for the transfer
function are H ≈ 1 for R1 � R2 and H ≈ R2/R1 for R1 � R2.

© Springer-Verlag Berlin Heidelberg 2015
B. Voigtländer, Scanning Probe Microscopy,
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Fig. 5.1 a Circuit scheme of
a voltage divider. The
transfer function is given by
H = Vout/Vin =
R2/(R1 + R2). b This circuit
is also a voltage divider,
however, now R2 is replaced
by a capacitor and an AC
input voltage is considered.
Thus, we use the complex
impedances Z R and ZC in
order to obtain the transfer
function
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5.2 Impedance, Transfer Function, and Bode Plot

In the previous section, we considered DC voltages and currents. In the AC case, the
voltages and currents can be written in the complex notation as

V = V0ei(ωt+ϕV ), and I = I0ei(ωt+ϕI ). (5.3)

Of course, for ohmic resistors Ohm’s law still reads as V = RI. For capacitances and
inductors the concept of resistance can be extended to a complex impedance, which
is defined as

ZC = 1
iωC for a capacity C, and

ZL = iωL for a inductance L , and of course
ZR = R for a resistor R.

(5.4)

For the impedances, the equivalent of Ohm’s law applies as V = ZI. For AC circuits,
including several impedances Z , the usual Kirchhoff laws apply, and the rules for
parallel and series resistors also hold for impedances, if the quantities are represented
in a complex form.

As an example, we consider the circuit shown in Fig. 5.1b, which is similar to
the voltage divider, except that one resistor is replaced by a capacitor and an AC
input voltage is applied. Thus we consider the complex impedances Z R and ZC . The
transfer function (now dependent on the frequency) can be calculated in analogy to
(5.2) as

H(ω) = Vout

Vin
= ZC I

(Z R + ZC )I
=

1
iωC

R + 1
iωC

= 1

1 + iωRC
. (5.5)

The transfer function is a complex quantity. In the Bode diagram, the absolute value
(modulus) of the complex transfer function and the phase difference between out-
put voltage and input voltage are plotted, as shown in Fig. 5.2a. The corresponding
equations are
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Fig. 5.2 The Bode plot shows the absolute value of the complex transfer function (gain) (a) and the
phase shift of the output relative to the input signal (b). The figure shows the Bode plot of the circuit
in Fig. 5.1b. The behavior of the absolute value of the transfer function (amplitude) approaches the
value one for frequencies lower than the corner frequency, and decreases for higher frequencies,
which is the characteristic of a low-pass filter

|H(ω)| = |Vout|
|Vin| = 1√

1 + ω2 R2C2
, and ϕV = arctan(−ωRC). (5.6)

For frequencies lower than the corner frequency ωc = 1/(RC), the absolute value
of the transfer function approaches unity, i.e. gain |Vout| / |Vin| is one. For frequencies
much larger than ωc the absolute value of the transfer function decreases as 1/ω. At
the corner frequency, the gain has the value 1/

√
2 (which corresponds to −3 dB). In

conclusion, the circuit shown in Fig. 5.1b is a low-pass filter, which transmits signals
up to the frequency ωc with gain one and suppresses signals with higher frequencies.
Another way to express this is that this circuit corresponds to a low-pass filter with
a bandwidth of ωc = 1/(RC).

The phase behavior of this low-pass is shown in Fig. 5.2b. The phase shift is
zero for frequencies much lower than the corner frequency and goes to −90◦ for
frequencies much larger than the corner frequency.

The analysis of the low-pass circuit was one simple example, another one is if the
resistor and the capacitor in Fig. 5.1b are exchanged. This circuit corresponds to a
high-pass filter. Also more complicated circuits can be analyzed using Kirchhoff’s
laws or the rules for impedances in parallel or in series. One requirement for the type
of analysis described in this section is that the input signal Vin is a sinusoidal signal.
If the transfer function for all frequencies is known this characterizes the behavior of
the circuit at all frequencies. This is a basis to obtain the output signal for all periodic
functions via Fourier methods.
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5.3 Output Resistance/Input Resistance

In Fig. 5.3a we consider a device connected to a voltage source. Any kind of signal
source can be replaced by an ideal voltage source with an resistor in series, which
we call output resistance Routput, as shown in Fig. 5.3a. If the output of the signal
source is connected to the input of a device, this can change the output voltage Vout,
being no more identical to the ideal voltage source Vsignal. The voltage Vout depends
also on Rinput, the input resistance of the device connected to the source. The circuit
shown in Fig. 5.3a is (again) a voltage divider. Using (5.2) the output voltage Vout
can be written as

Vout = Vsignal
Rdevice

Rsignal + Rdevice
, (5.7)

and is shown in Fig. 5.3b. It can be seen that the output voltage approaches the signal
voltage if Rinput � Routput.

However, in relevant cases of small signal sources of sensors like photodiodes
(in the case of atomic force microscopy), the inner resistance of the signal Routput
is high. In such cases a so called impedance converter is used, which we discuss
in Sect. 5.5.1 in order to convert the high output resistance of the signal source to a
very low output resistance at the output of the impedance converter, which can be
connected to devices with a modestly low input resistance, always maintaining the
relation Rinput � Routput.

Fig. 5.3 a Signal source,
consisting of an ideal
voltaget source Vsignal and an
output resistance Routput,
connected to a device with
an input resistance,
characterized by the
resistance between the input
and the ground Rinput. b The
output voltage for this circuit
approaches Vsignal only if
Rinput � Routput
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The concept of output resistance and input resistance can be applied in sequence
when connecting electronic circuits one after another. We can assign to each device
in a sequence of devices an input resistance and an output resistance. In order to
avoid the input of the next device modifying the output of the previous device, the
relation the relation Rinput � Routput should be always maintained.

Here we considered the DC, however, the concept of output and input resistances
can be extended to the AC case using the impedance replacing the resistance. Further-
more, this concept can also be used for active devices like circuits with operational
amplifiers, discussed later.

5.4 Noise

If we consider a DC electric signal with some time-dependent fluctuations such as
the current I (t) or the voltage V (t), it can be characterized by its average

〈V 〉 = lim
T →∞

1

T

T∫

0

V (t)dt. (5.8)

Fluctuations of the voltage around this average are called the noise as �V (t) =
V (t) − 〈V 〉. This is still a time-dependent quantity and its average is zero. If the
noise is due to random fluctuations, it is usually characterized by the following time
independent quantity

√〈
�V 2

〉 =

√√√√√ lim
T →∞

1

T

T∫

0

(V (t) − 〈V 〉)2dt . (5.9)

also called root mean square (RMS) noise.
The above considerations about the noise were in the time domain, i.e. consid-

ering the time-dependent signal V (t) and the time-dependent noise �V (t). In the
following, we will consider the frequency dependence of the noise. The frequency
dependence of the noise can be characterized by the power spectral density (PSD)1

N 2
V (ω). An important property of the power spectral density of the noise is that it

relates to the mean square noise as

〈
�V 2

〉
=

∞∫

0

N 2
V ( f )d f = 1

2π

∞∫

0

N 2
V (ω)dω. (5.10)

1 The power spectral density of the noise �V (t) can be defined via the Fourier transform of the

noise as N 2
V (ω) = limT →∞ 1

2πT

∣∣∣∫ T
0 �V (t)e−iωt dt

∣∣∣2
.
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If a detection scheme is used which measures the noise variable only within a certain
(angular frequency) bandwidth Bω = ω2 − ω1 between ω1 and ω2, the mean square
noise can be written as 〈

�V 2
〉
= 1

2π

ω2∫
ω1

N 2
V (ω)dω. (5.11)

This expression can also be considered as defining the noise power spectral density
N 2

V (ω). The noise PSD indicates how much power the noise signal carries in a small

region around ω. The noise amplitude spectral density is defined as NV =
√

N 2
V .

If the noise spectral density is constant between ω1 and ω2 and zero outside, (5.11)
reduces to 〈

�V 2
〉
= 1

2π
(ω2 − ω1)N 2

V (ω), (5.12)

and we obtain √〈
�V 2

〉 = NV
1√
2π

√
Bω. (5.13)

The (constant) noise spectral amplitude density of the noise variable �V is expressed
in the unit of the noise variable per

√
rad · Hz, for instance volt/

√
Hz. The actual

RMS value of the noise variable measured with a specific bandwidth is then given by
the noise amplitude spectral density times the square root of the bandwidth. Note that
the angular frequency bandwidth Bω = ω2 − ω1 is defined as angular frequency, i.e.
in units of rad/s, not cycles/s. Similarly, the unit of the noise power spectral density
N 2

V (ω) is volt2/(rad · Hz). If the natural frequency f is considered, (5.13) reads

√〈
�V 2

〉 = NV
√

B, (5.14)

with B = f2 − f1 and NV in volt/
√

Hz.

5.5 Operational Amplifiers

Since operational amplifiers are used in several parts of STM electronics a brief
introduction to their operation is given. An operational amplifier can be considered
as a “gain block” amplifying the difference between the input voltages (ideally pos-
sessing very high gain). The voltage at the output is the amplified voltage difference
at the inputs. Outside of the gain block there is a feedback network (e.g. consisting
of resistors), which controls the actual gain. Operational amplifiers operated close to
DC have typically the following properties:

• Very high input resistance, with a typical input current of a few pA,
• Very low output resistance, typically a few ohm,
• Very large open-loop voltage gain G (104–106).
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Fig. 5.4 Block diagram of
an operational amplifier
showing the supply voltages
Vs , the input voltages V± and
the output voltage Vout

+

-V-
Vout

Vs+

Vs-

V+

We will show that if these properties of an operational amplifier are met the
characteristics of the amplifier are determined by the feedback network only, not the
gain block itself. We are not concerned with the inner working of the operational
amplifier. A block diagram of an operational amplifier is shown in Fig. 5.4. The
output voltage is the difference of the input voltages multiplied by the open loop
gain G as

Vout = G(V+ − V−). (5.15)

Due to the very high open loop gains of operational amplifies, they are usually not
operated in an “open” configuration, because any voltage difference exceeding the
sub-millivolt range will saturate the output voltage which is limited to the supply
voltage Vs .

5.5.1 Voltage Follower/Impedance Converter

If we connect the output of an operational amplifier to its negative (inverting) input
(Fig. 5.5) and apply a voltage signal to the non-inverting input, we will find that the
output voltage of the op-amp closely follows that input voltage.

In order to find an expression for Vout for the circuit in Fig. 5.5 we start from (5.15)
which states that the output voltage is the difference of the input voltages times the
open loop gain. In our case the positive input voltage V+ is Vin and the negative
feedback voltage V− is due to the negative feedback Vout. Thus (5.15) reads

Vout = G(Vin − Vout), (5.16)

which leads to

Vout = Vin
G

1 + G
. (5.17)

+

-

Vin

Vout

Fig. 5.5 Operational amplifier wired as a voltage follower. A negative feedback is realized by
connecting the output to the negative (inverting) input
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For a large open loop gain, the output voltage is approximately equal to the input
voltage Vout ∼ Vin.

Taking the output voltage of the operational amplifier and coupling it to the invert-
ing input is a technique known as negative feedback. In this circuit the operational
amplifier has the capacity to work in a linear mode, as opposed to merely being fully
saturated (due to the high gain) with no feedback for voltage differences exceeding
the mV range.

Here, as in the other operational amplifier circuits we will discuss, the actual
gain (which is one here) is not determined by the open loop gain of the opera-
tional amplifier but by the outer feedback circuit (which is just a simple connection
between Vout and = V−). One could think that an amplifier with a gain of one is
useless. However, this circuit acts as an impedance converter, since a high input
resistance/impedance (being an intrinsic property of an op-amp) is converted to a
low output resistance/impedance (being another intrinsic properties of an op-amp).

While having “only” a voltage gain of one, the voltage follower has a power
(current) gain. The voltage follower is often used as “buffer” to interface a large
impedance output signal to device with a low impedance (input) load. The voltage
follower as impedance converter acts as “one-way” device for signals, drawing almost
no current from the source supplying its input (because of its high input resistance),
and it can supply a large amount of current to loads with low (input) impedance.

5.5.2 Voltage Amplifier

If we add a voltage divider to the feedback wiring (Fig. 5.6) only a fraction of the
output voltage is fed back to the inverting input. In this case the output voltage is a
multiple of the input voltage.

The gain of this circuit can be calculated taking the basic equation (5.15) into
account. If the output is connected to the inverting input, via a voltage divider network,
V− can be written (using Ohm’s and Kirchhoff’s laws2) as V− = Vout

R1
R1+R2

=
Vout K , and Vin is connected to the positive input V+, then

Vout = G(Vin − KVout). (5.18)

Solving this equation for Vout/Vin, we find

Vout

Vin
= G

1 + KG
. (5.19)

2 Vout = V1 + V2 = I (R1 + R2) = (V1/R1)(R1 + R2) = V− R1+R2
R1

.
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Fig. 5.6 Operation principle
of non-inverting amplifier

+

-

Vin

Vout

R1 R2

V-

V+

If G is very large the gain becomes

Vout

Vin
= 1

K
= 1 + R2

R1
. (5.20)

We can change the voltage gain of this circuit just by adjusting the values of R1
and R2 (changing the ratio of output voltage which is fed back to the inverting input).

While we have used in the basic equation for the operational amplifier (5.15)
together with the analysis of the feedback circuit using Ohm’s and Kirchhoff’s laws,
the analysis of operational amplifier circuits can be simplified using two simple rules.
The rule that the input current of an operational amplifier vanishes we have already
used in our analysis. In the previous two circuits the difference between the inputs
V+ and V− approached zero. This is a general rule, leading to the following two
“golden rules” which simplify the analysis of circuits with operational amplifiers.

• The input current to an operational amplifier vanishes (high input impedance).
• The difference between the inputs V+ and V− approaches zero.

In the following we calculate the output voltage for the circuit shown in Fig. 5.7
using above “golden rules” for operational amplifiers. In this circuit a negative feed-
back is provided through a voltage divider, but the input voltage is applied to the
inverting input and the non-inverting input is grounded. The second “golden rule”
tells us that the voltage at the inverting input is zero. Thus, the inverting input is
referred to in this circuit as a virtual ground, being kept at ground potential (0 V)
by the feedback, yet not directly connected to (electrically common with) ground.
Since the input current to the operational amplifier is zero (first “golden rule”), the
current through R1 and R2 are the same. By applying Ohm’s law to the two resistors
the gain can be calculated as

Fig. 5.7 Circuit of an
inverting amplifier realized
with an operational amplifier

+

-

Vin

Vout

R1 R2

0 V

II 0 V

virtual
ground
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Vout

Vin
= −I R2

I R1
= − R2

R1
. (5.21)

Note that the output voltage always has the opposite polarity of the input voltage.
For this reason, this circuit is referred to as an inverting amplifier.

5.6 Current Amplifier

The tunneling current in STM has very small values, typically 0.01–10 nA. The cur-
rent amplifier is an essential element of an STM since it amplifies the current and
converts it to a voltage. Such amplifiers are called transimpedance amplifiers and
already the circuit shown in Fig. 5.7 can serve as such a current-to-voltage converter.
If we consider the voltage source plus the resistor R1 as a current source, a current of
Iin = Vin/R1 flows to the virtual ground. Since the input current of the operational
amplifier is practically zero (high input resistance), this current flows through the
feedback resistor R2. In the actual current amplifier shown in Fig. 5.8, the input cur-
rent Iin has to flow through the resistor RFB. Therefore, Iin = IFB = −Vout/RFB. Or

Vout = −Iin RFB. (5.22)

The input current is converted to an output voltage with RFB as proportional-
ity factor. As an example: If the feedback resistor has a value of R = 1 G�, one
nanoampere of input current results in an output voltage of 1 V. Due to the high input
resistance of an operational amplifier and its low output resistance, a high input
impedance is converted to a low impedance output which can be processed further.

Up to now we have considered the operational amplifier circuits as DC circuits.
In the following, we consider the AC performance of the current amplifier shown in
Fig. 5.8 and will show that its bandwidth is limited by the stray capacitance Cstray
parallel to the feedback resistor. We use the complex impedance to analyze this AC
circuit. The complex impedances for a resistor R and a capacity R are ZR = R,
and ZC = 1/(iωC), respectively. Since the two impedances in the feedback arm of

+

-
Iin

Vout

RFB

0 V

Cstray

Fig. 5.8 Circuit used as current amplifier in STM. The gain (actually transconductance in V/A) is
proportional to the resistance of the feedback resistor RFB. The bandwidth of this current amplifier
is limited by the stray capacitance Cstray
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the operational amplifier are in parallel, the following expression results for the total
(complex) impedance Z as

1

Z
= 1

ZR
+ 1

ZC
= 1

R
+ iωC. (5.23)

The absolute value of the complex impedance results as

|Z | = R√
1 + (ωRC)2

. (5.24)

Replacing according to (5.22) Vout = −Z Iin, and identifying R with RFB, as well as
C = Cstray results in

Vout = −Iin RFB√
1 + (

ωRFBCstray
)2

. (5.25)

This frequency dependence of the output voltage of the current amplifier is the same
as that of a simple passive low-pass with a resistor and a capacitor. The corner
frequency of such a low pass at which the output voltage drops by 1/

√
2 is fcorner =

1/
(
2πRFBCstray

)
. As an example, if by careful design the stray capacitance can be

reduced to 0.1 pF a bandwidth of 1.5 kHz is obtained for a feedback resistance of
1 G�. The bandwidth of the amplifier is the frequency range which is amplified
without significant loss of the signal (i.e. from DC to fcorner ∼ 1/(2πRFBCstray). It
can be seen that the gain which is proportional to RFB and the bandwidth proportional
to 1/RFB are opposing figures of merit. Increasing the amplification means decreasing
the bandwidth and vice versa. Some numerical examples are given in Table 5.1.

Another figure of merit for amplifiers is the noise. The (RMS) noise induced by
the thermal excitation of the electrons in a resistor R is called Johnson noise [12, 13]
and can be calculated as

Inoise =
√

4kBT B

RFB
. (5.26)

with B being the bandwidth and kB the Boltzmann constant. In Table 5.1 some
numerical values are given.

Table 5.1 Gain, bandwidth
and noise for a current
amplifier with
RFB = 100 M� and
RFB = 1 G�

Cstray = 0.5 pF RFB = 100 M� RFB = 1 G�

Gain 108 V/A 109 V/A

Bandwidth 3 kHz 300 Hz

Noise 0.3 pA 0.1 pA
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5.7 Feedback Controller

In scanning probe microscopy, a feedback controller is used to follow the surface
topography. Before we come to the application of a feedback controller to SPM, we
will consider feedback controllers in general. A general model for a feedback loop
is shown in Fig. 5.9. In the control loop, the system output x is measured constantly
by a sensor, and compared to the setpoint w by subtraction w− x . Depending on this
error signal, the controller determines a system input (control signal) y, which is fed
into the system in order to adjust the system output x to the set-point value w. This
whole operation of the controller acts in a closed feedback loop as shown in Fig. 5.9.
The control loop fulfills the task of adapting the system output to the setpoint in the
presence of disturbing external noise.

Before we turn to the feedback controller of the STM, let us consider (as an
example) a simpler system: the heating system of a house in winter. The simplest
example of a feedback system is the on-off controller. On your thermostat you set a
certain desired temperature (setpoint) w. If the measured temperature x is lower than
w the controller gives a signal y to the system. For the case of the heating system of
a house, y is the heating power which is turned on from zero to a certain power; thus
the radiators heat the rooms until the set point temperature w is reached. Due to the
inertia of the system (i.e. the time delays) the temperature in the rooms will continue
to rise for some time after the heating has been switched off (temperature overshoot),
because the radiators are still warm. You can easily imagine how this cycle continues.
For instance, when the measured temperature x falls below the setpoint temperature
w it will take some time before the radiators become warm. In conclusion, the actual
temperature x fluctuates around the desired temperature w. What controller theory
is all about is to find a smarter way to keep x as close as possible to w. There are two
kinds of time delays in the feedback loop: First the time delay in the system itself
(this delay is large for the case of the heating of the house and much smaller in the
case of STM). For simplicity we will not consider this time delay in the following.
Secondly, there is a time delay due to the controller, which we will consider in the
following.

Fig. 5.9 A general model
for a feedback loop

Setpoint w

+

-

Controller

Error
signal

x

yw-x System

System
input

System
output

Sensor
Feedback

Measured signal
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5.7.1 Proportional Controller

If in the example of the heating system of a house, a heater with a continuously
variable heating power is available (not just on or off), a proportional controller
(P controller) can be realized. For the P controller the output of the controller y is
proportional to the error signal w − x , as

y = K P (w − x). (5.27)

The proportional constant K P is called proportional gain. Since the heating power
is now proportional to the error signal it is obvious that the temperature can be con-
trolled much better with much less overshoot than for the on-off controller. (Actually,
the on-off controller is a P controller with infinite gain K P , which is only limited by
maximum heating power of the heater). Since the output of the controller is instan-
taneously proportional to the error signal, the P controller is a fast reacting type of
controller.

One problem with the proportional controller is that a pure proportional control
will not settle at the set-point value w, but will retain a steady-state error, which is
a function of the proportional gain. This can be qualitatively understood as follows.
If in the example of our heating system we have continuous losses of heat (outside
it is cooler than inside), therefore we need continuous heating power in order to
maintain the setpoint temperature, even if the error signal is zero. However, the
pure proportional controller does not provide this. According to (5.27) the actuating
variable y is zero for zero error signal w − x . This means that the pure proportional
controller cannot reach the setpoint w. The higher the load (i.e. the cooler it is outside)
the greater is the deviation from the set-point value. Increasing the proportional gain
can reduce the deviation but it never goes to zero and high gain can lead to instabilities
(oscillations) in the feedback loop. The deviation between the output x and the
setpoint w is proportional to the heat dissipation (load) and inversely proportional to
the proportional gain K P .

The time delay due to the controller is related to the proportional gain K P . The
greater K P is, the shorter is the time delay of the controller, i.e. the controller can
follow fast. However, a large value of K P also leads to a larger overshoot.

An example of how a P controller can be implemented using an operational
amplifier was shown in Fig. 5.7. The gain constant K P can be modified by changing
the resistances as K P = −R2/R1.

In summary the advantage of the P-controller its fast reaction time, the controller
output is instantaneously directly proportional to the error signal. The disadvantage
of the P controller is the steady-state deviation of the system output from the desired
set-point value.
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5.7.1.1 Integral Controller

The integral controller provides a control signal proportional to the accumulated
deviations from the setpoint. The contribution from the integral term is proportional
to both the magnitude of the error and the duration of the error. Summing the instan-
taneous error over time (integrating the error) corresponds to an accumulated effect
that should have been corrected previously. For the I controller the output of the
controller y is written as

y(t) = K I

t∫

0

(w − x(τ ))dτ . (5.28)

The proportional constant K I is called integral gain. The integral controller elim-
inates the residual steady-state error that occurs with a proportional controller. A
disadvantage of this type of controller is the slow reaction to changes of the input
signal, due to the integration. Of course also the I controller can be made faster
(shorter time delay) by increasing K I , however, this also increases the tendency
towards overshooting and instable and oscillating behavior.

In a variant of the I controller, the integration is not performed from zero, but over
a time interval �t prior to the current time.

5.7.2 Proportional-Integral Controller

In a PI controller the P and the I control signals are added up, as shown in Fig. 5.10.
In this controller, the advantages of both the P and I controllers are combined, while
avoiding their individual disadvantages. Short-term deviations from the setpoint are
compensated fast by the proportional controller and long-term deviations are com-
pensated by the integral controller. This type of controller can regulate the error
signal to zero in steady-state. The output signal can be written as

Fig. 5.10 Schematic of a PI
controller
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Fig. 5.11 Comparison of the step response of different controllers. The setpoint is a step function
which changes from zero to one at time zero. Due to the steady-state error of the P controller the
set point is never reached

y(t) = K P (w − x(t)) + K I

t∫

0

(w − x(τ ))dτ . (5.29)

One way to show the performance of controllers is the step response. Step response
means that the setpoint is changed instantaneously and the reaction of the controller
(and the whole system) to reach the new setpoint is monitored. The step response
of different controllers is compared in Fig. 5.11. The P controller does not reach the
new set-point value, and the I controller alone is quite slow. The PI controller reaches
the setpoint in a reasonable time for an appropriate choice of K P , K I .

5.8 Feedback Controller in STM

In STM or SPM in general the elements in the above-mentioned feedback loop have
the following correspondence (Fig. 5.12).

• The system output x corresponds to the tunneling current, which is converted to a
corresponding voltage by the current amplifier (sensor).

• The setpoint w corresponds to a voltage representing the desired tunneling current.
• The PI controller determines the system input (control variable) y, which is the

voltage to be applied at the z-piezo element in order to change the tip-sample
distance.
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Fig. 5.12 Model of an STM feedback loop

• The most complex part of the feedback loop is the system itself. In the case of
STM, it consists of DA converters, the high-voltage amplifiers (HVA) for the z-
piezo voltage, the z-piezo element for the vertical positioning of the tip, and the
tunneling contact.

• The noise of the z-signal arises due to external mechanical vibrations, the noise
of the amplifiers, and the noise of DA and AD converters.

In STM, the P-part of the controller regulates fast deviations from the setpoint
such as the atomic corrugation or atomic step edges (here the integrator helps to
reach the final value, i.e. eliminates steady-state deviations).

In SPM, there is one effect which excretes the highest load to the feedback con-
troller. Usually the sample is not oriented perfectly parallel to the xy-directions given
by the scanner. This slope is usually the largest height signal in the original STM
data and will be removed by appropriate background subtraction in the final image,
as we will see later. However, the feedback has to follow this slope. As a quantitative
example, if the xy-plane of the scanner and the sample surface are 3◦ off relative to
the sample surface, this slope corresponds to a height of 500 Å for a 1µm wide scan.
This is by far the largest height signal compared to, for instance, a few atomic steps
(3 Å high) in such an image.

The I controller has the advantage that it is less prone to noise. Depending on
the conditions, the measured signal (tunneling current in STM) can be quite noisy.
While the P controller reacts immediately to a noise spike of the measured signal,
an I controller acts as a low-pass averaging out noise spikes.

Now we consider the problem that a feedback loop may become instable and start
to oscillate. If the controller parameters (the gains of the proportional and integral
terms) are chosen incorrectly, the feedback loop can become instable, i.e. its output
starts to oscillate. An important reason for the instability of the feedback loop is the
time delay (reaction) of the system. In our simple example of the heating system
of a house, it takes some time after a deviation of temperature is detected before
the radiators and the air in the house become hot. In the case of the STM, the time
delay of the system is given by the time lag between a change of the z-voltage by the
controller and a corresponding change of the tunneling current. Also the speed of the
controller itself (given by the gains of the proportional and integral terms) is a source
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of time delay. It is intuitively clear that a large gain (heating power) and a long delay
time of the system will give rise to large overshoots and result in an instability with
oscillations of the controller system. A large part of controller theory is concerned
with finding conditions for stability of a feedback loop. Here we will only provide a
very qualitative intuitive discussion of the stability of a feedback loop.

A different way of characterizing the stability of a feedback loop than the analysis
of the step response is to measure the output signal relative to a sinusoidal input signal
(transfer function). The transfer function is the output signal divided by input signal.
The knowledge of the (sinusoidal) output behavior as function of the sinusoidal input
for all frequencies gives complete knowledge of the system response, since any input
signal can be represented as a sum of the sinusoidal functions (Fourier theorem). The
transfer function is a frequency dependent function and consists of an amplitude and
a phase (complex number).

The transfer function of the whole feedback loop can be measured as shown
schematically in Fig. 5.13. Initially the feedback loop is enabled and the STM is
in tunneling operation. Then the (digital) feedback is switched off and the z-piezo
voltage is modulated. The sinusoidal input signal is fed through all analogue com-
ponents of the STM, HV amplifier, piezo actuator, tunneling junction, and current
amplifier, as well as the controller. Then the output signal is measured (amplitude
and phase), which results in the frequency dependent transfer function.

The measured transfer function (amplitude part) of the analogue components of
a particular STM feedback loop is plotted in Fig. 5.14, as system output divided by
system input amplitude as a function of frequency. The characteristics of this transfer
function are the characteristics of a low-pass, and the amplitude drops significantly
above 4 kHz. This corresponds to the bandwidth of the current amplifier, which is the
bandwidth-limiting element of the analogue components in the system. The other
elements of the system, HV amplifier (HVA), piezo actuator, and tunneling junction,
do not limit the bandwidth of the system.

One very simplified condition for an instable feedback loop is the following:
If for a certain frequency the output amplitude is larger than the input amplitude
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Fig. 5.13 Scheme of the measurement of the transfer function
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Fig. 5.14 Measured transfer
function of the analogue
components in the STM
feedback loop: HV amplifier,
piezo actuator, tunneling
junction, and current
amplifier
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(amplitude of the transfer function ≥1) and the phase for this frequency is close to
0◦ the feedback loop will become instable. This means that small deviations from
the setpoint will build up to an oscillation of large amplitude.

5.9 Implementation of an STM Feedback Controller

Feedback controllers are realized via a digital feedback loop nowadays. The tunneling
current is measured by the current amplifier and then the corresponding voltage is
digitized by analog digital converters (ADC), as shown in Fig. 5.15. These converters

DACsADCDSP DSP
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YZX Bias

HV
amplifier

Current
amplifier

Data
Commands

Fig. 5.15 Implementation of computer controlled STM electronics
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can have, for instance, an accuracy of 20 bit in a range of ±10 V corresponding to a
step width of 20µV, which is usually far below the noise in the system and therefore
sufficient for all practical purposes.

The actual feedback loop is often realized by a digital signal processor (DSP)
(Fig. 5.15). A DSP is a own computer on which a single user single-task real-time
program runs. From the measured (digitized) current and the current setpoint, the
output, i.e. the actuator voltage for the z piezo motion, is calculated using a digitized
version of a PI controller. Using a digital feedback loop has several advantages. First,
it is very easy to stop the feedback and to perform spectroscopic measurements (i.e. to
run a tunneling voltage ramp or a z-ramp), and also to measure the transfer function.
Another advantage is that the feedback mode can be changed just by changing the
software. The controller algorithm can be changed by a few lines in the DSP program.
Furthermore, non-linear algorithms for noise reduction can be implemented.

An example for a pseudocode implementation of a PI controller is given in the
following.

start
read measured_signal x(t)
error_signal = set_point - measured_signal w − x(t)
integral = integral + error_signal * dt

∫ t
0 (w − x(τ ))dτ

controller_output = KP * error_signal + KI * integral y(t)
goto start
Once the controller output (new z-voltage) is calculated, this number is converted

into an actual voltage by (for instance) 20 bit digital analogue converters (DAC). This
z-voltage (range: ±10 V) is then amplified by a high-voltage amplifier to a range of
typically ±200 V (Fig. 5.15). This is enough to reach the necessary amplitude of
the piezo actuators of a few micrometers. Regarding the resolution, the following
reasoning can be applied: For a piezo constant of 60 Å/V and a high-voltage amplifier
gain of 20 one DAC unit converts to a z-distance of 2 pm, which is usually more than
enough. This means that with the high resolution DA and AD converters available
today the digitization of the input and output quantities is no longer a problem since
it is far below the usual noise limits. Also the tunneling bias voltage is supplied from
the computer via a DAC in order to ramp this voltage in spectroscopic measurements.

When scanning an STM image, the DSP sends the xy-scan data to the DAC.
The voltages for the x- and y-electrodes are finally amplified by the high-voltage
amplifiers. The data about the height of the tip above the surface, i.e. the voltage
applied to the z-piezo, generated by the feedback algorithm running on the DSP, is
sent to the PC. The measurement program takes the height of the STM tip above the
surface and displays it as an image, i.e. in gray scale as a function of x and y.

The digital control of the STM also allows an automated procedure to be used
during the coarse approach of the tip towards the sample. A flow chart for an auto-
mated control could be as shown in (Fig. 5.16). After the automatic coarse approach
a desired current setpoint is chosen and scanning can be started.

The bias voltage between tip and sample (usually between a few millivolts and a
few of volts) can be applied to the sample (sample bias). In this case, the tunneling
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Retract the tip fully using
fine motion, i.e. z-piezo voltage

and disable feedback

Check if tip can reach the surface by
extending the z-piezo (moving the tip
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monitoring the tunneling current.
Does the current reach the setpoint?

Retract the tip

Set the setpoint to zero

Enable feedback

Make a single coarse
approach step

Retract the tip

Fig. 5.16 Flow chart of the automatic approach procedure in scanning tunneling microscopy

current is measured relative to the ground. If the sample is grounded, the preamplifier
has to float on a bias potential (tip bias) in order to apply a bias voltage between tip
and sample.

5.10 Digital-to-Analog Converter

In a computer controlled data acquisition and control system, analog data have to be
read to the computer and digital data generated by the computer have to be converted
to analog signals. For instance, in scanning probe microscopy the xy-scan signals
are generated by a computer program (digital values) and have to be converted to
analog signal driving the piezo elements. For this task a digital-to-analog converter
(DAC) is used. Here we describe the principle of how such a device can operate.
However, actual digital-to-analog converters are more sophisticated than the basic
idea explained here.

We assume that the digital signal is already present as voltages (high/low) at
several wires of a connector. As an example, we will consider a four-bit signal in
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Fig. 5.17 Operating
principle of a
digital-to-analog converter
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the following. In Fig. 5.17, the digital signal is represented by switches either open
or closed (−5 V). Each of the lines (switches) has a different weight from 20 to
23 corresponding to the weight of the bit in the binary digital code. If all switches
are open this corresponds to zero (0000), if all wires are connected to −5 V this
corresponds to (binary 1111, i.e. 15). The task is now to convert the digitally coded
voltage values present at the four connectors to 16 analog voltages relative to ground,
ranging, for example, from 0 to 10 V. The resistor following each switch is chosen
such that the current through it (when flowing to ground) corresponds to the weight of
that bit. The least significant bit (20) has, for instance, a 5 k� resistor, corresponding
to a current of 1 mA to ground, while the most significant bit (23) has an 8 times
smaller resistor corresponding to an 8 times higher current of 8 mA in this line.
All the lines are routed to the inverting input of an operational amplifier acting as
a transimpedance amplifier. Since the positive input of the operational amplifier is
on ground, the negative input is the virtual ground, as we have considered before.
At the point where all these lines are brought together the sum of all the currents
flows through RFB. According to (5.22), the analog output voltage at the operational
amplifier is

Uout = −RFBU0

∑
i=all closed switches

1

Ri
. (5.30)

The maximum output voltage can be chosen using a proper value for RFB.

5.11 Analog-to-Digital Converter

In scanning tunneling microscopy, the analog voltage at the output of the current
preamplifier has to be converted to a number (e.g. 16-bit value) proportional to
the analog voltage (tunneling current). For this task, an analog-to-digital converter
(ADC) is used. An ADC can be realized by the comparison of the analog signal



98 5 Electronics for Scanning Probe Microscopy

DACDigital
ramp

End of
conversion

Analog input +

-

Comparator

Input
__

DAC

Save digital value

1000

1011
1001
1010

<  0?

Fig. 5.18 Operating principle of an analog-to-digital converter

(to be digitized) to a voltage from a digitally generated voltage ramp. The principle
of operation of one simple ADC is shown in Fig. 5.18. A digital voltage ramp is
generated and converted to an analog voltage ramp using a DAC. The value of the
generated voltage ramp is compared to the analog input signal to be digitized using a
comparator. This comparator has a low digital signal as long as the voltage ramp has a
lower voltage than the input voltage. A comparator can be realized by an operational
amplifier without external feedback network. Due to its large open loop gain the
output will always be maximally positive as long as the negative input voltage is
smaller than the voltage at the positive input. The comparator signal changes to
logically high if the voltage ramp exceeds the voltage to be measured (Fig. 5.18).
This end of conversion signal is then fed to the ramp controller in order to stop the
ramp and to read the actual (digital) ramp value. With this digital value of the ramp, a
digital value of the analog input signal is saved and the conversion is stopped. Instead
of ramping up all digital values from zero, also some interval-based algorithm can
be also used in order to find the value closest to the analog input.

5.12 High-Voltage Amplifier

High-voltage amplifiers are needed to drive the piezo elements since the voltages
supplied by the digital-to-analog converters are usually only in the range up to ±10 V
and are not high enough to generate sufficient extensions of the piezo elements of
several micrometers. Therefore, the DAC voltages are amplified up to about 200 V,
which generates the required piezo extensions. We assume here again piezo tubes
as piezo elements. Much higher voltages are not advisable because they can lead
to a depolarization of the piezo material. A reasonable upper limit for the required
bandwidth of the high-voltage amplifiers is the resonance frequency of the piezo
element. You cannot move a piezo element at a frequency higher than its resonance
frequency. Therefore, 50 kHz is an upper limit for the required bandwidth. In practice,
the feedback loop (actually the current amplifier) often has a much lower bandwidth
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in the range between 1 and 10 kHz. In this case, a low-pass filter at the output of the
high-voltage amplifier can be used to reduce the noise. The output noise of the high-
voltage amplifiers should be less than 1 mV. With a typical z-piezo constant of about
50 Å/V, this corresponds to a noise in the extension of the piezo in the z-direction of
0.05 Å, i.e. 5 pm.

The piezo motions during scanning are relatively slow. In order to move inertial
sliders (Sect. 4.2), saw-tooth signals are applied to the piezo elements and the steepest
possible slope of the piezo motion is required. This means a high slew rate (voltage
change per time) of the high-voltage amplifier is required. The achievable slew rate
depends on the capacitive load at the output of the amplifier, i.e. the capacity of the
piezo elements. A high piezo capacity means that a lot of charge has to be pumped
to or from the piezo element. If this has to be done in a short time, a high current
has to flow. Therefore, high-voltage amplifiers driving piezo elements with a high
capacity have to supply a high current in order to achieve a high slew rate. This
can lead to problems of high power dissipation in the leads. This problem with the
high capacitance occurs mostly for monolithic stacks of piezo elements. They have
capacitances in the μF range, while piezo tubes, for instance, have only capacitances
in the nF range.

5.13 Summary

• Operational amplifiers are characterized by a very large input resistance, a very
low output resistance and a very large open loop gain.

• The actual gain of an operational amplifier including a feedback network is deter-
mined by the characteristics of the feedback network, not by the operational ampli-
fier.

• Two golden rules can be applied when analyzing an op-amp circuit: (i) The input
current vanishes. (ii) The voltage difference between the inputs is zero.

• A current amplifier converting the input current to an output voltage can be built
using an operational amplifier. The output voltage depends on the feedback resis-
tance as Vout = −Iin RFB.

• In the proportional controller, the actuating variable is proportional to the error
signal. In the integral controller the actuating variable is proportional to the time
integral over to the error signal.

• The transfer function, output signal divided by the input signal (including ampli-
tude and phase), is used to characterize the frequency response of electronic com-
ponents.

http://dx.doi.org/10.1007/978-3-662-45240-0_4


Chapter 6
Lock-In Technique

A lock-in amplifier measures a signal amplitude hidden in a noisy environment. An
AC modulation is used to measure the signal in a very narrow frequency range. Using
the lock-in technique the noise can be even much larger than the signal which can
nevertheless be measured precisely.

6.1 Lock-In Amplifier—Principle of Operation

In order to see what the task is for a lock-in amplifier Fig. 6.1, shows an AC signal
with different levels of noise superimposed. The original signal is shown in red and
an increasing amount of noise amplitude is added to the signal from Fig. 6.1a, b.
It may seem hopeless to try and recover the original signal amplitude in Fig. 6.1b,
which is buried by a large noise signal.

Two important requirements are needed for the lock-in technique to accomplish
this task. First, the frequency of the AC (modulated) signal has to be known and,
second, the phase of the signal has to be stable. If the signal to be measured is a DC
signal the signal has to be modulated, i.e. multiplied by an AC reference signal to
obtain a phase stable AC signal of a known frequency.

In order to explain how a lock-in amplifier works, we look to the product of two
harmonic signals. The following mathematical identity holds for the product of two
harmonic functions at two different frequencies

A cos(ω1t + ϕ) × B cos(ω2t)

= 1

2
AB {cos [(ω1 + ω2)t + ϕ] + cos [(ω1 − ω2)t + ϕ]} , (6.1)

where A and B are the amplitudes of both harmonic functions and ω1 and ω2 are the
corresponding angular frequencies, and ϕ a phase difference.

We now discuss the result for two cases. If ω1 = ω2 the first cos term re-
sults in a harmonic signal (AC component) with frequency ω1 + ω2 = 2ω1. The
cos term containing the frequency difference results in a DC component of the
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Fig. 6.2 a Product of two phase-coherent harmonic functions with identical frequency ω1 = ω2
results in a DC component plus a harmonic component. b Product of two phase-coherent harmonic
functions with different frequencies ω1 �= ω2 results in a harmonic signal without DC component

value 1
2 AB cos ϕ. The sum of both terms (AC component and DC component),

corresponding to the product of the two harmonic functions, is also visualized in
Fig. 6.2a. Thus the product of two harmonic signals of the same frequency results in
a DC component plus a harmonic signal.

If ω1 �= ω2 the product of the two harmonic signals can be written as the sum of
two harmonic signals oscillating with the sum and the difference of ω1 and ω2. In
this case, the product signal has no DC component, as shown in Fig. 6.2b.

In the next step of the lock-in detection, the DC component of the product signal
is extracted by time averaging or low-pass filtering of the product signal as

lim
T →∞

1

T

T∫

0

A cos (ω1t + ϕ) × B cos (ω2t) dt =
{

1
2 AB cos ϕ ω1 = ω2

0 ω1 �= ω2
(6.2)
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For the case ω1 �= ω2 the signal is a harmonic signal without DC component.
Therefore, the averaging results in the signal vanishing completely. For the case
ω1 = ω2 the time averaging filters out just the DC component of the product signal
1
2 AB cos ϕ, which is proportional to the signal A that we want to measure. Addition-
ally, the result is proportional to the phase difference between the input signal and
the reference signal. Due to this, the lock-in technique is also called phase-sensitive
detection.

In conclusion: by time averaging, all (noise) frequency components with ω1 �= ω2
are filtered out and only the frequency component at the reference frequency ω2
survives with an amplitude proportional to the signal to be measured. The noise
frequency components (for instance 50/60 Hz line frequencies) are filtered out by the
lock-in amplifier. A schematic diagram of a lock-in amplifier is shown in Fig. 6.3. In
the first stage of a lock-in amplifier, the input signal A (which is the signal amplitude
to be measured modulated by the reference signal plus a lot of noise) is multiplied by
the reference signal (of known amplitude B). In a second stage the time averaging
filters out the high-frequency component.

While the lock-in amplifier is very effective in noise reduction, noise components
with a frequency close to the reference frequency result in low frequency contribu-
tions in the product signal ∼(ω1 −ω2). Long integration times of about 2π/(ω1 −ω2)

are required in order to average these low frequency components out. The reference
frequency of the lock-in amplifier is usually chosen in a frequency range where the
noise signal has the smallest spectral density. These considerations apply for coher-
ent noise. Noise components with an unstable phase ϕnoise �=const. average out even
if they are at the reference frequency.

Also a DC offset added by the experimental apparatus to the measurement signal
is suppressed by lock-in detection. If this constant signal component is multiplied
by the reference signal a harmonic signal oscillating around zero results, which is
averaged out by the time averaging.

Time
averagingxExperiment

System
input

System
output

Output

Reference
signal

Low-pass filter

B cos( t) Phase shift

A cos( t )+noise

Fig. 6.3 Schematic of a lock-in amplifier consisting of a reference oscillator which modulates (via
the experimental setup) the output signal of the system. This signal serves as input for the lock-in
amplifier and is multiplied by the reference signal and then low-pass filtered. Due to this, only the
frequency component close to the modulation frequency survives and all noise components at other
frequencies are suppressed by this modulation technique
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If the measured signal has a phase shift ϕ relative to the reference signal induced
by the experiment, the output of the lock-in amplifier is also proportional to cos ϕ.
This phase shift can be compensated by a corresponding phase shift of the reference
signal in the lock-in amplifier, as shown in Fig. 6.3. The phase shift is optimized in
order to obtain a maximal output signal amplitude.

The absolute value of the amplitude and the phase can also be measured simulta-
neously. A scheme for performing such a measurement is shown in Fig. 6.4. In one
channel the usual measurement is performed (channel X ), while in the second channel
phase of the reference signal is shifted additionally by 90◦ (channel Y ). If we neglect
the constant factor 1/2 B this results in X = A cos ϕ and Y = A cos(ϕ − π/2).
Expanding this to complex variables X̃ = Aeiϕ and Ỹ = eiϕ−π/2 as shown in
Fig. 6.5 helps to calculate amplitude and phase. The absolute value of the amplitude
A and the phase shift ϕ can be determined from the measured values X and Y as
A = √

X2 + Y 2 and ϕ = arctan(Y/X). In digital lock-in amplifiers, the measured
values X and Y are available as numbers and the computation can be performed
arithmetically.

A lock-in amplifier is used for the measurement of small AC signals with virtually
arbitrary noise reduction (determined by the integration time), provided that the AC
signal is coherent (stable phase) and the frequency is known.

xExperiment

System
input

System
output

X

Reference
signal

Low-pass
filter

Low-pass
filter

A cos( t )+noise

B cos( t)

x Y

Fig. 6.4 Schematic of a two channel lock-in amplifier. Measuring X and Y and subsequently
applying some arithmetic calculations leads to the simultaneous determination of the absolute
value of the amplitude and the phase

Fig. 6.5 Simultaneous
determination of the
amplitude A and the phase
shift ϕ of the signal by a
measurement with an
additional phase shift of 90◦,
using a two-channel lock-in
amplifier
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6.2 Summary

• The lock-in technique is an AC modulation technique used to detect small AC
signals hidden in a noisy environment.

• Multiplication of the measurement signal by the reference signal results in a DC
component proportional to the amplitude of the measured signal at the modulation
frequency. For all other frequency components of the measurement signal, multi-
plication by the reference signal results in an AC component, which is averaged
out by time averaging.



Chapter 7
Data Representation and Image Processing

Scanning probe microscopy data usually have the form of a matrix where the
topography (height) or some other signal such as the tunneling current, or dI/dV
is measured as a function of the lateral xy-position on the surface. Data represen-
tation is the task to map the measured heights (DAC values) to gray levels in an
image in an optimal way. Image processing is used in order to enhance the image
representation further, i.e. by removing image artifacts such as high-frequency noise,
noise pixels or noise lines.

7.1 Data Representation

A data representation using 8-bit or 256 gray levels (ranging from 0 (black) to 255
(white)) is more than sufficient, since the human eye can distinguish only less than
one hundred gray levels. These data are displayed as an image of typically 512 ×
512 pixels.

The original data on the height of the tip (z-output signal of the digital feed-
back loop) are usually acquired by digital-to-analog converters (DAC) with a cer-
tain resolution. In the following, we consider 16-bit converters as an example
(≈65,000 levels), while nowadays 24-bit DACs are available. The task for data rep-
resentation is now to efficiently map the data, which cover a certain range of the
65,000 levels (DAC units), to the 265 gray levels. This task is also called background
subtraction. As an example, we will discuss this first for one scan line. However, the
same strategies apply for a whole image. As a convention for the gray levels black is
assigned to the lowest height and white to the highest. If one were to map the 16-bit
data range linearly from the lowest level to the highest level to the 8-bit gray scale
from black to white not much of the surface structure would be visible. One scan line
usually covers only a small range of the 65,000 levels. As an example, the scan line
shown in Fig. 7.1 contains a range of about 800 height levels (DAC units). If the 256
gray levels were mapped to the complete range of 65,000 digital-to-analog converter
(DAC) levels, (level 0 is black and level 65,000 is white) a range of 65,000/256 = 256
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Fig. 7.1 For a good data
representation the 256 gray
levels have to be mapped to
the 65,000 DAC levels in a
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height levels would be mapped to one gray level. It is clear that most of the infor-
mation contained in the original data is lost by this poor mapping. For our scan line
in Fig. 7.1, the 800 height levels in which the image information is contained would
be mapped to only 3 gray levels (800/256 ≈ 3). Therefore, the gray scale should
be mapped to a smaller range of the 65,000 digital-to-analog converter (DAC) levels
which contain the (height) data of the scan line, as shown in Fig. 7.1.

Another effect is that the actual topographic data are often hidden due to the quite
large slope of a scan line. This slope arises because the scanning plane is usually tilted
slightly with respect to the sample. This tilt occurs due to an imperfect alignment of
the sample relative to the coordinate system of the scanning piezo element. In the
following, we term this the scanning slope, which can be as large as several degrees.
This scanning slope shows up as a tilted base line in the data as shown in Fig. 7.1.
Usually, and specifically in atomically resolved images, the measured height range is
very small (only a few Å), and the range of the measured height data is dominated by
the scanning slope. Here we give two quantitative examples in which we consider a
relatively large tilt angle between surface and scanner of 3◦. If we consider an image
of the size of 1µm the height difference induced by this slope across the image is
�h = �x tan α ≈ 500 Å. This 500 Å on an image size of 1µm corresponds to a
scanning slope which will be present in all images. If we consider, on the other hand,
that we have as the image signal, for instance, 5 atomic steps, each of 3 Å height, the
image signal we want to measure (15 Å) resides on a scanning slope of 500 Å. This
means that the background height change due to the slope is 30 times larger than
the image signal (the steps). In a second example, we take an atomically resolved
image of a size of 500 Å, corresponding to a height difference due to the background
slope of 26 Å. If the atomic corrugation on a single atomic terrace is 1 Å the signal
to background ratio is 1/26 in this case.

We have seen that even a small tilt between sample and scanner leads to a substan-
tial slope in the images. This slope can be eliminated by a background subtraction.
This is usually done by fitting a straight line to the data of each scan line and by dis-
playing only the deviations of the data with respect to this fit, as shown in Fig. 7.2c, d.
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Fig. 7.2 STM data taken on a stepped Si(111) surface with the atomically resolved (7 × 7) recon-
struction contained in the data. Comparison of different kinds of background subtraction for a
single scan line (left panel) and a whole image (right panel). a and b Show the original data without
background subtraction. In c and d a line-by-line background subtraction was applied. In e and f a
plane subtraction relative to one of the terraces, between steps of a single atom height, was applied.
The image size is 600 Å. In this image, the scanning slope corresponds to an angle of 0.7◦ between
sample and scanner
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This background subtraction increases the contrast in the image, but also leads to
artifacts like the black shadows which can arise due to some higher parts of the scan
line which pull the fitted line up. The next higher approximation is to use a fit to a
quadratic function as background. This can also remove the part of the background
that arises from the scanner bow in large scans. This scanner bow arises because the
xy-motion induced by the tube scanner is approximately a motion on a sphere with
a radius of the piezo tube length.

Another kind of background subtraction is not taking each line individually into
account, but the whole matrix of measured data as one entity. Here the obvious
approaches are to fit a plane or square function (paraboloid) to the data for background
subtraction. Another approach is that the user can define points in an image which
are known to belong to one specific height (for instance one atomic terrace). The
background subtraction is then performed relative to this user-defined plane. An
example of this background subtraction relative to a user defined plane is shown in
Fig. 7.2f. The different methods of background subtraction each have their advantages
and disadvantages. The advantage of the (user-defined) plane subtraction is that
locations of the same height on the surface are displayed by the same gray level. The
advantage of line-by-line subtraction is that the contrast is higher and the small height
corrugations due to the atomic structure of the Si atoms are more easily visible. As
another variant the whole contrast range from black to white can be used for one
atomic terrace, leaving however all lower terraces black and all higher ones white.
This is also called clipping. If you see larger areas in an image either white or black,
the real data are outside the contrast range and are clipped to black or white.

Apart from the gray scale images considered so far, it is, of course, also possible
to use color in the image representation. In the false color representation, the 8-bit
gray scale palette is replaced by a color palette. The most popular one is the fire
palette ranging from black via red and yellow to white. In Fig. 7.3a a gray scale
representation (subtracted line-by-line) of a stepped Si(7 × 7) surface is used, while
in Fig. 7.3b a false color representation with the fire palette is used. In Fig. 7.3c a
plane subtracted representation of the same image is shown in gray scale and false
color representation using a palette with several colors is shown in Fig. 7.3d. Here
the palette was chosen such that each terrace has a specific color. In Fig. 7.3e a 3D
image representation of the same image is shown. Here techniques like rendering
and ray tracing are used to give a plastic impression of an actual three dimensional
landscape of the measured data. While such images look like the real morphology of
a landscape it must be kept in mind that the z-scale in SPM images is almost always
quite exaggerated relative to the lateral scale. For the example in Fig. 7.3e, the z-scale
in the image is only 12 Å, while the image size is 600 Å. Going one step further a fly-
by movie through the atomic or nano canyons at the surface can be generated. With all
these different kinds of image representations it should not be forgotten that they are
only different representations of the same initial data matrix. The appropriate image
representation should always be chosen for the respective purpose. An elaborated
image representation with a lot of colors may be well suited to impress laypeople
but may obscure the visibility of important details. Therefore, a simple gray scale
representation is often sufficient to convey the scientific information.
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Fig. 7.3 STM image of a Si(111)-7 × 7 surface shown in different representations. Line-by-
line background subtraction using a a gray scale palette and b a color palette. Plane background
subtraction on one terrace c with gray scale palette and d a color palette with different colors for
each atomic terrace. e Three dimensional representation of the same image
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7.2 Image Processing

The application of image processing filters has two purposes. First, to enhance the
image representation contrast above that possible with simple background subtraction
and, second, to remove image artifacts such as high-frequency noise, noise pixels or
noise lines. These are often eliminated by simple matrix filters. These filters consist
of a sum of products of nearby pixel values with elements of a weighting matrix.

Matrix or convolution filters are used (a) to remove noise from the images, (b)
to sharpen (high-pass), or (c) to smoothen (low pass) the images. The following
algorithm describes the 3 × 3 convolution of image pixels. The measured value of
an image pixel in the image matrix z(x, y) is replaced by a modified value z′(x, y)

z′(x, y) =
∑x+1

i=x−1

∑y+1

j=y−1
W(i−x+2, j−y+2)z(i, j)

∑3

i=1

∑3

j=1
|W (i, j)|

. (7.1)

Depending on the properties of the matrix W high-pass, low-pass and other kinds of
filters can be realized.

Another very simple and effective filter is the median filter. It removes speckle
noise in the images, i.e. pixels which have, a very different gray value than the
neighboring pixels. The advantage of this filter is that it does not lead to a pronounced
blurring of sharp edges in the image, as other averaging filters do. For a median-
filtered pixel consider the 8 pixels surrounding one pixel plus the center (original)
pixel (9 pixels) and take as the new (gray) value for the center pixel the median of
these nine pixels. The median is not the mean of the 9 pixels but the 5th highest value
(i.e. the middle value, which is 68 in the example in Fig. 7.4a). The same procedure
is applied to all pixels in the image. Median filtering is robust with respect to outlier
pixels which would influence the mean considerably but not the median. In Fig. 7.4b,
an image with white noise pixels is shown and Fig. 7.4c shows the image after median
filtering.

Another frequently applied method for filtering SPM images is Fourier filtering.
However, this kind of filtering is often not very useful for “improving” images. From
the 2D Fourier transform of an image some parts considered to be noise are cut out
and a reverse transformation is performed. With this procedure the image information
in the respective frequency range is removed also. The emphasis in Fourier filtering
is on enhancing the periodic part of the image, while in SPM often the defects and
deviations from a periodic ideal lattice are interesting. Strong Fourier filtering can
highlight the periodic part so strongly that atoms are “produced” by Fourier filtering
and defect sites are “filled” by atoms.

One useful application of Fourier analysis for SPM images is the identification
of a long-range periodic corrugation signal in the image which may be hidden by
noise in the original image. Another application of a Fourier transform is to compare
quantitatively two different periodicities which are present in one image, for instance
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Fig. 7.4 a Example of the median filter showing gray values in a matrix of 8 pixels around a center
pixel. When applying the median filter, the value of the center pixel is replaced by the fifth highest
value (68 in the example). Thus the outlier value of 255 is replaced by the more reasonable value
of 68. b STM image of triangular Si islands on Si(111) with speckle noise. c After median filtering
this noise is removed

the atomic lattice and an additional periodic long-range modulation, as for instance
a Moiré pattern.

It is important to mention in detail in presentations and publications which kind
of image processing algorithms have been applied to the original data.

7.3 Data Analysis

There are a whole range of image analysis procedures which are often very specific
to the problem under study. For instance, if in studies of epitaxial growth, island
populations are analyzed, questions arise like: What is the island density per area?
Also other questions about the distribution of the volume, the width, or the height
of islands can be answered using SPM data. In principle, all questions related to the
morphology of the surface can be answered, since the complete surface morphology is
measured. Such analysis tasks can be performed more or less automatically. However,
such data analysis procedures are very specific to the problem considered and we
will not discuss them further here.
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Fig. 7.5 a Gray scale STM image of a 3D Ge island. b Line scan across this island

A simple and general procedure for data analysis is the line scan. By interactive
mouse clicking, a line is defined in an image on the computer screen and the height
levels along this line (sometimes averaged over a certain width perpendicular to this
line) are displayed and can be used for high-accuracy measurements of topographic
heights as shown in Fig. 7.5, or horizontal spacings of features (atoms). Also the
slopes of facets of surface features such as islands can be determined.

A second example of data analysis is the measurement of the roughness of a
surface. The usual quantity characterizing the roughness of a surface is the RMS
roughness defined as the standard deviation of the heights h(x, y)

σ =
√〈

(h(x, y) − h)2
〉 =

√√√√∑L

x=1

∑W

y=1
(h(x, y) − h)2

LW
, (7.2)

with L and W being the length and width of the image (number of pixels), and h̄ the
average height. A necessary requirement for a correct determination of the roughness
is a good background subtraction of the scan slope.

7.4 Summary

• Data representation is the task to map the measured heights (DAC values) to gray
levels in an image in an optimal way.

• Line-by-line background subtraction and plane background subtraction are com-
monly used.

• Matrix filters can be used to sharpen, or smooth the images, or to remove outlier
pixels.

• In order to measure heights, width, or slopes of topographic features line scans
can be used as data analysis tool.



Chapter 8
Artifacts in SPM

The ideal tip is a sharp needle which can image surface features with high aspect
ratios. If the tip has a broader shape artifacts occur due to a convolution of the tip
shape with the surface features. Other kinds of artifacts in scanning probe microscopy
include thermal drift, feedback overshoot, piezo creep, and electrical noise.

8.1 Tip-Related Artifacts

The most common artifacts in scanning probe microscopy occur due to the tip shape.
Topographic features which have a larger aspect ratio than the tip are not imaged
correctly. The acquired image is a convolution of the probing tip shape and the sample
topography. Due to this effect, topographic features are broadened and measured
corrugation amplitudes can be reduced. In extreme cases, if sharp asperities are
present on the surface the tip shape is imaged by the surface asperities. The principle
of how the tip shape influences the image of a sharp surface feature is shown in
Fig. 8.1a. A sharp asperity on the surface is only imaged properly with an equally
sharp (or sharper) tip.

An example of this is shown in Fig. 8.1b, where carbide clusters with a high
aspect ratio are imaged on a Si surface. Each carbide cluster is imaged as a small
high protrusion surrounded by a much larger “halo”. All clusters appear with the
same shape, which is the shape of the tip. In the image in Fig. 8.1c, we can see that
the tip form changes during the image acquisition. In the upper part of the image the
carbide clusters appear larger due to a blunt tip, while the tip changes to a somewhat
sharper shape in the middle of the image. This occurred during a tip-sample contact.
Traces of this are visible in the left part of the image. However, the tip shape is
still not ideal in the lower part of the image, as higher clusters are imaged as three
protrusions, due to the tip shape, as indicated by arrows in Fig. 8.1c. Generally, if
all (or many) features on the sample have the same shape, or if all the features have
an elongated shape in the same direction this is an indication of a blunt tip which is
“imaged” by the surface.

© Springer-Verlag Berlin Heidelberg 2015
B. Voigtländer, Scanning Probe Microscopy,
NanoScience and Technology, DOI 10.1007/978-3-662-45240-0_8
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Tip 1 Tip 2 Tip 3(a)

(b) (c)

Fig. 8.1 a Sketch of the principle of how the tip shape influences the image of a sharp asperity
present on the surface. b Example in which high aspect ratio carbide clusters are imaged by a blunt
tip. All imaged clusters have a similar apparent shape: the tip shape. c Image of carbide clusters
showing a change of the tip shape in the middle of the image

Dead zones: not imaged by a blunt tip

Fig. 8.2 Schematic showing the occurrence of “dead zones” due to the blunt shape of the tip
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As a rule of thumb, all topographic features which have a radius of curvature
smaller than the radius of curvature of the scanning tip, are not imaged properly.
Many attempts have been made to use a mathematical deconvolution to recover
the real surface topography. However, such attempts are often not very useful for
three reasons: (a) Even for a known tip shape a full recovery of the true topography
by deconvolution is not completely possible at sharp trenches or close to sharp
asperities, because there are “dead zones”, i.e. parts of the surface topography which
are never reached by the tip as shown schematically in Fig. 8.2. (b) Most importantly
the tip shape is generally unknown and a “measurement” of the tip shape at sharp

(a)

(b)

“Multiple tip“
“Double tip“

“Single tip“

Tip image

Fig. 8.3 a Sketch of a double (multiple) tip giving rise to doubled (multiple) imaging of surface
features. The light red line shows the trace of the tip above the surface. b Example of silicide
nano islands and nano wires imaged. The higher the structures imaged, the stronger is the tendency
towards double (multiple images). For structures of one atomic height a single tip apex images (red
arrows), somewhat higher structures are imaged by a double tip apex (blue arrows). Even higher
structures are imaged by even more micro tips (green arrows). Narrow and high structures result in
an image if the tip structure instead of the surface feature (gray arrows)



118 8 Artifacts in SPM

needle-like structures on the surface is not practicable. (c) The tip shape changes
quite often. Therefore, any tedious measurement of the tip shape does not last for
long. Probably not until deconvolution is attempted.

One particular case of a blunt tip is a double tip, as shown schematically in
Fig. 8.3a. Such a double tip gives rise to double imaging of features on the surface
as the islands and nanowires. These double images always occur at the same mutual
distance and orientation as indicated by blue arrows in Fig. 8.3b. Depending on the
height of the imaged features, the tip acts as a single tip for features of a single atomic
height (indicated by red arrows in Fig. 8.3b), as a double tip for somewhat higher
features (indicated by blue arrows in Fig. 8.3b), or as five or sixfold tip for even
higher features (indicated by green arrows in Fig. 8.3b). Narrow and high structures
present on the surface result in an image of the tip structure instead of the surface
feature (gray arrows).

The STM images in Fig. 8.4 show that a blunt tip can give rise to a com-
pletely wrong estimate of the deposited coverage in thin film growth experiments.
In Fig. 8.4a, a Si(110) surface is imaged on which 5 Å yttrium was deposited, which
can be seen as elongated silicide wires on the surface. The same surface (however,
not exactly the same area) was also imaged in Fig. 8.4b, with a different blunt tip.
Here the silicide coverage appears to be much higher. This is not real, but an effect
of a blunt tip where the silicide nanowires appear to be multiply imaged by several
micotips forming the blunt tip.

This does not mean that you should not believe any SPM images, but rather you
should always critically reflect on your SPM measurements and to reproduce mea-
surements with different tips in order to exclude tip artifacts as carefully as possible.

Fig. 8.4 STM image of 5 Å yttrium deposited on Si(110). a Silicide nanowires imaged with a
sharp tip. b The same surface imaged with a blunt tip leads to much higher apparent coverage due
to multiple images of the silicide nanowires
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8.2 Other Artifacts

An artifact often appearing at the beginning of an image is a bending of all image
structures, as seen in Fig. 8.5. This results due to piezo creep. Specifically if one
moves to a new lateral position away from the previous one this effect is strong.

In discussing problems of piezo actuators Sect. 3.6, we have seen that the new
position is not reached instantaneously after the corresponding voltage change, but
is only reached asymptotically. If this creep is not yet finished this leads to an image
distortion in the SPM images. An example of image distortion due to creep or a
non-linearity in the piezo extension is shown in Fig. 8.6. A silicide nanowire, which
is known to be straight due to its crystallographic structure, is imaged as bent.

If the feedback parameters are not optimized this can lead to image artifacts. If the
feedback is too slow this will lead to blurred images; if the feedback is too fast this
may lead to a feedback overshoot when the tip encounters sudden height changes
such as a monoatomic step height or an other structure with high aspect ratio. In
Fig. 8.7 the real signal (e.g. topography) changes from zero to one at x = 50 and
back to zero at x = 250. The reaction of the AFM feedback signal to this is shown
for too slow feedback settings (black line), too fast feedback settings (red line), and
appropriate feedback settings (blue line). A scan in the reverse direction will show
the opposite signatures.

Different kinds of artifacts are induced by noise. Noise with a high amplitude at a
specific frequency will show up as stripes superimposed onto the true topography of
the surface. Electrical noise from the power line is 50 Hz (or 60 Hz) noise, which can
be recognized as stripes in the images, as shown in Fig. 8.8. Changing the scan speed
will change the ratio of the 50 Hz noise to the frequency at which the scan lines are
acquired. This has a massive influence on the angle of the observed stripe patterns.

Fig. 8.5 Bending of atomic
steps in the beginning of an
image of a Si surface
highlighted by arrows.
Additionally to this artifact
also an artifact due to a
double tip is present in this
image

http://dx.doi.org/10.1007/978-3-662-45240-0_3
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Fig. 8.6 Image of a straight
silicide nano-wire, which
appears bent in the STM
image due to non-linearities
in the piezoelectric actuators

Fig. 8.7 Reaction of the
AFM feedback signal to an
abrupt change in the
topography for too slow
feedback settings (black
line), too fast feedback
settings (red line), and
appropriate feedback settings
(blue line)
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Fig. 8.8 Example of an
image which is strongly
influenced by 50 Hz noise.
The three horizontal atomic
step edges are hardly visible
due to the strong 50 Hz noise
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To remove electrical noise, careful debugging of the electronics has to be performed,
including the removal of ground loops. Vibrational noise can be acoustic noise or
vibrational noise due to building vibrations. In the section on vibration isolation, we
discussed how to combat this kind of noise.

8.3 Summary

• The shape of the tip influences the SPM images, resulting in multiple images. The
combination of sharp surface features with a blunt tip leads to the tip shape being
imaged.

• When imaging with a blunt tip, parts of the features at the surface are not imaged:
“dead zone”.

• Piezo creep and non-linearity leads to distorted images.
• Power line noise and feedback overshoot are further sources of image artifacts.



Chapter 9
Work Function, Contact Potential,
and Kelvin Probe Scanning Force Microscopy

We already used the term work function when we introduced the tunneling barrier
height in STM. The work function can be considered as the energy difference between
the vacuum level and the Fermi level of a metal. Here we will see that also a surface
term contributes to the work function. The work function is a measurable quantity
and the operative definition of the work function is that it is the energy required to
remove an electron from the bulk Fermi level of a metal to a certain distance from
the solid.1

Subsequently, we introduce the contact potential between two metals with dif-
ferent work function, which is used by the Kelvin method for the measurement of
work function differences. In spite of the fact that we have not yet introduced scan-
ning force microscopy in depth, in this chapter we already present the principles of
Kelvin probe scanning force microscopy (KFM), which is the nanoscale variant of
the Kelvin method.

9.1 Work Function

The work function Φ of a metal can be defined as the difference between the energy
of an electron at some distance d outside of a solid Eout and the energy of the highest
occupied electron level (at zero temperature), i.e. the Fermi energy, thus

Φ(d) = Eout(d) − EF. (9.1)

This corresponds to an operative definition of the work function as the minimum
energy to bring an electron from the solid to some distance d outside the solid. The
kinetic energy of the electron outside the solid is considered as zero. Note that with
this definition the work function depends on how far the electron is removed from
the surface.

1 This distance is specific to the actual type of measurement performed.

© Springer-Verlag Berlin Heidelberg 2015
B. Voigtländer, Scanning Probe Microscopy,
NanoScience and Technology, DOI 10.1007/978-3-662-45240-0_9
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As a limiting case, the energy to bring the electron from inside the solid to infinity
can be considered. Let us consider an infinite crystal filling a half space and being
terminated by an infinite surface of specific orientation. If the position of the electron
outside of the solid is infinitely far from the solid Eout will be the vacuum energy at
infinite distance from the surface E∞

vac and the work function results as

Φ = E∞
vac − EF. (9.2)

The usual definition of the work function as difference between vacuum energy and
Fermi energy hides the fact that the vacuum energy depends on the distance of the
electron from the surface.

The work function has two main contributions; one is due to the binding of the
electrons inside a solid. Theoretically, one can consider the binding of the electrons
inside a solid with different levels of sophistication, from the simple nearly free
electron model, the tight binding model, up to ab initio calculations. The essence is
always the same: The electrons are bound to the nuclei and this bonding corresponds
to a lower energy of the electrons in the solid compared to free electrons. A second
contribution to the work function arises due to the passage of the electron through
the surface layer, which we will discuss in the following.

9.2 Effect of a Surface on the Work Function

Before we consider the effect of the surface on the work function, we note that the
effect of the presence of a surface has a negligible effect on the bulk states. Inside the
solid the potential of the positive charges of the nuclei is screened very effectively
by the electrons at distances larger than the Thomas-Fermi screening length [14].
The Thomas-Fermi screening length is usually very small in metals. For instance, in
copper the screening length is only about 0.5 Å. Thus inside the crystal everything
will remain as it was in the infinite bulk crystal since the contribution of the “missing”
atoms at the surface is vanishingly small due to the effective screening inside the
metal. The energy of the highest occupied electronic level in a metal terminated by
a surface will still be EF, as for the infinite crystal.

Now we consider how the changes of the electronic structure at the surface give
rise to an additional contribution to the work function, i.e. we consider the work
needed to bring an electron through the surface layer. Even if we consider a bulk
termination of the surface, which means that the positions of the atom nuclei remain
as in the bulk, i.e. undistorted up to the last atom at the surface, as shown for the 1D
crystal in Fig. 9.1a, the electron charge distribution near the surface deviates from that
in the bulk. Some charge will “spill out” into the vacuum as indicated qualitatively
in Fig. 9.1a. This “spill out” of charge is a quantum mechanical effect, as an electron
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Fig. 9.1 a Charge density in a metal crystal which is modified close to the surface and spills out
towards the vacuum. This behavior can be described qualitatively by a dipole layer of excess charge
density close to the surface. b Energy of an electron as function of the distance d from the surface
resulting from the charge density given in (a). The passage of an electron through the dipole layer
leads to additional work Esurface which has to be done in order to remove an electron from the solid

can reduce its energy when it spreads out over a larger region.2 The “spill out” of
charge at the surface leads to the formation of a charge dipole at the surface with
negative charge “spilling out” towards the vacuum and less negative charge (i.e. a
positive excess charge) inside the crystal close to the surface as indicated in Fig. 9.1a.
The particular way in which the charge distribution at the surface deviates from the
bulk structure depends on the crystal structure at the surface (bulk terminated or
modified, i.e. known as reconstructed). When an electron is removed from the solid,
a contribution to the work function arises from the transfer of the electron through
the dipole layer.

The direction of the field in the dipole layer is (usually) such that an additional
amount of work Esurface has to be done to move an electron through the dipole layer.
The total energy to remove an electron at EF from the solid to some distance d
consists of a bulk contribution (binding energy) plus the work done by the electron
when passing through the dipole layer now reads

2 This can be seen from a simple 1D particle in a box model, where the energy of an electron state
as a function of the quantum number n and size of the box L is

E(L) = �
2π2n2

2meL2 . (9.3)

With increasing L (“spill out” of charge) the energy decreases.
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Φ(d) = Φbulk + Esurface(d). (9.4)

The corresponding energy diagram is shown in Fig. 9.1b. Inside the solid the free
electron approximation is used with the energy levels filled up to the Fermi energy.
When passing through the dipole layer the additional contribution to the energy
Esurface is added. This surface contribution to the work function can be of the order
of up to 1 eV.

The splitting of the work function into different contributions arises from the
different approaches used for each effect. A ab initio quantum mechanical theory
would include all these effects when an electron is moved from inside the crystal to
an distance from the crystal. Besides the influence of the surface which is difficult to
calculate with ab ab initio methods, also the electrostatic potential at larger distances
from the surface is difficult to calculate quantum mechanically. The correlation and
exchange forces outside the surface cannot be calculated quantum mechanically
up to large distances of 100 nm. The electrostatic image potential is often used as
an approximation of the long-range behavior of the exchange-correlation potential
in the vacuum.3 On the other hand, for short distances the unrealistic divergence
of the classical image potential at the surface is avoided by a transition to quantum
mechanical calculations, which describe the region close to the surface better.

The work due to the electrostatic image charges (occurring when an electron is
moved out of the metal) reduces at the distance of 100 nm to 1 % of the value at 1 nm,
and can thus be neglected for larger distances.

In conclusion we have identified three contributions to the work function: the
bulk contribution (binding energy), the surface contribution, and the image charge
contribution. These are the contributions which enter for a distance of the removed
electron up to 100 nm. A further contribution occurs if the electron is removed to
distances comparable to the size of the sample, and results due to external electric
fields, as will be discussed in the next section.

9.3 Surface Charges and External Electric Fields

Now we consider (different from the semi infinite crystal considered so far) a finite
crystal with is terminated by different surfaces, as shown in Fig. 9.2. Different sur-
faces (with different atomic configurations) terminating a crystal, correspond to
different “spill out” of charge. This leads to different surface dipoles and therefore

3 In classical electrostatics it is shown that the force between an electron at distance d from a
conducting plate is the same as the force between the electron and a positive elementary charge
located at a distance 2d from the electron (image charge), i.e.−e2/(4πε02d). Integrating the negative
of this force from infinity to d results in the (image) potential of the electron (relative to a position
at infinity) as

Vimage(d) =
d∫

∞

e2

4πε02r
dr = −e2

4πε0

1

4d
. (9.5)

.



9.3 Surface Charges and External Electric Fields 127

Fig. 9.2 Due to energy
conservation, zero total work
has to be done in moving an
electron along the closed
path from inside the metal
crystal through surface S1
and back through surface S2.
This argument shows that the
two surfaces S1 and S2,
which are assumed to have
different work functions,
have to be at different
electrostatic potentials. This
different potentials are built
up by corresponding surface
charges

S1

S2

also to different work functions at different surfaces of a crystal. In the following, we
will show that these different work functions at different surfaces of a finite crystal
lead to the presence of net surface charges, and corresponding electric fields.

Let us take an electron on a closed loop from a point inside the crystal to a
position outside of the crystal through surface S1 and back through another surface
S2, as shown in Fig. 9.2. Leaving the crystal through surface S1 requires work E1
(surface work to leave the crystal through surface S1, plus of course also the bulk
contribution to the work function, which we leave out here, since it cancels out later).
If there were no net surface charge, the electric field outside the crystal would vanish
and there would be no work to transfer the electron outside the crystal from surface S1
to surface S2. When the electron is inserted back into the crystal through S2, the work
−E2 (negative of the surface work to leave the crystal through surface S2) is gained.
Closing the path inside the metal does not involve energy, since the electric field
inside a metal is vanishing. Since the work functions of the two surfaces are different
(due to the two different surface contributions to the work function), a perpetuum
mobile could be built gaining the energy difference between the two work functions
(E1 − E2) on each cycle. Since this is clearly impossible, there must be an electric
field outside the crystal against which a compensating amount of work is done as
the electron is carried from S1 to S2. This means the two surfaces must be at two
different electrostatic potentials φ1 and φ2, satisfying the condition

e(φ1 − φ2) = E1 − E2 = Φ1 − Φ2. (9.6)

Since dipole layers cannot yield macroscopic fields outside the crystal these fields
have to arise from net macroscopic electric charges on the surfaces,4 which also lead
to an external electric fields with a range corresponding to the size of the crystal. At
larger distances from the crystal these fields vanish.

4 All net charges are located at the surface of a metal, since the electric field vanishes in the interior
of a metal.
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In the following, we estimate which surface charge density is necessary to
“supply” the necessary energy to compensate for the surface-related work function
difference of the order of about 1 eV when an electron is transferred macroscopic
distances from one metal surface to the other through the outer electric field. For a
rough estimate, we consider a plate capacitor arrangement (d = 1 cm). The surface
charge per area A can be expressed as

ρsurface = Q

A
= VC

A
= V

A

ε0A

d
= Vε0

d
. (9.7)

The resulting surface charge corresponds to ∼5 × 10−8 electrons per surface atom.
This shows that even minute charge densities at the surface lead to considerable
work, since the distance over which the electric field extends are on the order of the
size of the crystal.

Now we will summarize the results on the work to remove an electron from the
solid as a function of the distance d. An electron is considered to be removed from
the highest occupied level at EF . At very short distances from the surface (<1 nm),
the bulk contribution (bonding energy), as well as the surface contribution are the
main contributions to the work. (At surfaces with different electronic structure, the
different surface contributions lead to different work functions Φ1 and Φ2.) For
distances larger than 1 nm from the surface these contributions remain constant. At
distances between 1 and 100 nm the work due to the image charge effect is the
only distance dependent part of the work function. Between ∼100 and ∼1 mm (a
distance corresponding to the sample size) there are no further contributions to the
work function. When the distance of the electron removed from the solid becomes
close to the sample size, the work due to the external electric fields arising from the
previously discussed surface charges contribute to the work.

The work to bring an electron to infinity Φ∞ is independent on the work function
of the surface through which it passed.5 Any differences due to the surface work
are compensated by macroscopic electric fields created by the surface charges at the
different surfaces.

Experimental measurements of the work function are performed at a certain dis-
tance. Since most of the experiments are performed in a distance range between 100
and 1 mm, in which the work function is independent of the distance, usually work
functions are considered as independent of the distance. An exception is scanning
probe microscopy. In scanning tunneling microscopy the distance to which the elec-
tron is transferred out of the solid is very small (<1 nm). Thus the image potential
and even the surface and bulk contributions can be distance dependent at such small
distances. The apparent barrier height Φ in STM is more a parameter than directly
corresponding to the work function. Nevertheless, the apparent tunneling barrier
height is usually referred as “the work function” and also we will use this not correct
wording sometimes.

5 It is always assumed that the electron is at rest, i.e. there is no kinetic energy contribution to the
work.
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9.4 Contact Potential

Now we assume two (different) metals with different work functions which are ini-
tially not connected to each other Fig. 9.3a.6 In this case, both metals share a common
vacuum level, but their Fermi levels are not aligned, due to the different work func-
tions assumed. Suppose now that these two metals are connected (e.g. by a wire)
in such a way that electrons can flow freely from one metal to the other, as shown
in Fig. 9.3b. In this case, both metals share a common Fermi level. Since initially
the two Fermi levels were not yet aligned, electrons flow through the wire from the
metal with the higher Fermi level until equilibrium is reached. However, the charge
transfer in order to align the two Fermi levels does not occur in such a way that half
of the electrons between energy EF,1 and EF,2 flow from metal 2 to metal 1. A very
small transfer of charge builds up a surface charge at the metals and a corresponding
electric field E between them. According to (9.7), over the (macroscopic) distance
d these surface charges induce a potential drop Vcontact, which aligns the Fermi
levels of the metals. Due to the macroscopic distance only minute surface charges
are needed to build up a voltage on the order of the work function difference.

In equilibrium the condition

eVcontact = �Φ (9.8)

holds. The voltage Vcontact is called contact potential, because it occurs if a contact
between the metals is established, for instance by a connecting wire.

9.5 Measurement of Work Function by the Kelvin Method

Equation (9.8) suggests that a simple way to measure the (relative) work function
of a metal is to measure the contact potential (relative to a metal with known work
function) by connecting a voltmeter between the metals. However, this is not possible
since a continuous flow of current (through the voltmeter) would have been produced
without a sustaining source of energy. Lord Kelvin proposed a simple way to measure
contact potentials by a capacitive method which is described in the following. The
two samples are arranged in such a way that the two surfaces form a plate capacitor
and an outer voltage called the compensation voltage Vcomp is applied between the
surfaces (Fig. 9.4). The total potential difference V can be written as

V = Vcontact − Vcomp. (9.9)

6 We assume semi infinite crystals so that no surface charges are present and thus no electric fields
occur outside the crystals. Since in Fig. 9.3a macroscopic distance between both metals is assumed,
the work function rises within 100 nm quasi vertically to Evac = E∞

vac.
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Fig. 9.3 a Potential energy diagram for two metals with work functions Φ1 and Φ2, which are
initially not connected and share thus a common vacuum level. b If the two metals are connected
by a conducting wire, the Fermi levels of the two metals align. A buildup of surface charge leads
to a macroscopic potential gradient compensating the difference between the work functions of
the two metals. c The surface charges and the corresponding electric field E vanish if a voltage
Vcomp = Vcontact = 1

e �Φ is applied between the metals

The charge on the capacitor is accordingly

Q = CV = C
(
Vcontact − Vcomp

)
. (9.10)

If the distance between the capacitor plates d is now modulated sinusoidally (for
instance by a piezoelectric actuator) with a small modulation amplitude a current
results as

I = dQ

dt
= dC

dt

(
Vcontact − Vcomp

)
, (9.11)

since Vcontact is constant and Vcomp varies slowly compared to the modulation voltage.
Therefore, a capacitive current is only induced by a change in the capacitance of the
plate capacitor (C = ε0A/d). The measured current has linear behavior as function of
Vcontact − Vcomp. The current will vanish if Vcontact or equivalently the work function
difference is compensated by the compensation voltage, i.e. if

Vcomp = Vcontact = 1

e
�Φ. (9.12)
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Fig. 9.4 The surfaces of two
metals are brought together
in a plate capacitor
configuration. When the
distance d between the plates
is modulated a charge flow
(capacitive current) can be
measured. When an external
bias potential just
compensates the work
function no current flows
anymore

d=d cos t0

I

Vcomp

No current flows if this condition is fulfilled and also the electric field between the
metals vanishes as shown in Fig. 9.3c. The amplitude of the (capacitive) current
can be measured sensitively using the lock-in detection method as a function of
the compensation voltage. Using this method, the (macroscopic) contact potential
difference between two metals can be measured.

9.6 Kelvin Probe Scanning Force Microscopy (KFM)

While Kelvin probe scanning force microscopy is the microscopic variant of the
Kelvin method, there are also some differences. In the macroscopic Kelvin method
the distance between the two metals is modulated and the resulting capacitive current
is measured, whereas in Kelvin probe scanning force microscopy the voltage between
tip and sample is modulated and the corresponding electric (capacitive) force is
measured.7 For conceptual simplicity we consider a flat surface and the tip is moved
at a constant topographic distance over this surface. However, we consider that the
surface consists of areas with different work functions which we would like to detect.
Our configuration consists of a surface and a tip with a voltage V between them, and
a capacitance C(z) for the tip-sample system. Apart from other forces, there is an
electrical force between the tip and the sample. If we consider the tip-sample system
as a capacitor, the electrical (capacitive) force between tip and sample is the gradient
of the potential energy of the capacitor as

Fel(z, V) = −∂E

∂z
= −1

2

∂C

∂z
V2(t). (9.13)

7 This is done since the force (not the current) is measured in a scanning force microscopy setup.
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Since we assume a scan at constant tip-sample distance, ∂C/∂z is a constant. The
voltage between tip and sample consists of different contributions: the constant con-
tribution Vcontact − Vcomp, and additionally a voltage component which is modulated
at the modulation frequency ωmod resulting in a total voltage between tip and sample
as

V(t) = Vcontact − Vcomp + Vmod cos (ωmodt) (9.14)

Thus the tip-sample force which is proportional to the square of the tip-sample voltage
V(t) results as

Fel(V) = −1

2

∂C

∂z

[
Vcontact − Vcomp + Vmod cos (ωmodt)

]2

= −1

2

∂C

∂z

[(
Vcontact − Vcomp

)2 + 2
(
Vcontact − Vcomp

)
Vmod cos (ωmodt)

+V2
mod cos2 (ωmodt)

]
. (9.15)

The first term in the square bracket is time independent (constant), the second term
is a modulation with the frequency ωmod, while the third term consists (after using a
mathematical identity) of a constant term plus a component at twice the frequency
ωmod. Using the lock-in technique, which we introduced in Chap. 6, the amplitude of
the term at the frequency ωmod can be selectively measured. This component vanishes
if Vcontact − Vcomp = 0. In the practical implementation, a feedback control of Vcomp
keeps the ωmod component of the force at zero. Thus by recording the voltage Vcomp,
which nulls the ωmod component of the force signal ∝ 1

e �Φ − Vcomp, the work
function difference is measured locally on the nanoscale while scanning over the
surface. Due to the modulation of the voltage V , a modulated force is exerted on the
cantilever, which induces a cantilever oscillation at the modulation frequency.

So far we have left out the complication that in a practical implementation of
an SPM setup the tip-sample distance also has to be measured, and to adapt the
setpoint value. In dynamic atomic force microscopy this can be done using a (second)
modulation of the cantilever close to its resonance frequency (as we discuss in detail
in Chap. 14). Thus the cantilever is modulated at two (different) frequencies and two
lock-in detection units detect the oscillation amplitudes at the respective modulation
frequency.

9.7 Summary

• The definition of the work function as the difference between the vacuum level
and the Fermi level, includes also a surface contribution to the work function.

• Due to a “spill out” of charge to the vacuum, a charge dipole occurs at the surface.
A certain amount of work has to be done to move an electron through this dipole
layer. This is the surface contribution to the work function.

http://dx.doi.org/10.1007/978-3-662-45240-0_6
http://dx.doi.org/10.1007/978-3-662-45240-0_14
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• Also a net charge can accumulate at the surface giving rise to a contact potential
between metals with different work functions. The contact potential is the differ-
ence between the work functions.

• The contact potential can be measured using the Kelvin method by modulating the
distance between the surfaces of the metals and measuring the induced capacitive
current.

• In Kelvin probe scanning force microscopy (KFM) the work function can be
measured locally by modulating the tip-sample voltage.



Chapter 10
Surface States

When the electronic structure of (crystalline) materials is described, usually the bulk
is considered. Since the STM probes the electronic states at the surface we will
now consider also the electronic states at the surface, the surface states. We use the
single electron approximation and start with a very brief review of the bulk electronic
structure. Then the surface states are discussed in one dimension within the quasi-
free electron model. We will see that solutions of the Schrödinger equation with
complex wave vectors lead to surface states. While these solutions are not allowed
in (infinite) bulk crystals, they are allowed if a surface is present. Finally, we transfer
the one-dimensional model qualitatively to three dimensions and discuss the two-
dimensional surface states of a three-dimensional solid.

10.1 Surface States in a One-Dimensional Crystal

The well-known parabolic bands are found in the one-dimensional model of a peri-
odic solid [14]. At the Brillouin zone boundary, different bands cross each other. If
a weak lattice periodic potential V̂ is present this leads to a splitting of the bands
at the zone boundary. Due to the presence of the potential V̂ a band gap free of
electron states occurs. According to the Bloch theorem, the wave function in a one-
dimensional lattice periodic potential Ψk(z) can be written as a plane wave modulated
with a lattice periodic modulation factor uk(z):

Ψk(z) = uk(z)e
ik·z, (10.1)

with the lattice periodic function uk(z) = uk(z + zn) and the translational lattice
vector zn . Of course, also a corresponding solution exists for −k.

This applies to the bulk electronic structure, but what happens at the surface? To
answer this question we consider a one-dimensional model of a quasi-free electron
in a periodic potential ending at the surface as shown in Fig. 10.1. Inside the solid
(z < 0) the general one-dimensional bulk solution applies, which can be written as

© Springer-Verlag Berlin Heidelberg 2015
B. Voigtländer, Scanning Probe Microscopy,
NanoScience and Technology, DOI 10.1007/978-3-662-45240-0_10
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Fig. 10.1 Lattice periodic
potential inside the
one-dimensional crystal
which ends at the surface
(z = 0). In the vacuum
region outside the crystal the
potential has the constant
value of Evac

V

z

V0

Evac

0

Crystal Vacuum

a linear combination of the solutions for k and −k as

Ψbulk(z) = Auk(z)e
ik·z + Bu−k(z)e

−ik·z, (10.2)

with real wave numbers k and −k as well as energies in the allowed bands, i.e. outside
the band gaps. However, any solution inside the crystal has to match the solution Ψvac
for the region outside the crystal (z > 0). For the constant potential on the vacuum
side, the solution is an exponentially decaying wave function (a wave function with
a positive exponential cannot be normalized) as

Ψvac = D exp

[
−

√
2m

�2 (V0 − E) z

]
, E < V0. (10.3)

The two solutions inside (10.2) and outside (10.3) the crystal and their derivatives
have to be matched at the surface z = 0 as

Ψbulk(z = 0) = Ψvac(0) and Ψ ′
bulk(z = 0) = Ψ ′

vac(0). (10.4)

These two equations plus one equation from the normalization of the wave functions
fix the three unknowns A, B, and D, and the matching condition can be fulfilled for
any value of the coefficient k [15]. Thus, all energies which are allowed in the bulk
crystal are also allowed for the surface problem. The resulting wave function is a
bulk Bloch wave with an exponentially decaying tail into the vacuum (Fig. 10.2a).
This solution is not really a surface state but it is a bulk electronic state up to the very
surface where it is matched to an exponentially decaying tail.

Additionally to these bulk states decaying at the surface, there are solutions to the
Schrödinger equation which are confined close to the surface and which are called
surface states. We consider here the general concept of how surface states can arise
from the presence of the surface. Usually the wave vector (wave number in the 1D
case) k is considered to be real. However, Bloch’s theorem does not require that the
wave number k is real, it also allows Bloch functions with complex wave numbers.
The (now) complex wave number k consists of a real part k′ and an imaginary part
κ as k = k′ + iκ. Considering solutions with a complex wave number additional
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Fig. 10.2 Real part of the
one dimensional wave
function, for a a Bloch wave
matched to an exponentially
decaying tail in the vacuum
and b a surface state wave
function Ψsurf . This surface
state wave function consists
of a part Ψ bulk

surf which is
oscillatory inside of the
crystal (z < 0) and
exponentially increasing
towards the surface. At the
surface this wave function is
matched to an exponentially
decaying tail in the vacuum
outside the crystal Ψ vac

surf for
z > 0
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(1D) solutions to the Schrödinger equation can be found inside the bulk which can
be written as

Ψ (z) = uk(z)e
i(k′+iκ)·z =

[
uk(z)e

ik′·z] e−κ·z . (10.5)

These wave functions grow without bound in one direction and decay exponentially
in the opposite direction (depending on the sign of κ). Since the wave function
has to be finite everywhere, such solutions have no relevance in the infinite crystal.
However, this is no longer true at surfaces. Here the presence of the surface stops
the exponential rise of the wave functions, at z = 0 the wave functions have to be
matched to the exponentially decaying tail in the vacuum, z > 0. Wave functions may
be obtained which are strongly localized at surfaces, have real energy eigenvalues,
and can be normalized, as shown in Fig. 10.2b.

Thus we have grasped that the surface states arise due to wave functions with
an imaginary part of the wave number. These wave functions can be normalized
inside the crystal, since they grow to infinity only outside the finite crystal. Before
we discuss the surface state wave functions further, we consider the range of wave
numbers and energies for which surface states exist (a detailed treatment of this
issue can be found in [15, 16]). If a complex wave number k is inserted into the
expression for the energy as a function of k (dispersion relation) in the nearly-free
electron approximation [15], the requirement that the energy has to be real leads to
restrictions for the (complex) wave vector. For real wave numbers (κ = 0), of course,
the usual solutions exist with k-values from k = 0 to k = ±π/a, and subsequent
higher bands (solid lines in Fig. 10.3) [16]. Furthermore, for complex wave numbers
real energies are obtained if, and only if k′ = ±π/a (as shown in [15]). This means
that complex wave numbers occur only at the zone boundaries of the real part of the
wave number (k = ±π/a + iκ). In Fig. 10.3 also these solutions with an imaginary
part of the wave number κ are shown as dashed lines at the zone boundary of k′.
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E
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k´0
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Fig. 10.3 Sketch of the electronic band structure for a 1D semi-infinite chain of atoms in the
nearly-free electron model with an interaction potential V̂ . Bulk states which decay exponentially
at the surface into the vacuum give rise to energy bands shown as solid lines. Genuine surface states
such as the ones shown in Fig. 10.2b are found in the band gap of the bulk states. They have complex
wave vectors with a real part at the zone boundary k′ = ±π/a and an imaginary part of the wave
vector κ. These surface states with real energies are shown as dashed lines. The wave function
matching condition restricts this continuous range of surface state wave functions to one particular
surface state per bulk band

These solutions are the surface states and have real energies in the forbidden bulk
band gap.

Due to the restriction of the real part of the wave number k to the zone boundary
(k′ = ±π/a), the surface state wave functions can be written as

Ψ bulk
surf (z) = Auk(z)e

i( π
a +iκ)·z + Bu−k(z)e

−i( π
a +iκ)·z . (10.6)

For κ > 0 the first term will grow without bond inside the crystal z < 0, because it
is proportional to e−κz . Since this would violate the finiteness of the wave function,
A has to be zero. Correspondingly for κ < 0 B has to be zero.

Up to now we have only considered the part of the wave function inside the
crystal. In the next step, the solution inside the crystal, (10.6) i.e. for z < 0 will
be matched to an exponential tail in the vacuum. The two equations from the wave
function matching conditions (wave functions and derivative at z = 0) plus the
condition for the normalization of the wave function fix the three parameters B, D,

and k. The wave function matching condition picks one k value out of the continuous
range of values within the forbidden bulk energy gap (Fig. 10.3). Only one particular
energy within the bulk band gap is compatible with the wave function matching
conditions. The present consideration for a semi-infinite chain therefore yields one
single electronic surface state per bulk band, which is located somewhere in the gap
of the bulk states. Electrons in these states are, localized within a few Å of the surface
plane (Fig. 10.2b).
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10.2 Surface States in 3D Crystals

Now we consider the generalization of the results for the one-dimensional
semi-infinite chain to a 2D surface of a 3D crystal. We now call the real part of
the wave vector (perpendicular to the surface) named k′ in the 1D model, k⊥. As
we have already discussed, the value of k⊥ for surface states is at the Brillouin zone
boundary. In the 3D case we have an additional wave vector parallel to the surface k‖.
Because of the 2D translational symmetry parallel to the surface, the general form
of a surface state wave function is of the Bloch type with coordinates parallel to the
surface. The energy eigenvalues of the surface states become functions of the wave
vector k‖ parallel to the surface as shown by the dashed lines at k⊥ = π/a in Fig. 10.4.
We thus arrive at a 2D band structure for the energies Esurf of the electronic surface
states. A surface state is described by its energy level Esurf and its wave vector k‖
parallel to the surface, k⊥ is in any case at the Brillouin zone boundary. The plane in
the reciprocal space given by the two components of the wave vector k‖ parallel to
the surface forms the surface Brillouin zone. In the dispersion relation in Fig. 10.4,
only one of the two directions parallel to the surface is shown.

For the bulk states both k‖ and k⊥ components are allowed ranging from zero to the
zone boundary, i.e. k⊥ is not restricted to the value at the zone boundary (k⊥ = π/a).
Therefore, a 3D band structure results as shown in Fig. 10.4. If all the bulk states are
projected along k⊥ onto the plane k⊥ = π/a the shaded area in Fig. 10.4 results. If
the surface state bands lie in this band gap of the projected bulk band structure, they
are true surface states. Surface resonances lie inside the region of the projected bulk

Surface resonances

Surface state bands

Projected bulk bands

/a

k

k

E

Fig. 10.4 Schematic of an electronic band structure of a three-dimensional crystal. The shaded
areas arise by projecting the bulk band structure along k⊥ onto the plane at k⊥ = π/a. The dashed
lines in this plane indicate surface state bands. They can either lie in a gap of the projected bulk
band structure (true surface states) or in areas inside the projected bulk band structure. In the latter
case, these states are called surface resonances
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band structure. Surface resonances have wave functions present throughout the bulk
and, additionally, a large amplitude at the surface. Fig. 14.4 is an example in which
no bulk band gap exists (energy range without states in the bulk), however, gaps in
the projected bulk band structure exist.

10.3 Surface States Within the Tight Binding Model

So far we have discussed surface states within the picture of the quasi-free electron,
which are sometimes, for historic reasons, called Shockley surface states. However,
the surface states can also be described within the tight binding approximation; in
this case they are called Tamm states. We will discuss this only qualitatively here. For
the topmost surface atoms the bonding partners on one side are missing completely,
which means that the wave functions have less overlap with the wave functions of the
neighboring atoms. The shift of the atomic energy levels (into the electronic bands of
the crystal) is thus smaller at the surface than in the bulk. The surface states split off
from the bulk bands as shown in Fig. 10.5. Every atomic orbital leading to one of the
bulk electronic bands should also give rise to one surface state level. The stronger the
perturbation induced by the surface, the greater is the deviation of the surface level
from the bulk electronic bands. When a particular orbital is responsible for chemical
bonding, e.g. the sp3 hybrid in Si or Ge, it is strongly affected by the presence of
the surface. Bonds are broken and the remaining lobes of the orbital sick out from
the surface. They are called dangling bonds. The energy levels of such states are
expected to be significantly shifted from the bulk values.

Fig. 10.5 Qualitative origin
of surface states in the
tight-binding picture. The
surface atoms have less
bonds to neighboring atoms.
Therefore the energy shift
from the atom levels is less
than for the bulk atoms

B

A

E
Atom Crystal

Conduction
band

Valence
band

Surface
states

http://dx.doi.org/10.1007/978-3-662-45240-0_14
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10.4 Summary

• When a surface is present, the bulk states of the infinite crystal are still solutions of
the semi-infinite solid if the bulk wave functions are matched to an exponentially
decaying tail in the vacuum.

• In the semi-infinite solid (terminated by a surface), additional solutions exist which
have a complex wave vector. This leads to an exponential increase of the wave
function in the direction of the surface. Unlike the case of the infinite crystal, this
is no problem since the crystal is finite and the exponential increase of the wave
function stops at the surface.

• The energies of the (1D) surface states lie in the band gap of the bulk band structure
and the real part of the surface state wave vector is at the zone boundary, i.e. π/a.

• True surface state bands are characterized by energy levels Esurf , which are not
degenerate with bulk bands. They lie in the gaps of the projected bulk band struc-
ture.

• Surface resonances lie in parts of the surface Brillouin zone, where projected bulk
states exist.



Part II
Atomic Force Microscopy (AFM)



Chapter 11
Forces Between Tip and Sample

One disadvantage of the STM technique is that it cannot image insulating samples
since a tunneling current between tip and sample is needed. The idea behind the
atomic force microscope (AFM) is to measure the force(s) between the surface and
the scanning tip in order to track the surface topography. Before we describe the
atomic force microscopy technique in detail, we consider the forces acting between
tip and sample.

11.1 Tip-Sample Forces

The total force between tip and sample is composed of several long-range and short-
range contributions, which we will discuss in the following. One long-range contri-
bution is the van der Waals force. The van der Waals force in the narrower sense, here
specifically the London dispersion force, is a force between neutral atoms/molecules
without a permanent dipole moment. It can be described as a spontaneous formation
of fluctuating electric dipoles which attract each other. The origin of the van der Waals
force is of quantum mechanical nature. There are several levels of approximation
for this force, at the most exact level it is a quantum-electrodynamical phenomenon
which is called the Casimir-Polder force.

For the simple case of two noble gas atoms the dipole interaction of the first atom
acting on the second can be treated analytically using some approximations [17],
resulting in an interaction potential of

UvdW(r) = − C

r6 . (11.1)

The distance dependence with the minus sixth power corresponds to a long-range
interaction. The van der Waals interaction is (in a first approximation) non-directional
(isotropic) and additive, which means that for two groups of atoms the total force
between these groups is the sum of each pair between the two groups. Taking a

© Springer-Verlag Berlin Heidelberg 2015
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sample and an AFM tip as an example, not only the atoms in the vicinity of the tip
apex contribute to the van der Waals force, but also the forces of atoms in a larger
volume of the tip and sample have to be summed up, because of the long range of
the force. The total interaction can be obtained by integration. The van der Waals
interaction energy between an elementary volume element of the tip dV A and an
elementary volume element dV B of the sample can be written as

dUvdW = − CρAρB

|rA − rB |6 dV AdV B, (11.2)

with ρA and ρB being the atom densities of tip and sample, respectively. Approxi-
mating the tip by a sphere of radius R and the sample by a semi-infinite solid results
in a van der Waals interaction energy [17] of

UvdW = −HR

6D
, (11.3)

where R is the tip radius, D the tip-sample distance measured from the tip apex, and
H is the Hamaker constant. The Hamaker constant is a material property representing
the strength of the van der Waals interaction. It is defined as H = π2CρAρB , with C
being the coefficient in the atom-atom pair potential in (11.1). Typical values for the
Hamaker constant are in the range of several eV. The van der Waals force between
the tip and sample results as

FvdW = − HR

6D2 . (11.4)

For tip-sample distances larger than 1 nm the van der Waals force is the largest force.
Apart from the van der Waals force, short-range forces arise from the overlap of the
electron wave functions of the outermost shell (chemical bond). These short-range
forces have a range of less than a nanometer and can be attractive or repulsive. If
the overlap of the electron wave functions of the outer shell reduces the total energy,
these chemical bond forces are attractive. We shall not elaborate on the nature of
chemical bonds further here, as this topic is treated in detail in textbooks on chemistry
and physics.

If we consider a metal tip and a metal surface, an attractive interaction (some
kind of metallic bonding) can be expected if tip and sample approach closely. One
effect which does not actually occur is that the nuclei repel each other, as they
are well shielded by the inner electron shells. When the tip and the sample atoms
approach each other at distances closer than those in a chemical bond, the repulsion
between the inner electron shells becomes important. The repulsive interaction due
to the overlap of inner closed shell orbitals is not just the electrostatic repulsion of
the electrons of the closed shells. There is also a quantum mechanical component
called Pauli repulsion. In a simple form, the Pauli exclusion principle states that
no two electrons can occupy the same state. In the overlapping region between the
atoms the states of each atom are not only occupied by “their own electrons” but also
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partially by electrons of the other atom. Since the low-lying states are all filled (closed
shell) these additional electrons from the other atom have to deviate to higher-lying
states, leading effectively to a repulsive interaction if the electron wave functions of
two neutral atoms with closed shells intrude into each other. The Pauli repulsion is
introduced here in simple terms but in a more complete treatment the general form
of the Pauli exclusion principle has to be applied. The multi electron wave function
must be anti-symmetric with the exchange of two electrons.

All these short-range interactions are included in a quantum mechanical treat-
ment by the Schrödinger equation. However, the (exact) solution of the Schrödinger
equation is very difficult except for very simple cases. Therefore, model potentials
are often used for the qualitative discussion of tip-sample interactions.

A frequently used model potential is the Lennard-Jones potential. From now on
we will use this model potential to describe tip-sample interactions. This potential
describes the interaction between two neutral atoms and consists of a term describing
the attractive part of the interaction (van der Waals interaction) and a part describing
the repulsive interactions, assumed to be proportional to 1/r12, as

ULJ(r) = 4U0

[(
Ra

r

)12

−
(

Ra

r

)6
]

, (11.5)

where U0 is the depth of the potential well, r is the distance between the atoms,
and Ra is the distance at which ULJ(r) is zero. In Fig. 11.1a the Lennard-Jones
potential is shown as a red line, as well as the two contributions, the attractive −1/r6

contribution (green) and the repulsive 1/r12 contribution (blue). While the Lennard-
Jones potential is intended to model the interaction between neutral atoms, it also
captures the basic features of the tip-sample interaction: attractive interaction for
large distances, a potential minimum, and a strong repulsive interaction at short
distances. The Lennard-Jones potential and the corresponding force F = −∂U

∂r as
well as the force gradient (which will be important in the dynamic mode of AFM) are
shown in Fig. 11.1. The shape of the curves is roughly similar, but shifted to the right,
as the zero of the potential gradient (force) is at the minimum of the potential, and
the zero of the force gradient is at the minimum of the force. The boundary between
the attractive regime (negative force) and the repulsive regime (positive force) is
indicated as a dashed line in Fig. 11.1 and occurs where the force changes its sign,
or correspondingly at the minimum of the potential.

If the tip and sample come into elastic contact, not only the corresponding wave
functions intrude into each other (as considered using the Lennard-Jones potential),
but the positions of the atoms change due to the elasticity of the tip and sample
materials. This effect is described by the Hertzian theory of the elastic contact of two
bodies. If the elastic modulus of the sample material is much smaller than the elastic
modulus of the tip material, this results in a less steep repulsive distance dependence
than the Lennard-Jones potential. This is the case if, for instance, soft materials like
polymers or organic materials are imaged by a hard silicon tip [17]. Throughout this
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Fig. 11.1 a The
Lennard-Jones potential will
be used in the following as a
model potential for a
tip-sample interaction. The
green and the blue lines
show the attractive and the
repulsive parts of the
potential, respectively. The
corresponding force is shown
in (b) and the (negative)
force gradient in (c). The
border between attractive
and repulsive forces
(interactions) is indicated by
the vertical dashed line
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text we will however use the Lennard-Jones potential as a model potential for the
tip-sample interaction.

A further kind of tip-sample interaction is the electrostatic interaction, which is
quite long-range. It appears if there are static electric charges trapped on the tip or
sample, or if the tip and sample are conductive and are at different potentials. When
we consider the tip-sample system as a capacitor with distance dependent capacitance
C(z), the energy change of a capacitor induced by a voltage difference of �V is given
by Eel(z,�V ) = 1/2 C(z)�V 2. The electrostatic force is then given by

Fel(z,�V ) = −∂Eel(z)

∂z
= −1

2

∂C(z)

∂z
�V 2. (11.6)
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Using this equation, we will evaluate the approximate size of the electrostatic
tip-sample force. If we model the capacity between tip and sample by a plate capacitor
(plate area A) with capacitance

Cplate(z) = ε0
A

z
, (11.7)

the 1/z tip-sample distance dependence of the capacity results in a force proportional
to 1/z2. If the tip is modeled more realistically by a sphere on a cone [18], and
the sample by a semi-infinite solid, the electrostatic force between tip and sample
results as

Fel ≈ −πε0
R

z
�V 2. (11.8)

For a tip radius R = 50 nm, a tip-sample distance of z = 1 nm, and a voltage of
V = 1 V a force of about Fel ≈ 1 nN results. This value is similar to short-range
forces occurring between individual atoms. The force can be even larger, since due
to the long-range of the electrostatic force also the interactions between the sample
and more distant parts of the tip (or cantilever) than the final sphere of radius R might
be important.

While the electrostatic force can have considerable values, it vanishes according
to (11.6) if �V = 0. The potential difference �V is determined by two aspects,
the bias voltage applied between tip and sample Vbias as well as the difference of
the work functions between tip and sample (local contact potential difference) as
�V = Vbias−�Φ/e, as we have seen in Chap. 9. Due to the work function difference,
zero bias voltage does not correspond to a vanishing electrostatic force. The force
as a function of the applied bias voltage is a (negative) parabola. Measuring the
force as a function of the applied bias voltage, can be used in order to determine
the work function between tip and sample as the voltage at which the maximum of the
parabola is reached. As long-range electrostatic forces are undesirable in atomic force
microscopy the bias voltage is chosen for which �V and therefore the electrostatic
force vanishes.

11.2 Snap-to-Contact

For a soft cantilever, atomic force microscopy is accompanied by so-called “snap-
to-contact”. To introduce this effect let us discuss an example. In the case of a magnet
attached to a spring, the magnet will have a stable position in the gravitational field
of the earth. If you bring the magnet close to an iron containing plate, the attractive
magnetic force will stretch the spring further. The system goes to a new equilibrium
position; an equilibrium position can be verified by exciting small oscillations of the
magnet around its equilibrium position. However, if the magnet is brought too close
to the iron plate, the magnet will snap onto the metal plate. The spring can no longer

http://dx.doi.org/10.1007/978-3-662-45240-0_9
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Fig. 11.2 Graphic
representation of the two
potentials acting on the
cantilever: the tip-sample
potential modeled by a
Lennard-Jones potential and
the parabolic potential
arising due to the cantilever
spring constant
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keep the magnet in a stable position. This snap-to-contact effect in which the system
changes its state instantaneously is also observed in AFM. Control over the position
of the tip is lost so that certain tip-sample positions cannot be realized.

Now that you have some idea of what snap-to-contact means, we will now analyze
the stability of a (cantilever) spring system if an outer (tip-sample potential) potential
is added. The total potential energy of the cantilever system consists of two parts, as
shown in Fig. 11.2: (a) The potential between tip and sample Uts, which we model
here as a Lennard-Jones potential (with the parameters U0 and za corresponding to
the depth of the potential and the distance for which the potential is zero, respec-
tively), and (b) the parabolic potential Ucant arising due to the spring constant of the
cantilever.1

The total potential energy of the cantilever-tip-sample system can be written as

Utot(z) = Uts(z) + Ucant(z) = 4U0

[(
za

z

)12

−
(

za

z

)6
]

+ 1

2
k (z − z0)

2 . (11.9)

The variable z is the distance between the origin of the Lennard-Jones (tip-sample)
potential and of the tip. The parameter z0 is the distance from the sample to the
equilibrium position of the cantilever (tip) without any influence from the tip-sample
potential (tip-sample potential switched off). The distance z0 can be varied via the
piezo element controlling the tip-sample distance. The actual tip-sample distance
(including the contribution due to the bending of the cantilever) is z. The bending of
the cantilever due to the tip-sample interaction force is z − z0.

Since the interactions are modeled by potentials, they are considered as conserv-
ative interactions, i.e. without dissipative interactions. Generally the system “tries”
to minimize the total potential energy by adapting the tip-sample distance z, which
corresponds to the lowest Utot. However, the lowest potential (global minimum) may
not be reached due to a barrier present between the nearest local minimum and the
global minimum of the total potential of the system.

1 We use here the coordinate z for the distance between the tip and sample instead of r previously
used for the Lennard-Jones potential between two atoms.
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Fig. 11.3 Graphic
representation of the total
potential (tip-sample plus
cantilever spring potential
according to (11.9)) as a
function of the tip-sample
distance z. The potential is
shown for different values of
z0, decreasing from (a) to
(d), as the tip approaches the
surface. The parameter z0 is
the equilibrium position of
the cantilever (tip) without
any influence from the
tip-sample potential. For
large distances of the tip
from the surface, the tip is in
a stable potential minimum
close to z0 as shown in (a)
and (b). As the tip
approaches the sample the
potential minimum close to
z0 converts to a saddle point
(c). Below a critical distance
between tip and sample the
tip snaps to a new minimum
close to the sample,
dominated by the tip-sample
interaction (d)
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Snap-to-contact

A graphic representation of the total potential of the cantilever (sum of the
tip-sample potential and spring potential) is given in Fig. 11.3 for different values of
the parameter z0. If the cantilever tip is far from the surface (corresponding to large
values of z0), the spring potential provides a stable potential minimum at z ≈ z0
(Fig. 11.3a, b). In fact, the minimum is at slightly smaller z values than z0 due to
the non-zero attractive interaction potential between tip and sample. If the cantilever
comes closer to the surface, the potential minimum close to z0 vanishes (converts to a
saddle point) due to the increased interaction strength of the tip-sample potential for
smaller tip-sample distances (Fig. 11.3c). Correspondingly, the cantilever tip will find
a new stable minimum not close to z0 but closer to the sample surface (Fig. 11.3d).
This abrupt jump of the cantilever equilibrium position to a position much closer to
the surface is called snap-to-contact.
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In the contact mode of AFM, the measurements are performed with the tip snapped
into contact, i.e. in a regime in which the repulsive tip-sample interaction prevents
any further approach toward the surface. In dynamic AFM measurements (with an
oscillating cantilever) snap-to-contact would stop the oscillation due to the very
narrow potential minimum close to the surface. Thus in the dynamic mode the snap-
to-contact has to be prevented and in the following we will analyze the conditions
under which the snap-to-contact can be prevented.

We will determine at which tip-sample distance(s) z the total potential Utot(z) has
minima (for a given value of the parameter z0). Specifically it is important to know
under which conditions a minimum vanishes.2 A necessary condition for a minimum
of Utot(z) is that the first derivative of the potential with respect to z has to be zero
(∂Utot

∂z = 0), which means that

∂Uts

∂z
+ k(z − z0) = 0. (11.10)

Since −∂U
∂z = F , the above condition is actually a condition of force balance

Fts(z) + Fcant(z, z0) = 0. (11.11)

This balance of forces is graphically represented in Fig. 11.4, with the force due to
the cantilever bending Fcant represented by straight blue lines (Hooke’s law: Fcant =
−k(z − z0)) for different positions of the (free) cantilever zero point z0. The slope of
the cantilever force lines corresponds to the spring constant k. In this graph, a force
equilibrium occurs if the red line corresponding to the Lennard-Jones force crosses
one of the straight (blue) lines representing the cantilever spring force. It can be seen
from Fig. 11.4 that for each position of z0 one (or more) distances z can be found for
which the force balance (11.11) holds.

The force equilibrium (the first derivative of the potential vanishes) identifies only
the critical points (minima, maxima, and saddle points). The second (sufficient) con-
dition for stability of the cantilever (potential minimum) is that the second derivative

of the total potential with respect to z has to be larger than zero (∂2Utot
∂z2 > 0, positive

curvature). This second condition can be written as

∂2Uts

∂z2 + k > 0. (11.12)

Since Fts = −∂Uts
∂z , this condition can be expressed in terms of the force gradient as

k >
∂Fts

∂z
. (11.13)

2 In our analysis we treat the spring constant k and the parameters of the Lennard-Jones potential
(U0 and za) as constants.



11.2 Snap-to-Contact 153

1 2 3 4 5

0

Fo
rc

e 
(a

.u
.)

z/za

Fts

-Fcant

b

ge

f

d

c a
A

B

C

D

snap-to-contact

snap-out-of-contact

z0z0z0
C B Az0

D

Fig. 11.4 Comparison of the tip-sample force (approximated by a Lennard-Jones potential) to the
negative cantilever spring force (straight lines for different z0, i.e. for different externally set tip-
sample distances). If the two forces are the same (point(s) of intersection), a minimum, maximum
or saddle point is present in the potential curve (compare Fig. 11.3). The cantilever spring constant
k corresponds to the slope of the straight lines. If when the tip and sample approach each other,
the gradient of the tip-sample force exceeds k, a transition from stability (potential minimum)
to instability occurs (point c). The tip jumps from (point c) to the stable minimum at point d
(snap-to-contact). Correspondingly, snap-out-of-contact occurs at point f where the slope of the
Lennard-Jones potential becomes larger than the slope k of the cantilever spring force

If the tip and sample are still far from each other, the cantilever position z is at the
minimum of the potential close to z0 (Fig. 11.3) and the condition (11.13) is fulfilled,
since the force gradient is very small for large z. If the tip and sample approach each
other, this condition of stability holds until the force gradient becomes larger than
the spring constant (which is the gradient of the cantilever force k = −∂Fcant

∂z ). If
(11.13) is no longer fulfilled the spring system becomes instable and snaps to contact
(Fig. 11.3c). In the graphic representation in Fig. 11.4 this stability condition holds,
if the slope of the tip-sample force Fts (red curve in Fig. 11.4) is smaller than the
slope (gradient) of the cantilever force (straight blue lines in Fig. 11.4).

After considering the equations governing snap-to-contact, we will now follow
the snap-to-contact effect step by step using Figs. 11.3 and 11.4. Approaching the tip
from large values of z0 towards smaller ones, the tip-sample force can be neglected
close to the point of equilibrium, which is very close to z0 (point a in Figs. 11.3a and
11.4). When the cantilever approaches the surface (line B in Fig. 11.4), the cantilever
spring force compensates the tip-sample force at the three intersection points b, g,

and e in Fig. 11.4. The points b and e correspond to the two minima indicated in
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Fig. 11.3b while g corresponds to the potential maximum in between. Since the tip
started in the right potential minimum it will stay there, even if the minimum close
to the surface becomes lower, as there is a potential barrier in between. However,
if the tip moves further towards the surface, minimum b and maximum g approach
each other and eventually form the saddle point c (line C in Fig. 11.4, compare also
Fig. 11.3c). Now the position of the cantilever becomes instable and the cantilever
moves to the other minimum d closer to the surface. This is the snap-to-contact.
A further shift of the zero position of the tip z0 towards the surface will change
the position of the minimum only slightly due to the large slope of the tip-sample
potential. The intersection with line D occurs almost at the same z-position as the
intersection with line C in Fig. 11.4.

When the tip is subsequently retracted from the sample, it remains in the poten-
tial minimum close to the surface even when the other potential minimum is
re-established (point b on line B and Fig. 11.3b). Finally, minimum e and maximum
g develop into a saddle point f and the tip snaps out of contact into the minimum
at point a (line A in Fig. 11.4, compare also Fig. 11.3a). This instantaneous jump is
called snap-out-of-contact.

Since the snap-to-contact effect is undesirable in dynamic atomic force
microscopy, we will now discuss the conditions under which it can be prevented.
One strategy is to avoid the snap-to-contact effect by using cantilevers with a large
spring constant. If k is larger than the maximal value of the gradient (slope) of the
tip-sample force, (11.13) is always fulfilled, i.e. for any value of z0. This corresponds
in Fig. 11.4 to the orange line which has a larger slope than the maximum of the slope
of the tip-sample force and thus snap-to-contact is avoided.

Apart from using cantilevers with a high force constant there is another exper-
imental condition under which snap-to-contact can be avoided. This condition can
be realized if the cantilever is oscillated around its equilibrium position, i.e. in the
dynamic mode of AFM operation. First, the equilibrium tip-sample distance z0 should
be large, which corresponds for instance to the green curve in Fig. 11.4. As a second
condition, the oscillation amplitude should be large in order to reach the region very
close to the sample (where the tip-sample interaction is different from zero) at least at
the lower turnaround point of the oscillation. The red and the green lines in Fig. 11.4
will never cross,3 as is the case for the blue lines. Due to the large amplitude for tip
positions close to the surface the cantilever force is always stronger than the attrac-
tive tip-sample force and thus snap-to-contact is prevented. Thus the conditions of a
large oscillation amplitude and a large z0 prevent snap-to-contact and maintain the
condition of stability, also for the case of small cantilever force constants k.

3 Apart from a point very close to z0.



11.3 Summary 155

11.3 Summary

• The long-range attractive van der Waals force and the short-range forces, such
as chemical bonding forces and the Pauli repulsion, contribute to the tip-sample
interaction.

• In order to represent the different forces in a simple analytic form the Lennard-
Jones potential is used as a model potential comprising an attractive part ∝ −1/r6

and a repulsive part ∝ 1/r12.
• The electrostatic interaction between tip and sample can be suppressed by using

an appropriate tip-sample bias voltage.
• If the cantilever tip is brought towards the sample an instability can occur if the

force gradient of the tip-sample interaction becomes larger than the spring constant
of the cantilever ∂Fts

∂z > k. In this case snap-to-contact occurs and the tip jumps
toward the surface.

• Snap-to-contact can be prevented by (a) stiff cantilevers or (b) in the dynamic
mode by large oscillation amplitudes keeping the cantilever force larger than the
tip-sample force.



Chapter 12
Technical Aspects of Atomic Force
Microscopy (AFM)

The design of AFM instruments is in most aspects similar to that used in STM, as
discussed in Chap. 4. We will mention here the aspects which are different from
the STM. We start with basic requirements for force sensors and introduce a fab-
rication process for cantilevers. Subsequently, the most common detection method
for measuring the cantilever deflection, the beam deflection method, is discussed in
detail. Other detection methods are presented only briefly. At the end of this chapter
calibration measurements for AFM are described. First the sensitivity factor has to
be determined. This gives the conversion from the measured sensor voltage (at the
output of the deflection measurement electronics) to the actual deflection of the can-
tilever tip in nanometers. Subsequently, several methods for the determination of the
spring constant of the cantilever are discussed.

12.1 Requirements for Force Sensors

When we discuss the requirements for force sensors, the first question is: How strong
are the forces we would like to measure? The forces between atoms in solids can
be used as a first estimate for the expected tip-sample forces. Typical vibration
frequencies of atoms in a solid are ωvib = 1013 Hz and typical atom masses are of
the order of m = 10−25 kg. Considering the vibrations of the atoms in the model of
a harmonic oscillator the well-known relation

ωvib =
√

k

m
(12.1)

can be applied. Thus the spring constant for the bonds of atoms in a solid results as

k = ω2
vibm ≈ 10 N/m (12.2)

© Springer-Verlag Berlin Heidelberg 2015
B. Voigtländer, Scanning Probe Microscopy,
NanoScience and Technology, DOI 10.1007/978-3-662-45240-0_12

157

http://dx.doi.org/10.1007/978-3-662-45240-0_4


158 12 Technical Aspects of Atomic Force Microscopy (AFM)

With this force constant of 10 N/m and distances between the atoms in the ångström
range (10−10 m) forces between atoms in the nanonewton regime can be expected
following Hooke’s law. Another crude way to estimate the forces on the atomic scale
is to divide typical bond energies of the order of electron volt by distances of the
order of ångströms, resulting in forces between atoms of the order of nanonewtons
as well. This sets a limit for the maximum force which should be exerted by the tip
on the surface atoms. Much larger forces can lead to the breaking of the bonds of
the surface atoms, which leads to undesired damage to the surface structure, which
should be measured nondestructively.

If a cantilever with a spring constant of 10 N/m is used to measure forces in the
nanonewton regime, the bending of the cantilever due to a nN force will be in the
ångström regime, which is still detectable as we will see later. For a given detection
limit of the cantilever deflection measurement �z a desirable high force sensitivity
�F calls, due to Hook’s law, for a small force constant in static AFM as �F = k�z.
Thus for a high force sensitivity, cantilevers with a small force constant should be
used. In summary, a first condition for a cantilever in atomic force microscopy is that
it should have a small spring constant.

A second requirement for the cantilever is that it should have a high resonance
frequency, preferably �10 kHz. This condition results from the need to realize a high
scan speed. Let us assume that we scan a surface with a sinusoidal height profile in
the static AFM mode, resulting in a cantilever oscillation with a frequency of 1 or
10 kHz for a fast scan. Thus, by following the topography, the cantilever is excited
at a frequency of say 10 kHz. When discussing the harmonic oscillator (Chap. 2),
we have seen that the harmonic oscillator follows an external excitation (with gain
one and without a phase shift) only if the resonance frequency of the oscillator is
much larger than the excitation frequency. Thus the cantilever should have a high
resonance frequency, preferably �10 kHz.

While the requirements for the cantilever were obtained for the static mode the
same requirements also apply for the case of the dynamic AFM mode. As we will see
in Chap. 14, the measured signal in the dynamic mode is proportional to ω0/k. Thus
for a large measured signal a high resonance frequency and a small force constant
are required as well.

Another argument for a high resonance frequency of the cantilever arises from the
requirement of immunity to external vibrations for an atomic force microscope. We
have seen in Sect. 3.8 that a high resonance frequency of the microscope construction
is the key to immunity to external vibrations. Since the cantilever is part of the
mechanical construction of the microscope also its resonance frequencies should be
as high as possible, preferably �10 kHz.

Altogether we have two requirements for an AFM cantilever: high resonance
frequency and small spring constant. Considering the basic equation for a harmonic
oscillator

ωcant =
√

k

m
, (12.3)

http://dx.doi.org/10.1007/978-3-662-45240-0_2
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the two requirements are in opposition: A small spring constant k leads to a small
resonance frequency and, vice versa, a high resonance frequency leads to a high spring
constant. However, both requirements can be fulfilled if the mass of the cantilever
is small. We see from (12.3) that for a frequency of ωcant = 100 kHz and a force
constant of k = 10 N/m, a cantilever mass of 1µg results. Therefore, small cantilevers
must be used in order to have simultaneously small spring constants (for high force
sensitivity) and high resonance frequencies of the cantilever (fast scanning and good
stability with respect to vibrations).

12.2 Fabrication of Cantilevers

Cantilevers are produced by semiconductor microfabrication processes using silicon
or silicon nitride as materials. Silicon nitride cantilevers consist of a thin silicon
nitride film deposited by chemical vapor deposition on a silicon wafer. Subsequently,
the silicon is etched away in a certain region in order to expose the cantilever. The
thickness of the film determines the thickness of the finished cantilever, which (for
silicon nitride cantilevers) usually has a triangular shape. The triangular form of
the cantilevers prevents torsional motion due to frictional forces in contact mode
AFM. Silicon nitride cantilevers have a small spring constant and are often used in
contact mode atomic force microscopy. Coating the back side of the cantilevers with
gold or aluminum provides high reflectivity for the optical beam deflection detection
method.

The most frequently used cantilevers are silicon cantilevers, which have some
advantages over the thin-film cantilevers described above:

• The monolithic cantilevers from one material (Si) avoid strain due to thermal
mismatch of the different materials bonded together in thin film cantilevers.

• All parts are made of single crystal material leading to a high internal Q-factor,
which is important in dynamic AFM.

In the process described in the following, all parts of the cantilever are made of
bulk silicon. The key ingredient is anisotropic wet etching, which means that different
crystal directions are etched at different rates using anisotropic etchants like KOH.
The (100) direction is etched much faster than the (111) direction. A simplified sketch
of the fabrication process of a Si cantilever is shown in Fig. 12.1. The starting point
is a Si(100)-oriented wafer on which a structured SiO2 layer is formed as shown
in Fig. 12.1a. This structured SiO2 layer is formed by standard lithography methods
used in semiconductor microelectronics, defining the cantilever shape and the tip
position. A subsequent wet etching step leads to a preferred etching in the (100)
direction in those areas where no SiO2 layer is present, while the SiO2 capped areas
are not etched. Furthermore, at the edges of the SiO2 film Si(111) facets form due to
the anisotropically very slow etching speed in this direction, as shown in Fig. 12.1b.
The formation of the tip is finished when the small oxide pad on top of the tip falls
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Fig. 12.1 Fabrication of a Si
cantilever using alternating
lithographic patterning and
wet chemical etching as
described in the text
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off. Subsequently, the top of the wafer and on the bottom the handle part (cantilever
base) are covered by Si3N4 in order to protect the tip structure (Fig. 12.1c). A further
wet etching step thins the back of the cantilever beam down to the desired thickness
and separates it from the Si wafer (Fig. 12.1d). Tip, cantilever and cantilever base
are finished after removal of the protective silicon nitride film by a wet etching
step (Fig. 12.1e). Electron microscopy images of a finished cantilever of this type are
shown in Fig. 12.2. As the cantilever beam itself is too small to handle, it is connected
to a solid silicon base with dimensions of several millimeters, seen partly in the left
of the images in Fig. 12.2.

At the apex tip, radii down to 10 nm and below can be realized for Si cantilevers.
In order to realize even smaller apex radii, carbon nanotubes can be fixed to the end
of the tips. Another technique to produce sharp microtips on top of Si tips is electron
beam induced deposition. Here a carbon containing gas is injected into an electron
microscope chamber and an electron beam is focused onto the tip. As a result of this
concentrated bombardment with electrons, the gas decomposes at the tip and a sharp
carbon asperity, which can have very high aspect ratio, forms on the tip. A metal
containing carbonyl gas can also be used, which is decomposed by an electron beam.
This can lead to the formation of a sharp metal whisker at the end of the tip.
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Fig. 12.2 Scanning electron microscopy images of a Si cantilever (length 450µm) with a Si tip
integrated at its end. A side view of the cantilever is shown in (a) and a tilted view in (b)

12.3 Beam Deflection Atomic Force Microscopy

Different kinds of atomic force microscopes are characterized by the different tech-
niques used to detect the bending of the cantilever. For most atomic force microscopes
the beam deflection method is used. The basic setup of the beam deflection method
is shown in Fig. 12.3. A laser beam from a laser diode is focused on the end of the
back side of the cantilever where it is reflected into a photodiode.

The bending of the cantilever is detected by a split photodiode, i.e. two photodiodes
which are separated by a small slit. The difference in the optical signals of the two
parts of the split photodiode SA − SB is proportional to the angular deflection of
the laser beam and therefore proportional to the cantilever deflection (bending). The

z
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x

D
A
B

L
Lfoc

d

D0

Fig. 12.3 Schematic of the beam deflection AFM method including the relevant distances necessary
to calculate the sensitivity
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absolute intensity detected by the photodiode can vary due to fluctuations of the laser
intensity and depending on the focusing of the laser beam onto the cantilever. In order
to be independent of the absolute intensity of the signal the normalized intensity is
used (SA − SB)/SA + SB . The beam deflection method requires a mirror-like surface
at the back of the cantilever. Additionally, the cantilever must be large enough to
reflect the light without too much diffraction. This is necessary since the diameter
of the beam on the photodiode should be smaller than the active diameter of the
photodiode. In atomic force microscopy setups with beam deflection detection, it is
usually the sample that is scanned and not the tip, as normally done in STM. This is
done because when scanning the cantilever the laser spot on the back of the cantilever
would (in part) no longer focus on the cantilever.

12.3.1 Sensitivity of the Beam Deflection Method

In the following, the sensitivity for optical beam detection is analyzed, i.e. the relation
between the deflection of the cantilever �z and the output signal of the photodetector
electronics. Primarily the output signal of a photodiode is a current I , which is usually
converted to a (proportional) voltage at the output of the photodiode preamplifier
electronics (transimpedance amplifier).

In the following, we will estimate the signal (current I ) in the photodiode. We
assume a total optical power of the laser diode of S0 = SA + SB and estimate
(following Fig. 12.3) how the reflected beam moves on the photodiode for a certain
deflection of the cantilever �z. Analyzing the mechanics of the bending of beams it
can be shown that the height change �z and the deflection angle θ at the free end of
the beam with length l are related by [1]

θ = 3

2

�z

l
. (12.4)

This angle is a factor 3/2 larger than that obtained for the rotation of a stiff beam.
The laser beam of diameter D0 is focused by a lens on the end of the back side

of the cantilever. The size of this focal point d is considered to be smaller than the
cantilever width.

If we consider ray optics to determine D, the intercept theorem states that the
laser beam diameter at the lens D0, the focal length of the lens focusing the laser
beam L foc, and the length L are related by

D = D0
L

L foc
. (12.5)

Following this, D can be made arbitrarily small using a large focal length.
However, there is a fundamental limit; D cannot be smaller than the diffraction
limit. The reflected beam is actually also a diffracted beam. The spot size of the
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diffracted/reflected laser beam at the diode D is given by diffraction (λ = d sin α ≈
dD/L) as

D ≈ λL

d
, (12.6)

where λ is the wavelength of the laser beam and d the focused beam size on the
cantilever.

In principle, the largest value for D has to be used, either limited by diffraction
or from the ray optics. However, since the diffraction limit is the more fundamental
limit, we will use (12.6) in the following for D.

For the sake of simplicity, we assume that the reflected laser spot on the photodiode
is uniformly irradiated over a square area of dimension D with an irradiation power
per area of Sarea. We also assume that the whole diffracted beam fits in the active
area of the photodiode. Then the total optical laser intensity S0 can be written as
S0 = Sarea D2. If, more realistically, Gaussian beams are considered the numerical
factors in the results change slightly.

We will not go into the details of the operation of the photodiode and merely
assume that the signal current of the photodiode is proportional to the difference of
the light intensities on both parts A and B of the split photodiode. The difference of
the optical signals on both areas of the photodiode SA − SB can be written according
to the inset in Fig. 12.3 and using �x = 2θL as

SA − SB = Sarea2�x D = S0

D2 4θL D. (12.7)

If we insert now θ and D according to (12.4) and (12.6), the difference of the
optical intensities at the photodiode results in

SA − SB = 6S0
�z

l

d

λ
. (12.8)

The electric current I in the photodiode is proportional to the optical signal SA−SB as
I = R(SA − SB), with R being the sensitivity (response) of the photodiode: output
current divided by input optical power in ampere per watt. With this, the output
current at the photodiode output as a function of deflection �z can be written as

I = 6RS0d

λl
�z. (12.9)

The ratio of �z and I is also called the detection sensitivity and is independent of
the distance between the cantilever and the photodiode. An additional factor arises if
the voltage output of the preamplifier converting the photodiode current to a voltage
is considered.
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12.3.2 Detection Limit of the Beam Deflection Method

Up to now we have analyzed the magnitude of the photocurrent as a function of the
external conditions such as laser power, wavelength, and the geometrical parameters
of the setup. In the following, the detection limit for the optical beam detection,
i.e. the minimum detectable deflection �z of the cantilever, will be analyzed. The
fundamental source of noise in the beam deflection scheme is shot noise, which
arises due to the discrete arrival of the photons at the photodiode. Correspondingly,
the noise of the electric current in the photodiode is induced by discrete number
of electrons, each generated by a photon with a probability given by the quantum
efficiency (generated electrons per photon at the respective wavelength). Here we use
the sensitivity of the photodiode R = I/(SA − SB) defined above as an equivalent
quantity.

In the following, we estimate the fundamental limit in the noise of the photocurrent
imposed by the discrete number of electrons (shot noise). An expression of this shot
noise can be derived if one considers an electrical current occurring due to a discrete
number of charges, N , flowing per time of measurement, �t . If we allow for a long
measurement time (averaging), say a second or so, the current will be measured with
low noise, but this also means that for instance the AFM feedback can only run at this
slow speed. Usually the speed of the measurement is expressed by the bandwidth,
which is roughly the maximum frequency at which a signal can be detected properly,
i.e. without too much loss of signal. If the duration of a single measurement of the
current is one second, the bandwidth is one hertz. If the measurement bandwidth is
defined as B = 1/�t , the measured current can be written as

I = eN
1

�t
= eBN. (12.10)

If the current corresponds to N charges flowing by in the time �t , the number of
these charges will fluctuate on average by

√
N , leading to a current fluctuation of

�Ishot = eB
√

N = eB

√
I

eB
= √

eBI. (12.11)

In our simplified explanation, a numerical factor of
√

2 is missing. In a statistically
more rigorous derivation the following equation for the shot noise results

�Ishot = √
2eIB, (12.12)

with I being the average signal current.
Identifying the photocurrent estimated above in (12.9) as signal S and the shot

noise from (12.12) as the corresponding noise N , the signal-to-noise ratio is given by

S

N
= I

�Ishot
= 6d

lλ
S0 R�z

1√
2eS0RB

. (12.13)
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The smallest detectable cantilever displacement results as

�z = lλ

6d

S

N

√
2eB

S0 R
, (12.14)

Now we discuss the dependence of the smallest detectable cantilever displacement on
the different quantities involved. A laser beam with higher intensity S0 will improve
the detection sensitivity towards smaller �z, however this will also pump more
energy into the system which can lead to thermal drift and is especially undesirable in
low temperature applications. With a larger measurement bandwidth B, i.e. a shorter
averaging time for the measurement, the smallest measurable deflection �z becomes
larger. S/N is the signal-to-noise ratio at which a certain feature (for instance an
atomic protrusion) can be just identified. If a signal strength of one, two, or three times
the noise signal is required to distinguish a signal feature from noise, the smallest
detectable height of that feature �z will increase by one, two, or three times. In this
sense, the smallest detectable cantilever displacement is proportional to the signal-
to-noise ratio required in order to resolve a feature. With a larger width d of the
reflected spot on the back of the cantilever, the diffraction becomes less pronounced
and therefore the sensitivity increases. However, the size of the deflected beam is
limited by the cantilever width. With a smaller wavelength of the laser beam, the
width of the diffracted beam becomes narrower and the sensitivity increases.

For a measurement bandwidth of 1 kHz, using a red light of λ = 0.7µm with
power S0 = 2 mW, R = 0.4 mA/mW and l/d ≈ 10, at a signal-to-noise ratio
S/N = 1, the detection limit �z of about 0.2 pm results. This shows that the detection
limit is quite small. The simple beam deflection technique has a very high detection
sensitivity.

In Chap. 18 we will also discuss other sources of noise in the measurement, such
as the amplitude of the cantilever due to thermal excitation.

12.4 Other Detection Methods

Besides the beam deflection method discussed above, also several other methods can
be used to detect the deflection of the AFM cantilever. The general requirements for
AFM detection methods are as follows:

• High sensitivity of the deflection measurement in the sub-ångström regime
• The measurement technique should not influence the deflection itself and should

not disturb the system, for instance by heating
• The technique should be easy to operate, i.e. with a minimal amount of adjusting

In Fig. 12.4 different methods used to measure the cantilever deflection are com-
pared. The most widely used technique is the beam deflection method discussed
in detail in the previous section. An advantage of this method is that it is easy to

http://dx.doi.org/10.1007/978-3-662-45240-0_18
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Fig. 12.4 Different kinds of deflection sensors in AFM

implement technically. A disadvantage is the need for the optical adjustment of the
focused laser spot onto the backside of the cantilever and of the deflected beam onto
the split photodiode.

Another optical detection scheme is interferometry. Here the backside of the
cantilever is used as a mirror of an optical laser interferometer. While this technique
has high sensitivity it is also the experimentally most complicated. Reasonably simple
setups were only implemented using fiber interferometers. One advantage of this
technique is the easy absolute calibration of the cantilever motion by the wavelength
of the light.

The piezoelectric detection method operates completely electrically and require
minimal experimental effort for detection. Piezoresistive cantilevers are commer-
cially available. They are realized by producing a piezoresistive layer on a cantilever.
The resistance of this layer changes when stress is applied onto the cantilever. The
basic working principle of a piezoresistive sensor is as follows. When the cantilever is
bent by a force acting on the tip, a mechanical stress occurs in the cantilever volume.
When a resistor formed by a stripe of piezoresistive layer on the cantilever is one
of the resistors in a Wheatstone bridge, the resistance of the layer on the cantilever
is measured which is proportional to the stress, which is in turn proportional to the
deflection of the cantilever. The optimal conditions for maximal device sensitivity
are obtained when the Wheatstone bridge is located directly on the support wafer
of the sensor. Although the signal-to-noise ratio is slightly worse than in the optical
detection schemes, this is still an attractive detection scheme due to the ease of use.

Piezoelectric cantilevers made of quartz have recently come into use and have the
specific advantage that they can be used as sensor and actuator simultaneously. They
are used in dynamic AFM measurements where the cantilever oscillates close to the
resonance frequency. The piezoelectric cantilever has two electrodes. One electrode
can be used to excite the cantilever via the converse piezoelectric effect. The actual
mechanic oscillation amplitude of the quartz sensor induces via the piezoelectric
effect a voltage which is detected on the other electrode. This voltage is proportional
to the deflection of the tip which is attached to the quartz sensor. We will discuss
this detection scheme using quartz tuning forks and needle sensors in more detail
in Chap. 19.

http://dx.doi.org/10.1007/978-3-662-45240-0_19
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12.5 Calibration of AFM Measurements

While the relation between the cantilever deflection �z and the tip-sample force
is easily given by Hooke’ law1 as F = k�z, there are still two calibration steps
to be done. First, the signal actually measured is not the deflection �z itself, but
the sensor voltage �Vsensor, which is as a very good approximation proportional
to the deflection. The constant of proportionality is called sensitivity Ssensor with
Ssensor = �z/�Vsensor. Furthermore Hooke’s law contains the spring constant k,
which has to be determined in a second step. Both of these calibration steps are
described in the following sections.

The above-mentioned calibration steps lead in static AFM to a calibration of
the force which is important in static AFM. However, these calibration steps are
also important in dynamic AFM. The spring constant of the cantilever sensor is
a fundamental quantity in the dynamic mode and the sensitivity of the sensor is
needed in order to determine the oscillation amplitude in a unit of length, not just as
sensor voltage.

12.5.1 Experimental Determination of the Sensitivity
Factor in AFM

The output of the detection system in atomic force microscopy is usually a voltage
(sensor voltage). In the case of optical beam deflection, it is initially a current signal
from the photodiodes, which is converted to a voltage by a preamplifier. Also for other
detection methods, the detection system delivers a sensor voltage signal �Vsensor,
which is proportional to the cantilever deflection �z. Calibration of the sensitivity
means finding this proportionality factor Ssensor = �z/�Vsensor. For the case of
the beam deflection method, we found the approximate analytical expression for
the detection sensitivity (12.9). However, due to the multitude of (partly unknown)
parameters involved and due to the approximations made, the detection sensitivity
is usually determined experimentally.

For this purpose, sensor voltage versus position curves are measured, where the
sensor voltage is acquired as a function of the varying sample z-position. By apply-
ing a voltage to the z-piezo element, the sample moves up and down. The z-position
corresponding to the voltage at the z-piezo element is obtained by multiplying this
voltage by the corresponding piezo constant. Such a sensor voltage versus position
curve is shown schematically in Fig. 12.5 and can be roughly divided into two regions.
If the tip-sample distance is large (out of contact), a negligible force acts between
the tip and sample and the measured sensor voltage is independent of the sample

1 If the cantilever is tilted with respect to the surface by an angle α, the relation between the force
perpendicular to the surface and the deflection perpendicular to the surface is modified [19] to
F = k�z/ cos2 α. Since α is usually small (in the range between 10◦ and 15◦), this correction is
small and will be neglected it in the following.
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Fig. 12.5 Schematic of a
typical sensor voltage versus
sample z-position curve used
to determine the sensitivity
in AFM. The inverse slope
measured in the contact
regime gives the sensitivity
as Ssensor = �z/�Vsensor
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z-position. Here the sensor voltage is set to zero. If the tip comes into contact with a
hard sample, the sample bends the cantilever upwards. This upward cantilever deflec-
tion means that the corresponding sensor voltage increases linearly with the sample
position.2 From the corresponding (inverse) slope, the detection sensitivity can be
obtained as Ssensor = �z/�Vsensor in nm/V. The calibration should be performed
on a hard sample with negligible elasticity, e.g. a silicon wafer. If one is concerned
about the integrity of the tip, this calibration procedure should be done after the
actual measurements have been completed. In Sect. 12.5.5 we will introduce another
method for sensor calibration in which no contact between tip and sample is made
in order to obtain the sensitivity. The method of sensitivity determination outlined
above applies to cantilever-type force sensors. A procedure for the determination of
the sensitivity for the much stiffer quartz sensors is outlined in Chap. 19.

12.5.2 Calculation of the Spring Constant
from the Geometrical Data of the Cantilever

The easiest way is to take the spring constant from the specifications of the manufac-
turer of the cantilever. However, often this information is not accurate enough. If the
shape of the sensor is sufficiently well known, the spring constant can be calculated
from the geometry of the cantilever and the elastic constants of the cantilever mater-
ial. The geometric dimensions of a rectangular cantilever are introduced in Fig. 12.6.
The bending of the cantilever is out of the plane of the paper in Fig. 12.6a, while in
Fig. 12.6b a side view is shown. The spring constant of a rectangular cantilever beam
for the bending direction used in AFM is given by [1]

2 Specific effects occurring at the kink between the two regions are discussed in Chap. 13.

http://dx.doi.org/10.1007/978-3-662-45240-0_19
http://dx.doi.org/10.1007/978-3-662-45240-0_13
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Fig. 12.6 Sketch of a
rectangular cantilever
together with the carrier chip
on the left. a Top view, b side
view including the
dimensions of the cantilever
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k = Ewt3

4L3 , (12.15)

with E being Young’s modulus.
While the width and length of a cantilever can be determined using a plan view

optical microscope, the thickness t of the cantilever is usually much smaller and
thus not easily measured. Unfortunately, this parameter enters with the third power
into expression (12.15) for the spring constant. The thickness of the cantilever can
be taken from the manufacturers specifications, or from a measurement performed
with a scanning electron microscope. However, if no information on the thickness t
of the cantilever is available, the more easily measurable resonance frequency of the
cantilever can be used in order to replace t in (12.15). Considering the effective mass
of the rectangular cantilever meff = 0.2357 m from (2.46), the resonance frequency
is written as

ω0 =
√

k

meff
=

√
k

0.2357ρLwt
. (12.16)

Combining (12.16) and (12.15), t can be eliminated and the following expression
for the spring constant is obtained

k = 0.239wL3ω3
0

√
ρ3

E
. (12.17)

This approach can be extended to eliminate quantities which are not precisely known
by other given or measured quantities as done in the next section for Young’s mod-
ulus E . It is useful to replace Young’s modulus because it can vary from cantilever
to cantilever. For silicon nitride as a compound material, Young’s modulus varies
depending on the material composition, i.e. on the parameters used during the chem-
ical vapor deposition process. Also the metallic coating on the back side of the
cantilever, used for better reflection of the laser beam modifies the Young’s modulus
of the cantilever.

http://dx.doi.org/10.1007/978-3-662-45240-0_2
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12.5.3 Sader Method for the Determination of the Spring
Constant of a Cantilever

If the damping of the cantilever in the fluid surrounding the cantilever during its
oscillation is considered, the spring constant for a rectangular cantilever can be
calculated including the (easily measurable) parameters3 ω0 and Q, while excluding t
and E [20]. The spring constant results as

k = 0.19ρ f w
2LQ f Γi (Re)ω2

0, f . (12.18)

Here ρ f is the density of the fluid surrounding the cantilever (usually air), while
ω0, f and Q f are the resonance frequency and the quality factor of the free cantilever
in the presence of the fluid. This equation assumes that the quality factor is much
larger than one. The quantity Γi (Re) is the imaginary part of the hydrodynamic
function, as described and shown in Fig. 1 of [20]. The hydrodynamic function is a
function of the Reynolds number, which is defined as Re = ρ f w

2ω0, f /(4η), with η
being the viscosity of the fluid.4 There is also a relevant smartphone app (title: Sader
method) to calculate the spring constant using the Sader method. The spring constant
of triangular cantilevers is related to the spring constant of rectangular cantilevers as
described in [21, 22].

12.5.4 Thermal Method for the Determination of the Spring
Constant of a Cantilever

Hutter and Bechhoefer proposed another method for the determination of the spring
constant of a cantilever [23]. Unlike the Sader method, it is not named after the
developers, but rather called the “thermal method” for the determination of the spring
constant and relies on the measurement of the thermal noise of the cantilever. The
principle of this method is based on the equipartition theorem. According to this, the
thermal noise of an ideal harmonic oscillator is related to its static spring constant k
by

1

2
k

〈
�z2

th

〉
= 1

2
kB T, (12.19)

with
〈
�z2

th

〉
being the mean square of the thermal amplitude fluctuations of the oscil-

lator. In applying this to the case of a cantilever, the mean-square displacement of

3 The parameters ω0 and Q can be obtained by measuring a resonance curve of the cantilever in
response to an external excitation (frequency sweep over the first resonance). Alternatively, the
thermal noise spectrum can be measured, as described in the next section.
4 The density and viscosity for the most frequently used fluids (air and water) are: ρair = 1.2 kg/m3,
ηair = 1.85×10−5 kg/(m s), and ρwater = 1×103 kg/m3, ηwater = 8.9×10−4 kg/(m s), respectively,
under ambient conditions and at sea level [24].
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the free cantilever has to be measured in order to determine the spring constant. In
principle, this can be done by monitoring the time behavior of the deflection (squared)
for a free cantilever, i.e. far from the surface. How such measurements are performed
in practice will be shown below. An advantage of the thermal method is that it cannot
only be applied to cantilever-type sensors, but also to other types of sensors such as
quartz sensors.

In the following, we will present several (more or less small) corrections which
have to be applied if the determination of the force constant is not only done in
principle but in reality. If you are not interested in the details, you can skip this part.
We consider the most important case of rectangular cantilevers.

For an ideal harmonic oscillator represented in Fig. 12.7a by a mass and a spring,
the expression (12.19) holds. However, a real rectangular cantilever beam (Fig. 12.7b)
also has higher modes of oscillation. The first four modes of a cantilever beam are
shown in Fig. 12.7c. For each higher mode one more node appears in the shape of the
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Fig. 12.7 a Ideal one-dimensional harmonic oscillator represented by a mass m on a spring with
spring constant k. b Sketch of a cantilever-type beam. c The first four modes of a rectangular
cantilever. A (dynamic) spring constant ki can be assigned to each mode
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vibration modes. Each mode can be considered as a harmonic oscillator for which
the equipartition theorem holds, i.e. each mode is thermally excited by kB T . Thus in
analogy to the ideal harmonic oscillator a (dynamic) spring constant ki of the mode
i can be defined by the relation

1

2
ki

〈
�z2

th,i

〉
= 1

2
kB T, (12.20)

with
〈
�z2

th,i

〉
being the mean square deflection arising from the i th mode. This mean

square deflection can be calculated [25] as

〈
�z2

th,i

〉
= kB T

k

12

αi
= kB T

ki
, (12.21)

with the values of αi and correspondingly the (dynamic) spring constant ki for
each mode given in [25]. The spring constant for the first mode has been calculated
as k1 = k/0.971. While each mode is excited with the thermal energy kB T , the
spring constants for the higher modes increase significantly. Thus the thermally
exited deflection for higher modes becomes very small for higher modes. Since the
thermal excitation of the different modes are independent events, the total mean
square thermal amplitude is the sum over the mean square amplitudes of all modes5〈
�z2

th

〉 = ∑∞
0

〈
�z2

th,i

〉
. It has been calculated that

∑∞
0 ki

〈
�z2

th,i

〉
= k

〈
�z2

th

〉
and

(12.19) is also recovered for a rectangular cantilever beam with the “static” spring
constant k for a rectangular beam from (12.15) [25]. From (12.19) and (12.20) it

results that
〈
�z2

th,1

〉
= 0.971

〈
�z2

th

〉
, which means that the first mode already contains

97 % of the total energy in the harmonic oscillator.
In the following, we discuss how the spring constant k can be obtained from

the thermal deflection noise of the first cantilever mode. When measuring the can-
tilever deflection voltage �Vsensor(t) and the corresponding deflection �z(t) =
�Vsensor(t)Ssensor, generally deflection contributions from all modes enter into this
signal. The Fourier transformation of the square of the time-dependent noise signal
is the power noise spectral density N 2

z,th(ω), as introduced in Chap. 5. The noise

spectral density is Nz,th(ω) =
√

N 2
z,th(ω). In the following, we assume that the noise

power spectral density has been measured (by Fourier transformation of the time
signal) using a spectrum analyzer.6 The thermal noise power spectral density as a
function of frequency consists of several resonance type peaks, one for each mode
at the resonance frequency of the mode. We will extract the spring constant from the

5 It might be feared that this infinite sum might lead to an infinite total amplitude. However, the spring
constants of the higher modes turn out to be very large. Thus the corresponding thermal oscillation
amplitudes become very low and it is generally well known that an monotonously increasing series
can have a finite limit.
6 Details of how to extract the noise power spectral density from the time signal without using a
spectrum analyzer are given in [23].

http://dx.doi.org/10.1007/978-3-662-45240-0_5
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strength of the deflection noise of the first mode. In Chap. 18 it will be shown that the
thermal noise spectral density of the first mode of a cantilever can be written (after
the subtraction of a constant background, arising e.g. from electrical noise) as

N 2
z,th,1 = N 2

z,th,excG2(ω) = N 2
z,th,exc(

1 − ω2

ω2
0,1

)2

+ 1
Q2

1

ω2

ω2
0,1

, (12.22)

with N 2
z,th,exc being the white noise arising from the thermal excitation, i.e. frequency-

independent. From a fit of this function to the experimentally measured noise density,
the parameters N 2

z,th,exc, Q1, and ω0,1 can be determined. The integral over G2(ω)

can be calculated and results as πQ1ω0,1/2 (compare Sect. 18.1). Thus using (12.20)
the following additional relation results

〈
�z2

1

〉
= 1

2π

∞∫

0

N 2
z,th,1(ω)dω = 1

2π
N 2

z,th,exc
πQ1ω0,1

2
= kB T

k1
. (12.23)

With this, the spring constant of the first mode results as

k1 = 2π
2kB T

πN 2
z,th,exc Q1ω0,1

. (12.24)

Finally, the spring constant k can be obtained as k = 0.971k1. Importantly, this
thermal method for the determination of the spring constant of the sensor can also
be used for other types of sensors than the cantilever beams, for instance quartz
sensors, which will be discussed in Sect. 19.3. If the cantilever spring constant is
known from other sources, (12.23) can be used to determine the thermal oscillation
amplitude

〈
�z2

1

〉
.

There is another correction which has to be made. The sensitivity Ssensor, which
converts the sensor voltage signal to the sensor deflection, was obtained by bending
the cantilever via a force applied to the end of the cantilever (Fig. 12.5). However,
the thermal method for the spring constant determination is performed with a freely
oscillating cantilever. It has been shown that the shapes of the cantilever deflection
are slightly different in the two cases [23, 25, 26]. Moreover, for the case of the laser
beam deflection method, the relevant quantity is not the deflection itself, but the slope
of the cantilever �z′(x). The slopes for a free cantilever and the end-loaded cantilever
can be calculated. The sensitivity measured for an end-loaded cantilever Ssensor,end
has to be replaced by a corrected sensitivity χ Ssensor,end with the correction factor

χ = Ssensor,free,calc

Ssensor,end,calc
= �z′

free,calc

�z′
end,calc

. (12.25)

http://dx.doi.org/10.1007/978-3-662-45240-0_18
http://dx.doi.org/10.1007/978-3-662-45240-0_18
http://dx.doi.org/10.1007/978-3-662-45240-0_19
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Thus the desired sensitivity factor for the free cantilever needed for the thermal
method is given by

Ssensor,free = Ssensor,end,measured
Ssensor,free,calc

Ssensor,end,calc
= χ Ssensor,end,measured. (12.26)

For the case of an infinitely small laser spot at the end of the cantilever, χ = 1.09
has been calculated. For the cases in which the diameter of the laser spot on the
cantilever is finite, and the laser is focused onto a location different from the end
of the cantilever, the correction factor χ can be found in a graph shown in Fig. 5
of [26].7

12.5.5 Experimental Determination of the Sensitivity
and Spring Constant in AFM Without
Tip-Sample Contact

In the preceding sections, we described two methods for the measurement of the
spring constant (the Sader method and the thermal method), as well as the standard
method for obtaining the sensitivity factor of the cantilever Ssensor. This standard
method using a sensor voltage versus position curve on a hard sample for the deter-
mination of the sensitivity factor has the disadvantage that a hard contact between
tip and sample occurs. This can in principle lead to tip damage or a contamination of
the tip. Therefore, a calibration of the sensitivity factor without tip-sample contact
is desirable.

In the following, we describe how the two non-contact methods for the determi-
nation of the cantilever spring constant k can be combined in order to obtain the
sensitivity factor as well as the spring constant of the cantilever without any contact
between tip and sample [27]. In a first step the Sader method is used, as described
above, in order to determine the spring constant of the cantilever k. In the following,
the thermal method is used in order to obtain the sensitivity factor. The deflection
noise density Nz,th(ω) given in (12.22) is related to the actually measured deflection
voltage noise density NV,th(ω) by Nz,th(ω) = NV,th(ω)Ssensor. The thermal noise
power spectral density N 2

V,th(ω) of the first mode can be measured using a spec-
trum analyzer. This experimentally measured noise density can be fitted (similar to
(12.22)) by the function

N 2
V,th(ω) = N 2

V,th,exc(
1 − ω2

ω2
0

)2

+ 1
Q2

ω2

ω2
0

, (12.27)

7 The sensitivity factor which we term S is called InvOLS in [26].
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in order to determine ω0, Q, and NV,th,exc. The deflection noise density Nz,th(ω)

can be obtained by multiplication by the still unknown sensitivity factor Ssensor.
The procedure outlined for the thermal method can then be followed arriving at
(12.24) with the only difference that Nz,th,exc should be replaced by Ssensor NV,th,exc
(we skip the index 1 for the first mode). Thus we arrive at the following expression
for the sensitivity factor8

Ssensor =
√

2π
2kB T

πN 2
V,th,exck Qω0

. (12.28)

12.6 Summary

• Cantilever force sensors for atomic force microscopy should have a small spring
constant in order to obtain a high force sensitivity and a high resonance frequency
in order to obtain a fast scanning as well as immunity to external vibrations. Both
requirements can be fulfilled by sensors with micrometer dimensions.

• Cantilevers for atomic force microscopy are fabricated from silicon using wet
etching technology from microelectronics.

• In the beam deflection method, a laser beam is reflected from the back of the
cantilever and the angular deflection of the beam is detected by a split photodiode.
This signal is proportional to the deflection of the cantilever �z.

• The optical beam deflection method is a very sensitive method (�z ∼ pm) for
measuring the cantilever deflection.

• Other AFM detection methods are interferometry, piezoresistive detection, and
piezoelectric detection.

• Sensor voltage versus distance curves are used to convert the measured sensor volt-
age �Vsensor to a cantilever deflection �z, i.e. determining the sensor sensitivity
factor Ssensor.

• The cantilever spring constant can be obtained (a) by the material constants and
dimensions, (b) by considering damping in a fluid (Sader method), or (c) via the
deflection amplitude of the thermal noise signal (thermal method).

8 We keep the separate factor 2π in order to facilitate the conversion from the angular frequency ω
to the natural frequency f , as ω = 2π f.



Chapter 13
Static Atomic Force Microscopy

In static atomic force microscopy the force between the tip and sample leads to
a deflection of the cantilever according to Hooke’s law. This cantilever bending is
measured, for instance, by the beam deflection method. The name static comes from
the fact that the cantilever is not excited to oscillate, as in the dynamic modes of
AFM. In the following, we will discuss the static mode, while the dynamic variants
are considered in the subsequent chapters. The atomic force microscope (AFM) is
alternatively known as the scanning force microscope (SFM). However, here we will
use the more common name atomic force microscope. At the end of this chapter, we
discuss how force-distance curves can be used to identify the tip-sample interaction
regime in which subsequent imaging is performed.

13.1 Principles of Static Atomic Force Microscopy

In static atomic force microscopy, the sample is scanned in the xy-direction while
the tip-sample distance is so small that the cantilever sensor can sense the tip-sample
force. In the constant force mode of static atomic force microscopy, a certain setpoint
value of the tip-sample force is selected via a certain deflection of the cantilever �z,
which is in turn realized by a corresponding sensor signal �Vsensor. The sensor signal
is kept close to the setpoint value via a feedback loop as shown already in Fig. 1.7.
When scanning, for example, over a step edge, the tip-sample force changes and thus
the corresponding deflection �z deviates from its setpoint value. The feedback elec-
tronics adjusts the z-signal controlling the tip-sample z-distance in order to restore
the setpoint value of the cantilever deflection �z. For ideal feedback, the deflection
of the cantilever should always stay very close to its setpoint value. Topographic
images are recorded by scanning the tip over the sample surface, while the feed-
back maintains constant cantilever deflection. The z-height contour corresponds to
a contour of constant tip-sample force. For the setpoint value of the force, either a
repulsive force or an attractive force can be selected.

© Springer-Verlag Berlin Heidelberg 2015
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Static atomic force microscopy often operates in the repulsive regime of the force-
distance curve. In this case, static atomic force microscopy is also known as contact
mode atomic force microscopy. The terms static mode and contact mode (repulsive
force regime) are often misleadingly used as synonyms. However, it is also possible to
operate the static atomic force microscopy in the attractive (non-contact) regime. We
will distinguish between the mode of operation: static (non-oscillating cantilever) or
dynamic (oscillating cantilever), on the one hand, and the type of interaction probed:
repulsive (contact) or attractive (non-contact), on the other hand.

In static atomic force microscopy, the z-position of the tip, i.e. the deflection of
the cantilever, is given by a balance of forces. If the tip comes close to the sample,
a force Fts acts on the tip. This force leads to a deflection of the cantilever by �z
relative to the equilibrium of the free cantilever and to a corresponding force Fcant,
as shown in Fig. 13.1. In equilibrium, the total force on the cantilever has to vanish
as

Ftot = 0 = Fts + Fcant, (13.1)

with Fcant = −k�z.
If we take a closer look at the force between tip and sample, Fts, this force

comprises several forces: the long-range attractive van der Waals force and the short-
range repulsive forces. For the force between individual pairs of tip and sample
atoms, we consider the Lennard-Jones potential plotted once more in Fig. 13.2b. The
direction of the force on individual tip atoms resulting from the interaction with the
sample is shown by arrows in Fig. 13.2a. For different atoms of the tip, forces with
different strength and direction act depending on the distance to the sample. Tip
atoms closer to the sample experience a net repulsive force (red in Fig. 13.2), while
the atoms slightly farther from the sample experience only an attractive interaction
(blue in Fig. 13.2). The total tip-sample force is obtained by integration.

Considering that the force between the tip and sample arises due to summation
(integration) over billions of atoms in the tip (and in the sample) it might be feared
that nanometer or even atomic resolution might never be reached. In this regard two
things are helpful: (a) the long-range (attractive) interactions are much weaker than
the short-range repulsive forces and (b) the distance dependence of the long-range
forces is much weaker than that of the short-range forces. Thus the long-range forces
result in a background force which is almost independent of the tip-sample distance,

Fcant= - k z

z

Fts

Fig. 13.1 Force equilibrium in static mode. The tip-sample force Fts and the spring force of the
cantilever compensate to a net vanishing force
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Fig. 13.2 Forces on the tip atoms due to interaction with the sample. For the atoms close to the
surface the net interaction with the sample is repulsive (indicated in red). For larger distances to the
sample, the interaction is attractive (indicated in blue)

if, for instance, the tip-sample distance changes by 1 Å. However, 1 Å change in
tip-sample distance changes the short-range forces significantly, enabling nanometer
or even atomic resolution, as we will see later.

There are cases in which the total interaction between tip and sample can still be
attractive due to the long-range attractive forces, while it is already repulsive for the
atoms at the tip apex. Since the tip-sample forces also act on the sample, the sample
(and tip) can be deformed if these forces become strong. This deformation of tip and
sample in the area of the repulsive interaction can establish a contact area consisting
of several atoms and therefore inhibit true atomic resolution of single defects in the
atomic lattice. This effect in contact atomic force microscopy is called the egg carton
effect, since the atomic corrugations of tip and sample slide along each other like
two egg cartons. Since the repulsive forces increase very strongly with decreasing
tip-sample distance, images of constant repulsive force are often identified with the
topography of the surface.

The non-monotonous distance dependence of the tip-sample force leads to the fact
that for some forces (negative forces in Fig. 13.2b) two tip-sample distances exist for
a certain force. As discussed in Sect. 17.3 in detail, this can lead to instabilities in
feedback behavior if the tip unintentionally switches from one branch to the other
branch with the opposite slope as a function of distance.

13.2 Properties of Static AFM Imaging

If static atomic force microscopy is operated in the contact mode, the tip is in direct
contact with the sample and strong repulsive forces act between tip and sample. To
avoid damaging the probed surface, the cantilever should be soft, i.e. the cantilever
spring constant should be lower than the effective spring constant (force gradient)
of the sample atomic bonds. As discussed in Sect. 11.2, under this condition snap-
to-contact occurs, which is actually desired in the contact mode in order to maintain
tip-sample contact during scanning.

http://dx.doi.org/10.1007/978-3-662-45240-0_17
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The standard application of contact AFM is imaging the surface topography with
a resolution in the nanometer range. Especially the direct determination of the height
of image features is an advantage of AFM measurements. In other microscopy tech-
niques such as optical microscopy or scanning electron microscopy, the lateral feature
size is easily measured, but using these techniques does not give easy access to the
true height of the imaged features.

Atomically “resolved” images using the contact mode AFM technique were
first obtained on layered materials like graphite, boron nitride, mica, molybdenum
selenide and others. These materials have the advantage that clean surfaces can be
prepared under ambient conditions. While a corrugation with a periodicity of the
atomic lattice is observed, defects of atomic size are never observed. This led to the
conclusion that small flakes of the layered material are probably attached at the tip
apex and that an egg carton effect prevents the detection of atomic size defects.

After the first successful applications of contact AFM to layered materials, it was
natural to extend the investigations to non-layered materials. For these cases, the
effect of dragging flakes of the layered materials over the surface does not occur.
Inorganic crystals like NaCl or LiF were prepared in ultrahigh vacuum and imaged
with contact AFM. Typical forces between the sample and the tip during imaging
are set to approximately 10−8 N. The measured step heights range down to single
atomic steps.

The contact zone between tip and sample in contact mode AFM is assumed not
to be a single atom but consisting of many atoms. The tip is usually of a different
material than the sample surface. Therefore, the tip atoms are not in registry with the
sample surface structure and hence a superposition of tip and sample interactions,
leading to an atomic resolution, is not expected. The usual understanding is that the
atoms of the tip lock into the atomic lattice of the sample, so the atomic lattice of the
sample is imaged. However, also on salt crystals like NaCl or LiF no single atomic
defects were observed in contact mode AFM. Due to an egg carton effect between the
sample and the contact area of the tip, it is possible to observe atomic corrugation,
while no atomic scale defects are seen and correspondingly no true atomic resolution
is possible.

Typical problems with contact mode AFM are that contact diameters lie in the
range of 1–10 nm, limiting the lateral resolution. Moreover, the relatively high forces
can lead to a destruction of soft (organic or biological) samples.

13.3 Constant Height Mode in Static AFM

Up to now we have considered the constant force mode of static AFM, the tip-sample
force is controlled to a certain value given by the setpoint for the cantilever deflection.
For the constant height mode we assume for the moment that the sample surface is
aligned to the scanner, i.e. no scanning slope is present (cf. Chap. 7). In this case
an xy-scan can be performed (starting with an initially preset tip-sample distance)
and the change of the cantilever deflection is measured. In this case, no feedback is

http://dx.doi.org/10.1007/978-3-662-45240-0_7
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Contact mode

Lift mode

d

Fig. 13.3 Principle of the lift mode. In a first scan line, the topography is measured (contact mode).
In a second scan line, the topography is retraced with an offset �d (dashed line). The deflection
due to the long-range magnetic interaction is measured relative to this retraced height (solid line)

involved and the scan can be performed fast. The constant height mode is mostly
applied for long-range forces, i.e. electrostatic or magnetic forces.

Since it is difficult in practice to get rid of the sample tilt the actual experimen-
tal procedure is different from the principle described above. We consider here as
an example a magnetic interaction sensed with a ferromagnetic tip, as sketched in
Fig. 13.3. In order to be independent of variations in the topography every scan line
is scanned twice. First the topography is measured using the contact mode, and in
a second scan of the same line the measured topography is followed with an offset
�d relative to the previous scan line as shown in Fig. 13.3 by the dashed line. In this
second line, the long-range magnetic interactions are detected by a corresponding
deflection of the cantilever shown as a solid line in Fig. 13.3. The difference between
the two signals (the dashed and solid line) corresponds to the magnetic signal. This
kind of constant height mode is also called the lift mode.

13.4 Friction Force Microscopy (FFM)

When the tip is moved over the surface in contact mode, friction in the tip-sample
contact will lead to a lateral force on the tip apex. If the scanning direction is sidewise
to the cantilever length, this lateral force causes a torsional bending of the cantilever,
which can be recorded in beam deflection microscopes as shown in Fig. 13.4. While
a two electrode split photodiode was used in order to detect the vertical bending of
the cantilever, quadrant photodiodes are used in order to measure also this torsional
bending of the cantilever. In this way the local variation of friction can be studied
with high resolution and for various values of external parameters like the load force
or the scanning velocity. One great benefit of friction force microscopy (FFM) is that
it is possible to measure whether wear has taken place in the course of the experiment
by subsequent imaging of the relevant area.
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Fig. 13.4 Principle of the
detection of frictional forces
by the beam deflection
method using a quadrant
photodiode

Normal
force

Scan
direction

Frictional
force

13.5 Force-Distance Curves

Force-distance curves are measured by bringing the sample towards the cantilever
tip and measuring the cantilever deflection which is proportional to the tip-sample
force. These force-distance curves contain the following useful information: (a) The
sensitivity of the detection method can be determined as described in Sect. 12.5.
(b) Properties like the sample elasticity or the maximum tip-sample adhesion force
can be accessed. (c) The working point (setpoint for the cantilever deflection signal)
for subsequent AFM imaging can be characterized and chosen properly. For instance,
when imaging is performed in the attractive force regime it can be determined how
far the working point is located from the point of snap-to-contact. (d) A force-
distance curve can be used to determine the tip-sample force-distance dependence,
at least partly.

The aim is to obtain the tip-sample force Fts(d) as a function of the tip-sample
distance d, as indicated in Fig. 13.5. What is actually measured when acquiring a
force-distance curve is the deflection of the cantilever ztip (which is proportional to
the tip-sample force) as function of the z-position of the sample zsample. This has
the disadvantage that the tip-sample distance d is not only given by the intended
z-motion of the sample (induced by a voltage at the z-piezo element) but also by an
additional distance change due to the deflection of the cantilever as shown in Fig. 13.5.
However, d can always be recovered as d = ztip − zsample. With the coordinate
system in Fig. 13.5, the action (approach of the sample) and the reaction (deflection
of the cantilever) are separated into two coordinates. Also experimentally, these two
parameters are measured or set independently: ztip is measured via the cantilever
deflection, while zsample is set via the applied z-piezo voltage. As the zero point for

http://dx.doi.org/10.1007/978-3-662-45240-0_12
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z

0

zsample

d=z -ztip      sample

ztip

Fig. 13.5 Nomenclature for the coordinates used in force-distance curves

ztip and zsample, we choose the equilibrium position of the cantilever tip with the
sample far away.

Figure 13.6a shows a schematic of a ztip(zsample) plot for the model force-distance
curve which is shown in the inset. The blue curve corresponds to the approach of
the sample towards the tip, while the red curve corresponds to the retraction of
the sample. As the sample approaches the tip (increasing zsample from the right to
the left) the cantilever bends slightly towards the sample (negative ztip values) due
to the attractive force between tip and sample. At point c, the force gradient exceeds
the value of the spring constant k (indicated by a dashed line in the inset). This leads
to the previously discussed instability and to snap-to-contact (cf. Sect. 11.2). The
cantilever jumps to point d. The maximal cantilever deflection at point c multiplied
by the spring constant gives the maximum attractive force before snap-to-contact
(usually quite small).

If the sample is moved further towards the tip, the point is reached where attractive
and repulsive tip-sample interactions compensate each other and the tip-sample force
vanishes. At this position, the cantilever is unbent (ztip = 0). If the sample is pushed
further towards the tip, the regime of repulsive tip-sample interaction is entered. In
the repulsive regime the sample bends the cantilever upwards. As the repulsive force
rises very sharply with decreasing tip-sample distance, both tip and sample move
together (�zsample ≈ �ztip and �d ≈ 0) Specifically for a stiff sample with a high
elastic modulus, the ztip(zsample) curve is a straight line with a slope of one, as shown
in the left part of Fig. 13.6a. If the sample is soft, the slope can be (initially) smaller
than one (due to an indentation of the tip into the sample), resulting in information
about the elastic/plastic deformation of the sample (cf. Chap. 16).

If the direction of the sample motion is reversed, the tip motion follows the same
straight line in the reverse direction (red line) for stiff samples. The repulsive tip-
sample force decreases continuously and finally the attractive regime is entered again,
where tip and sample adhere to each other as long as the tip-sample force gradient
is smaller than the cantilever spring constant. If the force gradient becomes larger
than the cantilever spring constant, the cantilever snaps out of contact (point f ).
The tip snaps back to a position where the deflection of the cantilever is close to
zero (point a). Point f corresponds to the position at which the maximum attractive
force (adhesion force) between tip and sample acts. Generally, for elastic samples

http://dx.doi.org/10.1007/978-3-662-45240-0_11
http://dx.doi.org/10.1007/978-3-662-45240-0_16
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Fig. 13.6 a Schematic of a ztip(zsample) plot with the blue curves corresponding to an
approach of the sample toward the tip, while the red curves correspond to a retraction
of the sample. The nomenclature for the variables is the same as in Fig. 13.5. At points
c and f , the tip-sample force gradient becomes equal to the spring constant of the cantilever
and leads to an instability associated with snap-to-contact or snap-out-of-contact, respectively.
b Experimentally measured force-distance curve obtained on a silicon wafer in a lab course at
RWTH Aachen University. The cantilever spring constant was 0.13 N/m (The unusual coordinate
system has negative zsample values going to the right. This is, however, the way it is normally plotted)

the retraction curve and the approach curve are the same in the repulsive regime,
while the retraction curve lies below the approach curve for a plastic deformation of
the sample.

In Fig. 13.6b an experimental force-distance curve is shown which in principle
resembles the behavior discussed above. The measured tip deflection is converted
(via Hooke’s law Fts = −kztip) to a corresponding force, which is shown on the right
axis in Fig. 13.6b. In the experimental ztip(zsample) plot, the jump to contact (from
point c to point d) is small. The corresponding force (the attractive force before
snap into contact) is about 1 nN. The maximal attractive force, which is reached at



13.5 Force-Distance Curves 185

point f just before snap out of contact, can be extracted as 10 nN. Also the width of
the attractive force minimum can be read from the difference in ztip between point
c and d. This shows that several important parameters of the force-distance curve
can be extracted directly from the force-distance curve. In one respect, the measured
force-distance curve does not follow the idealized expectation shown in Fig. 13.6a.
The approach curve (blue) and the retract curve (red) do not coincide for positive
sample distances in Fig. 13.6b. This effect arises due to hysteresis and creep effects
of the piezoelectric actuators. For a quantitative analysis of the force-distance curves,
those effects have to be carefully excluded.

In principle, the measured ztip(zsample) curve or the Fts(zsample) curve (right axis in
Fig. 13.6b) can be translated into the more fundamental force-distance curve Fts(d) =
−kztip, with d = ztip − zsample. However, as can be seen from the inset in Fig. 13.6a,
the force-distance curve between points c and f is inaccessible due to snap in and out
of contact. Unfortunately, this is one of the interesting regions. For larger distances
down to point c the tip-sample force is almost negligible, while for distances closer
than point f , the force rises very steeply. The range in which the force-distance
curve can be measured could be extended by using a cantilever with a larger spring
constant. However, this has the drawback of reduced force sensitivity.

The importance of the force-distance curves for subsequent imaging lies in the
fact that a particular point on the force-distance curve can be identified and that
subsequent imaging of the sample can be performed at a defined position on this
curve. This is important because the imaging in AFM depends critically on the
applied force. For instance in imaging soft (biological) samples it is preferable to
avoid strong repulsive forces between tip and sample as this leads to wear on soft
sample structures. In order to achieve this the force-distance curve can be measured
and the working point for imaging is selected close to point f in Fig. 13.6a, i.e. in
the regime of attractive tip-sample interaction, thus avoiding large repulsive forces.
However, since this condition is close to snap-out-of contact, there is a danger of
leaving the desired imaging conditions by snap-out-of-contact.

The use of force-distance curves in order to determine fundamental force-distance
dependences is limited. Several fundamental forces act simultaneously and sum up
over the tip and sample volume. The measured forces are integrals of several funda-
mental forces over large volumes of tip and sample. Additional problems such as cap-
illary forces, an unknown tip shape, and piezo creep complicate a more quantitative
interpretation of the tip-sample interaction.1 Due to these limitations, force-distance
curves are not used to measure the fundamental forces.

1 The influence of capillary forces can in principle be estimated by comparing ztip(zsample) plots in
air and water. If the cantilever is fully immersed in water, capillary forces can be excluded.
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13.6 Summary

• In static AFM, the tip-sample force is measured via the deflection of the cantilever
�z.

• In the constant force mode of static AFM, a certain force setpoint is kept constant
by feedback during scanning of the surface. The resulting topography corresponds
to a contour at constant tip-sample force.

• In the repulsive interaction regime, the tip-sample contact consists of many atoms
and thus no atomic resolution is expected, but atomic corrugation can be observed.

• The constant height mode is mostly used to image corrugation induced by long-
range interactions such as magnetic or electrostatic forces.

• Frictional forces can be measured via the torsional bending of the cantilever using
a quadrant photodiode.

• Force-distance measurements give access to various parameters of the force-
distance curve. The working point for subsequent AFM imaging can be chosen
using the information from the force-distance curve.



Chapter 14
Amplitude Modulation (AM) Mode
in Dynamic Atomic Force Microscopy

In dynamic atomic force microscopy the cantilever is excited using a piezo actuator
which oscillates the cantilever base. The driving frequency is usually close to the
resonance frequency of the cantilever. Due to the interaction between tip and the
surface, the resonance frequency of the cantilever changes. As shown in this chapter,
an attractive force between tip and sample leads to a lower resonance frequency of the
cantilever, while for repulsive tip-sample forces the resonance frequency increases.1

This change in resonance frequency can be measured directly in the so called fre-
quency modulation mode (FM) of atomic force microscopy, as described in Chap. 17.
In this chapter, we describe the amplitude modulation mode (AM) of AFM. Here the
cantilever is driven at a fixed frequency with a fixed driving amplitude. The change
of the resonance frequency leads to a change of the vibration amplitude and of the
phase between excitation and oscillation, which can be measured.

We consider the AM detection mode in this chapter in the small amplitude limit
in which the tip-sample force is approximated as linear in the range of the oscillation
amplitude. In this case, the AM detection mode can be treated analytically. While in
practice the AM detection mode is rarely used in this limit, the basic concepts can be
explained more easily using this limit. When in the next chapter the small amplitude
limit is lifted, things become somewhat more complicated. However, armed with a
basic understanding obtained from the treatment of the small amplitude limit, the
more complicated case is then easier to comprehend.

14.1 Parameters of Dynamic Atomic Force Microscopy

Compared to STM which has only two parameters, the tunneling current and the
tunneling voltage, there are many more parameters in dynamic AFM.

1 Actually, this is not strictly true: As shown later it is not the sign of the force, but rather the sign
of the force gradient that determines the direction of the resonance frequency shift.

© Springer-Verlag Berlin Heidelberg 2015
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• The resonance frequency of the free cantilever ω0
• The force constant of the cantilever k
• The quality factor of the cantilever Qcant
• The driving amplitude of the oscillation Adrive
• The oscillation amplitude A
• The phase φ between driving and oscillation
• The driving frequency ωdrive
• The frequency shift of the resonance frequency �ω relative to ω0 due to a tip-

sample interaction

The first two parameters are given by the cantilever, while the Q-factor depends on
the cantilever and also on the operating environment (ambient or vacuum). Depending
on the operating mode, further parameters can be set by the operator or measured:

• In AM detection the amplitude A and phase φ of the oscillation are measured,
while ωdrive and Adrive are set.

• In FM detection the shift of the resonance frequency �ω is measured.

Because this multitude of parameters may seem somewhat discouraging, we will
discuss the parameters and the relations among them step by step in the following.

14.2 Principles of Dynamic Atomic Force Microscopy I
(Amplitude Modulation)

As the simplest model for the cantilever under the influence of a tip-sample inter-
action, we consider the driven damped harmonic oscillator as discussed in Sect. 2.3
including the influence of a time-independent external force Fts, which depends on
the tip-sample distance. In this section, we assume that dissipation enters only via
the (air) damping of the cantilever, while the tip-sample interaction is assumed to be
conservative.

We assume the limit of small amplitude, which means that Fts varies only slowly
in the range of the oscillation amplitude A. In this case, Fts will be approximated
as linear in the following. We use this limit here because this idealized scenario can
be solved analytically. For the usual vibration amplitudes (several nanometers) the
small amplitude limit does not hold.

The definition of the coordinates of the cantilever-tip-sample system is given in
Fig. 14.1. For the tip oscillation, we use the coordinate z. For the tip-sample force
Fts(d + z), we use the coordinate d + z (tip-sample distance), with the offset d being
the average tip-sample distance during an oscillation cycle.

Due to the small amplitude assumption, we can expand the force Fts(d+z) around
the equilibrium position of the tip (z = 0, corresponding to a tip-sample distance d) as

Fts(d + z) = Fts(d) + ∂Fts

∂z

∣∣∣∣
z=0

z + · · · . (14.1)

http://dx.doi.org/10.1007/978-3-662-45240-0_2
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Fig. 14.2 a For the case of small amplitudes, the cantilever-tip-sample system can be effectively
described by two springs, one representing the cantilever with force constant k and one representing
the tip-sample interaction with force constant k′. b This system is equivalent to a system with an
effective spring constant of keff = k + k′

In this approximation the force changes linearly with z, like it is the case for a
spring. Hence the influence of the tip-sample force can be described by a spring with
a spring constant k′ equal to the negative force gradient, as

k′ = −∂Fts

∂z

∣∣∣∣
z=0

. (14.2)

The tip-sample interaction can be represented by adding a small spring with spring
constant k′ � k, as shown in Fig. 14.2a. The two spring constants add up2 to an
effective spring constant keff = k + k′. However, this analogy (replacing the tip-
sample interaction by a spring) should not be stretched too far, since real spring
constants of springs are always positive, while a tip-sample interaction can also have

2 Since the two springs attach to the tip from above and below one might think that this should
lead to a subtraction of the spring constants. Here we show that the spring constants indeed add
up. As indicated in Fig. 14.2 the cantilever spring under the influence of a tip-sample force can be
replaced by a cantilever effective mass held by two springs. In static equilibrium, z = 0, the forces
of both springs compensate as Fk + Fk′ = 0. If the cantilever is moved by �z during the oscillation,
Fig. 14.2b shows that the force components relative to the forces in static equilibrium point in the
same direction for both springs and �F = �Fk + �Fk′ = −(k + k′)�z results. Thus the spring
constants k and k′ combine to keff = k + k′.
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a “negative spring constant”. Such a negative spring constant k′ cannot be realized
by a coil spring or a cantilever-shaped spring, but can exist in a more general sense
as a potential of negative curvature.

Before we analyze the harmonic oscillator with the spring constant keff , we con-
sider the static case (i.e. all oscillatory amplitudes in Fig. 14.1 are zero). Without a
sample being present, the tip is at its zero position z = 0 and the cantilever is unbent
(shown in light gray in Fig. 14.1). In this case the static bending �L is zero.3 If the
sample is now brought close to the tip, the tip-sample interaction will change the tip
position. Since we would like to probe the sample at a (tip-sample) distance d, the
initial zero position of the tip, z = 0, is restored by moving the cantilever base in
the opposite direction, shown in dark gray in Fig. 14.1. In static equilibrium with the
cantilever bent, the tip-sample force and the static bending force balance at z = 0 as

Fts (d) = −keff�L , (14.3)

with �L being the static (offset) deflection of the cantilever as indicated in Fig. 14.1.
We will now consider a sinusoidal excitation of the cantilever base at the fre-

quency ωdrive and amplitude Adrive around the position of static equilibrium as
zdrive = Adrive cos (ωdrivet). As a result of this excitation, the tip will oscillate in
the steady-state around its equilibrium position as z = A cos (ωdrivet + φ). This
case corresponds to the driven damped harmonic oscillator discussed in Sect. 2.3 and
using (2.17) the equation of motion can be written as

z̈ +
√

keff

m

1

Qcant
ż + keff

m
(z − zdrive) = 0. (14.4)

The tip-sample force is included by replacing the spring constant k by keff . As the
force Fts (d) cancels out the force due to the static bending of the cantilever −keff�L ,
according to (14.3), these terms have already be removed from the equation of motion.
The equation of motion (14.4) was solved in Sect. 2.3 with the result that a resonance
occurs at ω0 = √

k/m. Since we replaced k by the effective spring constant keff in
order to include the effect of a tip-sample force, the resonance frequency will shift
from ω0 for the case without tip-sample interaction to ω′

0 = √
keff/m. Thus

ω′
0 =

√
keff

m
=

√
k + k′

m
=

√
k

m

(
1 + k′

k

)
= ω0

√
1 + k′

k
. (14.5)

In the following, we assume that
∣∣k′∣∣ � k. For small x the approximation

√
1 + x ≈

1 + 1
2 x holds. Therefore, the new resonance frequency of the cantilever can be

written as

ω′
0 ≈ ω0

(
1 + k′

2k

)
. (14.6)

3 The tip length is set to zero in order to avoid an additional offset length.

http://dx.doi.org/10.1007/978-3-662-45240-0_2
http://dx.doi.org/10.1007/978-3-662-45240-0_2
http://dx.doi.org/10.1007/978-3-662-45240-0_2
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The shift of the resonance frequency results in

�ω = ω′
0 − ω0 = ω0

k′

2k
= −ω0

2k

∂Fts

∂z

∣∣∣∣
z=0

. (14.7)

This result can be easily related to the experimentally observed frequency shift � f as

� f = ω′
0 − ω0

2π
= f0

k′

2k
= − f0

2k

∂Fts

∂z

∣∣∣∣
z=0

. (14.8)

Together with the resonance frequency (maximum of the resonance curve) also the
whole resonance curve shifts by � f . In summary, the frequency shift of the resonance
curve induced by the tip-sample interaction is proportional to the (negative) gradient
of the tip-sample force (F ′

ts(d) = ∂Fts(d + z)/∂z|z=0) if the following conditions
are fulfilled: (a) The tip-sample force can be approximated as linear in the range of
the oscillation amplitude, and (b) the tip-sample force gradient is much smaller than
the spring constant of the cantilever

∣∣k′∣∣ � k (the spring constant of the cantilever k
is always positive).

The small amplitude limit and its interpretation in terms of the effective spring
constant is also summarized in Fig. 14.3. A Lennard-Jones type force is shown
together with the tip oscillation path with amplitude A around the average tip-sample
distance d. The cantilever force Fcant = −kz is shown as a green line. The tip-sample
force is approximated locally around z = 0 as linear �Fts = −k′z = ∂Fts/∂z|z=0 z,
which is indicated by the dashed blue line. The resulting total force is shown as a red
line with a slope of keff = k + k′. Since k′ < 0 and

∣∣k′∣∣ � k, the spring constant of
the cantilever spring constant k is reduced by

∣∣k′∣∣ comparing the green and red lines.

Fig. 14.3 In the small
amplitude limit, the
tip-sample force is
approximated as linear
within the range of the
oscillation proportional to
−k′. In this figure k′ < 0 at
the tip-sample distance d and
the cantilever spring constant
k is always positive. Thus the
total effective force constant
is the cantilever spring
constant k reduced by the
tip-sample force gradient
proportional to k′

)(zF

-k z

-k´z

-k = -(k+k ) zeff z
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Fo
rc

e 
(a

.u
.)
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For a positive tip-sample force gradient ∂Fts/∂z = −k′ > 0 the resonance
frequency will shift to lower values � f < 0, while for a negative force gradient
∂Fts/∂z = −k′ < 0 the resonance frequency will shift to higher values � f > 0.
The frequency shift does not depend on the constant static offset force Fts(d). This
offset force results only in a static deflection of the cantilever, which is compensated
by an offset shift of the cantilever base by �L , according to (14.3).

Often it is stated slightly imprecisely that the frequency shift � f is positive
(towards higher frequencies relative to ω0) for repulsive forces and negative for
attractive forces. We can understand this if we have a closer look at Fig. 14.4, where
the potential, the force, and the (negative) force gradient are shown. Here again
the Lennard-Jones potential is considered as a model for the tip-sample interaction.
The border between the repulsive and attractive regime is located at the zero of the
force (dotted line in Fig. 14.4). Correspondingly, the border between the positive
and negative force gradient is shown by a dashed line. For the largest range of tip-
sample distances, the force and the negative force gradient (green and blue curves
in Fig. 14.4, respectively) have the same sign. Only for a small range of distances
(shaded gray in Fig. 14.4) do the tip-sample force and the negative force gradient
have a different sign. As discussed above, the frequency shift � f is proportional to
the negative force gradient (14.8). Correspondingly, attractive forces (negative sign)
lead (in the majority of cases—except in the gray-shaded range) to a decrease of
the resonance frequency. Thus the statement that the frequency shift � f is positive
(towards higher frequencies) for repulsive forces and negative for attractive forces is
true for most tip-sample distances.

The relative frequency change can be written as

� f

f0
= k′ A2

2k A2 = Einteraction

2Ecantilever
. (14.9)

Fig. 14.4 Potential, force
and negative force gradient
for the Lennard-Jones model
potential shown as a function
of the average tip-sample
distance d. As the frequency
shift � f is proportional to
the negative force gradient it
can be stated: For distances
outside the shaded region the
frequency shift � f is
positive (towards higher
frequencies relative to ω0)
for repulsive forces, and
negative for attractive forces
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This means that the relative frequency shift is given by the ratio of the energy of the
tip-sample interaction (spring constant k′) divided by twice the energy stored in the
cantilever oscillation (spring constant k).

14.3 Amplitude Modulation (AM) Detection Scheme
in Dynamic Atomic Force Microscopy

We have seen that in the small amplitude limit a force gradient of the tip-sample inter-
action shifts the resonance frequency ω0 by �ω. Accordingly, the whole resonance
curve shifts by �ω relative to that of the free cantilever, as shown in Fig. 14.5b.

In the amplitude modulation (AM) detection scheme, the cantilever is excited with
a fixed driving amplitude Adrive at a fixed frequency ωdrive close to the resonance
frequency. The resulting cantilever oscillation amplitude A is measured. As shown in
Fig. 14.5, this amplitude depends indirectly on the tip-sample distance. The amplitude
depends on the frequency shift of the resonance curve, which depends on the force
gradient, which depends in turn on the tip-sample distance as A(�ω(F ′

ts(d))).

Fig. 14.5 In dynamic AFM
the measured signal depends
indirectly on the tip-sample
distance. a Primarily, the
force gradient and therefore
also the resonance frequency
(shift) depend on the
tip-sample distance (here a
Lennard-Jones potential is
assumed). b Secondly, the
measured amplitude depends
on the frequency shift. For
clarity �ω0 has been chosen
to be large compared to the
width of the resonance curve.
c When scanning over a step
edge, the tip-sample distance
changes until the feedback
restores the old tip-sample
distance

(d)
F (d)ts

d
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working point to d1

d d
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In the following, we go through these dependence step by step. The dependence
of the force gradient on the tip-sample distance F ′

ts(d) based on the Lennard-Jones
model potential is shown in Fig. 14.5a. As discussed in the previous section, the
frequency shift is proportional to the force gradient indicated by the double labeling
of the ordinate in Fig. 14.5a. In Fig. 14.5b resonance curves A(ω) are shown which
are shifted together with the respective resonance frequency. The actual oscillation
amplitude of the cantilever at the driving frequency is the measurement signal. In
the feedback loop for the amplitude signal, a setpoint amplitude is selected, e.g.
A1 in Fig. 14.5b. The feedback loop controls the measured amplitude to the setpoint
value by changing the z-position of the sample. This changes the tip-sample distance,
which changes the force gradient, which changes the resonance frequency, and thus
indirectly the amplitude is ultimately changed and kept at its setpoint value. If the
feedback loop maintains a constant oscillation amplitude throughout a scan, this
corresponds to a height profile taken at constant force gradient. Due to the dependence
of the amplitude on the slope of the resonance curve the AM detection scheme is
also called slope detection. In order for an amplitude change to be highly sensitive
to the corresponding frequency change, the amplitude setpoint should be close to the
position of maximum slope of the resonance curve.

In our example, we chose ωdrive < ω0, corresponding to a negative force gradient
(roughly: attractive tip-sample interaction). If a driving frequency larger than ω0 is
selected, this corresponds to a working point in the regime of a positive force gradient
(negative negative force gradient) (roughly: repulsive tip-sample interaction).

Now we discuss the feedback process for the case of the tip scanning over
a step edge as shown in Fig. 14.5c. Initially the amplitude setpoint A1 stabilizes
a frequency shift ω1 and the corresponding tip-sample distance d1 (working point 1 in
Fig. 14.5a, b). If the tip approaches the step edge, the tip-sample distance decreases
to d2. This brings the tip into a region of larger (more negative) force gradient, shift-
ing the resonance frequency by δω to ω2 (working point 2 in Fig. 14.5). This shift of
the resonance frequency by δω leads to an increase of the amplitude by δA to A2 at
ωdrive, as shown in Fig. 14.5b. The feedback acts on this deviation from the setpoint
value A1 by increasing the tip-sample distance d until the setpoint amplitude A1 is
restored to d1.

In summary, a certain amplitude change corresponds to a certain resonance fre-
quency shift, which corresponds to a certain tip-sample force gradient, which cor-
responds to a certain tip-sample distance A(�ω(F ′

ts(d))). Therefore, keeping the
feedback loop at a constant oscillation amplitude corresponds to establishing a con-
stant tip-sample distance. An image scanned at constant tip-sample distance is called
the topography. However, this assignment is only true if the same frequency shift-
distance relation (Fig. 14.5a) is present all over the surface.

Let us now consider scanning over a border with two different dependences of
the frequency shift as a function of tip-sample distance as shown in Fig. 14.6. This
will lead to an apparent height contrast even if the actual height of the atoms in
both areas is the same. Initially the tip is in region A with the corresponding force
gradient dependence shown in Fig. 14.6b. The setpoint frequency ω1 stabilizes the
tip-sample distance to dA (working point 1). If by lateral scanning the tip crosses
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Fig. 14.6 a A scan from a region with material A to a region with material B can lead to a different
apparent tip height in atomic force microscopy. b This arises due to the different force gradient-
distance curves present in the two regions. For another force gradient-distance curve C an instability
will occur due to the different sign of the slope of the force gradient, i.e. due to the non-monotonous
character of the force gradient on the tip-sample distance

the border from A to B, the force gradient curve B in Fig. 14.6b applies, resulting in
a different frequency shift ω2 (working point 2). The feedback restores the setpoint
frequency ω1 by reducing the tip-sample distance to dB (working point 3). This leads
to a reduced apparent height dB as shown in Fig. 14.6a. It is similar to the electronic
effects in scanning tunneling microscopy.

While the assumed force gradient curve B resulted in a different apparent height
in region B, more severe cases are also possible. Let us now assume the extreme
case of the force gradient curve C in Fig. 14.6b. This case will lead to a jump to
the working point 4 when the tip enters region C. At this working point the force
gradient-distance curve has a negative slope and thus the feedback works in the
wrong direction: The feedback will reduce the tip-sample distance in order try to
restore the larger (more negative) frequency shift setpoint. While this direction of
feedback was the right one for a positive slope of the force gradient curve, it is the
wrong feedback direction for the opposite slope at working point 4. The feedback
will constantly reduce the tip-sample distance, leading to a tip crash. This shows that
the non-monotonous dependence of the force gradient on the distance can lead to
serious instabilities.



196 14 Amplitude Modulation (AM) Mode in Dynamic Atomic Force Microscopy

Sample

Laser

Piezo

Setpoint

Lock-in
amplifier

Oscillator

Feedback
PI-controller

Phase

Amplitude

Driving
signal

Reference
signal

Preamplifier

Topography signal

x,y,z-scanner
z-signal

Detector

ωdrive

Fig. 14.7 Experimental setup for the AM detection scheme using a lock-in amplifier to detect the
deviation of the oscillation amplitude from the setpoint value

14.4 Experimental Realization of the AM Detection Mode

A scheme of the experimental setup for the amplitude modulation AFM detection is
shown in Fig. 14.7. The sinusoidal driving signal at ωdrive is generated by an oscillator.
This signal excites the piezoelectric actuator driving the cantilever base.

Cantilevers have resonance frequencies of up to several hundred kHz. In order to
excite such cantilevers close to their resonance frequency the piezoelectric actuator
must have an even higher resonance frequency. Often this cannot be realized using a
tube piezo element, since this has too low resonance frequencies. Therefore, an addi-
tional piezo plate with a high resonance frequency is used to oscillate the cantilever
base and is frequently called the dither piezo element. The cantilever excitation results
in a cantilever oscillation of amplitude A, which is, since it is close to resonance,
much larger than the excitation amplitude. If tip and sample approach each other,
the oscillation amplitude at the fixed excitation frequency ωdrive will change due to a
shift of the resonance frequency induced by the tip-sample interaction, as discussed
in the previous section. The cantilever deflection (sinusoidal signal) is measured, for
instance, by the beam deflection method as indicated in Fig. 14.7. The signal from
the split photodiode is converted by the preamplifer electronics to a voltage signal
proportional to the cantilever deflection. This signal is an AC signal at the frequency
ωdrive with an amplitude proportional to the cantilever oscillation amplitude A.

Using a lock-in amplifier (described in Chap. 6), the amplitude of the AC signal
at frequency ωdrive is measured. The lock-in amplifier needs the driving signal as

http://dx.doi.org/10.1007/978-3-662-45240-0_6
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a reference signal. At the output of the lock-in amplifier, a quasi-DC signal of the
amplitude is obtained.4

This quasi-DC amplitude signal (demodulated from the AC signal at ωdrive) is used
as the input signal for the z-feedback controller. The measured cantilever amplitude
is compared to the setpoint amplitude. The controller determines an appropriate z-
signal need to maintain a constant oscillation amplitude. Via the quite indirect relation
between oscillation amplitude and tip-sample distance, maintaining a constant oscil-
lation amplitude corresponds to maintaining a constant tip-sample distance. Thus the
z-feedback signal is used as the height signal, mapping the topography during data
acquisition.

In the following, we describe the operation of the feedback in more detail by
considering the example of a scan over a step edge. As a starting condition, we
assume that before scanning over a step edge the amplitude is nicely kept closely to
the amplitude setpoint value. When the step is approached laterally, the tip-sample
distance will decrease. This leads, as discussed in the last section, to a deviation of the
oscillation amplitude (from the setpoint amplitude) which is measured at the output
of the lock-in amplifier. Thus this quasi-DC amplitude signal contains the deviations
from the setpoint amplitude (e.g. due to the topography of the surface) before they
are compensated by the feedback. Subsequently, this measured amplitude enters the
feedback controller and deviations from the setpoint are compensated by changing
the z-signal to a value equivalent to the step height. After this, the setpoint oscillation
amplitude (corresponding to a certain tip-sample distance) is recovered.

A lock-in amplifier can also provide a phase signal, the difference between the
phase of the cantilever oscillation and the phase of the driving signal. During a scan
of the surface structure the phase signal can be recorded as free signal (i.e. not used
for the feedback). This phase signal contains useful information on the tip-sample
interaction, as we will discuss later in Chap. 15. Less frequently, the phase signal is
used as a feedback signal and the oscillation amplitude is recorded as a free signal.

The setup shown in Fig. 14.7 can also be used to record the resonance curve of the
free cantilever not in contact with the sample. This is done by disabling the feedback
and ramping the driving frequency over the resonance frequency, while measuring
the oscillation amplitude and the phase. The measurement of the resonance curve
allows parameters like the resonance frequency ω0, the Q-factor, and the amplitude at
the resonance frequency A(ω0) = Afree to be determined. The value of ω0 is needed
to chose the driving frequency and Afree is needed to choose a proper amplitude
setpoint.

A certain minimal detectable amplitude change in AM detection translates via
the slope of the resonance curve to a minimal detectable frequency shift and finally
to the resolution obtained for the tip-sample distance. The larger the slope of the
resonance curve, the smaller the frequency shifts that can be detected for a given

4 Technically the driving signal can be considered as a carrier signal which is modulated by a low-
frequency (quasi-DC) amplitude signal (deviations from the desired amplitude setpoint). Then the
task of the lock-in amplifier is the demodulation of the low frequency amplitude signal. The term
demodulation is traditionally used in connection with signal detection in AM radio receivers. This
is the reason why the term AM detection is used for this detection scheme.

http://dx.doi.org/10.1007/978-3-662-45240-0_15
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minimal detectable amplitude change. The slope of the resonance curve increases
with increasing Q-factor. Thus, in AM detection the sensitivity with which a fre-
quency shift can be detected increases for higher Q-factors. However, as we will see
in the following section, high Q-factors lead in the AM detection scheme to unac-
ceptably long time constants (low bandwith). Due to this the AM detection scheme
is not used for cantilevers with Q-factors larger than about 500.

14.5 Time Constant in AM Detection

The time constant for AM detection can be obtained by analyzing the solution of the
equation of motion for the driven damped harmonic oscillator (2.17). The change
of the motion z(t) in reaction to a changed tip-sample interaction can be modeled
by an (instantaneous) change of the resonance frequency of the harmonic oscillator
from ω0 to ω′

0. Either a numerical solution of the equation of motion or an analytical
solution can be analyzed.

According to Sect. 2.4 the analytic solution of the equation of motion of the driven
damped harmonic oscillator after a change of the resonance frequency at time t = 0
can be written as

z(t > 0) = A′ cos(ωdrivet + φ′) + Ge−ω′
0t/(2Q) cos(ωhomt + φ). (14.10)

The first term corresponds to the new steady-state oscillation at the driving frequency
ωdrive under the influence of the shifted resonance frequency ω′

0. The new steady-
state amplitude A′ and phase φ′ are given by (2.25) and (2.28), respectively, replacing
ω0 by ω′

0. The second term in (14.10) corresponds to an exponentially decreasing
transient. G and φ are determined by the initial conditions and ωhom is introduced in
Sect. 2.4.

In Fig. 14.8a the envelope of the cantilever deflection z(t) is plotted as a function of
time for a Q-factor of 100, a resonance frequency f0 = 150 kHz, and an instantaneous
increase of the resonance frequency by � f = f0 − f ′

0 = 1319 Hz at time zero.5 The
envelope of the cantilever deflection z(t) is plotted, since a single oscillation is not
visible on the time scale shown. The transient to the new steady-state amplitude is
characterized by exponential behavior and a strong beat term. The new steady-state
amplitude of half of the original amplitude is reached after about Q oscillations,
corresponding to a time τ ≈ Q/( f0π) = 0.2 ms (cf. (2.36)). This time constant still
allows for fast scanning speeds in AFM scanning.

In Fig. 14.8b the time dependence of the phase is shown. The phase was determined
from the cantilever deflection z(t) numerically simulating a lock-in detection. Similar
to the amplitude, also the phase reaches its new steady-state value after a transient
of about Q oscillations.

5 This value for the frequency shift was chosen as it leads to half of the original amplitude in the
steady-state.

http://dx.doi.org/10.1007/978-3-662-45240-0_2
http://dx.doi.org/10.1007/978-3-662-45240-0_2
http://dx.doi.org/10.1007/978-3-662-45240-0_2
http://dx.doi.org/10.1007/978-3-662-45240-0_2
http://dx.doi.org/10.1007/978-3-662-45240-0_2
http://dx.doi.org/10.1007/978-3-662-45240-0_2
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Fig. 14.8 The envelope of
the oscillation amplitude (a)
and the phase (b) in reaction
to a change of the resonance
frequency from ω0 to ω′

0 at
time t = 0. The amplitude
and phase response show
that, after a transient, the
new steady-state amplitude
and phase are reached after
about Q oscillations
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For the case of a high Q-factor of 10,000, the time constant τ is 100 times larger,
leading to unacceptably long scanning times when using cantilevers with a large Q-
factor (i.e. in vacuum) in the AM detection mode. When the tip-sample interaction
changes quickly, for instance during a fast scan over a sharp step edge, it takes several
times τ before the corresponding tip oscillation amplitude changes to its new steady-
state value, corresponding to the new tip-sample distance. In the transient time until
the new amplitude has been established a false amplitude enters into the feedback
loop, which does not yet correspond to the actual new tip-sample distance. Thus,
only after this settling time can the tip be moved on to the next measuring point.
For cantilevers with a high Q-factor this results in an unacceptably long scanning
time. Therefore, AM detection is not used for high Q cantilevers (i.e. in vacuum).
For high Q cantilevers a different detection scheme (FM detection) is used, which
will be discussed in Chap. 17. The AM detection scheme is used for cantilevers
under ambient conditions, where the quality factor is less than several hundred due
to dissipative damping in air.

http://dx.doi.org/10.1007/978-3-662-45240-0_17
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14.6 Dissipative Interactions in Non-contact AFM
in the Small Amplitude Limit

Up to now we have considered the AM detection method in the limit where the
tip-sample interaction is conservative. As discussed, a conservative tip-sample inter-
action induces a shift of the resonance frequency of the cantilever. In this section, we
will consider a model which includes dissipative tip-sample interactions in a very
crude way. To keep things simple, we will still deal with the small amplitude limit,
i.e. an expansion of the tip-sample force up to the linear order is sufficient.

In the treatment of the simple harmonic oscillator, dissipation was included by
the Q-factor. The types of dissipative forces included via the Q-factor are: energy
losses (damping) if the cantilever oscillates in air or a liquid, as well as internal
energy losses in the cantilever material (i.e. the cantilever itself is not 100 % elastic).
This cantilever dissipation energy Ediss

cant leads according to (2.41) to a corresponding
Q-factor Qcant ∝ 1/Ediss

cant. An additional dissipative tip-sample interaction leads
to a dissipated energy per cycle of Ediss

ts and a corresponding Q-factor Qts. As the
dissipation energies add up to a total dissipation energy, the inverse Q-factors add
up to an effective Q-factor as

1

Qeff
= 1

Qcant
+ 1

Qts
. (14.11)

This is not the proper way to include tip-sample dissipation, as the Q-factor takes into
account only the continuous damping of the cantilever in a fluid (2.17). This damping
force was considered proportional to the velocity, having its maximal value at zero
amplitude of the oscillation, while the dissipative tip-sample interaction should be
maximal at the lower turnaround point of the tip, i.e. closest to the sample. Never-
theless, we will now consider the damping via the effective Q-factor, since in this
case we can still use the previously derived equations for the amplitude and the phase
(2.25) and (2.27) of a driven damped harmonic oscillator. We use the effective quality
factor and replace the resonance frequency of the free cantilever ω0 by the shifted
resonance frequency ω′

0 = ω0 + ω0k′/(2k), according to (14.6). In order to avoid
too many subscripts we identify ω ≡ ωdrive. With this the amplitude and phase read
as a function of the driving frequency ω as

A2 = A2
drive(

1 − ω2

ω′2
0

)2

+ 1
Q2

eff

ω2

ω′2
0

. (14.12)

and

tan φ = −ω′
0ω

Qeff
(
ω′2

0 − ω2
) , (14.13)

respectively.

http://dx.doi.org/10.1007/978-3-662-45240-0_2
http://dx.doi.org/10.1007/978-3-662-45240-0_2
http://dx.doi.org/10.1007/978-3-662-45240-0_2
http://dx.doi.org/10.1007/978-3-662-45240-0_2
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In the following, we show that in AM detection it cannot be distinguished whether
a conservative interaction (leading to a frequency shift) or a dissipative interaction
(leading to a different Q-factor) is the reason for a certain measured amplitude
change. We consider the two limiting cases of only conservative interaction or only
dissipative interaction.

In Fig. 14.9a the amplitude and phase for a free cantilever (blue curve: ω0, Q)
are compared to the case in which a conservative tip-sample interaction is included
(red curve: ω′

0, Q). In this case, the conservative tip-sample interaction leads to a
shift of the whole resonance curve.6 Due to the constant quality factor, the amplitude
and shape of the resonance curve and phase do virtually do not change. This shift
of the resonance curve and phase curve leads to a different amplitude and phase
measured at the (fixed) driving frequency ω = ωdrive, as indicated by the vertical
line in Fig. 14.9a. In this figure, the driving frequency was selected to be somewhat
larger than ω0.

The opposite assumption is that only the damping changes and the resonance
frequency stays constant (ω0, Q′). In this case, the frequency at which the maximal
amplitude of the resonance curve occurs stays approximately constant very close to
ω0 with and without interaction Fig. 14.9b, while the resonance curve and the phase
as a function of frequency become broader with increasing damping (lower quality
factor) as shown by the green line in Fig. 14.9b. This leads to a reduced amplitude and
also to a change of the phase shift at the driving frequency (vertical line in Fig. 14.9b).

As in the AM detection mode only the amplitude is measured, during scanning it is
not possible to distinguish whether an amplitude change occurs due to a conservative
interaction (resonance frequency shift) or due to a dissipative interaction (change of
the Q-factor). Both lead to a change of the amplitude at the driving frequency. It
is not known whether an initial change of A during a scan (later balanced by the
feedback loop) arises due to a change of �ω or Q.

The dependence of the amplitude on Q can lead to a material contrast. If in two
laterally adjacent areas the true height of the two different materials as well as the
conservative tip-sample interactions are the same, different damping occurring due to
the two different materials can lead to a different oscillation amplitude, which results,
after restoration of the amplitude by the feedback, in an apparent height difference
between the two materials due to the different tip-sample dissipation.

If both A and φ were measured (during scanning) it is in principle possible to
use these two measured values and invert (14.12) and (14.13) for ω′

0 and Qeff . Since
(14.12) and (14.13) are a rather complicated to solve, alternatively the complete
resonance curves of amplitude and phase (like the ones shown in Fig. 14.9) can be
measured in a spectroscopic type of measurement. The frequency shift can then be
obtained from the position of the maximum in the amplitude or the frequency at
which the phase is −90◦ so that the force gradient can be determined. The damping
Qeff can be determined from the width of the resonance curve in amplitude or phase.

6 The curves in Fig. 14.9 are plotted using (14.12) and (14.13). The resonance curves for two
different resonance frequencies do not exactly correspond to a shift of the resonance curve. However,
Fig. 14.9a shows that these curves correspond to a very good approximation to a shift.
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Fig. 14.9 a Amplitude and phase for a free cantilever (blue curve) compared to the case with
a conservative tip-sample interaction included (red curve). The two resonance curves as well as
the phase curves are shifted with respect to each other by �ω. b Amplitude and phase for a free
cantilever compared to the case with a dissipative tip-sample interaction included (green line), i.e.
the effective quality factor is different, while the frequency shift stays constant. In both cases (a) and
(b) the oscillation amplitude at ωdrive is reduced, which makes it impossible to distinguish between
a conservative and a dissipative interaction during scanning in the AM detection mode
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All these measurements have to be performed without feedback and therefore require
high stability (i.e. low drift). Further, these parameters can be obtained as a function
of the tip-sample distance d at a specific location on the surface.

14.7 Dependence of the Phase on the Damping
and on the Force Gradient

Generally, the dependence of the phase on the damping and on the force gradient is
contained in (14.13). From Fig. 14.9, we can see that the dependence of the phase as
function of frequency can be approximated as linear close to the resonance at ω = ω0
or φ = −90◦. In the following, we will derive this linear relation between phase and
frequency. Using in the nominator of (14.13), the approximation ω′

0 ≈ ω0 and in the
denominator the approximation ω′

0 +ω0 ≈ 2ω0, as well as subsequently the relation
�ω = ω′

0 − ω, results in

tan φ = −ωω′
0

Qeff
(
ω′2

0 − ω2
) ≈ −ω2

0

Qeff
(
ω′

0 + ω
) (

ω′
0 − ω

) ≈ ω0

2Qeff�ω
= k

Qeff k′ .

(14.14)

Close to the resonance, the phase will be close −π/2 and the deviation from this
value will be termed the phase shift �φ with φ = −π/2 + �φ. The arctan can be
approximated in this case as arctan x ≈ −π/2 − 1/x , resulting in

φ = −π

2
+ �φ = arctan

(
ω0

2Qeff�ω

)
≈ −π

2
− 2Qeff

ω0
�ω. (14.15)

Thus the phase shift �φ relative to the phase −90◦ results as

�φ = −2Qeff

ω0
�ω = − Qeff k′

k
= Qeff

k

∂Fts

∂z

∣∣∣∣
z=0

. (14.16)

This equation can be used for conversion between the frequency shift and the phase
shift close to resonance. The phase shift depends linearly on both the effective quality
factor and the force gradient of the tip-sample interaction. Since the phase depends
on �ω and Qeff in a different way than the amplitude, the phase recorded as a free
signal (not used for the feedback) can result in a different contrast (phase contrast)
than the amplitude signal.

According to (14.16), the sign of the force gradient determines the sign of the phase
shift, since Qeff is always positive. For attractive forces (more precisely, positive force
gradients) the phase is more negative than −90◦ (φ < −90◦), and correspondingly
for repulsive forces (more precisely, negative force gradients) the relation φ > −90◦
holds for the phase.
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14.8 Summary

• If the tip oscillation amplitude is small, the tip-sample interaction can be described
by a second small spring k′ acting between tip and sample additionally to the
cantilever spring k. The spring constant k′ is given by the negative force gradient
of the tip-sample interaction.

• The frequency shift of the resonance frequency under the influence of a conserv-
ative tip-sample interaction is given by

�ω = ω0
k′

2k
= −ω0

2k

∂Fts

∂z

∣∣∣∣
z=0

. (14.17)

This equation holds if the tip-sample force can be approximated as linear within
the range of the oscillation amplitude and if

∣∣k′∣∣ � k.
• Roughly, the frequency shift �ω is positive (towards higher frequencies) for repul-

sive forces and negative for attractive forces.
• In the amplitude detection mode (AM), the cantilever is driven at a fixed frequency

and amplitude. The oscillation amplitude (and phase) is measured using the lock-in
technique and used as the feedback signal.

• The measured oscillation amplitude depends on the frequency shift of the
resonance curve induced by the tip-sample interaction. Feedback on constant
oscillation amplitude corresponds to constant frequency shift and finally constant
tip-sample distance.

• The non-monotonous dependence of the frequency shift on the tip-sample distance
can lead to instabilities in the feedback behavior.

• A measured change of the amplitude (phase) during imaging in the AM mode can
be induced by a frequency shift (conservative interaction) as well as by a change
in quality factor (dissipative interaction).

• The phase shift close to the resonance is proportional to the frequency shift as
�φ = − 2Qeff

ω0
�ω. Thus the phase shift depends linearly on Qeff and the force

gradient.



Chapter 15
Intermittent Contact Mode/Tapping Mode

While the previous chapter was aimed at providing a basic understanding of dynamic
atomic force microscopy, we turn now to the intermittent contact mode (or tapping
mode) which the mode that is used most frequently under ambient conditions. In the
intermittent contact mode the oscillation amplitude is large compared to the range
of the force and ranges from large distances with negligible tip-sample interactions
deep into the repulsive regime. For these large oscillation amplitudes, the linear
approximation of the tip-sample force used so far in the AM mode is no longer valid.
Due to this, an analytical solution of the equation of motion becomes difficult and
we derive general dependences (for instance via the law of energy conservation) or
we use the results from numerical solutions of the equation of motion. We will see
that the resonance curve of an anharmonic oscillator is very different from the usual
case of a harmonic oscillator. Thus concepts like the frequency shift of the resonance
curve cannot be directly applied to the intermittent contact mode.

While operating with much larger amplitudes, the tapping mode has similarities to
the AM detection mode discussed in Chap. 14. In both modes the cantilever is excited
at a fixed driving frequency and the measured quantity is the oscillation amplitude. In
the tapping mode, the amplitude depends monotonously on the tip-sample distance.
Finally, we discuss how the dissipative tip-sample interactions are related to the phase
of the oscillation in the intermittent contact mode.

15.1 Atomic Force Microscopy with Large
Oscillation Amplitudes

In the intermittent contact mode, the oscillation amplitude is quite large (typically
50 nm) and cantilever force constants of typically 50 N/m are used. As the name
intermittent contact mode suggests, the tip comes into intermittent contact with the
sample, which leads to very strong short-range force contributions close to the sam-
ple. In tapping mode, the constant driving frequency is usually selected at or very
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close to the resonance frequency of the free cantilever (not at maximum slope, as in
the slope detection mode). The measured signal is the amplitude A, which contains
information on the average tip-sample distance d. In order to maintain an oscillation
of the tip, snap-to-contact has to be prevented, which is possible when using large
oscillation amplitudes, as discussed in Sect. 11.2.

First we consider a purely conservative tip-sample interaction, i.e. the only dissi-
pation present is the (air) damping of the cantilever described by the corresponding
Q-factor. In a later section also dissipative tip-sample interactions will be included.
Figure 15.1 shows the tip-sample force Fts and the cantilever force as a function
of the momentary tip-sample distance d + z. The average tip-sample distance is d,
i.e. z = 0. In most of the amplitude range 2A the tip-sample force is negligible
and the spring force is linear with z. However, close to the lower turnaround point
strong deviations from linear force-distance behavior occur due to the strong repul-
sive tip-sample force. Due to this strongly non-linear force-distance behavior we do
no longer use the approximation for a harmonic oscillator. Accordingly, we cannot
use the concept of the frequency shift of the whole resonance curve introduced in
the last chapter.

In the following, we first describe the tapping mode qualitatively and subsequently
discuss the results of an analytical or numerical treatment of the equation of motion.
We now consider bringing a tip from a large tip-sample distance, where it oscillates
at its free resonance frequency ω0 with its (large) free amplitude Afree, towards
the surface. The tip will eventually reach the repulsive interaction and is hindered

F d+zts( )

-k z

F -k zts

z=0

Fo
rc

e 
(a

.u
.)

2A

d+z (a.u.)

d

Fig. 15.1 Force-distance dependence of the cantilever force (straight green line), the tip-sample
force (blue line), and the total force (red line) as a function of the momentary tip-sample distance
d + z. In tapping mode, the range of the amplitude 2A is so large that it extends from almost zero
tip-sample force at the upper turning point to deep in the repulsive regime at the lower turning point.
The total force displays non-linear behavior corresponding to an anharmonic oscillator; in spite of
this the oscillation path is still sinusoidal

http://dx.doi.org/10.1007/978-3-662-45240-0_11
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from further indenting into the sample (tapping to the surface). It might be assumed
that the trajectory of an oscillation for a very steep tip-sample force should deviate
strongly from a sinusoidal shape. However, it appears (experimentally [28] and from
simulations [29]) that the oscillation trajectory can still be approximated with very
high precision as a sinusoidal shape. This sinusoidal oscillation is an important fact
in understanding the tapping mode. While the form of the oscillation stays sinusoidal
even in a strongly anharmonic potential, the amplitude changes.

As an example, the oscillation traces for two different average tip-sample distances
d are shown in Fig. 15.2a, when operation is performed in constant height mode,
i.e. without feedback, restoring an amplitude setpoint. It was found experimentally
and also from simulations that the oscillation amplitude as reduced approximately
linearly when decreasing the average tip-sample distance d, once the oscillation path
reaches the repulsive regime, as shown in Fig. 15.2b. In tapping mode detection, a
certain amplitude A (corresponding to a certain average tip-sample distance d) is
chosen as the amplitude setpoint for the z-feedback.

One reason why the tapping mode is so popular is that the dependence between the
measured signal (oscillation amplitude) and the tip-sample distance is monotonous.
This allows for a robust feedback signal and avoids the possibility of instabilities
which can occur if the measured signal depends on the tip-sample interaction in a
non-monotonous way (cf. Sect. 17.3).

In the following, we will provide a qualitative and a semiquantitative explanation
for the amplitude reduction if the oscillation enters the regime of strong (repulsive)
interaction. We will not invoke the concept of frequency shift of the whole resonance
curve, since this applies only to the case of a linear force-distance dependence around
d, which does not hold in the tapping mode. Further, it is important to understand
that no dissipative tip-sample interaction is needed in order to reduce the oscillation
amplitude. The amplitude reduction can be understood within the model of a driven
oscillator (not harmonic).

Oscillation
amplitude

0
d

1

3

2

1

3

2

(a)

(b)
Afree

dA
dB

B

A

Fig. 15.2 a Schematic of the tip oscillation for two different average tip-sample distances dA
and dB . The oscillation remains sinusoidal also at reduced distances d. b The vibration amplitude
(being the free amplitude Afree for large tip-sample distances) decreases with decreasing tip-sample
distance d, once the oscillation path reaches the repulsive range, i.e. d ≈ Afree

http://dx.doi.org/10.1007/978-3-662-45240-0_17
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We will discuss the energy flow into the oscillator supplied by the driving
oscillation with amplitude Adrive. Initially, the tip-sample distance is large, and we
assume that the oscillator is driven at its free resonance frequency ω0. This leads to
an oscillation with the resonance amplitude Afree = Q Adrive. At the resonance, the
phase between the driving oscillation and oscillator motion is −90◦ resulting in a
maximal energy transfer from the excitation to the oscillation. Due to a tip-sample
interaction in the intermittent contact mode (assumed to be conservative) the phase
of the oscillation will deviate from its value of −90◦ for the free cantilever, leading to
a reduced amplitude. Off-resonance the energy transfer from the external excitation
to the harmonic oscillator is (much) less efficient resulting in a reduced oscillation
amplitude. Let us consider this idea in a more quantitative manner.

Due to the strong effects of anharmonicity in the tapping mode, we do not use
any of the results previously obtained for the harmonic oscillator, e.g. shape of
the resonance curve, phase curve, or the concept of frequency shift of the whole
resonance curve. The following analysis of the driven anharmonic oscillator is very
general, only relying on (a) the (experimentally proven) assumption of a sinusoidal
oscillation and (b) on the general law of energy/power conservation. We consider
a driven damped oscillator where the cantilever base (or the driving piezo) moves
as zdrive = Adrive cos (ωt). The resulting sinusoidal motion of the tip relative to its
equilibrium position d can be written in the steady-state as z = A cos (ωt + φ). The
average power supplied by driving the cantilever base via bending of the cantilever
spring can be written as

〈Pdrive〉 = 〈Fżdrive〉 = 1

T

T∫

0

k [zdrive (t) − z (t)]żdrive (t) dt. (15.1)

Since all the functions in the integral are simple harmonic functions, the integral can
be solved analytically, resulting in

〈Pdrive〉 = −1

2
k Adrive Aω sin φ. (15.2)

This expression is valid very generally, it is not necessary to assume that the driving
frequency is close to the resonance frequency. It can be seen that the maximum power
is delivered if the phase is −90◦, corresponding to the resonance condition of the
free cantilever. This power supplied will be dissipated by the (air) damping of the
cantilever Qcant (since we assumed a purely conservative tip-sample interaction).

If we further consider that the energy stored in the oscillator close to resonance is
Eosc ≈ 1/2 k A2, and the energy supplied by the driving and then dissipated during
one cycle is Edrive = 〈Pdrive〉 T , Qcant can be written as

Qcant = 2π
Eosc

Edrive
= −A

Adrive sin φ
. (15.3)
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A/A
free

Repulsive regime

Attractive regime

Fig. 15.3 Dependence of the phase on the amplitude according to (15.4). This expression is obtained
from energy conservation and the assumption of a sinusoidal oscillation. For a given amplitude
A/Afree, the phase can have two different values. φ < −90◦ corresponds to a net attractive tip-
sample force, while φ > −90◦ corresponds to a net repulsive tip-sample force. The dotted curve
results for a dissipative interaction and will be considered later

If we identify the oscillation amplitude of the free cantilever (without any tip-sample
interaction) as Afree = Qcant Adrive, the oscillation amplitude can be written as

A = Adrive Qcant sin(−φ) = Afree sin(−φ). (15.4)

This shows that the amplitude decreases as the phase deviates from the resonance
case −90◦ of the free oscillation due to a tip-sample interaction. The energy from
the excitation (driving) can no longer be effectively transferred to the oscillating
cantilever. A change of the resonance condition due to a conservative tip-sample
interaction leads to an excitation (driving) of the oscillator off-resonance and reduces
thus the amplitude.

The dependence of the phase φ on the amplitude A/Afree according to (15.4) is
shown in Fig. 15.3. It can be seen that a certain amplitude can be realized at two
different phases, lower and higher than the phase of the free cantilever at resonance,
i.e. −90◦. This result, obtained under very general conditions, should be consistent
with the specific result obtained for the harmonic oscillator. At the first sight it is
not obvious that the resonance curve A(ω) and phase curve φ(ω) of the harmonic
oscillator lead to (15.4). However, we can derive an expression φ(A/Afree) from
(2.25) and (2.28) by eliminating the dependence on ω, and (15.4) results.1

1 The phase φ(A/Afree) can be obtained numerically from (2.25) and (2.28). If this result is plotted
in Fig. 15.3 it is indistinguishable on top of the curve obtained from (15.4). Alternatively (2.25) and
(2.28) can be rearranged analytically leading to (15.4) in a very good approximation.

http://dx.doi.org/10.1007/978-3-662-45240-0_2
http://dx.doi.org/10.1007/978-3-662-45240-0_2
http://dx.doi.org/10.1007/978-3-662-45240-0_2
http://dx.doi.org/10.1007/978-3-662-45240-0_2
http://dx.doi.org/10.1007/978-3-662-45240-0_2
http://dx.doi.org/10.1007/978-3-662-45240-0_2
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From Fig. 15.3 we see that an oscillation with a certain amplitude A can occur
via two different phases. In the following we will show that φ < −90◦ corresponds
to a net attractive tip-sample force, while φ > −90◦ corresponds to a net repulsive
tip-sample force.

We start from the equation of motion for the driven damped harmonic oscillator
(2.17) and include the static deflection introduced in Fig. 14.1, as well as the tip-
sample force. The anharmonicity enters by using the full anharmonic tip-sample
force Fts, instead of the linear approximation. This results in

mz̈ = − mω0

Qcant
ż − k(z − (zdrive + �L)) + Fts(d + z). (15.5)

For simplicity, we consider the driving frequency at the resonance frequency of
the free cantilever, ωdrive = ω0, as it is often chosen in the tapping mode. Thus
zdrive = Adrive cos ω0t . The resulting cantilever oscillation z and its time derivatives
can be written as

z = A cos (ω0t + φ) , (15.6)

ż = −ω0 A sin (ω0t + φ) , (15.7)

z̈ = −ω2
0 A cos (ω0t + φ) = −ω2

0z. (15.8)

If we insert this into (15.5), the following equation results

− mω2
0z = mω2

0 A

Qcant
sin (ω0t + φ) − k(z − �L) + Fts(d + z) + k Adrive cos (ω0t) .

(15.9)
Since mω2

0 = k, the term on the left side of (15.9) cancels out the term −kz on the
right side. Now we multiply (15.9) by A cos (ω0t + φ) and integrate over one period.
The integrals can be solved, or it can be seen form the symmetry that the first and
the second term on the right side are zero after multiplication and integration. Thus
the remaining equation reads as

A

T∫

0

Fts(d + z) cos (ω0t + φ) dt = −k AAdrive

T∫

0

cos (ω0t) cos (ω0t + φ) dt .

(15.10)

The integral on the right side results as 1/2T cos φ. Thus (15.10) can be written as

1

T

T∫

0

Fts(d + z)A cos (ω0t + φ) dt ≡ 〈Fts · z〉 = −1

2
k AAdrive cos φ. (15.11)

http://dx.doi.org/10.1007/978-3-662-45240-0_2
http://dx.doi.org/10.1007/978-3-662-45240-0_14
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If we finally use Afree = Qcant Adrive, the cosine of the phase results as2

cos φ = −2Qcant

k AAfree
〈Fts · z〉 . (15.12)

When analyzing this equation we have to consider that z is negative in the range where
Fts is different from zero (i.e. close to the lower turnaround point), cf. Fig. 15.1. Thus
an attractive (negative) force will lead to a positive 〈Fts · z〉 and finally via (15.12)
to a phase φ < −90◦. Correspondingly a repulsive force Fts > 0 leads to a phase
φ > −90◦. If 〈Fts · z〉 = 0 the resonance phase of the free cantilever φ = −90◦ is
restored.

Generally during one oscillation cycle, attractive as well as repulsive interactions
will be “visited” by the tip. The terms “net attractive” or “net repulsive” force cor-
responds to 〈Fts · z〉 being larger or smaller than zero, respectively. If we have our
working point in the tapping mode at a certain amplitude, but if we do not know
whether this corresponds to the net attractive or repulsive regime, we can use the
phase in order to obtain this important information, as also indicated in Fig. 15.3. In
this way, the measurement of the phase provides an unambiguous distinction between
net attractive and net repulsive interactions.

15.2 Resonance Curve for an Anharmonic
Force-Distance Dependence

The results in the previous section were obtained using very general considerations,
either energy considerations, or averages over the equation of motion. Alternatively,
the equation of motion for an anharmonic oscillator can be solved. This can be
attempted either analytically [30], or by evaluating the solution of the equation of
motion numerically for a particular model of the tip-sample force [31]. If the tip
approaches the sample, the anharmonicity increases and the resonance curve evolves
from the well-known form, indicated as dotted gray line in Fig. 15.4, to odd shapes,
for instance that shown in color in Fig. 15.4a.

For an anharmonic oscillator the resonance frequency of the oscillator changes
with the amplitude, while for a harmonic oscillator the resonance frequency is inde-
pendent of the oscillation amplitude. Thus for each segment on the resonance curve
(with different amplitude) a different resonance frequency applies for the anhar-
monic oscillator. This leads to oddly shaped resonance curves, since not the whole
resonance curve shifts, but parts of the resonance curve shift differently due to their
different amplitudes. In the following we will qualitatively explain the peculiar shape

2 If we approximate the tip-sample force by Fts = k′z (harmonic oscillator), 〈Fts · z〉 = −1/2 k′ A2

results (cf. (17.10)). Inserting this into (15.11) and remembering that according to (15.4) A/Afree =
− sin φ, the following expression for the phase is obtained tan φ = k/(k′ Qcant), which corresponds
to expression (14.14) obtained for the harmonic oscillator.

http://dx.doi.org/10.1007/978-3-662-45240-0_17
http://dx.doi.org/10.1007/978-3-662-45240-0_14
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Fig. 15.4 a Resonance curve of an anharmonic oscillator (solid line) for a fixed average tip-
sample distance d = d0, compared to the free oscillation (dashed gray curve). For an anharmonic
interaction the resonance curve becomes multivalued. The low-amplitude branch is shown in red
and the high-amplitude branch in green. b “local” shift of the resonance frequency as function of
the oscillation amplitude or alternatively as function of the distance from the sample surface to
the lower turnaround point of the oscillation. c The oscillation ranges corresponding to the regions
a − d of the resonance curve (a) are indicated in a plot of the force-distance curve

of the resonance curve for an anharmonic oscillator as shown in Fig. 15.4a. In this
figure the average tip-sample distance is fixed at d0 and considered to be so close
to the surface that the turnaround point close to the surface reaches into the regime
of repulsive interaction at the maximum amplitude. The following general rule still
holds: An attractive interaction shifts the resonance frequency to lower frequencies,
while a repulsive interaction shifts the resonance frequency to higher frequencies.
However, in contrast to the case of the harmonic oscillator the resonance curve does
not shift homogeneously as a whole. For the anharmonic oscillator we have to apply
this shift rule locally, i.e. individually for certain amplitudes of the resonance curve.

For frequencies (much) lower than the resonance frequency the amplitude is small
(off-resonance), and does not reach the regime of tip-sample interaction, as shown
in Fig. 15.4c. Therefore, the resonance curve is very close to the resonance curve of
the free cantilever (region a in Fig. 15.4a, no shift of the resonance curve). Closer
to the free resonance frequency the oscillation amplitude increases and at the turn-
around point close to the surface the tip reaches the regime of attractive tip-sample
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interaction, as shown in Fig. 15.4c. This results effectively in a local downshift of the
resonance frequency explaining the “ear” seen to the left in region b in Fig. 15.4a.3

For higher frequencies larger amplitudes occur and result in smaller tip-sample dis-
tances at the turnaround point close to the surface. The resulting repulsive interac-
tion leads to a local upward shift of the resonance curve. In region c in Fig. 15.4a
the attractive contribution and the repulsive contribution compensate each other. At
even higher frequencies, at the lower turnaround point the tip comes even closer to
the surface, which effectively results in a shift of the resonance frequency towards
higher frequencies, leading to the “ear” seen to the right in region d in Fig. 15.4a.

According to Fig. 15.4c, an increasing oscillation amplitude corresponds to an
decreasing distance between the sample surface and the lower turnaround point
d0 − A. The amplitude dependent frequency shift of the resonance frequency of an
anharmonic oscillator as a function of the amplitude �ω(A) is qualitatively shown
in Fig. 15.4b.

As seen from Fig. 15.4a, for certain ranges of frequencies the resonance curve of
an anharmonic oscillator becomes multivalued. The solutions shown as blue dotted
lines are unstable [30], while the low-amplitude branch (green in Fig. 15.4a) and
the high-amplitude branch (red) correspond to two stable solutions of the equation
of motion. This coexistence of two oscillation states (with different amplitudes) for
the same external conditions (ωdrive, Adrive) is a characteristic of the anharmonic
oscillator. As we will see in the following, abrupt switches between these branches
can occur. While the resonance curve was discussed here as a function of the driving
frequency ω, in tapping mode atomic force microscopy the driving frequency is kept
constant and we will discuss this case in the following.

15.3 Amplitude Instabilities for an Anharmonic Oscillator

In Fig. 15.5a we show the oscillation amplitude as a function of the average tip-sample
distance d with the oscillation excited at the free resonance frequency ωdrive = ω0.
This figure shows the reduction of the amplitude for decreasing tip-sample distance,
as already shown in Fig. 15.2b. Additionally, often a switching between the high-
amplitude branch and the low-amplitude branch (present due to the anharmonicity)
is observed as shown in Fig. 15.5a. The tip-sample approach is shown in red while
the retraction is shown in green.

The jumps shown in Fig. 15.5a can be explained considering the resonance curves
shown in Fig. 15.6a–c for different average tip-sample distances during approach and
retraction (d1, d2, and d3). The excitation is considered to be at the free resonance
frequency of the cantilever ω0.

As discussed above, the anharmonic tip-sample interaction leads to a distortion
of the resonance curve with multivalued segments, instead of the simple shape of the
resonance curve for a harmonic interaction. For a relatively large average tip-sample

3 Correspondingly, the left “ear” also occurs on the high-frequency side of the resonance curve.
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Fig. 15.5 a Amplitude
distance curves with jumps
between the low-amplitude
branch and the
high-amplitude branch
shown for approach (red)
and retraction (green). b
Phase as function of the
oscillation amplitude during
approach (red) and retraction
(green). Phase values below
the −90◦ line correspond to
an attractive interaction
(low-amplitude branch),
while phase values above the
−90◦ line correspond to a
net repulsive interaction
(high-amplitude branch)
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distance of d1, the “ear” on the low-frequency side of the resonance curve visible
in Fig. 15.6a arises due to the attractive interaction. This assignment can be made
(locally) in the sense that the frequency shift to lower frequencies occurs for an
attractive interaction, found in the harmonic case. Thus a “local shift” of the resonance
occurs for amplitudes at which the tip dives into the corresponding interaction zone.
Due to this local shift of the resonance curve the amplitude at the free resonance
frequency is already reduced relative to the free amplitude (formation of the “ear” in
Fig. 15.6a).

For smaller tip-sample distances d3, an “ear” develops on the high-frequency side
(Fig. 15.6b) for large amplitudes due to the repulsive tip-sample interaction. Due to
this “ear” a low-amplitude branch and a high-amplitude branch develop. In Fig. 15.6b
the situation is shown in which the low-amplitude branch of oscillation disappears
at ω0. The dotted line in Fig. 15.6b indicates the situation for tip-sample distances
slightly smaller than d3, where no low-amplitude branch exists anymore at ω0. The
oscillation switches abruptly to the high-amplitude branch indicated by the red arrows
in Figs. 15.6b and 15.5a. The difference in amplitude between the two branches is
(only) about 1 nm. With the tip in the high-amplitude branch the amplitude decreases
when it approaches closer to the surface, i.e. smaller d (Fig. 15.5a).
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Fig. 15.6 Resonance curves
for different average
tip-sample distances d. The
driving frequency is
considered to be at the
resonance of the free
cantilever ω0. a For large
tip-sample distances (around
d1), at the lower turnaround
point the tip only reaches the
attractive regime, leading to
an “ear” on the
low-frequency side. b At
smaller tip-sample distances
of about d3 the lower branch
disappears at ω0 and a jump
to the high-amplitude branch
occurs (red arrow). c If the
tip-sample distances increase
again, the oscillation stays
on the high-amplitude
branch until the “ear” on the
high-frequency side
disappears and the jump
back to the low-amplitude
branch occurs (green arrow
in (c)). This figure is adapted
from [31]
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When the tip is subsequently retracted from the sample, the high-amplitude branch
disappears at ω0 for a tip-sample distance larger than d2 and the oscillation returns
abruptly to the low-amplitude branch (green arrows in Figs. 15.6c and 15.5a). Work-
ing in the bistable tip-sample distance regime, where the high- and the low-amplitude
modes exist, can always lead to the danger of switching between these solutions due
to noise or feedback problems at sharp features in the topography. In this case, an
amplitude setpoint outside the bistable region should be chosen.

Since the difference in the oscillation amplitude between the high-amplitude and
the low-amplitude branches is small (∼1 nm), a way to identify in which branch the
cantilever is oscillating is desired. As we will show in the following, this assignment
can be made via the phase φ. According to (15.12), φ < −90◦ corresponds to a net
attractive interaction, while φ > −90◦ corresponds to a net repulsive interaction. In
Fig. 15.5b, the double-valued dependence of the phase on the amplitude according to
(15.4) is plotted as a dashed gray line. The evolution of the phase in the intermittent
contact mode occurs as follows. As the average tip-sample distance d is reduced the
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tip reaches first the attractive tip-sample region leading to phase shift becoming more
negative than −90◦ according to (15.12) (red line in Fig. 15.6b). At amplitude A3,
the previously discussed jump from the low-amplitude branch to the high-amplitude
branch, i.e. to A

′
3, occurs. This results in a jump in the phase above −90◦ and

the phase approaches zero for smaller tip-sample distances. During the retraction
(increasing d), the green line is followed.4 Thus according to (15.12) the high-
amplitude branch with φ > −90◦ corresponds to a net repulsive interaction.

In total via the phase we can obtain the assignment that the low-amplitude branch
corresponds to φ < −90◦ (net attractive tip-sample interaction), while the high-
amplitude branch corresponds to φ > −90◦ (net repulsive interaction) and the mea-
surement of the phase gives direct information if imaging is performed in the low or
the high-amplitude branch.

When measuring the phase or the amplitude distance dependence A(d), a working
point either in the low-amplitude branch (net attractive) or in the high-amplitude
branch (repulsive interaction) can be selected for subsequent imaging. Depending
on the material imaged, different interaction regimes may be desired. For a soft
delicate sample the attractive interaction regime may be desired in order to minimize
the tip-sample interaction, while for a hard sample the repulsive regime may be
desired in order to penetrate a contamination layer on top of the hard sample.

Due to the bistable nature of the amplitude-distance behavior, the oscillation state
may switch from one to the other state. One reason for a change of the oscillation
state is a difference in the material properties. When scanning from material A to
material B (same height of the atoms), different material dependent force-distance
curves can, for instance, trigger a switch from the high-amplitude state on material
A to the low-amplitude state on material B. The smaller oscillation amplitude leads
to a reduction in the average tip-sample distance d by about ∼1 nm, which can be
mistaken for a topographic step. However, monitoring additionally the phase can
help to distinguish a real step in the topography from a border between different
materials. In the low-amplitude branch φ < −90◦, while in the high-amplitude
branch φ > −90◦. A purely topographic step (same material) is not associated with
a phase change. In this way, a true height change, e.g. due to a step edge (no phase
change), can be distinguished from a switch from the high-amplitude oscillation
state to the low-amplitude oscillation state due to different materials. This can lead
to material contrast which can be observed during scanning.5

Up to now we have considered the excitation frequency to be at the free resonance
frequency ωdrive = ω0. However, in tapping mode the driving frequency is often cho-
sen to be detuned, i.e. not exactly at but slightly above or below the free resonance
frequency. The implications of the detuned driving on the amplitude as a function
of tip-sample distance are summarized in the following [31]. If in tapping mode the

4 Here we used the dependence φ(A/Afree) while in an experiment the φ(d) is obtained. However,
the two dependences can be converted into each other using the (measured) A(d) dependence.
5 There are also other reasons for the switch between different oscillation sates. For instance, the
presence of a valley in the surface topography can enhance the attractive forces and thus change the
force-distance behavior locally, resulting in a switch to another branch of the oscillation state.
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Fig. 15.7 Amplitude as a
function of the average
tip-sample distance d for
driving frequencies a below
ω0, b at ω0, and c above ω0.
The curves are shown for
approach (red) and retraction
(green). As an exercise, the
dependences in (a)–(c) can
be deduced from
Fig. 15.6a–c This figure is
adapted from [31]

A
m

pl
itu

de

d

(b)

A
m

pl
itu

de

d

(a)

Retract

Retract

Retract

Approach

Approach

Approach

A
m

pl
itu

de
d

(c)

driving frequency is chosen lower than the free resonance frequency, the bistable
region is narrower and in most of the working points (amplitude setpoints) the oscil-
lation is stable in the high-amplitude branch as shown in Fig. 15.7a. This corresponds
to a stable operation with the tip being at the lower turnaround point in the repul-
sive interaction regime and is desirable for hard samples. If the driving frequency
is chosen larger than the free resonance frequency, the oscillation remains, down to
very low amplitudes on the low-amplitude branch and the bistable region extends
almost over the complete range of tip-sample distances as shown in Fig. 15.7c. This
can be a disadvantage in terms of possible instabilities. On the other hand, the low-
amplitude branch corresponds to an operation in the range of the attractive tip-sample
interactions. This can be desirable for imaging soft samples if repulsive tip-sample
interactions are to be minimized.

15.4 Energy Dissipation in Dynamic
Atomic Force Microscopy

In our discussion of the tapping mode up to now for simplicity we have considered
only conservative tip-sample interactions. When introducing dissipative interactions
in dynamic AFM in the small amplitude limit, we subsumed the dissipative part
of the tip-sample interactions in one number, the quality factor Qts, according to
(14.11). For the case of large amplitudes used in the tapping mode, the strength of

http://dx.doi.org/10.1007/978-3-662-45240-0_14
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the dissipative interaction is different at different distances occurring during one cycle
of oscillation. Qualitatively, the dissipative tip-sample interactions should have an
appreciable value only close to the lower turnaround point of the oscillation cycle in
tapping mode. Since the conservative and the dissipative part of the tip-sample inter-
action are a priori unknown, any modeling (e.g. by solving the equation of motion)
is difficult from the start. However, no matter how complicated the (conservative and
dissipative) interactions are, the law of energy (power) conservation holds.

Therefore, we will now extend our the previous approach and use the principle
of energy conservation to include also the dissipative tip-sample interaction in the
energy balance. In the steady-state, the power (average over one period) injected to
the cantilever system by driving the cantilever according to (15.1) is equal to the
power dissipated by the cantilever damping in the surrounding fluid plus the power
dissipated due to the tip-sample interaction, as

〈Pdrive〉 = 〈Pcant〉 + 〈Pts〉 . (15.13)

In the following, we analyze this power into and out of the driven cantilever-
tip-sample system. No assumptions on the tip-sample force are made, the only
assumption made in the following is that the oscillation under the influence of the
tip-sample force still remains sinusoidal, which is proven experimentally to be the
case [28]. For simplicity, we avoid assigning a sign to the power and consider all
(averaged) powers in (15.13) as positive.

The power pumped into the system by external driving of the cantilever was
calculated in (15.2) as6

〈Pdrive〉 = −1

2
k Adrive Aω sin φ. (15.14)

The cantilever damping by the fluid is assumed to be proportional to ż, as Fdamp
cant =

− mω0
Qcant

ż. Along the same lines as in (15.1), the power dissipated in the cantilever can

be calculated as

〈Pcant〉 =
〈

mω0

Qcant
ż2

〉
= 1

T

T∫

0

mω0

Qcant
A2ω2 sin2 (ωt + φ) = k A2ω2

2Qcantω0
. (15.15)

Due to (15.13), the power dissipated in the tip-sample interaction can be written as

〈Pts〉 = 〈Pdrive〉 − 〈Pcant〉 = k A2ω

2Qcant

(
Qcant Adrive sin (−φ)

A
− ω

ω0

)
. (15.16)

This result was obtained using the general law of energy (or power) conservation with-
out any assumptions about the nature of the tip-sample interaction. The tip-sample

6 Since φ < 0, 〈Pdrive〉 is positive.
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interaction enters on the right hand side of (15.16) via the experimentally measured
amplitude A. The frequencies relevant for the power of the oscillator are the actual
oscillation frequency ω and the oscillation frequency of the free cantilever ω0.

If the driving frequency ω is chosen at the resonance frequency of the free can-
tilever ω0, (15.16) can be written as7

〈Pts〉 = k A2ω0

2Qcant

(
Afree

A
sin (−φ) − 1

)
, (15.17)

with Afree = Qcant Adrive. Correspondingly, the dissipated energy per oscillation
period T results as

〈Ets〉 = 2πEosc

Qcant

(
Afree

A
sin (−φ) − 1

)
, (15.18)

with Eosc = 1/2 k A2 being the energy contained in the cantilever oscillation. The last
term in the bracket in (15.18) is proportional to the power dissipated by the cantilever
damping, while the first term in (15.18) is proportional to the total dissipated power.

In the case that no dissipative interactions are present (〈Ets〉 = 0), a simple relation
for the phase already obtained in (15.4) results as

φ = − arcsin

(
A

Afree

)
. (15.19)

We can rearrange (15.18) if we remember that Qcant = 2πEosc/〈Ecant〉 and we
then obtain the following expression for the phase

sin (−φ) = A

Afree

( 〈Ets〉
〈Ecant〉 + 1

)
. (15.20)

The second term in (15.20) is the contribution due to the elastic tip-sample interaction,
while the first term includes the contribution due to the dissipative interactions.

In the intermittent contact mode, the amplitude is kept constant by the feedback
and thus the phase remains constant during scanning (according to (15.19)) if no dis-
sipative tip-sample interaction is present. A phase change can therefore be exclusively
attributed to a dissipative tip-sample interaction and maps of the phase recorded as a
free signal (not used for feedback) correspond to maps of the dissipative tip-sample
interactions. Vice versa: Since A is kept constant by the feedback, a change of the
elastic tip-sample interaction does not lead to a phase change.

Now we consider as an approximation that 〈Ets〉 is a constant in (15.20), i.e.
not dependent on the oscillation amplitude A/Afree. This means that at the lower
turnaround point always the same energy is dissipated independent of the amplitude.

7 While we used here the principle of energy conservation to derive (15.17), this equation can be
obtained alternatively by multiplying (15.9) with ω0 A sin(ωt + φ) and integrating over one period.
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For this case the φ(A/Afree) dependence from (15.20) is displayed in Fig. 15.3 as a
dashed curve for 〈Ets〉 / 〈Ecant〉 = 0.1.

Finally, we give a quantitative example of the power dissipated into the tip-sample
interaction. All variables in (15.17) are either known or can be measured. In a tapping
mode experiment on a silicon wafer in air, a power dissipation of 0.3 pW was obtained
independent of the oscillation amplitude [28].

15.5 Properties of the Intermittent Contact
Mode/Tapping Mode

The intermittent contact mode allows high-resolution topographic imaging even of
soft samples. The greatest advantage of the tapping mode is related to the contam-
ination layer present at surfaces under ambient conditions. This thin contamination
layer, mostly consisting of water, results in enormous problems when using the non-
contact mode. This contamination layer masks the properties of the actual surface
under study below the contamination layer. More importantly, if the tip touches this
(water) contamination layer, unwanted capillary forces lead to a very strong unde-
sirable force component masking the actual forces from the surface under study.
In the case of the tapping mode, the tip passes through this contamination layer
and interacts with the actual surface. The strongest force contribution in the tapping
mode is the repulsive force at the lower turnaround point of one oscillation cycle.
The behavior with respect to the contamination layer is an advantage of the tapping
mode compared to the non-contact mode, where an unintentional touching of the
contamination layer can lead to strong unintended force contributions.

In the contact mode the tip is pressed onto the surface and the contamination layer
does not play a significant role. However, here the relatively strong (nN) vertical
force leads to strong lateral forces, resulting in wear or sample damage, as the tip
scans over the surface. The alternating tapping and motion out of the range of the
tip-sample interaction due to the large amplitude in intermittent mode inherently
prevents lateral forces causing damage (wear) during scanning. Due to the very short
contact to the surface, the surface material is not pulled sideways by shear forces
since the applied force is always vertical. The large oscillation amplitudes also allow
to use relatively soft cantilevers and nevertheless avoiding snap-to-contact. This
shows that the tapping mode has several important advantages over the other modes.
The tapping mode thus exploits the advantages of contact mode and non-contact
mode while it avoids their disadvantages. While the intermittent contact mode has
several advantages when imaging a surface, a disadvantage is that it gives no easy
access to quantities describing the tip-sample interaction like the force or the force
gradient, since these quantities are averaged in a non linear manner over the oscillation
amplitude.

Tapping mode imaging is implemented in ambient air by oscillating the cantilever
at or very near the cantilever resonance frequency at typical oscillation frequencies
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between 50 and 500 kHz. Amplitudes in the range of 10–100 nm are used in this mode,
when the tip is not in contact with the surface (free amplitude). Force constants in the
range between 10–50 N/m are usually used. The oscillation amplitude of the tip is
measured by the detector and input to the controller electronics. The feedback loop
then adjusts the tip-sample separation to maintain a constant setpoint amplitude for
instance 80–90 % of the free amplitude. In order to stabilize the oscillation in the
net repulsive interaction regime (high-amplitude branch), the driving frequency is
often chosen below the resonance frequency of the free cantilever, i.e. ω < ω0. It is
also found that larger oscillation amplitudes A tend to stabilize the high-amplitude
branch (repulsive interaction regime), while smaller amplitudes tend to stabilize the
low-amplitude branch for usual values of A/Afree ≈ 0.9.

As we have already seen, the amplitude has a monotonous dependence on the
tip-sample distance (Fig. 15.2b). This leads advantageously to a clear unambiguous
feedback signal. This is different from the frequency shift used as the feedback
signal, where the non-monotonous dependence on the tip-sample distance can lead
to serious instabilities as discussed in Sect. 17.3.

15.6 Summary

• The intermittent contact mode (tapping mode) is a detection mode, which is dif-
ferent from the AM-slope detection considered in the previous chapter: (a) the
oscillation amplitudes are large (typically 50 nm), reaching deep into the repulsive
regime and correspondingly the tip-sample force has a non-linear distance depen-
dence. (b) The driving frequency is at or very close to the free resonance frequency
ω0.

• The oscillation amplitude decreases linearly with decreasing average tip-sample
distance d. This amplitude reduction also occurs without any dissipative tip-sample
interaction due to a less efficient energy transfer off-resonance. The resonance
condition φ = −90◦ applying for the case of the free cantilever is left due to a
tip-sample interaction.

• An anharmonic tip-sample force leads to the coexistence of two vibrational modes
with a low-amplitude and a high-amplitude, corresponding to a net attractive and
repulsive interaction, respectively. Transitions between these modes occur at par-
ticular tip-sample distances, or when scanning from one material to another. These
modes can be distinguished by the phase, φ < −90◦ for the low-amplitude mode
and φ > −90◦ for the high-amplitude mode.

• The dissipative tip-sample interaction energy can be calculated via the energy con-
servation. The power dissipated into the tip-sample interaction can be determined
by measuring the oscillation amplitude and the phase.

• Maps of the phase signal in the intermittent mode of atomic force microscopy
correspond to maps of tip-sample dissipation.

• In contrast to the contact mode, in the tapping mode no sidewise frictional forces
are exerted on the sample minimizing the wear on delicate samples.

http://dx.doi.org/10.1007/978-3-662-45240-0_17


Chapter 16
Mapping of Mechanical Properties
Using Force-Distance Curves

The imaging modes considered in the previous chapters resulted mainly in
topographic imaging. Contours of constant force in the static mode, or constant
frequency shift in the dynamic AM mode, or constant amplitude in the tapping mode
are measured. In Chap. 13 we have seen that force-distance curves give important
information on the mechanical properties of the sample, like elasticity of the sam-
ple, adhesion properties and dissipation. The concept behind mapping of mechanical
properties by force-distance curves is to acquire a force-distance curve at each image
point and to extract images of elasticity, adhesion and other mechanical properties.

In the dynamic modes, the information about the tip-sample interaction is always
averaged over the oscillation cycle, which complicates the extraction of information
on the tip-sample interaction as a function of the tip-sample distance. Invoking force-
distance curves gives more direct access to the mechanical properties. This method
using force-distance curves for the mapping of mechanical properties of the sample
has different names: peak force tapping, force volume or pulsed force mode. Besides
access to the mechanical properties, this mode also allows high-resolution imaging,
it is a tapping mode under force control.

16.1 Principles of Force-Distance Curve Mapping

In measuring maps of force-distance curves, these curves are not acquired with a
frequency close to the resonance frequency of the cantilever, but at a much lower
frequency of several thousand Hz. Force-distance curves are acquired in the quasi-
static mode i.e. measuring the force by the (quasi-static) bending of the cantilever.
If several thousand force-distance curves are acquired per second, a force-distance
curve can be acquired at each image point, while still maintaining a reasonable
acquisition time of a few minutes for an image.

The force-distance curves considered in Chap. 13 were taken only at one point on
the sample within a acquisition time of typically a second. In force-distance curve
mapping, the curves are acquired in less than a millisecond. In order to prevent
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excitations at higher harmonics the linear change of the z-position with sharp edges
at the turnaround points is replaced by a sinusoidal excitation. The z-position of the
sample is changed (modulated) at a frequency of several kHz, as shown in Fig. 16.1a.
The larger z-values correspond to a large tip-sample distance with negligible tip-
sample force, while at the lower z-values the tip comes into contact with the sample.

In Fig. 16.1b the corresponding cantilever deflection is shown, which is propor-
tional to the tip-sample force. When the tip comes closer to the sample from region
A to B, the attractive force increases. At point B snap-to-contact occurs. The repul-
sive force increases towards point C . The peak force is reached at point C . This
peak force is of central importance and is used also as the signal for the z-feedback.

Fig. 16.1 a Sinusoidal
change of the z-position of
the tip or sample position
during the acquisition of the
force-distance curve. b
Tip-sample force as a
function of time for approach
and retraction. c Tip-sample
force as function of the
tip-sample distance. From
this curve, quantities like the
adhesion force Fadh, the
indentation depth dindent , or
the dissipation energy can be
retrieved and maps (images)
of these quantities can be
acquired. The dissipation
corresponds to the shaded
area between the approach
and the retraction curve.
Young’s modulus can be
determined by fitting a
model for the mechanic
contact to the approach
force-distance curve
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During retraction of the tip the repulsive force turns into an attractive adhesive force.
At point D the maximum attractive force is reached and snap-out-of-contact occurs.
After snap out of contact the tip-sample force is negligible and a cantilever ring down
of the free cantilever is observed with an oscillation at its resonance frequency. The
time constant of this exponential ring down is given by the damping of the cantilever
(region E). Thus in region E it is not the tip-sample force which is shown, but the
cantilever bending during ring down. This “false” force signal due to the cantilever
ring down is undesired and has to be distinguished from other features of interest
in the force-distance curve during the analysis of the curve. In region F , the tip has
reached its quasi-free equilibrium position, and it is moved to the next lateral position
(next image pixel) and the next force-distance curve will be acquired.

The force as a function of time can be converted into a curve of the force as
a function of the z-position. Further, taking also the measured cantilever bending
resulting from the force measurement into account, the dependence of the tip-sample
force can be obtained as a function of the tip-sample distance d = ztip − zsample,
which is shown schematically in Fig. 16.1c (cf. Fig. 13.5). From region A to B, a
very small attractive force is measured during approach. At the snap-to-contact, the
tip-sample distance decreases abruptly and the attractive force becomes abruptly
more negative (dashed line in region B). Approaching more closely, the tip-sample
force becomes repulsive and reaches the peak force (region C). The zero point for
the tip-sample distance d is chosen at the point where the force is zero. At this point,
the repulsive force at the tip apex is balanced by the attractive force from a larger
volume of the tip. Negative values of d correspond to an indentation of the tip into
the sample. Upon tip retraction from the surface, the force will be the same as for
the approach for conservative interactions. If there is some dissipative tip-sample
interaction (such as plastic deformation) the force during retraction will lie below
the force curve for the approach. The larger attractive (more negative) force during
retraction can be explained due to adhesion. At point D snap-out-of-contact occurs;
here the tip-sample distance d increases abruptly and the tip-sample force drops to
negligible values (dashed line in region E). In region F , the free cantilever state is
reached before the next force curve is acquired.

The measured peak force is used for the z-feedback, i.e. the measured peak force
is compared to a peak force setpoint and a feedback controller determines the appro-
priate z-signal needed in order to keep the measured peak force close to the setpoint.
This feedback on the peak force has an advantage compared to the intermittent con-
tact (tapping) mode. In tapping mode, the amplitude is kept constant, not the force. It
is an advantage if the force is controlled, since a high peak force can induce undesired
damage of the sample surface or the tip. Thus controlling the force to a sufficiently
small peak force is the best way to prevent unwanted sample and tip modifications.
Since in tapping mode the amplitude and not the (peak) force is controlled, undesir-
able large forces may occur during scanning. Controlling the peak force is a gentle
way of tapping, minimizing undesirably strong tip-sample interactions. Therefore,
the peak force tapping mode is not only useful for mapping mechanical properties,
but also for high-resolution imaging.

http://dx.doi.org/10.1007/978-3-662-45240-0_13
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16.2 Mapping of the Mechanical Properties of the Sample

In the following, it will be shown how the peak force tapping mode can be used to
determine the mechanical properties of the sample. For instance, the adhesion force
Fadh and the indentation depth dindent can be determined from each force-distance
curve, as indicated in Fig. 16.1c. These quantities can be represented as images of
(maximum) adhesion or indentation depth at the peak force used as the setpoint in
the feedback.

The dissipation energy can be obtained as the area between the approach and the
retraction curves, as

Ediss =
zmax∫

zmin

(
Fapproach − Fretract

)
dz, (16.1)

with Fapproach and Fretract being the forces during approach and retraction, respec-
tively. The dissipation energy can be represented by the shaded area in Fig. 16.1c. The
dissipation in the attractive regime (negative forces, which corresponds to dissipa-
tion due to adhesion) can even be distinguished from the dissipation in the repulsive
regime, and those quantities can be mapped separately.

Another quantity of interest which can be mapped is the slope of the force-distance
curve in the repulsive regime, which is related to the stiffness of the sample. More
quantitatively, the force-distance curves measured in the repulsive regime of the
tip-sample contact can be fitted to an appropriate model of the tip-sample contact,
for instance the Hertz model of the elastic contact, or other models also including
inelastic contributions. In principle, Young’s modulus can be obtained from a fit of
the model to the measured force-distance curve. However, several parameters enter
into the model which are often not known (precisely): the tip radius, the Young’s
modulus of the tip, and the Poisson ratio of the sample. If these parameters are
known or estimated, the Young’s modulus of the sample can be determined. Often it
is not necessary to determine the absolute value of Young’s modulus, but to detect
differences if different materials are present at different areas of the sample.

The parameters characterizing the sample properties can be extracted “online”
during scanning from the acquired force-distance curve using fast data processing.
In this case, only the maps of the resulting parameters are stored as data and the
individual force-distance curve is not stored. The challenge in this analysis is then
to distinguish the desired points of the force-distance curve (such as peak force
and maximum adhesive force) from undesirable features like the cantilever ring
down. In some cases the maximum due to cantilever ring down may become the
global maximum of the curve, while the peak force is only a local maximum. The
curve analysis algorithm has to reliably identify the desired information. This is
specifically important for the peak force, since this is used for the feedback and any
false determination of the peak force will corrupt the feedback and can lead to a
tip-sample crash. As an alternative to the “online” analysis each force-distance curve
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for each image point can also be stored and analyzed later (“off-line”). Of course
this means there is a large amount of data to be stored.

This approach to detect force data as a function of the distance above the sample
can also be generalized to quantities other than the force. For instance, the phase
can be acquired as a function of x , y, and z. This approach generates a data volume
which has to be analyzed properly in order to extract useful information.

16.3 Summary

• In the peak force tapping mode thousands of force-distance curves are measured
per second, one at each image point. The z-feedback for topographic imaging uses
the maximal (peak) force as the signal. This force control allows sample and tip
damage to be minimized.

• Parameters characterizing the mechanical properties of the sample are extracted
from the force-distance curves. Corresponding maps of adhesion, indentation,
dissipation, stiffness and other parameters are obtained.



Chapter 17
Frequency Modulation (FM) Mode
in Dynamic Atomic Force
Microscopy—Non-contact Atomic
Force Microscopy

In Chap. 15 we introduced the intermittent contact mode (tapping mode), which
is a very successful operation mode in dynamic atomic force microscopy. Since
this mode has so many advantages, why should we use any other mode? In this
chapter we introduce the FM detection scheme (often named non-contact atomic
force microscopy) which in some cases has advantages over the tapping mode:
(a) The FM detection scheme can be used with high Q cantilevers (Q >1,000,
occurring in vacuum). For high Q cantilevers the tapping mode results in unaccept-
ably long scanning times. (b) The inelastic dissipation in the tip-sample interaction
can be easily measured during scanning. (c) From the measured data the tip-sample
force can be obtained as a function of the distance.

In the FM detection scheme of AFM the cantilever does not oscillate at a fixed
driving frequency (as in the tapping mode), but always oscillates at resonance. If the
resonance frequency shifts due to a tip-sample interaction, the cantilever oscillation
frequency follows this shift. In the FM mode, the amplitudes are so large that the tip-
sample force cannot be approximated as linear. The frequency shift in the FM mode is
proportional to a weighted average of the tip-sample force over a cantilever oscillation
cycle. For large amplitudes, the frequency shift depends almost exclusively on the
tip-sample interaction at the lower turnaround point. We will describe in detail the
experimental setup and the different FM detection modes and compare the FM and
AM detection modes. The time response in FM detection is not limited for high
quality factors, as it is the case in AM detection. Therefore, the FM detection scheme
can be used for cantilevers with high quality factors, i.e. in vacuum.

17.1 Principles of Dynamic Atomic Force Microscopy II

In Chap. 14, we derived the frequency shift in the limit of small oscillation amplitudes,
i.e. the force was described as linear with the tip-sample distance in the range of the
oscillation amplitude. In this limit, the frequency shift is proportional to the force
gradient. However, for most cases of larger oscillation amplitudes or short-range
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Fig. 17.1 Scheme of the cantilever vibration illustrating the corresponding coordinates

forces this limit does not hold at all. The interaction between tip and sample changes
strongly on the scale of the vibrational amplitude of the cantilever.

In the following, we will consider a driven damped harmonic oscillator under
the influence of a non-linear tip-sample force Fts(d + z). The driving force is given
by an external sinusoidal oscillation zdrive = Adrive cos(ωt) of the cantilever base.
This driving oscillation corresponds to a force Fdrive = kzdrive. In FM detection, the
driving at ωdrive is always applied at the actual resonance frequency1 ω′

0, which we
call ω in the following, i.e. ω = ωdrive = ω′

0. The equation of motion for the driven
damped harmonic oscillator with an external tip-sample force Fts(d + z) added is
written according to (2.17) as

mz̈ + mω0

Qcant
ż + k(z − zdrive − �L) = Fts(d + z). (17.1)

The relevant coordinates are indicated in Fig. 17.1. The zero point for z (z = 0) is
given by the condition that the tip-sample force is compensated by the static cantilever
bending �L , cf. Fig. 14.1 and (14.3). In this case the tip-sample distance is d.

In spite of the fact that a non-linear tip-sample force is included into the
equation of motion, we approximate the solution z(t) by a harmonic oscillation
z(t) = A cos (ωt + φ). Since the oscillation in FM mode is always at resonance,
φ = −90◦ and thus z(t) = A sin (ωt). We will not solve the equation of motion
(17.1), however, we will calculate the shift of the resonance frequency. The relation
between tip-sample force and frequency shift � f is more complicated than the sim-
ple proportional relation between � f and the force gradient obtained in the small
amplitude limit (14.7). For the case of the non-linear tip-sample force, the final result
will be that the frequency shift corresponds to a properly weighted average of the
tip-sample force over an oscillation period.

An expression for the frequency shift can be derived if we insert the explicit
expressions for the harmonic oscillation of the cantilever z(t) and its derivatives as

1 Under the influence of the tip-sample force the resonance frequency of the free cantilever, ω0,
shifts to ω′

0.

http://dx.doi.org/10.1007/978-3-662-45240-0_2
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http://dx.doi.org/10.1007/978-3-662-45240-0_14
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well as the expression for ωdrive into (17.1). Subsequently we multiply (17.1) by
z(t) = A sin ωt and integrate over one period resulting in the following expression

−
T∫

0

mω2 A2 sin2 ωt dt +
T∫

0

mω0

Qcant
A2ω cos ωt sin ωt dt +

T∫

0

k A2 sin2 ωt dt

−
T∫

0

k Adrive A cos ωt sin ωt dt −
T∫

0

k�L A sin ωt dt

=
T∫

0

Fts(d + z(t))A sin ωt dt. (17.2)

Since the integral of cos ωt sin ωt over one period vanishes, the second and fourth
terms on the left side in (17.2) vanish. The last term on the left side vanishes as well,
since it is proportional to an integral of sin ωt over one period. Thus (17.2) can be
written as

(k − mω2)A2

T∫

0

sin2 ωt dt =
T∫

0

Fts(d + z(t))A sin ωt dt. (17.3)

The integral
∫

sin2 ωtdt within the limits from 0 to T can be calculated as 1
2 T = π

ω ,
which results in

(k − mω2)A2 π

ω
=

T∫

0

Fts(d + A sin ωt)A sin ωtdt. (17.4)

The left hand side of (17.4) can be further evaluated as follows

A2π

ω

(
k − mω2

)
= A2mπ

ω

(
k

m
− ω2

)

= A2mπ

ω

(
ω2

0 − ω2
)

= A2mπ

ω
(ω0 + ω) (ω0 − ω) . (17.5)

Since the tip-sample force is considered as a small perturbation, the frequency shift
will be small as well, i.e. ω ≈ ω0 and (ω0 + ω) ≈ 2ω. Thus, the left-hand side of
(17.1) can be further written as

2πm A2(ω0 − ω) = −4π2m A2( f − f0) = −4π2m A2� f. (17.6)

Now also taking the right-hand side of (17.4) into account the following expression
for the frequency shift arises
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� f = − 1

4π2m A2

T∫

0

Fts(d + A sin ωt)A sin ωt dt. (17.7)

The time average of Fts(t) times z(t) over one period can be written as

〈Fts(t) · z(t)〉 ≡ 1

T

T∫

0

Fts(d + A sin ωt)A sin ωt dt. (17.8)

Using the above equation, (17.7) can be rewritten as the following expression for � f
(using T = 1/ f0 and m = k/ω2

0)

� f = − f0

A2k
〈Fts(t) · z(t)〉. (17.9)

The frequency shift is proportional to 〈F · z〉, which is the time average of force
times distance (tip-sample distance) over one oscillation period. The dependence as
f0/k on the resonance frequency and the spring constant is the same as in the small
amplitude limit (14.8). In contrast to the case of small amplitudes, the frequency shift
depends as 1/A2 on the oscillation amplitude.

As a consistency check we insert the force for a harmonic oscillator Fts = −k′z
as an approximation in the case of the small amplitude limit. This results in

〈Fts · z〉 = −〈k′ · z2〉 = 1

T

T∫

0

−k′ A2 cos2 ωtdt = −1

2
k′ A2, (17.10)

which recovers the result of the frequency change found for the small amplitude limit
� f = f0k′/(2k) (cf. 14.8). In analogy to this result for the small amplitude limit an
effective tip-sample spring constant can generally be defined as

k′ ≡ −2〈Fts · z〉
A2 , (17.11)

in order to recover an equation of the same form as in the small amplitude limit
� f = f0k′/(2k).

17.1.1 Expression for the Frequency Shift

When analyzing the time average in (17.10) qualitatively, it can be seen that the parts
of the oscillation path which make the largest contribution to the frequency change
are the turnaround points. Here the velocity is lowest, so the tip stays longest at these
positions (strongest contribution to the integral over time). The equilibrium position

http://dx.doi.org/10.1007/978-3-662-45240-0_14
http://dx.doi.org/10.1007/978-3-662-45240-0_14
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is passed quickly at the largest velocity, leading to a small contribution to the time
average. This dominant contribution of the turnaround points can be obtained more
quantitatively if we replace the time average in (17.10) by a spatial average. A spatial
average over the positions of the tip in one oscillation cycle is also more appropriate
because the tip-sample force is primarily a function of tip-sample distance. For the
average 〈F · z〉 we wrote in (17.10)

〈Fts(d + z) · z〉 = 1

T

T∫

0

Fts(d + z(t)) · z(t)dt, (17.12)

with z(t) = A sin ωt . In order to convert the time average to a spatial average over
the trajectory, we substitute in (17.12) the variable t by z as

dz

dt
= Aω cos(ωt) = Aω

√
1 − sin2(ωt) = ω

√
A2 − z2. (17.13)

Therefore, the average 〈F · z〉 can be written as

〈Fts(d + z) · z〉 = 1

T

T∫

0

Fts(d + z(t)) · z(t)dt (17.14)

= 2

ωT

+A∫

−A

Fts(d + z) · z√
A2 − z2

dz

= 1

π

+A∫

−A

Fts(d + z) · z√
A2 − z2

dz.

Combining (17.9) and (17.14) the following expression for the frequency shift is
obtained

� f = − f0

πk A2

+A∫

−A

Fts(d + z)
z√

A2 − z2
dz = − f0

πk A2

+A∫

−A

Fts(d + z)g(z)dz.

(17.15)

This can be interpreted as the integral of the tip-sample force from −A to A with
a weighting function g(z). Due to this weighting function, the largest contributions
to the frequency shift come from the regions close to the turnaround points of the
oscillation z = ±A. Here the weighting function diverges (denominator becomes
zero) as seen in Fig. 17.2a. From the weighting function alone a large contribution
to the frequency shift is expected at both turnaround points. However, the second
factor in the integrand of (17.15), the tip-sample force Fts, must also be considered.
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Fig. 17.2 The tip-sample
force, the weighting function
g(z), and their product are
displayed as a function of
distance z for two different
oscillation amplitudes A. In
the large amplitude limit a
the frequency shift signal is
mainly picked up close to the
lower turnaround point of the
oscillation, while in the
smaller amplitude case b
contributions to the
frequency shift are picked up
during the whole oscillation
cycle with the main
contributions coming from
both turnaround points. For
better comparison, the lower
turnaround point is kept
constant in (a) and (b)
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For the situation of a large amplitude shown in Fig. 17.2a the contribution to the
frequency shift at the upper turnaround point z = A is eliminated by the vanishing
tip-sample force Fts. The product of weighting function and tip-sample force, i.e.
the integrand of (17.15) is shown as a green line in Fig. 17.2a. In total, for large
amplitudes the contributions to the frequency shift come only from regions close to
the lower turnaround point.

The case of a smaller oscillation amplitude is shown in Fig. 17.2b. For better
comparability, the lower turnaround point of the oscillation was placed in the same
position as in Fig. 17.2a. In this case, the integrand of (17.15) provides contributions to
all parts of the oscillation cycle, since the force has appreciable values throughout the
oscillation. The largest contributions to the frequency shift arise from both turnaround
points, as shown by the green line in Fig. 17.2b.

Comparing the large amplitude case to the small amplitude case (Fig. 17.2a, b) we
see that for the large amplitude case only the region close to the lower turnaround point
contributes to the frequency shift, while the major part of the oscillation path does
not result in a contribution to the frequency shift. In contrast, for small amplitudes
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contributions to the frequency shift arise from all parts of the oscillation cycle. This
means that for smaller oscillation amplitudes a stronger frequency shift signal is
expected. In addition to this contribution from the integral in (17.15) also the pref-
actor 1/A2 enhances the frequency shift for small amplitudes. If we compare this
amplitude dependence of the frequency shift, we note that in the previously treated
small amplitude limit (14.8) the frequency shift was found to be independent of the
oscillation amplitude. The strength of the signal is one issue, another is the corre-
sponding noise, which also increases with decreasing amplitude, as will be discussed
in Chap. 18. Together, the important figure of merit, the signal-to-noise ratio, will be
obtained.

Due to the antisymmetric behavior of the weighting function with respect to the
point of origin of the oscillation, a constant force will not lead to a frequency shift.
This corresponds to the result obtained in the small amplitude limit that a constant
force induces no frequency shift.

Often the total tip-sample force is considered as a superposition of different force
contributions. Since the force enters linearly in (17.15) the total frequency shift can
be split into contributions arising from the individual forces.

In this chapter, we have considered up to now conservative tip-sample interactions.
In this case, the force is the same for a certain tip-sample distance independent of the
direction of motion either for the approach towards the sample or for the retraction
from the sample. For a dissipative tip sample interaction the forces at a certain point
can be different for approach and retraction and this has to be considered. In this case,
the tip-sample force in (17.15) can be replaced by Fts = (Fts,approach +Fts,retraction)/2
[31, 32].

17.1.2 Normalized Frequency Shift in the Large
Amplitude Limit

Up to now the coordinates have been chosen such that the reference for the position
of the cantilever tip z was the equilibrium position of the cantilever (Fig. 17.1). This
is the position in which the tip-sample force is compensated by the static bending
force of the cantilever, also called the average tip position. In some cases, the lower
turnaround point of the oscillation is a more useful reference point. Therefore, we
now choose as a new distance variable u = z + A in order to describe the tip position
relative to the lower turnaround point (Fig. 17.1). If we substitute z = u − A and
express the tip-sample distance as d + z = d − A + u the frequency shift (17.15)
results in

http://dx.doi.org/10.1007/978-3-662-45240-0_14
http://dx.doi.org/10.1007/978-3-662-45240-0_18
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� f = − f0

πk A2

2A∫

0

Fts(d − A + u)(u − A)√
A2 − (u − A)2

du

= − f0

πk A2

2A∫

0

Fts(d − A + u)(u − A)√
(2A − u)u

du. (17.16)

In the following, we consider the limit of a large oscillation amplitude, i.e. the
oscillation amplitude A is much larger than the range of the tip-sample force. In this
case the integrand in (17.15) or (17.16) has appreciable values only at tip positions
very close to the lower turnaround point, as also indicated by the green line in
Fig. 17.2a. The integrand Fts · g becomes negligible for larger values of u which,
however, are still much smaller than A. Therefore, we take the limit u 	 A and
extend the integration limit to infinity, which results in

� f = f0

πk A2

∞∫

0

Fts(d − A + u)A√
2Au

du = f0√
2πk A3/2

∞∫

0

Fts(d − A + u)√
u

du .

(17.17)

The dependences on resonance frequency and spring constant are the same as for
the small amplitude limit (14.8). Furthermore, the frequency shift is proportional to
A−3/2.

The expression for the frequency shift in (17.17) contains two contributions. The
frequency shift depends on the tip-sample force and also on the cantilever and exper-
imental parameters. In order to separate the parameters out, a normalized frequency
shift γ can be defined as

γ = � f
k A3/2

f0
. (17.18)

The normalized frequency shift has the following significance: Multiplying the exper-
imentally measured frequency shift� f by the factor k A3/2/ f0, the expression (17.17)
can be written as

γ = 1√
2π

∞∫

0

Fts(d − A + u)√
u

du . (17.19)

The normalized frequency depends only on an integral over the tip-sample force,
while the dependence on the experimental parameters k, f0, and A is factored out.

The normalized frequency shift is particularly useful in order to compare exper-
imental results obtained using different cantilevers (with different spring constants,
and resonance frequencies) or results obtained using different oscillation amplitudes.
The influence of all these parameters is factored out using the normalized frequency
shift. In Fig. 17.3a measurements on a graphite sample are shown. The frequency
shift is plotted as a function of tip-sample distance. Different frequency shift curves

http://dx.doi.org/10.1007/978-3-662-45240-0_14
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Fig. 17.3 a Experimentally measured frequency shift on a graphite sample as a function of the
average tip-sample distance d for different values of the oscillation amplitude. The curves are shifted
along the horizontal axis in order to make them comparable [33]. b If the normalized frequency
shift is used as vertical axis, all curves for different amplitudes collapse to one curve, showing that
the normalization has factored out the dependence on the amplitude (reproduced with permission
from [33])

are obtained, for different oscillation amplitudes (always using the same cantilever).
According to the previously obtained dependence, the measured frequency shift
increases with decreasing oscillation amplitude. In Fig. 17.3b the normalized fre-
quency shift is plotted, showing that all curves for different amplitudes collapse to
one curve. This demonstrates the usefulness of the normalized frequency shift.

Now we evaluate the normalized frequency shift for a very simple model force
which has a constant value of F0 from the lower turnaround point up to a distance λ
and is zero for larger distances. For this case, the normalized frequency shift can be
evaluated using (17.19) as

γ = F0√
2π

λ∫

0

u−1/2du =
√

2

π
F0

√
λ. (17.20)

To give some numbers: For f0 = 200 kHz, F0 = 2 nN, A = 10 nm, k = 10 N/m
and λ = 0.1 nm a normalized frequency shift of 9 fN

√
m results, corresponding to a

frequency shift of � f = 180 Hz. For an exponentially decaying force

F(z) = F0e−u/λ, (17.21)

the corresponding normalized frequency shift (17.19) can be calculated in the large
amplitude limit as [34]

γ = 1√
2π

F0
√

λ, (17.22)
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which is (apart from a constant factor) the same result as obtained for a constant
force F0 with a range λ, shown in (17.20). Also for other forms of the tip-sample
interaction, such as the Lennard-Jones interaction, the normalized frequency shift
can be found in the literature [34].

17.1.3 Recovery of the Tip-Sample Force

In this chapter, we have derived equations of the (normalized) frequency shift for a
given tip-sample force. Actually the reverse is desirable: It is desirable to recover
the tip-sample force from the measured frequency shift. However, due to the integral
present in (17.15) this equation cannot easily be inverted analytically to a solution
for Fts(� f ). In the small amplitude limit the obtained equation

� f (d) = − f0

2k

∂Fts(d + z)

∂z

∣∣∣∣
z=0

, (17.23)

can be inverted to

Fts(d) = 2k

f0

∞∫

d

� f (z′)dz′. (17.24)

The integration up to infinity shows that the frequency shift should be measured up to
a position relatively far from the surface. For larger oscillation amplitudes, (17.15)
can be inverted using approximations which allow the determination of the force
with an accuracy of 5 % [32, 35].

17.2 Experimental Realization of the FM Detection Scheme

We have mentioned that in the FM detection mode the cantilever oscillation is always
at resonance, i.e. it always follows the resonance frequency which changes under the
influence of the tip-sample force. Now we will describe how this is achieved by the
experimental setup. In this section, we introduce detection schemes which are used
in the FM detection mode. Here it is not the amplitude change that is measured in
response to a shift of the resonance frequency, but rather the shift of the resonance
frequency itself is measured.

17.2.1 Self-excitation Mode

In the self-excitation mode the cantilever itself as a harmonic oscillator is the
frequency-determining element in an oscillator circuit. A positive feedback is used
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Fig. 17.4 Schematic of an FM detection setup operated in the self-excitation mode. In the circuit
the measured cantilever oscillation signal is phase shifted and fed back to the actuator driving
the cantilever. In addition to this (inner) oscillator feedback loop, the measurement of the shift of
the resonance frequency �ω is used in an outer z-feedback feedback loop in order to control the
tip-sample distance

in order to self-excite the cantilever. A schematic of the implementation (Fig. 17.4)
consists of an oscillator loop in which the measured oscillation signal is fed back
(after a phase shift) as the driving signal of the cantilever. We will first discuss some
essentials of this oscillator feedback loop and subsequently discuss its experimental
realization. In addition to this oscillator feedback loop, the measured frequency shift
of the resonance frequency �ω is used in an outer z-feedback feedback loop in order
to control the tip-sample distance.

In a mechanical harmonic oscillator oscillating at resonance there is a phase shift
of −90◦ between the displacement of the cantilever tip and the mechanical excitation,
i.e. the cantilever oscillation is lagging the excitation. In the self-excitation scheme
the measured cantilever oscillation signal is fed back as the excitation signal into the
cantilever driving the piezo actuator (Fig. 17.4). In order to excite the cantilever with
the correct resonance phase, a phase shift of +90◦ has to be applied to the oscillation
signal before feeding it back as the driving signal. This phase shift “compensates”
the −90◦ phase shift between mechanical excitation and oscillation of the cantilever.
For simplicity, we neglect all other phase shifts present in the loop, for instance in the
preamplifier. The detection of the cantilever deflection (by the photodiode and the
preamplifier in the current example) is so fast that the deflection signal is sampled
many times during one oscillation.

Since there is no external oscillator included driving the cantilever, the question
arises as to how the cantilever oscillation is excited in the first place. The cantilever is
thermally excited in a broad frequency range. Thermal excitation can be considered
as white noise, i.e. having frequency components at all frequencies (cf. Chap. 18).
If a frequency component of the thermal noise does not “hit” the resonance, the
oscillation amplitude at this frequency will be small. The frequency component
of the white noise which “hits” the resonance will be amplified Q times due to
the resonance enhancement (transfer function) of a harmonic oscillator at the reso-
nance frequency. Therefore, while uniformly excited over a wide frequency range by

http://dx.doi.org/10.1007/978-3-662-45240-0_18
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thermal noise, a large oscillation amplitude occurs only at the resonance frequency.
Due to this resonance enhancement the self-excitation mode self-excites its oscilla-
tion at the resonance frequency from thermal noise. This self-excitation works best
for cantilevers with high quality factors. In the case of systems with low quality fac-
tors (like measurements in liquids), starting the self exciting oscillation is a problem.
Also if the cantilever has multiple resonances, the self-excitation mode can be a bad
choice. These problems are overcome in the PLL tracking mode of FM detection,
which will be discussed in Sect. 17.2.3.

Another question is: Does the oscillation of the cantilever follow a change of
the resonance frequency in the self-excitation mode? Let us assume an instantaneous
change of the resonance frequency of the cantilever due to a change of the tip-sample
interaction.2 In the self-excitation mode, the cantilever is fed by its own oscillation.
If the phase of the oscillator feedback loop is −90◦, this means that the oscillator is
automatically always fed at its resonance frequency. Due to this driving at resonance
condition, the actual oscillation frequency will adapt to the new resonance frequency
very fast.

This instantaneous adaption of the oscillation to the new resonance frequency
can be demonstrated by including a term describing the self-oscillation loop in the
equation of motion of the harmonic oscillator and subsequently solving this equation
numerically. The self-excitation can be described in the equation of motion (2.17),
replacing the driving term by the feedback term ω2

0/Qz(t − t0) [36]. The equation
of motion for a harmonic oscillator with self-excitation then reads

z̈ + ω0

Q
ż + ω2

0z = ω2
0

Q
z(t − t0). (17.25)

The time shift t − t0, with which the cantilever deflection signal is fed back as the
driving signal z(t − t0), corresponds to a phase shift φ0 = ωt0, which is set to
−90◦. In order to demonstrate the tracking capability of the self-excitation mode,
i.e. the fact that the actual cantilever oscillation frequency follows the change of the
resonance frequency, the numerical solution of the equation of motion is analyzed.
The response of the cantilever oscillation to an instantaneous change of the resonance
frequency from ω0 to ω′

0 is simulated. Does the cantilever oscillation z(t) follow the
resonance frequency shift (tracking capability), and how rapidly is the new steady-
state attained?

In Fig. 17.5 the deflection z(t) obtained from the simulation is shown as a red
line. The quick adaption of the oscillation to the new increased resonance frequency
can be seen from the continuously increasing shift of the red curve relative to the
reference curve (black line), corresponding to an oscillation without a change of the
resonance frequency. In spite of the very large change of the resonance frequency
of �ω/ω0 = 5 × 10−3, no transient occurs at t = 0. This is very different from

2 For the case of AM detection, we have seen in Sect. 14.5 that after a change of the resonance
frequency of the cantilever the new steady-state amplitude and phase are reached only after a large
time constant τcant = 2Q/ω0, corresponding to about Q oscillations.

http://dx.doi.org/10.1007/978-3-662-45240-0_2
http://dx.doi.org/10.1007/978-3-662-45240-0_14
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Fig. 17.5 Deflection z(t) obtained from the simulation of a damped harmonic oscillator with self-
excitation included in the equation of motion. At time t = 0 the resonance frequency of the harmonic
oscillator changes from f0 = 1 MHz by a large value of � f = 5 kHz. The simulated deflection
(red line) is compared to the case without a change of the resonance frequency (black line). The
fast adaption to the higher resonance frequency can be seen by a shift of the red curve with respect
to the black reference curve. In spite of the large frequency shift assumed, the difference between
the two curves is negligible at the time at which the resonance frequency changes (t = 0). This
demonstrates the tracking capability of the self-oscillation mode with a very short time constant

AM detection, where a transient of about Q oscillation occurs before the oscillation
has adapted to the new steady-state. The response of the cantilever oscillation to a
change of the resonance frequency occurs instantaneously without a transient. After
the change of the resonance frequency at t = 0 the amplitude remains constant.
This is the case since the oscillation always remains in resonance. This is different
from the AM case where the oscillation at ωdrive is off-resonance after a change of
the resonance frequency. This leads to a reduced amplitude after a time constant of
about Q oscillations in the AM mode, as seen in Fig. 14.8a.

The reason for the much shorter time constant in the self-excitation mode of the
FM detection compared to the AM detection mode (cf. Sect. 14.5) can alternatively
(to the analysis of the solution of the equation of motion) be rationalized by con-
sidering the change of the energy of the cantilever oscillation upon a change of the
resonance frequency. The reason for the occurrence of the response time is that it
takes time to transfer energy into, or remove energy from, the cantilever system
during a transition to a new state with different amplitude/frequency. In the fol-
lowing, we will compare the energy change during this transition for the AM and
FM modes. The energy difference between the free oscillator and the state with

http://dx.doi.org/10.1007/978-3-662-45240-0_14
http://dx.doi.org/10.1007/978-3-662-45240-0_14
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tip-sample interaction present are compared for the two cases AM detection and FM
detection.3

In the AM mode (e.g. tapping mode), a typical setpoint amplitude is 90 % of the
free amplitude. The energy difference between the free oscillator and the oscillator
with tip-sample interaction present results as

�EAM = Efree − Ets = 1

2
mω2

0 A2 − 1

2
mω2

0(0.9A)2 = 0.19Efree. (17.26)

In FM detection, the change of the energy occurs due to a change of the oscillation
frequency, not the amplitude, which is kept constant in FM detection. A change of
the resonance frequency from ω0 to ω′

0 leads to an energy change of

�EFM = Efree − Ets = 1

2
mω2

0 A2 − 1

2
mω′2

0 A2

= 1

2
mω2

0 A2

(
1 − ω′2

0

ω2
0

)
≈ Efree

2�ω

ω0
. (17.27)

Typical values for the frequency shift in the FM detection mode are �ω/ω0 = 10−4.
Due to the small frequency shifts involved, the energy difference in FM mode is very
small. According to (17.27) the energy change between the free cantilever and the
cantilever under tip-sample interaction is 2 × 10−4 Efree in the FM mode, which is
thousand times smaller than in the AM mode according to (17.26).

According to the definition of the Q-factor in (2.41), a damped harmonic oscillator
can gain/lose roughly 1/Qth of its energy in per cycle Ediss = 2πEosc/Q. Thus for
a Q factor of 10,000 an energy of 6 × 10−4 Efree can be dissipated per cycle, which
is three times more than the energy change occurring in the FM mode. Hence the
FM mode is not limited by slow response times for high Q-factors occurring for
operation under vacuum conditions, as is the case for AM detection.

The fundamental reason for the slow response in AM detection is that a large
energy change is required in order to change the amplitude, while in the FM detection
scheme the energy change due to a change of the oscillation frequency of the sensor is
much smaller, increasing the intrinsic bandwidth of the FM detection scheme. How-
ever, to detect a frequency shift of e.g. �ω = 10−4ω0 and below will require a certain
measurement (averaging) time which reduces the intrinsically high bandwidth.

After clarifying the fundamental issues i.e. phase shift of +90◦ in order to main-
tain the resonance phase, self-excitation of the oscillator from thermal noise, and
the tracking of the shifted resonance frequency, we now discuss the experimental
realization of the outer z-feedback loop.

3 This transition from the free state to the state with tip-sample interaction present (working point)
gives an upper limit for energy changes occurring during scanning. Deviations from the setpoint
values (amplitude/frequency shift) under feedback operation are much smaller than the deviations in
amplitude/frequency shift between the free cantilever and the situation with tip-sample interaction
present.

http://dx.doi.org/10.1007/978-3-662-45240-0_2
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As discussed above, in the self-excitation mode the frequency of the cantilever
oscillation automatically follows the resonance frequency of the cantilever. This
frequency shift is measured by the frequency measurement unit in Fig. 17.4. We
will go into the details of the frequency measurement later. For the moment let us
assume that the frequency measurement unit delivers a voltage signal proportional
to the frequency shift. This frequency shift signal is used as the feedback signal
in order to control the tip-sample distance (z-feedback) in a second outer feedback
loop. A fixed frequency shift is chosen as the setpoint and corresponds to a certain
tip-sample distance. During an xy-scan a height contour of constant frequency shift
is considered as the topography of the sample.

17.2.1.1 Amplitude Control and Dissipation

In FM detection, conservative and dissipative tip-sample interactions can be mea-
sured separately. The conservative part is measured via the measurement of the
frequency shift, as discussed above. A dissipative tip-sample interaction leads to
a reduction of the amplitude at resonance, but does not change the resonance fre-
quency, as discussed in Fig. 14.9. Therefore, in FM detection the conservative tip-
sample interaction and the dissipative tip-sample interaction can be separated by
measuring the frequency shift on the one hand, and the amplitude change on the
other hand. In the actual implementation, the oscillation amplitude is controlled to a
fixed value by adjusting the excitation amplitude. If energy is dissipated by the tip-
sample interaction the oscillation amplitude would decrease. However, an increased
excitation amplitude will restore the desired (setpoint) oscillation amplitude. This
amplitude-controlling part of the self-excitation scheme is included in the setup
shown in Fig. 17.6.

Phase
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Amplitude
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Oscillator feedback loop

z-feedback loop

Frequency shift
measurement

Sample
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Photodiode

z-feedback controller

Driving signal
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z-Signal
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= Dissipation signal
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Fig. 17.6 Schematic of an FM detection setup operated with self-excitation including the amplitude
control part. The cantilever oscillation amplitude is measured and maintained at a setpoint value
by multiplying the driving signal by a proper multiplication factor. This factor relates to the energy
dissipated by the tip-sample interaction

http://dx.doi.org/10.1007/978-3-662-45240-0_14
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In order to maintain the oscillation amplitude at a certain setpoint value, the
following scheme is applied. The amplitude of the cantilever oscillation signal is mea-
sured by an amplitude detection scheme (amplitude measurement block in Fig. 17.6).
In a simple implementation an RMS-amplitude-to-DC converter can be used, in
which the signal is rectified and low-pass filtered, resulting in a DC voltage propor-
tional to the oscillation amplitude. The difference of this DC voltage to the amplitude
setpoint value is taken as the error signal for an amplitude PI controller. The phase-
shifted driving signal is multiplied by the appropriate amplitude factor obtained from
the PI controller. In this way a constant cantilever oscillation amplitude is maintained
by adjusting of the amplitude of the driving signal.

The amplitude multiplication factor in the amplitude control depends on the tip-
sample dissipation energy as follows. If energy is lost by an increasing tip-sample
dissipation, the oscillation amplitude decreases. This is detected by the amplitude
detection unit and compared to the desired amplitude setpoint. The output of the
amplitude control unit (PI controller) is a multiplication factor by which the driving
signal is multiplied in order to generate a constant cantilever oscillation amplitude.
Therefore, this amplitude multiplication voltage can also serve as an output signal
related to the dissipation. This dissipation signal can be recorded as a free signal dur-
ing a scan. The relation between the oscillation amplitude and the energy dissipated
by the tip-sample interaction is given by (15.18).

The 90◦ phase shift applied in the feedback circuit in order to drive the cantilever at
resonance is an idealization. In practice additional phase shifts of other components
(preamplifier) in the circuit have to be compensated. The phase shift in the box
called the phase shift in Fig. 17.6 is adjusted (deviating from 90◦) in such a way that
a minimum driving amplitude is required in order to establish a certain oscillation
amplitude of the cantilever (resonance condition).

To summarize, in the self-excitation mode the oscillation signal is fed back as the
driving signal with a 90◦ phase shift. This sustains an oscillation which always follows
the resonance frequency of the cantilever quasi instantaneously. The following actual
measurement of this frequency will be discussed next. The amplitude multiplication
factor applied to the measured oscillation signal provides information about the
dissipation of the tip-sample interaction. Due to amplitude control, the cantilever
oscillates at a constant amplitude. With high quality factor sensors, the oscillation
will start by itself excited by thermal noise.

17.2.2 Frequency Detection with a Phase-Locked Loop (PLL)

There are several ways to measure a frequency (shift). In FM AFM the phase-locked
loop detection (PLL) method is used often for this purpose, because with this method
frequency shifts can be measured with high accuracy in a wide frequency range. As a
starting point, we demonstrate that a change of the frequency of an oscillation can be
alternatively expressed as a time-dependent phase. If the frequency of an oscillation is
ω, the oscillation can be written as cos(ωt +φ0). If the oscillation frequency changes

http://dx.doi.org/10.1007/978-3-662-45240-0_15
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at t = 0 form ω to ω+δω, the oscillation can be expressed as cos [(ω + δω) t + φ0].
However, alternatively this expression can be rewritten as

cos [(ω + δω) t + φ0] = cos [ωt + (δωt + φ0)] = cos (ωt + φ(t)) , (17.28)

with φ(t) = δωt + φ0. Thus a frequency change can also be expressed as a time-
dependent phase φ(t) which increases linearly with time, as shown in Fig. 17.7. The
slightest frequency change corresponds to a linearly increasing phase signal. If the
phase φ(t) is zero (or generally constant), the two frequencies are exactly the same.

In the following, the inner working of the frequency shift measurement (box
in Fig. 17.6) will be explained for the case that a PLL is used for the frequency
measurement. In a PLL the frequency of an internal oscillator is controlled to match
(follow) the frequency of the cantilever oscillation.

A PLL used in AFM is shown in Fig. 17.8 and consists of three main components:
a phase detector, a Voltage-Controlled Oscillator (VCO), and a controller. First we
introduce the phase detector and the VCO. Subsequently, their interaction in a phase-
locked loop is described.

In the phase detector, the phase of the cantilever oscillation signal Vcant ∝
cos(ωcantt) is compared to the phase of the signal from the voltage-controlled oscil-
lator Vvco ∝ cos(ωvcot + φ0) and the relative phase φ(t) is detected. In the phase
detector, the two signals are multiplied and due to a mathematical identity the product
can be written as

Vcant · Vvco ∝ 1

2
(cos [(ωcant + ωvco)t + φ0] + cos [(ωvco − ωcant)t + φ0]) .

(17.29)
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Fig. 17.8 The phase-locked loop consists of three main components: a phase detector, a Voltage-
Controlled Oscillator (VCO) and a controller. These are combined to form a feedback loop in which
the phase detector detects the phase difference between the cantilever oscillation signal Vcant and
the VCO signal Vvco. The controller regulates the VCO frequency to a vanishing Vphase. This means
that the VCO frequency adapts the cantilever frequency ωvco = ωcant and the phase between the
cantilever oscillation and the VCO signal is φ0 = 90◦. Thus the frequency of the VCO follows the
cantilever oscillation frequency and a voltage proportional to the frequency shift V�ω is obtained
at the output of the controller

The low-pass filter in the phase detector removes the component with the sum of the
frequencies. Thus the signal at the output of the phase detector results as

Vphase ∝ cos [(ωvco − ωcant)t + φ0] = cos(δωt + φ0) = cos(φ(t)), (17.30)

with δω = ωvco − ωcant. The measured phase signal Vphase has the largest phase
sensitivity for a phase close to 90◦. Therefore, we consider Vphase = 0 as the working
point, corresponding to φ0 = 90◦. Relative to this working point, the cosine function
has a slope of minus one and the phase signal can be approximated (for small δωt)
as Vphase ∝ −δωt . Including a proportionality factor Kpd which converts the phase
into a voltage, the output voltage of the phase detector can be written as

Vphase = Kpd cos
(
δωt + 90◦) ≈ −Kpdδωt. (17.31)

We do not consider the inner working of the voltage-controlled oscillator (VCO)
here. For us the VCO is just a block in which the input voltage V�ω controls the
output frequency linearly relative to the working frequency as

ωvco = ωwork + KvcoV�ω, (17.32)

with the proportionality factor Kvco, converting the input voltage V�ω to a frequency
shift relative to the working frequency. The working frequency is the frequency of
the free cantilever plus the frequency shift setpoint ωwork = ωfree + �ωset.
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Now we discuss the frequency tracking capability of the PLL. For the moment,
we do not consider the PI controller shown in Fig. 17.8 and assume that the phase
signal Vphase is directly fed into the input of the VCO, i.e. Vphase = V�ω . Let us
assume that initially the frequency of the VCO matches the oscillation frequency of
the cantilever, ωvco = ωcant = ωwork and φ0 = 90◦. At this working point Vphase = 0,
which corresponds to the condition of maximum sensitivity for the phase, as shown
above. In this case the input voltage at the VCO vanishes, i.e. V�ω = 0.

Now we consider a change of the actual oscillation frequency of the can-
tilever, which results in a frequency difference δω between the cantilever oscilla-
tion frequency and the VCO frequency. According to (17.31) this frequency dif-
ference leads to a phase difference signal measured by the phase detector Vphase =
Kpd cos (δωt + φ0), which evolves approximately linearly with time. With this input,
the output frequency of the VCO results according to (17.32) as

ωvco = ωwork + Kpd Kvco cos (δωt + φ0) . (17.33)

Directly after the instantaneous frequency shift by �ω, the relations δω = �ω and
φ0 = 90◦ hold. According to (17.33), the linearly increasing phase δωt leads to an
increasing ωvco. This reduces the frequency difference δω between the cantilever
frequency and the frequency of the VCO, i.e. δω < �ω. Any remaining finite
frequency mismatch δω leads over time to an increasing phase δωt bringing the VCO
frequency closer to ωcant. In this way, the VCO frequency adapts to the (changed)
frequency of the cantilever ωwork + �ω. Due to this mechanism the VCO frequency
is said to be locked to the cantilever frequency. In the steady-state ωvco = ωcant and
the frequency mismatch δω = 0 vanishes.4

In the terminology of the PLL: The VCO frequency is locked to the cantilever
oscillation frequency by a phase comparison of both signals in a feedback loop.
Hence, the name phase-locked loop. In this way, the PLL measures the frequency
of the AFM sensor as the voltage V�ω . This voltage, which is proportional to the
frequency shift �ω, is used in the z-feedback loop to control the tip-sample distance.
A certain tip-sample distance corresponds to a certain frequency shift voltage V�ω ,
which is kept constant by the z-feedback loop (Fig. 17.6).

The original cantilever signal is a high-frequency signal close to ω0, which is
modulated to slightly lower or higher frequencies (at a much lower frequency) by
the tip-sample interaction, for instance during scanning of an atomic corrugation
(without z-feedback). The PLL converts this modulated high frequency signal to a

4 While the PLL provides a frequency match ωvco = ωcant, a phase φ0 �= 0 remains. The relation

ωcant = ωwork + �ω
!= ωvco = ωwork + Kpd Kvco cos (δωt + φ0) , (17.34)

results for the condition δω = 0 in

�ω = Kpd Kvco cos φ0. (17.35)

Thus a static phase difference φ0 different from φ0 = 90◦ evolves in order to adapt the VCO
frequency to the changed cantilever frequency.
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low frequency signal proportional to the frequency modulation of the high frequency
signal. This is called FM demodulation and also occurs in an FM radio receiver,
where a high-frequency carrier signal is modulated by a low-frequency audio signal
and the demodulation of the audio signal is desired.

Without the use of the PI controller (not yet applied) the frequency match of the
VCO frequency is achieved by a phase φ0 different from 90◦, as shown in (17.35).
Thus the desired working point at φ0 = 90◦ is left. In order to enforce a vanishing
phase signal (i.e. to maintain the condition φ0 = 90◦) a PI controller is used, which
controls Vphase to zero by generating an appropriate controller output signal V�ω ,
which is used as the input voltage for the voltage-controlled oscillator.

17.2.3 PLL Tracking Mode

We have considered the cantilever as an ideal harmonic oscillator. Due to the non-
ideal properties of the mechanical cantilever oscillator, the cantilever oscillation can
deviate from the ideal sinusoidal shape. Moreover, a cantilever is a 3D object that
has many modes which can sometimes be located at frequencies close to each other.
An excitation of modes close to the desired resonance frequency can also lead to
deviations from a clean sinusoidal oscillation. In order to feed the cantilever with
a very clean sinusoidal signal the PLL tracking mode is often used instead of the
self-excitation mode.

In the PLL tracking mode, the signal at the output of the VCO, which has a very
clean sine shape, is used to excite the cantilever (Fig. 17.9). The cantilever deflection
signal (sensor signal) is fed to the input of the PLL (we neglect the amplitude control
for the moment).

In the following, we analyze the time constants of the PLL tracking mode and
obtain the result that this mode has a larger time constant than the self-excitation
mode. We consider an instantaneous jump of the cantilever resonance frequency due
to a tip-sample interaction from ω0 to ω′

0. Initially after this jump the excitation
frequency (PLL output) still remains at ω0. This corresponds to the situation in the
AM detection mode: excitation at a fixed frequency ω0 and instantaneous change
of the cantilever resonance frequency. For the case of AM detection, we found in
Sect. 14.5 that the amplitude and now more importantly the phase changes with a time
constant of τcant = 2Q/ω0. The PLL detects this slowly changing phase and adapts
the VCO frequency with the time constant τcant to the cantilever frequency.5 Thus

5 This is the case for a PLL with a fast time constant. If the PLL has a time constant longer than
τcant , the PLL time constant will limit the overall time constant.

http://dx.doi.org/10.1007/978-3-662-45240-0_14
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Fig. 17.9 Schematic of an FM AFM control in the PLL tracking mode. In this mode, the sensor is
excited by a very clean sinusoidal driving signal taken from the voltage-controlled oscillator (VCO)

the PLL tracking mode is, compared to the self-excitation mode, a slow detection
mode. As an example, for a Q-factor of 104 and f0 = 150 kHz a time constant
τcant = 130 ms results.

Another disadvantage in using the excitation signal from the PLL is the following.
If the PLL becomes unlocked, the cantilever will no longer be excited at its resonance
and the z-feedback will not work properly anymore. In the self-excitation scheme
the cantilever always oscillates at its resonance frequency independent of the PLL
frequency detection.

The PI controller in the PLL loop (Fig. 17.9) is of specific importance if the VCO
excites a harmonic oscillator (the cantilever) at resonance, as is the case in the PLL
tracking mode.6 Without the PI controller, according to (17.35), any deviation from
the working frequency �ω leads to a constant phase shift φ0 different from 90◦. This
means that the cantilever is excited with a phase deviating from the proper resonance
phase 90◦. Specifically for cantilevers with high Q-factors, even a small phase shift
leads to a driving out of resonance. The desired driving of the cantilever at resonance
can be maintained by the use of a PI controller. Using the PI controller in the PLL
loop, the phase signal (Vphase = cos (δωt + φ0)) is kept at zero by delivering a proper
V�ω signal. Thus with a PI controller both the phase shift of φ0 = 90◦ (driving the
cantilever at resonance) as well as tracking the VCO frequency to the cantilever
frequency (δω = 0) are maintained.

The oscillation amplitude control is usually implemented in the same way as in the
self-excitation mode. In a variant of the PLL tracking mode the oscillation amplitude
is not kept at a constant value, but the sensor excitation amplitude is set to a fixed
value. This mode is called constant excitation mode.

6 In the PLL circuits used for example in communications, the PI controller is often not included.
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17.3 The Non-monotonous Frequency Shift in AFM

FM detection can be operated both in the attractive and also in the repulsive regime
of the tip-sample force. This advantage also involves a disadvantage. The measured
property, the frequency (shift), depends non-monotonously on the tip-sample dis-
tance, as can be seen in Fig. 17.3a and schematically in Fig. 17.10a. Due to this, the
tip-sample distance can only be controlled in a certain range of distances. As shown
in the following, instabilities occur outside of this range.

In STM the measured signal (tunneling current) increases monotonously (expo-
nentially) with decreasing tip-sample distance. This leads to stable feedback, i.e. the
feedback controller “knows what to do”. If the current becomes larger (e.g. due to
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Fig. 17.10 Instabilities arise due to the non-monotonous dependence of the measured frequency
shift as a function of the tip-sample distance. a An instability in the attractive regime at working
point d1 (induced for instance due to a fast scan over a steep step edge (inset)) results at a new
working point at d2 with opposite slope, leading to a wrong direction of the feedback action and
to a crash of the tip into the surface. b Catastrophic events can be prevented by using the absolute
value of the frequency shift as the signal for the feedback. In this case, the working point at d1 is
lost if the tip-sample distance changes suddenly to d2, but instead of a catastrophic tip crash a stable
working point in the repulsive branch at d3 is reached
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moving over a step edge), the tip has to be withdrawn from the sample in order to
recover the desired tip-sample distance. A severe problem arises if the measured
signal changes in a non-monotonous way with the tip-sample distance.

Let us assume that stable feedback is established at the tip-sample distance d1 in
the attractive regime at the frequency setpoint ω1 (point 1 in Fig. 17.10a). Here the
frequency shift �ω(d) has a positive slope. Due to some event, like a steep step edge,
the tip-sample distance can potentially decrease suddenly to d2, corresponding to a
frequency ω2. The feedback would now try to restore the setpoint frequency (shift)
ω1. However, due to the opposite slope of the frequency shift at point 2, the feedback
moves the tip closer and closer to the surface. The feedback “thinks” the tip has to be
moved towards the sample in order to restore the more negative frequency shift ω1.
This will lead to a catastrophic event (positive feedback) in which the tip crashes into
the sample up to the maximum range the piezo element can extend. The change from
one branch of the frequency shift curve to that of the opposite slope can occur for
various reasons: a steep slope in the surface topography, a protrusion on the surface,
noise in the measurement signal and lateral change of the interaction potential (i.e. a
branch of opposite slope is reached for a different lateral tip position on the sample).

Stable feedback can be provided only for a range in which the measured sig-
nal monotonously increases (decreases) with the tip-sample distance. One way to
improve the situation is not to use the frequency shift, but the absolute value of the
frequency shift �ω as the feedback signal, as shown in Fig. 17.10b. If here the work-
ing point at d1 is left, also an instability occurs in the region of opposite (positive)
slope, for instance at point 2. However, in this case no catastrophic event occurs
since the tip approaches the surface only until stable feedback is resumed in the
branch with a negative slope and an unintended stable working point 3 is reached.
Thus, using the absolute value of the frequency shift signal avoids catastrophic tip
crashes and stabilizes the feedback (in the case of an instability) in the repulsive
regime. However, the intended working point in the attractive regime is replaced by
a working point in the repulsive regime.

Another way to cope with this non-monotonous frequency shift is to work in the
constant height mode. In this case no instability will occur, since the feedback is
off. However, the constant height mode can be operated only for very flat surfaces
and under very stable conditions where drift does not change the height, i.e. at low
temperatures.

17.4 Comparison of Different AFM Modes

In the previous chapters, we have discussed several modes of AFM operation, which
we will now compare. In Table 17.1 operating modes are sorted along two coordi-
nates: the operating mode can be static or dynamic and the interaction regime can be
attractive or net-repulsive. Often the static AFM is taken to be synonymous with con-
tact AFM (net repulsive interaction), while dynamic AFM is taken to be synonymous
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Table 17.1 Operating modes of AFM ordered in two “coordinates”: static/dynamic mode and
attractive/net-repulsive interactions

Static AFM Dynamic AFM

Net-repulsive interaction Contact mode: Tapping mode:

Contact k ∼ 1 N/m k ∼ 20–100 N/m

Attractive interaction Non-contact mode: AM/FM non-contact mode:

Non-contact k ∼1 N/m k ∼ 20–106 N/m

with non-contact AFM (attractive interaction). However, also the off-diagonal ele-
ments in Table 17.1 are possible.

The static AFM is usually operated with tip and sample in contact (snap-
to-contact), which corresponds to the upper left entry in the table. However, the
static detection method can also be used in the regime of attractive interaction (non-
contact). For instance, long-range electric or magnetic forces can be measured using
static AFM in the non-contact mode (lower left off-diagonal element in the table).
In this mode possible instabilities can lead to snap-to-contact.

In the dynamic modes, snap-to-contact is avoided and the contact/non-contact
“coordinate” has to be assigned differently. The contact regime can be assigned to
the range where a net repulsive force acts between the tip and sample, while in
non-contact the force between tip and sample is attractive.

In the dynamic modes, we measure changes in the vibrational properties of the
cantilever due to tip-sample interactions. The measured properties include the res-
onance frequency, the oscillation amplitude, and the phase between excitation and
oscillation of the cantilever. The dynamic AFM can either operate in the non-contact
mode (lower right entry in the table) or in the intermittent contact mode (tapping
mode) where a repulsive tip-sample contact is established at the lower turnaround
point of the oscillation (upper right off-diagonal entry in the table). In dynamic mode,
snap-to-contact has to be avoided because no oscillation can be sustained. Therefore,
cantilevers used in the dynamic mode have a higher force constant than cantilevers
used in contact mode, or alternatively the amplitudes used are large.

17.5 Summary

• In the FM detection scheme the oscillation frequency follows the shift of the
resonance frequency, i.e. the cantilever always oscillates at resonance.

• The frequency shift in the FM detection is given as

� f = − f0

A2k
〈Fts(t) · z(t)〉 = − f0

πk A2

+A∫

−A

Fts(d + z)
z√

A2 − z2
dz. (17.36)
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• In the large amplitude limit (amplitude much larger than the range of the tip-sample
force) the normalized frequency shift γ factors the dependence on the experimental
parameters out and is given by

γ = � f
k A3/2

f0
. (17.37)

Thus the normalized frequency shift depends only on an integral over the tip sample
force.

• In the self-excitation scheme the cantilever is self-excited from thermal noise at
the momentary resonance frequency of the cantilever. The cantilever oscillation
signal is measured and fed back (after an appropriate phase shift) as the cantilever
driving signal.

• If in FM detection the amplitude is kept at a constant value (amplitude control),
the corresponding multiplication factor contains information about the tip sample
dissipation.

• In the FM mode the frequency of the cantilever oscillation is usually measured by
a phase-locked loop (PLL). The measured frequency shift signal is used to control
the tip-sample distance via a z-feedback loop.

• In the PLL tracking mode the cantilever driving signal is taken from an oscillator
of the PLL. This has the advantage of driving the cantilever with a very clean
sinusoidal signal.

• The non-monotonous dependence of the frequency shift on the tip-sample distance
can lead to instabilities. These can be prevented by taking the absolute value of
the measured frequency shift as the signal for the z-feedback.

• The response time to adapt the steady-state oscillation signal after an instantaneous
change of the tip-sample interaction is much shorter in the case of FM detection
than for AM detection. Therefore, the FM detection scheme is used for the case
of high Q-factors, i.e. in vacuum.

• The AFM modes can be ordered in two coordinates: static/dynamic and net repul-
sive (contact)/attractive (non-contact). The static AFM in the net repulsive regime
is termed the contact mode and the dynamic mode in the attractive regime is called
the non-contact mode. However, besides these regimes, the static mode can also
be operated in the attractive interaction regime, and the dynamic mode can be
operated in the net repulsive interaction regime (intermittent contact).



Chapter 18
Noise in Atomic Force Microscopy

In topographic images, the noise in the vertical position of the tip (i.e. the noise in
the tip-sample distance) should be considerably smaller than the topography signal
on the sample which we want to measure. If atomic steps are to be measured, this is
about 1 Å an atomic corrugation can have a much smaller signal of less than 0.1 Å.
In the following we do not consider noise due to floor vibrations or sound, but more
fundamental limits of noise due to thermal excitation of the cantilever, or due to the
detection limit of the preamplifier with which the signal is detected.

In Sect. 12.3 we studied the shot noise due to the discrete arrival of photons at
the photodiode. The minimum detectable cantilever motion and the corresponding
minimum detectable force were estimated. Additionally to this fundamental limit
for the detector noise, noise from the detection electronics has to be considered. The
detector noise depends on the specific detection method used. Another source of noise
is the thermal noise of the cantilever. The cantilever is considered to be a harmonic
oscillator which is thermally excited to a certain noise amplitude

√〈
�z2

th

〉
. In this

chapter the effect of the thermal noise amplitude on the experimentally measured
quantities in AFM such as the frequency shift is estimated.

18.1 Thermal Noise Density of a Harmonic Oscillator

The thermal displacement noise of the AFM cantilever can be estimated from the
equipartition theorem, which states that each degree of freedom carries an average
energy of 1/2 kB T in thermal equilibrium. A degree of freedom is a parameter which
enters into the expression of the total energy as a squared term. For the case of a one-
dimensional harmonic oscillator the energy is written as E = 1/2 kz2 + 1/2 mv2,
and the number of degrees of freedom is two, as z and v enter as squared terms. Thus
the equipartition theorem states that the total energy of a thermally excited harmonic
oscillator is kB T .
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Since the total mechanical energy in a harmonic oscillator is stored on average
as one half in kinetic and one half in elastic energy, the average mean square dis-
placement

〈
�z2

th

〉
is related to the total energy by 1/2 Etot = 1/2 k

〈
�z2

th

〉
. From this

the (time) average of the square of the vibrational amplitude due to thermal noise
results as 〈

�z2
th

〉
= kB T

k
. (18.1)

At room temperature and for a spring constant of k = 10 N/m, an amplitude of
∼0.2 Å results. This is quite a large value and shows that soft cantilevers with high
force sensitivity have quite a large thermally excited vibrational amplitude. On the
other hand, as we discussed above, stiffer cantilevers have less force sensitivity in
the static mode.

In the following, we will derive the thermal noise density of a harmonic oscillator
(cantilever) in contact with a heat bath. The general concept for the power spectral
density of a noise variable was introduced in Sect. 5.4. The noise variable is now the
deflection of the cantilever �z and the corresponding power noise spectral density is
termed N 2

z,th,osc( f ). This thermal noise density consists of two contributions. First
the excitation noise (thermal noise), which is assumed to be frequency-independent
white noise Nz,th,exc. The value of this thermal excitation noise density still has to
be determined in the following. A second contribution to N 2

z,th,osc( f ) comes from
the harmonic oscillator. The constant thermal excitation noise density is sent through
the harmonic oscillator with its resonance characteristics. Thus the resulting thermal
noise density of the harmonic oscillator Nz,th,osc( f ) can be written as (neglecting
the subscript z)

Nth,osc( f ) = Nth,excG( f ), (18.2)

with G( f ) being the transfer function of the harmonic oscillator. In this chapter we
use the natural frequency f = ω/(2π), since in actual measurements the natural fre-
quency is used. As already discussed in Chap. 2, the transfer function of the harmonic
oscillator is

A2

A2
drive

≡ G2( f ) = 1(
1 − f 2

f 2
0

)2

+ 1
Q2

f 2

f 2
0

. (18.3)

The mean square thermal displacement can be calculated in analogy to (5.10).
Another expression for the mean square displacement was obtained from the equipar-
tition theorem as (18.1). Thus the following equation results

〈
�z2

th

〉
=

∫ ∞

0
N 2

th,osc( f )d f = N 2
th,exc

∫ ∞

0
G2( f )d f = kB T

k
. (18.4)

Fortunately, an anti-derivative for the integral over G2( f ) exists (which can be found
using a computer algebra system or a table of integrals). We omit this here, however.
A very simple expression results (

∫ ∞
0 G2( f )d f = πQ f0/2), when the integration

http://dx.doi.org/10.1007/978-3-662-45240-0_5
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limits are inserted. With this, the spectral noise density of a harmonic oscillator
results as

Nth,osc( f ) = Nth,excG( f ) =
√

2kB T

πk Q f0
G( f ). (18.5)

Thus the spectral noise density of the harmonic oscillator consists of the strongly
peaked transfer function of the harmonic oscillator G( f ) shown in Fig. 18.1a for
two different Q-factors and a frequency independent white thermal excitation noise
density given by (18.5) as

Nth,exc =
√

2kB T

πk Q f0
. (18.6)

Since the white noise Nth,exc depends on the Q-factor, different multiplication factors
have to be used when going from the transfer function to the displacement spectral
noise density shown in Fig. 18.1b. Due to this, for high Q-factors the thermal noise
of the oscillator is concentrated closer to the resonance frequency and suppressed
everywhere else.

The mean square displacement is obtained by integration over the relevant fre-
quency range. The mean square displacement noise within a bandwidth from f1 to
f2 according to (5.11) as

〈
�z2

th( f1, f2)
〉
=

∫ f2

f1

N 2
th,osc( f )d f = 2kB T

πk Q f0

∫ f2

f1

G2( f )d f. (18.7)
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Fig. 18.1 a Transfer function of the harmonic oscillator G( f ). b Corresponding displacement
spectral noise density at room temperature. The multiplication factor Nth,exc for going from (a) to
(b) depends on the Q-factor
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This equation will be used in the following in order to evaluate the mean square
displacement in various circumstances.

18.2 Thermal Noise in the Static AFM Mode

In the static case, the relevant frequencies are far below the resonance frequency and
the transfer function can be approximated as G2 = 1. Inserting this into (18.7), the
mean square displacement in the static mode results with B = f2 − f1 as

〈
�z2

th,stat

〉
= 2kB T B

πk Q f0
. (18.8)

The thermal noise amplitude of the sensor (cantilever tip) translates to the finally
measured quantities, such as the minimum detectable force in static AFM. In the static
AFM mode, the noise amplitude corresponds to a noise in the force measurement by

Hooke’s law via �F = k
√〈

�z2
th

〉
. Therefore, the minimum detectable force (due to

thermal noise) in static AFM (i.e. at low frequencies off-resonance) is

F static
min,th =

√
2kkB T B

πQ f0
. (18.9)

18.3 Thermal Noise in the Dynamic AFM
Mode with AM Detection

Here we consider a dynamic mode in which the cantilever (or more generally AFM
sensor) is oscillated at, or very close to, the resonance frequency of the cantilever.
Therefore we consider f = f0 and the transfer function results in G2 = Q2. Inserting
this into (18.7), the mean square displacement in the dynamic mode results as

〈
�z2

th,res

〉
= 2kB T Q(2B)

πk f0
, (18.10)

with 2B being the two sided bandwidth, i.e. from f0 − B to f0 + B. The thermal
displacement noise (18.10) is Q times higher in the dynamic case than in the static
case (18.8). However, since also the signal (cantilever oscillation amplitude) is Q
times larger in the dynamic mode due to the resonance enhancement, the signal-
to-noise ratio of the cantilever deflection remains the same as in the static mode.

In the following, we derive the minimum detectable force gradient in the AM
slope detection mode. The operating point in this mode is close to the maximum
slope (roughly at half of the maximum amplitude) as discussed in Sect. 14.3. For

http://dx.doi.org/10.1007/978-3-662-45240-0_14
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simplicity, we assume that the measurement bandwidth is so narrow that the transfer
function can be considered as constant with the value 1/2 Q (instead of Q at the

resonance). Thus the thermal displacement noise
√〈

�z2
th

〉
is one half of that derived

from (18.10).
As we have shown before in (14.8), in dynamic AFM for small amplitudes, the

force gradient is related to the measured frequency shift by ∂F/∂z = � f 2k/ f0
(we omit the factor −1 here). In the slope detection mode, the measured amplitude
change is proportional to a frequency change with the inverse of the slope of the
resonance curve at the working point as proportionality factor as

∂F

∂z
= 2k

f0
� f = 2k

f0

� f

�A
�A. (18.11)

The inverse slope of the resonance curve at the working point can be written according
to (2.33) as � f/�A ≈ f0/(Q A). If we identify the amplitude change �A with the

thermal noise
√〈

�z2
th

〉
, the minimum detectable force gradient can be written as

∂F

∂z
= 2k

f0

f0

Q A
�A = 2k

Q A

√
kB T Q(2B)

πk f0
=

√
4kkB T (2B)

πQ f0 A2 . (18.12)

In order to decrease the noise large Q-factors are desirable. However, this limits the
detection bandwidth due to a large time constant, as shown in Sect. 14.5. Also small
k/ f0 ratios are desirable as long as no snap-to-contact occurs.

In tapping mode atomic force microscopy, a certain amplitude (attenuation) A
corresponds to a certain tip-sample distance z′ (i.e. distance between surface and the
lower turnaround point of the oscillating tip). A noise in the deflection signal due to

thermal excitation �A =
√〈

�z2
th

〉
translates to a noise in the topography signal z′

via the slope of the amplitude distance relation d A/dz′ as

�z′ = �A
dz′

dA
=

√〈
�z2

th

〉
dA/dz′ . (18.13)

Here the mean square displacement has to be taken from (18.10). For stiff materials
the slope d A/dz′ is about one, while it has a smaller value for soft materials and the
noise in the topography signal becomes correspondingly larger.
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18.4 Thermal Noise in Dynamic AFM with FM Detection

In FM modulation, a signal (or noise) component at frequency fmod leads in the FM
signal to two side bands at f0 ± fmod above and below the carrier frequency1 f0, as
shown in Appendix C. In the following we consider the deflection noise at f0 + fmod.
In order to evaluate the mean square displacement noise according to (18.7), we have
to evaluate the transfer function at f0+ fmod. When evaluating G( f0+ fmod) we have
to consider typical values of f0 ranging from 30 kHz to 1 MHz, and fmod lies typically
in the range (far) below 1 kHz, i.e. fmod � f0. In order to evaluate G( f0 + fmod) in
the limit very close to the resonance frequency, we start from (18.3) and use (2.30),
resulting in

G2( f0 + fmod) = 1(
1 − ( f0+ fmod)2

f 2
0

)2

+ 1
Q2

( f0+ fmod)2

f 2
0

≈ 1

4
f 2
mod
f 2
0

+ 1
Q2

. (18.14)

If the condition fmod > f0/(2Q) is fulfilled, (which has to be checked) the term 1/Q2

in the denominator of (18.14) can be neglected. In this case, the thermal displacement
noise density can, according to (18.6), be written as

N 2
th,osc( f0 + fmod) ≡ N 2

z,th( f0 + fmod) = N 2
th,excG2( f0 + fmod) = kB T f0

2πk Q f 2
mod

.

(18.15)

We change the notation here in order to distinguish between the thermal displace-
ment noise density to N 2

z,th( f0 + fmod), and the thermal frequency noise density
after demodulation N f,th( f0 + fmod). In FM modulation, the displacement noise is
transferred to a frequency noise and according to (C.11) in Appendix C we can write

N f,th( fmod) =
√

2 fmod

A
Nz,th( f0 + fmod). (18.16)

For the thermal displacement noise according to (18.15), the frequency noise density
results for the case fmod > f0/(2Q) as

N f,th =
√

kB T f0

πk Q A2 = const., (18.17)

which does not depend on fmod.
In the general case (independent of the limit fmod > f0/(2Q)) the thermal dis-

placement noise density can be written using (18.6) and (18.14) as

1 We do not indicate explicitly that the carrier frequency is the shifted resonance frequency f ′
0.

http://dx.doi.org/10.1007/978-3-662-45240-0_2
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N 2
z,th( fmod) = N 2

th,excG2( f0 + fmod) = 2kB T

πk Q f0

1

4
f 2
mod
f 2
0

+ 1
Q2

. (18.18)

The thermal frequency noise in FM detection can be calculated analogously to (5.11)
and (18.16) by integration over fmod up to the maximum fmod,max = B as

〈
� f 2

th

〉
=

∫ B

0
N 2

f,th( fmod)d fmod

= 4kB T

πA2k Q f0

∫ B

0

f 2
mod

4
f 2
mod
f 2
0

+ 1
Q2

d fmod

= kB T

πA2k Q

[
f0 B − 1

2Q
f 2
0 arctan

(
2Q B

f0

)]
. (18.19)

The noise contributions from frequencies lower than ω0 are already included by the
factor

√
2 in (18.16). Thus in the FM case B is defined as B = fmod,max, i.e. as a

single sided bandwidth.
If B 	 f0/(2Q), the second term in (18.19) can be neglected. In this limit the

minimum detectable force gradient due to thermal noise can be written as

∂F

∂z
= 2k

f0

√〈
� f 2

th

〉 =
√

4kkB T B

πQ f0 A2 . (18.20)

The mean square thermal displacement, which was calculated in (18.10) under the
simplified assumption that G2 = Q2, can be calculated considering the integration
over the transfer function (18.14) within twice the single-sided bandwidth as

〈
�z2

th

〉
=

∫ B

−B
N 2

z,th( f0 + fmod)d fmod

= 2kB T

πk Q f0

∫ B

−B

1

4
f 2
mod
f 2
0

+ 1
Q2

d fmod

= 2kB T

πk
arctan

(
Q2B

f0

)
. (18.21)
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18.5 Sensor Displacement Noise in the FM Detection Mode

Up to now we have considered the thermal noise of the cantilever which gives the
fundamental limit of noise. Now we consider the sensor displacement noise, which in
practical implementations of atomic force microscopy is often the dominant source of
noise. Sensor displacement noise may be the shot noise of the photons arriving on the
photodiode in the case of the laser beam deflection mode of detection. In an electrical
detection scheme of the sensor displacement, the electrical noise of the preampli-
fier is the dominant source of detector noise. For any detection scheme, the actually
measured noise of the detection voltage can be converted via a sensitivity factor into
an equivalent displacement noise Nz,sens( f ), which is expressed in units of m/

√
Hz.

For simplicity, we assume a white sensor displacement noise, i.e. constant as a func-
tion of frequency within the considered detection bandwidth. Thus the mean square
displacement due to the sensor displacement noise results according to (5.10) as

〈
�z2

sens

〉
=

∫ B

0
N 2

z,sensd f = N 2
z,sens B. (18.22)

Further, the minimum detectable force in the static mode results as

F static
min,sens = k

√〈
�z2

sens

〉 = k Nz,sens
√

B. (18.23)

In the dynamic mode the minimum detectable force gradient due to the sensor dis-
placement noise results according to (18.12) as

∂F

∂z
= 2k

Q A

√〈
�z2

sens

〉 =
√

2k

Q A
Nz,sens

√
2B, (18.24)

with 2B being the two-sided bandwidth. The frequency noise density of the demod-
ulated � f signal in FM detection results from the sensor displacement noise and can
be written according to (C.11) as

N f,sens( fmod) =
√

2 fmod

A
Nz,sens. (18.25)

The mean square frequency noise resulting from the sensor displacement noise is

〈
� f 2

sens

〉
=

∫ B

0
N 2

f,sens( fmod)d fmod = 2N 2
z,sens

A2

∫ B

0
f 2
modd fmod. (18.26)

Thus the frequency noise due to the sensor displacement noise results as

√〈
� f 2

sens

〉 =
√

2N 2
z,sens

3A2 B3. (18.27)
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In contrast to the thermal noise which did not depend on the frequency, the frequency
noise due to the sensor increases with increasing bandwidth proportional to B3/2.

The minimum detectable force gradient in FM detection due to the sensor noise
results, using (18.20), as

∂F

∂z
= 2k

f0

√〈
� f 2

sens

〉 =
√

8

3

k Nz,sens B3/2

f0 A
. (18.28)

18.6 Total Noise in the FM Detection Mode

An example of an actually measured frequency noise density as a function of the
modulation frequency is shown in Fig. 18.2. The experimentally measured noise
density is characterized by a very small constant offset due to thermal noise (18.17)
and a linear increase of the noise density with the modulation frequency according
to (18.25). These two independent noise contributions add up to a total noise density
as N 2

f,tot = N 2
f,th + N 2

f,sens. Due to the bandwidth of the frequency demodulator
electronics, which has a bandwidth limit of 1 kHz, the measured noise density levels
off and decreases beyond this frequency.

Fig. 18.2 Experimentally
measured frequency noise
density N f,sens( fmod) of an
FM atomic force microscopy
setup
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Table 18.1 Intrinsic parameters for different sensors used in atomic force microscopy

Sensor parameter Si cantilever qPlus tuning fork Needle sensor

Quality factor 300 3,000 15,000

Resonance frequency (Hz) 100 k 32 k 1 M

Spring constant (N/m) 10 1,800 1.08 M

Oscillation amplitude (nm) 4 0.1 0.1

Nz,sens (fm/
√

Hz) 100 50 2

http://dx.doi.org/10.1007/978-3-662-45240-0_18
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Table 18.2 Noise figures for different AFM sensors for a bandwidth of 1,000 Hz and T = 300 K

Mode Noise figure Si cantilever qPlus tuning fork Needle sensor Eq. no.

Static
√〈

�z2
〉

(fm) 94 3.9 0.013 (18.8)

Fmin,th (pN) 0.94 6.9 14 (18.9)

Fmin,sens (pN) 32 2,800 68,000 (18.23)

AM
√〈

�z2
th

〉
(pm) 40 17 0.27 (18.10)

(∂F/∂z)th (N/m) 0.0005 0.1 0.3 (18.12)√〈
�z2

sens

〉
(pm) 3.2 1.6 0.063 (18.22)

(∂F/∂z)sens (N/m) 0.0001 0.019 0.091 (18.24)

FM
√〈

�z2
th

〉
(pm) 19 1.5 0.061 (18.21)

(∂F/∂z)th (N/m) 0.0003 0.5 0.2 (18.20)√〈
� f 2

th

〉
(Hz) 1.7 0.9 0.09 (18.19)

√〈
� f 2

sens

〉
(Hz) 0.6 13 0.52 (18.27)

(∂F/∂z)sens (N/m) 0.0001 1.5 1.1 (18.28)

The total noise is composed of the thermal noise and the detector noise (and
other sources of noise such as the oscillator noise [37], which we neglect here for
simplicity). If these are assumed to be independent, the total noise results as

� ftotal =
√

� f 2
th + � f 2

sens. (18.29)

The minimum detectable force gradients combine correspondingly. In Table 18.1,
characteristic intrinsic parameters for different sensors used in atomic force
microscopy are listed for three different kinds of sensors. A typical silicon cantilever
sensor is compared to a quartz tuning fork (qPlus sensor) and to a length exten-
sional sensor (needle sensor). The detection noise densities are taken from [38]. In
Table 18.2 numerical values for the noise estimated in this chapter are compared for
the three different kinds of sensors.

18.7 Comparison to Noise in STM

In the following, we derive the fundamental thermal noise present in STM in order to
compare it to the previously considered noise in atomic force microscopy. In (5.26)
we have seen that the fundamental limit for the detection of the tunneling current
using a transimpedance amplifier is the Johnson noise in the feedback resistor, which
was written as

�I = √
4kB T B/R. (18.30)

http://dx.doi.org/10.1007/978-3-662-45240-0_5
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For a 100 M� resistor and a bandwidth of 3 kHz, a (RMS) noise current of �I =
0.3 pA results. This fundamental noise limit for the measurement of the tunneling
current transfers to a noise in the tip-sample distance (i.e. the vertical distance) via
the dependence of the tunneling current on the tip-sample distance I (z) ∝ e−2κz .
The slope of the I (z) curve at the working point I0(z0) converts the noise in the
current into a z-noise via

�z = �I

|d I/dz| . (18.31)

Assuming a tunneling current of I0 = 0.1 nA at the working point and κ = 0.1 Å−1,
the slope of the I (z) curve results as d I/dz = −2κI0. This leads to a vertical noise of
0.15 pm, which is much smaller than the resolution required even in order to resolve
an atomic corrugation. Moreover, according to (18.30) the vertical noise scales with
the square root of the bandwidth �z ∝ �I ∝ √

B. This weaker increase of the
noise with the measurement bandwidth than the B3/2 dependence found for the FM
detection in atomic force microscopy allows us to work with a larger bandwidth in
STM compared to FM detection in AFM.

18.8 Signal-to-Noise Ratio in Atomic Force
Microscopy FM Detection

Up to now we have considered the noise in AFM under different circumstances, how-
ever, the actual figure of merit is the signal-to-noise ratio. In the following we will
discuss the signal-to-noise ratio for the case of the FM detection method in AFM.
In this case, the signal-to-noise ratio is the frequency shift due to the tip-sample force
gradient � f/ f0 divided by the corresponding noise. Specifically we will analyze this
signal-to-noise ratio as a function of the oscillation amplitude and find the cantilever
oscillation amplitude for which the signal-to-noise ratio is largest [33]. In order to
perform this analysis we have to use a certain model for the tip-sample interaction. We
assume a repulsive force, which is described by an exponential distance dependence
with a range λ as

F(u) = F0e−u/λ, (18.32)

Now we evaluate the signal, i.e. the frequency shift in FM detection for the two
limiting cases that the cantilever oscillation amplitude is either much larger than the
interaction length λ, or much smaller. The following equations were derived under
the condition that the minimum tip-sample distance at the lower turnaround point
of the oscillation is kept constant when the amplitude is varied. In the limit that the
oscillation amplitude is large compared to the interaction range, the frequency shift
can (according to (17.20) and (17.24)) be expressed as

� f

f0
= 1√

2π

F
√

λ

k A3/2 . (18.33)

http://dx.doi.org/10.1007/978-3-662-45240-0_17
http://dx.doi.org/10.1007/978-3-662-45240-0_17
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Fig. 18.3 The frequency
shift signal, the
corresponding noise and the
signal-to-noise ratio in FM
detection are shown as a
function of the cantilever
(sensor) oscillation
amplitude A, which is
normalized to the tip-sample
interaction length λ.
(adapted from [33])
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This means that for large amplitudes the frequency shift signal depends on the ampli-
tude proportional to A−3/2, as shown in Fig. 18.3.

In the opposite limit that the oscillation amplitude is much smaller than the inter-
action range, the frequency shift has been found proportional to the effective spring
constant of the tip-sample interaction (14.8). This can be evaluated further using the
force law in (18.32) as

� f

f0
= kts

2k
= −F ′

2k
= F

2kλ
. (18.34)

This means there is no dependence of the frequency shift on the oscillation amplitude,
which corresponds to the horizontal line for the frequency shift signal in Fig. 18.3
for small amplitudes. If the amplitude is close to the interaction length, there is a
smooth transition between the limiting cases for small and large amplitudes as shown
in Fig. 18.3.

As to the noise, we have seen in the previous section that both thermal noise
and detector noise scale as 1/A with the amplitude given in (18.19) and (18.27). In
Fig. 18.3 also the resulting signal-to-noise ratio is plotted. For amplitudes smaller than
λ the signal is constant, while the noise decreases as 1/A. Thus, the signal-to-noise
ratio increases proportional to A for small amplitudes. For large amplitudes the
amplitude dependences of signal and noise combine to S/N ∼ A−3/2 A ∼ 1/

√
A,

which leads to a decrease of the signal-to-noise ratio for larger amplitudes. A maxi-
mum in the signal-to-noise ratio arises if the amplitude corresponds to the range of
the interaction λ. These considerations show that the use of oscillation amplitudes in
the order of the interaction length lead to the highest signal-to-noise ratio. Thus, if
the aim is to use short-range interactions for high-resolution imaging, the oscillation
amplitude should be small, possibly less than an ångström.

It is also interesting to compare the frequency shift signal of a short-range inter-
action to the signal of an interaction with a longer range for small and large values
of the oscillation amplitude. In the following, we assume a short-range interaction
with λshort = 0.1 nm and an interaction with a range of λlong = 5 nm. If we consider

http://dx.doi.org/10.1007/978-3-662-45240-0_14
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the limiting case A > λlong, using (18.33) we find that the signal of the long-range
interaction is seven times larger than the signal of the short-range force (ratio of the
square roots of the interaction length). However, in the limit of small amplitudes
A < λshort the signal of the short-range interaction is, according to (18.34), 50 times
larger than that of the long-range interaction, with the other parameters kept the same.
This means for a large oscillation amplitude that the signal from a long-range force
dominates, while for a small oscillation amplitude the signal comes predominantly
from the short-range interactions.

18.9 Summary

• The fundamental limit for the deflection noise of a cantilever arises due to its
thermal excitation. The thermal noise depends on the white noise excitation and
on the transfer function of the cantilever, which peaks at the resonance frequency.
At usual measurement conditions the thermal noise is not the limiting source of
noise.

• Another independent contribution to the noise of the cantilever is the electrical
noise of the sensor which measures the cantilever deflection.

• In FM detection, the sensor noise depends on the measurement bandwidth ∝
B3/2. This quite strong increase of the sensor noise with the bandwidth limits the
measurement bandwidth in FM detection.

• The signal-to-noise ratio in FM detection is largest for amplitudes corresponding
to the range of the interaction force.



Chapter 19
Quartz Sensors in Atomic Force Microscopy

As an alternative to the most frequently used silicon cantilevers, quartz oscillators
can be used as sensors in AFM. It is possible to obtain atomic resolution in FM atomic
force microscopy using quartz sensors. These quartz sensors are characterized by a
large spring constant (>1,000 N/m). It was discovered that both quartz tuning forks,
which are used in wristwatches, as well as quartz needle oscillators can be used
as sensors in AFM. An advantage of using quartz sensors is that the detection of
the oscillation signal can be performed completely electrically, without any optical
elements, like a laser diode, a lens, a fiber, or a photodiode being needed. This
simplifies the experimental setup.

19.1 Tuning Fork Quartz Sensor

One example of a quartz sensor is the quartz tuning fork, frequently used in wrist-
watches, as shown in Fig. 19.1a on the lower right. In Fig. 19.1b an encapsulated
tuning fork quartz oscillator is shown (left), as well as one without housing (right).
The whole tuning fork has a length of 4 mm, and the prongs have a length of 2.4 mm.
The resonance frequency of such a tuning fork is usually 32,768 Hz, due to its use in
watches. The bending mode of such a tuning fork is like that known from a macro-
scopic tuning fork as indicated by the arrows in Fig. 19.1b. Since the tuning fork has
no sharp tip at its end a (tungsten) tip is usually attached at the end of the prong. If
a tip is fixed to one prong only, an asymmetry between the two prongs is induced
which reduces the Q-factor substantially. In order to prevent this, one prong is fixed
to a holder with high mass as shown in Fig. 19.1c. This configuration is called qPlus
configuration [33].

The excitation of the tuning fork is usually achieved mechanically by applying
an AC voltage to a piezoelectric actuator exciting the sensor. The tuning fork is
excited at its lowest resonance frequency, which leads to a bending of the sensor
prong. Since single crystal quartz is a piezoelectric material, the detection of the
bending oscillation of the prong of the tuning fork is performed electrically using

© Springer-Verlag Berlin Heidelberg 2015
B. Voigtländer, Scanning Probe Microscopy,
NanoScience and Technology, DOI 10.1007/978-3-662-45240-0_19
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Fig. 19.1 a A tuning fork quartz oscillator as used in wristwatches. b Tuning fork oscillator with
and without housing. c The tuning fork oscillator can be used as a force sensor in AFM. One prong
is glued to a support and a tip is attached to the other prong (reproduced with permission from [39])

the piezoelectric effect. A bending of the prong induces a voltage between the metal
electrodes at the prong. Simultaneous STM operation can be achieved by attaching
a wire to the tip, which guides the tunneling current to a preamplifier.

19.2 Quartz Needle Sensor

Another type of quartz crystal oscillator which can also be used as a force sensor in
atomic force microscopy is shown in Fig. 19.2. This sensor is known as a “needle
sensor” and is characterized by its small size (needle length 1.3 mm), an extensional
oscillation of the quartz needle, a high resonance frequency (∼1 MHz) and a high
force constant (∼1 MN/m). The needle has two Au electrodes as shown in Fig. 19.2,
which allows for an electrical excitation without any additional driving piezo by
applying the AC driving signal to one of the two electrodes. This induces an oscil-
lation of the needle along its axis via the (inverse) piezoelectric effect. An electrical
detection also can be obtained due to the piezoelectric effect. The oscillating nee-
dle induces a voltage on the second electrode by the piezoelectric effect, which is
amplified by a preamplifier and processed further using the FM detection scheme, as
described previously. A sharp tip has to be attached to the top of the quartz needle.
This can be a thin tungsten tip, as shown in Fig. 19.3a. Another way of attaching a
tip to the needle sensor is to glue a Si cantilever to the top of the needle and to break
the cantilever base off, as shown in Fig. 19.3b. If the attached tip plus glue mass is
small, high Q-factors >10,000 can be achieved even in air.

A schematic of the control electronics of the needle sensor in which the needle
sensor can be operated in the force detection mode (AFM) mode, or alternatively
in the tunneling mode (STM) is shown in Fig. 19.4. In the tunneling mode (TCF =
tunneling current feedback), in which the needle sensor can still oscillate, a DC
tunneling bias voltage Vbias is added to the AC signal driving the needle oscillation.
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Fig. 19.2 Photo of a needle sensor (a) and schematic cross section through the needle (b). The
needle sensor is an extensional type quartz oscillator which can be used as force sensor in AFM

Tungsten tip

Quartz needle
Conducting glue

(a) Silicon  cantilever

Conducting glue

(b)

Quartz needle

Fig. 19.3 Tips glued to the top of a needle sensor. a Electrochemically etched tungsten tip. b End
part of a silicon cantilever

The tip is electrically connected to the needle electrode to which the DC bias is
applied. The resulting tunneling current (averaged over one oscillation cycle) is
measured at the sample and used as a feedback signal for control of the tip-sample
distance. We call this mode of operation tunneling current feedback mode (TCF).
The frequency shift of the oscillating needle sensor can be recorded in parallel (as a
free signal), however, it is not used for feedback.

If the needle sensor is employed in the AFM mode with the FM detection scheme,
the frequency shift signal is used for the z-feedback (FSF = frequency shift feedback).
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Fig. 19.4 Schematic circuit
for driving the needle sensor
as a force sensor in AFM.
Alternatively the frequency
shift signal (FSF) or the
tunneling current (TCF) can
be used as feedback signals
[40]
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Additionally, the tunneling current can be recorded simultaneously as a free signal.
In this way it is possible to combine atomic force microscopy and scanning tunneling
microscopy.

In Table 19.1 typical properties of three types of AFM force sensors are com-
pared: silicon cantilever, tuning fork and needle sensor. The spring constant increases
strongly from cantilever to tuning fork and the needle sensor. This is due to the larger
dimensions of the tuning fork compared to the micro machined cantilevers. The high
stiffness of the needle sensor is induced by its extensional vibration geometry (the
axial extension of a bar is a hard spring). Also the quality factor (in air) increases
in the order from cantilever via tuning fork to the needle sensor. For the cantilever
sensors, the quality factor is low due to damping in air. The frequency shift for a
force gradient of 10 nN/nm, as an example, is smallest for the needle sensor. Due to

Table 19.1 Comparison of the properties of the different AFM force sensors: silicon cantilever,
quartz tuning fork and quartz needle sensor

Cantilever Tuning fork Needle sensor

Spring constant (N/m) 1–50 1 k–20 k 600 k–1 M

Resonant frequency f0 (kHz) 100–300 20–100 600–2,000

Quality factor Q 100–2 k 1 k–20 k 5 k–200 k

Frequency shifta � f (Hz) 50 75 5

Min. amplitudeb Amin (Å) 4 0.05 0.0002
a For a force gradient of 10 nN/nm the frequency shift is � f = − f0

2k 10 nN/nm
b The minimum amplitude before snap to contact for a force of 10 nN is given by the condition
10 nN < k Amin
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the higher force constant, the tuning fork and the needle sensor can be operated at
close tip sample distances without the problem of snap-to-contact occurring.

19.3 Determination of the Sensitivity of Quartz Sensors

The mechanical oscillation amplitude Asensor is related to the measured sensor voltage
Vsensor (measured at the output of the preamplifier measuring the sensor signal) by
the sensitivity factor as

Asensor = SsensorVsensor. (19.1)

The cantilever oscillation amplitudes are only known from the experimental quantity
Vsensor in volt. In the calibration procedure, the sensitivity factor is determined which
converts Vsensor to an oscillation amplitude Asensor in nm. The aim of the amplitude
calibration procedure is to find the calibration factor Ssensor (in nm per volt). The
voltage Vsensor and thus also Ssensor depend on the specific devices used to measure
the amplitude voltage, e.g. the gain factors of the amplifiers enter into these quantities.

For silicon cantilevers the cantilever sensitivity was determined for instance via
the force-distance curve, as described in Sect. 12.5. For the case of quartz sensors,
this method cannot be applied due to the very high force constants of these sensors,
which is in the same order as that of hard samples (the tip would be destroyed).

We assume that FM detection is used and the frequency shift is measured. In
Fig. 19.5 we compare two cases of different oscillation amplitudes Asensor and
A′

sensor. When the tips are brought close to the surface and a certain frequency
shift setpoint � f is requested, this will result in different values for the aver-
age tip-sample position of the cantilever d, as shown in Fig. 19.5. Since the main
contribution to the frequency shift signal comes from the lower turnaround point
of the oscillation (as shown in Chap. 17), the distance from the lower turnaround
point to the sample is approximately the same in both cases, independent of the
oscillation amplitude. Due to this the tip retraction �d is equal to the amplitude

d sensor

Asensor

Asensor

SampleSample

´d
d

´

Fig. 19.5 Principle of the determination of the oscillation amplitude used for quartz sensors. The
distance between the lower turnaround point of the tip oscillation and the sample is approximately
the same for different oscillation amplitudes. Thus the change of the sensor amplitude �Asensor
is equal to the retraction of the equilibrium position of the tip �d. A cantilever sensor is shown
schematically instead of a quartz sensor

http://dx.doi.org/10.1007/978-3-662-45240-0_12
http://dx.doi.org/10.1007/978-3-662-45240-0_17


274 19 Quartz Sensors in Atomic Force Microscopy

change �d = �Asensor = A′
sensor − Asensor. By measuring �d for the sensor volt-

age difference �Vsensor the sensitivity can be determined as

Ssensor = �Asensor

�Vsensor
= �d

�Vsensor
. (19.2)

In this calibration procedure for the sensitivity the tip-sample interaction is kept
constant (e.g. by keeping the frequency shift at a constant value), while Asensor is
varied. In a practical implementation of this method the normalized frequency shift
(introduced in (17.18)) is measured as a function of the tip-sample distance d [41].
The measured frequency shift curves have the usual (Lennard-Jones-type) shape, as
shown in Fig. 19.6. With increasing oscillation amplitudes, curves 1–6 are measured.
Since the normalized frequency shift is plotted, all curves have approximately the
same magnitude (as already shown in Fig. 17.3). However, they have a mutual shift:
the larger the oscillation amplitude, the more the curves shift to larger tip-sample
distances d, as also shown in principle in Fig. 19.5. The mutual shift (for a voltage
increase �Vsensor of 0.1 V) amounts to about �d = 0.5 nm as indicated in Fig. 19.6.
A proportionality between these quantities is observed as �d ∝ �Vsensor, with a
proportionality factor of 0.5 nm/0.1 V. Thus the sensitivity factor Ssensor = 5 nm/V
can be obtained from the relation

�Asensor = �d = Ssensor�Vsensor. (19.3)

d (nm)

d

Fig. 19.6 Normalized frequency shift as a function of the average tip-sample position d, for different
cantilever oscillation amplitudes. The sensor amplitude Vsensor increases from curve 1 to curve 6
from 0.2 to 0.7 V, respectively. Each increase of the amplitude by 0.1 V leads to a shift of the curves
by �d = 0.5 nm, showing the proportionality �d ∝ �Vsensor (reproduced with permission from
[41])

http://dx.doi.org/10.1007/978-3-662-45240-0_17
http://dx.doi.org/10.1007/978-3-662-45240-0_17
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19.4 Summary

• Quartz sensors are used in AFM since they allow for completely electrical detection
(and sometimes also excitation) via the piezoelectric effect, which simplifies the
experimental setup.

• The two types of quartz sensors used most frequently are the tuning fork sensor
and the needle sensor.

• A sharp tip has to be attached to the quartz oscillators for the use in AFM.
• The sensitivity of a quartz sensor can be determined experimentally by comparing

the frequency shift versus distance curves for different oscillation amplitudes.
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Chapter 20
Scanning Tunneling Microscopy

The problem of the tunneling junction (electrode-gap-electrode) can be treated in
different approximations. First we consider a simple wave function matching at a one-
dimensional square barrier. Then the Bardeen model of tunneling will be considered.
Subsequently, we discuss the Bardeen model of tunneling in several approximations.
First we focus on the energy dependence, while restricting the analysis to a one-
dimensional barrier. This will lead to an energy- and bias-dependent transmission
factor and relates the tunneling current to the energy dependence of the density
of states of the sample. In the complementary Tersoff-Hamann approximation, the
tunneling voltage is considered to be small so that only electrons close to the Fermi
level contribute to the tunneling current. In this approximation, the tunneling current
is proportional to the density of states of the sample at the position of the tip. Finally,
it is shown that voltage-dependent imaging makes it possible to distinguish chemical
elements with atomic precision.

20.1 One-Dimensional Potential Barrier Model

As a one-dimensional model for tunneling we consider a square potential barrier
V (z) of height V0 above the bottom of the potential (V = 0) in the region between
z = 0 and z = d, as shown in Fig. 20.1. E is the energy of the electron tunneling
through the barrier. The time-dependent Schrödinger equation reads as

i�
∂

∂t
Ψ (r, t) =

(
− �

2

2m
� + V (r, t)

)
Ψ (r, t). (20.1)

Since the potential is not time-dependent the time dependence of the solution can be
split into a separate factor φ(t) = exp (− i

�
Et) as known from quantum mechanics,

i.e. Ψ (r, t) = exp (− i
�

Et)ψ(r). This means that there are solutions with a definite
fixed (time-independent) energy E . The spatial dependence of the solution of the

© Springer-Verlag Berlin Heidelberg 2015
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Fig. 20.1 One-dimensional
metal-vacuum-metal
tunneling junction. If the
barrier is thin, the wave
function can penetrate to the
other side of the barrier
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Schrödinger equation, ψ(r), can be obtained from the time-independent Schrödinger
equation which can be written in the one-dimensional case as

�
2

2m

∂2

∂z2 ψ(z) = [V (z) − E] ψ(z). (20.2)

We will first find solutions for regions I, II, and III in Fig. 20.1 separately. If
we insert the expression for a right traveling plane wave, ψ = eikz , into the time-
independent Schrödinger equation, (20.2), this results in

− �
2

2m
k2 = V (z) − E . (20.3)

We obtain for k

k =
√

2m

�2 [E − V (z)]. (20.4)

In regions I and III, outside the barrier, V = 0, and the solution has the form of an
oscillating wave1 for a free electron

ψfree = eikz with k =
√

2m

�2 E . (20.5)

1 The wave function as drawn in Fig. 20.1 has its maximum value at the position z = 0. One could
think that when moving the barrier, e.g. to the left, the amplitude of the wave function changes and
could even vanish if the barrier is moved by one quarter of the wave length. This misconception
results from the fact that the wave function is a complex function which is difficult to draw in two
dimensions. The cosine function which is drawn in Fig. 20.1 corresponds to the the real part of
the complex wave function ψ(z) = eikz . The probability for the incoming wave is |ψ(z)|2 = 1 is
constant, i.e. independent of z.
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In region II, inside the barrier V = V0 and E − V0 < 0. Therefore, k in (20.4) is
imaginary. If we define κ by k = iκ, the real variable κ results as

κ =
√

2m

�2 (V0 − E). (20.6)

Thus the assumption ψ = eikz for the solution of the Schrödinger equation leads to a
wave function ψ = e−κz if the energy of the particle E is less than the height of the
potential barrier V0. For region II, inside the barrier the solution ψbarrier is given as

ψbarrier = e−κz . (20.7)

This is not an oscillating solution as found for the regions in which the potential
vanishes, but an exponentially decaying (real) wave function which is generally
found for regions in which the potential is larger than the particle energy. In classical
physics, a particle would not enter such a potential region. In quantum mechanics,
a particle can enter or even pass through such a classically forbidden region. This
process is called “tunneling”.

Up to now we have only considered the right-traveling wave ψ = eikz for region
I and III. Another independent solution is a left-traveling wave, ψ = e−ikz . The
general solution is a linear combination of the two. In region II, the general solution
is a linear combination of (20.7) and ψbarrier = e+κz .

In the following, we consider a barrier which is higher than the particle energy
(V0 > E) and obtain a solution of the time-independent Schrödinger equation, which
is valid not only in one of the three regions, but for all z. Before we start, we should
mention that any solution obtained above can be multiplied by a constant (complex
number with amplitude and phase), as c · eiα, and still remains a solution. Therefore,
our solution of an incoming wave traveling from the left is combined from the
solutions in the three regions as

ψ(z) =

⎧⎪⎨
⎪⎩

Aeikz + Be−ikz z < 0 (region I)

Ce−κz + Deκz 0 ≤ z ≤ d (region II)

Feikz z > d (region III)

(20.8)

with k and κ as defined in (20.5) and (20.6), respectively, and B, C, D, and F being
complex numbers. We assume the amplitude A of the incoming wave to be unity.
In region I (z < 0) the incoming wave is accompanied by a certain amount B of
a reflected wave. In region II, we have already interpreted the term proportional to
C as the wave function tunneling into the barrier. The term proportional to D can
be interpreted as a “reflection” from the downward potential jump at position d. In
contrast to classical mechanics, in quantum mechanics the wave function can also
be “reflected” from a downward potential step. In region III, the transmitted wave
(with positive k vector) is proportional to F . Since we assume no incoming particle
from the right, no wave with negative k vector is assumed in region III.
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The coefficients B, C, D, and F can be calculated from certain continuity
conditions which hold at the borders of the regions as will be discussed now. First
we mention that the wave function is finite everywhere. This is the case due to the
probability interpretation of the wave function. Since the probability of a particle
being at a certain place |ψ(z)|2 is finite, also the wave function itself has to be finite.
If we now consider the time-independent Schrödinger equation (20.2) with a finite
potential (as in our case of a barrier), we can conclude that the right-hand side of
(20.2) is always finite. Therefore, ∂2

∂z2 ψ(z) can be integrated and ∂
∂z ψ(z), as well.

Thus ψ(z) and ∂
∂z ψ(z) are continuous, as the integral over a finite function is always

continuous.
Since the wave function and its derivative have to be continuous, we apply these

continuity conditions at the two boundaries between the regions. At the position
z = 0 the two equations

1 + B = C + D and ik (1 − B) = κ (D − C) , (20.9)

for the wave function and its derivative, respectively. At the position z = d the two
equations are

Ce−κd + Deκd = Feikd , and κ
(

Deκd − Ce−κd
)

= ik Feikd , (20.10)

for the wave function and its derivative, respectively. These four (complex) equations,
fix the four (complex) coefficients B, C, D, and F . The solutions can be found, for
instance, using a computer algebra system. In the following, we are interested in the
factor F , which is the amplitude of the wave function past the barrier. The absolute
square of the coefficient F results as

T = |F |2 = 4k2κ2

(k2 + κ2)2 sinh2 (κd) + 4k2κ2
. (20.11)

This factor T is the probability of finding an electron at the end of the potential
barrier, |ψ(d)|2. We will show in the next section that T corresponds to the flux
(particle flux or electric current) through the potential barrier. For this reason T is
also called the transmission factor.

In the limit κd � 1 (20.11) can be simplified. In this case the sinh2 term can be
approximated by

sinh2 κd ≈ 1

4
e2κd . (20.12)

As another approximation, we also neglect the last term in the denominator (we will
verify the validity of this approximations later) and the transmission factor becomes

T = 16k2κ2

(k2 + κ2)2 e−2κd = 16E(V0 − E)

V 2
0

exp

[
−2d

√
2m

�2 (V0 − E)

]
, (20.13)
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Fig. 20.2 Transmission
factor as a function of the
electron energy E for a
square potential of barrier
height V0 = 10 eV and
thickness d = 0.5 nm for the
case that E is smaller than
the barrier V0. The exact
solution (20.11) shown is
indistinguishable from the
approximation (20.13)
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using (20.5) and (20.6). If we neglect the energy dependence of the preexponential
factor, we see that the transmission factor and therefore also the measured tunneling
current in STM experiments decreases exponentially with the barrier width d, which
is the tip-sample distance. Secondly, the tunneling current decreases exponentially
with the square root of V0−E . In the preexponential factor, E and V0 enter separately,
therefore also the depth of the potential, i.e. the zero level for the potential in Fig. 20.1,
becomes important. Here we use V0 = 10 eV and d = 0.5 nm. In Fig. 20.2, the exact
solution for the transmission factor (20.11) is plotted as a function of the energy E .
The curve for the approximation is indistinguishable from the exact solution, which
shows that the approximations made in order to obtain (20.13) are justified. The
transmission factor still remains much smaller than unity up to E = V0.

In a metal, E can be identified with the Fermi energy EF , i.e. the energy of the
highest occupied state, and V0 corresponds to the vacuum energy Evac relative to the
bottom of the potential. The difference between vacuum energy and Fermi energy is
called the work function Φ = Evac − EF = V0 − EF . Thus EF can be written as
EF = V0 − Φ, and for a usual value for the work function of Φ = 4.5 eV the Fermi
energy results as EF = 5.5 eV from the bottom of the potential. As seen in Fig. 20.2,
the transmission factor at EF has very small values of about 10−9.

In the following, we consider the transmission factor for energies larger than
the barrier height. For E > V0 the constant κ becomes imaginary according to
(20.6) and we define κ = ik′. If we insert this into (20.11) and use the identity
sinh(ik′d) = i sin(k′d), the following expression for the transmission factor results

T = |F |2 = 4k2k′2

(k2 − k′2)2 sin2 (k′d) + 4k2k′2 . (20.14)

For the case E > V0 the transmission factor has an oscillatory character approaching
a transmission factor of unity for particular energies, as shown in Fig. 20.3.
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Fig. 20.3 Transmission factor as a function of the particle energy E for a square potential of barrier
height V0 = 10 eV and thickness d = 0.5 nm. In classical mechanics, the transmission is zero if the
particle energy is lower than the barrier and one if the energy is larger than the barrier (dashed line).
For energies larger than the barrier the quantum mechanical solution of the problem results in an
oscillatory behavior of the transmission factor according to (20.14), as shown by the red line. The
transmission factor reaches unity, if an integer of the half-wavelength of the wave function in the
barrier fits into the barrier width d, as shown in the inset

This occurs if the sine term in (20.14) vanishes, i.e. if the condition k′d = nπ is
fulfilled. Since the wavelength of the wave function is related to the wave number
by k′ = 2π/λ, the following condition between the wavelength λ and the thickness
of the barrier d results

n
λ

2
= d. (20.15)

Thus the condition for a transmission factor of one is that an integer of half the
wavelength of the wave function inside the barrier fits into the barrier width d,
as shown in the inset of Fig. 20.3. These barrier resonances will be considered in
Sect. 21.11.

While the one-dimensional wave function matching approach proved quite useful,
it also involves several problems. First, the wave functions are not normalized. Since
the wave functions extend to infinity the integral over ψψ∗ is infinite. Second, in this
approach no voltage difference between the electrodes is considered. Also only one
electron state at energy E is considered and the electronic structure of the sample
(and the tip) does not enter in this approach.

20.2 Flux of Matter and Charge in Quantum Mechanics

In the previous section, we used the yet unproven ad hoc assumption that the absolute
square of the wave function behind the barrier (relative to the incoming wave) is pro-
portional to the flux density of the particles (or the electric current). In the following,

http://dx.doi.org/10.1007/978-3-662-45240-0_21
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we will show that this results from a more general description of the flux of matter
in quantum mechanics.

In electricity or fluid dynamics, a continuity equation relates a density ρ to a flux
density, or current density j as

∂ρ(r, t)

∂t
+ div j(r, t) = 0. (20.16)

In quantum mechanics, the probability density is defined as

ρ(r, t) = Ψ (r, t)Ψ ∗(r, t). (20.17)

In searching for a flux density j(r, t) which fulfills a continuum equation for the
probability density given above, we take the first derivative of (20.17) with respect
to time

∂
[
Ψ (r, t)Ψ ∗(r, t)

]
∂t

= ∂Ψ

∂t
Ψ ∗ + Ψ

∂Ψ ∗

∂t
. (20.18)

Inserting the time-dependent Schrödinger equation (20.1) (slightly reordered)

∂Ψ

∂t
= i�

2m
�Ψ − i

�
V Ψ (20.19)

into the right part of (20.18) results in

∂(Ψ Ψ ∗)
∂t

= i�

2m

(
�Ψ Ψ ∗ − Ψ �Ψ ∗) . (20.20)

The terms proportional to V cancel out. The bracket in (20.20) can be written as
a divergence of another term. This can be easily seen by calculating the following
divergence

div
(
Ψ ∗∇Ψ − Ψ ∇Ψ ∗) = ∇Ψ ∗∇Ψ + Ψ ∗�Ψ − ∇Ψ ∇Ψ ∗ − Ψ �Ψ ∗. (20.21)

As the first and the third term cancel, the continuity equation (20.16) holds with the
flux density (or probability current) j , as

j(r, t) = −i�

2m

(
Ψ ∗∇Ψ − Ψ ∇Ψ ∗) . (20.22)

The continuity equation for the probability means that the probability of finding
a particle is conserved in a local sense. Generally, the probability would also be
conserved if a particle disappeared at one place and appeared at a distant place at the
same time. Due to the validity of the continuity equation any change of the probability
with time is related to an inward flowing probability current and the probability is
conserved locally.
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Now we calculate the probability current for the specific case of the wave function
for a square barrier given by (20.8). We perform the calculation for the easiest case
(i.e. region III). However, the result will be the same for the other regions. The wave
function in region III is a one-dimensional plane wave given by Ψ = Feikz . In
calculating the probability current according to (20.22), in the one-dimensional case
the Nabla operator is replaced by the partial derivative ∂

∂z . With this the (scalar)
probability current can be written as

j = −i�

2m

(
F∗e−ikz ∂Feikz

∂z
− Feikz ∂F∗e−ikz

∂z

)
= |F |2 �k

m
. (20.23)

In the semi-classical transport theory of solid state physics [42], the particle velocity
is written as

v = p

m
= �k

m
. (20.24)

Thus the probability current density is given by the absolute square of the amplitude
of the wave function times the particle velocity as j = |F |2 v. One point to note is
that in spite of the fact that the wave function is stationary, i.e. does not change with
time, a flux density (probability current) occurs and the particle is “in motion”.

There still remains the problem that the wave function in (20.8) is not normalized,
because it extends to minus and plus infinity. In principle, one could multiply the
probability current density of one particle by the number of particles and obtain a
particle flux density, and by multiplication with the particle charge also an electric
current density. Finally, if divided by the area, an electric current results.

20.3 The WKB Approximation for Tunneling

Only for a few types of potential barriers can the Schrödinger equation be solved
analytically. For a more general type of one-dimensional potential barriers, the semi-
classical Wentzel-Kramers-Brillouin (WKB) approximation is often applied. While
this approximation does not describe some typical hallmarks of quantum behavior,
such as the oscillatory behavior of the transmission factor, the exponential decay of
the transmission factor in a potential barrier is reproduced.

This method can be considered as an extension of the solution of the square
barrier to more general shapes of a one-dimensional barrier. When discussing the
square barrier model, we found that the wave vector k is modified inside the barrier.
For a free particle with energy E which moves in a constant potential V , the wave
function of the time-independent Schrödinger equation can be written as

ψ(x) = Ce±ikz, (20.25)

with C being a normalization constant and k = 1
�

√
2m(E − V ). We notice that for

different values of the potential V the phase ikz of the wave function is modified.
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We now consider a spatially varying one-dimensional potential to be composed
of small segments of constant potential. Infinitesimal rectangular barriers of barrier
height V (z) and thickness dz are considered. The wave function will be still approx-
imated by a plane wave. The total phase shift can be calculated by integration over
the infinitesimal phase shifts between z0 and z1. We obtain for the wave function at
position z1

ψ(z1) = ψ(z0) exp

⎡
⎣±i

z1∫
z0

k(z)dz

⎤
⎦. (20.26)

For the case of a potential barrier E − V (z) < 0 and omitting the preexponential
factor in (20.13), the WKB approximation the transmission factor results as

T =
∣∣∣∣ψ(z1)

ψ(z0)

∣∣∣∣
2

= exp

⎡
⎣−2

√
2m

�

z1∫
z0

√
(V (z) − E)dz

⎤
⎦. (20.27)

For a constant value of the potential, the exponential dependence of the transmission
factor which was found by the wave matching method is recovered. For a more
general form of the potential, the integral along the barrier in (20.27) can be evaluated
numerically for any barrier shape.

As an example of the WKB approximation, we consider a trapezoidal barrier as
shown in Fig. 20.4. The potential as function of z is written as V (z) = E + Φtip −
z/d(Φtip − Φsample). The integral in (20.27) is written as

d∫

0

√
Φtip − z/d(Φtip − Φsample)dz = 2d

3(Φtip − Φsample)

[
Φ

3/2
tip − Φ

3/2
sample

]
.

(20.28)

If this expression for the integral is inserted in (20.27) an analytic expression for the
transmission through a trapezoidal barrier results in the WKB approximation.

Fig. 20.4 Trapezoidal
barrier arising due to
different work functions Φ

considered for tip and
sample. An electron with
energy E above the bottom
of the potential is considered E

Tip
V(z) Sample

sample

F

tip

E

zz=0
0

z=d
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20.4 Density of States

Since in the following sections the concept of the density of states will be used, we
will introduce it here. The density of states ρ(E) is a distribution function describing
the number of electronic states of a system in the range between E and E + d E and
is defined for instance by the relation

dN(E, E + d E) = ρ(E)dE. (20.29)

The number of states in a finite energy range between E1 and E2 is then given by

N (E1, E2) =
E2∫

E1

ρ(E)dE. (20.30)

For a system with n discrete states (where also all degenerate states need an individual
number) the density of states can be formally written as

ρ(E) =
∑

n

δ(E − En), (20.31)

where δ represents the Dirac delta function, which can be defined as a limit of the
normalized Gauss distribution

δ(x) = lim
a→0

1

a
√

2π
e
− x2

2a2 . (20.32)

From this it can be inferred that the unit of the Dirac delta function δ(x) is 1/unit(x).
Like the Gauss distribution, the Dirac delta function is normalized

∞∫
−∞

δ(E)dE = 1. (20.33)

The following expression also holds for a finite range of integration

E2∫

E1

δ(E − Ei )dE = 1, (20.34)

if Ei ∈ [E1, E2]. Coming back to the definition of the density of states in (20.31)
we calculate the number of states between E1 and E2 as in (20.30)
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N (E1, E2) =
E2∫

E1

ρ(E)dE =
E2∫

E1

∑
n

δ(E − En)dE =
∑

n

1, (20.35)

where the sum extends over all n for which En ∈ [E1, E2]. This is the expected
result and confirms that the definition of the DOS in (20.31) is reasonable. Up to now
we have only focused on the energy dependence of the density of states. However,
it is useful that the number of states is also referred to a certain volume as well. The
number of states (like the one in (20.35)) is referred either to the whole system, or
to a unit volume for periodic systems.

Another useful normalization is to consider the spatial distribution of the density
of states. We do this by defining a new distribution function, the local density of states
(LDOS), by weighting with the probability |ψn (r)|2 of a particle to be at position r as

LDOS = ρ(E, r) =
∑

n

|ψn (r)|2 δ(E − En). (20.36)

20.5 Bardeen Model for Tunneling

In a simple interpretation, the STM image is the surface topography of the sample.
However, on the atomic scale it is not clear what would be meant by the word
“topography”. One reasonable definition would be that a topographic image is an
image of constant surface charge density. However, as we will see in this section
the STM tip follows the local density of states at the Fermi level, whereas electrons
at all energies contribute to the charge density. In the following, we describe an
interpretation of STM images, applicable even in the case of atomic resolution.

Bardeen developed a model for tunneling in solids long before the invention of
the STM. He considered tunneling in metal-insulator-metal tunneling junctions. In
the following, we transfer his model to the case of the STM. His approach was to
consider the tip plus barrier and the sample plus barrier as two separate systems.2

The electronic states of the individual subsystems may be obtained by solving the
time-independent Schrödinger equations of the two subsystems. In the simplified
one-dimensional case, the solutions are just oscillatory wave functions of different
energies with an exponentially decaying tail inside the barrier. In the full three-
dimensional case, these are the complete wave functions (and corresponding energy
eigenvalues) of tip and sample taking the atomic arrangement into account.

Subsequently, the transition (scattering) from the initial (tip) states to the final
(sample) states is considered within the time-dependent perturbation theory. An elec-
tron which is initially in a tip state can scatter (be transferred) into a sample state. The
tip and sample states are indicated in Fig. 20.5 with a bias voltage V applied between

2 Strictly speaking, he considered a metal electrode plus oxide barrier and another metal electrode,
since STM had not been invented yet.
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Fig. 20.5 Energy diagram of
tip and sample states for the
case of positive sample bias
voltage V . Tunneling with
energy conservation can only
occur within the bias window
(blue arrows). Above the
bias window the initial states
are empty and below the
final states are occupied. All
energies are referred relative
to the sample Fermi level
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tip and sample. When a positive voltage is applied to an electrode, the energy of
the states in this electrode is decreased. In the reverse case, a negative voltage at an
electrode leads to an upward shift of the energy levels (for electrons it is energetically
unfavorable to hop onto a negatively charged electrode). Thus Fig. 20.5 corresponds
to the case in which a positive voltage V is applied to the sample or equivalently
a negative voltage is applied to the tip. Furthermore, we use the zero temperature
limit in which all levels are filled up to the (tip or sample) Fermi level and are empty
above.3 This means that tunneling (or scattering from one electrode to another) can
only occur in the bias window between EF,sample and EF,tip.

In Bardeen’s approach, the transition rate from one electrode to the other is calcu-
lated using the time-dependent perturbation theory assuming weak coupling between
the two electrodes. Specifically, a variant of Fermi’s golden rule is applied in order to
calculate the transition rate. Since Fermi’s golden rule is often not a part of the intro-
ductory courses in quantum mechanics, Bardeen’s variant for tunneling is derived in
Appendix B with emphasis on the case of scanning tunneling microscopy.

Applied to the case of tunneling, Fermi’s golden rule shows that scattering from a
particular (initial) tip state i at Etip,i to a particular (final) sample state f at Esample, f

results according to (B.19) at a transition rate (number of electrons per time) of

wtip,i→sample, f = 2π

�

∣∣M f i
∣∣2

δ(Esample, f − Etip,i ), (20.37)

with the matrix element M f i calculated according to (B.24) as

M f i = �
2

2m

∫

Stip/sample

[
ψtip,i (r)∇ψ∗

sample, f (r) − ψ∗
sample, f (r)∇ψtip,i (r)

]
· d S.

(20.38)

3 This arises because electrons are fermions and only one electron can occupy an electronic state
due to the Pauli principle.
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The Dirac delta function in (20.37) shows that the energy of the final state, must
be the same as the energy of the initial state, as expected from energy conservation.
The calculation of the matrix element involves an integration over an (arbitrary)
tip-sample separation surface Stip/sample.

In order to obtain the total rate for the transfer from any initial state to any final
state a sum over all pairs of initial and final states has to be calculated4

wtip→sample = 2π

�

∑
i, f

∣∣M f i
∣∣2

δ(E f − Ei ), (20.39)

where in the low-temperature limit the sum has to be performed only within the bias
window. In order to obtain the current, we multiply the transition rate wtip→sample by
the electron charge (we skip the negative sign here and consider only the absolute
value of the current) and take a factor of two due to spin degeneracy into account.
This results in

I = 4πe

�

∑
i, f

∣∣M f i
∣∣2

δ(E f − Ei ), (20.40)

The Bardeen equation derived above for the tunneling current is quite general and
will be evaluated further in certain approximations. Generally, two kinds of approx-
imations are used. In the Tersoff-Hamann approximation, the tunneling voltage is
considered to be so small that the energy dependence of the matrix element as well
as the energy dependence of the densities of states can be neglected. The emphasis is
put on considering the spatial dependence of the surface wave functions realistically.
Furthermore, the tip wave function is approximated by a spherical s-wave. In this
case, the Tersoff-Hamann model results in a very simple relation between the surface
wave functions and the tunneling current and can be used to simulate STM images
for specific models of surface structures. We will discuss this approximation in detail
in a later section of this chapter.

In the energy-dependent approximation of the Bardeen equation, complementary
assumptions are made. The emphasis is put on the energy dependence of the density
of states of tip and sample. The treatment of the surface wave functions is replaced by
the approximate treatment of the tunneling barrier in a one-dimensional model with
a rectangular shape of the tunneling barrier. This approximation is used in scanning
tunneling spectroscopy in order to obtain information on the density of states of
the sample from the energy-dependent measurement of the tunneling current and its
derivative.

4 For the sake of easier notation, we abbreviate Esample, f by E f and correspondingly for the tip
Etip,i by Ei .
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20.5.1 Energy-Dependent Approximation
of the Bardeen Model

Since the double sum over the tip and sample states in (20.40) is an abstract entity,
this will be replaced in the energy-dependent approximation of the Bardeen model
by the introduction of the (energy-dependent) density of states of tip and sample.

Since each wave function corresponds to a particular energy, the dependence of
the matrix element on the wave functions can be replaced by a dependence on the
energy as

M f i (ψ
∗
sample, f (r),ψtip,i (r)) = M(E f , Ei ) = M(E f ), (20.41)

which is evident for non-degenerate states (each wave function corresponds to a
certain energy). For degenerate states, the energy dependent matrix element is the
sum of the matrix elements of the degenerate states, because several states contribute
to the transition. The last equality in (20.41) arises if the matrix element appears
together with the delta function, e.g. in (20.40).

In order to introduce the densities of states, we use the the following identity for
the Dirac delta function

∞∫
−∞

f (ε)δ(ε − E f )dε = f (E f ), (20.42)

and insert f (ε) = |M(ε)|2 δ(ε − Ei ), which results in

∣∣M(E f )
∣∣2

δ(E f − Ei ) =
∞∫

−∞
|M(ε)|2 δ(ε − Ei )δ(ε − E f )dε. (20.43)

Inserting this into (20.39) and extending the integration only over the bias window
(low-temperature approximation) results in

wtip→sample = 2π

�

∑
i, f

EF,tip∫

EF,sample

|M(ε)|2 δ(ε − Ei )δ(ε − E f )dε

= 2π

�

EF,tip∫

EF,sample

|M(ε)|2
∑

i

δ(ε − Ei )
∑

f

δ(ε − E f )dε. (20.44)

The sums over i and f can be replaced according to (20.31) by the density of states of
tip and sample ρtip/sample(ε). This results in the following expression for the transition
rate as
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wtip→sample = 2π

�

EF,tip∫

EF,sample

|M(ε)|2 ρtip(ε)ρsample(ε)dε. (20.45)

In order to obtain the current, we multiply the transition rate wtip→sample by the
electron charge and again take the factor of two due to spin degeneracy into account.
This results in

I = 2e wtip→sample = 4πe

�

EF,tip∫

EF,sample

ρtip(ε)ρsample(ε) |M(ε)|2 dε. (20.46)

It is seen from the above equation that the two electrodes enter symmetrically. The
tunneling current is a convolution of the states of the sample and the tip. This means
that in order to obtain information about the surface the (electronic) structure of the
tip must be known. However, in most practical experiments the density of states
of the tip is unknown and we will show later under which approximations the tip
properties can be taken out of the problem.

Now we choose the sample Fermi energy as a reference point for the energies:
EF,sample = 0. Thus the tip Fermi energy results as EF,tip = eV as also shown in
Fig. 20.5. Inserting this choice of reference into the integration limits (20.46) can be
written as

I = 4πe

�

eV∫

0

ρtip(ε)ρsample(ε) |M(ε)|2 dε. (20.47)

In this equation, the energy variables of the densities of states of tip and sample are
both referred to a common energy reference namely EF,sample, which was set to zero.
What is inconvenient about this notation is that the density of the tip states ρtip(ε)
is referred to the Fermi energy of the sample. It is more convenient if the energy
variable in the density of the tip states is relative to the “its own” (i.e. tip) Fermi
energy (Fig. 20.5). This corresponds to a change in reference from ρtip(ε) (relative
to the sample Fermi level) to ρtip(ε − eV ) (relative to the tip, i.e. “its own” Fermi
level). The energy term ε − eV describes the distance between tip Fermi energy and
the green arrow in Fig. 20.5. This results in the expression for the tunneling current

I = 4πe

�

eV∫

0

ρtip(ε − eV )ρsample(ε) |M(ε)|2 dε, (20.48)
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and the matrix element

M(ε) = �
2

2m

∫

Stip/sample

[
ψtip(r, ε)∇ψ∗

sample(r, ε) − ψ∗
sample(r, ε)∇ψtip(r, ε)

]
· d S.

(20.49)

In this approximation of the Bardeen equation, the double sum over the initial and
final states has been replaced by an energy integral over the densities of states of tip
and sample.

In the following, we will work out this approximation further by approximating
the Bardeen matrix element for the case of a one-dimensional rectangular barrier.

20.5.1.1 Bardeen Matrix Elements for a One-Dimensional Barrier

The matrix elements in the Bardeen equation for the tunneling current (20.48) can be
written according to (20.49). These matrix elements can be calculated if the tip and
sample wave functions are known on the separation surface Stip/sample. According to
(20.37), we only consider elastic tunneling, thus we consider only matrix elements
for which Ei = E f = E and therefore M f i = M(E). In the following, we calculate
the matrix elements explicitly for a simple model of a one-dimensional rectangular
barrier. In the one-dimensional case (20.49) reduces to

M(E) = �
2

2m

∫
z=zs

[
ψtip(z, E)

∂ψ∗
sample(z, E)

∂z
− ψ∗

sample(z, E)
∂ψtip(z, E)

∂z

]
d S.

(20.50)

The integration is performed at a separation surface Stip/sample located at constant
height above the sample surface zS . The tip and sample wave functions are shown
schematically in Fig. 20.6. The wave functions ψtip,i and ψsample, f are the solutions
of the individual tip and sample systems, as considered in Appendix B. Inside a one-
dimensional rectangular barrier the wave functions decay exponentially as discussed
previously and can be written as

ψtip(z) = ψtip(0)e−κz, (20.51)

and
ψsample(z) = ψsample(d)eκ(z−d), (20.52)

where the energy dependence enters via the decay constant κ = √
2m(V0 − E)/�,

corresponding to a state with energy E . Since we only consider elastic tunneling, the
energy in the initial and final states is the same. The zero point on the z-axis is chosen
at the left end of the barrier, as indicated in Fig. 20.6. At the position of the right
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Fig. 20.6 Evaluation of the
matrix element for a
one-dimensional rectangular
barrier. The wave functions
of both separate tip and
sample systems decay
exponentially into the barrier.
The matrix element is
evaluated by integration at a
position zS inside the barrier

ψtip,i

zsz = 0 z = 0 z = d

ψsample,f

zs

V (z)0

zz

E

end of the barrier (z = d) the exponent in (20.52) is zero and for smaller z-values
(i.e. positions inside the barrier) the exponent becomes negative, corresponding to
an exponentially decaying final state wave function inside the barrier as shown in
Fig. 20.6.

The matrix element can be evaluated by inserting the above one-dimensional wave
functions at the position of the separation surface zs . Inserting (20.51) and (20.52)
into (20.50), we obtain

M(E) = �
2

2m

∫
z=zs

2κψtip,i (0)ψsample, f (d) e−κzs eκ(zs−d)d S

= �
2

m
κψtip,i (0) ψsample, f (d) Ae−κd . (20.53)

The tunneling matrix elements are independent of the position zs of the separation
surface (as it should be), since the wave function expressions are taken at a specific
constant z-position (namely zero and d), and κ does not depend on z. Moreover,
all of the expressions in the integral do not depend on x or y, since we consider a
one-dimensional model. Therefore, the integration results just in the area A of the
electrodes (area of the tunneling contact). The energy dependence of M(E) enters
through the decay constant κ. While κ also appears in the preexponential factor,
the energy dependence is dominated by the contribution of κ in the exponent. The
term which enters into the equation for the tunneling current is |M(E)|2 is called the
transmission factor T (Φ, d) = |M(E)|2 in the one-dimensional approximation, with
Φ = V0 − E . If we neglect the energy dependence of the pre-exponential factor, the
energy dependence of the transmission factor can be expressed by the exponential
factor as

T (Φ, d) ∝ exp (−2κd) = exp

(
−2d

√
2m

�2 Φ

)
. (20.54)

In the one-dimensional approximation, the Bardeen model results in the same energy
dependence of the transmission factor as that already obtained by the wave function
matching model according to (20.13).
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In summary, if in the evaluation of the matrix element in (20.48) a one-dimensional
barrier is used for simplicity, the matrix element |M(E)|2 can be approximated by a
T transmission factor according to (20.54).

20.5.1.2 Barrier Height and Transmission Factor as Function
of Voltage and Energy

In the previous section, we have evaluated the transmission factor for a given constant
barrier height Φ of a rectangular barrier. In the following we replace this simple
barrier by an effective barrier including effects such as different tip and sample work
functions, the tunneling voltage, and the particular energy ε of a tunneling electron
in the bias window.

The easiest case is to consider different work functions for tip and sample. As
shown in Fig. 20.7a, this leads to a a trapezoidal barrier replacing the rectangular
barrier (The other cases to be considered will also lead to a trapezoidal barrier).

As a general approach, we approximate the height of a trapezoidal barrier by a
rectangular barrier with the average height of the trapezoidal barrier, i.e. at the middle
of the barrier (dotted line in Fig. 20.7a). For the case of the different tip and sample
work functions, the average barrier height is given by an average work function as
Φ = (Φtip + Φsample)/2.

This approximation is not very well justified since the transmission factor
increases exponentially (not linearly) with decreasing barrier height and thus this
approximation underestimates the tunneling current. Nevertheless, this approxima-
tion is generally used because of its simplicity and because the barrier thickness in
STM experiments is quite small (0.5–1 nm).

As a next effect we include the dependence of the barrier height on the tunneling
voltage V . Therefore, we assume for the moment the same work function for tip and
sample. For states at the sample Fermi energy, the average tunneling barrier increases

EF,tip EF,sample

Tip Sample

tip sample

2 sample
sample

tip tip

d

(a) (b)

E F,tip

EF,sample

Tip Sampled

eV

eV
2

Fig. 20.7 a Average tunneling barrier if the work functions of tip and sample are different.
b Dependence of the barrier height on the tunneling voltage (with tip and sample work function
being the same)
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to Φ + eV
2 . In the general case for states at energy ε relative to the sample Fermi

level the tunneling barrier height is given by Φ + eV
2 − ε, as shown in Fig. 20.7b. For

the two limiting cases ε = 0 and ε = eV the barrier heights result as Φ + eV
2 and

Φ − eV
2 , respectively. This corresponds to an increase/reduction of the barrier height

for electrons at the sample/tip Fermi level, respectively. If electrons in the middle of
the bias window are considered ε = eV

2 , the barrier results as Φ, i.e. independent
of V .

Taking all the effects together, the average or effective barrier for an electron
tunneling at energy ε relative to the sample Fermi level is

Φeff = Φtip + Φsample

2
+ eV

2
− ε. (20.55)

If we now replace Φ in the equation for the transmission factor (20.54) by the
effective barrier height given in (20.55), the following equation results for the trans-
mission factor

T (ε, V, d) ∝ exp

[
−2d

√
2m

�2

(
Φtip + Φsample

2
+ eV

2
− ε

)]
. (20.56)

The transmission factor decreases exponentially for lower electron energies
(smaller ε) because the effective barrier appears higher to these electrons as indicated
by the horizontal arrows with different lengths shown in Fig. 20.7.

Since in the one-dimensional barrier approximation the matrix element |M(ε)|2
is replaced by the transmission factor T (ε, V, d), (20.48) can be written as

Fig. 20.8 Energy level
diagram of the tunneling
junction. The applied bias
shifts the Fermi level by eV .
Density of states are
represented by ρtip and
ρsample (the filled states are
colored) EF,tip

EF,sample

Tip Sample

t

eV
sample

tip

d

s
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I = 4πe

�

eV∫

0

ρtip(ε − eV )ρsample(ε)T (ε, V, d)dε, (20.57)

This is the Bardeen equation for a one-dimensional barrier in the limit of zero temper-
ature (taking the Fermi functions as step functions). Since this is an important equa-
tion we will discuss it in the following using the graphic in Fig. 20.8. The appearance
of the combined density of states ρtip · ρsample in (20.57) can be seen in the graphic
representation of the energy diagram of the tunneling junction. Figure 20.8 includes
the density of states of tip and sample, ρtip, and ρsample, respectively. When a positive
bias voltage is applied, a tunneling current flows from the occupied states of the tip to
the unoccupied states of the sample. The unoccupied states in the sample are shifted
downwards by eV relative to the Fermi level of the tip. It is reasonable to assume
that the contribution to the tunneling current at a certain energy is proportional to
the density of occupied states in the tip as well as to the density of the unoccupied
states in the sample. Therefore, this contribution to the tunneling current should be
proportional to the product of both, as

dI ∝ ρsample ρtipdε. (20.58)

This product has to be multiplied by the transmission factor T (ε, V, d), which corre-
sponds to the horizontal arrows in Fig. 20.8, and integrated over the range of energies
in which occupied states in the tip and empty states in the sample exist. The hori-
zontal arrows indicate that the tunneling is energy-conserving (elastic). The trans-
mission factor decreases exponentially for lower energies, indicated by the shorter
blue arrows. A larger effective barrier for the tunneling electrons applies to these
low-lying states.

As we have seen, the transmission factor is not a constant but depends on the
applied bias voltage and the energy of the tunneling electrons. However, for small
tunneling voltages eV � Φ the energy-dependent term of the transmission factor ε
can be replaced by an average energy ε = (EF,tip + EF,sample)/2 = eV/2. In this
approximation, the transmission factor T (d) is independent of the energy ε and the
voltage V . Therefore, the tunneling current can be written as

I = 4πe

�
T (d)

eV∫

0

ρtip(ε − eV )ρsample(ε)dε. (20.59)

In this case, the tunneling current is proportional to the combined density of the states
of tip and sample integrated up to the bias voltage. For a constant tip density of states,
this can be put in front of the integral. If the sample density of states is (approximately)
constant the integration leads to a proportionality between bias voltage V and the
tunneling current (I ∝ V ). If the voltage is very small the result of the the tunneling
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current is proportional to the sample density of states at the energy EF . This also
results from the Tersoff-Hamann approximation which we will discuss later.

20.5.1.3 Inclusion of the Fermi Functions at Finite Temperatures

Up to now we have considered the low-temperature case, i.e. all levels below the
Fermi level have been treated as completely filled and all levels above the Fermi
level have been considered as completely empty. In this approximation tunneling
occurs only in the bias window. Considering Fermi functions, the Fermi functions
were approximated as step functions. Now we take into account the actual Fermi
distribution for the filling of the levels at energy E , which is not a step function, but
a broadened (smeared out) step function. The Fermi-Dirac distribution f (E − EF )

is defined as

f (E − EF ) = 1

1 + exp [(E − EF )/kB T ]
, (20.60)

and gives the occupation number of filled states at energy E−EF and temperature T .5

The occupation number of the empty states is correspondingly 1 − f (E − EF ).The
contribution to the tunneling current due to the occupation of levels can be expressed
as: the occupation number in the electrode from which the tunneling starts times the
occupation number of the empty levels in the electrode to which the electron tunnels.
The part I +(E) arises for electrons tunneling at a certain energy E which tunnel from
the occupied states of the tip to the unoccupied states of the sample. There is also
a part I −(E) for electrons tunneling from sample to tip (Fig. 20.9). I +(E) can be
written as

I +(E) = Itip,filled→sample,empty ∝ f (E−EF,tip)·[1− f (E−EF,sample)]. (20.61)

Fig. 20.9 Occupation
numbers for tip and sample
states. The total tunneling
current is composed of a part
I + for electrons tunneling
from tip to sample and a part
I − for electrons tunneling
from sample to tip

SampleTip

EF,tip

eV
ε

0

E

I
+

I
-

E F,sample

Filled
states

Filled
statesf (E-eV) f (E)

Empty
states

Empty
states

5 Here we explicitly use E − EF as the argument, since we will refer the Fermi function to different
Fermi levels, i.e. tip and sample Fermi level.
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The reverse current contribution from the filled states of the sample to the empty
states of the tip is written as

I −(E) = Isample,filled→tip,empty ∝ f (E − EF,sample) ·[1− f (E − EF,tip)] (20.62)

so that the total contribution due to the occupation numbers, I total(E), is obtained as

I total(E) = I + − I − ∝ f (E − EF,tip) − f (E − EF,sample). (20.63)

Since EF,sample = 0 and EF,tip = eV , the total contribution can be written as

I total(E) = I + − I − ∝ f (E − eV ) − f (E). (20.64)

The tunneling current is then obtained by including this factor in (20.57), renaming
E to the integration variable ε, and extending the integration from minus infinity to
infinity, as

I = 4πe

�

∞∫
−∞

{ f (ε − eV ) − f (ε)} ρtip(ε − eV )ρsample(ε)T (ε, V, d)dε. (20.65)

The term in the curly brackets is also sometimes called the window function, because
in the limit of low-temperatures, where the Fermi function becomes a step function,
this term has the value one in the range between zero and eV , and zero everywhere
else.6

20.5.2 Tersoff-Hamann Approximation of the Bardeen Model

The Bardeen tunneling model was developed before the invention of the STM in
order to describe planar MIM (metal insulator metal) tunneling junctions. Shortly
after the invention of the STM, Tersoff and Hamann adapted the Bardeen model for
the case of the STM. Their theory of STM applies in the limit of very small tunneling
voltages and was the first approximation including realistic surface wave functions
(not the simple one-dimensional barrier).

As mentioned previously, the main challenge in the Bardeen theory is the calcu-
lation of the tunneling matrix elements. Tersoff and Hamann neglected the energy
dependence of the matrix element and evaluated the matrix element in the limit of
small voltages, i.e. at the Fermi level. They chose a plane above the surface and per-
formed the integration in (20.49). In order to perform the calculation of the tunneling
matrix element, explicit wave functions for the two electrodes (surface and tip) have

6 Here we considered that tip and sample have the same temperature. If this is not the case, Fermi
functions with different temperatures have to be considered for tip and sample.
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to be inserted into (20.49). To describe the wave function of the surface they used a
plane wave Fourier expansion. The structure of the surface is given by the Fourier
components in the expansion.

To calculate the integral also the wave function of the tip has to be known. Unfor-
tunately, the structure of the tip is usually not known. Tersoff and Hamann therefore
assumed the simplest possible approximation for the tip. If the ideal STM tip con-
sisted of a mathematical point source all tip properties would be taken out of the
problem. They showed that, if the position of the tip point source is at r t , the current
at small voltages reduces to

I ∝
∑

n

|ψn(r t )|2δ(En − EF ). (20.66)

According to (20.36) this expression is the definition for the local density of states
(LDOS). The Dirac delta function ensures the energy conservation (elastic tunneling).
ψn are the surface wave functions and the term |ψn(r t )|2 describes the probability
of finding a surface state electron at the position of the tip. The tip probes the surface
wave functions at the position r t .

Thus the expression for the tunneling current in (20.66) can be identified with the
local density of states (LDOS) of the sample states at energy EF and at the position
of the point like tip r t as

I ∝
∑

n

|ψn(r t )|2 δ(EF − En) ≡ ρsample(EF , r t ). (20.67)

The ideal STM with the tip considered as a point source simply measures
ρsample(EF , r t ). Within this approximation, STM has a quite simple interpretation
as measuring a property of the surface, without reference to the complex tip-sample
system. In an STM measurement, the LDOS of the surface alone is measured (i.e.
without an influence due to the tip), but at the position at which the tip is located.

Tersoff and Hamann have shown that the above equation remains valid, regardless
of the size of the tip as long as the tip wave function can be approximated by an
s-wave, i.e. a spherical wave function. The tip position r t must then be interpreted as
the effective center of curvature of the tip (Fig. 20.10), i.e. the origin of the s-wave,
which best approximates the tip wave functions. This means that the STM measures
the LDOS of the surface at the Fermi level at a distance z0 above the surface (not
dmin).

In order to interpret STM images quantitatively an STM image is calculated for
a proposed structure and compared with the measured images. The Tersoff-Hamann
approximation is one of the most widely used methods to interpret images based on
ab initio calculations.

We can compare the large voltage approximation to the Tersoff-Hamann approx-
imation by considering the limit of very small voltages in (20.57). In this limit, the
current is proportional to the voltage and to ρsample(ε = 0)T (ε = 0, V = 0, d). If
we identify d = z0 the following correspondence results
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Fig. 20.10 In the
Tersoff-Hamann
approximation of the STM
the tip is modeled as a
locally spherical potential
with a radius of curvature R
centered at rt

Sample

dmin

Tip

z0

rt

R

ρTers.−Ham.
sample (EF , z0) = LDOS(EF , z0)

= ρ
large volt. appr.
sample (ε = 0) · T (ε = 0, V = 0, d = z0).

(20.68)

This means that the density of states of the sample at the very surface position times
the transmission factor for a barrier of thickness d corresponds to the density of states
at the position of the center of the tip a distance d outside the surface, also called the
local density of sample states at the tip position.

20.6 Constant Current Mode and Constant Height Mode

By far the most common mode of STM operation is the constant current mode. In this
mode the tunneling current is kept constant by adjusting an appropriate height of the
tip above the sample surface via feedback. This mode is visualized in Fig. 20.11. The
sample local density of states (LDOS) at EF (absolute square of the wave function
at the Fermi energy) is shown to have an oscillatory behavior along a coordinate x
parallel to the surface at the surface positions, i.e. z = 0. We assume here that this
modulation in the local density of states arises due to an atomic surface structure with

z

x

z = const.

= const.

Fig. 20.11 Local sample density of states at EF with an oscillatory modulation assumed to arise
due to an atomic structure at the surface z = 0. This LDOS modulation is periodic along the surface
(x-direction) and decays exponentially with increasing distance from the surface (z-direction). The
contour of constant density of states is visualized in the constant current mode and shown as a
dashed line. The constant height mode is visualized as the variation of the density of states at a
constant distance from the surface (z = const.)
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a high density of states at positions where an atom is present and a lower density
of states at positions in between the atoms. As seen in the previous sections, the
wave functions (and with them the density of states) decay exponentially with the
distance from the surface, as they enter the barrier region outside the solid z > 0. A
z dependent contour of a constant density of states (LDOS) is shown in Fig. 20.11
as a dashed line, extending further from the surface at x-positions at which an atom
is present, and more closer to the surface at x-positions in between the atoms. In
this way, the contour of constant density of states images the topography of the
atomic structure. Below we will discuss that there are many exceptions in which this
simplified picture is not valid.

Another mode in STM operation is the constant height mode. In this mode, the
feedback is switched off and the tip is scanned at constant height over the sur-
face, while recording the tunneling current. This mode is visualized in Fig. 20.11
by different values for the density of states at a constant distance from the surface
(z = const.). Since in the Tersoff-Hamann approximation the tunneling current is
proportional to the (local) sample density of states at the Fermi energy, this quantity is
measured in the constant height mode. While this mode of operation has conceptually
a simple interpretation, there are in practice several obstacles to the implementation
of this mode. To maintain a constant height during a scan over an atomically flat
terrace is very difficult due to effects of thermal drift and piezo creep (cf. Sect. 3.6).
For these reasons the constant height mode is mostly applied in low-temperature
STM experiments, where also the thermal drift and piezo creep are negligible. Fur-
thermore, a scan over an atomic step edge will change the tip-sample distance by
several Å. This will lead to a change in the tunneling current of several orders of
magnitude. Two atomic steps come already close to a typical tip-sample distance and
can lead to an undesirable tip-sample contact. Moreover, also the tilt between sample
and scanner which is always present (cf. Chap. 7) makes the practical implementation
of the constant height mode difficult. For these reasons, the constant current mode is
usually confined to very small scans on an atomically flat terrace. A practical advan-
tage of the constant height mode is that it is a fast mode of STM data acquisition only
limited by the bandwidth of the current amplifier and not by the (lower) bandwidth
of a feedback loop.

The two modes can also be combined, for instance to allow for fast scanning.
In this case, the average height of the tip above the surface is followed (relatively
slowly) using the feedback in the constant current mode. Since the feedback follows
the surface topography only slowly, variations in the tunneling current remain on
shorter time scales which cannot be compensated by the slow feedback. These tun-
neling current variations on a shorter time scale (error signal) correspond to a constant
height mode and usually contain information on the atomic structure, or more gen-
erally information at small time and length scales (smaller than the constant current
feedback can follow).

We would not like to conclude this section without mentioning that several effects
can alter the simplified picture of interpreting contours of constant tunneling current
as contours of the “topography of the surface (atoms)”. For instance, atoms of differ-
ent chemical elements, located with their nuclei at the same height above the surface,

http://dx.doi.org/10.1007/978-3-662-45240-0_3
http://dx.doi.org/10.1007/978-3-662-45240-0_7
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Sample

Tip

CO

(a) (b)

Fig. 20.12 a STM images of CO molecules on a Cu(111) surface. In spite of the fact that the CO
molecules are adsorbed on top of the Cu atoms at the surface, they are imaged as depressions (dark
contrast). This is an example of an electronic effect of chemical nature. b Schematic side view of
the metal sample with adsorbed CO molecule and tip. The black line shows the contour followed
by the tip in the constant current mode. Due to the low local density of states (LDOS) above the
CO, the molecule is imaged as a depression

will give rise to different values of the density of states due to their different chemi-
cal nature. This will give rise to a different apparent (topographic) height measured
in STM.

An extreme example in which a complete contrast inversion is found will be
discussed in the following. In this example, a carbon monoxide molecule sticking
out of the surface (as known from other experimental techniques than STM) is imaged
in the constant current mode as a depression, as shown in Fig. 20.12. This results due
to a reduced density of states compared to the bare metal surface. Due to this chemical
effect and other electronic effects the simplified interpretation of the constant current
contour measured in STM as “the topography” of the surface is often not applicable.

20.7 Voltage-Dependent Imaging

Semiconductors show a strong variation of the LDOS with energy; as an example
we consider here GaAs. Due to the different chemical nature of Ga and As, elec-
tronic charge is transferred from Ga to As, giving the covalent bond a somewhat
ionic character. This leads to occupied states at the As atoms (somewhat below the
valence band edge) and to unoccupied states located at the Ga atoms (somewhat
above the conduction band edge). For positive voltages, electrons tunnel from filled
states of the tip into the empty conduction band states of the sample, located at
the Ga atoms (Fig. 20.13a). With negative sample voltages, electrons tunnel out of
the occupied valence band states located at the As atoms (Fig. 20.13b). Thus, using
voltage-dependent imaging at different voltage polarities, empty states and filled
states can be imaged at a semiconductor surface.
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Fig. 20.13 Energy levels involved in tunneling at a semiconductor surface, here gallium arsenide
(GaAs) is used as an example. a At positive sample bias, current flows from occupied tip states to
unoccupied Ga sample states. b At negative sample bias, current flows from occupied As sample
states to unoccupied tip states

As an example, we consider here the GaAs(110) surface which consists of zigzag
chains of atoms alternating between Ga and As, as shown in Fig. 20.14c. Voltage-
dependent imaging is experimentally realized by scanning the same area of a sample
with two different voltages. Each scan line is recorded twice, first scanning with
one voltage and then using another voltage. This interlacing technique results in
two images recorded at two different tunneling voltages. Two such images recorded
at sample voltages of +1.9 and −1.9 V are shown in Fig. 20.14a, b, respectively.
In order to highlight the differences between the two images a black rectangle is
drawn in both images at the same position and in Fig. 20.14c as well. According
to the previous discussion, Ga atoms (states) should be imaged in Fig. 20.14a and
As atoms in Fig. 20.14b. Indeed the atomic protrusions in both images are arranged
as shown in the top view of the model of the GaAs surface which is shown in
Fig. 20.14c. The color image Fig. 20.14d shows an overlay of both images with Ga
atoms in green and As atoms in red. This example shows that voltage-dependent
imaging can (in fortunate cases) lead to element specific imaging in STM by imaging
empty and occupied states at different bias voltage polarities. However, it has to be
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° As
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(d)(a) (b)

(c)

Fig. 20.14 STM images of a GaAs(110) surface acquired at sample voltages +1.9 V (a) and −1.9 V
(b) (reproduced with permission from [43]). The empty states image in (a) shows the Ga atoms,
while the filled states image in (b) shows the As atoms. c Schematic top view of the GaAs(110)
surface structure. The Ga and As atoms are shown as solid and open circles, respectively. d Overlay
of the filled and empty states images showing the Ga atoms in green and As atoms in red (reproduced
with permission from R.M. Feenstra)

mentioned that this imaging with chemical sensitivity is generally more an exception
than the rule. For instance, silicon and germanium cannot be distinguished by voltage-
dependent imaging because their chemical nature is too similar.

20.8 Summary

• The problem of tunneling through a barrier can be treated in different approxima-
tions. In the simplest one-dimensional model, an incoming wave decays exponen-
tially inside a barrier. The conditions of wave function matching of the incoming
wave, the exponentially decaying wave and the transmitted wave at both ends of
the barrier allow the transmitted amplitude to be calculated. In the limit that the
particle energy is much smaller than the vacuum level the transmission coefficient
depends exponentially on the barrier thickness and the square root of the barrier
height, as

T ∝ exp
(
−const. d

√
Φ

)
. (20.69)

• In the Bardeen model, the tunneling current can be written in the low-temperature
limit as

I = 4πe

�

∑
i, f

∣∣M f i
∣∣2

δ(E f − Ei ), (20.70)

with the following expression for the matrix element
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M f i = �
2

2m

∫

Stip/sample

[
ψtip,i (r)∇ψ∗

sample, f (r) − ψ∗
sample, f (r)∇ψtip,i (r)

]
· d S.

(20.71)

with the integration extending over an arbitrary separation surface inside the
barrier. The Bardeen equation is quite general and can take in principle the three-
dimensional character of the problem into account. Two approximations are con-
sidered in the following.

• In the energy-dependent approximation of the Bardeen model, the double sum
over initial and final states is replaced by integrating the densities of states of tip
and sample over the energy. This approximation is most suitable to consider the
energy dependence of the tunneling current. In this approximation, the current can
be written depending on the combined density of states ρtip · ρsample as

I = 4πe

�

eV∫

0

ρtip(ε − eV )ρsample(ε) |M(ε)|2 dε, (20.72)

with the energy variable of the tip and sample density of states referred relative
to the respective Fermi levels. The matrix element is considered as a function of
the energy. In this energy-dependent approximation, the matrix element is further
evaluated using a one-dimensional barrier model, resulting in a transmission factor
replacing the matrix element as

|M (ε) |2 = T (ε, V, d) ∝ exp

(
−2d

√
2m

�2

(
Φtip + Φsample

2
+ eV

2
− ε

))
.

(20.73)

• If at finite temperatures the Fermi functions are no longer considered as step
functions, also a small “reverse current” from the filled sample states to the empty
tip states occurs for positive sample bias voltages. This leads to

I = 4πe

�

∞∫
−∞

{ f (ε − eV ) − f (ε)} ρtip(ε − eV )ρsample(ε)T (ε, V, d)dε.

(20.74)

• The Tersoff-Hamann approximation is an evaluation of the Bardeen model in the
limit of small tunneling voltages and the limit of a spherical tip. In this limit, the
tunneling current is proportional to the density of states of the surface at the Fermi
energy at the position of the center of the tip, i.e. the local density of states (LDOS).
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• In the constant current mode, the tunneling current is kept constant by adjusting an
appropriate height of the tip above the sample surface via feedback. In the simplest
approximation in this mode, the tip follows the topography of the surface. In the
constant height mode, the tunneling current is recorded during scanning without
feedback. This mode can only be used on atomically flat surfaces.

• Voltage-dependent imaging of semiconductor surfaces allows the empty states of
the sample to be imaged at positive sample bias voltages and the filled states for
the reverse polarity. In the case of GaAs, voltage-dependent imaging allows to
perform chemically sensitive imaging of As and Ga atoms separately.



Chapter 21
Scanning Tunneling Spectroscopy (STS)

One of the fascinating potentials of scanning tunneling microscopy is its ability to
obtain energy-resolved spectroscopic data with atomic resolution. As we will see in
this chapter, the STM allows us to measure directly the spatial and energy dependence
of the local density of states. In the last chapter, we saw that apart from the influence
of the thickness and the height of the barrier the tunneling current also depends on the
applied bias voltage. In this chapter, we will focus further on the voltage dependence
of the tunneling current. For very low bias voltages, when the matrix element or
transmission factor as well as the densities of states can be considered independent
of the bias voltage, the current is proportional to the applied voltage (Tersoff-Hamann
approximation). For higher bias voltages and specifically for semiconductor samples,
the bias dependence of the density of states and the transmission coefficient cannot
be omitted.

21.1 Scanning Tunneling Spectroscopy—Overview

In the previous chapter the following expression was obtained for the tunneling
current (20.48)

I = 4πe

�

eV∫

0

ρtip(ε − eV)ρsample(ε)T (ε, V , d)dε, (21.1)

with ρtip and ρsample being the density of states of tip and sample, with their energy
variables referred relative to their respective Fermi level. The term T (ε, V , d) cor-
responds to the transmission factor for tunneling from a tip state to a sample state,
whose energy dependence is referred relative to the sample Fermi level. In scanning
tunneling spectroscopy (STS), the aim is to measure the density of states of the sam-
ple. This is accomplished by measuring the current-to-voltage characteristic of the
tunneling junction. From Fig. 20.8, we can see that a small increase of the voltage
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dV shifts all sample states down and an additional current dI contributes to the total
current I . Graphically, this corresponds to a new blue arrow appearing in Fig. 20.8.
In a first approximation this additional current dI per voltage increase dV = dε/e is
given by the integrand in (21.1) taken at the upper limit of the integral ε = eV as

dI

dV
≈ 4πe2

�
ρtip(0) ρsample(eV) T (eV , V , d). (21.2)

This is only a first approximation realizing the principle of scanning tunneling spec-
troscopy. We neglected the fact that the current contributions of all lower-lying levels
are modified because all sample states are shifted down by edV and a new (smaller)
transmission factor applies for all the sample states. The effective tunneling barrier
becomes higher if the sample states are shifted “downwards”. This effect leads to
an additional contribution to the current when the voltage is changed, i.e. to the
differential conductance dI/dV , as we will show in detail later.

In the simplest approximation, the density of states of the tip and the transmission
factor are considered to be voltage independent. Hence the differential conductance
is proportional to the energy dependent density of states of the sample

dI

dV
∝ ρsample(eV). (21.3)

In this approximation, the differential conductance dI/dV measures the sample den-
sity of states at the energy eV relative to the Fermi energy of the sample.

21.2 Experimental Realization of Spectroscopy with STM

There are several variants of spectroscopic measurements using the STM. We con-
sider first the measurement of dI/dV at constant tip-sample distance. In practice, an
STS spectrum (differential conductance) is acquired using the following method. The
tip is positioned over a certain desired lateral position of the surface at a certain volt-
age and a certain current flows (usually called stabilization voltage and stabilization
current). For a specific density of states these conditions define a certain tip-sample
distance. Then the feedback loop is disabled (leaving the tip-sample distance con-
stant during spectroscopy) and the dI/dV signal is recorded over the desired range
of voltages.

The primary measured signal is the current I as a function of the voltage V :
I = f (V). In the following, we show how a modulation technique (lock-in technique)
is used in order to obtain the derivative signal dI/dV as a function of the voltage.
Since generically STM is not an AC technique, in STS an AC signal is generated
by adding a small modulation voltage VM cos ωt to the applied bias voltage V . The
measured modulated current will be

I(t) = f (V + VM cos ωt). (21.4)

http://dx.doi.org/10.1007/978-3-662-45240-0_20
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Fig. 21.1 Graphic
representation of the
measurement of the first
derivative of the I-V curve.
The voltage is modulated
around a value V1 or V2. The
measured amplitude of the
resulting modulated
(tunneling) current is
proportional to the slope of
the I-V curve (dI/dV ) at V1
or V2, respectively

VM

V1 V2

IM,2

IM,1

I

V

This signal can be detected by a lock-in amplifier and its amplitude is for small
modulation voltages proportional to dI/dV as can be inferred from Fig. 21.1, which
shows a hypothetical I-V curve. For the voltage V1 the derivative (dI/dV ) is small
and for V2 the derivative is larger. If now a modulation voltage is applied around
a center voltage, as indicated by VM , this will lead to a corresponding modulation
of the measured tunneling current. Figure 21.1 shows that the AC amplitude of the
tunneling current IM is proportional to the slope (derivative) of the I-V curve. As
can be seen from Fig. 21.1, the measured slope is averaged over the amplitude of the
modulation voltage around the center voltage. Therefore, the energy resolution of
the measured dI/dV signal in STS is proportional to the amplitude of the modulation
voltage.

In the following, it will be shown more formally that the first derivative of the cur-
rent signal dI/dV is proportional to the AC amplitude of the signal at the modulation
frequency. Moreover, in some spectroscopy techniques such as inelastic spectroscopy
the second derivative of the I(V) signal is required. As we will see later, this signal is
proportional to vibrational excitations. Therefore, a general statement about the nth
derivative of the I-V curve will be derived, which states that the nth derivative of the
I-V curve at voltage V is proportional to the AC amplitude of the signal at n-times
the modulation frequency. The I-V curve is represented by a function f as I = f (V).
If the voltage at position V is modulated with a small harmonic modulation voltage
of amplitude VM , a modulated current I = f (V + VM cos ωt) results. The Taylor
expansion of I around the voltage V as a polynomial function of the modulation
voltage up to the fourth order can be written as

I =
∞

k=0

V k
M

k!
dkf(V )
dV k cosk ωt

= f (V ) + VM
df(V )
dV cos ωt +

V 2
M

2
d2f(V )
dV 2 cos2 ωt

+
V 3
M

6
d3f(V )
dV 3 cos3 ωt +

V 4
M

24
d4f(V )
dV 4 cos4 ωt + . . .
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This Taylor expansion comprises the nth derivative of the I-V curve at V (highlighted
in green) and the nth powers of the modulation voltages (highlighted in blue). The
nth powers of the cos ωt terms can also be expressed as a sum of cos-terms with
up to n-times higher frequency (due to a mathematical identity) as

cos2 ωt =
1
2
+

1
2
cos 2ωt

cos3 ωt =
3
4
cos ωt +

1
4
cos 3ωt

cos4 ωt =
3
8
+

1
2
cos 2ωt +

1
8
cos 4ωt

If we now replace the nth powers of the cos ωt-terms by the expressions with the
n-times ωt contributions in the Taylor expansion and group the terms with the same
multiples of the modulation frequency, the following expression results for the Taylor
expansion

(21.5)
If the higher order terms are neglected (not highlighted in (21.5)), the Taylor expan-
sion reduces to a sum of harmonic functions with frequencies of nωt (blue in (21.5)
times the nth derivative of the I-V curve. Thus the amplitude of the signal at n-times
the modulation frequency ω is proportional to the nth derivative of the I-V curve at
V . This means in order to measure the nth derivative of the amplitude, the signal
component at n-times the modulation frequency has to be measured. This can be
done in practice by using the lock-in technique and frequency multiplication of the
reference signal n times before multiplication with the measurement signal, as will
be shown in the following.

The experimental setup used to measure the nth derivative of the I-V curve is
shown in Fig. 21.2. The modulation voltage VM cos ωt is generated by an oscillator
and added to the voltage V , which is slowly swept during the measurement of the
derivative of the I-V curve. The total bias voltage V + VM cos ωt is then applied to
the sample. The oscillator reference frequency is doubled if the second derivative
is measured. A phase shift can be applied, which can compensate a possible phase
shift in the experimental setup. Then this reference signal is multiplied by the voltage
proportional to the tunneling current measured by the preamplifier. The low-pass-
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Fig. 21.2 Experimental
setup for the measurement of
the nth derivative of the I-V
curve using the lock-in
technique
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filtered output corresponds to the nth derivative of the I-V curve. By a slow scan
of the voltage V , the derivative can be measured as a function of the voltage. Long
averaging times of the lock-in detection result in a good signal-to-noise ratio. On the
other hand, the time to take a spectrum is usually limited by drift which changes the
tip-sample distance and thus also the measured current.

Measuring the derivative using the lock-in technique requires some effort. It could
be considered possible to obtain the same result by simply measuring the I-V curve
and then afterwards obtaining the nth derivative by numerical differentiation. How-
ever, the numerical derivative of an I-V curve is much more noisy than the derivative
obtained using the lock-in technique. Also smoothing of the numerically differenti-
ated signal will not improve the signal recovery to the level achieved with the lock-in
technique. Without the lock-in technique all signals are amplified, in the lock-in
technique only the signal component at the modulation frequency and with the same
phase as the modulation frequency is selected.

21.3 Normalized Differential Conductance

Before we analyze the differential conductance in detail, we introduce a way to
normalize the dI/dV spectra. It is often useful to normalize the dI/dV spectra, because
the transmission factor induces a background which increases exponentially with the
voltage V . The desired signal rides on this large background signal. The normalization
procedure has the great advantage that solely the measured data are required and no
fit to a model, no calculations or simulations are required. This normalization is
an easy and convenient way to plot the dI/dV data. The differential conductance
dI/dV is only proportional to the sample density of states if the transmission factor
T is considered as constant. However, the transmission factor strongly depends on
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voltage. We have seen in Chap. 20 in (20.56) that the transmission factor can be
written as

T (ε, V , d) ∝ exp

(
−2d

√
2m

�

√
Φ̄ + eV

2
− ε

)
. (21.6)

Now we consider the effective barrier height, i.e. the term under the square root, as
function of the voltage V . The tunneling barrier takes values from Φeff = Φ̄ + eV

2
for states at the lower end of the bias window (ε = 0), and reducing down to
Φeff = Φ̄ − eV

2 , for states at the upper end of the bias window (ε = eV), compare
also Fig. 20.7. The states with the smallest tunneling barrier, contribute most to the
tunneling current. For those states at the upper end of the bias window the tunneling
barrier decreases with increasing tunneling voltage as Φeff = Φ̄ − eV

2 . Due to the
exponential dependence in (21.6) the transmission factor increases strongly with
the tunneling voltage. This exponential increase of the “background” current with
increasing bias voltage is a major problem in scanning tunneling spectroscopy. This
background tends to mask density of states (DOS) features in the dI/dV signal. In
Fig. 21.3a the dI/dV signal on a Si(111) 2 × 1 surface is shown. It can be clearly
seen that the conductance rises sharply with the applied voltage as expected from
the exponentially increasing transmission coefficient. The traces at higher voltages
could only be measured by increasing the tip-sample separation (in order to decrease
the transmission coefficient). Any small features in the dI/dV curve arising from the
density of states are hidden in the exponentially increasing transmission coefficient.

As shown by Feenstra [44, 45], this voltage dependence (and also the dis-
tance dependence) can be removed by the normalization of the differential con-
ductance dI/dV by the total conductance I/V . The obtained dimensionless quantity,
(dI/dV )/(I/V ) provides a convenient plot of the data. The normalized conductance for
the data shown in Fig. 21.3a is displayed in Fig. 21.3b. It does not diverge for larger
voltages (as the original (dI/dV)) and shows clear peaks at four voltages, which can
be assigned to a large density of states at those energies. Moreover, all the dI/dV spec-
tra in Fig. 21.3a, taken at different tip-sample distances, collapse in a single curve
showing the practical use of the normalization to suppress effects of the varying
tip-sample separation. We note that sometimes the differential conductance is also
written as (dI/dV )/(I/V ) = d(ln I)/d(ln V), which arises because d(ln x)/dx = 1/x .
An obvious problem with this normalization arises for semiconductors with a surface
band gap, where the current and the differential conductance may go to zero if no
surface states are present in the band gap. In this case the normalization procedure
is modified by broadening of I/V which results in I/V > 0 for all voltages [45].

Apart from providing a convenient plot of the data, the normalized conductance
is often identified with the density of states of the sample. In the following, we
present the reasoning for giving this assignment. Assuming a constant DOS of the
tip according to (21.1) and (21.2), the normalized conductance can be written as

http://dx.doi.org/10.1007/978-3-662-45240-0_20
http://dx.doi.org/10.1007/978-3-662-45240-0_20
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Fig. 21.3 a Derivative of current versus voltage data on Si(111) 2 × 1. The different traces are for
different tip-sample distances. DOS features are barely visible on top of the huge background signal.
b Normalized dI/dV signal: (dI/dV )/(I/V ) of the data shown in (a). Data for different tip-sample
separations are shown as different symbols. In the plot of the normalized conductance, the DOS
peaks, which are barely visible in (a), are clearly visible (reproduced with permission from [44])
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dI/dV

I/V
≈ ρsample(eV) T (ε = eV , V)

1

eV

∫ eV

0
ρsample(ε)T (ε, V)dε

= ρsample(eV)

1

eV

∫ eV

0
ρsample(ε)

T (ε, V)

T (ε = eV , V)
dε

. (21.7)

As the ratio of transmission factors occurs in the denominator and their dependence
on the voltage and tip-sample separation is similar, the denominator can be considered
as slowly varying with voltage. Thus the normalized differential conductance can be
considered roughly proportional to the density of states at eV . However, it must be
stressed that several crude approximations entered in order to derive this estimate.
The normalized conductance is still more a convenient way to plot the data without
further analysis than a quantitative estimate of the sample density of states.

In the data considered in Fig. 21.3a, several measurements were performed at
different tip-sample distances in order to extend the dynamic range of the measure-
ments. An alternative approach is to vary the tip-sample distance continuously during
one measurement, i.e. to approach the tip towards the sample at smaller bias voltage
in order to obtain a larger signal of the differential conductance (to compensate the
decreasing transmission factor). Such an acquisition method gives a wide dynamic
range of tunneling current and the differential conductivity.

Another important issue to be mentioned is the role of the tip density of states.
The spectra acquired with STS always also contain information about the electronic
states of the tip. dI/dV can be related to the sample density of states only for tips
with a constant (flat) DOS (ρtip(ε) ≈ const.). In the actual experiment, however, the
tip DOS is not always constant and results should be reproduced with several tips.

21.4 Relation Between Differential Conductance
and the Density of States

In the following, we will analyze the differential conductance dI/dV in more detail
and explore whether information on the sample density of states can be extracted
from the scanning tunneling spectroscopy spectra. The expression for the tunneling
current calculated within the large voltage approximation

I = 4πe

�

eV∫

0

ρtip(ε − eV)ρsample(ε)T (ε, V)dε, (21.8)

involves integration over all the electron states between the tip and sample Fermi
levels. In scanning tunneling spectroscopy dI/dV is measured. Therefore, we now
calculate the derivative of the current. There is a rule (Leibniz integral rule) for the
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differentiation of an integral with respect to a parameter x , if also the integration
boundaries depend on this parameter as b = b(x)

d

dx

b(x)∫

0

f (t, x)dt = db

dx
f [b(x), x] +

b(x)∫

0

∂

∂x
f (t, x)dt. (21.9)

With the assignments x = V , b(x) = eV , t = ε, and f (t, x) = f (ε, V) = ρtip(ε −
eV)ρsample(ε)T (ε, V), the above rule can be used to take the derivative of (21.8) at
the voltage V

dI

dV

�

4πe
= d

dV

⎡
⎣

eV∫

0

ρtip(ε − eV)ρsample(ε)T (ε, V)dε

⎤
⎦

= eρtip(0)ρsample(eV)T (eV , V)

+
eV∫

0

∂

∂V

[
ρtip(ε − eV)ρsample(ε)T (ε, V)

]
dε (21.10)

= eρtip(0)ρsample(eV)T (eV , V)

+
eV∫

0

∂ρtip(ε − eV)

∂V
ρsample(ε)T (ε, V)dε

+
eV∫

0

ρtip(ε − eV)ρsample(ε)
∂T (ε, V)

∂V
dε. (21.11)

In the following, we assume for simplicity (and because the tip density of states is
usually unknown) that ρtip is constant. Therefore, the second term in (21.11) vanishes.
If also the transmission factor were be constant, the third term vanishes and the
initial approximation (21.2) is recovered. This approximation is often used because
it leads to the very simple result that the measured dI/dV signal is proportional to
the sample density of states. However, since we know that the transmission factor is
exponentially dependent on the tunneling voltage this approximation is not justified.
Therefore, we will not neglect the third term of (21.11) in the following. Before we
proceed with a detailed analysis of (21.11) we would like to explain the physical
significance of the two remaining terms in this equation.

In Fig. 21.4 tunneling between tip and sample at an applied bias voltage eV is
shown in blue. We consider the tip density of states as constant for simplicity. The
situation for a slightly larger bias voltage is shown in red. The sample DOS is shifted
downwards by edV . Due to this, a new sample state enters the bias window at e(V +
dV) above the sample Fermi level (the largest peak in the sample DOS in Fig. 21.4).
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EF,sample}
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Φ (V)eff Φ (V+dV)eff

ε
ε

Fig. 21.4 Tunneling barrier shown in blue for an applied bias voltage of eV . The corresponding
situation for a tunneling voltage increased by edV is shown in red. There are two contributions to
the tunneling current upon a small increase of the tunneling voltage. First, new sample states shift
into the top of the bias window. This results in an additional contribution to the current proportional
to ρsample(eV +edV) T (eV +edV , V +dV) and corresponds to the first term in (21.11). The second
contribution to the current comes from all sample states between zero and eV , which are shifted
down due to the increase of the tunneling voltage. A modified (decreased) transmission factor
applies to all these states, because the effective barrier Φeff (V + dV) is increased by the increased
tunneling voltage. The smaller transmission factor is indicated by the shorter horizontal red arrow
compared to the blue arrow symbolizing the transmission factor. This contribution corresponds to
the last term in (21.11)

The corresponding additional contribution to the tunneling current can be written as

dI1 ∝ ρsample[e(V + dV)] T [e(V + dV), V + dV ]edV , (21.12)

corresponding to the green horizontal arrow in Fig. 21.4. This contribution corre-
sponds to the first term in (21.11).

However, there is another contribution to the tunneling current arising upon
an increase of the tunneling voltage. This arises from contributions to the tunnel-
ing current from all sample states in the bias window (i.e. between EF,sample and
EF,sample + eV ). Due to the bias voltage increase all these states shift down by edV ,
as indicated in Fig. 21.4 (red). While the contribution to the tunneling current still
arises from the same sample states within the bias window (same DOS at ε) the asso-
ciated transmission factor is now modified. The new transmission factor T (ε, V+dV)

applies instead of T (ε, V) and the corresponding effective barrier height changes to
Φeff = Φ̄ + e(V+dV)

2 −ε. Thus, due to the increase in the tunneling voltage by dV the
barrier height increases by 1

2 edV .Using (21.8) the current change due to the different
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transmission factor integrated over the bias window is

dI2 ∝
eV∫

0

ρsample(ε) [T (ε, V + dV) − T (ε, V)] dε, (21.13)

leading to a contribution to the differential conductance of

dI2

dV
∝

eV∫

0

ρsample(ε)
∂T (ε, V)

∂V
dε. (21.14)

This contribution to the differential conductance corresponds to the last term in
(21.11).

Summarizing the previous discussion, we obtain the following relation for the
differential conductance if the tip density of states is constant

dI

dV

�

4πe
= eρtipρsample(eV)T (eV , V)

+
eV∫

0

ρtipρsample(ε)
∂T (ε, V)

∂V
dε. (21.15)

with the transmission factor

T (ε, V , d) ∝ exp

[
−2d

√
2m

�2

(
Φ̄ + eV

2
− ε

)]
. (21.16)

With some parameters like the (average) barrier height and the barrier thickness
obtained from additional experiments and a sample density of states obtained for
instance from theory calculations, the differential conductance can be calculated
using the above equations, and compared to the experimentally observed differential
conductance. If a model is available for the sample density of states, the parameters
of this model can be fitted in order to match the obtained differential conductance to
the measured dI/dV signal.

21.5 Recovery of the Density of States

In the following, we will show how it is possible to solve (21.15) analytically for
the sample density of states (if the tip density of states is constant and with another
approximation applied subsequently). The aim is to obtain an analytic expression for



320 21 Scanning Tunneling Spectroscopy (STS)

the sample density of states as a function of the measured dI/dV signal. Details and
extensions of this approach can be found in [46].

The derivative of the transmission factor occurring in (21.15) can be calculated
using (21.16) (since the T is an exponential function, its derivative is T times the
inner derivative) resulting in the following expression for the differential conductance

dI

dV
= 4πe

�

⎡
⎣eρtipρsample(eV)T (eV , V)

−
eV∫

0

ρtipρsample(ε)T (ε, V)
ed

√
2m
�

2
√

Φ̄ + (eV/2) − ε
dε

⎤
⎦ (21.17)

The second term in (21.17) is (without the fraction) the tunneling current according
to (21.1). If this fraction is replaced (as an approximation) by its value at the middle
of the bias window (ε = eV/2), this term becomes a constant not dependent on either
ε, or V . Thus the differential conductance can be written as

dI

dV
= 4πe2

�
ρtipρsample(eV)T (eV , V) − ed

√
2m

2�

√
Φ̄

I(V). (21.18)

Finally, we obtain for the desired density of states of the sample

ρsample(eV) = �

4πe2ρtipT (eV , V)

[
dI

dV
+ ed

√
2m

2�

√
Φ̄

I(V)

]
. (21.19)

This expression can be used to relate the sample density of states to the measured
differential conductance dI/dV and the measured tunneling current I(V), with the
average barrier height Φ̄ and the tip-sample distance d determined independently.

The first term in (21.19) leads us back to the original conclusion that the sample
density of states is proportional to the differential conductance dI/dV . The second
term in (21.19) is proportional to the tunneling current. If we evaluate this second
term for usual tunneling conditions (Φ̄ ≈ 4 eV, d ≈ 1 nm, and I = 1 nA) this term
evaluates to 1.3 nA/V. Since the first term dI/dV also has values in the nA/V range,
this means that the second term which is proportional to the current is usually not
negligible compared to the differential conductance term. If I(V) and dI/dV are both
measured, a quantity proportional to the density of states can be calculated with the
help of (21.19).

If we suspend the approximation that the fraction in (21.17) is replaced by a
constant, this equation can be solved for the density of states numerically. If we
would suspend the other approximation that the tip density of states is constant,
an additional term would enter into (21.17). Due to the fact that tip and sample
density of states enter symmetrically into the model, there is no unique result for the
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Fig. 21.5 a Model LDOS assumed for the subsequent calculation of b the current, c the conduc-
tance, d the normalized conductance, and e the recovered LDOS. Positive bias voltages correspond
to empty sample states and negative bias to filled states, respectively

tip and sample density of states, even with numerical methods. More information
can be obtained by measuring the dI/dV signal at different tip-sample distances, as
described in [46], in order to disentangle the tip and sample density of states.

In order to explore how close the different approximations presented above come
to the original sample density of states (LDOS), a model LDOS can be chosen and
the (normalized) differential conductance and the recovered LDOS can be calcu-
lated from the initial model LDOS. Such a procedure is shown in Fig. 21.5. From a
model DOS shown in Fig. 21.5a the current is calculated from (21.8) and shown in
Fig. 21.5b. The differential conductance calculated according to (21.15) is shown in
Fig. 21.5c. The normalized differential conductance (dI/dV )/(I/V ) calculated accord-
ing to (21.15) and (21.8) is shown in Fig. 21.5d. The recovered LDOS according to
(21.19) is shown in Fig. 21.5e. Peaks at nearly the same position as in the model
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LDOS are observed, however, the intensities of the peaks are quite different than in
the model LDOS. Unoccupied states of the sample (positive sample bias voltages)
are observed much more clearly and with higher intensity than the occupied states.
A steeply rising background leads to the result that the LDOS peak at −1.5 V is
only observed as a weak shoulder in the (normalized) conductance. This numerical
simulation demonstrates that the intensities of the peaks observed in the normalized
conductance are not proportional to the density of states, particularly at negative
sample bias voltages. The recovered LDOS (Fig. 21.5e) reproduces the intensities
of the starting LDOS best. The calculations were performed for d = 0.7 nm and
Φ̄ = 4 eV.

21.6 Asymmetry in the Tunneling Spectra

In Fig. 21.5c, we have already noticed an asymmetry in the STS spectra. The dI/dV
signal represents the DOS of the empty sample states (positive bias voltages) reliably,
while the dI/dV signal for filled sample states is superimposed by a large background
signal. Here we will explain this asymmetry. Moreover, we will also see that a
structured tip density of states contributes in an asymmetric way to the differential
conductance.

As shown in Fig. 21.6a, for increasing positive bias voltages new empty sample
states enter the bias window at the top. The smallest barrier is present at the top of
the bias window Thus those states contribute with the maximal transmission factor,
leading to a maximal contribution to the current and to dI/dV . For negative bias
voltages, on the other hand, new filled sample states enter the bias window from the
bottom (Fig. 21.6b). Due to the reduced transmission factor at the bottom of the bias
window (larger tunneling barrier) those states contribute with a much smaller weight
to the current and to dI/dV .

EF,tip

EF,sample

Tip Sample

EF,tip

EF,sample

Tip Sample

V>0

tip

d

sample

V<0

tip
sample

eV

eV

d

(a) (b)

Fig. 21.6 Asymmetry in the tunneling spectra between positive and negative voltages. a For positive
sample bias voltages new sample states entering the bias window at the top are probed with a large
transmission factor (long green arrow). b For negative sample voltages new filled sample states
enter the bias window from the bottom with a very small transmission factor (short green arrow)
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For usual tunneling conditions (d = 0.7 nm, Φ = 4 eV, and V = 1 V) the
transmission factor decreases by one half within 0.3 eV. This means the exponen-
tially decreasing transmission factor has noticeable values only in a small energy
range below the highest Fermi level. For the case of positive sample bias voltages
(Fig. 21.6a), this means that electrons from the tip tunnel (due to the transmission
factor) only in a relatively narrow energy range of ∼300 meV below the top of
the bias window as indicated by the arrows in Fig. 21.6a. In terms of the general
expression for the differential conductance, the first term in (21.15) is proportional
to the (empty) sample density of states at eV above the sample Fermi level and con-
tributes with the largest transmission factor. The second term in (21.15) depends on
the derivative of the transmission factor (which is itself proportional to the trans-
mission factor (21.16), due to its exponential dependence). Thus the exponential
decrease of the transmission factor reduces any contributions of more than 300 meV
below the top of the bias window.

For negative sample bias voltages an increase of the tunneling voltage by a small
value dV gives rise to new filled sample states entering the bias window at its bottom
(Fig. 21.6b). This leads to an additional current from filled sample states at energies
of |eV | below the top of the bias window. Tunneling from these states is related to
the largest tunneling barrier, i.e. to the smallest transmission factor within the bias
window. Thus the contribution from filled sample states is quite small for negative
sample voltages. This means that a peak in the occupied density of states will only
lead to a relatively small peak in the measured dI/dV . This explains the insensitivity
of STS to the occupied density of states which we saw in Fig. 21.5c, d, where the
peaks of the model LDOS for negative voltages (Fig. 21.5a) are hardly visible on top
of the exponentially rising background. This exponentially increasing background
comes from the second term in (21.15). The change of the transmission factor with
increasing voltage (proportional to the transmission factor itself) is integrated over
the bias window up to the sample Fermi level. The largest transmission factor acts at
the sample Fermi level, and increases exponentially with more negative bias voltages.
This leads to the large increasing background in the dI/dV signal at negative bias
voltages, as observed in Fig. 21.5c.

There is also another kind of asymmetry in the tunneling spectra. If, in contrast to
what we assumed before, the density of the states of the tip is not constant, this has a
strong influence on the dI/dV for the occupied sample states but a smaller influence
for the spectroscopy of the empty sample states. We assume that the tip density of
states has a peak and consider tunneling into the empty sample states (V > 0). If the
peak in the tip DOS is outside the region close to the tip Fermi energy it does not
contribute too much to the current since it is “damped” by the transmission factor.
If the peak is close to the Fermi level, it will give rise to an additional contribution,
which shifts together with the tip Fermi level and probes the empty sample states.
Thus, when probing empty sample states, a non-flat tip DOS is not a major problem.

For the case of sampling the filled sample states (V < 0), the situation is different.
The filled sample states close to the sample Fermi level make the highest contribution
to the current and probe the empty tip states. Therefore, dI/dV spectra are very
sensitive to structures in the empty tip density of states for negative sample bias
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voltages and thus, at negative bias voltages the dI/dV spectra can be greatly influenced
by the tip density of states and care has to be taken that the tip density of states is
constant.

21.7 Beyond the 1D Barrier Approximation

Up to now, we have mostly studied one-dimensional models where the whole momen-
tum of an electron is considered to be perpendicular to the surface of the electrodes.
In reality, the participating states have momentum components in all three spatial
directions.

In the free electron model, the momentum parallel to the surface is included by
writing

E = �
2

2m
(k2

x + k2
y + k2

z ) = �
2

2m
(k2|| + k2⊥) = E|| + E⊥. (21.20)

In the simplest extension of the 1D model to three dimensions only the energy
component perpendicular to the surface is considered as “effective” for tunneling.
Thus the energy component entering into the transmission factor is the perpendicular
component E⊥ = E − E||, and the transmission factor becomes

T (E, V , d) ∝ exp

(
−2d

√
2m

�2 Φ̄ + eV

2
− (

E − E||
))

. (21.21)

If we consider states with a given energy E , the effective tunneling barrier will
be smallest for the states with E|| = 0. For surface states, this condition can be
expressed as: the transmission factor is largest for the states at the Γ -point of the
two-dimensional surface Brillouin zone.

21.8 Energy Resolution in Scanning Tunneling Spectroscopy

The energy resolution in scanning tunneling spectroscopy is determined by the range
of energies which contribute to the tunneling current, and is usually considered in
two limits. In the first limit large tunneling voltages (several volt) are considered.
In this limit the thermal broadening due to the Fermi functions is neglected. In this
limit the main contribution to the energy resolution comes from the transmission
factor. The transmission factor according to (21.16) is plotted in Fig. 21.7 for usual
tunneling parameters. The transmission factor decreases to one half for a decrease of
the voltage of 300 meV. This means that electrons within this energy range contribute
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Fig. 21.7 Energy resolution
of tunneling electrons
visualized by the energy
dependence of the
transmission factor for usual
tunneling parameters
(d = 0.7 nm, Φ = 4 eV).
The width of the exponential
function is about 300 meV
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to the tunneling current. Thus the energy resolution in STS using larger voltages has
a resolution of only several hundred meV.

In the second limit of small voltages and low temperatures used simultaneously,
two effects limit the energy resolution in STS: the thermal broadening of the Fermi
functions, as well as the modulation amplitude used in the lock-in detection scheme.

First, we discuss the energy resolution limited due to the thermal broadening of
the Fermi functions. We lift the zero temperature approximation in which the Fermi
functions were considered as step functions. In this case, we use (20.65), which reads
in the limit of constant tip density of states as

I = 4πe

�
ρtip

∞∫
−∞

{ f (ε − eV) − f (ε)} ρsample(ε)T (ε, V , d)dε. (21.22)

The thermal broadening of the Fermi functions extends over an energy range in the
order of kT, i.e. in the meV range. On this scale, the transmission factor which changes
at a range of hundreds of meV can be considered to be approximately constant. With
this approximation, the differential conductance results as

dI

dV
= 4πe

�
T (d)ρtip

d

dV

∞∫
−∞

{ f (ε − eV) − f (ε)} ρsample(ε)dε

= 4πe

�
T (d)ρtip

∞∫
−∞

∂ f (ε − eV)

∂V
ρsample(ε)dε. (21.23)

The slope of the Fermi function at ε = eV is −1/(2 kT), as visualized in Fig. 21.8a.
Thus the Fermi function drops from one (occupied) to zero (empty) within a range
of ∼4 kT around ε = eV . The (negative) derivative of f (ε) is plotted in Fig. 21.8b.

http://dx.doi.org/10.1007/978-3-662-45240-0_20
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Fig. 21.8 a Fermi function
as a function of energy. The
transition from occupied
states to empty states occurs
in a range of ∼4 kT around
ε = eV . b df /dE is zero,
apart from a peak around EF
with a width of 4 kT. This
means that only those states
contribute to the differential
conductance which are in the
range of ∼4 kT around EF
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It is zero everywhere, except for a peak with a width of ∼4 kT around ε = eV . Since
the derivatives of f with respect to ε and V differ only by the factor −e, the same
arguments also apply to the derivative of f with respect to V , which enters in (21.23).

Therefore, according to (21.23), dI/dV can also be considered as the convolution of
the density of states with the “thermal resolution function” ∂ f (ε−eV)/∂V of width
4 kT. The higher the temperature, the larger the broadening of the Fermi function
and the worse the energy resolution in STS. Assuming a delta function in the density
of states of the sample, this would lead to a peak in dI/dV with a width of ∼4 kT.
Here we were assuming the simple tangent approximation for the width of the Fermi
function. A more rigorous evaluation of the thermal broadening results in a thermal
broadening of 3.2 kT (FWHM) for Gaussian peaks in the density of states. This
corresponds to a peak width (due to thermal broadening) of about 0.28 meV per
K. At room temperature, this leads to a peak width of 83 meV. At 4 K the energy
resolution in STS drops to 1.2 meV.

The modulation voltage used in the lock-in detection also leads to an (instrumen-
tal) broadening of the energy resolution. According to Fig. 21.1, a modulation voltage
Vmod leads to an averaging (broadening) over a voltage range of about 2Vmod. The
average broadening is roughly two times the RMS value of the modulation voltage
Vmod,RMS.

Taking both independent effects into account (energy resolution due to the modu-
lation voltage and due to the broadening of the Fermi functions), the energy resolution
(�E = e�V ) becomes

�E =
√

(2eVmod,RMS)2 + (0.28 meV/K · T )2. (21.24)

Usually the electronics is tuned in such a way that the contribution due to the mod-
ulation voltage is not the limiting contribution to the energy resolution.

For a superconductor the density of states has a sharp peak on both sides of
the superconducting gap. Therefore, superconductors provide a good benchmark
to study the energy resolution as a function of temperature. In Fig. 21.9 STS data
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Fig. 21.9 Differential
conductance measured by
STS around the
superconducting gap of
NbSe2. The energy
resolution in STS increases
with decreasing temperature
(sharper peaks). A
modulation voltage of 24µV
RMS was used (reproduced
with permission from [47])

measured on the superconductor NbSe2 are shown for different temperatures (below
the transition temperature). For the lowest temperature the dI/dV signal shows two
peaks at the superconduction band edges and a vanishing dI/dV signal inside the
band gap. Towards higher temperatures the width of the peaks broadens. According
to the energy resolution of 0.28 meV/K, mentioned before, energy resolution at 4.2 K
is around 1.2 meV, while it is about 0.1 meV at 310 mK. At such low temperatures
the energy resolution is also limited by the modulation voltage.

21.9 Barrier Height Spectroscopy

In conventional STS, the tunneling current and dI/dV is measured as a function
of the applied voltage, providing a measure of the sample density of states. One
of the uncertainties in such experiments is that the effective height and width of
the tunneling barrier are generally unknown. However, it is possible to measure the
tunneling barrier height experimentally. If the tunneling current is measured as a
function of the distance between tip and sample, the average barrier height Φ̄ can be
determined from the exponential decrease of the tunneling current with increasing
tip-sample distance d due to the transmission coefficient T (ε, V , d). At low bias
voltages (Φ̄ � V ), the transmission factor does not depend on the tunneling voltage
(as shown in (20.59)) and can be approximated as

http://dx.doi.org/10.1007/978-3-662-45240-0_20
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Fig. 21.10 I(z)
spectroscopy on a Au(111)
sample with a Au tip [48].
The feedback is stopped and
the tunneling current is
measured as function of the
relative tip-sample distance.
From the measured
exponential behavior the
effective barrier height can
be determined. The bias
voltage is only 2 meV, and
thus the condition Φ̄ � V is
fulfilled
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Thus the transmission factor can be written as a constant in front of the integral in
the expression for the tunneling current (21.1). In this case, the tunneling current is
proportional to the transmission factor. The average tunneling barrier Φ̄ = (Φtip +
Φsample)/2 can be fitted from the experimentally measured exponential dependence
of the tunneling current on the tip-sample separation d.

In experiments, the feedback is stopped and the tunneling current is measured
as a function of the tip-sample distance d as I(d). A plot of the tunneling current
for varying tip-sample distances is shown in Fig. 21.10. The tunneling barrier Φ̄

(average barrier height) is obtained by an exponential fit to the data. In this analy-
sis only the relative change of the tip-sample distance enters and not the absolute
tip-sample distance, which is more difficult to obtain. The absolute tip-sample dis-
tance can be measured by approaching the tip closer to the sample until mechanical
contact is made. This is indicated by the initially very high tunneling resistance in
the order of G� dropping approximately to the inverse of the conductance quantum
of about 12 k�. Since this transition to the low resistance state is quite sharp, the
point of contact can be identified. However, it must be considered that at such close
tip-sample distances forces between tip and sample lead to an elastic extension of
the tip length [49].

The tunneling gap has to be very stable in order to perform I(d) spectroscopy or
barrier height spectroscopy in practice. Any drift of the tip-sample distance would
change the value measured for the barrier height.
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Fig. 21.11 a Oscillations in
the dI/dV signal occur on a
(bismuth-covered) Si surface
if the bias voltage is larger
than the work function
(indicated by Φ) [50]. b The
transmission is particularly
large if an integer multiple of
nodes of the wave function
fits between the potential
step at the sample surface
and the potential wall given
by the vacuum level
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21.10 Barrier Resonances

If the tunneling voltage exceeds the barrier height, oscillations in the dI/dV signal
are observed, as shown in Fig. 21.11a (cf. Fig. 20.3). In some cases, the feedback
is kept active during the measurement of the dI/dV signal, which maintains the
measured current in a desired regime of high sensitivity. In this mode, the tip-sample
distance will automatically increase towards larger voltages in order to maintain
a constant tunneling current. The dI/dV signal is measured using the previously
described modulation technique with a modulation frequency above the feedback
bandwidth of the current regulation. In the following, we will discuss the reason for
the occurrence of these barrier resonances.

When discussing the one-dimensional potential barrier model, we have seen that
the transmission factor oscillates if the energy of the electron is larger than the barrier
height. The transmission factor of one is reached only if an integer multiple of nodes
of the wave function fits in the barrier width, as shown in Fig. 20.3. Here, similarly,

http://dx.doi.org/10.1007/978-3-662-45240-0_20
http://dx.doi.org/10.1007/978-3-662-45240-0_20
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the resonances are caused by standing electron waves, which are reflected back and
forth between the potential step at the sample surface and the potential wall given by
the vacuum level, as shown schematically in Fig. 21.11b. It should be remembered
that in quantum mechanics a (partial) reflection of the wave function also occurs at
a downward potential step.

21.11 Spectroscopic Imaging

In point spectroscopy considered so far, the dI/dV signal is recorded as a function of
voltage at one specific point above the surface. More information about the variation
of the electronic structure at the surface can be obtained by the spatial mapping
of a specific spectroscopic feature. A spectroscopic image yielding the map of the
local density of states (LDOS) at a certain energy can be obtained by performing
a slow constant current (topographic) STM scan at a certain bias voltage V and
simultaneously recording the (normalized) dI/dV signal at the voltage V . Using a
modulation technique, an image of the differential conductance is acquired for a
certain bias voltage called spectroscopic image (or LDOS map). States of different
energies can be mapped separately.

21.11.1 Example: Spectroscopy of the Si(7 × 7) Surface

In this section, spectroscopic measurements of the Si(111)-(7 × 7) are presented as
an example of the application of the previously described spectroscopic techniques.
Before we come to the spectroscopic data, the structure of this surface is explained.
Surface reconstruction is the rearrangement of the surface atoms due to the termina-
tion of the bulk structure at the solid vacuum interface. The (7 × 7) reconstruction
of the Si(111) surface is a complex but at the same time very frequently studied
structure. One unit cell of the reconstruction is shown in Fig. 21.12. It consists of
two triangular half-unit cells (HUC). The top silicon layers (first and second layer in
Fig. 21.12) are stacked with the normal (bulk) sequence in one half-unit cell, while in
the other HUC there is a stacking fault present relative to the bulk structure. Because
of this stacking fault, the two half-unit cells are not equivalent and are referred to as
faulted (F) and unfaulted (U) half-unit cells. The reconstruction is terminated by 12
adatoms shown as red balls in Fig. 21.12 (resting on the rest atoms). The rest atoms
are in the first layer. Another obvious structural element of this reconstruction is the
corner hole present at the corners of the unit cell. The adatoms located close to the
corner holes are called corner adatoms, while the remaining adatoms are called center
adatoms. One reason for the formation of the (7 × 7) reconstruction is the reduc-
tion of the number of unsaturated, energetically costly (dangling) bonds, originating
from the breaking of the bulk to form a surface. For the bulk terminated surface there
would be one dangling bond per (1 × 1) unit cell which would result in 49 dangling
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Fig. 21.12 Schematic top and side view of one unit cell of the Si(111)-(7 × 7) reconstruction. The
half-unit cells with and without stacking fault are labeled F and U and shaded in light and dark
gray, respectively

bonds on the area of the (7 × 7) unit cell. The (7 × 7) reconstruction reduces this
number of dangling bonds to 19 dangling bonds on the reconstructed unit cell. The
formation of the (7 × 7) reconstruction therefore leads to a clear reduction in energy,
compared to the hypothetical unreconstructed surface. The reduction of the number
of dangling bonds is responsible for the stability of the (7 × 7) reconstruction under
vacuum conditions.

In STS the normalized conductance (dI/dV )/(I/V ) represents approximately a
measure of the local density of electron states (LDOS) on the sample surface.
Figure 21.13c–e shows point spectra, i.e. normalized conductance as a function of
the bias voltage at specific points over the surface. In Fig. 21.13a a constant current
STM image of the reconstructed surface is shown at V = +2 V and I = 0.1 nA.
Only the adatoms are seen in the image and all appear equivalent (positive sample
bias voltage). In Fig. 21.13b a corresponding schematic shows the positions of cor-
ner adatoms (circles), center adatoms (crosses), and rest atom dangling bonds (dots)
in the faulted (F) and unfaulted (U) halves of the surface unit cell. Figure 21.13c–e
shows point STS spectra of the Si(111)(7 × 7) surface measured at T = 7 K on
corner adatoms, center adatoms, and rest atoms in between the adatoms. The spec-
tral features at specific energies can be assigned to specific positions as indicated in
Fig. 21.13c–e. For instance the S2 peak at −1.3 eV can be assigned to the rest atoms
while the S1 and the S

′
1 peaks can be assigned to the corner adatoms. This assignment

is also made using the spectroscopic images shown below. In order to acquire these
point spectra the technique of variable tip-sample separation was used. Starting at the
original tunneling voltage VS = 2V (also sometimes called stabilization voltage),
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Fig. 21.13 a STM
topography of the Si(111)(7
× 7) surface unit cell. b
Schematic of the surface
atoms and orientation of the
faulted (F) and unfaulted (U)
half-unit cells (also used in
Fig. 21.14). c–e STS spectra
measured on the surface
atoms at T = 7 K and
assignment of the Si(111)(7
× 7) surface electronic
features to rest atoms [S2,
(c)], corner adatoms [S′

1, S1,
U1, (d)], and center adatoms
[U ′

1, U ′′
1 , (e)]. VS =2 V, and

(stabilization) tunneling
current before the feedback
is switched off at It =0.1 nA
(reproduced with permission
from [51])
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the tip was approached towards the surface by 0.4 ÅV−1 for smaller voltages in order
to enhance the signal at lower bias voltages. This also helps to obtain a reasonable
sensitivity for the occupied states.

A complementary type of spectroscopic technique is spectroscopic imaging.1

LDOS maps of the Si(111)(7 × 7) surface are shown in Fig. 21.14. From measure-
ments at various voltages, we obtain an unambiguous assignment of the spectral
features in Fig. 21.13c–e. Figure 21.14a–d shows LDOS maps of the surface elec-
trons with ascending energy. The lowest energy dangling bonds belong to rest atoms
at −1.3 V (Fig. 21.14a), in accordance with the position of the S2 state in the point
spectra. These dangling bonds are fully occupied. Adatom dangling bonds have a
higher energy. Corner adatom dangling bonds are imaged at −0.5 V (Fig. 21.14b) and
at +1.4 V (Fig. 21.14c) in accordance with the point spectra , while at +1.6 eV the
electronic states of the center adatoms are imaged (Fig. 21.14d). This set of images

1 In this case, for spectroscopic imaging the STM feedback was switched off, and the measurement
of the DOS was performed during scanning the tip at a plane parallel to the surface, yielding a map.
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V=−1.3V V=−0.5V

V=1.4V V=1.6V

Fig. 21.14 By acquiring the normalized conductance (dI/dV )/(I/V ) at each point of an image details
of the electronic structure of the Si(111)(7 × 7) surface can be measured. This was done for four
different voltages shown in (a) to (d). At −1.3 V the electronic states of the rest atoms are imaged,
at −0.5 and +1.4 V the states of the corner adatoms are imaged, while at +1.6 eV the electronic
states of the center adatoms are imaged. The measurements were performed at 7 K

shows clearly that STS is capable of imaging individual localized electron states,
both their density distributions in space and their energy levels.

21.12 Summary

• Scanning tunneling spectroscopy allows to obtain spectroscopic data with atomic
resolution. In the simplest approximation, the local density of states of the sample
is proportional to the differential conductance dI/dV .

• In experiments the derivative of the I-V curve is measured using a modulation
technique. The nth derivative of the I-V curve at voltage V is proportional to the
AC amplitude of the current signal at n-times the modulation frequency.

• The desired signal of the LDOS is often buried by a large background result-
ing from the transmission factor. Using the normalized differential conductance
(dI/dV )/(I/V ) captures the LDOS better than dI/dV .

• In a more rigorous treatment the differential conductance is related to the sample
density of states ρsample(eV) (for a constant tip density of states ρtip) as
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dI

dV

�

4πe
= eρtipρsample(eV)T (eV , V)

+
eV∫

0

ρtipρsample(ε)
∂T (ε, V)

∂V
dε. (21.26)

• At tunneling voltages of several volts, the energy resolution in STS is given by
the energy width of the transmission factor (about 0.3 eV). If small voltages in
the millivolt range and low temperatures are considered, the energy resolution is
limited by the thermal broadening of the Fermi function and the amplitude of the
modulation voltage.

• From measurements of the tunneling current as a function of tip-sample distance
(with feedback switched off), the apparent barrier height Φ̄ can be extracted.

• If the bias voltage is larger than the apparent barrier height, standing electron
waves occur in the barrier for particular energies. This results in oscillations in the
dI/dV signal.

• In spectroscopic imaging, maps of the local density of states (LDOS) at a certain
energy are obtained by performing a slow constant current (topographic) STM
scan at a certain bias voltage V and simultaneously recording the (normalized)
dI/dV signal.



Chapter 22
Vibrational Spectroscopy with the STM

Vibrational spectroscopy provides a fingerprint of the identity of molecular species.
A molecule at a surface can be identified by a very characteristic set of vibrational
modes. Vibrational spectroscopy at surfaces was performed in the past with spatially
averaging techniques using light (infrared spectroscopy and Raman spectroscopy)
or electrons (electron energy loss spectroscopy EELS) in order to excite the vibra-
tions [52].

Also the method of inelastic tunneling spectroscopy (IETS) was used at planar
buried interfaces long before the invention of the STM. Here two metal electrodes
are separated by an oxide barrier. When electrons tunnel through this barrier they
can excite vibrations. In this way, vibrations of molecular species present at the
electrode—tunneling barrier interface can be measured.

Soon after the invention of the STM, it was proposed that similar mechanism of
vibrational excitation should be possible in STM. Here, the two metal electrodes are
replaced by the tip and sample, and the oxide layer by a tip-sample vacuum gap.

Using inelastic scanning tunneling spectroscopy (IETS) it is possible to excite
vibrations of a single atom or molecular species. The usual energy range for observed
molecular vibrations ranges from several meV up to several hundred meV. If we
remember that the energy resolution in scanning tunneling spectroscopy is only in
the order of 80 meV at room temperature, operation at low temperatures is necessary
in order to achieve the required energy resolution of a few meV in scanning tunneling
microscopy IETS.

22.1 Principles of Inelastic Tunneling
Spectroscopy with the STM

The principle of inelastic spectroscopy with STM is illustrated in Fig. 22.1a, b. The
tip is positioned over the molecule, the z-feedback is disabled, and the bias volt-
age between tip and sample is ramped. In the limit of low bias voltages, assuming
a constant transmission factor and a constant density of states (Tersoff-Hamann

© Springer-Verlag Berlin Heidelberg 2015
B. Voigtländer, Scanning Probe Microscopy,
NanoScience and Technology, DOI 10.1007/978-3-662-45240-0_22

335



336 22 Vibrational Spectroscopy with the STM

I
dI

/d
V

d2 I/
dV

2

ω

Tip Sample

EF

E +eVF
Elastic

Inelastic

(a)

(b)

(c)

(d)

(e)

Total

Inelastic
Elastic

ω/e

- /eω

ω/e

ω/e- /eω

- /eω

I

V

Tip

Sample

Voltage

Fig. 22.1 a Schematic potential diagram of the STM illustrating the principle of inelastic spec-
troscopy. Molecular vibrations are excited by the inelastically tunneling electrons. The inelastic
channel opens when the bias voltage exceeds the threshold energy of the vibrational mode �ω/e. b
Schematic of an inelastic STS measurement probing the vibrational spectrum of a molecule at the
surface. c Effect of the inelastic process on the current-voltage characteristics. The inelastic channel
opens at the threshold voltage V ≥ �ω/e. d This results in a step-like increase of the differential
conductance in the dI/dV curve. e In the d2 I/dV 2 spectrum, a characteristic peak and dip signature
appears symmetrically around zero bias, at bias voltages corresponding to the energy of vibrational
mode

approximation), the current is a linear function of voltage. The elastic tunneling
channel is indicated in Fig. 22.1a by a horizontal arrow. The excitation of a mole-
cular vibration only becomes possible when the energy of the tunneling electrons
exceeds the energy of the vibrational mode. In this case, the tunneling electron can
excite a vibration of an atom or molecule residing on the (metal) surface. This tunnel-
ing channel is called the inelastic channel. A minimum energy amount of is needed
in order to excite a quantized vibration of �ω as

e |V | ≥ �ω. (22.1)

When the inelastic electron tunneling channel opens above the threshold voltage,
a slight increase in the tunneling current occurs because the tunneling current
now receives contributions from two channels: the elastic and the inelastic chan-
nel Fig. 22.1b. Since most electrons still tunnel elastically, only a small inelastic
current is added (usually a few percent). This inelastic current is also proportional
to the voltage and added to the elastic current Fig. 22.1c. This slight increase in the
slope of the I-V curve is usually too small to be detected directly. The increase of
the slope in the I-V curve leads to a (small) jump in the dI/dV signal at the threshold
voltage. Even this change in the dI/dV is usually too small to be detected, so infor-
mation about vibrational modes is extracted from the d2 I/dV 2 signal measured by
the lock-in technique (Chap. 6 and Sect. 21.2), where a peak appears at the threshold

http://dx.doi.org/10.1007/978-3-662-45240-0_6
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voltage. The effect of the opening of the inelastic channel on the I-V , dI/dV and
d2 I/dV 2 spectra is shown schematically in Fig. 22.1c–e.

There is an additional specific signature in the vibrational spectra which is used
to confirm that a specific feature in the second derivative is really present due to
vibrational excitations at this energy. The vibrational mode can be excited by elec-
trons tunneling in both directions, from the tip to the sample and from the sample
to the tip. This implies an important feature of the STM vibrational spectrum. A dip
occurs in the negative bias voltage, (anti) symmetrically to the peak in the positive
bias. In this way, vibrational spectra of single molecules at surfaces can be identified
unambiguously, as shown schematically in Fig. 22.1c.

22.2 Examples of Vibrational Spectra
Obtained with the STM

The second derivative of the I-V curve is measured using the lock-in technique. Even
with the lock-in technique the measured vibrational spectra of molecules tend to be
quite noisy, as seen in the example shown in Fig. 22.2. Here a vibrational spectrum of
C60 (measured using the lock-in technique) is shown. Several peaks can be observed
in this spectrum. However, a clear signature of a peak and a corresponding dip at the
same negative voltage is only observed in two cases, at 53 and at 138 meV. Due to this
signature the vibrational mode is identified unequivocally in spite of the noise present
in the d2 I/dV 2 spectrum shown in Fig. 22.2. Also the comparison with the reference
spectrum taken on the clean metal surface helps to identify the vibrational peaks. If
peaks are present on the bare surface as well as above the molecule, these peaks may
not be vibrational peaks of the molecule but induced by the substrate. Therefore, it is
always important to measure a reference spectrum close to the molecule under study.

Fig. 22.2 a STM-IETS spectrum measured for C60 on Cu(111). Vibrational spectra are often noisy
and a characteristic peak/dip structure at positive/negative voltages can be used to recognize the
vibrational peaks. The spectrum taken on the clean surface is shown for comparison. (I = 0.1 nA,
V = 250 mV, Vmod = 6 mV RMS). b Schematic representation of a C60 molecule
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Fig. 22.3 STM-IETS
spectrum measured for CO
on Cu(100). The inelastic
tunneling process occurs in
both directions at positive
and negative tunneling
voltages. This leads to a clear
signature of a symmetric
peak and corresponding dip
for positive and negative
voltages, respectively
(reproduced with permission
from [53])
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For instance, the prominent structure at −240 meV in Fig. 22.2 is clearly identified
as due to the substrate.

In Fig. 22.3, the vibrational spectrum (d2 I/dV 2) of a CO molecule is shown. The
green line shows a reference spectrum on the clean Cu(100) substrate close to the
molecule. For the CO, two pairs of antisymmetric peak/dip are observed at 35 and
5 meV. The two vibrations correspond to the CO bending vibrational mode and the
frustrated translation, respectively. One disadvantage of the vibrational spectroscopy
performed with the STM is that usually only very few of the vibrational modes of a
molecule can be measured. For instance, in the case of the CO molecule only two
of the total of six vibrational modes are observed. Also the selection rules of STM
vibrational spectroscopy are not very simple. The great advantage of vibrational
spectroscopy with an STM is the ability to measure vibrational excitations with ulti-
mate spatial resolution, i.e. at a single atom or molecule. The vibrational spectra carry
chemical information, which is lacking in STM imaging or dI/dV scanning tunneling
spectroscopy. With STM vibrational spectroscopy it is possible to resolve aspects
of the local bonding of molecules at surfaces and modifications of intermolecular
interactions due to surface bonding. When single molecule reactions are induced,
STM-IETS can be used to characterize the nature of the reaction products.

Another way to identify d2 I/dV 2-peaks clearly as vibrations is the isotope test. If
one chemical element in a molecule is replaced by an isotope with a different mass,
the energies of the corresponding vibrations change. If for instance in a molecule
the hydrogen atoms are replaced by the heavier deuterium isotope, the vibrational
energies are reduced. If only the stretching vibration of the hydrogen (deuterium) is
considered, the frequency shifts can be understood using a simple spring model. The
vibration frequency ω as function of the spring constant k and the mass of the atom
m is

ω =
√

k

m
∝

√
1

m
. (22.2)
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Since the chemical bonds are the same for different isotopes the atomic spring con-
stant k stays the same for different isotopes. Therefore, the frequency (and corre-
spondingly the energy) of the hydrogen stretch vibration should be reduced by a
factor of

√
2 when hydrogen is replaced by deuterium in a molecule.

An example of this is shown in Fig. 22.4. The bonding configuration of a C2H2
molecule on Cu(100) is shown in Fig. 22.4a. With the STM image in Fig. 22.4b alone
it is impossible to distinguish between the different isotopes present on the surface. An
STM d2 I/dV 2 spectrum is shown in the upper trace in Fig. 22.4c. To prove that the
peak observed at 358 meV corresponds to the C-H stretch vibration, an isotope was
used in which the hydrogen was replaced by deuterium. The corresponding spectrum
is shown as the middle trace in Fig. 22.4c displaying an energy reduction of the peak
from 358 to 266 meV corresponding approximately to a factor of

√
2. If in a C2H2

molecule only one hydrogen atom is replaced by deuterium, the lower spectrum
in Fig. 22.4c results, which shows both peaks. With this information the molecules
in Fig. 22.4b can be individually identified as C2H2, C2D2 and C2HD, respectively
as indicated. If the isotope exchange is possible, it is a very useful test, since also
electronic states lead to structures (peaks and dips) in the d2 I/dV 2 spectrum. Such
peaks do not shift upon isotope exchange, since the electronic structure is not changed
by the higher mass.

Voltage (mV)
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Fig. 22.4 a Schematic of the bonding of a C2H2 molecule on a Cu substrate. The C-H stretch
vibrations are indicated by arrows. b By the STM image alone the C2H2 molecule cannot be
distinguished from the C2D2 and the C2HD isotopes. c Using STM vibrational spectroscopy, the
different molecules can be identified via their corresponding vibrational energies (∼360 meV for
the C-H stretch and ∼269 meV for the D-H stretch) (reproduced with permission from [54])
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22.3 Summary

• In inelastic tunneling spectroscopy with the STM (STM-IETS) vibrations of mole-
cules in the tunnel junction are excited.

• In addition to the elastic channel an inelastic channel for the tunneling current is
opened if the tunneling voltage exceeds the energy of the vibration �ω.

• A vibrational excitation leads to a peak at �ω and a corresponding dip at −�ω in
the d2 I/dV 2 signal.



Chapter 23
Spectroscopy and Imaging of Surface States

The metals Cu, Ag and Au have surface states at their low index surfaces with
energies around the Fermi level. On the (111) surfaces the surface state band is
parabolic around the center of the surface Brillouin zone (k|| = 0). Figure 23.1
shows schematically the energy as function of the wave vector parallel to the surface
at the Cu(111) surface. The projected bulk band is shown as a shaded area in Fig. 23.1,
while the surface state is shown as a green line (cf. Chap. 10).

These surface states, which extend over the whole surface, are sensitive to defects
on the surface. Steps, islands or adatoms act as potential barriers for the surface state
wave functions. Because of the confinement of the wave functions at these potential
barriers, the eigenstates become standing waves. The wave functions of the surface
states can be probed by scanning tunneling microscopy and spectroscopy with high
spatial resolution as well as high energy resolution.

23.1 Energy Dependence of the Density of States
in Two, One and Zero Dimensions

Quasi-free electrons obey a parabolic band dispersion, as

E = �
2k2

2m
, (23.1)

where E is the energy relative to the bottom of the band E0, and m is the effective mass
of the electron. The energy dependence of the density of states can be calculated by
integrating the states in k-space up to a certain energy. Due to the different integration
conditions for the k-space of different dimensionality, different dependences of the
density of states result for different dimensionalities [55] as

© Springer-Verlag Berlin Heidelberg 2015
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Fig. 23.1 Energy as a
function of the wave vector
parallel to the surface at the
Cu(111) surface. The surface
state is located outside the
projected bulk band
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ρ(E) ∝ √
E in 3D (23.2)

ρ(E) = const. in 2D (for every subband) (23.3)

ρ(E) ∝ 1√
E

in 1D (peak for every subband) (23.4)

ρ(E) = δ(E − Ei ) in 0D (peak for each state) (23.5)

The above given dependence of the density of states ρ(E) is shown graphically in
Fig. 23.2 for different dimensions.

In the direction in which the dimensionality is reduced by confinement of the
electrons, modes of different energy occur known as subbands. The occurrence of
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Fig. 23.2 Energy dependence of the density of states for a free electron gas of different dimen-
sionality
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Fig. 23.3 In the 2D confinement, different parabolic subbands occur due to different modes
n = 1, 2, 3, . . . of the wave functions existing in the confined direction

subbands with parabolic dispersion, in directions in which no confinement occurs,
is shown in Fig. 23.3.

As shown in Chap. 21, the density of states at the surface can be probed by scan-
ning tunneling spectroscopy. In the first approximation the density of states can be
expressed as

ρsurf(eV ) ∝ dI

dV
. (23.6)

Experimental data for the energy dependence of the density of states obtained with
scanning tunneling spectroscopy (STS) are shown in Fig. 23.4 for different dimen-
sionalities. Figure 23.4a shows the dI/dV signal, corresponding to the 2D density of
states of the surface states (Fig. 23.1) on the Cu(111) surface. At the onset of the
surface state (−460 meV), an abrupt jump in the density of states is observed in
accordance with the expected step function for the 2D density of states as displayed
in Fig. 23.2. At step edges there are sometimes states which extend only along the
step edges (1D states). The dI/dV spectrum taken at a step edge on an InAs sur-
face is shown in Fig. 23.4b compared to the spectrum on the terrace [56]. For the
spectrum at the step edge, peaks with a sharp onset and a characteristic 1/

√
E are

observed (as shown by the turquoise line in Fig. 23.4b), indicative of the density of
states of 1D states. On the terrace, the dI/dV spectrum does not show these peaks. In
Fig. 23.4c the dI/dV spectrum taken on a small (∼6 nm diameter) InAs cluster shows
sharp peaks indicative of a 0D density of states corresponding to quantized electron
energies [57]. Due to the confinement in all three spatial directions, these clusters
are also often called artificial atoms or quantum dots. An STM image of one InAs
cluster is shown in the inset in Fig. 23.4c. In order to obtain a good energy resolution,
all these measurements were performed at liquid helium temperatures.

http://dx.doi.org/10.1007/978-3-662-45240-0_21
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Fig. 23.4 Density of states
(DOS) measured via dI/dV
spectra. a A 2D Cu(111)
surface state leads to a
step-like increase in the
density of states beyond the
onset energy of the surface
state at −460 meV. b Two 1D
states at the step edge on an
InAs surface with the
characteristic 1/

√
E energy

dependence (reproduced
with permission from [56]).
c Spectrum taken on an InAs
cluster shows peaks for the
individual states of the
quantum dot (reproduced
with permission from [57]).
The inset shows an STM
image of an InAs quantum
dot (image size 10 nm ×
10 nm). Each of the DOS
spectra in (a)–(c) shows the
energy dependence
characteristic of its
dimensionality as shown
schematically in Fig. 23.2
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23.2 Scattering of Surface State Electrons at Surface Defects

Apart from the energy dependence also the spatial dependence of the local density
of states at surfaces can be studied. On clean low-index (especially (111)) metal
surfaces the atomic corrugation is usually very small in STM images. This means
that the lattice periodic modulation function uk(r) of the (Bloch) wave is nearly
a constant with a lattice periodic modulation of only a few percent. At defects a
different electrostatic potential can lead to an enhanced or decreased amplitude of
the wave function around a defect. STM and STS are ideal tools to study such wave
functions of electrons confined at defects such as steps or adatoms.

If electron waves of a 2D electron gas are confined at defects, a traveling wave
is no longer a solution compatible with this boundary condition. First we consider
the case of a step edge where we assume that the wave function is confined by one
boundary condition. We assume in the following the extreme case that the amplitude
of the wave function goes to zero at the boundary. In this case, a standing wave is
a solution of the Schroedinger equation. However, since the confinement is only at
one side, the states still have a continuous range of energies. Only if the electrons
are confined by two boundary conditions do standing waves with quantized energies
and wave vectors result.

In a 1D model incoming and reflected waves can be considered as

ψ1(x) = uk(x)e
ikx (23.7)

and
ψ2(x) = uk(x)e

−ikx . (23.8)

Superposition results in a stationary solution of a standing wave. If we assume as
a simple and extreme boundary condition ψ(x = 0) = 0 so that the wave function
vanishes at the defect site (step edge), the difference of the wave functions above
satisfies this boundary condition.

ψ1−2(x) = 1√
2

uk(x)(e
ikx − e−ikx ) = −i

√
2uk(x) sin(kx). (23.9)

For the absolute square of this wave function the factor sin2(kx) induces a modulation
from zero to one, instead of the small modulation induced by uk(x). Such standing
waves in the 2D electron states at surfaces are observed in STM, either directly in the
topographic images, for instance at step edges (Fig. 23.5a), or more pronounced in
dI/dV maps such as the line scans shown in Fig. 23.5b. For the case of the dI/dV maps,
the signal is approximately proportional to the density of states at the voltage eV . In a
simple analysis, the component of the k-vector along the surface can be obtained from
a measurement of the the wavelength λ of the standing wave oscillations in Fig. 23.5b
as k|| = 2π/λ . Plotting the energy as a function of k|| results in a dispersion relation.
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Fig. 23.5 a Constant current
image of the Cu(111) surface
(image size 500 Å × 500 Å,
V = 0.1 V, I = 1.0 nA).
Three monatomic steps and
several point defects are
visible. Spatial oscillations at
the step edges and around
defects with a periodicity of
∼15 Å are clearly visible. b
Spatial dependence of dI/dV ,
measured as a function of
distance from the step edge
for different bias voltages
(solid lines). The inset shows
the dispersion of the surface
state as obtained from the
experimental data
(reproduced with permission
from [58])

In a more advanced analysis the density of states can be calculated for the 2D
case. The following density of states is found [58]

ρ(E, x) = ρ0
(
1 − J0(2k||x)

)
, (23.10)
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where J0 is the zero order Bessel function, ρ0 is the density of states of a 2D electron

gas in the absence of any scattering, and E = �2k2||
2m . For larger distances from the

step edge, it follows from (23.10) that the density of states decays ∼1/
√

x . This is
a result which is qualitatively different from the 1D case, where the amplitude does
not decay with the distance from the step edge. As in the case of the pure energy
dependence of the density of states shown in Fig. 23.2, also here the integration in
the k-space leads to qualitatively different results for a different dimensionality of
the problem (1D or 2D).

In Fig. 23.5b, the spatial dependence of dI/dV is shown as function of the distance
from the step edge and compared to the results obtained by the model outlined above
(dotted lines) [58]. A value of the effective mass m can be obtained from a fit of
(23.10) to the dispersion relation (dotted line in the inset of Fig. 23.5b). An effective
mass m = 0.38 me is obtained for the electrons in the 2D surface state on Cu(111).

Step edges are not the only type of defects at which surface state electrons can
be confined or scattered. Scattering at point defects is observed in Fig. 23.5a. The
scattering at point defects can be considered by taking an incoming and a scattered
wave into account. In the isotropic case s-wave scattering occurs with the local density
of states decreasing with 1/r as a function of the distance from the point defect [58].
In a more general treatment, also a scattering phase and a scattering amplitude are
included in the model.

23.3 Summary

• The characteristic signature of the energy dependence of the density of states in
2D, 1D and 0D is measured in STS.

• Step edges and adatoms act as potential barriers and scatterers for electrons in 2D
surface states, leading to standing electron waves at surfaces.



Chapter 24
Building Nanostructures Atom by Atom

The scanning tunneling microscope, initially used to image surfaces down to the
atomic scale, has been further developed into an operative tool, with which atoms
and molecules can be positioned at will in order to create and investigate artificial
structures. In this chapter, we will see that two-dimensional quantum systems can be
built and modified, exploiting the ability of the STM to move atoms and molecules
on the surface. The building of dedicated potential barriers on the atomic scale
results in a playground to explore the wave nature of electrons. Such experiments
are usually performed at low temperatures (for instance liquid helium), because
at room temperatures single atoms would diffuse quite rapidly on metal surfaces.
Furthermore, the tunneling current can be used to selectively break chemical bonds,
but also to induce chemical bonds. These possibilities give rise to new opportunities
to study chemistry on the level of the single atom and single molecule.

24.1 Positioning of Single Atoms and Molecules by STM

The procedure for lateral positioning of single atoms is illustrated schematically in
Fig. 24.1. In the STM imaging process the tip is scanned at distances of a few atomic
diameters above the surface (a) and follows contours of constant local electronic
density of states (in the constant current mode). For the movement of atoms the tip
is brought close to the atom to be moved. Subsequently, the tip-sample distance is
reduced from the imaging distance (a) to the positioning distance (b). This reduced
tip-sample distance brings the tip into stronger interaction with the atom/molecule to
be moved. This stronger interaction can be either attractive or repulsive. Then the tip
is moved parallel to the surface either in constant current or in constant height mode
(c) to the predetermined place whereby the atom or molecule is pulled (or pushed)
to the desired location (d). The tip is then withdrawn to the scanning distance, i.e. at
a distance where no motion of the atom is induced (e). Then a new STM image is
scanned to check the result of the atom positioning. A threshold tunneling resistance

© Springer-Verlag Berlin Heidelberg 2015
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Fig. 24.1 (a) Principle of
the lateral positioning of
single atoms by the STM tip.
The tip-adsorbate distance is
decreased from the imaging
distance to the positioning
distance at which stronger
tip-sample forces are present
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corresponding to a certain tip height and correspondingly to a certain force on the
atom/molecule is necessary to move the atoms across the surface.

The movement of the atom/molecule is driven by the tip-adsorbate interac-
tion, i.e. either attractive chemical forces, or repulsive forces. More information
about the nature of this interaction can be gained by recording the response of the
STM z-feedback (in constant current positioning mode) or the tunneling current (in
constant height positioning mode). Depending on the type of forces involved between
the moved atom/molecule and the tip, two different positioning mechanisms are
observed: pushing and pulling. The processes are shown schematically in Fig. 24.2a, b
together with the characteristic plots of the tip height Fig. 24.2c, d recorded in the
constant current mode during positioning.

Pulling takes place when the adsorbate experiences an attractive interaction with
the tip. If the tip is initially directly above the molecule no sidewise force acts. When
it is moved to the side (in constant current mode) a lateral force builds up. At a certain
sidewise motion, the lateral tip-sample force overcomes the threshold for motion to
the next adsorption site. The molecule follows the tip by hopping from one adsorption
site to the next, associated with an instantaneous upward jump of the tip which can
be observed in the height trace in Fig. 24.2c.

The pushing mechanism involves a repulsive interaction between the adsorbate
and the tip. In the initial part, the tip starts to move up the contour of the molecule.
At some point, due to the increasing repulsive forces, the atom or molecule jumps
forward, which is seen as a sudden decrease in the tip height in Fig. 24.2d.

As an example, the lateral positioning of a single Pb atom along an intrinsic
Cu(211) step edge is shown. The force which induces the positioning of the Pb atom
is attractive, as will be explained now. Figure 24.3a shows the height of the tip during
the actual positioning process while keeping the tunneling current constant. When
positioning a Pb atom a low tunneling resistance of 120 k� (corresponding to a closer
tip-sample distance than during imaging) is used and the tip is moved from left to
right. The jumps in the tip height clearly indicate a discontinuous upward movement
of the tip height, corresponding to the signature of the pulling mode. This indicates
that there is an attractive force between the tip and the atom during the positioning
process. Since the force between a metal tip apex and a metal atom is always attractive
in the tunneling regime, one has to use a different adsorbate to show the effect of
repulsive forces.

Here we show an example where the positioning is performed in constant current
mode to precisely position single C60 molecules on Cu(111). The molecules were
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Fig. 24.2 Principle of the
pulling mechanism (a) and
the pushing mechanism (b).
Corresponding tip height
profiles during constant
current positioning in the
pulling (c) and pushing
mode (d). The blue lines
correspond to traces at the
imaging distance, while the
red traces correspond to the
positioning distance
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deposited on Cu(111) at a temperature of T = 25 K, in order to obtain single C60
molecules on the substrate instead of larger agglomerates. To move the molecule,
the tip was brought close to the sample, decreasing the resistance of the tunneling
junction to 0.5 M�. Subsequently, the tip was moved laterally towards the molecule
at constant current. The positioning of individual C60 is shown in Fig. 24.3c, d. The
molecules were moved along the surface in a controlled way. Characteristic tip height
plots found for C60 moved on Cu(111) are shown in Fig. 24.3e, f. The characteristic
shape of the curves indicates that the molecule has been moved in the pushing mode.
Figure 24.3e shows the tip height plot during repositioning of the C60 along the [110]
direction of the Cu(111) substrate. The length of a single jump (2.5 Å) is close to the
nearest neighbor distance on Cu(111). Figure 24.3f shows the tip trajectory during
positioning along the [211] direction. The average hopping distance corresponds
to the distance between two equivalent adsorption sites along [211] direction. The
model of Cu(111) surface with crystal directions is shown in Fig. 24.3g. The distances
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Fig. 24.3 a Characteristic height trace observed when pulling a Pb atom (reproduced with
permission from [59]). b Shows a 3D representation of an STM image of a Pb atom on the copper
surface. Positioning of a single C60 on a Cu(111) surface: c before and d after the positioning process
(reproduced with permission from [60]). Displacement of the molecule is indicated by an arrow.
Positioning was performed in constant current mode. e and f show records of the tip height during
the positioning of a single C60 molecule on Cu(111) along different crystallographic directions.
The shape of the tip height trace shows that the positioning occurred due to the pushing mechanism.
g Model of the Cu(111) surface with crystal directions along which the motion was performed

between equivalent adsorption sites along [110, 211] are indicated in this image.
Figure 24.4 shows the word NANO written in the way described above with single
C60 molecules. Each letter has a height of 15 nm.

Up to now we considered lateral positioning of atoms/molecules along the surface.
Another kind of positioning is the vertical positioning. Here an atom/molecule is in a
first step transferred from the surface to the tip and in a second step transferred to the
surface at another position. In Fig. 24.5a two Xe atoms (smaller circular protrusions)
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Fig. 24.4 The word NANO assembled from single C60 molecules by lateral motion (letter size:
15 × 15 nm2)
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Fig. 24.5 a STM image of two Xe atoms embedded in a layer of PTCDA molecules on a Au(111)
surface (imaging parameters: I = 5×10−11 A, V = −10 mV [61]). b Same location on the surface
after vertical transfer of a Xe atom to the tip. The left Xe is missing. c Current distance dependence
during approach and retraction. The tip is approached until an instantaneous jump of the current
indicates a transfer of the Xe atom to the tip (sample bias voltage: 0.1 V)
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are embedded in an ordered array of PTCDA molecules (larger elongated protrusions)
[61]. The left Xe atom in Fig. 24.5a is removed by attaching it to the tip. The tunneling
current as function of the approach distance is shown in Fig. 24.5c. At a certain
approach distance the measured current increases abruptly, which indicates that the
Xe atom jumps from the surface to the tip. In this modified junction geometry (Xe
on the tip) the tunneling current is larger than with the Xe atom at the surface. This
attachment of the Xe atom to the tip can be confirmed by subsequent imaging of the
same area on the surface, which shows that the Xe atom was removed (Fig. 24.5b).
The image of the molecular layer taken with a Xe atom attached to the tip (Fig. 24.5b)
has a more pronounced and sharper contrast than the image taken without the Xe
atom. Tips functionalized with an atom/molecule often lead to contrast mechanisms
different from the metal tip. The Xe atom can be attached back to the surface at a
desired position by approaching the surface with a bias voltage of opposite polarity.

24.2 Electron Confinement in Nanoscale Cages

If electrons are confined completely to a certain region in space this leads to wave
functions of the standing wave type with discrete energies and wave vectors. Using
the ability of the scanning tunneling microscope to move single atoms or molecules
along the surface, dedicated structures can be built in order to act as barriers for the
surface state electrons. In this way, the surface state electrons can be confined to cage
structures of particular shapes. An example of an artificial nanostructure prepared on
a copper surface is shown in Fig. 24.6a. Iron atoms are placed on a Cu(111) surface at
low temperature (4 K). First the iron atoms are deposited randomly on the Cu surface,
then they are moved to the desired positions using the STM tip, as described in the
previous section. The STM images in Fig. 24.6b show the steps in the formation
of a “quantum corral”. Forty eight iron atoms were positioned into a circular ring
Fig. 24.6a in order to form a cage for surface state electrons and to force them into
quantum states with circular boundaries.

A standing wave pattern of electron waves confined inside the corral can be
observed in Fig. 24.6a; similar to the standing wave patterns observed, for instance, on
a drumhead. These ripples in the ring of atoms correspond to the density distribution
of a particular set of quantum states of the corral. Since the STM probes the electronic
wave functions, the standing wave within the corral must be due to electrons located at
the Cu surface. As we have seen in Chap. 10, there are electronic surface states which
have a free electron character on Cu(111) (parabolic dispersion). Electrons occupying
these states are located at the surface and their motion parallel to the Cu(111) surface
is essentially that of free electrons. For these electrons, the Fe atoms forming the
circular corral are strong scattering centers, such that the electrons are confined by
the circular barrier. The spatial variation of the electronic density of states can be
described, even quantitatively, by the distribution of round-box eigenstates (Bessel
functions) of electrons within Cu surface states near the Fermi level. Depending on

http://dx.doi.org/10.1007/978-3-662-45240-0_10
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Fig. 24.6 Surface state electrons on Cu(111) are confined to closed structures (corrals) defined by
adatoms forming barriers for the electron waves. The barriers were assembled by individually posi-
tioning Fe adatoms using the tip of a low-temperature scanning tunneling microscope. a A circular
corral of radius 71 Å of 48 Fe adatoms was constructed in this way [62]. This STM image shows the
direct observation of standing-wave patterns in the local density of states of the Cu(111) surface.
These spatial oscillations are quantum-mechanical interference patterns caused by scattering of the
two-dimensional electron gas at the Fe adatoms. b Formation of the corral structure from single Fe
atoms. c, d Different shapes of the corrals give rise to different patterns of the standing electron
waves [62]. (Images originally created by IBM Corporation)

the shape of the outer boundary the wave patterns are quite different, as seen in
Fig. 24.6c, d.

Spectroscopic data (dI/dV ) as a function of the bias voltage show that the energy
levels of the confined electrons are discrete. Good agreement with quantum mechan-
ical calculations was found, as shown in Fig. 24.7. From a detailed analysis of the
standing waves of such “quantum corrals” it was determined that Fe atoms reflect
about 25 % of the incident wave, while 25 % are transmitted and 50 % are absorbed
(scattered into bulk states) [63].
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Fig. 24.7 Experimental
(solid line) and theoretical
(dashed line) voltage
dependence dI/dV with the
tip of the STM located at the
center of the circle of Fe
atoms on a Cu(111) surface.
The peaks show the energies
of the confined electron
states (reproduced with
permission from [63])
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24.3 Inducing a Single Molecule Chemical
Reaction with the STM Tip

One advanced application of the capability of the STM to position single molecules
is inducing a chemical reaction and following all the steps of the reaction on the
single molecule level. In the Ullmann reaction, iodine has to be split off from the
iodobenzene parent molecules to form the phenyl reactants which then combine
to form a biphenyl molecule. Tunneling electrons temporarily populate the iodine-
phenyl anti-bonding level, thus causing the dissociation step. Subsequently the iodine
is moved away from the phenyl ring by STM positioning (Fig. 24.8a–c).

Both iodine and phenyl fragments are found on the surface at a step edge (d).
Subsequently iodine was transferred to the terrace (Fig. 24.8a). To bring two phenyls
together, lateral motion in the pulling mode is employed Fig. 24.8e, f. In a chemical
reactor working at elevated temperatures, this step would be performed by thermal
diffusion. At the low temperatures of the Cu(111) substrate (4 K), the proximity of
the two phenyls is not sufficient to induce the association to biphenyl. If a pulling
procedure is applied to the phenyl couple from one end, the phenyl at the rear does
not move together (not shown in Fig. 24.8). This proves that the two phenyl rings are
still separate and no reaction between them has occurred. Only after the injection of
electrons by the STM tip is the synthesis step performed (Fig. 24.8f), which can be
proven by pulling the product from one end and observing that the entire molecule
follows the tip (Fig. 24.8g, h). The synthesis of the two phenyls to biphenyl is probably
enabled by the local excitation of vibrational modes in the phenyl groups, enabling
the two open bonds to find the proper relative orientation for bond formation. This
is an example of a single molecule reaction induced and followed in detail by STM.
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Fig. 24.8 Steps in the STM-tip-induced single-molecule Ullmann reaction of two iodobenzene
parent molecules to a biphenyl molecule on Cu(111) (reproduced with permission from [64])

24.4 Summary

• STM can also be used to position atoms and molecules deliberately at desired
locations.

• It can be distinguished by the height trace of the tip, if positioning occurs by
pushing or pulling of the molecule.

• Electron wave functions can be confined to nanoscale corrals built from single
atoms.

• Using the STM tip, a chemical reaction can be induced and followed step by step
on the single molecule level.



Appendix A
Horizontal Piezo Constant for a Tube
Piezo Element

Here we will derive a more exact expression for the length extension �L of a bent
piezo tube than the one used in (3.12). Using this expression for �L results in the
equation for the horizontal piezo constant given in (3.13).

Before we come to the bending of a tube piezo element, we introduce the relevant
concept for a very simple case. Let us assume the ceramic of the piezo tube is an
elastic medium and we pull with a force (or force per area σ) at the end of the
piezo tube as shown in Fig. A.1a. As a response to this externally applied stress, a
strain �L develops which leads to a stress τ = E�L/L in the opposite direction. In
equilibrium σ and τ have the same value and opposite direction. Instead of pulling at
the piezo tube, we can exert an elastic stress on the piezo tube also via the piezoelectric
effect. The extension of the piezo element is (according to Hooke’s law and (3.3))
accomplished by a stress σ = Ed31V/h (with h being the wall thickness), which is
counterbalanced by the stress build-up in the elastic medium τ = E�L/L. Here due
to the simple geometry the stresses have the same value throughout the cross section
of the tube and counterbalance locally. This is different for the case of the bending
of a segmented piezo tube. At this point, the stress σ resulting in an extension by the
piezoelectric effect does not occur homogeneously, but only at the segments to which
a voltage is applied. The elastic stress τ is also inhomogeneous, since the elastic strain
which develops due to the bending of a piezo tube is also inhomogeneous throughout
the tube cross section. In the following, we will discuss the geometry of bending,
the stresses σ and τ , and the equilibrium condition in detail following the arguments
given in [7].

We consider a piezo tube with voltages +Vx and −Vx applied to the x-electrodes,
while the voltage at the other electrodes of the tube is zero. The geometry of bending
of a tube piezo is shown in Fig. A.1b. As shown in (3.7), the bending angle can be
written as α = 2�L/Dm, with Dm being the average diameter of the piezo tube (the
wall thickness is considered as negligibly small), and �L being the length extension
at the middle of the x-electrodes. In the following we will determine this length
extension �L.

A voltage Vx applied to the x-electrodes induces a stress σ which is homogeneous
throughout the electrode, as sketched in Fig. A.1b. At the y-electrodes no external
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Fig. A.1 a When pulled with an external stress σ at an elastic object (piezo tube) the object extends
by �L and an inner stress τ builds up as a response. In equilibrium the two stresses compensate
each other. b In the case of a bending of the tube due to voltages on the x-electrodes, the externally
applied stress σ is only different from zero at those electrodes (blue arrows), while the reaction
stress in the elastic body τ is linear as a function of x. Thus the stresses do not compensate locally
as in (a). However, in equilibrium the total torque has to vanish. c Cross section of the piezo tube
with the applied voltages

stress occurs, since no voltage is applied to those electrodes. This applied inhomoge-
neous stress distribution throughout any cross section through the piezo tube causes
an elastic reaction (bending) of the tube, which results in a reaction stress τ in the
piezo tube material. The strain is zero in the middle of the y-electrodes and is assumed
to increase linearly along the bending direction x as shown in Fig. A.1b, while it is
constant along the y-direction perpendicular to the bending. The corresponding stress
τ also increases linearly with x and is shown in Fig. A.1b. We see that σ and τ do
not have the same values at each point as for the vertical stretching along the z-axis
(Fig. A.1a), but have different values across the piezo tube.

The sumσ+τ is also sketched in Fig. A.1b. What is now the equilibrium condition?
Let us consider the cross-section of the tube in Fig. A.1b as a lever rotating about
the center, on which the sum of the stresses Σ(x) = σ(x) + τ (x) is applied at each
point of the tube cross section. The equilibrium condition is now, as for a lever, that
the sum of all torques Σ · x applied to the lever has to vanish. The piezo extension
induces a local torque σ(x) ·x and the elastic response induces a local torque τ (x) ·x.
The bending of the tube is in equilibrium if the integral of the total torque Σ · x over
the whole cross section of the piezo tube vanishes. Now we perform this integration.
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Due to the symmetry of the problem, we limit the integration to the first quadrant
(Fig. A.1c). For the integration over the y-electrode (45◦ < θ < 90◦), σ is zero and

Σ(θ) = τ (θ) = τmax cos θ, (A.1)

where the variable x has been replaced by cos θ and τmax is the stress in the middle
of the x-electrode. For the integration over the x- electrode (0◦ < θ < 45◦), the total
stress can be written as

Σ(θ) = σ(θ) + τ (θ) = τmax cos θ − σmax, (A.2)

where σmax is the stress applied to the x-electrodes due to the applied voltages. With
this the equilibrium condition, i.e. the vanishing of the integral of the torque over the
tube quadrant, reads as

90◦∫

0

Σ(θ) cos θdθ

=
45◦∫

0

(τmax cos θ − σmax) cos θdθ +
90◦∫

45◦
τmax cos θ cos θdθ = 0. (A.3)

The evaluation of these integrals leads to the equilibrium condition

τmax = 2
√

2

π
σmax. (A.4)

Replacing σmax = Ed31V/h and τmax = E�L/L, results in

�L = 2
√

2

π

d31LV

h
. (A.5)

This result for the extension �L is smaller by a factor of about 0.9 than that for the
case where a “free” extension of the x-electrodes is considered (3.12), i.e. without
any “hindrance” by the straining of the y-electrodes. In this way, (3.13) finally results
for the horizontal piezo constant.
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Appendix B
Fermi’s Golden Rule and Bardeen’s
Matrix Elements

In the following, we derive a variant of Fermi’s golden rule which applies to the case
of STM. Subsequently, we also derive Bardeen’s expression for the tunneling matrix
elements occurring in the equation of Fermi’s golden rule.

Fermi’s Golden Rule for Scanning Tunneling Microscopy

It is too complicated to solve the Schrödinger equation for the complete system of
tip, sample and barrier (as shown schematically in Fig. B.1a), even in the single elec-
tron approximation. Bardeen’s approach was to split the problem (initially) into two
independent subsystems (tip and sample). The solutions for the independent systems
can be found more easily and this knowledge can be exploited when attempting the
solution of the complete system by the time-dependent perturbation theory.

A separation surface (Stip/sample) dividing the tip from the sample system is chosen
somewhere inside the tunneling gap, as shown in Fig. B.1a. The potential of the
complete system (Fig. B.1b) is decomposed into a tip and a sample potential shown
in Fig. B.1c, d, respectively. In doing so the following conditions should be fulfilled.
First the potential of the total system is built up as Vtotal(r) = Vtip(r) + Vsample(r),
and the tip potential Vtip(r) is zero inside the sample system and vice versa, as also
indicated in Fig. B.1b, c. With this choice, the origin of the energy scale is the vacuum
energy.

The tip and sample potentials can be more complicated than simple rectangu-
lar shapes. Generally, a three-dimensional potential including the actual atomistic
structure of tip and sample (within the single electron approximation) can be used,
as schematically indicated in Fig. B.1a. The potential of the tip could also be consid-
ered in the presence of the sample and vice versa. The time-dependent Schrödinger
equations for the tip system and the sample system can be written as
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Fig. B.1 a Schematic of the
tip and sample system
considered on the atomic
level. The complete system
is split up into a tip and a
sample system separated by
a separation surface
Stip/sample (dashed line). The
total potential (b) is
composed of the disjunct tip
and sample potentials (c) and
(d) as Vtotal(r) =
Vtip(r) + Vsample(r)
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i�
∂Ψtip,i(r, t)

∂t
=

[−�
2

2m
� + Vtip(r)

]
Ψtip,i(r, t), and

i�
∂Ψsample,j(r, t)

∂t
=

[−�
2

2m
� + Vsample(r)

]
Ψsample,j(r, t), (B.1)

respectively. The solution of the time-dependent Schrödinger equation for the state
i of the tip plus vacuum system with a potential Vtip(r) can be written as
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Ψtip,i(r, t) = ψtip,i(r) exp

(
− iEit

�

)
, (B.2)

with ψtip,i(r) being the solution of the time-independent Schrödinger equation of the
tip plus vacuum system. A corresponding equation applies for the sample states j.
The time-independent Schrödinger equations for the tip states i and the sample states
j can be written as

(
− �

2

2m
� + Vtip(r)

)
ψtip,i(r) = Eiψtip,i(r), (B.3)

and

(
− �

2

2m
� + Vsample(r)

)
ψsample,j(r) = Ejψsample,j(r). (B.4)

Considering only the separate systems, an electron in a specific tip state would
remain in this state forever. Now we consider a transition (scattering or tunneling)
of an electron from its initial state i to the final states j of the sample. Tunneling
leads only to a small perturbation of the initial state, so that the time-dependent wave
function of the complete system can be written as follows

Ψfinal(r, t) = Ψtip,i(r, t) +
∑

j

aj(t)Ψsample,j(r, t), (B.5)

where the sum extends over all final states j. The final wave function will almost be
the same as the initial one Ψtip,i(r, t) plus a sum over the sample stationary wave
functions Ψsample,j(r, t) with aj being the probability amplitude. The square of aj

describes the probability of the electron being in state Ψsample,j(r, t). At time t = 0
all the aj are zero, since the wave function is still the initial tip wave function. Since
all the aj are assumed to be small for small times, the wave function Ψfinal(r, t)
remains normalized in the first order. The aim in the following is to calculate the
time-dependence of the aj which correspond to the transfer rate (tunneling rate) into
the final states.

The wave function Ψfinal(r, t) written in (B.5) is a solution to the time-dependent
Schrödinger equation of the complete system

i�
∂Ψfinal(r, t)

∂t
=

[−�
2

2m
� + Vtip(r) + Vsample(r)

]
Ψfinal(r, t). (B.6)

Inserting the wave function (B.5) into the time-dependent Schrödinger equation of
the complete system (B.6), this results in

i�
∂Ψtip,i(r, t)

∂t
+ i�

∑
j

daj(t)

dt
Ψsample,j(r, t) + i�

∑
j

aj(t)
∂Ψsample,j(r, t)

∂t
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=
[
− �

2

2m
� + Vtip(r)

]
Ψtip,i(r, t) + Vsample(r)Ψtip,i(r, t)

+
[
− �

2

2m
� + Vtip(r) + Vsample(r)

] ∑
j

aj(t)Ψsample,j(r, t). (B.7)

Since the Schrödinger equations are given for the tip and the sample systems sep-
arately (B.1), the first term in the first line cancels out against the first term in the
second line. Also the last term in the first line cancels out against large parts of the
last line, due to the Schrödinger equation for the sample states (B.1). In the last line,
only the term proportional to Vtip(r) survives. In total we can rewrite (B.7) as

i�
∑

j

daj(t)

dt
Ψsample,j(r, t)

= Vsample(r)Ψtip,i(r, t) + Vtip(r)
∑

j

aj(t)Ψsample,j(r, t). (B.8)

If we now replace Ψtip,i(r, t) and Ψsample,j(r, t) according to (B.2) we obtain

i�
∑

j

daj(t)

dt
ψsample,j(r) exp

(
− iEjt

�

)
= Vsample(r)ψtip,i(r) exp

(
− iEit

�

)

+ Vtip(r)
∑

j

aj(t)ψsample,j(r) exp

(
− iEjt

�

)
. (B.9)

Now we evaluate the matrix elements as usual in quantum mechanics, by multiplying
(B.9) by the wave function ψ∗

sample,f of a specific sample state f , and subsequently
perform a spatial integration. If we consider that the final states are normalized and
orthogonal (

∫
ψ∗

sample,f ψsample,jd3r = δfj) most terms in the sums vanish from (B.9)
to give

i�
daf (t)

dt
exp

(
− iEf t

�

)

=
∫

ψ∗
sample,f (r)Vsample(r)ψtip,i(r)d3r exp

(
− iEit

�

)

+ Vtip(r)af (t) exp

(
− iEf t

�

)
. (B.10)

Since the af terms are considered to be small we neglect them on the right side
of (B.10) as usually done in perturbation theory in quantum mechanics. With this
(finally) the following differential equation for the time-dependence of the coeffi-
cients af is obtained
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daf (t)

dt
= 1

i�

∫
ψ∗

sample,f (r)Vsample(r)ψtip,i(r)d3r exp

[
i(Ef − Ei)t

�

]
. (B.11)

The expression

Mfi =
∫

Γsample

ψ∗
sample,f (r)Vsample(r)ψtip,i(r)d3r (B.12)

occurring in (B.11) is called the (transition) matrix element with the integral origi-
nally extending over the whole space. Since, however, the sample potential vanishes
in the tip region, the integration can be limited to the sample space Γsample.

Equation (B.11) can be integrated and results in

af (t) = 1

i�
Mfi

t∫

0

exp

[
i(Ef − Ei)t′

�

]
dt′. (B.13)

This is the probability amplitude of state f at time t. It is assumed that the transition
rate is small, so that the initial state can always be taken as nearly full and the final
states as nearly empty. The integral in (B.13) can be evaluated as1

af (t) = −Mfi
exp

[
i(Ef − Ei)t/�

] − 1

(Ef − Ei)

= −2iMfi exp
[
i(Ef − Ei)t/2�

] sin
[
(Ef − Ei)t/2�

]
Ef − Ei

. (B.15)

Using (B.15), the probability of finding an electron which was originally in tip state
i in the sample state f is

∣∣af (t)
∣∣2 = 4

∣∣Mfi
∣∣2 sin2

[
(Ef − Ei)t/2�

]
(Ef − Ei)2 = ∣∣Mfi

∣∣2 2t

�

sin2
[
(Ef − Ei)t/2�

]
(Ef − Ei)2t/2�

.

(B.16)

1 The last equality arises since

exp (ia) − 1 = cos a + i sin a − 1

= 1 − 2 sin2 a

2
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2
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Fig. B.2 Probability of
being found in the final state
as a function of the
difference in energy between
initial and final state for three
times. This function
becomes infinitely high and
narrow as time increases,
which corresponds to energy
conservation for the
(tunneling) transitions from
an initial to a final state
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t32
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Equation (B.16) is plotted as function of Ef − Ei in Fig. B.2. The probability of
being found in any particular final state f peaks for Ef close to Ei. The function∣∣af (t)

∣∣2 becomes infinitely high and narrow, with increasing t. If we use the following
representation of the Dirac delta function

δ(x) = lim
a→∞

1

π

sin2 ax

ax2 , (B.17)

and identify x = Ef − Ei and a = t/2�,
∣∣af (t)

∣∣2 results in the limit of large times as

∣∣∣a∞
f (t)

∣∣∣2 = 2π

�

∣∣Mfi
∣∣2

δ(Ef − Ei)t. (B.18)

Thus the transition rate (electrons per time) from the initial tip state i to a final sample
state f is given by

wif = 2π

�

∣∣Mfi
∣∣2

δ(Ef − Ei). (B.19)

Thus Fermi’s golden rule applied by Bardeen to the case of tunneling results in
a transition rate proportional to the matrix element. Energy conservation (elastic
tunneling) is obeyed by the delta function.

Bardeen’s Expression for the Tunneling Matrix Elements

A disadvantage of the expression of the matrix element Mfi in (B.12) is that it depends
not only on the wave functions of tip and sample but also explicitly on the sample
potential Vsample(r). In the following, we derive Bardeen’s expression of the matrix
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element which does not explicitly depend on the sample potential, but on the values
of the wave functions and their derivatives on a certain surface. We start with (B.12)
as

Mfi =
∫

Γsample

ψtip,i(r)Vsample(r)ψ∗
sample,f (r)d

3r. (B.20)

Bardeen showed that, using the time-independent Schrödinger equations for tip and
sample states, the matrix element can be rewritten to an expression which depends
(explicitly) only on the values of the wave functions of the tip and sample states on
the separation surface Stip/sample.

In the following, we will use the time-independent Schrödinger equations for
the tip and sample states (B.3) and (B.4). If we insert the expression for Vsample(r)
ψ∗

sample,f (r) obtained from (B.4) into the expression for the matrix element (B.20),
we obtain

Mfi =
∫

Γsample

ψtip,i(r)
(

Ef + �
2

2m
�

)
ψ∗

sample,f (r)d
3r. (B.21)

Since we know from (B.19) that tunneling transitions occur only if Ei = Ef , we
replace Ef in (B.21) by Ei and obtain

Mfi =
∫

Γsample

(
Eiψtip,i(r)ψ∗

sample,f (r) + ψtip,i(r)
�

2

2m
�ψ∗

sample,f (r)
)

d3r. (B.22)

If we use (B.3) to replace Eiψtip,i(r) in (B.22), this results in

Mfi =
∫

Γsample

[(
− �

2

2m
� + Vtip(r)

)
ψtip,i(r)ψ∗

sample,f (r)

+ψtip,i(r)
�

2

2m
�ψ∗

sample,f (r)
]

d3r.

Since the integration extends over the sample volume and Vtip(r) is zero here, we
can skip this term resulting in

Mfi = �
2

2m

∫

Γsample

[
ψtip,i(r)�ψ∗

sample,f (r) − �ψtip,i(r)ψ∗
sample,f (r)

]
d3r. (B.23)

The volume integral in (B.23) can be converted to a surface integral using Green’s
second identity, which results in
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Mfi = �
2

2m

∫

Stip/sample

[
ψtip,i(r)∇ψ∗

sample,f (r) − ψ∗
sample,f (r)∇ψtip,i(r)

]
· dS. (B.24)

The integral extends over the separation surface Stip/sample. The parts closing the
surface integral are considered to be at infinity and to add a negligible contribution.
Therefore, the matrix element depends only on the values of the tip and sample wave
functions on the separation surface. The dependence on the potential is implicit, since
the wave functions depend via the Schrödinger equation on the potential.



Appendix C
Frequency Noise in FM Detection

Here we describe how an amplitude noise of an oscillation gives rise to a correspond-
ing frequency noise. We start by describing some basic principles of the frequency
modulation technique applied to our cantilever example as described in [37].

The oscillation of the cantilever at its shifted resonance frequency ω′
0 is written

(neglecting an offset phase) as

z(t) = A sin(ω′
0t). (C.1)

In the following, we consider the modulation of this carrier oscillation at ω′
0 with a

modulation frequency ωmod. Such a modulation of the cantilever oscillation can be
considered to arise from a modulation of the cantilever resonance frequency due to a
signal, e.g. by an (atomic) corrugation giving rise to a modulation with a (frequency)
amplitude �ω which we call here ω� at a frequency ωmod due to scanning. In the
PLL FM demodulator the magnitude and frequency of the signal component are
extracted.

In the following we will consider that a frequency modulation of the carrier signal
arises due to a (sinusoidal) noise component with frequency ωmod, resulting in a time
dependent modulated frequency

ω(t) = ω′
0 + ω� cos(ωmodt), (C.2)

with ω� being the frequency deviation, i.e. the maximum shift away from ω′
0. Since ω

is no longer constant, the phase (i.e. the argument of the sinusoidal oscillation cannot
be written asφ = ωt, but has to be written as an integral over the instantaneous angular
frequency φ = ∫

ω(t)dt. With this the oscillation coordinate can be written as

z(t) = A sin

(∫
ω(t)dt

)
= A sin

(
ω′

0t + ω�

ωmod
sin (ωmodt)

)
. (C.3)

This expression can be written as an infinite sum over Bessel functions. However, in
the limit that ω� � ωmod, the oscillation of the cantilever can be approximated as
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z(t) = A sin ω′
0t + Aω�

2ωmod

(
sin

[(
ω′

0 + ωmod
)

t
] − sin

[(
ω′

0 − ωmod
)

t
])

. (C.4)

This corresponds to an oscillation at the resonance frequency ω′
0 and two side bands

at the frequencies ω′
0 ± ωmod. In the following, we consider a displacement noise

component at frequency ω′
0 + ωmod. The term Aω�/(

√
22ωmod) corresponds to a

(RMS) displacement noise amplitude which is renamed δA+. Thus the cantilever
oscillation can be written as

z(t) = A sin ω′
0t + √

2δA+ sin
[(

ω′
0 + ωmod

)
t + φ0

]
. (C.5)

Using the mathematical identity sin (α + β) = sin α cos β + cos α sin β, the follow-
ing expression results

z(t) = A sin ω′
0t

[
1 +

√
2δA+
A

cos (ωmodt + φ0)

]

+ √
2δA+ cos ω′

0t sin (ωmodt + φ0) . (C.6)

Since δA+ � A, the second term in the square brackets can be neglected, which
results in

z(t) = A sin ω′
0t cos

(√
2δA+
A

sin (ωmodt + φ0)

)

+ A cos ω′
0t sin

(√
2δA+
A

sin (ωmodt + φ0)

)
. (C.7)

In order to apply the above-mentioned identity for trigonometric functions in the next

step, we included the factor cos
√

2δA+
A (ωmodt + φ0), which is very close to one, since

δA+ � A. Further, we also replaced the small term
√

2δA+
A sin (ωmodt + φ0) by its

sinus. Due to this we can apply the above-mentioned identity in the reverse direction,
which results in

z(t) = A sin

(
ω′

0t +
√

2δA+
A

sin (ωmodt + φ0)

)
. (C.8)

This means that an RMS displacement noise δA+ at the frequency ω′
0 + ωmod trans-

lates into a phase noise of RMS amplitude δA+/A at the frequency ωmod. The instan-
taneous frequency ω(t) is the time derivative of the phase and can be written as

ω(t) = ω′
0t +

√
2δA+
A

ωmod cos (ωmodt + φ0) . (C.9)
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Thus the RMS displacement noise δA+ at the frequency ω0 + ωmod translates into
a RMS frequency noise δω+, as

δω+ = ωmod

A
δA+ or δf+ = fmod

A
δA+, (C.10)

correspondingly for the natural frequencies.
If we additionally consider a second independent noise component of the same

magnitude from the lower side band at ω′
0 − ωmod, the frequency noise has to be

multiplied by
√

2. While we here explicitly consider the amplitudes of displacement
noise and frequency noise the reasoning can also be applied to the spectral noise
densities, resulting in

Nf ( fmod) =
√

2fmod

A
Nz( f0 + fmod), (C.11)

where Nz is the spectral displacement noise density and Nf is the spectral frequency
noise density.
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Index

A
Adhesion force, 226
AM AFM mode, 251

dissipation, 199
phase, 203
thermal noise, 258
time constant, 198

Amplifier
transimpedance, 86

Amplitude modulation, 193
Analog digital converters (ADC), 97
Analog-to-digital converter, 97
Angular frequency, 16
Anharmonic oscillator, 211

bistable amplitude, 213
high-amplitude branch, 213
instability, 213
low-amplitude branch, 214
resonance curve, 213

Artifacts in SPM, 115
Asymmetry of STS spectra, 322
Atomic force microscope (AFM), 7

amplitude modulation, 193
amplitude phase dependence, 210
beam deflection method, 161
constant height mode, 180
contact mode, 9, 177
detection methods, 165
dynamic mode, 9, 187
interferometric detection, 165
intermittent contact mode, 205
lift mode, 180
non-monotonous signal, 250
piezoelectric detection, 165
piezoresistive detection, 165
sensitivity, 167
static, 8, 177

tapping mode, 205

B
Background subtraction, 107

line-by-line, 110
plane, 110

Bandwidth, 79, 87
Bardeen model for tunneling, 289, 363

matrix elements, 363
Barrier

one-dimensional, 279, 294
rectangular, 294
transmission factor, 282
trapezoidal, 296
wave function matching, 281

Barrier height spectroscopy, 327
Barrier resonances, 328
Beam deflection method, 161

detection limit, 164
sensitivity, 162

Beetle STM, 71
Besocke, 71
Bloch wave, 135
Bode plot, 78
Building vibrations, 62
Butterfly curve, 47

C
Cantilever, 8

bending, 162
calibration, 167
displacement noise, 262
effective mass, 26
fabrication, 159
resonance frequency, 168
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ring down, 225
sensitivity, 167, 174
spring constant, 168, 170
thermal excitation, 239
thermal method, 170
thermal noise, 170, 174

CO molecule, 304
Coarse approach, 65

automatic, 95
Combined density of states, 297
Complex impedance, 78
Complex wave number, 136
Conductance

differential, 325
Confinement, 343
Constant current mode, 302
Constant height mode, 180, 302
Contact mode, 251
Contact mode atomic force microscopy, 177
Contact potential, 129
Contamination layer, 216
Corral, 354
Creep, 49, 119
Curie, 31
Curie temperature, 37
Current amplifier, 86

D
Data analysis, 113
Data representation, 107
Dead zone, 117
Deflection calibration, 167
Density of states, 288, 316

2D, 1D, 0D, 341
combined, 298
local, 301
recovery, 319
superconductor, 326

Differential conductance, 310, 313, 316, 325
Digital analogue converters (DAC), 96, 107
Dipole layer, 125
Dissipation and phase, 219
Dissipation energy, 219, 226
Dissipative interactions, 199
Dither piezo element, 196
Double tip, 115
Dynamic AFM, 251

energy dissipation, 217
Dynamic atomic force microscopy

frequency shift, 191

E
Eddy-current damping, 61
Effective mass, 26
Egg carton effect, 180
Elastic contact

hertzian theory, 147
Electronic effects, 5
Electrostatic force, 148
Energy dissipation, 217
Energy resolution

scanning tunneling spectroscopy (STS),
324

Equipartition theorem, 170
Etching

anisotropy, 159
Extension of piezoelectric actuator, 34

F
Feedback controller, 88
Feedback oscillation, 119
Fermi function, 298
Fermi level, 6
Fermi’s golden rule, 290, 363
Feynman, R.P., 1
Filter

matrix, 112
median, 112

Flexure-Guided piezo actuator, 45
Flux density, 284
FM AFM mode, 229, 251

dissipation, 243
large amplitude limit, 235
self-excitation, 238
signal-to-noise ratio, 265
thermal noise, 260
time constant, 241
total noise, 263
tracking mode, 248

Force
attractive, 192
repulsive, 192

Force gradient, 191
Force sensor, 157
Force volume, 223
Force-distance curve, 154, 182
Force-distance curve mapping, 223
Frequency, 16
Frequency modulation atomic force

microscopy, 229
Frequency shift, 191, 232, 233

normalized, 235
Friction
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kinetic, 68
static, 67

Friction force microscopy (FFM), 181

G
Gray level, 107

H
Hamaker constant, 146
Harmonic oscillator, 15

damping, 19
decay time, 25
dissipation, 25
driven oscillator, 17
energy, 25
equation of motion, 15
external force, 188
free harmonic oscillator, 15
general solution, 24
maximum of resonance curve, 23
phase, 21
resonance, 17, 20
ring down, 25
thermal noise, 255
thermal noise density, 255
transients, 23
width of resonance curve, 22

Hertzian theory, 147
High-voltage amplifier, 98
Hooke’s law, 8, 15
Hysteresis, 46

I
I-V curve, 311
Image potential, 126
Image processing, 112
Impedance, 78
Impedance converter, 83
Indentation depth, 226
Inelastic spectroscopy, 311, 335
Inelastic tunneling spectroscopy (IETS), 335
Inertial slider, 66
Initial conditions, 17
Input resistance, 80
Integral controller, 90
Intermittent contact mode, 205, 251

amplitude-distance curve, 207
amplitude phase dependence, 210

Inverting amplifier, 85
Isotope shift, 338

J
Johnson noise, 87

K
Kelvin method, 129
Kelvin probe scanning force microscopy

(KFM), 131
KoalaDrive, 73

L
Lead zirconate titanate, 32
Leibniz integral rule, 316
Lennard-Jones potential, 147, 192
Lift mode, 180
Line scan, 114
Linear differential equations, 28
Local density of states (LDOS), 289, 301
Lock-in amplifier, 101, 310

second derivative, 335
two-channel, 104

Low-pass filter, 78

M
Material contrast, 216
Materials

piezoelectric, 37, 38
Matrix element, 290, 368
Matrix filter, 112
Mechanical properties

mapping, 223
Median filter, 112
Modulation voltage, 310
Multiple tip, 115

N
N-th derivative, 311
Nanoelectronics, 1
Nanopositioner, 65
Nanoscope, 65
Nanotechnology, 1
Needle sensor, 265, 270
Newton’s second law, 15
Noise, 81, 255

atomic force microscope (AFM), 265
electrical, 119
Johnson, 87
scanning tunneling microscope (STM),

265
sensor displacement, 262
shot, 164
thermal, 258, 260
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total, 263
Non-contact atomic force microscopy, 229,

251
Normalized differential conductance, 313
Normalized frequency shift, 235

O
One-dimensional barrier, 279
Operational amplifier, 82

golden rule, 85
inverting, 85
non-inverting, 84
open loop gain, 83

Oscillator
anharmonic, 211

Output resistance, 80

P
Pan slider, 72
Pauli repulsion, 147
Peak force, 224
Peak force tapping, 223
Perturbation theory

time-dependent, 363
Phase, 16, 245
Phase and dissipation, 219
Phase contrast, 203
Phase detector, 245
Phase imaging, 216, 220
Phase signal, 197
Phase-locked loop (PLL), 244
Phase-sensitive detection, 103
Photodiode, 8, 161
Piezo constant, 35
Piezo element

shear, 37
Piezoelectric actuator, 34

extension, 34
piezo constant, 35

Piezoelectric coefficient, 35
Piezoelectric effect, 31

longitudinal, 32
transverse, 33

Piezoelectric material, 37, 38
butterfly curve, 47
creep, 49
hysteresis, 46

Piezoelectric plate actuator, 35
Piezoelectric stack actuator, 36
Power spectral density, 81
Probability current, 285
Probability flux, 285

Proportional controller, 89
Proportional-integral controller, 90
Pulling mode, 350
Pulsed force mode, 223
Pushing mode, 350
PZT, 32

Q
Quality factor, 20, 26, 39

effective, 199
Quantum corral, 354
Quartz sensor, 269

amplitude calibration, 273
sensitivity, 273

R
Recovery of the density of states, 319
Recovery of tip-sample force, 238
Resonance, 19
Resonance curve

anharmonic oscillator, 213
Resonance frequencies

tube piezo element, 43
Ring down, 225
Roughness, 114

S
Sader method, 170
Scanner bow, 110
Scanning electron microscope (SEM), 3
Scanning force microscope (SFM), see

Atomic force microscopy
Scanning probe microscopy, 2

history, 10
Scanning slope, 108
Scanning tunneling microscopy (STM), 4,

279
manipulation, 349
tip preparation, 50
vibrational spectroscopy, 335

Scanning tunneling spectroscopy (STS), 309
asymmetry of spectra, 322
barrier height, 327
energy resolution, 324
spectroscopic imaging, 330

Schrödinger equation, 364
Self-excitation, 238

amplitude control, 243
dissipation, 243
tracking, 240

Sensitivity
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cantilever, 167
quartz sensor, 273

Separation surface, 363
Setpoint, 88
Shear piezo element, 37
Shear piezoelectric effect, 33
Shockley states, 140
Shot noise, 164
Si(7 × 7) surface, 330
Signal-to-noise ratio, 265
Single molecule reaction, 356
Slew rate, 70, 99
Snap-out-of-contact, 183
Snap-to-contact, 149, 183
Spectral density, 81
Spectroscopic imaging, 330
Spectroscopy

inelastic, 335
surface states, 341

Spring constant, 8
effective, 189
sader method, 170
thermal method, 170

Spring suspension, 56, 62
Stack actuator, 36
Static AFM, 177, 251

thermal noise, 258
Stiffness, 226
STM

current amplifier, 86
STM-IETS, 335
STS, see Scanning tunneling spectroscopy
Subband, 343
Superconductor

density of states, 326
Surface Brillouin zone, 139
Surface charges, 126, 127
Surface states, 135, 139, 341

complex band structure, 138
quasi-free electron model, 135
scattering, 345
spectroscopy, 341
standing waves, 345
tight binding model, 140

SXM, 10

T
Tamm states, 140
Tapping mode, 205, 251

amplitude-distance curve, 207
amplitude phase dependence, 210
peak force, 223

Tersoff-Hamann approximation, 291, 300
Thermal drift, 50
Thermal method, 170
Thermal noise, 170

FM detection, 260
Thermal noise density, 255
Time-dependent perturbation theory, 289,

363
Tip exchange, 75
Tip preparation, 50
Tip shape, 115
Tip-sample force, 145

recovery, 238
Tracking mode, 248
Transfer function, 54, 77, 78, 93
Transients, 23
Transimpedance amplifier, 86
Transition rate, 290
Transmission coefficient, 7
Transmission electron microscopy (TEM), 3
Transmission factor, 282, 287, 295, 313, 319
Trapezoidal barrier, 296
Tube piezo element, 36, 39

lateral displacement, 41
resonance frequencies, 43
vertical displacement, 40

Tube scanner, 39
Tuning fork sensor, 265, 269
Tunneling barrier, 6
Tunneling current, 293

bardeen equation, 293
low-temperature limit, 290

Two-channel lock-in amplifier, 104

U
Ullmann reaction, 356

V
Vacuum level, 6
van der Waals force, 145
Vibration isolation, 52
Vibrational spectroscopy, 335
Virtual ground, 85
Voltage dependent imaging, 304
Voltage divider, 77
Voltage follower, 83
Voltage source, 80
Voltage-controlled oscillator (VCO), 245

W
Wave function, 5
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Wave function matching, 136
WKB approximation, 286
Work function, 6, 123, 124

average, 296
Kelvin method, 129

surface effect, 124

Y
Young’s modulus, 226
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