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Abstract. This paper presents results of the utilization of selected discrete chao-
tic map, which is Dissipative standard map, as pseudo-random number genera-
tor for the differential evolution (DE) optimization algorithm and Particle 
Swarm Optimization (PSO) algorithm in the task of PID controller design for 
the selected 4th order dynamical system. The results are compared with pre-
viously published results; both chaos driven heuristics with each other and fi-
nally the obtained results are compared with canonical PSO and DE versions, 
which do not utilize the chaos in the place of pseudo-random number generator. 
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1 Introduction 

These days the methods based on soft computing such as neural networks, evolutio-
nary algorithms, fuzzy logic, and genetic programming are known as powerful tool 
for almost any difficult and complex optimization problem. 

In the past decades, PID controllers became a fundamental part of many automatic 
systems. The successful design of PID controller was mostly based on deterministic 
methods involving complex mathematics [1, 2].  

Recently, different soft-computing methods were used with promising results for 
solving the complex task of PID controller design [3]. These techniques [5-8] use 
random operations and typically use various kinds of pseudo-random number genera-
tors (PRNGs) that depend on the platform the algorithm is implemented. More recent-
ly it was shown that chaotic systems could be used as PRNGs for various stochastic 
methods with great results. Some of these chaos driven stochastic methods were 
tested on the task of PID controller design in [4]. In [3] it was shown that Particle 
Swarm optimization (PSO) algorithm is able to deal with the task of PID controller 
design with very good results. Following that in [9 - 12] the performance of chaos 
driven PSO algorithm was tested on this task with great results.  
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In this paper, the influence of promising discrete dissipative chaotic system to the 
performance of chaos driven heuristic algorithms, which is DE and PSO, are investi-
gated and results are compared with previously published results of both canonical 
and chaos driven versions of evolutionary algorithm PSO [9 - 12] and with other 
techniques [3, 4] as well as with the canonical versions of DE (without chaotic 
pseudo-random number generator - CPRNG). 

2 Motivation 

Till now the chaos was observed in many of various systems (including evolutionary 
one) and in the last few years is also used to replace pseudo-number generators 
(PRGNs) in evolutionary algorithms (EAs). 

This research is a continuation and extension of the previous successful initial ap-
plication based experiments with chaos driven PSO and PID tuning task [9-12]. In 
this paper the DE/rand/1/bin strategy and PSO with inertial weight driven by Dissipa-
tive chaotic map (system) were utilized to solve the issue of evolutionary optimization 
of PID controller settings. Thus the idea was to utilize the hidden chaotic dynamics in 
pseudo random sequences given by chaotic Dissipative map system to help Differen-
tial evolution algorithm in searching for the best controller settings. 

Recent research in chaos driven heuristics has been fueled with the predisposition 
that unlike stochastic approaches, a chaotic approach is able to bypass local optima 
stagnation. This one clause is of deep importance to evolutionary algorithms. A chao-
tic approach generally uses the chaotic map in the place of a pseudo random number 
generator [13]. This causes the heuristic to map unique regions, since the chaotic map 
iterates to new regions. 

The primary aim of this work is to test, analyze and compare the implementation of 
different natural chaotic dynamics as the CPRNGs, thus to analyze and highlight the 
different influences to the system, which utilizes the selected CPRNG (including the 
evolutionary computational techniques). 

3 PSO Algorithm 

The PSO algorithm is inspired by the natural swarm behavior of animals (such as 
birds and fish). It was firstly introduced by Eberhart and Kennedy in 1995 [5]. Each 
particle in the population represents a possible solution of the optimization problem 
which is defined by the cost function (CF). In each iteration of the algorithm, a new 
location (combination of CF parameters) of the particle is calculated based on its pre-
vious location and velocity vector. 

Within this research the PSO algorithm with global topology (GPSO) [14] was uti-
lized.  The CPRNG is used in the main GPSO formula (1), which determines a new 
“velocity”, thus directly affects the position of each particle in the next iteration. 
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Where: 
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t+1
 - New velocity of the ith particle in iteration t+1. 
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w – Inertia weight value. 

vi
t - Current velocity of the ith particle in iteration t. 

c1, c2 - Priority factors. 

pBesti – Local (personal) best solution found by the ith particle.  

gBest - Best solution found in a population.  

xij
t - Current position of the ith particle (component j of the dim. D) in iteration t.  

Rand – Pseudorandom number, interval 0, 1. CPRNG is applied only here. 

The maximum velocity was limited to 0.2 times the range as it is usual. The new posi-
tion of each particle is then given by (2), where xi

t+1 is the new particle position: 

11 ++ += t
i

t
i

t
i vxx                                  (2) 

Finally the linear decreasing inertia weight [14, 15] strategy was used in this work. 
The inertia weight has two control parameters wstart and wend. The values used in this 
study were wstart = 0.9 and wend = 0.4. 

4 Differential Evolution 

DE is a population-based optimization method that works on real-number-coded indi-
viduals [8]. For each individual Gix ,


 in the current generation G, DE generates a new 

trial individual Gix ,′


 by adding the weighted difference between two randomly se-

lected individuals Grx ,1


 and Grx ,2


 to a randomly selected third individual Grx ,3


. The 

resulting individual Gix ,′


 is crossed-over with the original individual Gix ,


. The fitness 

of the resulting individual, referred to as a perturbed vector 1, +Giu


, is then compared 

with the fitness of Gix ,


. If the fitness of 1, +Giu


 is greater than the fitness of Gix ,


, then 

Gix ,


 is replaced with 1, +Giu


; otherwise, Gix ,


 remains in the population as 1, +Gix


. DE is 

quite robust, fast, and effective, with global optimization ability. It does not require 
the objective function to be differentiable, and it works well even with noisy and 
time-dependent objective functions. Description of used DERand1Bin strategy is 
presented in (3). See [8], [16] and [17] for the description of all other strategies. 
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5 The Concept of CPRNG 

The general idea of CPRNG is to replace the default PRNG with the chaotic system. 
As the chaotic system is a set of equations with a static start position, we created a 
random start position of the system, in order to have different start position for differ-
ent experiments. This random position is initialized with the default PRNG, as a one-
off randomizer. Once the start position of the chaotic system has been obtained, the 
system generates the next sequence using its current position. 
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The parameters are related to the standard form through: kp = K, ki = K/Ti and kd = 
KTd. Acquisition of the combination of these three parameters that gives the lowest 
value of the test criterions was the objective of this research. Selected controlled sys-
tem was the 4th order system that is given by Eq. 7. 
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6.2 Cost Function 

Test criterion measures properties of output transfer function and can indicate quality 
of regulation [1-4]. Following four different integral criterions were used for the test 
and comparison purposes: IAE (Integral Absolute Error), ITAE (Integral Time Abso-
lute Error), ISE (Integral Square Error) and MSE (Mean Square Error). These test 
criterions (given by Eq. 8 – 11) were minimized within the cost functions for the en-
hanced PSO algorithm. 

1. Integral of Time multiplied by Absolute Error (ITAE) 

( )=
T

ITAE dttetI
0

                                (8) 

2. Integral of Absolute Magnitude of the Error (IAE) 
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                                 (9) 

3. Integral of the Square of the Error (ISE) 
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4. Mean of the Square of the Error (MSE) 
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7 Results 

In this section, the results obtained within experiments with ChaosDE and Chaos PSO 
algorithms are compared with each other and with previously published works [3, 4, 9 
- 12]. Table 1 shows the typical used settings for the both ChaosDe and Canonical 
DE, whereas Table 2 contains the settings for both Chaos PSO and canonical PSO.  
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Table 1. DE settings  

DE Parameter Value

PopSize 20 

F 0.8 

CR 0.8 

Generations 50 

Max. CF Evaluations (CFE) 1000

Table 2. PSO settings  

DE Parameter Value 

PopSize 20 

vmax 0.2•Range

wstart  0.9 

wend 0.4 

Priority factors c1 and c2 2 

Iterations 50 

Max. CF Evaluations (CFE) 1000 

Table 3. Comparisons of results for other heuristics – 4th order system PID controller design 

Criterion 
ZN 

Step Response 
Canonical DE Chaos DE Chaos SOMA PSO Chaos PSO 

IAE 34.9413 12.3262 12.3260 12.3305 12.3738 12.3479 

ITAE 137.5650 15.1935 15.1919 15.3846 16.4079 15.5334 

ISE 17.8426 6.40515 6.40515 6.41026 6.40538 6.40516 

MSE 0.089213 0.032026 0.032026 0.032027 0.032030 0.032026 

Table 4. Statistical results of all 50 runs of Both Chaos heuristics versions 

DE Version Avg CF Median CF Max CF Min CF StdDev 

ITAE Criterion 

Chaos PSO Dissipative Map 12.4184 12.3959 12.6140 12.3479 0.072049 

Chaos DE Dissipative Map 12.3274 12.327 12.3314 12.3262 0.001216 

IAE Criterion 

Chaos PSO Dissipative Map 17.6267 17.4012 21.5345 15.5334 1.594303 

Chaos DE Dissipative Map 15.2251 15.2127 15.3212 15.1919 0.033799 

ISE Criterion 

Chaos PSO Dissipative Map 6.4059 6.4057 6.4083 6.40516 0.000841 

Chaos DE Dissipative Map 6.40516 6.40516 6.40517 6.40515 0.000025 

MSE Criterion 

Chaos PSO Dissipative Map 0.03203 0.03202 0.03206 0.03202 8•10-6 

Chaos DE Dissipative Map 0.03202 0.03202 0.03202 0.03202 9•10-9 
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