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Abstract. In this paper we propose a new method for choosing the
number of clusters and the most appropriate eigenvectors, that allow to
obtain the optimal clustering. To accomplish the task we suggest to ex-
amine carefully properties of adjacency matrix eigenvectors: their weak
localization as well as the sign of their values. The algorithm has only one
parameter — the number of mutual neighbors. We compare our method
to several clustering solutions using different types of datasets. The ex-
periments demonstrate that our method outperforms in most cases many
other clustering algorithms.
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1 Introduction

Clustering is one of the most important research topics in both machine learn-
ing and data mining communities. It means an unsupervised classification of
observed data into different subsets (clusters) such that the objects in each sub-
set are similar while objects in different subsets are dissimilar one to another.
Clustering has been applied in many research areas, like image segmentation [11],
machine learning, and bioinformatics [13], to name a few.

A fundamental, and largely unsolved, problem in cluster analysis is the de-
termination of the number of groups in a dataset. Numerous approaches to this
problem have been suggested over the years (consult [2] for further details). The
most common procedure is to use the number of clusters as a parameter of the
clustering method and to select it from a maximum reliability criteria. The sec-
ond approach uses statistical procedures (for example the sampling with respect
to a reference distribution). Unfortunately, many of the methods require strong
parametric assumptions, or to be computation-intensive, or both. Usually they
include clustering algorithms as a preprocessing step.

Spectral clustering techniques [8], [16] belong to the most popular and efficient
clustering methods. They use eigenvalues and eigenvectors of a suitably chosen
matrix to partition the data. The matrix is an adjacency matrix (or a matrix
derived from it) built on the basis of pairwise similarity of objects to be grouped.
If it is clearly block diagonal, its eigenvalues and eigenvectors will relate back to
the structural properties of the set [11]. In such a case the number of clusters is
usually given by the value k, that maximizes the eigengap (difference between
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successive eigenvalues). Then the k principal eigenvectors are used for clustering
the original data. However, an adjacency matrix generated from real-world data
is virtually never block-diagonal, regardless of a similarity measure. In such
situations an open issue of key importance in spectral clustering is choosing not
only the proper number of groups but also the right eigenvectors, that reveal the
structure of the data.

The SpecLoc2 algorithm, proposed in this paper, provides a solution for both
the problems. We have developed an alternative approach to choosing the num-
ber of clusters and the most appropriate eigenvectors, which allow to obtain the
optimal grouping. Our method is based only on spectral analysis of the adjacency
matrix of the data points to be clustered. We have exploited carefully properties
of adjacency matrix eigenvectors. The proposed algorithm constitutes an exten-
sion of the SpecLoc algorithm, our previous work [9]. The SpecLoc algorithm
utilizes absolute values of weakly localized eigenvectors, which correspond to
different clusters and reveal the structure of the data. Weak localization is char-
acterized by slow decay of the component values away from its main existence
subregion [3].

In the presented algorithm we use not only weak localization of eigenvectors,
but also we take into consideration the sign of their values. The new method
is more general than the original SpecLoc, and can be applied to much wider
range of clustering problems, than the previous one. There is no need to search
for parameters resulting in weak localization of eigenvectors. Practically all the
spectra (within the area of spectral methods usefulness) allow to employ the new
way of establishment of the cluster number.

We present an automated technique, which does not use any additional clus-
tering processing, and verify our approach using well known real-world datasets.
The performance of the SpecLoc2 algorithm is competitive to other solutions
that require the number of clusters to be given as a parameter.

In section 2 the notation and related terms are presented. The next section
describes some important properties of graph eigenvectors. Then, in section 4,
we have presented the policy of selecting eigenvectors that reveal the structure
of dataset. The main concepts used in the SpecLoc2 algorithm are explained
in section 5. Section 6 includes the description of experiments and results ob-
tained with the use of the SpecLoc2 algorithm. Finally, in section 7, the main
conclusions are drawn.

2 Notation and Definitions

The set of data points to be clustered will be denoted by X = (x1,x2, ...,xn).
For each pair of points i, j a similarity sij ∈ [0, 1] is attached. The value sij > 0
implies the existence of the undirected edge i ∼ j in the graph G spanned over
the set of vertices X. The matrix S = [sij ] plays a role of the adjacency matrix
for G.
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Let di =
∑

sij denote the degree of node i and let D be the diagonal matrix
with di’s on its diagonal. In an undirected graph, the degree of a node is given
by the number of its adjacent edges. It can also be defined as the sum of the
weights of its adjacent edges.

The Laplacian matrix associated with graph G is the n×n matrix L = D−S.
The normalized Laplacian, is defined as: Lsym = D−1/2LD−1/2. Its complement,
I−Lsym, is used in the NJW algorithm [12], which serves as a comparison with
our solution in section 6.

The right eigenvector associated to the second smallest eigenvalue of the
Laplacian matrix is called the Fiedler vector [2]. It carries significant struc-
tural information regarding the connectivity of the graph and forms the basis of
spectral graph partitioning heuristics, see, e.g. [16] for a review. As the Fiedler
vector has both positive and negative values, the signs of the values are used
to partition the graph into two components: one associated with positive and
the other with non-positive values. The original theorem proposed by Fiedler is
presented in the next section.

3 Properties of Graph Eigenvectors

Fiedler has proved in [2] that if G is a connected graph and y is the eigenvector
corresponding to the second eigenvalue of the Laplacian matrix L then one of
the following two cases occurs:

– There is a single block B0 in G which contains vertices with both positive and
negative values of y. Each other block has either vertices with only positive,
or only negative, or only zero y values.

– No block of G contains vertices with both positive and negative y values.
Each block contains either vertices with only positive, or only negative, or
only zero y values.

The eigenvector corresponding to the first (smallest) eigenvalue has only non-
positive or only nonnegative values. This is the result of the fact that the sum of
each row of the Laplacian equals zero. Thus, multiplying L by a constant vector
x, we state that Lx = 0 = 0 · x.

If we consider e.g. three infinitely far apart clusters, the adjacency matrix is
block diagonal and consists of three blocks. Its eigenvalues and eigenvectors are
the union of the eigenvalues and eigenvectors of its blocks (the latter padded
appropriately with zeros) [12].

In [3] Filoche et al. study the behavior of eigenfunctions for a complex domain
Ω with a bottleneck separating it into two subregions. In any partially separated
subregion, an eigenfunction of Ω has only two possible choices: (1) either its
amplitude is very small throughout this subregion, or (2) this eigenfunction
mimics one of the subregion own eigenfunctions. The subregions are disjoint for
a few dominant eigenfunctions. However, for the next eigenfunctions, initially
disjoint subdomains begin to merge to form larger subregions. After reaching
the critical point, completely new fully delocalized modes can appear.
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Combining Fiedler’s theorem with Filoche’s observations one can generalize
this theory to eigenvectors of graphs consisting of partially separated subgraphs.
In the sequel by the graph eigenvectors we will understand eigenvectors of the
graph adjacency matrix. In Figure 1 on the left, four principal eigenvectors of
the adjacency matrix of a graph corresponding to two close and well separated
sets of points are depicted. On the right we can see the two principal eigenvectors
for the second subset only. Entries of the first and the second eigenvector (the
left picture) are large only on one subset. They include the first eigenvectors of
the two subsets, whereas the third eigenvector includes the second eigenvector
of the second subset. The fourth eigenvector, with large entries for both subsets,
emerges as a new mode consisting of eigenvectors of both subgraphs. The first
three eigenvectors are weakly localized on one of the subset, contrary to the
fourth one.

In a real situation, where the subgraphs are weakly separated, the picture is
distorted and eigenvectors of the subgraphs mix with one another in the spectrum
of the whole graph. For the clustering purposes the most appropriate are these
eigenvectors that include the first or the second principal eigenvectors of its
subgraphs. They mimic local eigenvectors of subgraphs of the whole graph and
have one of the following form:

– eigenvectors with both large positive and negative values, and possibly near-
zero entries, including the second eigenvectors of the subgraphs (Figure 1
left, the third eigenvector)

– eigenvectors with large entries for the relevant subgraph and near-zero values
for the rest of vertices, including the first eigenvectors of the subgraphs
(Figure 1 left, the first eigenvector) .
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Fig. 1. The four principal eigenvectors of the adjacency matrix of the set consisting of
two well separated groups (left) and two principal eigenvectors of the second subset of
the set (right)



Spectral Clustering 47

4 Preliminaries

Spectral clustering algorithms can be classified according to two approaches: re-
cursive two-way spectral clustering algorithms (e.g. [6]) and direct K-way spec-
tral clustering algorithms (e.g. [12]). The former finds the Fiedler eigenvector of
the Laplacian matrix of a graph G and recursively partitions G until a K-way
partition is found. The latter uses the first K eigenvectors and directly finds
a partition using some heuristics. The K-way algorithms utilize K principal
eigenvectors, however they do not take into consideration the special structure
properties of the eigenvectors, using usually K-means algorithm for the final
partitioning.

In the SpecLoc2 algorithm we have applied the approach that utilizes ideas
used in both of the described above solutions. It is also an extension of our
previous work, presented in [9]. Similarly to the SpecLoc algorithm we perform
clustering on the basis of a few localized eigenvectors, but also increase the
flexibility of the former solution by exploiting properties of other eigenvectors.
We take into consideration not only absolute values of eigenvectors, but also the
sign of an eigenvector entry.

In order to explain in an intuitive manner our policy we will analyze adjacency
matrix eigenvectors of the well known dataset Iris [15]. It consists of three groups,
the first one can be separated very easily whereas the second and third ones are
very close to one another.

The adjacency matrix is constructed on the basis of the k-nearest neighbor
graph. The way of constructing the k-nearest neighbor graph is described in
section 5.

We compare eigenvectors of two different graphs obtained on the basis of two
different numbers of the nearest neighbors for the Iris dataset. Figure 2 shows
the first three principal eigenvectors of the Iris adjacency matrix in two cases.
The figure on the left illustrates the situation, when a small k (k = 5) results in a
very sparse adjacency matrix and its principal eigenvectors are weakly localized.
Each of them mimics the first eigenvector of the appropriate subregion.

As the number of the nearest neighbors increases and the matrix becomes less
sparse, weak localization of eigenvectors disappears. Figure 2 (right) shows the
case when k = 30 and the adjacency matrix eigenvectors have completely dif-
ferent shapes. The second eigenvector remains still localized in the first cluster,
which is well separated from the others. The first eigenvector is localized in the
second and third cluster, whereas the sign of the third eigenvector allows to dis-
tinguish between the overlapping clusters. We can see that the third eigenvector
structure falls in with the second case of the Fiedler’s theorem. It mimics the
structure of the second eigenvector of the subregion consisting of the overlapping
clusters.

In order to partition sets with different structures we have to take into consid-
eration not only weakly localized eigenvectors but also the ones that have both
positive and negative values. Identifying both types of eigenvectors enables us
also to establish the number of clusters. As some groups are indicated by weakly
localized eigenvectors and the others by eigenvectors with both positive and
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Fig. 2. The three principal eigenvectors of the adjacency matrix of the Iris dataset for
k=5 (left) and k=30 (right)

negative values, the number of clusters equals the number of localized eigenvec-
tors of one sign plus the clusters corresponding to the eigenvectors that have
positive and negative values and include an eigenvector described in the second
part of the Fiedler’s theorem.

In real datasets, the challenging task is to identify weakly localized eigen-
vectors, each representing different cluster and to distinguish between vectors
changing sign between two groups and within one group.

5 The SpecLoc2 Algorithm

The main steps of the SpecLoc2 algorithm are similar to these of the SpecLoc

algorithm and they look in the following way:

The SpecLoc2 algorithm

Input: Data X, the number of nearest neighbors k

1. Form the adjacency matrix S.

2. Find c principal eigenvectors of S.

3. Calculate the eigenvector correlation matrix

4. Find uncorrelated weakly localized eigenvectors on the basis

of the correlation matrix (eigenvector set WL).

5. Identify eigenvectors having positive values for one cluster

and negative for others or vice versa (set PN).

6. Assign points to eigenvectors from the WL set

and eigenvectors from the PN set.

The algorithm builds a graph, with points as vertices and similarities between
points as edges. The weights of edges are calculated according to the Euclidean
distance, using:

sij = exp
(
− dij

dmax

)
(1)
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where dij is the Euclidean distance between objects i and j, and dmax is the
maximum distance between any pair of objects from the dataset. On the basis
of the metric we construct the k-nearest neighbor graph, connecting xi to xj if xi

is among the k-nearest neighbors of xj . The algorithm uses the adjacency matrix
because it is the simplest, nonnegative, and symmetric one. Its eigenvectors differ
from L eigenvectors but they still obey assumptions of the Fiedler’s theory. The
vectors that take part in the partitioning are established on the basis of the
pairwise correlation coefficients between each pair of c eigenvectors (c equals 20
in the algorithm, as we have assumed that the examined sets consist of maximum
20 clusters). The Pearson correlation coefficient between two eigenvectors vi and
vj is defined as:

Rij =

∑N
k=1(vik − vi)(vjk − vj)

√∑N
k=1(vik − vi)2

√∑N
k=1(vjk − vj)2

(2)

The coefficients Rij range from -1 to 1. If two eigenvectors are linearly depen-
dent, then the correlation between them will equal 1. The value of -1 indicates
a perfect negative linear relationship between the vectors, and zero no linear
relationship between the vectors. The correlation coefficient has been chosen as
an efficient indicator whether two vectors have independent entries. If they are
weakly localized in two different subregions their entries should differ from one
another, so that they are linearly independent.

For the purpose of the algorithm we use absolute values of the eigenvector
components in order to compute correlation coefficients. We have assumed that
two eigenvectors are not localized in the same cluster if their correlation is smaller
than 0.1 (the value has been established experimentally). Completely delocalized
eigenvectors (with large, only nonpositive or only nonnegative values over the
whole set) do not take part in calculation of the correlation coefficients, as they
are not useful for partitioning purposes. We assume, that if the eigenvector
median is higher than its standard deviation, the eigenvector is delocalized. The
median is efficient location and dispersion measure for distributions revealed by
delocalized eigenvectors.

Weakly localized eigenvectors, which are not correlated with any eigenvector
related to higher eigenvalue, are written to the set WL and used for the final
labeling of the data. Each eigenvector represents one cluster and each point is
labeled according to the eigenvector with the highest entry for the point. Points
assigned to the same eigenvector are further divided into two groups if the weakly
localized eigenvector has both positive and negative values.

The next step of the SpecLoc2 algorithm is the identification of eigenvectors
with relatively large both positive and negative values, which do not belong to
the set WL. We have to distinguish between an eigenvector, that enables to
separate two different clusters, and a vector that changes its sign within one
group of vertices. According to the Fiedler’s theorem the eigenvectors, we are
interested in, occur after delocalized eigenvectors or eig envectors with only
positive or only negative values in their region of localization. Because of the
spectra perturbation the vector allowing to distinguish between two clusters
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sometimes will not appear as the second eigenvector in the complete spectrum,
as it is the case for the Iris dataset, illustrated in Figure 2 right. Moreover, a few
such vectors can exist. In order to find the right eigenvectors we check the vectors
that appear after the localized ones or after a completely delocalized eigenvector
(if it exists). We take into consideration only those that have the maximum
values in that points, for which the already chosen eigenvectors are small (less
than 0.1). Usually only one or two such eigenvectors are worth examination.

Next the assignment of points to the right partition is performed according to
the procedure described below. For the purpose of partitioning two eigenvectors
v and w are used. The first one is the vector with both positive and negative
values from the set PN , whereas the second one serves for comparison. It is the
closest to v vector in the set WL, related to a higher eigenvalue than v.

Partitioning on the basis of the Fiedler vectors

Input: A pair of vectors: the vector v and w

1. Find the sign of the maximum value vm of v absolute values

2. Set null values in v for all the points having opposite

sign than the vm

3. Label each point x, having larger absolute value in v than in w

As each of the chosen weakly localized eigenvectors represents one cluster
(or two if it changes its sign) and the vectors with positive and negative values
divide unambiguously the set, we do not have to indicate the number of clusters
manually or with the help of any other quality measure.

Computational complexity of the proposed algorithm is relatively small. First
of all the adjacency matrix is sparse as we use the concept of k-nearest neighbors.
Second the number of needed eigenvectors is relatively small, if we consider
clusters of reasonable size only, i.e. if we require that the minimal cluster size
exceeds 1 percent of the size of the whole data set. Moreover, in case of the
adjacency matrix we seek for the principal eigenvectors, which are easier to find
than eigenvectors corresponding to the smallest eigenvalues. In such the situation
solving the eigenproblem even for a large dataset is not very time consuming.
The other steps of the algorithm take time O(n) each. So the solution is scalable.

6 Experiments

In this section we justify our approach by presenting a set of clustering experi-
ments and comparing its performance to different solutions. The algorithms are
evaluated on a several benchmark datasets, including both synthetic and real-
world examples. They cover a wide range of difficulties that can be met during
data segmentation. The algorithm was implemented in MATLAB.

In the first part of our experiments we would like to emphasize differences in
the performance of the SpecLoc2 and the NJW [12] algorithms and show the
dominance of our approach over the traditional solution. The NJW algorithm
uses the similarity measure based on the Gaussian kernel function, defined as:

Wij = exp
(
− ‖xi − xj‖2

2σ2

)
(3)
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where ‖xi− xj‖ denotes the Euclidean distance between points xi and xj and σ
kernel parameter. In order to compare the best achievements of the algorithms
the values of the σ parameter were chosen manually, as described by Fischer et
al. in [5]. For each dataset they have systematically scanned a wide range of σ
and ran the clustering algorithm. We use their results in this comparison.

In this part of experiments we would like not only to compare the two ap-
proaches, but also show that the K-means algorithm, employed for the final
partitioning in the NJW algorithm in many cases does not take into considera-
tion some important information included in the eigenvector structure, contrary
to our solution. We have modified the NJW algorithm by using the adjacency
matrix built on the basis of the mutual k-nearest neighbor graph for the normal-
ized Laplacian construction. Thanks to this both solutions use the same graph.

The algorithms are evaluated on the following benchmark datasets: 2RG (two
rather high density rings and a Gaussian cluster with very low density), 4G (four
Gaussian clusters each of different density in 3D), Iris, and Jain’s toy problem [7].
Table 1 summarizes the partitioning results obtained by the SpecLoc2, NJW,
and modified NJW algorithms.

Table 1. Comparison of classification errors for partitioning with the SpecLoc2, NJW,
and modified NJW algorithms

Dataset NJW Modified NJW SpecLoc2

2RG 6 6 3

4G 18 13 8

Iris 14 8 7

Jain 19 33 2

As can be seen the SpecLoc2 algorithm is the most flexible one and performs
well independently on a dataset structure. Although both the SpecLoc2 and
the NWJ algorithms use the same concept of eigenvector properties the second
one often fails on real-world data or clusters with different densities. We will
explain the reasons why such results are observed, with the help of the 4G
set. The NJW algorithm uses the four principal eigenvectors in order to obtain
correct partitions. The fourth eigenvector, representing the sparsest cluster, is
quite distorted and causes wrong partitioning of some points. For the SpecLoc2

algorithm only the three principal vectors suffice for the correct partitioning (two
uncorrelated localized eigenvectors and the vector with positive and negative
values). In the other cases (e.g. the Wine dataset) the better performance of the
SpecLoc2 algorithm lies in small differences between two eigenvectors entries,
which do not influence K-means partitioning but are taken into account by the
presented method.
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We have also compared the performance of the SpecLoc2 algorithm to other
methods, similarly as in [14]:

– NJW algorithm.
– Self-tune spectral clustering (SSC) algorithm [18], which computes auto-

matically the scale and the number of groups and can handle multi-scale
data.

– The KASP algorithm [17], fast approximate spectral clustering in which a
distortion-minimizing local transformation is first applied to the data, based
on local K-means clustering.

– The KWASP algorithm [19] that extends the Nyström method and improves
the approximation of the eigensystem by introducing the probability density
function as a natural weighting scheme.

– The Kernel-K-means-Ratio Assoc (KKRA) algorithm [1], that directly opti-
mizes various weighted graph clustering objectives, such as the popular ratio
cut, normalized cut, and ratio association.

– Fast Affinity Propagation clustering approach (FAP) [14] that simultane-
ously considers both local and global structure information contained in
datasets.

In case of the NJW, SSC, and KKRA algorithms the adjacency matrix is com-
puted as in [14].

We performed experiments on five UCI datasets, includingWine, Balance, Seg-
ments, Pendigits, and Optdigits [15]. The basic information of those real-world
datasets are summarized in Table 2. Digits389 is a subset of the three classes 3, 8, 9
of the UCI handwritten digit recognition dataset from the UCI Machine Learning
Repository– these three classes were chosen since distinguishing between sample
handwritten digits from these classes visually is a difficult task.

Table 2. A summary of datasets

Dataset Size Dimensions Classes

Wine 178 13 3

Balance 625 4 3

Segment 2310 18 7

Optdigits 1151 64 3

Pendigit-test 3498 16 10

Pendigit-train 7494 16 10

All the datasets are labeled, which enables evaluation of the clustering results
against the labels using normalized mutual information (NMI) as a measure of
division quality. We refer an interested reader to [10] for details regarding the
measure.

The performance of the algorithms shows Table 3. We can see the superiority
of the SpecLoc2 algorithm over the other tested solutions. The presented method
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is competitive to the other cases in terms of the quality of partitioning, measured
with the help of the normalized mutual information.

Clustering results of our solution are stable, their do not depend on starting,
randomly chosen settings, as those using K-means clustering. Moreover they
are not very sensitive to the number of neighbors (the only parameter in our
algorithm). In case of the Wine, Digits389, and Pendigit sets the NMI changes
only by a few percent within a range of 10 subsequent number of neighbors. As
the quality of partitioning for the Balance and Segment sets is not very high,
the NMI remains stable for even much wider range of k values.

Table 3. Comparison of NMI for partitioning with different algorithms

Dataset NJW SSC KKRA KASP KWASP FAP SpecLoc2

Wine 0.41587 0.43157 0.38027 0.40507 0.43447 0.44577 0.8518

Balance 0.14647 0.26267 0.21617 0.13057 0.18947 0.20467 0.5278

Segment 0.49407 0.56807 0.57117 0.56587 0.53117 0.64087 0.6560

Digits389 0.52647 0.60957 0.79357 0.76017 0.75417 0.90237 0.9213

Pendigit-test 0.68617 0.67997 0.69867 0.68967 0.68077 0.73627 0.8239

Pendigit-train 0 0 0.70357 0.70517 0.68167 0.75497 0.8025

Our approach shows the ability of discovering clusters that are difficult to
distinguish. The SpecLoc2 algorithm has found the right number of clusters in
case of the Wine, Optdigits, and Pendigit-train datasets, for Balance it has failed
to detect one group and Pendigit-test has been divided into 11 clusters instead
of 10. Only in case of the Segment dataset it was not able to find 3 groups.

We have compared the performance of the SpecLoc2 algorithm with our pre-
vious method the SpecLoc algorithm, which is also able to determine the number
of clusters. In some cases, as for example for the Iris set, the results are the same
for both solutions. However, in many cases the presented algorithm outperforms
the older one either in terms of NMI or on account of the determined number
of clusters. There are the cases, where the vectors with positive and negative
values have great influence on partitioning. Moreover, the SpecLoc2 algorithm
is less demanding, when it comes to tuning the parameter of nearest neighbors.
It performs well in both localized and delocalized cases.

7 Conclusions

In this work, we have proposed a new approach for spectral clustering. Its goal
is to make maximal use of information derived from the eigenvector structure
in order to improve the quality of spectral partitioning and limit the number
of parameters. We have analyzed the properties of eigenvectors and proposed
methods for selecting the ones, that reveal the dataset structure in the best way.

Our algorithm is not only efficient, but also flexible to work with different cases
that may occur in real-world datasets. We have used several UCI benchmark



54 M. Lucińska and S.T. Wierzchoń

datasets to validate the advantage of our approach, by comparing to the classic
and new clustering algorithms. Empirical results show that our method can find
the true cluster assignment by using only one parameter, and it outperforms the
other methods, even specifying more parameters.
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