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Abstract. Entropy-based anomaly detection has recently been extensively stud-
ied in order to overcome weaknesses of traditional volume and rule based ap-
proaches to network flows analysis. From many entropy measures only Shannon,
Titchener and parameterized Renyi and Tsallis entropies have been applied to
network anomaly detection. In the paper, our method based on parameterized
entropy and supervised learning is presented. With this method we are able to
detect a broad spectrum of anomalies with low false positive rate. In addition, we
provide information revealing the anomaly type. The experimental results suggest
that our method performs better than Shannon-based and volume-based approach.
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1 Introduction

The number of anomalies in IP networks caused by wormlike activities is growing [2].
Widely used security solutions based on signatures or rules like firewalls, antiviruses
and intrusion detection systems do not provide sufficient protection because they do not
cope with evasion techniques and not known yet (0-day) attacks [12], [13]. Therefore,
network anomaly detection as one of possible solutions is becoming an essential area
of research. Anomaly detection is an identification of observations which do not con-
form to an expected behavior. In a supervised anomaly detection a labeled data set that
involves training a classifier is required.

There are many problems with anomaly detectors which have to be addressed. The
main challenge is setting up a precise boundary between normal and anomalous behav-
ior to avoid high false positive error rate or low detection rate. Another problems are
long computation time, anomaly details extraction and root-cause identification [7]. In
our previous work [4], some generalizations of entropy were described in details and
preliminary results of using parameterized entropies were presented. In this paper, we
make two major contributions. Firstly, we present our method and results in compari-
son with Shannon-based and volume-based approach. Secondly, we describe data set as
well as the method we used to generate anomalies.
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2 Related Work

Entropy-based network anomaly detection has been a hot research topic recently. This
approach relies on traffic feature distributions [16]. In the past, anomalies were treated
as deviations in the traffic volume [11]. The problem is that not all anomalous net-
work activities result in substantial traffic volume change. Moreover, Brauckhoff [6]
proved that entropy-based approach with traffic feature distributions performs better
then volume-based where sampling of flows is used. Several traffic feature distributions,
i.e. header-based (addresses, ports, flags), volume-based (host or service specific per-
centage of flows, packets and bytes) and behavior-based (in/out connections for particu-
lar host) have been suggested in the past [17], [21]. However, it is unclear which feature
distributions perform best. Nychis in [17], based on his results of pairwise correlation
reported dependencies between addresses and ports and recommended the use of vol-
ume and behavior-based feature distributions. In opposite, Tellenbach in [21] reported
no correlation among header-based features. Parameterized entropy-based approach for
network anomaly detection is promising, what is confirmed by Tellenbach [21], who
employed Tsallis entropy in his Traffic Entropy Telescope prototype capable to detect
a broad spectrum of anomalies, Yang [23], who applied Renyi entropy to early detection
of low-rate DDoS attacks detection, and Kopylova [15], who reported positive results
of using Renyi conditional entropy in detection of selected fast spreading or aggres-
sive worms. There are some limitations of entropy based detection especially when it
comes to detecting small or slow attacks. This is especially true for Shannon entropy
which has a limited descriptive capability [21]. Apart from entropy, some other feature
distributions summarization techniques are successfully used in the context of network
anomaly detection, namely sketches [10] and histograms [14]. As the main disadvan-
tage of this methods is the proper tuning, we decided not to include them in this work.

3 Entropy

In this section, we present some not commonly known theory regarding entropies used
in our experiments. Definition of entropy as a measure of disorder comes from thermo-
dynamic and was proposed in the early 1850s by Clausius. In 1948 Shannon adopted
entropy to information theory. In information theory, entropy is a measure of the un-
certainty associated with a random variable. The more random the variable, the bigger
the entropy and in contrast, the greater certainty of the variable, the smaller the entropy.
For a probability distribution p(X = x;) of a discrete random variable X, the Shannon
entropy is defined as:

n
1
Hy(X) = p(x;)log (1)
( ; ( Z) a p(l'z)
X is the feature that can take values {x1, ..., 2, } and p(x;) is the probability mass

function of outcome z;. Depending on the base of the logarithm, different units can be
used: bits (a = 2), nats (a = e) or hurtleys (¢ = 10). For the purpose of anomaly
detection, sampled probabilities estimated from a number of occurrences of x; in a
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time window t are typically used. The value of entropy depends on randomness (it
attains maximum when probability p(z;) for every x; is equal) but also on the value
of n. In order to measure randomness only, normalized forms have to be employed.
For example, an entropy value can be divided by n or by maximum entropy defined as
log,, (n). If not only the degree of uncertainty is important but also the extent of changes
between assumed and observed distributions, denoted as ¢ and p respectively, a relative
entropy, also known as the Kullback-Leibler divergence can be used:

i)

) )

Dxr(pllg) = Zp(i) log, ZE

To measure how much uncertainty is eliminated in X by observing Y the conditional
entropy may be employed:

m,n

He(X|Y)= Y plxi,y;)log, plaily;) 3)

i=1,j=1

The Shannon entropy assumes a tradeoff between contributions from the main mass
of the distribution and the tail. To control this tradeoff, two parameterized Shannon en-
tropy generalizations were proposed, by Renyi (1970s) and Tsallis (late 1980s) respec-
tively [18], [22]. If the parameter denoted as « has a positive value, it exposes the main
mass (the concentration of events that occur often), if the value is negative — it refers to
the tail (the dispersion caused by seldom events). Both parameterized entropies (Renyi
and Tsallis) derive from the Kolmogorov-Nagumo generalization of an average:

(X)p =0 (ZP(%W(%)) ) 4

where ¢ is a function which satisfies the postulate of additivity (only affine or exponen-
tial functions satisfy this) and ¢! is the inverse function. Renyi proposed the following
function ¢:

d(ai) = 207 5)
After transformations, Renyi entropy may be given in the following form:

1 n
Hua(X) = | © log,(3 " pla)") ©)
i=1

Tsallis extended the Renyi entropy with the following function ¢:

2(1—0)1'71 -1

After transformations, the Tsallis entropy will be given by:

Hro(X)=, ' (Zp(a:i)“ - 1) ®)

(N
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Both parameterized (Renyi and Tsallis) entropies:

— expose concentration for o > 1 and dispersion for o < 1,
— converge to the Shannon entropy for @ — 1,
— correspond to cardinality of X for oo = 0.

4 Flow Monitoring

There are two approaches to network traffic monitoring, namely, packet-based and flow-
based. In our work we focus on flow-based network monitoring since it is more scalable
in the context of network speed. This approach is based on the ability of network devices
to aggregate packets in flows. Each flow is cached by device and when it is finished
or a timeout is exceed it is exported to an element called collector. Modern approach
assumes the use of dedicated probes transparently connected as a passive appliance
via span ports or network taps rather than the usage of routers to export flows. This
approach (presented in Fig. 1) can overcome some performance limitations of routers.

NetFlow collector

Fig. 1. Modern approach to flow exporting

The concept of network flows was introduced by Cisco and is currently standard-
ized by the Internet Engineering Task Force (IETF). According to the IETF IPFIX
working group [1], "A flow is defined as a set of IP packets passing an observation
point in the network during a certain time interval. All packets belonging to a partic-
ular flow have a set of common properties”. In the simplest form, these properties are
source and destination addresses and ports. A flow is typically defined as a unidirec-
tional sequence of packets, which means that there are two flows for each connection
between two endpoints — one from the server to client and one from the client to server.
Recently, bidirectional flows (one record for each session between two endpoints) are
also supported by vendors.

5 Data Set

For the purpose of this work, we created the data set containing labeled flows. Firstly, we
captured two-day (Tuesday, Wednesday) legitimate traffic from a medium size
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Fig. 2. Legitimate traffic profile by number of flows

corporation network connected to the Internet. This was accomplished using open source
software — softflowd and nfsen. The profile of this traffic is depicted in Fig. 2.

‘We can see time ¢ on x axis (5 minute fixed time window) and the number of flows on
y (log scale) axis. Working day starts around 7 am. and finishes around 4 pm. The vol-
ume of traffic (expressed in number of flows) for both days is similar, but looking at the
number of packets (Fig. 3), this similarity is a bit lower.
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Fig. 3. Legitimate traffic profile by number of packets

In the next step, we generated brute force, port scan, network scan and ddos anoma-
lies in different variants. More details concerning anomaly generation process is pre-
sented in the next section. Main characteristics of generated anomalies are presented in
Table 1.

In the last step we mixed generated anomalies with the legitimate traffic from day2
(Wednesday) in the way presented in Fig. 4. We did not inject anomalies into the traffic
from day1 (Tuesday) as it is used to build the profile of legitimate traffic in our approach.

As one can see, each anomaly is injected every 15 minutes mainly during work-
ing time. After injection only a few anomalies are visible in the volume expressed by
number of flows or number of packets as depicted respectively in Fig. 5 and Fig. 6.
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Table 1. Characteristics of generated anomalies

Type/kind No. of flows Duration [sec] No. of victims No. of attackers
SSH brute force (bf)
1 1K 300 1 1
2 1K 100 1 1
3 2K 300 1 1
DDoS (dd)
1 2K 200 1 50
2 2K 200 1 250
3 3K 300 1 50
4 3K 300 1 250
5 4K 400 1 50
6 4K 400 1 250
Network scan (ns)
1 6K 60 6K 1
2 6K 300 6K 1
3 8K 80 8K 1
4 8K 400 8K 1
Port scan (ps)

1 1K 50 1 1
2 1K 100 1 1
3 2K 100 1 1
4 2K 200 1 1
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Fig. 4. Distribution of anomalies in time

6 Anomaly Generator

In order to produce flows that can mimic an anomalous behavior dedicated tool in
Python language was developed. With this tool we can generate flows according to the
predefined policy. The policy assigns a certain type of generation method to each field
of flow record. In result we obtain a set of flows which meets given statistical profile.
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Fig. 5. Legitimate and anomalous traffic by number of flows
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Fig. 6. Legitimate and anomalous traffic by number of packets

Internally, our tool operates on integer values which are manipulated by generation
methods (introduced in [5]). They are as follows: con (constant), ran (random) and per
(periodical). Con generator is straightforward and does not need further explanation,
others are described below. Ran generators are used to obtain random values. There are
two types of such generators: absolute (e.g. srcPort in Listing 1.1) or relative (e.g. dstIP
in Listing 1.1). The value produced with the relative generator is summed with previ-
ously generated one. This feature can be used to sweep across certain range of values.
Both generators can be initiated with either uniform or arbitrary distribution. Arbitrary
distribution consists of two list: values and probabilities of these values. Relative gen-
erator additionally needs a start value and a range. Per generators are used to match
a certain generating method with the sequence number of the currently generated flow.
They are initiated with a list of key-value pairs out of which the first one represents
the flow number and the second — the generator definition. On the last position, the
default generator is placed. For example, iar definition in Listing 1.1 means that ev-
ery 300th flow a uniform(10,50) generator will be applied and respectively every 800th
flow generator returns 5000. In other cases, default generator will be applied. The set
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Listing 1.1. Default generator group
[testgroup]
protocol = con[TCP]
srcIP = con[10.5.0.77]
dstIP = ran[10.1.0.1; (["0.0.0.1", "0.0.0.2", "—=0.0.0.1"],
[0.97,0.15,0.15]); (10.1.0.1, 10.1.0.253)]
srcPort = ran[uniform (300, 500)]
dstPort = con[22]
fromSrcPkts = con[1]
fromSrcOctets = con[60]
fromDstPkts = con[1]
fromDstOctets = con[60]
#duration
dur = con[1]
#inter arrival time
iar = per[300:ran[uniform (10, 50)]; 800:con[500];
ran[ ([10, 11, 12, 13], [0.20, 0.30, 0.40, 0.10]1)]1]
flags = con[SYNIACKIRST]

of generators shown on Listing 1.1 is called the generator group. A policy may consist
of multiple groups. In such a case probability of using a certain generator group must
be defined. Only one generator group (considered as default) in a policy has a generator
for each field of the flow. The additional groups may override all or selected definitions
of the default one. A concept of a generator group was introduced to ensure that fields
of the flow will be consistent with each other. For example, to disallow flows which are
too short when compared with the amount of bytes of the flow. There are phenomena on
the network that can only be modeled with sequences of flows. Our tool provides such
a functionality which is available through indexing of group names. In such indexed
groups, one can use mechanisms which allow sharing state between subsequent flows.
For example, in Listing 1.2, we enforced value of dst/P not to be changed through the
whole sequence.

Listing 1.2. Sequence modelling

[testgroup .1]

dstIP = args[usePrevValue ]
dur = con[100]
[testgroup .2]

dstIP = args[usePrevValue ]
dur = con[1000]

An example of a similar generator is Flame [5]. However, there are some significant
differences. Flame comes with very basic support for generating flows, forcing users to
implement all the generation logic by themselves, while our tool supports policy files.
On the other hand it has fairly sophisticated functionality of inserting generated flows
into the base traffic which our tool does not support at all. Another interesting concept
was introduced in [19]. Authors proposed to describe network traffic (not only flows)
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by a set of so-called a- and (§-profiles which can subsequently be used to generate
a data set. a-profiles consist of actions which should be executed to generate a given
event in the network (such as attack) while S-profiles are more similar to our policy
files where behavior of certain entities (packet sizes, number of packets per flow) are
represented by statistical model. On the whole this concept is similar to ours but far
more complex.

7 Network Anomaly Detector

In this section we present entropy-based network anomaly detection module which
is a component of the anomaly detection and security event data correlation system
currently developed it the Secor project [8]. The goal of this module is to detect net-
work anomalies with acceptable false positive error rate and high detection rate, classify
anomalies and report some details (timestamps, related addresses and ports) to the cor-
relation engine (output) which correlates events coming from different modules and
external sensors in order to improve detection and limit false positive rate. The archi-
tecture of our network anomaly detection module is presented in Fig. 7.
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Fig. 7. Entropy-based network anomaly detection module

IP traffic is captured by NetFlow [1] probes. We decided to use bidirectional flows
since, according to some works (e.g. [17]), unidirectional flows may entail biased re-
sults. In order to limit the area of search, filters per direction, protocol and subnet are
used. Collected flows are analyzed within constant-length time intervals (every 5 min.
by default). Next, depends on the version, Tsallis or Renyi entropy of positive and neg-
ative o values are calculated for traffic feature distributions presented in Table 2. Note:
the Shannon version of our method use internally Renyi entropy with « set to 1.

Initially, during the training phase, a dynamic profile is built using min and max
entropy values within a sliding time window for every (feature, o) pair. Thus, we can
reflect traffic changes during the day. In the detection phase, the observed entropy is
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Table 2. Selected traffic feature distributions

Feature Probability mass function

number of x; as src(dst)address(port)
total number of src(dst)addresses(ports)

src(dst)address(port)

number of flows with z; as duration

flows duration total number of flows

number of pkts(bytes) with z; as src(dst) addr(port)

paCketS’ bthS total number of pkts(bytes)

number of hosts with z; as in(out)—degree

ln(out)-degree total number of hosts

compared with the min and max values stored in the profile according to the following
rule:

H,(x;) — k * min,,

ro(z;) =

"~k * (max, —min,)’

ke (1.2) )

With this rule, anomaly threshold is defined. Values ro (z;) < 0 or 7o(z;) > 1in-
dicate abnormal concentration or dispersion respectively. This abnormal dispersion or
concentration for different feature distributions is characteristic for anomalies. For ex-
ample, during a port scan, a high dispersion in port numbers and high concentration in
addresses should be observed. Detection is based on the relative value of entropy with
respect to the distance between min and max. Coefficient k in the formula determines
a margin for min and max boundaries and may be used for tuning purposes. A high
value of k, e.g. k = 2, limits the number of false positives while a low value (k = 1)
increases detection rate. We also take into consideration other approaches to thresh-
olding based on standard deviation and quantiles. The detection is based on the results
from all feature distributions. Classification is based on classifiers (decision trees, Bayes
nets [20], rules and functions) employed in Weka software [3]. Extraction of anomaly
details is also assumed — related ports and addresses are obtained by looking into the
top contributors to the entropy value.

8 Results

Experiments were performed for Tsallis, Renyi and Shannon version of our method
as well as traditional volume-based approach with flow, packet and byte counters. Fi-
nal evaluation was performed with Weka tool. Some examplary results of entropies
for a selected singular feature distributions are presented below. Abnormally high dis-
persion in destination addresses distribution for network scan anomalies exposed by
negative value of o parameters is depicted in Fig. 8. One can see time ¢ on z axis (5
minute time windows), result r on y axis and « values on z axis. Anomalies are marked
with (A) on the time axis. Values of Shannon entropy are denoted as S.

Abnormal concentration of flows duration for network scans is depicted in Fig. 9.
This concentration is typical for anomalies with fixed data stream.
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Fig. 8. Abnormally high dispersion in destination addresses for network scan anomalies (Reny-
i/Shannon)

Fig.9. Abnormally high concentration in flows duration for network scan anomalies (Tsal-
lis/Shannon)

Fig. 10 shows ambiguous detection (no significant excess of 0 — 1 threshold) of port
scan anomaly with volume-based approach with flow, packet and byte counters. R on y
axis corresponds to normalization applied in our method [equation (9)].

We noticed that measurements for all feature distributions as a group work better than
single ones or subsets. The best results were obtained for addresses, ports and duration
feature distributions, although we believe that the proper set of feature distributions is
specific for particular anomalies.

Overall (whole data set, all feature distributions) multi-class classification was per-
formed with Weka tool. We defined 4 classes for each anomaly type + 1 class for legiti-
mate traffic. To properly asses predictive performance ten-fold cross-validation method
was used. An ideal classifier should not produce false positive and false negative statis-
tical errors. To evaluate non-ideal classifiers, one could measure proportion of correct
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Fig. 10. Ambiguous detection of port scan anomaly with a volume-based approach

assessments to all assessments (Accuracy), the share of benign activities reported as
anomalous (False Positive Rate) and the share of anomalies missed by the detector
(False Negative Rate). Usage of Precision (proportion of correctly reported anoma-
lies) and Recall (share of correctly reported anomalies compared to the total number
of anomalies) is another option. Based on these measures some tools like ROC (Re-
ceiver Operating Characteristics) and PR (Precision vs Recall) are typically used [9].
Averaged performance of classification for different classifiers is presented in Table 3.

ZeroR is a trivial classifier which classifies the whole traffic as normal. We included it
here as a reference to other results. We believe that an accuracy is not the correct choice
to measure the performance of classification if data set is unbalanced — more normal

Table 3. Averaged performance of classification

ZeroR| Bayes Netw.| Decision Tree J48| Rand. Forestl Simple Logistic Regress.

Accuracy
Tsallis 0.66 0.89 0.90 0.92 0.93
Renyi 0.66 0.89 0.89 0.90 0.93
Shannon 0.66 0.84 0.86 0.90 0.92
Volume-based 0.66 0.71 0.77 0.78 0.80

ROC area
Tsallis 0.44 0.97 0.94 0.99 0.98
Renyi 0.44 0.96 0.91 0.97 0.97
Shannon 0.44 0.95 0.88 0.97 0.98
Volume-based 0.44 0.80 0. 81 0.90 0.94

PR area

Tsallis 0.45 0.96 0.90 0.97 0.96
Renyi 0.45 0.94 0.85 0.93 0.94
Shannon 0.45 0.93 0.83 0.94 0.96

Volume-based 0.45 0.75 0.72 0.79 0.85
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than anomalous in our case. We suggest to look at ROC area and PR area instead. From
the whole spectrum of tested methods the best performance was obtained by applying
Logistic Regression, Bayesian Network, Decision Tree and Random Forest classifiers.

9 Conclusions and Future Work

Concluding the results of our studies, we can observe that, for our dataset: i) the Tsallis
entropy performed best; ii) the Renyi entropy was slightly weaker; iii) the Shannon en-
tropy was a bit worse than the Renyi (except from the Random Forest classifier); iv) the
volume-based method performed poorly; v) among a large set of network traffic feature
distributions, addresses, ports, and flows durations proved to be the best choices; vi)
the most successful classifiers were Linear Regression, Bayes Network, Decision Tree
and Random Forest. In general we believe that a broad spectrum of feature distributions
provides a better flexibility to detect different types of anomalies.

While we admit that our experiments were limited to few number of cases, we also
believe that these cases were representative. Our data set contains traces of network ma-
licious activities which are typical for worm propagation, communication and attacks
performed by group of machines infected by worms. Although, only one day legiti-
mate traffic profile was built in our experiments, we have observed that this profile suits
to each regular working day in the network we monitored. While more research work
is necessary to validate the efficiency of the parameterized entropies, the poor perfor-
mance of the Shannon entropy and volume-based methods allows to question whether
they are the right approach to anomaly detection. In our method the precise traffic pro-
file is the key, so future work will include optimization and experiments with more
fluctuative legitimate traffic. We are also planning to model new anomalies and inject
them into our data set to perform evaluation on a larger scale. We hope to retain good
performance. S
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