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Abstract. In recent years, two different approaches for learning register
automata have been developed: as part of the LearnLib tool algorithms
have been implemented that are based on the Nerode congruence for
register automata, whereas the Tomte tool implements algorithms that
use counterexample-guided abstraction refinement to automatically con-
struct appropriate mappers. In this paper, we compare the LearnLib and
Tomte approaches on a newly defined set of benchmarks and highlight
their differences and respective strengths.

1 Introduction

Model-driven engineering (MDE) is attracting a lot of attention since it ap-
pears to be a software development methodology that can control the increasing
complexity of computer-based systems. In the MDE approach, the main ob-
jects of the software system being developed are represented at a higher level of
abstraction using models. Model checking and automata learning are two core
techniques in MDE. In model checking [15] one explores the state space of a
given state transition model, whereas in automata learning [32,20] the goal is
to obtain such a model through interaction with a software component by pro-
viding inputs and observing outputs. Both techniques face a combinatorial blow
up of the state-space, commonly known as the state explosion problem. In or-
der to find new techniques to combat this problem, it makes sense to follow a
cyclic research methodology in which tools are applied to challenging applica-
tions, the experience gained during this work is used to generate new theory and
algorithms, which in turn are used to further improve the tools. Consistent ap-
plication of this methodology for 25 years has led to a situation in which model
checking is applied routinely to industrial problems [18]. Work on the use of
automata learning in MDE started much later [30] and has not yet reached the
same maturity level yet, but in recent years there has been tremendous progress.
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We have seen, for instance, several convincing applications of automata learn-
ing in the area of security and network protocols. Cho et al. [14] successfully used
automata learning to infer models of communication protocols used by botnets.
Automata learning was used for fingerprinting of EMV banking cards by Aarts et
al. [8]. It also revealed a security vulnerability in a smartcard reader for internet
banking that was previously discovered by manual analysis, and confirmed the
absence of this flaw in an updated version of this device [13]. Fiterau et al. [16]
used automata learning to demonstrate that both Linux and Windows violate
the TCP protocol standard. Using a similar approach, Tijssen [33] showed that
implementations of the Secure Shell (SSH) protocol violate the standard. In [31]
automata learning is used to infer properties of a network router, and for testing
the security of a web-application (the Mantis bug-tracker). The first application
of learning in testing was presented in 2002 in [19]: the authors use generated
models for testing a telephony system.

In many of these applications, an intermediate component or mapper is placed
in between the implementation and the learning tool. This mapper takes care
of abstracting (in a history dependent manner) the large set of (parametrized)
actions of the implementation into a small set of abstract actions that can be
handled by automate learning algorithms for finite state systems [10,32]. The
fact that these mappers need to be constructed manually is unsatisfactory. A
major theoretical challenge therefore is to lift learning algorithms for finite state
systems to richer classes of models involving data. A recent breakthrough has
been the definition of a Nerode congruence for the class of register automata [11]
and the resulting generalization of learning algorithms to this class [23,22,2,1].
Register automata are a type of extended finite state machines in which one
can test for equality of data parameters, but no operations on data are allowed.
This notion of a scalarset data type originates from model checking, where it
has been used for symmetry reduction [24] (hence register automata are called
scalarset Mealy machines in [2,1]). The results on register automata have been
generalized to even larger classes of models in [12], where the guards can be
arithmetic constraints and inequalities.

In recent years, two different approaches for learning register automata have
been developed. As part of the LearnLib tool algorithms have been implemented
that are based on the Nerode congruence [23,22], whereas the Tomte tool im-
plements algorithms that use counterexample-guided abstraction refinement to
automatically construct an appropriate mapper [2,1]. The goal of this paper is to
compare these two approaches. To this end we have developed an open exchange
format for automata, and set up a repository with benchmarks1, which will also
allow to compare other tools and approaches in the future.

The rest of this paper is organized as follows. Section 2 recalls basic definitions
of Mealy machines, register automata, and automata learning. Sections 3 and 4
present an overview of the approaches implemented by the Tomte and LearnLib
tools. Finally, Section 5 presents and discusses the experimental evaluation of
both tools.

1 http://www.github.org/learnlib/raxml

http://www.github.org/learnlib/raxml


204 F. Aarts et al.

2 Learning Register Automata

In this section, we recall the definition of register automata, their semantics in
terms of Mealy machines, and the assumed learning model. Register automata,
also known as scalarset Mealy machines, are an extension of Mealy machines
with data. No operations are allowed on data and the only predicate symbol
that may be used is equality.

Register Automata. We assume universes V of variables and P of parameters,
with V ∩ P = ∅. A valuation for a set X ⊆ V ∪P is a partial function ξ from X
to a set D of data values. We write Val(X) for the set of valuations for X . We
also assume a set C of constants, disjoint from V ∪P , and a function γ : C → D
that assigns a value to each constant. We write T = V ∪ P ∪ C and refer to
elements of T as terms.

A guard g is a Boolean combination of expressions of the form t = t′, where
t, t′ ∈ T . We write G for the set of guards. If ξ is a valuation for X and g is
a guard with variables and parameters from X , then we write ξ |= g to denote
that ξ satisfies g.

We assume a set E of event primitives and a function arity : E → N that
assigns to each event primitive an arity. An event term for ε is an expression
ε(t1, . . . , tn) where t1, . . . , tn ∈ T and n = arity(ε). We write ET for the set of
event terms.

Definition 1. A register automaton (RA) is a tuple S = 〈EI , EO, V, L, l0, Γ 〉,
where

– EI , EO ⊆ E are disjoint sets of event primitives,
– V ⊆ V is a finite set of state variables,
– L is a finite set of locations,
– l0 ∈ L is the initial location,
– Γ ⊆ L × ET × G × (V → T ) × ET × L is a finite set of transitions. For

each transition 〈l, εI(p1, . . . , pk), g, �, εO(u1, . . . , un), l
′〉 ∈ Γ , we refer to l

as the source, g as the guard, � as the update, and l′ as the target. We
require εI ∈ EI , p1, . . . , pk pairwise different parameters in P, εO ∈ EO,
and g, �(v), for any v ∈ V , and εO(u1, . . . , un) only contain terms from
V ∪ {p1, . . . , pk} ∪ C.

Example 1. As a running example of a register automaton we use a FIFO-set
with a capacity of two, similar to the one presented in [22]. A FIFO-set corre-
sponds to a queue in which only different values can be stored, see Figure 1.
There are a Push(p) input that tries to insert a value in the set and a Pop()
input that tries to retrieve a value from the set. The output in response to a
Push(p) input is OK if p could be added successfully or NOK if p is already an
element of the set or if the set is full. The output in response to a Pop() input is
Out(x), where x is the first value that has been added to the set and not been
returned, or NOK if the set is empty.

The semantics of a register automaton can be defined in terms of Mealy
machines.
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l0start l1 l2

Push(p)/OK
v1:=p

Pop()/NOK

p �= v1
Push(p)/OK
v2:=p

p = v1
Push(p)/NOK

Pop()/Out(v1)

Pop()/Out(v1)
v1:=v2

Push(p)/NOK

Fig. 1. FIFO-set with a capacity of 2 modeled as a register automaton

Definition 2. A Mealy machine is a tuple M = 〈I, O,Q, q0,→〉, where I, O,
and Q are nonempty sets of input symbols, output symbols, and states, respec-
tively, q0 ∈ Q is the initial state, and →⊆ Q × I × O × Q is the transition

relation. We write q
i/o−−→ q′ if (q, i, o, q′) ∈→, and q

i/o−−→ if there exists a q′ such

that q
i/o−−→ q′. Mealy machines are assumed to be input enabled: for each state

q and input i, there exists an output o such that q
i/o−−→. A Mealy machine is

deterministic if for each state q and input symbol i there is exactly one output

symbol o and exactly one state q′ such that q
i/o−−→ q′.

The transition relation is extended to finite sequences by defining
u/s⇒ to be

the least relation that satisfies, q
ε/ε⇒ q, and for u ∈ I∗, s ∈ O∗, i ∈ I, and o ∈ O,

q
i/o−−→ q′ and q′

u/s⇒ q′′ implies q
i u/o s⇒ q′′. Here ε denotes the empty sequence.

The semantics of a register automaton is a Mealy machine. The states of this
Mealy machine are pairs of a location l and a valuation ξ of the state variables.
A transition may fire if its guard, which may contain both state variables and
parameters of the input action, evaluates to true. Then a new valuation of the
state variables is computed using the update part of the transition. This new
valuation, together with the values of the input parameters, also determines the
values of the output parameters.

Definition 3 (Semantics RA). The semantics of an event primitive ε ∈ E is
the set �ε� = {ε(d1, . . . , darity(ε)) | di ∈ D, 1 ≤ i ≤ arity(ε)}. The semantics of a
set of event primitives is defined by pointwise extension.

Let S = 〈EI , EO, V, L, l0, Γ 〉 be a RA. The semantics of S, denoted �S�, is the
Mealy machine 〈I, O,Q, q0,→〉, where I = �EI�, O = �EO�, Q = L × Val(V ),
q0 = (l0, ξ0), with ξ0(v) undefined for all v, and →⊆ Q× I ×O ×Q is given by
the rule

〈l, εI(p1, . . . , pk), g, �, εO(u1, . . . , un), l
′〉 ∈ Γ

∀i ≤ k, ι(pi) = di ξ ∪ ι |= g
ξ′ = (ξ ∪ γ ∪ ι) ◦ �

∀i ≤ n, (ξ ∪ γ ∪ ι)(ui) = d′i

(l, ξ)
εI(d1,...,dk)/εO(d′

1,...,d
′
n)−−−−−−−−−−−−−−−−→ (l′, ξ′)

We call a RA S deterministic if its semantics �S� is deterministic.
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Active Automata Learning. Active automata learning algorithms have orig-
inally been presented for inferring finite state acceptors for unknown regular
languages [10]. Since then these algorithms have become popular with the test-
ing and verification communities for inferring models of systems in an automated
fashion. Active automata learning has been extended to many classes of systems,
including Mealy Machines [29], I/O-Automata [7], Timed Automata [17], and
Register Automata.

While the details change for concrete classes of systems, all of these algorithms
follow basically the same pattern. They model the learning process as a game
between a learner and a teacher. The learner has to infer an unknown concept
with the help of the teacher. The learner can ask three types of queries to the
teacher:

Output Queries (or membership queries) ask for the expected output for a
concrete sequence of inputs. In practice, output queries can be realized as
simple tests.

Reset queries prompt the teacher to reset its current state to the initial state
and are typically asked in turn with a sequence of output queries.

Equivalence Queries check whether a conjectured model produced by the
learner is correct. In case the model is not correct, the teacher provides
a counterexample, a trace exposing a difference between the conjecture and
the expected behavior of the system to be learned. Equivalence queries are
approximated through testing in black-box scenarios.

A learning algorithm will use these three kinds of queries and produce a sequence
of models converging towards the correct one. We skip further details here and
refer the interested reader to [32,25] for an introduction to active automata
learning.

3 Tomte

Tomte implements the approach to inferring Register Mealy Machines presented
in [2,1]. Figure 2 presents the overall architecture of the Tomte tool. At the right
we see the System Under Learning (SUL), an implementation whose behavior
can be described by an (unknown) deterministic register automaton. We send
parametrized input symbols to the SUL via port 3 and receive parametrized out-
put symbols via port 4. Via port 3 we can also reset the SUL. At the left we see
the learner, which is a tool for learning regular Mealy machines. In our current
implementation we use LearnLib, but any other tool for learning Mealy ma-
chines can be used instead. The learner sends output queries and test sequences
(as approximation of equivalence queries) via port 1 and receives the resulting
outputs via port 6. In between the learner and the teacher we place two auxiliary
components, a mapper and a lookahead oracle, which take care of mapping the
large set of concrete symbols of the SUL to a small set of abstract symbols that
can be handled by the learner. Whereas the lookahead oracle annotates events
with information about the future behavior of the SUL, the mapper computes
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Learner Mapper
Lookahead
Oracle

Teacher
(SUL)

1 2 3

6 5 4

Fig. 2. Architecture of Tomte

an abstraction for each event based on information about the past. The behavior
of the two components is thus reminiscent of the prophecy and history variables
of Abadi & Lamport [9].

3.1 Lookahead Oracle

The lookahead oracle is a component that stores traces of the SUL in a so-
called observation tree. The observation tree can be used as a cache for repeated
queries on the SUL. However, the main task of the lookahead oracle is to annotate
each node in the observation tree with a set of memorable values. Intuitively, a
parameter value d is memorable if it has an impact on the future behavior of
the SUL: either d occurs in a future output, or a future output depends on the
equality of d and a future input.

Definition 4. Let S be a register automaton with �S� = 〈I, O,Q, q0,→〉. Sup-
pose q0

u/s⇒ q and d is a parameter value that occurs in u and that is not denoted
by any constant (∀c ∈ C : γ(c) �= d). Then d is memorable after u iff there exists

a witness transition q
v/t⇒, such that either d occurs in output t but not in input

v, or d occurs in input v and if we replace all occurrences of d in v with a fresh

value f then the output changes, i.e., q
v[f/d]/t′⇒ with t′ �= t[f/d].

In our running example of Figure 1, the set of memorable values after input
sequence u = Push(0) Push(1) Push(2) is {0, 1}. Values 0 and 1 are memorable,
because the suffix v = Pop() Pop() triggers outputs Out(0) Out(1). Value 2 is
not memorable since the future behavior of the FIFO-set does not depend on
it. Figure 3 shows an observation tree for our FIFO-set example. Whenever a
new node is added to the tree, the oracle computes a set of memorable values
for it. To this end, the oracle maintains a set of lookahead traces, i.e., sequences
of (symbolic) inputs. Instances of each these traces are run in each new node to
compute memorable values. At any point in time, the set of computed values
is a subset of the set of memorable values of a node. The observation tree of
Figure 3 is not lookahead complete since (for instance) memorable value 1 of
node N6 is neither part of the memorable values of the predecessor node N3 nor
has it been inserted via the incoming Pop() input. Whenever we detect such an
incompleteness, we add a new lookahead trace (in this case Pop() Pop()) and
restart the entire learning process with the updated set of lookahead traces to
retrieve a lookahead-complete observation tree.

When the oracle receives an input symbol from the mapper via port 2 this
is just forwarded to the SUL via port 3. When the lookahead oracle receives a
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N0

{}

N1

{0}

N3

{0}

N5

{}

Push(2)/NOK

N6

{1}

N9

{}

Push(2)/OK

N10

{}

Pop()/Out(1)

Pop()/
Out(0)

Push(1)/OK

N4

{}

N7

{1}

Push(1)/
OK

N8

{}

.

.

.

Pop()/NOK

Pop()/Out(0)

Push(0)/OK

N2

{}

.

.

.

Pop()/NOK

Fig. 3. Observation tree of the FIFO-set

concrete output symbol o from the SUL via port 4 (see Figure 2), it forwards
a pair consisting of o and a valuation ξ to the mapper via port 5. The val-
uation ξ assigns to each variable in a given set of variables X either a value
that is memorable in the node after o, or the undefined value ⊥. (The set X
grows dynamically: its size is equal to the largest set of memorable values in the
observation tree.)

3.2 Mapper

Following the theory elaborated in [3,4], the mapper component transforms the
concrete inputs and outputs from the lookahead oracle into abstract inputs in
a history dependent manner. The mapper remembers the most recent valuation
from the variables in X that it has received from the lookahead oracle. The
mapper is parametrized by a function F : P → 2X∪C∪P . The abstraction does
not record the actual value of an input parameter, but only whether or not this
value is equal to one of the variables, constants or parameters in F (p). Thus the
domain of the abstract parameter p is the set F (p)∪{⊥}. Initially, F (p) = ∅ for
all parameters p. Using a counterexample-guided abstraction approach, the sets
F (p) are subsequently extended. Upon receipt of a concrete output action (o, ξ)
from the lookahead oracle via port 5, the mapper component forgets the actual
value of parameters in o and only records whether a value is equal to one of the
variables, constants or parameters in V ∪C ∪P . The valuation ξ is abstracted to
an update function that specifies how ξ can be computed from the mapper state
and the parameters of the preceding input. The abstract output pair is then send
to the learner via port 6, When the mapper receives an abstract input from the
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learner via port 1, it computes a corresponding concrete input and forwards it
to the lookahead oracle via port 2. During learning the abstract parameter value
⊥ is always concretized as a fresh value.

As a result of interaction with the mapper, the learner succeeds to construct
the abstract hypothesis shown in Figure 4. (We refer to [1] for a discussion of how
a concrete register automaton can be obtained from an abstract hypothesis.)

l0start l1 l2

Push(⊥)/OK
x1:=p

Pop()/NOK Push(⊥)/OK
x2:=p

Pop()/Out(x1)

Pop()/Out(x1)
x1:=x2

Push(⊥)/NOK

Fig. 4. First hypothesis of the FIFO-set

3.3 Counterexample Analysis

This hypothesis does not check if the same value is inserted twice since the map-
per only uses fresh values in the output queries. During hypothesis verification
the mapper selects random values from a small range for every abstract param-
eter value ⊥. In this way it will find a concrete counterexample input trace,
e.g. Pop() Push(9) Pop() Push(3) Push(3), for which the SUL produces a NOK
output and the hypothesis generates an OK. In order to simplify the analysis,
Tomte first tries to reduce the length of the counterexample. Long sequences of
inputs typically lead to loops when you run them in the hypothesis. Tomte elim-
inates these loops and checks if the result is still a counterexample. Removing
cycles from the concrete counterexample results in the reduced counterexam-
ple Push(3) Push(3). To determine if it is a counterexample for the learner, we
convert the reduced concrete counterexample into a fresh trace Push(1) Push(2)
and run it on the SUL via the lookahead oracle. The concrete outputs returned
by the SUL are OK OK. Since, after abstraction, the outputs of the fresh trace
are also produced by the abstract hypothesis, Tomte needs to refine the input
abstraction.

By careful analysis of the counterexample, Tomte discovers that apparently
it is relevant whether or not parameter p is equal to variable x1. Therefore,
the set F (p) is extended to {x1}. Consequently, the alphabet of the learner is
extended with a new input symbol Push(x1) and a corresponding lookahead trace
is added to the lookahead oracle. Again, the entire learning process is restarted
from scratch. The next hypothesis learned is equivalent to the model in Figure
1 and the learning algorithm stops.
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x1

Push(p)/NOK | p = x1

Push(p)/OK | p �= x1
l0 l1

Push(p)/OK
v1 := p

Pop()/Out(v1)
Push(p)/OK

Pop(p)/NOK

Fig. 5. Left: SDT for concrete prefix Push(1)/OK and abstract suffix Push(p). The
SDT has one register at the initial location at the top for the memorable data value of
the prefix and two guarded transitions for the suffix. Right: Second hypothesis found
by LearnLib when learning the FIFO-set from Fig. 1.

4 LearnLib

LearnLib implements the approach to inferring Register Automata and Register
Mealy Machines presented in [23,22]. In the recent past, LearnLib has been gener-
alized to learning systems, where the guards can be simple arithmetic constraints
and inequalities [12]. The conceptual basis for this extension was a reformulation
of the original algorithms. Technical basis of the implementation in LearnLib are
so-called symbolic decision trees (SDTs), which can be used to summarize the
results of many tests using a concise symbolic representation — similar to exe-
cution trees obtained by symbolic execution [26]. While we evaluate the version
of LearnLib that infers Register Mealy Machines, we provide an overview of the
central ideas of inferring Register Automata with LearnLib in the more intuitive
terms of our more recent work. However, the description we give here is faithful
to the work of [22].

Symbolic Decision Trees. Active automata learning algorithms usually rely
on the Nerode relation [28] for identifying the states and transitions of a learned
automaton. Two words lead to the same state if their residual languages co-
incide. When extending LearnLib to Register Automata, the basic idea of the
approach was to formulate a Nerode-like congruence for RAs, which would serve
to determine locations, transitions, and registers of the inferred automaton.

The central observation for such a relation is that it is not sufficient anymore
to consider only concrete words and data values. Take for example the FIFO-set
from Fig. 1. While after prefixes Push(1)/OK and Push(2)/OK the concrete input
Push(1) will lead to different outputs (NOK and OK, respectively), we still want
both prefixes to lead to the same location in a learned automaton. Using the
classic Nerode relation, we would introduce a location for every concrete prefix
Push(d) with d ∈ D.

We mitigate this problem by treating the relevant (so-called memorable) data
values of a prefix in a symbolic fashion: We introduce abstract suffixes (sequences
of actions with symbolic data parameters) and corresponding symbolic decision
trees (SDT)s. Formally, SDTs can be understood as (partial) Register Automata
where L and Γ form a tree rooted at l0. Fig. 5 (left) shows an SDT for the con-
crete prefix push(1)/OK and the abstract suffix Push(p) (with symbolic data
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Prefixes SDTs for Pop() Memorables

λ

Push(1)/OK

Push(1)/OK Push(2)/OK

x1 = 1

x1 = 1

(l0)

(l1)

Pop()/NOK

x1

Pop()/Out(x1)

x1

Pop()/Out(x1)

. . . . . .

Fig. 6. Observation table for hypothesis in the right of Fig. 5. Rows are labeled by
concrete prefixes. The only column is for the abstract suffix Pop(). The second and
third prefix lead to the same location. To the right, rows are labeled by initial values
(from prefixes) for registers of SDTs.

value p). The tree encodes the relation of the data value of the prefix symbol-
ically for all p through a register at the root location (x1) and using guarded
transitions. The SDT for push(2)/OK would look identical. Except it would store
the concrete value 2 in x1.

Symbolic decision trees can be constructed from output queries and reset
queries in two steps. First, we create test cases for all possible equalities between
data values in a prefix and a suffix. In the case of the above example there would
only be two tests, Push(1) Push(2) and Push(1) Push(1). However, in general
constructing an SDT requires exponentially many (in the number of parameters
of the suffix) reset queries and output queries. In a second step, we describe all
tests and results symbolically in a detailed tree and merge compatible paths of
the trees until only the relevant guards remain.

Conjectures. As noted before, active learning algorithms usually maintain two
sets of words: a prefix-closed set of words that covers all transitions of an inferred
automaton and a set of suffixes, identifying the states reached by prefixes. We
follow this pattern and use sequences with concrete data values as prefixes, and
SDTs for abstract suffixes to identify locations, and registers: Symbolic decision
trees provide a basis for formulating a congruence on the set of data words [11].
Additionally, SDTs provide information about the data values of a prefix that
have to be stored by an automaton (the ones referred to by the initial registers
of an SDT).

Fig. 6 shows an observation table, storing the information obtained from out-
put queries during learning. Rows are labeled with prefixes, the only column
with SDTs is for the abstract suffix Pop(). In the right-most column we show
which memorable values have to be stored to obtain the SDTs. From an ob-
servation table we can generate a hypothesis once certain consistency require-
ments are met (cf. [23]). In this particular case, the model shown in the right of
Fig. 5 can be generated from the observation table: Prefixes in the upper part
of the table identify locations (the SDTs for these rows are unique). All prefixes
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(except the empty word λ) correspond to transitions. The only word shown from
the lower part of the table, e.g., corresponds to the Push()-loop at l1. The initial
registers of the decision trees are used to obtain the assignments of the Register
Automaton; the assignment v1 := p on the transition from l0 to l1 is derived
from the SDT and memorable values in the second row of the table.

The sets of prefixes and suffixes are extended when the consistency require-
ments on the table are violated or when a counterexample is processed.

Counterexamples. Counterexamples exhibit a difference between the current
hypothesis of the learning algorithm and the observable behavior of the system
under learning. They contain information about how and where a hypothesis is
not valid. Counterexamples can show that two prefixes that currently lead to the
same location are not equivalent (under the assumed relabeling of registers). In
some cases this leads to a new location. They can also show that the hypothesis is
missing a guarded transition, or that it is missing a register. The main challenges
when analyzing counterexamples are (a) identifying the exact location of the
hypothesis which has to be split, or extended by a new register or transition,
and (b) deciding which of the three cases applies.

In order to find the exact location, we exchange prefixes of the counterexample
by corresponding words from the set of prefixes from the upper part of the
observation table (i.e., words that were used to represent the location reached
by the prefix). For an exchanged prefix we check if the SDT for the remaining
abstract (!) suffix of the counterexample contains a counterexample. If this is
the case, we can use the replaced prefix, which corresponds to a fix location in
the hypothesis.

Replacing prefixes is continued until we either find that one of the constructed
SDTs (i) has an initial guard that is not present in the hypothesis, or (ii) has
an initial register that is not identified by the observation table, or (iii) until at
some point the SDT for the replaced prefix and remaining abstract suffix does
not contain a counterexample anymore. In the first and second case, we extend
the table with a new prefix or suffix, respectively. The third case indicates that
two prefixes lead to different states (one SDT contains a counterexample while
the next one does not). In this case we also add a suffix to the table. The technical
details are, of course, a little bit more intricate than discussed here. In-depth
discussions can be found in [23,12].

We limit ourselves to a small example for case (ii) here. The intermediate
hypothesis shown in the right of Fig. 5 for the FIFO-set from Fig. 1 is missing
(among other things) the Push(p)-transition from l1 that is guarded by p = v1.
This is because initially LearnLib adds only words without new equalities to
the observation table. The counterexample Push(1)/OK Push(1)/NOK would re-
veal the missing transition: The SDT for prefix Push(1)/OK and suffix Push(p)
is shown in Fig. 5. It has two guarded initial transitions. Adding the word
Push(1)/OK Push(1)/NOK to the observation table will refine the hypothesis
accordingly. Please note, that while in this small example the word we add to
the set of prefixes coincides with the counterexample, this is not the case usually.
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Table 1. Benchmarks.

Name Inputs/ Registers Con- States Tran- Source
Outputs stants sitions

Biometric passport 9/2 0 3 5 48 [1,2,6]
Session initiation protocol 4/7 2 0 10 48 [1,2,4]

Alternating bit protocol sender 3/3 1 2 7 27 [1,2]
Alternating bit protocol receiver 2/3 0 2 4 10 [1,2]
Alternating bit protocol channel 3/3 2 0 2 6 [1,2]
Login procedure 3/2 2 0 3 10 [1,2,23]
River crossing puzzle 1/4 0 4 9 45 [1,2]
Palindrome/repnumber checker 5/2 0 0 1 10 [1,2]

Queue/stack(n) 2/3 n 0 n+1 2n+2 [1,22,25]
FIFO-set(n) 2/3 n 0 n+1 3n+1 [1,22]

Discussion. Since the approach taken by LearnLib is based on an extended
Nerode relation, it comes with nice guarantees: for a perfect equivalence oracle,
the learning algorithm will terminate with the smallest (in terms of locations and
number of registers) correct Register Automaton of a given form. The number
of transitions may not be minimal since LearnLib uses multiple transitions for
encoding disjunctions. Also, the introduction of SDTs and abstract suffixes has
proven to be a powerful conceptual framework that scales beyond simple register
automata.

The guarantees and conceptual power, however, come at a price. Comput-
ing SDTs from tests is expensive. It requires to exhaustively explore all possible
equalities between data values in a prefix and a suffix. Especially, long counterex-
amples, which in turn may lead to long suffixes, can incur many tests quickly as
the evaluation shows (cf. Section 5).

5 Comparison and Evaluation

The LearnLib tool [27] and the Tomte tool [2,1] implement quite similar algo-
rithms for fully automatically inferring large or infinite-state systems. Therefore,
it is worthwhile to examine the differences between both tools in more detail.
Both tools have been developed independently of each other, but by mutual
agreement a standardized XML format has been introduced, which is supported
by both tools. This did not affect the framework or inner workings of the tools.
They still reveal a number of differences, which will be evaluated and discussed
in the remainder of this section.

We evaluate the tools on the benchmarks shown in Table 1. The table specifies
the complexity of the different benchmarks in terms of the size of the input and
output alphabet as well as the number of registers, constants, Mealy machine
states, and Mealy machine transitions. The source column lists work, where
these benchmarks have been used previously in the context of automata learning.
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Table 2. Results for experiments with random testing

Learnlib Tomte
learn learn test test ana ana learn learn test test ana ana

res inp res inp res inp res inp res inp res inp
Alternating bit protocol sender
avg 452 2368 1217 23872 40551 405577 465 2459 3 26 7 15
stddev 453 2781 973 19424 125904 1258919 0 2 2 28 4 11
Alternating bit protocol receiver
avg 6077 102788 17 278 72 1420 271 1168 6 68 19 56
stddev 13184 245291 9 176 57 2813 1 0 4 67 4 13
Biometric passport
avg 914 8517 4209 83761 365 7768 8769 43371 660 13164 55 287
stddev 614 12089 2271 45568 112 4334 5 35 492 9839 7 56
Alternating bit protocol channel
avg 52 252 2 13 29 173 67 210 0 0 0 0
stddev 29 235 2 9 12 115 0 0 0 0 0 0
Login procedure
avg 2968 34922 21 366 21 82 3769 19586 117 2072 53 230
stddev 7959 102706 19 396 8 73 0 0 136 2564 19 81
Palindrome/repnumber checker
avg 5 5 59 1079 2050 8032 8366 24713 249 4502 80 139
stddev 0 0 28 599 6225 24909 4 9 129 2464 14 27
Session initiation protocol
avg 92324 1962160 129 2486 106868 1178964 6195 39754 236 4535 256 1568
stddev 137990 4078104 127 2579 336225 3696587 1103 7857 210 4251 94 626
River crossing puzzle
avg unable to learn 2078 14121 112 2089 100 621
stddev 73 674 56 1174 23 244

The upper part of the table contains models that have been inferred from actual
systems, the middle part refers to systems we have modeled ourselves, and the
lower part comprises manually written specifications of data structures with a
capacity of n.

We performed experiments with two different types of equivalence oracles.
The first (realistic but imperfect) oracle uses random test case generation. Both
tools implement a random walk over the hypothesis that will generate at most
10, 000 runs per equivalence query. Every run has a maximum length of 100
inputs, and is ended with a probability of 5% after every input. This produces an
exponential distribution on the length of runs (cut off at length 100). Data values
of new inputs are instantiated using values from the prefix and a fresh value with
equal probability. Additionally, we have performed experiments with a perfect
equivalence oracle, providing shortest counterexamples. In realistic applications
of our tools, such an oracle does not exist since we do not have access to a
model of the SUL, but since we have models of all our benchmarks, a perfect
equivalence oracle can be implemented simply using an equivalence algorithm
for Mealy machines. The two equivalence oracles reflect different usage scenarios:
While Tomte is geared towards testing and has been used very successfully in
testing (e.g., [5]), LearnLib was designed and used to provide guarantees up to
some depth in exhaustive exploration [12] (similar to interface generation in a
white-box scenario [21]).

For the experiments we used the perfect equivalence oracle in order to de-
termine when to stop learning. We have run each experiment ten times with
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Table 3. Results for experiments with a perfect equivalence oracle

Learnlib Tomte
learn learn ana ana learn learn ana ana

res inp res inp res inp res inp
Alternating bit protocol sender
avg 181 794 7412 131082 465 2461 5 8
stddev 0 0 0 0 0 0 0 0
Alternating bit protocol receiver
avg 240 856 14 32 272 1168 21 62
stddev 0 0 0 0 0 0 0 0
Biometric passport
avg 474 1944 88 471 8764 43347 37 168
stddev 0 0 0 0 0 0 0 0
Alternating bit protocol channel
avg 13 25 7 13 67 210 0 0
stddev 0 0 0 0 0 0 0 0
Login procedure
avg 273 991 5 10 3771 19586 139 644
stddev 0 0 0 0 0 0 0 0
Palindrome/repnumber checker
avg 5 5 52 52 8370 24719 88 150
stddev 0 0 0 0 0 0 0 0
Session initiation protocol
avg 621 2585 39 139 5460 33002 101 467
stddev 0 0 0 0 0 0 0 0
River crossing puzzle
avg 7344 48990 41 184 2042 13791 47 225
stddev 0 0 0 0 0 0 0 0

different seeds. For every experiment we have measured the following data and
determined its average over the ten runs together with the standard deviation:

– learn res: total number of reset queries sent to SUL during learning
– learn inp: total number of output queries sent to SUL during learning
– test res: total number of reset queries sent to SUL during equivalence testing
– test inp: total number of concrete input symbols sent to SUL during equiv-

alence testing (without last test, where no counterexample has been found)
– ana res: total number of reset queries sent to SUL during counterexample

analysis
– ana inp: total number of concrete input symbols sent to SUL during coun-

terexample analysis

We also measured the time of our experiments, but we do not mention these
numbers in our learning statistics as in our opinion the other measures are more
relevant. Also, due to space limitations, we present only a selection of results
in this paper. The complete set of benchmarks and the complete results can be
found online2.

Series 1. First, we have employed both tools to execute the benchmarks in the
upper and middle part of Table 1. The learning results with a random walk and
perfect equivalence oracle (shortest counterexamples) are displayed in Tables 2
and 3, respectively.

2 http://www.github.org/learnlib/raxml

http://www.github.org/learnlib/raxml
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In our analysis we are mainly interested in the total number of concrete in-
put symbols sent to the SUL during learning and counterexample analysis as
comparing test algorithms is a separate object of investigation. Therefore, we
tried to implement the equivalence test in both tools as similar as possible. The
results show that in the majority of experiments Tomte outperforms LearnLib if
a random test case generator is used, see Table 2. However, with a proper equiv-
alence test it is the very reverse: In most cases, LearnLib outperforms Tomte,
see Table 3.

The reason for the performance difference is due to the length of the coun-
terexamples found, which are typically longer when a random walk over the
hypothesis is performed. As already mentioned in Section 3, Tomte first reduces
the length of the counterexample by eliminating irrelevant loops, which in com-
bination with a simpler counterexample analysis lead to less inputs sent to the
SUL, compare ana inp for LearnLib and Tomte in Table 2. To measure the effect
of the counterexample reduction, we have repeated the experiments above with
the Tomte tool, without executing the loop elimination algorithm. They show
that in our experiments the loop elimination algorithm reduces the length of the
counterexample on average by more than 60%, which again reduces the inputs
sent to the SUL during counterexample analysis significantly, i.e. on average by
more than 90%.

Series 2. In a second series of experiments, we have applied both tools to learn
models of the data structures from the lower part of Table 1. Table 4 shows
the results for inferring models of a FIFO-set of capacity n (a FIFO-set with
capacity 2 is depicted in Figure 1). We have gradually scaled up the capacity of
the FIFO-set to test the limits of both tools. Using the test setup of the previous
experiments (at most 10, 000 runs per equivalence query, maximum length of 100
inputs, and reset probability of 5%), we quickly reach the boundaries of both
tools. The reset probability of 5% after every input leads to relatively short test
traces, such that guards deep in the data structure cannot be found with random
testing.

We thus have changed the test setup for Tomte: the columns for Tomte in Ta-
ble 4 show the results for 1, 000 test traces of length 1, 000 with reset probability
of 0%. For LearnLib, Table 4 shows the results with a reset probability of 5%.
Tomte is able to successfully learn the FIFO-set with up to 30 elements, whereas
LearnLib can only infer models up to size 7. For the smaller models, Learn-
Lib outperforms Tomte, but the costs of finding and analyzing counterexamples
quickly explode, as does the number of queries during learning from adding new
suffixes to the observation table.

The figures indicate that Tomte consistently needs fewer counterexamples
than LearnLib: it spends fewer resets on finding counterexamples. Since both
tools implement the same random test algorithm for finding counterexamples,
this suggests that Tomte uses fewer counterexamples. Another series of experi-
ments for which we do not show the detailed results in this paper confirms this
pattern. We have used both tools for inferring models of a queue and a stack
of size n. In this series, Tomte does not need any counterexamples for learning
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Table 4. Results for learning the FIFO-set with LearnLib (resetProbability=0.05
maxSize=100 maxNumTraces=10000) and Tomte (resetProbability=0 maxSize=1000
maxNumTraces=1000)

Learnlib Tomte
learn learn test test ana ana learn learn test test ana ana

res inp res inp res inp res inp res inp res inp
FIFO-set(1)
avg 12 22 1 3 4 9 23 66 0 0 0 0
stddev 3 6 0 2 2 7 0 0 0 0 0 0
FIFO-set(2)
avg 44 136 4 20 12 44 99 423 1 20 6 17
stddev 11 49 2 14 9 44 0 2 0 25 1 5
FIFO-set(3)
avg 114 463 12 135 41 410 257 1396 4 562 19 88
stddev 19 115 4 84 27 499 0 6 1 897 5 37
FIFO-set(4)
avg 250 1234 26 387 94 1294 568 3727 6 1190 47 315
stddev 72 426 9 179 53 1515 5 30 2 1767 31 284
FIFO-set(5)
avg 761 5522 74 1231 210 3056 1104 8443 9 2158 80 705
stddev 589 5380 46 782 39 951 5 31 1 1098 40 507
FIFO-set(6)
avg 855 6066 174 3053 378 7275 1955 17049 9 631 103 932
stddev 283 2689 47 949 100 3086 7 62 0 469 30 418
FIFO-set(7)
avg 66392 1097470 394 7229 634 13530 3215 31487 13 2392 132 1284
stddev 195580 3310472 147 2803 66 2397 7 70 1 1370 44 616
FIFO-set(10)
avg unable to learn 10760 139708 23 7526 446 7029
stddev 22 277 8 7317 210 4918
FIFO-set(20)
avg unable to learn 129628 3056149 94 63422 4169 106467
stddev 54 1138 31 30834 565 14495
FIFO-set(30)
avg unable to learn 591668 20206862 761 718060 15714 620479
stddev 72 2112 319 319098 1427 232984

the correct models (of up to size 40), while LearnLib behaves very similar to
the series with the FIFO-set. The reason for Tomte needing fewer counterexam-
ples is the lookahead oracle that finds new registers without counterexamples.
In LearnLib, on the other hand, all progress is driven by counterexamples. With
a perfect equivalence oracle this is an advantage. For counterexamples of ran-
dom length, on the other hand, the overhead of the lookahead oracle is quickly
amortized through the queries saved by using fewer counterexamples.

Summary. Using the standardized format and the variety of benchmarks that
we have collected makes it easy to compare different algorithms in more detail,
e.g. with respect to their limits and the exact number of queries asked for learning
and counterexample analysis. In addition, this allows us to compare the two
approaches presented in this paper also to other related approaches. This will
provide an insight into the strengths and weaknesses of different techniques and
enable us to learn from each other. We believe there is still a lot of room for
improvement in both tools.
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