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Abstract. In the field of distributed autonomous computing the cur-
rent trend is to develop cooperating computational entities enabled with
enhanced self-* properties. The expression self-* indicates the possibil-
ity of a component inside an ensemble, i.e. a set of collaborative auto-
nomic components, to self organize, heal (repair), optimize and configure
with little or no human interaction. We focus on a self-* property called
self-expression, defined as the ability to deploy run-time changes of the
coordination pattern of the observed ensemble; the goal of the ensem-
ble is to achieve adaptivity by meeting functional and non-functional
requirements when specific tasks have to be completed. The purpose of
this paper is to rigorously present the mechanisms involved whenever a
change in the coordination pattern is needed, and the interactions that
take place. To this aim, we use SCEL (Software Component Ensemble
Language), a formal language for describing autonomic components and
their interactions, featuring a highly dynamic and flexible way to form
ensembles based on components’ attributes.

Keywords: Self-expression, coordination patterns, ensemble computing.

1 Introduction

The current trend in designing distributed systems is to conceive them as en-
sembles of several, possibly heterogeneous, components. Ensembles are often
required to solve complex problems of real life, even situations in which the level
of interaction between humans and components of the ensemble is strongly lim-
ited or even absent. Therefore, their components usually collaborate with each
other in order to achieve a common goal. This calls for further features that in-
crease the self-management capability of the systems, such as self-configuration,
self-healing, self-optimization, and self-protection, leading to what is known in
literature as self-* properties in autonomic computing [16,31]. The goal is to
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Fig. 1. A two-perspective relationship between task to solve and surrounding system

have self-adaptive ensembles able to promptly react to dynamic changes of the
surrounding environment and to optimize their performance when addressing
tasks of variable complexity in the presence of dynamic environments. In addi-
tion to the previously listed properties, there can be situations in which changes
in the components’ coordination pattern (as a refactoring of behaviors, roles and
interactions among components) can be useful at runtime, especially in open and
non-deterministic scenarios. This change should be autonomously made by the
ensemble itself by relying on adaptive collaboration of its components. This abil-
ity could enable the ensemble to face unexpected and unpredictable situations,
often modelled as changes in the environment or fault tolerance issues [26]. More-
over, it could increase performance and robustness of the designed ensemble, be-
cause different coordination patterns could require different utilities or qualities
for solving a specific task. The dynamic modification of the coordination pattern
according to the changes in the external conditions is called self-expression [30],
meaning that the autonomic system expresses itself (i.e., the system still does
what is supposed to do) independently of unexpected situations and, to accom-
plish this, it is capable of modifying its original internal organization.

This paper aims at showing how to enable self-expression in a concrete way
by exploiting a formal language for defining ensembles. We refer the interested
reader to [30,5] for further motivations and details about self-expression.

1.1 More Details on Self-expression

Enhancing adaptivity of an ensemble through self-expression is a problem that
can be seen from two different perspectives, as shown in Fig. 1.

A first perspective (left part of Fig. 1) is to think about engineering an en-
semble able to solve a specific problem starting from an initial task that can be
then subdivided into several sub-tasks to be assigned to ensemble components.
For instance, the task “explore a given area” could be split in the sub-tasks “act
as a master that proposes sub-areas to explore”, “act as a slave for executing
the received orders from a master”, “act as a peer to negotiate sub-areas to ex-
plore”, etc. Self-expression can be then represented by a Business Process Logic
(BPL) specification that regulates relationships among sub-tasks and how these
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are assigned to each component. Since each of these sub-tasks is related to how
the ensemble will assign roles, behaviors and interaction rules, the BPL specifi-
cation provides information on how the ensemble will coordinate its components
for solving the specified task. BPL specifications are subject to change over time
according to the dynamics of the surrounding environment, so to have ensembles
whose components will undergo modifications of the sub-tasks assignment and of
the way they will coordinate according to the changes in the external conditions.

A second perspective (right part of Fig. 1) is to think about an already ex-
isting system that potentially is able to solve a multitude of tasks and for each
of these tasks, each component of the system knows different ways to collabora-
tively complete it. For instance, some available tasks could be “area exploration”
and “dragging/pushing objects outside the area”, while the different ways to ac-
complish them could be “master-slave”, “peer-to-peer” and “swarm”. Later on,
a request from outside, or a specific contingency, could prepare the system for
solving a specific task. Self-expression here is seen as the capability to collabora-
tively select the fittest way, according to the currently perceived environmental
conditions, for solving the selected task. The fittest collaborative effort can be
thought of as a coordination pattern that results in an appropriate Quality of
Service (QoS). Its selection is a decision that is ideally shared throughout the
whole ensemble. As external conditions change over time, the ensemble has to
adapt itself by choosing a different way to coordinate.

The modelling and description of the mechanisms for deploying self-expression
according to this latter perspective present interesting challenges and are inves-
tigated in the rest of the paper by using a formal language specifically designed
for defining ensembles.

1.2 Self-expression in a Formal Language for Defining Ensembles

The language SCEL (Software Components Ensemble Language) [10,11] has
been introduced to deal with the challenges posed by the design of ensembles
of autonomic components. In SCEL, autonomic components are entities with
dedicated knowledge repositories and resources that can cooperate while play-
ing different roles. Knowledge repositories also enable components to store and
retrieve information about their working environment, and to use it for redirect-
ing and adapting their behavior. Each component is equipped with an interface,
consisting of a collection of attributes, such as provided functionalities, spatial
coordinates, group memberships, trust level, response time, etc. Attributes are
used by the components to dynamically organize themselves into ensembles.

The way sets of partners are selected for interaction, and thus how ensembles
are formed, is one of the main novelties of SCEL. In fact, individual components
not only can single out communication partners by using their identities, but
they can also select partners by exploiting the attributes in the interfaces of
the individual components. Predicates over such attributes are used to specify
the targets of communication actions, thus providing a sort of attribute-based
communication. In this way, the formation rule of ensembles is endogenous to
components: members of an ensemble are connected by the interdependency
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relations defined through predicates. An ensemble is therefore not a rigid fixed
network, but rather a highly dynamic structure where components’ linkages are
dynamically established.

The purpose of this work is to show that SCEL can be conveniently exploited
to naturally model ensembles able to deploy self-expression. Indeed, ensembles
can be addressed as single entities (by exploiting predicates) and, at the same
time, are composed of sub-entities (the ensemble components, which are the ac-
tual recipients of ensemble invocations). Our characterization has the additional
benefit of fostering dynamic identification of sub-sets of ensembles, since ensem-
bles are highly dynamic structures where components linkages are dynamically
established.

The rest of the paper is organized as follows. In Section 2, we recap the SCEL

language, while in Section 3 we show how to implement self-expression with it.
In Section 4, we present an application of our approach to a case study from
the robotics domain. Section 5 discusses more strictly related work. Finally, in
Section 6, we draw some conclusions and sketch how our approach can be further
extended.

2 SCEL: Software Component Ensemble Language

SCEL is a kernel language for programming autonomic computing systems in
terms of Behaviors, Knowledge and Aggregations, according to specific Policies.
Behaviors describe how computations progress and are modeled as processes
executing actions. Knowledge is represented through items containing either ap-
plication data enabling the progress of components’ computations, or awareness
data providing information about the environment in which the components are
running (e.g. monitored data from sensors) or about the status of a compo-
nent (e.g. its current location). Aggregations describe how different entities are
brought together to form components and ensembles. In particular, components
result from a form of syntax-based aggregation that puts together a knowledge
repository, a set of policies and a set of behaviors, by wrapping them in an in-
terface providing a set of attributes, i.e. names referring to information stored
in the knowledge repository. Components’ composition and interaction are im-
plemented by exploiting the attributes exposed in components’ interfaces. This
form of semantics-based aggregation of components permits defining ensembles,
representing social or technical networks of components, and configuring them to
dynamically adapt to changes in the environment. Finally, policies control and
adapt the actions of the different components for guaranteeing accomplishment
of specific tasks or satisfaction of specific properties.

The syntax of SCEL is presented in Table 1. There, different syntactic cat-
egories are defined that constitute the main ingredients of the language. The
basic category is the one defining Processes that are used to build up Compo-

nents that in turn are used to define Systems. Processes specify the flow of
the Actions that can be performed. Actions can have a Target to determine
the other components that are involved in that action. The rest of this section
is devoted to the description of the SCEL’s syntactic categories.
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Table 1. SCEL syntax (Knowledge K, Policies Π , Templates T , and Items t are
parameters of the language)

Systems: S ::= I[K, Π,P ]
∣
∣ S1 ‖ S2

∣
∣ (νn)S

Processes: P ::= nil
∣
∣ a.P

∣
∣ P1 + P2

∣
∣ P1 | P2

∣
∣ X

∣
∣ A(p̄)

Actions: a ::= get(T )@c
∣
∣ qry(T )@c

∣
∣ put(t)@c

∣
∣ fresh(n)

∣
∣ new(I,K,Π, P )

Targets: c ::= n
∣
∣ x

∣
∣ self

∣
∣ P

∣
∣ p

Systems and components. The key notion is that of component I[K, Π, P ],
that is graphically depicted in Figure 2 and consists of:

1. An interface I publishing and making available structural and behavioral
information about the component itself in the form of attributes. Among
them, attribute id is mandatory and is bound to the (not necessarily unique)
name of the component.

2. A knowledge repository K managing both application data and awareness
data, together with a specific handling mechanism providing operations for
adding, retrieving, and withdrawing knowledge items. The knowledge repos-
itory of a component stores also the information associated to its interface,
which therefore can be dynamically manipulated by means of the operations
provided by the knowledge repositories’ handling mechanisms.

3. A tuple of policies Π regulating the interaction between the different internal
parts of the component and the interaction of the component with the others.

4. A process P , together with a set of process definitions that can be dynami-
cally activated.

Systems aggregate components through the composition operator ‖ . It
is also possible to restrict the scope of a name, say n, by using the name restric-
tion operator (νn) . Thus, in a system of the form S1 ‖ (νn)S2, the effect of the
operator is to make name n invisible from within S1. Essentially, this operator
plays a role similar to that of a begin . . . end block in sequential programming
and limits visibility of specific names. Additionally, restricted names can be ex-
changed in communications thus enabling the receiving components to use those
“private” names.

Processes. Processes are the active computational units. Each process is
built up from the inert process nil via action prefixing (a.P ), nondeterministic
choice (P1 + P2), controlled composition (P1[P2 ]), process variable (X), and
parameterized process invocation (A(p̄)). We will omit trailing occurrences of nil,
writing e.g. a instead of a.nil. The construct P1[P2 ] abstracts the various forms
of parallel composition commonly used in process calculi. Process variables can
support higher-order communication, namely the capability to exchange (the
code of) a process, and possibly execute it, by first adding an item containing
the process to a knowledge repository and then retrieving/withdrawing this item
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Fig. 2. A SCEL component

while binding the process to a process variable. We assume that A ranges over
a set of parameterized process identifiers that are used in recursive process def-
initions. We also assume that each process identifier A has a single definition
of the form A(f̄) � P where all free variables in P are contained in f̄ and all
occurrences of process identifiers in P are within the scope of an action prefixing.
p̄ and f̄ denote lists of actual and formal parameters, respectively.

Actions and targets. Processes can perform five different kinds of actions.
Actions get(T )@c, qry(T )@c and put(t)@c are used to manage shared knowl-
edge repositories by withdrawing/retrieving/adding information items from/to
the knowledge repository c. These actions exploit templates T as patterns to se-
lect knowledge items t in the repositories. They heavily rely on the used knowl-
edge repository and are implemented by invoking the handling operations it
provides. Action fresh(n) introduces a scope restriction for the name n so that
this name is guaranteed to be fresh, i.e. different from any other name previously
used. Action new(I,K, Π, P ) creates a new component I[K, Π, P ].

Action get may cause the process executing it to wait for the wanted element
if it is not (yet) available in the knowledge repository. Action qry, exactly like
get, may suspend the process executing it if the knowledge repository does not
(yet) contain or cannot ‘produce’ the wanted element. The two actions differ for
the fact that get removes the found item from the knowledge repository while
qry leaves the target repository unchanged. Actions put, fresh and new are
instead immediately executed, provided that their execution is allowed by the
policies in force.

Different entities may be used as the target c of an action. Component names
are denoted by n, n′, . . . , while variables for names are denoted by x, x′, . . . . The
distinguished variable self can be used by processes to refer to the name of the
component hosting them. The target can also be a predicate P or the name p of
a predicate, exposed as an attribute in the interface of the component, that may
dynamically change. A predicate could be a boolean-valued expression obtained
by applying standard boolean operators to the results returned by the evaluation
of relations between attributes and expressions. Attribute names occurring in a
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predicate refer to attributes within the interface of the object components, i.e.
components that are target of the communication action.

In actions using a predicate P to indicate the target (directly or via p), pred-
icates act as ‘guards’ specifying all components that may be affected by the
execution of the action, i.e. a component must satisfy P to be the target of the
action. Thus, actions put(t)@n and put(t)@P give rise to two different primitive
forms of communication: the former is a point-to-point communication, while the
latter is a sort of group-oriented communication.

The set of components satisfying a given predicate P used as the target of a
communication action can be considered as the ensemble with which the pro-
cess performing the action intends to interact. For example, the names of the
components that can be members of an ensemble can be fixed via the predicate
id ∈ {n,m, o}. When an action has this predicate as target, it will act on all
components named n, m or o, if any. Instead, to dynamically characterize the
members of an ensemble that are active and have a battery whose level is higher
than low, by assuming that attributes active and batteryLevel belong to the
interface of any component willing to be part of the ensemble, one can write
active = yes ∧ batteryLevel > low.

3 Self-expression in SCEL

In this section, we provide a step-by-step explanation of how a change in the
coordination pattern can be obtained in an ensemble of autonomic components
described using SCEL. A visual representation of the pattern workflow is shown
in Fig. 3, where requests are represented by red arrows (i.e., darker arrows in
b/w) and responses by the green arrows (i.e., lighter arrows in b/w). We first
present the workflow execution steps performed by the requester, that is a com-
ponent that requests the execution of a task, and, then, the steps performed by
each involved responder.

Changes in the external conditions should trigger a change in the coordination
pattern, since once a task has been selected, each different known implementa-
tion is likely to result in a different QoS. The QoS may depend on the current
conditions of the surrounding environment, therefore for each observable change
in the external conditions, a different coordination pattern could have to be
selected in order to obtain the desired QoS.

Suppose that one or more components can rely on a table like the one shown
in Table 2 in order to select the fittest implementation, once the whole ensemble
agreed on the task to solve. Each row of the table can be represented as an
item stored in the knowledge repository of the component. Conditions represent
all the important features regarding the surrounding environment in which the
ensemble is located; for instance, in case of a robot ensemble, everything that
can be perceived through sensors. Implementation, identified by an id, is the
actual coordination pattern chosen by the whole ensemble among the different
patterns of the specified task. The final column relates to the expected QoS.

To sum it up, each important change in the surrounding environment, i.e.
each change causing a different set of conditions ki to be satisfied, triggers a
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Fig. 3. Workflow of coordination patterns in SCEL

modification of the coordination pattern (i.e., implementation Ii for solving a
previously agreed task) to be adopted, so to carry out the specific task with
expected quality QoSi. A single component that is aware that a specific coor-
dination pattern is needed can trigger a dissemination request to all the other
components of the ensemble, as we explain in the rest of the section.

3.1 Requester Workflow

We introduce here the steps of the task requester workflow.
Step 1: Task Request. The requester component needs a specific task to be

carried out, so by using predicate Pr it contacts an ensemble of components that
could fulfill the task. In order to receive a response, the requester adds its own
identifier name (i.e., its component’s address) to the request by means of the
distinguished variable self, which allows a process to refer to the name of the
component hosting it. The requesting action is rendered in SCEL as follows:

put(“taskRequest”, “taskName”, QoSconstraints, self)@Pr

Notably, before sending the request item, variable self will be replaced by the
component identifier running the process performing the above put action.
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Table 2. Example table of Conditions-Implementation-Expected QoS related to a
specified task

Conditions Implementation Expected QoS

k1 I1 QoS1
t

k2 I2 QoS2
t

k3 I3 QoS3
t

...
...

...

The predicate Pr can be declared, e.g., as:

Pr � “taskName” ∈ providedTasks

where “taskName” is the name of the required task and providedTasks is an
attribute, exposed in the interface of every component, indicating the set of
tasks that the component can fulfil.

Step 2: Receipt of proposed implementations.The requester component
receives the information about implementations from the contacted components
and selects the one that best fits the wanted QoS. Before the selection phase,
the component retrieves the proposed implementations from its local repository
by means of actions of the form

get(“implementation”, ?implementationName , ?QoS , ?providers)@self

where variable implementationName is bound to the name of a retrieved imple-
mentation, QoS to the effective QoS of the implementation, and providers to the
data characterizing the providers of the implementation. The latter information
is used to define the predicate Pimplementation that will be used to contact the
ensemble of components providing the selected implementation.

Step 3: Activation of the selected implementation. By exploiting a ta-
ble like the one shown in Table 2, the requester selects the fittest implementation
according to the currently perceived environmental conditions, the wanted QoS
and the information retrieved and elaborated in Step 2. Then, it contacts the
selected ensemble by exploiting predicate Pimplementation . In SCEL, this request
can be represented as follows:

put(“executeImplementation”,
implementationName, arguments)@Pimplementation

The arguments part can be empty if the selected implementation does not need
contextual data.

3.2 Responder Workflow

We present now the steps performed by each responder component. The workflow
of a responder component is presented in Fig. 4. Each number shows in which
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Fig. 4. Steps of a responder component

step the component takes a specific action. Again, the red arrows represent the
requests and the green arrows the responses.

Step 1: Task request. Every component reached by a task request can get
it by performing the following action:

get(“taskRequest”, ?taskName, ?QoSconstraints, ?requester)@self

Then, it checks if the requested task (stored in variable taskName) is provided by
the component itself. If the component provides the task, the workflow execution
can directly go to Step 5; anyhow, this depends on the component’s selection
criterion. If the component does not provide the task, the execution evolves to
Step 2. In case of a ‘smart’ component, if the requested task is complex the
responder component can decide to split it in simpler sub-tasks and handle the
search of sub-task implementations.

Step 2: Requests dissemination. The responder component contacts an
ensemble of components that, according to its knowledge, provides an imple-
mentation for the requested task. This operation is carried out similarly to a
task request (see Step 1 in Section 3.1), but in this case it is used a different
predicate (Pd). The SCEL action used in this step is the following:

put(“taskRequest”, taskName, QoSconstraints , self)@Pd

Step 3: Responses collection. Each component that has disseminated a
request collects the responses from the contacted components. Notably, if the
component itself provides a solution, this is added to the collected responses.
The collection phase is driven by a criterion that depends on the application.
For example, some criteria are:

– wait for the first response and go to the next step;
– bounce immediately all the received responses to the requester (that is,

Step 4 is skipped);
– wait for k responses and go to the next step;
– wait for responses with a specific QoS value and go to the next step;
– wait for a specific amount of time and go to the next step.
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Step 4: Implementation selection. The responder component now selects
one or more implementations using some criterion. As in Step 3, the criterion
depends on the application. Some examples of criteria are:

– select the first k responses;
– take all the received responses;
– select the best j responses according to a specific parameter;
– select the responses with a specific QoS value.

In order to be selected, an implementation must be accompanied by a set
of additional information needed by the receiver to take its decision. Thus, an
implementation consists of its name, the associated QoS and the data needed
to define the predicate for contacting the partners that provide this particular
implementation. This information can be expressed as an item with the following
form:

(“implementation”, implementation name, QoS data, providers data)

Step 5: Response to the requester. After the selection phase, the compo-
nent will send the results of the selection to the requester, whose identifier was
bound to the variable requester at Step 1. Thus, for any implementation selected
at the previous step, an action of the following form is performed:

put(“implementation”,
implementation name, QoS data , providers data)@requester

4 An Illustrative Example: Multi-robot Exploration Task

In this section we briefly apply our approach to a specific example task. The task
is represented by having an ensemble of robots initially randomly distributed in
a confined space called arena. The robots have to distribute within the arena
and start exploring it. The task can be represented as follows:

– id: exploreArena;
– Input: ensemble randomly distributed in an unexplored arena;
– Output: explored arena;
– QoS: minimize the Time-To-Complete (minTTC ), equally distribute the

workload among the robots (eqDist).

Regarding the implementations, we can identify three main coordination pat-
terns for executing the task:

– master-slave (id: MS): a robot sends orders about areas to explore to a set
of slaves;

– peer-to-peer (id: p2p): robots will ideally subdivide the arena into areas and
then negotiate areas to explore;
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Fig. 5. A small ensemble is randomly distributed in the arena

– swarm (id: SW): all the robots randomly diffuse in the arena and mark areas
with digital pheromones. If a robot detects a pheromone, a repulsion effect
will take place, causing this latter robot to move to (and, therefore, explore)
other areas.

The previous task and its respective different implementations are depicted
in Fig. 5, where a small ensemble is randomly distributed in the arena. Dif-
ferent robots own different implementations. To own an implementation means
that a component has all the processes, in the form of dynamically activable
behaviors, that are needed in order to adopt a determined coordination pattern.
In the figure, the robots are grouped according to the processes relative to the
implementations they own: green for MS, yellow for p2p, and red for SW.

The requester actions are as follows.
Step 1: An external command or a contingency that reaches a single robot

enforces the action:

put(“taskRequest”, “exploreArea”, minTTC , self)@Pr

with Pr � “exploreArea” ∈ providedTasks.

Step 2:

get(“implementation”, ?implementationName , ?QoS , ?providers)@self

where variable implementationName gets one of the values MS, p2p, and SW ,
QoS indicates if that implementation aims at minimising TTC and/or to equally
distribute the workload among the robots and providers is bound to the IDs of all
the responding robots. These IDs are collected in order to define Pimplementation .

Step 3: At this point the requester robot knows which robot can execute the
exploreArea task and according to which implementation; it can then choose
the implementation that is likely to satisfy the desired QoS. To make this choice,
the robot can ideally rely on a table like the one in Table 3, where
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Table 3. exploreArea table of defined conditions

Conditions Implementation Expected QoS

k′ MS QoS′

k′′ p2p QoS′′

k′′′ SW QoS′′′

– k′: refers to the condition for optimally exploiting a master-slave approach,
such as the presence of at least one robot with additional sensing capabilities;

– k′′: refers to the conditions in which a peer-to-peer approach is possible, like
communication capabilities and easiness to identify areas before negotiation;

– k′′′: refers to the conditions in which it would be suitable to use a swarm
approach for the area exploration task, such as a sufficiently large number
of available units.

Depending on how these three patterns are implemented, we can think that
a swarm approach will perform better in terms of minimizing exploration time,
while a peer-to-peer negotiation could more equally distribute energy consump-
tion among the components. The master-slave approach could minimize Time-
To-Complete and distribute the workload more equally, but it is less robust than
the other ones because the master constitutes a single point of failure. Now, if
we assume that the environmental conditions k′ are sensed by the robots, the
requester can perform the action

put(“executeImplementation”,MS, “MasterID”)@Pimplementation

where MasterID identifies the robot that will take the role of master (according
to some internal logic of the component) and Pimplementation potentially involves
all the components whose identifiers have been collected in Step 2.

Once an implementation is selected by the requester, all the responding robots
will start following that coordination pattern. If a robot does not have the neces-
sary code embedded in its controller, we may think that a code migration process
will be executed. Moreover, if every ensemble component is able to communicate
with all other components, as in Fig. 5, the responder just executes Steps 1, 4
and 5 as described in Section 3.

5 Related Work

The first definitions of self-* properties can be traced back to the well-known
manifestos by IBM in [14] and [16] about autonomic computing. From the point
of view of the designer, a fairly complete survey on the efforts of designing
autonomic systems with traditional methodologies, mainly coming from standard
software engineering methodologies, can be found in [15]. In the design phase,
more challenges arise when the observed systems are actually composed of large
sets of potentially heterogeneous components. In this case indeed the blueprints
for adaptive feedback loops (like IBM’s MAPE-K [14]) have to be thought of
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as distributed, thus problems regarding inter-components coordination could
become to light. More recently, [4] shows a complete life cycle for the design and
development of ensembles of collaborative autonomic components.

Self-expression, as detailed in Section 1, is an additional instrument for the
designer of autonomic distributed systems. However, in previous literature, the
term self-expression is used for both describing reconfigurations at level of design
patterns [6] and for describing reconfigurations at the level of roles, behaviors
and interactions among components [7]. While a summary of possible real world
applications for self-expression is presented in [5], a modelling choice that can
help us understanding the concept of self-expression is the Holonic paradigm
for Multi-Agent Systems (HMAS, [28]). Holons, i.e. self-repeating structures or-
ganized in hierarchies, present specific interfaces called capacities. A capacity is
defined as a description of a know-how/service and can be associated to different
implementations (representing different ways of providing that capacity). In our
case, we can think that holons are single components, or subsets of the entire
ensemble, and that a coordination pattern is the implementation of a capacity.
To each implementation corresponds an organizational level in which behaviors,
roles (i.e. specific states inside the same organization) and interactions (i.e. how
parts in the same level influence each other) characterize a set of holons.

In the area of distributed artificial intelligence and multiagent systems [32],
the idea of dynamically forming ensembles or coalitions of agents – getting to-
gether to cooperatively work towards some collective goals – has been extensively
analyzed [13,17]. However, the accent of such researches has been mostly at an-
alyzing the different strategies and algorithms for forming the ensembles and
for controlling their cooperative behavior, rather than in the actual mechanisms
to model and implement ensembles of agents capable of expressing the needed
self-adaptive coordination scheme.

For what concerns SCEL, it combines the notion of ensemble with con-
cepts that have emerged from different research fields of Computer Science and
Engineering. Indeed, it borrows from software engineering the importance of
component-based design and of separation of concerns [20], from multi-agent sys-
tems the relevance of knowledge handling and of spatial representation
[27,3,29,2,9], from middleware and network architectures the importance of flex-
ibility in communication [22,8,18,25,23], from distributed systems’ security the
role of policies [24], from actors and process algebras the importance of minimal-
ity and formality [1,21]. Summing it up, the main distinctive aspect of SCEL is
the actual choice of the specific programming abstractions for autonomic com-
puting and their reconciliation under a single roof with a uniform formal seman-
tics. For a more complete account about SCEL and works related to it, we refer
the interested reader to [12].

6 Concluding Remarks

In this paper we have illustrated how to foster the self-adaptive features of an en-
semble of autonomic components by describing a previously introduced property
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called self-expression. More specifically, we have exploited SCEL as a language
for properly describing and modeling the mechanisms involved in the run-time
changes of coordination patterns. The rigorous grammar and the formal seman-
tics that characterize SCEL provide a valuable instrument for understanding
(1) how a change in the collaborative structure of the ensemble is performed
and (2) when a change of the coordination pattern is needed. Regarding (1),
we have presented a step-by-step description of inter-component interactions by
means of workflows, in which we stressed how different requests that may lead
to change of the coordination pattern can be disseminated among different parts
of the observed ensemble. Regarding (2), we showed how the selection of the
fittest pattern depends both on the current perceived environmental conditions
and on the expected QoS: new patterns will have to be selected according to the
dynamics of the variations in the external conditions and/or QoS. A simple, yet
explicative case study in robotics is demonstrated to further clarify the presented
concepts.

We are currently investigating how a component could autonomously extend
and modify the table regarding Conditions/Implementations/Expected QoS so
to provide more possibilities in terms of adaptivity. We will apply our approach
to other case studies, not necessarily in the robotics domain.

We also plan to investigate the use of SCEL components policies to drive
and regulate the selection of implementations and coordination patterns accord-
ing to possibly locally different criteria. Specifically, according to the approach
introduced in [19], we plan to use the FACPL language to express policies.

To showthe effectiveness of theproposedSCEL-based solution to self-expression
and provide a more concrete evidence of its benefits, we intend to implement the
approach considered in this work in jRESP [12], a Java runtime environment for
developing autonomic and adaptive systems according to the SCEL paradigm.
In particular, jRESP provides a simulation environment that enables statistical
model-checking, which will allow us to verify qualitative and quantitative proper-
ties of SCEL programs.
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