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Introduction

Welcome to the proceedings of ISoLA 2014, the 6th International Symposium
on Leveraging Applications of Formal Methods, Verification and Validation, that
was held in Imperial, Corfu (Greece) during October 8–11, 2014, endorsed by
EASST, the European Association of Software Science and Technology.

This year’s event was at the same time ISoLA’s tenth anniversary. It also
followed the tradition of its symposia forerunners held 2004 and 2006 in Cyprus,
2008 in Chalkidiki, and 2010 as well as 2012 in Crete, and the series of ISoLA
Workshops in Greenbelt (USA) in 2005, Poitiers (France) in 2007, Potsdam
(Germany) in 2009, in Vienna (Austria) in 2011, and 2013 in Palo Alto (USA).

As in the previous editions, ISoLA 2014 provided a forum for developers,
users, and researchers to discuss issues related to the adoption and use of rigor-
ous tools and methods for the specification, analysis, verification, certification,
construction, test, and maintenance of systems from the point of view of their dif-
ferent application domains. Thus, since 2004 the ISoLA series of events serves the
purpose of bridging the gap between designers and developers of rigorous tools
on one side, and users in engineering and in other disciplines on the other side.
It fosters and exploits synergetic relationships among scientists, engineers, soft-
ware developers, decision makers, and other critical thinkers in companies and
organizations. By providing a specific, dialogue-oriented venue for the discussion
of common problems, requirements, algorithms, methodologies, and practices,
ISoLA aims in particular at supporting researchers in their quest to improve the
usefulness, reliability, flexibility, and efficiency of tools for building systems, and
users in their search for adequate solutions to their problems.

The symposium program consisted of a collection of special tracks devoted to
the following hot and emerging topics:

• Statistical Model Checking, Past Present and Future (K. Larsen, A. Legay)
• Formal Methods and Analysis in Software Product Line Engineering (I.
Schäfer, M. ter Beck)

• Risk-Based Testing (M. Felderer, M. Wendland, I. Schieferdecker)
• Scientific Workflows (J. Kok, A. Lamprecht, K. Turner, K. Wolstencroft)
• Medical Cyber Physical Systems (E. Bartocci, S. Gao, S. Smolka)
• Evaluation and Reproducibility of ProgramAnalysis (M. Schordan,W. Lowe,
D. Beyer)

• Automata Learning (F. Howar, B. Steffen)
• Rigorous Engineering of Autonomic Ensembles (R. de Nicola, M. Hölzl, M.
Wirsing)

• Engineering Virtualized Services (R. Hähnle, E. Broch Johnsen)
• Security and Dependability for Resource Constrained Embedded Systems
(B. Hamid, C. Rudolph)

• Semantic Heterogeneity in the Formal Development of Complex Systems (I.
Ait Sadoune, J.P. Gibson)



VI Introduction

• Evolving Critical Systems (M. Hinchey, T. Margaria)
• Model-Based Code-Generators and Compilers (J. Knoop, W. Zimmermann,
U. Assmann)

• Processes and Data Integration in the Networked Healthcare (J. Mündler,
T. Margaria, C. Rasche)

The symposium also featured:

• Tutorial: Automata Learning in Practice (B. Steffen, F. Howar)
• RERS: Challenge on Rigorous Examination of Reactive Systems (F. Howar,
J. van de Pol, M. Schordan, M. Isberner, T. Ruys, B. Steffen)

• Doctoral Symposium and Poster Session (A.-L. Lamprecht)
• Industrial Day (A. Hessenkämper)

Co-located with the ISoLA Symposium was:

• STRESS 2014 - Third International School on Tool-Based Rigorous Engi-
neering of Software Systems (J. Hatcliff, T. Margaria, Robby, B. Steffen)

We thank the track organizers, the members of the Program Committee and
their subreferees for their effort in selecting the papers to be presented, the
local organization chair, Petros Stratis, and the Easyconference team for their
continuous precious support during the week as well as during the entire two-
year period preceding the events. We also thank Springer for being, as usual, a
very reliable partner for the proceedings production. Finally, we are grateful to
Horst Voigt for his Web support, and to Dennis Kühn, Maik Merten, Johannes
Neubauer, and Stephan Windmüller for their help with the online conference
service (OCS).

Special thanks are due to the following organizations for their endorsement:
EASST (European Association of Software Science and Technology), and our
own institutions, TU Dortmund, and the University of Potsdam.

October 2014 Tiziana Margaria
Bernhard Steffen
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Georg Göri, Einar Broch Johnsen, Rudolf Schlatte, and Volker Stolz

Fault Model Design Space for Cooperative Concurrency . . . . . . . . . . . . . . . 22
Ivan Lanese, Michael Lienhardt, Mario Bravetti,
Einar Broch Johnsen, Rudolf Schlatte, Volker Stolz, and
Gianluigi Zavattaro

Programming with Actors in Java 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Behrooz Nobakht and Frank S. de Boer

Contracts in CML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Jim Woodcock, Ana Cavalcanti, John Fitzgerald, Simon Foster, and
Peter Gorm Larsen

Distributed Energy Management Case Study: A Formal Approach to
Analyzing Utility Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
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Requirements Driven Data Warehouse Design: We Can Go Further . . . . . 588
Selma Khouri, Ladjel Bellatreche, Stéphane Jean, and
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The need is becoming evident for a software engineering research community
that focuses on the development and maintenance of Evolving Critical Systems
(ECS). The software and systems engineering community must concentrate its
efforts on the techniques, methodologies and tools needed to design, implement,
and maintain critical software systems that evolve successfully (without risk of
failure or loss of quality). Critical systems are systems where failure or mal-
function will lead to significant negative consequences. These systems may have
strict requirements for security and safety, to protect the user or others. Alter-
natively, these systems may be critical to the organization’s mission, product
base, profitability or competitive advantage.

Lero—the Irish Software Engineering Research Centre, along with many of its
collaborators has been leading the effort in defining and addressing an Evolving
Critical Systems research agenda, with more focus on predictability, quality, and
the ability to change. This work has been supported by a Dagstuhl workshop, a
special issue of Computer (May 2010), and now this special track at ISoLA 2014.

The fundamental research question underlying ECS is how do we design,
implement and maintain critical software systems. These systems must be highly
reliable while maintaining this reliability as they evolve. This must be done
without incurring prohibitive costs [3].

We must maintain the quality of critical software despite constant change in its
teams, processes, methods and toolkits. We must improve our existing software
development methodologies so that they facilitate and support the maintenance
of ECS.

We must specify what we want to achieve during an evolution cycle and
confirm that we have achieved the intended result (verification) and only the in-
tended result (validation). We must elicit and represent requirements for change
so that we ensure the changes are made correctly. In addition, we must develop
techniques for better estimating specific evolution activities before they begin,
so that we only attempt software change when we know that the benefits will
outweigh costs.

All of these requirements demand us to develop strategies that will make
model-drive automatic evolution a better alternative to manual change. Where
change cannot be automated, or where it is not appropriate to do so, we must
develop heuristics for determining that change is viable. When humans must
perform the change, we must develop support tools to mitigate risk.

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part I, LNCS 8802, pp. 1–3, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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Given the tensions between the need for software change and the implicit dan-
ger is changing critical software, the pressing issue is which are the appropriate
tools, processes and techniques to evolve critical systems in a cost-effective and
low-risk manner.

A concerted effort from the research community to overcome these challenges
is needed. The papers in this track address several dimensions of these needs:

– Statistical Abstraction Boosts Design and Test Efficiency of Evolving Critical
Systems [6] shows how to improve the efficiency of Monte Carlo simulations,
that are used to efficiently estimate critical properties of complex evolving
systems but are computationally intensive. In order to not repeat the costly
simulations every time something changes, the idea is to resort to behaviour-
preserving statistical abstractions of its environment. A frequency domain
metric helps to judge the a priori performance of an abstraction and provide
an a posteriori indicator to aid construction of abstractions optimised for
critical properties.

– Combinatory Logic Synthesizer [2] describes features and architecture of a
tool to automatically compose larger systems from repositories of compo-
nents based on combinatory logic with intersection types. It is used to sup-
port evolution by simplifying the synthesis for Object Oriented Software.

– Incremental Syntactic-Semantic Reliability Analysis of Evolving Structured
Workflows [1] addresses the flexibilization of workflow-based software com-
position, in order to cope with changing business processes. The proposed
incremental verification approach focuses on the probabilistic verification of
reliability requirements of structured workflows. It is based on a syntactic-
semantic approach that uses operator-precedence grammars enriched with
semantic attributes.

– DyWA Prototype-driven development of web applications with DyWA [4]
introduces an approach to the user-drivendevelopment of process-orientedweb
applications where application experts model the domain-specific data mod-
els according to their professional knowledge and understanding, and the busi-
ness processmodels that act on these automatically generated elementary data
operations. The resulting business processes are directly complete executable
prototypes of the resulting web application, without coding. [4]

– Domain-Specific Languages for Enterprise Systems [5] describes POETS,
a software architecture for enterprise resource planning systems that uses
domain-specific languages for specifying reports and contracts. This allows
succinct declarative specifications, and rapid adaptability and customisation
that supports run-time changes to the data model, reports and contracts,
while retaining full auditability.
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Statistical Abstraction Boosts Design and Test

Efficiency of Evolving Critical Systems

Axel Legay and Sean Sedwards

Inria Rennes – Bretagne Atlantique

Abstract. Monte Carlo simulations may be used to efficiently estimate
critical properties of complex evolving systems but are nevertheless com-
putationally intensive. Hence, when only part of a system is new or mod-
ified it seems wasteful to re-simulate the parts that have not changed. It
also seems unnecessary to perform many simulations of parts of a system
whose behaviour does not vary significantly.

To increase the efficiency of designing and testing complex evolving
systems we present simulation techniques to allow such a system to be
verified against behaviour-preserving statistical abstractions of its envir-
onment. We propose a frequency domain metric to judge the a priori
performance of an abstraction and provide an a posteriori indicator to
aid construction of abstractions optimised for critical properties.

1 Introduction

The low cost of hardware and demand for increased functionality make mod-
ern computational systems highly complex. At the same time, such systems are
designed to be extensible and adaptable, to account for new functionality, in-
creased use and new technology. It is usually cost-efficient to allow a system to
evolve piece-wise, rather than replace it entirely, such that over time it may not
respect its original specification. A key challenge is therefore to ensure that the
critical performance of evolving systems is maintained up to the point of their
obsolescence.

The basic challenge has been addressed by robust tools and techniques de-
veloped in the field of software engineering, which allow designers to specify and
verify the performance of complex systems in terms of data flow. The level of
abstraction of these techniques often does not include the precise dynamical be-
haviour of the implementation, which may critically affect performance. Hence,
to guarantee that the implementation of a system respects its specification it is
necessary to consider detailed dynamical models. In particular, it is necessary
to consider dynamics that specifically model the uncertainty encountered in real
deployment.

1.1 Our Approach

To address the problem of designing and testing evolving critical systems [16] we
focus on efficient ways to construct and formally verify large dynamical models

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part I, LNCS 8802, pp. 4–25, 2014.
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whose structure evolves over time. In particular, we consider systems comprising
components whose dynamics may be represented by continuous time Markov
chains (CTMC). CTMCs model uncertainty by probabilistic distributions and
may also include deterministic behaviour (i.e., that happens with probability 1
in a given state). Importantly, CTMCs allow the verification and quantification
of properties that include real time.

We consider verification of dynamical properties using model checking, where
properties are specified in temporal logic [6]. Importantly, such logics typic-
ally include an until operator, which expresses properties that include temporal
causality. To quantify uncertainty and to consider events in real time, numerical
model checking extends this idea to probabilistic systems, such as modelled by
CTMCs. Current numerical model checking algorithms are polynomial in the
size of the state space [1,6], but the state space scales exponentially with respect
to the number of interacting variables, i.e., the intuitive notion of the size of the
system. Techniques such as symbolic model checking [5], partial order reduction
[14], bounded model checking [3] and abstraction refinement [7] have made model
checking much more efficient in certain cases, but the majority of real systems
remain intractable.

Statistical model checking (SMC) is a Monte Carlo technique that avoids the
‘state explosion problem’ [6] of numerical model checking by estimating the prob-
ability of a property from the proportion of simulation traces that individually
satisfy it. SMC is largely immune to the size of the state space and takes ad-
vantage of Bernoulli random variable theory to provide confidence bounds for
its estimates [20,25]. Since SMC requires independent simulation runs, verific-
ation can be efficiently divided on parallel computing architectures. SMC can
thus offer a tractable approximate solution to industrial-scale numerical model
checking problems that arise during design or certification of a system. SMC
may nevertheless be computationally expensive with rare properties (which are
often critical) and when high precision is required.

SMC relies on simulation, so in this work we propose a technique of statist-
ical abstraction to boost the efficiency of simulation. We show how to construct
adequate statistical abstractions of external systems and we provide a corres-
ponding stochastic simulation algorithm that maintains existing optimisations
and respects the causality of the original system. We demonstrate that it is pos-
sible to make useful gains in performance with suitable systems. We provide a
metric to judge a priori that an abstraction is good and an indicator to warn
when the abstraction is not good in practice. Importantly, we show that a stat-
istical abstraction may be optimised for critical rare properties, such that overall
performance is better than simulation without abstraction.

The basic assumption of our approach is that we wish to apply SMC to a
system comprising a core system in an environment of non-trivial external sys-
tems. In particular, we assume that properties of the external systems are not
of interest, but that the environment nevertheless influences and provides input
to the core. In this context, we define an external system to be one whose be-
haviour is not affected by the behaviour of the core or other external systems.
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This may seem like a severe restriction, but this topology occurs frequently be-
cause it is an efficient and reliable way to construct large systems from modules.
A simple example is a network of sensing devices feeding a central controller. Our
case study is a complex biological signalling network that has this topology. To
consider more general interactions would eliminate the modularity that makes
statistical abstraction feasible.

Our idea is to replace the external systems with simple characterisations of
their output, i.e., of the input to the core system. To guarantee the correct
time-dependent behaviour of the environment, we find the best approach is to
construct an abstraction based on an empirical distribution of traces, created
by independent simulations of the external systems. During subsequent invest-
igation, the core system is simulated against traces chosen uniformly at random
from the empirical distributions of each of the external systems. The abstrac-
tions are constructed according to a metric based on frequency domain analysis.
We make gains in performance because (i) the external systems are simulated in
the absence of other parts of the system, (ii) the empirical distributions contain
only the transitions of the variables that affect the core and (iii) the empirical
distributions contain the minimum number of traces to adequately represent the
observed behaviour of the variables of interest.

SMC generally has very low memory requirements, so it is possible to take
advantage of the unused memory to store distributions of pre-simulated traces.
Such distributions can be memory intensive, so we also consider memory-efficient
abstractions using Gaussian processes, to approximates the external system on
the fly. We give results that demonstrate the potential of this approach, using
frequency domain analysis to show that it is possible to construct abstractions
that are statistically indistinguishable from empirical abstractions.

Although our idea is simple in concept, we must show that we can achieve a
gain in performance and that our algorithm produces correct behaviour. The first
challenge arises because simulation algorithms are optimised and SMC already
scales efficiently with respect to system size. We must not be forced to use
inefficient simulation algorithms and the cost of creating the abstractions must
not exceed the cost of just simulating the external systems. The second challenge
arises because, to address the first challenge, we must adapt and interleave the
simulation algorithms that are most efficient for each part of the system.

1.2 Related Work

Various non-statistical abstractions have been proposed to simplify the formal
analysis of complex systems. These include partial order reduction [14], abstract
interpretation [8] and lumping [19]. In this work we assume that such behaviour-
preserving simplifications have already been applied and that what remains is a
system intractable to numerical techniques. Such systems form the majority.

Approximating the dynamical behaviour of complex systems with statistical
processes is well established in fields such as econometrics and machine learning.
Using ideas from these fields, we show in Section 4.2 that abstracting external
systems as Gaussian processes may be a plausible approach for SMC. We do
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not attempt to survey the considerable literature on this subject here, but men-
tion some recent work [4] that, in common with our own, links continuous time
Markov chains, temporal logic and Gaussian processes. The authors of [4] ad-
dress a different problem, however. They use a Gaussian process to parametrise
a CTMC that is not fully specified, according to temporal logic constraints.

Of greatest relevance to our approach is that of [2], which considers a com-
plex heterogeneous communication system (HCS) comprising multiple peripheral
devices (sensors, switches, cameras, audio devices, displays, etc.), that commu-
nicate bidirectionally via a central server. The authors of [2] use SMC to verify
the correct communication timing of the HCS. To increase efficiency they replace
the peripherals with static empirical distributions of their respective communic-
ation timings, generated by simulating the entire system. In contrast to our
approach, (i) the quality of the statistical abstractions is not specified or meas-
ured, (ii) the distributions of the statistical abstractions are static (not varying
with time) and (iii) the statistical abstractions are generated by simulating the
entire system. The consequence of (i) is that it is not possible to say whether
the abstractions adequately encapsulate the behaviour of the peripherals. The
consequence of (ii) is that the abstractions do not allow for different behaviour
at different times: a sequence of samples from the abstraction does not in general
represent samples of typical behaviour, hence the abstraction does not preserve
the behaviour of the original system. The consequence of (iii) is that the ab-
stractions are generated at the cost of simulating the entire system, thus only
allowing significant gains with multiple queries. A further consequence of (ii),
in common with our own approach, is that the approach of [2] cannot model
bidirectional communication. This remains an open problem.

1.3 Structure of the Paper

In Section 2 we use the equivalence of classic stochastic simulation algorithms
to show how the simulation of a complex system may be correctly decomposed.
We then present the compositional stochastic simulation algorithm we use for
abstraction. In Section 3 we motivate the use of empirical distributions as ab-
stractions and show how they may be validated using frequency domain analysis.
In Section 3.2 we provide a metric to judge the a priori quality of an abstraction
and in Section 3.3 we provide an a posteriori metric to help improve the critical
performance of an abstraction. In Section 4 we give a brief overview of our biolo-
gical case study and present results using empirical abstractions. In Section 4.2
we present promising results using Gaussian process abstractions. We conclude
with Section 5. Appendix A gives full technical details of our case study.

2 Stochastic Simulation Algorithms

We consider systems generated by the parallel composition of stochastic guarded
commands over state variables. A state of the system is an assignment of values
to the state variables. A stochastic guarded command (referred to simply as a



8 A. Legay and S. Sedwards

command) is a guarded command [9] with a stochastic rate, having the form
(guard, action, rate). The guard is a logical predicate over the state, enabling
the command; the rate is a function of the state, returning a positive real-valued
propensity; the action is a function that assigns new values to the state variables.
The semantics of an individual command is a continuous time Markov jump
process, with an average stochastic rate of making jumps (transitions from one
state to another) equal to its propensity. The semantics of a parallel composition
of commands is a Markov jump process where commands compete to execute
their actions. An evolution of the system proceeds from an initial state at time
zero to a sequence of new states at monotonically increasing times, until some
time bound or halting state is reached. The time between states is referred to
as the delay. A halting state is one in which no guard is enabled or in which
the propensities of all enabled commands are zero. Since the effect is equivalent,
in what follows we assume, without loss of generality, that a disabled command
has zero propensity.

In the following subsections we use the equivalence of classic stochastic sim-
ulation algorithms to formulate our compositional simulation algorithm.

2.1 Direct Method

Each simulation step comprises randomly choosing a command according to its
probability and then independently sampling from an exponential distribution
to find the delay. Given a system containing n commands whose propensities
in a state are p1, . . . , pn, the probability of choosing command i is pi/

∑n
j=1 pj .

Command ν is thus chosen by finding the minimum value of ν that satisfies

U(0,
n∑

j=1

pj) ≤
ν∑

i=1

pi. (1)

U(0,
∑n

j=1 pj) denotes a value drawn uniformly at random from the interval

(0,
∑n

j=1 pj). The delay time is found by sampling from an exponential probab-
ility density with amplitude equal to the sum of the propensities of the competing
commands. Hence,

t =
− ln(U(0, 1])∑n

j=1 pj
. (2)

U(0, 1] denotes a value drawn uniformly at random from the interval (0, 1].

2.2 First Reaction Method

In each visited state a ‘tentative’ delay time is generated for every command, by
randomly sampling from an exponential distribution having probability density
function pie

−pit, where pi is the propensity of command i. The concrete delay
time of this step is set to the smallest tentative time and the action to execute
belongs to the corresponding command. Explicitly, the tentative delay time of
command i is given by ti = − ln(Ui(0, 1])/pi. Ui(0, 1] denotes sample i drawn
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uniformly at random from the interval (0, 1]. Commands with zero propensity
are assigned infinite times. It is known that the FRM is equivalent to the DM
[12], but for completeness we give a simple proof.

Let Pi = pie
−pit be the probability density of the tentative time ti of command

i. Since the tentative times are statistically independent, the joint probability
density of all tentative times is simply the product of the n individual densities
with respect to n time variables. The marginal density of tentative time ti when
it is the minimum is given by

Pmin
i =

ˆ ∞

ti

dt1 · · ·
ˆ ∞

ti

dti−1

ˆ ∞

ti

dti+1 · · ·
ˆ ∞

ti

dtn P1 · · ·Pn

= pie
−t

∑n
j=1 pj .

Since only one command can have the minimum tentative time (the probability
of two samples having the same value is zero), the overall density of times of the
FRM is the sum of the marginal densities

n∑
i=1

Pmin
i =

n∑
j=1

pje
−t

∑n
k=1 pk .

This is the same density used by the DM (2). �

2.3 Simulating Subsystems

A system described by a parallel composition of commands may be decomposed
into a disjoint union of subsets of commands, which we call subsystems to be
precise. By virtue of the properties of minimum and the equivalence of the DM
and FRM, in what follows we reason that it is possible to simulate a system by
interleaving the simulation steps of its subsystems, allowing each subsystem to
be simulated using the most efficient algorithm.

Using the FRM, if we generate tentative times for all the commands in each
subsystem and thus find the minimum tentative time for each, then the min-
imum of such times is also the minimum of the system considered as a whole.
This time corresponds to the command whose action we must execute. By the
equivalence of the DM and FRM, we can also generate the minimum tentative
times of subsystems using (2) applied to the subset of propensities in each sub-
system. Having chosen the subsystem with the minimum tentative time, thus
also defining the concrete delay time, the action to execute is found by applying
(1) to the propensities of the chosen subsystem. Similarly, we may select the
subsystem by applying (1) to combined propensities q1, . . . , qi, . . ., where each qi
is the sum of the propensities in subsystem i. Having selected the subsystem, we
can advance the state of the whole system by applying either the DM or FRM
(or any other equivalent algorithm) to just the subsystem.

We define an external subsystem to be a subsystem whose subset of state
variables are not modified by any other subsystem. We define a core subsystem
to be a subsystem that does not modify the variables of any other subsystem.
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Given a system that may be decomposed into a core subsystem and external
subsystems, it is clear that traces of the external subsystems may be generated
independently and then interleaved with simulations of the core subsystem. Sim-
ulations of the core subsystem, however, are dependent on the modifications to
its state variables made by the external subsystems.

By virtue of the memoryless property of exponential distributions, the FRM
will produce equivalent results using absolute times instead of relative delay
times. This is the basis of the ‘next reaction method’ (NRM, [10]). Precisely, if a
command is unaffected by the executed action, its tentative absolute time may be
carried forward to the next step by subtracting the absolute tentative time of the
selected command. Intuitively, the actions of commands that are momentarily
independent are interleaved with the actions of the other commands. Since,
by assumption, no action of the core or any other subsystem may affect the
commands of the external subsystems, it is correct to simulate the core subsystem
in conjunction with the interleaved absolute times of events in the simulations
of the external subsystems. Moreover, it is only necessary to include transitions
in the abstractions that modify the propensities of the commands in the core.

2.4 Compositional Stochastic Simulation Algorithm

Given a system comprising a core subsystem and external subsystems, the
pseudo-code of our compositional simulation algorithm is given in Algorithm
1. The basic notion is intuitive: at each step the algorithm chooses the event
that happens next. To account for the fact that the core is not independent of
the external subsystems, the algorithm “backtracks” if the simulated time of the
core exceeds the minimum next state time of the external subsystems.

Algorithm 1. Compositional stochastic simulation algorithm

Initialise all subsystems and set their times to zero
Generate the next state and time of all external subsystems
Let tcore denote the time of the core subsystem
while new states are required and there is no deadlock do

Let extmin be the external subsystem with minimum next state time
Let tmin be the next state time of extmin

while tcore < tmin do
Generate the next state and time of the core
Output the global state at time tcore

Disregard the last state and time of the core
Output the global state according to extmin at tmin

Generate the next state and time of extmin

Algorithm 1 does not specify how the next states of each subsystem will be
generated. Importantly, we have shown that it is correct to simulate external
subsystems independently, so long as the chosen simulation algorithms produce
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traces equivalent to those of the FRM and DM. Algorithm 1 thus provides the
flexibility to use the best method to simulate each part of the system. With
a free choice of algorithm, worst case performance for an arbitrary subsystem
of n commands is O(n) per step. If a subsystem has low update dependence
between commands, asymptotic performance could be as low as O(log2 n) using
the NRM [10].

Algorithm 1 is our abstraction simulation algorithm, using statistical abstrac-
tions to provide the next states of the external subsystems. In the case of em-
pirical distribution abstractions, this amounts to reading the next state of a
randomly selected stored trace. In the case of Gaussian process abstractions,
new states need only be generated when old states are consumed.

3 Empirical Distribution Abstraction

We propose the use of a relatively small number of stored simulation traces as
an empirical distribution abstraction of an external subsystem, where the traces
need only contain the changes of the output variables.

The output trace of a stochastic simulation is a sequence of states, each la-
belled with a monotonically increasing time. The width of the trace is equal to
the number of state variables, plus one for time. Each new state in the full trace
corresponds to the execution of one of the commands in the model. Typically,
the action of a single command updates only a small subset of the state vari-
ables. Hence, the value of any variable in the trace is likely to remain constant
for several steps. Given that the core system is only influenced by a subset of
the variables in the external system, it is possible to reduce the width of the ab-
straction by ignoring the irrelevant variables. Moreover, it is possible to reduce
the length of the trace by ignoring the steps that make no change to the output
variables.

We argue that we may adequately approximate an external subsystem by a
finite number of stored traces, so long as their distribution adequately “covers”
the variance of behaviour produced by the subsystem. To ensure that a priori the
empirical distribution encapsulates the majority of typical behaviour, in Section
3.2 we provide a metric based on frequency domain analysis. Recognising that
some (rare) properties may be critically dependent on the external system (i.e.,
depend on properties that are rare in the empirical distribution of the external
subsystem), in Section 3.3 we provide an indicator to alert the user to improve
the abstraction. The user may then create abstractions that favour rare (critical)
properties and perform better than standard simulation.

3.1 Frequency Domain Analysis

Characterising the “average” empirical behaviour of stochastic systems is chal-
lenging. In particular, the mean of a set of simulation traces is not adequate
because random phase shifts between traces cause information to be lost. Since
delay times between transitions are drawn from exponential random variables,
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two simulations starting from the same initial state may drift out of temporal
synchronisation, even if their sequences of transitions are identical. For example,
in the case of an oscillatory system, the maxima of one simulation trace may
eventually coincide with the minima of another, such that their average is a
constant non-oscillatory value.

To characterise the behaviour of our abstractions we therefore adopt the fre-
quency domain technique proposed in [23] and used in [17]. In particular, we
apply the discrete Fourier transform (DFT) to simulation traces, in order to
transform them from the time domain to the frequency domain. The resulting
individual frequency spectra, comprising ordered sets of frequency components,
may be combined into a single average spectrum. Once the behaviour has been
characterised in this way, it is possible to compare it with the average spectra
of other systems or abstractions.

The Fourier transform is linear and reversible, hence the resulting complex
frequency spectra (i.e., containing both amplitude and phase angle components)
are an adequate dual of what is seen in the time domain. Amplitude spectra
(without considering phase) are common in the physics and engineering literature
because the effects of phase are somewhat non-intuitive and phase is not in
general independent of amplitude (i.e., the phase is partially encoded in the
amplitude). We have found that the phase component of spectra generated by
simulations of CTMCs is uninformative (in the information theoretic sense) and
that by excluding the phase component we are able to construct an average
frequency spectrum that does not suffer the information loss seen in the time
domain. This provides a robust and sensitive empirical characterisation of the
average behaviour of a system or of a statistical abstraction.

Our technique can be briefly summarised as follows. Multiple simulation traces
are sampled at a suitable fixed time interval δt and converted to complex fre-
quency spectra using an efficient implementation of the DFT:

fm =

N−1∑
n=0

xne
−i 2πmn

N (3)

Here i denotes
√
−1, fm is the mth frequency component (of a total of N)

and xn is the nth time sample (of N) of a given system variable. By virtue of
consistent sampling times, the N frequencies in each complex spectrum are the
same and may be combined to give a mean distribution. Since the DFT is a
linear transformation, the mean of the complex spectra is equivalent to the DFT
of the mean of the time series. Hence, to avoid the information loss seen in the
time domain, we calculate the mean of the amplitudes of the complex spectra,
thus excluding phase.

The values of N and δt must be chosen such that the resulting average spec-
trum encapsulates all the high and low frequencies seen in the interesting beha-
viour. In practice, the values are either pre-defined or learned from the behaviour
seen in a few initial simulations, according to the following considerations.

Nδt is the overall time that the system is observed and must obviously be
sufficiently long to see all behaviour of interest. Equivalently, (Nδt)−1 is the
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minimum frequency resolution (the difference between frequencies in the spec-
trum) and must be small enough to adequately capture the lowest interesting
frequency in the behaviour. To make low frequency spectral components appear
more distinct (and be more significant in the average spectrum), it may be use-
ful to make Nδt much longer than the minimum time to see all behaviour (e.g.,
double), however this must be balanced against the cost of simulation and the
cost of calculating (3) (typically O(N logN)).

The quantity (2δt)−1 defines the maximum observable frequency (the Nyquist
frequency) and must be chosen to capture the highest frequency of interest in
the behaviour. The theoretical spectrum of an instant discrete transition has
frequency components that extend to infinity, however the amplitude of the
spectrum decreases with increasing frequency. In a stochastic context, the highest
frequency components are effectively hidden below the noise floor created by the
stochasticity. The practical consequence is that δt may be made much greater
than the minimum transition time in the simulation, without losing information
about the average behaviour.

In summary, to encapsulate the broadest range of frequencies in the average
spectrum it is generally desirable to decrease δt and increase Nδt. However,
setting the value of δt too low may include a lot of uninteresting noise in the
spectrum, while setting Nδt too large may include too much uninteresting low
frequency behaviour. In both cases there is increased computational cost.

Fig. 1. Frequency spectra of protein
complex (C) in genetic oscillator [24]
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Fig. 2. Convergence of empirical distri-
bution abstractions

To quantify similarity of behaviour, in this paper we use the discrete space
version of the Kolmogorov-Smirnov (K-S) statistic [21] to measure the distance
between average amplitude spectra. Intuitively, the K-S statistic is the maximum
absolute difference between two cumulative distributions. This gives a value in
the interval [0,1], where 0 corresponds to identical distributions. Heuristically, we
consider two distributions to be “close” when the K-S statistic is less than 0.1.
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Fig. 1 illustrates our technique of frequency domain analysis applied to 1000 sim-
ulations of the protein complex (denoted C) in the genetic oscillator of [24].

3.2 Adequacy of Empirical Abstractions

In Fig. 1 we see that spectrum of an individual simulation trace is noisy, but
the mean is apparently smooth. In fact, the average frequency spectrum com-
prises discrete points, but because of random phase shifts between simulation
traces of CTMCs, there is a strong correlation between adjacent frequencies.
To formalise this, using the notation of (3), we denote a frequency magnitude

spectrum as
⋃N−1

m=0 |fm|, where |fm| is the magnitude of frequency component m.
The mean spectrum of an empirical abstraction containing M simulation traces

is thus written
⋃N−1

m=0
1
M

∑M
j=1 |f

(j)
m |, where |f (j)

m | is the magnitude of frequency
component m in spectrum j. Using the notion of coefficient of variation (CV,
defined as the standard deviation divided by the mean), to quantify the a priori
adequacy of an empirical distribution abstraction we define the metric

CV(

N−1⋃
m=0

CV(

M⋃
j=1

|f (j)
m |)) (4)

The CV is a normalised measure of dispersion (variation). CV(
⋃M

j=1 |fm|) is
then the normalised dispersion of the data that generates average spectral point
m. Normalisation is necessary to give equal weight to spectral points having
high and low values, which have equal significance in this context. Equation
(4) is the normalised dispersion of the normalised dispersions of all the spectral
points. The outer normalisation aims to make the metric neutral with respect
to subsystems having different absolute levels of stochasticity.

Figure 2 illustrates (4) applied to the empirical abstractions of our case study
(NF-kBn and p53a), as well as to the data that generated Fig. 1. Noting the
logarithmic x-scale, we observe that the curves have an apprent “corner”, such
that additional simulations eventually make little difference. The figure suggests
that 100 simulation traces will be sufficient for the empirical abstractions of our
case study. An empirical abstraction of protein complex C appears to require at
least 200 simulation traces.

3.3 Critical Abstractions

Ourmetric allows us to construct empirical abstractions that encapsulate a notion
of the typical behaviour of an external system, in an incremental way. However,
certain properties of the core system may be critically dependent on behaviour
that is atypical in a “general purpose” abstraction. To identify when it is necessary
to improve an empirical abstraction, we provide the following indicator.

We consider the empirical abstraction of an arbitrary external subsystem and
assume that it contains NA independently generated simulation traces. After
performing SMC with N simulations of the complete system, we observe that n



Statistical Abstraction Boosts Design and Test Efficiency 15

satisfy the property, giving n/N as the estimate of the probability that the sys-
tem satisfies the property. Each simulation requires a sample trace to be drawn
from the empirical distribution, hence n samples from the empirical abstraction
were “successful”. These n samples are not necessarily different (they cannot be
if n > NA), so by nA we denote the number of different samples that were suc-
cessful. Assuming N to be sufficiently large, we can say that if nA/NA > n/N the
external subsystem is relatively unimportant and the abstraction is adequate.
Intuitively, the core “restricts” the probability of the external subsystem. If
nA/NA ≤ n/N , however, the property may be critically dependent on the ex-
ternal subsystem, because a smaller proportion of the behaviour of the subsystem
satisfies the property than the system as a whole. This condition indicates that
the abstraction may not be adequate for the particular property. Moreover, if
the absolute value of nA is low, the statistical confidence of the overall estim-
ate is reduced. To improve the abstraction, as well as the overall efficiency with
respect to the property, we borrow techniques from importance splitting [18].

The general idea is to increase the occurrence of traces in the abstraction that
satisfy the property, then compensate the estimate by the amount their occur-
rence was increased. If the property of the subsystem that allows the core system
to satisfy the property is known (call it the ‘subproperty’), we may construct an
efficient empirical abstraction that guarantees nA/NA ≥ n/N in the following
way. SMC is performed on the subsystem using the subproperty, such that only
traces that satisfy the subproperty are used in the abstraction. Any properties
of the core using this abstraction are conditional on the subproperty and any es-
timates must be multiplied by the estimated probability of the subproperty with
respect to the subsystem (call this the ‘subprobability’). In the case of multiple
subsystems with this type of abstraction, the final estimate must be multiplied
by the product of all subprobabilities.

Using these ideas it is possible to create a set of high performance abstractions
optimised to verify rare critical behaviour of complex evolving systems.

4 Case Study

Biological systems are an important and challenging area of interest for formal
verification (e.g., [15]). The challenges arise from complexity, scale and the lack
of complete information. In contrast to the verification of man-made systems,
where it is usual to check behaviour with respect to an intended specification,
formal verification of biological systems is often used to find out how they work
or to hypothesise unknown interactions. Hence, it is not the actual system that
evolves, but the model of the system, and the task is to ensure that modifications
do not affect the critical function of existing parts.

To demonstrate our techniques we consider a biological model of coupled os-
cillatory systems [17]. The model pre-dates the present work and was construc-
ted to hypothesise elemental reactions linking important biological subsystems,
based on available experimental evidence. A core model of the cell cycle receives
external oscillatory signals from models of protein families NF-κB and p53. Al-
though the semantics of the model is chemical reactions, it is nevertheless typical
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of many computational systems. The model contains 93 commands and a crude
estimate of the total number of states is 10174 (estimated from the range of
values seen in simulations). An overview of the model is given in Appendix A,
with precise technical details given in Tables 1 to 5. A more detailed biological
description is given in [17].

4.1 Results

The external subsystems in our biological case study are themselves simplific-
ations of very much larger systems, but we are nevertheless able to make sub-
stantial improvements in performance by abstraction. The improvements would
be greater still if we were to consider the unsimplified versions of the external
subsystems. The following numerical results are the average of hundreds of sim-
ulations and may be assumed to be within ±5% of the extreme values.

The behavioural phenomena in the case study require simulations of approx-
imately 67 hours of simulated time, corresponding to approximately 72 × 106

simulation steps in the complete model. Of this, approximately 40 × 106 steps
are due to the p53 system and approximately 20×106 steps are due to the NF-κB
system. The abstracted traces of p53a are approximately 5.2× 106 steps, while
the abstracted traces of NF-kBn are approximately 1.3 × 106 steps. Hence, an
equivalent simulation using these abstractions with Algorithm 1 requires only
about 18.5 × 106 steps. Moreover, because we remove 41 commands from the
model, each step takes approximately 52/93 as much time. Overall, we make a
worthwhile seven-fold improvement in simulation performance.

On the basis of the results presented in Fig. 2, we suppose that 100 traces
are adequate for our empirical distributions. This number is likely to be more
than an order of magnitude fewer than the number of simulations required for
SMC, so there is a saving in the cost of checking a single property, even when the
cost of creating the abstractions is included. Subsequent savings are greater. By
considering only the output variables p53a and NF-kBn, the size of each trace is
reduced by factors of approximately 27 and 85, respectively. Without compres-
sion, the empirical abstractions for p53a and NF-kBn occupy approximately 2.4
and 0.6 gigabytes of memory, respectively. This is tractable with current hard-
ware, however we anticipate that a practical implementation will compress the
empirical abstractions using an algorithm optimised for fast decompression, e.g.,
using the Lempel-Ziv-Oberhumer (LZO) library.1

4.2 Gaussian Process Abstraction

In this section we report promising results using a memory-efficient form of
statistical abstraction based on Gaussian processes. If we can generate traces
that are statistically indistinguishable from samples of the original distribution,
we can avoid the storage costs of an empirical distribution. Gaussian processes
are popular in machine learning [22] and work by constructing functions that

1 www.oberhumer.com/opensource/lzo

www.oberhumer.com/opensource/lzo
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Fig. 3. Traces of NF-kBn generated by
simulation and abstraction

Fig. 4. Average spectra of simulation
and abstraction of NF-kBn

model the time evolution of the mean and covariance of multivariate Gaussian
random variables.

Since we wish to judge our abstraction with frequency domain analysis, we
construct a simple process that generates sampled traces directly. This is suffi-
cient to reveal the potential and shortfalls of the approach. We assume a train-
ing set of M sampled simulation traces of the output variable of a subsystem,

denoted
⋃M

j=1(x
(j)
n )N−1

n=0 , where x
(j)
n is the nth sample of variable x in simula-

tion trace j. From this we construct a sequence of Gaussian random variables

(Xn)
N−1
n=1 , where Xn ∼ N (Meanj∈{1,...M}(x

(j)
n −x

(j)
n−1),Variancej∈{1,...,M}(x

(j)
n −

x
(j)
n−1)). EachXn thus models the change in values from sample n−1 to sample n.

A trace (y)N−1
n=0 may be generated from this abstraction by setting y0 = x0 (the

initial value) and iteratively calculating yn = yn−1 + ξn, where ξn is a sample
from Xn.

To judge the performance of our abstraction we measure the K-S distance
between empirical distributions generated by the original system and by the
Gaussian processes. We then compare this with the K-S distance between two
empirical distributions generated by the original system (the ‘self distance’). In
this investigation all distributions contain 100 traces. With infinitely large distri-
butions the expected self distance is zero, but the random variation between finite
distributions causes the value to be higher. With 100 traces the self distances
for p53a and NF-kBn are typically 0.02± 0.01. The K-S distances between the
Gaussian process abstractions and empirical distributions of simulations form
the original systems are typically 0.03 for p53a and 0.3 for NF-kBn. Using this
metric, the p53a abstraction is almost indistinguishable from the original, but
the abstraction for NF-kBn is not adequate. Figs. 3 and 4 illustrate the per-
formance of the Gaussian process abstraction for NF-kBn. At this scale the
p53a abstraction is visually indistinguishable from the original and is therefore
not shown.
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5 Challenges and Prospects

Empirical distribution abstractions are simple to construct, provide sample traces
that are correct with respect to the causality of the systems they abstract, but are
memory-intensive. In contrast, Gaussian processes offer a memory-efficient away
to abstract external systems, but do not implicitly guarantee correct causality and
their parameters must be learned from no fewer simulations than would be re-
quired for an empirical distribution. Despite this, Gaussian processes seem to offer
the greatest potential for development, as a result of their scalability.

Our preliminary results suggest that it may be possible to create very good
abstractions with Gaussian processes, but that our current simplistic approach
will not in general be adequate. Our ongoing work will therefore investigate more
sophisticated processes, together with ways to guarantee that their behaviour re-
spects the causality of the systems they abstract. Their increased complexity will
necessarily entail more sophisticated learning techniques, whose computational
cost must also be included when considering efficiency.

A substantial future challenge is to adapt our techniques to systems with
bidirectional communication between components. In this context empirical dis-
tributions are unlikely to be adequate, since the abstractions would be required
to change in response to input signals. One plausible approach is to construct
Gaussian processes parametrised by functions of input signals.
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A Model of Coupled Oscillatory Systems

Fig. 5 illustrates the direct effect that one chemical species in the model has on
another. Each node represents a state variable, whose value records the instant-
aneous number of molecules of a chemical species. The edges in the graph are
directional, having a source and destination node. Influence that acts in both
directions is represented by a bi-directional edge. Positive influence implies that
increasing the number of source molecules will increase the number of destina-
tion molecules. The presence of an edge in the diagram indicates the existence
of a command in which the source species variable appears in the rate and the
destination species variable appears in the action. The variables that we use to
abstract the external systems, namely p53a and NF-kBn, are highlighted in red.

Fig. 5. Direct influence of variables in the case study. External systems are shown on
grey backgrounds. Variables in red are used in abstractions.

The precise technical details of the model are given in Tables 1 to 5. Table
2 gives the reaction scheme of the core system (the cell cycle). Tables 1 and 3
contain the reactions schemes of the external systems (NF-κB and p53, respect-
ively). Table 4 gives the initial numbers of molecules of each species and Table
5 gives the values of the constants used.

The model is given in terms of chemical reactions for compactness and to
be compatible with previous work on these systems. Reactions have the form
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reactants → products, where reactants and products are possibly empty multisets
of chemical species, described by the syntax ∅ | S { “+” S }, in which ∅ denotes
the empty multiset and S is the name of a chemical species. The semantics of
reactions assumes that the system contains a multiset of molecules. A reaction is
enabled if reactants is a subset of this multiset. An enabled reaction is executed
by removing reactants from the system and simultaneously adding products.

The rate at which a reaction is executed is stochastic. The majority of the
reactions in our model are ‘elemental’ [11], working by ‘mass action kinetics’
according to fundamental physical laws [13]. Hence, under the assumption that
the system is ‘well stirred’ [13], the rate at which a reaction is executed is given
by the product of some rate constant k and the number of ways that reactants
may be removed from the system. Elemental reactions in our model are thus
converted to commands according to the following table.

Reaction pattern Command (guard, rate, action)

∅ → A (true, k, A = A + 1)

A → B (A > 0, kA, A = A − 1;B = B + 1)

A → B + C (A > 0, kA, A = A − 1;B = B + 1;C = C + 1)

A + B → C (A > 0 ∧ B > 0, kAB,A = A − 1;B = B − 1;C = C + 1)

A + B → C + D (A > 0 ∧ B > 0, kAB,A = A − 1;B = B − 1;C = C + 1;D = D + 1)

A few of the reactions are abstractions of more complex mechanisms, using
Michaelis-Menten dynamics, Hill coefficients or delays. The semantics of their
execution is the same, so the guard and action given above are correct, but the
rate is given by an explicit function. Delays appear in the rate as a function of
a molecular species S and a delay time τ . The value of this function at time t is
the number of molecules of S at time t− τ .

The reaction rate constants and initial values have been inferred using ODE
models that consider concentrations, rather than numbers of molecules. To con-
vert the initial concentrations to molecules, they must be multiplied by a dis-
cretisation constant, alpha, having the dimensions of volume. Specifically, alpha
is the product of Avogadro’s number and the volume of a mammalian cell. The
rate constants must also be transformed to work with numbers of molecules.
The rate constants of reactions of the form ∅ → · · · must be multiplied by alpha.
The rate constants of reactions of the form A + B → · · · must be divided by al-
pha. The rate constants of reactions of the form A → · · · may be used unaltered.
In the case of explicit functions that are the product of a rate constant and a
number of molecules raised to some power h, the value of the constant must be
divided by alphah−1.
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Table 1. NF-κB reactions

Reaction Rate constant or [function]

IkB → ∅ kdeg1
IkB → IkBn ktp1
IkB + NFkB → IkBNFkB la4
IkBt → IkB + IkBt ktr1
IkBn → IkB ktp2
IkBn + NFkBn → nIkBNFkB la4
IkBn → ∅ kdeg1
nIkBNFkB → IkBn + NFkBn kd4
nIkBNFkB → IkBNFkB k2
nIkBNFkB → NFkBn kdeg5
IkBNFkB → nIkBNFkB k3
IkBt → ∅ ktr3
∅ → IkBt tr2a

∅ → IkBt [tr2×(NFkBn)h]
IkBNFkB → IkB + NFkB kd4
IkBNFkB → NFkB kdeg4
IKK + IkB → IKKIkB la1
IKK + IkBNFkB → KIkBNFkB la7
IKK → ∅ k02
IKKIkB → IKK + IkB kd1
IKKIkB → IKK kr1
IKKIkB + NFkB → KIkBNFkB la4
KIkBNFkB → IKK + IkBNFkB kd2
KIkBNFkB → IKKIkB + NFkB kd4
KIkBNFkB → NFkB + IKK kr4
NFkB → NFkBn k1
NFkBn → NFkB k01
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Table 2. Cell cycle reactions

Reaction Rate constant or [function]

CycDCDK46 → CDK46 R1
CycDCDK46 + p16 → CycDCDp16 R29
CycDCDK46 + p27 → CycDCDp27 R6
CycDCDK46 → CDK46 + CycD R21b
CycD + CDK46 → CycDCDK46 R21a
CDK46 → ∅ R32
CycACDK2 + E2F → CycACDK2 R15
∅ → E2F R43
E2F → E2F + E2F R42
CycE → ∅ R26
E2F → CycE + E2F R2
CycECDK2 → CDK2 R3
CycECDK2 → CDK2 + CycE R24b
CDK2 + CycE → CycECDK2 R24a
CDK2 + CycA → CycACDK2 R25a
CDK2 → ∅ R33
CycA → ∅ R27
E2F → CycA + E2F R4
CycACDK2 → CDK2 R5
CycACDK2 → CycA + CDK2 R25b
p27 + CycECDK2 → CycECDp27 R7
p27 + CycACDK2 → CycACDp27 R8
∅ → p27 R20
CycECDp27 + Skp2 → Skp2 + CycECDK2 R9
CycACDp27 + Skp2 → Skp2 + CycACDK2 R10
Skp2 → ∅ R34
∅ → Skp2 R31
Rb → ∅ R18
Rb + E2F → E2FRb R11
∅ → Rb R17
Rbpppp → Rb R16
CycDCDK46 + E2FRb → E2FRbpp + CycDCDK46 R12
CycDCDp27 + E2FRb → E2FRbpp + CycDCDp27 R13
CycDCDp21 + E2FRb → E2FRbpp + CycDCDp21 R41
E2FRbpp + CycECDK2 → CycECDK2 + Rbpppp + E2F R14
CycDCDp16 → p16 R19
p16 → ∅ R23
∅ → p16 R28
CycD → ∅ R22
E2F → CycD + E2F R44
∅ → CycD R30a
p21 + CycDCDK46 → CycDCDp21 R35a
p21 + CycECDK2 → CycECDp21 R36a
p21 + CycACDK2 → CycACDp21 R37a
∅ → p21 R40a
CycDCDp21 → p21 + CycDCDK46 R35b
CycECDp21 → p21 + CycECDK2 R36b
Skp2 + CycECDp21 → CycECDK2 + Skp2 R38
CycACDp21 → p21 + CycACDK2 R37b
Skp2 + CyCACDp21 → CycACDK2 + Skp2 R39
∅ → CycD [R30b×(NFkBn)h]
p53a → p21 + p53a R40b
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Table 3. p53 reactions

Reaction Rate constant or [function]

p53i + Mdm2 → Mdm2 kap53i
∅ → p53i kbp53i
p53a + Mdm2 → Mdm2 kap53a
p53i → p53a [w×(Sn/(Sn+Ts))×p53i]
ARF + p53a → 2 p53a R46
Mdm2 → ∅ kaMdm2
Mdm2 + ARF → ∅ R48
∅ → Mdm2 [kbMdm2×delay(p53a,tau)]
I → ∅ kai
∅ → I [kbi×(delay(p53a,tau)+delay(p53i,tau))]
ARF → ∅ R47
∅ → ARF R45a
S + I → I kas
∅ → S kbs×e

Table 4. Initial number of molecules

Species Amount Species Amount

p53i 0 CycECDK2 0
p53a 0.1×alpha CDK2 2.0×alpha
Mdm2 0.15×alpha CycA 0
I 0.1×alpha CycACDK2 0
S 0 p27 1.0×alpha
ARF 0 CycDCDp27 0.001×alpha
IkB 0 CycECDp27 0
IkBn 0 CycACDp27 0
nIkBNFkB 0 Skp2 1.0×alpha
IkBt 0 Rb 1.0×alpha
IkBNFkB 0.2×alpha E2FRb 1.95×alpha
IKK 0.2×alpha E2FRbpp 1.0×10−3×alpha
IKKIkB 0 Rbpppp 1.02×alpha
KIkBNFkB 0 CycDCDp16 1.0×10−5×alpha
NFkB 0 p16 1.0×alpha
NFkBn 0.025×alpha CycD 0
CycDCDK46 0 p21 0
CDK46 5.0×alpha CycDCDp21 0
E2F 0 CycECDp21 0
CycE 0 CycACDp21 0
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Table 5. Values of constants

Name Value Name Value Name Value

alpha 100000 R8 7.0× 10−2/alpha R35b 5.0 × 10−3

h 2 R9 0.225/alpha R36a 1.0 × 10−2/alpha
kdeg1 0.16 R10 2.5× 10−3/alpha R36b 1.75 × 10−4

ktp1 0.018 R11 5.0× 10−5/alpha R37a 7.0 × 10−2/alpha
ktp2 0.012 R12 1.0× 10−4/alpha R37b 1.75 × 10−4

ktr1 0.2448 R13 1.0× 10−2/alpha R38 0.225/alpha
kd4 0.00006 R14 0.073/alpha R39 2.5 × 10−3/alpha
la1 0.1776/alpha R15 0.022/alpha R40a 5.0 × 10−5×alpha
kd1 0.000888 R16 5.0× 10−8 R40b 1.0 × 10−3

la4 30/alpha R17 5.0× 10−5×alpha R41 1.0 × 10−2/alpha
k2 0.552 R19 5.0× 10−2/alpha R42 1.0 × 10−4

k3 0.00006 R20 1.0× 10−4×alpha R43 5.0 × 10−5×alpha
tr2a 0.000090133×alpha R21a 2.0× 10−3/alpha R44 3.0 × 10−4

ktr3 0.020733 R21b 8.0× 10−3 R45a 8.0 × 10−5×alpha

tr2 0.5253/alpha(h−1) R22 7.5× 10−3 R45b 0.008
kdeg4 0.00006 R23 5.0× 10−3 R46 2.333 × 10−5/alpha
kdeg5 0.00006 R24a 8.0× 10−3/alpha R47 0.01167
la7 6.06/alpha R24b 3.9× 10−3 R48 1.167 × 10−5/alpha
kd2 0.095 R25a 8.0× 10−3/alpha kbp53i 0.015×alpha
kr1 0.012 R25b 4.0× 10−3 kbMdm2 0.01667
kr4 0.22 R26 2.5× 10−3 kap53i 2.333/alpha
k1 5.4 R27 5.0× 10−4 kaMdm2 0.01167
k01 0.0048 R28 2.0× 10−4×alpha tau 80
k02 0.0072 R29 5.0× 10−4/alpha kap53a 0.02333/alpha
R1 5.0× 10−6 R30a 0.004×alpha kas 0.045/alpha

R2 4.5× 10−3 R30b 0.9961/alpha(h−1) kbi 0.01667
R3 5.0× 10−3 R31 5.0× 10−4×alpha kai 0.01167
R4 2.5× 10−3 R32 8.0× 10−4 kbs 0.015×alpha
R5 5.0× 10−4 R33 8.0× 10−4 e 1
R6 5.0× 10−4/alpha R34 9.0× 10−4 n 4
R7 1.0× 10−2/alpha R35a 5.0× 10−4/alpha w 11.665

Ts 1× alphan
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Abstract. We present Combinatory Logic Synthesizer (CL)S, a type-
based tool to automatically compose larger systems from repositories of
components. We overview its underlying theory, combinatory logic with
intersection types, and exemplify its application to synthesis. We describe
features and architecture of the tool and our plans for its ongoing and
future development. Finally, we present some use cases in ongoing work,
especially in the context of synthesis for Object Oriented Software.

1 Introduction

Combinatory logic synthesis [1] is a type-theoretic approach towards synthesis
from specified components in a repository. Components are represented by typed
combinators (X : ρ) where X is the component name and ρ is an intersection
type [2] representing both the compontent’s actual interface type and semantic
information describing the component’s intended usage. The question whether
there is a composition e of components in the repository such that e satisfies a
certain goal specification τ corresponds to the relativized inhabitation problem in
combinatory logic — given a set Γ of typed combinators and a goal type τ , does
there exist an applicative term e (referred to as an inhabitant) of type τ under the
type assumptions in Γ ? Algorithms solving the relativized inhabitation problem
for certain combinatory logics have been given [3,4,5], thus laying the foundation
for a tool-realization of combinatory logic synthesis.

In this paper we report on current work on and on experiments with Com-
binatory Logic Synthesizer, (CL)S,1 an end-to-end prototypical tool, providing
user-support in design of repositories, a core inhabitation routine based on the
above mentioned inhabitation algorithms, optimizing heuristics of the inherently
complex core algorithms, and means of translating synthesized compositions into
executable code in various implementation languages.

The paper is structured as follows. Section 2 develops background information
on combinatory logic synthesis, provides an overview of related work and dis-
cusses a motivating example. In Section 3 we describe the architecture and the
current state of development of (CL)S. In Section 4 we discuss ongoing work and
plans for future development. Section 5 concludes by presenting some examples
from ongoing work on applications of our tool, particularly within the context
of Object Oriented software by means of Java Virtual Machine languages.

1 http://www-seal.cs.tu-dortmund.de/seal/pages/research/cls_en.shtml
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2 Background and Related Work

The work presented in this paper is closely related to current movements2 to-
wards component-based synthesis, where synthesis is considered relative to a
given collection (library, repository) of components rather than aiming at con-
struction of a system “from scratch”. Possible benefits of relativizing synthesis to
component collections include the exploitation of design intelligence and abstrac-
tion (in the form of abstract component interfaces) embodied by components.
Moreover, modern development scenarios increasingly depend on extended us-
age of components. However, for component-oriented synthesis to work well,
components presumably need to be designed for composition.

Synthesis approaches can be distinguished by the model of computation as
well as the methods of specification assumed. One line of work is characterized
by the usage of temporal logic and automata theoretic models, whereas another
is characterized by the usage of deductive methods in program logics (e.g., [6])
and in type theory. A recent comprehensive introduction and survey on program
synthesis is presented in [7] providing a categorization scheme for synthesis meth-
ods. Within this scheme combinatory logic synthesis is classifiable as functional
synthesis with semantic candidate spaces.

Recently, component-orientation was promoted in the automata theoretic ap-
proach by Lustig and Vardi [8]. Combinatory logic synthesis was proposed in [1]
as a deductive, type-based approach to synthesis from components in a reposi-
tory, where repositories are regarded as type environments in combinatory logic
[9]. Component interfaces are specified semantically using intersection types [2].
The logical basis for combinatory logic synthesis is the relativized inhabitation
problem, in that algorithms for solving this problem can be used to automatically
synthesize component compositions (inhabitants).

The pioneering work on synthesizing linear process models (sequential compo-
sition of calls to components) in [10] combines temporal constraints with types
and subtyping to capture taxonomic hierarchies. Combinatory logic synthesis is
related to adaptation synthesis via proof counting discussed in [11,12], where
semantic types are combined with proof search in a specialized proof system. In
particular, we follow the approach in [11,12] in using semantic specifications at
the interface level, where semantic specifications are assumed to correctly de-
scribe properties of the component (checking that this is indeed so is regarded
as an orthogonal issue). The idea of adaptation synthesis in [11] is related to
our notion of composition synthesis, however our logic is different, our design
of semantic types with intersection types is novel, and the algorithmic methods
are different. Semantic intersection types can be compared to refinement types
[13], but semantic types do not need to stand in a refinement relation to imple-
mentation types. Still, refinement types are a great source of inspiration for how
semantic types can be used in specifications in many interesting situations.

2 http://www.dagstuhl.de/de/programm/kalender/semhp/?semnr=14232.

http://www.dagstuhl.de/de/programm/kalender/semhp/?semnr=14232
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2.1 Composition Synthesis

In its minimal form, composition synthesis consists of a single logical rule:

Γ � F : τ ′ → τ Γ � G : τ ′

Γ � (F G) : τ
(→E)

The (→E)-rule (viewed logically, under the Curry-Howard isomorphism, this is
modus ponens) forms the simplest logical model of applicative composition of
named component specifications (X : ρ) ∈ Γ from a repository Γ , satisfying
goal τ . With fixed Γ and τ as part of the input, the inhabitation problem is the
decision problem

∃e. Γ � e : τ?

— does there exist a composition e from repository Γ with Γ � e : τ? An
inhabitation algorithm is used to construct or synthesize a composition e from
Γ and τ . The inhabitation problem is the foundation for automatic synthesis
and is inherently component-oriented.

In a type-oriented approach to composition synthesis, types (τ) take the role
of specifications of named components represented by terms (e):

Types τ, τ ′ ::= a | α | τ → τ ′

Terms e, e′ ::= X | (e e′)

Types are constructed from constants (a), variables (α), or function types (τ →
τ ′). Terms are constructed by using named components or combinators X and
using application of e to e′, (e e′). An additional rule (var) is added to allow
schematic instantiations of combinator types (component specifications) using
substitutions.

Substitution S

Γ, (X : τ) � X : S(τ)
(var)

Γ � e : τ ′ → τ Γ � e′ : τ ′

Γ � (e e′) : τ
(→ E)

From a logical point of view, this system is a Hilbert-style presentation of a min-
imal propositional logic based on implicit schematism (var) and modus ponens
(→E).

2.2 Example for Combinatory Logic Synthesis

The idea of combinatory logic synthesis is demonstrated by the following example
presenting a scenario for tracking containers in logistics (see also [1] where this
example was introduced). Figure 1 presents a repository Γ containing existing
(API-)functions for tracking containers, where R is the data-type real. Function
O returns a tracking object TrObj. Given a tracking object TrObj, function Tr

returns a triple of which the first entry is a coordinate of the tracking object,
followed by time information, and the current temperature of the tracking object.
The function pos projects the position and time from such a triple. Function cdn

projects the coordinate and functions fst and snd project the first resp. second
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O : TrObj
Tr : TrObj → D((R, R), R, R)
pos : D((R, R), R, R) → ((R, R), R)
cdn : ((R, R), R) → (R, R)
fst : (R, R) → R

snd : (R, R) → R

tmp : D((R, R), R, R) → R

cc2pl : ((R, R), R) → ((R, R), R)
cl2fh : R → R

Fig. 1. Repository Γ containing functions for tracking containers in logistics

entry in a pair like a coordinate. Function tmp returns the temperature. Two
additional conversion functions cc2pl and cl2fh are contained, that convert
Cartesian to polar coordinates and temperature from Celsius to Fahrenheit.

Figure 2 presents a taxonomy that describes semantic concepts, noted in blue,
in our scenario. Dashed lines denote a has-a relationship whereas continuous lines
denote an is-a relationship. In particular, Trackdata contains a position Pos and
a temperature Temp that can be measured in Celsius Cel or Fahrenheit Fh.

Trackdata
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�����

Pos

� � � � � � � �
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Fig. 2. Taxonomy describing semantic concepts for tracking containers.

None of the semantic information is explicitly included in Γ but only in its
verbose description. A central idea in our approach to combinatory logic syn-
thesis is that intersection types, introduced in [2], can be used to semantically
refine the specification of functions contained in the repository Γ , for example
by adding abstract conceptual information from a taxonomy. Figure 3 presents
such a refined repository C. Native types, such as R, are intersected with seman-
tic types, such as Cel or Fh, to specify meaning, e. g. in cl2fh the type R∩Cel
describes a temperature represented by a real number w.r.t. the Celsius scale
whereas the type R∩Fh describes a temperature represented by a real number
w.r.t. the Fahrenheit scale. Type variables (α, α′) facilitate generic combinators
like tmp which is applicable to temperatures in both measurement systems.

We can now find a meaningful composition that returns a temperature in
Fahrenheit by constructing the inhabitant cl2fh (tmp (Tr O)) of the type R∩Fh,
formally:
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O : TrObj
Tr : TrObj → D((R, R)∩Cart , R∩Gpst , R∩Cel)
pos : D((R, R)∩α, R∩α′, R) → ((R, R)∩α, R∩α′)∩Pos
cdn : ((R, R)∩α, R)∩Pos → (R, R)∩α
fst : ((R, R)∩Coord → R)∩(Cart → Cx)∩(Polar → Radius)
snd : ((R, R)∩Coord → R)∩(Cart → Cy)∩(Polar → Angle)
tmp : D((R, R), R, R∩α) → R∩α
cc2pl : (R, R)∩Cart → (R, R)∩Polar
cl2fh : R∩Cel → R∩Fh

Fig. 3. Semantically refined repository C

C � cl2fh (tmp (Tr O)) : R∩Fh
In general, the situation in combinatory logic synthesis is the following. We

are given a repository of component names Xi (regarded as combinator symbols
in combinatory logic) with associated implementations Ci of type τi in a native
implementation language L1

X1 � C1 : τ1, . . . , Xn � Cn : τn

Thus, a combinator symbol Xi is used as a placeholder for a concrete implemen-
tation Ci. In addition, we are given an associated repository as a combinatory
type environment

C = {X1 : φ1, . . . , Xn : φn}
where φi represents τi augmented by semantic information describing the type
of the implementation of Ci in L1. Then, we ask for combinatory compositions
e with C � e : φ such that e satisfies, in addition, the property of implemen-
tation type correctness requiring that e be a well-typed program in L1 after
substituting all occurring combinator symbols Xi with their corresponding im-
plementations Ci.

Since repositories (Γ , C) may change, we consider the relativized inhabitation
problem: given C and φ, does there exist e such that C � e : φ? Later on, we will
use the abbreviating notation C � ? : φ. In the tracking example above such an
e = cl2fh (tmp (Tr O)) is the synthesized composition for the request φ = R∩Fh.
Even in simple types, relativized inhabitation is undecidable (as explained in
[1], this can be traced to the Linial-Post theorem [14]) and can be considered a
Turing-complete logic programming language for generating compositions (see
[1]). Here, C can be viewed as a logic program, the types of combinators (X :
φ) ∈ C are its rules, φ its input goal, and search for inhabitants its execution
semantics.

2.3 Staged Extension

In order to flexibilize combinatory logic synthesis, staged composition synthesis
(SCS) was proposed in [5]. SCS introduces a metalanguage, L2, in which L1-code
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can be manipulated. The metalanguage is essentially the λ�→
e -calculus of Davies

and Pfenning [15] which introduces a modal type operator, �, to inject L1-types
into the type-language of L2. Intuitively, a type �τ can be understood to describe
L1-code of L1-type τ . A second repository containing composition components
with implementations in L2 is introduced. Then, synthesis automatically com-
poses both L1- and L2-components, resulting in more flexible and powerful forms
of composition since complex L1-code-maniualations, including substitutions of
code into L1-templates, may be encapsulated in composition components. It is
a nice consequence of the operational semantic theory of λ�→

e that computa-
tion can be staged. For a composition e of type �τ , it is guaranteed that all
L2-operations can be computed away in a first composition time stage, leaving a
well typed L1-program of type τ to be executed in a following runtime stage.

3 Combinatory Logic Synthesizer

In order to make composition synthesis feasible and accessible for experiments,
and for application to realistic synthesis scenarios, we implemented the synthesis
tool (CL)S. The core synthesis algorithm implements an optimized version of the
inhabitation procedure [4] in MicrosoftTM F# and C# using the MicrosoftTM

.NET-framework. In the following we discuss various features of (CL)S. Note
also, that we extended (CL)S for conducting synthesis within SCS (cf. Sec. 2.3).

3.1 Tool

Input: To allow a user to specify component repositories, we defined an in-
put language for (CL)S which is closely related to the mathematical notation
of intersection types. To aid the user in specifying repositories (CL)S provides
editor-extensions (for MicrosoftTM Visual Studio 2013 and Notepad++) with
syntax-highlighting, code completion, etc. For convenience and more concise rep-
resentation of types we extended the input language by covariant type construc-
tors, e.g., the type (R, R) represents a pair of real numbers where (·, ·) is a type
constructor for a pair of types. Furthermore, we allow variable kinding, where
type variables, e.g. α in the example in Sect. 2.2, can be kinded by restricting
the range of values (type constants) that the variable can be instantiated with,
e.g., αtemp∼>{Cel ,Fh} states that αtemp can be instantiated by the type con-
stants Cel or Fh (but not by Cart). In order to represent taxonomic structures
(cf. Sec. 2.2) on the semantic concepts describing intended usage of various com-
ponents, (CL)S allows for explicit introduction of atomic subtyping constraints,
e.g., int ≤ R, expressing the fact that the type of integers is a subtype of the
type of reals.

Processing: Processing of a synthesis question can be represented as a graph.
This graph is called execution graph and contains two kinds of nodes. The first
kind represents the choices of the algorithm and the other kind represents addi-
tionally generated synthesis tasks. Edges represent control flow. We implemented
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a data structure for internal representation of the execution graph where the
nodes are decorated with additional information concerning performance, pro-
cessing, etc. In contrast to the algorithm presented in [4], which only decides
if there is a solution to a given synthesis request, (CL)S also enumerates all (if
the solution space is finite — otherwise the user is informed that cyclic solu-
tions have been found) possible solutions. This last feature of (CL)S is essential
concerning the applicability of composition synthesis.

(CL)S supports two different processing modes that have both been compiled
for Windows as well as for Linux (using Mono). These are a batch-mode pro-
cessing a synthesis request from a local file and a webservice-mode for synthesis
requests on a remote server. The webservice exposes endpoints offering access via
SOAP and REST. To this end, there are two hosting solutions of the webservice.
First, there is a stand-alone server, mainly intended for usage in experiments.
Second, there is a hosted version for application servers (IIS), intended for usage
in industrial settings.

[Distance, R]?

distance

[Cart, P([R; R])]?

cdn

[Pos, P([[P([R; R]), Cart]; R])]?

pos

D([[Cart, P([R; R])]; [Gpst, R]; R])?

TrV

TrObj?

O

cdn

[Pos, P([[P([R; R]), Cart]; R]), P([[P([R; R]), Polar]; R])]?

[Cart, P([R; R])]?

cdn

[Pos, P([[P([R; R]), Cart]; R])]?

pos

D([[Cart, P([R; R])]; [Gpst, R]; R])?

cdn

[Pos, P([[P([R; R]), Cart]; R]), P([[P([R; R]), Polar]; R])]?

Fig. 4. Example of Execution Graph

Output: (CL)S provides various output formats depending on the intended
usage of the results. First and foremost, there exists an XML-representation
of the solutions to a given synthesis request for further processing. Also note
that the XML-representation, among others, includes a human readable repre-
sentation. Second, it is possible to export the execution graph corresponding
to a given synthesis request to various formats, which can then be displayed
visually (cf. Fig. 4). This feature is particularly important for an in depth analy-
sis of a synthesis process. It supports both with regard to error-detection in the
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design of repositories as well as for conducting experiments, allowing to apply
graph-analysis and -processing tools.

Finally, various configurable logging functionalities are provided by (CL)S
which is a crucial feature with regard to debugging and analyzing experiments.

3.2 Optimizations

To increase efficiency of the synthesis algorithmwe implemented various optimiza-
tions that aim for acceleration of synthesis with respect to orthogonal aspects.
First, in order to allow for scale-up and scale-out, we moved from a sequential im-
plementation of the core synthesis algorithm to a concurrent one. Parallelization
of the algorithm was necessary to exploit computation facilities in contemporary
multi-core and cluster computing environments. Concurrency of the algorithm is
facilitated by the above mentioned execution graph controlling synthesis. Paral-
lelization needed sophisticated algorithm engineering as well as distributed tech-
niques, like work-stealing queues and distributed message queues.

It has been shown that the simplest decision problems underlying combina-
tory logic synthesis (relativized inhabitation in bounded combinatory logic) is su-
perexponential (Exptime-complete for monomorphic combinator types [3] and
(k+2)-Exptime-complete for k-bounded combinatory logic [4]). Thus, heuris-
tics for optimizing inhabitation is essential for application in practical scenarios.
We implemented one such heuristic (which is based on the type theoretical prob-
lem of intersection type matching [16]) which formulates a necessary condition
(referred to as “lookahead-strategy”) for newly generated synthesis requests to
be solvable. We experimentally compared the impact of the lookahead-strategy
to the performance of the initial synthesis-algorithm of (CL)S. One experiment
does arithmetic in Zn and is parameterized by two integers, m and n (cf. Sec. 4.1
for details). Timing results for both implementations and different values of n
and m can be found in Tab. 1 (cf. Sec. 4.1).

Inhabitation SCS

Working Queue

Execution Graph

Controller Thread Pool

Worker

Worker

InhabOptimized

Success Cache Fail Cache

Fig. 5. Dependency Diagram for (CL)S
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Using caches for successful and failed synthesis requests showed improvement.
Cycle-detection in the execution graph allows for avoidance of cyclic inhabitants.

3.3 Architecture

The core architecture of (CL)S is depicted in Fig. 5. It is a modular master-slave
architecture with a controller as master and thread-pooled slaves processing
the synthesis requests with modular algorithms (e.g. the lookahead algorithm
InhabOptimized). A work-stealing queue contains the synthesis tasks for each
slave and the execution graph is the computation and synchronization data-
structure. The success and fail caches are used by the controller for pruning
unnecessary computations. The main challenges in design and implementation
are concurrency issues imposed by the distribution of the algorithm.

4 Current and Future Work

Currently, our (CL)S implementation is undergoing major structural changes.
We integrate, on a more fundamental level, existing features that are currently
added-on, such as type constants, variable kinding and covariant type construc-
tors, and we tune the integration for performance.

In the current redesign cycle we emphasize maintainability of (CL)S and ex-
tend it by new features. From a user perspective, the most important new feature
extends cycle detection to cycle analysis. In many applications, cyclic structures
both on type- and on term level are essential for meaningful constructions. The
current framework presents the whole solution space, including cycles, in a con-
cise data structure. From a performance perspective, the single most important
new feature extends the lookahead-strategy by utilizing inherent monotonicity
of several inhabitation subroutines.

We simplify existing type theoretic algorithms and improve their cooperation
by introducing pre- and postconditions to enhance overall efficiency of (CL)S.
Additionally, we prove tight upper complexity bounds of several type theoretic
problems that are utilized by the inhabitation procedure. During the analysis of
underlying type theoretic problems, we identify combinatorial subroutines (e.g.
minimal set cover in inhabitation) and separate them from the main algorithm.
The new theoretical insights lead to a more profound understanding of inhabi-
tation performance limits as well as improvement in specialized cases. The next
step forward will be to develop a more systematic theory of optimization for
composition synthesis.

In future work we plan to further extend the theoretic foundation of our
framework needed to expand it into important application areas such as object-
oriented code synthesis.

Although we work with complexity classes far above polynomial time, our
approach has proven to be feasible in many practical scenarios of limited size.
Therefore, it is essential to analyze and understand the sources of complexity and
non-determinism in (CL)S. In order to improve practical performance, we plan
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to algorithmically inspect and restructure user provided repositories to detect
special cases. Furthermore, we see great potential in developing further heuristics
to improve the lookahead-strategy.

4.1 Experimental Evaluation

In order to evaluate heuristic optimizations, we created a parameterized repos-
itory Γm

n for arithmetic in Zn, exploiting the fact that finite function tables
can be coded by means of intersection types [2]. Γm

n consists of the identity-,
successor- and predecessor-function in Zn as well as an m-ary combinator to
compose Zn-functions. For a Zn-function coded by an intersection type τn, we
ask the inhabitation question Γm

n �? : τn, i.e., we synthesize the particular Zn-
function. The runtime performance of the initial (CL)S implementation, of a
version of (CL)S using lookahead, and of the redesigned (CL)S are captured in
Tab. 1. Practically infeasible tasks are marked with “–”. The lookahead-strategy
provides a considerable improvement over the initial implementation, making
inhabitation questions that often appear in practice solvable. Further experience
with the framework led to substantial performance gains with the redesigned
(CL)S which allows for new practical applications.

Table 1. Experimental Runtime Performance for Γm
n

(n,m) Initial (CL)S Lookahead-(CL)S Redesigned (CL)S

(2, 3) 210 ms 111 ms 93 ms
(3, 2) 12504 ms 124 ms 98 ms
(3, 3) – 354 ms 110 ms
(4, 4) – 7.5 ∗ 106 ms 121 ms
(7, 7) – – 1063 ms
(10, 10) – – 54250 ms
(43, 3) – – 8813 ms

4.2 Interfaces and Language Abstraction

The staged extension described in Sect. 2.3 is a valuable addition to our tool.
Thus, it is an important part of our work to find encodings of L1-languages which
are suitable for synthesis using L2-implementations. Our current language for L2-
implementations is the λ�→

e -calculus extended with a string based templating
mechanism. We treat L1-code fragments as strings and allow L2-implementations
to concatenate them and to fill in variables. After reduction no template vari-
ables are left and the resulting string is embedded into the XML reply format.
This approach is easy to understand and very powerful, but it can be desirable
to use tools more specialized for the structure of a given L1-language. Practi-
cal applications show the diversity of possible L1-targets. They include classical
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programming languages like F# or Java, workflow description languages like
BPMN and even highly specialized domain specific languages for tasks such
as the configuration of nodes in a cloud computing environment. To gain a
more structured view than the one provided by plain strings, without losing
generality, we plan to change our templating system to use XML encodings of
abstract L1-syntax trees. This would not only allow to reason about reusable
combinators for tree transformations, but also enables a standardized interface
for postprocessors. These can parse the synthesized XML code fragment and
translate it to any desirable representation. They can be implemented in any
high level programming language and make use of the best available tools for
the task at hand. The XML encoding would allow to incorporate a limited form
of static model checking directly into the synthesis process: additionally to type
checking, XPath could be used to assert structural properties of the generated
L1-code and to sort out unwanted solutions early.

Figure 6 summarizes our envisioned synthesis pipeline. It starts with users
providing source code fragments, possibly even as diagrams. These fragments
are then (semi-automatically) translated to typed combinators with XML frag-
ments and templating abstractions over XML fragments as implementations.
Types (depicted as puzzle pieces for L1 and puzzle pieces with holes for L2)
are intersected with user provided semantic types that guide the inhabitation
process (depicted as colors). The typed combinator repository is then used as
input for SCS. Combinators for L2 are reduced and the result will be XML frag-
ments describing the abstract syntax tree of the synthesized programs. In a final
step those syntax trees are postprocessed to real programs or possibly graphical
representations of real programs. Pre- and postprocessing steps require careful
design tailored for each individual inhabitation language. They build the bridge
to the problem independent interface exposed by our inhabitation web service
depicted as the SCS screw driver tool.

4.3 Software Engineering Process

The software engineering process plays a major role in the design of a complex
tool like (CL)S. Currently, we mainly develop research prototypes with a focus
on understandable and correct implementations demonstrating our theoretical
results. In future, we plan to introduce a more formal development model in
order to facilitate the growth of our team and to react to the short periods in
which student members join us for their own project work. To this end, we plan
to turn our research demonstrations into integration tests, which are automati-
cally executed by a continuous integration server. This also involves an automatic
build and deployment process, which has the additional benefit of simplifying
cloud installations. Furthermore, we are currently reevaluating existing and cre-
ating new guidelines for our code structure. We explicitly leave open release and
versioning policies to be able to catch up with new research results.
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Fig. 6. Visualization of our envisioned process pipeline



38 J. Bessai et al.

5 Applications

(CL)S has already been applied to a variety of synthesis scenarios.

1. ArchiType3, a rapid-prototyping tool for software architects, uses (CL)S
for synthesizing software connectors in software architectures from a reposi-
tory of connector components. ArchiType has been used in synthesizing and
generating C#-code for an enterprise resource planning system and for an
eCommerce system. These are relatively large-scale and realistic scenarios.

2. Combinatory process synthesis [17] uses (CL)S (with SCS) to generate de-
ployable BPMN 2.0 workflows from a repository of process components.

3. (CL)S has also been used to synthesize control programs for LEGO R© NXT
robots from a repository of atomic and complex control components [18].

4. In [19], (CL)S has been used to synthesize configurations for virtual ma-
chine images in cloud computing (OpenNebula) and corresponding deploy-
ment code for instantiating these images from a repository containing various
configuration components and comprehensive IT infrastructure information.

As a final illustration we discuss in more detail one particular synthesis sce-
nario to which (CL)S (with SCS) has been applied. The Java Virtual Machine
(JVM) is host to various languages which are of interest as synthesis targets
(L1). We have successfully generated Dependency Injection configurations for
the Spring framework [20] and a current research focus is to support synthesis
with Java mixins [21]. The importance of JVM languages led to the design of a
Scala based framework to programmatically generate repositories from reflected
Java classes. This framework provides an embedded domain specific language
(EDSL) designed as an extensible abstract interpreter. The EDSL exposes two
syntactic views on the specification of repositories. For use in algorithms all spec-
ification components (e.g., arrows in type signatures) are available as verbosely
named methods, adding the respective component to the repository which is cur-
rently built. To describe a repository in a human readable form, the EDSL also
exposes a syntactic view, which closely resembles the mathematical specification
language. Interpretation results are calls to the (CL)S webservice. They trigger
inhabitation requests using the specified repository and goal type. Scala allows
to seamlessly interoperate with other JVM languages and its expressive type
system can detect many specification errors at compiletime, even prior to the
creation of a specific repository. We aim to provide practically usable interfaces
for programmers not familiar with type theory. Listing 1 shows the interface to be
implemented to create a synthesis request for a Dependency Injection candidate.
When passed to our Scala based preprocessing framework class representations
returned by the methods of an instance of this interface are analyzed via reflec-
tion. Using the repository specification EDSL, typed combinators are created for
each existing object in the library context and for all constructor-, setter- and
factory-methods of the library classes. For example, a class EmployeeController
with a constructor requiring a data access object (DAO) to obtain information
about employees, triggers the creation of the following combinator

3 http://www-seal.cs.tu-dortmund.de/seal/pages/research/architype_en.shtml

http://www-seal.cs.tu-dortmund.de/seal/pages/research/architype_en.shtml
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EmployeeController :(�Scope ∩ α) → �(EmployeeDAO∩ α)

→ �(EmployeeController∩ α ∩ setterTarget)

EmployeeController :λScope. letbox scope = Scope in

λDAO. letbox dao = DAO in

box "<bean xsi:type=’cls:Constructor’>"

"<name>EmployeeController</name>"

"<typeName>EmployeeController</typeName>"

"<scope>"scope"</scope>"

"<argument>"

"<typeName>EmployeeDAO</typeName>"

"<reference>"dao"</reference>"

"</argument>"

"</bean>"

1 public interface InhabitationRequest {

2 public Class [] libraryClasses ();

3 public ConfigurableApplicationContext

libraryContext ();

4 public String classNameExclusionRegexp();

5 public Class targetType ();

6 public String targetScope ();

7 }

Listing 1. Interface to request Spring Dependency Injection candidates

The combinator takes two arguments, a scope supplying lifecycle information
to Spring, and the data access object. It operates on boxed L1-terms, where L1
is an XML based representation of Spring Beans translatable to a Dependency
Injection configuration via postprocessing. Its result is an L1-term describing
how to instantiate an EmployeeController. Semantic constant setterTarget

in the combinator result type indicates that setter-methods of the object may
be used to inject more dependencies into it. The above mentioned extended
λ�→
e -implementation already creates XML, but still treats it as strings, making

it a candidate for the planned enhancements described in Sect. 4.2. Synthesis
results for the described scenario and two given existing database connections
are available online4.

Compared to earlier versions [20], our recent developments allow more suc-
cinct combinator types, because cyclic scenarios can be addressed within the
algorithm. Repository creation as well as calls to the webservice are autom-
atized and wrapped into a Maven5 plug-in, enabling the synthesis of Spring
configurations at the click of a mouse button.

4 http://www-seal.cs.tu-dortmund.de/seal/pages/research/DI-example.zip
5 http://maven.apache.org/

http://www-seal.cs.tu-dortmund.de/seal/pages/research/DI-example.zip
http://maven.apache.org/
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Abstract. Modern enterprise information systems are built following the para-
digm of service-orientation. This paradigm promotes workflow-based software
composition, where complex business processes are realized by orchestrating
different, heterogenous components. These workflow descriptions evolve contin-
uously, to adapt to changes in the business goals or in the enterprise policies. Soft-
ware verification of evolving systems is challenging mainstream methodologies
and tools. Formal verification techniques often conflict with the time constraints
imposed by change management practices for evolving systems. Since changes
in these systems are often local to restricted parts, an incremental verification
approach could be beneficial.

In this paper we focus on the probabilistic verification of reliability require-
ments of structured workflows. We propose a novel incremental technique based
on a syntactic-semantic approach. Reliability analysis is driven by the syntac-
tic structure (defined by an operator-precedence grammar) of the workflow and
encoded as semantic attributes associated with the grammar. Incrementality is
achieved by coupling the evaluation of semantic attributes with an incremental
parsing technique. The approach has been implemented in a prototype tool; pre-
liminary experimental evaluation confirms the theoretical speedup over a non-
incremental approach.

1 Introduction

Enterprise information systems are realized nowadays by leveraging the principles of
service-oriented architecture [31]. This paradigm fosters the design of systems that rely
on workflow-based composition mechanisms, like those offered by BPEL, where com-
plex applications are realized by integrating different, heterogenous services, possibly
from different divisions within the same organization or even from third-party organi-
zations. These workflows often realize crucial business functions; their correctness and
reliability is of ultimate importance for the enterprises.

Moreover, these systems represent an instance of open-world software [4] where,
because of the intrinsic dynamicity and decentralization, service behaviors and inter-
actions cannot be fully controlled or predicted. These characteristics, when bundled
with the inherent need for enterprise software to evolve (e.g., to adapt to changes in the
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business goals or in the enterprise policies), require to rethink the various engineering
phases, for dealing with the phenomenon of software evolution; in this paper we focus
on the verification aspect.

Incremental verification has been suggested as a possible approach to dealing with
evolving of software [36]. An incremental verification approach tries to reuse as much
as possible the results of a previous verification step, and accommodates within the
verification procedure—possibly in a “smart” way—the changes occurring in the new
version. By avoiding re-executing the verification process from scratch, incremental
verification may considerably reduce the verification time. This may be appealing for
adoption within agile development processes. Incremental verification may speed up
change management, which may be subject to severe time constraints. Moreover, incre-
mental verification helps software engineers reason on and understand the effects and
the implications of changes.

In this paper we propose a novel incremental technique for performing probabilistic
verification of reliability requirements of structured workflows. Our technique follows
a syntactic-semantic approach: reliability verification is driven by the structure of the
workflow (prescribed by a formal grammar) and encoded as synthesis of semantic at-
tributes [32], associated with the grammar and evaluated by traversing the syntax tree
of the workflow. The technique is realized on top of SiDECAR [5,6] (Syntax-DrivEn
inCrementAl veRification), our general framework to define verification procedures,
which are automatically enhanced with incrementality by the framework itself. The
framework is based on operator precedence grammars [21], which allow for re-parsing,
and hence semantic re-analysis, to be confined within an inner portion of the input that
encloses the changed part [3]. This property is the key for an efficient incremental ver-
ification procedure: since the verification procedure is encoded within attributes, their
evaluation proceeds incrementally, hand-in-hand with parsing. We report on the prelim-
inary evaluation of the tool implementing the proposed technique; the results shows a
significant speedup over a non-incremental approach.

The rest of the paper is structured as follows. Section 2 introduces some back-
ground concepts on operator precedence grammars and attribute grammars. Section 3
shows how our framework exploits operator precedence grammars to support syntactic-
semantic incremental verification. Section 4 details our incremental reliability verifi-
cation technique. In Sect. 5 we present the preliminary experimental evaluation of the
approach. Section 6 surveys related work. Section 7 provides some concluding remarks.

2 Background

Hereafter we briefly recall the definitions of operator precedence grammars and at-
tribute grammars. For more information on formal languages and grammars, we refer
the reader to [26] and [11].

2.1 Operator Precedence Grammars

A context-free (CF) grammar G is a tuple G = 〈VN ,VT ,P,S〉, where VN is a finite
set of non-terminal symbols; VT is a finite set of terminal symbols, disjoint from VN ;
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〈S〉 ::= 〈A〉 {value(〈S〉) = value(〈A〉)}
〈S〉 ::= 〈B〉 {value(〈S〉) = value(〈B〉)}
〈A0〉 ::= 〈A1〉 ‘+’ 〈B〉 {value(〈A0〉) = value(〈A1〉)+value(〈B〉)}
〈A〉 ::= 〈B1〉 ‘+’ 〈B2〉 {value(〈A〉) = value(〈B1〉)+value(〈B2〉)}
〈B0〉 ::= 〈B1〉 ‘*’ ‘n’ {value(〈B0〉) = value(〈B1〉)∗eval(‘n’)}
〈B〉 ::= ‘n’ {value(〈B〉) = eval(‘n’)}

(a)

‘n’ ‘*’ ‘+’
‘n’ � �
‘*’

.
=

‘+’ � � �

(b)

Fig. 1. (a) Example of an operator grammar (‘n’ stands for any natural number), extended with
semantic attributes; (b) its operator precedence matrix

P ⊆ VN × (VN ∪VT )
∗ is a relation whose elements represent the rules of the grammar;

S ∈ VN is the axiom or start symbol. We use the following naming convention, unless
otherwise specified: non-terminal symbols are enclosed within chevrons, such as 〈A〉;
terminal ones are enclosed within single quotes, such as ‘+’ or are denoted by lowercase
letters at the beginning of the alphabet (a,b,c, . . .); lowercase letters at the end of the
alphabet (u,v,x, . . .) denote terminal strings; ε denotes the empty string. For the notions
of immediate derivation (⇒), derivation (

∗⇒), and the language L(G) generated by a
grammar G please refer to the standard literature, e.g., [26].

A rule is in operator form if its right hand side (rhs) has no adjacent non-terminals;
an operator grammar (OG) contains only rules in operator form.

Operator precedence grammars (OPGs) [21] are defined starting from operator gram-
mars by means of binary relations on VT named precedence. Given two terminals, the
precedence relations between them can be of three types: equal-precedence (

.
=), takes-

precedence (�), and yields-precedence (�). The meaning of precedence relations is
analogous to the one between arithmetic operators and is the basic driver of determinis-
tic parsing for these grammars. Precedence relations can be computed in an automatic
way for any operator grammar. We represent the precedence relations in a VT ×VT ma-
trix, named operator precedence matrix (OPM). An entry ma,b of an OPM represents
the set of operator precedence relations holding between terminals a and b. For exam-
ple, Fig. 1b shows the OPM for the grammar of arithmetic expressions depicted at the
left side of Fig. 1a. Precedence relations have to be neither reflexive, nor symmetric,
nor transitive, nor total. If an entry ma,b of an OPM M is empty, the occurrence of the
terminal a followed by the terminal b represents a malformed input, which cannot be
generated by the grammar.

Definition 1 (Operator Precedence Grammar). An operator grammar G is an oper-
ator precedence grammar if and only if its OPM is a conflict-free matrix, i.e., for each
a,b ∈VT , |ma,b| ≤ 1.

Definition 2 (Fischer Normal Form, from [11]). An OPG is in Fischer Normal Form
(FNF) if it is invertible, the axiom 〈S〉 does not occur in the right-hand side of any rule,
no empty rule exists except possibly 〈S〉 ⇒ ε , the other rules having 〈S〉 as left-hand
side (lhs) are renaming, and no other renaming rules exist.
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The grammar of Fig. 1a is in FNF. In the sequel, we assume, without loss of gen-
erality, that OPGs are in FNF. Also, as is customary in the parsing of OPGs, the input
strings are implicitly enclosed between two ‘#’ special characters, such that ‘#’ yields
precedence to any other character and any character takes precedence over ‘#’. The key
feature of OPG parsing is that a sequence of terminal characters enclosed within a pair
� � and separated by

.
= uniquely determines a rhs to be replaced, with a shift-reduce

algorithm, by the corresponding lhs. Notice that in the parsing of these grammars non-
terminals are “transparent”, i.e., they are not considered for the computation of the
precedence relations. For instance, consider the syntax tree of Fig. 2a generated by the
grammar of Fig. 1a: the leaf ‘6’ is preceded by ‘+’ and followed by ‘*’. Because ‘+’ �
‘6’ � ‘*’, ‘6’ is reduced to 〈B〉. Similarly, in a further step we have ‘+’ � 〈B〉 ‘*’

.
=

‘7’ � ‘*’ and we apply the reduction 〈B〉 ⇒ 〈B〉 ‘*’ ‘7’ (notice that non-terminal 〈B〉 is
“transparent”) and so on.

2.2 Attribute Grammars

Attribute Grammars (AGs) have been proposed by Knuth as a way to express the seman-
tics of programming languages [32]. AGs extend CF grammars by associating attributes
and semantic functions to the rules of a CF grammar; attributes define the “meaning” of
the corresponding nodes in the syntax tree. In this paper we consider only synthesized
attributes, which characterize an information flow from the children nodes (of a syntax
tree) to their parents; more general attribute schemas do not add semantic power [32].

An AG is obtained from a CF grammar G by adding a finite set of attributes SYN and
a set SF of semantic functions. Each symbol X ∈VN has a set of (synthesized) attributes
SYN(X); SYN =

⋃
X∈VN

SYN(X). We use the symbol α to denote a generic element of
SYN; we assume that each α takes values in a corresponding domain Tα . The set SF
consists of functions, each of them associated with a rule p in P. For each attribute α of
the lhs of p, a function fpα ∈ SF synthesizes the value of α based on the attributes of
the non-terminals in the rhs of p. For example, the grammar in Fig. 1a can be extended
to an attribute grammar that computes the value of an expression. All nodes have only
one attribute called value, with Tvalue = N. The set of semantic functions SF is defined
as in the right side of Fig. 1a, where semantic functions are enclosed in braces next to
each rule. The + and ∗ operators appearing within braces correspond, respectively, to
the standard operations of arithmetic addition and multiplication, and eval(·) evaluates
its input as a number. Notice also that, within a rule, different occurrences of the same
grammar symbol are denoted by distinct subscripts.

3 Syntactic-Semantic Incrementality

Our incremental technique for probabilistic verification of reliability requirements of
structured workflows is realized on top of SiDECAR [5,6], our general framework for
incremental verification. The framework exploits a syntactic-semantic approach to de-
fine verification procedures that are encoded as semantic functions associated with an
attribute grammar. In this section we show how OPGs, equipped with a suitable at-
tribute schema, can support incrementality in such verification procedures in a natural
and efficient way.
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3.1 The Locality Property and Syntactic Incrementality

The main reason for the choice of OPGs is that, unlike more commonly used grammars
that support deterministic parsing, they possess and benefit from the locality property,
i.e., the possibility of starting the parsing from any arbitrary point of the sentence to be
analyzed, independent of the context within which the sentence is located. In fact for
OPGs the following proposition holds.

Proposition 1. If a〈A〉b ∗⇒ asb, then, for every t,u, 〈S〉 ∗⇒ tasbu iff 〈S〉 ∗⇒ ta〈A〉bu
∗⇒

tasbu. As a consequence, if s is replaced by v in the context �ta,bu�, and a〈A〉b ∗⇒ avb,
then 〈S〉 ∗⇒ ta〈A〉bu

∗⇒ tavbu, and (re)parsing of tavbu can be stopped at a〈A〉b ∗⇒ avb.

Hence, if we build—with a bottom-up parser—the derivation a〈A〉b ∗⇒ avb, we say
that a matching condition with the previous derivation a〈A〉b ∗⇒ asb is satisfied and we
can replace the old subtree rooted in 〈A〉 with the new one, independently of the global
context �ta,bu� (only the local context �a,b� matters for the incremental parsing).

For instance, consider the string and syntax tree of Fig. 2a. Assume that the expres-
sion is modified by replacing the term ‘6*7*8’ with ‘7*8’. The corresponding new sub-
tree can clearly be built independently within the context �‘+’, ‘#’�. The matching con-
dition is satisfied by ‘+’〈B〉‘#’

∗⇒ ‘+’‘6’‘*’‘7’‘*’‘8’‘#’ and ‘+’〈B〉‘#’
∗⇒ ‘+’‘7’‘*’‘8’‘#’;

thus the new subtree can replace the original one without affecting the remaining part
of the global tree. If, instead, we replace the second ‘+’ by a ‘*’, the affected portion of
syntax tree would be larger and more re-parsing would be necessary1.

In general, the incremental parsing algorithm, for any replacement of a string w by
a string w′ in the context �t,u�, automatically builds the minimal “sub-context” �t1,u1�

such that for some 〈A〉, a〈A〉b ∗⇒ at1wu1b and a〈A〉b ∗⇒ at1w′u1b.
The locality property2 has a price in terms of generative power. For example, the

LR grammars traditionally used to describe and parse programming languages do not
enjoy it. However they can generate all the deterministic languages. OPGs cannot; this
limitation, however, is more of theoretical interest than of real practical impact. Large
parts of the grammars of many computer languages are operator precedence [26, p.
271]; a complete OPG is available for Prolog [8]. Moreover, in many practical cases one
can obtain an OPG by minor adjustments to a non operator-precedence grammar [21].

In the current SiDECAR prototype, we developed an incremental parser for OPGs
that exhibits the following features: linear complexity in the length of the string, in case
of parsing from scratch; linear complexity in the size of the modified subtree(s), in case
of incremental parsing; O(1) complexity of the matching condition test.

3.2 Semantic Incrementality

In a bottom-up parser, semantic actions are performed during a reduction. This allows
the re-computation of semantic attributes after a change to proceed hand-in-hand with

1 Some further optimization could be applied by integrating the matching condition with tech-
niques adopted in [24] (not reported here for brevity).

2 The locality property has also been shown to support an efficient parallel parsing technique [3],
which is not further exploited here.
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〈S〉

〈A〉

〈B〉

8*〈B〉

7*〈B〉

6

+〈A〉

〈B〉

2

+〈B〉

4*〈B〉

5

(a)

αS

αM

αN

αK

αP αQ

xw
′
z

(b)

Fig. 2. (a) Abstract syntax tree of the expression ‘5*4+2+6*7*8’; (b) Incremental evaluation of
semantic attributes on a generic syntax tree

the re-parsing of the modified substring. Suppose that, after replacing substring w with
w′, incremental re-parsing builds a derivation 〈N〉 ∗⇒ xw′z, with the same non-terminal
〈N〉 as in 〈N〉 ∗⇒ xwz, so that the matching condition is verified. Assume also that 〈N〉
has an attribute αN . Two situations may occur related to the computation of αN :

1) The αN attribute associated with the new subtree rooted in 〈N〉 has the same value
as before the change. In this case, all the remaining attributes in the rest of the tree will
not be affected, and no further analysis is needed.

2) The new value of αN is different from the one it had before the change. In this case
(see Fig. 2b) only the attributes on the path from 〈N〉 to the root 〈S〉 (e.g., αM,αK ,αS)
may change and in such case they need to be recomputed. The values of the other
attributes not on the path from 〈N〉 to the root (e.g., αP and αQ) do not change: there is
no need to recompute them.

4 Incremental Reliability Analysis of Structured Workflows

In this section we define our procedure for incremental reliability analysis of structured
workflows. As mentioned in the previous section, SiDECAR requires the verification
procedure to be encoded as an attribute grammar schema. We assume that the structured
workflows are written in a tiny and simple language called Mini, whose OPG is shown
in Fig. 3. It is a minimalistic language that includes the major constructs of structured
programming and allows for expressing the sequence, exclusive choice, simple merge,
and structured loops patterns, from van der Aalst’s workflow patterns collection [1].

The verification procedure is based on our previous work [14], which supports the
analysis of workflow constructs similar to those in Mini, in a non-incremental way; we
refer the reader to [14] for the technical choice behind the analysis itself. Moreover,
for the sake of readability and to reduce the complexity of attribute schemas, Mini
workflows support only (global) boolean variables; we model invocation of external
services as boolean functions with no input parameters. We remark that more complex
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analyses and workflow languages (see, for example, the extension of [14] in [13] for
support of BPEL business processes, including parallelism and nested workflows) could
be supported with richer attribute schemas.

Reliability is a “user-oriented” property [9]; i.e., a software may be more or less reli-
able depending on its use. If user inputs do not activate a fault, a failure may never occur
even in a software containing defects [2]; on the other hand, users may stress a faulty
component, leading to a high frequency of failure events. Here we consider reliability
as the probability of successfully accomplishing an assigned task, when requested.

To show the benefits of incrementality, we will apply the verification procedure to
analyze two versions of the same example workflow (shown in Fig. 4a). They differ in
the assignment at line 3, which determines the execution of the subsequent if statement,
with implications on the results of the two analyses. Figure 4b depicts the syntax tree of
version 1 of the workflow, as well as the subtree that is different in version 2; nodes of
the tree have been numbered for quick reference. The following notation is introduced
to specify the attribute schema of the verification procedure. For a Mini workflow, let F
be the set of functions modeling invocations to external services; V the set of variables
defined within the workflow; E the set of boolean expressions that can appear as the
condition of an if or a while statement in the workflow. An expression e ∈ E is either a
combination of boolean predicates on variables or a placeholder predicate labeled ∗.

To model the probabilistic verification procedure, first we assume that each function
f ∈ F has a probability PrS( f ) of successfully completing its execution. If successfully
executed, the function returns a boolean value. We are interested in the value returned
by a function in case it appears as the rhs of an assignment because the assigned vari-
able may appear in a condition. The probability of assigning true to the lhs variable
of the statement is the probability that the function returns true, which is the product
PrS( f ) ·PrT ( f ), where PrT ( f ) is the conditioned probability that f returns true given
that it has been successfully executed. For the sake of readability, we make the sim-
plifying assumption that all functions whose return value is used in an assignment are
always successful, i.e., have PrS( f ) = 1. Thanks to this assumption the probability of
f returning true coincides with PrT( f ) and allows us to avoid cumbersome, though
conceptually simple, formulae in the following development.

For the conditions e ∈ E of if and while statements, PrT (e) denotes the probability of
e to be evaluated to true. In case of an if statement, the evaluation of a condition e leads
to a probability PrT (e) of following the then branch, and 1−PrT (e) of following the

〈S〉 ::= ‘begin’ 〈stmtlist〉 ‘end’
〈stmtlist〉 ::= 〈stmt〉 ‘;’ 〈stmtlist〉 | 〈stmt〉 ‘;’
〈stmt〉 ::= 〈function-id〉 ‘(’ ‘)’ | 〈var-id〉 ‘:=’ ‘true’ | 〈var-id〉 ‘:=’ ‘false’

| 〈var-id〉 ‘:=’ 〈function-id〉 ‘(’ ‘)’

| ‘if’ 〈cond〉 ‘then’ 〈stmtlist〉 ‘else’ 〈stmtlist〉 ‘endif’

| ‘while’ 〈cond〉 ‘do’ 〈stmtlist〉 ‘endwhile’
〈var-id〉 ::= . . .
〈function-id〉 ::= . . .
〈cond〉 ::= . . .

Fig. 3. The grammar of the Mini language
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1 begin

2 opA ();

3 x := true;

4 if (x==true)

5 then opB ();

6 else opA ();

7 endif;

8 end

1 begin

2 opA ();

3 x := false;

4 if (x==true)

5 then opB ();

6 else opA ();

7 endif;

8 end

(a) Version 1 (top)
Version 2 (bottom)

〈S〉 0

〈stmlist〉 1

〈stmlist〉 5

〈stmlist〉 10

〈stmt〉 11

〈stmlist〉 18

〈stmt〉 19

〈function-id〉 20

opA() 21

〈stmlist〉 14

〈stmt〉 15

〈function-id〉 16

opB() 17

〈cond〉 12

x==true 13

〈stmt〉 6

true 9〈var-id〉 7

x 8

〈stmt〉 2

〈function-id〉 3

opA() 4

〈stmt〉 6

false 9〈var-id〉 7

x 8

(b) The syntax tree of version 1 of the example workflow; the
subtree in the box shows the difference (node 9) in the syntax
tree of version 2

Fig. 4. The two versions of the example workflow and their syntax tree(s)

else branch. For while statements, PrT (e) is the probability of executing one iteration of
the loop. The probability of a condition to be evaluated to true or false depends on the
current usage profile and can be estimated on the basis of the designer’s experience, the
knowledge of the application domain, or gathered from previous executions or running
instances by combining monitoring and statistical inference techniques [19].

The value of PrT (e) is computed as follows. If the predicate is the placeholder ∗, the
probability is indicated as PrT (∗). If e is a combination of boolean predicates on vari-
ables, the probability value is defined with respect to its atomic components (assuming
probabilistic independence among the values of the variables in V ):
- e = "v==true" =⇒ PrT (e) = PrT (v)
- e = "v==false" =⇒ PrT (e) = 1−PrT (v)
- e = e1 ∧ e2 =⇒ PrT (e) = PrT (e1) ·PrT (e2)
- e = ¬e1 =⇒ PrT (e) = 1−PrT (e1)

The initial value of PrT (v) for a variable v ∈ V is undefined; after the variable is
assigned, it is defined as follows:
- v:=true =⇒ PrT (v) = 1
- v:=false =⇒ PrT (v) = 0
- v:=f() =⇒ PrT (v) = PrT( f )

The reliability of a workflow is computed as the expected probability value of its suc-
cessful completion. To simplify the mathematical description, we assume independence
among all the failure events.

The reliability of a sequence of statements is essentially the probability that all of
them are executed successfully. Given the independence of the failure events, it is the
product of the reliability value of each statement.
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For an if statement with condition e, its reliability is the reliability of the then
branch weighted by the probability of e to be true, plus the reliability of the else
branch weighted by the probability of e to be false. This intuitive definition is formally
grounded on the law of total probability and the previous assumption of independence.

The reliability of a while statement with condition e and body b is determined by the
number of iterations k. We also assume that PrT (e) < 1, i.e., there is a non-zero prob-
ability of exiting the loop, and that PrT (e) does not change during the iterations. The
following formula is derived by applying well-known properties of probability theory:

E(PrS(〈while〉)) =
∞

∑
k=0

(PrT (e) ·PrS(b))
k · (1−PrT (e)) =

1−PrT (e)
1−PrT (e) ·PrS(b)

A different construction of this result can be found in [14].
We are now ready to encode this analysis through the following attributes:

- SYN(〈S〉) = SYN(〈stmlist〉) = SYN(〈stmt〉) = {γ,ϑ};
- SYN(〈cond〉) = {δ};
- SYN(〈function-id〉) = SYN(〈var-id〉) = {η};
where:

– γ represents the reliability of the execution of the subtree rooted in the node the
attribute corresponds to.

– ϑ represents the knowledge acquired after the execution of an assignment. Pre-
cisely, ϑ is a set of pairs 〈v,PrT (v)〉 with v ∈ V such that there are no two different
pairs 〈v1,PrT (v1)〉,〈v2,PrT (v2)〉 ∈ ϑ with v1 = v2. If �〈v1,PrT (v1)〉 ∈ ϑ no knowl-
edge has been gathered concerning the value of a variable v1. If not differently
specified, ϑ is empty.

– δ represents PrT (e), with e being the expression associated with the corresponding
node.

– η is a string corresponding to the literal value of an identifier.
The actual value of γ in a node has to be evaluated with respect to the information

possibly available in ϑ . For example, let us assume that for a certain node n1, γ(n1) =
.9 ·PrT (v). This means that the actual value of γ(n1) depends on the value of the variable
v. The latter can be decided only after the execution of an assignment statement. If such
assignment happens at node n2, the attribute ϑ(n2) will contain the pair 〈v,PrT (v)〉.
For example, let us assume PrT (v) = .7; after the assignment, the actual value of γ(n1)
is refined considering the information in ϑ(n2), assuming the numeric value .63. We
use the notation γ(·) | ϑ(·) to describe the operation of refining the value of γ with the
information in ϑ . Given that γ(·) | /0= γ(·), the operation will be omitted when ϑ(·) = /0.

The attribute schema for the Mini language is defined as follows:

1. 〈S〉 ::= ‘begin’ 〈stmtlist〉 ‘end’

γ(〈S〉) := γ(〈stmtlist〉)
2. (a) 〈stmtlist0〉 ::= 〈stmt〉 ‘;’ 〈stmtlist1〉

γ(〈stmtlist0〉) := (γ(〈stmt〉) · γ(〈stmtlist1〉)) | ϑ(〈stmt〉)
(b) 〈stmtlist〉 ::= 〈stmt〉 ‘;’

γ(〈stmtlist〉) := γ(〈stmt〉)
3. (a) 〈stmt〉 ::= 〈function-id〉 ‘(’ ‘)’

γ(〈stmt〉) := PrS( f ) with f ∈ F and η(〈function-id〉) = f
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(b) 〈stmt〉 ::= 〈var-id〉 ‘:=’ ‘true’

γ(〈stmt〉) := 1,

ϑ(〈stmt〉) := {〈η(〈var-id〉),1〉}
(c) 〈stmt〉 ::= 〈var-id〉 ‘:=’ ‘false’

γ(〈stmt〉) := 1, ϑ(〈stmt〉) := {〈η(〈var-id〉),0〉}
(d) 〈stmt〉 ::= 〈var-id〉 ‘=’ 〈function-id〉 ‘(’ ‘)’

γ(〈stmt〉) := 1, ϑ(〈stmt〉) := {〈η(〈var-id〉),PrT (η(〈function-id〉))} with f ∈F

and η(〈function-id〉) = f

(e) 〈stmt〉 ::= ‘if’ 〈cond〉 ‘then’ 〈stmlist0〉 ‘else’ 〈stmlist1〉 ‘endif’

γ(〈stmt〉) := γ(〈stmtlist0〉) ·δ (〈cond〉)+ γ(〈stmtlist1〉) · (1−δ (〈cond〉))
(f) 〈stmt〉 ::= ‘while’ 〈cond〉 ‘do’ 〈stmtlist〉 ‘endwhile’

γ(〈stmt〉) :=
1−δ (〈cond〉)

1−δ (〈cond〉) · γ(〈stmtlist〉)
4. 〈cond〉 ::= . . .

δ (〈cond〉) := PrT (e), with η(〈cond〉) = e

We now show how to perform probabilistic verification of reliability properties with
SiDECAR on the two versions of the example workflow of Fig. 4a. In the steps of
attribute synthesis, for brevity, we use numbers to refer to corresponding nodes in the
syntax tree of Fig. 4b. As for the reliability of the two functions used in the workflow,
we assume PrS(opA) = .97, PrS(opB) = .99.

Example Workflow - Version 1 Given the abstract syntax tree in Fig. 4b, evaluation
of attributes leads to the following values (shown top to bottom, left to right, with η
attributes omitted):

γ(2) := .97; γ(14) := γ(15); γ(10) := γ(11);
γ(6) := 1; γ(19) := .97; γ(5) := (γ(6) · γ(10)) | ϑ(6)= .99;
ϑ(6) := {〈x,1〉}; γ(18) := γ(19); γ(1) := γ(2) · γ(5) = .9603;
δ (12) := PrT ("x==true"); γ(11) := .99 ·δ (12) γ(0) := γ(1) = .9603.
γ(15) := .99; + .97 ·(1− δ (12));

The resulting value for γ(0) represents the reliability of the workflow, i.e., each execu-
tion has a probability equal to .9603 of being successfully executed.

Example Workflow - Version 2 Version 2 of the example workflow differs from ver-
sion 1 only in the assignment at line 3, which leads the incremental parser to build the
subtree shown in the box of Fig. 4b. Because the matching condition is satisfied, this
subtree is hooked into node 6 of the original tree. Re-computation of the attributes pro-
ceeds upward to the root, leading to the following final values (shown top to bottom,
left to right, with η attributes omitted):

γ(6) := 1; γ(5) := (γ(6) · γ(10)) | ϑ(6) = .97; γ(0) := γ(1) := .9409.
ϑ(6) := {〈x,0〉}; γ(1) := γ(2) · γ(5) = .9409;

Thus, our incremental approach requires to reparse only 3 nodes and reevaluate only
5 attributes instead of the 13 ones computed in a full, non-incremental (re)parsing (as
for Version 1).
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Fig. 5. Comparison between the incremental verification approach and the non-incremental one

5 Evaluation

To show the effectiveness of our approach, we performed a preliminary experimental
evaluation using a prototype developed in Java, on a Intel Xeon E31220 3.10Ghz CPU,
with 32Gb of RAM, running Ubuntu Server 12.04 64bit. We generated 56 random Mini
workflows, each one with about 10000 tokens. For each workflow we randomly gener-
ated 30 subsequent versions, applying a series of deletions and/or insertions of syntacti-
cally valid code snippets, ranging in total from 5% to 50% of the workflow size. We run
the probabilistic verification procedure defined above on all generated versions, both in
an incremental way and in a non-incremental one. For each run, we measured the num-
ber of evaluated attributes and the execution time. Figure 5 shows the average of the
ratio between the performance of the incremental approach over the non-incremental
one, for both metrics. The results show that the execution time of our incremental ap-
proach is linear with respect to the size of the change(s), as expected from Sect. 3.1:
the smaller the changes on the input program are, the faster the incremental approach is
than the non-incremental one. This preliminary evaluation shows a 20x speedup of the
incremental approach over the non-incremental one, for changes affecting up to 5% of
the input artifact (having a total size of just 104 tokens); in the case of changes affecting
about 50% of the code, we measured a 3x speedup. Since for large, long-lasting systems
it is expected that most changes only involve a small fraction of the code, the gain of
applying our incremental approach can be significant.

The parsing algorithm used within our framework has a temporal complexity (on
average) linear in the size of the modified portion of the syntax tree. Hence any change
in the workflow has a minimal impact on the adaptation of the abstract syntax tree too.
Semantic incrementality allows for minimal (re)evaluation of the attributes, by proceed-
ing along the path from the node corresponding to the change to the root, whose length
is normally logarithmic with respect to the length of the workflow description. Notice
that even if the change in a statement affects the execution of another location of the
code (e.g., an assignment to a global variable), such dependency would be automati-
cally handled in the least common ancestor of the two syntactic nodes. Such common
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ancestor is, in the worst case, the root, resulting in the cost for the change propagation
(in terms of re-evaluation of the attributes) being still logarithmic in the length of the
workflow description.

We also analyzed each version of each workflow with Prism v.4.1, a probabilistic
model checker. Our incremental verification approach was, on average, 4268 times
faster than Prism, with a speedup of at least 1000x in about 35% of the workflows
versions. We remark that Prism is a general-purpose verification tool that supports vari-
ous types of input models (more complex than those needed to model structured work-
flows). Moreover, one can verify with Prism several properties more expressive than
the simple reliability. However, the reason for this comparison is that many reliability
analysis approaches (see also next section) make use of probabilistic model checking,
which ultimately impacts on their performance.

6 Related Work

Reliability analysis of workflow has been widely investigated in the last decade. Most of
the proposed approaches are based on algebraic methods [29], graph manipulation [12],
or stochastic modeling [25,34,22,9,35,28]. To the best of our knowledge, the only ap-
proach explicitly formalized by means of an attribute grammar is [14]. Nevertheless,
only few approaches provide incrementality, at least to some extent; they are mainly
grounded in the concepts of change encapsulation and of change anticipation [23].

Incrementality by change encapsulation is achieved by applying compositional rea-
soning to a modularized system using the assume-guarantee [30] paradigm. This para-
digm views systems as a collection of cooperating modules, each of which has to guar-
antee certain properties. The verification methods based on this paradigm are said to be
compositional, since they allow reasoning about each module separately and deducing
properties about their integration. If the effect of a change can be localized inside the
boundaries of a module, the other modules are not affected, and their verification does
not need to be redone. This feature is for example exploited in [10], which proposes
a framework for performing assume-guarantee reasoning in an incremental and fully
automatic fashion.

Approaches based on change anticipation assume that the artifact under analysis
can be divided into static (unchangeable) parts and variable ones, and rely on partial
evaluation [15] to postpone the evaluation of the variable parts. Partial evaluation can
be seen as a transformation from the original version of the program to a new version
called residual program, where the properties of interest have been partially computed
against the static parts, preserving the dependency on the variable ones. As soon as a
change is observed, the computation can be moved a further step toward completion by
fixing one or more variable parts according to the observations.

The above approaches, however, are based on the assumption that engineers know a
priori the parts that are most likely subject to future evolution and can encapsulate them
within well-defined borderlines. Our approach, instead, does not make any hypothesis
on where changes will occur during system’s life: it simply evaluates a posteriori their
scope within system’s structure as formalized by the syntax tree. This should be par-
ticularly beneficial in most modern systems that evolve in a fairly unpredictable way,
often without a unique design responsibility.
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Focusing on incremental probabilistic verification, the three main techniques sup-
porting incremental verification of stochastic models (e.g., Markov Chains) are decom-
position [33], which belongs to the class of change encapsulation, and parametric anal-
ysis [12,27] and delta evaluation [34], which can be classified as change anticipation
techniques. The first decomposes the input model into its strongly connected compo-
nents (SCCs), allowing verification subtasks to be carried on within each SCC; local
results are then combined to verify the global property. By defining a dependency rela-
tion among SCCs, when a change occurs, only the SCCs depending on the changed one
have to be verified. The benefits of incrementality in this case depend on the quality
of the SCC partition and the corresponding dependency relation. In the case of para-
metric analysis the probability value of the transitions in the model that are supposed
to change are labeled with symbolic parameters. The model is then verified providing
results in the form of closed mathematical formulae having the symbolic parameters
as unknowns. As the actual values for the parameters become available (e.g., during
the execution of the system), they are replaced in the formulae, providing a numeri-
cal estimation of the desired property (e.g., system reliability). Whenever the values of
the parameters change, the closed formula obtained by the preprocessing phase can be
reused, with significant improvements of the verification time [18,16]. The main limita-
tion of this approach is that a structural change in the software (i.e., not describable by
a parameters assignment) invalidates the results of the preprocessing phase, requiring
the verification to start from scratch, with consequent degradation of the analysis per-
formance. Delta evaluation is concerned with incremental reliability analysis based on
conveniently structured Discrete Time Markov Chains (DTMC). The structure of those
model follows the proposal by [9], where each software module (represented by a state
of the DTMC), can transfer the control to another module, or fail by making a tran-
sition toward an absorbing failure state, or complete the execution by moving toward
an absorbing success state. Assuming that a single module failure probability changes
at a time, only few arithmetic operations are needed to correct the previous reliability
value. Despite its efficiency, delta evaluation can only deal with changes in a modules
failure probability, providing no support for both structural changes and changes in the
interaction probabilities among modules. Finally, in [29] service compositions are for-
malized through a convenient algebraic structure and an incremental framework is used
to compose local results into a global quantitative property, in an assume-guarantee fla-
vor. The approach is widely applicable for verification of component-based systems,
and it has been applied for reliability analysis. The compositionality entailed by the
assume-guarantee infrastructure can be recasted into our syntactic-semantic approach.

7 Conclusion and Future Work

Incrementality is one of the most promising means to dealing with software evolution.
In this paper we addressed the issue of incrementality in the context of the probabilistic
verification of reliability requirements of structured workflows. We defined a novel in-
cremental technique based on a syntactic-semantic approach: the verification procedure
is encoded as synthesis of semantic attributes associated with the grammar defining
the structure of workflows. As confirmed by the preliminary experimental evaluation,
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the execution time of our incremental approach is linear with respect to the size of the
change(s). When changes involve only a small fraction of the artifact to analyze, our
approach can provide a significant speedup over a non-incremental approach.

In the future, we plan to extend our approach to support richer workflow languages,
such as BPEL and BPMN, as well as other types of verification procedures. The first
direction will require to express the grammar of the workflow languages in an OPG
form, with the possible caveat of reducing the readability of the grammar and impact-
ing on the definition of the attribute schemas. As for the second direction, we plan to
investigate richer attribute schemas, to support both new language features and different
verification algorithms (e.g., to support more realistic assumptions on the system under
verification as well as state-of-the-art optimizations and heuristics). Finally, we plan to
apply our approach to the related problem of probabilistic symbolic execution [20,7,17].
In all these scenarios incrementality would be automatically provided by our SiDECAR
framework, without any further effort for the developer.
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7. Borges, M., Filieri, A., d’Amorim, M., Păsăreanu, C.S., Visser, W.: Compositional solution
space quantification for probabilistic software analysis. In: Proc. of PLDI 2014, pp. 123–132.
ACM (2014)

8. de Bosschere, K.: An operator precedence parser for standard Prolog text. Softw. Pract. Ex-
per. 26(7), 763–779 (1996)

9. Cheung, R.C.: A user-oriented software reliability model. IEEE Trans. Softw. Eng. SE-6(2),
118–125 (1980)
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Abstract. In this paper we present an approach to the user-driven
development of process-oriented web applications that combines busi-
ness process modeling with user-side application domain evolution. In the
center is the DyWA framework that accompanies the prototype-driven
web-application development from the domain modeling through the de-
velopment and deployment phase to the actual runtime and later prod-
uct evolution: Using DyWA, application experts without programming
knowledge are able to model (according to their professional knowledge
and understanding) both domain-specific data models and the business
process models that act on the data via automatically generated elemen-
tary data operations. The resulting business processes integrate data
access and manipulation, and directly constitute executable prototypes
of the resulting web application. All this is illustrated for OCS-lite, a
cut-down version of Springer’s online editorial system.

Keywords: prototyping, metadata and data definition. business process
modeling, domain modeling, automated software engineering.

1 Software Evolution in Web Applications

In today’s world, web applications serve billions of users worldwide. They are
already now the easiest and most widespread way of IT use for the broad pub-
lic, not requiring downloads, installations, configurations or specific infrastruc-
ture preparation: access “anywhere, anytime” from any device has become true.
From the provider’s side, web applications allow processing user requests in an
automated manner at any given time from arbitrary locations, making them a
valuable medium for companies to offer their services. Companies such as Ama-
zon.com Inc., eBay Inc. and in particular Facebook could not exist without the
Web, and their success largely depends on their ability to quickly react to cus-
tomer/user needs. Continuous evolution, the sense of continuous model-driven
engineering [19], is critical to the business model of these giants.

Two distinct system design practices evolved from this need:
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– Agile Software development methods such as Scrum [30] or Extreme Pro-
gramming (XP) [3] base their development style on a very close informal co-
operation between the application expert and the software developer. Here, it
is the software developer who constructs the application in small, prioritized
increments for frequent intermediate inspection by the application expert.

– Business process modeling [27,28,1] aims at involving the application expert
directly in the process design phase of the software development: with the
introduction of BPMN 2.0 [1], requirement specifications in terms of business
processes are considered part of the actual software development process.
The ultimate goal here is that these process models are directly executable.

These two schools of practice deal in different fashions with the typical se-
mantic gap of software engineering [16]. Agile software development stresses the
user-in-the-loop philosophy: it requires the continuous and close cooperation be-
tween the application expert and the developer, but leaves the full technical
solution in the hands of the developer. Conventional business process modeling
is inherently closer to the expert’s application domain, but it lacks built-in ways
to handle the required business activities at the user level: e.g. to deal with new
resources and data types, such activities have to be manually implemented by
IT experts.

To truly enable end users to be first -class citizens in the application design, a
new form of executable prototyping needs to give application experts full control
over the complete (iterative) creation process, including the business activities
required to introduce, control, and manage new business objects and resources. In
the past [31] we already combined methods of agile software development with
(business) process modeling via eXtreme Model-Driven Design (XMDD) [20],
and its incarnation the Java Application Building Center (jABC) framework [33].
This prototype-driven development process for web applications overcomes in
particular most service integration problems of current BPM approaches [6], by
offering an easy to use design of the business logic for an application. However,
this alone is not sufficient to close the entire gap, because it needs a similar
ease of definition and management for the data and objects that occur in the
applications, and it needs efficient and robust support for evolution and change.

In this paper we introduce this holistic approach. There, the Dynamic Web
Application (DyWA) provides the web based user-friendly definition of domain
entities as well as the final execution environment, and behind the scenes it inte-
grates with the newest iteration of the reference implementation of XMDD, the
Java Application Building Center 4 (jABC4), that provides the process definition
facility [24,22]. As a result, DyWA becomes for the user a web-based definition
facility for application domains in terms of a type schema, which delivers also a
generic, fully functional web-based evolving prototype of the resulting application
that accompanies the development right from the beginning.

We are going to introduce a small case study, the Online Conference Service
(OCS)-lite, model its types in DyWA, create the necessary processes in jABC,
and export them back into DyWA in order to offer to the end users a running
web application obtained entirely without manual coding. We are then going to
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change the requirements, impacting both the data types and the business logic
of the application, and show how the application can be accordingly evolved by
the users without writing new code.

In the following, Sect. 2, we locate our approach in the context of the behav-
ioral programming school of thought. Then, in Sect. 3 we present the running
case study, the OCS-lite, with sample requirements and changes we want to il-
lustrate. Sect. 4 summarizes the basic principles of modeling business processes
with the jABC4. In Sect. 5 we show DyWA’s concepts and architecture, fur-
ther developed stepwise along the case study. The central trait (and strength) of
DyWA is then illustrated in Sec. 6: the ease of system evolution with changes in
the domain model and the business logic. Finally, Sect. 7 sheds light on related
work and Sect. 8 summarizes our results and experiences so far.

2 Behavioral Model-Driven Design

The incrementally arising prototype stores descriptions of the domain specific
data types, their associations, and corresponding data objects all in the same
database. This way of organizing the definition, management, integration and
evolution of data and behavior (in form of processes) is consistent with the
philosophy underlying the behavioral programming paradigm put forward by
David Harel [8], where incremental specifications are considered a core element
of application development.

In our case, we talk more specifically of behavioral model-driven design: based
on the defined types and corresponding Create, Read, Update, Delete (CRUD)
operations, application experts are able to model domain specific business pro-
cesses in our modeling environment jABC4, which are directly executable. This
way the prototype can be augmented or modified stepwise by acting on one or
more types in the type schema, the corresponding data-objects, and the exe-
cutable process models, while maintaining executability at all times. As every
step is automated via a corresponding code generator, no manual coding is re-
quired at all. This opens the whole development process, including the domain
modeling, to application experts who can control the development of their appli-
cation at any time by ‘playing’ with the executable prototype.

The agility of the prototypes is supported via features like asynchronous type
schema where changes to types are reflected instantly in the running prototype
and online data-migration for reestablishing a stable type schema after each
development iteration. These concepts allow to integrate other approaches, such
as the behavioral programming paradigm. Furthermore, making the mentioned
layers accessible (in a semantic way) to application experts, the claims for natural
development environments like in behavioral programming can be satisfied.

3 Case Study: The OCS-Lite

The Online Conference Service (OCS) online manuscript submission and review
service is part of a long-lived software product line for the Springer Verlag started
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PC Chair1
Papers0..*

Author
1

1 Submitter
Reports0..*

Conference

- Name : String

Paper

- Title : String
- Content : String

Report

- Evaluation : int

User

- First Name : String
- Last Name : String
- Mail Address : String

Fig. 1. Fragment of the domain model of the OCS-lite, showing the main entities and
relations of the application domain

in 1999 [13]. The OCS/OJS product line evolved over time to also include diver-
sified journal and volume production preparation services. The new line, started
in 2009, is specifically designed for verifiability, as described in [23].

The service appropriately handles a wealth of independent but often indirectly
related user interactions, where accomplishing a task may have consequences for
other participants [12] or shared objects. From this point of view, the OCS
is a user- and context-driven reactive system with a web interface. Users can
decide whether to reject a task, which typically consists of performing small
workflows, when to execute it, and in case of multiple tasks in which order to
process them. The large number of involved participants, roles (like author or PC
chair), interaction styles, and the high degree of freedom in choosing individual
tasks makes the OCS a challenge for conventional business process modeling
approaches.

Figure 1 shows a small fragment of the class diagram of the OCS-lite’s basic
concepts, that we call types.

The OCS deals with named Conferences with a PC chair managing the pro-
gram committee and the paper submissions. Type User represents people regis-
tered to the OCS. It has a first and a last name, and an e-mail address, useful
to distinguish homonymous users. A PC chair can be represented by an object
of type User. In this simplified fragment, a paper has a title, an author (also
of type User) and its content – a string representation of the printed text. Pa-
pers receive several Reports that rate their quality through an evaluation grade.
Reports are in general submitted by reviewers, who are again of type User.

Initial requirements: application experts require the OCS-lite to

(R1) allow to submit a report to a paper, and
(R2) new reports should specify a paper, a reviewer and an evaluation value.

Once the initial prototype for these requirements is deployed, we introduce
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Change of requirements: to improve the feedback for a paper, instead of just
an evaluation value,

(C1) the reviewers should provide an actual feedback in form of a text.
(C2) Additionally, if a new report is submitted to a paper, the author should

be notified via e-mail.

We are going to model the types in DyWA, create the necessary processes
in jABC, and export them back into DyWA in order to offer to the end users
a running web application obtained entirely without manual coding. Because
DyWA is designed to work with jABC, we start with a short description of the
DyWA-relevant aspects of jABC.

4 eXtreme MDD in the jABC: Behavior as Processes

The executable process models of the OCS are realized in the jABC [18,17,33], a
framework for service-oriented design and development that follows the XMDD
of [20]. XMDD combines ideas from service orientation, model-driven design and
extreme programming and enables application experts to control the design and
evolution of processes during their whole life-cycle on the basis of Lightweight
Process Coordination (LPC) [17].

We have presented how to realize Higher-Order Processes in jABC in [25]
and in [24], therefore we describe here only the aspects in direct connection with
the DyWA. The jABC allows users to develop services and applications easily by
composing reusable building blocks into (flow-)graph structures that are both
formally well-defined and easy to read and build. These building blocks are called
Service Independent Building Blocks (SIBs) in analogy to the original telecom-
munication terminology [31], and in the spirit of the service-oriented computing
paradigm [16] and of the One-Thing Approach (OTA) [15], an evolution of the
model-based Lightweight Coordination approach of [17] specifically applied to
services. The OTA provides the conceptual modeling infrastructure (one thing
for all) that enables all the stakeholders (application experts, designer, compo-
nent experts, implementer, quality insurers, . . . ) to closely cooperate working on
models as primary “things”. In particular it enables immediate user experience
and seamless acceptance, which is a central constituent of the One Thing Ap-
proach (OTA): The fact that all stakeholders work on and modify one and the
same thing allows every stakeholder to observe the progress of the development
and the implications of decisions at their own level of expertise.

On the basis of a large library of such SIBs, which come in domain-specific
collections as well as in domain-independent collections, the user builds be-
havioral models for the desired system in terms of hierarchical Service Logic
Graphs (SLGs) [32]. These graphs form the modeling backbone of the OTA: All
the information concerning documentation, role, rights, consistency conditions,
animation code, execution code, semantic annotations, etc. comes here together.
Immediate user experience results from the XMDD approach, where already the
initial graphical models are executable, be it as the basis for interactive ‘what/if
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games’, documentation browsing, or simple interpreted animation. This allows
to “feel” the behavior and detect conceptual errors already very early in the
requirement models.

SLGs are formal models: they are semantically interpreted as Kripke Tran-
sition Systems (KTSs), a generalization of both Kripke structures and Labeled
Transition Systems (LTSs) [21] that allows labels both on nodes and edges. Nodes
in the SLG represent activities (or services/components, depending on the ap-
plication domain). Once one has the SIB libraries, it is easy to create business
process models by composing and configuring SIBs in processes/workflows.

The central open question for an application expert is how to automatically
produce SIBs that manipulate data, if all the expert knows is the structure of
his/her business objects. DyWA solves exactly this problem.

5 DyWA

The DyWA framework is designed to support the application experts and pro-
grammers in various aspects of the software development process. We

– provide a running web application prototype from the very first moment of
the software development process. This allows us to maintain a running
prototype during the complete development process.

– make it possible to modify and adapt the application domain at runtime. This
allows us to extend the XMDD paradigm and the One-Thing Approach and
delegate the domain modeling to the application experts.

– automatically provide the modeled domain in the jABC as a new SIB col-
lection. This allows a seamless modeling experience, because the application
experts model both the application domain and the business process within
their cognitive world. It also mitigates the costs of a manual implementation
and provision, and reduces the semantic gap.

– further automate the reintegration of the modeled business processes in the
DyWA web application, that offers them to end users via an execution facility.

The persistence layer, realized in a database, holds the flexible type and object
schema that allows to model an application domain via its domain specific data
dynamically at runtime. The presentation layer (Editors, Views) of the DyWA
framework is realized in a web interface, allowing application experts to easily
edit the application domain themselves and modify and update it at any time.
These two layers are domain-independent, therefore they come with the DyWA
framework. Accordingly, users have a running (yet empty) prototype right from
the beginning. The domain experts use this prototype to create and alter the do-
main information continuously, throughout the development and entire lifetime
of the application. In this sense, there is no distinction between prototype and
real product, as called for by the modern agile culture, that encourages so called
dev-ops teams, where developers and operations team together and co-evolve the
software products.

To link the data definitions in DyWA to the service-oriented functionality nec-
essary in jABC for the manipulation of actual data, a code generator generates
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for each type a corresponding collection of management SIBs (CRUD operations
on the types). These SIBs are domain specific Java classes (i.e. the transforma-
tion layer) from the modeled domain. Once all the processes are orchestrated to
a web application, this application can be plugged-in to the existing (initially
empty) DyWA environment. According to our ready-to-use principle, it is now
directly ready for execution.

5.1 Agile Domain Modeling for Runtime Migration during
Evolution

Basing the user’s running prototype on a meta schema distinct from the concrete
implementation of the SIBs and of the processes also allows to manage different
versions of the application domain simultaneously. This eases migrating between
different versions of prototypes at runtime: all that is needed is to bind the models
to a new implementation, or to switch from one model (with its version of the
type schema, concrete generated SIB collection, corresponding processes, and
their code) to a different one. We discuss the evolution specifically in Sect. 5.4.
Here we first apply the domain modeling to the OCS-lite case study.

Business processes refer to business objects and act upon them by means of
operations on their elements. In our OCS-lite, for example, the term “User”
refers to the association of a first name, a last name and an e-mail address.
These must be made accessible to the business process activities. In terms of the
semantic gap,

– either one has a user-side, informal definition of these elements, as common
in the business process modeling community, with the subsequent need for
programming experts to understand what they mean and to implement them
by means of specific data types,

– or one has from the beginning a precise definition in terms of programming-
level types, that makes it possible to develop a static collection of domain
specific services that the application experts can use during their process
modeling.

Depending on the size and complexity of the domain, as well as on the initial
depth of knowledge of it, the initial creation and continuous maintenance of data
definitions on one side and corresponding domain specific services on the other
side may cost a significant amount of resources. To satisfy both sides, and keep
them automatically aligned, we developed the following two-level approach.

The web application runs on a meta schema, that describes data in terms of
MS-types and MS-objects, which are both stored in the meta schema database. A
MS-type is used to model the concrete types and associations of an application
domain, whereas MS-objects hold the actual data of the application and thus
constitute instantiations of the respective MS-Types. Objects are linked to a
type, yielding a concept of typed domain specific data. This organization allows
to save domain unspecific, arbitrary data, as far as they can be described with
the type schema.
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As shown in Figure 1(right), in DyWA we natively support primitive types,
which can be used in the initial model. Non-primitive types are defined during
the domain modeling process and become available from then on to later stages
of the application’s evolution.

Primitive types: String, Long, Double, Boolean, and Timestamp and
lists of such types, e.g. lists of strings List<String>.

Complex types: Abstract reference to a modeled domain type, as in the OCS-
lite business objects include a reference to a paper or report. Complex at-
tributes are themselves well-defined modeled types. One may also specify
a List<Complex> attribute, that is again (single-)typed. E.g., the OCS
can use a list of papers, or a list of reports, but no list of mixed papers and
reports.

OCS-lite Example
We create first the type User, whose attributes “First Name”, “Last Name” and
“Mail Address” can be described with the primitive type String. For the type
Conference, the field “Name” can be again described with the primitive type
String, and the attribute “PC Chair” with the recently modeled type User.
For application experts familiar with the OCS it is easy to model the domain
presented in Figure 1 with the provided type schema, even for complex type
structures. For example, if each PC Chair should also know his/her conferences, a
User should have an additional reference to a Conference, which is a dependency
easily modeled in a following step. So the evolutionary approach of the type
schema allows also complex type structures such as cyclic references.

5.2 Managing Data with Dynamic Types

In the DyWA database, type schema and data objects coexist, shaping the meta
schema. To maintain the agility throughout the whole persistence layer, we need
to store application data with similar flexibility to the types, taking into account
that the type schema allows flexible remodeling at runtime, and thus we must
know to which version of the type schema the data belongs.

Figure 2 shows the core functionality of our object storage and the connection
between objects and types for a concrete instance of the OCS-lite.

We implement the objects by linking them dynamically to the structure of
their types, allowing flexible storage of data: each object instance references
exactly one type, and based on the attributes of the type, each object instance
can save a value in a separated property per attribute. These properties allow
the same loose coupling as the attributes of a type. By combining types and
objects we can validate the integrity of the application data.

In the OCS-lite, once the type “Conference” is defined the application experts
can create new conference objects in the DyWA object editor. If later on it
is decided to add the “Name” field, it is then possible to add a name to all
existing conferences, although this attribute was not initially present. This allows
a flexible evolution of the data model of an application domain.
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Conference (id=1)

ID Name Type
2 Name String
3 PC Chair User
4 Papers List<Paper>

User (id=5)

ID Name Type
6 First Name String
7 Last Name String
8 Mail Address String

...

ISoLA2014 (id=123)

ID Ref Value
124 2 ISoLA2014
125 3 Reference to 234
126 4 Reference key 127

Tiziana Margaria(id=234)

ID Ref Value
235 6 Tiziana
236 7 Margaria
237 8 margaria@cs...

Prototype-Driven ... (id=345)

ID Ref Value
346 10 Prototype-Driven ...
347 11 In today’s world ...
348 12 Author reference
349 13 Report references

MappingTable

Key Value
127 345
... ...

instance of instance of

instance of

Fig. 2. Schematic layout of the OCS-lite business objects. Objects (green) reference
their specific types and fields (blue), and hold references to other objects.

5.3 Provision of the Application Domain to the Business Logic
Design

To allow a seamless interaction between business processes and the domain data
model, we need to

– integrate the modeled domain in the business process modeling framework,
and

– enable a fluid interaction between these two layers, to yield an overall seam-
less and agile development process.

So far, the abstract types only describe an application domain and not neces-
sarily represent it, because the information is stored as generic key-value pairs
in the database, but is not known to the processes that define the business logic.

DyWA provides a code generator that produces Java-classes corresponding
to the modeled domain in the database. This highly automated approach to
the business-to-IT layer connection minimizes the effort and time to achieve a
fully functional and domain specific modeling environment. No manual coding
is needed. As an example, Figure 3 shows a sketch of the generated class for the
type Conference. The granularity of the encapsulation chosen while modeling
the domain is preserved in the Java classes that will be used during process
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1 @IdRef(id = 12L)
2 @OriginalName (name = " Conference ")
3 public class Conference {
4

5 private DBObject delegate;
6

7 Conference (DBObject obj) {
8 this .delegate = obj;
9 }

10 @IdRef(id = 13L)
11 @OriginalName (name = "Name")
12 public String getName () {
13 return delegate .getStringProperty (13);
14 }
15 @IdRef(id = 15L)
16 @OriginalName (name = "PC Chair")
17 public User getPC_Chair () {
18 return new User(delegate.getObjectProperty (15));
19 }
20 // remaining getters and setters
21 }

Fig. 3. A sketch of the generated Conference class: A thin domain-specific wrapper of
the meta-schema

modeling: here, the generator creates a single class for the modeled type “Con-
ference”. An @OriginalName annotation preserves the original information in
the generated classes, necessitated by the special treatment of whitespaces and
special characters that guarantees valid Java identifiers. To connect informa-
tion between the meta schema and the generated schema the IdRef annotation
stores the database id of the modeled type. This referential integrity that is in-
dependent from the names of types and fields is important for our concept and
is one reason why we did not choose existing approaches, such as e.g. Teneo
[7], a project combining Eclipse Modeling Framework (EMF) with a persistence
provider such as Hibernate [10]. The attributes of a “Conference” that model the
name, the PC chair and multiple papers are translated by the code generator to
getter- and setter methods in the same fashion.

Once the modeled domain is available in form of Java classes, it can be readily
integrated in the jABC4: the domain specific entities are retrievable via domain-
specific controllers in jABC.

5.4 Modeling Domain Specific Business Processes

Besides the plain Java classes, the generator also generates the domain specific
services for basic CRUD operations that may be used dynamically as SIBs in
the jABC. For the Conference, the generated ConferenceController provides
methods for creating a conference and saving its data in the database, reading
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Fig. 4. The “SubmitReportToPaper” process. Changes to the original process are high-
lighted with a dashed outline. In the updated process, we changed the “SubmitReport”
process and added a new “SendNotification” process.

existing conferences from the database and deleting conferences. The controllers
and entities allow a service-oriented manipulation on the business objects of the
web application.

With the generated domain classes and the corresponding domain-specific
CRUD services application experts can themselves model the required business
processes in their own domain specific environment. Figure 4 shows sample busi-
ness process(es) for the “SubmitPaperToConference” example from Section 3.

The main “SubmitReportToPaper” process (on the left) adds a new report
to a given paper, and has submitter and evaluation as input parameter of the
process model. Internally it contains three sub-processes:

– the “BuildReportName” sub-process takes the paper name “X” (input pa-
rameter of the process) and returns the string “Submitted report for paper:
X”. Receiving the actual name of the paper uses a dynamic SIB created from
the “getName()” method of the generated Paper class. The external sub pro-
cess “CombineTwoStrings” connects both parts of the required string. The
result is returned via the end SIB “success” and saved in the context of the
original process.

– the sub-process “SubmitReport” creates a new report with this computed
report name, sets its submitter and evaluation, and saves this data into
the database. All these operations communicate with the database: the cor-
responding SIBs are dynamically created from the generated ReportCon-
troller. The “success” SIB returns the created report.
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– “AssignReportToPaper” combines both concepts. It fetches the current re-
ports of a given paper via a dynamic SIB created from the “getReports()”
method of the Paper class and saves the returned collection in the process
context. The new value is added to this collection with a dynamic SIB cre-
ated from the Java Collections Interface, using the former list as an instance
for this method call. Finally, a method of the generated PaperController
stores the new collection in the database.

This model so far is a hierarchical orchestration of processes. The SIBs have
executable Java code, but the SLGs are “just” models and their process-level
code generation is the next step.

5.5 Integrating Business Processes into the Enterprise Environment

The code generator of the jABC generates the code for this process as a Java
class named SubmitReportToPaper, whose execute method starts the process.
This code could be deployed in the standard way on a server, but we instead
wish to not have to deal with Java source code – a too technical level for the user
friendly service oriented approach we are following. Instead, DyWA generates a
web application interface based on the modeled processes in form of a controller.
This last step makes the ready to use process available again to end users in the
DyWA website: the web application is ready, and no manual coding has been
required.

6 Evolution and Development Cycles

In general, a prototype-driven development style for real dev-ops style devel-
opment and operations cycles through multiple stages of refinement and en-
hancement. In iterative software development by prototyping, as common in
Continuous Model-Driven Engineering, changes happen often but with modest
increments. However, when considering modification and evolution, anything can
change over time.

6.1 Changes That do not Affect the Domain

If new requirements force an update of the business processes, but the domain
model is untouched, the processes that implement the new requirements can be
modeled within the jABC while the previous version is running. An updated
version of the web application is created with the code generators of the jABC
and the DyWA framework, all in an off-line fashion, so that the currently de-
ployed web application still runs and is not affected by these changes. Applying
the changes and meeting the new requirements only needs a redeployment of
the updated web application as a drop-in replacement. Since we are focusing on
short-running processes, i.e collections of separated use cases that are triggered
via user interaction, this redeployment mechanism allows us to minimize the im-
pact on the availability of the application and therefore on the users. This ease
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of update encourages constant updates of the application and enables a modern,
incremental prototype driven experimentation.

6.2 Update to the Domain

In case some requirement changes lead to an update of the domain of the web
application, the separation of off-line and on-line stages comes into play. When
the DyWA code generator generates the domain classes and services, it creates a
snapshot of the type schema at that point of time: this is the fixed snapshot later
used by the processes of the prototype. Because the web application is running
on a meta schema, the modeled types only constitute a specific parametriza-
tion of this meta schema, and are maintained separately. This means that the
domain information may be changed independently of the currently active pro-
totype, because the meta schema and the prototype are only loosely linked by
the transformation layer. Due to our implementation of the meta schema1 and
our approach that the entire application’s behavior is defined in the processes,
domain changes do not impact the executability of the currently active version
of the prototype.

Domain experts can therefore frequently and swiftly update also the require-
ments of their domain without impacting the current prototype. Changes of the
domain will only take effect if and when the processes are correspondingly up-
dated as well, as described before, delivering an updated running prototype. This
updated prototype can be used as a drop-in replacement too, because the busi-
ness layer uses the “transformation” layer, which is capable of handling arbitrary
domains, and the controllers offering the necessary operations to communicate
with the database.

However, if the updated processes require new information elements that ex-
tend the data from previous prototypes, it is necessary to first migrate the appli-
cation data between the different domains (or domain versions). This migration
can be done online (while the application is running) in a step-by-step fashion.
There is no need for a complex migration script that does it all at once. Some
migration steps can even be done by the users themselves.

6.3 Evolving the OCS-Lite

For our OCS-lite, we wish to apply the requirement changes described in section 3
to the currently deployed web application. Requirements C1) and C2) need a
domain extension: with the DyWA type editor we update the domain adding to
the type “Report” the new attribute “Feedback” and marking the now obsolete
attribute “Evaluation” as deleted.

Starting the jABC per script, one can now automatically re-execute the pre-
ceding steps of the domain generator on the updated type schema, and update
the business processes in order to handle the new data elements. The updated
1 Especially when deleting types/fields, we only mark those types/fields as deleted,

allowing existing processes to still access the old data
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“SubmitReportToPaper” process is shown in fig. 4. It uses the new setFeedback
method of the ReportController as well as a technical process which calls an
external service to send the mail.

With the updated processes, we automatically create a new prototype that
now allows the users to execute the new business process, which requires a textual
feedback and sends this feedback to the author of the paper.

7 Related Work

The definition facility of our approach abstracts from technical details enabling
to exchange the respective database implementation. This is true for many ab-
straction layers like object relational mappers [10] (which we base on in our
approach), too. In addition, DyWA allows to exchange the class of database,
i.e., whether a NoSQL, relational, or any other class of database is used.

Moreover, DyWA relies on a considerable Java EE [11] tool stack, which made
it possible to build the framework with manageable effort. The definition of the
domain and the processes is completely independent from the target language as
well as the underlying technologies used. Hence, it would be possible to exchange
the complete tool stack (e.g. to the .Net platform with C# [35]) of a prototype
at any point in its lifetime as long as there is a DyWA conform implementation
available as well as corresponding generators.

The modeling language WebML [5] and its successor IFML [4] adopted from
the Object Management Group (OMG) in march 2014, focus on incorporating
the application expert into defining the content, the interaction with the user,
and the control behavior of the front-end of software applications [26]. They in-
tegrate with UML class diagrams for the domain model. Binding to the business
logic is realized via connectors to UML dynamic diagrams (e.g., state charts and
sequence diagrams) and BPMN. Hence, IFML provides a new modeling frag-
ment for front-end design facilities and heavily relies on existing solutions like
UML and BPMN for domain- and process modeling. The IFML approach and
the underlying frameworks do not focus on prototype-driven development and
merging domain- and business process modeling as they, e.g., have completely
separated modeling and implementation phases. BPMN even lacks support for
sophisticated service integration [6]. In our approach we natively include the
general purpose process modeling framework jABC4, which allows us to provide
a domain-specific, yet feature-rich modeling environment.

Another aspect that is handled differently across state-of-the-art approaches
is the support for iterative prototyping and the ability to transition a proto-
type into a production-ready application. The issue with approaches like Spring
Roo [29] that allow managing an application domain is that evolving the appli-
cation domain is a non-trivial aspect. Existing solutions to this problem [37,36]
show that, depending on where the domain information is realized, migrat-
ing an application domain might be quite cumbersome. To our knowledge the
Process-Oriented Event-Driven Transaction Systems (POETS) [9] architecture is
hereof the most related approach to DyWA regarding the mindset. In particular,
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the generalized and extended variant described in [2] starts with an ‘empty’ En-
terprise Resource Planning (ERP) system, which is then at runtime filled with a
data model, reports (data aggregations), and contracts (business logic). The def-
initions are done in Domain-Specific Languages (DSLs) mostly based on Haskell.
Hence from the application experts perspective, the online data model defini-
tion in DyWA and the process-oriented definition of the business logic in our
approach is quite different from POETS. Furthermore, POETS currently does
not support data migration and non-additive changes to the data model.

In our approach we embrace a generic meta schema which reflects changes to
the domain model and offers at the same time access to old and new type schema
in the running application until a development iteration has finished. This sim-
plifies and unfolds the migration process, and enables us to offer a service with
near-zero downtime due to online migration. Nevertheless, we are able to main-
tain an interface to the application expert that acts like he or she is developing a
native, domain-specific application. The structure of our meta-schema resembles
the ECore model underlying the EMF [34] modeling framework.

8 Conclusions

We have shown how application experts can gain the full control over the com-
plete (iterative) development process of web applications by combining agile,
prototype-driven development with (business) process modeling via XMDD. The
DyWA framework provides right from the beginning a fully functional prototype
of a data model, where application experts can directly define a type schema for
their domain of expertise. The type schema is automatically generated to exe-
cutable domain specific entity classes and corresponding CRUD operations. On
this basis, application experts model business processes, which are directly ex-
ecutable within the prototype. As every step is automated via a corresponding
code generator, we open the whole development process, including the domain
modeling, to the application expert. Domain model (in form of a type schema)
and data coexist in one database. As we showed on our OCS-lite example, the
stored data may even adhere to different versions of a type schema. This en-
ables extremely short downtime phases and data migration at runtime. Due to a
comparatively high degree of automation we are able to shrink the semantic gap
concerning the provision of domain specific services and we can cope elegantly
with the agility of agile development processes.

The experience so far with our prototype-driven approach turned out to be
very promising. We have first external users [14], that right now are in the course
of modeling a complex data and process models landscape for interdisciplinary
experiments concerning cachexia in cancer metabolism [14] coordinated at the
Universidade de São Paulo in Brazil. As the researchers are healthcare and life
science experts (altogether, over 60 scientists) without computer science back-
ground, the ease of data management and process management is essential, in
particular in the context of a continuously expanding network of international
partners which requires ongoing adaptations.
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Abstract. The process-oriented event-driven transaction systems (PO-
ETS) architecture introduced by Henglein et al. is a novel software archi-
tecture for enterprise resource planning (ERP) systems. POETS employs
a pragmatic separation between (i) transactional data, that is, what has
happened; (ii) reports, that is, what can be derived from the transactional
data; and (iii) contracts, that is, which transactions are expected in the
future. Moreover, POETS applies domain-specific languages (DSLs) for
specifying reports and contracts, in order to enable succinct declarative
specifications as well as rapid adaptability and customisation. In this pa-
per we present an implementation of a generalised and extended variant
of the POETS architecture. The extensions amount to a customisable
data model based on nominal subtyping; support for run-time changes
to the data model, reports and contracts, while retaining full auditabil-
ity; and support for referable data that may evolve over time, also while
retaining full auditability as well as referential integrity. Besides the re-
vised architecture, we present the DSLs used to specify data definitions,
reports, and contracts respectively. Finally, we illustrate a use case sce-
nario, which we implemented in a trial for a small business.

1 Introduction

Enterprise Resource Planning (ERP) systems are comprehensive software sys-
tems used to integrate and manage business activities in enterprises. Such ac-
tivities include—but are not limited to—financial management (accounting),
production planning, supply chain management and customer relationship man-
agement. ERP systems emerged as a remedy to heterogeneous systems, in which
data and functionality are spread out—and duplicated—amongst dedicated sub-
systems. Instead, an ERP system it built around a central database, which stores
all information in one place.

Traditional ERP systems such as Microsoft Dynamics NAV1, Microsoft Dy-
namics AX2, and SAP3 are three-tier architectures with a client, an application

1 http://www.microsoft.com/en-us/dynamics/products/nav-overview.aspx.
2 http://www.microsoft.com/en-us/dynamics/products/ax-overview.aspx.
3 http://www.sap.com.
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Fig. 1. Bird’s-eye view of the POETS architecture (diagram copied from [6])

server, and a centralised relational database system. The central database stores
information in tables, and the application server provides the business logic,
typically coded in a general purpose, imperative programming language.

The process-oriented event-driven transaction systems (POETS) architecture
introduced by Henglein et al. [6] is a qualitatively different approach to ERP sys-
tems. Rather than storing both transactional data and implicit process state in a
database, POETS employs a pragmatic separation between transactional data,
which is persisted in an event log, and contracts, which are explicit representa-
tions of business processes, stored in a separate module. Moreover, rather than
using general purpose programming languages to specify business processes, PO-
ETS utilises a declarative domain-specific language (DSL) [1]. The use of a DSL
not only enables compositional construction of formalised business processes, it
minimises the semantic gap between requirements and a running system, and it
facilitates treating processes as data for analysis. Henglein et al. take it as a goal
of POETS that “[...] the formalized requirements are the system” [6, page 382].

The bird’s-eye view of the POETS architecture is presented in Figure 1. At the
heart of the system is the event log, which is an append-only list of transactions.
Transactions represent “things that take place” such as a payment by a customer,
a delivery of goods by a shipping agency, or a movement of items in an inventory.
The append-only restriction serves two purposes. First, it is a legal requirement
in ERP systems that transactions, which are relevant for auditing, are retained.
Second, the report engine utilises monotonicity of the event log for optimisation,
as shown by Nissen and Larsen [19].

Besides the radically different software architecture, POETS distinguishes it-
self from existing ERP systems by abandoning the double-entry bookkeeping
(DEB) accounting principle [28] in favour of the Resources, Events, and Agents
(REA) accounting model of McCarthy [13].

1.1 Outline and Contributions

The motivation for our work is to assess the POETS architecture in terms of a
prototype implementation. During the implementation process we have added
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features for dynamically managing values and entities to the original architec-
ture. Moreover, in the process we found that the architecture need not be tied
to the REA ontology—indeed to ERP systems—but can be viewed as a dis-
crete event modelling framework. Its adequacy for other domains remains future
research, however.

Our contributions are as follows:

– We present a generalised and extended POETS architecture (Section 2) that
has been fully implemented.

– We present domain-specific languages for data modelling (Section 2.1), re-
port specification (Section 2.4), and contract specification (Section 2.5).

– We illustrate small use case that we have implemented in our system as part
of a trial for a small business (Section 3).

The POETS server system has been implemented in Haskell. Its client code
has been developed in Java, primarily for Android. The choice of Haskell, specif-
ically the Glasgow Haskell Compiler (GHC), is due to: the conciseness, affinity
and support of functional programming for enterprise software [14] and declara-
tive DSL implementation; its expressive type system, which supports statically
typed solutions to the Expression Problem [3,2]; and competitive run-time per-
formance due to advanced compiler optimisations in GHC. The use of Java on
the client side (not further discussed in this paper) arises from POETS, conceived
to be cloud-based and mobile from the outset, targeting low-cost mobile devices
and a practical desire to reuse code as much as possible across smartphones,
tablets, portables and desktops.

The source code of this implementation is available from the repository at
https://bitbucket.org/jespera/poets/. In addition, the repository also includes the
full source code for the use case presented in Section 3.

2 Revised POETS Architecture

Our generalised and extended architecture is presented in Figure 2. Compared
to the original architecture in Figure 1, the revised architecture sees the addition
of three new components: a data model, an entity store, and a rule engine. The
rule engine is currently not implemented, and we will therefore not return to
this module until Section 4.2.

As in the original POETS architecture, the event log is at the heart of the
system. However, in the revised architecture the event log plays an even greater
role, as it is the only persistent state of the system. This means that the states of
all other modules are also persisted in the event log, hence the flow of information
from all other modules to the event log in Figure 2. For example, whenever a
contract is started or a new report is added to the system, then an event reflecting
this operation is persisted in the event log. This, in turn, means that the state
of each module can—in principle—be derived from the event log. However, for
performance reasons each module—including the event log—maintains its own
state in memory.

https://bitbucket.org/jespera/poets/
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Fig. 2. Bird’s-eye view of the generalised and extended POETS architecture
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getSubTypes record name list of record names

Fig. 3. Data model interface

We describe each module of the revised architecture in the following subsec-
tions. Since we will focus on the revised architecture in the remainder of the
text, we will refer to said architecture simply as POETS.

2.1 Data Model

The data model is a core component of the extended architecture, and the in-
terface it provides is summarised in Figure 3. The data model defines the types
of data that are used throughout the system, and it includes predefined types
such as events. Custom types such as invoices can be added to the data model
at run-time via addDataDefs. For simplicity we currently only allow addition of
types, not updates and deletions, which can be supported by suitable namespace
management.

Types define the structure of the data in a running POETS instance mani-
fested as values. A value—such as a concrete invoice—is an instance of the data
specified by a type. Values are not only communicated between the system and
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its environment but they are also stored in the event log, which is simply a list
of values of a certain type.

Types. Structural data such as payments and invoices are represented as records,
that is, typed finite mappings from field labels to values. Record types define the
structure of such records by listing the constituent field labels and their associated
types. In order to form a hierarchical ontology of record types, we use a nominal
subtyping system [22]. That is, each record type has a unique name, and one type
is a subtype of another if and only if stated so explicitly or by transitivity. For
instance, a customer can be defined as a subtype of a person, which means that a
customer contains all the data of a person, similar to inheritance in object oriented
programming.

The choice of nominal types over structural types [22] is justified by the do-
main: the nominal type associated with a record may have a semantic impact.
For instance, the type of customers and premium customers may be structurally
equal, but a value of one type is considered different from the other, and clients
of the system may for example choose to render them differently. Moreover, the
purpose of the rule engine, which we return to in Section 4.2, is to define rules
for values of a particular semantic domain, such as invoices. Hence it is wrong
to apply these rules to data that happens to have the same structure as in-
voices. Although we use nominal types to classify data, the DSLs support full
record polymorphism [20] in order to minimise code duplication. That is, it is
possible for instance to use the same piece of code with customers and premium
customers, even if they are not related in the subtyping hierarchy.

The grammar for types is as follows:

T ::= Bool | Int | Real | String | Timestamp | Duration (type constants)
| RecordName (record type)
| [T ] (list type)
| 〈RecordName〉 (entity type)

Type constants are standard types Booleans, integers, reals, and strings, and less
standard types timestamps (absolute time) and durations (relative time). Record
types are named types, and the record typing environment—which we will de-
scribe shortly—defines the structure of records. For record types we assume a
set RecordName = {Customer,Address, Invoice, . . . } of record names ranged over
by r. Concrete record types are typeset in sans-serif and begin with a capital
letter. Likewise, we assume a set FieldName of all field names ranged over by f .
Concrete field names are typeset in sans-serif beginning with a lower-case letter.

List types [τ ] represent lists of values, where each element has type τ , and
it is the only collection type currently supported. Entity types 〈r〉 represent
entity values that have associated data of type r. For instance, if the record type
Customer describes the data of a customer, then a value of type 〈Customer〉 is a
(unique) customer entity, whose associated Customer data may evolve over time.
The type system ensures that a value of an entity type will have associated data
of the given type, similar to referential integrity in database systems [4]. We will
return to how entities are created and modified in Section 2.3.
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All data are type checked before they enter the system, both in order to
check that record values conform with the record typing environment, but also
to check that entity values have valid associated data. In particular, events are
type checked before they are persisted in the event log. We will explain what
this means in detail in Section 2.2 and 2.3. The typing judgement has the form
R, E � v : τ , where R is a record typing environment, which contains record type
definitions, E is an entity typing environment, which maps each defined entity
to its declared type, v is a value, and τ is a type. Both R and E are given by the
data model and the entity store, respectively. The POETS system has a type
checker that checks whether a value v has type τ in the context of R and E .

Ontology Language. In order to specify record types, we use a variant of
Attempto Controlled English [5] due to Jønsson Thomsen [10], referred to as the
ontology language. The approach is to define data types in near-English text,
in order to minimise the gap between requirements and specification. A simple
example in the ontology language is given below:

Person is abstract.
Person has a String called name.

Customer is a Person.
Customer has an Address.

Address has a String called road.
Address has an Int called no.

Predefined Ontology. Unlike the original POETS architecture [6], our gener-
alised architecture is not fixed to an enterprise resource planning (ERP) domain.
However, we require a set of predefined record types.

The predefined ontology defines five root concepts in the data model, that is,
record types maximal with respect to the subtyping relation. Each of these five
root concepts Data, Event, Transaction, Report, and Contract are abstract and
only Event and Contract define record fields. Custom data definitions added via
addDataDefs are only permitted as subtypes of Data, Transaction, Report, and
Contract. In contrast to that, Event has a predefined and fixed hierarchy.

Data types represent elements in the domain of the system such as customers,
items, and resources.

Transaction types represent events that are associated with a contract, such as
payments, deliveries, and issuing of invoices.

Report types are result types of report functions, that is, the data of reports,
such as inventory status, income statement, and list of customers. The Report
structure does not define how reports are computed, only what kind of result
is computed. We will describe the report engine in Section 2.4.

Contract types represent the different kinds of contracts, such as sales, purchases,
and manufacturing procedures. Similar to Report, the structure does not
define what the contract dictates, only what is required to instantiate the
contract. The purpose of Contract is hence dual to the purpose of Report:
the former determines an input type, and the latter determines an output
type. We will return to contracts in Section 2.5.
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Event types form a fixed hierarchy and represent events that are logged in the
system. Events are conceptually separated into internal events and external
events, which we describe further in the following section.

2.2 Event Log

The event log is the only persistent state of the system, and it describes the
complete state of a running POETS instance. The event log is an append-only
list of records of the type Event. Each event reflects an atomic interaction with
the running system. This approach is also applied at the “meta level” of POETS:
in order to allow agile evolution of a running POETS instance, changes to the
data model, reports, and contracts are reflected in the event log as well.

The monotonic nature of the event log—data is never overwritten or deleted
from the system—means that the state of the system can be reconstructed at
any previous point in time. In particular, transactions are never deleted, which
is a legal requirement for ERP systems. The only component of the architecture
that reads directly from the event log is the report engine (compare Figure 2),
hence the only way to access data in the log is via a report.

All events are equipped with an internal timestamp (internalTimeStamp), the
time at which the event is registered in the system. Therefore, the event log
is always monotonically decreasing with respect to internal timestamps, as the
newest event is at the head of the list. Conceptually, events are divided into
external and internal events.

External events are events that are associated with a contract, and only
the contract engine writes external events to the event log. The event type
TransactionEvent models external events, and it consists of three parts: (i) a
contract identifier (contractId), (ii) a timestamp (timeStamp), and (iii) a trans-
action (transaction). The identifier associates the external event with a contract,
and the timestamp represents the time at which the external event takes place.
Note that the timestamp need not coincide with the internal timestamp. For
instance, a payment in a sales contract may be registered in the system the day
after it takes place. There is hence no a priori guarantee that external events
have decreasing timestamps in the event log—only external events that per-
tain to the same contract are required to have decreasing timestamps. The last
component, transaction, represents the actual action that takes place, such as a
payment from one person or company to another. The transaction is a record of
type Transaction, for which the system makes no assumptions.

Internal events reflect changes in the state of the system at a meta level. This
is the case for example when a contract is instantiated or when a new record
definition is added. Internal events are represented by the remaining subtypes of
the Event record type. Figure 4 provides an overview of all non-abstract record
types that represent internal events.

A common pattern for internal events is to have three event types to represent
creation, update, and deletion of respective components. For instance, when a
report is added to the report engine, a CreateReport event is persisted to the
log, and when it is updated or deleted, UpdateReport and DeleteReport events
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Event Description

AddDataDefs A set of data definitions is added to the system. The field defs
contains the ontology language specification.

CreateEntity An entity is created. The field data contains the data associated
with the entity, the field recordType contains the string represen-
tation of the declared type, and the field ent contains the newly
created entity value.

UpdateEntity The data associated with an entity is updated.
DeleteEntity An entity is deleted.

CreateReport A report is created. The field code contains the specification of the
report, and the fields description and tags are meta data.

UpdateReport A report is updated.
DeleteReport A report is deleted.

CreateContractDef A contract template is created. The field code contains the spec-
ification of the contract template, and the fields recordType and
description are meta data.

UpdateContractDef A contract template is updated.
DeleteContractDef A contract template is deleted.

CreateContract A contract is instantiated. The field contractId contains the newly
created identifier of the contract and the field contract contains
the name of the contract template to instantiate, as well as data
needed to instantiate the contract template.

UpdateContract A contract is updated.
ConcludeContract A contract is concluded.

Fig. 4. Internal events

are persisted accordingly. This means that previous versions of the report spec-
ification can be retrieved, and more generally that the system can be restarted
simply by replaying the events that are persisted in the log on an initially empty
system. Another benefit to the approach is that the report engine, for instance,
does not need to provide built-in functionality to retrieve, say, the list of all
reports added within the last month—such a list can instead be computed as a
report itself!

Since we allow the data model of the system to evolve over time, we must be
careful to ensure that the event log, and thus all data in it, remains well-typed at
any point in time. Let Rt, Et, and lt denote the record typing environment, entity
typing environment, and event log, respectively at time t. Since an entity might
be deleted over time, and thus is removed from the entity typing environment,
the event log may not be well-typed with respect to the current entity typing
environment. To this end, we type the event log with respect to the accumulated
entity typing environment Êt =

⋃
t′≤t Et′ at time t. That is, Êt(e) = r iff there is

some time t′ ≤ t with Et′(e) = r. The stable type invariant, which we will discuss

in Section 2.3, guarantees that Êt is indeed well-defined.
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Entity Store

Function Input Output

createEntity record name, record entity
updateEntity entity, record
deleteEntity entity

Fig. 5. Entity store interface

For changes to the record typing environment, we require the following invari-
ants for any points in time t, t′ and the event log lt at time t:

if t′ ≤ t then Rt′ ⊆ Rt, and (monotonicity)

Rt, Êt � lt : [Event] . (log typing)

Note that the log typing invariant follows from the monotonicity invariant and
the type checking Rt, Et � e : Event for each new incoming event, provided that
for each record name r occurring in the event log, no additional record fields
are added to r, and r is not made an abstract record type. We will refer to the
two invariants above collectively as record typing invariants. They will become
crucial in the following section.

2.3 Entity Store

The entity store provides very simple functionality, namely creation, deletion
and updating of entities, respectively. To this end, the entity store maintains
an entity environment εt that maps each defined entity e to its value εt(e). In
addition, the entity store also maintains a compact representation of the history
of entity environments ε0, . . . , εt. The interface of the entity store is summarised
in Figure 5.

In order to type check entities, the entity store also maintains an entity typing
environment Et, that is, a finite partial mapping from entities to record names.
Intuitively, an entity typing environment maps an entity to the record type that
it has been declared to have upon creation.

The entity store checks a number of invariants that ensure the integrity of
the system. Specifically, the entity store ensures the following invariants, where
we use the notation Et, Rt and εt, for the entity typing environment, the record
typing environment, and the entity environment, respectively at time t:

if Et(e) = r and Et′(e) = r′, then r = r′, (stable type)

if Et(e) is defined, then so is εt(e), and (well-definedness)

if εt(e) = v, then Et(e) = r and Rt′ , Et′ � v : r for some t′ ≤ t. (well-typing)

We refer to the three invariants above collectively as the entity integrity in-
variants. The stable type invariant states that each entity can have at most one
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declared type throughout its lifetime. The well-definedness invariant guarantees
that every entity that is given a type also has an associated record value. Fi-
nally, the well-typing invariant guarantees that the record value associated with
an entity was well-typed at some earlier point in time t′.

The creation of a new entity via createEntity at time t+1 requires a declared
type r and an initial record value v, and it is checked that Rt, Et � v : r. If the
value type checks, a fresh entity value e �∈

⋃
t′≤t dom(εt′) is created, and the

entity environment and the entity typing environment are updated accordingly:

εt+1(x) =

{
v if x = e,

εt(x) otherwise,
Et+1(x) =

{
r if x = e,

Et(x) otherwise.

Moreover, a CreateEntity event is persisted to the event log containing e, r, and
v for the relevant fields.

Similarly, if the data associated with an entity e is updated to the value v
at time t + 1, then it is checked that Rt, Et � v : Et(e), and the entity store is
updated like above. Note that the entity typing environment is unchanged, that
is, Et+1 = Et. A corresponding UpdateEntity event is persisted to the event log
containing e and v for the relevant fields.

Finally, if an entity e is deleted at time t + 1, then it is removed from both
the entity store and the entity typing environment:

εt+1(x) = εt(x) iff x ∈ dom(εt) \ {e}
Et+1(x) = Et(x) iff x ∈ dom(Et) \ {e} .

A corresponding DeleteEntity event is persisted to the event log containing e for
the relevant field.

Note that, by default, εt+1 = εt and Et+1 = Et, unless one of the situations
above apply. It is straightforward to show that the entity integrity invariants are
maintained by the operations described above (the proof follows by induction
on the timestamp t). Internally, that is, for the report engine compare Figure 2,
the entity store provides a lookup function lookupt : Ent × [0, t] ⇀fin Record ,
where lookupt(e, t

′) provides the latest value associated with the entity e at time
t′, where t is the current time. Note that this includes the case in which e has
been deleted at or before time t′. In that case, the value associated with e just
before the deletion is returned. Formally, lookupt is defined in terms of the entity
environments as follows:

lookupt(e, t1) = v iff ∃t2 ≤ t1 : εt2(e) = v and ∀t2 < t3 ≤ t1 : e �∈ dom(εt3).

In particular, we have that if e ∈ dom(εt1), then lookupt(e, t1) = εt1(e).
From this definition and the invariants of the system, we can derive the fol-

lowing fundamental safety property for the entity store:

Proposition 1. Given timestamps t ≤ t1 ≤ t2 and entity e, the following holds:

If Rt, Êt � e : 〈r〉 , then lookupt2(e, t1) = v for some v and Rt2 , Êt2 � v : r.
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Report Engine

Function Input Output

addReport name, type, description, tags, report definition
updateReport name, type, description, tags, report definition
deleteReport name
queryReport name, list of values value

Fig. 6. Report engine interface

That is, if an entity value previously entered the system, and hence type
checked, then all future dereferencing will not get stuck, and the obtained value
will be well-typed with respect to the accumulated entity typing environment.

2.4 Report Engine

The purpose of the report engine is to provide user-definable views, called reports,
of the system’s event log.4 Conceptually, a report is compiled from the event log
by a report function, a function of type [Event] → Report. The report language
provides a means to specify such a report function in a declarative manner. The
interface of the report engine is summarised in Figure 6.

The Report Language. The report language is—much like the query fragment
of SQL—a functional language without side effects. It only provides operations
to non-destructively manipulate and combine values. Since the system’s storage
is based on a shallow event log, the report language must provide operations to
relate, filter, join, and aggregate pieces of information. Moreover, as the data
stored in the event log is inherently heterogeneous—containing data of different
kinds—the report language offers a comprehensive type system that allows us
to safely operate in this setting.

The report language is based on the simply typed lambda calculus extended
with polymorphic (non-recursive) let expressions as well as type case expressions.
The core language is given by the following grammar:

e ::= x | c | λx .e | e1 e2 | let x = e1 in e2 | type x = e of {r → e1; → e2} ,

where x ranges over variables, and c over constants which include integers,
Booleans, tuples and list constructors as well as operations on them like +,
if-then-else etc. In particular, we assume a fold operation fold of type (α →
β → β) → β → [α] → β. This is the only operation of the report language
that permits recursive computations on lists. However, the full language pro-
vides syntactic sugar to express operations on lists more intuitively in the form
of list comprehensions [26].

4 The term “report” often conflates the data computed and their visual rendering;
here “report” denotes only the computed data.
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The extended list comprehensions of the report language also allows the pro-
grammer to filter according to run-time type information, which builds on type
case expressions of the form type x = e of {r → e1; → e2} in the core lan-
guage. In such a type case expression, an expression e of some record type re gets
evaluated to record value v which is then bound to a variable x. The record type
r that the record value v is matched against can be any subtype of re. Further
evaluation of the type case expression depends on the type rv of the record value
v. This type can be any subtype of re. If rv is a subtype of r, then the evaluation
proceeds with e1, otherwise with e2. Binding e to a variable x allows us to use
the stricter type r in the expression e1.

Another important component of the report language consists of the derefer-
encing operators ! and @, which give access to the lookup operator provided by
the entity store. Given an expression e of an entity type 〈r〉, both dereferencing
operators provide a value v of type r. That is, both ! and @ are unary operators
of type 〈r〉 → r for any record type r. In the case of the operator !, the resulting
record value v is the latest value associated with the entity to which e evaluates.
More concretely, given an entity value v, the expression v! evaluates to the record
value lookupt(v, t), where t is the current time (“now”).

On the other hand, the contextual dereference operator @ yields the value of
an entity at the time of the event it is extracted from. Concretely, every entity v
that enters the event log is annotated with the timestamp of the event it occurs
in. That is, each entity value embedded in an event e in the event log, occurs
in an annotated form (v, s), where s is the value of e’s internalTimeStamp field.
Given such an annotated entity value (v, s), the expression (v,s)@ evaluates to
lookupt(v, s) and given a bare entity value v the expression v@ evaluates to
lookupt(v, t).

Note that in each case for either of the two dereference operators, Proposi-
tion 1 guarantees that the lookup operation yields a record value of the right
type. That is, they are total functions of type 〈r〉 → r that never get stuck.

Lifecycle of Reports. Like entities, the set of reports registered in a running
POETS instance—and thus available for querying—can be changed via the ex-
ternal interface to the report engine. To this end, the report engine interface
provides the operations addReport, updateReport, and deleteReport. The former
two take a report specification that contains the name of the report, the defini-
tion of the report function that generates the report data and the type of the
report function. Optionally, it may also contain further meta information in the
form of a description text and a list of tags.

The remaining operation provided by the report engine—queryReport—con-
stitutes the core functionality of the reporting system. Given a name of a regis-
tered report and a list of arguments, this operation supplies the given arguments
to the corresponding report function and returns the result.
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Contract Engine

Function Input Output

createTemplate name, type, description, specification
updateTemplate name, type, description, specification
deleteTemplate name

createContract meta data contract ID
updateContract contract ID, meta data
concludeContract contract ID
getContract contract ID contract state
registerTransaction contract ID, timestamp, transaction

Fig. 7. Contract engine interface

2.5 Contract Engine

The role of the contract engine is to determine which transactions—that is,
external events, compare Section 2.2—are expected by the system. Transactions
model events that take place according to an agreement, for instance a delivery
of goods in a sale, a payment in a lease agreement, or a movement of items from
one inventory to another in a production plan. Such agreements are referred to
as contracts, although they need not be legally binding contracts. The purpose
of a contract is to provide a detailed description of what is expected, by whom,
and when. A sales contract, for example, may stipulate that first the company
sends an invoice, then the customer pays within a certain deadline, and finally
the company delivers goods within another deadline.

The interface of the contract engine is shown in Figure 7.

Contract Templates. In order to specify contracts such as the aforementioned
sales contract, we use an extended variant of the contract specification language
(CSL) of Hvitved et al. [9], which we will refer to as the POETS contract spec-
ification language (PCSL) in the following. For reusability, contracts are always
specified as contract templates rather than as concrete contracts. A contract
template consists of four parts: (i) a template name, (ii) a template type, which
is a subtype of the Contract record type, (iii) a textual description, and (iv) a
PCSL specification. We describe PCSL in Section 2.5.

The template name is a unique identifier, and the template type determines
the parameters that are available in the contract template.

Example 1. We may define the following type for sales contracts in the ontology
language (assuming that the record types Customer, Company, and Goods have
been defined):

Sale is a Contract.
Sale has a Customer entity.
Sale has a Company entity.
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Sale has a list of Goods.
Sale has an Int called amount.

With this definition, contract templates of type Sale are parametrised over the
fields customer, company, goods, and amount of types 〈Customer〉, 〈Company〉,
[Goods], and Int, respectively.

The contract engine provides an interface to add contract templates (cre-
ateTemplate), update contract templates (updateTemplate), and remove con-
tract templates (deleteTemplate) from the system at run-time. The structure
of contract templates is reflected in the external event types CreateContractDef,
UpdateContractDef, and DeleteContractDef, compare Section 2.2. A list of (non-
deleted) contract templates can hence be computed by an appropriate report.

Contract Instances. A contract template is instantiated via createContract
by supplying a record value v of a subtype of Contract. Besides custom fields,
which depend on the type at hand, such a record always contains the fields
templateName and startDate inherited from the Contract record type. The field
templateName contains the name of the template to instantiate, and the field
startDate determines the start date of the contract. The fields of v are substituted
into the contract template in order to obtain a contract instance, and the type
of v must therefore match the template type. For instance, if v has type Sale
then the field templateName must contain the name of a contract template that
has type Sale. We refer to the record v as contract meta data.

When a contract c is instantiated by supplying contract meta data v, a fresh
contract identifier i is created, and a CreateContract event is persisted in the
event log with with contract = v and contractId = i. Hereafter, transactions t
can be registered with the contract via registerTransaction, which will update

the contract to a residual contract c′, written c
t→ c′, and a TransactionEvent

with transaction = t and contractId = i is written to the event log. The state
of the contract can be acquired from the contract engine at any given point in
time via getContract, which enables run-time analyses of contracts, for instance
in order to generate a list of expected transactions.

Registration of a transaction c
t→ c′ is only permitted if the transaction is

expected in the current state c. That is, there need not be a residual state for

all transactions. After zero or more successful transactions, c
t1→ c1

t2→ · · · tn→ cn,
the contract may be concluded via concludeContract, provided that the resid-
ual contract cn does not contain any outstanding obligations. This results in a
ConcludeContract event to be persisted in the event log.

The lifecycle described above does not take into account that contracts may
have to be updated at run-time, for example if it is agreed to extend the payment
deadline in a sales contract. To this end, running contracts are allowed to be
updated, simply by supplying new contract meta data (updateContract). The
difference in the new meta data compared to the old meta data may not only
be a change of, say, items to be sold, but it may also be a change in the field
templateName. The latter makes it is possible to replace the old contract by a
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qualitatively different contract, since the new contract template may describe
a different workflow. There is, however, an important restriction: a contract
can only be updated if any previous transactions registered with the contract
also conform with the new contract. That is, if the contract has evolved like

c
t1→ c1

t2→ · · · tn→ cn, and an update to a new contract c′ is requested, then only

if c′ t1→ c′1
t2→ · · · tn→ c′n, for some c′1, . . . , c

′
n, is the update permitted. A successful

update results in an UpdateContract event to be written to the event log with
the new meta data.

For simplicity, we only allow the updates described above. Another possibility
is to allow updates where the current contract c is replaced directly by a new
contract c′. This effect can be attained by prefixing c′ with [t1, . . . , tn] as contract
actions.

As for contract templates, a list of (non-concluded) contract instances can
be computed by a report that inspects CreateContract, UpdateContract, and
ConcludeContract events respectively.

The Contract Language. The fourth component of contract templates—
the PCSL specification—is the actual normative content of contract templates.
PCSL extends Hvitved’s CSL [9] mainly at the level of expressions E, by adding
support for the value types in POETS, as well as lambda abstractions and func-
tion applications. At the level of clauses C, PCSL is similar to CSL, albeit with
a slightly altered syntax. Typing of PCSL expressions is more challenging since
we have added (record) polymorphism as well as subtyping.

We do not present PCSL formally here; instead, it is illustrated in the use
case in Section 3 below.

3 Use Case: Legejunglen

We outline a use case that we implemented in a trial with a small business called
Legejunglen, an indoor playground for children.

The user interface to the POETS system is provided by a client application
for the Android operating system. The application is suitable for both phone
and tablet devices. Although, for this trial we focused on the tablet user experi-
ence. The client application communicates with the POETS system running on
a server via the APIs of individual subsystems as described in Section 2. The
client provides a generic user interface guided by the ontology. There is func-
tionality to visualise ontology elements as well as allowing user input of ontology
elements. Additionally, a simple mechanism for compile-time specialised visual-
isations is provided. The generic visualisations handle ontology changes without
any changes needed on the client. The central part of the user interface provides
an overview of the state of currently instantiated contract templates as well as
allowing users to interact with running contracts.

In the following, we present the final results of an iterative refinement process
on modelling the Legejunglen business. We conclude with some reflections on
using the DSLs for iterative model evolution.
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The most important functionality for day-to-day use at Legejunglen is to (1)
register bookings for customers and (2) to get an overview of the scheduled
events for a single day. Apart from that, the system should provide standard
accounting functionality.

The main workflow that we needed to implement is the booking system, that
is, the system according to which a customer reserves a time at the playground.
This workflow is encoded in a contract template Appointment. The data associ-
ated with this contract are defined in the following ontology definition:

Appointment is a Contract.
Appointment is abstract.
Appointment has a DateTime called arrivalDate.
Appointment has Food.
Appointment has a Location called placement.
Appointment has a Participants.
Appointment has an Int called numberOfTableSettings.
Appointment has a String called comments.
Appointment has an Adult entity called contactPerson.

The full ontology also contains declarations that define the auxiliary concepts
Food, Location, Participants and Adult, which we have elided here. The fields that
are associated with the Appointment record type have to be provided in order to
instantiate the corresponding Appointment contract template. These fields are
then directly accessible in the definition of the contract template.

Figure 8 details the definition of the contract template that describes the
workflow for booking an appointment at Legejunglen. The full contract is de-
fined at the very bottom by referring to the confirm clause. Note that we di-
rectly reference the arrivalDate, numberOfTableSettings and contactPerson field
of the Appointment record. The three clauses of the contract template roughly
correspond to three states an active Appointment contract may be in: first, in
the confirm clause we wait for confirmation from the customer until one day
before the expected arrival. After that we wait for the arrival of the customer
at the expected time (plus a one hour delay). Finally, we expect the payment
within one day.

Next we turn to the reporting functionality of POETS. For daily planning
purposes, Legejunglen requires an overview of the booked appointments of any
given day. This functionality is easily implemented in the reporting language.
Firstly, we define the record type that contains the result of the desired report:

Schedule is a Report.
Schedule has a list of Appointment called appointments.

Secondly, we define the actual report function that searches the event log
for the creation of Appointment contracts with a given arrivalDate. The report
definition is given in Figure 9.

A more complex report specification is given in Figure 10. This report
compiles an overview of all appointments made during a month as well as the sum
of all payments that were registered by the system during that time. This report
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name: appointment
type: Appointment
description: "Contract for handling a appointment."

// A reference to the designated entity that represents the company
val me = reports.me ()

clause confirm(expectedArrival : Duration, numberOfTableSettings : Int)
〈me : 〈Me〉, contact : 〈Adult〉〉 =

when ContactConfirms
due within expectedArrival 〈−〉 1D
remaining newDeadline

then
arrival(newDeadline)〈me, contact〉

else arrival(expectedArrival)〈me, contact〉

clause arrival(expectedArrival : Duration)〈me : 〈Me〉, contact : 〈Adult〉〉 =
〈me〉 GuestsArrive

due within expectedArrival 〈+〉 1H
then payment(me)〈contact〉

clause payment(me : 〈Me〉)〈contact : 〈Adult〉〉 =
〈contact〉 Payment(sender s, receiver r)

where r ≡ me ∧ s ≡ contact
due within 1D

contract = confirm(subtractDate arrivalDate contractStartDate,
numberOfTableSettings)〈me, contactPerson〉

Fig. 8. Contract template for booking an appointment

name: DailySchedule
description:

Returns a list of appointments for which the expected
arrival is the same as the given date.

tags: legejunglen

report : Date → Schedule
report expectedArrival =

Schedule { appointments = [arra |
putC : PutContract ← events,
arra : Appointment = putC.contract,
expectedArrival ≡ arra.arrivalDate.date ] }

Fig. 9. Report definition for compiling a daily schedule
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specification uses an explicit fold in order to accumulate the payment and appoint-
ment information that are spread throughout the event log.

Although Legejunglen is a relatively simple business, a significant amount
of the work done in the trial involved refining the workflows implicitly in use
and formalising what reports were needed. The ability to specify a workflow
using the contract language and then immediately try it out in the Android
client, helped the modelling process tremendously. A basic contract template
for keeping track of bookings was made quickly, which facilitated the process
of iterative evaluation and refinement to precisely capture the way Legejunglen
worked. Changes on the POETS side were quite easy to perform. Changes are
typically isolated. That is, support for new workflows or reports does not require
a change to the data model and only amounts to adding new contract templates
respectively report specifications. This can be performed while the system is
up and running, without any downtime. In addition, the subtyping discipline
employed in POETS’ data model is a key feature in enabling extending the
ontology of at run time without compromising the integrity of its state or the
semantics of its reports and contracts.

The effort for implementing changes in the data model and the workflow is
quite modest. Minor changes in the requirements tended to require little changes
in the ontology and contract specifications. Typically, this is also the case for
changes in the report specifications. However, changes in report specifications
turned out to be quite complicated in some instances. Reports have the ability
to produce highly structured information from the flat-structured event log.
Unfortunately, this ability is reflected in the complexity of the corresponding
report specifications. Nonetheless, from the report specifications we have written,
we can extract a small set of high-level patterns that cover most common use
cases. Integrating these high-level patterns into the reporting language should
greatly reduce the effort for writing reports and further increase readability.

Changes in the underlying modelling on the POETS side were rather easy to
propagate to the Android client software. As mentioned, the client application
provides a generic user interface to the POETS system that allows it to reflect
any changes made in the modelling in the POETS system. However, this generic
interface does not always provide the optimal user experience and therefore
needs manual refinement to reflect changes in the modelling. Additionally, there
have also been specific requirements to the client software, which had to be
implemented.

4 Conclusion

We have presented an extended and generalised version of the POETS architec-
ture [6], which we have fully implemented. It is based on declarative domain-
specific languages for specifying the data model, reports, and contracts of a
POETS instance, which offer enterprise domain concepts and encapsulate im-
portant invariants that facilitate safe run-time changes to data types, reports
and contracts; full recoverability and auditability of any previous system state;
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MonthlyOverview is a Report.
MonthlyOverview has a Real called total.
MonthlyOverview has a list of AppointmentInfo called appointments.

name: MonthlyOverview
description:
Get information about payments received for given month.

tags: legejunglen

allContracts : [PutContract]
allContracts = [pc |
cc : CreateContract ← events,
pc = first cc [uc | uc : UpdateContract ← events, uc.contractId ≡ cc.contractId]]

allPayments : Date → [(Payment, PutContract)]
allPayments date =
[(pay, putC) |
putC ← allContracts,
arra : Appointment = putC.contract,
arra.arrivalDate.month ≡ date.month,
arra.arrivalDate.year ≡ date.year,
tr : TransactionEvent ← transactionEvents,
tr.contractId ≡ putC.contractId,
pay : Payment = tr.transaction ]

initialOverview = MonthlyOverview { total = 0,
appointments = [] }

addAppointment : (Payment, Appointment) → [AppointmentInfo] → [AppointmentInfo]
addAppointment payArr arrs = insertProj
(λpa → pa.appointment.arrivalDate)
(AppointmentInfo {appointment = payArr.2, payment = payArr.1})
arrs

calc payPut overv =
type x = payPut.2.contract of
Appointment → overv {
total = overv.total + payPut.1.money.amount,
appointments = addAppointment (payPut.1, x) overv.appointments }
→ overv

report : Date → MonthlyOverview
report date = fold calc initialOverview (allPayments date)

Fig. 10. Report definition for compiling a monthly payment overview
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and strict separation of logged raw data and efficiently computed user-specified
derived data. In particular, in contrast to its predecessor, any historical system
state is reestablishable for auditing since also master data, contract and report
changes are logged, not only transactional data.

The use case presented illustrates the conciseness of POETS DSLs and sup-
port for rapid exploratory process and report design since the “specification is
the implementation” approach made it easy to make an initial model of the busi-
ness as well as evolve it to new requirements. While no significant conclusions
for usability and fitness for use in complex commercial settings can be drawn
without a suitable experimental design, we believe the preliminary results jus-
tify hypothesising that domain specialists should be able to read, understand
and specify data models (types) and, with suitable training in formalisation,
eventually contract and report specifications without having to worry about
programming or system specifics.

4.1 Related work

This paper focuses on the radical use of declarative domain-specific languages
in POETS motivated by the Resources, Event, Agents accounting model [13,6].
The syntactic and semantic aspects of its domain modelling language [25], its
contract language [9] (evolved from [1]) and functional reporting5 [19,18] are
described elsewhere.

ERP systems relate broadly to and combine aspects of discrete event simula-
tion, workflow modelling, choreography and orchestration, run-time monitoring,
process specification languages (such as LTL), process models (such as Petri
nets), and report languages (such as the query sublanguage of SQL and reactive
functional programming frameworks), which makes a correspondingly extensive
review of related work from a general ERP systems point of view a difficult and
expansive task.

More narrowly, POETS can be considered an example of language-oriented
programming [27] applied to the business modelling domain. Its contract lan-
guage specifies detailed real-time and value constraints (e.g. having to pay the
cumulatively correct amount by some deadline, not just some amount at some
time) on contract partners, neither supporting nor fixing a particular business
process. See [8, Chapter 1] and [7] for a survey of contract models and languages.

A hallmark of POETS is its enforcement of static invariants that guarantee au-
ditability and type correctness even in the presence of run-time updates to data
types, processes and reports. Recently the jABC approach [23,12] has added
support for types, data-flow modelling and processes as first-class citizens. The
resulting DyWA (Dynamic Web Application) approach [15,17,16] offers support
for step-by-step run-time enhancement with data types and corresponding busi-
ness processes until an application is ready for execution and for its subsequent
evolution.

5 Automatic incrementalisation is not implemented in the present version.
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Automatic incrementalisation of report functions in POETS can be thought
of as translating bulk-oriented queries that conceptually inspect the complete
event log every time they are run to continuous queries on streams [24], based
on formal differentiation techniques [21,11].

4.2 Future Work

Expressivity A possible extension of the data model is to introduce finite maps,
which will enable a modelling of resources that is closer in structure to that of
Henglein et al. [6]. Another possible extension is to allow types as values in the
report language. There are instances where we currently use a string representa-
tion of record types rather than the record types themselves. This representation
is, of course, suboptimal: we would like such runtime represenations of types ma-
chine checked and take subtyping into account.

Rules A rule engine is a part of our extended architecture (Figure 2), however it
remains to be implemented. The purpose of the rule engine is to provide rules—
written in a separate domain-specific language—that can constrain the values
that are accepted by the system. For instance, a rule might specify that the items
list of a Delivery transaction always be non-empty.

More interestingly, the rule engine will enable values to be inferred according
to the rules in the engine. For instance, a set of rules for calculating VAT will
enable the field vatPercentage of an OrderLine to be inferred automatically in
the context of a Sale record. That is, based on the information of a sale and the
items that are being sold, the VAT percentage can be calculated automatically
for each item type.

The interface to the rule engine will be very simple: a record value with zero
or more holes is sent to the engine, and the engine will return either (i) an
indication that the record cannot possibly fulfil the rules in the engine, or (ii) a
(partial) substitution that assigns inferred values to (some of) the holes of the
value as dictated by the rules. Hence when we, for example, instantiate the sale
of a bicycle. then we first let the rule engine infer the VAT percentage before
passing the contract meta data to the contract engine.

Forecasts A feature of the contract engine, or more specifically of the reduction
semantics of contract instances, is the possibility to retrieve the state of a running
contract at any given point in time. The state is essentially the AST of a contract
clause, and it describes what is currently expected in the contract, as well as
what is expected in the future.

Analysing the AST of a contract enables the possibility to do forecasts, for
instance to calculate the expected outcome of a contract or the items needed
for delivery within the next week. Forecasts are, in some sense, dual to reports.
Reports derive data from transactions, that is, facts about what has previously
happened. Forecasts, on the other hand, look into the future, in terms of calcu-
lations over running contracts. We have currently implemented a single forecast,
namely a forecast that lists the set of immediately expected transactions for a
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given contract. A more ambitious approach is to devise (yet another) language
for writing forecasts, that is, functions that operate on contract ASTs.

Practicality In order to make POETS useful in practice, many features are still
missing. However, we see no inherent difficulties in adding them to POETS
compared to traditional ERP architectures. To mention a few: (i) security, that
is, authorisation, users, roles, etc.; (ii) module systems for the report language
and contract language, that is, better support for code reuse; and (iii) check-
pointing of a running system, that is, a dump of the memory of a running
system, so the event log does not have to be replayed from scratch when the
system is restarted.
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Today’s software systems are becoming increasingly distributed and decentralized
and have to adapt autonomously to dynamically changing, open-ended environ-
ments. Often their nodes partake in complex interactions with other nodes or with
humans. We call these kinds of distributed, complex systems operating in open-
ended and changing environments, ensembles.

To facilitate analysis and reasoning about their properties, the static structure
and interactions in ensembles should be strictly layered and highly constrained,
and their interface to the environment should follow a precisely specified pro-
tocol. In practice, however, none of these conditions is satisfied: ensembles are
typically complex, multi-layered networks of interconnected parts, where differ-
ent layers interact and influence each other in intricate and sometimes unforeseen
ways. The environment in which they operate is highly dynamic, with frequent
short-term and long-term changes. For example, individual nodes in a network
may experience intermittent connection problems requiring short-term adapta-
tion until connectivity is restored. On the other hand, with systems depending
on services from a multitude of other providers it is not uncommon for services to
be discontinued or for providers to go out of business. This necessitates changes
of the system that persist in the long run.

It is infeasible for human operators to constantly monitor interactions in an
ensembles and to adjust it to cope with unexpected circumstances; similarly it is
not possible to rewrite the software for every change in operational or environ-
mental conditions. Instead of static software that operates without knowledge
about its environment and hence relies on manual configuration and optimization
we have to build systems with self-aware, intelligent components that posseses
features such as adaptation, self-organization, and both autonomous and collec-
tive behavior. Ensembles have to adapt autonomously to dynamically changing
situations while still respecting their design constraints and requirements.

Because of their distributed and decentralized nature, ensembles usually have
to achieve this by simultaneous adaptation of multiple nodes. But in open sys-
tems exhibiting this kind of distributed adaptation, unforeseen events and prop-
erties can arise. Modelling and engineering techniques for ensembles have to take
into account such “emergent” properties in addition to satisfying functional and
quantitative requirements.
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Current software engineering methods are not adequate for dealing with these
challenges: these methods, both agile and heavyweight, rely to a large degree
on code inspection and testing, approaches which are not adequate for reli-
ably developing large concurrent systems, let alone self-aware, adaptive systems.
Formal methods have successfully been employed in an ever increasing number
of projects; however, they generally cannot deal with the dynamic and open-
ended nature of the systems we are interested in, and they are difficult to scale
to the size of industrial-scale projects. Approaches from autonomic and multi-
agent systems address aspects such as self-configuration and self-optimization,
but they lack necessary guarantees for reliability, dependability and security and
are therefore not appropriate for critical systems.

Finding new ways to understand, design and build ensembles, and to predict
their behaviour, is therefore a difficult but important endeavour. The ISoLA
track on “Rigorous Engineering of Autonomic Ensembles” presents techniques
for modelling and analysing systems that adapt collectively to dynamically
changing environment conditions and requirements. In many cases, these models
and analysis techniques not only capture qualitative properties of the system,
such as absence of deadlocks, they are also be able to express quantitative prop-
erties such as quality of service.

In “Helena@Work: Modeling the Science Cloud Platform” [4], A. Klarl et al.
present a role-based modeling approach for dynamically composed, adaptive,
heterogeneous systems and apply this method to a cloud-computing platform.
The paper “Formalizing Self-Adaptive Clouds with KnowLang” [6] by E. Vassev
et al. formalizes a knowledge-based perspective on the same problem domain us-
ing the KnowLang language for knowledge representation. In their contribution
“Performance-Aware Engineering of Autonomic Component Ensembles” [2], T.
Bures et al. propose a method for integrating performance monitoring and aware-
ness in different stages of the development process. The paper “Self-Expression
and Dynamic Attribute-based Ensembles in SCEL” [3] by G. Cabri et al. shows
how the SCEL language can provide a rigorous mechanism for changing the
coordination patterns used in an ensemble to adapt to different circumstances.
A version of SCEL that includes a policy-specification language is introduced
by M. Loreti et al. in “On Programming and Policing Autonomic Computing
Systems” [5]. S. Bensalem et al. show how the BIP language and verification
tools can be used to guarantee safety properties for complex systems by means
of several case studies from the field of (swarm) robotics in “Rigorous System
Design Flow for Autonomous Systems” [1].

The results presented in this track were developed as part of the ASCENS
project.1 The goal of ASCENS is to build ensembles in a way that combines the
maturity and wide applicability of traditional software-engineering approaches
with the assurance about functional and non-functional properties provided by
formal methods and the flexibility, low management overhead, and optimal uti-
lization of resources promised by autonomic, self-aware systems. To this end AS-
CENS is researching new concepts for the design and development of autonomous,

1 http://www.ascens-ist.eu/

http://www.ascens-ist.eu/
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self-aware systems with parallel and distributed components. ASCENS has de-
veloped sound, formal reasoning and verification techniques to support the spec-
ification and development of these systems as well as their analysis at run-time.
The project goes beyond the current state of the art in solving difficult problems
of self-organization, self-awareness, autonomous and collective behavior, and re-
source optimization in a complex system setting.
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Abstract. Exploiting global interconnectedness in distributed systems,
we want autonomic components to form teams to collaborate for some
global goal. These teams have to cope with heterogeneity of participants,
dynamic composition, and adaptation. Helena advocates a modeling ap-
proach centered around the notion of roles which components can adopt
to take part in task-oriented teams called ensembles. By playing roles,
the components dynamically change their behavior according to their re-
sponsibilities in the task. In this paper, we report on the experiences of
using Helena in modeling and developing a voluntary peer-2-peer cloud
computing platform. We found that the design with roles and ensem-
bles provides a reasonable abstraction of our case study. The model is
well-structured, easy to understand and helps to identify and eliminate
collaboration mismatches early in the development.

1 Introduction

The development of distributed software systems, i.e. systems in which individ-
ual parts run on different machines connected via some sort of communication
network, has always been a challenge for software engineers. Special care has
to be taken to the unique requirements concerning concurrency and sharing of
responsibilities. In this area, difficult issues arise particularly in those systems
in which the individual distributed software components have a certain degree
of autonomy and interact in a non-centralized and non-trivial manner.

Such systems are investigated in the EU project ASCENS [1], where the indi-
vidual distributed artifacts are components which provide the basic capabilities
for collaborating teams. These components dynamically form ensembles to per-
form collective tasks which are directed towards certain goals. We believe that
the execution and interaction of entities in such ensembles is best described by
what we call roles. They are an abstraction of the part an individual component
plays in a collaboration. We claim that separating the behavior of components
into individual roles leads to an easier understanding, modeling, and program-
ming of ensemble-based systems. Our modeling approach Helena [9,12] thus
extends existing component-based software engineering methods by modeling
roles. Each role (more precisely role type) adds particular capabilities to the ba-
sic functionalities of a component which are only relevant when performing the
� This work has been partially sponsored by the EU project ASCENS, 257414.
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role. Exploiting these role-specific capabilities, we specify role behaviors which
the component dynamically adopts when taking over a role. For the specifica-
tion of role behaviors we extend [9] by introducing a process language which
allows to describe dynamic creation of role instances on selected component in-
stances. The structural characteristics of collaborations are defined in ensemble
structures capturing the contributing role types and potential interactions.

In this paper, we report on the experiences of using Helena in modeling and
developing a larger software system. As our case study we have selected the Sci-
ence Cloud Platform (SCP) [14] which is one of the three case studies used in
the ASCENS project. The SCP is, in a nutshell, a platform of distributed, vol-
untarily provided computing nodes. The nodes interact in a peer-to-peer manner
to execute, keep alive, and allow use of user-defined software applications. The
goal of applying Helena to the SCP is to find a reasonable abstraction that
serves as clear documentation, analysis model, and guideline for the implemen-
tation. We experienced that the Helena model helps to rigorously describe the
concepts of the SCP. During analysis of the models, collaboration mismatches
can be eliminated at early stages. As we shall discuss, the implementation also
benefits from the encapsulation in roles. However, during implementation some
additional effort is required to provide an infrastructure which supports the role
concept on top of the component-based system. Lastly, special care has to be
taken to make the system robust against communication failures and to provide
communication facilities between ensembles and the outside world which is not
yet tackled in Helena.

In the following sections, we first describe the case study in Sec. 2. Afterwards,
we summarize the Helena modeling approach in Sec. 3 and apply it to the case
study in Sec. 4. Sec. 5 describes the realization of the Helena model on the
infrastructure of the SCP and Sec. 6 discusses some related work. Lastly, we
report on experiences and give an outlook in Sec. 7.

2 Case Study

One of the three case studies in the ASCENS project is the Science Cloud Plat-
form (SCP) [14]. The SCP employs a network of distributed, voluntarily provided
computing nodes, in which users can deploy user-defined software applications.
To achieve this functionality, the SCP reuses ideas from three usually separate
computing paradigms: cloud computing, voluntary computing, and peer-to-peer
computing. In a nutshell, the SCP implements a platform-as-a-service in which
individual, voluntarily provided computing nodes interact using a peer-to-peer
protocol to deploy, execute, and allow usage of user-defined applications. The
SCP takes care to satisfy the requirements of the applications, keeps them run-
ning even if nodes leave the system, and provides access to the deployed appli-
cations. For a full description of the SCP, we refer to [14]. In the following, we
only discuss those parts relevant for this paper.

The SCP is formed by a network of computers which are connected via the
Internet, and on which the SCP software is installed (we call these nodes).
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Virtual and/or Physical Machine 
  (OS Layer)

SCP Node 
  (Networking Layer)

App Execution 
  (Application Layer)

App1 App2 ...

Java OSGi

Pastry PAST

SCP Role Implementations

Gossip 
Communication

TCP/IP

SCP UI

HELENA Framework

Fig. 1. SCP architecture (new parts in dashed boxes)

The layout of an SCP node is shown in Fig. 1, along with the technologies
involved. The dashed boxes are those parts contributed in the current work.

The bottom layer shows the infrastructure: The SCP is a Java application
and thus runs in the Java VM; it also uses the OSGi component framework to
dynamically deploy and run applications (as bundles). In general, plain TCP/IP
networking is used to communicate between nodes on this level.

The second layer implements the basic networking logic. The SCP uses the
distributed peer-to-peer overlay networking substrate Pastry [16] for communi-
cation. Pastry works similarly to a Distributed Hash Table (DHT) in that each
node is represented by an ID. Node IDs are organized to form a ring along which
messages can be routed to a target ID. Pastry manages joining and leaving nodes
and contains various optimizations for fast routing. On top of this mechanism,
the DHT PAST allows storage of data at specific IDs. On this layer, a gossip
protocol [7] is used to spread information about the nodes through the network;
this information includes node abilities (CPU, RAM), but also information about
applications. Each node slowly builds its own picture of the network, pruning
information where it becomes outdated.

The third layer (from the bottom) is presented in this paper, and implements
the application execution logic based on Helena. The dashed boxes describe
the intended implementation which are discussed throughout the paper. The
required functionality of the application layer is that of reliable application ex-
ecution given the application requirements on the one hand and the instability
of the network on the other hand. This process is envisioned as follows:

1. Deploying and undeploying: A user deploys an application using the
SCP UI (top right). The application is assigned an ID (based on its name)
and stored using the DHT (PAST) at the closest node according to the ID;
this ensures that exactly one node is responsible for the application, and this
node can always be retrieved based on the application name (we call this
node the app-responsible node). If this node leaves, the next adjacent node
based on ID proximity takes its place.
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2. Finding an executor: Since each application comes with execution re-
quirements and all nodes are heterogeneous, the app-responsible node may
or may not be able to execute the application. Thus, it is tasked with finding
an appropriate executor (based on the gossiped information).

3. Executing: Once an executor is found, it is asked to retrieve and run the
application. Through a continuous exchange of keep-alive messages, the app-
responsible node observes the executor and is thus able to select a new one
if it fails. The user may interact with the application through the SCP UI.

3 Ensemble Modeling with Helena

With Helena, we model systems with large numbers of entities which collabo-
rate in teams (ensembles) towards a specific goal. In this section, we summarize
the basic ideas and ingredients of the Helena approach [9,12]. It is centered
around the notion of roles which components can adopt to form ensembles. The
idea is that components can only collaborate under certain roles.

3.1 Ensemble Structures

The foundation for the aforementioned systems are components. To classify com-
ponents we use component types. A component type defines a set of attributes
(more precisely attribute types) representing basic information that is useful in
all roles the component can adopt. Formally, a component type ct is a tuple
ct = (nm, attrs) such that nm is the name of the component type and attrs is a
set of attribute types. For the SCP case study we use a single component type
Node; its attributes are not relevant for the sequel.

For performing certain tasks, components team up in ensembles. Each par-
ticipant in the ensemble contributes specific functionalities to the collaboration,
we say, the participant plays a certain role in the ensemble which we classify by
role types. A role type determines the types of the components that are able
to adopt this role. It also defines role-specific attributes (to store data that is
only relevant for performing the role) and it defines message types for incom-
ing, outgoing, and internal messages. Formally, a message type is of the form
msg = msgnm(riparams)(dataparams) such that msgnm is the name of the
message type, riparams is a list of typed formal parameters to pass role in-
stances, and dataparams is a list of (for simplicity untyped) formal parameters
for data.

Given a set CT of component types, a role type rt over CT is a tuple rt =
(nm, compTypes , roleattrs , rolemsgs) such that nm is the name of the role type,
compTypes ⊆ CT is a finite, non-empty subset of component types (whose in-
stances can adopt the role), roleattrs is a set of role specific attribute types, and
rolemsgs is a set of message types for incoming, outgoing, and internal messages
supported by the role type rt . Fig. 2 shows a graphical representation of the role
type for potential executors which will be needed and explained in the SCP case
study later on; see Sec. 4. The notation PotentialExecutor:{Node} indicates
that any component instance of type Node can play this role.
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«role type»
PotentialExecutor:{Node}

in ask(Initiator init)(String name,String reqs)
out ack(Executor exec)()
out decline()()
out execute()(String name)

Fig. 2. Role type PotentialExecutor

Role types form the basic building blocks for collaboration in an ensemble. An
ensemble structure determines the type of an ensemble that is needed to perform
a certain task. It specifies which role types are needed in the collaboration, how
many instances of each role type may contribute and which kind of messages
can be exchanged between instances of the given role types.

Definition 1 (Ensemble Structure). Let CT be a set of component types.
An ensemble structure Σ over CT is a pair Σ = (roleTypes , roleConstraints)
such that roleTypes is a set of role types over CT and for each rt ∈ roleTypes ,
roleConstraints(rt) ∈ Mult and Mult is the set of multiplicities available in
UML, like 0..1, 1, ∗, 1..∗, etc.

For simplicity, we do not use explicit role connector types here opposed to [9]
and assume that between (instances of) role types rt and rt ′ the messages with
the same name that are output on one side and input on the other side can
be exchanged. The ensemble structure for the SCP case study is visualized in
Fig. 3. How it is derived from the requirements will be explained in Sec. 4.

3.2 Role Behavior Specifications

After having modeled the structural aspects of ensembles, we focus on the speci-
fication of behaviors for each role type of an ensemble structure. A role behavior
is given by a process expression built from the null process, action prefix, nonde-
terministic choice, and recursion. In the following, we use X,Y for role instance
variables, RT for role types, x for data variables1, e for data expressions and
ci for component instances (assuming a given repository of those); #”z denotes a
list of z. There are five different kinds of actions. A send action is of the form
X !msgnm(

#”
Y )( #”e ). It expresses that a message with name msgnm and actual

parameters
#”
Y and #”e is sent to a role instance named by variable X . The first

parameter list
#”
Y consists of variables which name role instances to be passed to

the receiver; with the second parameter list #”e , data is passed to the receiver. A
receive action is of the form ?msgnm(

#”
X :

#    ”
RT )( #”x ). It expresses the reception of

a message with name msgnm. The values received on the parameters are bound
to the variables

#”
X for role instances and to #”x for data. Internal actions are

represented by msgnm(
#”
Y )( #”e ) denoting an internal computation with actual pa-

rameters. Internal computations can be used, e.g., to model the access of a role
1 We distinguish between role instance variables and data variable since role instance

variables can be used as recipients for messages later on, for instance for callbacks.
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instance to its owning component instance. With the action X ← create(RT , ci)
a new role instance of type RT is created, adopted by the component instance
ci , and referenced by the variable X of type RT in the sequel. Similarly the
action X ← get(RT , ci) retrieves an arbitrary existing role instance of type RT

already adopted by the component instance ci . Thus, the variables
#”
X, #”x used

in message reception and the variable X for role instance creation and retrieval
open a scope which binds the open variables with the same names in the succes-
sive process expression. The bound variables receive a type as declared by the
role types

#    ”
RT ,RT resp.

Definition 2 (Role Behavior). Let Σ be an ensemble structure and rt be a
role type in Σ. A role behavior RoleBehrt for rt is a process expression built
from the following abstract syntax:

P ::= nil (null process)
| a.P (action prefix)
| P1 + P2 (nondeterministic choice)
| μV.P (recursion)

a ::= X !msgnm(
#”

Y )( #”e ) (sending a message)

| ?msgnm(
#”

X :
#    ”

RT )( #”x ) (receiving a message)

| msgnm(
#”

Y )( #”e ) (interal computation)
| X ← create(RT , ci) (role instance creation)
| X ← get(RT , ci) (role instance retrieval)

To be well-formed a role behavior RoleBehrt must satisfy some obvious condi-
tions: 1) For sending a message X !msgnm(

#”

Y )( #”e ) the role type rt must support
the message type msgnm(riparams)(dataparams) as outgoing message and the
actual parameters must fit to the formal ones. Moreover, X must be a vari-
able of some role type RT which supports the same message type as incoming
message. Similarly, well-formedness of incoming and internal messages is de-
fined. 2) Role instance creation X ← create(RT , ci) and role instance retrieval
X ← get(RT , ci) are well-formed if RT is a role type in Σ, and if the component
instance ci if of a type whose instances can adopt a role of type RT .

Definition 3 (Ensemble specification). An ensemble specification is a pair
EnsSpec = (Σ,RoleBeh ) such that Σ is an ensemble structure, and RoleBeh is
a family of role behaviors RoleBehrt for each role type rt occurring in Σ.

The ensemble specification for the SCP case study will be made up by the
ensemble structure in Fig. 3 and by the role behavior specifications described
in Sec. 4. Three concrete examples of role behavior specifications, translated to
their graphical LTS representation, are shown in Fig. 4.

In this paper, we do not define a formal semantics of ensemble specifications
which must take into account the form of process terms defined above; this is left
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to future work. However, some hints on the envisaged approach may be helpful.
As a semantic basis to describe the evolution of ensembles we will use ensemble
automata as defined in [9]. The states of an ensemble automaton show 1) the
currently existing role instances of each role type occurring in Σ, 2) for each
existing role instance, a unique component instance which currently adopts this
role, 3) the data currently stored by each role instance, and 4) the current control
state of each role instance showing its current progress of execution according
to the specified role behavior. Ensemble automata model role instance creation
as expected by introducing a fresh role instance which starts in the initial state
of its associated role behavior. Retrieval of role instances delivers an existing
role instance of appropriate type played by the specified component instance if
there is one. Otherwise it is blocked. Concerning communication between role
instances first an underlying communication paradigm must be chosen. The en-
semble automata in [9] formalize synchronous communication such that sending
and receiving of a message is performed simultaneously. If the recipient is not
(yet) ready for reception of the message the sender is blocked. However, it is im-
portant to note that the communication style is not determined by an ensemble
specification since the role behaviors specify local behaviors and thus support
decentralized control which is typical for the systems under investigation. In
particular, an asynchronous communication pattern can be chosen as well for
the realization of an ensemble specification and this is indeed the case for the
ensembles running on the SCP.

4 Modeling the SCP with Helena

Let us revisit our case study from Sec. 2 to explain the benefits of the role-based
modeling approach for such a system. In the SCP, distributed computing nodes
interact to execute software applications. For one app, several computing nodes
need to collaborate: They have to let a user deploy the app in the system, to
execute (and keep alive) the app on a node satisfying the computation require-
ments of the app, and to let a user request a service from the app. For each
of these responsibilities we can derive a specific behavior, but at design time it
is unclear which node will be assigned with which responsibility. Additionally,
each node must also be able to take over the same or different responsibilities
for the execution of different apps in parallel. In a standard component-based
design, we would have to come up with a single component type for a computing
node which is able to combine the functionalities for each responsibility in one
complex behavior. This is the case in the previous “all-in-one” implementation
of the SCP [14]. The Helena modeling approach, however, offers the possibility
to model systems in terms of collaborating roles and ensembles. Firstly, roles
allow to separate the definition of the capabilities and behavior required for a
specific responsibility from the underlying component. Secondly, adopting dif-
ferent roles allows components to change their behavior on demand. Thirdly,
concurrently running ensembles support the parallel execution of several tasks
possibly sharing the same participants under different roles.
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In the SCP, we assume given the basic infrastructure for communication be-
tween nodes (Pastry), storing data (PAST), and deploying and executing apps
(OSGi) (two bottom layers in Fig. 1). We apply Helena for modeling the whole
process of application execution on top of this infrastructure. Computation nodes
represent the components underlying the Helena model.

Ensemble Structure. The first step is to identify the required role types from
the stated requirements in Sec. 2.

1. Deploying and undeploying: For this subtask, we envision two separate
role types. The Deployer provides the interface for deploying and undeploy-
ing an app and is responsible for the selection of the app-responsible node
for storing the app code. The app-responsible node adopts the Storage role
taking care for the actual storage and deletion of the app code and initiates
the execution of the app.

2. Finding an executor: Three further roles are required for finding the ap-
propriate execution node. The app-responsible node in the role Initiator
determines the actual Executor from a set of PotentialExecutors and
takes care that it is kept running until the user requests to undeploy the
app. A PotentialExecutor is a node which the Initiator believes is able
to execute the app based on the requirements of the app. However, it might
currently not be able to do so, e.g., due to its current load. The actual
Executor is selected from the set of PotentialExecutors and is responsible
for app execution.

3. Executing: Once started, the app needs to be available for user requests.
The Requester provides the interface between the user and the Executor
and forwards requests and responses. The Executor from the previous sub-
task gives access to the executed app.

In Fig. 3, we summarize the ensemble structure composed of these six roles
graphically. Each role can be supported by the components of type Node. The
multiplicities of the role types express that a running ensemble contains just one
role instance per role type except for PotentialExecutor and Requester. La-
bels at the connections between roles depict which messages can be exchanged
between these roles for collaboration. For instance, the incoming arrows on the
role type PotentialExecutor show the incoming message types specified in
Fig. 2 and similarly for the outgoing messages. We explain the exchanged mes-
sages in more detail when we focus on role behaviors. For each deployed app,
one instance of this ensemble structure is employed. Different components may
take over the required roles in one ensemble, but a single component may also
adopt different roles in the same ensemble. Moreover, different components can
take part at the same time in different ensembles under different roles.

Role Behavior Specifications. On the basis of this ensemble structure, we
specify a behavior for each role. For the roles Deployer and Storage taking
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Deployer:{Node} 1

Storage:{Node} 1 Initiator:{Node} 1

PotentialExecutor:{Node} ∗

Executor:{Node} 1

Requester:{Node} ∗

deploy()(app) undeploy()()

store()(app)
unstore()()

init()(name,reqs)
stop()()

ask(init)(name,reqs) ack(exec)()
decline()()

execute()(name)

overload()()
stop()()reqCode(exec)()

sndCode()(code)

askForExec(req)()

reportOnExec(exec)()

sendUIReq(req)() waitForUIResp()(resp)

reqFromUser()(name) informUI()(resp)

Fig. 3. Ensemble structure for app execution in the SCP

part in the first subtask, the role behaviors are rather straightforward and we
give only an informal description. In the initial state the Deployer waits for the
user to ask for app deployment and forwards the app code to the Storage for
archiving and vice versa for undeployment. The Storage role starts by waiting
for a request to store an app. Upon storage, it issues the creation of an Initiator
which takes care that the app is executed. Afterwards the Storage is ready to
provide the app code to an Executor or to delete it.

What is interesting about these two role types is which component instances
are selected to adopt the roles. The Deployer is automatically played by the com-
ponent instance where the user actually places her deployment request. When
the Deployer creates a Storage it selects the component whose ID according to
Pastry (cf. Sec. 2) is next to the ID of the app (given by the hash value of the
app name). The uniqueness of component selection is essential since for any later
communication with the Storage, e.g., for code retrieval, it must be possible to
identify the owning component instance just from the app’s name. For the same
reason, we choose the owning component of the Storage to additionally adopt
the Initiator role.

The behavior of the Requester is also straightforward and is again informally
described. In the initial state, a Requester waits for the user to request a service
from the app. It retrieves a reference to the Executor from the Initiator2 and
forwards the request to the Executor. It gets back a response from the Executor
which it routes to the user. The part played by the Executor in this collaboration
is depicted in Fig. 4c by the loop between states e5 and e6.

The most interesting behavior concerns the selection of an appropriate ex-
ecutor. In Fig. 4, we translated the process terms of the role behaviors for
2 Note that for communication with the Initiator its owning component must be

uniquely identifiable as mentioned before.
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Initiator, PotentialExecutor and Executor into a labeled transition sys-
tem which makes it easier to explain. Concerning the initiator of an app the
main idea is that it asks a set of potential executors, one after the other, for
execution of the app until one of them accepts. Since each node maintains a list
of all other nodes and their abilities through a gossip protocol (cf. Sec. 2), the
initiator can easily prepare this list of nodes satisfying the requirements of the
app based on its current belief of the network. Triggered by the reception of the
init message, the Initiator starts to walk through the list. It first creates a
new PotentialExecutor on the next node satisfying the requirements and asks
it for execution. If it declines, the next node satisfying the requirements is asked
until one accepts (states i1 to i4). As soon as a PotentialExecutor accepts,
the Initiator waits for one of three messages in state i4: 1) an overload mes-
sage meaning that the current Executor is not able to execute the app anymore
and the Initiator has to find a new one, 2) a request for the reference to the
Executor (issued by a Requester), or 3) a stop message triggering stopping the
execution of the app on the Executor.

The behavior of a PotentialExecutor starts with waiting for a request for
app execution. If it does not satisfy the requirements of the app (like current
load), it internally decides to refuse and sends back a decline message. Oth-
erwise, it creates a new Executor on its owner, issues the execution, and ac-
knowledges execution to the Initiator. An Executor starts by waiting for an
execute message. Then the Executor retrieves a reference to the Storage, re-
quests and gets the app code from it and starts execution of the app (states
e1 to e5). As soon as the app has been started, the Executor can answer user
requests or stop execution due to internal overload or an external stop request.

Analysis. The role behaviors provided by an ensemble specification can be used
to analyze the dynamic behaviors of ensembles before implementing the system.
A particularly important aspect concerns the avoidance of collaboration mis-
matches (collaboration errors) when role instances work together. Two types of
errors can be distinguished. Firstly, an instance expects the arrival of a message
which never has been issued. Secondly, an instance sends a message, but the re-
cipient is not ready to receive. Let us analyze the latter type of collaboration error
by considering the cooperation between Initiator and PotentialExecutor.
The only output action occurring in RoleBehInitiator which is addressed to a
PotentialExecutor is the message ask occurring in state i2. It is sent to the
PotentialExecutor, named by the variable pot, which has just been created
in state i1. This potential executor starts in its initial state p0 in which it
is obviously ready to accept the message ask. Afterwards, the Initator is in
state i3 and is ready to receive either a decline or an ack message which both
can only be sent from the PotentialExecutor. After the reception of ask the
PotentialExecutor is in state p1 and it has two options: 1) It can decide to
refuse the request and sends the message decline which the Initiator accepts
being back in state i1. In this case, the current PotentialExecutor terminates,
a new one is created, the Initiator goes to state i2, and we are in a situation
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which we have already analyzed. 2) The other option in state p1 is to accept
the execution request, to create an Executor, to cause the Executor to start
execution and then to send the message ack to the Initator who is still in
state i3 and takes the message. So the instances of both roles, Initator and
PotentialExecutor, work well together. Interestingly this holds whether one
uses synchronous or asynchronous communication in the implementation. How
such an analysis can be performed on the basis of formal verification is a chal-
lenging issue of future research.

Limitations. At this point, we want to mention some restrictions underlying
the current Helena approach. Firstly, we rely on binary communication and do
not support broadcast yet. Though broadcast sending could be easily integrated
in our process expressions, to collect corresponding answers would still be an
issue. Secondly, we build ensemble specifications on a given set of components
such that we cannot model situations in which components fail. However, we are
aware that one of the main characteristics of our case study is that nodes may
fail and leave the network at any time. We wish that such failovers are handled
transparently from the role behaviors. The idea is that components are monitored
such that when failing all adopted roles are transparently transferred to another
component and restarted there. A further issue concerns robustness since we
assume reliable network transmission in our models. We do not want to include
any mechanisms for resending messages in the role behavior specifications. Like
failover mechanisms, this should be handled transparently by an appropriate
infrastructure.

5 Using the Helena Model for the SCP Implementation

In this section, we report on the experimental realization of the Helena model3.
Helena separates between base components and roles running on top of them.
The SCP is already built on components (the SCP Node layer in Fig. 1); thus,
the Helena implementation can build on the given infrastructure and realize
the application layer shown by the dashed boxes in Fig. 1 by a role-based im-
plementation as envisioned in the Helena approach.

This Helena framework amounts to around 1000 LOC and offers role-related
functionality, such as the ability to create and retrieve roles via the network, and
routing messages between roles by using Pastry. (This layer implements the same
basic ideas already presented in the Helena framework [12], but is based on the
SCP and thus, Pastry). In a second step, we have translated the behavioral spec-
ifications of the six roles to Java code using the previously created framework.
Each of the role implementations stays below 150 LOC with another 400 LOC
in message classes. In the following two subsections we discuss the framework
and role implementations, respectively, stressing where direct translation of the
3 The code can be retrieved from http://svn.pst.ifi.lmu.de/trac/scp, version v3

of the node core implementation with gossip strategy.

http://svn.pst.ifi.lmu.de/trac/scp
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Helena model was possible and where special care had to be taken to make the
realization robust.

5.1 Implementing the Helena Framework

A framework for implementing role behaviors needs to offer several features to
role implementors.

Structural Aspects. The most important concept in Helena are roles. Thus,
the framework must offer the ability to create role types, and to instantiate and
execute them. This maps quite naturally to using one Java class per role type,
and instantiating this class for role instances. A registry on each node stores all
instances currently adopted by the node and allows their retrieval. To enable
concurrent execution, each role instance is realized as a Java thread, running
locally in the OSGi container of the current node.

The framework provides means to create, retrieve, and address existing roles
on other nodes; this requires a way of addressing roles. Thus, the second impor-
tant structural aspect is addressing. In Pastry, each node is already identified by
a unique 160-bit identifier. It is relatively straightforward to add a similar unique
identifier for roles. However, there is also another kind of structuring element
which is not directly visible in the behavioral specifications: The ensemble which
constitutes the environment for the roles. This can clearly be seen when looking
at the functions the framework needs to offer for role handling – these are the
create and the get functions. Both require knowledge about which ensemble is
addressed for creating a new role or where to look for an existing role. We have
thus three identifiers in use in the Helena framework: The node identifier (for
addressing nodes using Pastry), the ensemble identifier (for creating new roles
and retrieving existing roles) and the role identifier (which uniquely identifies
one role instance).

Behavioral Aspects. This discussion already brings us to the behavioral aspects of
the framework. Two functions of the framework were already mentioned – create
and get. They are implemented as the Java methods (createRoleInstance and
getRoleInstance) which both perform a full network round-trip between two
Pastry nodes: They require a node and an ensemble ID as well as the class of
the required role as input. The target node is instructed to create and start the
new role (or retrieve it, in the second case). A role identifier as discussed above
is returned which can then be used for role-to-role message routing.

The behavioral specifications make heavy use of role-to-role communication.
A role must be able to send a message and to expect to receive a certain mes-
sage in its behavior. For this purpose the framework provides the two methods
sendMessage() and waitForMessage() for communication between roles.

The method sendMessage() takes a message and a target role; the message is
routed between Pastry nodes to an input buffer in the target role. The method
only returns when this has been successfully completed (i.e., an internal acknowl-
edge is sent back upon which the sendMessage() function returns normally).
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Otherwise, an exception is raised. Of course, correct collaboration requires that
any message is finally consumed from the buffer. Moreover, any consumed mes-
sage should also be expected by the target role as an input message in accordance
with its role behavior specification. For this purpose we perform behavioral com-
patibility checks between role behaviors already during the ensemble modeling
phase as discussed in Sec. 4.

The second method is waitForMessage() which instructs the framework to
wait for a message of a certain type, or a selection of certain different types. The
latter is required, for example, in the Initiator role when waiting for one of
three possible messages in state i4 in Fig. 4a. The waitForMessage() function
also takes a timeout value; an exception is raised if a message does not arrive in
the given time (though specifying INFINITY is an option).

Given the basic infrastructure for role management and the communication
functions above, we can now proceed to the role implementations.

5.2 Implementing Roles

As discussed above, role (types) are implemented in Java using classes. Thus,
for each of the six roles above, a class is created, inheriting from an abstract role
template for easier access to framework methods. Each role is instantiated within
a certain ensemble and node. Upon startup, the main method implementing the
role behavior is called.

The actions in role behavior specifications are translated to message ex-
changes. For each message type, a message class with an appropriate name is
created, and equipped with the required parameters as indicated in the role
types. For example, the execute message shared between PotentialExecutor
and Executor is implemented by an instance of the ExecuteMessage class which
carries the application name as a field.

A role behavior is translated into Java as follows:

– Transitions with incoming messages, e.g. ?store()(app), are translated into
a waitForMessage() framework call for the corresponding message class,
e.g. StoreApplicationMessage. The waitForMessage()method returns an
instance of the message once received, which can be queried for the actual
app.

– Transitions with an outgoing message, e.g. !init()(name,reqs), are trans-
lated into a sendMessage() framework call. The message to be sent must
be given as a parameter.

– Transitions referring to the two framework functions get and create are di-
rectly translated to calls to the corresponding framework methods
getRoleInstance() and createRoleInstance(). They return role IDs
which can then be used for communication.

– All other transitions, as well as loops and decisions are translated into their
appropriate Java counterparts.

With this basic description, most of the role behaviors are directly trans-
latable into Java code. As an example Fig. 5 shows (in condensed form) the
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1 public void run() {
2 RAskForExecutionMessage askMsg =
3 waitForIncomingMessage(INFINITY ,RAskForExecutionMessage.class);
4 i f (refuseToExecute(askMsg.getAppInfo().getReqs ())) {
5 sendMessage(
6 new RDeclineExecutionMessage(getRoleId(),askMsg.getInit ()));
7 }
8 else {
9 RoleId exec = createLocalRoleInstance(ExecutorRole.class );

10 sendMessage(
11 new RExecuteAppMessage(getRoleId(),exec ,askMsg.getAppInfo()));
12 sendMessage(
13 new RAckExecutionMessage(getRoleId(), askMsg.getInit (),exec));
14 }
15 }

Fig. 5. Behavior implementation for PotentialExecutor

run-method of the PotentialExecutor role which is directly derived from its
behavior specification in Fig. 4b. Thus, many collaboration errors are avoidable
by a careful analysis of the ensemble model. Nevertheless, we were interested in
a robust system implementation and hence we followed a defensive strategy such
that not only semantic errors are taken into account.

One issue in the implementation is that each of the framework methods may
fail for various reasons, and the resulting exceptions must be handled. Firstly, in
all operations, timeouts may occur if a message could not be delivered. Secondly,
role-to-role messages may fail if the target node does not (yet) participate in the
expected ensemble or does not (yet) play an expected role; this also applies to
the getRoleInstance() method. The createRoleInstance() may fail if the
role class could not be instantiated or started. These errors are not captured
in the role behaviors, but may occur in practice (in particular, they may occur
during development if the implementation is not yet fully complete and stable).

A second issue is bootstrapping, both of Helena ensembles and of basic node
identification. At each ensemble startup, at least one role needs to be instantiated
by an outside party before messages can be received. In this case study, the main
entry point is the Deployer role; a second entry point is the Requester role. The
bootstrapping point cannot be deduced from the local behavior specifications
and therefore must be treated individually outside of the framework. In the case
of the SCP, this part is played by the SCP UI (top right in Fig. 1).

There are also some points where the roles need to return information to an
outside party. For example, the Requester role is invoked each time a UI request
is made for an app; the response from the application must be presented to the
user. This is exactly the opposite of the bootstrapping problem and requires ex-
plicit invocation of an outside party from the role. One could think of specialized
actions for this; or introduce answers a role in general gives to users.

Basic node identification is another topic of interest: To create a role, the ID
of the target node must be known. In the case of the SCP, we heavily rely on the
fact that the Initiator and Storage node ID can always be found using the app
name (as explained in Sec. 2). This makes both of these roles communication
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hubs. If such a mechanism is not available, other forms of node ID retrieval
need to be found; one example is the Initiator role which uses the underlying,
gossip-provided node information as an ID source. A similar problem applies to
finding ensembles: A node which does not currently have a role in an ensemble
does not know the ensemble ID and thus cannot route messages, which might
occur in a formerly non-associated node on which a Requester is instantiated.
We solve this again by using the app name as a hash for the ensemble ID, but
this might be difficult in other settings.

6 Related Work

Combining the three paradigms of cloud computing, voluntary computing, and
peer-to-peer computing has started to attract attention in recent years. Most
approaches bridge volunteer and cloud computing for infrastructure-as-a-service
systems. Cunsolo et al. [5], and Chandra and Weissman [4], they propose to
use distributed voluntary resources with an architecture similar to our three-
layered approach, but with a centralized management subsystem. Advocating
a “fully decentralized p2p cloud”, Babaoglu et al. [2] implement a system very
similar to the SCP. They also introduce the idea of partitioning the system in
slices matching a user’s request. The idea is to create a subcloud in the system
providing resources for one task. This resembles our approach of assembling
nodes in task-oriented ensembles.

With Helena, we offer a rigorous modeling method for describing such task-
oriented groups. Modeling evolving objects with roles as perspectives on the
objects has been proposed by various authors [13,17], but they do not see them
as autonomic entities with behavior as we do in Helena. For describing dy-
namic behaviors, we share ideas with different process calculi [6,8], but we use
dynamic instance creation for roles on selected components. The idea to describe
structures of interacting objects without having to take the entire system into
consideration was already introduced by several authors [11,3,15], but they do
not tackle concurrently running ensembles of autonomic entities. For a more de-
tailed comparison of the Helena ideas with the literature see [9]. Finally, let us
stress that the SCEL approach [6] supports ensembles via group communication.
After discussion with the authors of SCEL it seems straightforward to represent
roles and the message passing communication paradigm also in SCEL. Then one
could also experiment with the jRESP platform of SCEL for executing Helena
ensemble specifications.

7 Conclusion

We have shown how the Helena modeling approach can be applied to a larger
software system. Starting from the description of our case study, the Science
Cloud Platform, we developed an ensemble specification based on six collab-
orating roles. An instance of this specification is able to deploy and execute
a software application in a voluntary peer-to-peer network. Splitting the task



Helena@Work: Modeling the Science Cloud Platform 115

of app execution in several independent roles was quite natural and helped to
understand the individual subtasks. Compared to the development of one big
component which combines all behaviors at one place, it was straightforward
to derive behaviors for each role individually. However, we experienced that the
granularity when deciding which roles to introduce was not always clear. Us-
ing the Helena modeling approach allowed us to examine the modeled system
for communication errors before implementation. During implementation of the
model, translating the role behaviors to Java code has proven to be straightfor-
ward. To gain this complexity reduction, first a (reusable) Helena framework
layer was needed to provide Helena-specific functionalities. The encapsulation
of responsibilities in separate roles helped to make the SCP code clean and easy
to understand. Special care had to be taken in four areas: Handling faults during
communication, node identification for role creation and retrieval, handling node
failures, and communication between ensembles and the outside world.

In the future, we want to pursue different research directions. In [9], we have
given a formal semantics for ensemble specifications in terms of ensemble au-
tomata. In a next step we want to define rules for the generation of an ensemble
automaton from an ensemble specification based on the new process expres-
sions for role behaviors. Secondly, based on the ensemble automaton, we want to
define when an ensemble can be considered communication-safe (for static archi-
tectures, called assemblies, this has been considered in [10]). We want to inves-
tigate conditions under which communication-safety of an ensemble automaton
can be derived from pairwise behavioral compatibility of role behaviors. Thirdly,
we want to support the composition of large ensembles from smaller ones and
to study which properties can be guaranteed for the composed system. Lastly,
we want to construct an infrastructure for Helena models that can cope with
unreliable systems and failing components.
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Abstract. Cloud computing emerged as a paradigm offering new benefits to
both social networking and IT business. However, to keep up with the increasing
workload demand and to ensure that their services will be provided in a fail-safe
manner and under consideration of their service-level agreement, contemporary
cloud platforms need to be autonomous and self-adaptive. The development of
self-adaptive clouds is a very challenging task, which is mainly due to their non-
deterministic behavior, driven by service-level objectives that must be achieved
despite the dynamic changes in the cloud environment. This paper presents a for-
mal approach to modeling self-adaptive behavior for clouds. The approach relies
on the KnowLang language, a formal language dedicated to knowledge repre-
sentation for self-adaptive systems. A case study is presented to demonstrate the
formalization of Science Clouds, a special class of self-adaptive clouds providing
a cloud-scientific platform.

1 Introduction

Cloud platforms emerged as service providers promising major societal and business
benefits. However, such benefits require that provided services are cost-effective and
users are confident that services are efficient and released at reasonable risk. However,
the increasing workload demand introduces risks to the aforementioned benefits, which
led the software engineering communities to investigate new ways of developing and
managing cloud systems. Hence, self-adaptation emerged as an important paradigm
introducing self-adaptive clouds as systems capable of modifying their own behavior
and/or structure in response to increasing workload demands and service failures. A
common characteristic of self-adaptive clouds is emphasizing self-adaptations required
to ensure that services will be provided in a fail-safe manner and under consideration
of their service-level agreement (SLA).

The development of self-adaptive clouds is a very challenging task, which is mainly
due to their non-deterministic behavior, driven by service-level objectives (SLOs) that
must be achieved despite the dynamic changes in the cloud environment. In this paper,
we present a formal approach to modeling self-adaptive behavior of Science Clouds, a
cloud scientific platform for application execution and data storage [3]. In this endeavor,
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we used KnowLang, a formal framework under development within the ASCENS FP7
Project’s [1] mandate. KnowLang’s notation is a formal language dedicated to knowl-
edge representation for self-adaptive systems and so, the framework provides both a
notation and reasoner to deal with self-adaptation.

The rest of this paper is organized as follows. Section 2 presents the so-called ARE
approach helping us capture the requirements for self-adaptive behavior. Section 3
presents our approach to specifying with KnowLang the self-adaptive behavior of Sci-
ence Clouds. Finally, Section 4 provides brief concluding remarks and a summary of
our future goals.

2 Capturing Requirements for Self-adaptive Behavior

The self-adaptive behavior is what makes the difference in Science Clouds. In this
endeavor, we strive to capture this very behavior, so it can be properly designed and
consecutively, implemented. To do so, we consider that self-adaptive behavior extends
upstream the regular objectives of a system with special self-managing objectives, also
called self-* objectives [6]. Basically, the self-* objectives provide autonomy features
in the form of systems ability to automatically discover, diagnose, and cope with various
problems. This ability depends on the systems degree of autonomicity, quality and quan-
tity of knowledge, awareness and monitoring capabilities, and quality characteristics
such as adaptability, dynamicity, robustness, resilience, and mobility. The approach for
capturing all these requirements is called Autonomy Requirements Engineering (ARE)
[6,5,4]. This approach strives to provide a complete and comprehensive solution to the
problem of autonomy requirements elicitation and specification. Note that the approach
targets exclusively the self-* objectives as the only means to explicitly determine and
define autonomy requirements. Thus, it is not meant to handle the regular functional and
non-functional requirements of the systems, presuming that those might by tackled by
the traditional requirements engineering approaches, e.g., use case modeling, domain
modeling, constraints modeling, etc. Hence, functional and nonfunctional requirements
might be captured by the ARE approach only as part of the self-* objectives elicitation.

The ARE approach starts with the creation of a goals model that represents system
objectives and their interrelationships for the system in question. For this, we use GORE
(Goal-Oriented Requirements Engineering) where ARE goals are generally modeled
with intrinsic features such as type, actor, and target, with links to other goals and con-
straints in the requirements model. Goals models might be organized in different ways
copying with the system’s specifics and engineers understanding about the system’s
goals. Thus we may have hierarchical structures where goals reside different level of
granularity and concurrent structures where goals are considered as being concurrent to
each other.

The next step in the ARE approach is to work on each one of the system goals
along with the elicited environmental constraints to come up with the self-* objectives
providing the autonomy requirements for this particular systems behavior. In this phase,
we apply a special Generic Autonomy Requirements model to a system goal to derive
autonomy requirements in the form of goals supportive and alternative self-* objectives
along with the necessary capabilities and quality characteristics.
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Finally, the last step after defining the autonomy requirements per systems objec-
tives is the formalization of these requirements, which can be considered as a form of
formal specification or requirements recording. The formal notation used to specify the
autonomy requirements is KnowLang [8]. The process of requirements specification
with KnowLang goes over a few phases:

1. Initial knowledge requirements gathering - involves domain experts to determine
the basic notions, relations and functions (operations) of the domain of interest.

2. Behavior definition - identifies situations and behavior policies as control data help-
ing to identify important self-adaptive scenarios.

3. Knowledge structuring - encapsulates domain entities, situations and behavior poli-
cies into KnowLang structures like concepts, properties, functionalities, objects,
relations, facts and rules.

To specify self-* objectives with KnowLang, we use special policies associated with
goals, special situations, actions (eventually identified as system capabilities), metrics,
etc.[8]. Hence, self-* objectives are represented as policies describing at an abstract
level what the system will do when particular situations arise. The situations are meant
to represent the conditions needed to be met in order for the system to switch to a self-
* objective while pursuing a system goal. Note that the policies rely on actions that
are a-priori-defined as functions of the system. In case, such functions have not been
defined yet, the needed functions should be considered as autonomous functions and
their implementation will be justified by the AREs selected self-* objectives.

According to the KnowLang semantics, in order to achieve specified goals (objec-
tives), we need to specify policy-triggering actions that will eventually change the sys-
tem states, so the desired ones, required by the goals, will become effective [8]. Note
that KnowLang policies allow the specification of autonomic behavior (autonomic be-
havior can be associated with self-* objectives), and therefore, we need to specify at
least one policy per single goal, i.e., a policy that will provide the necessary behavior
to achieve that goal. Of course, we may specify multiple policies handling same goal
(objective), which is often the case with the self-* objectives and let the system decides
which policy to apply taking into consideration the current situation and conditions.
The following is a formal presentation of a KnowLang policy specification [8].

Policies (Π ) are at the core of autonomic behavior (autonomic behavior can be asso-
ciated with autonomy requirements). A policy π has a goal (g), policy situations (Siπ),
policy-situation relations (Rπ), and policy conditions (Nπ ) mapped to policy actions
(Aπ) where the evaluation of Nπ may eventually (with some degree of probability) im-

ply the evaluation of actions (denoted with Nπ
[Z]→ Aπ (see Definition 2). A condition is

a Boolean function over ontology (see Definition 4), e.g., the occurrence of a certain
event.

Definition 1. Π := {π1,π2, ....,πn},n ≥ 0 (Policies)

Definition 2. π :=< g,Siπ , [Rπ ],Nπ ,Aπ ,map(Nπ ,Aπ , [Z])>

Aπ ⊂ A,Nπ
[Z]→ Aπ (Aπ - Policy Actions)

Siπ ⊂ Si,Siπ := {siπ1 ,siπ2 , ....,siπn},n ≥ 0
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Rπ ⊂ R,Rπ := {rπ1 ,rπ2 , ....,rπn},n ≥ 0
∀rπ ∈ Rπ • (rπ :=< siπ , [rn], [Z],π >) ,siπ ∈ Siπ

Siπ
[Rπ ]→ π → Nπ

Definition 3. Nπ := {n1,n2, ....,nk},k ≥ 0 (Conditions)

Definition 4. n := be(O) (Condition - Boolean Expression)

Definition 5. g := 〈⇒ s′〉|〈s ⇒ s′〉 (Goal)

Definition 6. s := be(O) (State)

Definition 7. Si := {si1,si2, ....,sin},n ≥ 0 (Situations)

Definition 8. si :=< s,A ←
si , [E

←
si ],Asi > (Situation)

A ←
si⊂ A (A ←

si - Executed Actions)
Asi ⊂ A (Asi - Possible Actions)
E ←

si⊂ E (E ←
si - Situation Events)

Policy situations (Siπ) are situations that may trigger (or imply) a policy π , in com-

pliance with the policy-situations relations Rπ (denoted with Siπ
[Rπ ]→ π), thus implying

the evaluation of the policy conditions Nπ (denoted with π → Nπ )(see Definition 2).
Therefore, the optional policy-situation relations (Rπ ) justify the relationships between
a policy and the associated situations (see Definition 2). In addition, the self-adaptive
behavior requires relations to be specified to connect policies with situations over an op-
tional probability distribution (Z) where a policy might be related to multiple situations
and vice versa. Probability distribution is provided to support probabilistic reasoning
and to help the KnowLang Reasoner choose the most probable situation-policy ”pair”.
Thus, we may specify a few relations connecting a specific situation to different policies
to be undertaken when the system is in that particular situation and the probability dis-
tribution over these relations (involving the same situation) should help the KnowLang

Reasoner decide which policy to choose (denoted with Siπ
[Rπ ]→ π - see Definition 2).

A goal g is a desirable transition to a state or from a specific state to another state
(denoted with s ⇒ s′) (see Definition 5). A state s is a Boolean expression over ontology
(be(O))(see Definition 6), e.g., “a specific property of an object must hold a specific
value”. A situation is expressed with a state (s), a history of actions (A ←

si ) (actions
executed to get to state s), actions Asi that can be performed from state s and an optional
history of events E ←

si that eventually occurred to get to state s (see Definition 8).
Ideally, policies are specified to handle specific situations, which may trigger the

application of policies. A policy exhibits a behavior via actions generated in the envi-
ronment or in the system itself. Specific conditions determine, which specific actions
(among the actions associated with that policy - see Definition 2) shall be executed.
These conditions are often generic and may differ from the situations triggering the
policy. Thus, the behavior not only depends on the specific situations a policy is spec-
ified to handle, but also depends on additional conditions. Such conditions might be
organized in a way allowing for synchronization of different situations on the same pol-
icy. When a policy is applied, it checks what particular conditions are met and performs
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the mapped actions (see map(Nπ ,Aπ , [Z])) - see Definition 2). An optional probability
distribution can additionally restrict the action execution. Although initially specified,
the probability distribution at both mapping and relation levels is recomputed after the
execution of any involved action. The re-computation is based on the consequences of
the action execution, which allows for reinforcement learning.

3 Formalizing Science Clouds with KnowLang

Science Clouds is a cloud computing scientific platform for application execution and
data storage [3]. Individual users or universities can join a cloud to provide (and con-
sume of course) resources to the community. A science cloud is a collection of cloud
machines - notebooks, desktops, servers, or virtual machines, running the so-called
Science Cloud Platform (SCP). Each machine is usually running one instance of the
Science Cloud Platform (Science Cloud Platform instance or SCPi). Each SCPi is con-
sidered to be a Service Component (SC) in the ASCENS sense. To form a cloud, mul-
tiple SCPis communicate over the Internet by using the IP protocol. Within a cloud, a
few SCPis might be grouped into a Service Component Ensemble (SCE), also called
a Science Cloud Platform ensemble (SCPe). The relationships between the SCPis are
dynamic and the formation of a SCPe depends mainly on the properties of the SCPis.

The common characteristic of an ensemble is SCPis working together to run one ap-
plication in a fail-safe manner and under consideration of the Service Level Agreement
(SLA) of that application, which may require a certain number of active SCPis, certain
latency between the parts, or have restrictions on processing power or memory. The
SCP is a platform as a service (PaaS), which provides a platform for application exe-
cution [3]. Thus, SCP provides an execution environment where special applications
might be run by using the SCPs application programming interface (API) and SCPs li-
brary. These applications provide a software as a service (SaaS) cloud solution to users.
The data storage service is provided in the same manner, i.e., via an application.

Based on the rationale above, we may deduct that the Science Clouds main objective
is to provide a scientific platform for application execution and data storage [3]. Being
a cloud computing approach, the Science Clouds approach extends the original cloud
computing goal to provide services (or resources) to the community of users. Note that
cloud computing targets three main types of service (or resource):

1. Infrastructure as a Service (IaaS): a solution providing resources such as virtual
machines, network switches and data storage along with tools and APIs for man-
agement (e.g., starting VMs).

2. Platform as a Service (PaaS): a solution providing development and execution plat-
forms for cloud applications.

3. Software as a Service (SaaS): a solution providing software applications as a re-
source.

The three different services above can be defined as three main goals of cloud comput-
ing, and their realization by Science Clouds will define the main Science Clouds goals.
In addition, from the rationale above we may deduct that an underlying system goal is
to optimize application execution by minimizing resource usage along with providing
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Fig. 1. Science Clouds Goals Model with Self-* Objectives for System Goals from Level 3

a fail-safe execution environment. Figure 1 depicts the ARE goals model for Science
Clouds where goals are organized hierarchically at four different levels. As shown, the
goals from the first three levels are main system goals captured at different levels of ab-
straction. The 3rd level is resided by goals directly associated with Science Clouds and
providing a concrete realization of the cloud computing goals outlined at the first two
levels. Finally, the goals from the 4th level are supporting and preliminary goals that
need to be achieved before proceeding with the goals from the 3rd level. In addition,
Figure 1 depicts the self-* objectives (depicted in gray color) derived for the Level 3
cloud goals. Basically, these objectives inherit the system goals they assist by providing
behavior alternatives with respect to these system goals. The Science Clouds system
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switches to one of the assisting self-* objectives when alternative autonomous behavior
is required (e.g., an SCPi fails to perform).

Note that the required analysis and process of building the goals model for Science
Clouds along with the process of deriving the adaptation-supporting self-* objectives is
beyond the scope of this paper. The interested reader is advised to refer to [7] where
these are well described and discussed.

3.1 Specifying Cloud Ontology

In order to specify the autonomy requirements for Science Clouds, the first step is to
specify a knowledge base (KB) representing the cloud in question, i.e., SCPes, SCPis,
applications, etc. To do that, we need to specify ontology structuring the knowledge do-
mains of the cloud. Note that these domains are described via domain-relevant concepts
and objects (concept instances) related through relations. To handle explicit concepts
like situations, goals, and policies, we grant some of the domain concepts with explicit
state expressions where a state expression is a Boolean expression over the ontology
(see Definition 6 in Section 2). Note that being part of the autonomy requirements,
knowledge plays a very important role in the expression of all the autonomy require-
ments (see Section 2).

Figure 2, depicts a graphical representation of the Science Clouds ontology relat-
ing most of the domain concepts within a cloud. Note that the relationships within a
concept tree are is-a (inheritance), e.g., the Latency concept is a Phenomenon and the
Action concept is a Knowledge and consecutively Phenomenon, etc. Most of the con-
cepts presented in Figure 2 were derived from the Science Clouds Goals Model (see
Figure 1). Other concepts are considered as explicit and were derived from the KnowL-
angs specification model [9].

The following is a sample of the KnowLang specification representing two important
concepts: the SCP concept and the Application concept (partial specification only). As
specified, the concepts in a concept tree might have properties of other concepts, func-
tionalities (actions associated with that concept), states (Boolean expressions validating
a specific state), etc. The IMPL specification directive refers to the implementation of
the concept in question, i.e., in the following example SCPImpl is the software imple-
mentation (presuming a C++ class) of the SCP concept.

// Science Cloud Platform
CONCEPT SCP {

CHILDREN {}
PARENTS { SCCloud.Thing..Cloud_Platform }
STATES {

STATE Running { this.PROPS.platform_API. STATES.Running AND this.PROPS.platform_Library.STATES.Running }
STATE Executing { IS_PERFORMING(this.FUNCS.runApp) }
STATE Observing { IS_PERFORMING(this.FUNCS.runApp) AND SCCloud.Thing..Application.PROPS.initiator=this }
STATE Down { NOT this.STATES.Running }
STATE Overloaded { this.STATES.OverloadedCPU OR this.STATES.OverloadedStorage

OR this.STATES.OverloadedMemory }
STATE OverloadedCPU { SCCloud.Thing..Metric.CPU_Usage.VALUE > 0.95 }
STATE OverloadedMemory { SCCloud.Thing..Metric.Memory_Usage.VALUE > 0.95 }
STATE OverloadedStorage { SCCloud.Thing..Metric.Hard_Disk_Usage.VALUE > 0.95 }
STATE ApplicationTransferred { LAST_PERFORMED(this, this.FUNCS.transferApp) }
STATE InCommunication { this.FUNCS.hasActiveCommunication }
STATE InCommunicationLatency { this.STATES.InCommunication AND this.FUNCS.getCommunicationLatency >0.5 }
STATE InLowTrafic { this.FUNCS.getDataTrafic <= 0.5 }
STATE Started { LAST_PERFORMED(this, this.FUNCS.start) }
STATE Stopped { LAST_PERFORMED(this, this.FUNCS.stop) }

}
PROPS {

PROP platform_API { TYPE {SCCloud.Thing..API} CARDINALITY {1} }
PROP platform_Library { TYPE {SCCloud.Thing..Library} CARDINALITY {1} }
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PROP platform_CPU { TYPE {SCCloud.Thing..CPU} CARDINALITY {1} }
PROP platform_Memory { TYPE {SCCloud.Thing..Memory} CARDINALITY {1} }
PROP platform_Storage { TYPE {SCCloud.Thing..Data_Storage} CARDINALITY {1} }
PROP platform_Applications { TYPE {SCCloud.Thing..Application} CARDINALITY {*} }

}
FUNCS {

FUNC run { TYPE { SCCloud.Thing..Action.RunSCP } }
FUNC down { TYPE { SCCloud.Thing..Action.StopSCP } }
FUNC runApp { TYPE { SCCloud.Thing..Action.RunApplication } }
FUNC startApp { TYPE { SCCloud.Thing..Action.StartApplication } }
FUNC stopApp { TYPE { SCCloud.Thing..Action.StopApplication } }
FUNC transferApp { TYPE { SCCloud.Thing..Action.TransferApplication } }
FUNC startNewCommunication { TYPE { SCCloud.Thing..Action.StartCommunication } }
FUNC stopNewCommunication { TYPE { SCCloud.Thing..Action.StopCommunication } }
FUNC hasActiveCommunication { TYPE { SCCloud.Thing..Action.HasActiveCommunication } }
FUNC getCommunicationLatency { TYPE { SCCloud.Thing..Action.GetCommunicationLatency } }
FUNC getDataTraffic { TYPE { SCCloud.Thing..Action.GetTraffic } }

}
IMPL { SCCloud.SCPImpl }

}

// Science Cloud Application
CONCEPT Application {
CHILDREN {}

PARENTS { SCCloud.Thing..Software }
STATES {

STATE Running { PERFORMED(this.FUNCS.Started) AND NOT PERFORMED(this.FUNCS. Stopped) }
STATE Started { LAST_PERFORMED(this, this.FUNCS.start) }
STATE Stopped { LAST_PERFORMED(this, this.FUNCS.stop) }

}
PROPS {

PROP needed_CPU_Power { TYPE {SCCloud.Thing..CPU_Power} CARDINALITY {1} }
PROP needed_Memory { TYPE {SCCloud.Thing..Capacity} CARDINALITY {1} }
PROP needed_Storage { TYPE {SCCloud.Thing..Storage} CARDINALITY {1} }
PROP distributiveness { TYPE {Boolean} CARDINALITY {1} }
PROP requiredSCPis { TYPE {Integer} CARDINALITY {1} }
PROP requiredLatency { TYPE { SCCloud.Thing..Latency } CARDINALITY {1} }
PROP initiator { TYPE {SCCloud.Thing..SCP} CARDINALITY {1} }

}
FUNCS {...}
IMPL { SCCloud.ApplicationImpl }

}

As mentioned above, the states are specified as Boolean expressions. For example,
the state Executing is true while the SCP is performing the runApp function. The
KnowLang operator IS PERFORMING evaluates actions and returns true if an action

Fig. 2. Science Clouds Ontology Specified with KnowLang
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is currently performing. Similarly, the operator LAST PERFORMED evaluates actions
and returns true if an action is the last successfully performed action by the concept re-
alization. A concept realization is an object instantiated from that concept, e.g., a SCP
instance (SCPi). A complex state might be expressed as a Boolean function of other
states. For example, the Running state is expressed as a Boolean function of two other
states, particularly, states of concepts properties, e.g., the SCP is running if both its API
and Library are running:

STATE Running { this.PROPS.platform\_API.STATES.Running AND this.PROPS.platform\_Library.STATES.Running }

States are extremely important to the specification of goals (objectives), situations,
and policies. For example, states help the KnowLang Reasoner determine at runtime
whether the system is in a particular situation or a particular goal (objective) has been
achieved.

3.2 Specifying Self-adaptive Behavior

To specify self-* objectives with KnowLang, we use goals, policies, and situations.
These are defined as explicit concepts in KnowLang and for the Cloud Ontology we
specified them under the concepts Virtual entity→Phenomenon→Knowledge (see Fig-
ure 2). Figure 3, depicts a concept tree representing the specified Science Clouds
goals. Note that most of these goals were directly interpolated from the goals model
(see Figure 1).

Recall that KnowLang specifies goals as functions of states where any combination
of states can be involved (see Section 2). A goal has an arriving state (Boolean function
of states) and an optional departing state (another Boolean function of states) (see Def-
inition 6 in Section 2). A goal with departing state is more restrictive, i.e., it can be
achieved only if the system departs from the specific goals departing state.

The following code samples present the specification of two simple goals. Note that
their arriving and departing states can be either single SCP states or sequences of states.
Recall that the states used to specify these goals are specified as part of the SCP concept.

//
//==== Cloud Goals ===============================================================================
//
CONCEPT_GOAL Self-optimizing_1 {

SPEC {
DEPART { SCP.STATES.OverloadedCPU }
ARRIVE { SCP.STATES.ApplicationTransferred AND NOT SCP.STATES.OverloadedCPU }

}
}
CONCEPT_GOAL Self-optimizing_3 {

SPEC {
DEPART { SCP.STATES.InCommunicationLatency }
ARRIVE { SCP.STATES.InLowTrafic AND NOT SCP.STATES.InCommunicationLatency }
}

}

The following is a specification sample showing a simple policy called ReduceCPU-
Overhead - as the name says, this policy is intended to reduce the CPU overhead of
a SCPi. As shown, the policy is specified to handle the goal Self Opimizing 1 and is
triggered by the situation HighCPUUsage. Further, the policy triggers conditionally (the
CONDITONS directive requires that a SCPi is executing an application) the execution
of a sequence of actions.
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Fig. 3. Science Cloud Ontology: Cloud Goal Concept Tree

CONCEPT_POLICY ReduceCPUOverhead {
SPEC {
POLICY_GOAL { SCCloud.Thing..Self_Optimizing_1 }
POLICY_SITUATIONS { SCCloud.Thing..HighCPUUsage }
POLICY_RELATIONS { SCCloud.Thing..Policy_Situation_1 }
POLICY_ACTIONS {SCCloud.Thing..Action.StartCommunication, SCCloud.Thing..Action.TransferApplication,

SCCloud.Thing..Action.StopCommunication }
POLICY_MAPPINGS {

MAPPING {
CONDITIONS { SCCloud.Thing..SCP.STATES.Executing }
DO_ACTIONS { SCCloud.Thing..SCP.Action.StartCommunication, SCCloud.Thing..SCP.Action.TransferApplication,

SCCloud.Thing..SCP.Action.StopCommunication }
}

}
}

}

As mentioned above, policies are triggered by situations. Therefore, while specifying
policies handling system objectives, we need to think of important situations that may
trigger those policies. These situations shall be eventually outlined by scenarios. A sin-
gle policy requires to be associated with (related to) at least one situation (see Section
2), but for polices handling self-* objectives we eventually need more situations. Actu-
ally, because the policy-situation relation is bidirectional, it is maybe more accurate to
say that a single situation may need more policies, those providing alternative behaviors
or execution paths from that situation. The following code represents the specification
of the HighCPUUsage situation, used for the specification of the ReduceCPUOverhead
policy.

Recall that situations are related to policies via relations (see Definition 2 in Section
2). The following code demonstrates how we related the HighCPUUsage situation to
two different policies: ReduceCPUOverhead and AIReduceCPUOverhead.
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//
//==== Cloud Relations ===============================================================================
//
RELATIONS {

RELATION Policy_Situation_1 {
RELATION_PAIR { SCCloud.Thing..HighCPUUsage, SCCloud.Thing..ReduceCPUOverhead } PROBABILITY {0.5}

}
RELATION Policy_Situation_2 {
RELATION_PAIR { SCCloud.Thing..HighCPUUsage, SCCloud.Thing..AIReduceCPUOverhead} PROBABILITY {0.4}

}
}

As specified, the probability distribution gives initial designer’s preference about what
policy should be applied if the system ends up in the HighCPUUsage situation. Note
that at runtime, the KnowLang Reasoner maintains a record of all the action execu-
tions and re-computes the probability rates every time when a policy has been applied.
Thus, although initially the system will apply the ReduceCPUOverhead policy (it has
the higher probability rate of 0.5), if that policy cannot achieve its goal due to action
fails (e.g., the communication link with another SCPi is broken and application transfer
is not possible), then the probability distribution will be shifted in favor of the AIRe-
duceCPUOverhead policy and the system will try to apply that policy. Note that in this
case both policies share the same goal.

Probability distribution at the level of situation-policy relation can be omitted, pre-
suming the relationship will not change over time. It is also possible to assign prob-
ability distribution within a policy where the probability values are set at the level
of action execution, e.g., see the specification of the AIReduceCPUOverhead policy
above. As specified, the AIReduceCPUOverhead policy is intended to handle the High-
CPUUsage situation by providing alternative execution paths with similar probability
distribution. Here, probabilities are recomputed after every action execution, and thus
the behavior change accordingly. Moreover, to increase the goal-oriented autonomic-
ity, in this policy’s specification, we used the special KnowLang operator GENER-
ATE NEXT ACTIONS, which will automatically generate the most appropriate actions
to be undertaken by the SCP. The action generation is based on the computations per-
formed by a special reward function implemented by the KnowLang Reasoner. The
KnowLang Reward Function (KLRF) observes the outcome of the actions to compute
the possible successor states of every possible action execution and grants the actions
with special reward number considering the current system state (or states, if the cur-
rent state is a composite state) and goals. KLRF is based on past experience and uses
Discrete Time Markov Chains [2] for probability assessment after action executions [9].

Note that when generating actions, the GENERATE NEXT ACTIONS operator fol-
lows a sequential decision-making algorithm where actions are selected to maximize
the total reward. This means that the immediate reward of the execution of the first ac-
tion, of the generated list of actions, might not be the highest one, but the overall reward
of executing all the generated actions will be the highest possible one. Moreover, note
that, the generated actions are selected from the predefined set of actions (e.g., the im-
plemented cloud actions). The principle of the decision-making algorithm used to select
actions is as follows:

1. The average cumulative reward of the reinforcement learning system is calculated.
2. For each policy-action mapping, the KnowLang Reasoner learns the value function,

which is relative to the sum of average reward.
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3. According to the value function and Bellman optimality principle1, is generated the
optimal sequence of actions.

//
//==== Cloud Situations ===============================================================================
//
CONCEPT_SITUATION HighCPUUsage {

CHILDREN {}
PARENTS { SCCloud.Thing..Situation}
SPEC {
SITUATION_STATES { SCCloud.Thing..SCP.STATES.OverloadedCPU}
SITUATION_ACTIONS { SCCloud.Thing..Action.TransferApplication, SCCloud.Thing..Action.SlowDownApplication,

SCCloud.Thing..Action. StopApplication }
}

}

As shown, the situation is specified with states and possible actions. To consider a sit-
uation effective (the system is currently in that situation), its associated states must be
respectively effective (evaluated as true). For example, the situation HighCPUUsage
is effective if the SCP state OverloadedCPU is effective. The possible actions define
what actions can be undertaken once the system falls in a particular situation. For ex-
ample, the HighCPUUsage situation has three possible actions: TransferApplication,
SlowDownApplication, and StopApplication. The following code represents another
policy intended to handle the HighCPUUsage situation. In this policy, we specified
three MAPPING sections, which introduce three possible alternative execution paths.

CONCEPT_POLICY AIReduceCPUOverhead {
SPEC {
POLICY_GOAL { SCCloud.Thing..Self-Optimizing_1 }
POLICY_SITUATIONS { SCCloud.Thing..HighCPUUsage }
POLICY_RELATIONS { SCCloud.Thing..Policy_Situation_2 }
POLICY_ACTIONS { SCCloud.Thing..Action.SlowDownApplication, SCCloud.Thing..Action. StopApplication }
POLICY_MAPPINGS {

MAPPING {
CONDITIONS { SCCloud.Thing..SCP.STATES.Executing }
DO_ACTIONS { SCCloud.Thing..Action. SlowDownApplication }
PROBABILITY {0.5}

}
MAPPING {

CONDITIONS { SCCloud.Thing..SCP.STATES.Executing }
DO_ACTIONS { SCCloud.Thing..Action. StopApplication }
PROBABILITY {0.4}

}
MAPPING {

CONDITIONS { SCCloud.Thing..SCP.STATES.Executing }
DO_ACTIONS { GENERATE_NEXT_ACTIONS(SCCloud.Thing..SCP) }
PROBABILITY {0.1}

}
}

}
}

In general, a self-adaptive system has sensors that connect it to the world and eventually
help it listen to its internal components. These sensors generate raw data that represent
the physical characteristics of the world. The representation of monitoring sensors in
KnowLang is handled via the explicit Metric concept [9]. In our approach, we assume
that cloud sensors are controlled by a software driver (e.g., implemented in C++) where
appropriate methods are used to control a sensor and read data from it. By specifying
a Metric concept we introduce a class of sensors to the KB and by specifying objects,
instances of that class, we represent the real sensor. KnowLang allows the specification
of four different types of metrics [9]:

1 The Bellman optimality principle: If a given state-action sequence is optimal, and we were to
remove the first state and action, the remaining sequence is also optimal (with the second state
of the original sequence now acting as initial state).
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– RESOURCE - measure resources like capacity;
– QUALITY - measure qualities like performance, response time, etc.;
– ENVIRONMENT - measure environment qualities and resources;
– ENSEMBLE - measure complex qualities and resources where the metric might be

a function of multiple metrics both of RESOURCE and QUALITY type.

The following is a specification of metrics mainly used to assist the specification of
states in the specification of the SCP concept (see Section 3.1).
//Cloud Metrics
CONCEPT_METRIC CPU_Usage {

SPEC { METRIC_TYPE { RESOURCE } METRIC_SOURCE { CPU.Usage }
DATA { DATA_TYPE { Number } VALUE { 0.00 } }

} }
CONCEPT_METRIC Memory_Usage {

SPEC { METRIC_TYPE { RESOURCE } METRIC_SOURCE { Memory.Usage }
DATA { DATA_TYPE { Number } VALUE { 0.00 } }

} }
CONCEPT_METRIC Hard_Disk_Usage {

SPEC { METRIC_TYPE { RESOURCE } METRIC_SOURCE { HDD.Usage }
DATA { DATA_TYPE { Number } VALUE { 0.00 } }

} }

4 Conclusion

Formalizing with KnowLang is actually specifying the autonomy requirements cap-
tured with ARE. KnowLang is designed as a knowledge representation (KR) language
for self-adaptive systems and by using KnwoLang we actually build KR models sup-
porting self-adaptive behavior. Therefore, the formalization of self-adaptive clouds with
KnowLang is actually modeling the self-adaptive clouds’ behavior, which can be con-
secutively examined, analyzed, and eventually efficiently tested by using the KnowLang
Reasoner. Further, the same and yet verified KR model should be integrated along with
the KnowLang Reasoner into the system implementation. Many conventional develop-
ers doubt the utility of KR ad reasoning, but our understanding is that this is the only
possible way to develop self-adaptive systems. Such systems need to deal with an open
set of tasks, which cannot be determined in advance (at least not all of them). This is the
big advantage of using KnowLang: the formalized system is modeled to solve complex
problems where the operational environment is non-deterministic and the system needs
to reason at runtime to find missing answers.

Cloud platforms generally exhibit a number of autonomic features resulting in com-
plex behavior and complex interactions with the operational environment, often leading
to a need of self-adaptation. The need of self-adaptation arises when a system needs to
cope with changes to ensure realization of its objectives. To properly develop such sys-
tems, it is very important to properly handle their self-adaptive behavior. In this paper,
we have presented an approach to capturing the requirements for self-adaptive behavior
of clouds. We consider that self-adaptive behavior extends upstream the regular goals
of a system with special self-managing objectives, also called self-* objectives. Basi-
cally, the self-* objectives provide autonomy features in the form of system’s ability to
automatically discover, diagnose, and cope with various problems. To formalize self-*
objectives, the approach relies on the KnowLang language, a formal language dedicated
to knowledge representation for self-adaptive systems. A case study has been presented
to demonstrate the formalization of Science Clouds, a special class of self-adaptive
clouds providing a cloud-scientific platform.
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Future work is mainly concerned with further development of the Autonomy Re-
quirements Engineering approach along with full implementation of KnowLang, in-
volving tools and a test bed for autonomy requirements verification and validation.
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Abstract. Ensembles of autonomic components are a novel software engineer-
ing paradigm for development of open-ended distributed highly dynamic soft-
ware systems (e.g. smart cyber-physical systems). Recent research centered 
around the concept of ensemble-based systems resulted in design and develop-
ment models that aim to systematize and simplify the engineering process  
of autonomic components and their ensembles. These methods highlight the 
importance of covering both the functional concepts and the non-functional 
properties, specifically performance-related aspects of the future systems. In 
this paper we propose an integration of the emerging techniques for perfor-
mance assessment and awareness into different stages of the development 
process. Our goal is to aid both designers and developers of autonomic compo-
nent ensembles with methods providing performance awareness throughout the 
entire development life cycle (including runtime). 

Keywords: ensemble-based systems, component systems, performance engi-
neering. 

1 Introduction  

Autonomic component ensembles (ACEs) emerged in the recent years as an abstrac-
tion for modeling and constructing open-ended distributed highly dynamic systems 
(e.g. smart cyber-physical systems as featured by the EU H2020 program). ACEs 
provide a way of describing dynamic goal-oriented groups of otherwise autonomic 
components, which combine well the autonomic and cooperative behavior. 

ACEs operate in open and partially uncertain environments. This implies that po-
tential interactions of components and their environment are very difficult, often im-
possible, to fully predict. ACEs also exhibit emergent behavior, which arises from 
collective actions taken by interacting components. 

To cope with the uncertainty and emergent behavior, the software engineering of 
ACEs typically relies on a dedicated software development process, e.g. Ensemble 
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Development Lifecycle [1], which considers design time and run time as two parallel 
and mutually interacting adaptation loops. The loops integrate development with 
analysis and monitoring, thus making it possible to discover and reflect the emergent 
behavior and unanticipated reactions of the environment. The unanticipated behavior 
(e.g., the occurrence of certain message or reachability of certain state) is subsequent-
ly reported back to developers, thus providing input for incremental development.  

It is relatively well-understood how to capture functional properties and detect 
their violations. Moreover, functional properties are (at least partially) addressed by 
various existing tools that aim to validate their satisfiability. The contrary, however, 
holds about the performance properties. This is because performance of a system 
cannot be easily isolated. Performance is highly impacted by resource sharing (e.g. 
CPU, I/O, network), even between otherwise unrelated and seemingly independent 
components. Additionally, due to their statistical nature, performance properties are 
often more complex to express and validate – performance measurements typically 
involve a complex setup and non-trivial statistical computations over the measured 
values. Recently, there have emerged helpful mechanisms for assessing performance 
(e.g. modeling to provide estimates during development, monitoring to provide in-
formation during execution), however, as more or less independent and unrelated 
approaches, they do not provide a comprehensive support being integrated within a 
development process. This is especially true for engineering ACEs. 

In this paper, we strive to fill in this gap in the scope of the ACEs development 
process. Our goal is to aid both designers and developers of ACEs with methods pro-
viding performance awareness throughout the entire development life cycle (including 
runtime). In particular, we focus on the following three goals: (i) to discuss perfor-
mance-related issues and objectives of ACEs development process, (ii) to show how 
the performance objectives can be targeted within the ACEs development process, 
and (iii) to overview suitable models, techniques and tools that together bring the 
performance-aware engineering of ACEs. 

The structure of the paper is as follows. In Section 2, we elaborate on our running 
example – a scenario coming from our involvement in the ASCENS EU project. In 
Section 3, we detail the Ensemble Development Lifecycle, which we extend in Sec-
tion 4 by performance-awareness (at both design/development time and runtime). We 
describe how existing tools can be used to address performance awareness in different 
phases of the development process and exemplify this on the running example. Sec-
tion 5 surveys the related work, while Section 6 concludes the paper. 

2 Case Study 

To illustrate a typical representative of a distributed highly-dynamic system and its 
modeling using ACEs, we consider a scenario of intelligent vehicle navigation, in 
which vehicles are to efficiently get to given destinations, taking into account the 
current traffic, road closures, fuel consumption, etc. Vehicles are equipped with a 
route planning utility that allows a vehicle to autonomously compute the optimal 
route to its destination. For this purpose, a vehicle is aware of the factors influencing  
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Fig. 2. An example of the Vehicle component definition in jDEECo 

 
Ensembles in DEECo capture component composition and communication. An en-

semble defines how to establish the ensemble instances – dynamic groups of compo-
nents – and how to exchange knowledge among the components in a particular en-
semble instance. Components to be included in an ensemble instance are determined 
by so called ensemble membership condition – a first-order logic predicate over the 
knowledge of components. This is exemplified in Figure 1, where the upper ensemble 
groups a TM with vehicles in its sphere of activity, while the lower ensemble groups a 
vehicle with vehicles in its close vicinity. The communication within an ensemble 
instance is defined by so called knowledge exchange function, which describes how a 
part of component’s knowledge is transformed and stored to the knowledge of another 
component (see Figure 1). Defined using a relation among a number of components, 
an ensemble may naturally exist in a system in multiple instances.  

Technically, the execution of ACEs is managed by a runtime framework (e.g. JDEE-
Co as a runtime framework for DEECo). The runtime framework includes the necessary 
programming constructs for definition of components and ensembles in a particular pro-
gramming language and provides the distributed infrastructure for execution of compo-
nents, formation of ensembles and knowledge exchange within ensembles. 

2.1 Performance Considerations  

In addition to functional goals (such as vehicle navigation to its destination), ACEs 
are typically subjects to a number of performance goals. An example of such a high-
level goal in our case-study is the time for a navigation utility to plan a suitable route. 
This high-level goal is further dependent on other (still high-level) goals such as the 
limits on the route planning time or guarantees on the traffic information propagation 
delays. When designing for such high-level goals, the developer needs information on 
multiple performance-relevant properties on lower levels of the design (for example, 
the route planning time depends on the computing power available in the vehicle 
computer, and the traffic information propagation delays in the vehicle-to-vehicle 
networks depend on the information forwarding capacity of each vehicle). 
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The availability of this performance relevant information varies with the type of 
the information (e.g., settling time and accuracy of a particular sensor, execution time 
of a particular method) and the stage of the design. Some information is available 
very early in the design process, because it is actually a part of the design choices 
made – for example, we are likely to have a good idea of how reliable the vehicle 
speed information is because we know what speed sensor we use. Other performance 
relevant information is more difficult to obtain or guarantee – this may concern for 
example the frequency and accuracy of GPS position updates, which is strongly influ-
enced by actual signal reception conditions, or the upper bound on the route calcula-
tion time, which may depend on the complexity of the map used. Finally, some per-
formance relevant information comes from interactions among the ensemble compo-
nents, which are especially difficult to predict in an open system. 

For the design to progress at all, the developer has to make reasonable assumptions 
about all the lower level performance properties that contribute to the high-level per-
formance goals. As a particular hallmark of the ensemble development process, rely-
ing on wrong assumptions is not necessarily a developer error – in the open environ-
ment, some initially reasonable assumptions can turn out to be wrong as the environ-
ment continuously evolves. We therefore need a development process that can track 
the individual performance assumptions between the design and execution phases 
and, as a matter of course, monitor and reflect on the possible violations of the as-
sumptions. 

3 Ensemble Development Lifecycle 

The development of ACEs typically follows a dedicated life-cycle model, which in 
turn provides a concrete frame for supporting performance considerations. In this 
section, we overview the Ensemble-Development Lifecycle (EDLC), which is one of 
the primary life-cycle models for ACEs. Taking EDLC as the basis, we then show 
how it can be extended to address performance-related issues.  

3.1 General Model 

EDLC is a dedicated lifecycle model for engineering of autonomic component en-
sembles. EDLC features a “double-wheel” development process (see Figure 3), which 
combines iterative development (captured by the “first wheel”) with two-level adapta-
tion – the autonomous self-adaptation at runtime (captured by the “second wheel”) 
and the developer-controlled adaptation (captured by the feedback loop between the 
design time and runtime). 

Going into more detail, the design part (“first wheel”) consists of requirements en-
gineering, modeling/programming and verification/validation. These activities are 
iteratively executed until a desired product is created. The verification and validation 
play a very prominent role here. It involves static analysis and simulations, which are 
employed to predict the large-scale system behavior, accounting for its potentially 
emergent nature. 
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The runtime part (“second wheel”) reflects the execution of the system. In contrast 

to traditional systems, ACEs possess a high degree of self-awareness and self-
adaptivity. This is in EDLC embodied by the monitoring, awareness (reasoning) and 
self-adaptation activities – similar to the MAPE adaptation loops known from auto-
nomic computing [3].  

The two wheels of EDLC are connected by deployment of a system and feedback, 
which brings data collected by monitoring at runtime back to design. The feedback 
data is used to observe and analyze the behavior of the system and its self-adaptation 
responses in face of originally unanticipated situations. If the analysis shows that the 
system was not able to gracefully cope with a particular situation, it is reengineered, 
analyzed/simulated and again deployed.  

Technically, EDLC can be supported by a number of tools – for instance DEECo 
can be used for modeling/programming, deployment and execution of ACEs. Similar-
ly, DEECo can be also employed for rudimentary support for monitoring, awareness 
and self-adaptation. The other design activities are covered by IRM [4] / SOTA [5] 
(for requirements engineering) and by ARGoS [6] / GMC [7] (for verification of func-
tional aspects). 

3.2 Performance Perspective  

From the performance perspective, the role of the ensemble development process is 
(1) to collect and deliver available information about performance to developers in 
relevant situations and (2) to propagate the performance relevant assumptions made 
during development to the runtime for monitoring and adaptation feedback. 

Rather than being acquired en bloc, performance information is collected and im-
proved gradually throughout the development process. In principle, the initial infor-
mation is limited to guesses about future system performance. This information can 
be improved along two principal axes: 

Isolated computation. As soon as the initial implementation of selected ensemble 
components becomes available, the performance of these components can be measured 

Fig. 3. Ensemble Development Life Cycle 
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in isolation, much in the same way as software components are tested in agile devel-
opment methodologies. Measurement in isolation requires a test harness that manufac-
tures the input required by the ensemble components. This task is made easier by the 
fact that the interface of each ensemble component is precisely specified, with commu-
nication taking place only through knowledge exchange. The input for testing therefore 
takes the shape of a snapshot(s) of the knowledge repository, initially prepared by 
knowledge generators implemented for that purpose [8]. 

Relying on an artificially generated workload can naturally limit the accuracy or 
representatives of the performance measurements collected. In the subsequent steps of 
the development process, this information can be improved by collecting knowledge 
samples from the executing ensemble. This knowledge can again be fed as input to 
the components for measurement purposes. 

The ultimately authoritative information on individual component performance can 
be collected by monitoring the deployed ensemble. Thus, the obtained information 
can be confronted with the estimates and assumptions made in earlier development 
stages as necessary. 

Knowledge exchange. Besides the performance of individual components, the per-
formance relevant behavior of an ensemble is also determined by the interactions 
between components. These interactions determine both the content and the timing of 
the input knowledge that the components rely on. 

Improving the initial estimates of ensemble performance requires that the devel-
opment process has progressed enough to provide information on the ensemble com-
munication architecture. Once this architecture is available, estimates on knowledge 
propagation delays can be made and following ensemble simulations can improve the 
available performance information. 

As in the previous case, the ultimate information on ensemble performance comes 
from monitoring “live” ensembles once they become available. The entire process of 
performance information improvement has an iterative character, where each new 
contribution helps to gradually form the overall ensemble performance picture.  

As a major stumbling block, we can eventually end up with too much information 
– either too much information to collect, with prohibitive measurement costs or dis-
ruptive measurement overhead, or too much information to process and accommo-
date, which can entail significant developer workload. To avoid this particular danger, 
it is necessary to formally track the process of refining the high-level performance 
goals into lower level performance assumptions or requirements. We need to monitor 
and collect performance information only in locations whose performance contributes 
to a high-level performance goal, and we need to report this performance only when it 
diverges from the assumptions made during development. 

4 Performance-Awareness in EDLC 

To bring the performance perspective into engineering of ACEs, we augment EDLC 
with an extension which addresses performance-related issues as discussed in Section 
3.2. Overall, we view the performance-aware engineering as centered around the three 
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principal feedback loops of EDLC (the design one, the runtime one, and the outer one 
connecting design and runtime). At design time, we introduce four principal activities 
connected to performance: (D-1) formulating high-level performance goals, (D-2) 
refining the high-level goals to time constraints on isolated computation and know-
ledge exchange (as outlined in Section 3.2), (D-3) collecting performance data by 
isolated benchmarking and simulations, (D-4) providing feedback about predicted 
performance to development of components and ensembles. At runtime, we (R-1) 
collect relevant performance indicators (as identified by the high-level and low-level 
performance goals) and we (R-2) analyze them to detect possible violations of the 
performance goals. When such a violation happens, (F-1) it is reported back to the 
design time. The outer feedback loop is additionally used for (F-2) obtaining real-life 
measurements (e.g. actual network latency, packet drops) to improve the design-time 
simulations. 

This whole process is tool-supported. We use a special computer interpretable log-
ic for capturing performance assumptions in D-1 and D-2; tools for automated per-
formance evaluation, simulations, and analysis for D-3 and for the runtime monitoring 
and analysis of R-1 and R-2; and an extension to a development IDE (e.g. Eclipse) to 
provide relevant performance measurements as part of its contextual assistance for  
D-4. In the following, we overview in more detail the particular methods and tools 
driving the process described above. Furthermore, we demonstrate their use on our 
case-study.  

4.1 Performance Goals and their Decomposition (D-1, D-2) 

High-level performance goals formulation and their further decomposition are the 
activities that fall into the requirements engineering step of the EDLC. For this task 
we employ the Invariant Refinement Method (IRM) [4], which has already been used 
in DEECo for functional goal formulation and decomposition. IRM relies on the top-
down approach, where top-level invariants constitute high-level (general) goals of the 
application and are further decomposed into more specialized (fine-grained) ones, 
which eventually map into concrete component processes and ensembles. In the con-
text of the EDLC, the refinement of non-functional goals is not much different from 
the refinement of their functional counterparts and can use IRM as is. Similar to func-
tional goals, performance goals are eventually mapped to component processes or 
knowledge exchange of the ACEs.  

To illustrate the idea behind activities D-1 and D-2, we take a high-level perfor-
mance goal of not needing more than 30 seconds to provide a suitable route. Follow-
ing the functional IRM-based decomposition, this goal splits into two alternatives 
(OR-decomposition) as follows: If the vehicle has no connectivity to the TM, it com-
putes locally the route to its destination, (optionally) relying on the traffic information 
obtained previously from TM or from other vehicles. Otherwise, the vehicle off-loads 
route computation to the TM and awaits the results. In this case, the high-level per-
formance goal of vehicle navigation planning time being no longer than 30 seconds 
decomposes into several time constraints (as shown in Figure 4) that correspond to 
knowledge exchange (in both directions) and TM’s route computation.  
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4.2 Formalization of Performance Constraints (D-2) 

We capture performance goals by Stochastic Performance Logic (SPL) [9], which is a 
many-sorted first-order logic with well-defined semantics. SPL regards performance 
as a random variable with probability distribution dependent on a given workload. 
SPL features performance relational operators, which are based on statistical testing 
of various statistical measures such as mean, minimum, maximum or an arbitrary 
quantiles. 

We employ SPL as the formal framework for expressing performance goals at de-
sign time as exemplified by rectangular boxes in Figure 4 (note that the  operator 
used in the formulas stands for single-sided statistical testing whether a hypothesis of 
a negation can be rejected at a given confidence level ). Similarly, we use SPL on 
the level of the code, where we reflect the performance requirements in the form of 
annotations (@Performance) – see Figure 5. Tying performance goals to particular 
methods in the code brings the performance goals to the level where they can be au-
tomatically tested. 

4.3 Benchmarking of Isolated Computation (D-3) 

The SPL-based code annotations can be used at run-time to check that the implemen-
tation conforms to the specification and at development time to test the computation 
performance of components in isolation. Testing in isolation allows getting rough 
estimates of the performance in situations when an application is not ready to be dep-
loyed or when real deployment is too costly to be used for testing. 
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Fig. 4. High-level performance goal decomposition in IRM 
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Testing of isolated execution requires a developer (tester) to provide a sample work-

load. In traditional performance unit testing as described in [9], the tester needs to pre-
pare a workload generator that creates the parameters for the method under test. When 
testing DEECo components, the tester has to provide artificial knowledge upon which 
the component can operate. This can be done by providing test-cases that are parti-
tioned in a similar way as in functional black-box and white-box testing. Alternatively, 
it is possible to use knowledge valuation sampled previously in a real deployment.  

The performance testing process itself and the evaluation of the results is driven by 
SPL tools [10], which take care of all steps necessary for precise and statistically rele-
vant performance measurements. This involves workload preparation, actual mea-
surements preceded by a sufficiently long warm-up, collection of measurement results 
and their statistical analysis. To improve the relevancy of the measurements, they can 
be collected on a remote machine, running the actual target hardware, instead of a 
local, developer's one. SPL tools also allow for regression testing, which makes it 
possible to detect performance degradation across software versions. 

4.4 Benchmarking of Knowledge Exchange (D-3) 

Contrary to computational performance, the performance of knowledge exchange has 
to be established on a system level – at least considering components of an ensemble 
and other components that use the same shared communication medium. 

class TM extends Component { 
  ... 
  @Process 
  @Performance("MAX(duration) < 6s") 
  public static void findOptRoutes( 
    @In("vehicleInfos") List<VehicleInfo> vehicleInfos, 
    @In("trafficInfo") TrafficInfo trafficInfo, 
    @InOut("routes") Map<String, Route> routes) 
  { /* ... */ } 
  ... 
} 
  
@Ensemble 
class VehicleTM { 
  ... 
  @Performance("MAX(latency) < 12s") 
  @KnowledgeExchange 
  public static void exchange( 
    @In("coord.id") String coordId, 
    @In("coord.destination") Position coordDest, 
    ... 
  ) 
  { /* ... */ } 
} 

Fig. 5. An example of requirement decomposition 
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An important fact is that the performance of the knowledge exchange depends 
heavily on the particular communication protocols being used. For instance, to date 
DEECo features two principal knowledge exchange approaches – centralized tuple 
space [11] and decentralized gossip-based communication [12]. In the former case, 
every time a process needs to be executed a remote tuple space is queried for the ne-
cessary data and the result is stored back immediately after the execution. In the latter 
case, knowledge is exchanged asynchronously in a best-effort manner. Naturally, the 
first option brings relatively fast knowledge exchange, which comes at the price of 
requiring a stable (and reliable) network infrastructure. Gossiping on the other hand 
seamlessly supports unreliable and continuously changing communication links (e.g. 
Mobile Ad-hoc NETworks – MANETs), which is carried by the cost of longer (by 
several orders of magnitude) communication times and weaker consistency of the 
whole system. 

To predict the times for the knowledge exchange, we rely on simulations that take 
into account the realistic behavior of the network. In particular, in the frame of the 
DEECo component model, its runtime framework JDEECo supports integration with 
the OMNet++ network simulator, which is utilized to simulate network contention in 
static, wireless, mobile and MANET networks. This integration of JDEECo and OM-
Net++ makes it possible to gather different statistics (e.g. amount of packets ex-
changed, amount of drops, and latencies). 

An obvious difficulty of the system-level simulation is that it requires a model of 
the infrastructure nodes (that act as component containers) and their network connec-
tivity. Specifying such a model requires a non-trivial effort. Advantageously, once 
created, this model can be reused across development increments and possibly even 
across different ACEs applications. What then remains as an input for the simulation 
is the deployment plan (i.e. assignment of components to particular infrastructure 
nodes). Such a deployment plan can be specified in a relatively straightforward way – 
e.g. by assigning an instance of a particular component to each node of a specific type 
(e.g. Vehicle). 

4.5 Collection and Analysis of Performance Indicators at Runtime (R-1, R-2) 

In addition to isolated measurements and simulations at design time, we monitor 
ACEs also at runtime. This is performed using DiSL [13], which is an instrumentation 
framework targeted on dynamic analysis of applications. DiSL provides an AOP (As-
pect Oriented Programming) inspired domain specific language hosted in Java using 
annotations, which makes it possible to insert arbitrary instrumentation into an ob-
served application.  

In our approach, we instrument component processes marked by the @Performance 
annotation. DiSL also allows for inside-process instrumentations (e.g. for measuring  
performance of a particular method or block of statements). Since the instrumentation in 
DiSL is on-line, meaning it is dynamically applied when the application is loaded, it can 
be easily switched off when no measurements are required, thus mitigating the runtime 
overhead. The results from DiSL measurement are stored as an online profile of a com-
ponent. The online profile can be immediately evaluated by SPL backend and submitted 
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to a component developer if some of the performance requirements are not met (as de-
scribed in Section 4.6). 

 

4.6 Providing Development feedback (D-4) 

We envision that the measurement of computation and knowledge exchange perfor-
mance should be available to the developer directly in the IDE and similarly to the 
way results of unit tests are reported and context help is shown in the context assist. 
This idea is exemplified in Figure 6 – it shows a mock-up of the Eclipse IDE with a 
context-assist displaying a graph of measured process performance. 

Moreover, we envision that the process of providing the results to the IDE should 
resemble the one applied in continuous integration. In particular, we imagine that the 
performance measurements are triggered as soon as a particular artifact (component 
or ensemble) becomes available in a shape allowing for its deployment. This happens 
asynchronously (most likely on a dedicated server). Although their primary objective 
is to give a pass/fail answer (according to the specified performance goals), they can 
be used to determine which performance indicators are of relevance and their detailed 
statistics can be provided within the IDE. 

5 Related Work 

Being a relatively young concept, the performance of ACEs has not been so far syste-
matically addressed; in particular, there are no existing works addressing performance 
in the context of the ACEs development process. Looking at our contribution from a 
broader perspective, we can identify three main research fields, which are at least par-
tially related to our contribution (though they are not specialized for development of 
ACEs). These are: performance measurement frameworks used broadly in the context 

[ trafficLevel: 0.3 ] 

Fig. 6. Prospective performance feedback integration into Eclipse IDE 
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of component-based systems, instrumentation tools for computation time measure-
ments, and approaches for communication latency assessment. We structure the rest of 
the section along this principal division. 

In regard to performance measurement frameworks, in [14] authors present perfor-
mance measurement framework designed for component systems called TAU. TAU 
provides a support for two kinds of instrumentation techniques that differ with respect 
to the flexibility level being traded off for a higher overhead. The later work (described 
in [15]) extends the TAU framework by performance-oriented regression tests. As a 
complete framework, TAU delivers a broad range of features, which in the case of the 
ACEs and the approach proposed in this paper seems to be redundant (introducing 
unnecessary overhead). The Palladio component model [16] comes with a simulation 
framework that allows for identification of performance bottlenecks during the design 
phase of the development process. Being a pure model-based solution, Palladio does 
not support on-line measurements of a (partially-) developed system, and relies only on 
individual component performance predictions. This effectively limits its applicability 
in further stages of the development process (i.e. programming), where more accurate 
(built on the implementation) estimates are available. An online measurement tech-
nique is presented in [17], which describes a method for online measurements of com-
ponent-based applications. It builds on the Linux Trace Toolkit [18] to capture compo-
nents performance. In particular, it measures remote invocation overhead (lookup and 
data marshaling) as well as inter-component communication delays. The measurements 
are used to predict behavior under different deployment strategies. The proposed solu-
tion, however, lacks run-time measurements of an already deployed application and is 
designed purely for production time analyses. 

In terms of execution time measurements, we can distinguish between two com-
mon techniques. One is profiling, which periodically observes executed code and 
based on the acquired stack information creates a statistical execution profile of the 
observed system. The other technique is instrumentation, which uses probes, injected 
directly into the observed code, to measure its execution time. Profiling is not precise 
but has only small impact on the observed system. In contrast, instrumentation pro-
vides precise execution times but its high coverage may impose significant overhead. 
Profiling tools such as HPROF [19] or NetBeans Profiler [20] are in majority accom-
modating both of these techniques, however they lack the ability to scope the mea-
surement to particular parts of the observed system. For more fine grained measure-
ments (as we presume in our approach) an instrumentation tool is expected to support 
exact method (or block of code) measurement. Both Perf4J [21] and Xebia tools [22] 
use annotations to mark methods intended for execution time measurement. Com-
pared to DiSL (which we employ), they lack the ability for more sophisticated mea-
surement logic insertion. 

Very often, the measurements may require certain conditions to hold or even perform 
more complex computation to decide whether to store or discard the measured values.  
To support such scenarios, the instrumentation framework needs to provide a possibility 
for an arbitrary instrumentation insertion into the observed code. One of such is  
the AspectJ framework [23]. It allows one to easily insert any block of code in the  
instrumented program in order to perform various dynamic analysis task. As it is not 
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primarily designed for performance measurements, it imposes higher overheads than 
comparable tools. Another examples of instrumentation-based solutions are Sofya [24] 
and Chord [25], which support creation of custom analysis tools. In our approach, the 
DiSL framework was selected, as it provides both flexible enough and high-level lan-
guage for specifying custom instrumentation that is suitable in the context of component 
process performance analyses.With respect to the approaches for communication cost 
assessment, these usually build on simulation frameworks that benchmark developed 
applications against different deployment models. During the simulation process, vari-
ous statistics are collected, the accuracy of which depends directly on the precision of 
the model being used. In our method we rely on the OMNet++ network simulator [26], 
which is a mature product with support for a multitude of network protocols (including 
wired and wireless IP-based networks, MANETs, etc.). OMNet++ further provides an 
API for statistical analyses, which makes possible collection of various performance 
indicators. Naturally, other network simulators exist (e.g. NS-2 and NS-3 [27]) and are 
used for the same purpose. While our approach incorporates the network simulator, it 
focuses mostly on the ACEs level of abstraction that allows for reasoning about com-
munication performance at the application level (i.e. it answers questions about the per-
ceived staleness of component knowledge, etc.).  

6 Conclusion 

In this paper, we have presented an approach for performance-awareness introduction 
in the development process of autonomic component ensembles. The approach is 
centered around EDLC, which we have extended by a set of well-defined activities 
for pinpointing the performance goals, measuring the corresponding performance 
indicators, and bringing the information about performance to the developer. This 
allows the developer to have an idea about the expected performance and related inte-
ractions already when developing them. Additionally, our approach includes integra-
tion with the runtime, which makes it possible to incorporate actual performance of 
ACEs in a deployment environment and reflect it back to the development. We have 
demonstrated the core ideas of our approach based on existing tools for monitoring 
and analyzing performance. To provide for a holistic solution, these tools have to be 
integrated within a development environment, whose sketch we have also provided. 
Such an integration and real-life evaluation constitute our future work.  
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Abstract. In the field of distributed autonomous computing the cur-
rent trend is to develop cooperating computational entities enabled with
enhanced self-* properties. The expression self-* indicates the possibil-
ity of a component inside an ensemble, i.e. a set of collaborative auto-
nomic components, to self organize, heal (repair), optimize and configure
with little or no human interaction. We focus on a self-* property called
self-expression, defined as the ability to deploy run-time changes of the
coordination pattern of the observed ensemble; the goal of the ensem-
ble is to achieve adaptivity by meeting functional and non-functional
requirements when specific tasks have to be completed. The purpose of
this paper is to rigorously present the mechanisms involved whenever a
change in the coordination pattern is needed, and the interactions that
take place. To this aim, we use SCEL (Software Component Ensemble
Language), a formal language for describing autonomic components and
their interactions, featuring a highly dynamic and flexible way to form
ensembles based on components’ attributes.

Keywords: Self-expression, coordination patterns, ensemble computing.

1 Introduction

The current trend in designing distributed systems is to conceive them as en-
sembles of several, possibly heterogeneous, components. Ensembles are often
required to solve complex problems of real life, even situations in which the level
of interaction between humans and components of the ensemble is strongly lim-
ited or even absent. Therefore, their components usually collaborate with each
other in order to achieve a common goal. This calls for further features that in-
crease the self-management capability of the systems, such as self-configuration,
self-healing, self-optimization, and self-protection, leading to what is known in
literature as self-* properties in autonomic computing [16,31]. The goal is to
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Fig. 1. A two-perspective relationship between task to solve and surrounding system

have self-adaptive ensembles able to promptly react to dynamic changes of the
surrounding environment and to optimize their performance when addressing
tasks of variable complexity in the presence of dynamic environments. In addi-
tion to the previously listed properties, there can be situations in which changes
in the components’ coordination pattern (as a refactoring of behaviors, roles and
interactions among components) can be useful at runtime, especially in open and
non-deterministic scenarios. This change should be autonomously made by the
ensemble itself by relying on adaptive collaboration of its components. This abil-
ity could enable the ensemble to face unexpected and unpredictable situations,
often modelled as changes in the environment or fault tolerance issues [26]. More-
over, it could increase performance and robustness of the designed ensemble, be-
cause different coordination patterns could require different utilities or qualities
for solving a specific task. The dynamic modification of the coordination pattern
according to the changes in the external conditions is called self-expression [30],
meaning that the autonomic system expresses itself (i.e., the system still does
what is supposed to do) independently of unexpected situations and, to accom-
plish this, it is capable of modifying its original internal organization.

This paper aims at showing how to enable self-expression in a concrete way
by exploiting a formal language for defining ensembles. We refer the interested
reader to [30,5] for further motivations and details about self-expression.

1.1 More Details on Self-expression

Enhancing adaptivity of an ensemble through self-expression is a problem that
can be seen from two different perspectives, as shown in Fig. 1.

A first perspective (left part of Fig. 1) is to think about engineering an en-
semble able to solve a specific problem starting from an initial task that can be
then subdivided into several sub-tasks to be assigned to ensemble components.
For instance, the task “explore a given area” could be split in the sub-tasks “act
as a master that proposes sub-areas to explore”, “act as a slave for executing
the received orders from a master”, “act as a peer to negotiate sub-areas to ex-
plore”, etc. Self-expression can be then represented by a Business Process Logic
(BPL) specification that regulates relationships among sub-tasks and how these
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are assigned to each component. Since each of these sub-tasks is related to how
the ensemble will assign roles, behaviors and interaction rules, the BPL specifi-
cation provides information on how the ensemble will coordinate its components
for solving the specified task. BPL specifications are subject to change over time
according to the dynamics of the surrounding environment, so to have ensembles
whose components will undergo modifications of the sub-tasks assignment and of
the way they will coordinate according to the changes in the external conditions.

A second perspective (right part of Fig. 1) is to think about an already ex-
isting system that potentially is able to solve a multitude of tasks and for each
of these tasks, each component of the system knows different ways to collabora-
tively complete it. For instance, some available tasks could be “area exploration”
and “dragging/pushing objects outside the area”, while the different ways to ac-
complish them could be “master-slave”, “peer-to-peer” and “swarm”. Later on,
a request from outside, or a specific contingency, could prepare the system for
solving a specific task. Self-expression here is seen as the capability to collabora-
tively select the fittest way, according to the currently perceived environmental
conditions, for solving the selected task. The fittest collaborative effort can be
thought of as a coordination pattern that results in an appropriate Quality of
Service (QoS). Its selection is a decision that is ideally shared throughout the
whole ensemble. As external conditions change over time, the ensemble has to
adapt itself by choosing a different way to coordinate.

The modelling and description of the mechanisms for deploying self-expression
according to this latter perspective present interesting challenges and are inves-
tigated in the rest of the paper by using a formal language specifically designed
for defining ensembles.

1.2 Self-expression in a Formal Language for Defining Ensembles

The language SCEL (Software Components Ensemble Language) [10,11] has
been introduced to deal with the challenges posed by the design of ensembles
of autonomic components. In SCEL, autonomic components are entities with
dedicated knowledge repositories and resources that can cooperate while play-
ing different roles. Knowledge repositories also enable components to store and
retrieve information about their working environment, and to use it for redirect-
ing and adapting their behavior. Each component is equipped with an interface,
consisting of a collection of attributes, such as provided functionalities, spatial
coordinates, group memberships, trust level, response time, etc. Attributes are
used by the components to dynamically organize themselves into ensembles.

The way sets of partners are selected for interaction, and thus how ensembles
are formed, is one of the main novelties of SCEL. In fact, individual components
not only can single out communication partners by using their identities, but
they can also select partners by exploiting the attributes in the interfaces of
the individual components. Predicates over such attributes are used to specify
the targets of communication actions, thus providing a sort of attribute-based
communication. In this way, the formation rule of ensembles is endogenous to
components: members of an ensemble are connected by the interdependency
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relations defined through predicates. An ensemble is therefore not a rigid fixed
network, but rather a highly dynamic structure where components’ linkages are
dynamically established.

The purpose of this work is to show that SCEL can be conveniently exploited
to naturally model ensembles able to deploy self-expression. Indeed, ensembles
can be addressed as single entities (by exploiting predicates) and, at the same
time, are composed of sub-entities (the ensemble components, which are the ac-
tual recipients of ensemble invocations). Our characterization has the additional
benefit of fostering dynamic identification of sub-sets of ensembles, since ensem-
bles are highly dynamic structures where components linkages are dynamically
established.

The rest of the paper is organized as follows. In Section 2, we recap the SCEL

language, while in Section 3 we show how to implement self-expression with it.
In Section 4, we present an application of our approach to a case study from
the robotics domain. Section 5 discusses more strictly related work. Finally, in
Section 6, we draw some conclusions and sketch how our approach can be further
extended.

2 SCEL: Software Component Ensemble Language

SCEL is a kernel language for programming autonomic computing systems in
terms of Behaviors, Knowledge and Aggregations, according to specific Policies.
Behaviors describe how computations progress and are modeled as processes
executing actions. Knowledge is represented through items containing either ap-
plication data enabling the progress of components’ computations, or awareness
data providing information about the environment in which the components are
running (e.g. monitored data from sensors) or about the status of a compo-
nent (e.g. its current location). Aggregations describe how different entities are
brought together to form components and ensembles. In particular, components
result from a form of syntax-based aggregation that puts together a knowledge
repository, a set of policies and a set of behaviors, by wrapping them in an in-
terface providing a set of attributes, i.e. names referring to information stored
in the knowledge repository. Components’ composition and interaction are im-
plemented by exploiting the attributes exposed in components’ interfaces. This
form of semantics-based aggregation of components permits defining ensembles,
representing social or technical networks of components, and configuring them to
dynamically adapt to changes in the environment. Finally, policies control and
adapt the actions of the different components for guaranteeing accomplishment
of specific tasks or satisfaction of specific properties.

The syntax of SCEL is presented in Table 1. There, different syntactic cat-
egories are defined that constitute the main ingredients of the language. The
basic category is the one defining Processes that are used to build up Compo-

nents that in turn are used to define Systems. Processes specify the flow of
the Actions that can be performed. Actions can have a Target to determine
the other components that are involved in that action. The rest of this section
is devoted to the description of the SCEL’s syntactic categories.
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Table 1. SCEL syntax (Knowledge K, Policies Π , Templates T , and Items t are
parameters of the language)

Systems: S ::= I[K, Π,P ]
∣∣ S1 ‖ S2

∣∣ (νn)S

Processes: P ::= nil
∣∣ a.P

∣∣ P1 + P2

∣∣ P1 | P2

∣∣ X
∣∣ A(p̄)

Actions: a ::= get(T )@c
∣∣ qry(T )@c

∣∣ put(t)@c
∣∣ fresh(n)∣∣ new(I,K,Π, P )

Targets: c ::= n
∣∣ x

∣∣ self
∣∣ P

∣∣ p

Systems and components. The key notion is that of component I[K, Π, P ],
that is graphically depicted in Figure 2 and consists of:

1. An interface I publishing and making available structural and behavioral
information about the component itself in the form of attributes. Among
them, attribute id is mandatory and is bound to the (not necessarily unique)
name of the component.

2. A knowledge repository K managing both application data and awareness
data, together with a specific handling mechanism providing operations for
adding, retrieving, and withdrawing knowledge items. The knowledge repos-
itory of a component stores also the information associated to its interface,
which therefore can be dynamically manipulated by means of the operations
provided by the knowledge repositories’ handling mechanisms.

3. A tuple of policies Π regulating the interaction between the different internal
parts of the component and the interaction of the component with the others.

4. A process P , together with a set of process definitions that can be dynami-
cally activated.

Systems aggregate components through the composition operator ‖ . It
is also possible to restrict the scope of a name, say n, by using the name restric-
tion operator (νn) . Thus, in a system of the form S1 ‖ (νn)S2, the effect of the
operator is to make name n invisible from within S1. Essentially, this operator
plays a role similar to that of a begin . . . end block in sequential programming
and limits visibility of specific names. Additionally, restricted names can be ex-
changed in communications thus enabling the receiving components to use those
“private” names.

Processes. Processes are the active computational units. Each process is
built up from the inert process nil via action prefixing (a.P ), nondeterministic
choice (P1 + P2), controlled composition (P1[P2 ]), process variable (X), and
parameterized process invocation (A(p̄)). We will omit trailing occurrences of nil,
writing e.g. a instead of a.nil. The construct P1[P2 ] abstracts the various forms
of parallel composition commonly used in process calculi. Process variables can
support higher-order communication, namely the capability to exchange (the
code of) a process, and possibly execute it, by first adding an item containing
the process to a knowledge repository and then retrieving/withdrawing this item
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Fig. 2. A SCEL component

while binding the process to a process variable. We assume that A ranges over
a set of parameterized process identifiers that are used in recursive process def-
initions. We also assume that each process identifier A has a single definition
of the form A(f̄) � P where all free variables in P are contained in f̄ and all
occurrences of process identifiers in P are within the scope of an action prefixing.
p̄ and f̄ denote lists of actual and formal parameters, respectively.

Actions and targets. Processes can perform five different kinds of actions.
Actions get(T )@c, qry(T )@c and put(t)@c are used to manage shared knowl-
edge repositories by withdrawing/retrieving/adding information items from/to
the knowledge repository c. These actions exploit templates T as patterns to se-
lect knowledge items t in the repositories. They heavily rely on the used knowl-
edge repository and are implemented by invoking the handling operations it
provides. Action fresh(n) introduces a scope restriction for the name n so that
this name is guaranteed to be fresh, i.e. different from any other name previously
used. Action new(I,K, Π, P ) creates a new component I[K, Π, P ].

Action get may cause the process executing it to wait for the wanted element
if it is not (yet) available in the knowledge repository. Action qry, exactly like
get, may suspend the process executing it if the knowledge repository does not
(yet) contain or cannot ‘produce’ the wanted element. The two actions differ for
the fact that get removes the found item from the knowledge repository while
qry leaves the target repository unchanged. Actions put, fresh and new are
instead immediately executed, provided that their execution is allowed by the
policies in force.

Different entities may be used as the target c of an action. Component names
are denoted by n, n′, . . . , while variables for names are denoted by x, x′, . . . . The
distinguished variable self can be used by processes to refer to the name of the
component hosting them. The target can also be a predicate P or the name p of
a predicate, exposed as an attribute in the interface of the component, that may
dynamically change. A predicate could be a boolean-valued expression obtained
by applying standard boolean operators to the results returned by the evaluation
of relations between attributes and expressions. Attribute names occurring in a
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predicate refer to attributes within the interface of the object components, i.e.
components that are target of the communication action.

In actions using a predicate P to indicate the target (directly or via p), pred-
icates act as ‘guards’ specifying all components that may be affected by the
execution of the action, i.e. a component must satisfy P to be the target of the
action. Thus, actions put(t)@n and put(t)@P give rise to two different primitive
forms of communication: the former is a point-to-point communication, while the
latter is a sort of group-oriented communication.

The set of components satisfying a given predicate P used as the target of a
communication action can be considered as the ensemble with which the pro-
cess performing the action intends to interact. For example, the names of the
components that can be members of an ensemble can be fixed via the predicate
id ∈ {n,m, o}. When an action has this predicate as target, it will act on all
components named n, m or o, if any. Instead, to dynamically characterize the
members of an ensemble that are active and have a battery whose level is higher
than low, by assuming that attributes active and batteryLevel belong to the
interface of any component willing to be part of the ensemble, one can write
active = yes ∧ batteryLevel > low.

3 Self-expression in SCEL

In this section, we provide a step-by-step explanation of how a change in the
coordination pattern can be obtained in an ensemble of autonomic components
described using SCEL. A visual representation of the pattern workflow is shown
in Fig. 3, where requests are represented by red arrows (i.e., darker arrows in
b/w) and responses by the green arrows (i.e., lighter arrows in b/w). We first
present the workflow execution steps performed by the requester, that is a com-
ponent that requests the execution of a task, and, then, the steps performed by
each involved responder.

Changes in the external conditions should trigger a change in the coordination
pattern, since once a task has been selected, each different known implementa-
tion is likely to result in a different QoS. The QoS may depend on the current
conditions of the surrounding environment, therefore for each observable change
in the external conditions, a different coordination pattern could have to be
selected in order to obtain the desired QoS.

Suppose that one or more components can rely on a table like the one shown
in Table 2 in order to select the fittest implementation, once the whole ensemble
agreed on the task to solve. Each row of the table can be represented as an
item stored in the knowledge repository of the component. Conditions represent
all the important features regarding the surrounding environment in which the
ensemble is located; for instance, in case of a robot ensemble, everything that
can be perceived through sensors. Implementation, identified by an id, is the
actual coordination pattern chosen by the whole ensemble among the different
patterns of the specified task. The final column relates to the expected QoS.

To sum it up, each important change in the surrounding environment, i.e.
each change causing a different set of conditions ki to be satisfied, triggers a
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Fig. 3. Workflow of coordination patterns in SCEL

modification of the coordination pattern (i.e., implementation Ii for solving a
previously agreed task) to be adopted, so to carry out the specific task with
expected quality QoSi. A single component that is aware that a specific coor-
dination pattern is needed can trigger a dissemination request to all the other
components of the ensemble, as we explain in the rest of the section.

3.1 Requester Workflow

We introduce here the steps of the task requester workflow.
Step 1: Task Request. The requester component needs a specific task to be

carried out, so by using predicate Pr it contacts an ensemble of components that
could fulfill the task. In order to receive a response, the requester adds its own
identifier name (i.e., its component’s address) to the request by means of the
distinguished variable self, which allows a process to refer to the name of the
component hosting it. The requesting action is rendered in SCEL as follows:

put(“taskRequest”, “taskName”, QoSconstraints, self)@Pr

Notably, before sending the request item, variable self will be replaced by the
component identifier running the process performing the above put action.
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Table 2. Example table of Conditions-Implementation-Expected QoS related to a
specified task

Conditions Implementation Expected QoS

k1 I1 QoS1
t

k2 I2 QoS2
t

k3 I3 QoS3
t

...
...

...

The predicate Pr can be declared, e.g., as:

Pr � “taskName” ∈ providedTasks

where “taskName” is the name of the required task and providedTasks is an
attribute, exposed in the interface of every component, indicating the set of
tasks that the component can fulfil.

Step 2: Receipt of proposed implementations.The requester component
receives the information about implementations from the contacted components
and selects the one that best fits the wanted QoS. Before the selection phase,
the component retrieves the proposed implementations from its local repository
by means of actions of the form

get(“implementation”, ?implementationName , ?QoS , ?providers)@self

where variable implementationName is bound to the name of a retrieved imple-
mentation, QoS to the effective QoS of the implementation, and providers to the
data characterizing the providers of the implementation. The latter information
is used to define the predicate Pimplementation that will be used to contact the
ensemble of components providing the selected implementation.

Step 3: Activation of the selected implementation. By exploiting a ta-
ble like the one shown in Table 2, the requester selects the fittest implementation
according to the currently perceived environmental conditions, the wanted QoS
and the information retrieved and elaborated in Step 2. Then, it contacts the
selected ensemble by exploiting predicate Pimplementation . In SCEL, this request
can be represented as follows:

put(“executeImplementation”,
implementationName, arguments)@Pimplementation

The arguments part can be empty if the selected implementation does not need
contextual data.

3.2 Responder Workflow

We present now the steps performed by each responder component. The workflow
of a responder component is presented in Fig. 4. Each number shows in which
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Fig. 4. Steps of a responder component

step the component takes a specific action. Again, the red arrows represent the
requests and the green arrows the responses.

Step 1: Task request. Every component reached by a task request can get
it by performing the following action:

get(“taskRequest”, ?taskName, ?QoSconstraints, ?requester)@self

Then, it checks if the requested task (stored in variable taskName) is provided by
the component itself. If the component provides the task, the workflow execution
can directly go to Step 5; anyhow, this depends on the component’s selection
criterion. If the component does not provide the task, the execution evolves to
Step 2. In case of a ‘smart’ component, if the requested task is complex the
responder component can decide to split it in simpler sub-tasks and handle the
search of sub-task implementations.

Step 2: Requests dissemination. The responder component contacts an
ensemble of components that, according to its knowledge, provides an imple-
mentation for the requested task. This operation is carried out similarly to a
task request (see Step 1 in Section 3.1), but in this case it is used a different
predicate (Pd). The SCEL action used in this step is the following:

put(“taskRequest”, taskName, QoSconstraints , self)@Pd

Step 3: Responses collection. Each component that has disseminated a
request collects the responses from the contacted components. Notably, if the
component itself provides a solution, this is added to the collected responses.
The collection phase is driven by a criterion that depends on the application.
For example, some criteria are:

– wait for the first response and go to the next step;
– bounce immediately all the received responses to the requester (that is,

Step 4 is skipped);
– wait for k responses and go to the next step;
– wait for responses with a specific QoS value and go to the next step;
– wait for a specific amount of time and go to the next step.
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Step 4: Implementation selection. The responder component now selects
one or more implementations using some criterion. As in Step 3, the criterion
depends on the application. Some examples of criteria are:

– select the first k responses;
– take all the received responses;
– select the best j responses according to a specific parameter;
– select the responses with a specific QoS value.

In order to be selected, an implementation must be accompanied by a set
of additional information needed by the receiver to take its decision. Thus, an
implementation consists of its name, the associated QoS and the data needed
to define the predicate for contacting the partners that provide this particular
implementation. This information can be expressed as an item with the following
form:

(“implementation”, implementation name, QoS data, providers data)

Step 5: Response to the requester. After the selection phase, the compo-
nent will send the results of the selection to the requester, whose identifier was
bound to the variable requester at Step 1. Thus, for any implementation selected
at the previous step, an action of the following form is performed:

put(“implementation”,
implementation name, QoS data , providers data)@requester

4 An Illustrative Example: Multi-robot Exploration Task

In this section we briefly apply our approach to a specific example task. The task
is represented by having an ensemble of robots initially randomly distributed in
a confined space called arena. The robots have to distribute within the arena
and start exploring it. The task can be represented as follows:

– id: exploreArena;
– Input: ensemble randomly distributed in an unexplored arena;
– Output: explored arena;
– QoS: minimize the Time-To-Complete (minTTC ), equally distribute the

workload among the robots (eqDist).

Regarding the implementations, we can identify three main coordination pat-
terns for executing the task:

– master-slave (id: MS): a robot sends orders about areas to explore to a set
of slaves;

– peer-to-peer (id: p2p): robots will ideally subdivide the arena into areas and
then negotiate areas to explore;
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Fig. 5. A small ensemble is randomly distributed in the arena

– swarm (id: SW): all the robots randomly diffuse in the arena and mark areas
with digital pheromones. If a robot detects a pheromone, a repulsion effect
will take place, causing this latter robot to move to (and, therefore, explore)
other areas.

The previous task and its respective different implementations are depicted
in Fig. 5, where a small ensemble is randomly distributed in the arena. Dif-
ferent robots own different implementations. To own an implementation means
that a component has all the processes, in the form of dynamically activable
behaviors, that are needed in order to adopt a determined coordination pattern.
In the figure, the robots are grouped according to the processes relative to the
implementations they own: green for MS, yellow for p2p, and red for SW.

The requester actions are as follows.
Step 1: An external command or a contingency that reaches a single robot

enforces the action:

put(“taskRequest”, “exploreArea”, minTTC , self)@Pr

with Pr � “exploreArea” ∈ providedTasks.

Step 2:

get(“implementation”, ?implementationName , ?QoS , ?providers)@self

where variable implementationName gets one of the values MS, p2p, and SW ,
QoS indicates if that implementation aims at minimising TTC and/or to equally
distribute the workload among the robots and providers is bound to the IDs of all
the responding robots. These IDs are collected in order to define Pimplementation .

Step 3: At this point the requester robot knows which robot can execute the
exploreArea task and according to which implementation; it can then choose
the implementation that is likely to satisfy the desired QoS. To make this choice,
the robot can ideally rely on a table like the one in Table 3, where
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Table 3. exploreArea table of defined conditions

Conditions Implementation Expected QoS

k′ MS QoS′

k′′ p2p QoS′′

k′′′ SW QoS′′′

– k′: refers to the condition for optimally exploiting a master-slave approach,
such as the presence of at least one robot with additional sensing capabilities;

– k′′: refers to the conditions in which a peer-to-peer approach is possible, like
communication capabilities and easiness to identify areas before negotiation;

– k′′′: refers to the conditions in which it would be suitable to use a swarm
approach for the area exploration task, such as a sufficiently large number
of available units.

Depending on how these three patterns are implemented, we can think that
a swarm approach will perform better in terms of minimizing exploration time,
while a peer-to-peer negotiation could more equally distribute energy consump-
tion among the components. The master-slave approach could minimize Time-
To-Complete and distribute the workload more equally, but it is less robust than
the other ones because the master constitutes a single point of failure. Now, if
we assume that the environmental conditions k′ are sensed by the robots, the
requester can perform the action

put(“executeImplementation”,MS, “MasterID”)@Pimplementation

where MasterID identifies the robot that will take the role of master (according
to some internal logic of the component) and Pimplementation potentially involves
all the components whose identifiers have been collected in Step 2.

Once an implementation is selected by the requester, all the responding robots
will start following that coordination pattern. If a robot does not have the neces-
sary code embedded in its controller, we may think that a code migration process
will be executed. Moreover, if every ensemble component is able to communicate
with all other components, as in Fig. 5, the responder just executes Steps 1, 4
and 5 as described in Section 3.

5 Related Work

The first definitions of self-* properties can be traced back to the well-known
manifestos by IBM in [14] and [16] about autonomic computing. From the point
of view of the designer, a fairly complete survey on the efforts of designing
autonomic systems with traditional methodologies, mainly coming from standard
software engineering methodologies, can be found in [15]. In the design phase,
more challenges arise when the observed systems are actually composed of large
sets of potentially heterogeneous components. In this case indeed the blueprints
for adaptive feedback loops (like IBM’s MAPE-K [14]) have to be thought of
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as distributed, thus problems regarding inter-components coordination could
become to light. More recently, [4] shows a complete life cycle for the design and
development of ensembles of collaborative autonomic components.

Self-expression, as detailed in Section 1, is an additional instrument for the
designer of autonomic distributed systems. However, in previous literature, the
term self-expression is used for both describing reconfigurations at level of design
patterns [6] and for describing reconfigurations at the level of roles, behaviors
and interactions among components [7]. While a summary of possible real world
applications for self-expression is presented in [5], a modelling choice that can
help us understanding the concept of self-expression is the Holonic paradigm
for Multi-Agent Systems (HMAS, [28]). Holons, i.e. self-repeating structures or-
ganized in hierarchies, present specific interfaces called capacities. A capacity is
defined as a description of a know-how/service and can be associated to different
implementations (representing different ways of providing that capacity). In our
case, we can think that holons are single components, or subsets of the entire
ensemble, and that a coordination pattern is the implementation of a capacity.
To each implementation corresponds an organizational level in which behaviors,
roles (i.e. specific states inside the same organization) and interactions (i.e. how
parts in the same level influence each other) characterize a set of holons.

In the area of distributed artificial intelligence and multiagent systems [32],
the idea of dynamically forming ensembles or coalitions of agents – getting to-
gether to cooperatively work towards some collective goals – has been extensively
analyzed [13,17]. However, the accent of such researches has been mostly at an-
alyzing the different strategies and algorithms for forming the ensembles and
for controlling their cooperative behavior, rather than in the actual mechanisms
to model and implement ensembles of agents capable of expressing the needed
self-adaptive coordination scheme.

For what concerns SCEL, it combines the notion of ensemble with con-
cepts that have emerged from different research fields of Computer Science and
Engineering. Indeed, it borrows from software engineering the importance of
component-based design and of separation of concerns [20], from multi-agent sys-
tems the relevance of knowledge handling and of spatial representation
[27,3,29,2,9], from middleware and network architectures the importance of flex-
ibility in communication [22,8,18,25,23], from distributed systems’ security the
role of policies [24], from actors and process algebras the importance of minimal-
ity and formality [1,21]. Summing it up, the main distinctive aspect of SCEL is
the actual choice of the specific programming abstractions for autonomic com-
puting and their reconciliation under a single roof with a uniform formal seman-
tics. For a more complete account about SCEL and works related to it, we refer
the interested reader to [12].

6 Concluding Remarks

In this paper we have illustrated how to foster the self-adaptive features of an en-
semble of autonomic components by describing a previously introduced property
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called self-expression. More specifically, we have exploited SCEL as a language
for properly describing and modeling the mechanisms involved in the run-time
changes of coordination patterns. The rigorous grammar and the formal seman-
tics that characterize SCEL provide a valuable instrument for understanding
(1) how a change in the collaborative structure of the ensemble is performed
and (2) when a change of the coordination pattern is needed. Regarding (1),
we have presented a step-by-step description of inter-component interactions by
means of workflows, in which we stressed how different requests that may lead
to change of the coordination pattern can be disseminated among different parts
of the observed ensemble. Regarding (2), we showed how the selection of the
fittest pattern depends both on the current perceived environmental conditions
and on the expected QoS: new patterns will have to be selected according to the
dynamics of the variations in the external conditions and/or QoS. A simple, yet
explicative case study in robotics is demonstrated to further clarify the presented
concepts.

We are currently investigating how a component could autonomously extend
and modify the table regarding Conditions/Implementations/Expected QoS so
to provide more possibilities in terms of adaptivity. We will apply our approach
to other case studies, not necessarily in the robotics domain.

We also plan to investigate the use of SCEL components policies to drive
and regulate the selection of implementations and coordination patterns accord-
ing to possibly locally different criteria. Specifically, according to the approach
introduced in [19], we plan to use the FACPL language to express policies.

To showthe effectiveness of theproposedSCEL-based solution to self-expression
and provide a more concrete evidence of its benefits, we intend to implement the
approach considered in this work in jRESP [12], a Java runtime environment for
developing autonomic and adaptive systems according to the SCEL paradigm.
In particular, jRESP provides a simulation environment that enables statistical
model-checking, which will allow us to verify qualitative and quantitative proper-
ties of SCEL programs.
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2 Università di Pisa, Largo Bruno Pontecorvo, 3 - 56127 Pisa, Italy

3 IMT Advanced Studies Lucca, Piazza S. Francesco, 19 - 55100, Lucca, Italy

Abstract. To tackle the complexity of autonomic computing systems
it is crucial to provide methods supporting their systematic and princi-
pled development. Using the PSCEL language, autonomic systems can
be described in terms of the constituent components and their reciprocal
interactions. The computational behaviour of components is defined in a
procedural style, by the programming constructs, while the adaptation
logic is defined in a declarative style, by the policing constructs. In this
paper we introduce a suite of practical software tools for programming
and policing autonomic computing systems in PSCEL. Specifically, we
integrate a Java-based runtime environment, supporting the execution
of programming constructs, with the code corresponding to the policing
ones. The integrated, semantic-driven framework also permits simulat-
ing and analysing PSCEL programs. Usability and potentialities of the
approach are illustrated by means of a robot swarm case study.

Keywords: Autonomic systems, Semantic-driven development tools,
Robot swarms.

1 Introduction

Autonomic computing systems [1] are self-managing computing systems, capable
of autonomously adapting to unpredictable changes in order to achieve desired
behaviours, while hiding at the same time intrinsic complexity to users. Since
their first appearance they are becoming more common and integrated with a
variety of other heterogeneous and interactive systems. The resulting systems
usually include massive numbers of components, featuring complex interactions
in open and non-deterministic environments. To enable systematic and principled
development of autonomic computing systems it is then crucial to provide high
level, linguistic abstractions – capable of describing how the different components
are brought together to form the overall system architecture – together with a
clear identification of the adaptation logic and an unambiguous account of the
semantics.
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In this paper we introduce some software tools for programming and policing
autonomic computing systems in PSCEL (Policed SCEL) [2]. This is a lan-
guage with a formally defined semantics which results from the integration of
SCEL and FACPL. SCEL [3] is one of the many languages for programming
autonomic computing systems that have been proposed in the literature (see
e.g. [4,5,6,7,8]). In SCEL, autonomic systems are programmed in terms of the
constituent components and their reciprocal interactions. Components result
from the aggregation of knowledge and behaviours, according to some poli-
cies. Knowledge acquisition and behaviour manipulation allow components to
self-adapt. Ensembles of components are dynamically formed and referred to in
communication actions by means of predicates over component attributes. These
latter ones describe components’ public features such as identity, functionalities,
spatial coordinates, trust level, etc. that may dynamically change. FACPL [9,10]
is a simple, yet expressive, language for defining access control, resource usage
and adaptation policies. Policy specifications are intuitive and easy to maintain
because of their declarative nature, therefore policy languages (see e.g. [11,6,12])
are receiving much attention in many research fields. In FACPL, policies are sets
of rules specifying strategies, requirements, constraints, guidelines, etc. about the
behaviour of systems and their components.

PSCEL appropriately integrates the linguistic abstractions of the two lan-
guages on which it is based. It is thus possible to develop autonomic computing
systems in terms of software components capable of adapting their behaviour for
reacting to new requirements or environment changes. For example, it is possible
to define policies implementing adaptation strategies by exploiting specific ac-
tions that are produced at runtime as an effect of policy evaluation and are used
to modify the behaviour of components. Moreover, policies can depend on the
values of components’ attributes (reflecting the status of components and their
environment) and can be dynamically replaced as a reaction to system changes.
Dynamically changing policies are indeed a powerful means for controlling, in a
natural and clear way, the evolution of autonomic systems having a very high
degree of dynamism, which in principle would be quite difficult to manage.

According to the separation of concerns principle, PSCEL design decouples
the functional aspects from the adaptation ones. In fact, the application logic
generating the computational behaviour of components is defined in a procedural
style, by the programming constructs, while the adaptation logic is defined in
a declarative style, by the policing constructs. At run-time, as clarified by the
language operational semantics [13] and by the description of the supporting
Java runtime environment (see Section 4), the adaptation actions generated by
policy evaluation will be executed as part of components’ behaviour.

The two languages at the basis of PSCEL come equipped with specific soft-
ware tools providing development and run-time support to SCEL systems and
FACPL policies, separately. In particular, SCEL programs can be executed and
simulated in the jRESP environment. This environment provides an API allow-
ing Java programs to use the SCEL linguistic constructs for controlling the
computation and interaction of autonomic components, and for defining the
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architecture of systems and ensembles. jRESP API serves as a guidance to assist
programmers in the implementation of autonomic systems, which turns out to
be simplified with respect to using ‘pure’ Java. Finally, jRESP provides specific
components that can be used to simulate and analyze SCEL programs. The de-
velopment and the enforcement of FACPL policies, instead, are supported by an
Eclipse IDE and a Java library for the policy evaluation process. Once the desired
policies have been written with the IDE, they can be automatically transformed
in Java classes according to the rules defining the FACPL’s semantics.

The main contribution of this work is the definition of a practical tool suite
supporting the development, execution, simulation and analysis of PSCEL pro-
grams. This is based on the integration of the Java code resulting from FACPL
policies with the jRESP code corresponding to a SCEL system. In the integrated
code, FACPL classes are invoked for authorizing interactions among components,
while jRESP code is able to modify its workflow for executing the adaptation ac-
tions returned by policies evaluation. Usability and potentialities of this approach
are illustrated by means of a simple, yet illustrative, case study of autonomic
computing borrowed from the robotics domain. We show a complete specification
of the case study, together with its simulation and analysis through jRESP.

The rest of the paper is organized as follows. Section 2 briefly reports the
syntax of PSCEL. Section 3 presents the PSCEL specification of two scenarios
of the robotics case study. Section 4 presents the development tools; it also
describes the main features of jRESP and shows how it can be used to execute,
as Java code, the PSCEL specification of the scenarios. Section 5 reviews more
strictly related work. Finally, Section 6 concludes the paper by touching upon
directions for future work.

2 PSCEL Syntax

In this section we review the syntax of PSCEL in two steps, by introducing
first the constructs for programming autonomic computing systems and then the
constructs for policing their behaviour. We also informally present the semantics
of the different constructs (the interested reader is referred to [13] for a formal
account of the semantics).

The constructs for programming autonomic computing systems are presented
in Table 1. The key notion is that of component I[K, Π, P ] that consists of:

– An interface I publishing and making available structural and behavioural
information about the component itself in the form of attributes, i.e. names
acting as references to information stored in the component’s repository.

– A knowledge repository K managing component’s data.
– A set of policies Π regulating the interaction with other components.
– A process P , together with a set of process definitions.

It is worth noticing that there is a clear separation of concerns: the normal
computational behaviour of a component is defined in the process P , while the
adaptation logic is defined in the policies Π . At runtime, the adaptation actions
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Table 1. Programming constructs (Policies Π are in Table 2)

Systems: S ::= I[K, Π, P ] | S1 ‖ S2 | (νn)S

Processes: P ::= nil | a.P | P1 + P2 | P1 | P2 | X | A(p̄)

Actions: a ::= get(T )@c | qry(T )@c | put(t)@c | fresh(n)

| new(I,K, Π, P )

Destinations: c ::= n | x | self | P | p

Knowledge: K ::= ∅ | 〈t〉 | K1 ‖ K2

Items: t ::= e | c | P | t1, t2

Templates: T ::= e | c | ?x | ?X | T1, T2

generated by the policy evaluation will be executed, of course, as part of the
component’s process.

We describe below the syntactic categories of the language.
Systems aggregate components through the composition operator, as in S1 ‖

S2 . It is also possible to restrict the scope of a name, say n, by using the name
restriction operator (νn)S .

Processes are the active computational units. Each process is built up
from the inert process nil via action prefixing (a.P ), nondeterministic choice
(P1 + P2), (interleaved) parallel composition (P1 | P2), process variable (X), and
parametrized process invocation (A(p̄)). Process variables can support higher-
order communication, namely the capability to exchange (the code of) a pro-
cess, and possibly execute it, by first adding an item containing the process to a
knowledge repository and then retrieving/withdrawing this item while binding
the process to a process variable. We let A to range over a set of parametrized
process identifiers that are used in recursive process definitions. We also assume
that each process identifier A has a single definition of the form A(f̄) � P , with
p̄ and f̄ denoting lists of actual and formal parameters, respectively.

Processes can perform five different types of actions. Actions get(T )@c,
qry(T )@c and put(t)@c are used to manage shared knowledge repositories by
withdrawing/retrieving/adding information items from/to the knowledge repos-
itory identified by c. These actions exploit templates T to select knowledge items
t in the repositories. Action fresh(n) introduces a scope restriction for the name
n thus this name is guaranteed to be fresh, i.e. different from any other name
previously used. Action new(I,K, Π, P ) creates a new component I[K, Π, P ].
Actions get and qry may cause the process executing them to wait for the
wanted item if it is not (yet) available in the knowledge repository. The two
actions differ for the fact that get removes the found item from the target
repository while qry leaves the repository unchanged. Actions put, fresh and
new can be instead immediately executed.

Knowledge items are tuples, i.e. sequences of values, while templates are se-
quences of values and variables. Knowledge repositories are then tuple spaces,
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i.e. (possibly empty) multisets of tuples. Values within tuples can either be des-
tinations c, or processes P or, more generally, can result from the evaluation
of some given expression e. We assume that expressions may contain attribute
names, boolean, integer, float and string values and variables, together with the
corresponding standard operators. To pick a tuple out from a tuple space by
means of a given template, the pattern-matching mechanism is used: a tuple
matches a template if they have the same number of elements and correspond-
ing elements have matching values or variables; variables match any value of
the same type (?x and ?X are used to bind variables to values and processes,
respectively), and two values match only if they are identical. If more tuples
match a given template, one of them is arbitrarily chosen.

Different entities may be used as the destination c of an action. As a matter
of notation, n ranges over component names, while x ranges over variables for
names. The distinguished variable self can be used by processes to refer to the
name of the component hosting them. The destination can also be a predicate P
or the name p, exposed as an attribute in the interface of the component, of a
predicate that may dynamically change. A predicate is a boolean-valued expres-
sion obtained by applying standard operators to relations between components
attributes and expressions.

In actions using a predicate P to indicate the destination (directly or via a
name p), predicates act as ‘guards’ specifying all components that may be af-
fected by the execution of the action, i.e. a component must satisfy P to be
the target of the action. Thus, actions put(t)@n and put(t)@P give rise to two
different primitive forms of communication: the former is a point-to-point com-
munication, while the latter is a sort of group-oriented communication. The set
of components satisfying a given predicate P used as the destination of a com-
munication action can be considered as the ensemble with which the process
performing the action intends to interact. For example, to dynamically charac-
terize the members of an ensemble that have the same role, say landmark , by
assuming that attribute role belongs to the interface of any component willing
to be part of the ensemble, one can write role=“landmark”.

Each action is executed only if it is authorized by the policies in force at
the component willing to perform the action. The policies define authorization
predicates, to grant or forbid actions, and obligations, i.e. actions that should
be performed in conjunction with the enforcement of an authorization decision.
They correspond to, e.g., updating a log file, sending a message, generating an
event, setting an attribute. For example, if an action is forbidden due to unavail-
able resources, it can be needed to execute some other actions to reconfigure
system’s resources.

The constructs for policing autonomic computing systems are presented in
Table 2. Notationally, symbol ? stands for optional elements, ∗ for (possibly
empty) sequences, and + for non-empty sequences. For the sake of readability,
whenever an element is missing, we also omit the possibly related keyword; thus,
e.g., we simply write (d target : τ ) in place of rule (d target : τ condition : obl : ).
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Table 2. Policing constructs

Policy automata: Π ::= 〈A, π 〉

Policies: π ::= 〈α target : τ? rules : r+ obl : o∗ 〉
| {α target : τ? policies :π+ obl : o∗ }

Combining algorithms: α ::= deny-overrides | permit-overrides
| deny-unless-permit | permit-unless-deny
| first-applicable | only-one-applicable

Rules: r ::= (d target : τ? condition : be? obl : o∗ )

Decisions: d ::= permit | deny

Targets: τ ::= f(pv ,sn) | τ ∧ τ | τ ∨ τ

Matching functions: f ::= equal | not-equal | greater-than
| less-than | greater-than-or-equal
| less-than-or-equal | pattern-match

Obligations: o ::= [ d s ]

Obligation actions: s ::= ε | a.s

A policy automaton Π explicitly represents the fact that the policies in
force at any given component can dynamically change while the component
evolves. It is a pair 〈A, π 〉, where

– A is an automaton of the form 〈Policies ,Targets, T 〉 where the set of states
Policies contains all the policies that can be in force at different times,
the set of labels Targets contains the security relevant events (expressed as
targets) that can trigger policy modification and the set of transitions
T ⊆ (Policies × Targets × Policies) represents policy replacement.

– π ∈ Policies is the current state of A.

A Policy is either an atomic policy 〈. . .〉 or a set of policies {. . .}. An atomic
policy (resp. policy set) is made of a target, a set of rules (resp. policy/policy
sets) combined through one of the combining algorithms, and a set of obligations.

A target indicates the authorization requests to which a policy/rule applies.
It is either an atomic target or a pair of simpler targets combined using the
standard logic operators ∧ and ∨. An atomic target f(pv ,sn) is a triple denoting
the application of a matching function f to policy values pv from the policy and
to policy values from the evaluation context identified by attribute (structured)
names1 sn. In fact, an attribute name refers to a specific attribute of the request
or of the environment, which is available through the evaluation context. In this
way, an authorization decision can be based on some characteristics of the re-
quest, e.g. subjects’ or objects’ identity, or of the environment, e.g. presence of
charging stations. For example, the target less-than(10%,subject/batteryLevel)
matches whenever the battery level of the subject component is less than 10%.

1 A structured name has the form name/name, where the first name stands for a
category name and the second for an attribute name.
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Similarly, the structured name action/action-id refers to the identifier of the
action to be performed (such as get, qry, put, etc.) and, thus, the target
equal(qry,action/action-id) matches whenever such an action is the retrieving
one. Instead, for checking the content of the exchanged data in a communication
action, via a template T , we can use the target pattern-match(T ,action/item).

Rules (. . .) are the basic elements for request evaluation. A rule defines the
tests that must be successfully passed by attributes for returning a positive or
negative decision — i.e. permit or deny — to the enclosing policy. This decision
is returned only if the target is ‘applicable’, i.e. the request matches the target;
otherwise the evaluation of the rule returns not-applicable. Rule applicability can
be further refined by the condition expression be, which permits more complex
calculations than those permitted in target expressions. be is a boolean term
of the expression language used for defining item or template fields in Table 1,
extended with policy values and structured names.

A combining algorithm computes the authorization decision correspond-
ing to a given request by combining a set of rules/policies’ evaluation results.
PSCEL provides six algorithms but, due to lack of space, here we only present
permit-unless-deny, which is used in the case study in Section 3 (the descrip-
tions of the other algorithms is reported in [13]): if any rule/policy in the con-
sidered set evaluates to deny, then the result of the combination returned by
permit-unless-deny is deny; otherwise, the result of the combination is permit
(i.e., not-applicable is never returned).

An obligation is a sequence (ε denotes the empty one) of actions that should
be performed in conjunction with the enforcement of an authorization decision.
It is returned when the authorization decision for the enclosing element, i.e. rule,
policy or policy set, is the same as the one attached to the obligation. An obliga-

tion action is a process action which (with abuse of notation) may also contain
structured names that are fulfilled during request evaluation. Thus, fulfilled obli-
gation actions coincide with the (process) actions defined in Table 1. For exam-
ple, the obligation [ deny put(“direction”, env/station.x, env/station.y)@self]
could be fulfilled, w.r.t. a given request, as follows put(“direction”, 10, 13)@self.
It is used to set the robot’s direction towards the position (10, 13) corresponding
to the location of a charging station perceived in the robot’s environment.

3 PSCEL at Work on a Robot Swarm Case Study

In this section, we show the effectiveness of the PSCEL approach by modelling
a robot swarm case study [14] defined in the EU project ASCENS [15]. We
consider a scenario where a swarm of robots spreads throughout a given area
where some kind of disaster has happened. The goal of the robots is to locate
and rescue possible victims. As common in swarm robotics, all robots playing
the same role execute the same code. According to the separation of concerns
principle fostered by PSCEL, this code consists of two parts: (i) a process,
defining the functional behaviour; and (ii) a collection of policies, regulating the
interactions among robots and with their environment and generating the (adap-
tation) actions to react to specific (internal or environmental) conditions. This
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Fig. 1. Scenario 1: (a) scenario setting, (b) computational field creation, (c) computa-
tional field usage

combination permits conveniently designing and enacting a collaborative swarm
behaviour aiming at achieving the goal of rescuing the victims. We propose two
different scenarios of the disaster case study that differ for the capabilities of the
robots, mainly due to the availability of the GPS tracking system.

3.1 Scenario 1: Different Types of Robot for Different Roles

The first scenario includes two different kinds of robots: landmarks and workers.
Landmarks randomly explore the area of the disaster looking for victims. When
a victim is found, its position is spread among landmarks, which stop to move.
In this way, on the basis of the landmarks’ positions and the information they
receive, it is generated a sort of computational field [16] leading workers to the
victim. Workers are the robots devoted to perform the actual rescuing task. They
are initially motionless and are activated by informed landmarks. A graphical
representation of the scenario, the creation of the computation filed and its use
are depicted in Figure 1. For the sake of simplicity, we consider here just one
victim and all workers go to rescue him when it is found. The scenario could be
accommodated to deal with more victims by organizing landmarks and workers
in different teams. We will deal with multiple victims in the next scenario.

This scenario can be modelled in PSCEL as

Landmark1 ‖ . . . ‖ Landmarkn ‖ Worker1 ‖ . . . ‖ Workerm

where Landmarki and Workerj are PSCEL components of the form
ILi [KLi , ΠL, PL] and IWj [KWj , ΠW , PW ] modelling the two kinds of robots, re-
spectively. Notably, all landmarks (resp. workers) enforce the same policy ΠL

(resp. ΠW ) and execute the same process PL (resp. PW ).
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In particular, the process run by a landmark is as follows

PL � (qry(“victimPerceived”, true)@self.
put(“victim”, self, 0)@self

+qry(“victim”, ?id, ?d)@(role=“landmark”).
put(“victim”, self, d+ 1”)@self )

| RandomWalk | IsMoving

The landmark follows a random walk to explore the disaster area. To this aim,
the process RandomWalk randomly selects a direction that is followed until ei-
ther a wall is hit or a stop signal is sent to the wheels actuator. A landmark
stops when one of the following cases holds: (i) a victim is found (i.e., a tu-
ple victimPerceived with value true is retrieved via a qry action from the local
repository), or (ii) a message with the victim’s position is published by a robot
of the landmark ensemble. In the former case, the landmark starts the genera-
tion of the computational field, i.e. it publishes in its repository a victim tuple
indicating that it is at distance 0 (measured in terms of ‘number of hops’) from
the victim. In the latter case, instead, the robot non-deterministically retrieves
a victim tuple from one robot of the landmark ensemble (i.e., the group of robots
satisfying the predicate role=“landmark”) and locally publishes a victim tuple
with the distance increased by one. It is worth noticing that the robots’ range of
communication is limited and, hence, the accessed ensemble may not contain all
landmarks, but just the reachable ones. However, the range of communication is
not explicitly specified in the PSCEL code, as well as in the jRESP one. Indeed,
this is a physical constraint that will be only defined in the model of the physical
scenario used by the jRESP simulation environment (see Section 4.2).

To stop a landmark immediately after the execution of one of the two qry
actions, we define the following policy

〈 permit-unless-deny
rules : (permit target : equal(qry,action/action-id)

∧ (pattern-match((“victim”, , ),action/item)
∨ pattern-match((“victimPerceived”, true),action/item))

obl : [ permit put(“stop”)@self] ) 〉

The policy contains a positive rule, whose only purpose is to return the obligation
put(“stop”)@self when one of the qry actions is executed. This action requests
the wheels actuator to stop the movement.

The RandomWalk process calculates the random direction followed by the
landmark for exploring the arena. When the proximity sensor signals a possible
collision, by means of the tuple 〈“collision”, true〉, a new random direction is
calculated. This behaviour corresponds to the following PSCEL process

RandomWalk � put(“direction”, 2πrand())@self.
qry(“collision”, true)@self.RandomWalk

The process defines only the direction of the motion not the will of moving.
During the movement, in order to check the level of charge of the battery

and possibly halting the robot when the battery is low, we need to capture the
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movement status. This information is represented by the tuple 〈“isMoving”〉,
produced by the wheels sensor, and monitored by the following process

IsMoving � qry(“isMoving”)@self.IsMoving

The reading of this datum is exploited by the following authorization rule (which
must be added to the landmark’s policy above)

(deny target : equal(qry,action/action-id)
∧ pattern-match((“isMoving”),action/item)
∧ less-than(10%,subject/batteryLevel )

obl : [ deny put(“stop”)@self ] )

to generate a stop action when the battery level is lower than 10%. In such a case,
the robot will wait for new batteries and, eventually, restart the exploration.

Finally, the process for the worker is as follows

PW � qry(“victim”, ?id, ?d)@(role=“landmark”).
put(“start”)@self.
put(“direction”, towards(id))@self.
while(d > 0){d := d− 1.

qry(“victim”, ?id, d)@(role=“landmark”).
put(“direction”, towards(id))@self)}.

qry(“victimPerceived”, true)@self.
put(“rescue”)@self

When the information about the discovery of a victim is retrieved by a worker
(i.e., a victim tuple is read), the robot starts moving by following the direction
indicated by the computational field defined by the landmarks. When the victim
is reached, i.e. the tuple with distance 0 is read, the sensor perceives the victim
and the worker starts the rescuing procedure.

For the worker process we do not report here any policy. Such policies could
add additional actions when the worker is activated under specific conditions,
e.g. a camera could be turned on in case there is enough daylight.

3.2 Scenario 2: The Same Type of Robot for Two Different Roles

In the second scenario of the case study, we consider robots with the same
characteristics (in particular, all of them are equipped with a GPS tracking
system) and capable of playing both the explorer and rescuer role. Thus, using
its GPS, each robot can directly reach a given position (specified by coordinates
(x, y)) and avoid the use of the computational field as in the previous scenario.
A robot plays the explorer role during the exploration of the environment to
locate the victim position, and the rescuer role when it is moving to reach a
victim. Notably, the role changes according to the sensors and data values, e.g.
this happens when the robot is close to a victim that needs help.
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Therefore, this second scenario is modelled as a set of components (Robot1 ‖
. . . ‖ Robotn ), where Roboti has the form IRi [KRi , ΠR, PR]. Each robot ini-
tially plays the explorer role and possibly change it when victims are found. The
behaviour of a single robot corresponds to the following PSCEL process

PR � (qry(“victimPerceived”, true)@self.
put(“victim”, x, y, 3)@self.put(“rescue”)@self

+ get(“victim”, ?xv, ?yv, ?count)@(role=“rescuer”).HelpRescuer )
| RandomWalk | IsMoving

Besides the processes RandomWalk and IsMoving still present for managing the
movement, the robot recognises the presence of a victim by means of the qry
action, while it helps other robots for rescuing a victim by means of the get
action and according to the HelpRescuer process definition. When a victim is
found, an information about his position (retrieved by the attributes x and y
of the robot’s interface) and the number of other robots needed for rescuing
him (3 robots in our case, but a solution with a varying number can be easily
accommodated) is locally published.

The HelpRescuer process is defined as follows

HelpRescuer � if (count > 1) then { put(“victim”, xv, yv, count-1)@self }.
put(“direction”, xv, yv)@self.
qry(“position”, xv, yv)@self. put(“rescue”)@self

This process is triggered by a victim tuple retrieved from the rescuers ensemble
(see PR). The tuple indicates that additional robots (whose number is stored
in count) are needed at position (xv, yv) to rescue a victim. If more than one
robot is needed, a new victim tuple is published (with decremented counter).
Then, the robot, which became a rescuer, goes towards the victim position and,
once reaches him (i.e., the current position coincides with the victim’s one), it
starts the rescuing procedure. It is worth noticing that, if more victims are in the
scenario, different groups of rescuers will be spontaneously organised to rescue
them. To avoid that more than one group is formed for the same victim, we
assume that the sensor of an explorer used to perceive the victim is configured
so that a victim that is already receiving assistance by some rescuers is not
detected as a victim.

An explorer changes its role to rescuer when it finds a victim or helps other
rescuers. Each role corresponds to a different enforced policy, and the transition
triggering the policy change is defined as follows

Explorer

( equal(qry,action/action-id)
∧ pattern-match((“victimPerceived”, true),action/item) )

∨ ( equal(get,action/action-id)
∧ pattern-match((“victim”, , , ),action/item) ) � Rescuer

Thus, the explorer policy change to the rescuer one either when a victimPerceived
tuple is read or when a victim tuple is consumed.
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The policy enforced in the explorer state is as follows

〈 permit-unless-deny
rules : (permit target : equal(qry,action/action-id)

∧ pattern-match((“victimPerceived”, true),action/item))
obl : [ permit put(“stop”)@self .put(role, “rescuer”)@self] )

(deny target : equal(qry,action/action-id)
∧ pattern-match((“isMoving”),action/item)
∧ less-than(20%,subject/batteryLevel )

obl : [ deny put(“direction”, env/station.x, env/station.y)@self] )〉

The first rule stops the robot when a victim is found and changes the interface
attribute role to rescuer by means of the action put(role, “rescuer”)@self. The
second rule monitors the battery level and redirects the robot to the recharging
station when the level is low. Notably, with respect to the previous scenario, the
battery level is considered low when it is less than 20%, which should ensure
enough battery power to allow the explorer to reach the recharging station or to
rescue the victim, if he would be found in the meanwhile. We assume that each
robot can obtain the position of the charging station, which is retrieved here by
means of the interface attributes env/station.x and env/station.y.

The policy enforced in the rescuer status is instead as follows

〈 permit-unless-deny
rules : (permit target : equal(qry,action/action-id)

∧ pattern-match((“position”, , ),action/item))
obl : [ permit put(“stop”)@self ] ) 〉

The policy, as previously, stops the robot when the victim is reached.

4 Deployment and Simulation of PSCEL Programs

jRESP2 is a Java runtime environment providing a framework for developing
autonomic and adaptive systems according to the SCEL paradigm. Specifically,
jRESP provides an API that permits using in Java programs the SCEL’s lin-
guistic constructs for controlling the computation and interaction of autonomic
components, and for defining the architecture of systems and ensembles.

Like SCEL, jRESP has been designed to accommodate alternative instantia-
tions of specific knowledge and policy managers that may change for tailoring
to different application domains.

A detailed description of the jRESP architecture and its basic features can be
found in [3]. In this section we will briefly present jRESP and its basic elements
and the specific classes we have implemented to integrate FACPL in jRESP. The
new classes, which specialize the jRESP architecture, have been included in a
specific package enabling the execution of PSCEL programs.

Components. PSCEL components are implemented via the class PscelNode.
Nodes are executed over virtual machines or physical devices providing access

2 jRESP website: http://jresp.sourceforge.net/.

http://jresp.sourceforge.net/
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to input/output devices and network connections. A node aggregates a tuple
space, a set of running processes, and a set of FACPL policies. Structural and
behavioural information about a node are collected into an interface via attribute
collectors. Nodes interact via ports supporting both point-to-point and group-
oriented communications.

Knowledge repository. Since PSCEL specializes the knowledge repositories
of SCEL’s components as tuple spaces, the version of jRESP considered here
provides an implementation of the interface Knowledge of PscelNodes. This is
the class TupleSpace that defines the methods for withdrawing/retrieving/adding
pieces of knowledge from/to repositories. Knowledge items are defined as tuples,
i.e. sequences of Objects, that can be collected into a knowledge repository. They
can be retrieved/withdrawn via pattern-matching through Templates, consisting
of a sequence of actual and formal TemplateFields.

External data can be collected into a knowledge repository via sensors. Each
sensor can be associated to a logical or physical device providing data that can
be retrieved by processes and that can be the subject of adaptation. Similarly,
actuators can be used to send data to an external device or service attached to a
node. This approach allows processes to control exogenous devices that identify
logical/physical actuators.

The interface associated to a node is computed by exploiting attribute collec-
tors. Each such collector is able to inspect the local knowledge and to compute
the value of the attributes. This mechanism equips a node with reflective ca-
pabilities allowing a component to self-project the image of its state on the
interface. Indeed, when the local knowledge is updated the involved collectors
are automatically activated and the node interface is modified accordingly.

Network Infrastructure. Each PscelNode is equipped with a set of ports for
interacting with other components. A port is identified by an address that can
be used to refer to other jRESP components. Indeed, each jRESP node can be
addressed via a pair composed of the node name and the address of one of its
ports. The abstract class AbstractPort implements the generic behaviour of a
port. It implements the communication protocol used by jRESP components to
interact with each other. The class AbstractPort also provides the instruments to
dispatch messages to components. However, in AbstractPort the methods used
for sending messages via a specific communication network/media are abstract.
Also the method used to retrieve the address associated to a port is abstract
in AbstractPort. The concrete classes defining specific kinds of ports extend Ab-
stractPort to provide concrete implementations of the above outlined abstract
methods, so to use different underlying network infrastructures (e.g., Internet,
Ad-hoc networks, . . . ). An additional instance, named VitualPort, is used to
simulate nodes interaction within a single application without using a specific
network infrastructure. Indeed, VirtualPort implements a port where interactions
take place through a memory buffer.

Behaviours. Processes are implemented as threads via the abstract class Agent,
which provides the methods implementing the PSCEL actions. In fact, they
can be used for generating fresh names, for instantiating new components and
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for withdrawing/retrieving/adding items from/to shared knowledge repositories.
The latter methods extend those considered in Knowledge with another param-
eter identifying either the (possibly remote) node where the target repository
is located or the group of nodes whose repositories have to be accessed. As
previously mentioned, group-oriented interactions are supported by the commu-
nication protocols defined in the node ports and by attribute collectors.

4.1 Integration of FACPL in jRESP

In jRESP policies are used to regulate the interaction between the different inter-
nal parts of components and their mutual interactions. Indeed, when a method of
an instance of the class Agent is invoked, its execution is delegated to the policy
associated to the node where the agent is running. The policy can then control
the execution of the action (for instance, by suspending a behaviour when some
access rights are missing) and, possibly, define additional behaviours. Different
kinds of policies can be easily integrated in jRESP by implementing the interface
IPolicy. Currently, two implementations of this latter interface are included in
jRESP: NodePolicy and PolicyAutomaton. NodePolicy is the policy enforced by
default in each node. It always allows any operations, thus directly delegating
the execution of each action to the associated node. PolicyAutomaton implements
instead a generic policy automaton Π (like those presented in Section 2). In
this way, transitions caused by the execution of agent actions can trigger changes
of the policies. In particular, a PolicyAutomaton consists of a set of PolicyStates,
each of which identifies the possible policies enforced in the node, and of a refer-
ence to the current state, which is used to evaluate agent actions with respect to
the current policies. This automaton can be easily integrated with various policy
languages, although here we focus on its integration with FACPL policies.

The full integration of FACPL in jRESP can be now achieved by consider-
ing the class FacplPolicyState that, by extending PolicyState, relies on the Java-
translated FACPL policies. This Java code is automatically obtained by using
the FACPL IDE available for the Eclipse platform from the FACPL website [17].

When a PolicyAutomaton receives a request for the execution of a given action,
first of all an AutorisationRequest is created. This is the object identifying the PS-
CEL action the node wants to perform, thus it provides information about the
kind of action performed, its argument, its target and the list of attributes cur-
rently published in the node interface. The created AuthorizationRequest is then
evaluated with respect to the current policy state via the (abstract) method eval-
uate(AutorisationRequest r) defined in the class PolicyState. In the class FacplPol-
icyState this method delegates the authorization to the referred FACPL policy.
The method returns an instance of the class AuthorisationResponse, which con-
tains a decision, i.e. permit or deny, and a set of obligations. The latter ones are
rendered as a sequence of Actions that must be performed just after the comple-
tion of the requested action. Hence, if the decision is permit, the requested action
is completed as soon as the obligations are executed. Instead, if the decision is
deny, the requested action cannot be performed. In this case, first the obliga-
tions possibly returned along with the decision must be executed, then a new
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AutorisationRequest is created and evaluated in order to establish executability
of the requested action.

Finally, the evaluation of a request by a PolicyAutomaton can trigger an update
of its current state. Indeed, for each state, a sequence of transitions are stored
in the automaton. These are instances of the class PolicyAutomatonTransition
that provides two methods: apply(AutorisationRequest r): boolean and nextState():
PolicyState. A transition is enabled if the first method returns true. The next
state is then obtained by invoking nextState() on the first enabled transition. If
no transition is enabled, the current state is not changed.

In the first scenario of Section 3 the PolicyAutomaton associated to each
PscelNode contains only a single state; this is the FacplPolicyState that inter-
acts with the considered Java-translated FACPL policies. Instead, in the second
scenario, the PolicyAutomaton consists of two states that enforce explorer and
rescuer behaviour, respectively. The PolicyAutomatonTransition associated in the
automaton to the explorer state is the following:

public class ExplorerToRescuer implements PolicyAutomatonTransition {
public boolean apply( AutorisationRequest req ) {

return ( (req.getActionId() == ActionID.QUERY)
&& (new Template(

new ActualTemplateField( "VICTIM_PERCEIVED" ) ,
new ActualTemplateField( true ) ).match( req.getItem() )))

||((req.getActionId() == ActionID.GET)
&& (new Template(

new ActualTemplateField( "VICTIM" ) ,
new FormalTemplateField( Object.class ) ,
new FormalTemplateField( Object.class ) ,
new FormalTemplateField( Object.class ) ).match( req.getItem() )));

}
public PolicyState nextState() { return new FacplPolicyState( new Policy Rescuer() ); }

}

In the code above, Policy Rescuer is the Java-translated FACPL policy associated
to the policy presented at the end of Section 3.

4.2 Simulating Robots in jRESP

To support analysis of adaptive systems specified in PSCEL, the jRESP envi-
ronment provides a set of classes that permits simulating jRESP programs. These
classes enable the execution of virtual components over a simulation environment
that can control component interactions and collect relevant simulation data. In
fact, although in principle jRESP code could be directly executed in real robots
(provided that a Java Virtual Machine is running on them and that jRESP’s
sensors and actuators invoke the API of the corresponding robots’ devices), this
may not be always possible. Therefore, jRESP also provides simulation facilities.

To set-up the simulation environment in jRESP one has first of all to define a
class that provides the machinery to manage the physical data of the scenario.
These data include, e.g., robots position, direction and speed. In our case, we
consider the class ScenarioArena that, in addition to the above mentioned data,
also provides the methods for updating robots position and computing collisions.
These methods are periodically executed by the jRESP simulation environment.
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Fig. 2. Simulation and analysis of the first robot swarm scenario in jRESP

For the sake of simplicity, in the simulation, only collisions with the borders of
the arena are considered, while collisions among robots are ignored.

For both scenarios, in jRESP we consider a network of PscelNodes each of
which identifies a single robot. We assume that each robot/node is equipped with
sensors, like collision and victim detection sensors, which are used to retrieve
information about the state of the robot and of its working environment. All
the above mentioned sensors are built via the class ScenarioArena and permit to
directly access the data associated to the state of the simulated physical environ-
ment. Similarly, each instance of PscelNode modelling a robot is equipped with
actuators used to control robots movement, like direction and stop actuators.
Also these actuators are built via the class ScenarioArena and permit to update
the parameters of the simulated physical environment when the corresponding
data are received. For instance, when the RandomWalk process running at the
node corresponding to robot i produces a tuple of the form 〈“direction”, dir〉,
the local direction actuator sets to dir the direction of the robot i in the Scenar-
ioArena. This behaviour mimics the fact that in a real robot the actuator directly
interacts with the wheels controller.

Each PscelNode also executes the agents presented in the previous sections.
For instance, the RandomWalk process is rendered in jRESP as reported below:

public class RandomWalk extends Agent {
Random r = new Random();
public RandomWalk() { super("RandomWalk"); }
@Override
protected void doRun() throws IOException, InterruptedException{

while (true) {
double dir = r.nextDouble()∗2∗Math.PI;
put( new Tuple( "direction" , dir) , Self.SELF );
query( new Template( new ActualTemplateField( "COLLISION" ) ,

new ActualTemplateField( true ) ), Self.SELF );
}

}
}

By relying on the jRESP simulation environment, a prototype framework
for statistical model-checking has been also developed. A randomized algorithm
is used to verify whether the implementation of a system satisfies a specific
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property with a certain degree of confidence. Indeed, the statistical model-
checker is parameterized with respect to a given tolerance ε and error probability
p. The used algorithm guarantees that the difference between the computed value
and the exact one is greater than ε with a probability that is less than p.

The model-checker included in jRESP can be used to verify reachability prop-
erties. These permit evaluating the probability to reach, within a given deadline,
a configuration where a given predicate on collected data is satisfied. In our first
scenario, this analysis technique is used to study how the number of landmark
robots affects the probability to reach the victim within a given deadline.

In Figure 2, we report a screenshot of the robots simulation (left-hand side)
and the results of the analysis (right-hand side). In the screenshot, a red semi-
circle represents the locations of the victim, while blue (dark grey in b/w print)
and green (light grey in b/w print) squares represent landmark and worker
robots, respectively. The analysis results are represented as a chart showing
the probability of rescuing the victim within a given time according to different
numbers of landmark robots (i.e., 10, 20, 50 and 100). Notably, the victim can
be rescued only after 2000 time steps and, beyond a certain threshold, increasing
the number of robots is not worthy (in fact, the difference in terms of rescuing
time between 100 and 50 robots is marginal with respect to the cost of deploying
a double number of robots).

5 Related Work

Autonomic computing systems are currently studied within many research com-
munities. To deal with such systems different approaches have been advocated
both for programming them, like multi-agent systems, component-based design
and context-oriented programming, and for regulating their behavior, mainly
through policy languages. Below, we mention the most closely related works.

Multi-agent systems (as e.g. [18,19,4]) pursue the importance of the knowledge
representation and how it is handled for choosing adaptive actions. PSCEL,
instead, bases the knowledge repository implementation on tuple-spaces, which
is a more flexible and lightweight mechanism to, e.g., support adaptive context-
aware activities in pervasive computing scenarios.

Component-based design has been indicated as a key approach for adap-
tive software design [20]. A relevant example in this field is Fractal [21], a
hierarchical component model that, in addition to standard component-based
systems, permits defining systems with a less rigid structure by means of com-
ponents without completely fixed boundaries. However, communication among
components is still defined via connectors and system adaptation is obtained by
adding, removing or modifying components and/or connectors. Communication
and adaptation in PSCEL, instead, are more flexible, and, hence, more adequate
to deal with highly dynamic ensembles.

Another paradigm advocated to program autonomic systems [22] is Context-
Oriented Programming (COP) [23]. It exploits ad-hoc linguistic constructs to
define context-dependent behavioral variations and their run-time activation.
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The most of the literature on COP is devoted to the design and implementa-
tion of concrete programming languages (a comparison can be found in [24]).
Only few works provide a foundational account, like e.g. [25], focussing on an
object-oriented language extended with COP facilities. All these approaches are
however quite different from ours, that instead focusses on distribution and
attribute-based aggregations and supports a highly dynamic notion of adap-
tation regulated by policies.

As concerns policy languages, many such languages have been recently devel-
oped for managing different aspects of programs’ behaviour as, e.g., adaptation
and autonomic computing. For example, a policy-based approach to autonomic
computing issues has also been proposed by IBM through a simplified policy
language [12], which, however, comes without a precise syntax and semantics.
[6] introduces PobSAM, a policy-based formalism that combines an actor-based
model, for specifying the computational aspects of system elements, and a con-
figuration algebra, for defining autonomic managers that, in response to changes,
lead the adaptation of the system configuration according to given adaptation
policies. This formalism relies on a predefined notion of policies expressed as
Event-Condition-Action (ECA) rules. Adaptation policies are specific ECA rules
that change the manager configurations.PSCEL constructs for defining policies,
being strictly integrated with a powerful autonomic programming language, is
more flexible and expressive permitting not only to produce adaptation actions,
but also authorisation controls and resource assignments. Moreover, the full in-
tegration of obligation actions with the programming constructs permits a run-
time code generation and, hence, enables more flexible adaptation strategies. A
policy language for which a number of toolkits have been developed and ap-
plied to various autonomous and pervasive systems is Ponder [11]. The language
uses two separate types of policies for authorisation and obligation. Policies of
the former type have the aim of establishing if an operation can be performed,
while those of the latter type basically are ECA rules. Differently from Ponder,
and similarly to more recent languages (e.g. XACML), in PSCEL obligations
are expressed as part of authorisation policies, thus providing a more uniform
specification approach.

Finally, the international standard XACML, which FACPL is inspired to,
defines policy specifications in XML format without a formal description of the
evaluation process. FACPL instead has a compact and intuitive syntax and is en-
dowed with a formal semantics based on solid mathematical foundations. These
features, as well as its supporting software tools, make FACPL easy to learn and
use. This motivates our choice of FACPL as policy language to be integrated
with the programming constructs provided by SCEL.

6 Conclusion

In this paper we tackled the issue of practically programming and policing auto-
nomic computing systems. To this aim, we propose the use of the formal language
PSCEL, which fosters an approach based on the ‘separation of concerns’ princi-
ple. Indeed, on the one hand, the behaviour of autonomic components and their
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ensembles are programmed through the SCEL constructs. On the other hand,
the interactions between components and the adaptation actions to be performed
in reaction to changes in their working environment are regulated by means of
FACPL policies. From a practical perspective, SCEL specifications can be im-
plemented in Java by relying on the jRESP runtime environment, while FACPL
policies can be developed and automatically translated in Java by using a spe-
cific tool suite. The main contribution of this paper is the integration of these
Java-based tools in order to provide a uniform software framework for the de-
velopment and execution of PSCEL programs. In order to illustrate how jRESP
supports simulation and analysis of autonomic systems specified in PSCEL, we
have exploited a simple case study from the robotics domain.

As a future work, we plan to improve the practical applicability of the PSCEL

approach by extending the Eclipse-based IDE for FACPL policies with the pos-
sibility of defining SCEL specifications. In this way, an autonomic system will
be completely specified at high-level of abstraction using PSCEL’s constructs
and then automatically transformed in a Java application integrating the code
corresponding to SCEL behaviours and FACPL policies. Moreover, to assess
the potentialities of PSCEL tools, we also plan to consider other application
domains and case studies among those developed within the ASCENS project,
concerning cooperative e-vehicles and cloud systems.
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Abstract. We currently lack rigorous approaches for modeling and im-
plementing complex systems. BIP (Behavior, Interaction, Priority) is a
component-based framework intended to rigorous system design. It re-
lies on single semantic model for system descriptions all along the design
flow. It also includes methods and tools for guaranteeing system correct-
ness to avoid a posteriori verification. Our approach is to check safety
properties (e.g. deadlock freedom) at design time using D-Finder verifi-
cation tool. In addition, source-to-source transformers allow progressive
refinement of the application to generate a correct implementation. Our
framework was successfully applied in various context including robotics
case studies presented here.

1 Introduction

System design is the process leading to a mixed hardware/software system meet-
ing given specifications. It involves the development of application software tak-
ing into account features of an execution platform. The latter is defined by its
architecture involving a set of processors equipped with hardware-dependent
software such as operating systems as well as primitives for coordination of the
computation and interaction with the external environment.

System design radically differs from pure software design in that it must take
into account not only functional but also extra-functional specifications regard-
ing the use of resources of the execution platform such as time, memory and
energy. Meeting extra-functional specifications is essential for the design of em-
bedded systems. It requires evaluation of the impact of design choices on the
overall behavior of the system.

We currently lack rigorous techniques for deriving global models of a given
system from models of its software and its execution platform. We call rigorous
a design flow which allows guaranteeing essential system properties. Most of the
existing rigorous design flows privilege a unique programming model together
with an associated compilation chain adapted for a given execution model. For
example, synchronous system design relies on synchronous programming models
and usually targets hardware or sequential implementations on single proces-
sors [1]. Alternatively, real-time programming based on scheduling theory for
periodic tasks, targets dedicated real-time multitasking platforms [2].

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part I, LNCS 8802, pp. 184–198, 2014.
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We strongly believe that a rigorous design flow should be model-based, that
is, all the system description should be based on a single semantic model, should
be component-based, that is, it provides primitives for building composite com-
ponents as the composition of simpler component, and should rely on tractable
theory for guaranteeing correctness by construction to avoid as much as possible
monolithic a posteriori verification. An instance of rigorous design flow is the
BIP approach presented below.

The BIP Desgin Flow. Behavior—Interaction—Priority (BIP) is a compo-
nent framework intended to rigorous system design. It allows the construction of
composite hierarchically structured components from atomic components char-
acterized by their behavior and their interface. Components are composed by
layered application of interactions and of priorities. Interactions express syn-
chronization constraints between actions of the composed components while pri-
orities are used to filter amongst possible interactions and to steer system evolu-
tion so as to meet performance requirements e.g. to express scheduling policies.
Interactions are described in BIP as the combination of two types of proto-
cols: rendez-vous to express strong symmetric synchronization and broadcast to
express triggered asymmetric synchronization. The combination of interactions
and priorities confers BIP expressiveness not matched by any other existing for-
malism [3]. It defines a clean and abstract concept of architecture separate from
behavior. Architecture in BIP is a first class concept with well-defined semantics
that can be analyzed and transformed. BIP relies on rigorous operational se-
mantics that has been implemented by three Execution Engines for centralized,
distributed and real-time execution. It is used as a unifying semantic model in
a rigorous system design flow. Rigorousness is ensured by two kinds of tools: 1)
D-Finder a verification tool for checking safety properties and deadlock-freedom
in particular; 2) source-to-source transformers that allow progressive refinement
of the application to get a correct implementation.

BIP can be considered as an ADL (Architecture Description Language) or
as a coordination language as it focuses on the organization of computation
between components. As other existing ADL such as ACME [4] and Darwin
[5], BIP uses the concept of connector to express coordination between compo-
nents. Nonetheless, connectors in BIP are stateless. There is a clear distinction
between architecture which involves connectors and priorities and behavior. An-
other significant difference is that BIP is intended to system modeling as it
directly encompasses timing and resource management aspects. It differs from
other system modeling formalisms which either seek generality at the detriment
of rigorousness, such as SySML [6] and AADL [7] or have a limited scope as they
are based on specific models of computation such as Ptolemy [8].

In previous work, we successfully applied the BIP design flow to the robot
DALA, an autonomous rover for extraterrestria exploration [9,10,11]. This paper
is based on the extension of BIP to time proposed in [12], which was not consid-
ered by [9,10,11]. Its contributions1 are: (i) the application of recently developed

1 This work was supported by the European Integrated Project 257414 ASCENS.
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verification and validation techniques to autonomous systems case studies, and
(ii) the extension of the method for generation of distributed implementations
proposed in [13] to timed systems. The rest of the paper is organized as follows.
Section 2 provides a formalization of the BIP language and its semantics. Sec-
tion 3 describes the BIP toolchain consisting mainly of: a compiler, including
backends for the generation of both single-threaded and multi-threaded C++
code, as well as message passing based implementations for their deployment
on distributed platforms, and verification and validation tools for checking the
correctness of the system and its performance. Finally, Section 4 demonstrates
our approach by the application of our tools to various robotics case studies.

2 Basic Semantic Model of BIP

Definition 1 (abstract model). An abstract model is a timed automaton
M = (A,Q,X,−→, tpc) such that:

– A is a finite set of actions.
– Q is a finite set of control locations
– X is a finite set of clocks
– −→ is a finite set of labeled transitions. A transition is a tuple (q, a, g, r, q′)

where q, q′ ∈ Q are control locations, a is an action executed by the transition,
g a constraint over X called guard, and r is a subset of clocks that are reset

by the transition. We write q
a,g,r−→ q′ for (q, a, g, r, q′) ∈−→

– tpc is a function associating to each control location q ∈ Q a constraint tpc[q]
over X called time progress condition.

An abstract model describes the platform-independent behavior of the system.
Timing constraints, that is, guards of transitions and time progress conditions
of control locations, are any boolean combination of simple constraints of the
form x ∼ k, where x ∈ X is a clock, k ∈ N is a non-negative integer, and ∼
is a comparison operator: ∼∈ {<,≤,≥, >}. They take into account only user
requirements (e.g. deadlines, periodicity, etc.). The semantics assumes timeless
execution of actions.

Definition 2 (abstract model semantics). An abstract model M =
(A,Q,X,−→) defines a transition system TS. States of TS are pairs (q, v), where
q is a control location of M and v : X → R+ is a valuation of the clocks X map-
ping each clock x ∈ X to its current value v(x) ∈ R+, where R+ denotes the set
of non-negative reals.

– Actions. We have (q, v)
a−→ (q′, v[r �→ 0]) if q

a,g,r−→ q′ in M and both g(v)
and tpc[q′](v[r �→ 0]) are true, where v[r �→ 0] denotes the valuation of the
clocks such that v[r �→ 0](x) = 0 if x ∈ r, v[r �→ 0](x) = v(x) otherwise.

– Time steps. For a waiting time δ ∈ R+, δ > 0, we have (q, v)
δ−→ (q, v + δ)

if the time progress condition tpc[q] allows the system to wait for δ at (q, v),
that is, if for all δ′ ∈ [0, δ], tpc[q](v + δ′) is true.
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In an abstract model, clocks are non-negative real variables increasing syn-
chronously. Guards are used to specify for which values of the clocks the actions
may take place, and time progress conditions specify whether the system can wait
at a given state or needs to execute an action to leave this state. Given an abstract
model M = (A,Q,X,−→), an execution sequence of M from an initial state

(q0, v0) is a maximal sequence actions and time-steps (qi, vi)
σi−→ (qi+1, vi+1),

σi ∈ A ∪ R+, i ≥ 0.

Example 1. Consider an abstract model M = (A,Q, {x},−→) with two actions
A = {sync1, p}, two states Q = {q1, q2}, a single clock x, and two transitions
−→= { (q1, sync1, ∅, {x}, q2), (q2, p, [10 ≤ x ≤ 20]d, ∅, q1)} (see Figure 1). It can
be easily shown that the execution sequences of M from the initial state (q2, 0)

that are an infinite repetition of the sequence (q2, 0)
δ1−→ (q2, δ1)

p−→ (q1, δ1)
δ2−→

(q1, δ1 + δ2)
sync1−→ (q2, 0), where 10 ≤ δ1 ≤ 20.

q2q1

{x}sync1

p [10 ≤ x ≤ 20]d

Fig. 1. Example of abstract model

Definition 3 (composition of abstract models). Let Mi = (Ai,Qi,Xi,−→i

, tpci), 1 ≤ i ≤ n, be a set of abstract models. We assume that their sets of
actions and clocks are disjoint, i.e. for all i �= j we have Ai ∩ Aj = ∅ and
Xi ∩ Xj = ∅. A set of interactions γ is a subset of 2A, where A =

⋃n
i=1 Ai, such

that any interaction a ∈ γ contains at most one action of each component Mi,
that is, a = { ai | i ∈ I } where ai ∈ Ai and I ⊆ { 1, 2, . . . , n }. The composition
of the abstract models Mi, 1 ≤ i ≤ n, by using a set of interactions γ, denoted
by γ(M1, . . . ,Mn), is the composite abstract model M = (γ,Q,X,−→γ , tpc) such
that:

– Q = Q1 × Q2 × . . .× Qn

– X =
⋃n

i=1 Xi

– tpc is defined by tpc[q1, . . . , qn] =
∧n

i=1 tpci[qi]
– −→γ is defined by the rules:

a = {ai}i∈I ∈ γ g =
∧
i∈I

gi r =
⋃
i∈I

ri ∀i ∈ I . qi
ai,gi,ri−→i q′i ∀i ∈ I . q′i = qi

(q1, . . . , qn)
a,g,r−→γ (q′1, . . . , q

′
n)

A compositionM = γ(M1, . . . ,Mn) of abstract modelsMi, 1 ≤ i ≤ n executes
interactions a = {ai}i∈I ∈ γ which corresponds to synchronizations of actions
ai of models Mi, i ∈ I. An interaction a = {ai}i∈I ∈ γ is enabled from a state
of M if all actions ai are enabled.

In a composite model M = γ(M1, . . . ,Mn), many interactions can be enabled
at the same time introducing a degree of non-determinism in the behavior of
M . In order to restrict non-determinism, we introduce priorities that specify
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which interaction should be executed among the enabled ones. A priority on
M = γ (M1, . . . ,Mn) is a relation π ⊆ γ ×Q× γ such that for all q the relation
πq = { (a, a′) | (a, q, a′) ∈ π } is a partial order. We write aπqa

′ for (a, q, a′) ∈ π
to express the fact that a has weaker priority than a′ at state q. That is, if both a
and a′ are enabled at state q, only the action a′ can be executed. Thus, priority
aπqa

′ is applied only when the conjunction of the guards of a and a′ is true.

Let q
a,g,r−→γ q′ and q

a′,g′,r′−→γ q′′ be transitions of M . Applying priority aπqa
′ boils

down to transforming the guard g of a into the guard gπ = g ∧ ¬g′ and leaving
the guard g′ of a′ unchanged.

Henceforth, we denote by enq(a) the predicate characterizing the valuations
of clocks for which an interaction a is enabled at state q. It is defined by:

enq(a) =

⎧⎪⎨⎪⎩
false if �(q, a, g, r, q′) ∈−→γ∨

(q,a,g,r,q′)∈−→γ

g otherwise.

Definition 4 (priority). Given a composite model M = (γ,Q,X,−→γ), the
application of a priority π to M defines a new model πM = (γ,Q,X,−→π) such
that −→π is defined by the rule:

q
a,g,r−→γ q′ gπ = g ∧ ¬

∨
aπqa′

enq(a
′)

q
a,gπ ,r−→ π q′

Example 2. Consider an abstract model M = πγ(M1,M2,M3) such that:

– abstract models M1, M2, and M3 are provided by Figure 2,
– interactions γ = {a1, a2, a3} are defined by a1 = {sync1, sync2, sync3}, a2 =

{p, q} and a3 = {r, s},
– priority π is such that a2πqa3 for any control location q of M .

From the initial state (q11 , q
1
2 , q

1
3 , 0), it can be easily shown that the execution

sequences of M have the following form: ((q11 , q
1
2 , q

1
3), 0)

a1−→ ((q21 , q
2
2 , q

2
3), 0)

5−→
((q21 , q

2
2 , q

2
3), 5)

a3−→ ((q21 , q
3
2 , q

1
3), 5)

δ2−→ ((q21 , q
3
2 , q

1
3), 5 + δ2)

a2−→ ((q11 , q
1
2 , q

1
3), 5 +

δ2)
a1−→ ((q21 , q

2
2 , q

2
3), 0), where 5 ≤ δ2 ≤ 15. Notice that control location err

cannot be reached in M2 due to the application of priority a2πqa3 for q =
(q21 , q

2
2 , q

2
3).

3 The BIP Toolchain

This section presents the toolchain available with the BIP framework (see Fig-
ure 3). It consists in a rich set of tools for modeling, executing and verifying BIP
models. The frontend of the toolchain is the parser which takes as input textual
representations of BIP models according to the BIP grammar, and builds BIP
models which are implemented using the EMF meta-modeling technology. Such
models are the input for the rest of the tools, which fall into two main categories.
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q11 q12 q13

a2πa3

γ = {a1 = {sync1, sync2, sync3}, a2 = {p, q}, a3 = {r, s}}

M3
M1

sync1
{x}

p

[10 ≤ x ≤ 20]d
sync2

err

M2

q32

q

r q22
q

sync3{y}
s

[y ≥ 5]e

q21 q23

Fig. 2. Example of composition of abstract models with priorities

BIP LanguageBIP

Model Cheking
Statistical

Validation

DFinder

Verification

BIP parser

Code generator
Distributed

Code generator
Centralized 

C++ C++ C++

Distributed Platform

C++

Engine

Execution /

Simulation

BIP model
(EMF)

BIP Compiler

Transformation
into Send/Receive

safety
property

property
stochastic

OK / NOT OK

OK / NOT OK

Fig. 3. Overview of the BIP Toolchain

Code generators. The BIP toolchain provides code generators for simulation
and/or execution of models on target platforms. The standard code generator
produces C++ code that relies on an engine for its execution. The centralized
engine directly implements the operational semantics of BIP. It plays the role
of the coordinator in selecting and executing synchronizations between the com-
ponents, taking into account interactions and priorities specified in the input
model. It supports both single-threaded and multi-threaded execution modes.

We have also developed a code generator for distributed platforms. It allows
the transformation of BIP models into a set of standalone programs communicat-
ing through message passing which is implemented using the primitives available
on the target platform. Such transformation has been proven correct, that is, it
preserves the semantics of the input model.
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Verification and validation tools. The BIP toolchain is completed by verifica-
tion and validation tools for both checking system correctness and performance
evaluation.

D-Finder is a verification tool targeting safety properties, e.g. deadlock free-
dom or mutual exclusion. The verification method implemented by D-Finder is
based on the computation of invariants used to approximate the set of reach-
able states of the target system, hence the method is sound but not complete: it
may not be able to prove a property even if it is satisfied by the system. Invari-
ants are computed following the architecture of the system, that is, we generate
invariants for components and for interactions. The approach is compositional
and can be applied incrementally, allowing to better scale to large systems than
traditional verification techniques.

In addition to D-Finder, the BIP toolchain includes the statistical model-
checker SMC-BIP for checking stochastic properties expressed as probabilistic
bounded linear temporal logic (PBLTL) formulas. Given a stochastic BIP model,
a PBLTL formula and confidence parameters, SMC-BIP computes execution
sequences until the formula can be proven with the target degree of confidence.
Such a tool is particularly suited for evaluating quantitative properties including
system performance related metrics.

4 Case Studies

In the following, we illustrate the use of our approach and tools through various
robotics case studies. We used D-Finder to formally prove the correctness of a
non trivial protocol between collaborating robots, as shown in Section 4.1. The
statistical model-checker SMC-BIP was used to evaluate the performance and to
fine-tune the strategy for the deployment of a swarm of robots (Section 4.2). In
Section 4.3 we used our C++ code generator for deriving correct by construction
distributed implementations from high-level models.

4.1 Compositional Verification of Safety Properties

We applied the compositional verification techniques for timed systems presented
in [14] to a robotics scenario. It consists of cooperating robots used in a child’s
bedroom for home automation, automatic cleaning, or child assistance in tidying
up. We considered the following types of robots/devices in the room, all capable
of wireless communications.

Cleaning Robot. We assume the presence of an autonomous vacuum cleaner
(e.g. Roomba) that can cooperate with other types of robots.

Toy Case Robot. The toy case robot—called Ranger—is currently developed
in a research project of EPFL [15]. Its goal is to encourage the child to put
away the toys in the case. We also assume that this robot has sensors able
to detect the presence of the child when he is close enough.

Bed and desk chair. They are equipped with sensors allowing to detect when
the child sits on.
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Door. The bedroom door is equipped with an electric closing and locking sys-
tem. A safety mechanism stops any closing procedure if the child tries to
enter the bedroom while the door is closing.

Ceiling Camera. A camera located on the ceiling takes pictures at a given pe-
riod P . They can be analyzed to detect whether the child is in the bedroom.
The shape of the child can be tracked in these pictures only if it is not too
close to other shapes (i.e. the toy case, on the bed and the chair).

In this scenario we were interested in a safety property stating that the child
should not be in the bedroom while the cleaning robot is cleaning. To this end,
we designed a protocol in which the cleaning robot (1) checks if child is outside
the bedroom by correlating information from all the other robots / devices, (2)
if so, closes and locks the door to keep the child outside, and (3) cleans the
bedroom. We used formal verification to prove that our protocol satisfies the
safety property.

The first thing one can observe in this system is that knowledge—e.g. the pres-
ence of the child—is distributed amongst the robots. Onemajor issue for the clean-
ing robot is to build a consistent view of the status of the child (inside or outside)
from local knowledge of the robots, and all this in real-time.We assume continuous
sensing of the child for the case, the bed and the chair. On the other hand, pic-
tures are taken only at specific time instants meaning that we have to deal with
outdated information for the camera. If the child is not on a picture taken at a
given time, then it was either outside, or inside and playing with the case, or on
the bed or the chair. If we want to be sure that the child was outside the bedroom
at the time the picture was taken, we need to know what was the status of the sen-
sors of the case, the bed and the chair at this time. For this purpose we associate
one timer to each sensor and reset it each time the child leaves. We also used a
freshness parameter F for controlling the knowledge of the camera: the child is
considered outside by the camera if he was not in a picture taken at most F
time units ago. In a slightly different way, we used parameter R for the case, the
bed and the chair: the child is considered outside by these devices if he was not
detected for at least R time units. Notice that if R ≥ F we can safely conclude
whether the child was outside or inside at the time the last picture was shot from
the camera (see Figure 4). We also use R for the door, that is, it is considered
closed if it was closed for more than R time units.

We built a BIP model for verifying the principles of the proposed protocol at
high level (see Figure 5). If the child is not detected by all the devices (w.r.t. F
and R), the cleaning robot starts locking the door since there is a high probability

current time

time

camera time frame

continuous sensing time frame

last fresh picture

Fig. 4. Freshness parameters F for the camera and R for the other devices
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Fig. 5. BIP model of the cooperating robots example
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that the child is not in the bedroom at the current time (we are sure that at
some instant in the last F time units, the child was not in the bedroom). This is
represented by a strong synchronization between ports collab, close and noChild
(the yellow ports of Figure 5). Notice that the behavior for parameters F and R
is ensured by local conditions based on components clocks. Once executed, the
door starts closing, and the case and the chair move towards locations that ease
the cleaning robot to operate. Then the cleaning robot starts cleaning only if the
child is still not detected by the devices and the door is still closed, considering
again parameters F and R. If so, it locks the door and starts cleaning, which is
modelled by a strong synchronization between ports startClean, lock, underBed,
reachedDesk, noChild, noChildP (the green ports of Figure 5). Otherwise, if the
cleaning is not possible for 120 time units, the cleaning robot timeouts and
returns to its initial state. Intuitively this protocol is safe (provided R ≥ F )
since the cleaning starts only if the child was outside when the last picture was
taken and the door was kept closed since this time. Moreover, during cleaning,
the door remains closed by using the locking mechanism.

Using verification technique of [14] we managed to prove formally that the
child is not in the bedroom while the robot is cleaning, provided R ≥ F . More
precisely, if the cleaning robot is in control state C, then the child is in state 0
(these control states are in blue in Figure 5). This property is non trivial as it
strongly depends on the individual behavior of all the devices and in particular
their timings, and it can be tricky to ensure for the system. We did several
attempts before we obtained a correct design. For instance, we started with
discreted and periodic sensing instead of continuous sensing. The flaw in this
design was difficult to detect by simulation as it very rarely led to a violation of
the safety property. Verification tools helped us in finding and fixing the problem.

Notice that the model proposed here is far too abstract to be used directly
for implementing the devices. It uses primitives such as atomic synchronizations
between two or more components (i.e. multi-party interactions) that should be
translated into simpler interactions (e.g. messages passing). To get correct-by-
construction implementations we could transform the proposed BIP model into a
Send/Receive BIP model using techniques developed for generating distributed
implementations from BIP, as presented explained in Section 4.3.

4.2 Quantitative Analysis of a Deployment Scenario

We considered a robotics scenario in which a swarm of marXbots [16] should (1)
be deployed to find 5 victims (which are other marXbots) distributed all over
an arena shown in Figure 6,

and (2) rescue the victims. In this scenario, we assume that the robots cannot
use localization mechanisms (e.g. GPS, SLAM, etc.). Instead, during the deploy-
ment phase some of the robots stop and become landmarks, i.e., they are used
to guide other robots for exploring the arena and rescuing the victims.

We used the statistical model-checking tool SMC-BIP to analyze to the de-
ployment phase only. We first built a BIP model of a single marXbot including
a faithful implementation of its sensors. Following the approach implemented
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Fig. 6. Arena of the scenario

in the simulator ARGoS [17], we rely on syn-
chronous discrete time execution with a dura-
tion of 10 ms for the time steps. The model of
the swarm represents 1500 lines of BIP code
along with 1200 lines of external C++ code.

Single robot behavior. We started by experi-
menting with several behavioral strategies for
a single robot: straight walk, random walk,
and random walk improved using the rotat-
ing scanner. All includes basic obstacle avoid-
ance so as not to bump into walls and/or
other robots. Figure 7 shows examples of sim-
ulations obtained for the different strategies,
where the path followed by the explorer is rep-
resented by the red drawing and the victims
are represented by the five small black circles (three at the top and two at bot-
tom of the arena). Using straight walk minimize the distance for travelling from
one location to another. However, it resulted in a very poor coverage since the
explorer was trapped on the left side of the arena from which it did not escape
even after a long time. Random walk led to good coverage but longer delays for
finding the first three victims than the ones obtained with straight walk. We im-
proved random walk by using the rotating scanner which allows the explorer to
track long distances obstacles and to follow corridors and walls, which is clearly
visible on simulations (see Figures 7). All these observations are confirmed by
the analysis performed by SMC-BIP with which we computed the expected time
for finding the 1st and the 5th considering probability 0.85, provided in Figure 8.
Parameters α, β and δ in table of Figure 8 correspond to the target degree of
confidence for SMC-BIP. The lower these parameters are, the lower the proba-
bility to obtain an incorrect answer is. They are formally defined in [18]. Using
SMC-BIP we also managed to show that increasing the number of explorers (we
tested for 11, 21, and then 31) tends to reduce the expected delays for finding
victims (see Figure 8).

Cooperation between robots. We completed the model by including landmarks
behavior and corresponding communications. If a robot become too far away
from other landmarks, or if it finds a victim, it stops to establish a new landmark.
The goal of these landmarks during the deployment phase is to avoid exploring
areas that have been already explored. Landmarking alone reduced drastically
the performances, as shown by Figure 8. This can be explained by the fact that
landmarking reduces the moving range of the explorers and decreases the number
of active robots, sometimes to the point where all robots were stopped (i.e. were
landmarks) whereas victims remained to be found. An example of such situation
can be observed in Figure 9(a).
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(a) straight (b) random (c) random + scanner

Fig. 7. Simulation of a single robot and various moving strategies

strategy: straight random random + scanner landmark comm.

number of explorers: 1 1 1 11 21 31 31 31

1st victim (α=β=δ=0.05) 343 2996 892 211 188 152 ? 375

5th victim (α=β=δ=0.01) timeout 41250 11562 1171 820 742 timeout 1797

Fig. 8. Delays in seconds for finding victims with probability P=0.85

(a) landmark (b) landmark+comm.

Fig. 9. Simulation of landmarking strategies for 31 explorers
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The goal of landmarking is mainly to reduce the time to accomplish the second
phase of the scenario. To this purpose, landmarks must communicate with ac-
tive robots to route them for achieving their goal (exploring, rescuing, etc.). We
included basic communication capabilities in the model allowing landmarks to
route back robots if there is no need for exploration in their given direction (e.g.
presence of a dead end). These communications were implemented by simple
binary connectors between the robots. Adding communications allowed accept-
able performances for finding all the five victims, while establishing landmarks
required by the second phase of the scenario. Simulation traces clearly show the
switchbacks performed by the robots when meeting landmarks from which no
further exploration is needed (see Figure 9(b)).

SMC-BIP allowed us to fine-tune the behavior of the marXbot to optimize the
deployment phase of the scenario. Such fine-tuning is also possible with standard
simulation techniques (e.g. with ARGoS), but statistical model-checking permits
us to have reliable information about the performances of the swarm, guaranteed
by explicit degrees of confidence and based on exploration of possible behaviors.
For example, it required sometimes more than 20000 simulations for SMC-BIP
to conclude on a single delay value. The BIP model we developed can also be
a basis for computing stochastic abstractions and/or for applying verification
techniques and tools.

4.3 Collaborating Robots

Our third case study is a robotic application that consists of a set of communi-
cating robots that collaborate to perform a given task. The scenario is described
as following: initially, the robots, with blue color, are dispatched in an arena
with different positions. They start by exploring the arena in order to find each
others. When 3 robots become sufficiently close, they group themselves to form
a ”V” form and change their color to red. Then, they go towards an object (e.g
a ball) which is positioned at the center of the arena, and push it. Finally, the
other robots go towards the border of the arena when they ”see” the red robots.
We assume that the robots are equipped by proximity sensors to detect obstacles
(arena’s walls and the ball), a camera to detect the robot’s colors and a led to
change the color.

Our case study is composed of 6 instances of robot. Figure 10 shows the BIP
model of a single robot. We used timing constraints and time progress conditions
to express timeout when the grouping action cannot be performed within a given
amount of time.

The grouping of robots is modeled by a connector that synchronizes group
transitions of any 3 robots. The connector enables the interaction between the
robots only if they are sufficiently close to each others. As shown in Figure 11 the
connector is guarded by a guard on robot’s positions that determines if the robots
are close to each others. The challenging issue in this application is to come up
with distributed implementation that correcly achieves the expected synchro-
nization of three robots. Following [13], instead of writing directly the distributed
implementation, we used BIP connectors to express the grouping of three robots
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searching[obs]

avoid_obs

[blue−robot]

go_to_border
[red−robot]stop

[x==D]
timeout

group
[x<D]

push_ball
push_ball

group

x ≤ D

{x}

Fig. 10. Model of a single robot.

group_robots

Robot1 Robot2

group(pos2)group(pos1) group(pos3)

Robot3

[|pos1 − pos2| ≤ α ∧ |pos2 − pos3| ≤ α]

Fig. 11. Synchronization of robots
for achieving their grouping.

Fig. 12. Experimental re-
sults for 6 robots.

on high-level models, and were able to generate all the
communications needed for its realization at runtime.

In order to make simulations as realistic as possi-
ble, we also modeled robot’s behavior, such as robot’s
movement, sensor’s reading and camera image pro-
cessing. Figure 12 presents the simulation results for
6 robots, where the red circles represent the final po-
sitions of the robots and the black one represents the
ball. It shows that the robots effectively managed to
group themselves and push the ball.

5 Conclusion

We have presented a rigorous system design flow for
timed systems. It is based on the BIP language in
which the notion of behavior—expressed a set of components—is clearly sepa-
rated from the notion of architecture—expressed by interactions and priorities.
Correct implementations are obtained by (i) checking the design on abstract
models using verification tool D-Finder, and (ii) refining such models using
proven correct source-to-source transformers. In addition, system performances
can also be evaluated at design time using statistical model-checker SMC-BIP.
In this paper, we showed how this framework was successfully applied to robotics
case studies.

As future work, we plan to improve our method for the generation of dis-
tributed implementations by considering non perfectly synchronized clocks and
disconnected communication networks.
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Specifications play an important role in modern-day software engineering re-
search. Formal specifications, e.g., are the basis for automated verification and
testing techniques. In spite of their potentially great positive impact, formal
specifications are notoriously hard to come by in practice. One reason seems
to be that writing precise formal specifications is not an easy task for most
of us. As a consequence, e.g., many software systems in use today lack ade-
quate specifications or make use of un/under-specified components. Moreover,
in many practical contexts, revision cycle times are often extremely short, which
makes the maintenance of formal specifications unrealistic. At the same time,
component-based design and short development cycles necessitate extensive test-
ing and verification effort. Problems of this kind are inherent in systems that
continuously undergo change as the ones specifically addresses in [16].

Learning-based approaches have been proposed to overcome this situation by
automatically ’mining’ formal specifications. Promising results have been ob-
tained here using active automata learning technology in verification [15,7] and
testing [9,2], and there seems to be a high potential to exploit also other learning
techniques [10]. At the same time, active automata learning has been extended
to support the inference of program structures [12,6] (it was first introduced for
regular languages).

This track aims at bringing together practitioners and researchers in order to
explore the practical impact and challenges associated with automated genera-
tion and maintenance of formal specifications using learning-based methods. The
track continues a series of special tracks focused on the application of automata
learning techniques in testing and verification at ISoLA conferences [8,14]. This
year’s special track has three contributions, focusing on evaluating latest ad-
vances in automata learning tools, on the connection between learning and test-
ing, and on using inferred models for the verification of GUI applications.

The first contribution “Algorithms for Inferring Register Automata — A com-
parison of existing approaches” by Fides Aarts, Falk Howar, Harco Kuppens, and
Frits Vaandrager [3] (in this volume) presents a repository for benchmarks for ac-
tive automata learning approaches and evaluates two recent approaches and tools
for learning automata with parameterized labels, registers and guards (so-called
Register Automata or Scalarset Mealy Machines) on these benchmarks. Register
automata extend regular languages and finite state acceptors with data parame-
ters, registers for storing data values and guarded transitions. Such languages and

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part I, LNCS 8802, pp. 199–201, 2014.
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models have proven useful for representing (relatively) simple infinite-state sys-
tems, where data is passed around but no or only a limited set of operations are al-
lowed ondata values, e.g., protocols, anddata structures.The presented repository
collects a number of models ranging from actual industrial case-studies to manu-
ally created and parameterized benchmarks that can be scaled in complexity. The
authors compare two recent approaches for inferring register automata (presented
in [11,1]) that have been developed independently using these benchmarks.

The second contribution “Active Learning of Nondeterministic Systems from
an ioco Perspective” by Michele Volpato, and Jan Tretmans [17] (in this volume)
explores the connections between test-based modeling and model-based testing.
In particular, the authors investigate links between active automata learning and
the ioco conformance theory. The authors present an active learning algorithm
for non-deterministic labeled transition systems, inferring the so-called suspen-
sion automaton representation of a labeled transition system. The authors base
their work on the popular L∗ algorithm for inferring regular languages [4], which
is based on an observation table for storing all information during learning. The
paper introduces additional conditions on this observation table. These condi-
tions exploit the structure of valid suspension automata and their languages and
help reducing the number of tests to be executed on a system under learning.

The third contribution“Verification of GUI Applications: a Black-Box Ap-
proach” by Stephan Arlt, Evren Ermis, Sergio Feo-Arenis, and Andreas Podel-
ski [5] (in this volume) presents a novel approach to verifying GUI applications:
The implementation of the user interface, which oftentimes contains code that
would be hard to verify and maybe is not even available as source-code, is re-
placed by a lean driver program that can simulates the user-interface by sending
sequences of events to the underlying application. The (event-driven) application
together with the lean driver is then amenable to verification as a first series of
experiments shows. The driver program is generated from a model of the (regu-
lar) language of events that can be emitted by the user interface. This model, in
turn, is inferred using a dynamic analysis (presented in [13]). The work shows
nicely how inferred models can be used to aid the verification of reactive systems.
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Abstract. In recent years, two different approaches for learning register
automata have been developed: as part of the LearnLib tool algorithms
have been implemented that are based on the Nerode congruence for
register automata, whereas the Tomte tool implements algorithms that
use counterexample-guided abstraction refinement to automatically con-
struct appropriate mappers. In this paper, we compare the LearnLib and
Tomte approaches on a newly defined set of benchmarks and highlight
their differences and respective strengths.

1 Introduction

Model-driven engineering (MDE) is attracting a lot of attention since it ap-
pears to be a software development methodology that can control the increasing
complexity of computer-based systems. In the MDE approach, the main ob-
jects of the software system being developed are represented at a higher level of
abstraction using models. Model checking and automata learning are two core
techniques in MDE. In model checking [15] one explores the state space of a
given state transition model, whereas in automata learning [32,20] the goal is
to obtain such a model through interaction with a software component by pro-
viding inputs and observing outputs. Both techniques face a combinatorial blow
up of the state-space, commonly known as the state explosion problem. In or-
der to find new techniques to combat this problem, it makes sense to follow a
cyclic research methodology in which tools are applied to challenging applica-
tions, the experience gained during this work is used to generate new theory and
algorithms, which in turn are used to further improve the tools. Consistent ap-
plication of this methodology for 25 years has led to a situation in which model
checking is applied routinely to industrial problems [18]. Work on the use of
automata learning in MDE started much later [30] and has not yet reached the
same maturity level yet, but in recent years there has been tremendous progress.

� The work of Aarts, Kuppens and Vaandrager was supported by STW project 11763
ITALIA: Integrating Testing And Learning of Interface Automata.
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We have seen, for instance, several convincing applications of automata learn-
ing in the area of security and network protocols. Cho et al. [14] successfully used
automata learning to infer models of communication protocols used by botnets.
Automata learning was used for fingerprinting of EMV banking cards by Aarts et
al. [8]. It also revealed a security vulnerability in a smartcard reader for internet
banking that was previously discovered by manual analysis, and confirmed the
absence of this flaw in an updated version of this device [13]. Fiterau et al. [16]
used automata learning to demonstrate that both Linux and Windows violate
the TCP protocol standard. Using a similar approach, Tijssen [33] showed that
implementations of the Secure Shell (SSH) protocol violate the standard. In [31]
automata learning is used to infer properties of a network router, and for testing
the security of a web-application (the Mantis bug-tracker). The first application
of learning in testing was presented in 2002 in [19]: the authors use generated
models for testing a telephony system.

In many of these applications, an intermediate component or mapper is placed
in between the implementation and the learning tool. This mapper takes care
of abstracting (in a history dependent manner) the large set of (parametrized)
actions of the implementation into a small set of abstract actions that can be
handled by automate learning algorithms for finite state systems [10,32]. The
fact that these mappers need to be constructed manually is unsatisfactory. A
major theoretical challenge therefore is to lift learning algorithms for finite state
systems to richer classes of models involving data. A recent breakthrough has
been the definition of a Nerode congruence for the class of register automata [11]
and the resulting generalization of learning algorithms to this class [23,22,2,1].
Register automata are a type of extended finite state machines in which one
can test for equality of data parameters, but no operations on data are allowed.
This notion of a scalarset data type originates from model checking, where it
has been used for symmetry reduction [24] (hence register automata are called
scalarset Mealy machines in [2,1]). The results on register automata have been
generalized to even larger classes of models in [12], where the guards can be
arithmetic constraints and inequalities.

In recent years, two different approaches for learning register automata have
been developed. As part of the LearnLib tool algorithms have been implemented
that are based on the Nerode congruence [23,22], whereas the Tomte tool im-
plements algorithms that use counterexample-guided abstraction refinement to
automatically construct an appropriate mapper [2,1]. The goal of this paper is to
compare these two approaches. To this end we have developed an open exchange
format for automata, and set up a repository with benchmarks1, which will also
allow to compare other tools and approaches in the future.

The rest of this paper is organized as follows. Section 2 recalls basic definitions
of Mealy machines, register automata, and automata learning. Sections 3 and 4
present an overview of the approaches implemented by the Tomte and LearnLib
tools. Finally, Section 5 presents and discusses the experimental evaluation of
both tools.

1 http://www.github.org/learnlib/raxml

http://www.github.org/learnlib/raxml
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2 Learning Register Automata

In this section, we recall the definition of register automata, their semantics in
terms of Mealy machines, and the assumed learning model. Register automata,
also known as scalarset Mealy machines, are an extension of Mealy machines
with data. No operations are allowed on data and the only predicate symbol
that may be used is equality.

Register Automata. We assume universes V of variables and P of parameters,
with V ∩ P = ∅. A valuation for a set X ⊆ V ∪P is a partial function ξ from X
to a set D of data values. We write Val(X) for the set of valuations for X . We
also assume a set C of constants, disjoint from V ∪P , and a function γ : C → D
that assigns a value to each constant. We write T = V ∪ P ∪ C and refer to
elements of T as terms.

A guard g is a Boolean combination of expressions of the form t = t′, where
t, t′ ∈ T . We write G for the set of guards. If ξ is a valuation for X and g is
a guard with variables and parameters from X , then we write ξ |= g to denote
that ξ satisfies g.

We assume a set E of event primitives and a function arity : E → N that
assigns to each event primitive an arity. An event term for ε is an expression
ε(t1, . . . , tn) where t1, . . . , tn ∈ T and n = arity(ε). We write ET for the set of
event terms.

Definition 1. A register automaton (RA) is a tuple S = 〈EI , EO, V, L, l0, Γ 〉,
where

– EI , EO ⊆ E are disjoint sets of event primitives,
– V ⊆ V is a finite set of state variables,
– L is a finite set of locations,
– l0 ∈ L is the initial location,
– Γ ⊆ L × ET × G × (V → T ) × ET × L is a finite set of transitions. For

each transition 〈l, εI(p1, . . . , pk), g, �, εO(u1, . . . , un), l
′〉 ∈ Γ , we refer to l

as the source, g as the guard, � as the update, and l′ as the target. We
require εI ∈ EI , p1, . . . , pk pairwise different parameters in P, εO ∈ EO,
and g, �(v), for any v ∈ V , and εO(u1, . . . , un) only contain terms from
V ∪ {p1, . . . , pk} ∪ C.

Example 1. As a running example of a register automaton we use a FIFO-set
with a capacity of two, similar to the one presented in [22]. A FIFO-set corre-
sponds to a queue in which only different values can be stored, see Figure 1.
There are a Push(p) input that tries to insert a value in the set and a Pop()
input that tries to retrieve a value from the set. The output in response to a
Push(p) input is OK if p could be added successfully or NOK if p is already an
element of the set or if the set is full. The output in response to a Pop() input is
Out(x), where x is the first value that has been added to the set and not been
returned, or NOK if the set is empty.

The semantics of a register automaton can be defined in terms of Mealy
machines.
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l0start l1 l2

Push(p)/OK
v1:=p

Pop()/NOK

p = v1
Push(p)/OK
v2:=p

p = v1
Push(p)/NOK

Pop()/Out(v1)

Pop()/Out(v1)
v1:=v2

Push(p)/NOK

Fig. 1. FIFO-set with a capacity of 2 modeled as a register automaton

Definition 2. A Mealy machine is a tuple M = 〈I, O,Q, q0,→〉, where I, O,
and Q are nonempty sets of input symbols, output symbols, and states, respec-
tively, q0 ∈ Q is the initial state, and →⊆ Q × I × O × Q is the transition

relation. We write q
i/o−−→ q′ if (q, i, o, q′) ∈→, and q

i/o−−→ if there exists a q′ such

that q
i/o−−→ q′. Mealy machines are assumed to be input enabled: for each state

q and input i, there exists an output o such that q
i/o−−→. A Mealy machine is

deterministic if for each state q and input symbol i there is exactly one output

symbol o and exactly one state q′ such that q
i/o−−→ q′.

The transition relation is extended to finite sequences by defining
u/s⇒ to be

the least relation that satisfies, q
ε/ε⇒ q, and for u ∈ I∗, s ∈ O∗, i ∈ I, and o ∈ O,

q
i/o−−→ q′ and q′

u/s⇒ q′′ implies q
i u/o s⇒ q′′. Here ε denotes the empty sequence.

The semantics of a register automaton is a Mealy machine. The states of this
Mealy machine are pairs of a location l and a valuation ξ of the state variables.
A transition may fire if its guard, which may contain both state variables and
parameters of the input action, evaluates to true. Then a new valuation of the
state variables is computed using the update part of the transition. This new
valuation, together with the values of the input parameters, also determines the
values of the output parameters.

Definition 3 (Semantics RA). The semantics of an event primitive ε ∈ E is
the set �ε� = {ε(d1, . . . , darity(ε)) | di ∈ D, 1 ≤ i ≤ arity(ε)}. The semantics of a
set of event primitives is defined by pointwise extension.

Let S = 〈EI , EO, V, L, l0, Γ 〉 be a RA. The semantics of S, denoted �S�, is the
Mealy machine 〈I, O,Q, q0,→〉, where I = �EI�, O = �EO�, Q = L × Val(V ),
q0 = (l0, ξ0), with ξ0(v) undefined for all v, and →⊆ Q× I ×O ×Q is given by
the rule

〈l, εI(p1, . . . , pk), g, �, εO(u1, . . . , un), l
′〉 ∈ Γ

∀i ≤ k, ι(pi) = di ξ ∪ ι |= g
ξ′ = (ξ ∪ γ ∪ ι) ◦ �

∀i ≤ n, (ξ ∪ γ ∪ ι)(ui) = d′i

(l, ξ)
εI(d1,...,dk)/εO(d′

1,...,d
′
n)−−−−−−−−−−−−−−−−→ (l′, ξ′)

We call a RA S deterministic if its semantics �S� is deterministic.
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Active Automata Learning. Active automata learning algorithms have orig-
inally been presented for inferring finite state acceptors for unknown regular
languages [10]. Since then these algorithms have become popular with the test-
ing and verification communities for inferring models of systems in an automated
fashion. Active automata learning has been extended to many classes of systems,
including Mealy Machines [29], I/O-Automata [7], Timed Automata [17], and
Register Automata.

While the details change for concrete classes of systems, all of these algorithms
follow basically the same pattern. They model the learning process as a game
between a learner and a teacher. The learner has to infer an unknown concept
with the help of the teacher. The learner can ask three types of queries to the
teacher:

Output Queries (or membership queries) ask for the expected output for a
concrete sequence of inputs. In practice, output queries can be realized as
simple tests.

Reset queries prompt the teacher to reset its current state to the initial state
and are typically asked in turn with a sequence of output queries.

Equivalence Queries check whether a conjectured model produced by the
learner is correct. In case the model is not correct, the teacher provides
a counterexample, a trace exposing a difference between the conjecture and
the expected behavior of the system to be learned. Equivalence queries are
approximated through testing in black-box scenarios.

A learning algorithm will use these three kinds of queries and produce a sequence
of models converging towards the correct one. We skip further details here and
refer the interested reader to [32,25] for an introduction to active automata
learning.

3 Tomte

Tomte implements the approach to inferring Register Mealy Machines presented
in [2,1]. Figure 2 presents the overall architecture of the Tomte tool. At the right
we see the System Under Learning (SUL), an implementation whose behavior
can be described by an (unknown) deterministic register automaton. We send
parametrized input symbols to the SUL via port 3 and receive parametrized out-
put symbols via port 4. Via port 3 we can also reset the SUL. At the left we see
the learner, which is a tool for learning regular Mealy machines. In our current
implementation we use LearnLib, but any other tool for learning Mealy ma-
chines can be used instead. The learner sends output queries and test sequences
(as approximation of equivalence queries) via port 1 and receives the resulting
outputs via port 6. In between the learner and the teacher we place two auxiliary
components, a mapper and a lookahead oracle, which take care of mapping the
large set of concrete symbols of the SUL to a small set of abstract symbols that
can be handled by the learner. Whereas the lookahead oracle annotates events
with information about the future behavior of the SUL, the mapper computes
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Learner Mapper
Lookahead
Oracle

Teacher
(SUL)

1 2 3

6 5 4

Fig. 2. Architecture of Tomte

an abstraction for each event based on information about the past. The behavior
of the two components is thus reminiscent of the prophecy and history variables
of Abadi & Lamport [9].

3.1 Lookahead Oracle

The lookahead oracle is a component that stores traces of the SUL in a so-
called observation tree. The observation tree can be used as a cache for repeated
queries on the SUL. However, the main task of the lookahead oracle is to annotate
each node in the observation tree with a set of memorable values. Intuitively, a
parameter value d is memorable if it has an impact on the future behavior of
the SUL: either d occurs in a future output, or a future output depends on the
equality of d and a future input.

Definition 4. Let S be a register automaton with �S� = 〈I, O,Q, q0,→〉. Sup-
pose q0

u/s⇒ q and d is a parameter value that occurs in u and that is not denoted
by any constant (∀c ∈ C : γ(c) �= d). Then d is memorable after u iff there exists

a witness transition q
v/t⇒, such that either d occurs in output t but not in input

v, or d occurs in input v and if we replace all occurrences of d in v with a fresh

value f then the output changes, i.e., q
v[f/d]/t′⇒ with t′ �= t[f/d].

In our running example of Figure 1, the set of memorable values after input
sequence u = Push(0) Push(1) Push(2) is {0, 1}. Values 0 and 1 are memorable,
because the suffix v = Pop() Pop() triggers outputs Out(0) Out(1). Value 2 is
not memorable since the future behavior of the FIFO-set does not depend on
it. Figure 3 shows an observation tree for our FIFO-set example. Whenever a
new node is added to the tree, the oracle computes a set of memorable values
for it. To this end, the oracle maintains a set of lookahead traces, i.e., sequences
of (symbolic) inputs. Instances of each these traces are run in each new node to
compute memorable values. At any point in time, the set of computed values
is a subset of the set of memorable values of a node. The observation tree of
Figure 3 is not lookahead complete since (for instance) memorable value 1 of
node N6 is neither part of the memorable values of the predecessor node N3 nor
has it been inserted via the incoming Pop() input. Whenever we detect such an
incompleteness, we add a new lookahead trace (in this case Pop() Pop()) and
restart the entire learning process with the updated set of lookahead traces to
retrieve a lookahead-complete observation tree.

When the oracle receives an input symbol from the mapper via port 2 this
is just forwarded to the SUL via port 3. When the lookahead oracle receives a
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N0

{}

N1

{0}

N3

{0}

N5

{}

Push(2)/NOK

N6

{1}

N9

{}

Push(2)/OK

N10

{}

Pop()/Out(1)

Pop()/
Out(0)

Push(1)/OK

N4

{}

N7

{1}

Push(1)/
OK

N8

{}

.

.

.

Pop()/NOK

Pop()/Out(0)

Push(0)/OK

N2

{}

.

.

.

Pop()/NOK

Fig. 3. Observation tree of the FIFO-set

concrete output symbol o from the SUL via port 4 (see Figure 2), it forwards
a pair consisting of o and a valuation ξ to the mapper via port 5. The val-
uation ξ assigns to each variable in a given set of variables X either a value
that is memorable in the node after o, or the undefined value ⊥. (The set X
grows dynamically: its size is equal to the largest set of memorable values in the
observation tree.)

3.2 Mapper

Following the theory elaborated in [3,4], the mapper component transforms the
concrete inputs and outputs from the lookahead oracle into abstract inputs in
a history dependent manner. The mapper remembers the most recent valuation
from the variables in X that it has received from the lookahead oracle. The
mapper is parametrized by a function F : P → 2X∪C∪P . The abstraction does
not record the actual value of an input parameter, but only whether or not this
value is equal to one of the variables, constants or parameters in F (p). Thus the
domain of the abstract parameter p is the set F (p)∪{⊥}. Initially, F (p) = ∅ for
all parameters p. Using a counterexample-guided abstraction approach, the sets
F (p) are subsequently extended. Upon receipt of a concrete output action (o, ξ)
from the lookahead oracle via port 5, the mapper component forgets the actual
value of parameters in o and only records whether a value is equal to one of the
variables, constants or parameters in V ∪C ∪P . The valuation ξ is abstracted to
an update function that specifies how ξ can be computed from the mapper state
and the parameters of the preceding input. The abstract output pair is then send
to the learner via port 6, When the mapper receives an abstract input from the
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learner via port 1, it computes a corresponding concrete input and forwards it
to the lookahead oracle via port 2. During learning the abstract parameter value
⊥ is always concretized as a fresh value.

As a result of interaction with the mapper, the learner succeeds to construct
the abstract hypothesis shown in Figure 4. (We refer to [1] for a discussion of how
a concrete register automaton can be obtained from an abstract hypothesis.)

l0start l1 l2

Push(⊥)/OK
x1:=p

Pop()/NOK Push(⊥)/OK
x2:=p

Pop()/Out(x1)

Pop()/Out(x1)
x1:=x2

Push(⊥)/NOK

Fig. 4. First hypothesis of the FIFO-set

3.3 Counterexample Analysis

This hypothesis does not check if the same value is inserted twice since the map-
per only uses fresh values in the output queries. During hypothesis verification
the mapper selects random values from a small range for every abstract param-
eter value ⊥. In this way it will find a concrete counterexample input trace,
e.g. Pop() Push(9) Pop() Push(3) Push(3), for which the SUL produces a NOK
output and the hypothesis generates an OK. In order to simplify the analysis,
Tomte first tries to reduce the length of the counterexample. Long sequences of
inputs typically lead to loops when you run them in the hypothesis. Tomte elim-
inates these loops and checks if the result is still a counterexample. Removing
cycles from the concrete counterexample results in the reduced counterexam-
ple Push(3) Push(3). To determine if it is a counterexample for the learner, we
convert the reduced concrete counterexample into a fresh trace Push(1) Push(2)
and run it on the SUL via the lookahead oracle. The concrete outputs returned
by the SUL are OK OK. Since, after abstraction, the outputs of the fresh trace
are also produced by the abstract hypothesis, Tomte needs to refine the input
abstraction.

By careful analysis of the counterexample, Tomte discovers that apparently
it is relevant whether or not parameter p is equal to variable x1. Therefore,
the set F (p) is extended to {x1}. Consequently, the alphabet of the learner is
extended with a new input symbol Push(x1) and a corresponding lookahead trace
is added to the lookahead oracle. Again, the entire learning process is restarted
from scratch. The next hypothesis learned is equivalent to the model in Figure
1 and the learning algorithm stops.
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x1

Push(p)/NOK | p = x1

Push(p)/OK | p = x1
l0 l1

Push(p)/OK
v1 := p

Pop()/Out(v1)
Push(p)/OK

Pop(p)/NOK

Fig. 5. Left: SDT for concrete prefix Push(1)/OK and abstract suffix Push(p). The
SDT has one register at the initial location at the top for the memorable data value of
the prefix and two guarded transitions for the suffix. Right: Second hypothesis found
by LearnLib when learning the FIFO-set from Fig. 1.

4 LearnLib

LearnLib implements the approach to inferring Register Automata and Register
Mealy Machines presented in [23,22]. In the recent past, LearnLib has been gener-
alized to learning systems, where the guards can be simple arithmetic constraints
and inequalities [12]. The conceptual basis for this extension was a reformulation
of the original algorithms. Technical basis of the implementation in LearnLib are
so-called symbolic decision trees (SDTs), which can be used to summarize the
results of many tests using a concise symbolic representation — similar to exe-
cution trees obtained by symbolic execution [26]. While we evaluate the version
of LearnLib that infers Register Mealy Machines, we provide an overview of the
central ideas of inferring Register Automata with LearnLib in the more intuitive
terms of our more recent work. However, the description we give here is faithful
to the work of [22].

Symbolic Decision Trees. Active automata learning algorithms usually rely
on the Nerode relation [28] for identifying the states and transitions of a learned
automaton. Two words lead to the same state if their residual languages co-
incide. When extending LearnLib to Register Automata, the basic idea of the
approach was to formulate a Nerode-like congruence for RAs, which would serve
to determine locations, transitions, and registers of the inferred automaton.

The central observation for such a relation is that it is not sufficient anymore
to consider only concrete words and data values. Take for example the FIFO-set
from Fig. 1. While after prefixes Push(1)/OK and Push(2)/OK the concrete input
Push(1) will lead to different outputs (NOK and OK, respectively), we still want
both prefixes to lead to the same location in a learned automaton. Using the
classic Nerode relation, we would introduce a location for every concrete prefix
Push(d) with d ∈ D.

We mitigate this problem by treating the relevant (so-called memorable) data
values of a prefix in a symbolic fashion: We introduce abstract suffixes (sequences
of actions with symbolic data parameters) and corresponding symbolic decision
trees (SDT)s. Formally, SDTs can be understood as (partial) Register Automata
where L and Γ form a tree rooted at l0. Fig. 5 (left) shows an SDT for the con-
crete prefix push(1)/OK and the abstract suffix Push(p) (with symbolic data
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Prefixes SDTs for Pop() Memorables

λ

Push(1)/OK

Push(1)/OK Push(2)/OK

x1 = 1

x1 = 1

(l0)

(l1)

Pop()/NOK

x1

Pop()/Out(x1)

x1

Pop()/Out(x1)

. . . . . .

Fig. 6. Observation table for hypothesis in the right of Fig. 5. Rows are labeled by
concrete prefixes. The only column is for the abstract suffix Pop(). The second and
third prefix lead to the same location. To the right, rows are labeled by initial values
(from prefixes) for registers of SDTs.

value p). The tree encodes the relation of the data value of the prefix symbol-
ically for all p through a register at the root location (x1) and using guarded
transitions. The SDT for push(2)/OK would look identical. Except it would store
the concrete value 2 in x1.

Symbolic decision trees can be constructed from output queries and reset
queries in two steps. First, we create test cases for all possible equalities between
data values in a prefix and a suffix. In the case of the above example there would
only be two tests, Push(1) Push(2) and Push(1) Push(1). However, in general
constructing an SDT requires exponentially many (in the number of parameters
of the suffix) reset queries and output queries. In a second step, we describe all
tests and results symbolically in a detailed tree and merge compatible paths of
the trees until only the relevant guards remain.

Conjectures. As noted before, active learning algorithms usually maintain two
sets of words: a prefix-closed set of words that covers all transitions of an inferred
automaton and a set of suffixes, identifying the states reached by prefixes. We
follow this pattern and use sequences with concrete data values as prefixes, and
SDTs for abstract suffixes to identify locations, and registers: Symbolic decision
trees provide a basis for formulating a congruence on the set of data words [11].
Additionally, SDTs provide information about the data values of a prefix that
have to be stored by an automaton (the ones referred to by the initial registers
of an SDT).

Fig. 6 shows an observation table, storing the information obtained from out-
put queries during learning. Rows are labeled with prefixes, the only column
with SDTs is for the abstract suffix Pop(). In the right-most column we show
which memorable values have to be stored to obtain the SDTs. From an ob-
servation table we can generate a hypothesis once certain consistency require-
ments are met (cf. [23]). In this particular case, the model shown in the right of
Fig. 5 can be generated from the observation table: Prefixes in the upper part
of the table identify locations (the SDTs for these rows are unique). All prefixes
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(except the empty word λ) correspond to transitions. The only word shown from
the lower part of the table, e.g., corresponds to the Push()-loop at l1. The initial
registers of the decision trees are used to obtain the assignments of the Register
Automaton; the assignment v1 := p on the transition from l0 to l1 is derived
from the SDT and memorable values in the second row of the table.

The sets of prefixes and suffixes are extended when the consistency require-
ments on the table are violated or when a counterexample is processed.

Counterexamples. Counterexamples exhibit a difference between the current
hypothesis of the learning algorithm and the observable behavior of the system
under learning. They contain information about how and where a hypothesis is
not valid. Counterexamples can show that two prefixes that currently lead to the
same location are not equivalent (under the assumed relabeling of registers). In
some cases this leads to a new location. They can also show that the hypothesis is
missing a guarded transition, or that it is missing a register. The main challenges
when analyzing counterexamples are (a) identifying the exact location of the
hypothesis which has to be split, or extended by a new register or transition,
and (b) deciding which of the three cases applies.

In order to find the exact location, we exchange prefixes of the counterexample
by corresponding words from the set of prefixes from the upper part of the
observation table (i.e., words that were used to represent the location reached
by the prefix). For an exchanged prefix we check if the SDT for the remaining
abstract (!) suffix of the counterexample contains a counterexample. If this is
the case, we can use the replaced prefix, which corresponds to a fix location in
the hypothesis.

Replacing prefixes is continued until we either find that one of the constructed
SDTs (i) has an initial guard that is not present in the hypothesis, or (ii) has
an initial register that is not identified by the observation table, or (iii) until at
some point the SDT for the replaced prefix and remaining abstract suffix does
not contain a counterexample anymore. In the first and second case, we extend
the table with a new prefix or suffix, respectively. The third case indicates that
two prefixes lead to different states (one SDT contains a counterexample while
the next one does not). In this case we also add a suffix to the table. The technical
details are, of course, a little bit more intricate than discussed here. In-depth
discussions can be found in [23,12].

We limit ourselves to a small example for case (ii) here. The intermediate
hypothesis shown in the right of Fig. 5 for the FIFO-set from Fig. 1 is missing
(among other things) the Push(p)-transition from l1 that is guarded by p = v1.
This is because initially LearnLib adds only words without new equalities to
the observation table. The counterexample Push(1)/OK Push(1)/NOK would re-
veal the missing transition: The SDT for prefix Push(1)/OK and suffix Push(p)
is shown in Fig. 5. It has two guarded initial transitions. Adding the word
Push(1)/OK Push(1)/NOK to the observation table will refine the hypothesis
accordingly. Please note, that while in this small example the word we add to
the set of prefixes coincides with the counterexample, this is not the case usually.
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Table 1. Benchmarks.

Name Inputs/ Registers Con- States Tran- Source
Outputs stants sitions

Biometric passport 9/2 0 3 5 48 [1,2,6]
Session initiation protocol 4/7 2 0 10 48 [1,2,4]

Alternating bit protocol sender 3/3 1 2 7 27 [1,2]
Alternating bit protocol receiver 2/3 0 2 4 10 [1,2]
Alternating bit protocol channel 3/3 2 0 2 6 [1,2]
Login procedure 3/2 2 0 3 10 [1,2,23]
River crossing puzzle 1/4 0 4 9 45 [1,2]
Palindrome/repnumber checker 5/2 0 0 1 10 [1,2]

Queue/stack(n) 2/3 n 0 n+1 2n+2 [1,22,25]
FIFO-set(n) 2/3 n 0 n+1 3n+1 [1,22]

Discussion. Since the approach taken by LearnLib is based on an extended
Nerode relation, it comes with nice guarantees: for a perfect equivalence oracle,
the learning algorithm will terminate with the smallest (in terms of locations and
number of registers) correct Register Automaton of a given form. The number
of transitions may not be minimal since LearnLib uses multiple transitions for
encoding disjunctions. Also, the introduction of SDTs and abstract suffixes has
proven to be a powerful conceptual framework that scales beyond simple register
automata.

The guarantees and conceptual power, however, come at a price. Comput-
ing SDTs from tests is expensive. It requires to exhaustively explore all possible
equalities between data values in a prefix and a suffix. Especially, long counterex-
amples, which in turn may lead to long suffixes, can incur many tests quickly as
the evaluation shows (cf. Section 5).

5 Comparison and Evaluation

The LearnLib tool [27] and the Tomte tool [2,1] implement quite similar algo-
rithms for fully automatically inferring large or infinite-state systems. Therefore,
it is worthwhile to examine the differences between both tools in more detail.
Both tools have been developed independently of each other, but by mutual
agreement a standardized XML format has been introduced, which is supported
by both tools. This did not affect the framework or inner workings of the tools.
They still reveal a number of differences, which will be evaluated and discussed
in the remainder of this section.

We evaluate the tools on the benchmarks shown in Table 1. The table specifies
the complexity of the different benchmarks in terms of the size of the input and
output alphabet as well as the number of registers, constants, Mealy machine
states, and Mealy machine transitions. The source column lists work, where
these benchmarks have been used previously in the context of automata learning.
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Table 2. Results for experiments with random testing

Learnlib Tomte
learn learn test test ana ana learn learn test test ana ana

res inp res inp res inp res inp res inp res inp
Alternating bit protocol sender
avg 452 2368 1217 23872 40551 405577 465 2459 3 26 7 15
stddev 453 2781 973 19424 125904 1258919 0 2 2 28 4 11
Alternating bit protocol receiver
avg 6077 102788 17 278 72 1420 271 1168 6 68 19 56
stddev 13184 245291 9 176 57 2813 1 0 4 67 4 13
Biometric passport
avg 914 8517 4209 83761 365 7768 8769 43371 660 13164 55 287
stddev 614 12089 2271 45568 112 4334 5 35 492 9839 7 56
Alternating bit protocol channel
avg 52 252 2 13 29 173 67 210 0 0 0 0
stddev 29 235 2 9 12 115 0 0 0 0 0 0
Login procedure
avg 2968 34922 21 366 21 82 3769 19586 117 2072 53 230
stddev 7959 102706 19 396 8 73 0 0 136 2564 19 81
Palindrome/repnumber checker
avg 5 5 59 1079 2050 8032 8366 24713 249 4502 80 139
stddev 0 0 28 599 6225 24909 4 9 129 2464 14 27
Session initiation protocol
avg 92324 1962160 129 2486 106868 1178964 6195 39754 236 4535 256 1568
stddev 137990 4078104 127 2579 336225 3696587 1103 7857 210 4251 94 626
River crossing puzzle
avg unable to learn 2078 14121 112 2089 100 621
stddev 73 674 56 1174 23 244

The upper part of the table contains models that have been inferred from actual
systems, the middle part refers to systems we have modeled ourselves, and the
lower part comprises manually written specifications of data structures with a
capacity of n.

We performed experiments with two different types of equivalence oracles.
The first (realistic but imperfect) oracle uses random test case generation. Both
tools implement a random walk over the hypothesis that will generate at most
10, 000 runs per equivalence query. Every run has a maximum length of 100
inputs, and is ended with a probability of 5% after every input. This produces an
exponential distribution on the length of runs (cut off at length 100). Data values
of new inputs are instantiated using values from the prefix and a fresh value with
equal probability. Additionally, we have performed experiments with a perfect
equivalence oracle, providing shortest counterexamples. In realistic applications
of our tools, such an oracle does not exist since we do not have access to a
model of the SUL, but since we have models of all our benchmarks, a perfect
equivalence oracle can be implemented simply using an equivalence algorithm
for Mealy machines. The two equivalence oracles reflect different usage scenarios:
While Tomte is geared towards testing and has been used very successfully in
testing (e.g., [5]), LearnLib was designed and used to provide guarantees up to
some depth in exhaustive exploration [12] (similar to interface generation in a
white-box scenario [21]).

For the experiments we used the perfect equivalence oracle in order to de-
termine when to stop learning. We have run each experiment ten times with
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Table 3. Results for experiments with a perfect equivalence oracle

Learnlib Tomte
learn learn ana ana learn learn ana ana

res inp res inp res inp res inp
Alternating bit protocol sender
avg 181 794 7412 131082 465 2461 5 8
stddev 0 0 0 0 0 0 0 0
Alternating bit protocol receiver
avg 240 856 14 32 272 1168 21 62
stddev 0 0 0 0 0 0 0 0
Biometric passport
avg 474 1944 88 471 8764 43347 37 168
stddev 0 0 0 0 0 0 0 0
Alternating bit protocol channel
avg 13 25 7 13 67 210 0 0
stddev 0 0 0 0 0 0 0 0
Login procedure
avg 273 991 5 10 3771 19586 139 644
stddev 0 0 0 0 0 0 0 0
Palindrome/repnumber checker
avg 5 5 52 52 8370 24719 88 150
stddev 0 0 0 0 0 0 0 0
Session initiation protocol
avg 621 2585 39 139 5460 33002 101 467
stddev 0 0 0 0 0 0 0 0
River crossing puzzle
avg 7344 48990 41 184 2042 13791 47 225
stddev 0 0 0 0 0 0 0 0

different seeds. For every experiment we have measured the following data and
determined its average over the ten runs together with the standard deviation:

– learn res: total number of reset queries sent to SUL during learning
– learn inp: total number of output queries sent to SUL during learning
– test res: total number of reset queries sent to SUL during equivalence testing
– test inp: total number of concrete input symbols sent to SUL during equiv-

alence testing (without last test, where no counterexample has been found)
– ana res: total number of reset queries sent to SUL during counterexample

analysis
– ana inp: total number of concrete input symbols sent to SUL during coun-

terexample analysis

We also measured the time of our experiments, but we do not mention these
numbers in our learning statistics as in our opinion the other measures are more
relevant. Also, due to space limitations, we present only a selection of results
in this paper. The complete set of benchmarks and the complete results can be
found online2.

Series 1. First, we have employed both tools to execute the benchmarks in the
upper and middle part of Table 1. The learning results with a random walk and
perfect equivalence oracle (shortest counterexamples) are displayed in Tables 2
and 3, respectively.

2 http://www.github.org/learnlib/raxml

http://www.github.org/learnlib/raxml
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In our analysis we are mainly interested in the total number of concrete in-
put symbols sent to the SUL during learning and counterexample analysis as
comparing test algorithms is a separate object of investigation. Therefore, we
tried to implement the equivalence test in both tools as similar as possible. The
results show that in the majority of experiments Tomte outperforms LearnLib if
a random test case generator is used, see Table 2. However, with a proper equiv-
alence test it is the very reverse: In most cases, LearnLib outperforms Tomte,
see Table 3.

The reason for the performance difference is due to the length of the coun-
terexamples found, which are typically longer when a random walk over the
hypothesis is performed. As already mentioned in Section 3, Tomte first reduces
the length of the counterexample by eliminating irrelevant loops, which in com-
bination with a simpler counterexample analysis lead to less inputs sent to the
SUL, compare ana inp for LearnLib and Tomte in Table 2. To measure the effect
of the counterexample reduction, we have repeated the experiments above with
the Tomte tool, without executing the loop elimination algorithm. They show
that in our experiments the loop elimination algorithm reduces the length of the
counterexample on average by more than 60%, which again reduces the inputs
sent to the SUL during counterexample analysis significantly, i.e. on average by
more than 90%.

Series 2. In a second series of experiments, we have applied both tools to learn
models of the data structures from the lower part of Table 1. Table 4 shows
the results for inferring models of a FIFO-set of capacity n (a FIFO-set with
capacity 2 is depicted in Figure 1). We have gradually scaled up the capacity of
the FIFO-set to test the limits of both tools. Using the test setup of the previous
experiments (at most 10, 000 runs per equivalence query, maximum length of 100
inputs, and reset probability of 5%), we quickly reach the boundaries of both
tools. The reset probability of 5% after every input leads to relatively short test
traces, such that guards deep in the data structure cannot be found with random
testing.

We thus have changed the test setup for Tomte: the columns for Tomte in Ta-
ble 4 show the results for 1, 000 test traces of length 1, 000 with reset probability
of 0%. For LearnLib, Table 4 shows the results with a reset probability of 5%.
Tomte is able to successfully learn the FIFO-set with up to 30 elements, whereas
LearnLib can only infer models up to size 7. For the smaller models, Learn-
Lib outperforms Tomte, but the costs of finding and analyzing counterexamples
quickly explode, as does the number of queries during learning from adding new
suffixes to the observation table.

The figures indicate that Tomte consistently needs fewer counterexamples
than LearnLib: it spends fewer resets on finding counterexamples. Since both
tools implement the same random test algorithm for finding counterexamples,
this suggests that Tomte uses fewer counterexamples. Another series of experi-
ments for which we do not show the detailed results in this paper confirms this
pattern. We have used both tools for inferring models of a queue and a stack
of size n. In this series, Tomte does not need any counterexamples for learning
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Table 4. Results for learning the FIFO-set with LearnLib (resetProbability=0.05
maxSize=100 maxNumTraces=10000) and Tomte (resetProbability=0 maxSize=1000
maxNumTraces=1000)

Learnlib Tomte
learn learn test test ana ana learn learn test test ana ana

res inp res inp res inp res inp res inp res inp
FIFO-set(1)
avg 12 22 1 3 4 9 23 66 0 0 0 0
stddev 3 6 0 2 2 7 0 0 0 0 0 0
FIFO-set(2)
avg 44 136 4 20 12 44 99 423 1 20 6 17
stddev 11 49 2 14 9 44 0 2 0 25 1 5
FIFO-set(3)
avg 114 463 12 135 41 410 257 1396 4 562 19 88
stddev 19 115 4 84 27 499 0 6 1 897 5 37
FIFO-set(4)
avg 250 1234 26 387 94 1294 568 3727 6 1190 47 315
stddev 72 426 9 179 53 1515 5 30 2 1767 31 284
FIFO-set(5)
avg 761 5522 74 1231 210 3056 1104 8443 9 2158 80 705
stddev 589 5380 46 782 39 951 5 31 1 1098 40 507
FIFO-set(6)
avg 855 6066 174 3053 378 7275 1955 17049 9 631 103 932
stddev 283 2689 47 949 100 3086 7 62 0 469 30 418
FIFO-set(7)
avg 66392 1097470 394 7229 634 13530 3215 31487 13 2392 132 1284
stddev 195580 3310472 147 2803 66 2397 7 70 1 1370 44 616
FIFO-set(10)
avg unable to learn 10760 139708 23 7526 446 7029
stddev 22 277 8 7317 210 4918
FIFO-set(20)
avg unable to learn 129628 3056149 94 63422 4169 106467
stddev 54 1138 31 30834 565 14495
FIFO-set(30)
avg unable to learn 591668 20206862 761 718060 15714 620479
stddev 72 2112 319 319098 1427 232984

the correct models (of up to size 40), while LearnLib behaves very similar to
the series with the FIFO-set. The reason for Tomte needing fewer counterexam-
ples is the lookahead oracle that finds new registers without counterexamples.
In LearnLib, on the other hand, all progress is driven by counterexamples. With
a perfect equivalence oracle this is an advantage. For counterexamples of ran-
dom length, on the other hand, the overhead of the lookahead oracle is quickly
amortized through the queries saved by using fewer counterexamples.

Summary. Using the standardized format and the variety of benchmarks that
we have collected makes it easy to compare different algorithms in more detail,
e.g. with respect to their limits and the exact number of queries asked for learning
and counterexample analysis. In addition, this allows us to compare the two
approaches presented in this paper also to other related approaches. This will
provide an insight into the strengths and weaknesses of different techniques and
enable us to learn from each other. We believe there is still a lot of room for
improvement in both tools.
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Abstract. Model-based testing allows the creation of test cases from a
model of the system under test. Often, such models are difficult to obtain,
or even not available. Automata learning helps in inferring the model of
a system by observing its behaviour. The model can be employed for
many purposes, such as testing other implementations, regression test-
ing, or model checking. We present an algorithm for active learning of
nondeterministic, input-enabled, labelled transition systems, based on
the well known Angluin’s L

� algorithm. Under some assumptions, for
dealing with nondeterminism, input-enabledness and equivalence check-
ing, we prove that the algorithm produces a model whose behaviour is
equivalent to the one under learning. We define new properties for the
structure used in the algorithm, derived from the semantics of labelled
transition systems. Such properties help the learning, by avoiding to
query the system under learning when it is not necessary.

1 Introduction

The field of model-based testing has grown and has made much progress in the
last years. Model-based testing automates the creation of test cases, and often
even their execution, by deriving them from a model [16]. This solves the labori-
ous task of writing tests manually. It also requires the presence of formal models
representing the system under test, which are often unavailable. Automata learn-
ing helps in the construction of such models, reducing the gap between theory
and practice of model-based testing. If the system can be queried about its own
behaviour, e. g., we can provide an input of our choice in order to observe the
possible outputs, we talk about active learning. A well known algorithm for ac-
tive learning of deterministic finite automata (DFA) is Angluin’s L

	 algorithm
[3]. Variations of L	 have been used for learning related formalisms, such as de-
terministic finite state machines (DFSM) in the form of Mealy machines [11],
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or their nondeterministic versions (NFSM) [6]. Unfortunately, not much work
has been done in active learning of nondeterministic systems such as labelled
transition systems, a formalism widely used in model-based testing of reactive
systems. The ioco framework [15], for example, addresses the theory of model-
based testing of systems behaving like a labelled transition system.

In this paper we extend Angluin’s L
	 to active learning of nondeterministic

input/output labelled transition systems. Our approach uses concepts belonging
to the ioco framework, such as quiescence, i. e., the absence of output, the out-
set, i. e., the set of observable outputs (or quiescence) from a given state, and
the suspension automaton, i. e., the deterministic automaton obtained by mak-
ing quiescence explicit and then determinizing the result. Three assumptions
are considered in this paper: (i) the testing assumption [15], i. e., the system
under learning (SUL) behaves as an input-enabled labelled transition system,
(ii) the equivalence exhaustiveness, that implies that we are capable to exhaus-
tively check the equivalence of our conjecture with respect to the SUL, and
(iii) the all weather conditions [8], that states the ability of, eventually, obtain-
ing all the observable outputs of a state, even if nondeterminism is present. The
second assumption suggests that, theoretically, we cannot replace the equiva-
lence check with a testing tool. In practice, it is common to test for equivalence
until a certain depth, inferring that the conjecture is “similar enough” to the
SUL. Given the last assumption, we are able to obtain the set of all possible
outputs after a given sequence of actions. This is strong for real nondeterminis-
tic systems. However it is needed for a proper functioning of the active learning
algorithm. As future work, a relaxation of it is under consideration, with the
possibility of using a relation weaker than equivalence.

In L
	-style algorithms, an observation table is filled and extended during the

learning. If the observation table satisfies two properties, called closedness and
consistency, then a model can be constructed and, based on its equivalence to the
SUL, the learning can either stop or continue with more information. We show
how some properties of labelled transition systems make the learning easier. In
fact, given those properties, some entries of the observation table can be inferred
either from other, already filled, entries, or even from the properties themselves.
Furthermore, in situations where normally we would try to determine if the
current learned conjecture is equivalent to the SUL, which is usually a hard
task, we can directly improve the conjecture by looking only at the observation
table. More specifically, the contributions of the paper are the following: (i) an
algorithm for active learning of labelled transition systems, using concepts from
the ioco framework, (ii) the adaptation of the structures used in classical L	 to
learning labelled transition systems, (iii) the definition of a new property, called
quiescence reducibility, from [18], that must be fulfilled by the observation table
in addition to closedness and consistency.

Related Work Besides the already mentioned original L	 algorithm, other work
has been done in active learning in the last years. In [9], [4] and [11] active
learning of Mealy machines is widely addressed, leading to a tool, LearnLib
[14], that performs well in practice. In [7] the approach is extended to structures
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with data, called register Mealy machines. Independently, work has also been
done, in the same direction, in [1], resulting in a tool called Tomte, which adds
an abstraction layer on top of LearnLib. In [2], a link is presented between i/o
automata, labelled transition systems and Mealy machine. The authors show
that, by using a transducer, i/o automata that are deterministic and output
determined, i. e., each state has at most one outgoing output transition, can be
learned using any tool capable of learning Mealy machines. As in this paper,
they apply L

	 to reactive systems, where there is a distinction between inputs
and outputs. Such systems, however, are all deterministic, which is not the case
for labelled transition systems.

Active learning of a subclass of NFSM, called observable NFSM (ONFSM),
is studied in [6] and [10]. The behaviour of a system belonging to this class
is comparable to the one of a labelled transition system, except for the strict
alternation between inputs and outputs. All previously mentioned techniques
produce a deterministic version of the system under learning. In [5], the authors
develop an algorithm for learning residual FSA, a nondeterministc representa-
tion of DFAs. The work in [18] gives an approximation-based algorithm and a
set of heuristics, for inferring a model using ioco-based testing. Some of the
contributions of this paper rely on the suspension automaton, which is one of
the results in [18]. A combination of the techniques exposed in that paper and
the ones we present here is likely to be considered for future work.

2 Preliminaries

Labelled Transition Systems. An (input/output) labelled transition system
[15] is a 5-tuple 〈Q,LI , LU ,→, q0〉, where Q is a set of states, LI and LU are two
disjoint sets of input and output labels, respectively, → is the transition relation
and q0 ∈ Q is the initial state. We use the name of the labelled transition system
and its initial state interchangeably. A special label τ is used to mark internal

unobservable transitions. We indicate (q, λ, q′) ∈ → as q
λ−→ q′ and we say that

q enables λ. The union of LI and LU is shortened in L. The class of all labelled
transition systems over LI and LU is denoted by LT S(LI , LU ). Let q, q

′ be states
of a labelled transition system in LT S(LI , LU ) and ε be the empty sequence, we

define q
ε
=⇒ q′ ⇐⇒ q = q′ or q τ−→ . . .

τ−→ q′. Given a label λ, we define q
λ
=⇒ q′

as q
ε
=⇒ p

λ−→ p′ ε
=⇒ q′ and extend =⇒ for sequences of labels in the usual way.

The set of traces enabled in a state q is traces(q) = {σ ∈ L∗ | ∃q′ . q σ
=⇒ q′}.

We denote the set of states that are reachable from a given state q via a trace
σ as (q after σ) = {q′ | q

σ
=⇒ q′} and by extension, given a set of states P :

P after σ =
⋃
{q after σ | q ∈ P}.

A state q is called quiescent if ∀λ ∈ LU∪{τ} : q � λ−→ q′ for all q′ ∈ Q, i. e., q does
not enable any output or internal action. Let δ �∈ LI∪LU , Lδ is defined as L∪{δ}
and 〈Q,LI , LU ∪{δ},→δ, q0〉 is the labelled transition system 〈Q,LI , LU ,→, q0〉
to which we add a δ-loop transition q

δ−→ q to all quiescent states. The set of
suspension traces accepted by a state q is Straces(q) = {σ ∈ L∗

δ | ∃q′ . q σ
=⇒ q′}.
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We denote the set of outputs, including quiescence, that are enabled by a set

of states P as out(P ) = {λ ∈ LU ∪ {δ} | ∃q ∈ P, q′ ∈ Q : q
λ
=⇒ q′}. In an

input-enabled labelled transition system all states enable all inputs, we denote
the class of all input-enabled labelled transition systems over LI and LU as
IOT S(LI , LU ) and its elements are called input-ouput transition systems.

From this point forward, we write σ1·σ2 or just σ1σ2 to denote the concatena-
tion of sequences σ1 and σ2. We also use S·A, where S is a set of traces and A a
set of labels, to indicate the set of traces obtained by extending each element of
S with each label in A. We usually indicate a single label with λ and a trace with
σ. From now on, we consider only finite settings, even if not explicitly stated.

Active Learning of Deterministic Finite Automata. In the setting of ac-
tive learning, Angluin’s L

	 [3] is a well known, efficient algorithm that infers a
DFA for a regular language. The algorithm assumes the existence of a teacher
which is able to reply to two kinds of questions: membership queries and equiv-
alence queries. With a membership query the algorithm checks if a particular
trace over the alphabet is accepted by the language and it stores the answers
in a table, called an observation table. The observation table maintains a prefix
closed set of traces S, representing the states of the DFA and a suffix closed set
of traces E, used to distinguish such states. A set containing the one label exten-
sions of S is also stored. Membership queries are asked until the observation table
satisfies two properties, closedness and consistency, that allow the algorithm to
conjecture a unique, minimal DFA which is consistent with the observation ta-
ble. Now the algorithm poses an equivalence query, asking the teacher if the
language accepted by the DFA is the one under learning. The teacher can reply
affirmatively, and then the learning is finished, or it can provide a counterexam-
ple that distinguishes the DFA from the language. The algorithm, then, uses the
counterexample to extend S and E, resulting in asking more membership queries
and improving the guess with the successive equivalence query. The observation
table will, eventually, produce the correct conjecture, that is isomorphic to the
minimal DFA accepting the target language. The approach that we present in
this paper follows the one described in this section, except for the counterex-
ample handling, which maintains consistency in the table, and for an additional
property that the table must fulfill, before asking an equivalence query.

In the next sections we claim that, while learning a labelled transition sys-
tem, the result of some membership queries can be inferred without asking the
query to the teacher. This is due to some properties of labelled transition sys-
tems. Given a labelled transition system q: (1) the set of traces traces(q) is
prefix-closed, (2) out(q after σ) �= ∅ ⇐⇒ σ ∈ traces(q). Other properties are
explained, later, in Definition 1.

3 Towards Learning of Labelled Transition Systems

The observation table presented in this paper has some differences with respect
to the observation table used for Angluin’s L	. Given the input-output nature of
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the system, it is logical to include outputs in the entries, as for learning Mealy
machines [14]. Moreover, nondeterminism makes the use of multiple outputs in
the table a natural choice, as for ONFSM [10]. For instance, in Figure 1a the
system can observe the sequence of inputs aa and then the output x, ending in
two different states, one of them enables y (right branch), the other one enables
x (left branch). However, differently from ONFSM, the presence of possible mul-
tiple inputs and outputs in sequence, e. g. the trace aaxx in Figure 1a, implies
the use of outputs also in S and E.
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(a) A nondetermin-
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tion system q.
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(c) Hypothesis induced by
the observation table of Fig-
ure 2d.

Fig. 1. Labelled transition systems used as examples in the paper

Equivalence of Labelled Transition Systems. In general, an equivalence
query asks if a conjecture, or hypothesis, that the algorithm is able to produce
from an observation table is equivalent to the SUL. In model-based testing, la-
belled transition systems are widely used, and previous work in the field suggests
the use of suspension-trace equivalence [18,16]. We can employ such a relation if
we assume equivalence exhaustiveness, i. e., the teacher is always able to answer
correctly to the equivalence query, in a finite amount of time. Given that, in
practice, answering an equivalence query can be complex [13], instead of using
a strong trace equivalence, a conformance relation, such as ioco [15], can also
be used. Therefore, two labelled transition systems q1 and q1 are (suspension-
trace) equivalent if and only if they have the same set of suspension traces, i. e.,
Straces(q1) = Straces(q2). We use [q]δ to denote the equivalence class of all
labelled transition systems equivalent to q, i. e., all labelled transition systems
having the same set of suspension traces of q.

3.1 Valid Suspension Automata

In the context of model-based testing, a suspension automaton is a deterministic
labelled transition system that can be used to describe the behaviour of a more
general labelled transition system to which δ transitions have been added. This
notion was first introduced in [15], acting as basis for the derivation of test cases
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for checking the conformance of an implementation with respect to a specifica-
tion. Given a labelled transition system q, we obtain a suspension automaton qδ
by making quiescence explicit, i. e., by adding δ loops to quiescent states, and
then determinizing the result. It is trivial that the set of traces accepted by qδ is
equivalent to the set of suspension traces of q. Figure 1b depicts the suspension
automaton obtained from the labelled transition system of Figure 1a. We extend
the use of [•]δ to suspension automata: [qδ]δ represents the equivalence class of
all labelled transition systems whose set of suspension traces is equivalent to the
set of traces accepted by qδ.

Not all deterministic labelled transition systems, over a given alphabet con-
taining δ, are good candidates for being the suspension automaton of some la-
belled transition systems. In [18] some properties are given to determine when
a deterministic labelled transition system is a valid suspension automaton, i. e.,
there exists at least one labelled transition system belonging to its suspension-
trace equivalence class. These properties are exhibited in the following definition.

Definition 1. A valid suspension automaton is a labelled transition system
〈Q,LI , LU ∪ {δ},→, q0〉 that is: (i) non-blocking, i. e., ∀q ∈ Q, ∃λ ∈ LU ∪
{δ} . q

λ−→; (ii) quiescent reducible, i. e., ∀q ∈ Q, ∀σ ∈ L∗
δ . δ·σ ∈ traces(q) ⇒

σ ∈ traces(q); (iii) anomaly-free, i. e., ∀q ∈ Q, ∀λ ∈ LU . δ·λ �∈ traces(q);

(iv) stable, i. e., ∀q, q′, q′′ ∈ Q . q
δ−→ q′ δ−→ q′′ ⇒ traces(q′) = traces(q′′).

In [15] is provided a constructive definition of suspension automata, showing
that for each labelled transition system there exists a (valid) suspension automa-
ton accepting the same suspension traces. Theorem 1 proves the converse.

Theorem 1. Let qδ ∈ LT S(LI , LU ∪ {δ}) be a valid suspension automaton.
Then, there exists a labelled transition system q ∈ LT S(LI , LU ) such that
Straces(q) = traces(qδ).

In the rest of the paper we will present an algorithm that, given a system
that behaves as an input-ouput transition system q, learns a valid suspension
automaton qδ such that q ∈ [qδ]δ.

4 Improving Queries and Observation Tables

In the context of active black box learning, where one tries to learn an unknown
system by providing inputs and observing outputs, the learner should always be
able to try an input, independently from the state of the system. For this reason
we consider the system under learning as an input-ouput transition system. The
assumption that the system, indeed, behaves as an input enabled input-ouput
transition system, is known as the testing assumption [15].
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Membership and Equivalence Queries. In any L
	-style learning algorithm,

the teacher must be able to reply to two types of queries: membership queries
and equivalence queries. A membership query, in the form of a trace σ, is used to
obtain the set of outputs, out(SUL after σ). For this reason, the teacher must
be able to reply with all output actions (including quiescence) that are observ-
able after executing the trace σ. The all weather condition [8] ensures that the
teacher provides the entire set of outputs with one single query. Not all member-
ship queries, however, bring new information. In fact the behaviour of labelled
transition systems makes certain that, for some membership queries, the reply
can be inferred from the observation table. For instance, out(SUL after σ·λ),
where σ ends with δ and λ ∈ LU , is the empty set, for any SUL, because of
Definition 1.(iii). Moreover, this is also the case, if we already know that λ does
not belong to the result of the query σ, see Property (2) in Section 2. Finally,
testing a trace containing sequences of δ is the same as testing the trace obtained
by reducing all such sequences to a single δ, Definition 1.(iv).

An equivalence query confirms the equivalence of the current conjecture to
the SUL. If they are not equivalent, the teacher provides a counterexample,
i. e., a trace c such that out(SUL after c) �= out(conjecture after c). The idea is
that the counterexample contains a suffix that distinguishes two states that are
currently represented by the same state in our conjecture. In practice it is not
easy for the teacher to reply to an equivalence query.

Observation Tables. In our approach, the observation table is composed of
a non-empty, finite, prefix-closed set S � L∗

δ , a non-empty, finite, suffix-closed
set E � L∗

δ , and a function T which maps traces in ((S ∪ S·Lδ)·E) to a subset
of (LU ∪ {δ}). We use s and e to identify elements of S and E, respectively.
The function T provides a set containing the last, observable, outputs, i. e.,
T (s·e) = out(SUL after s·e). We refer to an observation table as (S,E, T ). The
observation table is viewed as a matrix. Its rows are indexed by elements of S and
their extensions with one label (elements of (S·Lδ)), while columns are elements
of E. The entry for row s (resp. row sλ) and column e is given by T (s·e) (resp.
T (sλ·e)). Given an observation table (S,E, T ) and a trace s ∈ (S∪S·Lδ), row(s)
denotes the function f from E to 2(LU∪{δ}) defined by f(e) = T (s·e). In Figure 2
are given (the matrix views of) some observation tables. Note the absence of
some elements from the part of the tables representing (S·Lδ). For instance, in
Table 2a is missing the row indexed by x (one letter extension of ε). We avoid to
indicate such a row, because, being x /∈ out(SUL after ε), T (x·ε) = ∅, and given
the prefix-closedness of traces(SUL), the entire row is filled with empty sets.
In Table 2b, instead, a is not present in the bottom part, i. e., (S·Lδ), because
that row is already present in the top part (S), and by not showing it again, we
avoid redundancy. Furthermore, note that for each observation table and prefix
s, T (sδ·ε) ⊆ {δ}, because after observing quiescence in any labelled transition
system (under learning), another output cannot be observed [17].
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Closed and Consistent Tables. A table is closed if, for each s1 ∈ (S·Lδ), if
T (s1·ε) �= ∅, then there exists an s2 ∈ S such that row(s1) = row(s2). A trace s ∈
S for which T (s·ε) = ∅ is not considered because it represents a trace s extended
with an output not in out(SUL after s). Due to the prefix-closedness of the set
of traces, the entire row would be filled with empty sets, expressing, semantically,
a non-accepting sink state. In such case, we say that row(σ) is undefined. A table
is consistent if, for each s1, s2 ∈ S such that row(s1) = row(s2), for each λ ∈ Lδ,
row(s1λ) = row(s2λ). From a closed and consistent table it is possible to build
an input-ouput transition system 〈Q′, LI , LU∪{δ}, T ′, q′0〉, by using Algorithm 1.
We call it the hypothesis induced by the observation table and denote it as H.

Algorithm 1. Construct Hypothesis H
Input: A closed and consistent observation table (S,E, T ).
Output: A labelled transition system H = 〈Q,LI , LU ∪ {δ},→, q0〉.

1: Q = {row(s) | s ∈ S}
2: q0 = row(ε)
3: for each row(s) ∈ Q do
4: for each λ ∈ LI do

5: add row(s)
λ−→ row(s·λ)

6: for each λ ∈ (LU ∪ {δ}) do
7: if λ ∈ T (s, ε) then

8: add row(s)
λ−→ row(s·λ)

A state row(s) of H is represented by an element s of S. An outgoing transi-
tion, labelled with λ, is added accordingly to row(sλ), i. e., the transition labelled
with λ leaving row(s) will reach the state row(sλ), if it is defined.

Note that H is deterministic and that it is a well defined labelled transition
system, in fact, being S non-empty and prefix closed, it contains ε, thus Q and
qε are well defined. Let us consider two elements s1 and s2 belonging to S,
such that row(s1) = row(s2). Consistency implies that, for all λ ∈ Lδ either
row(s1λ) = row(s2λ) or none of them are defined. Closedness implies that,
if row(s1λ) and row(s2λ) are defined, there exists s ∈ S such that row(s) =
row(s1λ) = row(s2λ). Furthermore, since E is non-empty and suffix closed,
it contains ε, thus T (s1·ε) = T (s2·ε). The transition function → is then well
defined.

Example 1. Consider the observation table (S,E, T ) of Figure 2d. It is closed,
thus we can construct an hypothesis. Figure 1c is the result of running Algo-
rithm 1 on (S,E, T ). Each state is labelled with the related trace of S. The initial
state is the one labelled with ε (Line 2 of Algorithm 1). Then, for each state, a
transition is added for all the inputs (Lines 4 to 5) and for all the outputs that
are enabled in that state (Lines 6 to 8).
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The correctness of Algorithm 1 is given by Theorem 2 and Theorem 3. We
follow a proving path similar to the one in [9].

Theorem 2. If an observation table (S,E, T ) is closed and consistent, S is
prefix closed and E is suffix closed, then the hypothesis H, obtained by running
Algorithm 1 on it, is compatible with the function T , i. e., ∀s ∈ (S ∪S·Lδ), ∀e ∈
E . out(H after s·e) = T (s·e).

Theorem 3. Let (S,E, T ) be a closed and consistent observation table such that
S is prefix closed and E is suffix closed, and let H = 〈Q,LI , LU ∪ {δ},→, q0〉
be the input-ouput transition system induced by (S,E, T ). For any deterministic
input-ouput transition system H′ = 〈Q′, LI , LU ∪ {δ},→′, q′0〉 compatible with T ,
|Q′| ≥ |Q|.

An observation table that is not closed has some elements of (S·Lδ) for which
there exists no element of S with the same row function. To close such table,
we add a representative of each of those elements to S and, then, we update the
function T accordingly to SUL (see Algorithm 2).

Algorithm 2. Close (S,E,T )

Input: An observation table (S,E, T ).
Output: A closed observation table.

1: while ∃s1 ∈ (S·Lδ) such that T (s1·ε) �= ∅ and ∀s ∈ S, row(s1) �= row(s) do
2: S ← S ∪ {s1}
3: Complete (S,E, T ) by asking membership queries
4: return the updated observation table (S,E, T )

Note that prefix closedness of S and consistency of the table are preserved. Af-
ter having added an element to S, the set (S·Lδ) is extended with new elements.
Some rows indexed by new elements are empty, thus we need to ask membership
queries to fill them. We denote this action as completing T (Line 3).

Example 2. Let us consider the labelled transition system q of Figure 1a and
an observation table (S,E, T ) where S = E = {ε}. Figure 2a represents such a
table, after completing T accordingly to q. Such a table is not closed, because
of row(a) not being represented in S. Thus we add a to S and then we ask
membership queries obtaining Table 2b. Table 2b is not yet closed, after two
more attempts we, finally, obtain a closed table (Table 2d).

Counterexample Analysis. In the original L	 algorithm, when a counterex-
ample is found, all its prefixes are added to S. This could lead to an inconsistent
observation table. In [11], a different approach is proposed: by adding a proper
suffix of the counterexample to E, the learning can continue, without adding
any element to S, avoiding possible inconsistencies in the observation table.
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ε
S ε {δ}

S·Lδ
a {x, δ}
δ {δ}

(a) Initial ob-
servation table
(S,E, T ).

ε

S
ε {δ}
a {x, δ}

S·Lδ

δ {δ}
aa {x}
ax {x}
aδ {δ}

(b) (S,E, T ) af-
ter the first clo-
sure attempt.

ε

S
ε {δ}
a {x, δ}
aa {x}

S·Lδ

δ {δ}
ax {x}
aδ {δ}
aaa {x}
aax {x, y}

(c) (S,E, T ) after
the second closure
attempt.

ε

S

ε {δ}
a {x, δ}
aa {x}
aax {x, y}

S·Lδ

δ {δ}
ax {x}
aδ {δ}
aaa {x}
aaxa {x, y}
aaxx {δ}
aaxy {δ}

(d) Closed observa-
tion table (S,E, T ).

Fig. 2. Three attempts of closing an observation table

We adapt the approach used in [12] for Mealy machines, inspired by [11], to
labelled transition systems: given a counterexample we decompose it into s·v,
where s is the longest element in (S·Lδ). A counterexample distinguishes the
hypothesis from the system under learning, i. e., it contains a suffix that dis-
tinguishes two (or more) states that are equivalent in the hypothesis. For this
reason we add the suffix closure of v to the set of suffixes E. This approach
is known to preserve consistency in the observation table, so that checking for
consistency is not necessary. After completing T with membership queries, two
(or more) rows that were equivalent will differ in the entry related to such suf-
fix. The difference in those rows makes the table not closed. This is explained

Algorithm 3. Analyse counterexample c

Input: An observation table (S,E, T ) and a counterexample c.
Output: A suffix-closed set E′.

1: Decompose c in s·v where
s is the longest prefix of c such that s ∈ (S ∪ S·Lδ)

2: return {v′ ∈ L∗
δ | v′ is a suffix of v}

formally in Theorem 4.

Theorem 4. The observation table obtained by adding the result of Algorithm 3,
executed on a closed and consistent observation table (S,E, T ) and a counterex-
ample c, to the set of suffixes E is not closed.

Thus, the analysis of a counterexample, and the subsequent table closure,
always ends in adding (at least) a state to the induced hypothesis.
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5 Quiescence Reducibility of the Observation Table

With labelled transition systems, after closing the table, the hypothesis that we
construct using Algorithm 1 may not be a valid suspension automaton, because
quiescence reducibility might not be satisfied (Theorem 5 and Example 3).

Theorem 5. Given a closed observation table (S,E, T ), the induced hypothesis
H is non-blocking, anomaly-free and stable.

The hypothesis H is non-blocking because the observation table is closed, and
anomaly-free because for each prefix s, T (sδ·ε) ⊆ {δ} (see Section 4). Stability
is given by the fact that δ appears in SUL only as self-loops.

Example 3. Table 2d shows a closed and consistent observation table.. Figure 1c
is the hypothesis H induced by (S,E, T ). The table is closed (and trivially con-
sistent), thus H is a well defined automaton, but it is not a valid suspension
automaton, i. e., there is no labelled transition system in LT S({a}, {x, y}) that
is suspension-trace equivalent to H. This is due to the state row(a): the trace
δaδ is accepted by that state, while aδ is not. Thus H is not quiescence reducible.

By checking quiescence reducibility for the hypothesis induced by a closed
table, we can improve our guess, i. e., construct a better hypothesis. In fact,
if the hypothesis is not quiescence reducible, then there is one (or more) state
that needs to be split. We can identify this state directly in the table, without
asking any membership or equivalence query; if the hypothesis is not quiescence
reducible, then we find a suffix-closed set to be added to E which makes the table
not closed. This property of the suspension automaton can be seen as a new
property of the observation table, that must be fulfilled before an equivalence
query is asked. Quiescence reducibility of a suspension automaton implies a
simulation relation between a state and the one reached from it by observing a
δ transition, i. e., trace inclusion, given the deterministic behaviour.

Algorithm 4 checks if the hypothesis induced by a given table (S,E, T ) is qui-
escence reducible. It checks that each state that enables δ simulates the state that
is reachable by observing δ. The list of state pairs that still need to be checked for
simulation contains also the information on how a pair of states has been reached
from the initial one (Line 3). This trace is needed for constructing the counterex-
ample from which we obtain new elements that must be added to E. Once a pair
of states that are trivially not in simulation relation is found, i. e., a pair 〈s1, s2〉
such that out(SUL after s1) does not include out(SUL after s2) (Line 8), we
found the element that added to E will make the table not closed. With this ap-
proach we split one of the states that have been encountered while constructing
the counterexample. This is similar to the counterexample analysis described in
Section 4. Note that in checking quiescence reducibility, if the algorithm finds
that the simulation does not hold for a pair of states row(s) and row(sδ), then
it returns a set of suffixes built from a trace σ that, appended to either s or sδ or
both is, indeed, a counterexample, i. e., out(H after sσ) �= out(SUL after sσ)
or out(H after sδσ) �= out(SUL after sδσ). Thus the same result of Theorem 4
applies. For those states that do not enable any output, i. e., those row(s) for
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Algorithm 4. Check for quiescence reducibility

Input: An observation table (S,E, T ).
Output: A set of suffixes E′.

1: for each s1 ∈ S . {δ} � T (s1·ε) do
2: s2 ← s ∈ S . row(s) = row(s1δ)
3: wait ← {〈s1, s2, ε〉} {list of state pairs to be checked associated with the sequence of

labels needed to reach them from the first pair}
4: past ← ∅ {list of checked pairs}
5: while wait �= ∅ do
6: Pick 〈s1, s2, σ〉 ∈ wait
7: for each λ ∈ T (s2·ε) ∪ LI do
8: if λ /∈ T (s1·ε) ∪ LI then
9: return {σ′ ∈ L∗

δ | σ′ is a suffix of σ}
10: else
11: s′1 ← s ∈ S . row(s) = row(s1λ)
12: s′2 ← s ∈ S . row(s) = row(s2λ)
13: if 〈s′1, s′2〉 /∈ past ∧ s′1 �= s′2 then
14: wait ← wait ∪ {〈s′1, s′2, σλ〉}
15: wait ← wait \ {〈s1, s2, σ〉}
16: past ← past ∪ {〈s1, s2〉}
17: return ∅ {no counterexample has been found}

which T (s·ε) = {δ}, the simulation check is not needed, because, for each of
those states, row(sδ) = row(s).

Example 4. Consider the hypothesis of Figure 1c, which is induced by the ob-
servation table represented by Table 2d. The only interesting state for check-
ing quiescence reducibility is row(a). So we want to check if row(a) simulates
row(aδ) = row(ε) (Line 2). At Line 6 〈a, ε, ε〉 is chosen (it is the only element in
wait), and given that T (a·ε) = {x, δ} ⊇ {δ} = T (aδ·ε) the if clause at Line 8
is never satisfied. Thus the algorithm tries to update wait with 〈aa, a, a〉, for
λ = a. If λ = δ the algorithm does not add any pair of states to wait because
row(aδ) = row(δ) = row(epsilon). The algorithm has finished with the pair
of states 〈a, ε〉 and it picks another element from wait: 〈aa, a, a〉. In this case
T (aa·ε) = {x} � {x, δ} = T (a·ε), thus row(a) does not simulate row(ε), and a is
the trace that, observed after those two states, proves it. Finally the algorithm
returns the set {a} containing such distinguish suffix.

Theoretically, checking for quiescence reducibility is not necessary. In fact, if
the hypothesis is not valid, it is not equivalent to the SUL. Thus an equivalence
query will eventually be able to spot the inequality, providing a counterexample,
possibly the same we discover with Algorithm 4. However, equivalence query is,
in practice, more expensive, in time, than performing an analytic checking on
the table. In a real system, if it is large enough, spotting the inequality with an
equivalence query could take a large amount of time [13].
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6 Learning Input-Output Transition Systems

The algorithm for learning input-ouput transition systems is an adaptation from
Angluin’s L

	, with the use of the algorithms already described previously in
the paper. The only difference in the main algorithm is the added quiescence
reducibility check at Line 6 which also implies the addition of the repeat loop
for closing the table.

Algorithm 5. Learn the input-ouput transition system SUL

Input: The set of input labels LI

Output: A valid suspension automaton H s.t. SUL ∈ [H]δ .

// Initialize (S,E,T )
1: S = E = {ε}
2: Complete (S,E, T ) by asking membership queries

// Start learning
3: loop
4: repeat
5: Close (S,E, T ) using Algorithm 2
6: Check quiescence reducibility with Algorithm 4 on (S,E, T ), obtaining a suffix-

closed set E′

7: E ← E ∪E′

8: Complete (S,E,T ) by asking membership queries
9: until E′ = ∅
10: Construct the hypothesis H using Algorithm 1 on (S,E, T )
11: Ask an equivalence query for H
12: if a counterexample c is found then
13: Analyse counterexample c using Algorithm 3 on (S,E, T ) obtaining a suffix-

closed set E′

14: E ← E ∪E′

15: Complete (S,E,T ) by asking membership queries
16: else
17: return H

Example 5. Let us run Algorithm 5 on the labelled transition system q of Fig-
ure 1a. First the observation table is closed (Line 5 obtaining the observation
table of Table 2d. Then quiescence reducibility is checked at Line 6, see Exam-
ple 3, and a is added to E. The table is then updated (Line 8), obtaining Table 3a.
This table is not closed, we close it obtaining Table 3b. Now the table is closed
again and the induced hypothesis is quiescence reducible. Thus we ask an equiv-
alence query at Line 11. Let assume that the teacher replies with the counterex-
ample axx, because out(SUL after axx) = {δ} �= {x, y} = out(H after axx).
By analysing the counterexample with Algorithm 3 we obtain the set {x}, thus
we add x to E resulting in updating the observation table to the one of Ta-
ble 4a. Note that Table 4a does not show the row for aδδ, because, given Defi-
nition 1.(iv), row(aδδ) is always equal to row(aδ). After some closing steps the
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ε a

S

ε {δ} {x, δ}
a {x, δ} {x}
aa {x} {x}
aax {x, y} {x, y}

S·Lδ

δ {δ} {x, δ}
ax {x} {x}
aδ {δ} {x}
aaa {x} {x}
aaxa {x, y} {x, y}
aaxx {δ} {δ}
aaxy {δ} {δ}

(a) Observation table after
adding a to E.

ε a

S

ε {δ} {x, δ}
a {x, δ} {x}
aa {x} {x}
aax {x, y} {x, y}
aδ {δ} {x}

aaxy {δ} {δ}

S·Lδ

δ {δ} {x, δ}
ax {x} {x}
aaa {x} {x}
aaxa {x, y} {x, y}
aaxx {δ} {δ}
aδa {x} {x}

aaxya {δ} {δ}
aaxyδ {δ} {δ}

(b) Closed observation ta-
ble.

Fig. 3. The closure of an observation table after the addition of a suffix

ε a x

S

ε {δ} {x, δ} ∅
a {x, δ} {x} {x}
aa {x} {x} {x, y}
aax {x, y} {x, y} {δ}
aδ {δ} {x} ∅

aaxy {δ} {δ} ∅

S·Lδ

δ {δ} {x, δ} ∅
ax {x} {x} {δ}
aaa {x} {x} {x, y}
aaxa {x, y} {x, y} {δ}
aaxx {δ} {δ} ∅
aδa {x} {x} {y}

aaxya {δ} {δ} ∅
aaxyδ {δ} {δ} ∅
(a) Adding x to E.

ε a x

S

ε {δ} {x, δ} ∅
a {x, δ} {x} {x}
aa {x} {x} {x, y}
aax {x, y} {x, y} {δ}
aδ {δ} {x} ∅

aaxy {δ} {δ} ∅
ax {x} {x} {δ}
aδa {x} {x} {y}
aδax {y} {y} ∅

S·Lδ . . . . . . . . . . . .

(b) Closed observation table.

Fig. 4. The construction of the final observation table

final table is produced (Table 4b). Part of the table is hidden for the sake of pre-
sentation. The hypothesis induced by that table is the one of Figure 1b, which
is the suspension automaton of q, and the algorithm terminates.

Note that Algorithm 5 does not check for consistency in the table. The only
action that adds elements to S is the closure of the table. The algorithm starts
with a single element in S, i. e., ε, and table closure preserves consistency. Thus
consistency is always satisfied. Algorithm 5 always terminates with a correct
suspension automaton:
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Theorem 6. Given a finite input-ouput transition system SUL, running Al-
gorithm 5 on SUL will terminate with a valid suspension automaton H whose
set of accepted traces is equivalent to the set of suspension traces of SUL, i. e.,
SUL ∈ [H]δ.

7 Conclusions

In this paper we have applied L
	-style active learning to nondeterministic in-

put/output labelled transition systems. The problems arising from the structure
of labelled transition systems, such as the nondeterminism and the possibil-
ity to observe multiple inputs or outputs in sequence, have been addressed by
modifying the observation table. Properties of the conjecture inferred from a
closed table have been studied, and a new property has been described. This
new property, quiescence reducibility, must be fulfilled by the observation ta-
ble. Validating this new property, by acting on the observation table, leads to
new states being added without the need of an equivalence query. We gave an
algorithm that works on the modified observation table, checking also for the
newly defined property. It is our belief that this paper can be the starting point
for research leading to an efficient implementation of L	 for reactive systems
behaving as labelled transition systems.

Future Work The results of this paper, are based on three assumptions: (i) the
testing assumption, (ii) the equivalence exhaustiveness, and (iii) the all weather
conditions. As future work, a study should be considered on the relaxation of the
last two assumptions. Especially, obtaining the entire output set in one query is
not feasible in practice. As a result, having less observations leads to construct
an hypothesis which might be nonequivalent to the SUL. In this case, a different
relation should be considered. An investigation might be done on ioco being a
proper relation for this purpose. For the same reason, the table might be incom-
plete, making the construction of a valid hypothesis impossible, thus closedness
and consistency might need to be redefined, as well. Another generalization of
the problem can be addressed by dropping the input-completeness of the system
under learning. In that setting, a different version of ioco, called wioco [17],
could be helpful, given that it deals with non input-enabled implementations.
Finally, an implementation of the algorithm is also to be considered.
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Verification of GUI Applications:

A Black-Box Approach

Stephan Arlt, Evren Ermis, Sergio Feo-Arenis, and Andreas Podelski

University of Freiburg, Freiburg, Germany

Abstract. In this paper, we propose to base the verification of a GUI
application on a reference model used in black-box testing. The reference
model is a formal model for the behavior of the GUI application. It
is derived by dynamic analysis (hence “black-box”). Thus, it can be
used to account for the graphical interface even when the GUI toolkit is
not amenable to formal analysis or its source code is not available. We
have implemented our approach; a preliminary case study indicates its
feasibility in principle.

“All models are wrong, but some are useful.”

George E. P. Box

1 Introduction

A long line of research has lead to advanced testing methods for GUI applica-
tions [1,2,14,18,20], but so far there has been only little work on the verification
of GUI applications [10,13,24]. Technically, a GUI application is a system where
we can distinguish two layers: (1) the actual program which is written by the
application programmer (it consists of a set of functions, the event handlers, one
for each event) and (2) the GUI toolkit which accommodates the (graphical)
interaction between the user and the program (it translates each user-triggered
event to the call of the corresponding event handler).

Often the source code of the GUI toolkit is not amenable to formal analysis
(it may not even be available). This is an issue for verification since the graphical
interface determines the space of possible sequences of events. For example, an
event may lead to opening a window and thus enable another event (which,
say, can now be triggered via a button in the window). The space of possible
sequences of events corresponds to the space of possible sequences of function
calls and thus to the execution space of the GUI application.

In this paper, we propose a new approach to verification that allows one
to resolve this issue. Our solution is to base the verification on the model of
reference for black-box testing. In black-box testing, a model for the space of
executable sequences of events is derived by a dynamic analysis. The dynamic
analysis executes the GUI application in a systematic fashion (an example is
the GUI Ripper of [21]) and ignores the source code (hence “black-box”). The
purpose of this black-box model is to define a space of sequences of events that is

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part I, LNCS 8802, pp. 236–252, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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useful for the selection of (‘executable’) test cases. The black-box model defines
an infinite execution space and the set of selected test cases must be finite.
Thus, (in Dijkstra’s words [9]) the test can never prove the absence of a bug
in the execution space defined by the black-box model. The new approach to
verification can.

We present a verification method that proves the absence of a class of runtime
errors (formalized as the safety of assert statements) in the execution space
defined by the black-box model. I.e., the method verifies the correctness of the
GUI application with respect to a particular formal semantics, namely the one
that is defined by the black-box model.

The input to the verification method consists of (1) the event handler program
and (2) the black-box model. The first step of the method consists of a semantics-
preserving translation of the black-box model into a driver program. The driver
program simulates the user interaction by non-determinism but restricts the
choice of events in such a way that their order in each possible sequence conforms
to the black-box model. The second step of the method is to construct a new
program which is composed of the event handler program (which, as mentioned
above, defines the event handler functions) and the driver program (which calls
the event handler functions in the order of the simulated events). The third step
of the method consists of applying a program verification tool (e.g., the software
model checker Automizer [15]) to the new program.

We have implemented the verification method in a prototypical infrastructure;
a preliminary case study indicates its feasibility in principle. Many design choices
are open, however, and there are several directions in which one can explore the
practical potential of the approach. This is not the focus of this paper. The
focus in this paper is to introduce the approach of black-box verification for
GUI applications and to define its formal foundation.

Roadmap. The next section uses an example to illustrate the overall approach.
Section 3 introduces a formal setting for verification and in particular it de-
fines the black-box semantics of a GUI application and the corresponding notion
of correctness. This sets the stage for the black-box approach to verification.
Section 4 instantiates the approach and introduces a verification method which
is based on a particular version of a black-box model (the EFG). Section 5
presents the case study for the implementation of the verification method in a
rather prototypical infrastructure. Section 6 discusses limitations and extensions
of our approach, and Section 7 presents related work. Section 8 is the conclusion
section.

2 Example

In this section we illustrate the application of our approach on an example of a
GUI application. The example application depicted in the screenshot in Figure 1
consists of a MainWindow and a Dialog. The MainWindow contains two buttons
which can fire the events e1 and e2. The Dialog contains one button which can
fire event e3.
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Fig. 1. An example of a GUI application. The arrows between the two screenshots
indicate the transition between two views: Clicking the button for event e2 leads to the
Dialog; i.e., the buttons for the events e1 and e2 are no longer enabled. Clicking the
button for event e3 closes the Dialog and leads back to the first view; i.e., the buttons
for the events e1 and e2 are enabled again.

1 class MainWindow extends JFrame {

2 File file;

3

4 void e1() {

5 file = null ;

6 }

7

8 void e2() {

9 file = new File ();

10 // assert(null != file);

11 file.open ();

12

13 Dialog dialog = new Dialog(this );

14 // assert(null != dialog);

15 dialog.setVisible (true );

16 }

17

18 class Dialog extends JDialog {

19 void e3() {

20 // assert(null != file);

21 file.write (42);

22 file.close();

23

24 this .setVisible (false);

25 }

26 }

27 }

Fig. 2. A code snippet of the event handler program of our example application. The
event handler e1 assigns the value null to the field file (line 5). The event handler e2
opens a file (line 9-11) and displays the dialog (line 13-15). The event handler e3 writes
something to the file (line 20-22), closes it, and hides the dialog (line 24).
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We show the event handler program (which, as mentioned above, is written
by the application programmer and which contains the event handler function
for each of the three events) in Figure 2.

In the example application, the correctness of executions is specified with
the help of assert statements. Each assertion expresses that the access to a
variable is well-defined (here: that the variable is not null; see line 10, line 14,
and line 20 in Figure 2). In our implementation, we exploit the fact that such
assert statements are inserted automatically by the translation to the Boogie
code; see [4]. The execution is correct (or: safe) if the specified assertion holds
whenever the assert statement is executed.

e1

e3

e2

Fig. 3. A black-box model (an Event Flow Graph (EFG)) for the example application.
Note that event e3 can follow only after e2. A path in the EFG encodes a sequence
of user interactions. The marking of initial nodes encodes that a user interaction can
start with e1 and e2, but not with e3.

Figure 3 shows the black-box model that is derived automatically by the GUI
Ripper presented in [21] (which is essentially a systematic way to execute the
GUI application). Here, a set of sequences of events is represented by an Event
Flow Graph, short EFG (which is used to generate test cases in [20]). Each node
in this directed graph corresponds to one of the three events e1, e2, and e3. An
edge between two events states that the corresponding events can be executed
consecutively. The idea is that a path in the EFG encodes a possible history of
user interactions, i.e., an executable sequence of events. The marking of e1 and e2
as initial nodes encodes how a user interaction can start. The EFG is equivalent
to a finite automaton (over the alphabet of events) which has essentially three
states, one for each event; each state records the letter read by the transition
leading to the state. As an aside, to discuss a (perhaps non-trivial) engineering
issue, we can apply the tool Gazoo [1,2] and the tool Joogie [3] in order to extract
the event handlers (first in Java bytecode [17], then in Boogie [4]).

In the first step of our verification method, we translate the EFG into a
driver program (not shown). In the second step, we construct a new program
which composes the driver program and the event handlers. The new program is
shown in Figure 4. The program starts with the block START, which provides a
goto statement, which in turn allows the non-deterministic choice of the blocks
e1 and e2. The blocks that can be chosen within the block START conform to
the initial events that can be chosen from the EFG. In this program, each event
handler is encoded as a set of blocks. For example, the event handler for event
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e1 is encoded in block e1, the one for event e2 in block e2 etc.. The last block of
each event handler contains a goto statement, which allows a non-deterministic
choice of possible succeeding events according to the EFG. Finally, the block
EXIT is responsible for closing the GUI application.

The third step of our verification method is to apply the software model
checker Automizer in [15] to the program in Figure 4, which returns that the
program is SAFE.

In the example, it is easy to see that all executions according to the black-box
semantics specified by the EFG are safe. We note that the variable file is set
to null in (the event handler for) event e1 and accessed in event e3. However,
as specified by the EFG, it is not possible to have event e3 follow directly after
event e1.

Discussion. The following two points concern the relationship between the set of
event sequences that are executable in the GUI application (i.e., the system for
which we build a formal model using the EFG) and the set of event sequences
that is defined by the EFG; see Figure 5.

(1) The correctness statement produced by the verification method does not
extend to executions outside of the black-box semantics specified by the EFG.
The edges in the EFG arise from sample executions; it is possible that an edge is
missing because the construction of the EFG by the GUI Ripper misses a crucial
sample execution. In this case, there exists an event sequence in the set obtained
by the set-theoretic difference blue\gray of the sets in Figure 5.

(2) The motivation for the construction of the EFG in black-box testing is
to optimize the selection of test cases, i.e., to avoid the selection of (too many)
event sequences that are not executable (e.g., because the button for an event is
not enabled). Nevertheless, in general not every event sequence in the black-box
model is executable (to optimize the scalability of the construction of the black-
box model, only binary dependencies between the order of events are recorded);
i.e., there may exist event sequences in the set obtained by the set-theoretic dif-
ference gray\blue of the sets in Figure 5. In other words, the black-box semantics
is an abstraction (a conservative approximation) of the set of executions that
are the target of the black-box test (i.e., of the intersection gray∩blue).

For verification, it does not matter whether the event sequence is executable
or not as long as the corresponding execution is correct (a principle which is ex-
ploited in all abstraction-based verification methods). As always in abstraction-
based verification, the abstraction must not be too coarse, which here means
that non-executable event sequences may correspond to unsafe executions. For
example, if we took the trivial EFG (a totally connected graph), the verification
for the corresponding black-box semantics would not succeed (take any event se-
quence where event e3 follows directly after event e1, which leads to the violation
of the assertion in the event handler for e3).
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1 procedure GUI_Application () modifies ... {

2 START:

3 // do initialization

4 ...

5 goto e1, e2;

6

7 // handler of event 1

8 e1:

9 $file := $null;

10 goto e1, e2, EXIT;

11

12 // handler of event 2

13 e2:

14 // open file

15 call $file := File$File$ctor ();

16 assert($file != $null);

17 call void$File$open ($file);

18

19 // open dialog

20 call void$Dialog$setVisible(true );

21 goto e3, EXIT;

22

23 // handler of event 3

24 e3:

25 // write to file and close it

26 assert($file != $null);

27 call void$File$write ($file , 42);

28 call $file := void$File$close ($file);

29

30 // close dialog

31 call void$Dialog$setVisible( false);

32 goto e1, e2;

33

34 EXIT:

35 return;

36 }

Fig. 4. A code snippet of the Boogie program constructed in Step 2 of our verification
method. The program is composed from the driver program (obtained by translating
the EFG in Figure 3) and the event handler program of the GUI application in Figure 1.
The procedure GUI Application defines a set of blocks for the event handlers e1, e2,
and e3. The event handler e1 assigns the value null to variable file (line 9). The
event handler e2 opens a file (line 14-17) and displays the dialog (line 19-20). The
event handler e3 writes something to the file (line 25-28) and closes it afterwards.
Finally, the event handler e3 hides the dialog (line 30-31).
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GUI application EFG

Fig. 5. Venn diagram illustrating the relationship between the (blue) set of event se-
quences that are executable in the GUI application (i.e., the system for which we build
a formal model using the EFG) and the (gray) set of event sequences that is defined
by the EFG. The two sets that are obtained by set-theoretic difference (i.e., blue\gray
and gray\blue) are generally non-empty.

3 Black-Box Semantics

We assume given a set of events E. The event handler program P consists of
definitions of functions,

P = {fe | e ∈ E}
where fe is an event handler function for each event e in E.

An execution of a GUI application is a sequence of calls of event handler
functions. Each sequence starts with the call of an initialization function finit
which we associate with a dummy event einit (i.e., finit = feinit). Note that the
dummy event must not be confused with initial events, i.e., events with which a
user interaction can start (and which are singled out by the EFG).

We assume that the definitions of the event handler functions come with a
correctness specification (e.g., an annotation of the code with assert statements
as in Boogie [4]) and that it is well-defined when a sequence of calls of functions
of P is correct (e.g., when the execution of all its assert statements is safe).

The intuition is that the sequence of function calls stems from a sequence of
interactions of a user with the GUI application. Each function call is triggered
by an event (whenever the user initiates an event, e.g., by clicking a button).
Thus, an execution corresponds to a sequence of events. Which event sequences
are possible depends on the GUI toolkit.

In our formal setting, we model the behavior of the GUI toolkit by a set L of
event sequences, i.e., L is a formal language over the alphabet of events.

L ⊆ E	

We assume that the language L is defined by a black-box model which is usu-
ally represented by some variant of finite automata [5,20,26]. In principle, the
language L can be defined by the GUI toolkit itself. In this case, the definition
is constructive only if the source code is available, and L will be not regular in
general, and perhaps not even effectively representable.

We model the GUI application as a closed system. I.e., we simulate the user in-
teraction by non-determinism and restrict the non-deterministic choice of events
in each sequence in such a way that their order conforms to the black-box model
(i.e., the sequence is a word in the language L). Formally, the event handler
program P and the black-box model defining the language of event sequences L
determine the semantics for the GUI application.
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Definition 1 (Black-box semantics, correctness of a GUI application).
We assume that a GUI application is given by the event handler program P =
{fe | e ∈ E} which defines a set of event handler functions, and a black-box model
which defines the language of event sequences L. The black-box semantics of the
GUI application is the set of all executions corresponding to a sequence of calls
of event handler functions, i.e., a sequence of the form fe0 , fe1 , . . . , fen where
fe0 is the initialization function and the sequence of events e1, . . . , en forms a
word in the language L.

� P �L = {fe0 , fe1 , . . . , fen | fe0 = finit, e1 . . . en ∈ L}

The GUI application is correct if each execution in the black-box semantics is
correct.

4 Verification Method

We now instantiate our approach and define a verification method where the
black-box model, i.e., the set of event sequences L, is given by an event flow
graph (EFG). An overview of the steps involved is shown in Figure 6.

Fig. 6. Overview of our verification method. In the first step, a black-box model M is
translated into the driver program PM. The second step composes the new program
PM[P ] by using the driver program PM and the event handler program P . In the third
step, a program verification tool is applied to the new program.

The verification method takes as input an event handler program P (which
defines functions) and an event flow graph M. The EFG M can be created
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automatically [21]. An event flow graph [20] is a black-box model in the form of
a directed graph

M = (E,E0, δ),

where E is the set of events, E0 ⊆ E is the set of initial events and δ ⊆ E × E
is the event flow relation. An edge (e, e′) ∈ δ between two events e, e′ ∈ E states
that the event e′ can be executed after the event e. If there is no edge between
events e, e′ then event e′ cannot be executed after event e.

An EFG model M defines a formal language over the alphabet of events,
L(M), which is defined as the set of sequences of events which label a path in
the EFG starting with an initial node. Thus, L(M)is the set of sequences of the
form σ = e0, e1, . . . , en where e0, . . . , en ∈ E and e0 ∈ E0, the edge (ei, ei+1) is
in the event flow relation δ for all indices 1 ≤ i < n.

We now present the verification method. The method establishes the correct-
ness of an application defined by program P with respect to an event flow graph
M. By Definition 1, the correctness means that all sequences in �P�L(M) are
correct.

The verification method consists of three steps.

(1) In the first step of our method, we construct a driver program PM which
simulates the message loop by employing the set of event handlers E and the
EFG M. For that, we perform the steps we already indicated in Section 2:

(a) The initialization function is called at the entry point to make sure the
application’s variables have their initial values set correctly.

(b) Immediately after the initial function, we simulate the message loop of the
GUI toolkit. The control flow of the program transfers non-deterministically
(by means of a non deterministic goto statement) to the handlers of the
initial nodes e in the EFG.

(c) At the end of each call, the control transfers again non-deterministically to
the handlers of the events that can be executed subsequently as indicated
by the EFG or to the program’s exit point. That is, the targets of the jump
after calling fei are the handlers of the events in the set {ei | (e, ei) ∈
δ} ∪ {EFG Exit}.

The exit label is introduced at the end of the program. The jump to that label
is necessary to simulate event sequences of finite length in the case of a cyclic
EFG.

(2) In the second step, we use the driver program PM and the event handler
definitions provided in the input program P to compose the verification program
PM[P ]. The code of the event handlers is introduced into the driver program.
Note that in contrast to what is shown in the example in Figure 4 (where the
functions are inlined), we here phrase the program construction in terms of
function calls.
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To better illustrate the program transformation, the control flow graph of the
program generated for the example in Section 2 is shown in Figure 7, a simplified
version of the source code is shown in Figure 4. Note the similarity of the control
flow graph of the generated program and the original EFG (see Figure 3).

init

e1

e2

e3

EFG Exit

Fig. 7. Control flow graph of the program generated for the example of Section 2.
The nodes correspond to the function calls for the initialization function and the event
handlers.

An execution of PM[P ] is a sequence of function calls where the functions are
the event handlers which are defined in P . We are thus in a situation analogous
to Definition 1 and we can define the semantics � PM[P ] � as the set of sequences
of function calls.

The soundness of our verification method can now be phrased in terms of the
black-box semantics and the semantics of the program PM[P ], as stated in the
theorem below.

Theorem 1 (Soundness of black-box verification method). Given an
EFG M, the black-box semantics of the GUI application coincides with the se-
mantics of the program constructed in Step 2 of the verification method. I.e.,

� P �L(M) = � PM[P ] �

The theorem holds essentially by the construction of PM. To give more details,
let � = fe0 , . . . , fen be a function call sequence in � P �L(M). By the construction
of PM, step (a), fe0 = feinit is the function called at the entry point of the
program. Functions called immediately after initialization are the handlers of
initial events. This is ensured by step (b) of the program construction. By step
(c), every pair of functions (fei , fei+1) for 1 ≤ i < n corresponds to the edge of
the EFG (ei, ei+1). Thus, � is an execution of PM.

Finally, let � = fe0 , fe1 , . . . , fen be a function call sequence not in � P �L(M).
We distinguish three cases:

– The first function call fe0 is not the initialization function. This contradicts
step (a) of the construction.

– The following function call fe1 is not the handler of an initial event, i.e.
e1 �∈ E0. This contradicts step (b).
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– There exists some position i, with 1 ≤ i < n, such that (ei, ei+1) is not an
edge of the EFG. This contradicts step (c).

Thus, � is not an execution of PM.

(3) In the third step, we apply a software model checker to the program PM[P ]
obtained in Step 2 to determine whether all assertions are safe. If this is the case,
our verification method outputs SAFE. When the software model checker finds
a violation, we output UNSAFE. Note that in this paper, we concentrate on the
verification of the black box model for the purpose of proving correctness. We
leave it to future work to investigate the use of black-box verification for bug
finding.

5 Case Study

5.1 Implementation

We have implemented and integrated the translation of a black-box model and
the translation of an event handler program into Joogie [3]. As input, Joogie
accepts an Event Flow Graph as the black-box model, and a Java program (e.g.,
a JAR archive) as the event handler program. The implementation is available
for download at joogie.org.

For simplicity, and without loss of generality, we considered only events whose
handlers change the program state without considering user inputs such as, e.g.,
string values in text boxes or choices of radio buttons. Those events that read user
inputs can be trivially replaced by a family of events where there is one for every
possible input value, at the cost of an increased program size. Alternatively, the
scope of the verification can be reduced by introducing restricted input ranges
as assumptions in the translation to Boogie code, at the cost of providing a
verification result applicable only to the input ranges specified.

Furthermore, the implementation makes use of inlining the event handlers
(as opposed to issuing function calls) to avoid the problem of inferring function
contracts and enable the use of a modular static analyzer. In our setting, we apply
the model checker Automizer [15]. However, our approach is not restricted by
the use of a specific software model checker.

5.2 Results

We apply our prototype implementation to the example presented in Section 2,
and to a suite of benchmarks from theCommunity Event-basedTesting (COMET).
The benchmarks contain GUI applications (written in Java) and a corresponding
black-box model respectively (here, an Event Flow Graph)1. These benchmarks
have been used in several studies on GUI testing (e.g., [16,19]). All experiments
are run on a workstation with 4 GHz CPU, 8 GB RAM. The focus of this study
is to evaluate, whether our approach is technically feasible.

1 Available for download at comet.unl.edu

joogie.org
comet.unl.edu
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The results of our experiments are summarized in Table 1. We report the
number of events, the time needed for the model checking and the final result
of the benchmark. The time required for the translation of the original Java
application is approximately one second for all benchmarks.

Table 1. The results of the case study. We report the name of the benchmark; the num-
ber of events in the black-box model; the duration (in seconds) of the model checking;
and finally the result of the model checking.

Benchmark Events Time (s) Result

Our example 3 0,268 SAFE

COMET repair-2-cons 3 0,606 SAFE

COMET repair-2-excl 3 0,558 SAFE

COMET repair-3-cons 4 0,789 SAFE

COMET repair-3-excl 5 1,005 SAFE

COMET repair-cmpd 5 0,968 SAFE

For all benchmarks, our approach correctly proved the corresponding Event
Flow Graphs as SAFE. The time needed ranges from 0.2 to 1.0 seconds. Both the
result of the benchmark as well as the time needed indicate, that our approach
is technically feasible in principle.

We must leave the verification of fully-fledged GUI applications to future
work. The reason is the prototypical nature of our implementation. Some lan-
guage features used by the open-source applications are not yet supported by
our infrastructure.

The current implementation assumes calls to external library functions (in-
cluding those in the GUI toolkit) to be side-effect free and to correctly handle
all exceptions caused. Thus, finding an assertion violation in PM[P ] points ei-
ther to a real bug in the original program P or to a false alarm caused by our
assumptions on the semantics of library function calls.

The handling of external function calls would need to extend the analysis in
order to check whether the calls issued from P do not cause errors by violating
the library contracts and by considering any modifications in the state of P
caused indirectly, e.g., through call-backs or the modification of global state
variables.

6 Discussion

In this section we discuss the creation of the black-box model and a possible
extension of our approach to enable model learning.

6.1 Black-Box Model

As shown in Section 4, the verification method presented in this paper is sound
with respect to the event sequences represented by the provided EFG. That is,



248 S. Arlt et al.

when the verification reports SAFE, it is guaranteed that none of the sequences
analyzed violate the specifications.

However, our approach is based on the model of reference for black-box test-
ing. The black-box model represents the space of executable event sequences and
is derived by a dynamic analysis called GUI Ripper [21] which ignores the source
code. The GUI Ripper constructs an event flow graph (the black-box model) by
executing the GUI application. For completeness we describe it briefly: The exe-
cution of the GUI application explores the hierarchical structure of the GUI using
depth-first search. For each widget found during the execution, say a button OK,
the GUI Ripper triggers the assigned event, i.e., a button click. By recording the
history of triggered events, the GUI Ripper detects the event flow and stores it
in the EFG. Since the GUI Ripper represents a dynamic analysis (i.e., the GUI
application is executed in order to extract events) using depth-first search, there
exist two major limitations:

First, the GUI Ripper cannot guarantee that all event sequences in the re-
sulting black-box model are executable. That is, a path in the EFG (forming
an event sequence) might not be executable, since its events are only pair-wise
executable. Note that there is empirical evidence that even long event sequences
obtained from an EFG can run without failures [28]. However, the EFG repre-
sents an approximation of the actual event-flow of the GUI application.

The second limitation of the GUI Ripper is that it cannot guarantee to find
all widgets of the GUI application. For instance, the application itself might be
faulty, e.g., a new window opens in the background and the GUI Ripper misses it.
Furthermore, whether a widget is visible or hidden during the dynamic analysis
may depend on the environment (e.g., user settings). These problems tend to
be of technical nature and their severity might differ depending on the platform
used.

To summarize, the dynamic analysis is neither sound nor complete as it may
either miss events available in the GUI application or construct a model that
contains non-executable event sequences.

6.2 Model Learning

Due to the nature of our verification approach, spurious counterexamples can
be output. That is, the model checker may output UNSAFE for event sequences
that are not executable. A model learning refinement step may be added to our
approach to enable those sequences to be excluded automatically. Other authors
propose analogous approaches [8,25,27].

The violating sequence output by the model checker can be replayed on the
GUI application to determine whether it is executable. An event sequence is a
path in the input EFG. If it is not executable, the graph can be modified to
ensure that the sequence is no longer contained in a refined EFG. In order to
achieve this goal, we first convert both the EFG and the non-executable event
sequence into non-deterministic finite automata, which allows us to apply regular
languages operations on these automata. In particular, the non-executable event
sequence is encoded as an accepting word of the EFG automaton. We construct
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the complement of the accepting word and intersect it with the EFG automaton.
The result is a refined EFG automaton which does not accept the non-executable
event sequence. Finally, we convert the refined EFG automaton back into an
EFG and restart the verification using it as input. A detailed elaboration of the
learning step is the subject of future work.

7 Related Work

To precede the summary of our comparison with related work, our work is the
first to investigate the definition of a formal semantics based on a black-box
model and the verification of a GUI application with respect to a black-box
semantics.

An approach which comes closest to our work is [22,23] which incorporates
planning from the domain of artificial intelligence to generate test cases for GUI
applications. The input to the planning system is a set of operators (namely, the
event handlers), an initial state, and a goal state of the GUI application. The
planning system outputs a sequence of operators that lead from the initial state
to the goal state. However, in this approach a test engineer has to manually
define the preconditions and effects of each operator. Our approach extends this
idea as follows: First, we propose an automatic translation of the operators of
a GUI application into a Boogie program. Second, the static analysis of our
approach can be replaced by other techniques.

The work in [6] presents a general approach to specify user interactions in
GUI applications from a design perspective. This technique allows the analysis
of user interactions using model checking, and the synthesis of user interactions
to executable GUI applications. Since the work in [6] presents a high-level ap-
proach, it obviates the efforts of extracting models, e.g., from the source code
of an existing application. In our case, we focus on supporting a test engineer
which usually deals with executable GUI applications instead of abstract mod-
els. Hence, the translation of an existing application into a verifiable program
presents one of the main technical contribution of this paper. In particular, our
approach allows the analysis of an executable GUI application, e.g., even in the
phase of release-to-manufacturing within a software release life cycle.

An approach which identifies useful abstractions of existing GUI applications
is presented in [10]. Those abstractions are based on structural features of GUI
applications, e.g., the enabledness of a button (enabled or disabled) using a
boolean value, or the current value of slider control using an integer value. First,
the abstractions are inferred manually from a GUI application. Then, the ab-
stractions are used to build a model which is checked by SMV [7]. In order to
overcome the manual identification abstractions, the work in [11] focuses on the
automatic analysis of interaction orderings with model checking. In the work [11]
the model is inferred via analyzing the code statically. The static analysis is tai-
lored to a specific GUI toolkit, namely Java Swing. Our approach uses a dynamic
approach: a model (the EFG) is created during the execution of the GUI ap-
plication. Since GUI code is written in many ways, a static analysis technique
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must be tailored to comprehend the behavior of each GUI toolkit. The use of
a black-box model is justified by the reasonable trade-off between applicability
and precision of a black-box model. Furthermore, the EFG is a black-box model
which works independently from a currently used GUI toolkit.

The work in [1] (with shared co-authors) presents a lightweight static analysis,
which generates all event sequences that are at the same time executable and
justifiably relevant. First, the approach infers a model which expresses depen-
dencies of events of the GUI application. Second, event sequences of bounded
length are generated from this dependency model. Third, an event flow graph
is incorporated in order to convert event sequences from the dependency model
into executable event sequences. The work presented in this paper represents
a logical next step in the line of that work: it uses an advanced static analy-
sis which is able to reason about properties of a GUI application, instead of
generating all event sequences that might violate a specific property.

8 Conclusion

We have presented a novel approach to the verification of GUI applications, an
approach that deals with the setting where one of its layers, the GUI toolkit, is
not amenable to static analysis or is not available at all. We have shown that
one can define a formal semantics even in this setting, namely by basing the
formal semantics on a black-box model which accounts for the behavior of the
graphical user interface.

A disclaimer is in order. Our approach is not compatible with the goal of
pervasive verification. We use a formal model (the black-box model) that is con-
structed with the help of a dynamic analysis, i.e., with a systematically chosen
but nevertheless finite and thus incomplete set of sample executions. Our method
is rather comparable with the verification of models that are constructed man-
ually. As every formal method, our method can give a guarantee only as far as
the model is concerned, and every model can account only for some part of the
system. The difference with the manually constructed model (and a bit of an
unorthodoxy) lies in the fact that the black-box model is constructed automati-
cally with a technique that stems from a notoriously incomplete method (namely
testing).

We have implemented the verification method in a prototypical infrastructure;
a preliminary case study indicates its feasibility in principle. Many design choices
are open, however, and there are several directions in which one can explore the
practical potential of the approach.

An interesting potential for our verification method may lie in its use to
complete a test; i.e., its success tells the tester that she can stop testing (at
least for the specified runtime error, and at least among the test cases that
can be selected from the derived black-box model). Additionally, the analysis
of GUI programs could be extended by automatically deriving and integrating
specifications for external libraries whose code is not necessarily available.
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We also see an interesting potential of our verification method for bug finding
(an incorrect execution in the black-box semantics may correspond to a bug).
We must leave the exploration of this direction to future work.

Other applications are also subject of further investigation: The idea of gener-
ating a driver program to encode non-determinism is also useful for verification
tasks in areas such as interrupt-driven programming or data structure and li-
brary invariants [12]. Here, as in our work, a model of the behavior of external
users or components can be useful to move from strenuous testing towards formal
verification.
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18. Mariani, L., Pezzè, M., Riganelli, O., Santoro, M.: AutoBlackTest: Automatic
Black-Box Testing of Interactive Applications. In: ICST, pp. 81–90 (2012)

19. McMaster, S., Memon, A.M.: Call-Stack Coverage for GUI Test-Suite Reduction.
IEEE Trans. Softw. Eng. (2008)

20. Memon, A.M.: An event-flow model of GUI-based applications for testing. Softw.
Test., Verif. Reliab. 17(3), 137–157 (2007)

21. Memon, A.M., Banerjee, I., Nagarajan, A.: GUI Ripping: Reverse Engineering of
Graphical User Interfaces for Testing. In: WCRE, pp. 260–269 (2003)

22. Memon, A.M., Pollack, M.E., Soffa, M.L.: Using a Goal-Driven Approach to Gen-
erate Test Cases for GUIs. In: ICSE, pp. 257–266 (1999)

23. Memon, A.M., Pollack, M.E., Soffa, M.L.: Hierarchical GUI Test Case Generation
Using Automated Planning. IEEE Trans. Software Eng. 27(2), 144–155 (2001)

24. Paiva, A.C.R., Faria, J.C.P., Mendes, P.M.C.: Reverse Engineered Formal Models
for GUI Testing. In: Leue, S., Merino, P. (eds.) FMICS 2007. LNCS, vol. 4916, pp.
218–233. Springer, Heidelberg (2008)

25. Raffelt, H., Merten, M., Steffen, B., Margaria, T.: Dynamic testing via automata
learning. STTT 11(4), 307–324 (2009)

26. White, L.J., Almezen, H.: Generating Test Cases for GUI Responsibilities Using
Complete Interaction Sequences. In: ISSRE, pp. 110–123 (2000)

27. Windmüller, S., Neubauer, J., Steffen, B., Howar, F., Bauer, O.: Active continuous
quality control. In: CBSE, pp. 111–120 (2013)

28. Yuan, X., Cohen, M.B., Memon, A.M.: Covering array sampling of input event
sequences for automated gui testing. In: ASE, pp. 405–408 (2007)



Fomal Methods and Analyses
in Software Product Line Engineering

(Track Summary)

Ina Schaefer1 and Maurice H. ter Beek2

1 Technical University of Braunschweig, Germany
2 ISTI–CNR, Pisa, Italy

1 Motivation

Software product line engineering (SPLE) [5,11] aims to develop a family of
software-intensive systems via systematic, large-scale reuse in order to reduce
time-to-market and costs and to increase the quality of individual products. In
order to achieve these goals, formal methods offer promising analysis techniques,
which are best applied throughout the product-line lifecycle so as to maximize
their overall efficiency and effectiveness.

While some analysis approaches (e.g. for feature modeling and variant man-
agement) and formal methods and automated verification techniques and tools
(e.g. CSPs, SAT solvers, model checkers and formal semantics of variability mod-
els) have already been applied to SPLE (cf. [12,3,13] and the references therein),
a considerable potential still appears to be unexploited. In fact, despite the work
that we just mentioned, the respective communities (SPLE, formal methods and
analysis tools) are only loosely connected.

2 Goals

This track brings together researchers and practitioners interested in raising the
efficiency and effectiveness of SPLE by applying formal methods and innovative
analysis techniques. Participants review the state-of-the-art and practice in their
respective fields, identify further promising application areas, report practical
requirements and constraints from real-world product lines, discuss drawbacks
and complements of the various approaches, or present recent emerging ideas
and results. The two long-term objectives of the FMSPLE workshop series are:

1. to raise awareness and to find a common understanding of practical chal-
lenges and existing solution approaches in the different communities working
on formal methods and analyses techniques for SPLE, and

2. to create a broader community interested in formal methods and analysis
techniques for SPLs in order to keep SPLE research and tools up-to-date
with the latest technologies and with practical challenges.

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part I, LNCS 8802, pp. 253–256, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



254 I. Schaefer and M.H. ter Beek

While in the previous four years, FMSPLE has successfully been held as a work-
shop affiliated with the international Software Product Line Conference (SPLC),
its 5th edition is held as a track at ISoLA in order to facilitate discussions with
other application domains of formal methods, verification and validation. Its 6th
edition will be held as a workshop at ETAPS 2015. Because of the highly inter-
active format of ISoLA tracks, locating FMSPLE as a track at ISoLA offers an
excellent opportunity for exchanging results and experiences of applying formal
methods and analysis techniques between SPLE and other application domains.

3 Contributions

The contributions of this track are separated into two parts. The first part con-
sists of formal modeling approaches for variable software. The second part consid-
ers formal analysis, testing and verification techniques for variant-rich software
systems and SPLs.

Part 1: Formal Modeling. Iosif-Lazar et al. [9] present a core calculus for
separate variability modeling. The approach is inspired from the Common Vari-
ability Language (CVL), but aims at unifying other variability modeling ap-
proaches such as Delta Modeling and Orthogonal Variability Modeling (OVM).
The introduced language, Featherweight VML, contains a single kind of varia-
tion point to define transformations of software artifacts in object models. Its
semantics comprehensively formalizes variant derivation, encompassing feature
models, variation points, implementation artifacts and transformations.

Collet [6] focuses on the modeling and management of multiple and com-
plex feature models. This paper reports on the development and evolution of
the FAMILIAR domain-specific language (for FeAture Model scrIpt Language
for manIpulation and Automatic Reasoning) and toolset. The author presents
the FAMILIAR language and discusses its various applications with advantages
and drawbacks. Furthermore, he identifies challenges for feature modeling and
management in the near future.

Damiani et al. [7] present a programming language approach for SPLs that
builds on their existing work on delta-oriented programming and trait-based
implementation of SPLs. In this approach, program modifications are expressed
by delta modules which rely on the trait composition mechanism. This smooth
integration of the modularity mechanisms provided by delta modules and traits
constitutes a new approach for programming SPLs which is particularly well
suited for evolving SPLs.

Broch Johnsen et al. [4] focus on deployment variability in virtualized product
lines. Their approach is based on the ABS language which supports deployment
models with a separation of concerns between execution cost and server capacity.
This allows the model-based assessment of deployment choices on a product’s
quality of service. In this paper, the authors combine deployment models with
the delta-oriented variability modeling to capture deployment choices as features
when designing a family of products.
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Part 2: Formal Analysis, Testing and Verification. Lochau et al. [10]
propose a delta-oriented extension to the process calculus CCS, called DeltaCCS,
that allows for modular reasoning about behavioral variability. In DeltaCCS,
modular change directives, i.e. deltas, are applied to core processes in order
to alter term rewriting semantics. Variability-aware congruences capture the
preservation of behavioral properties defined by the modal μ-calculus between
different CCS variants. A DeltaCCS model checker allows to efficiently verify
the members of a family of process variants.

Devroey et al. [8] focus on coverage criteria for model-based testing of SPLs
based on Featured Transition Systems (FTS). FTSs constitute a family-based
representation of SPLs extending labeled transition systems such that transi-
tions are moreover tagged with a feature. The authors define several FTS-aware
structural testing coverage criteria and combine these with usage-based testing
for configurable websites.

Ter Beek et al. [2] apply variability analyses on a small bike-sharing product
line. To this aim, they adopt a chain of existing feature modeling and variability
analysis tools (including S.P.L.O.T., FeatureIDE, Clafer, ClaferMOO and VMC)
to specify a discrete feature model, non-functional quantitative properties and a
behavioral model, and to perform a quantitative evaluation of the attributes of
products and model checking over value-passing modal specifications.

Ter Beek and De Vink [1] present a proof-of-concept of a feature-oriented mod-
ular verification technique for analyzing the behavior of SPLs with the mCRL2
toolset. The behavioral model of a SPL is modularized into components, based
on feature-driven borders, with interfaces that allow a driver process to glue
them back together on the fly. This is a powerful abstraction technique that
eases the model checking task, since it allows mCRL2 to concentrate on the
relevant components (features) for a specific property, and moreover allows the
result to be reused in other settings.
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Abstract. Separate variability modeling adds variability to a modeling
language without requiring modifications of the language or the sup-
porting tools. We define a core language for separate variability model-
ing using a single kind of variation point to define transformations of
software artifacts in object models. Our language, Featherweight VML,
has several distinctive features. Its architecture and operations are in-
spired by the recently proposed Common Variability Language (CVL).
Its semantics is considerably simpler than that of CVL, while remaining
confluent (unlike CVL). We simplify complex hierarchical dependencies
between variation points via copying and flattening. Thus, we reduce a
model with intricate dependencies to a flat executable model transforma-
tion consisting of simple unconditional local variation points. The core
semantics is extremely concise: it boils down to two operational rules,
which makes it suitable to serve as a specification for implementations of
trustworthy variant derivation. Featherweight VML offers insights in the
execution of other variability modeling languages such as the Orthogo-
nal Variability Model and Delta Modeling. To the best of our knowledge,
this is the first attempt to comprehensively formalize variant derivation,
encompassing feature models, variation points, implementation artifacts
and transformations.

1 Introduction

Model-driven development [30] of software products exploits rich system models
to represent the product architecture. When several products share a common
set of core assets they can be developed as a software product line [9]. Modeling
the product line architecture as a single base model facilitates the derivation of
new product variants by reusing artifacts from existing ones. Variability models
describe how the artifacts can be selected and recombined into new products.

Problem space modeling is performed by using feature models [21] (or alter-
natives such as decision models [28]) to describe how the characteristics of the
products vary in a product line. Individual products are described by selecting a
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set of features or resolving the decisions thus creating a particular configuration.
Dependencies between features and decisions are often specified to determine
which configurations are valid. Both feature and decision models have been stud-
ied extensively, including from the formal perspective [29], and their meaning is
now widely accepted both in research and practice.

Solution space modeling means specifying which artifacts from the base model
implement the product characteristics. It also specifies the method through
which new products can be derived. Annotative Variability Modeling [11] uses
annotations to mark the involvement of specific artifacts in the various as-
pects/characteristics. Product derivation is done by selecting only the artifacts
with the desired annotations based on a configuration. Feature-Oriented Pro-
gramming (FOP) [25] uses features to wrap the artifacts and describes a compo-
sitional approach to deriving new products. Other approaches [13] involve model
transformations where artifacts can be both removed and added to existing mod-
els. All these approaches have been studied from a practical perspective, but they
lack a formal understanding.

Software variability leads to great diversity which impacts all phases of soft-
ware development, from requirements analysis, over system design and imple-
mentation, up to quality assurance and system analysis [27]. Separate variability
models are independent of the language in which the base model is developed
so they can be reused to some extent to handle a system’s variability at mul-
tiple development phases. The Orthogonal Variability Model (OVM) [24], Delta
Modeling [26] and the Common Variability Language (CVL) [10] are examples
of separate variability modeling languages. While these languages have greatly
advanced variability modeling and SPL development, their not so strict specifi-
cations have left room for confusion when implementing derivation tools.

Our objectives are (i) to understand the execution semantics used by the
aforementioned languages and determine the core requirements for separate vari-
ability modeling, and (ii) to provide the formal specification of a language that
could be used in the development of a trustworthy product variant derivation
tool. Trustworthy product variant derivation is essential to the development of
safety critical embedded systems in domains such as automotive or industrial
automation [3,19]. Industrial standards such as IEC 61508 mandate the use of
state of the art tools and quality assurance techniques. So far, the industry cer-
tifies individual products, or even avoids introducing any variability into safety
critical parts of the systems1. Our goal is to facilitate the development of such
systems and to enable usable certification strategies for product line tools.

Contributions presented in this paper are:

– A core language for separate variability modeling, Featherweight VML, along
with an abstract semantics, which is as expressive and versatile as other
existing variability modeling languages.

– A formal specification of semantics for features with cardinalities [14] and
complex dependencies in the solution space model by copying and flattening
the variability model.

1 Personal communication with partners in ARTEMIS projects.
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– A copying semantics for executing the model transformations defined in the
solution space. We define two simple rules for determining which model
elements are part of the desired product variant. Compared to in-place model
transformations, a copying semantics can more easily be implemented in
declarative rule-based model transformation languages and it is easier to
reason about using theorem provers.

– A confluence result for our semantics: while other approaches suggest an im-
plementation by in-place transformations (which makes the transformation
order critical) our rules always produce the same result, independently of
the order in which they are applied. This opens for new opportunities to
implement product variant derivation tools using graph transformations.

The paper proceeds as follows. Section 2 provides an analysis of different vari-
ability modeling languages in order to determine the core requirements. Section
3 introduces a minimal representation of object-oriented models. Sections 4 and
5 describe the formal syntax and semantics of Featherweight VML. We discuss
the advantages and limitations of Featherweight VML and also the related work
in Sec. 6 and we conclude in Sec. 7.

2 Core Requirements

In order to develop a versatile foundation for variability modeling, we compare
CVL, Delta Modeling and OVM. We aim to find similarities in the way these lan-
guages represent the problem and solution spaces and the execution of variability
models. The results helps us setting a foundation for defining the semantics of
Featherweight VML.

2.1 Overview of Variability Modeling Languages

The Orthogonal Variability Model (OVM) [24] is designed to handle variability
between products. It leaves aside the common parts. It uses variation points to
specify which characteristics can vary (e.g. color) and variants to specify how
they vary (e.g. red, blue etc.). Dependency relations between the variation points
and variants limit the set of valid configurations. All artifacts are contained in
a single model. Both variation points and variants are mapped directly to these
artifacts so the solution space does not involve complex transformations. When
a configuration is selected (the desired variants are selected for each variation
point) the model is executed by extracting only the artifacts that the configura-
tion refers to.

In Delta Modeling [26], a product line is represented by a core module and a set
of delta modules. The core module provides an implementation of a valid prod-
uct that can be developed with well-established single application engineering
techniques. Delta modules specify changes to be applied to the core module to
implement further products by adding, modifying and removing artifacts. Delta
Modeling can use any problem space model representation. Each delta module



260 A.F. Iosif-Lazăr, I. Schaefer, and A.Wąsowski

has an application condition which the configuration must respect in order for
the delta to be executed. Delta Modeling can be applied to textual languages,
such as the HATS Abstract Behavioral Specification Language [6], or graphical
modeling languages, such as Matlab/Simulink [16].

The Common Variability Language (CVL) [10] is an industrial attempt to cre-
ate a generic language that facilitates separate variability modeling for models
specified in any MOF-based language [22]. It handles problem space modeling
through a variability specification tree. The variability specifications are special-
ized features that can be resolved in particular ways: choices require a yes/no
resolution; variables require a value for a specific artifact; classifiers represent
features that can be instantiated multiple times in a configuration (similar to
features with cardinalities [14]). CVL uses a constraint language to specify con-
straints over the variability specification tree. Configurations are represented as
resolution models. CVL models the solution space by starting from a base model
on which a wide range of transformations called variation points1 is applied.

2.2 Comparative Analysis

Modeling the problem space and the configurations is done for all three variability
modeling languages using some form of feature models or decision models. OVM
is closely related to decision modeling where each variation point is a decision.
CVL’s variability specification tree is an enhanced feature model with cardinali-
ties [14]. Delta modeling accepts any form of problem space model. Featherweight
VML handles the problem space using feature trees by allowing abstract features
with no implementation [31]. Also, by employing a constraint language we can
define any kind of dependencies between features or decisions.

Modeling the solution space is done in multiple ways. OVM uses an annotative
approach to mark which artifacts are implementing specific decisions. Delta mod-
eling uses a transformational approach to add, remove and modify artifacts from
the model. A delta module’s effects can span over the implementation of multiple
features so it is not restricted by the structure of a feature tree. CVL variation
points, especially the fragment substitution, can define complex transformations.
However, they are directly bound to variability specifications so they are con-
strained by the tree structure. Featherweight VML models the solution space by
using fragment substitutions exclusively. The other CVL variation points, delta
modules and of the OVM annotative technique can be encoded as syntactic sugar
using fragment substitutions.

Product derivation requires a clear understanding of how to execute a variabil-
ity model given a specific configuration. CVL defines how each kind of variation
point is executed. The variation points are partially ordered by the resolution
tree structure. However, execution is not confluent as two variation points at the
same level can have conflicting effects resulting in different variants depending
on the order. OVM uses a projection on the model artifacts referenced by the
selected variants. Delta Modeling executes each delta module by adding, modify-
1 CVL and OVM variation points are different concepts.
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ing and removing elements as specified by the modules. The modules also specify
a partial order using special clauses. The execution can be made confluent by
adding conflict resolving deltas for any pair of conflicting deltas [7].

Orthogonality of variability modeling is the degree to which variability is mod-
eled as a separate concern [12]. CVL defines a clear distinction between the
problem space modeling (via a variability specification tree), and solution space
modeling (via variation points). The variability model is completely separate
from the artifacts. OVM design is based on orthogonality. The artifacts can be
anything from requirements to model elements or code fragments. Delta Model-
ing can be applied to any language, textual and graphical alike. Delta modules
can use references to artifacts in a separate model to specify what is added,
removed and modified. Featherweight VML borrows the layered architecture of
CVL as it is general enough to be used with OVM and Delta Modeling.

3 Abstract Model Representation

Fig. 1. A fragment

Featherweight VML is designed to specify variability
in models defined using MOF-based metamodels, con-
sisting of objects and relationships between them. We
represent models as multi-graphs of attribute-less, un-
typed objects connected by directed links. We write O
(respectively L) to denote the infinite universe of all
objects (resp. links). Both objects and links are dis-
crete identifiable entities. The links are equipped with
endpoint mappings indicating source and target objects: src l and tgt l, both
total functions of type L → O. We assume that the universe of links is complete,
in the sense that it contains infinitely many links with unique identities between
any two objects in O.

Definition 1. A model m is a pair of sets of finitely many objects and finitely
many links, m = (mObj,mLnk),mObj ⊆ O,mLnk ⊆ L. A model fragment is a
subset of objects and links of a model, so syntactically it is also a pair f =
(fObj, fLnk).

Models represent products or other complete systems. Model fragments rep-
resent components or incomplete pieces of models.

We say that a model (or a fragment) m is closed under links if for each
link l ∈ mLnk its endpoints are contained in the model, so src l, tgt l ∈ mObj.
Figure 1 illustrates a closed model fragment r1 = ({o1, o2, o3}, {l1, l2, l3}). For
the remainder of the paper we lift set operators to fragment operators, e.g. f1⊆̇f2
means f1Obj ⊆ f2Obj ∧ f1Lnk ⊆ f2Lnk.

4 The Fragment Substitution Variation Point

We introduce the formal definition of Featherweight VML in two steps: first
we explain the execution of fragment substitutions, then we define the entire
variability model relating feature models and fragment substitutions.
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4.1 Syntax of the Fragment Substitution

Fig. 2. a) A fragment substitution.
b) Fragment interaction.
c) The execution result.

Fragment r1 introduced in Fig. 1 represents a
component that can be customized by replac-
ing o2 with a new object, o4. In Fig. 2a we
define a placement fragment, p1 (enclosed by
a dashed line), containing the elements that
must be removed from r1. We also define a
new replacement fragment, r2 (enclosed by a
solid line), containing the elements that must
be added. Finally, we create a new link, l4 (rep-
resented by a gray arrow), that binds r2 to the
rest of the model. The placement and replace-
ment fragments, p1 and r2, together with the
new link, l4, constitute a fragment substitu-
tion. Figure 2b shows how the fragment sub-
stitution interacts with r1. After execution we
obtain the result shown in Fig. 2c. The link l3
was removed even though it was not part of the placement fragment, in order to
avoid dangling links.

Definition 2. A fragment substitution fs is a triple (p, r, b) where p is a place-
ment fragment containing all the elements that must be removed, r is the replace-
ment fragment and b is a set of new links called a binding. The placement and
replacement fragments are disjoint, p∩̇r = (∅, ∅).

Most variability modeling languages mark a model fragment to be copied by
default and form the common base of any product variant (the core module in
Delta Modeling or the base model in CVL). In order to keep the number of
concepts low, in Featherweight VML we use fragment substitutions to represent
both the common base and the subsequent changes applied to it. The example in
Fig. 3a,b,c,d illustrates a set of fragment substitutions. We assume that we start
from an empty model and fs1 has only a replacement fragment which introduces
the common base. The remaining substitutions perform further customization:
fs2 and fs3 are removing the elements of p1 and attach two other fragments,
r2 and r3. The substitution fs4 attaches a new fragment so its binding links
have endpoints in r3. Figure 3e represents the interactions between all fragment
substitutions in a single model. Figure 3f represents the substitutions with the
Featherweight VML abstract syntax and Fig. 3g shows the final result.

Definition 3. The boundary of a fragment substitution fs = (p, r, b) is the set
of all endpoints of binding links that are not part of the replacement fragment:
boundary fs = {o | o = src l ∨ o = tgt l, l ∈ b} \ rObj.

We require that for any fragment substitution fs = (p, r, b), the boundary links
are not incident with placement objects, boundary fs ∩ pObj = ∅. All such links
would be removed as dangling since their endpoints belonging to a placement
would be removed.
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Fig. 3. a,b,c,d) A set of fragment substitutions. e) Interactions between fragment sub-
stitutions. f) Syntactic representation. g) The execution result.

In Fig. 3 we have boundary fs2 = {o1}, boundary fs3 = {o3} and boundary fs4 =
{o5, o6}. In Sec. 5 we will need to identify all artifacts that a fragment substitu-
tion affects outside of its own replacement fragment. These are the artifacts in
the placement fragment and the boundary objects used by the binding links.

Definition 4. Given a fragment substitution fs = (p, r, b), the closure of the
placement fragment p, written  p!fs, is defined as all objects of p plus the bound-
ary of the fragment substitution; the set of links remains unchanged:  p!fs =
(pObj ∪ boundary fs, pLnk).

In Fig. 3,  p!fs2 = ({o1, o2}, {l2}),  p!fs3 = ({o2, o3}, {l2}) and  p!fs4 =
({o5, o6}, ∅). Substitutions fs2 and fs3 have different placement closures even if
they refer the same placement fragment. This is because the binding links differ.

4.2 Execution Semantics of the Fragment Substitution

The example in Fig.3 gave the intuition of the fragment substitution execution
process. Instead of performing in-place changes to the model, we propose a copy-
ing semantics, meaning that we decide for each object/link whether it should be
part of the product variant and we copy only those for which we decide positively.

Given a set of fragment substitutions, Fs , we will copy all replacement frag-
ments and all binding links. However, we know that what is contained by place-
ment fragments should be removed and replaced so we will not copy these ele-
ments. We will not copy links that are incident with placement fragments either.
The result �Fs� of executing a set of fragment substitutions Fs is called a product
variant model; it is a pair of sets of objects/links. The following rules precisely
describe which objects and links are copied in �Fs�:
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o ∈ (
⋃

(_,r,_)∈Fs rObj)

o /∈ (
⋃

(p,_,_)∈Fs pObj)

o ∈ �Fs�Obj
(obj-copy)

l ∈ (
⋃

(_,r,b)∈Fs rLnk ∪ b)

l /∈ (
⋃

(p,_,_)∈Fs pLnk)

src l, tgt l /∈
⋃

(p,_,_)∈Fs pObj

l ∈ �Fs�Lnk
(lnk-copy)

The obj-copy rule says that any object contained in a replacement fragment
of a fragment substitution in Fs will be copied as long as it is not contained in
any placement fragment. The lnk-copy rule says that any link that is contained
in a replacement fragment or in a binding set of a fragment substitution in Fs
will be copied as long as the link or its endpoints are not contained in any
placement fragment. The rules are applied exhaustively for all objects and links
in all fragments and bindings in the set of fragment substitutions. The complete
input model is illustrated in Fig. 3e. Even though individual fragments do not
have to be closed, the complete input model may be closed. Lemma 1 ensures
that applying the rules to a closed input model results in a product variant
model without any dangling links.

Lemma 1. Given a set of fragment substitutions Fs such that the union of all
placement, replacement fragments and bindings is a closed graph, the product
variant model �Fs� is closed under links.

Proof. (Sketch) By assumption, the union of all objects and links is a closed
graph, so for every link that might be copied, the graph also contains its end-
points. Then we notice that premise of (lnk-copy) is that neither the source or
the target of the link being copied are contained in a placement fragment. Thus
it is guaranteed that for any link that is being copied, both link ends will also
be copied.

Lemma 2. Given a set of fragment substitutions, there exists a unique product
variant model created by the above rules.

The lemma holds by construction: objects and links are deterministically se-
lected from a finite set. It follows from the above lemma that the execution of
fragment substitution sets is order independent (in other words the semantics is
confluent), which opens for various implementation strategies.

5 The Variability Model

We have shown how to execute a set of fragment substitutions, Fs , to obtain
a product variant model. In a normal scenario, we would like Fs to describe
multiple variants and to be able to select only those fragment substitutions
that describe a specific product variant before executing them. We would also
like to be able to execute a fragment substitution multiple times and to use a
configuration to specify how many copies of the replacement fragment to include
in the product variant.
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Fig. 4. a) A variability model. b) A configuration and a
flattened set of fragment substitutions.

Figure 4a illustrates a
variability model where
each fragment substitu-
tion, fs1..4, is mapped to
a feature, ft1..4, from a
feature tree. Each feature
displays a cardinality con-
straint for how many in-
stances are allowed for
that feature under a sin-
gle parent. In Fig. 4b the
features are instantiated
in a configuration tree. The root feature has one root instance, feature ft2 is
not instantiated and ft3 is instantiated twice, meaning that its fragment substi-
tutions should be executed twice. Feature ft4 is only instantiated as a child of
i2.

Section 4.2 does not handle multiple execution of fragment substitutions. In-
stead we will show how to flatten the model and the chosen configuration in
a set of fragment substitutions that contains as many copies of each fragment
substitution as there are instances of its feature. Flattening the model in out
example would result in a set containing two copies of fs3, but no copies for fs2.

5.1 Syntax of the Variability Model

A feature model defines all characteristics that can be activated in a product
variant. Some characteristics may occur multiple times in a product variant
(e.g. the number of USB ports on a computer). For this reason, a feature in
Featherweight VML is similar to a type that can be instantiated multiple times
in the product variant so our features have cardinality [14].

Definition 5. A feature model is a rooted directed tree of features, Fm =
(Ft, ft0, parent ), where Ft is a set of features, parent ⊆ Ft × Ft is a connected
acyclic parent relation with no sharing (a tree), and ft0 ∈ Ft is the root of the
tree. We write parent ft2 = ft1, if feature ft1 is a parent node of ft2 in Fm.

Each feature ft has an associated cardinality constraint card ft = (min ft,max ft),
where min ft,max ft ∈ N∪ {∗}, min ft ≤ max ft (the symbol ∗ is considered greater
than any natural).

A set of fragment substitutions and the feature model that controls which
combinations of fragment substitutions can be executed together constitute a
complete variability model.

Definition 6. A variability model is a triple, (Fs,Fm,mapping ), where Fs is
a set of fragment substitutions, Fm = (Ft, ft0, parent ) is a feature model and
mapping : Fs → Fm maps each fragment substitution to a feature.

A configuration represents a combination of features that are active in a prod-
uct variant.
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Definition 7. Given a feature model Fm = (Ft, f t0, parent ), a configuration is
a rooted tree Cfg = (I, i0, parent , ty ), where I is a finite set of instances, i0 ∈ I
is the root of the tree, parent ⊆ I × I is a connected acyclic parent relation with
no sharing (a tree). The typing mapping ty : I → Fm maps every instance to its
feature, in a manner preserving the parent relations:

i. The root instance is typed by the root feature: ty i0 = ft0,
ii. The children of an instance are typed by children of its type: for instances i,

j, if parent i = j then parent (ty i) = ty j.
iii. The feature cardinality constraints are satisfied, so for each instance j ∈ I

and feature ft ∈ Ft, if parent ft = ty j then

minft ≤ |{i ∈ I | parent i = j and ty i = ft }| ≤ maxft

Before moving on to the execution semantics we give a set of well-formedness
constraints that guarantee that the flattening of variability models produces
unique sets of fragment substitutions that can be executed with the rules intro-
duced in Sec. 4.

C 1 The mappingof fragment substitutions to features is injective. Any two
fragment substitutions, fsi = (pi, ri, bi) and fsj = (pj , rj , bj), that should be
mapped to the same feature can be merged into a single fragment substitution,
fsn = (pi∪̇pj , ri∪̇rj , bi ∪ bj).

C 1 helps simplifying the following constraints and the semantics. It does not
limit the expressive power of Featherweight VML. If fsi and fsj should anyway
be mapped to the same feature then they should be executed together for each
instance of that feature. Thus, requiring that they should be combined into one
fragment substitution does not change their effect.

It is not required that every feature has a substitution mapped to it. The
inverse mapping−1 : Ft → [Fs ∪ {⊥}] returns the fragment substitution mapped
to a feature or ⊥ if such a fragment substitution does not exist.

C 2 All replacement fragments are closed under links. This constraint enforces
that for any link cloned during flattening, its endpoints are also cloned and all
the clones will be consistent with the original fragment.

Fig. 5. The replacement fragment problem

Figure 5 illustrates the re-
placement fragment problem
fixed by constraint 2. Assume
we have two replacement frag-
ments r1 and r2 such that a
link form r2 has an endpoint
in r1. Each fragment is used in a fragment substitution and each substitution is
mapped to a different feature. If we instantiate r1 two times and r2 three times
then there is no clear intuition about which of the new objects should be used
as endpoints for the new links. In fact, we could even instantiate the links, but
not their endpoints.
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C 3 For any fragment substitution fsi = (pi, ri, bi) ∈ Fs for which the placement
closure  p!fsi ˙�=(∅, ∅), we say that fsi applies to fsj and we write fsi � fsj if there
exists one and only one fsj = (pj , rj , bj) ∈ Fs such that  p!fsi⊆̇rj.

C 4 The structure enforced by the application, �, of fragment substitutions is con-
sistent with the classifier tree: if fsi � fsj then mapping fsj ∈ parent ∗(mapping fsi),
so if one fragment substitution applies to another, then it ismapped to a feature in the
subtree rooted by the feature of the other. Function parent ∗ is the reflexive transitive
closure of parent .

5.2 Execution Semantics of the Variability Model

Fig. 6. Illustration of the flattening process: a) before, b) after

In Fig. 6 we recall
the fragment sub-
stitutions of Fig.
4. On the left
side we have the
detailed contents
of the initial four
fragment substi-
tutions. On the
right side we have
the flattened set.
The configuration
does not contain
an instance for
ft2 so fs2 is not
copied. The substitution fs3 must be executed two times – once for the instance
i2 and once for i3. Since the semantics presented in Sec. 4.2 only execute each
substitution once, we flatten the model by computing how many times each frag-
ment substitution should be executed and cloning it the appropriate amount of
times (carefully updating references).

Preliminaries: Copying and renaming basic entities. Given a variability model,
(Fs,Fm,mapping ), we use the sets O and L to reference all artifacts contained
in this model, O =

⋃
(p,r,b)∈Fs [pObj ∪ rObj] and L =

⋃
(p,r,b)∈Fs [pLnk ∪ rLnk ∪ b].

Given a configuration Cfg = (I, i0, parent , ty) we use the set I of instances as
an index for renaming artifacts. Since the product variant model may end up
containing several copies of the same artifacts, we will need to create fresh objects
and links, and then be able to refer to them unambiguously. We model this using
two injective functions new-obj and new-lnk that create new objects/links for any
given feature instance.

new-obj : I ×O → O \O new-lnk : (I × I)× L → L \ L

We write the first argument in all renaming functions as an index to make the
notation more lightweight. Intuitively, the first argument represents an ordinal
index of the copy, whereas the second argument is the entity being copied.
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We require that the two functions map to an isomorphic graph structure, so
they are injective and for every pair of feature instances i, j (possibly but not
necessarily, i = j) and any link l we have that: src (new-lnki,j l) = new-obji(src l)
and tgt (new-lnki,j l) = new-objj(tgt l).

For every instance-object pair we get a different new object, which was not
in O. Similarly, for every instance pair (i, j) and a link we get a link connecting
copies of the objects related with new-obji and new-objj .

We lift the two functions to rename (create) entire sets of objects and links:

new-Obj : I × 2O → 2O\O, where new-ObjiO
′ = {new-objio | o ∈ O′} and

new-Lnk : (I × I)× 2L → 2L\L, where new-Lnki,jL′ = {new-lnki,j l | l ∈ L′}.

Such renaming functions always exist due to our assumption that the universes
of objects and links are complete and infinite and we can always obtain a new
link between any two objects.

Copying fragments and bindings. We will now explain how to copy a fragment
substitution such that all its clones (each clone implementing a different instance)
are independent of each other. We lift the simple renaming functions shown above
to fragments:

new-frgi(O
′, L′) = (new-ObjiO

′, new-Lnki,iL′).

In our example we copy the fragment r3 for the instances i2 and i3:
new-frg2({o5, o6}, {l5}) = (new-Obj2{o5, o6}, new-Lnk2,2{l5}) = ({o14, o15}, {l14}),
new-frg3({o5, o6}, {l5}) = (new-Obj3{o5, o6}, new-Lnk3,3{l5}) = ({o16, o17}, {l16}).

Renaming bindings is more complex—the endpoints may be renamed differ-
ently, according to which fragment they belong to. We formalize binding renam-
ing to take as parameter two disjoint sets of objects. We apply i-renaming if an
endpoint is in the first set, and j renaming if the endpoint is in the other set:

new-bdgi,j(O1, O2, L) = {new-lnkns(src l),ns(tgt l)l | l ∈ L},

where ns is a function mapping object to name spaces (instances), depending
to which replacement they belong; ns o returns i if o ∈ O1 and it returns j if o ∈
O2. In our example we want to copy the binding links l7 and l8. The ns function
allows us to copy the source of l7 and target of l8 with the appropriate instance
i2: new-bdg4,2({o7}, {o5, o6}, {l7, l8}) = {new-lnk2,4l7, new-lnk4,2l8} = {l18, l19}.

Finally, we lift the renaming functions to entire fragment substitutions:

new-fsi,j(p, r, b)Oj =
(
new-frgjp, new-frgir, new-bdgi,j (rObj, Oj , b)

)
.

Intuitively, if objects are in set Oj then they should be renamed using the
j-indexed renaming functions. It they are in the replacement of the fragment
substitution then the i-indexed renaming functions apply. The set Oj will be
provided in the semantics according to the context, and it should always be
disjoint from objects of the replacement rObj.
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In our example copying fs3 for i2 is done by copying p1 for i1, r3 for i2 and
the binding link has its source copied for i1 and its target for i2:
new-fs2,1(p1, r3, {l6}) r1 =

(
new-frg1p1, new-frg2r3, new-bdg2,1 ({o5, o6}, r1, {l6})

)
.

Flattening variability models and configurations. By constraint 1 we know that
there can be only one fragment substitution mapped to any feature, but it is not
required that every feature has a substitution mapped to it. Each feature can be
instantiated multiple times in which case the fragment substitution mapped to
it (if it exists) is executed multiple times (once per instance). We compute how
many times each substitution should be executed and clone it the appropriate
amount of times (carefully updating references). This will produce a flat set of
fragment substitutions that can be executed using the rules of Sec. 4.2.

The flattening of a variability model M with respect to a configuration Cfg
is a set of fragment substitutions, denoted below as �M,Cfg�. Flattening moves
all the necessary information from the feature model and from the realization
model to the new set of fragment substitutions. After this, the features and their
instances can be disregarded.

Given a variability model M = (Fs,Fm,mapping ) and a configuration Cfg,
mapping−1(ty i) returns the fragment substitution that has to be executed in the
context of an instance i or ⊥ if there is no such substitution.

There are three cases to consider when flattening the model. In the first case,
instances of features that have no substitutions mapped to them are ignored
by the semantics. In the second case, instances of features that have substitu-
tions with empty placement closures such that they do not apply to any other
substitution are copied with the following rule:

i ∈ Cfg mapping−1(ty i) = fsi  p!fsi = (∅, ∅)
new-fsi,_ fsi ∅ ∈ �M,Cfg�

(copy-indep)

Since the placement fragment is empty and the binding links endpoints can
only be objects of the replacement fragment itself, binding links can be appro-
priately cloned by using just the instance i, by new-fs.

In the third case, instances of features that have substitutions which apply to
other substitutions are copied with the following rule:

i, j∈Cfg mapping−1(ty i) = fsi mapping−1(ty j) = fsj fsi � fsj
fsi=(pi, ri, bi) fsj = (_, rj ,_) j∈parent ∗i

new-fsi,j fsi rj ∈ �M,Cfg�
(copy)

The intended meaning of copy is that we copy the replacement fragment using
the instance i, the placement with the instance j and the binding links with a
combination of the two. We use rj , the replacement fragment of fsj to state that
a binding link endpoint can either be in the ri or rj . By constraint 1 we know
that for any pair of instances i and j, mapping−1(ty i) and mapping−1(ty j) are
uniquely determined (if they exist), thus the rule can be applied deterministically.

In our example we know that i2, i1 ∈ Cfg, mapping−1(ty i2) = fs3 and
mapping−1(ty i1) = fs1, fs3 � fs1 and i1 ∈ parent ∗i2, therefore we copy fs3 in
the flattened set: new-fs2,1(p1, r3, {l6}) r1 ∈ �M,Cfg�.
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Lemma 3. For a well-formed variability model M and a valid configuration Cfg,
the above rules define a unique well-formed variability realization model �M,Cfg�.

The well-formedness of outputs follows from isomorphism of all renaming
operations (all functions are injective and preserve links)—all non-overlapping
conditions of well-formedness are thus transferred from the input variability re-
alization model.

Theorem 1. Given a well-formed variability model M and a valid configura-
tion Cfg the result of executing the model is unique, and given by �M,Cfg�, and
consequently the above formulation of the semantics is confluent.

The well-formedness constraints (C 1,2,3,4) ensure that the flattening input
set of fragment substitutions form a closed union of fragments. Lemma 3 ensures
that the output of the flattening is a unique set of substitutions forming a closed
union of fragments. Lemma 3 ensures that copying process results in a closed
product variant model and Lemma 2 ensures that the result is unique regardless
of the ordering of the input objects and links.

6 Discussion and Related Work

Featherweight VML is closely related to CVL as it is able to express CVL mod-
els with great accuracy. Most CVL variability specifications can be reduced to
features with cardinalities and the variation points are all specific cases of the
fragment substitution. Featherweight VML can be seen as a generalization of
OVM. We can use abstract features to group variation points together, giving
OVM a tree structure while retaining the same meaning. Delta modules are
almost identical to fragment substitutions. The only difference is that a delta
module is guarded by an application condition over a set of features while Feath-
erweight VML fragment substitutions are each mapped to a single feature. In
order to express a Delta model without adding extra concepts we would have to
change Featherweight VML’s mapping function to a more general expression.

So far, most work on variability was dedicated to analyzing feature models
[2,29]. Recent work has provided valuable insight such as formalizing feature
models represented in a textual language [8] or even providing full proofs in the
PVS proof assistant [20]. However, the formalization is limited to feature models
and do not touch on the subject of executing realization models. Czarnecki et
al. [1] show how to model the three layers of variability modeling within the
single Clafer syntax. This is the closest that comes to modeling solution space,
however no actual link to implementation artifacts is considered, just a Boolean
abstraction of dependency. Such a formalization cannot directly be used as a
specification of correctness for a product variant derivation tool.

Other works consider analyzing variability models as a whole, including check-
ing for consistency (for instance [4,5,15,17,18]). All these methods assume cor-
rectness of the product variant derivation implementation. In this work we make
the first step to allow fulfilling this assumption by setting the foundation of
analyzing the implementation of variability realization tools.



A Core Language for Separate Variability Modeling 271

A crucial feature of our semantics is that it is confluent. We achieve this by
identifying sufficient conditions for confluence, and adopting copying style for
definition of semantics, to minimize dependencies between executions of individ-
ual variation points. Oldevik et al. [23] take a dual route and attempt to detect
lack of confluence. As such they belong well to the group of works that are more
interested in ensuring that models are correct than that the model manipulation
tools are correct.

7 Conclusion

We proposed a formal definition of Featherweight VML, a compact variability
modeling language, which retains the expressiveness of the CVL on which it is
based, but in the same time it has much simpler syntax and semantics. To our
best knowledge this is the first attempt to fully formalize an entire variability
model. This is the first necessary step towards producing variability modeling
and product derivation tools for which the whole execution can be formally ver-
ified (and certified for usage in production of safety critical software). Feather-
weight VML relates to CVL, OVM and Delta Modeling. Our semantics processes
the model in an order-agnostic manner. It is the first confluent formalization of
a CVL-like language. The copying semantics can be implemented in declarative
rule-based model transformation languages more easily and it is easier to reason
about it using theorem provers.
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Abstract. Managing multiple and complex feature models is a tedious
and error-prone activity in software product line engineering. Despite
many advances in formal methods and analysis techniques, the support-
ing tools and APIs are not easily usable together, nor unified. In this
paper, we report on the development and evolution of the Familiar
Domain-Specific Language (DSL). Its toolset is dedicated to the large
scale management of feature models through a good support for separat-
ing concerns, composing feature models and scripting manipulations. We
overview various applications of Familiar and discuss both advantages
and identified drawbacks. We then devise salient challenges to improve
such DSL support in the near future.

1 Introduction

Following a Software Product Line SPL paradigm offers benefits such as short-
ened time-to-market, economies of scale and increased quality by reducing defect
rates [1,2]. This paradigm basically relies on a factoring process, identifying com-
mon artifacts and managing what varies among them. These artifacts typically
range from product descriptions (documentations, tabular data), requirements
to models, programs and even tests. Modeling variability and managing the re-
sulting models is a critical activity within the SPL paradigm. To deal with it,
a widely used approach is to organize variability around features, which are
domain abstractions relevant to stakeholders, typically being increments in pro-
gram functionality [3]. Inside a SPL, a Feature Model (FM) is used to describe,
through a compact AND-OR graph with propositional constraints, all identified
features and their valid combinations [4–6]. Developments around formal seman-
tics, analysis and reasoning techniques, as well as tool support [3–5,7] currently
make FM a de facto standard for managing variability.

All these advances also led to a wider usage of variability models. As one
can use FM to model variability of very different kinds of concerns [3], the
inherent complexity of the relations between these concerns has to be handled.
With FM of hundreds to thousands of features, understanding the organization
of variabilities and their complex relation rules is getting harder and harder.
Reports also showed that the maintenance of a single large FM is not really
feasible as some analysis techniques reach their limits, and is also not advisable
as the resulting FM would be too complex to be understandable [8–13].
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Tackling these issues, our research team initiated in previous work [14–18]
the foundations for applying the principle of Separation of Concerns (SoC) to
feature modeling on a large scale. Composition operators for FMs were first
developed [15,16]. They notably preserve semantic properties expressed in terms
of configuration sets of the composed FMs. They are complemented by a slicing
operator, which produces a projection of an FM [14], and a differencing operator
between FMs [18].

At that time, these operators could have been implemented using or extending
one of the several Java APIs that were available (FaMa [19], FeatureIDE [20],
SPLAR [21], etc.), as they provide some operations using different kinds of
solvers (BDD, CSP, SAT). But with the aim to provide a better support when
dealing with several feature models at the same time, we decided to build a
Domain-Specific Language (DSL) that would provide both reasoning operations
and new compositions, while focusing only on the domain concepts, i.e., feature
models, features and configurations. This DSL, named Familiar (for FeAture
Model scrIpt Language for manIpulation and Automatic Reasoning) [22], also
provides support for importing and exporting FMs, as well as for writing pa-
rameterized scripts. The language has been used in various case studies [23–25],
ranging from forward to reverse engineering, with different domains and varied
stakeholders. It has also evolved with extended merging techniques [26], better
reverse engineering mechanisms [27], but also an additional Java API and a new
implementation as an internal DSL in Scala.

In this paper, we take a step back from the development of the Familiar
ecosystem. After summarizing its main features, of which details can be found
in references mentioned above, our contributions consist in:

– Discussing observed benefits in different case studies, while determining sev-
eral recurring drawbacks. They mainly concern the fine-grained bridging
with analysis and reasoning tools, the connection to other artifacts and the
maintenance of the DSL itself.

– Identifying several challenges that this DSL centric approach is currently
facing, from mechanisms and scope issues to the facilitation of different us-
ages.

2 Background

2.1 Feature Modeling

The FODA method [8] first introduced the notions of feature models (FMs)
together with a graphical representation through feature diagrams. An FM is
structured around a hierarchy of features, getting into increasing detail with
sub-levels, and different variability mechanisms related to feature decomposition
and inter-feature constraints. In the hierarchy, the subfeatures of a feature can be
optional or mandatory or can form Xor or Or -groups. Propositional constraints,
typically implies or excludes rules, can be specified to express more complex
dependencies between features wherever in the hierarchy.
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The expressiveness of feature modeling also comes from the fact that an FM
defines a set of valid feature configurations. During the configuration phase,
features are selected and some rules ensure the validity of a configuration (e.g.
automatic parent selection, satisfied constraints) [8]. A configuration of an FM g
is defined as a set of selected features. �g� denotes the set of valid configurations
of the FM g, being a set of sets of features.

FMs and propositional logic have been semantically related [5]. The set of
configurations of an FM can be described by a propositional formula defined
over a set of Boolean variables, in which each variable corresponds to a feature.
Translating FMs into logic representations typically enables automated analy-
sis [7].

2.2 Domain-Specific Languages

A DSL is a computer language of limited expressiveness focused on a particular
domain [28]. Contrary to general purpose languages, which are aimed at handling
most problems in software development, a DSL can only handle one specific
aspect of a system. It is usually a small, simple and focused language [29].

In different technical domains (Unix, databases with SQL, etc.), DSLs have
been used for a very long time. With their strong relation with model-driven en-
gineering techniques, they are now getting more attention with usages in different
areas related to software, being business-oriented or still technical. DSLs bring
value as they can facilitate both communication with domain experts [30, 31]
and programming activities in comparison with a basic Application Program-
ming Interface (API).

But designing a DSL is not an easy task and many design trade-offs, from the
scope of the language to its implementation and future maintenance, are to be
made [28, 30]. These languages can take the form of plain external DSLs, with
their own custom syntax, parser and processing engine, which make a domain-
specific tooling, or the form of better crafted APIs, known as fluent APIs, or
even moving towards embedded or internal DSLs built on top of a host lan-
guage. Numerous advances towards language workbenches [32] have been made
to support the development of external DSLs. Conversely, recent advances in
language design allow for easier embedding with host languages being extensible
in very flexible ways [33].

3 The FAMILIAR Ecosystem

As discussed in the introduction, the Familiar language was created to provide
an appropriate support for the FM composition operators (see Section 3.4) that
enable the large scale management of FMs following separation of concerns prin-
ciples. When studying numerous examples and different case studies in which
these composition operators were going to be applied [15], we observed that
manipulating several FMs requires to describe and replay sequences of opera-
tions on them. We thus focused the development towards a textual language,
Familiar, which can define such operations in executable scripts. The DSL
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functionalities comprise FM authoring and accessing operations, main reasoning
operations, and the (de-)composition mechanisms. As the developed FM merg-
ing operations are restricted to propositional FMs (no feature attributes or other
extensions), we also aligned the DSL on operations at the same level. Finally we
decided to build an external DSL to restrict the possible manipulations to the
envisioned set, and to facilitate learning and usage for different kinds of users.

Familiar is available at http://familiar-project.github.io, with asso-
ciated documentation. The reader can also refer to [22] for a presentation of
Familiar and to [14] for a summary of operators, more illustrations of their
usage. For the sake of brevity, we do not here discuss all related work. Basically,
FAMILIAR composition operators for FMs such as merging were original as they
handle each operation at the semantic level (reasoning on configuration sets, see
Section 3.4). The FAMILIAR language itself differs from other textual languages
for feature modeling, such as Clafer [34] or TVL [35], by its capabilities to write
scripts that handle several FMs at the same time.

We now overview the main constructs and data types of the Familiar external
DSL. Tool support and variants of Familiar through a Java API or as a Scala
based internal DSL are discussed at the end of this section.

3.1 Language Basics

Familiar is a typed language that supports primitive and complex types. New
types cannot be created, as the various provided types aim at supporting manip-
ulation of FMs through a reduced but expressive set of elements. Complex types
are domain-specific (Feature Model , Configuration, Feature, Constraint , etc.) or
generic Set . Primitive types are quite common, with String (feature names are
strings), Boolean, Enum, Integer and Real .

Operators are defined for each type, and runtime type checking is performed
by the Familiar interpreter. For example, the operator counting acts on a
Feature Model and returns an Integer value. Basic arithmetic, logical, set and
string operators are also provided. User-defined variables are also provided. In
the listing below, line 1 defines a variable of type Feature Model. Accessors are
provided for observing the content of a variable. A classical if then else and a
loop control structure (i.e., foreach) complement the constructs.

1 mi1 = FM ( MI: Mod [Anon]; Mod: (PET | CT) ;)
2 n = counting mi1 // n is an integer
3 f1 = parent PET // f1 refers feature ’Mod’ in mi1
4 f2 = root mi1 // f2 refers feature ’MI’ in mi1
5 fs = children f1 // feature set {’PET’,’CT’} in mi1

3.2 Modularization

Identifiers in Familiar refer to a variable identifier or to a feature in an FM.
Inside one FM, feature names are supposed to be unique. The language re-
lies on namespaces to allow disambiguation of variables having the same name.

http://familiar-project.github.io
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A namespace is associated to each FM variable so that the name of such a
variable followed by "." can be used to refer to a feature name, if needed.

Furthermore Familiar provides modularization mechanisms that allow for
the creation and use of multiple scripts in a single SPL project, supporting
reusability of scripts. Namespaces are also used to logically group related vari-
ables of a script, making the development more modular. The listing below illus-
trates the reuse of existing scripts. Line 1 shows how to run a script contained in
the file fooScript1 from the current script. The namespace script−declaration
is an abstract container providing context for all the variables of the script foo-
Script1. Then, in line 2, we access to the set of all variables of script−declaration
using a classical wildcard pattern.

1 run "fooScript1" into script_declaration
2 varset = script_declaration.*
3 export varset

Also, a script can be parameterized using a list of parameters, a parameter
recording a variable and, optionally, the type expected. Parameterized scripts
are typically used to develop reusable analysis procedures for FMs and configu-
rations. Apart from this reuse, we also found that Familiar can also be used as
a target language, by generating scripts handling specific tasks in SPL toolchain
(checking compatibility through merging, building catalogs of descriptions). All
applications discussed in Section 4 have used a combination of generated scripts
and developer written ones.

3.3 Operators

For importing and exporting FMs, different FM formats are supported, including
FeatureIDE, S2T2, SPLOT, subsets of TVL and FaMa. A concise notation,
largely inspired from FeatureIDE [20] and the feature-model-synthesis project,
is also provided. The listing below covers the main syntactic elements. In line 1,
the variable fm0 represents a FM in which MI is the root feature. Mod and Anon
are child-features of MI: Mod is mandatory and Anon is optional. PET and CT
are child-features of Mod and form a Xor-group. Sx and Sy are child-features of
PET and form an Or-group. A cross-tree constraint is shown in line 4, as PET
excludes Anon.

1 fm0 = FM ( MI: Mod [Anon];
2 Mod: (PET | CT) ;) // Xor-group
3 PET : (Sx|Sy)+ ; // Or-group
4 PET excludes Anon ; // constraint )

Familiar also allows to create FM configurations, and then select, dese-
lect, or unselect a feature. Each of these configuration manipulation operations
returns true if the feature does exist and if the choices conform to the FM con-
straints. Based on well-known applications of solvers (BDD and SAT), several
operators support reasoning about FMs and their configurations. isValid checks
whether a configuration is consistent according to its FM. Applied to a FM,
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isValid determines its satisfiability. Besides the isComplete operation checks
whether all features of a configuration have been chosen, i.e., selected or dese-
lected.

The integration objective of Familiar is also shown by functionalities to
compare FMs. Based on the algorithm and terminology used in [6], the com-
pare operation determines whether an FM is a refactoring, a generalization, a
specialization or an arbitrary edit of another FM. Results from the differentiation
computation between two FMs [18] are also provided through a diff operation.

3.4 Decomposition and Composition

The main objective of Familiar is to support large-scale combinations of FMs,
through decomposition and composition operations. The key feature of the main
composition operations (merge, slice, diff) is that they rely on a clear semantics
based on the represented configuration sets. Moreover, defining the operations
through the propositional logic counterpart of the FMs allows to automatically
take into account cross-tree constraints, which cannot be easily handled by syn-
tactic techniques.

Regarding decomposition, a first basic mechanism is to extract a sub-tree of
an FM, including cross-tree constraints involving features of the subtree. This
operator is purely syntactical as it ignores cross-tree constraints that involve
features not present in the sub-tree. The semantic counterpart of extract is the
slice operator that returns a partial view of an FM according to a criterion
of interest (a set of features). The semantics of the operation is based on the
projected set of configurations of the selected features. This set is represented as
its propositional logic formula and automatically takes into account cross-tree
constraints. The projection is done through some logic reasoning and the result
of the slice is a FM reconstructed from the projected set. The reader can refer
to [14, 17] for formal definition and implementation details.

Two forms of composition, aggregate and merge, are supported by the Famil-
iar language. The aggregate operator is intended to be used when separated
FMs do not have features in common, i.e., features with the same name. The
operator supports cross-tree constraints, written in propositional logic, over the
set of features so that the different FMs can be inter-related. The input FMs are
simply put under a synthetic root as mandatory children and the propositional
constraints are added to the resulting FM.

On the other hand, merge operators are dedicated to the composition of FMs
with similar features. In this case, the operators can be used to merge the over-
lapping parts of the input FMs in a new FM. Variants of the merge operators
defer on the production mode, e.g., merging in intersection mode computes a
FM corresponding to the set of common configurations of the input FMs. Con-
sequently the semantics of the merge operator variants mainly relies on the
configuration sets of the input FMs (cf. Table 1). Different applications of these
merge variants are mentioned in Section 4.

The default implementation of this operator computes the resulting proposi-
tional formula [16] and restores as much as possible the parent-child relationships
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Table 1. Main merge variants in Familiar

Mode Semantic properties Mathematical notation Familiar notation
Intersection �FM1� ∩ �FM2� ∩ . . . FM1 ⊕∩ FM2 ⊕∩ . . . fmr = merge intersection

∩�FMn� = �FMr� ⊕∩FMn = FMr { fm1 fm2 ... fmn}
Union �FM1� ∪ �FM2� ∪ . . . FM1 ⊕∪s FM2 ⊕∪s . . . fmr = merge union { fm1

∪�FMn� = �FMr� ⊕∪sFMn = FMr fm2 ... fmn}
Diff {x ∈ �FM1� | x /∈ �FM2�} FM1 \ FM2 = FMr fmr = merge diff { fm1

= �FMr� fm2 }

of the input FMs in the merged FM. To do so, it relies on the synthesis algorithm
from [36] to build back a hierarchy. Recently, new forms of composition have been
explored with differences in the expressed configurations and the ontological se-
mantics [26]. Two new implementations have been devised and implemented, one
relying on the slice operator, the other one using a local synthesis approach. This
provides a range of merging variants that have different impacts on the resulting
quality of the FM, the capacity to reason on it or to compose it.

3.5 Tool Support

The first version of Familiar was developed in Java using Xtext1, a framework
for the development of external DSLs. Xtext facilities were used to provide a
Familiar script parser, an Eclipse text editor and a stand-alone console. They
are all connected to the Familiar kernel that deals with the main manipu-
lated concepts (feature model, configuration, etc.), but also with transformations
from feature models to the different internal and external representations (cf.
Figure 1). To foster interoperability, different languages and framework format
are supported through import/export methods (FeatureIDE, S2T2, SPLOT).
Some of them (TVL, FaMa) are going beyond propositional FMs with feature
attributes or non-boolean constructs. They are then only partially supported.
This support enables Familiar outputs to be processed by third party tools.
For example, a connection with the graphical editor and configurator of the Fea-
tureIDE framework [20] allows us to synchronize graphical edits and interactive
Familiar commands.

One of the goals was to make some existing analysis techniques available in
Familiar, focusing on the most important ones when several FMs have to be
manipulated or composed. Consequently some Familiar internal code is directly
reusing or adapting several implementations, notably feature model synthesis [36]
for hierarchy reconstruction of FMs, FeatureIDE [20] code for FM comparison,
SPLAR for different analysis operations [21]. To perform over propositional for-
mulas, the kernel follows a lazy strategy to compute the formulas only when
needed. It relies on SAT4J for SAT solving and JavaBDD for BDDs. As they ex-
pose different advantages and drawbacks, these techniques can be switched with

1 http://www.eclipse.org/Xtext/

http://www.eclipse.org/Xtext/
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Interoperating
with FM format

API

Using

Fig. 1. Current stable Familiar ecosystem

an annotation in Familiar in many operators (except merge, which is imple-
mented only with BDDs). A default implementation is also set for each operator.
More details can be found in [22].

While Familiar was more and more used in different applications and case
studies (see next section), the source code was made open and available on
github, so that the toolset can be jointly managed by three research teams,
namely the Triskell team (INRIA - IRISA - University of Rennes 1), the
MODALIS team (I3S laboratory - Université Nice Sophia Antipolis - CNRS)
and at Colorado State University. Different extensions were then developed. The
console has been extended with an interactive graphical editor, so that feature
models can be directly edited or configured in sync with a text console. As Fa-
miliar was also integrated in many applicative toolchains, we finally develop a
Java API from the kernel to facilitate these integration tasks. Finally, we recently
explored the internal DSL way to provide integration capabilities with a syntax
closer to the original Familiar language. We thus developed an internal DSL on
top of the Scala2 language, which provides a flexible syntax and supports mech-
anisms such as implicit type conversions, call-by-name parameters and mixin
classes. Ongoing work notably comprise development for bridging with a CSP
library and providing a web console.

4 Applications

We now report on our experience in applying Familiar in various case studies,
classifying them in forward and reverse engineering scenarios. They all deal with
large and multiple FMs, as well as complex relationships between FMs and assets
at different levels (various concerns on the same artifact, different abstraction
levels, representation of different SPLs).

4.1 Forward Engineering

Scientific Workflow: Multiple Compositions. Familiar was first used to
support a tooled process for assisting medical imaging experts in the error-prone
2 http://www.scala-lang.org

http://www.scala-lang.org
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activity of constructing scientific workflows [24]. These workflows are built from
many highly customizable software services (e.g., intensity correction, segmenta-
tion), which encapsulate code from different suppliers. Separated FMs are then
used to describe the variability of the different artifacts, i.e., services and work-
flow, with several functional and non-functional concerns, (e.g., input/ouput
port, image type, used algorithm).

From a built catalog (using the merge union operator on separate descriptions
of services), the workflow design process is facilitated at each step, with the ca-
pability to choose from different competing services, connect the select one in the
workflow. Through automated reasoning, configuration choices and constraints
on and between services are checked (using the merge intersection operator) and
propagated among the workflow (using generated scripts), ensuring an overall
consistent composition.

Video-Surveillance: End-to-End Multi-level Variability. Familiar has
also been used on a different kind of workflow, with a more stable architec-
ture but with more variability concerns at different levels [23]. The aim was to
tame the complexity of the configuration process of a video-surveillance software
pipeline. Each step was also considered as an SPL so that the variability (com-
ponents, algorithms, parameters, tasks) of the underlying software platform was
represented together with the variability of the hardware parts (e.g., camera ca-
pabilities). The application requirement variability was then separately captured
in a domain FM, aggregating information on many context elements (e.g., light-
ing conditions) and expected tasks (e.g., intrusion detection). The two resulting
FMs are finally related by constraints (using the aggregate operator).

Salient properties can then be checked (using parameterized scripts), such as
reachability, i.e., for each high-level configuration of the domain, there exists at
least one valid configuration in the software platform. The organization of the
variability also allows for step-wise specialization at both levels and automatic
propagation in all FMs, drastically reducing the configuration process. The re-
maining variability is kept at runtime to make the application self-adaptive,
handling for example day/night switches.

Digital Signage: Multiple Product Lines. More recently, Familiar has
started to be used in the heart of an industrial-strength digital signage system
developed by a start-up company and organized as a Multiple Software Prod-
uct Line (MSPL) [37]. The information broadcast relies on an innovative web
architecture allowing for easy aggregation of information sources and highly cus-
tomizable rendering on multiple displays. Each element in the information flow
is handled by a subsystem SPL represented by an FM, and a domain metamodel
relates all SPLs and keeps a set of constraints between the FMs.

In this context, Familiar is used for the variability definition (using merge
union on all descriptions of the product instances), but also to compute the
relationships between the FMs (generating appropriate scripts). As the model
instance of the MSPL varies at configuration time (e.g., when a new source is
added), the number of configurations also evolves. In this context, appropriate
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Familiar scrips allow for automatic propagation and consistency checking so
that at any time, the final user is ensured to manipulate a consistent product
under configuration.

Benefits. These applications illustrate different benefits of using Familiar. In
all of them, repositories of FMs are built and organized as reusable Familiar
scripts merging FMs that document some artifacts. Querying the repository is
also supported by Familiar with merge and slice operators. In the scientific
workflow case, another DSL was designed to map services with their variability
definition, and Familiar was then used as an embedded language.

Generally, a Model-Driven Engineering (MDE) approach is used together with
Familiar and scripts are generated by the SPL toolchain to automatize some
checking or propagation (e.g. at service connection, at configuration time, when
the model evolves, etc.). Depending on the complexity of this coupling, the Fa-
miliar Java API is more or less used in conjunction with the external DSL.
Another benefit is the capability to implement more efficiently interesting prop-
erties such as realisability or usefulness when several FMs are inter-related [9,14].

Drawbacks. In the first two applications, the variability reasoning relies on ad
hoc bridges or model-to-text transformations. The complete semantics of the
solution is thus scattered through the SPL tool chain. Moreover, as there is no
simple mechanism to compose external DSLs, embedding Familiar in another
DSL is implemented through some hacks in the Xtext back-end. Consequently
very few code parts can be reused if one needs to embed Familiar in another
context. This is partly solved in the MSPL approach as a model drives the
variability part, but still the connection semantics between the metamodel and
the variability models could have been better captured.

As for the usage of Familiar during execution, the adaptive part of the
video-surveillance system calling the interpreter led to performance issues at
runtime. Integrating the variability-based adaptation logic in the application
engine was also very hard and it seems that a internal DSL approach would
have largely simplified this task. Furthermore even at configuration time, the
only means to change the implementation of the most complex operators is
through a simple parameter. An average Familiar user will have not enough
knowledge to make the appropriate choices, especially if a script involves several
operations.

Another lack of flexibility also appeared when we had to compute some
metrics on FMs that were not present in the original DSL definition. Some of
them were available in the Java API while they were needed in the DSL itself.
On the other hand, implementing them in the Scala-based flavor of Familiar
was very fast and they were directly available in the extended language.

4.2 Reverse Engineering

Plugin-Based Systems: Software Architecture. Familiar was also used
to reverse engineer a variability model representing a software architecture with
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plugins [25]. This was applied on several successive versions of the implemented
systems.

Each time, the architectural FM was obtained by extracting variability infor-
mation from both the architecture and the plugin dependencies. This creates an
over-approximation of the variability, which is fixed by a slice operation made
on the pure architectural part of the FM [25]. Moreover, this extracted FM was
compared with another FM representing the intention of the software architect.
Using several steps, scripted in Familiar, the two views were reconciled to form
a stable FM, which was then used to follow the evolution of the different versions.

Product Descriptions: Tabular Data. We also explored the semiautomatic
extraction of variability models from one of the most used descriptions of prod-
ucts, that is tabular data defining product features. A front-end enables one
to give some directives on how to interpret variability and how to build the
hierarchy of the resulting FM.

From the extraction tool, several Familiar scripts are generated, leading to
one FM per product, and all FMs are then merged in union mode to obtain
an exact representation of the variability. From the first application on several
public product matrices [38], this technique was applied and adapted in different
contexts, such as web configurators [39] or competing visualization APIs for
dashboards [40]. It is also used in the digital signage MSPL evoked in the previous
section, so to populate it from different input SPLs.

Benefits. These extraction applications show again some benefits in coupling
reusable parts with generated scripts in Familiar. As parts of the extraction
procedures have to be ad hoc to be adapted to the input data, the simple syntax
of the external DSL was a clear advantage so to easily generate FMs. As more
cases were studied, the need for a more finely parameterized operation to build
a FM hierarchy arose and it was integrated in the DSL [27]. The experiment on
software architecture was also the opportunity to make a software architect use
the DSL to discover hidden features.

Drawbacks. In the extraction scenarios ad hoc bridges are again present.
As Familiar was designed to move away from a general purpose programming
language, it offers only basic control structures and nothing to handle the input
data. Again, the absence of a clear interface of what could or should be produced
from the analyzed input to produce the resulting FM is hampering reuse between
extraction chains.

Similarly the previously identified lack of flexibility is also characterized by
the required evolution on the ksynthesis operator, which drives the FM hierarchy
building. A first change was thus made on the whole external DSL chain, but
as many different techniques are currently experimented on this hot topic of
variability extraction, a more flexible evolution process is clearly needed.
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5 Challenges Ahead

The development of the Familiar DSL started with composition of several FMs
as the main requirement. The experience built-up through its usage in different
domains, life-cycle stages and with different stakeholders clearly show that the
DSL is meeting this requirement. On the other hand, we identify here the main
challenges that must be tackled to provide a better support to a larger variability
engineering community.

Managing More Explicit Mechanisms. Several mechanisms inside Famil-
iar should be made more explicit and more configurable. A first obvious location
in the DSL architecture is the management of reasoning back-ends. Handling the
variability of back-ends is already done in some variability tool sets [19,41]. For
example FaMa [19] manages the different analyses and reasoners with a feature
model capturing functional capabilities and a few non-functional properties. The
challenge for Familiar is to go beyond such organization, so that new solvers
can be easily integrated (CSP and SMT solvers are the primary targets) and that
both functional and non-functional properties can be captured and inter-related
into feature models. This would also better organize the heuristics of used algo-
rithms, like in the SPLAR Java API [21]. In addition, results from performance
comparison between solvers for feature modeling operations [42] may serve as
starting point.

The description of the other challenges will also show that a systematic and
uniform approach should be followed to master all configurable properties in
Familiar, that is, not only for reasoning back-ends. The recent implementation
of some variants of the merge operation is an example [26], but this is actually
the case in the kernel of the DSL and in all its interaction points (extraction of
variability, internal representation, relations to other models).

Extending the Scope of the DSL. The second challenge is related to the
advances that were made thanks to FM composition. In all the applications,
Familiar was an appropriate engine to deal with variability in conjunction with
many different software artifacts, but the connection with these artifacts was
quite often cumbersome in terms of software engineering. The move towards
an internal DSL in Scala should partially solve this issue, but exploring how to
facilitate the management of relationships between feature models and the whole
model-driven engineering steps seems an interesting track to follow.

First this should allow to make advances in the relation between the semantics
of artifact composition and the semantics of FM composition. In our recent
experience on the MSPL of digital signage systems, we used a combination of
metamodels and feature models that seems to be related of what is available
in Clafer [34]. Still Clafer is focused on understanding domain models, whereas
we completely define and implement the MSPL toolchain down to the code
generation level. Different extensions of feature models should be introduced in
the DSL, but this should be especially organized in terms of operations and inter-
relations between the extensions. This point is related to the previous challenge,
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as each extension of feature models is likely to need a fine-tuned usage of the
available reasoning back-ends.

Extending the Familiar scope is also needed to facilitate variability manipu-
lation on a larger scale, especially in (semi-)automatically extraction scenarios.
Currently, there is some lazy strategy implemented to reduce the transforma-
tion to propositional logic, but the available internal representations should be
extended so to handle cases where only a feature set is desirable or feasible, for
example when very large feature models are split and their hierarchy partially
flattened [43]. The ideal functionality would handle a continuum of represen-
tations, from feature sets to feature models and the different representations
needed by different reasoning approaches.

Facilitating Different Usages. The last challenge consists in providing the
appropriate customised variants of the DSL for the different users and tasks
that would be then facilitated. With an extended scope and more explicit mech-
anisms, different scenarios must be envisaged. Extraction processes should be
supported with recurring patterns being provided in the DSL. The highly func-
tional flavor of programming provided in Scala should enable to design a small
but powerful toolkit for this purpose. Conversely the different mappings between
feature models and other models, the associated realization techniques, as well
as the transformation processes to different back-ends should be abstracted and
organized in the same way.

Besides, one usage not to be neglected is the visualization and comprehension
of these large and inter-related feature models. The current Familiar implemen-
tation relies on interoperability formats, so that other visualization tools, such
as S2T2 can be used. If different usages are supported, appropriate visualiza-
tions has to be envisaged and relationships between the DSL and third-parties
toolkits should be supported as well.

Finally, these different specific parts should cleverly rely on the different in-
ternal representations discussed in the previous challenge. This, together with
an efficient runtime interpreter in Scala, would be also very useful to provide a
scalable variability support when the DSL is heavily exploited at runtime.

6 Conclusion

The Familiar language was first developed to manipulate and compose feature
models in the large, relying on formal underpinnings and bridging some existing
APIs. Separation of concerns and reasoning facilities are made available through
an external DSL, which has been evolved with an additional Java API and
recently, an Scala based internal implementation.

We have reported several applications of the Familiar toolset, ranging from
semi-automatic extraction of feature models from product descriptions or software
architectures, to more forward engineering cases, with scientific workflow, video-
surveillance software, and digital signage systems organized in multiple software
product lines. Based on these varied experiences, we summarized obtained bene-
fits, but especially focused on identified drawbacks: ad hoc integration in toolchains
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or applications, lack of flexibility, or performance issues during heavily runtime us-
age. We then devised three inter-related challenges to improve such DSL support,
i.e. i) managing more explicit mechanisms, both internally in the used algorithms
and externally when dealing with reasoning back-ends, ii) extending the scope
of the DSL to better support extraction procedures and downstream engineering
stages, and iii) facilitating different usages through appropriate DSL extensions.

Ongoing work aims at tackling these challenges. First steps consist in explor-
ing how Scala facilities can help in easily integrating variability in the Familiar
architecture, so that other needed functionalities can be nicely and efficiently
provided. We notably plan to bridge an extended version of Familiar with the
SIGMA family of DSLs for manipulating EMF models [44], which is also imple-
mented in Scala. We expect to partly cover some functionalities provided by im-
plementations of the CVL variability standard [45], but with a more lightweight
and decoupled approach. Being able to easily integrate a small service provided
by the Familiar DSL in any toolchain is kept as a prime requirement.
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1 Università di Torino, Dipartimento di Informatica, 10149 Torino, Italy
ferruccio.damiani@unito.it

2 Technische Universität Braunschweig, Germany
{i.schaefer,s.schuster,t.winkelmann}@tu-braunschweig.de

Abstract. Delta-oriented programming (DOP) is a flexible approach for imple-
menting software product lines (SPLs). DOP SPLs are implemented by a set of
delta modules encapsulating changes to class-based object-oriented programs.
A particular product in a DOP SPL is generated by applying to the empty pro-
gram the modifications contained in the delta modules associated to the selected
product features. Traits are pure units of behavior, designed to support flexible
fine-grained reuse and to provide an effective means to counter the limitations
of class-based inheritance. A trait is a set of methods which is independent from
any class hierarchy and can be flexibly used to build other traits or classes by
means of a suite of composition operations. In this paper, we present an approach
for programming SPLs of trait-based programs where the program modifications
expressed by delta modules are formulated by exploiting the trait composition
mechanism. This smooth integration of the modularity mechanisms provided by
delta modules and traits results in a new approach for programming SPLs, delta-
trait programming (DTP), which is particularly well suited for evolving SPLs.

1 Introduction

A software product line (SPL) is a set of software systems with well-defined com-
monality and variability [13,29]. SPL engineering aims at developing these systems by
managed reuse. Products of an SPL are commonly described in terms of features [20],
where a feature is a unit of product functionality. Feature-based product variability has
to be captured in the product line artifacts that are reused to realize the single products.
On the implementation level, reuse mechanisms for product implementations have to
be flexible enough to express the desired product variability [34].

Today, many product implementations of SPLs are carried out within the object-
oriented paradigm. Although class-based inheritance in object-oriented languages pro-
vides means for code reuse with static guarantees, the rigid structure of class-based
inheritance puts limitations on the effective modeling of product variability and on the
reuse of code [27,17]. Feature-oriented programming (FOP) [5,2,16,1] allows to flex-
ibly implement product lines within the object-oriented paradigm by class refinement.
In FOP, a product implementation for a particular feature configuration is obtained by
composing feature modules for the respective features. A feature module contains class
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definitions and class refinements. A class refinement can modify an existing class by
adding new fields/methods, by wrapping code around existing methods or by chang-
ing the superclass. Delta-oriented programming (DOP) [31,33,32,9] extends FOP by
the possibility to remove code from an existing product (see [33] for a straightforward
embedding of FOP into DOP). In DOP, a product implementation is obtained by ap-
plying modifications specified in delta modules to existing products. Using FOP/DOP
for implementing SPLs results in a scenario where class-based inheritance is the mech-
anism for intra-product code reuse (i.e., for reusing code within single products) and
FOP/DOP class refinement/modification is the mechanism for inter-product code reuse
(i.e., for reusing code across different products). Since class-based inheritance does not
support low coupling [27,17], FOP/DOP class refinement/modification do not mix well
with class-based inheritance and, as a matter of fact, little or no intra-product code reuse
is realized via class-based inheritance in many FOP/DOP SPL implementations [36].

In object-oriented languages with class-based inheritance, classes have two compet-
ing roles: (i) generators of objects and (ii) units of reuse. To counter this, traits are
introduced as pure units of behavior, designed for flexible, fine-grained reuse [35,17].
A trait contains a set of methods, which is independent from any class hierarchy. Thus,
the common methods of a set of classes can be factored into a trait. The distinctive
characteristic of traits is that they can be composed in an arbitrary order and that the re-
sulting composite unit (which can be a class or another trait) has complete control over
the conflicts that may arise in the composition and must solve these conflicts explicitly.
Since their first formulation [35,17], various formulations of traits in a JAVA-like setting
can be found in the literature (see, e.g., [38,28,30,12,25,11,8,7]).

In this paper, we present delta-oriented programming for software product lines of
trait-based programs. In the proposed approach, delta modules and traits work synergi-
cally together for modeling program variability by flexibly supporting both inter- and
intra-product code reuse. In particular, the program modifications expressed by delta
modules are formulated by exploiting the trait composition mechanism. This smooth in-
tegration of delta modules and traits results in a new approach for programming SPLs,
that we call delta-trait programming (DTP). As in DOP, intra-product code reuse is
rarely achieved by class-based inheritance, but it could be realized by using design pat-
terns in the implementation of the core products [37]. However, when the SPL evolves
the patterns used in core products might not be suitable for supporting intra-product
code reuse in the new products. So, either we accept to have code duplications in the
code of the new products, or we refactor the whole code base which is both undesirable.
To mitigate this problem, DTP offers trait-based intra-product code reuse. As unantic-
ipated SPL evolution (i.e., evolution involving changes for which developers have not
prepared in the original design of the SPL) scenarios become more common in long-
living software systems, DTP is a promising approach to alleviate the arising problems.

The paper is organized as follows. Section 2 introduces pure trait-based program-
ming. Section 3 discusses the main design choices made during the development of
DTP. Section 4 introduces DTP by a small case study. Section 5 illustrates how DTP
supports proactive, reactive and extractive SPL development and is particularly well
suited for evolving SPLs. Section 6 discusses related work. Section 7 concludes the
paper by outlining some directions for further work.



Delta-Trait Programming of Software Product Lines 291

2 Pure Trait-Based Programming

Pure trait-based programming [12,11,7,10,7] aims at supporting low coupling and at
maximizing the opportunities of reuse. It completely separates the competing roles of
object generators and units of code reuse, and the competing roles of types and units of
code reuse. Namely, trait names are not types and class-based inheritance is ruled out.

In this section, we summarize TRAITJ, a pure trait-based programming language
(based on [10]), which highlights the specific characteristics of pure trait-based
programming.

ID ::= interface I
[
extends Ī

]
{ H; } interface

H ::= Sm (S x̄)
∣∣ voidm (S x̄) method header

S ::= I
∣∣ boolean ∣∣ int ∣∣ · · · type

TD ::= trait T is TE trait
TE ::= {TM}

∣∣ T ∣∣ TE+TE
∣∣ T[TA] trait expression

TM ::= F;
∣∣ H;

∣∣ M trait member
TA ::= exclude m

∣∣m aliasAs m trait alteration
|m renameTo m | f renameTo f

F ::= S f field
M ::= H { · · · } method
CD ::= class C implements Ī by TE { FI; K } class
FI ::= F

∣∣ F= · · · field initialization
K ::= C(S x̄){ · · · } constructor

Fig. 1. TRAITJ syntax (I ∈ interface names, T ∈ trait
names, C ∈ class names, m ∈ method names, f ∈ field
names, x ∈ variables names)

The syntax of TRAITJ is given in
Figure 1, where we use the overbar
notation for sequences (as in [19])
and where the big square brack-
ets ‘

[
‘ and ‘

]
‘ denote an optional

element of the syntax. A program
consists of interface declarations,
trait declarations, and class dec-
larations. The syntax of interface
declarations ID, method headers H,
field declarations F, method dec-
larations M, field initializations FI

and class constructors K is sim-
ilar as in JAVA (without consid-
ering, e.g., visibility modifies and
checked exception declarations).

A trait declaration associates a
name to a trait expression. We say

that a trait declaration is: basic (or flat) if its body consists of a basic trait expression
{TM}, composite (or non-flat) otherwise. A basic trait expressions {TM} declares a set
of provided methods together with their required fields and required methods. Provided
methods are the methods defined in the trait, which will be included in any class using
the trait. Required fields and required methods are fields and abstract methods which
are assumed to be available in any class using the trait. The provided/required methods
and the required fields of a trait can be directly accessed in the body of the provided
methods of the trait. For instance, the following trait declaration

trait T1 is { int y; int getX(); int getY() { return this.y; } void setY(int value) { this.y = value; }
String toString() { return ”(” + this.getX() + ”,” + this.getY() + ”)”; } }

associates the name T1 to a basic trait expression which provides the methods getY,
setY and toString and requires the field y and the method getX.

The type system checks that each field/method requirement declared in a basic trait
is used by some method m provided by the basic trait (that is, the required method/field
is selected on this in the body of m).

Traits are building blocks that can be used to compose classes and other traits by
means of a suite of trait composition operations. In the following, we illustrate the
semantics of trait composition by associating to each composite trait declaration a flat
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trait declaration with the same semantics. This way of specifying the semantics of traits,
called flattening [35,17,28], is quite common in the literature on traits.

The symmetric sum operation, +, merges two traits to form a new trait. The summed
traits must be disjoint (i.e., they must not provide identically named methods) and con-
sistent (i.e., required fields with the same name and required/provided methods with the
same name must have the same type). For instance, given the trait declaration

trait T2 is { int x; int getX() { return this.x; } void setX(int value) { this.x = value; } }

the composite trait declaration trait TPoint is T1 + T2 is equivalent to the flat trait
declaration
trait TPoint is { int x; int y; int getX() { return this.x; } int getY() { return this.y; }

void setX(int value) { this.x = value; } void setY(int value) { this.y = value; }
String toString() { return ”(” + this.getX() + ”,” + this.getY() + ”)”; } }

The operation exclude forms a new trait by removing a method from an existing trait.
For instance, the composite trait declaration trait T3 is T1[exclude toString] is equivalent
to the flat trait declaration
trait T3 is { int y; int getY() { return this.y; } void setY(int value) { this.y = value; } }

(where the method requirement int getX() from T1 has been automatically dropped,
since getX is not used by the provided methods of T3), and the composite trait declara-
tion trait T4 is T1[exclude getY, exclude setY] is equivalent to the flat trait declaration

trait T4 is { int getX(); int getY(); String toString(){return ”(”+this.getX()+”,”+this.getY()+”)”;} }

(where the field requirement int y from T1 has been automatically dropped, while the
excluded method getY has been changed into a requirement since it is used by the
provided methods of toString).

The operation aliasAs forms a new trait by adding a copy of an existing method with
a different name. When a recursive method is aliased, the recursive invocations in the
body of the new method are not renamed. For instance, given the trait declaration

trait T5 is
{ int x; void resetX(){if (this.x<0){this.x=−x; this.resetX();} else if (this.x>0){this.x−−; this.resetX();}} }

the composite trait declaration trait T6 is T5[resetX aliasAs resetXaux] is equivalent to
the flat trait declaration
trait T6 is {
int x;
void resetX() { if (this.x < 0){this.x=−x; this.resetX();} else if (this.x > 0){this.x−−; this.resetX();} }
void resetXaux() { if (this.x < 0){this.x=−x; this.resetX();} else if (this.x > 0){this.x−−; this.resetX();} }

}

The operation renameTo creates a new trait by renaming all the occurrences of a
required field name or of a required/provided method name from an existing trait. For
instance, the composite trait declaration trait T7 is T1[y renameTo x, getY renameTo

getX, setY renameTo setX] is equivalent to the flat trait declaration

trait T7 is { int x; int getX() { return this.x; } void setX(int value) { this.x = value; }
String toString() { return ”(” + this.getX() + ”,” + this.getX() + ”)”; } }

Since traits do not introduce any state, a class assembled from traits has to declare
and initialize the fields required by its constituent traits (non-explicitly initialized fields
ar implicitly initialized, as in JAVA). For instance, the class declaration
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interface IPoint { int getX(); int getX(); void setX(int value); void setY(int value); String toString(); }
interface IColor { void setColor(String name); String toString(); }
interface IColoredPoint extends IPoint, IColor { }

Listing 1: Interfaces IPoint, IColor and IColoredPoint

class CPoint implements IPoint by TPoint
{ int x = 0; int y; CPoint() { } CPoint(int x, int y) { this.x = x; this.y = y; } }

defines a generator of objects of type IPoint (the interface IPoint is defined at the top
of Listing 1) with two constructors. The class, which is built by using the trait TPoint
(defined above in Section “Trait sum”), has the same semantics of the JAVA class ob-
tained by removing the clause “by TPoint” from the class header and inserting in the
class body the code of the methods provided by TPoint.

The following example shows the flexibility of traits. A trait TColor introduced for
building a class CColor:

trait TColor
{ String name; void setColor(String name){this.name = name;} String toString(){return this.name;} }

class CColor implements IColor by TColor { String name = ””; }

(the interface IColor is defined in Listing 1) can be straightforwardly reused for building
a class CColoredPoint:
trait TColoredPoint is TPoint[toString renameTo pointToString]+TColor[toString renameTo colorToString]+{
{ String pointToString(); String colorToString();

String toString() { return this.pointToString() + ”:” + this.colorToString(); } }
class CColoredPoint implements IColoredPoint by TColoredPoint { int x=0; int y=0; String name=””; }

(the interface IColoredPoint is defined in Listing 1) supporting the same kind of reuse
provided by multiple class-based inheritance.

Pure trait-based programming targets a scenario where a trait, which was developed
for a particular purpose, may later be adapted and reused in a completely different
context. For instance, trait TPoint introduced for defining a point in a plane can be
reused to define a counter:
interface ICounter { int getValue(); void setValue(int value); String toString(); }
trait TCountert is TPoint[exclude setY, exclude getY, exclude toString,

x renameTo n, getX renameTo getValue, setX renameTo setValue] +
{ int n; String toString() { return n; } void increment() { n++; } }

class CCounter implements ICounter by TCounter { int n = 0; }

3 Design Choices for DTP

In this section, we discuss the main design choices made during the development of
DTP. We choose a pure trait-based programming language as the language for writing
the products of the SPL because pure trait-based programming has been developed in
order to maximize the opportunities of reuse. In particular, we consider TRAITJ since,
in previous work [10], it has been used to directly implement SPLs.

We approached the challenge of designing a suitable notion of delta module for
trait-based programs by exploring the possibility to adapt DOP delta modules. A DOP
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delta module is a container of modification operations to a JAVA program. The mod-
ifications may add, remove or modify interfaces and classes. Modifying an interface
means changing the super interfaces, or adding or removing methods. Modifying a class
means: (i) changing the super class; (ii) adding or removing fields; and/or (iii) adding,
removing or modifying methods. The method-modification operation can either replace
the method body by another implementation, or wrap the existing method using the
original construct (similar to the Super construct in AHEAD [5])—the call original(· · · )
expresses a call to the method with the same name before the modifications and is bound
at the time the product is generated. Since TRAITJ interfaces are literally JAVA inter-
faces, the DOP delta operations for adding, removing or modifying an interface can be
straightforwardly adopted for defining delta modules for trait-based programs. Also the
operations of adding or removing classes and traits do not pose design challenges and
can be straightforwardly defined.

The main challenge is to define suitable delta operations for expressing modifica-
tions to traits. As a first attempt, we have tried to adapt to traits the class-modification
operations provided by DOP (see above), thus defining delta operations for modifying
the body TE of a trait definition trait T is TE by: (i) replacing the used traits (i.e., the trait
names occurring in TE) by arbitrary trait expressions; (ii) adding or removing field re-
quirements and method requirements; and/or (iii) adding, removing or modifying (pos-
sibly using the original construct) methods. However, through some experiments, we
realized that such delta operations are quite complex to use and that the delta operation
on methods (point (iii) above) is less flexible than the TRAITJ composition operations,
which include also method/field renaming.

Thus, we realized that a flexible trait-modification operation can be expressed by re-
placing the body of the trait with a new trait expressions. The new trait expression may
contain occurrences of the TOriginal keyword, which refers to the trait with the same
name before the modification and is bound at the time the product is generated. In this
way, a smooth integration of the modularity mechanisms provided by delta modifica-
tion operations (modeling inter-product code reuse) and by trait composition operations
(modeling intra-product code reuse) is achieved.

4 Delta-Trait Programming

In order to illustrate the main concepts of delta-trait programming, we use a case study
of a simple product line of data structures for sequences, that we call the Sequences PL.

Sequences PL

Base Length Resizeable Dynamic

require exclude

Legend:

Mantatory

Optional

Alternative

Fig. 2. Feature Model for the Sequences PL

Figure 2 depicts the feature model
of the Sequences PL as a feature di-
agram. The Sequences PL has five
products. Each product provides a
stack and a queue data structure. The
base product (implementing only the
Base feature) provides a fixed capac-
ity stack and queue implementing the

empty/full tests and the canonical insertion/extraction operations. The other products
offer additional functionalities: an operation for getting the number of existing ele-
ments in a stack/queue (feature Length), and in mutual exclusion either operations for
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changing the capacity of a stack/queue (feature Resizeable) or for the automatic man-
agement of the capacity (feature Dynamic). Since it would not be sensible to change
the capacity of a stack/queue without knowing the number of contained elements, the
feature Resizeable requires the feature Length.

The syntax of DELTATRAITJ is given in Figure 3.

DD ::= delta D { DO } delta module
DO ::= IO

∣∣ TO ∣∣ CO delta operation

IO ::= ID
∣∣ remove I

∣∣ interface operation
modify interface I

[
extends Ī

]
{ HO; }

HO ::= H
∣∣ removem header operation

TO ::= TD
∣∣ remove T

∣∣modify TD trait operaton

CO ::= CD
∣∣ remove C

∣∣ class operations
modify class C

[
implements Ī

] [
by TE

]
{ FO; KO }

FO ::= FI
∣∣ remove f

∣∣modify FI field operation
KO ::= K

∣∣ remove C(S x̄)
∣∣modify K constructor op.

Fig. 3. DELTATRAITJ delta modules syntax (D ∈ delta mod-
ule names and ID, H, TD, TE, CD, FI, K, m, f, x are defined
in Fig. 1). The body TE of the trait definition TD specified by
a trait-modify operation modifyTD may contain occurrences
of the TOriginal keyword, which denotes the original ver-
sion of the trait. The body {· · ·} of the constructor definition
K specified by a constructor-modify operation modifyK may
start with COriginal(· · ·), which represents a call to the orig-
inal version of the constructor.

Delta modules are contain-
ers of modification operations
to programs. In the context
of trait-based programs, delta
operations may add, remove
or modify interfaces, traits or
classes. Modifying an inter-
face means changing the su-
per interfaces, or adding or
removing methods. Modify-
ing a trait means replacing its
body or wrapping the exist-
ing trait body by means of
the TOriginal construct. Mod-
ifying a class means chang-
ing the implemented inter-
faces, or replacing/wrapping
the trait expression providing
the methods, or adding/re-
moving/modifying field ini-
tializations, or adding/remov-
ing/modifying constructors.

Modifying a constructor means replacing its body or wrapping the existing constructor
body by means of the COriginal construct.

A delta-trait product line (similar to a delta-oriented product line) consists of a code
base (containing the delta modules) and a product line declaration. The code in List-
ings 2 and 3 is a code base for the Sequences PL. The product line declaration creates the
connection to the product line variability specified in terms of product features. Listing 4
shows a product line declaration for the Sequences PL. The product line declaration: (i)
Lists the product features. (ii) Describes the set of valid feature configurations. In the
examples, the valid feature configurations are represented by a propositional formula
over the set of features. We refer to [4] for a discussion on other possible representa-
tions. (iii) Describes the possible application orders of the delta modules by defining a
total order on the sets of a partition of the delta modules. Delta modules in the same set
can be applied in any order, while the order of the sets must be respected. The ordering
allows the programmer to enforce semantic requires-relations that are necessary for the
applicability of the delta modules. In Listing 4, the ordering is represented by writing an
ordered list of the delta module sets after the keyword deltas {. . .}. (iv) A delta module
name can have an application condition to evaluate for which feature configurations the
delta module has to be included in the code of the corresponding product. In Listing 4,
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the application condition is represented by a propositional constraint over the set of
features, given by when clauses. Since only feature configurations that are valid accord-
ing to the feature model are used for product generation, the application conditions are
understood as a conjunction with the formula describing the set of valid feature config-
urations. In Listing 4, the delta modules DBase, DLength, DResizeable and DDynamic are
associated to the features Base, Length, Resizeable and Dynamic, respectively. More-
over, in order to realize the feature Resizeable, both the delta modules DResizeable and
DResisazableOrDynamic must be applied. In order to realize the feature Dynamic, both
the delta modules DResizeableOrDynamic and DDynamic must be applied.

A product is valid if it corresponds to a valid feature configuration. The generation of
a product for a given feature configuration consists of two steps (that can be performed
automatically): (i) find the selected delta modules (that is, the delta modules with a
satisfied application condition); and (ii) apply them to the empty program in any linear
ordering that respects the total order on the partition of the delta modules. A delta
module is applicable to a program if: (i) each interface/trait/class to be added does not
exist; (ii) each interface/trait/class to be removed or modified exists; (iii) each interface-
modify operation is such that each method to be removed exists and each method to be
added does not exist; and (iv) each class-modify operation is such that each field to be
removed exists and each field to be added does not exist. During the product generation,
the selected delta modules must be applicable in the given order (otherwise the product
generation fails). In particular, the first delta module (which is applied to the empty
product) must contain only additions. I.e., its body must be a TRAITJ program.

Listing 2 illustrates the DBase delta module that, when applied to the empty prod-
uct, generates the product with the feature Base. Applying the delta module DBase is
mandatory for all feature configurations. It creates the classes for the basic data struc-
tures Stack and Queue. The functionality of the data structures are described in the
interfaces IStack and IQueue with the methods pop, push and enqueue, dequeue. Both in-
terfaces are extending the interface ISequence which describes the functionality to check
the status of a sequence. The trait TSequence implements the functionality of the inter-
face ISequence with an array of objects (for storing the elements of the sequence) and an
integer field (for storing the number of elements currently in the sequence). The traits
TStack and TQueue implement the interfaces IStack and IQueue and extend the trait TSe-
quence. The data structures are instantiated in the two classes CStack and CQueue which
use the implementation of the according traits and the description of the interfaces.

The delta module DLength for the Length feature (in Listing 3) modifies the interface
ISequence to add the method getLength and adds the implementation of the method to
the trait TSequence. The depending traits and classes will be automatically updated by
these modifications. The delta module DResizeableOrDynamic (Listing 3) contains the
commonality of the related features Resizeable and Dynamic. It implements the method
resize which can be used to increase the capacity of the data structures. The delta module
DResizeable for the Resizeable feature (Listing 3) extends the interface ISequence with
the two methods resize and getCapacity. In this module only the getCapacity method is
implemented which returns the capacity of the data structure. The delta module DDy-

namic implements the Dynamic feature (Listing 3) which automatically coordinates the
size of the data structures. When the feature Dynamic is selected, the operation for test-
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delta DBase {

interface ISequence {
boolean isEmpty();
boolean isFull();

}

interface IStack extends ISequence {
void push(Object e);
Object pop();

}

interface IQueue extends ISequence {
void enqueue(Object e);
Object dequeue();

}

trait TSequence is {
int length;
Object[] elements;
boolean isEmpty() { return (this.length == 0); }
boolean isFull()
{ return (this.length == this.elements.length); }

}

trait TStack is TSequence + {
int length;
Object[] elements;
boolean isFull(); //required Methods
boolean isEmpty(); //required Methods
void push(Object o) {
if (this.isFull()) throw new IllegalStateException();
this.elements[this.length] = o;
this.length++;

}
Object pop() {
if (this.isEmpty()) throw new IllegalStateException();
this.length−−;
Object o = this.elements[this.length];
this.elements[this.length] = null;
return o;

}
}

trait TQueue is TSequence + {
int length;
Object[] elements;
int first;
boolean isFull(); //required Methods
boolean isEmpty(); //required Methods
void enqueue(Object o) {
if (this.isFull()) throw new IllegalStateException();
this.elements[(this.first + this.length)

% this.elements.length] = o;
this.length++;

}
Object dequeue() {
if (this.length == 0)
throw new IllegalStateException();

this.length−−;
Object o = this.elements[this.first];
this.first=(this.first + 1) % this.elements.length;
return o;

}
}

class CStack implements IStack by TStack {
Object[] elements;
int length = 0;
CStack(int capacity)
{ this.elements = new Object[capacity]; }

}

class CQueue implements IQueue by TQueue {
Object[] elements;
int length = 0;
int first = 0;
CQueue(int capacity)
{ this.elements = new Object[capacity]; }

}

} // end of DBase

Listing 2: Delta module DBase

ing whether a stack/queue is full (that is present in all the other products, including the
base product) is not present. Therefore, the delta module DDynamic removes the method
isFull from the interface ISequence. Then it creates a new trait TDynamic which imple-
ments new methods for the insertion and extraction of objects in the data structure. The
traits for the stack and the queue are then combined with the trait TDynamic in which the
original insertion and extraction methods are renamed to fit the required methods of the
trait TDynamic. The methods of trait TDynamic are renamed to fit the description from
the interfaces IStack or IQueue. Additionally, the classes for the stack and queue data
structure are extended with a new field for the minimal capacity of the data structures.
In order to realize the feature Resizeable both delta modules DResisazableOrDynamic

and DResizeable must be applied, and in order to realize the feature Dynamic both the
delta modules DDynamic and DResizeableOrDynamic must be applied.
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delta DLength {
modify interface ISequence { int getLength(); }
modify trait TSequence is TOriginal + {
int length;
int getLength() { return this.length; }

}
}

delta DResizeableOrDynamic {
trait TResize is {
Object[] elements;
int length;
void resizeAndCopy(int newCapacity, int from) {
if (this.length > newCapacity)
throw new IllegalStateException();

Object[] newElements = new Object[newCapacity];
for (int i = 0; i <= this.length − 1; i++) {
newElements[i] = this.elements[(from + i)

% this.elements.length];
}
this.elements = newElements;

}
}
modify trait TStack is TOriginal + TResize + {
void resizeAndCopy(int newCapacity, int from);
void resize(int newCapacity)
{ this.resizeAndCopy(newCapacity,0); }

}
modify trait TQueue is TOriginal + TResize + {
int first;
void resizeAndCopy(int newCapacity, int from);
void resize(int newCapacity) {
this.resizeAndCopy(newCapacity,this.first);
this.first = 0;

}
}
}

delta DResizeable {
modify interface ISequence {
void resize(int newCapacity);
int getCapacity();

}
modify trait TSequence is TOriginal + {
int getCapacity() { return this.elements.length; }

}
}

delta DDynamic {
modify interface ISequence{remove boolean isFull();}
trait TDynamic is {
Object[] elements;
int length;
int minCapacity;
boolean isFull();
void resize(int cap);
void originalInsert(Object o);
Object originalExtract();
void insert(Object o) {
if (this.isFull()) {
resize(this.elements.length ∗ 2);

}
this.originalInsert(o);

}
Object extract() {
if ((this.length <= this.elements.length / 2)

&& (this.elements.length!=this.minCapacity)){
resize(this.elements.length / 2);

}
return this.originalExtract();

}
}
modify trait TStack is
TOriginal[push renameTo originalInsert,

pop renameTo originalExtract] +
TDynamic[insert renameTo push,

extract renameTo pop]
modify trait TQueue is
TOriginal[enqueue renameTo originalInsert,

dequeue renameTo originalExtract] +
TDynamic[insert renameTo enqueue,

extract renameTo dequeue]
modify class CStack {
int minCapacity;
CStack(int capacity) {
COriginal(capacity);
this.minCapacity = capacity;

}
}
modify class CQueue {
int minCapacity;
CQueue(int capacity) {
COriginal(capacity);
this.minCapacity = capacity;

}
}
}

Listing 3: Delta modules DLength, DResizeableOrDynamic, DResizeable and DDynamic

features Base, Length, Resizeable, Dynamic configurations Base
& (Resizeable −> Length) & (!(Resizeable & Dynamic)) deltas
{ DBase }
{ DLength when Length }
{ DResizeableOrDynamic when (Resizeable | Dynamic)}
{ DResizeable when Resizeable }
{ DDynamic when Dynamic }

Listing 4: Declaration of the Sequences PL
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5 Development and Evolution of Delta-Trait Product Lines

As an example of unanticipated SPL evolution, consider the case of evolving the Se-
quences PL by adding three products that additionally contain the feature Peekable.
This feature creates a product that, in addition to the classes CStack and CQueue, con-
tains the classes CPeekableStack and CPeekableQueue. These new classes provide a
method Object peek(int i) for returning the value of the i-th element of a sequence. Fig-
ure 4 depicts the feature model of the evolved Sequence PL. In order to be able to safely
peek the elements of a sequence, it is useful to know the length of the sequence. There-
fore, the feature Peekable requires feature Length.

Evolved Sequences PL

Base Length Resizeable Dynamic Peakable

require
require

exclude

Fig. 4. Feature model for the evolved Sequences PL

The declaration of the evolved Se-
quences PL is shown in Listing 5.
The delta module DPeekable for im-
plementing the feature Peekable is
shown in Listing 6. In the application
order, the delta module DPeekable is
included in the first set of the partition
(together with the DBase delta mod-
ule). Indeed, DPeekable can be safely

moved to any other set of the partition, since it does not modify or remove existing
interfaces/traits/classes and, thus, it does not interfere with the other delta modules.

The delta module DPeekable adds three new interfaces (IPeekableSequence, IPeek-

ableStack and IPeekableQueue), three new traits (TPeekable, TPeekableStack and TPeek-

ableQueue), and two new classes (CPeekableStack and CPeekableQueue). The last two
interfaces IPeekableStack and IPeekableQueue extend the first interface by adding the
methods to add and remove an element of the respective data structure. The methods
for removing an element (pop and dequeue) no longer return that element. The trait
TPeekable provides the implementation of the method peek of the IPeekableSequence

interface. The new traits for the peekable data structures are based on the trait TPeek-
able and the corresponding trait from Listing 2 (TStack and TQueue, respectively)—this
straightforward intra-product code reuse would not be possible in DOP, which relies on
class-based inheritance for intra-product code reuse. Note that, in the products with
feature Peekable, the classes CPeekableStack and CPeekableQueue (which use the trait
TPeekableStack and TPeekableQueue, respectively) coexists with the classes CStack and
CQueue (which use the trait TStack and TQueue, respectively).

features Base, Length, Resizeable, Dynamic, Peekable
configurations Base & (Resizeable −> Length) & (Peekable −> Length) & (!(Resizeable & Dynamic))
deltas
{ DBase}
{ DLength when Length, DPeekable when Peekable }
{ DResizeableOrDynamic when (Resizeable | Dynamic)}
{ DResizeable when Resizeable }
{ DDynamic when Dynamic }

Listing 5: Declaration of the evolved Sequences PL
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delta DPeekable {
interface IPeekableSequence extends ISequence {
Object peek(int i);

}
interface IPeekableStack extends IPeekableSequence {
void push(Object e); void pop();

}
interface IPeekableQueue extends IPeekableSequence {
void enqueue(Object e); void dequeue();

}
trait TPeekable is {
int length; Object[] elements; int first;
Object peek(int i) {
if (i >= this.length)

throw new IllegalArgumentException();
return this.elements[(this.first + i)

% this.elements.length];
}

}
trait TPeekableStack is
TStack[pop renameTo topPop] +
TPeekable + { void pop() { topPop(); }

}

trait TPeekableQueue is
TQueue[dequeue renameTo frontDequeue] +
TPeekable + {

void dequeue() { frontDequeue(); }
}
class CPeekableStack implements IPeekableStack

by TPeekableStack {
Object[] elements;
int length = 0;
int first = 0;
CPeekableStack(int capacity)
{ this.elements = new Object[capacity]; }

}
class CPeekableQueue implements IPeekableQueue

by TPeekableQueue {
Object[] elements;
int length = 0;
int first = 0;
CPeekableQueue(int capacity)
{ this.elements = new Object[capacity]; }

}
} // end of DPeakable

Listing 6: Delta module DPeekable

As we can see in this example, DTP seems well suited for evolving SPLs, since the
developer is allowed to flexibly reuse already existing code both within single products
and across different products. Proactive SPL development [23] prescribes to analyze
beforehand the set of products to be supported and to plan and develop in advance all
reusable artifacts. The Sequence PL case study presented in Section 4 can be seen as
an example of proactive product line development, since the feature model defining
the scope of the product line is first introduced and then the delta modules and the
product line declaration for implementing the products are developed. When applying
proactive development, a high upfront investment is required to define the scope of
the of the product line and to develop reusable artifacts. Therefore, in order to reduce
the adoption barrier Krueger [23] proposed reactive and extractive SPL development.
In reactive SPL development, an initial product line that comprises only a basic set
of products is created. Then, the initial SPL is evolved in order to deal with changing
requirements. The evolved Sequence PL case study presented above can be seen as an
example of reactive product line development.

In extractive SPL development, the engineering process starts with a set of existing
legacy application that are turned into a product line. For instance, a product line de-
scribed by the feature diagram in Fig. 4 could be developed from 5 legacy products
corresponding to the feature configurations {Base, Length, Resizeable}, {Base, Dy-
namic}, {Base, Length, Peekable}, {Base, Length, Resizeable, Peekable}, and {Base,
Length, Dynamic, Peekable}. Traits have been designed for factoring common meth-
ods of a set classes. In [6], a tool is presented for identifying the methods in a JAVA class
hierarchy that could be good candidates to be refactored in traits. The tool is an adap-
tation of the SMALLTALK analysis tool of [24] to a JAVA setting. Since DTP smoothly
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integrates delta modules and traits mechanisms, it represents a promising approach for
extractive SPL development starting from a set of legacy JAVA applications.

6 Related Work

Schaefer et. al. [34] mention three approaches to support variability and code reuse on
the implementation level. The first is the annotative approach which marks the source
code in relation to the features of the product line. A prominent instances are condi-
tional compilation, frames [3] and CIDE [21]. The second is the compositional ap-
proach where product implementations are built by composing code fragments. Promi-
nent examples of the compositional approach are traits [35,17], FOP [5,2,16,1] and
aspect-oriented programming (AOP) [22]—see also the evaluation presented in [26].
Transformational implementation techniques constitute the third approach which can
be considered as an extension of the second and offer more flexible, modular implemen-
tation possibilities. Delta-oriented programming [31,33,32,9] is an instance of transfor-
mational programming. In this paper, we presented DTP, a novel approach to imple-
ment SPL variability by smoothly integrating the modularization mechanisms provided
by delta modules and traits, which overcomes some of the limitations of DOP w.r.t.
intra-product code reuse.

A comparison of DOP and FOP can be found in [33], and a comparison of DOP and
AOP can be found in [9]. Some related work on traits has been quoted in Sect.s 1-
2. Recently [10], we have investigated the use of pure trait-based programming to
directly implement SPLs. The main difference between the trait-only approach and DT-
P/DOP/FOP is that, in the former: (i) the artifact base consists of a well-formed program
consisting of the interfaces, traits and classes of all the products; and (ii) in order to gen-
erate a product is enough to select a subset of these artifacts. In [10], it is shown that
the trait composition operations provided by TRAITJ are not enough in order to flexibly
modeling inter-product variability alone. To overcome this limitation, a trait parameter-
ization mechanism is proposed. A parametric trait is a trait parameterized by interface
names and class names. It can be applied to interface names and class names to gen-
erate traits that can be composed to build other (possibly parametric) traits or classes.
The trait-only approach looks appealing because the code base has a simpler structure
and product generation is straightforward (cf. points (i) and (ii) above). But, the model-
ing of inter-product variability (which relies both on trait parameterization and on trait
composition operations) might be less evident. In the trait-only approach the sole mech-
anism for reusing interface definition code is interface extension, which is less flexible
than the interface-modify operation supported by DTP and DOP. In DTP, inter-product
variability is modeled by delta-modules. The trait parameterization mechanism in the
underlying trait language would provide additional flexibility.

7 Conclusion

We presented DTP, a novel approach to implement SPL variability by smoothly integrat-
ing the modularization mechanisms provided by delta modules and traits, and realized
it in the programming language DELTATRAITJ (which is currently under development)
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and compared it with DOP by case studies. DTP overcomes some of the limitations
of DOP w.r.t. intra-product code reuse and represents a flexible approach for imple-
menting evolving SPLs (cf. Sect. 5). As unanticipated SPL evolution scenarios become
more common in long-living software systems, DTP is a promising approach for de-
creasing maintenance and development effort in the life cycle of these software systems
on the implementation level supporting evolution at coarser levels of abstraction, e.g.,
the architecture level. In previous work, we have developed type systems for trait-based
languages [12,10,8] and for DOP [9]. We are currently developing a type system for
DTP. We have also developed compositional proof systems for the verification of pure
traits [14] and for the verification of DOP SPLs of JAVA programs [18,15]. In future
work, we would like to investigate compositional proof systems for DTP.
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Abstract. Software engineering increasingly emphasizes variability by
developing families of products for a range of application contexts or user
requirements. ABS is a modeling language which supports variability in
the formal modeling of software by using feature selection to transform
a delta-oriented base model into a concrete product model. ABS also
supports deployment models, with a separation of concerns between exe-
cution cost and server capacity. This allows the model-based assessment
of deployment choices on a product’s quality of service. This paper com-
bines deployment models with the variability concepts of ABS, to model
deployment choices as features when designing a family of products.

1 Introduction

Variability is prevalent in modern software in order to satisfy a range of applica-
tion contexts or user requirements [34]. A software product line (SPL) realizes
this variability through a family of product variants (e.g., [29]). A specific prod-
uct is obtained by selecting features from a feature model [36]; these models
typically focus on the functionality and software quality attributes of different
features and products. To express variability in system design, features typically
take the form of architectural models, behavioral models, and test suites [35].
Architectural variability [16] focuses on the presence of component variants,
and can be described using, e.g., the Variability Modeling Language [27], UML
stereotypes [14], or (hierarchical) component models such as Koala [37]. In Delta
modeling [10,30,31], a set of deltas specifies modifications to a core product. Δ-
MontiArch applies delta modeling to architectural description [15]; a delta can
add or remove components, ports, and connections between components.

Whereas architectural models describe the logical organization of a system
in terms of components and their connections, we are interested in the physical
organization of software units on physical or virtual machines; we call this phys-
ical organization the deployment architecture. Varying deployment architectures
will perform the same computations, but with different cost and/or time spent.
Thus, a deployment architecture comprises specifications of execution costs and
available resources.
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ABS

Core ABS Real-Time
ABS

(Functional Variability)
Features + Deltas (Deployment Variability)

(Functional + Imperative)
Executable Models Time + Deployment

Fig. 1. ABS language extension

Deployment 
architecture
variability

Resource cost
variability

Functional
variability

Fig. 2. The SPL variability space with
deployment variability

This paper integrates deployment variability in SPL models such that differ-
ent targeted deployment architectures may be taken into account early in the
design of the SPL. We aim at a reasonable orthogonality between functional
and deployment variability in the SPL model. The starting point for this work
is the abstract behavioral specification language ABS, which adds support for
variability to models in the kernel modeling language Core ABS [20]. ABS is
object-oriented to be easy to use for software developers; it is executable to
support code generation and (timed) validation of models; and it has a formal
semantics which enables the static analysis of models (e.g., the worst-case re-
source consumption can be derived for a model). ABS is particularly suitable for
our objective because (1) ABS supports SPL modeling based on deltas [9, 11],
and (2) ABS supports the modeling of deployment decisions based on the mod-
eling concept of deployment components [23] in Real-Time ABS [7]. Real-Time
ABS leverages resources and their dynamic management to the abstraction level
of software models. Fig. 1 shows how functional variability modeling in ABS
and time and deployment models in Real-Time ABS both extend Core ABS. Al-
though these extensions of ABS coexist, they have so far never been combined.
The purpose of this paper is to combine these two extensions in order to model
deployment variability, corresponding to the dotted area in Fig. 1.

Our approach to deployment variability for SPL models makes a separation of
concerns between cost and capacity which introduces two new variation points
in the variability space of ABS feature models (depicted in Fig. 2):

– Resource cost variability: These features determine the costs associated
with executing the SPL’s logical artifacts; and

– Deployment architecture variability: These features determine how the
logical artifacts are deployed on locations with different execution capacities.

The main contribution of the paper is an integration of delta models with de-
ployment architectures in ABS. This integration allows orthogonality between
functional and deployment variability, such that features expressing functional-
ity, resource cost and deployment variability are kept in different trees in the
ABS feature models. The integration is illustrated by variability patterns for
MapReduce [12], a programming model for highly parallelizable programs. Fur-
thermore, this integration allows ABS tools to be used to analyze functional
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MapReduce
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Fig. 3. A family of products sharing an underlying MapReduce structure

features with respect to deployment architecture during the early design stage
of SPLs.

Paper overview. Sect. 2 motivates our work by an example of deployment vari-
ability. Sect. 3 presents modeling in the abstract behavioral specification lan-
guage ABS and Sect. 4 delta modeling and its realization in ABS. Sect. 5 com-
bines delta-oriented variability with deployment modeling, and discusses how to
extend a feature model with deployment variability. Sect. 6 revisits the example,
Sect. 7 discusses related work, and Sect. 8 concludes the paper.

2 Motivating Example

MapReduce [12] is a programming pattern for processing large data sets in two
stages; first the Map stage separates parallelizable jobs on distinct subsets of
data to produce intermediate results, then the Reduce stage merges the interme-
diate data into a final result. The initial and intermediate data are on the form
of key/value pairs, and the final result is a list of values per key. MapReduce
does not specify the computations done by the two stages or the distribution of
workloads across machines, making it a good abstract base model for SPLs.

Our example uses MapReduce to model product variants of a range of ser-
vices which inspect a set of documents. Individual products may implement,
e.g., Wordcount, which counts the occurrences of words in the given documents,
and Wordsearch, which searches for documents in which a given word occurs.
For simplicity, we assume that a service either provides the Wordcount or the
Wordsearch feature. The services are implemented on a cluster of computers,
using MapReduce.

To attract clients to the word count and word search services, freely available
demo versions offer the same functionality as the full versions, albeit with a lower
quality of service. When the services are deployed, the demo versions will run



Deployment Variability in Delta-Oriented Models 307

on a few machines, whereas the full versions have access to the full power of
the cluster. Our model has three versions of each service: the purely functional
model, the model with full access to the cluster, and a model with restricted
access to the cluster. This product family (see Fig. 3) is a running example in
the paper.

3 Behavioral and Deployment Modeling in ABS

The abstract behavioral specification language ABS targets the executable de-
sign of distributed object-oriented systems. It has a formally defined kernel called
Core ABS [20]. ABS is based on concurrent object groups (COGs), akin to con-
current objects [8,21], Actors [1], and Erlang processes [5]. COGs support inter-
leaved concurrency based on guarded commands. ABS has a functional and an
imperative layer, combined with a Java-like syntax. Real-Time ABS [7] extends
Core ABS models with (dense) time; in this paper we do not specify execution
time directly but rather observe time by measurements of the executing model.

ABS has a functional layer with algebraic data types such as the empty type
Unit, booleans Bool, integers Int; parametric data types such as sets Set<A> and
maps Map<A, B> (for type parameters A and B); and functions over values of
these data types, with support for pattern matching. The modeler can define
additional types to succinctly express data structures of the problem domain.

The imperative layer of ABS describes side-effectful computation, concur-
rency, communication and synchronization. ABS objects are active in the sense
that their run method, if defined, gets called upon creation. Communication
and synchronization are decoupled: Communication is based on asynchronous
method calls. After executing f=o!m(e), which assigns the call to a future vari-
able f, the caller proceeds execution without blocking while m(e) executes in the
context of o. Two operations on future variables control synchronization in ABS.
First, the statement await f? suspends the active process unless a return value
from the call associated with f has arrived, allowing other processes in the same
COG to execute. Second, the return value is retrieved by the expression f.get,
which blocks all execution in the COG until the return value is available. Inside
a COG, Core ABS also supports standard synchronous method calls o.m(e).

A COG can have at most one active process, executing in one of the objects
of the COG. Scheduling is cooperative via await g statements, which suspend
the current process until g (a condition over object or future variable state)
becomes true. The remaining statements of ABS (assignment, object creation,
conditionals and loops) are designed to be familiar to a Java programmer.

Deployment Modeling. One purpose of describing deployment in a model-
ing language is to differentiate execution time based on where the execution
takes place, i.e., the model should express how the execution time varies with
the available capacity of the chosen deployment architecture. For this purpose,
Real-Time ABS extends Core ABS with primitives to describe deployment archi-
tectures which express how distributed systems are mapped on physical and/or
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virtual media with many locations. Real-Time ABS lifts deployment architec-
tures to the abstraction level of the modeling language, where the physical or
virtual media are represented by deployment components [22].

A deployment component is part of the model’s deployment architecture, on
which a number of COGs are deployed. Deployment components are first-class
citizens and they support a number of methods for load monitoring and load
balancing purposes (cf. [22]). Each deployment component has an execution ca-
pacity, which is the amount of resources available per accounting period. By
default, all objects execute in a default (root) environment with unrestricted
capacity. Other deployment components with restricted capacities may be cre-
ated to capture different deployment architectures. COGs are created on the
same deployment component as their creator by default; a different deployment
component may be selected by an optional deployment annotation [DC: dc] to
object creation, for a deployment component dc.

The available resource capacity of a deployment component determines the
amount of computation which may occur in the objects deployed on that de-
ployment component. Objects allocated to the deployment component compete
for the shared resources in order to execute, and they may execute until the
deployment component runs out of resources or they are otherwise blocked. For
the case of CPU resources, the resources of the deployment component define
its capacity inside an accounting period, after which the resources are renewed.

The resource consumption of executing statements in the Real-Time ABS
model is expressed by means of adding a cost annotation [Cost: e] to any state-
ment. It is the responsibility of the modeler to specify appropriate resource costs.
A behavioral model may be gradually transformed to provide more realistic
resource-sensitive behavior by inserting more fine-grained cost annotations. The
automated static analysis tool COSTABS [2] can compute a worst-case approx-
imation of resource consumption, based on static analysis techniques. However,
the modeler may also want to capture normative constraints on resource con-
sumption, such as resource limitations, at an abstract level; these can be made
explicit in the model during the very early stages of the system design. To this
end, cost annotations may be used by the modeler to abstractly represent the
cost of some computation which is not fully specified in the model.

4 Delta-Oriented Variability in ABS

This section describes how SPLs are modeled in ABS. ABS includes a delta-
oriented framework for variability [9,11]. Fig. 4 depicts a delta-oriented variabil-
ity model where a feature model F with orthogonal variability [18] is represented
as two trees that hierarchically structure the set of features of this model. Sets
of features from the feature model F are linked to sets of delta modifications
from the delta model Δ, which apply to the common base model P to produce
different product line configurations C, C′ and C′, and finally a specific product
ρ is extracted from the product line configuration C.
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Fig. 4. A graphical representation of a Delta-Oriented variability model

Feature Model. A feature model in ABS is represented textually as a forest of
nested features where each tree structures the hierarchical dependencies between
related features, and each feature in a tree may have a collection of Boolean or
integer attributes. The ABS feature model can also express other cross-tree de-
pendencies, such as mandatory and optional sub-features, and mutually exclusive
features. The group keyword is used to specify the sub-features of a feature; the
oneof keyword means that exactly one of the sub-features must be selected in
the created product line, the range of values associated to an attribute specify
the values in which an attribute can be instantiated when an specify product is
generated. For the full details, we refer the reader to [9, 11].

Example 1. In the functional feature model of the MapReduce example from
Section 2, a tree with a root Calculations offers two alternative and mutually
exclusive features that can be selected to express that a specific product supports
counting words or searching for words.

root Calculations { group oneof { Wordcount, Wordsearch }}

In addition ABS allows a feature model with multiple roots (hence, multiple
trees) to describe orthogonal variability [18], which is useful for expressing unre-
lated functional and other features (e.g., features related to quality of service).

Delta Model. The concept of delta modeling was introduced by Schaefer et
al. [6,31–33] as a modeling and programming language approach for SPLs. This
approach aims at automatically generating software products for a given valid
collection of features, providing flexible and modular techniques to build differ-
ent products that share functionality or code. In delta-oriented programming,
application conditions over the set of features and their attributes, are associated
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with units of program modifications called delta modules. These delta modules
may add, remove, or otherwise modify code. The implementation of an SPL in
delta-oriented programming is divided into a common core module and a set of
delta modules. The core module consists of classes that implement a complete
product of the SPL. Delta modules describe how to change the core module to
obtain new products. The choice of which delta modules to apply is based on
the selection of desired features for the final product.

Technically, delta modules have a unique identifier, a list of parameters, and a
body containing a sequence of class and interface modifiers. Such a modification
can add a class or interface declaration, modify an existing class or interface,
or remove a class or interface. The modifications can occur within a class or
interface body, and modifier code can refer to the original method by using the
original() keyword. Delta modules in ABS can be parametrized by attribute
values to enable the application of a single delta in more than one context.

Product Line Configuration. The product line configuration links feature
models with delta modules to provide a complete specification of the variability
in an ABS product line. A product line configuration consists of the set of features
of the product line and a set of delta clauses. Each delta clause names a delta
module and specifies the conditions required for its application, called application
conditions. A partial ordering on delta modules constrains the order in which
delta modules can be applied to the core module.

Specific Product. A product selection clause generates a specific product from
an ABS product line. It states which features are to be included in the product
and specifies concrete values for their attributes. A product selection is checked
against the feature model for validity. The product selection clause is used by the
product line configuration to guide the application of the delta modules during
the generation of the final product.

Generated Final Product. Given a Core ABS program P , a set of delta
modules Δ, a product line configuration C, and a feature model F (as depicted
in Fig. 4), the final product ρ, which will be a Core ABS program, is derived as
follows: First check that the selection of features for ρ satisfies the constraints
imposed by the feature model F ; then select the delta modules from Δ with a
valid application condition with respect to ρ; and finally apply the delta modules
to the core program P in some order respecting the partial order described in
C, replacing delta parameters in the code with the literal values supplied by the
feature.

5 Deployment Variability in ABS

Feature models usually describe functional variability in a software product line.
This section discusses lifting deployment variability to ABS feature models and
its interaction with functional variability. Our approach aims to establish or-
thogonality between the functional and deployment aspects in an SPL model in
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order to maintain multiple axes of variability (see Fig. 2). The further separa-
tion of concerns between cost and capacity in the deployment models of ABS is
reflected in the feature models as well.

Thus, variability in a deployment-aware SPL comprises these variation points
in the feature models:

Functional Variability: These features determine the functional behavior of a
product and are used as in standard SPL engineering.

Resource Cost Variability: These features describe the choice of how the
incurred resource cost is estimated during execution of the model. The basic
feature is the no cost feature, typically selected for functional analysis of the
SPL model. Other cost models are fixed-cost for selected jobs (similar to costs in
a basic queuing network or simulation model; see, e.g., [19]), and data-sensitive
costs. These can be either measured, real cost for selected jobs or worst-case
approximations (which may depend on data flow as well as control flow). All of
these can be expressed via cost annotations.

Deployment Architecture Variability: These features determine how the
logical artifacts of the model are mapped to a specific deployment architecture,
which determines the execution capacity of the different locations on which the
logical artefacts execute. The basic feature is the undeployed feature which does
not impose any capacity restrictions on the execution. This feature is typically
selected together with no cost during functional analysis and testing. When an-
alyzing non-functional properties, features describe how selected parts of the
logical architecture are deployed on deployment components with restricted ca-
pacity, either statically or (for virtualized deployment) dynamically.

Example 2. We extend the feature model of Example 1 with a Resources tree
for resource costs, and a Deployments tree for deployment architecture. The
Resources root has the basic feature NoCost, the feature FixedCost for a ba-
sic data-independent cost model specified in the attribute cost, the feature
WorstcaseCost for a worst-case cost model in terms of the size of the input files,
and MeasuredCost for using the actual incurred cost measured during execution
of the model. The Deployments root has three alternative features related to
the number of available machines in the physical deployment architecture; the
capacity of each machine is specified by the attribute capacity.

root Resources {
group oneof {
NoCost,
FixedCost { Int cost in [ 0 .. 10000 ] ; },
WorstcaseCost,
MeasuredCost

}
}
root Deployments {
group oneof {
NoDeploymentScenario,
UnlimitedMachines { Int capacity in [ 0 .. 10000 ] ; },
LimitedMachines { Int capacity in [ 0 .. 10000 ] ; Int machinelimit in [ 0 .. 100 ] ; }

}
}
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// These definitions to be changed in delta modifications
type InKeyType = String; // filename
type InValueType = List<String>; // file contents
type OutKeyType = String; // word
type OutValueType = Int; // count

interface MapReduce {
List<Pair<OutKeyType, List<OutValueType>>>

mapReduce(List<Pair<InKeyType, InValueType>> docs); // invoked by client
Unit finished(Worker w); // invoked by workers when finished with 1 task

}

interface IMap { // invoked by MapReduce controller
List<Pair<OutKeyType, OutValueType>>
invokeMap(InKeyType key, InValueType value);

}

interface IReduce { // invoked by MapReduce controller
List<OutValueType>
invokeReduce(OutKeyType key, List<OutValueType> value);

}

interface Worker extends IMap, IReduce { }

Fig. 5. Interfaces of the base model of the MapReduce example in ABS

6 Example: Product Variability in the MapReduce
Example

This section describes the implementation of a generic MapReduce framework
in ABS and its adaptation to different products as described in Section 2. It
will become apparent that a product that is implemented according to best
practices for object-oriented software (i.e., decomposing functionality, methods
implementing one task only, and the careful definition of datatypes) also makes
the product well-suited as a base product for a software product line.

6.1 Commonalities in the ABS Base Product

Fig. 5 shows the interfaces for the main MapReduce object and for the Worker
objects which will carry out the computations in parallel. The computation is
started by calling the mapReduce method with a list of (key, value) pairs. The
main object will then create a number of worker objects, call invokeMap on these
objects, gather and collate the results of the mapping phase, call invokeReduce
on the workers and collate and return the final result.

The base product in our example implements a word count function (computing
word occurrences over a list of files), without a resource or deployment model.
Worker objects are reused from a pool, but there is no bound on the number of
workers created. Workers add themselves back to the pool by calling finished.

Figure 6 shows part of the worker implementation of the base product (i.e., a
Wordcount product without any cost model). The invokeReduce method sets up
the result, calls a private method reduce which emits intermediate results using
the method emitReduceResult. The reduce method in Fig. 6 is equivalent to the
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class Worker(MapReduce master) implements Worker {
List<OutValueType> reduceResults = Nil;

List<OutValueType> invokeReduce(OutKeyType key, List<OutValueType> value) {
reduceResults = Nil;
this.reduce(key, value);
List<OutValueType> result = reduceResults;
reduceResults = Nil;
master!finished(this);
return result;

}

Unit emitReduceResult(OutValueType value) {
reduceResults = Cons(value, reduceResults);

}

// variation point for functional model
Unit reduce(OutKeyType key, List<OutValueType> value) {
OutValueType result = 0;
... // sum up value list into result variable ...
this.emitReduceResult(result);

}
}

Fig. 6. The reduce part of the Wordcount example in the Worker class

one shown in the original MapReduce paper [12]. The mapping functions of the
worker objects are implemented in the same way.

6.2 Variability in the ABS Product Line

To change the functional feature of the model from computing word counts to
computing word search, some parts of the model need to be altered via delta
application. The same applies when varying the deployment and cost model, as
explained in Section 5. These variation points turn out to be orthogonal and can
be modified independently of each other.

In the example, the methods to be modified by deltas are not public; i.e., they
are not part of the published interface of the classes comprising the base model.
This appears to be a recurring pattern: public methods like invokeReduce of Fig. 6
interact with the outside world, gather and decompose data for computation and
returning. If the modeler factors out computation into private methods with only
one single task to perform (like reduce in Fig. 6), these methods can be cleanly
replaced in deltas, without imposing constraints on the implementation. This
suggests that clean object-oriented code will in general be likely to be amenable
to delta-oriented modification.

Functional Variability. The following delta shows a delta fragment that mod-
ifies the functionality of the base model:

delta DOccurrences;
modifies type OutValueType = String; // Change the method signatures
modifies class Worker {
modifies Unit map(InKeyType key, InValueType value) {
... // change non−public map method to compute occurrences

}
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modifies Unit reduce(OutKeyType key, List<OutValueType> value) {
... // change non−public reduce method to compute occurrences

}
}

By modifying the type synonyms InKeyType, InValueType, OutKeyType and
OutValueType from the base model, we can change the data types and method
signatures of the model without having to change any code in the MapReduce
class. Modifying the methods map and reduce of the Worker class changes the
computation performed by the product. The new map and reduce methods use
emitMapResult and emitReduceResult as in the base model; hence they do not
need to care about invocation or return value handling protocols.

Resource Cost Variability. Costs are incurred during (and because of) com-
putational activity. This means that cost model and functional model are related.
However, the two aspects can be decoupled

cleanly via the original() call, which we use to associate the given cost with
the original code. Care must be taken in the productline definition to ensure
that any deltas incurring costs are applied after deltas modifying functionality;
otherwise, the cost association would be overwritten.
delta DFixedCost (Int cost);
modifies class Worker {
modifies Unit emitMapResult(OutKeyType key, OutValueType value) {
[Cost: cost] original(key, value);

}
modifies Unit emitReduceResult(OutValueType value) {
[Cost: cost] original(value);

}
}

This FixedCost delta assigns a cost (given as a delta attribute) to each com-
putation of an intermediate result; the feature attribute is passed in as a delta
parameter. In general, costs are introduced into MapReduce by wrapping the
methods invokeMap and invokeReduce for assigning costs to starting a compu-
tation step, and by modifying emitMapresult and emitReduceresult for assigning
costs to the production of a result. Figure 6 shows where these methods are
invoked.

An alternative approach to adding resource costs via hooks is to use the ABS
original() call, wrapping the original map, emitMapresult etc. methods with costs.
This approach makes the functional model simpler, but leads to a more com-
plicated product line configuration since the correct order of delta application
must be specified in that case.

Deployment Architecture Variability. Deployment architecture, i.e., deci-
sions on how many workers to create and how many resources to supply them
with, is implemented in the MapReduce class. As mentioned, this class manages
a pool of Worker instances which is by default of unbounded size. To change this
behavior, the modeler implements a delta that overrides a method getWorker
(and also the method finished of the MapReduce implementation in case the new
getWorker method does not use the resource pool of the base model). The capac-
ity and number of deployment components can be adjusted via delta parameters:
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productline MapReduceSPL;

features

Wordcount, Wordsearch, // Functional features
NoCost, FixedCost, WorstCaseCost, MeasuredCost, // Resource cost features
NoDeploymentScenario, UnlimitedMachines, LimitedMachines; // Deployment architectures

delta DOccurrences when Wordsearch;
delta DFixedCost(Cost.cost) after DOccurrences when Cost;
delta DUnboundedDeployment(UnlimitedMachines.capacity) when UnlimitedMachines;
delta DBoundedDeployment(LimitedMachines.capacity, LimitedMachines.machinelimit)

when LimitedMachines;
...

Fig. 7. Product line configuration for the MapReduce example in ABS

product WordcountModel (Wordcount, NoCost, NoDeploymentScenario);
product WordcountFull (Wordcount, Cost{cost=10}, UnlimitedMachines{capacity=20});
product WordcountDemo (Wordcount, Cost{cost=10},

LimitedMachines{capacity=20, machinelimit=2});

product WordsearchModel (Wordsearch, NoCost, NoDeploymentScenario);
product WordsearchFull (Wordsearch, Cost{cost=10}, UnlimitedMachines{capacity=20});
product WordsearchDemo (Wordsearch, Cost{cost=10},

LimitedMachines{capacity=20, machinelimit=2});

Fig. 8. Specifying Products for the MapReduce example in ABS

delta DBoundedDeployment (Int capacity, Int maxWorkers);
modifies class MapReduce {
... // adjust behavior of resource pool and capacities of created deployment components

}

The product line configuration. The feature model presented in Section 5
extends the model of Section 2 with resource cost variability, resulting in 14
different products. Fig. 7 shows part of the product line configuration and Fig. 8
shows the specification of some of the derivable products.

In the deployment components of the deployment architecture features, ca-
pacity is defined by the amount of resource costs that can be processed per
accounting period (in terms of the dense time semantics of execution in Real-
Time ABS). When the base model is extended with features for deployment
architecture and resource cost, the load on the individual deployment compo-
nents, defined as the actual incurred cost per accounting period, can be recorded
and visualized.

We illustrate how deployment variability for products can be validated using
the simulation tool of ABS, by comparing the performance of two different de-
ployments of the Wordcount product, varying the number of available machines
between 5 (the “Demo” version) and 20 (the “Full” version), but keeping the cost
model, input data and computation model constant. The graphs in Fig. 9 shows
the total load of all machines over simulated time for the two products. The
figure shows two typical instances of a typical MapReduce workload; first, the
map processes execute until they are finished, then the reduce processes execute.
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Fig. 9. Varying deployment model, constant cost and functional model

The start of the reduce phase can be observed in the graph of Fig. 9 as the sec-
ond spike in processing activity. It can be seen that the demo version takes over
twice as much simulated time to complete its execution, while the full version
completes its execution earlier by incurring a load that is higher than for the
demo version (while still decreasing as the map processes terminate).

Similar qualitative investigations can be performed regarding the influence
of varying cost models (e.g., worst-case vs. average cost) and more involved
deployment strategies.

7 Related Work

The inherent compositionality of the concurrency model considered in this paper
allows objects to be naturally distributed on different locations, because only an
object’s local state is needed to execute its methods. In previous work [4,22,23],
the authors have introduced deployment components as a modeling concept to
captures restricted resources shared between a group of concurrent objects, and
shown how components with parametric resources may be used to capture a
model’s behavior for different assumptions about the available resources. The
formal details of this approach are given in [23]; two larger case studies on
virtualized systems deployed on the cloud are presented in [3,24]. Our approach
to deployment modeling would be a natural fit for resource-sensitive deployment
in other Actor-based approaches, e.g., [5, 17].

Deployment variability is not considered in the recent software diversity sur-
vey [35], but it has been studied in the context of feature models. For example,
a feature model that captures the architectural and technological variability of
multilayer applications is described in [13] together with an associated model-
driven development process. In contrast our paper considers a much simpler
feature model, but it is integrated in a full SPL framework and explicitly linked
to executable models which can be compared by tool-based analysis. Without
considering variability, a platform ontology and modeling framework based on
description logic is proposed by [38], which can be used to automatically con-
figure various reusable concrete platforms that can be later be integrated with
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a platform-independent model using the Model Driven Architecture approach.
We follow a similar approach based on the extending a purely functional model
with deployment features, but our framework is based on simpler concepts which
does not introduce the overhead of description logic. In the context of QoS vari-
ability, [25] study a modeling and analysis framework for testing the QoS of an
orchestration before deployment to determine realistic Service Level Agreement
contracts; their analysis uses probabilistic model of QoS. Our work similarly al-
lows the model-based comparison of QoS variability, but focuses on deployment
architecture and processing capacity rather than orchestration.

The MapReduce programming pattern which is the basis for the example
of this paper, has been formalized and studied from different perspectives. [39]
develop a CSP model of MapReduce, with a focus on the correctness of the
communication between the processes. [26] develops a rigorous description of
MapReduce using Haskell, resulting in an executable specification of MapRe-
duce. [28] formalizes an abstract model of MapReduce using the proof assistant
Coq, and use this formalization to verify JML annotations of MapReduce appli-
cations. However, none of these works focus on deployment strategies or relate
MapReduce to deployment variability in SPLs.

8 Conclusion

Software today is increasingly often developed as a range of products for devices
with restricted resource capacity or for virtualized utility computing. For an
SPL targeting such platforms, the deployment of different products in the range
should also be considered as a variation point in the SPL.

This paper integrates explicit resource restricted deployment scenarios into a
formal modeling language for SPL engineering. This integration is based on delta
models to systematize the derivation of product variants, and demonstrated in
the ABS modeling language. The proposed integration emphasizes orthogonality
between functional features, resource cost features, and deployment architecture
features, to facilitate finding the best match between functional features and a
target deployment architecture for a specific product. The supported analysis
allows the validation of deployment decisions for specific products in the SPL,
which may entail a refinement of the feature model. Resource cost variability
can be exploited to compare product performance under different cost models
such as fixed cost, measured simulation cost, and worst-case cost.

The approach is demonstrated on an example using the MapReduce program-
ming pattern as its common base product, and used to compare the performance
of full versions to restricted demo versions of product variants. A restriction of
our work is the concrete semantics which makes it difficult to reason about
whole product lines, requiring a per-product approach to validation. This could
be lifted by using a symbolic semantics and applying symbolic execution tech-
niques to analyze the deployment sensitive SPL models, allowing the analysis to
be lifted from concrete deployment architectures for specific products to a more
generalized analysis.
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Abstract. Concepts for enriching formal languages with variability ca-
pabilities aim at comprehensive specifications and efficient development
of families of similar software variants as propagated, e.g., by the software
product line paradigm. However, recent approaches are usually limited
to purely structural variability, e.g., by adapting choice operator seman-
tics for variant selection. Those approaches lack (1) a modular separation
of common and variable parts and/or (2) a rigorous formalization of se-
mantical impacts of structural variations. To overcome those deficiencies,
we propose a delta-oriented extension to Milner’s process calculus CCS,
called DeltaCCS, that allows for modular reasoning about behavioral
variability. In DeltaCCS, modular change directives are applied to core
processes by altering term rewriting semantics in a determined way. We
define variability-aware CCS congruences for a modular reasoning on the
preservation of behavioral properties defined by the Modal μ-Calculus
after changing CCS specifications. We implemented a DeltaCCS model
checker to efficiently verify the members of a family of process variants.

Keywords: Variability Modeling, Operational Semantics, Model
Checking.

1 Introduction

Inherent diversity becomes more and more prevalent nowadays in software sys-
tems, e. g., due to the ever-growing number of configuration parameters, run-
time adaptation capabilities etc. Software product line engineering constitutes a
promising paradigm for efficiently developing families of similar software variants
upon a common core platform [10]. The common and variable features provided
by the different product family members correspond to variable product charac-
teristics during product line development and product derivation apparent in all
development phases and abstraction levels. This concept allows for a fine-grained
reuse of feature artifacts among the different variants. Thus, enhancing model-
ing and programming languages with explicit variability capabilities constitute
a key technology for efficiently engineering a product line. To benefit from those
concepts also during quality assurance, the reasoning required, e. g., to verify
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Fig. 1. Feature Model (a) and State Machine for Wiper Control System (b)

correctness properties for a complete product line should also be performed in
a variability-aware manner. Accordingly, various attempts appeared in the lit-
erature to define core calculi for capturing the essence of variability in a formal
way [1,2,6,7,12,15,16,18,19,21,22]. However, most of those approaches have at
least one of the following two major drawbacks:

1. A so-called 150% specification of the complete product line is required com-
prising all variants [13]. Therefore, variability is usually emulated by adapting
existing and/or adding new language constructs, e. g., selection/projection
[7], (guarded) choice [18,15,21], and modal refinement [16,19,2]. Those rep-
resentations become intractable for large-scale product lines.

2. They focus on structural/syntactical variability rather than the behavioral
impact of variations [1,13,15,6]. This obstructs a systematic propagation of
behavioral properties established for some variant to other variants.

To illustrate the challenges imposed by inherent variability, consider the sample
state machine model in Fig. 1(b) denoting one variant of a wiper control system
product line (cf. [18]) serving as our running example. The sensor subsystem on
the left continuously detects the amount of rain and the control subsystem on
the right adapts the wiper speed, accordingly, when running in automatic mode.
In addition, the manual mode enables permanent wiping. The feature model in
Fig. 1(a) defines the possible variants of the wiper control system product line.
The control system is either configured as variant High as shown in Fig. 1(b),
or it is Low thus omitting the state Fast. Similarly, the sensor system is either
equipped with a Good sensor (Fig. 1(b)), or it is a Simple one thus omitting state
Wet, whereas the transition between state Dry and Damp is added to properly
handle heavy rain. The system is intended to perform fast wiping whenever
receiving the input heavy, if the control subsystem is in state Auto after receiving
input iOn and not yet receiving input off. This temporal property holds for the
variant in Fig. 1(b), whereas changes imposed by the variant using the simple
sensor obstructs this property as the control system awaits the input heavyRain
which is not provided by the simple sensor. Verifying those properties for every
variant anew is expensive and inefficient due to the high number of possible
configurations and the inherent similarities among the variants.

To tackle this challenge, we propose the core calculus DeltaCCS to reason
about the semantic impacts of variability by means of change operations applied
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to behavioral specifications. We enhance Milner’s process calculus CCS [24] with
a modular variability concept that is inspired by the principles of delta model-
ing [6]. We separate core processes from change directives altering the term
rewriting semantics for the core in a determined way. In contrast to recent 150%
approaches, variability is not emulated by a priori resolution of variation points
within a 150% model, e. g., by an adapted choice rule [18,21,15], but rather by
changing the rewriting of processes on-the-fly by overriding the CCS recursion
rule. This way, arbitrary structural variations of core processes are rigorously
propagated onto the semantic level. This allows for a modular reasoning on
the preservation of behavioral properties defined by the Modal μ-Calculus after
changing CCS specifications thus constituting a formal characterization of be-
havioral change in terms of variability-aware congruences on CCS process terms.
Thereupon, we present a model checker implementation that allows for applying
an efficient, incremental verification strategy to delta-oriented product lines.

This paper is organized as follows. In Sect. 2 we review the basics of CCS being
enhanced to DeltaCCS in Sect. 3. A formalization of behavioral change impact
with respect to properties expressed by the Modal μ-Calculus is given in Sect. 4
by means of variability-aware congruences for DeltaCCS. Our DeltaCCS model
checker implementation and corresponding experimental results are presented in
Sect. 5. In Sect. 6 we discuss related work and Sect. 7 concludes.

2 Preliminaries

We first revisit the foundations of CCS [24]. In CCS, system behavior is specified
by a set of process definitions. A process is able to perform predefined sequences
of atomic actions. The overall system behavior results from concurrent process
composition communicating via synchronization over common actions.

By N we refer to a global set of names denoting (visible) actions of CCS
process definitions. We reserve the name τ , i. e., τ �∈ N for internal actions
as usual. Action names a ∈ N used in CCS processes represent directed com-
munication primitives, i. e., either a receiving action a, or its complementary a
representing a sending action. We denote the set of all actions over names N by
Act = {a, a | a ∈ N}. A CCS process definition follows the grammar

P ::= α.P
∑

i∈I Pi P |P X

with α ∈ Act, index set I, and process constants X ∈ K referring to CCS pro-

cesses P ′ by X
Def
= P ′. The prefix process α.P first performs action α and then

behaves as process P . The generalized sum process
∑

i∈I Pi proceeds by choosing
among one of the processes Pi (i ∈ I), where the binary choice operator + con-
stitutes a special case with |I| = 2. Accordingly, the nil process 0 that terminates
without performing any action is obtained by I = ∅. In the parallel composition
P |Q, both processes P and Q may precede concurrently, as well as in coopera-
tion by synchronizing over complementary names α, α resulting in an internal,
i. e., unobservable τ action. Process constants X refer to process definition P ′,
i. e., whenever X occurs in some process P , it proceeds by behaving as process
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(pre)
α.P

α−→ P
(rec)

P
α−→ P ′ K

Def
= P

K
α−→ P ′ (choice)

Pj
α−→ P ′

j j ∈ I∑
i∈I Pi

α−→ P ′
j

(par-1)
P

α−→ P ′

P |Q α−→ P ′ |Q
(par-2)

Q
α−→ Q′

P |Q α−→ P |Q′ (comm)
P

α−→ P ′ Q
α−→ Q′

P |Q τ−→ P ′ |Q′

Fig. 2. SOS Rules for CCS Step Semantics

P ′ thus permitting recursive process definitions. Processes of the form X
Def
= X

are prohibited by convention. The set of CCS processes defined over predefined
sets of actions Act and process constants K is denoted by P(Act,K). Note that
we omitted the relabeling and hiding operator of CCS as the following concepts
are canonically adoptable to those constructs.

The operational semantics of a CCS process P ∈ P(Act,K) defines a labeled
transition system (LTS) �P �CCS = (P(Act,K),−→, P ) whose traces represent
valid action sequences of the specified system. The set of states is identified with
CCS processes. Transitions are labeled over actions Act ∪ {τ}, i. e.,

−→⊆ P(Act,K)× (Act ∪ {τ})× P(Act,K),

and the initial state refers to process P . The transition relation is defined as the
least relation satisfying the rules in Fig. 2 with α ranging over Act and τ .

3 DeltaCCS

We now introduce the concept of deltas into CCS to represent predefined changes
of process definitions at both syntactical and semantical level.

3.1 Syntax of DeltaCCS

Delta modeling is a comprehensive approach for extending arbitrary languages
with capabilities to specify variable parts of a given core model [6]. For this, (syn-
tactical) change operations (deltas) are applied to predefined variation points.
The delta approach propagates (1) a separation of the core from the deltas
definitions and (2) deltas to constitute modular encapsulations of basic, yet
language-specific change directives applicable at any level of granularity.

Adopting delta modeling to CCS to reason about the semantic impacts of syn-
tactic variations is appealing due to the close relationship between process terms
and their operational semantics by means of process term rewriting rules. Assume
CCS process Pc ∈ P(Act,K) to represent the core behavior of a variable system.
Therein, process constants K ∈ K implicitly impose arbitrary decompositions of
Pc into sub-processes, e. g., referring to syntactical entities of a high-level mod-
eling language after being translated into CCS. As an example, consider the
translation of the state machine in Fig. 1(b) into the CCS process in Fig. 3(b).
For each state machine state, a dedicated process constant is introduced whose
process definition constitutes a choice over the outgoing transitions of that state.
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Thus, names K occurring in core process Pc correspond to basic model entities
potentially being subject to structural change operations and, therefore, serving
as well-defined variation points for delta applications on CCS terms.

For instance, the state machine deltas for changing the sensor subsystem from
variant Good to variant Simple (cf. Fig. 1(b)) are depicted in Fig. 3(a), where
elements marked with “+” are added and those marked “-” are deleted from
the core. The corresponding CCS deltas δ1–δ4 are shown in Fig. 3(c), e. g., δ1
removes the transition that switches from Dry toWet when observing heavy rain
by altering definition of constant Damp to Damp ′. Thus, a CCS delta consists

of a process constant K
Def
= P to be changed by a process constant K ′ Def

=
P ′ substituting K. Depending on the similarities between P and P ′, the delta
constitutes either an add, remove, or modify operation [6] (cf. Fig. 3(b)). Similar
to 150% approaches for encoding variability, those different kinds of deltas arise
from tradeoffs between (1) granularity of process decomposition into process
names and (2) repetitions of process terms within delta definitions [15].

Besides the occurrence of constants K to be substituted in a CCS term, the
applicability of a delta is often further restricted by stating an application condi-
tion φ, e. g., a condition over feature parameters in a feature model (cf. Fig. 1(a))
related to that particular delta. For instance, the application condition for δ1 in
our example requires the feature Simple. In the following, we abstract from the
concrete representation and evaluation mechanism for application conditions φ
but rather assume an abstract domain Φ with φ ∈ Φ. Summarizing, a DeltaCCS
specification consists of a core process Pc and a collection of CCS deltas.

Definition 1 (DeltaCCS Specification). A CCS Delta is a triple (K,φ,K ′) ∈
K×Φ×K. A DeltaCCS Specification is a pair (Pc, Δ) with Pc ∈ P(Act,K) and
Δ a finite set of CCS deltas.

According to [18], we assume any process constant K appearing in a DeltaCCS
specification, i. e., within the core process and/or within CCS deltas to be con-
tained in K. The set of all CCS deltas operating on process constants K is
denoted as Δ(K, Φ) = K × Φ × K. The (syntactic) application of a CCS delta
δ = (K,φ,K ′) to a CCS process P substitutes any occurrence of K in P by K ′.

Definition 2 (CCS Delta Application). CCS Delta Application is defined
by the function apply : P(Act,K) × Δ(K, Φ) → P(Act,K) such that in P ′ =
apply(P, δ) with δ = (K,φ,K ′), every occurrence of K in P is substituted by K ′.

We write δ(P ) := apply(P, δ) for short. To generalize the notion of delta appli-
cations to sets Δ′ ⊆ Δ(K, Φ) of CCS deltas, we define

Δ′(P ) := {δi1(. . . δin(P ) . . .) | |Δ′| = n ∧ k �= � ⇒ δik �= δi�},
where P ∈ P(Act,K), i. e., yielding the set of process definitions obtained from all
possible permutations of delta applications. In case of |Δ′(P )| = 1, the resulting
process is independent of the ordering of delta applications.

The delta application considered so far performs direct applications, i. e., only
those process names K literally occurring in process term P are substituted.
However, due to the recursive nature of CCS term definitions, a delta applica-
tion may require preceding process constant substitutions and even other delta
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Def
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Wet
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δ1 = (Damp, φ1, 〈Damp′
Def
= rain.Damp′ + non.Dry〉) δ5 = (Auto, φ2, 〈Auto′

Def
= noRain.Auto + rain.Slow + heavyRain.Slow〉)

δ2 = (Wet, φ1, 〈Wet′
Def
= 0〉) δ6 = (Fast, φ2, 〈Fast′

Def
= 0〉)

δ3 = (Dry, φ1, 〈Dry′
Def
= noRain.Dry′ + little.Damp〉) δc = (Dry′, φc, 〈Dry′′′

Def
= error.0〉)

δ4 = (Dry′, φ1, 〈Dry′′
Def
= noRain.Dry′′ + little.Damp + heavy.Damp〉) φ1 := Simple, φ2 := Low, φc := Conflict

(c)

Fig. 3. State Machine Deltas for Variant Simple (a), CCS Specification for Variant
Good/High (b), CCS Deltas and Conflicting Delta δc (c)

applications on P to eventually become applicable. For instance, δ1 in Fig. 3(c) is
not directly applicable to Pc but requires a preceding rewriting of constant Dry
via the recursion rule. Similarly, applicability of delta δ4 requires the constant
Dry ′ and, therefore, a preceding application of δ3.

To reason about well-formedness properties of DeltaCCS specifications, we
employ a dependency graph (cf. [18]) to make explicit (syntactical) interdepen-
dencies between process definitions and CCS deltas. The dependency graph com-

prises for each constant K ∈ K, K
Def
= P , the respective syntax tree of process

term P with K as its root node. Each node of the dependency graph is identi-
fied with some syntactical CCS element where constants K occurring as inner
nodes refer to the respective syntax tree of those constants. Figure 4 shows an
extract of the dependency graph for our running example, where gray nodes
refer to process constants of the core process and white nodes refer to process
constants introduced by CCS deltas. Two types of edges between nodes referring
to process constants emerge: (1) (unlabeled) recursion-edges leading from inner
process constant nodes to the respective process root node and (2) (labeled)
delta-edges leading from process constant root nodes to that process constant
root node substituting the constant in a CCS delta.

We denote the dependency graph of a DeltaCCS specification (Pc, Δ) by
Dep(Pc, Δ) = (V , E) comprising a set of nodes V and a set of edges E . A
path (v1, . . . , vn) ∈ V+ in Dep(Pc, Δ) is a finite sequence of nodes such that
(vi, vi+1) ∈ E (0 < i < n). A path p starting from node Pc and reaching a
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delta-edge leading from K to K ′ induces the applicability of the respective delta
δ = (K,φ,K ′).

Definition 3 (Applicable CCS Delta). A CCS delta δ = (K,φ,K ′) ∈ Δ is
applicable in (Pc, Δ) iff there exists a path p = (Pc, . . . ,K,K ′) in Dep(Pc, Δ).

A delta δ is directly applicable if no other delta-edge precedes the delta-edge of δ
in a path p. In our running example, δ1, δ2, δ3 are directly applicable, whereas the
application of δ4 requires a preceding application of δ3. We assume every CCS
delta in a given DeltaCCS specification to be applicable in the following which,
e. g., holds for the example in Fig. 4. A special kind of interdependency among
CCS deltas arises if the applicability of a delta always requires the previous
application of another delta. For instance, δ4 in our running example is dependent
on δ3. We introduce a respective dependency relation ≺ on a set of CCS deltas.

Definition 4 (CCS Delta Dependency). Let (Pc, Δ) be a DeltaCCS specifi-
cation, δi = (Ki, φi,K

′
i) ∈ Δ (i = 1, 2), and Dep(Pc, Δ) = (V , E).

δ1 ≺ δ2 :⇔ for all paths p = (Pc, . . . ,K2,K
′
2) : p = (Pc, . . . ,K1,K

′
1, . . . ,K2,K

′
2).

Requiring applicability of CCS deltas prevents from cyclic delta dependencies
thus inducing the following property.

Lemma 1. The reflexive closure of ≺ is a partial order.

In our example, δ3 ≺ δ4 holds as all paths leading to δ4 pass δ3. Otherwise,
if two deltas are unrelated under ≺, they are either in conflict, i. e., the re-
sulting process variant depends on their application order, or they are inde-
pendent [6]. First, consider two distinct deltas to substitute the same constant
K. The results of their applications on K differ as, otherwise, both CCS deltas
would be equal. Hence, those deltas have a direct conflict. Two CCS deltas
unrelated under ≺ that are not in a direct conflict may be also conflicting by
indirectly influencing each other, or they are independent, otherwise. CCS deltas
δi = (Ki, φi,K

′
i) (i = 1, 2) are independent if (1) they have no direct conflict and

(2) if they may occur in arbitrary application order, then any order (eventually)
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yields the same results, i. e., for all pairs of paths (Pc, . . . ,Ki,K
′
i . . . ,Kj ,K

′
j) and

(Pc, . . . ,Kj,K
′
j . . . ,Ki,K

′
i) there exists some node v ∈ V such that both paths

commute in v. If two CCS deltas are neither dependent, nor independent, they
are in conflict.

Definition 5 (CCS Delta Conflict). Let (Pc, Δ) be a DeltaCCS specification
and δi = (Ki, φi,K

′
i) ∈ Δ (i = 1, 2) with δ1 �≺ δ2 and δ2 �≺ δ1. δ1 and δ2 are in

conflict iff δ1 and δ2 are not independent.

In Fig. 4, δ1 and δ2 are independent whereas δ4 and δc have a (direct) conflict.
Due to its purely syntactic nature, the introduced notion of conflict is effi-

ciently verifiable on the basis of the dependency graph. However, actual occur-
rences of conflicts further depend on the application conditions as well as the (se-
mantic) reachability of the respective process constants substituted by the con-
flicting deltas. In addition, further purely semantic conflicts might arise among
deltas altering concurrent, but interacting sub-processes. Hence, a variability-
aware semantics for DeltaCCS is defined.

3.2 Operational Semantics of DeltaCCS

We first describe the derivation of the operational semantics for a particular
process variant defined by a subset of CCS deltas. Thereupon, we present an
extension of CCS semantics for applying deltas on-the-fly to obtain a closed
semantic characterization of all derivable process variants.

Given a DeltaCCS specification (Pc, Δ), the operational semantics of the core
process Pc is defined by the LTS �Pc�CCS = (P(Act,K),−→, Pc) as usual. For
deriving LTS semantics of a process variant defined by a subset Δ′ ⊆ Δ of CCS
deltas, the SOS rule application for the construction of the transition relation is
to be interleaved with a consecutive application of Δ′.

Definition 6 (DeltaCCS Variant Semantics). Let (Pc, Δ) be a DeltaCCS

specification. The LTS �(Pc, Δ)�Δ
′

CCS = (P(Act,K),−→Δ′ , P ) for P ∈ Δ′(Pc)
defines the semantics of the process variant for Δ′ ⊆ Δ where

−→Δ′⊆ (P(Act,K)× (Act ∪ {τ})× P(Act,K))

is the least relation satisfying the rule (dstep)
P

α−→ P ′ P ′′ ∈ Δ′(P ′)

P
α−→Δ′ P ′′ .

In rule (dstep), the premise P
α−→ P ′ refers to the CCS transition derivation via

�·�CCS as usual. If Δ′ is not conflict-free, Δ′(P ′) yields more than one process
and the resulting LTS contains (non-deterministic) choices among all possible
delta application orderings.

Deriving LTS semantics for every subset Δ′ ⊆ Δ is usually impracticable
due to the high number of possible variants. Instead, we propose an alternative
semantic characterization of DeltaCCS specifications by means of a variability-
aware operational step semantics applying deltas on-the-fly during transition
derivation. Therefore, LTS states are enriched by subsets Σ ⊆ Δ comprising
those CCS deltas applied prior to reaching that state and, therefore, to be re-
applied in subsequent steps. An additional rule is introduced for applying deltas
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(delta)

(K ′,Σ) α−→ (P,Σ′)
δ = (K,φ,K ′) ∈ Δ

(K,Σ)
α−→ (P,Σ′ ∪ {δ})

(drec)

(P,Σ)
α−→ (P ′,Σ′) K

Def
= P

Σ ∩ ({K}×Φ×K) = ∅
(K,Σ)

α−→ (P ′,Σ′)

(dpref)
(a.P,Σ)

α−→ (P,Σ)
(dchoice)

(Pj ,Σ)
α−→ (P ′

j ,Σ
′) j ∈ I

(
∑

i∈I Pi,Σ)
α−→ (P ′

j ,Σ
′)

(dpar-1)
(P,Σ)

α−→ (P ′,Σ′)

(P |Q,Σ)
α−→ (P ′ |Q,Σ′)

(dpar-2)
(Q,Σ)

α−→ (Q′,Σ′)

(P |Q,Σ)
α−→ (P |Q′,Σ′)

(dcomm)
(P,Σ)

α−→ (P ′,Σ′) (Q,Σ)
α−→ (Q′,Σ′′) compatible(Σ′,Σ′′)

(P |Q,Σ)
τ−→ (P ′ |Q′,Σ′ ∪ Σ′′)

Fig. 5. SOS Rules for Variability-Aware DeltaCCS Step Semantics

on process constants. This rule overrides the original recursion rule such that
(1) applications of those deltas already applied previously are enforced and (2)
further non-conflicting deltas may by applied. Apart from the enhanced recursion
rule, the original SOS rules of CCS (cf. Fig. 2) are only slightly adapted to
preserve the CCS delta sets collected up to this point. The resulting LTS thus
includes every possible variant semantics.

Definition 7 (DeltaCCS Semantics). Let (Pc, Δ) be a DeltaCCS specifica-
tion. The LTS �(Pc, Δ)�Δ = (P(Act,K) × Δ(K, Φ),−→, (Pc, ∅)) defines the se-
mantics of (Pc, Δ) where

−→⊆ (P(Act,K)×Δ(K, Φ)) × (Act ∪ {τ})× (P(Act,K)×Δ(K, Φ))

is the least relation satisfying the rules in Fig. 5.

The predicate compatible ensures consistent delta applications in processes P and
Q in case of parallel composition P |Q. Direct conflicts between delta applications
in P and Q shall be resolved using an appropriate set of application conditions.

For instance, reaching state (Dry, {δ1, δ2}) of our running example after some
arbitrary steps, the next possible steps are either

· · · heavy−−−→ (Wet, Σ), · · · little−−−→ (Damp, Σ), and · · · noRain−−−−→ (Dry, Σ)

for Σ = {δ1, δ2}, i. e., similar to the core behavior, or

· · · little−−−→ (Damp, Σ′) and · · · noRain−−−−→ (Dry, Σ′)
for Σ′ = {δ1, δ2, δ3}, i. e., when applying δ3 to remove handling of heavy rain.

For correctness, we require the enhanced DeltaCCS semantics to be bisim-
ilar to each process variant semantics. For a conflict-free subset Δ′ ⊆ Δ of a
DeltaCCS specification (Pc, Δ), we require �(Pc, Δ

′)�Δ with initial state (Pc, Δ
′)

to be bisimilar to �Pc�
Δ′
CCS, denoted by %.

Theorem 1 (Correctness). Let (Pc, Δ) be a DeltaCCS specification, Δ′ ⊆ Δ
conflict-free, �(Pc, Δ

′)�Δ = (Q1,−→, q1) and �Pc�
Δ′
CCS = (Q2,−→Δ′ , q2). Then

for q′1 = (Pc, Δ
′) ∈ Q1 it holds that q′1 % q2.
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The proof follows from the fact that rule delta emulates a replacement of a
process constant by delta application, making available the steps of changed
processes. Thus, when a process variant (Def. 6) reaches a changed constant K ′,
then the DeltaCCS semantics (Def. 7) may apply a CCS delta to K, simulating
steps of K ′. As Δ′ is conflict-free, the DeltaCCS semantics always performs
steps of K ′ (and only K ′), which is why the variant semantics also simulates the
DeltaCCS semantics. All other cases follow from each CCS rule being canonically
extended to CCS delta sets. The necessary bisimulation relation is therefore
S = {(Pc, (Pc, Δ))} ∪ {(P ′, (P,Δ′)) |P ′ ∈ Δ′(P )}. If Δ′ is not conflict-free, then
the variant semantics is simulated by the DeltaCCS semantics, i. e., q′1 & q2
with S being the corresponding simulation relation. Allowing process variants
to be derived for conflicting subsets Δ′ ⊆ Δ imposes non-deterministic variation
point resolution. This can be avoided, e. g., by providing conflict-resolving, i. e.,
mutually excluding application conditions for conflicting deltas [15]. However, in
addition to those syntactically detectable conflicts, further semantical conflicts

might arise. Consider process P = (K1|K2) \ {a}1 with K1
Def
= a.K ′

1 and K2
Def
=

a.K ′
2 and two deltas δ1 = (K1, φ1,K

′′
1 ) with K ′′

1
Def
= b.K ′

1 and δ2 = (K ′
2, φ2,K

′′
2 ).

Although δ1 and δ2 are applicable and (syntactically) independent, applying δ1
prior to δ2 causes δ2 to become inapplicable.

In the next section, we use the Modal μ-calculus to formalize behavioral prop-
erties of CCS specifications and to reason about the semantical impact of delta
applications concerning those properties in a concise way.

4 Formalizing Behavioral Change with DeltaCCS

Process languages like CCS allow for rigorous specifications of system behaviors
by means of alternating sequences of states and transitions with correspond-
ing action occurrences as permitted by the underlying LTS semantics. CCS
specifications P , therefore, serve as a basis for the formal verification of cor-
rectness properties ϕ imposed for P , denoted as P |= ϕ. Properties ϕ of CCS
processes usually comprise (1) particular LTS states to satisfy atomic proposi-
tions (p, q, r, . . .) and/or to be able to perform α-labeled transitions, α ∈ Act,
as well as (2) global safety (always) and liveness (eventually) properties to hold
for the entire LTS [25]. For our example to be correct, we require that fastWipe
is performed whenever heavy rain occurs and automatic mode is selected. Here,
we consider a restricted version of the Modal μ-Calculus as proposed in [4] to
express properties ϕ.

Definition 8 (Modal μ-Calculus). A modal μ-calculus formula is an expres-
sion following the form νZ.ψ ∧ [α]Z or μZ.ψ ∨ 〈α〉Z where

ψ ::= tt
∣∣ ff ∣∣ q ∣∣ ¬q

∣∣ Z ∣∣ ψ ∧ ψ
∣∣ ψ ∨ ψ

∣∣ 〈α〉ψ
∣∣ [α]ψ

1 Here, the output action a is restricted by the \{a} construct, i. e., a is not visible
beyond P , especially not in the LTS of P . In this paper, we left out the restriction
operator of CCS for compactness reasons.
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where q ∈ P, α ∈ Act and Z ∈ Var. Let P ∈ P(Act,K) and ϕ a formula. Given
an evaluation of atomic propositions IP : P → 2P(Act,K) and an evaluation of
variables IVar : Var → 2P(Act,K), P |= ϕ iff P ∈ ‖ϕ‖IP

IVar
(cf. Fig. 6).

Set P contains atomic propositions, ranged over by p, q, r, . . . and set Var contains
variable names, ranged over by X,Y, Z. Besides Boolean constants tt (true), ff
(false) and standard logical connectives ∧,∨,¬, the modal operators [α] mean-
ing ‘for all α-transitions’ and 〈α〉 meaning ‘there exists an α-transition’ are sup-
ported. Both are evaluated locally, e. g., process P satisfies [α]ϕ if for every P ′,
P

α−→ P ′ implies that P ′ satisfies ϕ. In addition, the modal μ-calculus pro-
vides constructs for largest (νZ.ϕ(Z)) and least (μZ.ϕ(Z)) fixpoints. Bradfield
and Stirling describe the former as ‘looping’ (always) and the latter as ‘finite
looping’ (eventually) [4]. Thus, the μ-calculus supports temporal properties in
combination with propositions on action labels, i. e., progress, e. g., νZ.ϕ ∧ [α]Z
means that ϕ holds along every α-path [4]. Here, we restrict our considerations
to safety properties as usual and liveness properties of the form μZ.ϕ∨〈α〉Z, i. e.,
within ϕ no further fixpoint operator occurs. We define the modal μ-calculus in
positive normal form, i. e., negation (¬) only occurs in front of atomic propo-
sitions. This ensures necessary fixpoint properties on variables Z ∈ Var and is
no limitation, as for every μ-calculus formula, an equivalent μ-calculus formula
in positive normal form exists [4]. A formula ϕ is evaluated to its characteristic
set ‖ϕ‖ containing all processes satisfying ϕ, i. e., P |= ϕ iff P ∈ ‖ϕ‖. Function
‖ · ‖ is parameterized over function IVar assigning variables to sets of processes,
and function IP assigning to p ∈ P sets of processes for which p holds. The
evaluation equations for function ‖·‖ are given in Fig. 6, where we consider weak
modal operators allowing arbitrary τ -steps before and after an α-action occurs.

The aforementioned correctness property for our running example is express-
ible in modal μ-calculus as

ϕ := μZ.〈heavy〉〈〈fastWipe〉〉tt ∨ 〈−〉Z.

Note that 〈〈α〉〉 allows arbitrarily many τ -steps before and after α, and that 〈−〉
is short for ‘every action’. For the core process (cf. Fig. 3(b)) we have Pc |= ϕ,
whereas for variant P resulting from applying the set of CCS deltas in Fig. 3(c),
ϕ does not hold. Thus, verifying ϕ to hold for a complete DeltaCCS specification
(Pc, Δ) requires to evaluate ϕ on the LTS semantics �Pc�

Δ′
CCS of every possible

subset Δ′ ⊆ Δ. Alternatively, the LTS semantics �(Pc, Δ)�Δ including the be-
haviors of all derivable variants may be used to evaluate ϕ for all subsets Δ′ at
once. This strategy is similar to recent variability-aware verification approaches
based on 150% specifications [18,8,2]. However, both approaches poorly scale as
(a) the set of possible process variants grows exponentially with the number of
deltas, and (b) the LTS �(Pc, Δ)�Δ contains the disjunction of each LTS variant.

Therefore, we propose a novel strategy, i. e., a delta-oriented incremental ap-
proach for variability-aware behavioral verification. Starting with some process
P and establishing P |= ϕ, verifying ϕ also on variant P ′ solely requires to re-
evaluate ϕ on those sub-processes of P ′ (potentially) affected by the differences
between P and P ′, expressed as CCS deltas. If CCS delta δ does not affect the
behavior of P , then δ(P ) is said to be congruent to P , denoted as P ≡ δ(P ).
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‖q‖IVar
IP = IP(q) ‖[α]ϕ‖IVar

IP =
{
P | ∀P ′ : P α−→ P ′ ⇒ P ′ ∈ ‖ϕ‖IVar

IP

}

‖¬q‖IVar
IP = P(Act,K) \ IP(q) ‖〈α〉ϕ‖IVar

IP =
{
P | ∃P ′ : P α−→ P ′ ∧ P ′ ∈ ‖ϕ‖IVar

IP

}

‖Z‖IVar
IP = IVar(Z)

‖ϕ1 ∧ ϕ2‖IVar
IP = ‖ϕ1‖IVar

IP ∩ ‖ϕ2‖IVar
IP ‖νZ.ϕ‖IVar

IP =
⋃{

Π ⊆ P(Act,K) |Π ⊆ ‖ϕ‖IVar[Z:=Π]

IP

}

‖ϕ1 ∨ ϕ2‖IVar
IP = ‖ϕ1‖IVar

IP ∪ ‖ϕ2‖IVar
IP ‖μZ.ϕ‖IVar

IP =
⋂{

Π ⊆ P(Act,K) |Π ⊇ ‖ϕ‖IVar[Z:=Π]

IP

}

Fig. 6. Evaluation Equations for the Modal μ-calculus

Proposition 1. Let δ = (K,φ,K ′) ∈ Δ(K, Φ) and P,Q, P ′ ∈ P(Act,K).

δ(α.P ) ≡ α.δ(P ) (1)

δ(P +Q) ≡ δ(P ) + δ(Q) (2)

δ(P |Q) ≡ δ(P ) |Q if δ(Q) ≡ Q (3)

δ(X) ≡ δ(P ′) if K �= X and X
Def
= P ′ (4)

δ(P ) ≡ P if δ is not applicable in P (5)

Proofs follow from the congruence on plain CCS terms [24] and the definition of
delta applications. Further relations are deducible, e. g., δ(0) ≡ 0. Those delta-
aware congruences allow for a consecutive, property-preserving transformation
of processes δ(P ) in a way such that sub-processes of P actually changed by
δ are explicitly localized. However, variant derivation usually requires subsets
Δ′ ⊆ Δ of multiple deltas. Thus, potential dependencies among different deltas
are to be taken into account.

Lemma 2. Let δ1 = (K1, φ1,K
′
1) ∈ Δ(K, Φ), δ2 = (K2, φ2,K

′
2) ∈ Δ(K, Φ) and

P ∈ P(Act,K). Then δ1(δ2(P )) ≡ δ2(δ1(P )) iff δ1 and δ2 are independent.

For instance, δ1 and δ3 in our example are independent and, therefore, appli-
cable in any order to Pc. Both deltas are not applicable to sub-process Off but
only to sub-process Dry. Therein, δ1 is applicable to sub-process Damp whereas
δ3 directly applies to Dry without affecting the applicability of δ1. Considering
the dependent deltas δ3 and δ4 and applying δ3 to Dry first, it produces Dry ′

on which δ4 then applies afterwards. Otherwise, if δ4 is considered first, it is not
applicable as Dry ′ is not yet produced. Based on those DeltaCCS congruence
notions, the evaluation of properties ϕ is consecutively decomposable according
to the following correspondences.

Proposition 2. Let P,Q,R ∈ P(Act,K) and ϕ a μ-calculus formula.

P |= ϕ ∧ P ≡ Q ⇒ Q |= ϕ (6)

P |= ϕ ∧Q |= ϕ ⇒ P +Q |= ϕ (7)

P |R |= ϕ ∧ P ≡ Q ⇒ Q |R |= ϕ (8)

Proofs follow from (1) P % P ′ iff P and P ′ satisfy the same set of μ-calculus
formulae [4] and (2) P ≡ P ′ implies P % P ′ [24]. Hence, the (re-)evaluation of
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Table 1. Experimental Results for Delta-aware Model Checking

Deadlock-Freedom Home State

# Deltas Core p. size i. size i. result p. result i. result recheck? p. result

S
en

so
r 1.1 – – 21 – – � – – �

1.2 δ2 1.1 15 1 X implied � no implied
1.3 δ2, δ1 1.1 13 5 X implied � no implied
1.4 δ2, δ1, δ3 1.1 10 10 � implied � no implied

C
o
n
tr
o
l

2.1 – – 23 – – � – – �
2.2 δ5 2.1 21 9 � implied X yes �
2.3 δ6 2.1 22 1 X implied � no implied
2.4 δ5, δ6 2.1 21 9 � implied X yes �
2.5 δ5, δ6 2.2 21 0 implied implied implied no implied

a property ϕ established for a process P after applying a delta δ is only required
for those sub-processes of δ(P ) affected by δ.

Theorem 2. Let δ = (K,φ,K ′) ∈ Δ(K, Φ) and P ∈ P(Act,K). If δ(P ) ≡ P
and P |= ϕ then δ(P ) |= ϕ.

For (pure) safety properties, this is obviously sound. For liveness properties, a
positive result obtained from a changed sub-process directly yields a positive
result for the entire process variant. In case of negative results, however, local
evaluation is not sufficient thus the entire variant has to be re-analyzed.

When applying the deltas to generate variant Simple of the wiper example, the
sensor subsystem is changed. Based on Eq. (8) the system has to be re-evaluated.
The sample liveness property given in this section is violated by the simple
wiper example. Other properties, e. g., deadlock-freedom or home states, may
be decided component-wise and, therefore, re-evaluation can be decomposed to
smaller sub-terms, or even neglected for unaffected sub-processes. For instance,
changes induced by δ5 still allow infinite looping between states Off and Auto
satisfying ϕ ′ := νZ.[iOn]〈 off 〉Z, which can be checked locally for both sub-
processes, i. e., without re-checking their parallel composition.

5 Implementation and Experiments

We implemented DeltaCCS on top of the Maude framework2.Maude allows de-
veloping arbitrary languages with formalized semantics by means of term rewrit-
ing logic [9]. We extended the existing CCS implementation [26] to support CCS
deltas. The rewriting rules for the DeltaCCS semantic adopt the principles of
conditional rewriting according to the original CCS implementation. We further
adopted the successor operator on CCS processes to compute the dependency
graph for a given DeltaCCS specification. Our Maude module enables for ap-
plicability analysis on a given DeltaCCS specification. We currently apply the

2 https://www.tu-braunschweig.de/ips/staff/mennicke/tools/deltaccs
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model checker mCRL2
3 for our incremental analysis approach. We analyzed our

wiper system example for the liveness property described in the previous section.
As already mentioned, applying delta-aware congruence has no immediate effect
on the analysis. Instead, we analyzed the components for sensor and control
individually for (a) deadlock-freedom and (b) home states (cf. Table 1). Each
row in the table represents a sub-variant defined by CCS deltas. The sizes refer
to the number of nodes in the syntax trees of the process variants (p. size) and
of the processes due to delta-aware congruence (i. size). For deadlock-freedom,
i. results imply p. results, whereas home state properties (potentially) require a
re-check of the complete variant if the check of the point of change fails. Please
note that i. sizes are usually less than half of the according p. sizes. For variant
2.4, every property of variant 2.2 is preserved due to Theorem 2.

6 Related Work

Various approaches for a formal reasoning about variability can be found in the
recent literature. We discuss the relation to our approach concerning (1) the way
variability is specified and (2) the aspects of variability being investigated.

Concerning (1), most formalisms rely on a so-called 150% specification of
a variable system. Fischbein et al. were the first to use modal specifications
to represent variability by means of modal refinement [16]. Thereupon, Larsen
et al. [19] and Asirelli et al. [2] applied modal transition systems as basis for
behavioral modeling and model checking of product lines.

In contrast, Gruler et al. and Leucker et al. [18,21], as well as Erwig and
Walkingshaw [15] express variability in terms of (guarded) choice applied at
well-defined variation points. Gnesi and Petrocchi [17] present CL4SPL, an-
other process algebraic interpretation of product lines, defining variation points
via contexts, one possible interpretation of application conditions in DeltaCCS.
FLan by ter Beek et al. [3] adds feature handling mechanisms via an adaptable
constraint store with which the process interacts. In addition, FLan includes
dynamic variation points by explicit installation/removel of features. Third, for
parametric variability, annotations are attached to variable elements, e. g., transi-
tions [7,12], defining selection conditions for a particular variant [13]. In contrast,
less approaches represent variability in a modular way by separating a common
from variable system parts. Those modular representations decompose systems
into artifacts to assemble product variants either on the basis of compatibility
notions of module interfaces [1,22,20], or by means of a well-defined composition
operator [1]. Other approaches define transformation rules to change a core rep-
resentation into a variant. Besides the delta approach [6], also the E-calculus [5]
uses this concept.

Concerning (2), we distinguish formalisms to reason about structural aspects
and behavioral impacts of variability. Calculi for structural variability usually
investigate criteria for syntactical well-formedness preservation after applying a

3 http://www.mcrl2.org/
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particular variability mechanism, i. e., choice [15], composition [1] and transfor-
mation [6] of variable artifacts. Calculi for behavioral reasoning mainly focus on
adapting model checking techniques to families of systems on the basis of a 150%
specification [18,21,7,12,11,19,2]. In contrast, modular approaches to variability-
aware model checking mainly rely on rich artifact interfaces [20,22] rather than
rigorous change impact analysis as in our approach.

Summarizing, the most related approaches are the E-calculus [5] and PL-
CCS [21] both also being built on top of CCS. However, both do not deal with
the propagation of (syntactical) changes onto the semantical level, but rather
enrich plain CCS by additional operators to express variability. Thereupon, the
E-calculus focuses on decidability issues of model checking for different classes
of process changes rather than defining novel strategies for a variability-aware
model checking, whereas PL-CCS relies on a 150% specification as usual.

7 Conclusions and Future Work

We presented the novel core calculus DeltaCCS for variability modeling to rea-
son about behavioral change in a formal way. We also presented a sample imple-
mentation of an incremental model checker for delta-oriented specifications that
makes use of the change impact analysis capabilities provided by DeltaCCS. As
a future work, we plan to investigate enhancements to the core calculus concern-
ing advanced language constructs, e. g., actions on (typed) variables, as well as
different kinds of application conditions including dynamic deltas [14]. Besides
state machines, we plan to define further translations of high-level delta-oriented
modeling languages as well as programming languages into DeltaCCS and, there-
upon, to conduct further evaluations of the approach. Besides reasoning about
behavioral change for efficient verification of variable systems, we mainly want to
apply the DeltaCCS model checker as incremental model-based test generation
tool for software product lines as proposed in our previous work [23].
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Abstract. Featured Transition Systems (FTS) is a mathematical struc-
ture to represent the behaviour of software product line in a concise
way. The combination of the well-known transition systems approach
to formal behavioural modelling with feature expressions was pivotal to
the design of efficient verification approaches. Such approaches indeed
avoid to consider products’ behaviour independently, leading to often
exponential savings. Building on this successful structure, we lay the
foundations of model-based testing approach to SPLs. We define several
FTS-aware coverage criteria and report on our experience combining
FTS with usage-based testing for configurable websites.
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1 Introduction

A Software Product Line (SPL) “is a set of software-intensive systems that share
a common, managed set of features satisfying the specific needs of a particular
market segment or mission and that are developed from a common set of core
assets in a prescribed way” [8]. Features are thus the key to the discrimination
of SPL members by showing their commonalities and differences. Such features
are commonly organized in a Feature Model (FM) [18] which represents all the
possible products of the SPL by expressing relationships and constraints between
such features.

As for any software engineering paradigm, providing efficient Quality Assur-
ance (QA) (e.g. model-checking and testing) techniques is essential to SPL en-
gineering success. Devising an approach to SPLs QA requires to deal with the
well-known combinatorial explosion problem as the number of products to con-
sider for validation is growing exponentially with the number of features. In the
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worst case, no more than 270 features are needed to derive as many products as
there are atoms in the universe. Industry reports dealing regularly with thou-
sands of features in their product lines [14,2] and the Linux kernel model is now
roughly composed of 8,000 features. Thus, combinatorial explosion poses both
theoretical and practical challenges for SPL QA. Depending on the QA approach
(model checking or testing) and abstraction level (model, code) several strategies
have been designed, which can be positioned on various edges of the product-
line analysis cube [26]. Our research strives to provide generic solutions at the
model level, both for verification and testing. In [7,5,6], we have proposed model-
checking algorithms for Featured Transition Systems (FTSs), a variability-aware
extension of transition systems. Contrary to enumerating approaches that would
visit the state space of each product, our algorithms exploit the structure of the
FTS in order to explore common behaviours only once. All those model-checking
results have been implemented in ProVeLines,[10] that is a product line of model
checkers for FTS.

Automated model-based testing [29] and shared execution [20] are established
testing methods that allows test reuse across a set of software. They can thus
be used to reduce the SPL testing effort. Even so, the problem remains entire as
these methods still need to cover all the products. To address this issue, we pre-
viously developed ideas based on sampling and prioritization principles [25,16].
Typical methods in this area define a coverage criterion on an FM (e.g. all the
valid couples of features must occur in at least one tested product [25,9]) and ex-
tract configurations of interest to be validated. Combinatorial interaction testing
allows drastic reduction of the configuration space from billions to few dozens or
hundreds of products. It is possible to prioritize extracted configurations using
coverage metrics or by assigning weights to features [16,17], eventually leading
multi-objective SPL testing [16]. This actually helps testers to scope more finely
and flexibly relevant products to test than a covering criteria alone. Yet, assign-
ing meaningful weights is cumbersome in the absence of additional information
regarding their behaviour.

In line with our preliminary vision [11], we believe that FTS are also suitable
to establish a model-based testing framework for SPLs enabling both family-
based and product-based strategies and benefiting from the experience gained
by the model-checking community. In this paper, we are currently concerned
with the definition of various coverage criteria to support FTS-based testing.
We adapt existing concepts and structural coverage criteria known for transi-
tion systems to the FTS formalism. We then report on our previous experience
[12] defining a usage-based [31] coverage approach, based on the extraction of
Discrete Time Markov Chain (DTMC) from an Apache log of an online course
management system. Behaviours of interests (selected according to a given prob-
ability interval) in the DTMC are then run on an FTS (assumed to be provided
by SPL designers), enabling the projection of associated products and features
related to those behaviours and test case generation.

Section 2 provides the background to FTS-based modelling and verification,
required to define what FTS-based testing is as well as structural and usage
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Fig. 1. Soda Vending Machine Feature Diagram [5]

coverage criteria in section 3. Section 5 concludes the paper and outlines future
directions.

2 FTSs: Background

A key concern in SPL modeling is how to represent variability. To achieve this
purpose, SPL engineers usually reason in terms of features. Relations and con-
straints between features are usually represented in a Feature Diagram (FD) [18].
For example, Fig. 1 presents the FD of a soda vending machine [6]. A common
semantics associated to a FD d (noted [[d]]) is the set of all the valid products
allowed by d.

Different formalisms may be used to model the behaviour of a system. To
allow the explicit mapping from feature to SPL behaviour, Featured Transition
Systems (FTS) [6] were proposed. FTSs are Transition Systems (TSs) where
each transition is labelled with a feature expression (i.e., a boolean expression
over features of the SPL), specifying which products can execute the transition.
Thus it is possible to determine products that are the cause of a violation or a
failed test.

Definition 1 (Featured Transition System (FTS)). Formally, an FTS is
a tuple (S,Act, trans, i, d, γ), where

– S is a set of states;
– Act a set of actions;
– trans ⊆ S × Act × S is the transition relation (with (s1, α, s2) ∈ trans

sometimes noted s1
α−→ s2);

– i ∈ S is the initial state;
– d is a FD; and γ : trans → [[d]] → {(,⊥} is a total function labelling each

transition with a boolean expression over the features, which specifies the
products that can execute the transition.
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Fig. 2. Soda Vending Machine FTS [5]

Additionally, we consider the projection of an FTS onto a product p ∈ [[d]]
noted fts|p, the syntactical transformation of removing all transitions labelled
with features not in p, thus resulting in the TS representing the behaviour of
this particular product (see [6]). For instance: ¬f in Fig. 2 indicates that only
products that have not the free feature may fire the pay, change, open, take
and close transitions. Thus, only those transitions will appear in their respective
projections.

We define the semantics of an FTS as a function that associates each valid
product with its set of finite and infinite traces, i.e. all the sequences of actions
starting from the initial state available, satisfying the transition relation and such
that its transitions are available to that product. According to this definition,
an FTS is indeed a behavioural model of a whole SPL. Fig. 2 presents the FTS
modeling a vending machine SPL. Without loss of generality, we consider FTSs
in which the only allowed loops go through the initial state. This is useful to
deal with finite traces in practice [12].

For instance, transition 3 pay/¬f−→ 4 is labelled with the feature expression c.
This means that only the products that do have the feature Cancel (c) are able
to execute the transition. Other works on modeling software product lines can
be found, e.g., in [15,13].

3 SPL Behavioural Testing Using FTSs

Fig. 3 presents the classical testing process in a Model-Based Testing approach
for single systems [29]. First, the test engineer builds a test model of the Sys-
tem Under Test (SUT) from its requirements. Then, according to some selection
criteria, an abstract test suite (i.e., set of abstract test cases) is automatically
generated. For instance, if using Transitions Systems in order to model the be-
haviour of a SUT, abstract test cases will represent sequences of abstract actions
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that should be executed on the SUT [28]. The abstract test cases are concretized
using a mapping provided by the test engineer in order to match actions (with
input values) of the system before being executed on the SUT. This execution
may be manual or automated depending on the formalism of the concrete test
cases (e.g., textual description of the operations to perform, automated scripts,
etc.). Finally, the results of the tests executions are analysed by the test engineer.

In order to efficiently test SPLs, we propose to adopt FTSs as the formalism
to represent SPLs behaviour as the test model of a MBT approach. In [11], we
sketched a Quality Assessment (QA) framework with FTSs as the shared be-
havioural model representation for SPLs. As illustrated in figure 4, FTSs serve
as input for QA activities (roughly decomposed in Model-Checking and Test-
ing). Other processing oriented models (e.g., Markov Chain [12], LTL formula
[6]) may be joined to the FTS for specific QA activities (e.g., test case priori-
tization [12]). FTS and computation oriented models are not meant to be used
by QA engineer. They are the results of a model to model transformation from
abstracted representations of the Feature Diagram (FD), SPL behaviour, for-
mula and/or coverage criteria used by the QA activities. The framework will
offer a language (with abstraction and composition mechanisms), State Diagram
Variability Analysis (SDVA) based on UML state machines to model the be-
haviour of the SPL. Once the input models are transformed into a FTS and
processing oriented models, they can be used to perform model-checking and/or
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testing activities (e.g., test case generation). By using a common representation
(i.e., FTSs), we believe that the testing community may benefits from the last
advances made in model-checking SPLs [6]. In [12] we present a first step in
this direction by combining statistical testing techniques with FTSs in order to
prioritize product testing.

3.1 Transition Systems MBT Applied to FTSs

In order to select relevant test cases, proper coverage criteria have to be de-
fined at the SPL level. A coverage criteria is an adequacy measure to qualify
if a test objective is reached when executing a test suite on a SUT. In clas-
sical MBT approaches, when working with state-transitions models (e.g., TS),
most commonly used selection criteria are structural criteria: state, transition,
transition-pair and path coverage [22,29]. The state/transition coverage criteria
specifies that when executing a test suite on the SUT, all the states /transitions
(resp.) of the test model are visited/fired (resp.) at least once. The transition-
pair coverage specifies that for each state, all the ingoing-outgoing transitions
pairs are fired at least once. The path coverage criteria specifies that each path
in the test model has to be executed at least once. In the following, we define the
notion of test case for a FTS, transpose the classical structural criteria, discuss
some observations and redefine the test case selection problem for FTSs.

Abstract Test Case and Test Suite. An abstract test case corresponds to a
finite trace (i.e., finite sequence of actions) in the FTS.

Definition 2 (Abstract Test Case). Let fts = (S, Act, trans, i, d, γ) be
an FTS, let atc = (α1, . . . , αn) where α1, . . . , αn ∈ Act be a finite sequence of
actions. The abstract test case atc is valid iff :

fts
(α1,...,αn)

=⇒
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Where fts
(α1,...,αn)

=⇒ is equivalent to i
(α1,...,αn)

=⇒ , meaning that there exists a state
sk ∈ S with sequence of transitions labelled (α1, . . . , αn) from i to sk.

This definition is similar to classical test case definitions for TS test models
[22]. However, for an FTS, it is possible to extract sequences of actions that
cannot be executed by any product of the SPL (e.g., the related transitions con-
tains mutually exclusive features). This leads us to the definition of an executable
abstract test case:

Definition 3 (Executable Abstract Test Case). Let fts = (S, Act, trans,
i, d, γ) be an FTS, let atc = (α1, . . . , αn) where α1, . . . , αn ∈ Act represents a
sequence of actions in fts be an abstract test case. An abstract test case atc is
executable if it can be executed by at least one product of the product line:

∃ p ∈ [[d]] : fts|p
(α1,...,αn)

=⇒

Where fts|p
(α1,...,αn)

=⇒ is equivalent to i
(α1,...,αn)

=⇒ , meaning that there exists a
state sk ∈ S with sequence of transitions labelled (α1, . . . , αn) from i to sk in the
projection of the FTS onto p.

We make a difference between abstract test case and executable abstract test
case. Contrary to executable abstract test case, an abstract test case has not to
be necessary executable by at least one product of the SPL. Since the FTS is
a model of the behaviour of the SPL, it may be interesting to use abstract test
cases which may not (according to the model) be executed by any product in
order to do mutation testing (by mutating feature expressions), security testing
(to detect undesired behaviours), etc. If this abstract test case can be executed
on a concrete implementation, it reveals a modelling issue or an implementation
error. Similarly:

Definition 4 (Executable Abstract Test Suite). An abstract test suite is a
(possibly empty) finite set of abstract test cases. An executable abstract test suite
is an abstract test suite that contains only executable abstract test cases.

An “empty” abstract test suite has no practical value, but it can be the result
of a too restrictive or inconsistent selection process. However, we keep this liberal
definition to support the definition of selection procedures in the general case.

3.2 Coverage Criteria

In order to efficiently select abstract test cases, the test engineer has to provide
selection criteria [29]. We redefine hereafter classical structural selection criteria
as a function that, for a given FTS and an executable abstract test suite, returns
a value between 0 and 1 specifying the coverage degree of the executable abstract
test suite over the FTS (0 meaning no coverage and 1 the maximal coverage).
As for TS [29], we consider only coverage criteria for states reachable from the
initial state (a state si is reachable iff ∃ p ∈ [[d]] ∧ ∃α1, . . . , αn ∈ Act such as

fts|p
(α1,...,αn)

=⇒ si ). Formally :
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Definition 5 (Coverage Criterion). A coverage criterion is a function cov
that associates an FTS and an abstract test suite over this FTS to a real value
in [0, 1]

Classical structural coverage criteria are defined as follow, we illustrate each
coverage criteria with test suites satisfying the criteria for the Soda Vending
Machine FTS [5] defined in figure 2 :

Definition 6 (State/All-States Coverage). The state coverage criterion re-
lates to the ratio between the states visited by the test cases pertaining to the
abstract test suite and all the states of the FTS. When the value of the function
equals to 1, the abstract test suite satisfies all-states coverage.

The all-states coverage criteria is the weakest structural coverage criteria, it
specifies that when executing the test suite, each state has to be visited at least
once. On the Soda Vending Machine, an all-states covering abstract test suite
may be:

{(pay, change, soda, serveSoda, open, take, close)
(free, tea, serveT ea, take); (free, cancel, return)}

Definition 7 (Transition/All-Transitions Coverage). Transition coverage
relates to the ratio between transitions covered when running abstract test cases
on the FTS and the total number of transitions of the FTS that are executable
by at least one valid product. When this ratio equals to 1, then the abstract test
suite satisfies all-transitions coverage.

The all-transitions coverage specifies that, ideally, each transition is fired at least
once when executing the abstract test suite on the FTS. In this case, a satisfying
abstract test suite for a coverage of 1 on the Soda Vending Machine may be the
same as the one defined for the all-state coverage.

Definition 8 (Transition-Pairs/All-Transition-Pairs Coverage). The tran-
sition-pairs coverage considers adjacent transitions successively entering and
leaving a given state. As for transition coverage, only pairs that are executable
by at least one product are considered in the ratio. When the coverage function
reaches the value of 1, then the abstract test suite covers all-transition-pairs.

The all-transition-pairs coverage specifies that for each state, each couple of
entering/leaving transition has to be fired at least once. On the soda vending
machine, an abstract test suite with a all-transitions-pairs coverage of 1 may be:

{(pay, change, soda, serveSoda, open, take, close); (pay, changecancel, return);
(pay, change, tea, serveT ea, open, take, close); (free, soda, serveSoda, take);

(free, tea, serveT ea, take); (free, cancel, return)}

Definition 9 (Path/All-Paths Coverage). Path coverage takes into account
executable paths, that is sequence of actions (α1, . . . , αn) from i to i such that
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∃p ∈ [[d]] : fts|p
(α1,...,αn)

=⇒ i. If the coverage function value computing the ratio
between executable paths covered by the test cases runs on the FTS and total
executable paths in the FTS is 1, all-paths coverage has been reached.

The all-path coverage specifies that each executable path in the FTS should
be followed at least once when executing the abstract test suite on it. On the
soda vending machine, it gives an executable abstract test suite equal to the one
defined for all-transitions-pair coverage.

3.3 Test Case Product Selection

Once the test cases are selected, they have to be concretized (step 3 in Fig. 3)
in order to (i) get the implementation of the products on which the concrete
test cases will be executed and (ii) get the concrete actions to perform with
the adequate input values for each test case. This last point may be done using
existing concretization techniques once the products are selected [22,29]. For (i),
the implementations able to execute a given abstract test case atc in a FTS
corresponds to all the products (i.e., valid configurations) of the FD ([[d]]) that
satisfy all the feature expressions associated to the transitions fired in the FTS
when executing atc :

Definition 10 (Abstract Test Case Product Selection). Given a FTS
fts = (S, Act, trans, i, d, γ) and an abstract test case atc = (α1, . . . , αn)
with (α1 , . . . , αn) ∈ Act, the set of products able to execute atc is defined as:

prod(fts, atc) = {p ∈ [[d]] | fts|p
(α1,...,αn)

=⇒ }

It corresponds to all the products able to execute the sequence of actions in the
abstract test case.

Similarly, for an abstract test suite, we have:

Definition 11 (Abstract Test Suite Product Selection). Given a FTS
fts = (S, Act, trans, i, d, γ) and an abstract test suite ats = {atc1, . . . , atcn},
the set of products able/needed to execute ats:

prods(fts, ats) =

n⋃
k=1

prod(fts, atci)

Since the main interest in SPL testing is to reduce the number of products to
test, we also define the minimal set of products needed to execute an abstract
test suite.

Definition 12 (P-Minimal Abstract Test Suite Product Selection). Let
fts be an FTS and ats be an abstract test suite. A minimal set of products needed
to execute ats over fts is a minimal subset pMinProd(fts, ats) of prods(fts, ats)

such that ∀atc ∈ ats : ∃p ∈ pMinProd(fts, ats) such that fts|p
atc
=⇒
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Test Case Minimality. Since FTSs represents all the TSs of all the possi-
ble products of the SPL, it is possible that some coverage criteria may not be
completely achieved (∀atc : cov(fts, ats) < 1). For instance, some states may
not be reachable during the execution of any valid product behaviour. From the
definitions here above, we derive the following properties :

Property 1 (Minimal Test Suite). An executable abstract test suite ats over a
given FTS fts = (S, Act, trans, i, d, γ) is minimal w.r.t. a coverage criteria
cov iff � ats′ such that ats′ is executable and #ats′ < #ats and cov(ats′, f ts) ≥
cov(ats, fts). In other words, an executable abstract test suite is minimal if there
exists no smaller executable abstract test suite with a better coverage.

Property 2 (P-Minimal Test Suite). An executable abstract test suite ats over a
given FTS fts = (S, Act, trans, i, d, γ) is product-minimal (p-minimal) regard-
ing a coverage criteria cov iff � ats′ such as ats′ is executable and (cov(ats′, f ts) ≥
cov(ats, fts))∧(# pMinProd(ats′, f ts) < # pMinProd(ats, fts)). A p-minimal
executable abstract test suite for a given coverage criteria over an FTS repre-
sents the minimal set of executable abstract test cases (with the best coverage)
such as the number of products needed to execute all of them is minimal.

For instance, the abstract test suite {(pay, change, soda, serveSoda, open,
take, close); (free, tea, serveT ea, take); (free, cancel, return)} is minimal
for the all-states-coverage criteria but not p-minimal since it needs at least two
different products (i.e., free and not free machines) to be executed on the FTS in
Fig. 1. A p-minimal abstract test suite satisfying the all-paths coverage could be:
{(pay, change, soda, serveSoda, open, take, close); (pay, change, tea, serveT ea,
open, take, close); (pay, change, cancel, return)}. Which only needs one product
to execute the abstract test suite.

When designing an abstract test suite using a coverage criteria, the most
interesting product to select in order to execute this abstract test suite is the
one who will achieve the best coverage using this abstract test suite. We define
here the p-coverage as the coverage reached by the execution of an executable
abstract test suite for a given product and p-coverage upper bound as the product
which will be able to execute the subset of an abstract test suite with the best
coverage.

Definition 13 (P-Coverage). Let ats be an abstract test suite over fts,
a given FTS, and a covering criteria cov(ats, fts). Given a product p ∈
prod(ats, fts) and atsp ⊆ ats the set of all abstract test cases of ats executable
by p. The p-coverage is the coverage reached when executing atsp :

p− coverage = cov(fts, atsp).

Equipped with this notion of product coverage by a subset of the test suites, we
may look for the product(s) that optimize(s) a given coverage function.

Definition 14 (P-Coverage Upper Bound). Given an executable abstract
test suite ats over a given FTS fts = (S, Act, trans, i, d, γ) and a cover-
ing criteria cov(ats, fts). Given a product p ∈ prod(ats, fts) and atsp ⊆ ats
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the abstract test suite executable by p. The product p will be the p-cov upper
bound iff � ats′p ⊂ ats executable by p′ ∈ prod(ats, fts) such as cov(ats′p, f ts) >
cov(atsp, f ts).

For instance, the p-all-transition-pairs upper bounds products are :

– {V endingMachine, CancelPurchase, Beverage, Soda, T ea, Currency,
Euro}

– {V endingMachine, CancelPurchase, Beverage, Soda, T ea, Currency,
Dollar}

Each one with a all-transition-pairs coverage of 68.75%. It means that concretiz-
ing the abstract test suite derived to achieve a all-transition-pairs coverage using
one of those products and executing the concretized test cases on the selected
product will achieve a all-transition-pairs coverage of 68.75% for the behaviour
of the SPL.

3.4 SPL Test Case Selection

As illustrated in Fig. 5, the abstract test case selection problem may be formu-
lated as an optimisation problem. In its most simple expression, the considered
selection criteria has to be maximised and either the size of the executable ab-
stract test suite (minimal test suite) or the number of product needed to execute
the test suite (p-minimal test suite) has to be minimized. Of course, in reality
we expect more complex situations where a finer grained objective function will
be designed. For instance by adding weights to features in the FD [16] and/or
transitions [1] in the FTS and try to minimize the total cost of the test suite.

Adding weight to transitions is a classical approach developed in statistical
testing where weight (between 0 and 1) represents the probability of a transition
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to be fired. In our previous work [12], we apply this idea to product lines in order
to prioritize behaviours and products to test. In the following section, we define
one more additional coverage criteria: the Usage Coverage, specifying that the
selected abstract test suite should cover the most or least common behaviours
of the SPL.

3.5 Usage Coverage Criteria

In [12], FTSs are combined to a Deterministic Timed Markov Chain (DTMC) in
order to select and prioritize SPL behaviours to assess. The result of the process
is a FTS’ representing a subset of the original FTS that has to be assessed (using
testing and/or model checking) in priority. The complete process is presented in
figure 6. First, traces are selected in the DTMC according to their probability
to happen (step 1), e.g., probability between a lower and upper bound, most
probable traces, etc. A trace represents a sequence of actions in the DTMC.
Since the DTMC does not have any notion of features (which allows us to use
existing statistical testing tools like MeTeLo [1]), the selected traces have to
be filtered using the FTS to ensure they can be performed by at least one
valid product (step 2). By pruning the FTS and keeping only transitions fired
when executing selected traces, we get a FTS’, representing a (priority) subset
of the original FTS. Optionally, in step 3, valid traces, and FTS’ are used to
generate valid configurations (i.e., products) which have to be tested in priority.
We assessed the feasibility of this process on an existing system (see section 4 of
[12]), the local Claroline instance at the University of Namur (an online course
management system) using a 5Go Apache access log to build the DTMC, a FTS
with 107 states and 11236 transitions and a feature digram with 44 features. In
this first version, we run a depth first search algorithm 4 times in order to get
behaviours with probability between [10−4; 1], [10−5; 1], [10−6; 1] and [10−7; 1].
The average probabilities of the traces selected in the DTMC and the size of the
generated FTS’ are presented in Tab. 1.

We intend to combine the usage coverage criteria with other structural cover-
age criteria in order to asses the behaviour of a SPL. The classical scenario we
imagine would be:

1. The test engineer select the lowest or highest probable usage of the system
based on a DTMC and build a FTS’ (using [12]), prioritized subset of the
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Table 1. Claroline Feasability Assessment Results [12]

Proba. interval Traces avg. proba. σ # FTS’ states # FTS’ transitions

[10−4; 1] 2, 06E−3 1, 39E−2 16 66
[10−5; 1] 3, 36E−4 5, 46E−3 36 224
[10−6; 1] 5, 26E−5 2, 12E−3 50 442
[10−7; 1] 8, 10E−6 8, 18E−4 69 844

original FTS. We did not make any assumption on how the usage model
is build. In the experiment presented in [12], the usage model was obtain
from actual usage of the system using an Apache log. It could also be done
manually by a system expert who will tag the transitions in the DTMC with
probabilities based on its own knowledge of the system [27].

2. The test engineer select a minimal or p-minimal (executable or not) abstract
test suite in the FTS’ using a structural coverage criteria.

3. The test engineer concretize this abstract test suite and execute it on one
product of the SPL.

4 Related Work

Other strategies to perform SPLs testing have been proposed. One of those con-
siders incremental testing in the SPL context [30,24,21]. For example, Lochau
et al. [21] proposed a model-based approach that shifts from one product to
another by applying“deltas” to statemachine models. These deltas enable auto-
matic reuse/adaptation of test model and derivation of retest obligations. Oster
et al. [24] extend combinatorial interaction testing with the possibility to spec-
ify a predefined set of products in the configuration suite to be tested. There
are also approaches focused on the SPL code by building variability-aware in-
terpreters for various languages [19]. Based on symbolic execution techniques
such interpreters are able to run a very large set of products with respect to
one given test case [23]. In [4], Cichos et al. use the notion of 150% test model
(i.e., a test model of the behaviour of a product line) and test goal to derive test
cases for a product line but do not redefine coverage criteria at the SPL level.
In [3], Beohar et al. propose to adapt the ioco framework proposed by Tretmans
[28] to FTSs. Contrary to this approach, we do not seek exhaustive testing of
an implementation but rather to select relevant abstract test cases based on the
criteria provided by the test engineer.

5 Conclusion and Perspectives

In this paper, we have established the preliminary foundations to support SPL
testing using FTS by defining dedicated testing concepts and providing several
coverage criteria to support test generation. Next steps naturally include the
design of strategies that realize the extraction of behaviours based on such cri-
teria. Experience and optimisation realised for model-checking algorithms will
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be key to the design of efficient and scalable FTS traversals. We also plan to
devise an FTS-aware random test generation strategy (e.g. systematically pro-
ducing random executable abstract test cases). Finally, we also plan to combine
such criteria with each other and with test case selection based on temporal
properties. Our approach will be integrated with the ProVeLines family of SPL
model-checkers [10].
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Abstract. Bike-sharing systems are becoming popular not only as a sus-
tainable means of transportation in the urban environment, but also as
a challenging case study that presents interesting run-time optimization
problems. As a side-study within a research project aimed at quantitative
analysis that used such a case study, we have observed how the deployed
systems enjoy a wide variety of different features. We have therefore ap-
plied variability analysis to define a family of bike-sharing systems, and
we have sought support in available tools. We have so established a tool
chain that includes (academic) tools that provide different functionalities
regarding the analysis of software product lines, from feature modelling
to product derivation and from quantitative evaluation of the attributes
of products to model checking value-passing modal specifications. The
tool chain is currently experimented inside the mentioned project as a
complement to more sophisticated product-based analysis techniques.

1 Introduction

Bike-sharing systems (BSS) are becoming popular not only as a sustainable
means of smart transportation in the urban environment, but also as a challeng-
ing case study that presents interesting run-time optimization problems.

A case study of the EU project QUANTICOL (http://www.quanticol.eu)
concerns the quantitative analysis of BSS seen as collective adaptive systems
(CAS). The design of CAS must be supported by a powerful and well-founded
framework for quantitative modelling and analysis. CAS consist of a large num-
ber of spatially distributed entities, which may be competing for shared resources
even when collaborating to reach common goals. The nature of CAS, together
with the importance of the societal goals they address, mean that it is imperative
to carry out thorough analyses of their design and to investigate all aspects of
their behaviour before they are put into operation. In this context it is important
to realize that the design and behaviour of the individual entities from which a
CAS is composed, may exhibit variability not only in the kind of features but
also in the quantitative characteristics of features themselves.
� Research partly supported by the EU FP7-ICT FET-Proactive project QUANTI-

COL (600708) and by the Italian MIUR project CINA (PRIN 2010LHT4KM).
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Starting from the BSS case study identified in QUANTICOL, we sought to
apply variability analyses on a small bike-sharing product line. For this purpose,
we modelled a family of BSS, covering the specification of a discrete feature mo-
del [21], the specification of several non-functional quantitative properties, and
behavioural specifications. To specify and analyze this family of BSS, we chose
to adopt existing feature modelling and analysis tools rather than to build yet
another tool. Looking for academic, freely available tools, we realized that no
single tool was ready to fully satisfy our expectations. This led to the conclusion
that the best option was the synergic use of the tool chain in Fig. 1, including
S.P.L.O.T. [23], FeatureIDE [28], Clafer [15] and ClaferMOO [25], and VMC [12].

Fig. 1. The tool chain experimented in this paper

This tool chain includes academic tools that provide different functionalities
regarding the analysis of software product lines, from feature modelling to prod-
uct derivation and from quantitative evaluation of the attributes of products to
model checking value-passing modal specifications.

We first specified a feature model of a BSS in S.P.L.O.T., which is a de facto
standard for sharing feature models publicly that also allows to edit, debug,
analyze, and configure feature models, after which this model was imported in
FeatureIDE [28] for visualization in the FODA syntax [21,13] and automatic code
generation in the future. The model was then imported in Clafer and, after the
manual addition of feature attributes and global quantitative constraints over
these attributes, ClaferMOOVisualizer was used for quantitative analyses and
multi-objective optimization of the resulting attributed feature model. Finally,
we manually specified several behavioural models of BSS in the recent extension
of VMC that can handle data through value passing, allowing the automatic
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generation of one, some, or all valid product behaviours and the simulation, vi-
sualization, and verification of either the full product line or a set of its valid
products by properties expressed in a value-passing action-based branching-time
modal temporal logic. The tool chain is currently further experimented to com-
plement more sophisticated product-based analysis techniques in QUANTICOL.

As far as we know, there was no study available concerning the possible dif-
ferent realizations of a BSS starting from its description as a product line and
then using methods and tools developed in the field of software product lines to

1. analyze the set of admissible products by inspecting the possible variability;
2. take into account the different attributes that may be used to measure, e.g.,

the development cost of the derivable products or the customer satisfaction;
3. verify satefy and liveness (e.g., availabiliy) properties of a behavioural model.

The paper is organized as follows. In §2 we introduce the bike-sharing case study.
In §3 we show how to model the BSS with SPLOT and how to import it into
FeatureIDE. In §4 we instead show how to import this model in Clafer, after
which we extend it with attributes and evaluate it with ClaferMOOVisualizer.
Finally, in §5, we consider a concrete BSS and model and analyze its behaviour
with VMC. Our conclusions from this experience are presented in §6, followed
by a list of future work in §7. The complete specifications of all models used in
the case study presented in this paper are available in [9] and online at URL:
http://milner.inf.ed.ac.uk/wiki/files/y0R2Q6q/TRQC072014pdf.html.

2 BSS: Bike-Sharing Systems

An increasing number of cities of varying size are adopting fully automated
public bike-sharing systems (BSS) as a green urban mode of transportation [24].
The concept is simple (a user arrives at a station, pays for a bike, uses it for
a while and returns it to a station) and their benefits multiple, including the
reduction of vehicular traffic (congestion), pollution, and energy consumption.

The current third generation technology-based BSS have almost nothing (but
the bikes) in common with the first generation free BSS introduced in Ams-
terdam nearly half a century ago. Vélib′, the well-known and highly successful
BSS of the city of Paris, currently consists of over 20,000 bikes and some 1,800
stations. There are now similar BSS in more than 500 cities worldwide. The
largest BSS can be found in China with upto 90,000 bikes and over 2,000 sta-
tions, one every 100 meters. Fourth generation BSS are already being developed.
These include movable and solar-powered stations, electric bikes and smartphone
real-time availability applications [24].

In the context of QUANTICOL we are collaborating with “PisaMo S.p.A.
azienda per la mobilità pisana”, an in-house public mobility company of the
Municipality of Pisa. They recently introduced the public BSS CicloPi in the
city of Pisa, which currently consists of roughly 140 bikes and 14 stations.

More in detail, a BSS consists of parking stations distributed over a city,
typically in close proximity to other public transportation hubs such as subway

http://milner.inf.ed.ac.uk/wiki/files/y0R2Q6q/TRQC072014pdf.html
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and tram stations. (Subscribed) users may rent an available bike and drop it
off at any station in the city. To improve the efficiency and the user satisfaction
of BSS, the load between the different stations may be balanced, e.g., by using
incentive schemes that may change the behaviour of users but also by efficient
(dynamic) redistribution of bikes between stations.

3 Modelling a BSS: From S.P.L.O.T. to FeatureIDE

To develop an initial feature model we performed a requirements elicitation in the
form of text mining a set of documents from the literature describing current BSS
(mainly [24]) and the specific BSS of Pisa [20,26]. This allowed us to extract the
main features of BSS and to identify their commonalities and variabilities. This
led to bikes equipped with an optional localization feature (RFID or GPS) and an
optional antithieves feature (which requires GPS though), parking stations with
a capacity that is either fixed permanent or fixed portable or flexible, optional
maintenance and redistribution of bikes, and – finally – an optional incentive
scheme based on rewards. Obviously we could have taken many more features
of BSS into account, but we believe that the chosen ones represent a sufficient
starting point for this exploratory study.

The feature model representation in Fig. 2 was created with S.P.L.O.T.’s
feature model editor, which is an online application developed by Marcílio Men-
donça and others at the University of Waterloo [23]. Software Product Lines
Online Tools is actually a web portal which integrates a number of research
tools. S.P.L.O.T. allows to edit, debug, analyze, configure, share and download
feature models. In particular, it allows to save models online to consult them
later or to export them in the SXFM format.1 It does not allow code genera-
tion, nor does it provide a way to render feature models in the graphical FODA
syntax [21,13]. The main reason for which we nevertheless opted for S.P.L.O.T.
as the first tool in the chain is that it is a de facto standard for sharing feature
models publicly (its feature model repository currently has nearly 400 entries).

A tool that does allow to directly generate code (Java or C++) as well as a
graphical representation in the FODA syntax, starting from a feature model, is
FeatureIDE [28], which is an Eclipse plug-in developed mainly at the Univer-
sity of Magdeburg. FeatureIDE actually supports the full lifecycle of a software
product line, from domain engineering to feature-oriented software development.
However, it operates on feature models in an XML format. To nevertheless be
able to use FeatureIDE to work with feature models created with S.P.L.O.T.
(or directly with one of the feature models in its repository), it thus becomes
necessary to translate the SXFM format. To this aim, FeatureIDE has a feature
that automatically converts SXFM files into the desired XML format.

Using FeatureIDE’s visualization functionalities we subsequently obtained the
graphical representation of this feature model depicted in Fig. 3 (with an implicit
conjunction among the 5 constraints). From this model, FeatureIDE allows the
user to generate one of the 60,840 valid configurations (i.e., products).
1 Simple XML Feature Model, a concise textual format to denote feature models.
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Fig. 2. The BSS feature model in S.P.L.O.T., not showing the Users’ subfeatures

Fig. 3. The complete BSS Feature Model in FeatureIDE
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4 Adding Attributes to the BSS: From S.P.L.O.T. to
ClaferMOOVisualizer

Until now we considered ordinary feature models, i.e., feature diagrams mod-
elling the hierarchical parent-child relationships between a set of features as a
rooted tree and possibly some additional cross-tree constraints. As outlined in
the introduction, in the context of QUANTICOL we are specifically interested
in quantitative analyses of BSS, meaning that we consider the behaviour of the
components of a BSS to exhibit variability not only in the kind of features they
possess, but also in the quantitative (non-functional) characteristics of their fea-
tures. To achieve this, we manually add attributes and quantitative constraints
among attributes and features to the BSS specification and perform quantita-
tive analyses, i.e., we perform modelling and analysis of attributed feature mod-
els [13]. Neither S.P.L.O.T. nor FeatureIDE currently cater for attributed feature
models, but FeatureIDE is being extended to support quality attributes [28].

Clafer, a lightweight textual modelling language for software (product lines)
developed jointly at the University of Waterloo and the IT University of Copen-
hagen, does allow attributed feature modelling [15]. Moreover, splot2clafer, a
small tool written in Java, automatically translates files from S.P.L.O.T.’s SXFM
format into the CFR format of Clafer.

In Clafer, each feature can have an associated attribute and quality constraints
can be specified either globally or within the context of a feature. Think, e.g.,
of associating a cost to each feature and a global constraint that only allows
products (feature configurations) whose total costs remain within a predefined
threshold value. This is an example of a single optimization objective, but usually
there can be more than one attribute associated to a feature, leading to multiple
optimization objectives. It suffices to imagine that each feature also has a value
for user satisfaction associated to it and while the objective might be to minimize
the cost of a product it might at the same time be desirable to maximize user
satisfaction.

The ClaferMOO extension of Clafer was specifically introduced to support
attributed feature models as well as the resulting complex multi-objective op-
timization goals [25]. A multi-objective optimization problem has a set of solu-
tions, known as the Pareto front, that represents the trade-offs between two or
more conflicting objectives. Intuitively, a Pareto-optimal solution is thus such
that no objective can be improved without worsening another objective. A set
of Pareto-optimal variants generated by ClaferMOO can be visualized (as a
multi-dimensional space of optimal variants) and explored in the interactive tool
ClaferMOOVisualizer, which was specifically designed to support SPL scenarios.
The tool can help understand differences among variants, establish their position-
ing with respect to various quality dimensions, select the most desirable variants,
possibly by resolving trade-offs, and understand the impact that changes made
during a product line’s evolution have on a variant’s quality dimensions.

The outcome of evaluating the various options (costs, benefits, etc.) in a sys-
tematic way can help finding the right BSS for a particular city, i.e., providing
concrete answers to questions like:
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– How many and what kind of bikes to buy?
– How many and what kind of stations to buy, and where to place them?
– Which features (antitheft, maintenance, smart services, etc.) to include?
– Include or exclude the (dynamic) redistribution of bikes?
– Set incentives for users to return bikes to less popular stations (e.g., uphill)?
– How much should the users pay and according to which charging policy?

We thus decided to annotate the features of the BSS with attributes and to
define global quantitative constraints over these attributes. For now we limited
ourselves to the cost and customer satisfaction and, in specific cases, capacity
and security. Consequently, these constraints aim to minimize the total cost of
a configuration and at the same time maximize customer satisfaction, capac-
ity, and security of a BSS. We obtained realistic numbers for cost and security
from documents from companies selling BSS (obtained from PisaMo) and kept
their ratio in the model. The values for customer satisfaction instead stem from
discussions with PisaMo. The specification (in Clafer’s CFR format) of the result-
ing attributed feature model, excluding the Users (sub)features because Clafer-
MOOVisualizer currently runs out of memory in case of too large models, is:

// BBS+.cfr
abstract Feature

customersat : integer
cost : integer

abstract SecurityFeature : Feature
security : integer

abstract CapacityFeature : Feature
capacity : integer

abstract Bikesharing
or Status : Feature ?

[ customersat = 0 ]
[ cost = 0 ]
RTInfoWeb : Feature

[ customersat = 10 ]
[ cost = 5 ]

AllBikesNow : Feature
[ customersat = 20 ]
[ cost = 10 ]

Bike : SecurityFeature
[ customersat = 0 ]
[ cost = 0 ]
[ security = 0 ]
or Localization : SecurityFeature ?

[ customersat = 0 ]
[ cost = 0 ]
[ security = 0 ]
RFID : SecurityFeature

[ customersat = 10 ]
[ cost = 10 ]
[ security = 1 ]

GPS : SecurityFeature
[ customersat = 15 ]
[ cost = 15 ]
[ security = 2 ]

Antithieves : SecurityFeature ?
[ customersat = 5 ]
[ cost = 7 ]
[ security = 4 ]

xor DockingStation : CapacityFeature
[ customersat = 0 ]
[ cost = 0 ]
Fixed : CapacityFeature

[ customersat = 17 ]
[ cost = 30 ]
[ capacity = 10]

FixedPortable: CapacityFeature
[ customersat = 20 ]
[ cost = 35 ]
[ capacity = 10]

Flexible: CapacityFeature
[ customersat = 23 ]
[ cost = 40 ]
[ capacity = 20]

Maintenance : Feature ?
[ customersat = 15 ]
[ cost = 10 ]

Redistribution : Feature ?
[ customersat = 15 ]
[ cost = 10 ]
Reward : Feature ?

[ customersat = 5 ]
[ cost = 10 ]

[ Antithieves => GPS ]
[ AllBikesNow => GPS ]

total_customersat : integer =
sum Feature.customersat

total_cost : integer =
sum Feature.cost

total_security : integer =
sum SecurityFeature.security

total_capacity : integer =
sum CapacityFeature.capacity

Mybike : Bikesharing
<< max Mybike.total_customersat >>
<< min Mybike.total_cost >>
<< max Mybike.total_security >>
<< max Mybike.total_capacity >>
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By default, features are mandatory, but appended by ‘?’ they become optional.
Their hierarchy is represented by indentation. Parent features of an (exclusive)
or group of subfeatures are preceeded by or (xor). Cross-tree constraints can
be written as first-order logic formulae. Attributes are listed under the features,
after which optimization objectives can be set to maximize or minimize their
sums (or possibly other arithmetic operations on integers).

Figure 4 depicts the result of optimizing this specification with ClaferMOO-
Visualizer. After running for over an hour, it generated a feature and quality
matrix over four quality dimensions with 106 optimal variants (53 are visible)
out of the 360 valid configurations of the feature model without the Users sub-
tree. The feature model is in the first column, followed by sums of attributes.
The numbered columns represent variants, indicating presence (green ‘tick’) or
absence (red crossed circle) of optional features, followed by the variants’ nu-
meric quality values (summing attributes). This allows to spot common or rare
features. It is also possible to filter variants by selecting features that should
be present in all or none of the variants without recalculating the Pareto front.
We see, e.g., that variant 51 offers maximal security and capacity at a high cost
and with a high customer satisfaction. If this is too expensive, then variant 52
offers the same capacity, near-optimal security, and still a reasonable customer
satisfaction at a more affordable cost. The variants are also depicted in a graph
as bubbles in at most four quality dimensions (x-axis, y-axis, size, colour). This
view can be narrowed down by setting specific quality ranges. The tool can also
sort or compare variants (fixing features in advance), list commonalities and
differences, do trade-off analysis (e.g., with preconfigured variants), etc.

5 Adding Behaviour and Value-Passing to the BSS: VMC

In recent years, we have laid the basis for the use of modal specifications and
temporal logics to specify and analyze behavioural variability in SPL, by devel-
oping the modelling and verification environment presented in [2,3,4], which has
been implemented in the variability model checker VMC [10,12] that is freely
usable online (http://fmt.isti.cnr.it/vmc/v6.0). VMC is a model checker
for product lines modelled as modal transition systems (MTS) [1] with addi-
tional variability constraints, but with no specific reference to feature models.
This is one of the differences2 with the successful approaches based on featured
transition systems (FTS) [17,16], in which transitions are labelled with actions
and features and an encoding of the feature model is included (basically, the set
of features and the set of valid products in terms of their features).

VMC offers the automatic generation of one, some, or all valid product be-
haviours of a product line and the simulation, visualization, and verification of
either the full product line or a set of its valid products. VMC’s explicit-state on-
the-fly model-checking algorithm allows the verification of properties expressed
in so-called variability-ACTL interpreted over MTS. It moreover offers the pos-
sibility to inspect the (interactive) explanations of a verification result.
2 The commonalities and differences between these two approaches are discussed in [3].

http://fmt.isti.cnr.it/vmc/v6.0
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Fig. 4. The BSS Feature Model in ClaferMOOVisualizer, corresponding to the
BSS+.cfr specification, i.e., excluding the Users features and their subfeatures
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On the basis of the algorithms presented in [8], on-the-fly model checking of
v-ACTL formulas over MTS can be achieved in a complexity that is linear with
respect to the size of the state space. It is beyond the scope of this paper to
present detailed descriptions of the model-checking algorithms and architecture
underlying this family of model checkers, but we refer the interested reader to [8].

Until very recently, a critical point in this modelling and verification environ-
ment was the lack of a possibility to model an adequate representation of the
data that may need to be described when considering realistic systems. We now
present a case study that makes the need for data handling clear.

Inspired by [19], we consider a BSS with N stations and a fleet of M bikes.
Each station i has a capacity Ki. The dynamic behaviour of the system is then:

1. Users arrive at station i.
2. If a user arrives at a station and there is no available bike, then the user

leaves the system.
3. Otherwise, the user takes a bike, rides it for a while, and then chooses station

j to return it to.
4. When the user arrives at station j, if there are less than Kj bikes in this

station, then the user returns the bike and leaves the system.
5. If the station is full, then the user chooses another station, say k, and goes

there.
6. A bike redistribution activity may be requested and may possibly be fulfilled.
7. The user can repeat these steps, riding a bike again for a while until the user

returns the bike.

This list contains a mix of a kind of static constraints stemming from the differ-
ences in configuration (features) between products, such as the optional possibil-
ity to have a redistribution mechanism, as well as more operational constraints
defining the behaviour of products through admitted sequences (temporal order-
ings) of actions or operations implementing features according to certain values.

As a first step towards more complex data handling, the latest version of
VMC (v6.0) accepts models specified in a value-passing modal process algebra
and allows model checking of properties expressed in a value-passing action-based
branching-time modal temporal logic. The formal definitions of the syntax and
semantics of VMC’s input language and of its v-ACTL logic can be found in [11].
We illustrate these new features of VMC by means of two simple yet intuitive
examples from [11] inspired by the case study.

We first specify the behaviour of a family of bike-sharing stations in the value-
passing modal process algebra. Processes can pass and receive integer parameter
values (and store them in a variable preceded by a ‘?’), actions can be optional
in which case they are typed may, and nondeterministic choice can be guarded by
a comparison of values. A system definition must be complemented with a top
term of the form net SYSTEM = P, where P is the initial process (or composition
of processes). The below specification accounts for the possibility of having a
dynamic redistribution scheme as an optional feature of the BSS. Without loss
of generality, we assume a bike-sharing station with 2 as its maximum capacity.
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Station(X) = request.StationBikeRequested(X)
StationBikeRequested(Y) =

[Y<1] ( nobike.Station(Y) + redistribute(may).Station(Y+2) ) +
[Y>0] givebike.Station(Y-1)

net BSS = Station(2)

From this specification of a family of bike-sharing stations, VMC generates the
MTS in Fig. 5(a) and derives its possible product behaviours in Figs. 5(b)-5(c).

request

givebike

request

givebike

request

nobike { redistribute}

request request

(a) Family MTS

{T1}

request

{T2}

givebike

{T3}

request

{T4}

givebike

{T5}

request

{T6}

nobike

{T7}

request

(b) Product LTS

{T1}

request

{T2}

givebike

{T3}

request

{T4}

givebike

{T5}

request

{T6}

nobike redistribute

{T7}

request

{T8}

request

(c) Product LTS

Fig. 5. (a)-(c) A family MTS and two product LTS generated by VMC

To consider also the behaviour of a user whose bike request can result in either
a bike, no bike, or a redistribution, we can specify the following BSS family:

User = request.(givebike.User + nobike.User + redistribute.User)

net BSS = Station(2) /request,givebike,nobike,redistribute/ User

Due to the simplistic user behaviour and the synchronous parallel composition3

of Station(2) and User on all possible actions, this specification actually results
in the same family behaviour (MTS) and product behaviours (LTS) as in Fig. 5.
3 The parallel composition operator is parametrized by the actions /. . . / to synchronize.



362 M.H. ter Beek, A. Fantechi, and S. Gnesi

To illustrate what kind of variability analyses can be performed, we present
a few properties expressed in v-ACTL, and the result of model checking them
with VMC against the example BSS depicted in Fig. 5:4

Eventually it must occur that no more bike is available: EF� {nobike} true.
This formula is true (due to F� only must actions may occur before nobike).

It is always the case that eventually it must occur that no bike is available:
AGEF� {nobike} true. Also this formula is true.

It is possible for the user to request and receive a bike for three times in a row:
〈request〉 〈givebike〉 〈request〉 〈givebike〉 〈request〉 〈givebike〉 true. This formula
is of course false for a station of capacity 2.

As a final example, we model a possibly infinite number of users that take a
bike from station I to station J . Initially, station I has N bikes, which it gives
(when available) to a requesting user or accepts from a returning user. If the
station receives more than M bikes, the exceeding N −M bikes are distributed
to station J . Station I must accept all bikes distributed by other stations or
returned by a user (possibly for redistribution). It could easily be extended to
N stations and K groups of users that take a bike from one station to another.

Station(I,N,J,M) =
request(I).

( [N = 0] nobike(I).Station(I,N,J,M) +
[N > 0] givebike(I).Station(I,N-1,J,M) ) +

return(I).Station(I,N+1,J,M) +
redistribute(may,?FROM,?TO,?K).

( [TO = I] Station(I,N+K,J,M) +
[TO /= I] Station(I,N,J,M) ) +

[N > M] redistribute(may,I,J,N-M).Station(I,M,J,M)

-- two stations:
net STATIONS =

Station(s1,2,s2,2) /redistribute/ Station(s2,2,s1,2)

Users(I,J) =
request(I).

( givebike(I).return(J).Users(I,J) +
nobike(I).Users(I,J) )

-- one or two groups of users
net USERS = Users(s1,s2) -- // Users(s2,s1)

net BSS = STATIONS /request,givebike,nobike,return/ USERS

4 In VMC, [ ]�, μ, ν and F� need to be written as []#, min, max and F#, respectively.
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Note that the two stations only synchronize on redistribution, which is an
optional may action with parameter values to distribute N − M bikes from
station I to J . From this specification of a family of bike-sharing stations, VMC
generates the MTS with 18 states depicted in Fig. 6 in case there is only one
user group (i.e., net USERS = Users(s1,s2)); in case of two user groups (i.e.,
net USERS = Users(s1,s2) // Users(s2,s1)) it has 224 states.5

{request(s1)}

{givebike(s1)}

{return(s2)}

{redistribute(s2,s1,1)}

{request(s1)}

{request(s1)}

{givebike(s1)}

{redistribute(s2,s1,1)} {return(s2)}

{return(s2)} {redistribute(s2,s1,2)}{request(s1)}

{redistribute(s2,s1,1)}{request(s1)} {request(s1)}{nobike(s1)}

Fig. 6. A family MTS of a BSS with 2 stations and 1 group of users generated by VMC

We model checked the following properties expressed in v-ACTL with VMC,
now against the example family of BSS with one user group depicted in Fig. 6:

Eventually it must occur that station 1 has no bikes: EF� {nobike(s1)} true.
This formula is true (cf. the path of only must actions leading to nobike(s1) ).

Eventually it may occur that station 2 has no more bikes: EF {nobike(s2)} true.
This formula however is false.

5 In VMC, text or code can be commented out by prefixing it with ––.
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For all products, if redistribution is implemented, then it is always the case that
eventually station 1 must give a bike:6 (¬EF� {redistribute(*,s1,*)} true)∨
(AGEF� {givebike(s1)} true). This formula is true for all products (LTS)
of the family (MTS in Fig. 6).

6 Conclusions

Both S.P.L.O.T. and FeatureIDE provide the key functioning of what can be
expected from a typical feature modelling tool: Creating, editing and analyzing
a feature model, providing some statistics of the feature model, and deriving
product configurations. A careful account, based on user experiences, of the
commonalities and variability of the two tools is presented in [27], which confirms
the fact that neither of the two is better than the other in all circumstances.

S.P.L.O.T. is a Web-based tool, including a repository of hundreds of fea-
ture models. It is quite user friendly and immediate to use also thanks to the
availability of previously developed models. However, adding the model to the
aforementioned repository is mandatory, which raises concerns over the privacy
of the developed models that can thus be accessed and modified by anyone. Fur-
thermore, S.P.L.O.T. allows only a single product configuration to be created,
which however cannot be saved in the repository.

FeatureIDE, on the other hand, is a locally executable tool, integrated in
Eclipse. Hence, it allows not only the generation of products as feature combina-
tions, but it also allows to automatically generate code skeletons that reflect the
feature structure of a product within Eclipse itself. Although we did not exploit
this feature in this paper, we consider it important for intended future work on
the BSS case study within QUANTICOL.

The complementarity of the two tools with respect to the above issues has
been exploited in the experience described in this paper by first defining the
feature model in S.P.L.O.T. and then importing it into FeatureIDE.

Subsequently, we adopted the online tool ClaferMOOVisualizer for quantita-
tive analyses of an attributed feature model, since – as far as we know – it is
the only tool that exhibits this functionality. Specific tooling exists to interface
with S.P.L.O.T., and this was an important reason for maintaining a copy of the
feature model in S.P.L.O.T. Unfortunately, we had to reduce the Clafer specifi-
cation of an attributed feature model of the BSS by leaving out the entire Users
feature and its subfeatures. The reason is that ClaferMOOVisualizer currently
runs out of memory in case of too large models.

Finally, we moved from the analysis of structural aspects of BSS to that
of behavioural aspects by considering possible behaviours of BSS by manually
defining process-algebraic models of both the users and the docking stations and
verifying some illustrative properties with the Web-based model checking tool
VMC. More specifically, we used the most recent value-passing extension of the
aforementioned modelling and verification environment.

6 Note how ‘* ’ can be used as a ‘don’t care’ symbol for parameter values.
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Our overall experience with the tools was influenced by the fact that all of
them are academic tools that at times present some minor problems: S.P.L.O.T.,
FeatureIDE, and VMC showed more maturity in this respect, while the online
version of ClaferMOOVisualizer still manifests some instability.

Obviously, a single standard format for feature models and the use of locally
running versions of the tools would increase the synergy between the tools. For
now, however, the exploited tool chain was sufficient for our aim of a preliminary
modelling and analysis of a bike-sharing product line.

7 Future Work

In the context of planned future work on the BSS case study within QUANTI-
COL, we are currently studying a further, more general, parametric extension
of the above environment as well as the addition of a quantitative dimension to
the behavioural model. For the latter aim, we are considering an extension to
weighted MTS [5]. For the former aim, on the other hand, we plan to borrow ideas
from parametric MTS [14] and from the way in which the parametrized processes
and data handling features of the formal specification language mCRL2 [18]
(http://www.mcrl2.org) have been exploited for SPL in [7,6,22].

Actually there exists specific ‘quantitative’ behaviour (e.g., finding another
docking station if the initially chosen station is found full) that might lower or
raise user satisfaction, based on the success rate, thus impacting the attributes
in the feature model. It remains a challenge for the future to try to capture also
such a scenario in our approach.
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Abstract. We introduce by means of an example a modular verification
technique for analyzing the behavior of software product lines using the
mCRL2 toolset. Based on feature-driven borders, we divide a behavioral
model of a product line into a set of separate components with interfaces
and a driver process to coordinate them. Abstracting from irrelevant
components, we verify properties over a smaller behavioral model, which
not only simplifies the model checking task but also makes the result
amenable for reuse. This is a fundamental step forward for the approach
to scale up to industrial-size product lines.

1 Introduction

Modular or compositional verification by means of model checking has been
widely studied as a way to cope with the state space explosion phenomenon
(see, e.g., [1,23] or the survey papers in [16]). Traditionally, the idea is to exploit
the native modular structure of a design to decompose system properties into
properties over system modules or components. In practice, it turns out that this
is far from trivial, mainly due to the difficulty to (de)compose properties. A ma-
jor reason for this difficulty is the misalignment between behavioral properties
and the modular design structures that tend to reflect conceptual rather than
behavioral borders. Hence, for modular verification to be successful, it is impor-
tant that a design can be decomposed into components that align well with the
properties under consideration. Fisler and Krishnamurthi were the first to notice
that this characteristic is inherent to software product lines or feature-oriented
system designs, since most properties of interest concern features and system
modules or components, and naturally decompose around features [19,27,28].
In line with their findings, in this paper we present a feature-oriented modular
approach to the verification of software product lines with mCRL2.

In [5] we showed how the formal specification language mCRL2 and toolset
can be exploited to model and analyze software product lines. In particular, we
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presented a basic example to illustrate the use of mCRL2’s parametrized data
language to model and select valid product configurations, in the presence of
feature attributes and quantitative constraints, and to model and check the
behavior of valid products. This is in line with the analysis recommendations
from [3] to “adopt and extend state-of-the-art analysis tools” and to “examine[s]
only valid product variants”. We also hinted at the use of model reduction. In this
paper, we concretize this. Using the example from [5], we show how its behavioral
model can be modularized (in a feature-oriented fashion) into components, with
interfaces that allow a driver process to glue them back together on the fly. This is
a powerful abstraction technique that allows mCRL2 to concentrate on the relevant
components (features) for the specific property under scrutiny, and in accordance
with the modeling recommendation from [3] to “support (feature) modularity” in
order “to visualize and (manually or automatically) analyze feature combinations
corresponding to products of the product line”.

Formal methods and analysis tools are gaining popularity in software product
line engineering, as can be witnessed from the successful FMSPLE workshop
series affiliated with the last four editions of SPLC. While initial approaches fo-
cused on their use in proving structural properties, recently a lively community
of researchers is verifying behavioral properties in the presence of variability [9].
Given the rise of software product line engineering in embedded, distributed and
safety-critical systems, it is important to provide a means of quality assurance.
The work closest to ours are the process-algebraic approaches of [26,6] and, orig-
inating from [18], the transition system-based approaches of [25,2,12]. However,
a product line’s variability is exponential in the number of features. So, a major
challenge is to make the proposed techniques (more) scalable, in particular by
mitigating the input problem with the help of abstraction. Since mCRL2 is highly
optimized and comes with powerful behavioral abstraction techniques, it fosters
the hope that scalable verification of product lines is not an utopy.

The goal of this paper is to contribute towards making the variability analysis
approach introduced in [5] scale to industrial-size product lines. In that approach,
a product line is modeled as an mCRL2 process consisting of two (sequential)
parts. The first part concerns feature selection and its output are consistent and
complete product configurations; the second part captures product behavior. By
keeping the two parts together, model checking can be treated on the system as
a whole without restricting to a specific product a priori. This way, also feature
interaction is reflected in product behavior as the execution of an action depends
on the presence or absence of the corresponding feature.

The focus of the present paper is on the second part of an mCRL2 specification
of a product family, which models product behavior. Based on feature-driven
borders, we divide the behavioral mCRL2 model into a set of separate components
with interfaces in the form of exit and (re-)entry transitions, and we define
an additional driver process that coordinates them into exhibiting the same
behavior as before. As a result, we can concentrate property verification on part
of the state space, by considering a specific (set of) components only, abstracting
from the other components, i.e. the environment.
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Overall the approach with mCRL2 runs as follows. An attributed feature model
and a labeled transition system (LTS) are represented by a ‘sequential’ composi-
tion of a selection process Sel and a parametrized product behavior process Beh.
Next, the Beh process is refactored into a driver process Driver in parallel with
a number of components depending on disjoint sets of features. When verifying
a specific property for a component Comp0, an abstraction of the irrelevant com-
ponents Comp1, . . . , Compn is formulated, called Stub. If it is the case that the
specification Sel; (Driver ‖ Comp0 ‖ Stub) is branching bisimilar to the specifi-
cation Sel; (Driver ‖ Comp0 ‖ Comp1 ‖ . . . ‖ Compn) the property holds for the
latter specification exactly when the property holds for the former. However, the
state space of the abstracted process is signifiantly smaller in general.

The technique is implemented in our mCRL2 model by creating a ‘stub’ to re-
place the environment, creating a smaller model that is branching bisimilar [20]
with the original one, hence enjoying the same behavioral properties. In pro-
gramming, stubs are used as placeholders for unknown implementations whose
interfaces are known. Such stubs contain just enough code to allow them to be
compiled and connected with the rest of the program. In our approach, a stub
makes use of the interface of the selected component(s) to simulate the tran-
sition sequences from every possible output (exit transition) of the component
to each reachable input ((re-)entry transition) for the component. This makes
it possible to abstract from other, irrelevant components and thus verify local
properties over a smaller behavioral model. This not only simplifies the model
checking, in the sense that standard algorithms suffice and limited computing
power is required, but it moreover allows the result to be reused for other veri-
fications. Under conditions, as long as the interface with the chosen component
remains unaltered, and the complete environment and stub are equivalent pro-
cesses (i.c. branching bisimilar), the property of the component verified already
remains valid. In this sense the obtained result can be reused in a subsequent
but different setting. We believe this to be an important step towards scaling
the approach to industrial-size product lines.

In this paper, we present our ideas on the basis of a toy example, but we
have started to work on a larger industrial case study that we hope to present in
the near future. The contribution of this paper is a proof-of-concept for feature-
based modular verification of software product lines using the mCRL2 toolset.
To this end, Section 2 introduces the type of feature models we use and the
coffee machine product line we use as a running example. Section 3 provides
the background on mCRL2 necessary to understand Sections 4 and 5, where our
approach to modular verification is illustrated by applying it to our example
product line. Section 6 discusses related work, while Section 7 closes the paper
with concluding remarks and ideas for future work.

2 A Product Line as Running Example

Our running example is an extension of the family of coffee machines from [2]
and a slight adaptation of the one in [5]. It has the following list of requirements:
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Fig. 1. Attributed feature model of family of coffee machines (with shorthand names)

– To start operation, money must be inserted: either one euro, exclusively for
European products, or one dollar, exclusively for Canadian products.

– Optionally, input of money can be canceled via a cancel button, after which
the machine returns the inserted coin.

– Once the machine contains money, the user may indicate whether (s)he wants
sugar, by pressing one of two buttons, after which (s)he can select a beverage.

– The choice of beverage (coffee, tea, cappuccino) varies, but all products must
offer coffee while only European products may offer cappuccino.

– Optionally, a ringtone may be rung after delivering a beverage. However, a
ringtone must be rung by all products that offer cappuccino.

– After the beverage is taken, the machine returns idle.

In this paper, we reserve the term feature diagram for an and/or-hierarchy of
features of a product line, regulating their presence in products, whereas we
speak of a feature model when a feature diagram is also equipped with cross-
tree constraints. Finally, by adding (non-functional) attributes to features and
quantitative constraints we obtain an attributed feature model [8].

Figure 1 depicts the attributed feature model of our example product line,
with root feature M and the set Feature consisting of the 10 non-trivial features
S, O, R, B, X, E, D, P, C, and T. As usual, we identify a product from the product
line with a non-empty subset of Feature united with the root feature. The cost
function cost : Feature → N, associated to the attribute cost, extends to products
straightforwardly: cost (product ) =

∑
{ cost (feature ) | feature ∈ product }.

Our particular example only involves binary cross-tree constraints, non-inter-
acting feature-wise quantifiable attributes and a single optimization objective.
However, more general and complex constraints, properties and objectives can
be treated as well [8,37]. The feature diagram, i.e. ignoring the cross-tree con-
straints, gives rise to 25 valid products out of the 210−1 possible non-empty sets
of non-trivial features. The feature model reduces this number to 20, while the
number is further reduced to 16 valid products if the attributed feature model is
considered (e.g. cost ({M,S,O,R,B,X,E,C, T }) = 33 exceeds the limit of 30).
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3 Analyzing System Behavior with mCRL2

mCRL2 is a formal specification language with an associated toolset for the mod-
eling and verification of distributed and/or concurrent system behavior and pro-
tocols [22]. For about a decade, mCRL2 is actively being maintained and targeting
industrial-size applications. Its specification language originates from the process
algebra ACP [4]. The user can use abstract datatypes to parametrize actions
and has maximal access to artifacts constructed during analysis, allowing tai-
lored manipulation. To this aim, the toolset consists of a wide range of tools and
supports simulation, visualization, behavioral reduction and model checking, as
well as dedicated optimization techniques and back-ends to other tools.

The mCRL2 toolset has successfully been applied in various settings, among
which the massive data collection system used for the high-energy experiments
conducted at the large hadron collider of CERN [35] and the FlexRay communi-
cation protocol used in the automotive industry to equip car components with a
reliable, high-bandwidth communication channel [13]. The toolset is open source
and the associated boost license allows free use for any purpose. Its binaries and
lots of further documentation can be downloaded from www.mcrl2.org.

We will not use the full expressivity of mCRL2 in our approach here. Relatively
simple structured models suffice, which extends the range of the toolset.

A simple example is the LTS in Fig. 2 (left), which can be modeled by the
mCRL2 process Foo, with integer st as a state parameter and actions a to e:

proc Foo(st:Int) =

( st==0 ) -> ( b.Foo(1) + a.Foo(2) ) +

( st==1 ) -> ( c.Foo(3) ) +

( st==2 ) -> ( b.Foo(1) + b.Foo(3) + a.Foo(4) ) +

...

Foo(4) ) +

Fig. 2. LTS of Foo process (left) and three communicating mCRL2 processes (right)

Another construction that is typical for the specification of parallel processes
in mCRL2 is the combined use of the communication and encapsulation operator.
Consider the following three processes:

proc A = ( send_a(1) + send_a(2) + send_a(3) ) .
sum n:Int . receive_a(n) . A;

proc B = sum n:Int . receive_b(n) . send_b(n) . B;
proc C = sum n:Int . receive_c(n) . send_c(n) . C;

www.mcrl2.org


Towards Modular Verification of Software Product Lines with mCRL2 373

Thus, process A starts sending value 1, 2, or 3. Next it is willing to receive any
integer value n and then starts all over again. Note that the summation over
integers should be interpreted as an infinite non-deterministic choice. Processes
B and C are similar, but they first receive a value n, send it out, and start again.

To enforce matching of actions, e.g. to arrange for A sending to B, B sending
to C, and C sending to A, we make use of a communication function. The function
states which actions combine into other actions, e.g. send_a and receive_b may
combine into the action msg_ab, similar to a synchronization of actions a and ā
yielding τ in CCS [32]. In mCRL2, for successful synchronization it is required that
the parameters of the actions, if any, are the same. In our case the net result is
communication: a receive action with a parameter bound by a summation gets
instantiated by the parameter value of the sending action. On top of this, to
constrain the interaction of processes and to prune the state space, we forbid
unmatched actions by explicitly listing which actions are allowed to happen,
excluding actions that are supposed to resolve into another. Note that in mCRL2
synchronization is multi-party, hence not restricted to handshaking as in CCS.

For the above three processes we may have:

allow( { msg_ab, msg_bc, msg_ca },
comm( { send_a | receive_b -> msg_ab,

send_b | receive_c -> msg_bc,
send_c | receive_a -> msg_ca },

A || B || C ));

The resulting state space of these three communicating processes is depicted in
Fig. 2 (right). We see that only the allowed actions msg_ab, msg_bc, and msg_ca
occur, hence no occurrences of unmatched send and receive actions. Also, in the
three cycles the same parameter value is mentioned, viz. either 1, 2, or 3; the
infinite sums of the processes B and C have been resolved.

A system property can be expressed as a formula in a variant of the modal
μ-calculus [21]. Subsequently, the property can be verified against a mCRL2 spec-
ification of the system using the model checking facilities of the toolset. Here are
some properties that hold for the Foo process above:

– [ true* ]< true > true: absence of deadlock, i.e. after any sequence of ac-
tions, an action can be done.

– [ true*.b.true*.a] false: after any sequence where the action b precedes
the action a, false will hold. As the latter never holds, the formula can be
reformulated: no a-action is possible after a b-action has happened.

– mu Y.(< d > true || [ true ] Y): a least-fixed-point construction. Always, af-
ter a finite amount of steps, a d-action can be done (or deadlock occurs
earlier). The smallest set of states Y that can do a d-action or cannot step
outside of Y, can be computed by iteration: Start from the empty set Y0 = ∅.
Then include state 3 which can do d, yielding Y1 = {3}. Then add states 1
and 4 since their single step leads to Y1, yielding Y2 = {1, 3, 4}. Then include
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2 and 5 since all their steps lead to Y2, yielding Y3 = {1, 2, 3, 4, 5}. The next
step adds 0 and yields the fixed point Y4 = {0, 1, 2, 3, 4, 5}. Since the initial
state 0 ∈ Y4, the formula holds.

– mu Y.( (nu Z.(<d.e> Z)) || [ true] Y): a nesting of a least-fixed-point
and a greatest-fixed-point construction. Always, after a finite amount of
steps, an infinite repetition of d and e is possible.

The modal μ-calculus, a.k.a. the ‘Logic of Everything’, is renowned to be highly
expressive and to subsume temporal logics like LTL and (A)CTL [17,10,14]. The
model-checking approaches of [12,6] are based on LTL, that of [26] on the multi-
valued modal μ-calculus, and those of [25,2] on (A)CTL. Only the approach
of [6] is implemented, viz. in the Maude toolset (maude.cs.uiuc.edu). The
appeal of the modal μ-calculus variant in mCRL2 exploited here is the possibility
to quantify over data. Moreover, well-chosen hiding of actions and minimization
with respect to one of the process equivalences offered by the mCRL2 toolset (e.g.
trace equivalence, weak and branching bisimulation [32,20]) allow to narrow the
state space and to focus on specific behavioral aspects. The latter technique can
significantly reduce a state space with millions of states to a state space of a few
dozens, making visual inspection feasible.

4 Modeling of the Running Example

To model the product family underlying our example in mCRL2 we follow the
approach set out in [5]. We will have two main processes: a feature selection pro-
cess and a process (actually a combination of a number of component processes
together with a driver process) representing an actual product of the family.

First, a valid feature set is selected by the three-stage non-deterministic pro-
cess Sel. The resolution of the non-determinacy leads to a product configuration
which is checked for its consistency with global constraints. First, a breadth-first
traversal of the feature model selects features, taking ‘mandatority’ and possi-
ble local constraints, like m-out-of-n selection, into account. Second, cross-tree
constraints are checked and violating configurations result in a transition to an
error state. In our example we have two such constraints: the mutual exclusion of
Dollar vs. Cappuccino, and the required inclusion of Ringtone in the presence
of Cappuccino. Finally, attribute constraints are checked. For the example it
is required for the selected features not to exceed a cost limit of 30. Also here,
violating configurations are forced to transit to an error state.

Configurations that have passed through all three stages successfully are gen-
uine sets of features complying to all requirements as expressed by the attributed
feature model. These configurations are passed as an argument to the process
that represents the corresponding product. An excerpt of the process Sel is
depicted next.

maude.cs.uiuc.edu
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proc Sel(st:Int,fs:FSet) =
%% feature selection
( st == 0 ) -> ( ( M in fs ) -> ( setS . Sel(1, ins(S,fs) ) ) ) +
( st == 1 ) -> ( ( M in fs ) -> ( setO . Sel(2, ins(O,fs) ) ) ) +
( st == 2 ) -> ( ( M in fs ) -> (

tau . Sel(3, fs ) + setR . Sel(3, ins(R,fs) ) ) ) +
...

( st == 5 ) -> ( ( O in fs ) -> (
setD . Sel(6, ins(D,fs) ) + setE . Sel(6, ins(E,fs) ) ) ) +

...
%% cross-tree constraints
( st == 8 ) -> ( ( ( D in fs ) && ( P in fs ) ) ->

dollar_cappo_fault( fs ) . Sel(801,fs) <> skip . Sel(9,fs) ) +
...

%% attribute constraints
( st == 10 ) -> ( ( tcost(fs) <= 30 ) ->

attr_ok . cost( tcost(fs) ) . put_config(fs) <>
attr_fault( fs , tcost(fs) ) . Sel(1001,fs) ) +

...

The full mCRL2 specification is available from http://www.win.tue.nl/~evink/
research/mCRL2.

The selection process Sel has two parameters: a local state st represented by
an integer, and a feature set fs represented as a sorted list of features without
duplicates. As we will see later, the selection process starts with the root fea-
ture Machine, abbreviated as M, chosen. Thus initially we have Sel(0,[M]).
In state 0 of the Sel process, since M in fs holds, the mandatory feature
Sweet is added to the current feature set; Sel continues in state 1 and fea-
ture set ins(S,fs). Similarly, in state 1 the mandatory coin feature is included.
In state 2, the optional ringtone feature is handled, which may or may not
be selected, leading to a non-deterministic choice between tau.Sel(3,fs) and
setR.Sel(3,ins(R,fs). In the former option the Sel parameters remain un-
changed, in the latter the R-feature is added to the current feature set. In the
same vein, but slightly different, is the 1-out-of-2 selection of the dollar or the
euro feature. Here either choice leads to an update of the current feature set.

As outcome of the first stage of the Sel process a feature set fs is selected
that is consistent with the local feature requirements (mandatory, optional, al-
ternative, etc.). Next cross-tree constraints are checked for fs. For example, the
mutual exclusion of Dollar vs. Cappuccino is captured by the test in state 8
of Sel. If both the D and the P feature are present in fs the constraint is violated
and control is transferred to the error state 801. Otherwise the process contin-
ues checking for the next cross-tree constraint. Finally, in the third stage of Sel,
attribute constraints are checked, in the case of the example the costs should
not be higher than 30. If it is too high, Sel moves to a specific error state. If
it is sufficiently low, i.e. tcost(fs) <= 30, the attribute is marked as OK, the
costs are outputted, and moreover, via the action put_config(fs), the eligible
feature set is passed on to the product process modeling actual behavior.

http://www.win.tue.nl/~evink/research/mCRL2
http://www.win.tue.nl/~evink/research/mCRL2
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The potential behavior of our example is shown by the LTS in Fig. 3 (left),
which is the one from [2] with simplified money insertion. In line with [12,6],
transitions are assumed to be tagged with a feature (not made explicit here for
readability). An action can only occur in a product if the corresponding feature
is selected for the product, i.e. the feature set that configures the product needs
to be checked for the presence of a feature for feature-dependent actions to occur.

Fig. 3. LTS modeling family behavior (left) and its beverage component (right)

From starting state 0, a coin (either a dollar or a euro) can be inserted. Control
then moves to state 1. There, either the user cancels the interaction with the
machine, and control returns to state 0, or chooses for sugar or no sugar, and
control moves to state 2 or 3, respectively. The user chooses one of the available
drinks, a choice of coffee, tea or cappuccino, and control reaches state 6 or 7, 5
or 8, 4 or 9, depending on the choices made. Then the necessary ingredients are
added, control moves to state 7, 8, or 9 if sugar was added, and subsequently to
state 12 after the drink has been poured. Note that a cappuccino request leads
to an interleaving of pouring coffee and milk. Next, control moves to state 13,
ringing or not according to the feature set. Then the user can take her/his cup
and control returns to state 0.

In our mCRL2 encoding, a product as given by an eligible feature set fs is
represented by a parallel composition of six component processes, one for each
of the features Sweet, Coin, Ringtone, Beverage, Cancel and one for the root
feature Machine. After being woken up by the selection process, the process
belonging to the product with feature set fs as configuration is given by a
system of seven parallel processes
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Driver(0) || Sweet(fs) || Coin(fs) ||
Ringtone(fs) || Beverage(fs) || Cancel(fs) || Machine

(1)

We underline that, although not explicitly mentioned, the selection process Sel
is always part of the mCRL2 specifcations considered below. By taking feature
selection and coupled product behavior as a whole, verification can be done at
the family level, rather than for each product or subset of products separately.
See [5] for more detail.

In order to enforce the proper control flow the component processes are put
in parallel with a driver process Driver. The Coin process, e.g., is given by

proc Coin(fs:FSet) =
cmp_start(0) . (

( D in fs ) -> insert(dollar) . raise(1) . Coin() +
( E in fs ) -> insert(euro) . raise(1) . Coin() ) +

cmp_start(1) . cancel . raise(0) . Coin() ;

On a drv_start(0) request of the driver, the Coin component can execute the
matching cmp_start(0) action upon which either the action insert(dollar) or
the action insert(euro) follows. As the preceding feature selection process has
enforced that exactly one of the two features D and E is included in the product
feature set fs, exactly one of the two actions can be taken. After executing either
of them, the Coin process raises that the driver should proceed in state 1. The
action raise(1) of Coin is matched by the action catch(1) of Driver.

The driver process is relatively simple. It proclaims the current state of the
product via a drv_start(st) action, allowing any component with an active
transition in state st to perform an action. Next it catches the new state num-
ber st’, raised by the component, and the driving starts anew from that state:

proc Driver(st:Int) =
drv_start(st) . sum st’:Int . catch(st’) . Driver(st’) ;

Now, in state 1 three actions are possible: a cancel from the Cancel process, or
a sugar action or a no_sugar action from the Sweet process, partly defined by

proc Sweet(fs:FSet) =
cmp_start(1) . ( S in fs ) -> sugar . raise(2) . Sweet() +
cmp_start(1) . ( S in fs ) -> no_sugar . raise(3) . Sweet() +
...

The non-determinacy in state 1 reflects the user’s choice. (S)he can press a
button to cancel the interaction with the coffee machine or opt for sugar or no
sugar. However, the action cancel will only be offered if the feature set fs of
the product actually holds the X. This explains the guarding by the check for X
in fs of the cmp_start(1) action of Cancel in

proc Cancel(fs:FSet) =
( X in fs ) -> cmp_start(1) . cancel . raise(0) . Cancel() ;
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5 Analysis of the Running Example

To illustrate our approach to feature-oriented modular verification we focus on
the beverage component. Its isolated sub-LTS is depicted in Fig. 3 (right). Note
that the transitions belonging to other components do not appear in this rep-
resentation. However, next to the component’s behavior the interface to the
environment is given, as mediated through the driver. It can receive requests
from the driver on its unlabeled incoming (re-)entry transitions (red), while it
can provide input to the driver via its unlabeled outgoing exit transitions (blue).

An obvious requirement for the beverage component to hold is that coffee is
delivered at least when coffee is asked for. We may express this by the formula

[ true* . coffee . (!pour_coffee)* . take_cup ] false

However, this does not guarantee that a pour_coffeewill take place, rather that
a take_cup is avoided. Another disadvantage of the formula is that the action
take_cup does not belong to the beverage component but to the machine com-
ponent instead. This can be remedied using a minimal fixed point construction.
This is reflected by the modal μ-calculus formula

[ true*.coffee ]( mu X. [ !pour_coffee ] X ) (2)

i.e., after a coffee action a pour_coffee action happens within a finite number
of steps. Thus, a coffee request is answered by the pouring of coffee eventually.
To ensure that the pour_coffee action matches the occurrences of the coffee
action mentioned, we can forbid that the beverage component is left:

[ true*.coffee](mu X. ([ !pour_coffee] X && [ event(12)] false ))

i.e., after a coffee request coffee will be poured eventually and this happens before
the beverage component is exited. Note that the mCRL2 toolset supports modal
μ-calculus with data.

If control enters the beverage component via the no_sugar entrance state 3,
clearly property (2) holds. After the coffee request of the transition from state 3
to state 7 there is no other action than the pour_coffee action of the transition
from state 7 to state 12, as control may enter at state 7, but may not leave. This is
all different when control enters the beverage component via the sugar entrance
state 2. Then a coffee request issued by the transition from state 2 to state 6
relies on the environment, in particular the sweet component, for a transition (or
sequence of transitions as far as the beverage component is concerned) leading
to state 7 so that the pour_coffee action becomes enabled.

In fact, as the actions coffee and pour_coffee belong to the beverage com-
ponent, it suffices that the environment caters for (i) a transfer from state 4 to
state 9, (ii) a transfer from state 5 to state 8, and (iii) a transfer from state 6 to
state 7. Additionally, the environment is expected to allow a return to states 2
and 3 after the beverage component is left via state 12.

To model this in mCRL2 we introduce a process BeverageStub, a stub for the
behavior of the environment of the Beverage component, given by
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proc BeverageStub =
cmp_start(0) . other . ( raise(2) + raise(3) ) . BeverageStub +
cmp_start(4) . other . raise(9) . BeverageStub +
cmp_start(5) . other . raise(8) . BeverageStub +
cmp_start(6) . other . raise(7) . BeverageStub +
cmp_start(12) . other . ( raise(2) + raise(3) ) . BeverageStub ;

With BeverageStub in place, rather than considering the 7-process system used
previously, i.e. the driver and the six component processes in equation (1), we
can now deal with three processes only:

Driver(0) || Beverage(fs) || BeverageStub (3)

Note the summand with the cmp_start(0) action of BeverageStub to be able
to pick up the simulation of the environment right from the start. Also, the stub
process does not have a feature set as an argument. This is in line with the
intuition that it is not for the beverage component to make specific assumptions
on the configuration of the environment nor on its behavior, beyond the enter-
ing and exiting of control regarding the beverage component itself. Rephrased
more technically, the 7-process system of the driver and all six components is
branching bisimilar to the 3-process system of the driver, beverage component
and its stub. Therefore, modal μ-formulas in the CTL*-fragment without the
next operator [15], like the one of (2), equally hold for the two systems.

Fig. 4. LTS modeling alternative family behavior

Next we modify the sweet component according to the LTS in Fig. 4. Now, as an
improved service, whenever the machine is out of sugar, it returns the inserted
money instead of delivering the chosen beverage (without sugar). Apart from an
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adaptation of the Sweet process to accommodate the ‘not-available’ action n/a
from states 4, 5, and 6 to the new state 14, the Cancel process is extended to re-
turn the inserted money via the return transition from state 14 back to state 0.

Because of the transition to the new state 14, from the point of view of the
beverage component, the flow of control may unexpectedly be diverted. A request
for coffee with sugar, i.e. the action coffee leaving state 2, may be followed by
the action n/a leading away from further handling by the beverage component.
Thus no action pour_coffee is performed (in case the n/a is always taken at
that point). So, counterintuitively, while the sweet and cancel component have
changed, a basic requirement for the beverage component becomes violated.

The crucial point we want to underline is that no model checking is needed
for the designer to be warned. The full 7-process system (1), with the ‘improved’
sweet and cancel component, is no longer branching bisimilar to the smaller
3-process system (3) that includes the beverage stub. The ltscompare tool in
the mCRL2 toolset, which can decide e.g. on the branching-bisimilarity of two
systems, finds this quickly. Thus, a simple check suffices to alert the designer that
a property of the component that was valid previously, may not hold anymore.

If this new behavior to deal with the lack of sugar is to be maintained, the
coffee vs. pour_coffee requirement needs to be weakened. One may propose

[ true*.coffee ]( mu X. ([ !( pour_coffee || return ) ] X ))

i.e., a coffee request is answered by either pouring the coffee or a refund. As
the action return does not belong to the action set of the Beverage process,
the system to be model checked needs to comprise the Cancel process as well,
possibly combined with an adapted stub process to replace the other four com-
ponents. However, from a scalability perspective it is less attractive to deal with
specific combinations of components.

Reconsidering the very idea of isolating the beverage component, we need to
make the distinction between the ‘acceptable’ action pour_sugar and the ‘non-
acceptable’ action n/a visible in the stub process. We introduce for the process
BeverageStub2 below the action escape to represent behavior that may/will
affect the behavior of the beverage component, besides the indifferent action
other that was used earlier. The code for BeverageStub2 reads as follows.

proc BeverageStub2 =
cmp_start(0) . other . ( raise(2) + raise(3) ) . BeverageStub2 +
cmp_start(4) .(

escape . ( raise(2) + raise(3) ) . BeverageStub2 +
other . raise(9) . BeverageStub2 ) +

cmp_start(5) . (
escape . ( raise(2) + raise(3) ) . BeverageStub2 +
other . raise(8) . BeverageStub2 ) +

cmp_start(6) . (
escape . ( raise(2) + raise(3) ) . BeverageStub2 +
other . raise(7) . BeverageStub2 ) +

cmp_start(12) . other . ( raise(2) + raise(3) ) . BeverageStub2;
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E.g., the stub captures that in state 6, right after the request for coffee, control
either ‘escapes’ from the neighborhood of the beverage component and may
return via the entrance state 2 or 3, or control remains in the vicinity of the
component, having ‘other’ activity but picking up the beverage thread in state 7.
With the BeverageStub2 in place, the enhanced 7-process system and adapted
3-process system can again be shown to be branching bisimilar.

6 Related Work

In this section, we continue the discussion of related work on the compositional
verification of software product lines (SPL) initiated in the introduction. In [29],
improving part of the pioneering work of [19,27,28] mentioned already, an in-
cremental compositional model checking approach for SPL is presented. It uses
variation point obligations expressed in CTL to guarantee that the (sequential)
feature-based composition satisfies a property if and only if the added features
satisfy the relevant variation point obligations. Whenever possible, verification
results are reused in an incremental fashion within the product being composed,
which reduces the overall verification effort, but the approach does not aim to
reuse properties of behavioral feature models across different products.

In [36], an existing compositional verification technique for safety properties
of flow-graph behavior of general-purpose programs is adapted to programs from
the SPL domain, that are organized according to a hierarchical variability model
defining variation points and interfaces. This compositional approach scales well,
but it is not feature-based and limited to control-flow behavior, for which it can
express properties in a fragment of the modal μ-calculus.

In [33], feature Petri nets are introduced as a modular (feature- and interface-
based) behavioral modeling formalism. A few correctness criteria, based on
bisimulation, for the preservation of properties in composed models are given.
This is a promising approach that deserves further study, as does the precise
relationship with our approach, apart from the fact that model checking is not
addressed nor the question for the reuse of verification results.

In [31], for each feature of an SPL two finite state machines with variability
(implemented by guarded variables on transitions) are built, one for the re-
quirements and one for the design level, after which their conformance can be
checked in a compositional, feature-based fashion. The prototype tool SPLEnD
makes use of the SPIN model checker (spinroot.com) to implement such con-
formance checking. Reuse of verification results is not considered.

Recent work on delta-oriented SPL analysis using mCRL2 is reported in [30].
Some of the other behavioral variability models mentioned in the introduction

come with a special-purpose tool for SPL model checking. SNIP [11] is a model
checker for product lines modeled as featured transition systems [12] specified
in a language based on that of SPIN. The tool VMC [7] (fmt.isti.cnr.it/vmc)
is a model checker for product lines modeled as modal transition systems with
additional variability constraints [2] specified in a modal process algebra. Neither
of these currently make use of modular or compositional verification.

spinroot.com
fmt.isti.cnr.it/vmc
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7 Discussion and Future Work

We have presented a proof-of-concept of a feature-oriented modular verification
technique for analyzing the behavior of SPL with mCRL2. We use branching
bisimulation techniques to isolate the behavior of a specific feature (set) by
abstracting from the environment. This eases the model checking and allows the
result to be reused in other settings; if adapted behavior leads to an environment
that is branching bisimilar, say, to the stub used, then a verified property is
also valid in the new situation. mCRL2 is a toolset that has already shown its
merits in dealing with huge state spaces consisting of billions of states. Although
at present stubs are crafted manually, we believe that scalable verification of
SPL can successfully be achieved with mCRL2 along the lines of the modular
verification strategy illustrated in this paper. A demonstration of this is left for
future work.

Our approach thus differs from modular or compositional verification in the
classic sense of (re)composing smaller verification results on modules or com-
ponents to derive properties of the composed system. It remains to investigate
whether we could apply compositional model checking under sequential com-
position as defined in [24] to our feature-oriented modularization of behavioral
SPL models. Likewise it remains to study whether a notion like modular validity
(a property holds over a module if it holds over any system that includes that
module [34]) can be effectively used in our setting.

Another challenge for our feature-oriented modular verification approach stems
from the fact that, ideally, we want to be able to handle dynamic feature-based
composition. If a feature is added, then on the one hand we want to prove that
properties of the system continue to hold, while on the other hand we want to
verify new properties that the new system should now satisfy. This is complicated
by the well-known fact that features may interact. We have seen this problem
arise in our running example when we modeled the ‘improved’ service signaling
the lack of sugar in a coffee machine.

This brings us to concrete future work on our running example. If we consider
the notion of a neighborhood of a component, then we can distinguish (re-)entry
points, exit points, and interrupt points. The latter come in these three flavors:

Type 1 like pour_sugar of the other or continue type; other components do
their business, but control is picked up again by the component at hand.

Type 2 like n/a of the escape or break type; another component takes over
control and control re-enters the component at a re-entry point rather than
continuing its thread.

Type 3 (not encountered in the above discussion) of the diverge type; another
component takes over control and the component itself is never visited again.

We may claim that with these three corresponding types of actions (continue,
break, and diverge) a sufficiently rich class of stubs can be constructed that can
simulate the environment. Checking a component property would then mean:

1. Verify the property for the 3-process system of driver, component, and stub.



Towards Modular Verification of Software Product Lines with mCRL2 383

2. Check branching bisimilarity for the 3-process system and the complete all-
process system.

Finally, we need to identify which class of properties exactly fits within our ap-
proach. Evidently, further work is to be done on larger examples and convincing
case studies to support our claims.
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1 Motivation and Goals

In the last years, model-based software development received more and more
attraction [8,22]. Often, models are expressed in a formal language - often a do-
main specific language (short: DSL) [7,17,24] -, and implementations are derived
by model-based code generators [12]. There are toolboxes for defining domain-
specific languages and generating compilers for them such as the Eclipse Model-
ing Framework (short: EMF) [10,23]. DSLs are defined by a Meta-Model [14] and
their compilation is by model-transformations [4,13,16,21]. From these specifica-
tions, code generators can be generated. In addition, the toolboxes often generate
editors, debuggers and embeddings in programming environments such as Eclipse
[5]. Meta models are frequently denoted by a graphical notation analogous to
UML class diagrams or by context-free grammars. Consistency constraints are
then specified by OCL [20] or similar languages. Often, the generated code is
manually improved. Therefore, some research focuses on the consistency between
models and their implementations.

Compilers nearly perform the same task as model-based code generators: a
program in a high-level programming language is translated into an equiva-
lent program in machine language or another high-level programming language
(cross-compiler) [1]. In this sense, a code-generator for a DSL that generates
e.g. C-Code is a cross-compiler. However, the technology used for the imple-
mentation of compilers is rather different. For textual languages, the first step
is in both cases a parser that generates an abstract syntax tree. Then consis-
tency constraints (e.g. typing rules) are being analyzed and the abstract syntax
tree is transformed in an intermediate representation. Finally, the target code
is generated from this intermediate representation. Optimizations might be ap-
plied at all these steps. For compilers there are also toolboxes available that
allow to generate compilers from specifications such as Eli [6,9]: context-free
grammars for the concrete syntax and the abstract syntax, a mapping from
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concrete to abstract syntax, e.g. attribute grammars for specifying consistency
constraints, tree transformations for specifying the generation of intermediate
code, and bottom-up rewrite systems for specifying code selection. The technol-
ogy is well-established and there is no need to manually improve generated code.
However, there is little work on generating syntax-directed editors, debuggers or
embeddings in programming environments.

The goal of the model-based code-generators and compilers track was to bring
together people from both disciplines, and to enfoster discussions between them.
In particular, contributions discussing both aspects, compilers and model-based
code-generators were sought addressing topics such as type systems for DSLs
and their implementation, editor generation using classical compiler technology,
formal semantics of DSLs, correctness of model transformations and program
transformations, case studies comparing model-based code generation and com-
pilation. Together, the papers in this track address and investigate these topics
from different angles and perspectives and highlight important research ques-
tions in these fields and up-to-date responses to them.

2 Contributions

The track consisted of six contributed papers. Their contributions are highlighted
below.

The paper of Berg and Zimmermann [2] presents an approach supporting a
current industrial design process for developing pumps. At the core of this ap-
proach is a DSL for pumps that is based on models, metamodels and attribute
grammars for constraint checking. This way, the new approach allows to auto-
matically detect inconsistencies in the requirements and specifications of newly
designed pumps, which is impossible in the mostly informal underlying original
design process. This is not only an interesting application of compiler technology
to model-based DSL construction, it is also an important step towards formal-
izing the underlying industrially used design process of pumps.

The paper by Birken [3] proposes the construction of code generators for
DSLs by utilizing the second Futamura projection and partially evaluating an
interpreter of the DSL. The approach is demonstrated by implementing a partial
evaluator for the widely used DSL toolset Xtext/Xtend. It is illustrated by the
construction of C code generators for a DSL for microcontroller programming.
Going beyond this concrete application, the overall approach might serve as a
blue-line print for other DSL projects in industry and academia.

In their paper, Jörges and Steffen [11] introduce a semantics-based testing
approach for model-based code generators. The approach works by extracting
execution traces from the model using classical test case generation approaches,
which are then compared with the generated code. An important feature of
the Genesys code generator framework the approach is implemented in is that
models, code generators, and tests are all specified using the same formalism.
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Besides simplifying the usage of the system for application engineers, this enables
a kind of higher-order proceeding called multi-meta level testing where code
generators are themselves input to the testing procedure. The generation of test
cases for the code generator enabled this way introduces another dimension of
the approach.

Lepper and Tranćon y Widemann [15] argue that metaprogramming with
classical compiler technology is similar to model-based code generation and dif-
ferences between compilation and model-based code generation mostly superfi-
cial that can be resolved on the level of metaprogramming. This is substantiated
by discussing an important aspect of the generation of complex data model
implementations in Java, where concerns of both compiler theory and model-
based development apply. This is the rewriting of data models in object-oriented
style, based on the visitor pattern, with support for reference graphs and nested
collection-valued fields. Building on a compiler constructor’s viewpoint, the dis-
cussion reveals enlightening analogies to model-based technology.

The paper of Motika, Smyth, and von Hanxleden [18] presents an approach
for compiling a variant of statecharts called SCCharts to C or VHDL. The com-
pilation process is interactive and proceeds by a series of model-to-model trans-
formations, where the intermediate results can be improved and optimized by
the compiler user. This is in contrast to more classical model-based approaches
where only the finally resulting code might be manually optimized. The focus
of the presentation lies on the compilation process and the tool environment
provided by the current prototype implementation. The usage of the tools is
illustrated by a case study from an industrial background.

In their paper, Naujokat, Traonouez, Isberner, Steffen, and Legay [19] propose
a domain-specific language for code generators which simplifies the specification
of code generators. The power of the approach is demonstrated by its application
to generate graphical interfaces for different kinds of state transition systems
like (probabilistic) timed automata used by widely applied model-checkers like
UPPAAL, SPIN, and others. The approach has been implemented within the
Cinco meta tooling suite. The examples of the case study demonstrate how the
subtle semantic differences of model-checking tools and state transition systems
can be compensated and dealt with by the new domain-specific code generation
approach.

In spite of the diversity of themes addressed in the papers of this track,
there is one theme in common to all of them: mastering technical change. This
is the title of this volume of the ISoLA 2014 conference proceedings. In fact,
model-based code generation approaches and compiler technology have a lot
to offer to master technical change by providing convenient tools and methods
that can fast, easily and reliably be adapted to accommodate changing or newly
upcoming requirements and demands. The papers in this track illustrate this
impressively.
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Abstract. Domain-specific languages with a formal static semantics al-
low the early discovery of (domain-specific) inconsistencies. Using at-
tribute grammars we show how such inconsistencies can be found in
the pump domain. We compare some analyses using attribute grammars
with analyses done in OCL w.r.t. performance and the quality of error
messages.

1 Introduction

Roughly half of the energy consumption in industrial processes (or applications)
is due to pumps. Pumps are therefore the main consumer of energy [20]. Tailoring
pumps to the industrial process lessens the energy consumption, but also results
in a large product variability.

Even though a pump has various properties influencing its behaviour, a client,
such as the operator of a facility, is mainly interested in the pressure and flow
generated by a pump. Hence, tailoring a pump to an industrial process starts
with a single requirement: “pressure x and flow y for process z”. Up to thousands
of requirements may follow from this requirement (and can be traced back to it).
Based on these requirements the necessary functions (i.e. mappings from inputs
to outputs) are specified and then later transformed into an architecture. This
process is influenced by the structured analysis design method. After deciding
which craft shall implement certain functions the function is implemented using
systems programming or hardware synthesis. Figure 1 illustrates this process
using a DSL.

The complexity of pumps and the complexity of the process combined with
the need to mass-produce single units causes various problems such as over- and
underspecification or inconsistencies along the process steps. An example for the
latter is not using a specified function in any architecture while this function is
the only one refining a requirement.

Domain-specific languages (DSLs) help in reducing the complexity and length
of development time [19]. Another benefit of DSLs is to enable domain experts to
specify problems using their own vocabulary while not needing a formal train-
ing in general purpose languages such as Java or C. A DSL having a formal
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DSL

Architecture

error reports

architecture representation

finished product

function representation

Functions

Requirements

implementation

Fig. 1. Graphical Overview of Process and Language Integration for Pump Devel-
opment; possible inconsistencies arising from (mutual) influences in grey; (iterative)
process steps in black; compiler-generated documents dashed

static semantics is of additional benefit: inconsistencies, e.g. over-specification
and underspecification, can be found earlier. Giving a formal static semantics to
a programming or domain-specific language can be done using traditional com-
piler methods [1] or using OCL in model-based environments [12]. This paper
presents a DSL for the specification of pumps, currently named PDL (Section 2)
and a formal static semantics (using compiler-based methods) for finding in-
consistencies in the pump domain (Section 3). A comparison of methods from
compiler construction with model-based methods using OCL for the specification
of the static semantics is given in Section 4. A review of other domain-specific
languages applicable in the pump domain and similar model-based works for the
specification of a formal semantics of domain-specific languages (Section 5) as
well as a short summary and open questions (Section 6) conclude this paper.

2 Pumps, Process, Problems and Examples

Pumps consist of mechanical parts, hardware (i.e. computers), software as well
as electric parts (e.g. frequency converter), thus similar problems and research
challenges as in the automotive or avionics domain are applicable. Research
challenges from an automotive perspective are given in [23]. In contrast to cars,
where software control mechanisms are utilized for at least 30 years now [3],
control software for pumps is comparatively young, thus less experience with
software development and its integration with other components exists in the
pump domain. Additionally, pumps are expected to work with little to no service
for decades, while cars are expected to only run with regular service for a shorter
timespan.

Remark 1. For an easier presentation variability management and the consider-
ation of non-functional requirements (e.g. color) as well as “meta-requirements”
(norms and standards) are omitted.

Typically the pump development process is started by a client requesting a
non-existent pump. This is usually done by giving a statement similar to the
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one in the introduction, e.g. “a pump having a pressure of 10 bar and a flow
of 400 m3 per hour for the cooling in a steel processing plant”. The product
development process thus begins with the following requirement:

rq "SteelCooling Pump p10f400"

Successively this requirement is filled with necessary meta-data, such as the re-
sponsible person for implementing this requirement (owner), its id in the change
request management (bugid) and its status. Subsequently, additional require-
ments, such as the need for a control software or housing, need to be added
as well as an actual specification of every requirement. A simplified result of
these “first steps” (meta-data omitted) is shown in Listing 1, which specifies the
"SteelCooling Pump p10f400" to be the product under consideration. A
requirement may depend on other requirements. The keyword require indi-
cates a dependency relation.

The requirements of the example have certain problems:

– “Protection”, for protecting the pump and motor from (possibly thermal)
damage, is never specified but is required for the pump to “exist”,

– the requirements “Housing”, to house the control board, and
“ControlBoard” (the actual control board) are interdependent and

– the requirement “Switchflow” is never used.

A graphical representation of the requirements hierarchy of Listing 1 is given
in Figure 2.

SteelCooling Pump p10f400

Control SwitchflowHousingProtectionMotor ControlBoard

Fig. 2. Graphical Representation of the Requirements Hierarchy of Listing 1

After fixing the above problems and adding (much) more requirements, the
input and output behaviour of the pump is refined in terms of functions. A
possible specification of such a function for the thermical protection can be seen
in Listing 2. Listing 2 also contains type information of the in- and outports as
well as timing constraints an implementation has to comply with (due to the
industrial application). Using guard expressions the output may be specified in
terms of the inputs (and possibly current state information).

Problems during this level of the development process might be missing rea-
sons for the specification of a function (i.e. no requirements for this function) or
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1 rt rq "SteelCooling Pump p10f400"
2
3 rq "SteelCooling Pump p10f400" {
4 require [rq Motor, rq Control, rq Protection, rq Housing]
5 spec {The pump shall provide pressure X and flow Y for the industrial process
6 Z. }
7 }
8
9 rq Motor { require rq Protection }

10 rq Control { require [rq Protection, rq Motor] }
11 rq Constrolboard { require rq Housing }
12 rq Housing { require rq Controlboard }
13 rq SwitchFlow

Listing 1. Simple Requirements Example, root requirement specified using rt

using inports as outports or vice versa. Additionally, typing errors always cause
quite severe problems in later levels, such as using temperature when actually
something else is measured.

It is quite common to consider a pump itself an input-output system: it trans-
forms pressure and flow into another pressure and flow. Hence, the structured
analysis and design technique and its derivations for realtime systems (in the fol-
lowing SAs) are recommended in [20] as the formalism to use in the pump domain.
Figure 3 shows a compiler-generated image inspired by architecture context di-
agrams and domain-specific conventions1. This also differs from the automotive
and avionics domains where UML and derived techniques are widely used.

Before actually implementing a requirement, the architecture of the system is
described, i.e. the use-relation of functions and the data- and control-flow and
the design alternatives. A resulting architecture specification in PDL can be seen
in Listing 3, a corresponding generated image, also inspired by SAs, is given in
Figure 4. Missing functions and erroneous use of functions, e.g. by connecting
ports with different types, are possible problems at this level.

1 fun motorProtect {
2 provides rq Protection
3 in current : Temperature
4 in maximum : Temperature
5
6 out motorProtect : Maybe<Alarm> =
7 | current > maximum := Alarm motorProtect
8 | otherwise := Nothing
9

10 out motorState : Temperature =
11 | current > maximum := stopped
12 | otherwise := motorState
13
14 timings {
15 constant on motorState for 1000 ms
16 change on motorState within 50 ms
17 }
18 }

Listing 2. Functions providing the “Protection” requirement using thermal values

Summary: requirements should be acyclic, should not use undefined require-
ments and each should be used. Similarly, a function should be well-typed and

1 e.g. controls and mechanisms are left out because these should be identical for most
products.
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motorProtect

OutportsInports

motorState:Temperaturemaximum:Temperature

motorProtect:Maybe Alarmcurrent:Temperature

Fig. 3. Graphical Representation of the Function given in Listing 2 generated by
our compiler; Representation inspired by structured analysis techniques and domain-
specific conventions

1 arch motorProtect {
2 require [fun alarmShow, fun motorStateChange]
3 refine fun motorProtect
4 motorProtect.motorProtect -> alarmShow.alarm
5 motorProtect.motorState -> motorStateChange.wish
6 Environment User -> motorProtect.maximum
7 Environment Env -> motorProtect.current
8 }

Listing 3. Architectural refinement of the “Protection” function

only be specified when a requirement implies such a function. Furthermore, every
port of a function must either be connected to the environment or to another
function and the architecture must not use functions without one or more imple-
mented requirements. Hence, inconsistencies may arise in a horizontal, such as
cyclic requirements, as well as a vertical manner, such as the use of unrequired
functions in an architecture.

motorProtect

alarmShowmotorStateChange

wish

User

maximum motorStatecurrent

Env

alarm

motorProtect

Fig. 4. Graphical Representation of the Architecture Specification of Listing 3 gen-
erated by our compiler; representation inspired by structured analysis techniques and
domain-specific conventions

3 Language Semantics Using Compiler Methods

We now continue to present the analyses for the problems in Section 2. The tool
eli [8] is used to implement lexing, parsing and analyses (as well as output gen-
eration). The basis for a variety of formal languages are context-free grammars:
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Definition 1. A context-free grammar is a tuple G � (T,N, P, S) with

– T being a finite set of terminal symbols,
– N being a finite set of non-terminal symbols,
– P ⊆ N × (T ∪N)∗ a set of production rules and
– S ∈ N being a distinguished start symbol.

Notation: If the language of G specifies a correct sequence of terminal symbols
we call G concrete syntax, if G specifies tree construction operations we call G
abstract syntax. Productions may be given in EBNF or BNF.

Definition 2. For a context-free grammar G � (T,N, P, S) and X ∈ N and
u, v ∈ (N ∪ T )∗, Y ∈ (N ∪ T ), Y is called derived or a derivation from X

iff there is a production p ∈ P with p = X ::= uYv, written X ⇒ uYv.
∗⇒ is the

reflexive, transitive closure of a derivation.

Context-free grammars can be extended such that a formal specification for
preconditions, postconditions and invariants can be given, which can also be
interpreted as the static semantics of a language. We use one class of attribute
grammars, ordered attribute grammars [13], to implement such conditions. At-
tribute grammars were introduced by Knuth in [16] and since then have been
classified, limited, extended, and used in various contexts.

Definition 3. An attribute grammar is a tuple AG = (G, A,R,C) with

– an abstract syntax G � (T,N, P, S),
– A � )X∈(T∪N)A(X) being a finite set of attributes (for every symbol X of

the grammar,
– a finite set R � )p∈PR(p) of attribution rules and

– C � )p∈PC(p) being a finite set of conditions.

Notation: X.a is an abbrevation for an attribute a ∈ A(X), X ∈ (T ∪ N).
Productions p ∈ P are written in BNF without the use of 〈 and 〉 to represent
non-terminals while choice is represented using a new production with the same
left-hand symbol (instead of |). For a production X0 ::= X1 · · · Xn an attribution
has the form Xi.a ← f( Xj, . . ., Xk) for a function f , i, j, k ∈ [0, n]. If f is a
constant function or the identity function we omit f . If a function is commonly
used as an infix operator, such as a set operation, we also use this common
notation. A condition for a production p is written as ϕ( Xj, . . ., Xk) for a
predicate ϕ. If we need to distinguish the same symbol in a single production we
consecutively number this symbol beginning by 1.

An example for an attribute grammar definition is given in Listing 4. Using
the keyword rule a production is indicated for which the attributions following
the keyword attr shall be evaluated. We declare conditions using the keyword
cond, followed by the actual condition; the part after→ causes the error message
(indicated by the keyword error) to be displayed if the condition evaluates to
false.

In order to check that the requirements hierarchy is actually a hierarchy and
not some arbitrary graph we construct a dependency graph:
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1 rule Desc r ipt i on : := ReqDefs RootSpec
2 attr ReqDefs . r oo t s In ← ∅
3 RootSpec . r oo t s In ← ReqDefs . rootsOut

4 cond |RootSpec . rootsOut| = 1 → {error "wrong number of roots" |RootSpec . rootsOut|}

Listing 4. Example of an attribute grammar definition

Definition 4. A quadruple Dep � (G,DefRqs ,UseRqs, r) with

– DefRqs being the set of defined requirements
– UseRqs being the set of used requirements
– G � (V,E) is a directed graph where V � DefRqs ∪ UseRqs and E ⊆

DefRqs ×UseRqs,
– a root node r ∈ V

is called dependency graph. A dependency graph is complete iff

– UseRqs ⊆ DefRqs
– r ∈ DefRqs

DefRqs and UseRqs are the sets of defined and used requirements, respectively.

A dependency graph can be constructed from the abstract syntax of PDL.
As mentioned in the last paragraph of Sect. 2 undefined requirements are a

part of possible inconsistencies. We omit a presentation of this part, because
this resembles traditional name analysis – a problem having standard solutions
available in most tools, a work describing the standard solution using eli is given
in [14].

Definition 5. A complete dependency graph Dep � (G,DefRqs ,UseRqs, r) is
called bound iff for all v ∈ V there is a path from r to v.

Definition 6. A complete dependency graph Dep � (G,DefRqs ,UseRqs, r) is
called acyclic iff G is acyclic.

Definition 5 is used to ensure that there are no unused requirements.
Having set the stage w.r.t. requirements we now require some additions to

attribute grammars to make the attributions more convenient and less verbose.
In [9,6] and [26] similar definitions have been used to simplify the specification
of attribute grammar rules.

Definition 7. Let AG � (G, A,R,C) be an attribute grammar with abstract
syntax G � (T,N, P, S) and arbitrary productions p, p1, p2 ∈ P . Let Xi, Yj

∈ (N ∪ T ) for i ∈ [1, n] and j ∈ [1,m] and X0, Y0 ∈ N and some k ∈ N.
Furthermore, let

p1 � X0::=X1 . . . Xn

p2 � Y0::=Y1 . . .Ym

p � Xi::=Xi1 . . .Xil−1
XilXil+1

. . . Xik with Xil � Y0

then the following common patterns exist:
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Propagation. An attribute in an upper context can be propagated to lower con-
texts. For any non-terminal X ∈ N with X

∗⇒ uYv, and all Y ∈ (N ∪ T ),
u, v ∈ (N ∪ T )∗; the attribute propagage X.a as b declares the attribute
a of X to be available in any symbol Y as Y.b. For X ⇒ Xj, j ∈ [1, n] and the

above production p1 with X0 � X

1 rule X::= X1 . . . Xi . . . Xn

2 propagate X.a as b

is equivalent to

1 rule X ::= X1 . . . Xi . . . Xn

2 attr X1.b ← X.a
:

.

.

.
i+1 Xi.b ← X.a
:

.

.

.
n+1 Xn.b ← X.a

The attribute b must be a new attribute.
Contribution: For all productions p1, p2, p as above the attribute grammar def-

inition

1 rule X::= X1 . . . Xi . . . Xn rule Xi ::= Xi1
. . . Xil−1

Y Xil+1
. . . Xik

2 rule Y::= Y1 . . . Yn

3
4 contribution b of Y to chain X.a using (e, f)

is equivalent to
1 rule X0 ::= X1 . . . Xn

2 attr X1.aIn ← e(X0, X1, . . ., Xn)
3 X2.aIn ← X1.aOut

:
.
.
.

n+1 Xn.aIn ← Xn−1.aOut

n+2 X0.aOut ← Xn.aOut

n+3 rule Xi ::= Xi1
. . . Xil−1

Y Xil+1
. . . Xik

n+4 attr Xi1
.aIn ← Xi.aIn

n+5 Xi2.aIn ← Xi1.aOut

:
.
.
.

n+l+3 Xil
.aIn ← Xil−1

.aOut

n+l+4 Xil+1
.aIn ← f(Y.aOut, Y.b)

:
.
.
.

n+k+3 Xik
.aIn ← Xik−1

.aOut

n+k+4 Xi.aOut ← Xik
.aOut

n+k+5 rule Y::= Y1 . . . Ym

n+k+6 attr Y1.aIn ← Y.aIn

n+k+7 Y2.aIn ← Y1.aOut

:
.
.
.

n+k+m+6 Y.aOut ← Ym.aOut

where aIn and aOut are new attributes used for distinguishing the attribute
a. The keyword chain is included as a reminder that the attributes could be
evaluated in a depth-first left-right manner.

Notation: There is a predefined attribute sym ∈ A(X) for every X ∈ T , which
allows accessing the terminal symbol. If for a non-terminal Y ∈ N only produc-
tions of the form Y ::= V exist, V ∈ (N ∪ T ), then the attribute rules for Y.a
will be omitted iff a ∈ (A(V)∪A(Y)) and for every production the attribution has
the form

1 rule Y ::= V
2 attr Y.a ← V.a
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Figure 5 gives the abstract syntax for all parts of PDL.

〈Description〉 ::= (〈ReqDef 〉 | 〈RootSpec〉 | 〈FunctDef 〉 | 〈ArchDef 〉)*
〈ReqDef 〉 ::= 〈RqDefId〉 〈RqUse〉*
〈RqDefId〉 ::= 〈ID〉
〈FunctDef 〉 ::= 〈FunDefId〉 (〈FunInport〉 | 〈FunOutport〉)*
〈FunInport〉 ::= 〈InportDefId〉 〈Typename〉
〈FunOutport〉 ::= 〈OutportDefId〉 〈Typename〉 〈FunGuard〉*
〈FunGuard〉 ::= 〈FunExpression〉 〈FunExpression〉
〈FunExpression〉 ::= 〈FunExpression〉 operator 〈InportRef 〉
〈ArchitectureDefinition〉 ::= 〈ArchDefId〉 〈ArchConnection〉*
〈ArchConnection〉 ::= 〈FunRef 〉 〈PortRef 〉 〈FunRef 〉 〈PortRef 〉
〈ID〉 ::= string | identifier

Fig. 5. Abstract Syntax of PDL; ∗ � finite closure; non-terminals nt in 〈nt〉; except
for 〈RqDefId〉 productions to 〈ID〉 omitted

Listing 5 gives the attribute grammar rules for the abstract syntax (Fig. 5).
Finite closure and grouping have been replaced with appropriate non-terminals
(Decls and Decl; Funports and Funport). Definition 7 has been used exten-
sively. Without Definition 7 the definition of the attribute grammar would be
much larger, an excerpt can be seen in Listing 6 (p. 401).

Listing 5 uses only very simple semantic functions for accessing tuples, which
correspond to a definition table in a real implementation. Constraints involving
different levels of the development process are shown from line 48 onward. Similar
constraints considering requirements and functions corresponding to name anal-
ysis have been implemented using attribute grammars (not shown in Listing 5).

As mentioned in remark 1 the presentation of variability management, espe-
cially parts which would require a selection of the architecture to be used for the
implementation, have been omitted.

4 Requirements Hierarchy Checking Using OCLinEcore

In [2] we showed how to check the requirements hierarchy using the OCLinEcore
implementation of the Object Constraint Language (OCL) and compared this
with the part of PDL having a corresponding task. An introduction to OCL
can be found in [24], a historical perspective of OCL is given in [22]. OCL can
be used as a technique for the specification of the semantics of domain-specific
languages[12,10,22] and is often used together with models or meta-models.

Definition 8. A model abstracts from a system, a product or properties. A
meta-model is a model, which defines the concrete and abstract syntax as well
as the semantics of a modelling language. An Object is an instance of a model
and needs to conform to the model, which means it must comply with the syntax
and semantics of the model.
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1 contribution edge of RqUse to chain Description.edges using (∅, ∪)
2 contribution sym of RootSpec to chain Description.roots using (∅, ∪)
3 contribution sym of RqDefId to chain Description.rqdefs using (∅, ∪)
4 contribution port of Funport to chain FunctDef.ports using (∅, ∪)
5 contribution fun of FunctDef to chain Description.funs using (∅, ∪)
6 propagate Description.funsOut as funsEnv
7 propagate Description.rqdefsOut as rqenv
8 propagate ReqDef.sym as defsym
9 propagate FunctDef.portsOut as fports

10
11 rule RqDefId ::= ID
12 cond RqDefId.sym /∈ RqDefId.rqdefsIn → {error "already defined " RqDefId.sym}
13
14 rule ReqDef ::= RqDefId RqUses
15 attr ReqDef.sym ← RqDefId.sym
16
17 rule RqUse ::= ID
18 attr RqUse.edge ← (RqUse.defsym, RqUse.sym)
19 cond RqUse.sym ∈ RqUse.rqenv → {error "undefined reference " RqUse.sym}
20
21 rule RootSpec ::= ID
22 cond RootSpec.sym ∈ RootSpec.rqenv → {error "root not defined " RootSpec.sym}
23
24 rule Description ::= Decls
25 attr Description.Dep ← ((Description.rqdefsOut, Description.edgesOut),
26 toElem(Description.rootsOut))
27 cond |Description.roots| = 1 → {error "root number " Description.rootsOut}
28 acyclic(Description.Dep) → {error "cycles " cyclesOf(Description.Dep)}
29 bound(Description.Dep) → {error "unreachable " unusedOf(Description.Dep)}
30
31 rule FunctDef ::= FunDefId FunPorts
32 attr FunctDef.fun ← (FunDefId.sym, FunctDef.portsOut)
33
34 rule FunInport ::= InPortDefId Typename
35 attr FunInport.port ← (In, InPortDefId.sym, Typename.sym)
36
37 rule FunOutport ::= OutportDefId Typename Guards
38 attr FunOutport.port ← (Out, OutportDefId.sym, Typename.sym)
39
40 rule FunExpression1 ::= FunExpression2 operator InportRef
41 cond kindOf(InportRef.sym, FunExpression1.fports) = In
42 → {error "not an inport " InportRef.sym }
43 rule ArchConnection ::= FunRef1 PortRef1 FunRef2 PortRef2
44 attr ArchConnection.funL ← getFunction (FunRef1.sym, ArchConnection.funsEnv))
45 ArchConnection.funR ← getFunction (FunRef2.sym, ArchConnection.funsEnv))
46 ArchConnection.portsL ← portsOf (ArchConnection.funL)
47 ArchConnection.portsR ← portsOf (ArchConnection.funR)
48 cond kindOf(getPort(PortRef1.sym, ArchConnection.portsL)) = Out
49 → {error "not an outport " PortRef1.sym }
50 kindOf(getPort(PortRef2.sym, ArchConnection.portsR)) = In
51 → {error "not an outport " PortRef2.sym }
52 typeOf(getPort(PortRef1.sym, ArchConnection.portsL)) =
53 typeOf(getPort(PortRef2.sym, ArchConnection.portsR))
54 → {error "types dont match " PortRef1.sym PortRef2.sym }

Listing 5. Concise attribute grammar rules to check PDL for all inconsistencies
listed in Section 2

Class diagrams can be used to visualize models and meta-models. Figure 6
shows a meta-model to represent the requirements hierarchy.

Remark 2. We use a more complex meta-model than, for instance, [18] to enable
engineers to edit the model exchange files with a standard text editor.
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1 rule RqDefId ::= ID

2 attr RqDefId.sym ← ID.sym

3 ID.edgesIn ← RqDefId.edgesIn

4 RqDefId.edgesOut ← ID.edgesOut

:
.
.
.

99 rule Decls1 ::= Decls2 Decl

100 attr Decls2.rqdefsIn ← Decls1.rqdefsIn

101 Decl.rqdefsIn ← Decls2.rqdefsOut

102 Decls1.rqdefsOut ← Decl.rqdefsOut

103 Decl.rqenv ← Decls1.rqenv

:
.
.
.

518 rule ArchConnection ::= FunRef1 PortRef1 FunRef2 PortRef2

519 attr ArchConnection.funL ← getFunction (FunRef1.sym, ArchConnection.funsEnv))

520 ArchConnection.funR ← getFunction (FunRef2.sym, ArchConnection.funsEnv))

521 ArchConnection.portsL ← portsOf (ArchConnection.funL)

522 ArchConnection.portsR ← portsOf (ArchConnection.funR)

523 FunRef1.edgesIn ← ArchConnection.edgesIn

524 ArchConnection.edgesOut ← PortRef2.edgesOut

525 PortRef1.edgesIn ← FunRef1.edgesOut

526 FunRef2.edgesIn ← PortRef1.edgesOut

527 PortRef2.edgesIn ← FunRef2.edgesOut

:
.
.
.

551 cond kindOf(getPort(PortRef1.sym, ArchConnection.portsL)) = Out

552 → {error "not an outport " PortRef1.sym }
553 kindOf(getPort(PortRef2.sym, ArchConnection.portsR)) = In

554 → {error "not an outport " PortRef2.sym }
555 typeOf(getPort(PortRef1.sym, ArchConnection.portsL)) =

556 typeOf(getPort(PortRef2.sym, ArchConnection.portsR))

557 → {error "types dont match " PortRef1.sym PortRef2.sym }

Listing 6. Excerpt of applying used conventions and Definition 7 to Listing 5; for the
given rules not all attributions are shown

OCL is a language to specify pre- and postconditions as well as invariants
for a context and thus is similar to attribute grammars. A difference is that
OCL is a side-effect free language and every expression should evaluate to either
true or false. Listing 7 shows the checks using OCL. Checking the requirements
hierarchy uses standard solutions found in [4].

Instead of using OCL, a language implementation could use model transfor-
mations for checking the formal static semantics. The downside is the possible
loss of information due to non-reversible transformations.

The following discussion summarizes the results from [2]. For each row in Table
1 the mean of 1000 executions per implementation are given in seconds. Hundreds
up to thousands of requirements with different properties such as connectivity
(density) of the hierarchy as well as the presence and abscence of cycles were
used. The number of requirements resembles our reference data, which contained
products with a few hundred as well as thousands of requirements.

In [2], it can be seen that most of the runtime in the OCLinEcore version is
spent in checking if the requirements hierarchy is acyclic, which is due to the
usage of the closure-operation.

The listings in Figure 7 show the error outputs for our version as well as
the OCLinEcore version. Our version precisely states which requirements cause
cycles as well as which requirements are not used, whereas the version using
OCLinEcore just states that a constraint is not satisfied.
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defs*root1

ref

1

parent1

def1

deps

*

use1

usedId defnId

Description

RootStat Definition

UseId

id:Symbol

DefId

id:Symbol

Dependency

def-use
{usedId.id = defnId.id}

Fig. 6. Class diagram for the presentation of a meta-modell to describe a requirements
hierarchy; classes correspond to nodes of the abstract syntax

Table 1. Runtimes of the different tools for checking the consistency of the Require-
ments Hierarchy

Requirements Density (%) Unreachable (%) Cyclic? OCLinEcore Compiler-based

100 3 10 no 3.42 s < 0.01 s

1000 4 2 no 5.08 s 0.01 s

1000 4 2 yes 3.61 s 0.07 s

2000 5 0 yes 3.80 s 0.04 s

2000 6 10 no 17.60 s 0.08 s

2000 10 0 no 35.10 s 0.17 s

5000 10 10 no 403 s 1.10 s

5000 10 0 yes Out of Memory 13.95 s

10000 2 4 yes Out of Memory 17.58 s

10000 2 4 no > 600 s 1.48 s

5 Related Work

Various works[5,7,18] consider the modeling of requirements but do not consider
an integration on the semantic level. The semantic integration of requirements
with architecture specifications is content of [7]. The generation of traces for
requirements and architecture specifications is discussed and model-checking is
used to ensure that the architecture correctly implements functional require-
ments. Thus, [7] has a wider scope than our work but on the other hand requires
more time to give a result (caused by the usage of model-checking).

The use of OCL as a specification technology for language semantics is ad-
vocated in [15]. [22] gives a general overview of the history and usage of OCL
and also mentions OCL being in use as a specification technology for language
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1 context Description:
2 inv bound:
3 let rootdef = root.ref.defnId.parent,
4 rootdeps = rootdef->closure(getdefs())
5 in rootdeps->union(rootdef->asSet())->includesAll(defs)
6 inv acyclic: defs->forAll(c | c->closure(getdefs())->excludes(c.def));
7
8 context Definition:
9 def getdefs() = deps.use.defnId.parent

10
11 context UseId:
12 inv defuse: UseId.allInstances()->forAll(x | def-use(x,x))
13
14 context DefId:
15 inv names: DefId.allInstances()->forAll(x |
16 DefId.allInstances()->forAll(y |
17 def-use(x,y) implies x.id = y.id))

Listing 7. OCLinEcore variant to check the requirements hierarchy for possible
problems using the meta-model of Figure 6; closure computes the transitive hull;
let generates names

"pump.rq", 1:1 ERROR: Found a cyclic component, Path:
"pump.rq", 1:1 ERROR: etc1 -> "Pump XYZ"
"pump.rq", 68:4 INFO: Definition of: etc1
"pump.rq", 38:4 INFO: Definition of: "Pump XYZ"
"pump.rq", 1:1 ERROR: "Pump XYZ" -> Motor
"pump.rq", 38:4 INFO: Definition of: "Pump XYZ"
"pump.rq", 48:4 INFO: Definition of: Motor
"pump.rq", 1:1 ERROR: Motor -> etc1
"pump.rq", 48:4 INFO: Definition of: Motor
"pump.rq", 68:4 INFO: Definition of: etc1
"pump.rq", 77:4 ERROR: Unreachable: additional2
"pump.rq", 76:4 ERROR: Unreachable: additional1

(a) Compiler output (eli-based)

ERROR: Diagnosis of Description{file:pump.xml#/}
ERROR: The ’bound’ constraint is violated on

’Description{file:pump.xml#/}’
ERROR: The ’acyclic’ constraint is violated on

’Description{file:pump.xml#/}’

(b) OCLinEcore output

Fig. 7. Error output for requirements example

semantics. In [10] Dingel and Solberg report on how to embed OCL in model-
based tools, such that model instances can be checked for conformance.

There is a wide variety of architecture description languages (ADLs). The π-
ADL family (amongst others [21,17]) uses the μ-calculus as a formal foundation
and allows for architectural refinement as well as the specification of behavioural
properties. Thus, the π-ADL family is richer than PDL but not geared towards
the pump domain.

In [25] Schmittwilken et.al. easily transformed OCL manually in attribute
grammars. To the best of our knowledge we are not aware of a completely auto-
matic transformation.

6 Conclusions

Using examples gathered from interviews we have given an overview of the pump
development process and which inconsistencies may arise. We introduced a DSL
for the development of pumps called PDL. We have shown how a formal static
semantics supports the discovery of such inconsistencies. The formal static se-
mantics of PDL was implemented by attribute grammars. We compared our
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implementation with a similar implementation using OCLinEcore for analyzing
the requirements hierarchy.

Methods from compiler construction enable the generation and visualization
of various details of pump descriptions. Using simple (syntactical) extensions
to “basic” attribute grammars we have shown that concise attribute grammar
specifications are possible. Attribute grammars enabled better error messages as
well as the generation of a faster “compiler” for the requirements level of PDL.

Faster processing of semantic constraints and richer languages may be bene-
ficial in a model-based environment when using compiler-based methods. In the
context of pump development the benefits of using compiler-based methods are
the semantic integration of different development levels (i.e. requirement, func-
tion and architecture specification) and the integration with model-based tools.
Even a bidirectional generation approach for this integration comes into reach
using compiler-based methods.

The closure-operation in OCL has a high level of abstraction. However, it
causes a much longer runtime in the OCLinEcore implementation. It remains
open if other implementations of OCL, such as Dresden OCL [11], are better
suited for such a comparison and thus may give better results. An evaluation
with Dresden OCL and Query-View-Transformation is in the works as well as
the integration of PDL in the well known development environment Eclipse. So
far we used existing products to check for inconsistencies and found various un-
derspecified requirements as well as small cycles and erroneous use of functions.
We plan to evaluate PDL by using it to develop a complete product (vs. using
excerpts of existing ones and converting those).

Acknowledgements. We would like to thank the BMBF for supporting this
work under project number 16M3202D.
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Abstract. For several years now, domain-specific languages (DSLs) are
a mainstream tool for establishing model-based development environ-
ments in real-world projects. Typical back-end tools for external DSLs
are interpreters and code generators.

Partial evaluation is a well-known technique for program specializa-
tion, with the use case of specializing interpreters to target programs.
However, the automatic generation of code generators from a DSL’s in-
terpreter is by no means ubiquitous in industrial DSL projects. In this
paper, we show how interpreters for a DSL can be used as a basis for auto-
matic generation of efficient target code. This is possible by implementing
a partial evaluator for the mainstream DSL toolset Xtext/Xtend.

Keywords: partial evaluation, program specialization, interpreters, code
generation, domain-specific languages, Xtext, Xtend.

1 Introduction

Building Domain-Specific Languages. Since the rise of supporting frame-
works and language workbenches, domain-specific languages (DSLs) are a main-
stream tool for raising the abstraction level in software development environ-
ments. There are two basic approaches of designing DSLs, each with its benefits
and drawbacks:

– internal DSLs are embedded in a host language, using its infrastructure
– external DSLs have their own, independent syntax (often implemented by a

parser).

Ideally, the semantics of a DSL should be defined independently of its implemen-
tation. However, in industrial projects the semantics of a DSL is often defined
implicitly by either implementing an interpreter, or a code generator (or: com-
piler). The former executes models (aka programs) of the DSL on a concrete tar-
get platform. The latter generates code in a target language. These two ways of
defining the semantics of a DSL are closely connected, as both provide a mapping
from the DSL’s abstraction level to some more concrete level of an underlying
(executable) machine. However, in practice this relation is rarely exploited. In
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Listing 1. An Xtend function and its specialized version (e = 5).
1 class Power {
2 def int power (int b, int e) {
3 if (e==0) 1
4 else if (e%2==0) { val y = power(b, e/2); y * y }
5 else b * power(b, e-1)
6 }
7 }
8
9 class Power_e_5 {

10 def int power(int b) { b * power_0(b) }
11 def int power_0(int b) { val y = power_1(b); y * y }
12 def int power_1(int b) { val y = power_2(b); y * y }
13 def int power_2(int b) { b * 1 }
14 }

a typical industry environment, it is often the case that several code generators
and an interpreter are developed manually and independently, at various points
in a project’s life cycle. Thus, the semantics of the DSL is not guaranteed to
be consistent across the various downstream tools, which might lead to subtle
errors.

In this paper, it will be shown how manually implemented interpreters for
DSLs can be transformed into code generators automatically by applying partial
evaluation [7]. This approach offers a variety of benefits:

Consistency. Only the interpreter defines the semantics of the DSL. It is guar-
anteed by design that the derived code generators are consistent with the
semantics defined by the interpreter (assuming the partial evaluator is cor-
rect).

Abstraction. The interpreter doesn’t have to care about platform-specific de-
tails.

Testing. The interpreter can be used as an effective way of validating the DSL
itself and its models. This includes static analysis as well as unit and regres-
sion testing.

Portability. The DSL can be used for various target environments/languages.
The last step of the transformation from an interpreter to a code generator
is a mapping to a specific platform, which can be adapted to new target
environments.

Performance. The code generators can be optimized for a given target plat-
form. E.g., the interpreter will be implemented in a convenient language,
whereas the code generator will produce C code for an embedded system.

Product-Line Support. The solution provides support for variability special-
ization. The DSL and its interpreter may offer flexible configuration options,
supporting a set of possible DSL semantics and resulting code generators.
Each concrete code generator can be derived using a specific configuration
during the specialization.
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Partial Evaluation. The transformation is realized by using partial evalu-
ation, which is a well-known method for program specialization [7]. Given the
source code of a program and fixed values for some of its parameters, partial
evaluation computes a specialized program. Listing 1 shows an Xtend program
with a recursive method power(b,e) computing the power function be. Starting
from line 9, the result of specializing this method for e = 5 is listed. The results
of running the specialized program on a set of values for the remaining parame-
ters (b in listing 1) will be the same as running the original program. Thus, the
execution of a partial evaluator will be a combination of

– partly interpreting the input program, using the fixed input data to execute
the program at specialization time (e.g., computing the condition e%2==0 in
line 4), and

– partly generating code, where dynamic input data (unknown at specializa-
tion time) defers the execution of the code to runtime.

Throughout the paper, we are using the notation introduced in [7] in order to
define program execution. Example:

o = �p�L [i, j]

The execution of program p in language L on inputs i and j produces the output
o. If the language indication L is omitted, the Xtend language is used by default.
Now the basic principle of partial evaluation can be formally defined as

�p� [s, d] = ��xmix� [p, s]� d

where xmix is the partial evaluator, p is the source program, s (static) denotes
fixed value parameters and d the remaining dynamic parameters [7, section 1.1.2].

In order to create a code generator from a DSL’s interpreter, the partial evaluator
will be used to specialize the interpreter. Partial evaluation of an interpreter
with respect to an input DSL model (a program) produces a target program.
As the target program’s language is still the same as the interpreter’s, a source-
to-source postprocessing step will be applied which transforms the specialized
program into the target language (e.g., Xtend to C).

In 1971, Futamura pointed out that a self-applicable partial evaluator can
specialize itself with respect to an interpreter, resulting in a compiler (Futa-
mura’s second projection [3]). For a given input program, the resulting compiler
produces the same target program as the specialization of the interpreter with
respect to this input program. We will specialize the interpreter including the
postprocessor, which produces a code generator from DSL models (input pro-
grams) to programs in the final target language.

This partial evaluation technique has been implemented fully in the 1990s and
meanwhile has been applied and investigated in various research projects (see
section 5). However, partial evaluation is only rarely applied as a production tool
in today’s mainstream DSL projects. This paper remedies this by showing how
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partial evaluation can be applied in a state-of-the-art DSL tool. Thus, we have
chosen the Xtext toolbox [14] for building external DSLs and the Xtend lan-
guage [13] for building a self-applicable partial evaluator and DSL interpreters.
The combination of Xtext and Xtend on top of the Eclipse tool platform is a
practically relevant, mainstream toolset being used in various industry projects
(e.g., in the Automotive domain).

Overview. The remainder of the paper is structured as follows: In section 2,
the tool environment for building external DSLs will be introduced. Section 3
describes the self-applicable partial evaluation algorithm implemented for Xtend.
A full-fledged example of applying the partial evaluation scheme is shown in
section 4. It will be explained how microcontroller C code can be automatically
generated from an example DSL without implementing a code generator. The
paper ends with a short discussion of related work and a conclusion section.

Xtend

Xtext

Ecore

is based on

is represented by ∧
can manipulate models

uses

Fig. 1. The relationship of Xtext, Xtend and Ecore

2 The DSL Tool Environment

Domain-Specific Languages with Xtext. Xtext [14] is a well-established
tool for building parser-based external DSLs. It is available as an open-source
project on top of the Eclipse IDE and has an active community. Xtext is being
used for a wide range of applications in research and industry.

In order to build a DSL with Xtext, a formal grammar has to be defined.
Listing 3 shows an example grammar. The language for definition of the gram-
mar is an EBNF-like DSL which itself has been developed with Xtext. From
this concrete syntax of the DSL, Xtext generates a metamodel representing the
abstract syntax tree (AST). The metamodel format is Ecore, which is defined
by the Eclipse Modeling Framework (EMF, see [11]). From the Ecore-model, a
Java-API is generated which allows to access the model programmatically. A
DSL-specific, ANTLR-based parser which is also generated by Xtext is able to
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read textual DSL models and create an AST representation in memory. Xtext
also generates a serializer for the opposite direction.

For each DSL, Xtext also provides a user interface with a full-featured editor
(with content assist, syntax highlighting, validation) and other extensions of
the Eclipse IDE. Xtext offers a default implementation for scoping, linking and
validation for the DSL (see [12] or the Xtext documentation for details).

The Xtend Language. The most common development tasks related to
DSLs are the implementation of generators and interpreters, as well as model
transformations. Each of these tasks requires programmatic access to the DSL’s
models (AST); for implementing the generator a template mechanism is also
useful.

The Xtend programming language [13] has been developed with these tasks
in mind. Xtend is statically typed and object-oriented; it is not a JVM language,
but is directly transformed into Java. Thus, it is completely and bidirectionally
interoperable with Java.

Xtend provides a rich set of language features supporting the above DSL-
related tasks:

– no distinction between expressions and statements (everything is an expres-
sion)

– extension methods for enhancing closed types (e.g., model elements)

– closures (aka lambda expressions)

– type-based switch statements

– polymorphic method invocation

– template expressions (rich strings)

Due to this rich feature set, Xtend is a powerful language for implementing
generators, interpreters and model transformations. The Java API of the DSL’s
Ecore model can be traversed and manipulated conveniently. Why is Xtend
also well-suited for partial evaluation? Figure 1 shows the relationship of Xtext,
Xtend and Ecore/EMF. Xtext DSLs represent their AST as Ecore model. The
Xtend language itself has been built using Xtext. Thus, each Xtend program is
represented as an Ecore model. As described above, Xtend’s language features
are especially designed for programmatically accessing Ecore models. Therefore,
Xtend programs can easily manipulate Xtend programs represented by Ecore
models. Earlier languages with this property are Lisp and Prolog, which have
been a primary target for partial evaluation implementations in the past.

As both Xtend programs and Xtext-based DSL programs are represented as
models, we will use the terms program and model interchangeably throughout
this paper.
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3 Partial Evaluation of Xtend Programs

3.1 Challenges
Building a partial evaluator for the complete feature set of the Xtend language
offers a variety of implementation challenges.

– Xtend has imperative, object-oriented and functional aspects (see section 2).
Existing research on partial evaluation is focusing mainly on functional lan-
guages, and is restricted to one (or rarely two) of these aspects. Therefore,
the implementation can learn from previous work, but the combination of
features is new territory.

– Xtend offers an extended set of syntactic features for member function calls.
E.g., the implicit variable it which can be omitted from function calls, or the
first argument of an extension method which can be written as a syntactic
receiver:

"hello".toFirstUpper
// calls StringExtensions.toFirstUpper("hello")

The combination of these syntactic features complicates the implementation
of the specializer.

– Xtend provides dispatch-methods, which offer polymorphic dispatching
based on the methods’ first parameters. This language feature requires par-
ticular attention during specialization. If the first argument is fixed at spe-
cialization time, polymorphic dispatching will be resolved in the resulting
code.

3.2 Partial Evaluator Implementation
A partial evaluation algorithm distinguishes static and dynamic parameters and
expressions in the source program. The values of static parameters and expres-
sions (or more general: model elements) are known at specialization time or can
be computed during the specialization. Dynamic model elements are not known
at specialization time and can only be computed at runtime. The classification
in static vs. dynamic is called binding time. Offline partial evaluators compute
the binding times as a preliminary step, which is called binding time analysis
(BTA). Online partial evaluators compute the binding time during the actual
specialization step.

We chose to implement a classical offline partial evaluator, leading to the
following sequence of steps:

1. Binding Time Analysis. In the first step, the binding times for member
function arguments, class fields and local variables are computed. A fixpoint
iteration based on abstract interpretation according to [7, chapter 5.2] is applied
here. In order to support BTA for local and class variables including side effects,
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we extended this approach by applying a similar notion of well-annotatedness as
described in [7, chapter 11.5].

In the current implementation, the BTA computes monovariant binding times.
I.e., for the parameters of each function exactly one set of binding times is com-
puted. We will extend this to a polyvariant binding time computation, where
a function might have multiple sets of binding times for its parameters. This
allows the specializer to compute more efficient and specific residual code.

2. Annotation. Based on the BTA results, every element of the input pro-
gram’s AST is annotated with its actual binding time. This is again a fixpoint
iteration over the elements of the AST.

3. Specialization. The actual specialization is implemented as a depth-first
traversal over the input program’s AST. Based on the annotations from step 2,
each language construct of Xtend is either evaluated (the static case) or reduced
to a simpler expression. Child expressions are handled recursively. For this step,
it helps that Xtend doesn’t distinguish between statements and expressions.

For function calls with at least one static parameter, one program point for
each unique set of static parameter values is generated. In order to avoid dupli-
cating program points, a proper equals-operator has to be provided for each
involved class. In the example of listing 1, the generated function calls in the
specialized class correspond to static parameter values as follows:

power(b) ⇔ e = 5

power_0(b) ⇔ e = 4

power_1(b) ⇔ e = 2

power_2(b) ⇔ e = 1

4. Postprocessing. Here the AST of the residual program is cleaned up. For
example, this includes the removal of intermediate blocks, constant propagation
or inlining of trivial function calls. In listing 1, we omitted this step in order to
emphasize the result of the previous steps.

Listing 2 shows the specialization function for if/else-constructs. Similar spe-
cialization functions are available for all other Xtend language concepts (e.g.,
variable declarations, for- and while-loops, constructors, arithmetic expressions).
Each function in the specializer either evaluates the original expression (if it has
been classified as static by BTA), or reduces the original expression as far as
possible (if it has been classified as dynamic). The information about the actual
binding time (static vs. dynamic) is provided by the annotator. In the example,
this information is evaluated and used in line 3 (listing 2).

If the if-condition is static, it can be computed at specialization time (line 5).
Depending on the boolean value of the condition, either the then-branch (line 7)
or the else-branch (lines 9-14) is executed. If the binding time is dynamic,
lines 17-22 are executed. Here, a clone of the if-expression is constructed with
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Listing 2. One example function of the partial evaluator implemented in Xtend: Spe-
cialization of if/else-expressions.
1 def dispatch XExpression reduce (XIfExpression orig, ParamFix vs, IContext context) {
2 val cond = orig.^if.reduce(vs, context)
3 if (orig.^if.isStatic) {
4 // if-condition is static, evaluate and continue with one of the branches
5 val result = cond.evaluate(context)
6 if (result.asBoolean) {
7 orig.then.reduce(vs, context, orig.isStatic)
8 } else {
9 if (orig.^else != null)

10 orig.^else.reduce(vs, context, orig.isStatic)
11 else {
12 // no else-branch, return empty block
13 xbaseFactory.createXBlockExpression
14 }
15 }
16 } else {
17 // if-condition is dynamic, hence whole if-expression is dynamic
18 val reduced = xbaseFactory.createXIfExpression
19 reduced.^if = cond.ensureDynamic(orig.^if)
20 reduced.then = orig.then.reduce(vs, context, false)
21 reduced.^else = orig.^else?.reduce(vs, context, false)
22 reduced
23 }
24 }

all subexpressions from the original if-expression reduced as far as possible. The
condition and the corresponding branch will be evaluated only at runtime.

3.3 Specialization Example

Due to the amount of features of the Xtend language it would take a large set of
examples to demonstrate all intricacies of the partial evaluation algorithm. We
implemented several hundred test cases in order to cover all language features
supported by the specializer. We refer to [7] for an overview of partial evaluation
of imperative, functional and C-like language features. Some previous work ac-
cording specialization of object-oriented languages is discussed in detail in [10]
and [9].

In order to explain the basic operation of the implemented specializer, we
already introduced the simple example from listing 1. It shows an example Xtend
class with a recursive function power(b,e). Starting in line 9, the output of the
partial evaluation algorithm for e = 5 is shown. The static parameter e has been
discarded. The recursive function calls in the original code have been unrolled
by the specializer. A straightforward postprocessing step could inline the trivial
function calls in the specialized class Power_e_5, resulting in the expression

b * ((b * b) * (b * b))

We omitted this step here to show the plain output of the specializer.
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4 Application: Code Generation for Embedded Systems

In this section we will apply the partial evaluation scheme described in the
previous section in order to generate C code for an embedded target from an
interpreter. The roadmap for this section is as follows:

1. We use Xtext to build a small, state-machine-based DSL for programming
microcontrollers (MCL).

2. A (simple) example program in MCL is defined.
3. The semantics of MCL is defined by implementing an MCL interpreter writ-

ten in Xtend.
4. The partial evaluator is applied to specialize the interpreter for the example

MCL program.
5. The resulting Xtend target program is mapped to the final Arduino C code

by a postprocessor.

Listing 3. The Xtext grammar for the MCL language.
1 Program: ’program’ ’(’ config+=CfgParam* ’)’
2 decls+=Decl* fsm=FSM;
3 CfgParam: name=ID;
4

5 Decl: DigitalIn | DigitalOut;
6 DigitalIn: ’in’ name=ID ’(’ pin=INT ’)’;
7 DigitalOut: ’out’ name=ID ’(’ pin=INT ’)’
8 ’:=’ initial=Const;
9

10 FSM: ’fsm’ ’{’ states+=State+ ’}’;
11 State: ’state’ name=ID ’{’ transitions+=Transition* ’}’;
12 Transition: ’on’ ’(’ left=Expr ’==’ right=Expr ’)’
13 ’->’ to=[State] (action=Block)?;
14

15 Cmd: SetOutput | IfThen | Block;
16 Block: ’{’ commands+=Cmd* ’}’;
17 SetOutput: out=[DigitalOut] ’:=’ expr=Expr ’;’;
18 IfThen: ’if’ ’(’ cond=Expr ’)’
19 then=Cmd
20 (=>’else’ else=Cmd)?;
21

22 Expr: ReadInput | Const | CfgValue;
23 ReadInput: input=[DigitalIn];
24 Const: value=INT;
25 CfgValue: ’@’ ref=[CfgParam];

4.1 An Example DSL for Programming Microcontrollers
We are building an example DSL for the embedded systems domain. MCL (short
for: MicroControllerLanguage) allows to develop software for microcontrollers
using a state machine paradigm. Listing 3 shows the Xtext grammar for MCL.
Xtext will convert each parser rule into a corresponding class for the Ecore
model. Thus, each parser rule represents a domain concept:
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DigitalIn, DigitalOut. General-purpose IO pins on the embedded hardware.
FSM, State, Transition. The top-level finite state machine. It supports equal-

ities as trigger conditions and action codes on transition execution.
Cmd, Block, SetOutput, IfThen. Control structures for the action codes.
Expr, ReadInput, Const. Expression language. The constants will be restric-

ted to the domain {0, 1} by validation.
CfgParam, CfgValue. These are configuration parameters which are not visi-

ble in the final target program, but will be interpreted during specialization.
This is a basic realization of product line specialization.

We deliberately restricted MCL to some core concepts. Extending the language
with further hardware abstractions (analog inputs, . . . ), additional control struc-
tures or library calls is straightforward.

Listing 4. An example program in MCL language.
1 program (z)
2
3 in a(2)
4 in b(3)
5

6 out led1(13) := 0
7
8 fsm {
9 state s1 {

10 on (a==1) -> s2 { led1 := b; }
11 }
12 state s2 {
13 on (a==0) -> s1 { led1 := @z; }
14 }
15 }

4.2 An Example Program in MCL

A simple example MCL program is shown in listing 4. The state machine from
this example is additionally depicted in figure 2. In the example, two digital
inputs a and b are defined for the hardware pins 2 and 3, respectively. A digital
output led1 is defined representing an LED connected to pin 13. The LED is
initially turned off. The state machine sets the LED depending on the inputs a
and b.

Note that during transition from s2 → s1, the LED is set according to con-
figuration parameter z. This is a simple, but effective product line approach:
The resulting target program will be a configuration-specific refinement of the
example MCL. The configuration domain consists of the configurations {{z =
0}, {z = 1}}. In a real-world scenario, the possible configurations will be derived
from a feature model.
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S1

S2

init / setup

a==1 /
led1 := b

a==0 /
led1 := @z

Fig. 2. The statemachine for the example MCL program

4.3 The MCL Interpreter
The semantics of MCL is defined by an interpreter implemented in Xtend. List-
ing 5 shows the core parts of the interpreter. According to the typical structure of
a microcontroller program, the interpreter has two entry points: executeSetup
(being called once at program startup, for initialization tasks) and executeLoop
(the main loop body, being called repeatedly until the system terminates).

The arguments of both entry points represent different kinds of input data:

Program pgm: The input program (in MCL).
Params cfg: The configuration parameters for the MCL program.
IDevice d: The platform abstraction interface. This is an Xtend implementa-

tion of hardware abstractions and library calls on the microcontroller.

The private functions handleState, execCmd and eval do the actual interpre-
tation of state behavior, control structures and expressions, respectively.

Optimization for Bounded Static Variation. Depending on properties
of the partial evaluator, naïve interpreter implementations can lead to clumsy
residual code. E.g., this applies when arguments or variables are of bounded
static variation. In method executeLoop of our example interpreter, the cur-
rent state has to be selected from the list of states represented by the expression
pgm.fsm.states. The variable current is classified as dynamic by BTA, be-
cause it depends on input data which is unknown at specialization time.

Listing 6 shows a straightforward implementation of method executeLoop
which selects the current state by the expression get(current-1) in line 6.
This would lead to result state ss being also classified as dynamic, although
the set of states is limited and known at specialization time. This classification
would severely limit the amount of code which can be executed at specialization
time.

Fortunately, there is a pattern for refactoring the interpreter’s code which
allows the binding time analysis to classify ss as static. We applied the pattern
in listing 5, see lines 13-21. As the index variable is depends only on expressions
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Listing 5. The MCL interpreter implemented in Xtend (excerpts).
1 class MCLInterpreter {
2 var current = 0
3

4 def executeSetup(Program pgm, Params cfg, IDevice d) {
5 for(o : pgm.decls.filter(typeof(DigitalOut))) {
6 val v = o.initial.eval(cfg, o)
7 d.digitalOut(o.pin, v)
8 }
9 current = 1 // set initial state

10 }
11

12 def executeLoop(Program pgm, Params cfg, IDevice d) {
13 var is = 0
14 var next = 0
15 while (is < pgm.fsm.states.size) {
16 if (is+1 == current) {
17 val ss = pgm.fsm.states.get(is)
18 next = ss.handleState(cfg, d)
19 }
20 is = is + 1
21 }
22 if (next!=0) current = next
23 }
24
25 def private handleState(State s, Params cfg, IDevice d) {
26 // handle triggered outgoing transition
27 [...]
28 }
29
30 def private void execCmd(Cmd cmd, Params cfg, IDevice d) {
31 switch(cmd) {
32 SetOutput: {
33 val v = cmd.expr.eval(cfg, d)
34 d.digitalOut(cmd.out.pin, v)
35 }
36 [...]
37 }
38 }
39

40 def private int eval(Expr expr, Params cfg, IDevice d) {
41 switch (expr) {
42 ReadInput: d.digitalIn(expr.input.pin)
43 Constant: expr.value
44 CfgValue: cfg.get(expr.ref.name)
45 }
46 }
47
48 [...]
49 }



Partial Evaluator for Xtend 419

Listing 6. A version of executeLoop from the MCL interpreter which is not suited
for partial evaluation.
1 class MCLInterpreter {
2

3 [...]
4

5 def executeLoop(Program pgm, Params cfg, IDevice d) {
6 val ss = pgm.fsm.states.get(current-1)
7 val next = ss.handleState(cfg, d)
8 if (next!=0) current = next
9 }

10
11 [...]
12 }

classified as static, it will itself be of static binding time. The specializer is
then able to unroll the body of the while-loop for each state of the finite state
machine and will specialize each case in turn. This pattern is so well-known in
the specialization domain that it is labeled "The Trick". See [6] for a detailed
explanation and further hints on designing interpreters which are well-suited for
specialization.

4.4 Xtend Code Generation by Specialization
Next we will generate an Xtend version of the target program by applying the
partial evaluator:

T = �xmix� [int, [M, cfg]]

where int is the MCL interpreter, M is the input MCL program with a set of
configuration parameters cfg, and T is the resulting target program (in Xtend).
The example input program M is listed fully in listing 4, the resulting specialized
Xtend program T in listing 7. The input configuration cfg has been fixed as
{z = 0}, which leads to the constant value 0 in line 33 of the resulting program.

As expected, the target program T is a mix of the original MCL program M
(e.g., lines 5, 21f, 32f) and the infrastructure of the interpreter itself (e.g., the
handling of the current variable). The constants 2, 3 and 13 defined as I/O pins
in input program M show up as constants in the resulting program T, e.g., 13 in
lines 5, 22 and 33. The program is listed exactly as output by the specializer, a
postprocessing step could do some syntactic optimizations like removing constant
if-conditions or inlining function calls.

4.5 Transformation to C Code
As a final step the Xtend target program from listing 7 is translated into a C
program which can be readily compiled and executed on an Arduino target. This
is expressed by the equation
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Listing 7. The target program (in Xtend), which is a specialized interpreter.
1 class MCLInterpreter_ssd {
2 var current = 0
3
4 def executeSetup (IDevice d) {
5 d.digitalOut(13, 0)
6 current = 1
7 }
8
9 def executeLoop (IDevice d) {

10 var next = 0
11 switch (current) {
12 case 1: next = handleState_0(d)
13 case 2: next = handleState_1(d)
14 }
15 if (next!=0) current = next
16 }
17
18 def private handleState_0 (IDevice d) {
19 var found = 0
20 if (found == 0) {
21 if (d.digitalIn(2) == 1) {
22 d.digitalOut(13, d.digitalIn(3))
23 found = 2
24 }
25 }
26 found
27 }
28

29 def private handleState_1 (IDevice d) {
30 var found = 0
31 if (found == 0) {
32 if (d.digitalIn(2) == 0) {
33 d.digitalOut(13, 0)
34 found = 1
35 }
36 }
37 found
38 }
39 }

C = �cmap� [T, m]

where cmap is an Xtend program which maps from Xtend to C, T is the spe-
cialization residual from the previous section, m is a platform- (e.g, Arduino-)
specific mapping table and C is the resulting C code.

Basically, cmap executes a generic 1:1 mapping of Xtend language constructs
to C language constructs, which is configured by mapping rules m. Examples for
the mappings:

Type Xtend source C target

class "MCLInterpreter_ssd" put each class in separate C module
function "executeLoop()" "loop()"
visibility "private" function "static" function
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Note that the target program T in listing 7 still has references to the target
platform abstraction interface IDevice d. This is needed because the Xtend
program T needs access to the platform API. In the resulting C program, these
references are replaced by direct C library calls or preprocessor macros, guided
by rules defined as target-specific mappings m.

Listing 8 shows the final program after the mapping and some minor clean-up
steps. It is a matter of efficiency and readability how much inlining is applied.

Listing 8. The translated program in Arduino C.
1 int current = 0;
2
3 void setup()
4 {
5 pinMode(13, OUTPUT); digitalWrite(13, 0);
6 current = 1;
7 }
8

9 void loop()
10 {
11 int next = 0;
12 switch (current) {
13 case 1: next = handleState_0(); break;
14 case 2: next = handleState_1(); break;
15 }
16 if (next!=0) current = next;
17 }
18
19

20 static int handleState_0()
21 {
22 int found = 0;
23 if (digitalRead(2) == 1) { digitalWrite(13, digitalRead(3)); found = 2; }
24 return found;
25 }
26
27 static int handleState_1()
28 {
29 int found = 0;
30 if (digitalRead(2) == 0) { digitalWrite(13, 0); found = 1; }
31 return found;
32 }

4.6 Generating a Code Generator by Self-Application
Putting all steps together, the final C target code is generated from an MCL
program without implementing a code generator. Instead, a generic Xtend partial
evaluator is used in order to specialize a generic MCL interpreter; the resulting
target code is transformed into a final C program by a generic Xtend-to-C-
mapper.

By taking advantage of Futamura’s second projection [3], we can now auto-
matically derive a self-contained code generator (in Xtend language) from the
basic ingredients. First, a compiler comp has to be generated by self-applying
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the partial evaluator. The specializer is specialized for the MCL interpreter as
follows:

comp = �xmix� [xmix, int]

This compiler will transform MCL source programs into Xtend target programs
without further need for the specializer. Second, we can combine the compiler
and the Xtend-to-C-mapper into a common tool:

C = �cmap� [�comp� [M, cfg], m]

The result is a code generator with takes the MCL source program M, the product
line configuration cfg and the platform mapping m as inputs and produces the
final C program for the Arduino microcontroller.

5 Related Work

Partial evaluation is available for more than 20 years, although not well-estab-
lished in today’s day-to-day work with DSLs. The book of Jones et al. offers a
thorough introduction to the topic [7]. Depending on the style of the language
which should be tackled with partial evaluation, there is a different set of prob-
lems which have to be solved. The initial partial evaluation work was focused
on functional and logic programming languages. Lateron, imperative languages
have been treated. A good introduction of how to specialize a subset of C is
given in [7, chapter 11].

Around 2000, major work of partial evaluation for object-oriented languages
has been done. A detailed description of how a subset of Java can be specialized
is given in [10] and [9].

It is interesting that these approaches are not available and used in today’s
mainstream work with DSLs. This paper builds on the previous results, extends
and combines them and puts them into a state-of-the-art application context.

There are some approaches of improving (online) partial evaluation by com-
bining it with other static analysis schemes. In [2], it is described how online
partial evaluation can be improved by intermixing it with Symbolic Execution.

In the domain of internal DSLs, there is also ongoing research on staging,
which has the same goals and similar techniques as partial evaluation. A current,
promising approach for staging internal DSLs embedded in Scala is described
in [8].

For the generation of a code generator from an interpreter, an alternative
to the application of Futamura’s second projection is the usage of a compiler
generator. This compiler generator (often labelled cogen) can either be derived
by another self-application of the specializer (Futamura’s third projection)

cogen = �xmix� [xmix, xmix]

or written manually. In some recent contributions, Glück showed how cogen
can be computed by a bootstrapping approach [4], which can be regarded as an
application of Futamura’s fourth projection [5].
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6 Conclusion and Future Work

In this work, we have shown how efficient, platform-specific code can be gener-
ated out of DSL programs without the need for implementing a code generator.
The technique we used is specialization of an interpreter for the DSL by partial
evaluation. All involved tools (partial evaluator, interpreter, mapper to target
language) are generic and have been implemented in the Xtend language. By
exploiting Futamura’s second projection, a standalone code generator from DSL
programs to platform code (in a different implementation language) can be gen-
erated.

This approach ensures that the DSL semantics defined by the interpreter is
adhered to also by the code generators. A product line concept can be embedded
into the scheme easily.

Future work will be guided towards three directions:

Partial Evaluator Improvement. We will add special features to the partial
evaluators to improve the resulting code and take even more burden from
the DSL developer. This includes polyvariant BTA, call-graph analysis to
improve the handling of non-local side-effects of recursive functions and data
flow analysis to take dead static variables into account. This will also improve
the results of self-applying the evaluator.

Bigger Examples. The examples shown in the paper will be extended on sev-
eral dimensions: We will add more expressivity to the used DSLs and increase
the DSL models which are subject to the code generators.

Other Domains. Finally, we want to apply the technique to other domains,
e.g., to the development of Automotive software (e.g., DSLs for on-board
diagnostics [1]).
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Abstract. In this paper, we present the testing approach of the Genesys
code generator framework. The employed approach is based on back-to-
back-testing, which tests the translation performed by a code generator
from a semantic perspective rather than just checking for syntactic cor-
rectness of the generation result. We describe the basic testing framework
and show that it scales in three dimensions: parameterized tests, testing
across multiple target platforms and testing on multiple meta-levels.

In particular, the latter is only possible due to the fact that Genesys
code generators are constructed as models. Furthermore, in order to fa-
cilitate simplicity, Genesys consistently employs one single notation for
all artifacts involved in this testing approach: Test data, test cases, the
code generators under test, and even the testing framework itself are all
modeled using the same graphical modeling language.

1 Introduction

Code generators are an important part of model-driven approaches to software
engineering. They revert the abstraction that is immanent in models, and trans-
late them to code that runs on a particular target platform1. Code generators
are ubiquitous in Integrated Development Environments (IDEs) and language
workbenches, and thus they belong to the standard repertoire of software engi-
neers.

Due to this central role, the requirements imposed on a code generator’s relia-
bility are high. A defective code generator generates defective software artifacts:
The consequences range from uncompilable code which has to be corrected by
hand each time the code generator runs, to semantically dysfunctional code that
causes serious damage to the target platform (e.g., a safety-critical embedded
system). Several techniques and mechanisms can by employed in order to im-
prove a code generator’s reliability. Stürmer et al. [38] divide those techniques
into

– constructive procedures, that focus on the adoption of standards and guide-
lines such as Software Process Improvement and Capability determination
(SPiCE), and

1 Please note that in this paper, we use the term “target platform” in the sense of a
software platform rather than a hardware platform.

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part I, LNCS 8802, pp. 425–444, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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– analytical procedures such as verification and testing.

In this paper, we focus on testing of code generators. When writing tests for
a given code generator, a common approach is the application of unit testing [3],
as depicted in Fig. 1.

Typically, in unit-based testing, test cases steer the system under test (SUT)
by means of API calls. Each test case may be parameterized, and the aggregate
of available parameter configurations is called the test vector. When running
the test, each test case is run repeatedly for each parameter configuration in
the test vector associated with that test case. With each test run, the SUT
produces an output. Along with the actual test case and the test vector, the test
designer also specifies the expected output of the SUT. The expected output is
then compared to the actual output by means of a Matcher component, which
typically performs one or more asserts. Finally, the test results are summarized
in a report. For instance, in the Java world, typical unit testing frameworks that
support these steps are JUnit and TestNG.
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Fig. 1. Classical Unit Testing

When applying this testing approach to a code generator as the SUT, the
output that is examined is typically source code in some programming language.
Consequently, the specification of the expected output also resembles source
code. The Matcher then performs a string comparison, i.e., the test is successful
if the output equals the expected output. This testing approach clearly focuses
on the syntactic aspects of the code produced by the code generator.

Although this approach works to some extent, it has several disadvantages
and is, according to Stahl et al. [34, pp. 166f], rather unfeasible in practice:

– It may lead to many false positives, as a simple change in the formatting of
the generated code (e.g. replacing blanks with tabs for indentation) already
leads to test failure. This happens although the generated code might still
be compilable, executable and semantically correct.

– The approach relies on the test designer who has to specify a correct output
expectation. Though the test might validate that this output expectation is
met in syntactic terms, it does not provide any information on whether the
resulting code semantically behaves as intended.

Consequently, Stahl et al. recommend testing the generated code’s effect (i.e.,
its behavior when it is executed) instead of its concrete syntax.
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In this paper, we present a testing approach that applies this idea in the
context of the Genesys Framework [15]. Genesys differs from other code gener-
ation frameworks, as it provides a toolbox for constructing code generators as
graphical, hierarchical models that are composed of reusable services.

Genesys provides two mechanisms for ensuring the reliability of code genera-
tors, which both belong to the category of analytical procedures. First, as code
generators in Genesys are constructed as models, they are amenable to formal
methods. In [15], we showed Genesys’ support for the formal verification of code
generators via model checking [6], based on a reusable library of constraints.

This paper focuses on the second mechanism, which is Genesys’ support
for testing code generators. The employed approach is based on back-to-back-
testing [40], which tests the translation performed by a code generator from a
semantic perspective rather than just checking for syntactic correctness of the
generation result. Basically, Genesys realizes back-to-back testing by executing
both the source model as well as the code generated from it. Both executions pro-
duce traces, the execution footprints, which are then compared. For all artifacts
involved in this testing approach, Genesys consistently employs one single nota-
tion: Test data, test cases, the code generators under test, and even the testing
framework itself are all modeled using the same graphical modeling language.

In [15], we presented a basic version of this testing approach. In this paper, we
further elaborate on it, and we show that the approach scales in at least three
dimensions:

1. Parameterized tests: Tests can be parameterized in order to increase the
overall test coverage.

2. Multi-platform testing: The retention of execution semantics can be validated
even across different target platforms.

3. Multi-meta-level testing: The testing approach can be naturally employed on
multiple meta-levels.

The remainder of this paper is structured as follows: In the following Sect. 2,
we briefly describe the basics of the Genesys Framework along with its facilities
for verification and testing of code generators. Afterwards, Sect. 3 presents the
testing approach employed in Genesys and elaborates on the three dimensions
mentioned above. Finally, Sect. 4 discusses related work, and Sect. 5 concludes
the paper and outlines future work.

2 The Genesys Framework

In this section, we briefly describe Genesys as well as its underlying concepts and
key technologies. Conceptually and technically, Genesys is based on jABC, which
is a general and extensible framework for model-driven and service-oriented de-
velopment. Please note that, for the sake of brevity, the following descriptions
are not exhaustive, but only describe the key concepts required in order to com-
prehend the main contribution of this paper. This introductive section is based
on [17].
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2.1 jABC

jABC [35,22,21] is an extensible framework for model-driven and service-oriented
development. Models built with jABC are called Service Logic Graphs (SLGs),
which basically are directed graphs that represent the dynamic flow of actions in
an application (i.e., its actual business logic). For composing such models, jABC
provides a library of ready-made models and services.

The services contained in this library are called Service Independent Building
Blocks (SIBs). Closely following the ideas of service orientation, a Service Inde-
pendent Building Block (SIB) represents an atomic, reusable and configurable
service, that provides a single functionality of arbitrary granularity. Accordingly,
a SIB’s behavior may, e.g., range from low-level tasks like string concatenation
or displaying a message, to ready-made web services or even the interaction with
highly complex systems, such as Enterprise Resource Planning (ERP) software.
Consequently, as models are assembled from such fully functional building blocks,
SLGs are executable. The largest bundle of SIBs included in jABC’s library is
called the Common SIBs which provide an elementary basis for assembling SLGs.

Apart from services, jABC’s library also contains models, which in turn may
be used as building blocks of other models. Such building blocks are called
macros. Hence SLGs can be hierarchical, which leads to a high reusability not
only of the building blocks, but also of the models, particularly within larger sys-
tems. Typically, the ready-made SLGs contained in the library represent reusable
application aspects (i.e. cross-cutting concerns), such as error handling or secu-
rity management. Those aspects are modeled once: Afterwards, they are part of
the library and can be reused across applications and domains.

jABC provides a tool for graphically modeling SLGs from the repertoire de-
scribed above. The functional range of the tool can be extended by plugins,
which support development phases such as debugging, monitoring, verification
and testing [35].

Model Example. We now introduce the essential concepts underlying jABC’s
models by means of the example SLG depicted in Fig. 2. This SLG is part
of a code generator modeled with Genesys. Its purpose is the generation of
an HTML documentation for an arbitrary input SLG. As mentioned above,
SLGs are directed graphs, which describe a system in a behavioral manner. The
nodes in such a graph are SIBs or, in order to facilitate hierarchical modeling,
macros that point to other SLGs. For instance, in the example model depicted in
Fig. 2, the nodes labeled Generate Documentation Link and Convert Content

To Html are SIBs. Multiple instances of the same SIB can occur in one model:
For instance, the nodes labeled Generate Model Page Entry (Linked) and
Generate SIB Page are instances of the SIB RunStringTemplate.

RunStringTemplate is an example of a SIB that is particularly relevant for con-
structing template-based [7] code generators: The task of RunStringTemplate is
to employ the template engine StringTemplate [27] in order to evaluate a template.
Such a template is basically a text containing placeholders, which are filled with
dynamic content as soon as the template engine is invoked.
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Fig. 2. Example SLG modeling a code generator for HTML documentation

In order to facilitate reusability, each SIB provides a set of parameters for con-
figuring the SIB’s behavior. For instance, the SIB RunStringTemplate takes four
parameters, one of them (called “template”) being the template that should be
evaluated by StringTemplate. For enabling communication among SIB instances
contained in a model (i.e., sharing data), the concrete service implementations
usually keep track of an execution context. Technically, this context is like a hash
map, containing simple key-value pairs. Hence a SIB instance is able to read and
manipulate data that has been stored in the context by other SIB instances.

Besides parameters, each SIB also provides a set of so-called branches, which
reflect its possible execution results. For instance, the SIB RunStringTemplate

has two branches: default, if the template was evaluated successfully, and error,
if the template could not be evaluated (e.g., because of syntax errors). Branches
provide the basis for wiring SIB instances in a model via directed edges, as visible
in Fig. 2. Each edge between a source node and its successor directly corresponds
to a branch defined by the source node.

From a technical perspective, a SIB’s behavior for a concrete target platform is
implemented by means of a so-called service adapter [15]. Particularly, as one SIB
may be executable on multiple target platforms, an arbitrary number of service
adapters can be attached to a SIB. Typically, a service adapter is implemented
in a programming language supported by the desired target platform, so it may,
for instance, be a Java class, a C# class or a Python script.

Decoupling the concrete platform-specific implementations from the SIB de-
scription assures that the SIB itself (and thus any SLG that contains the SIB)
is entirely platform independent. The SIB description is specified by means
of a simple Java class that, e.g., defines the corresponding parameters and
branches [35].

2.2 Genesys

Genesys [15] is a framework for the high-level engineering of code generators
based on jABC. Accordingly, with Genesys, code generators are modeled as
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SLGs, on the basis of a model and service library that is specifically tailored to
the domain of code generation.

The provided services offer typical functionality required for most code gen-
erators, such as type conversion, identifier generation, model transformations
and code formatting. Those services are available as SIBs, so that they can be
used as atomic building blocks for code generator models built with jABC. The
models contained in Genesys’ library realize further typical functionality and
cross-cutting concerns, such as loading and traversing input models. Just like
the atomic services, those models can be directly reused as macros when build-
ing a new code generator. They can also serve as patterns which are instantiated
or adapted for new code generators.

Furthermore, all code generators that have been created with Genesys are
included in the library. The rationale behind this is that each new code generator
contributes to the library, so that the available repertoire and the potential for
reuse is growing continuously. In particular, this facilitates the construction of
entire code generator families by deriving new code generators from existing
ones [15].

An example for such a code generator family is given by the jABC code gener-
ators [16]. Code generators in this family support SLGs as their source language,
and translate them to desired target platforms. Effectively, the purpose of this
code generator family is providing code generation capabilities for jABC. In
sum, this family contains 17 code generators, covering a wide range of target
platforms, such as Java-based platforms (e.g., plain Java classes, Servlets, JUnit
tests), embedded systems (e.g., iOS, the leJOS API for Lego’s Mindstorms, Java
Micro Edition) and further languages and platforms like Ruby, Perl or C#.

Apart from models and services, Genesys also includes facilities for verification
and testing of code generators, which will be addressed in the next section.

Finally, Genesys provides tools that support the usage and the development
of code generators. For instance, a jABC plugin allows the configuration and
invocation of code generators within the jABC tool, and a Maven plugin enables
the integration into a Maven-based tool chain. Tools for generator developers
include, e.g., a benchmark framework for examining the performance of code
generators, and specialized editors for templates.

2.3 Verification and Testing in Genesys

Fig. 3 shows an overview of the techniques that are employed in Genesys in
order to improve the reliability of code generators. As visible in the center of the
figure, those techniques are applied to code generator models as well as to the
contained services.

Above the dashed line, there are those techniques which support the generator
developer while modeling a code generator. The tools that are available for
this purpose require a set of local and global constraints, which are checked
continuously during the modeling activity. In jABC, local constraints are checked
by means of the LocalChecker plugin. The scope of local constraints is typically
restricted to single SIBs in a model. For instance, such checks include whether a
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SIB’s parameters have valid values, or whether all required branches are assigned
to edges in the model. Local constraints are specified by the SIB expert as
corresponding Java code in the SIB. Furthermore, global constraints are checked
by means of model checking [6], which is provided by the jABC plugin GEAR [1].
As this paper focuses on testing, please refer to [15] for more details on local
checking and model checking in the context of Genesys.
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Fig. 3. Verification & Testing in Genesys

Below the dashed line in Fig. 3, testing techniques check whether the code
generators and the contained services work as desired (or stipulated). As the
services are implemented as code, they can be tested the usual way, e.g., by
means of unit tests. For instance, in the case of Java, testing frameworks like
JUnit and TestNG are suitable for this purpose.

In order to enable testing entire code generators, Genesys provides a dedi-
cated framework, which will be introduced in Sect. 3. According to the concept
underlying this framework, test cases as well as test inputs are, just like the code
generators, specified as models in jABC.

Please note the special focus on the simple usage of the supported mechanisms,
especially of those working on code generator models. In order to use the model
checker or Genesys’ testing framework, the generator developer does not have
to learn any new language or specification formalisms. The language used for all
these tools is given by jABC’s SLGs, which is the same language that is used
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for the development of the actual code generators. The only syntactic difference
between those models is that different SIBs are used for their construction.

As constraints and test cases are, once created, added to the Genesys Frame-
work, they form a continuously growing knowledge base for building robust code
generators. Consequently, each new code generator has to fulfill all suitable con-
straints and pass all appropriate tests from the knowledge base, which reduces
the likelihood of repeating known mistakes or bugs.

With this holistic and integrated support of verification and testing, Genesys
provides powerful mechanisms for the development and quality assurance of
robust and reliable code generators, which is (to the authors’ knowledge) unique
among existing code generation frameworks.

3 Testing Code Generators with Genesys

In the following sections, we present Genesys’ testing framework. First, Sect. 3.1
describes how back-to-back testing is realized in Genesys in order to test code
generator from a semantic perspective. Afterwards, Sect. 3.2-3.4 elaborate on
this testing approach by adding three extensions.

3.1 Back-To-Back-Testing in Genesys

According to Stürmer et al., one “can assume that the code generator is working
correctly if invalid test models are rejected by the code generator, [. . . ] and valid
test models are translated by the code generator and the code generated from
this behaves in a ‘functionally equivalent’ way” [36]. In more detail, when testing
a code generator, usually the following aspects are of peculiar interest:

1. Appropriate Support of the Source Language: Does the code generator
accept and process all valid (or desired, if the source language should not
be supported entirely) inputs in the source language? Are any invalid or
undesired inputs rejected?

2. Correct Translation to the Target Language: Does the code generator
produce syntactically valid source code in the target language? Is the exe-
cution behavior specified in the source language retained in the generated
code (execution equivalence)?

3. Parametrization of the Code Generator: Do possible options of the
code generator have the expected effects?

Of course, by its very nature, testing only provides incomplete answers to these
questions (especially to the one concerning the execution equivalence), relative to
the specified test cases. In particular, according to Stürmer et al., the traditional
notions of correctness (as, e.g., employed by many of the verification approaches
for traditional compilers such as [20,29,25]) cannot be directly applied to code
generators, but instead “the definition of correctness has to be based on a notion
of sufficiently similar behavior” [37].
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Fig. 4. Back-To-Back-Testing in Genesys

In order to solve this, Genesys provides a back-to-back-testing [40] approach
based on execution semantics. In place of a specification of the expected output,
this approach uses a given reference semantics for comparison with the actual
execution semantics of the generated code.

In practice, for modeling languages and Domain Specific Languages (DSLs),
this execution semantics is often described by means of natural language, as
for instance performed in the Unified Modeling Language (UML) specification.
However, in order to avoid the ambiguity and imprecision of natural languages,
semantics can also be described formally, e.g., using a denotational [33], opera-
tional [28,18], axiomatic [10] or translational approach [19, p. 136f].

In the context of Genesys’ testing approach, the latter is most interesting:
Following the translational approach, the semantics of a language is given by
a translation into another language with well-known semantics. In model-based
approaches, such a translation can be provided by a model transformation, which
may, e.g., be realized by a code generator.

Fig. 4 shows the testing approach as it has been realized for testing jABC
code generators (cf. Sect. 2.3). As the SLG notation is the source language of
those code generators, the test inputs for the single test cases are again SLGs
(upper left corner of Fig. 4). Such test models are constructed on the basis of
a small set of dedicated SIBs, which serve a special purpose: Upon execution,
each of those SIBs leaves a unique footprint in the execution context (basically
a unique string). After executing a test model, the concatenation of the single
footprints created by all contained SIBs is the execution footprint of the SLG. In
other words, such an execution footprint represents a particular trace through a
test model.

The execution footprint is used for testing the execution equivalence of the
modeled application and its generated counterpart. As depicted in Fig. 4, this
test is performed in three main steps:

1. Direct Execution: The test model is directly executed with the Tracer,
resulting in a corresponding execution footprint. The Tracer plays the role of
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a reference implementation that specifies the semantics of SLGs, in contrast
to describing the semantics in a formal way. Kleppe [19, p. 135] refers to this
as pragmatic semantics.

2. Execution of the Generated Result: The test model is translated to
source code by means of the code generator under test. The resulting source
code is either directly executed with an interpreter or an execution engine,
or a compiler is used to translate it for a particular runtime environment, in
which it can be executed afterwards. Again, both cases yield a corresponding
execution footprint.

3. Test Evaluation: A Matcher compares the two execution footprints ob-
tained in steps 1 and 2. The requirement of a “sufficiently similar behavior”
mentioned above is met by a jABC code generator, if the execution foot-
prints of the modeled application and its generated pendant are equal, i.e.,
if in both traces the same SIBs were executed in the exact same order. Ex-
amining those traces on the granularity of SIBs is a suitable approach, as
SIBs are the atomic building blocks of SLGs. The execution of each SIB is
represented as a part of the resulting execution footprint (which is stable
even across different platforms, cf. Sect. 3.3). The actual implementations of
the SIBs are not considered in the test evaluation, as they are transparent
to the code generator, which is only concerned with producing the code that
orchestrates the SIBs (the glue code). The available implementations of a
SIB have to be tested by means of classical unit testing.
As the final step of the test evaluation, the test tool reports the test results
to the user.

Fig. 5. The testing concept from Fig. 4, modeled in jABC

The testing approach has been realized using jABC, i.e., it has been modeled
as an SLG which is depicted in Fig. 5. Most of the SIBs contained in this model
are macros, hence the test process is hierarchical, and its single phases are refined
by submodels. The basic steps from Fig. 4 are visible in this model:

– The macro LoadAndTraceModels obtains the first execution footprint by
tracing the model, and thus corresponds to step 1.
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– The macros Generate Sources, Compile Generated Sources as well as
the SIB Execute API Method correspond to step 2, because they obtain the
second execution footprint from the generated pendant.

– Finally, the SIB Assert Trace Equals Generate performs the comparison
of the two execution footprints, as defined by step 3 in Fig. 4.

The macros Initialize and PostExecute perform necessary tasks before and
after the actual test execution, such as the creation or deletion of required di-
rectories. The SIB Log Success emits a simple log message once the test ex-
ecution succeeded. Execute API Method executes the generated and compiled
result of the previous steps via an API method. Finally, the SIB Assert Trace

Equals Generate uses JUnit for comparing the obtained execution footprints.
Please note that the reporting of the test results is not explicitly modeled in the
process, as this task is entirely performed by JUnit as the underlying testing
platform.

By means of another code generator developed with Genesys, the JUnit Gen-
erator, this modeled test process is translated to a test script for JUnit.

By using the testing strategy depicted in Fig. 4, all of the three code gen-
erator aspects listed above are tested relative to the available test cases. For
instance, if the code generator produces syntactically invalid code from a valid
test model (aspect 1), the compilation in step 2, and thus the entire test, will
fail. The test for execution equivalence (aspect 2) is realized by comparing the
execution footprints in step 3. Finally, the effects of the code generator’s op-
tions (aspect 3) are tested by multiple executions of the testing procedure with
different configurations of the generator in step 2.

Of course, a necessary precondition for this testing strategy is the predictabil-
ity of the test model’s behavior. A repeated execution of one and the same test
model should always yield the same execution footprint. Consequently, this ap-
proach is not suitable for test inputs with self-adapting or randomized behavior.

Fig. 6 shows some examples of test models from Genesys’ testing framework,
which serve as a basis for corresponding test cases. The special SIBs mentioned
above, which are designed for creating test models and which produce the exe-
cution footprints in the execution context, are marked with the word “Test” on
their icon.

SLG 1 is a simple sequence which tests the correct translation of different
SIB parameters (except for extended SIB parameters like ContextKey, which are
tested in a separate test model). For this purpose, the SIBs contained in this SLG
are equipped with corresponding SIB parameters, such as CheckCollection-

Parameters, which tests different Java collections like ArrayList or HashMap.
SLGs 2–5 test different control flow mechanisms, such as recursion (2), loops (3),
multi-threading (4) and hierarchy (5). As visible from SLG 4, those mechanisms
are also tested in combination: Apart from the SIB for forking and joining the
control flow, this model also contains macros.

Currently, the test suite for the jABC code generators contains 65 of such
test models, which serve as the basis of around 380 test cases, the bulk of which
are proceeding according to the testing strategy described above. Please note



436 S. Jörges and B. Steffen

1

2

3

4

5

Fig. 6. Example SLGs modeling test inputs

again that the test models, the code generators under test, and even the testing
strategy itself are all modeled using SLGs.

3.2 Improving Test Coverage with Parameterized Tests

Beyond the simple examples shown in Fig. 6, test models may resemble complex
programs or systems containing a potentially large number of states. Conse-
quently, it is desirable to maximize the number of execution paths in a test
model considered by the test, rather than just testing one single execution path
per test model.

Parameterized unit tests (PUTs) [39] provide an effective way to support this
and are typically well supported by testing frameworks such as JUnit. PUTs
generalize test cases by means of parameters, which effectively allow running
one single test case repeatedly with different configurations.

In the context of Genesys’ testing approach introduced in the previous section,
PUTs increase the expressiveness of a test: As the approach is based on the
comparison of execution traces (represented by the execution footprints) through
a test model and its generated counterpart, the test result gets more precise when
considering footprints for multiple (ideally all possible) execution paths. If only
one exemplary execution footprint is tested for a test model, there may still
be other paths for which the code generation does not work properly (i.e., no
retainment of execution semantics).
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Furthermore, PUTs increase the reusability of test models, as one and the
same test model can be used to test multiple issues, steered by corresponding
parameterizations.

Fig. 7 shows an extension of Genesys’ testing approach, enabling the use of
PUTs. For this purpose, each test case is associated with a test vector which
provides an arbitrary number of parameter configurations. When running the
test case, the test model is executed repeatedly for each available parameter
configuration. Accordingly, this yields a vector of execution footprints, the size
of which corresponding to the number of available parameter configurations.
Each entry in the vector of execution footprints resembles one execution trace
through the test model.

Afterwards, the same procedure is performed for the code produced by the
code generator (or more general, the model-to-text (M2T) transformation). The
generated code is executed using the same test vector, yielding a second vector
of execution footprints. Finally, the two resulting execution footprint vectors
are compared by the Matcher. To this end, the Matcher compares each entry
of the first vector with the entry from the second vector that resulted from the
same parameter configuration provided by the test vector. For instance, using
the labels from Fig. 7, it compares FP1 with FP ′

1, both resulting from the test
run with parameter configuration P1.
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Fig. 7. Extended testing approach with parameterized tests

Effectively, this extended approach results in a two-dimensional notion of test
coverage:

1. In the dimension of test models, test coverage depends on a good test vec-
tor. This test vector should provide parameter configurations in a way that
maximizes the test coverage according to the desired coverage criterion. For
instance, test coverage could be defined by means of the coverage of states
and transitions that are used when executing the test model.

2. In the dimension of the code generator under test, test coverage is determined
by the available test cases (i.e., test models). Remember that in Genesys,
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code generators are, just like the test models, modeled by means of the SLG
notation. Consequently, test coverage for code generators can be measured
in the same way as for the test models.

A good test suite should maximize test coverage in both dimensions.

3.3 Testing across Multiple Target Platforms

The testing approach described in Sect. 3 is also suitable for testing entire code
code generator families. Several testing artifacts can be reused among code gen-
erator tests, as indicated in Fig. 8.
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Fig. 8. Multi-Platform Testing

For instance, all code generators contained in the family of jABC code gen-
erators (see. Sect. 2.3) share the same source language – SLGs, which are then
translated to code for different target platforms such as, for instance, a Java EE
container, a JavaScript interpreter, or an iOS-based mobile device. As described
in Sect. 2.1, the SLG notation is entirely platform independent. However, in or-
der to be translatable into code that runs on a particular target platform, an
SLG requires an appropriate technical grounding. Such a technical grounding is
established by associating corresponding service adapters for the desired target
platform to all SIBs contained in the SLG. Accordingly, given the availability of
appropriate technical groundings, test models can be reused for testing all code
generators contained in the code generator family.

Moreover, execution footprints can easily be designed in a platform indepen-
dent way. This is mostly a matter of abstraction: Execution footprints have to be
stable abstractions [41] of a model’s execution behavior (i.e., stable across differ-
ent platforms). As described in Sect. 3.1, the Genesys testing approach realizes
execution footprints as simple (sets of) strings, which can easily be compared
across different target platforms.
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Technically, in order to enable this platform independent comparison, each
SIB contained in the test models has to produce the same footprint chunk for
each target platform it supports. For instance, if a SIB provides a service adapter
for Java and another one for Python, the execution of the SIB should always
yield the same execution footprint for both technical groundings. The execution
footprints might, e.g., be stored in a database or in a file, so that they can
be accessed by the Matcher for the comparison. This sine qua non has to be
considered by the SIB developers and has to be validated by means of classical
unit tests, in order to avoid problems like, e.g., the use of different encodings in
the considered target platforms.

As indicated by Fig. 8, test vectors can also be reused across different plat-
forms. Typically, the contained parameter configurations consist of data ranging
from simple string arguments to complex objects or composite data-types. In
order to be utilizable for different platforms, the test vectors have to be pro-
vided in available platform independent formats such as XML or JSON. Please
note that for clarity, Fig. 8 only shows two code generators for two platforms,
however, the approach scales for an arbitrary number of code generators.

3.4 Testing on Multiple Meta-Levels

Finally, the testing approach also works on different meta-levels, as depicted in
Fig. 9. This is due to the fact that in Genesys, code generators are themselves
created in a model-based fashion.
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Fig. 9. Multi-Meta-Level Testing

Again, this advantage is particularly visible in the case of jABC code genera-
tors (cf. Sect. 2.3). This family contains the Genesys Code Generator Generator,
which translates any given code generator modeled with Genesys into a plugin
for the Genesys jABC Plugin mentioned in Sect. 2.3. Basically, such a plugin
is a Java class that implements a particular interface (see [24] for more details
on the Genesys Code Generator Generator and the jABC Plugin’s architecture).
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This Java class can be plugged into the Genesys jABC Plugin, which then allows
the direct execution of the code generator from within jABC.

When applying the proposed testing approach to the Genesys Code Generator
Generator, the test models are code generators modeled with Genesys, i.e., SLGs.
The test vector is given by different jABC models that serve as inputs for the code
generators - in fact, these are the same models that played the role of the test
models in the previous scenarios. In the resulting test suite, each code generator
model resembles a test case for the Genesys Code Generator Generator, and
each test case is executed for each model provided by the test vector.

As visible from Fig. 9, the actual test execution remains nearly unchanged:
The test cases (i.e. the code generators) are first executed by the Tracer, and
afterwards they are translated to code which is also executed, followed by a
comparison of the resulting execution vectors performed by a Matcher.

Technically, there is one difference when applying the testing approach on this
meta-level: In contrast to the test models described in Sect. 3.1, the code genera-
tor models are not specifically created for testing purposes, but instead they are
productive models. This means that the SIBs contained in those models serve
a productive purpose in the code generator, but do not produce any execution
footprints that are required for testing.

In order to produce the execution footprints, the SIBs employed in the code
generators have to be extended accordingly. For instance, this can be achieved
by means of aspect orientation: A suitable aspect is responsible for generating
an execution footprint, and is only executed when the SIBs are run in a test-
ing mode. Another possible solution is the extension of the code generator. In
this scenario, the generated code is augmented by functionality for producing
execution footprints.

In sum, the testing concept is applicable on multiple meta-levels, and is thus
suitable for meta-modeling-based code generation scenarios such as [17]. In the
current Genesys implementation, we did not yet cascade the testing approach
beyond the “Generator Generator” level described above.

4 Related Work

The idea of employing back-to-back testing for code generators can be found
in several publications. As already cited above, Stürmer et al. advocate this
strategy of testing code generators and incorporate it into a “practice-oriented
testing approach for code generation tools” [36]. This testing approach has sev-
eral similarities to the Genesys testing approach presented in this paper, includ-
ing the support for PUTs. However, Stürmer et al.’s approach has a focus on
the automatic generation of test cases (i.e., test models) on the basis of graph
transformation rules [36,37].

Sampath et al. also employ back-to-back-testing in their “behavior directed
testing” [32] approach. This approach proposes the use of behavioral test spec-
ifications, given as finite-state automatons that model action sequences. Those
test specifications plus a metamodel, describing the source language of the code
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generator under test, are used for generating test cases (i.e. test models, test in-
puts and expected outputs), forming a test suite that proceeds in a back-to-back
manner.

In comparison to the work of Stürmer et al. and Sampath et al., the testing
approach presented in this paper does not focus on test case generation, but
is instead designed to fit the idea of Genesys as an extensible code generator
framework. Test models, test vectors and the SIBs that produce the execution
footprints are created by hand, but instantly become part of the Genesys Frame-
work once they are created (cf. Sect. 2.3). In consequence, test developers can
often resort to existing items: Test models and test vectors can be reused as
described in Sect. 3.3, and SIBs for producing execution footprint only have to
be implemented if the target platform under test is not yet supported by the
existing SIBs.

As another important difference, both Stürmer et al. and Sampath et al. did
not consider the code generators themselves being models, thus not allowing
testing on multiple meta-levels (see Sect. 3.4). Genesys also differs in the strong
focus on simplicity [23]: All testing artifacts are specified by means of the SLG
modeling language (cf. Sect. 3.1), which is also used for modeling the code gen-
erators themselves. Thus the code generator developer does not have to learn
another specification language in order to create a corresponding test suite.

Test case generation also has a long tradition in compiler testing [4]. In par-
ticular, grammar-based testing approaches [2,5,11] typically produce test cases
from the grammar (available as, e.g., a context-free grammar or attribute gram-
mar) of the source language. Consequently, such approaches have a focus on
the syntactic aspects, whereas the approach presented in this paper tests code
generators from a semantic perspective.

In the context of jABC and its precursors, there has been a lot of research
concerned with model-based testing in general. A major result is the Integrated
Test Environment (ITE) [26], which provides a holistic approach for testing
modeled systems. According to this approach, test cases and entire test suites
are modeled as SLGs, based on a library of test blocks (i.e., SIBs). Further
research on testing in jABC and its precursors concerns regression testing and
test suite generation via techniques like automata learning [9,31], e.g., for testing
legacy or black box systems such as web applications [30] or Computer Telephony
Integration systems [8].

Motivated by the need for a framework for the automated test of Genesys code
generators, and based on the research experience outlined above, the testing ap-
proach presented in this paper has been developed. Essentially, it extends the
holistic ITE approach by the dimension of code generation. Prior to the intro-
duction of Genesys and code generation in jABC, the ITE exclusively performed
the test execution via direct interpretation of the models.

5 Conclusion and Future Work

In this paper, we presented the testing approach of the Genesys code genera-
tor framework. The employed approach is based on back-to-back-testing, which
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tests the translation performed by a code generator from a semantic perspective
rather than just checking for syntactic correctness of the generation result. We
described the basic testing framework and showed that it scales in three dimen-
sions: parameterized tests, testing across multiple target platforms and testing
on multiple meta-levels.

In particular, the latter is only possible due to the fact that Genesys code gen-
erators are constructed as models. Furthermore, in order to facilitate simplicity,
Genesys consistently employs one single notation for all artifacts involved in this
testing approach: Test data, test cases, the code generators under test, and even
the testing framework itself are all modeled using the same graphical modeling
language.

Several extensions of the testing approach are imaginable for the future. In
particular, automatic test case generation, either “classically” along the lines
described in [37] or based on automata learning techniques [9,31], should be
integrated. Particularly promising are recent results concerning data handling
in automata learning, which range from learning adequate data abstractions [13]
to a fully symbolic treatment of data in terms of register automata [12,14]. These
results suggest that the bottleneck and deal-breaker of model-based testing, the
required test model, can be overcome via integrated testing-based modeling.

Furthermore, a test becomes more expressive if the execution of the generated
code on the real target system is also included in the comparison of the execution
footprints, as proposed in [37] (called processor-in-the-loop, PIL). Currently, all
execution runs in the tests (direct execution of the test models as well as the
execution of the generated pendants) are performed on the system of the devel-
oper who actually runs the tests, or on a corresponding continuous integration
server. For instance, in the context of embedded systems, this demands the use
of appropriate emulators in order to be able to execute the generated code. By
including execution runs on the real target systems in the tests, the complexity
of the overall test setup increases in favor of more expressive results, as the tests
now are also able to detect, e.g., unexpected side-effects of the target system’s
runtime environment.
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Abstract. Metaprogramming with classical compiler technology is sim-
ilar to model-based code generation. We discuss a particular tool, umod,
that generates complex data model implementations in Java, and a par-
ticular aspect of its support for declarative programming: The rewriting
of data models in object-oriented style, based on the visitor pattern, with
support for arbitrary reference graphs and nested collection-valued fields.
We demonstrate that concerns of both compiler theory and model-based
development apply, and that the distinction is overshadowed by a general
commitment to semantic rigour.

1 Introduction: Compilation, Model-Based Code
Generation, and Metaprogramming

The disciplines of classical compiler construction and model-based code genera-
tion are widely acknowledged, different community viewpoints aside, to address
largely the same basic theoretical problems. One commonly cited characteristic
difference in practice is the role assigned to the resulting code artifacts in the
software development process:

On the one hand, a classical compiler is typically expected to take textual
input code written in some more or less well-established programming language
and legible for the programmer, and produce output binary code legible for some
real or virtual machine, in the successful case without requiring or providing
occasion for user interaction. The compiled program is then expected to run
out of the box, or in the case of modular separate compilation, to integrate
with other compiled modules (in traditional obscurity called “object code”) by
a comparatively simple cross-referencing procedure performed by a linker tool.

On the other hand, model-based code generators, in their pure form, feature
input “languages” or model formats that are not programming languages in the
classical sense, because they are defined by metamodelling rather than grammar,
presented and edited visually rather than textually1, and/or arbitrarily “domain-
specific”, that is specifically created for a small, or even singular, set of projects.

1 Although tools that bridge classical grammar technology and modeling frameworks,
such as Eclipse Xtext, are becoming increasingly popular.
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The output is then expected to be fed into the project repository alongside
hand-written code, and integration often requires nontrivial user intervention:
for instance by completing stubs and skeletons, actual editing of generated code
(frowned upon by software engineering purists, but pragmatically very useful),
or using whatever complex interfacing mechanisms of physically disconnected
code fragments the target language provides (such as inheritance in the object-
oriented world).

In this paper, we present a particular effort in the construction of semanti-
cally sound programming language tools. It demonstrates that the distinction
suggested by the above summary is blurred, and by far secondary to the distinc-
tion of rigorous and ad-hoc approaches. By sharing our experience, we intend
to make a modest contribution to the exchange of ideas and techniques between
the two disciplines, and general understanding of their relationship. To this end,
we shall

1. discuss a subfield of classical compiler construction that predates model-
based approaches (or at least their currently associated buzzwords) but has
many requirements, problems and strategies in common, namely the imple-
mentation of generative or meta-programming;

2. present a case study from our own research on metaprogramming tools and
techniques, which builds on a classical compiler constructors’ viewpoint, but
is related to mainstream model-based methodology closely enough to carry
some illuminating analogies.

We shall start our discussion by refuting more precisely the distinction as
outlined simplistically above, giving two particular arguments to the contrary.

The first concerns the often-cited distinction of model inputs having a distinc-
tively higher level of abstraction than mere programs or being characteristically
“non-executable”. This is difficult to justify precisely:

[Automated programming] always has been a euphemism for program-
ming with a higher-level language than was then available to the pro-
grammer. Research in AP is simply research in the implementation of
higher-level programming languages. [9]

The second, related argument concerns the level of abstraction of the back-
end rather than the front-end. Delegating tedious and banal coding tasks to the
computer has, evidently, always in the history of programming technology been
a major goal. Examples of ad-hoc solutions abound, especially in self-application
contexts (for instance see the GNU compiler collection [11]), but more generic
tools (from LISP hygienic macros to parser generators) have also emerged early.

When such program fragment-generating tools, or metaprograms, are seen
by the programmer as an extension of his own productive capabilities beyond
manually typing code in his target language of choice, the essential distinction
between programs and models, and the accidental one between compiler output
being opaque and model-based generator output being transparent also vanish.

Tools functioning this way can benefit technically and semantically from the
vast body of knowledge of classical compiler construction, but at the same time
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face many of the extra requirements and issues addressed by model-based code
generation. We are confident that the investigation of particular problems and
solutions in this area, such as the example technique discussed in the main part of
this paper, can help to leverage the synergies of the complementary approaches.

1.1 The meta tools Approach

The example metaprogramming technique to be discussed below is part of the
meta tools suite [12,7], an extensive collection of programming tools which, by its
overall design strategy, is placed in the middle ground between classical compilers
and model-based approaches.

The meta tools suite is designed to amplify the productivity of software de-
velopment centered around the core technologies Java and XML, by leveraging
high-level, declarative and semantically rigorous concepts, notations and styles.
Technical implementations are provided through a pragmatic combination of li-
braries and style patterns (where the expressivity of the host platform suffices)
and metaprogramming tools (where it must be transcended). Automatically gen-
erated code is human-readable throughout, and interfaced cleanly using the two
modularity concepts provided by the Java host language: type parameterization
and inheritance.

The meta tools have been validated mainly in self- and cross-application as well
as the construction of other compilers, but also in the rapid prototyping of other
medium-scale applications, in particular with emphasis on nontrivial algorithms
and data structures.

2 The Data Model and Processor Generator umod

2.1 Models

A major component of the meta tools suite is the data model definition language
and implementation generator umod. It provides a concise and expressive nota-
tion for specifying complex graph-like data structures. A umod model is a collec-
tion of model elements, represented as Java objects. The umod compiler generates
Java code for the implementing classes from a model specification. Generated
code comes with sophisticated support for many features: element subtyping,
complex collection-valued attributes, pervasive early detection of spurious null
references, inheritable constructor signatures, combinator-based pretty-printing,
reified getters and setters for point-free programming (à la higher-order func-
tional programming), stable deep equality, pattern matching, etc.

The code generated by umod thus emulates many desirable features of algebraic
data types, but comes with the full power of object-oriented programming, in par-
ticular unrestricted access to low-level (imperative) programming constructs if
necessary, and the ability to deal with arbitrary data graphs rather than trees.
We have applied umod to generate abstract syntax representations for several other
code generator tools, both classical compilers and other meta tools components.
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Figure 1 shows a typical example from a real-word compiler construction
project: The umod source text defines a model named Sig, to be translated into
a Java package. The top level model element class Statement is realized as an
abstract superclass of both Assignment and Block, etcetera. Both subclasses
have fields (instance variables) named left, right and stmts, respectively. In
the same text line follows an expression, giving the type of the field, and option-
ally, after the “!” character, a traversal indication (see next section).

MODEL Sig

VISITOR 0 Visitor

VISITOR 0 Rewriter IS REWRITER

// ...

TOPLEVEL CLASS

Statement ABSTRACT

| Assignment

left SEQ Variable ! V 0/0

right Expression ! V 0/1

| Block

stmts SEQ Statement ! V 0/0

Expression ABSTRACT

| Reference

var Variable ! V 0/0

Variable

Statistics

vars Statement -> bool -> SET Variable ! V 0/0 L RR

Fig. 1. Model Definition umod Source (Excerpt)

The syntax of the type declarations and the resulting carrier sets will be
discussed in detail in Section 3.1. For practical programming it is important
that the type constructors be fully compositional, as shown in the last field
definition line of Fig. 1, and are covered by all features listed above.

2.2 Visitors

The umod system also provides code support for, and fine-grained control over,
the visitor style pattern, the standard high-end control abstraction of traversal
strategies for structured data in object-oriented programming [3,8]. The visitor
pattern provides a concise, elegant, safe and robust style of associating data
elements with effects: hence it is a prime example of declarative style (stating
the “what” in user code and delegating the “how” to a lower level such as a
library provider, or in our case, a generator). For data models that represent
programs, the visitor machinery can be seen as the backbone of an interpreter
(even if most actual visitors in a language processing tool will interpret only a
small aspect each.)
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Returning to the example, the annotations following the field types in Fig. 1
at the end of the source line, define traversal plans as a basis for the generation
of visitor code. The slash “/” separates the numeric identifier of a plan and a
number controlling the sequential order when visiting the fields on the same
level of class definition. The second line in the example requests for the source
code of a visitor called “Visitor”, following the traversal plan “0”. (Different
visitors can be derived from one particular traversal plan. The requested flavour
is indicated by a suffix in the declaration, see the next line.) The generated code
is sketched in Fig. 2.

abstract class Visitor { // traversal plan 0/

// ...

void action(final Block b) {

for (final Statement s : block.get_stmts()) // traversal order /0

match(s);

}

void action(final Assignment a) {

match(a.get_left()); // traversal order /0

match(a.get_right()); // traversal order /1

}

}

Fig. 2. Generated Visitor Code (Excerpt)

The generated code realizes the pure traversal, according to the selected
traversal plan. Any desired effects are added by the user, by subclassing and
method overriding. For our example, we consider the task of copy propagation, a
typical basic compiler pass that recognizes assignments which redundantly copy
values, and eliminates them by substitution. The anonymous class in Fig. 3 im-
plements the recognition phase by descending transparently into the depth of a
program model (regardless of the intervening path, for instance via nested Block

elements), processing the model elements of Assignment class, and recording
those that match a suitable pattern.2

The visitor pattern is rooted firmly in the imperative programming paradigm.
That is, its semantics are based on sequential side effects, and rarely investigated
globally and formally. True to the spirit of the meta tools emphasis on semantic
precision, we have addressed the problem, and demonstrated the benefits of a
formal operational model with a nontrivial optimization strategy [4].

2.3 Rewriters

A further issue with visitor is, in their basic form, a strong asymmetry between
declarative input (essentially type-directed node matching, encoded into method

2 Pattern matching of subgraphs is performed by the meta tools component Paisley,
which is tightly integrated with umod. See [14].
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Program copyPropagation(Program prog) {

final Map<Variable, Variable> copies = new HashMap<>();

new Visitor() {

@Override void action(Assignment a) {

// match pattern "Assignment({x}, Reference(y))" against "a"

if (/* success */)

copies.put(x, y);

super.action(a); // top-down traversal

}

}.match(prog);

// ... see below ...

}

Fig. 3. User-Defined Visitor Code

signatures) and imperative reaction (arbitrary method bodies). This resembles
the relation between parser code generated from grammar declarations and in-
terspersed “semantic actions”. As a more declarative way of writing we have
proposed a complementary extension to the visitor pattern that allows for simi-
larly declarative specification of non-destructive data transformation, called the
rewriter pattern [5]. In the language processing scenario, the rewriter machinery
can be seen as the backbone of a compiler pass.

Returning again to the example, the third line in Fig. 1 requests rewriter
code for the same traversal plan. The generated code is much more complex
than in the simple visitor case, because its main purpose is not only to traverse
the model, but also to propagate all changes consistently throughout. Different
flavours are supported, the most sophisticated being the non-destructive type,
combining copy-on-need with aggressive sharing and cycle detection.

Figure 4 shows the generated methods, their call graph, and the possible
intervening overrides by the user. The method rewrite(C2) is the entry point
for the rewriting process for all instances of class C2. It decides by means of a
cache, whether the object has already been successfully rewritten or, otherwise,
whether a clone already exists. The latter case indicates dynamically a cycle
in the model reference graph. Otherwise it creates and memorizes a clone “on
stock”. All these operations employ library methods from the infrastructure.

Then it calls the generated method rewriteFields(C2). This steps through
the fields selected by the traversal plan on class definition level C2, calling
rewrite(F) on each field value recursively. It updates the clone whenever a
different value is returned. In this code, for every field of collection type one or
more program loops are generated, which iterate this process for all values and
create the resulting collection. Additionally rewriteFields() on the superclass
C1 is called, in order to process inherited fields.

On return, rewrite() code checks whether changes in field values have oc-
cured, and returns either the original or the modified clone accordingly. Change
propagation is based not on single objects, but on strongly connected components
(SCCs), as recognized by above-mentioned cycle detection.
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// API infra−structure

rewrite(C2)
rewrite(F)

(collection loop)

user defined
overrides

rewriteFields(C1)

rewriteFields(C0)

rewriteFields(C2)

Fig. 4. Control flow in generated rewrite code and user override; cf. Fig. 2 and 3. Arrow
styles: thick – generated control flow; thin – auxiliary API calls; dashed – interface to
user code.

Again, generated code behaves neutrally; the user defines the required trans-
formation by subclassing and overriding, as indicated in Fig. 4. Both levels of
generated methods can be overridden, and user code may re-use the generated
methods. It also calls the infrastructure library for inquiring and modifying the
state of caches and results. There the most important methods are

– substitute(Object o) – sets o as the result of rewriting the currently vis-
ited model element;

– substitute multi(Object... os) – sets a list (of zero, one or more) model
elements as the rewriting result.

The anonymous class in Fig. 5 uses the information collected by the code in
Fig. 3 to implement the elimination phase of the copy propagation pass.

The rewriter approach to model transformation has many features of high-
level declarative programming, notably: robustness against minor changes in
the model definition, compositional organization of active code into fragments
per model element class, and automated propagation of dynamic changes. But,
in contrast to “pure” approaches such as attribute grammars, the declarative
paradigm is broken deliberately at the level of user-defined code, where the full
powers (and dangers) of the object-oriented host environment are exposed.

This decision, which greatly enlarges the class of expressible rewriting proce-
dures, exposes some technical details. It gives the programmer control over, and
responsibility for,
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Program copyPropagation(Program prog) {

final Map<Variable, Variable> copies = new HashMap<>();

// ... see above ...

return (Program)new Rewriter() {

@Override void rewriteFields(Variable v) {

if (copies.containsKey(v))

substitute(copies.get(v)); // propagate

}

@Override void rewriteFields(Assignment a) {

super.rewriteFields(a) ; // bottom-up rewriting

// match pattern "Assignment({x}, Reference(y))" against "a"

if (/* success */ && x.equals(y)) // now redundant?

substitute_multi() ; // eliminate

}

}.rewrite(prog);

}

Fig. 5. User-Defined Rewriter Code

1. the execution order of rewriting actions in relation to the traversal effected
by generated code (see [15] for a theoretical account);

2. the calling context, which may feature mutable state and stipulate restric-
tions on the type and multiplicity of local rewriting results.

The associated safety conditions can only be expressed partially in the static
semantics of a host language such as Java. Our pragmatic solution maps as much
to the type system as feasible, checks further conditions at runtime for fail-fast
behavior, and leaves more difficult (or undecidable) issues to the user’s caution.

So far, we have validated that rewriter-based programming competes favor-
ably with more heavy-weight model transformation frameworks [5], and de-
scribed very abstract and powerful denotational semantics for “well-behaved”
object-oriented rewriters [15]. The overall goal can be described as allowing all
kinds of user code in principle, but rewarding disciplined use with beneficial
mathematical properties, for a flexible and conscious trade-off between rigor
and agility. The following section explicates this strategy by discussing a novel
problem, namely, how rewriting carries over to collection types.

3 Rewriting in the Presence of Nested Collections

3.1 Model Definitions in umod, Formally

The mathematical notation used in the following is fairly standard. It is inspired
by Z notation [10], as it treats finite maps and sequences as relations with special
properties, and thus allows the free application of set and relation operators and
functions, as listed in Table 1.

Table 2 shows the components for defining the structure of a model, as far as
needed for our problem: C0 is a finite set of predefined classes, e.g. imported from
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Table 1. Mathematical notation

F(A) Finite power set, the type of all finite subsets of the set A.
A → B The type of the total functions from A to B.
A � B The type of the partial functions from A to B.
A →� � B The type of the partial and finite functions from A to B.
A ↔ B The type of the relations between A and B.
ran a, dom a Range and domain of a function or relation.
S � R = R ∩ (S × ranR), i.e. domain restriction of a relation.
r∼ The inverse of a relation
A∗ All possible finite sequences from elements of A, including

the empty sequence.
IDA = {a ∈ A • (a �→ a)}, the identity relation.
r � s The composition of two relations: the smallest relation s.t.

a r b ∧ b s c ⇒ a (r � s) c

system libraries, and Tprim are some primitive data types. Any model declaration
defines a finite set of classes C, the model element classes, i.e. the classes of the
host language objects which together will make up one instance of the model.
The total superclass function extends must be free of cycles, as usual, and well-
founded in C0. F is the set of all field definitions, each related to one particular
model class definition, indicated by definingClass ; the collection of all fields of a
certain class is given by fields .

Each field has a type, given by fieldType . Types are constructed in genera-
tionsas T = Tτ for some arbitrary but fixed number τ . The zeroth generation T0
includes all predefined scalar types Tprim, and non-null references to all external
classes C0 and to all model element classes C. The further generations are made
by applying the following type constructors in a freely compositional3 way:

– OPT Tn, – optional type, the special value null is allowed additionally.
– SET Tn, – power set, contains all possible finite sets of values of Tn.
– SEQ Tn. – sequence, contains all possible finite lists made of values from Tn.
– MAP Tn,1 TO Tn,2, abbreviated as Tn,1 -> Tn,2, – all finite partial mappings

from Tn,1 to Tn,2.
– REL Tn,1TOTn,2, abbreviated as Tn,1 <-> Tn,2, – all finite multi-maps/relations

from Tn,1 to Tn,2.

For every type t ∈ T there is an extension
[[
t
]]
, which contains all permit-

ted values for a field declared with type t. For Tprim and C0 these are inherited
from the host language. For composite umod types the extensions are defined in
Table 2, creating optional types and finite lists, sets, maps and multimaps as
carrier types. The OPT types lead to relaxed getter and setter methods permit-
ting the null value, which is otherwise rejected by throwing an exception. The
other types are realized by specialized instances of the Java collection frame-
work. The generational way of defining T ensures that every value of a type t

3 Except for OPT which is idempotent.
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Table 2. Model Element Classes, Fields and Types of a umod Model

disjoint(C0, Tprim, C, F,Q)

extends : C → (C ∪ C0)

definingClass : F → C

fields(c) =

{
{} if c ∈ C0

definingClass∼(c) ∪ fields(extends(c)) otherwise

fieldType : F → T

∃τ • T = Tτ

T0 = Tprim ∪ C0 ∪ C

Tn+1 ::= Tn | OPT Tn | SEQ Tn | SET Tn | MAP Tn TO Tn | REL Tn TO Tn

.class : Q → C

fields(q) = fields(.class(q))[[
t : Tprim

]]
= // inherited from host language.[[

c : C0

]]
= // imported from libraries.[[

OPT t
]]

=
[[
t
]]
∪ {null}[[

SEQ t
]]

=
([[

t
]])∗

[[
SET t

]]
= F

[[
t
]][[

MAP t1 TO t2
]]
=

[[
t1

]]
→� �

[[
t2

]]
[[
REL t1 TO t2

]]
= F

([[
t1

]]
×

[[
t2

]])
[[
c : C

]]
= {q ∈ Q | .class(q) = c}

is free of cycles.4 It also ensures that all extension sets are disjoint, and we can
assume some global “universe”

[[
T

]]
. This will be used in few formulas for ease

of notation.
Every model is a collection of model elements, i.e. Java objects of model

element classes, i.e. values from
[[
C

]]
. Each of these is identified by a reference or

“pointer value” q ∈ Q, belongs to a certain model class .class(q) and thus has
certain fields fields(q). The state of any model is always equivalent to a finite
map from all fields of live objects to a permitted value for the respective field
type. Field values may directly or indirectly refer to other model elements, and,
in contrast to the well-founded collection-based field value world, the resulting
graph may contain arbitrary cycles.

3.2 Rewriting Collections

The recursive calls to rewrite(), as explained informally5 in Section 2.3, realize
and define the rewriting process on the level of single elements and their classes.

4 This is necessary to impose any mathematical semantics on Java collection objects,
whose behavior is theoretically undefined, and practically unreliable, in the presence
of cyclic containment.

5 For a formal definition see the forthcoming technical report.
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The declarative approach mandates that this point-wise relation is automati-
cally lifted to the rewriting of values v ∈

[[
t
]]
of a collection type t ∈ Tn>0. Here

a potential clash of paradigms can occur: The programmer must rely on the
consistency of the collections created by the rewriter. For this, precise semantics
are required, based on the mathematical notions of sets, sequences, maps, etc.

The host language Java, just like many others, provides an object-oriented
collection framework with interfaces called Set, Map, etc. But the mathematical
metaphor is well-known to be lopsided: Their actual behavior relies implicitly
on the immutability of contained elements, and explicitly on the order of in-
terfering container mutations, such as add/remove or put, respectively. Hence
the imperative implementation of transformation may be in conflict with the in-
tended mathematics, in particular where control is shared between user-defined
and generated code (solid vs. dashed arrows in Fig. 4). It is desirable that the
implementation of

[[
MAP

]]
should detect and signal error conditions whenever

a conflict arises. Unfortunately, the corresponding tests are potentially very ex-
pensive, and there is no support from the standard libraries.

The following discussion makes two contributions:

1. Precise semantics for the rewriting of freely compositional collections are
constructed by (p1) to (p6) in Table 3. Their implementation is in most
cases straight-forward.

2. Second, for the critical case of rewriting maps inference rules are provided
which can help to elide costly tests, and hence speed up a reliable implemen-
tation significantly.

In a first step we totally forget the structure of the model and the traversal
order: We assume the execution of the whole rewriting process has succeeded
and delivers kv, the user defined point-wise map from model elements to (possi-
bly empty) sequences of model elements as their rewriting results, see Table 3.
Additionally, κ =

⋃
(q,q)∈kv

{q} × ran q is a relation which forgets the sequential
order of these lists and flattens them into a multi-map. It is important that κ is
not necessarily a map, nor total. It will be used in the rewriting of all collections
which directly contain model elements, except sequences, which use kv.

The semantics of rewriting collections can now be defined by constructing
mappings, i.e. discrete functions ρn :

[[
Tn

]]
�

[[
Tn

]]
, which follow the generational

structure of types. These mappings are defined as the family of the smallest
relations which satisfy the properties (p0) to (p6) from Table 3.

The “basic trick” is to encode the collection field values and the rewriting
functions themselves both as (special cases of) relations. The extension of the
sequence type

[[
SEQ t

]]
can be encoded as N ↔

[[
t
]]
; sets

[[
SET t

]]
are encoded by

{�} ↔
[[
t
]]
, and for

[[
MAP t TO u

]]
⊂

[[
REL t TO u

]]
there is a canonical encoding

for functions as relations anyhow. This allows the transparent application of the
relational composition operator (�). This does not only lead to compact formulas,
but also induces an intuition which can easily be explained to programmers of
different skills, e.g. using diagrams.

The properties (p0) to (p4) suffice for the construction of ρn, as long the
MAP constructor is not involved. These rewriting functions behave nicely: they
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Table 3. Rewriting Collections

kv :
[[
C

]]
→

[[
C

]]
*

κ :
[[
C

]]
↔

[[
C

]]
ρn :

[[
Tn

]]
�

[[
Tn

]]
isMap(r : A ↔ B)

def⇐⇒ r∼ � r ⊆ IDB

isInj(r : A ↔ B)
def⇐⇒ r � r∼ ⊆ IDA

isTotal(r : A ↔ B, s)
def⇐⇒ s ⊆ dom r

s ∈
[[
Tprim

]]
∪
[[
C0

]]
∪ {�} =⇒ (s �→ s) ∈ ρ0 (p0)

c ∈ C ∧ s ∈
[[
SEQ c

]]
=⇒ (s �→ flatten(s � kv)) ∈ ρ1 (p1)

t ∈ Tn �= C ∧ s ∈
[[
SEQ t

]]
=⇒ (s �→ s � ρn) ∈ ρn+1 (p2)

t ∈ Tn ∧ s ∈
[[
SET t

]]
=⇒ (s �→ s � (ρn ∪ κ)) ∈ ρn+1 (p3)

t1, t2 ∈ Tn ∧ s ∈
[[
REL t1 TO t2

]]
=⇒ (s �→ (ρn ∪ κ)∼ � s � (ρn ∪ κ)) ∈ ρn+1 (p4)

s ∈
[[
MAP t1 TO t2

]]
∧ t1 ∈ Tn ∧ t2 ∈ C ∧ isInj((dom s) � (ρn ∪ κ))

∧ isMap((ran s) � κ)

(s �→ (ρn ∪ κ)∼ � s � κ) ∈ ρn+1

(p5)

s ∈
[[
MAP t1 TO t2

]]
∧ t1, t2 ∈ Tn ∧ t2 �∈ C ∧ isInj((dom s) � (ρn ∪ κ))

(s �→ (ρn ∪ κ)∼ � s � ρn) ∈ ρn+1

(p6)

S ⊂
[[
Tn

]]
∧ D =

⋃
r∈S dom r ∧ R =

⋃
r∈S ran r

∧ isInj(D � ρn−1) ∧ isInj(R � ρn−1) ∧ isTotal(ρn−1, D ∪R)

isInj(S � ρn)
(pInj)

are total, which means that no typing errors can occur. The cardinality of the
user defined rewriting κ (empty, singleton or multiple result) is “automatically
absorbed” by the containing collection. This allows to replace one model element
by zero or more than one in a SET or on both sides of a REL.

A special case is the rewriting of SEQ c for c ∈ C, i.e. rewriting q ∈ Q∗. Here
the sequential order of kv is respected, and the list kv(q) is inserted “flattened”
into the resulting list. This is described by (p1). All other sequences, all sets and
all relations are rewritten by simply composing their encoding relation with the
rewriting relation ρn of their elements’ type generation, see rules (p2) to (p4).

Rewriting MAP t1 TO t2 is the real issue: Consider the map of maps {{a �→ b} �→
c, {a �→ d} �→ e}, where the user’s local rules specify d to be rewritten to b. The
global rewriting procedure then faces a dilemma, with the following options:

– fail dynamically, e.g. by throwing an exception;
– weaken the type of the result from MAP to REL, possibly failing later due to

violated context conditions;
– silently remove both offending pairs;
– silently obey the operational semantics of the underlying object-oriented

implementation, thus creating a race condition where either of the offending
pairs will be overwritten by the other, nondeterministically.
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Obviously, the latter two options are unacceptable from a declarative viewpoint,
and the possibility of dynamic failure implied by the two former should be con-
tained as much as possible by means of precise diagnostics and static checks.

A given map m ∈
[[
Tn+1

]]
=

[[
MAP t1 TO t2

]]
is only guaranteed to be rewritten

to a map m′, as opposed to a general relation, if the underlying rewrite relation

of all range elements is itself a map, and at the same time the rewrite relation

of all domain elements is injective. This is illustrated by the diagram

m ��

(ranm)�(ρn∪κ)
��

m′
��

((domm)�(ρn∪κ))∼
��

where the relational converse of the left-hand side must be a map.
The right-hand sides fall in two different cases: t2 ∈ C covered by rule (p5)

and t2 �∈ C by (p6). The data construction “under the line” is in both cases
simple and basically the same as in (p4) for unrestricted relations, but he pre-
conditions above the line are critical. For (p6) it is clear by construction that
every ρn is a map. (For every type only one of (p0) to (p6) matches, and every
rule adds exactly one maplet.) In (p5) mostly it must be checked dynamically
whether (ranm) � κ is a map, because this depends on the outcome of the user’s
code. But it may be known statically: A variant of generated rewriter code which
does not offer the callback function substitute multi(Object...)will produce
only maps for κ, which are even total.

W.r.t. the left-hand side of the diagram, the check for injectivity (which is the
map-ness of the inverse relation) must always be added explicitly, in (p5) and
in (p6). In case of arbitrarily deep nested collection types on the left side of a
map, the equality tests involved can be very expensive. Therefore it is necessary
to inherit and infer the required properties as far as possible.

For injectivity it is clear that the rewriting function of a SET, SEQ, REL and
MAP type is injective, if the rewriting function(s) of its element type(s) is (/are
both) injective and total. Only then it can be guaranteed that different values
of the collection type will be mapped to different values. This is formalized as
(pInj).

For the start of the chain, when the element type is from Tprim or C0, it is
clear that ρ0 is total and injective, since it is the identity.

For C, i.e. reference values to model elements, map-ness and totality may be
known statically, see remark above, or require explicit testing. Injectivity must
always be tested explicitly. Again, SEQ c with c ∈ C is an exception. In this special
case totality and injectivity of the element level do not carry over to injectivity
of the collection level: e.g., ρ0 = {a �→ 〈x〉, b �→ 〈y, z〉, c �→ 〈x, y〉, d �→ 〈z〉} leads
to ρ1〈a, b〉 = 〈x, y, z〉 = ρ1〈c, d〉.

For the higher levels, the rewriting function ρn>0 is always total by construc-
tion, since (p0) to (p6) cover all types. The only “holes” come from the addi-
tional conditions in (p5) and (p6), which detect the typing errors when maps
would be rewritten to non-maps. We may assume (w.l.o.g.) that in this case
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the inference process described here has been aborted anyhow. So the totality
of the rewriting function ρ may be assumed and thus injectivity is completely
propagated upward the type generations, as expressed in (pInj). In the optimum
case it needs to be checked only once, for κ, and for

[[
SEQ c

]]
� ρ1 with c ∈ C.

For given concrete values, if ρn of the components is not injective, then ρn+1 of
the collections, restricted to those currently alive, still can be. Therefore explicit
tests can become necessary also on higher levels, when the values appear on the
left side of a map construction. These tests can be very expensive.

In the current implementation all these inferences cannot be leveraged, since
the employed standard Java collection implementations do the equals() test for
every “key” inserted into a map anyhow. But if an implementation were chosen
with a “trusted back-door”, which allowed to manipulate the underlying data
structures with fewer tests, then these inference rules (which e.g. prove that
there are never “identical” maps of maps of maps on the left side of a map) will
become highly relevant.

Only rewriting algorithms (more or less similar to ours) which treat all val-
ues as immutable, can give precise semantics to a point-wise modification of a
collection, which is referred to by the left side of a map. With these back-doors
this would be possible in acceptable execution time.

If (domm) � ρn is not injective, then still a map may result when rewriting
the map m, namely iff all values which point to the same value by ρn, also have
the same value by m. (E.g. rewrite map {a �→ 2, b �→ 2} when the user defines
{a �→ a, b �→ a}.) For us is it not yet clear how these “accidentally correct”
results should be handled. This is both an ergonomic and a philosophic design
decision. More practical programming experience is required.

4 Conclusion

Rigorous application of mathematical principles to software design is not just
an academic habit and end by itself; it can have very practical and profound
impact on the reliability of software and the productivity of the development
process. However, rigor comes only easy when a “pure” system can be designed
from scratch. Programming tools and systems that build on legacy environments
can only go so far. A particular danger to rigor lurks in the double standards of
object-orientation with respect to models as transcendental mathematical enti-
ties and real, mutable data structures. We have illustrated this by a case study
on mathematically sound, dynamic rewriting of complex object models. Where
resorting to a pure “sandbox” system is not an option, programming discipline
must be exercised carefully. This is made feasible by generating as much code as
possible automatically. Using inheritance as the canonical object-oriented tech-
nique to interface generated and user code is a generally useful metaprogram-
ming strategy that leverages both a great deal of logical independence of “moving
parts”, and the opportunity to investigate the remaining interferences systemat-
ically, and provide a pragmatic and effective combination of static and dynamic
safety nets.
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4.1 Related Work

Term rewriting has been one of the earliest subjects of basic research and of
practical programming. The foundations have been laid in the early 20th cen-
tury e.g. Church–Rosser theorem, etc. Since then a broad and thorough theory
has evolved. With the upcome of compiler construction in the Nineteen-sixties,
implementations became soon necessary, and a large folklore tradition began,
where term rewriting algorithms were mapped in different ways to concrete pro-
gramming techniques. Our own development is an attempt of systematizing these
well-known programming patterns. Nevertheless, term rewriting in the narrow
and classical sense does of course not touch the two problems treated in this
paper, cycles in the data and freely compositional collection types.

One of the leading implementations and research tools in term rewriting is
Maude. The foundation paper [6] is from 1993 and has hardly lost relevance.

Rho-graphs have been developed for combining pattern matching, as known
from graph rewriting, and lambda calculus. Recently the treatment of cycles and
optimal sharing has been added [1]. We are not aware of any implementation.

A widespread system, well-proven in practice, is Tom [2]. It realizes pattern
matching and term rewriting by compiling a mixture of a dedicated control
language and a high level hosting language, preferably Java. The problems of
cycles and the semantics of maps are not addressed.

All these approaches are different from ours, since they are based on “rewrite-
centered” languages specially designed for these techniques, and therefore can
come to much stronger theoretical results. On the downside the programmer has
to learn a further language and to cope with more or less hidden strategies.

Approaches like the visitor combinators from JJTraveler [13] are different to
ours on the other side of the scale: They are more flexible and ad-hoc configurable
since they involve no code generation at all, but only (slightly invasive) interface
usage. Rewriting and visiting structures with sharing can be implemented on
top, in many cases very elegantly, but is not supported initially. The problem of
maps is not addressed.
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Abstract. SCCharts is a recently proposed statechart language designed
for specifying safety-critical reactive systems. We have developed an
Eclipse-based compilation chain that synthesizes SCCharts into either
hardware or software. The user edits a textual description which is visu-
alized as SCChart and subsequently transformed into VHDL or C code
via a series of model-to-model (M2M) transformation steps. An interac-
tive environment gives the user control over which transformations are ap-
plied and allows the user to inspect intermediate transformation results.
This Single-Pass Language-Driven Incremental Compilation (SLIC ) ap-
proach should conceptually be applicable to other languages as well. Key
benefits are: (1) a compact, light-weight definition of the core semantics,
(2) intermediate transformation results open to inspection and support for
certification, (3) high-level formulations of transformations that define ad-
vanced language constructs, (4) a divide-and-conquer validation strategy,
(5) simplified language/compiler subsetting and DSL construction.

1 Introduction

Sequentially Constructive Statecharts (SCCharts) are a recently proposed state-
chart modeling language for reactive systems [13]. SCCharts have been designed
with safety-critical applications in mind and are based on the sequentially con-
structive model of computation (SC MoC) [15]. The SC MoC follows a syn-
chronous approach, which provides semantic rigor and determinism, but at the
same time permits sequential assignments within a reaction as is standard in
imperative languages. The basis of SCCharts is a minimal set of constructs,
termed Core SCCharts, consisting of state machines plus fork/join concurrency.
Building on these core constructs, Extended SCCharts add expressiveness with
a rich set of advanced features, such as different abort types, signals, or history
transitions. The safety-critical focus of SCCharts is reflected not only in the de-
terministic semantics, but also in the approach to defining the language, building
up on Core SCCharts, which facilitate rigorous formal analysis and verification.
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1. Edit SCT code

2. Select transformationstrans

4. Adjust layout3. Inspect original + transformed SCChart

Textual Entry
Window

Visual Browsing
Window

Layout
Control
Window

Compilation Control Window

Fig. 1. Screen shot of KIELER SCCharts tool annotated with high-level user story for
interactive model-based compilation

The original SCCharts language proposal [13] also presents possible compi-
lation strategies for compiling SCCharts into software (e. g., C code) or hard-
ware (e. g., VHDL). That presentation covers the abstract compilation concepts,
largely specific to SCCharts. However, it gives only little detail and motivation
on our incremental, model-based strategy for realizing these concepts, which is
the focus of this paper now.

To get a first idea of this incremental model-based compilation approach and
the possibilities it offers, consider the user story depicted in Fig. 1: (1) The user
edits a model in a textual entry window. In our SCCharts prototype, this is
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done with the SCCharts Textual Language (SCT). (2) The user selects model-
to-model (M2M) transformations to be applied to the model in a compilation
control window. In our prototype, these transformations are a series of incremen-
tal compilation steps from a textual SCChart (SCT) to C or VHDL. (3) The
user inspects visual renderings, synthesized by modeling tool in the visual brows-
ing window, of both (a) the original SCChart that directly corresponds to the
SCT description, before applying the transformation, and (b) the transformed
SCChart. (4) The user may fine-tune the graphical views of the SCChart in the
layout control window. The visual browsing window is updated whenever any
input in any of the other three windows changes. For a modeler, the possibility
to view not only the original model, but also the effects that different trans-
formation/compilation phases have on the model can help to understand the
exact semantics of different language constructs and to fine-tune the original
model to optimize the resulting code. Furthermore, the tool smith can validate
the compiler one language feature at a time. This compiler validation support is
desirable for any language and compiler; it is essential for safety-critical systems.

In contrast, the traditional modeling and software synthesis user story is: (1)
The user edits/draws one view of a model. (2) A compiler parses the model and
synthesizes code. (3) The user may inspect the final artefacts, such as a C file.
This is appropriate for advanced users who are very familiar with the modeling
language. However, it offers little guidance for the beginner. Also, this hardly
allows to fine-tune and optimize the intermediate and/or resulting artifacts.
Furthermore, and perhaps even more importantly, the compiler developer has
little support here.

Outline and Contributions

The next section covers the SCCharts language, as far as required for the re-
mainder of this paper, introduces the ABRO example, and presents an overview
of the compilation of SCCharts.

A main contribution of this paper, which should be applicable outside of
SCCharts as well, is the Single-Pass Language-Driven Incremental Compilation
(SLIC) approach presented in Sec. 3. We discuss how to determine whether
features can be successively transformed in a single sequence, how to derive a
transformation schedule, guiding principles for defining transformations and how
to build feasible language subsets.

Another contribution of this paper, which is more specific to SCCharts and
synchronous languages, is the transformation sequence from ABRO to an equiv-
alent SCChart presented in Sec. 4.

We give some implementation notes in Sec. 5, summarize related work in
Sec. 6 and conclude in Sec. 7.
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Fig. 2. Syntax overview. The upper region contains Core SCCharts elements only, the
lower region illustrates Extended SCCharts.

2 SCCharts and Compilation Overview

An overview of the SCCharts visual language is shown in Fig. 2. The upper part
illustrates Core SCCharts; the lower region contains elements from Extended
SCCharts.

2.1 Core SCCharts Language Elements

Interface/Local Declarations. An SCChart starts at the top with an interface
declaration that can declare variables and external functions. Variables can be
inputs, which are read from the environment, and/or outputs, which are written
to the environment. At the top level, this means that the environment initializes
inputs at the beginning of the tick (stimulus), e. g., according to some sensor
data, and that outputs are used at the end of a tick (response), e. g., to feed
some actuators. The interface declaration also allows the declaration of local
variables, which are neither input nor output. Declarations of local variables
may also be attached to inner states as part of a local declaration.

States and Transitions. The basic ingredients of SCCharts are states and tran-
sitions that go from a source state to a target state. When an SCChart is in a
certain state, we also say that this state is active. Transitions may carry a transi-
tion label consisting of a trigger and an effect, both of which are optional. When
a transition trigger becomes true and the source state is active, the transition is
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taken instantaneously, meaning that the source state is left and the target state
is entered in the same tick. However, transition triggers are per default delayed,
meaning that they are disabled in the tick in which the source state just got
entered. This convention helps to avoid instantaneous loops, which can poten-
tially result in causality problems. One can override this by making a transition
immediate, which is indicated graphically by a dashed line. Multiple transitions
originating from the same source state are disambiguated with a unique priority;
first the transition with priority 1 gets tested, if that is not taken, priority 2 gets
tested, and so on. If a state has an immediate outgoing transition without any
trigger, we refer to this transition as default transition because it will always be
taken. Furthermore, if additionally there are no incoming deferred transitions,
we say that the state is transient because it will always be left in the same tick as
it is entered. When taken, deferred transitions preempt all immediate behavior
(including leaving) of the target state they are connected with.

Hierarchy and Concurrency. A state can be either a simple state or it can be
refined into a superstate, which encloses one or several concurrent regions (sep-
arated region compartments). Conceptually, a region corresponds to a thread.
A region gets entered through its initial state (thick border), which must be
unique to each region. When a region enters a final state (double border), then
the region terminates. A superstate may have an outgoing termination transition
(green triangle), also called (unconditional) termination transition, which gets
taken when all regions of this superstate have reached a final state. Termination
transitions may be labeled with an action, but do not have an explicit trigger
label; they are always immediate (indicated by the dashed line).

2.2 The ABRO Example

The ABRO SCChart (Fig. 3a and also Fig. 1), the “hello world” [1] of synchronous
programming, compactly illustrates concurrency and preemption. The reset sig-
nal R triggers a strong abort (red circle) of the superstate ABthenO, which means
that if R is present, ABthenO is instantaneously re-started.

The execution of an SCChart is divided into a sequence of logical ticks. The
interface declaration of ABRO states that A and B are Boolean inputs and O is
a Boolean output. The execution of this SCChart is as follows. (1) The system
enters initial state ABthenO as well as WaitAB. When entering ABthenO the entry
action sets the output O to false. WaitAB consists of two regions (threads) HandleA
and HandleB. Transitioning into a superstate does not trigger transitions nested
within that state unless those transitions are immediate. The initial states WA
and WB of both concurrent regions are also entered. (2) HandleA stays in its initial
state WA, until the Boolean input A becomes true. Then it transitions to the final
state DA. Similary, HandleB stays in its initial state WB, until the Boolean input
B becomes true. Then it transitions to the final state DB. (3) When both threads
eventually are in their final states DA and DB, immediately the termination
transition from WaitAB to Done is taken which is setting the output O to true.
(4) The behavior can be reset by setting the input R to true. Then the self-loop
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(a) Original ABRO Extended SCChart

�A B
A,
R

A,
B

O
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B,
R

(b) Possible execution trace with true-
valued inputs above the tick time line
and true-valued outputs below (c) Equivalent Core SCChart after

high-level compilation (expansion)

Fig. 3. ABRO, illustrating Extended and Core SCCharts features and the result of con-
secutive transformations from an Extended SCChart into an equivalent Core SCChart

transition from and to ABthenO is triggered causing a strong preemption and a
re-entering of that state. This causes the entry action to reset the output O to
false. The strong preemption means that the output O will not be true in case
R is true in the same tick when the termination transition from WaitAB to Done
is taken.

The exact semantics of ABRO is expressed by the equivalent ABRO CORE
(Fig. 3c), which only uses Core SCCharts language elements.

The ABRO example (Fig. 3a) illustrates some significant concepts of Core
and Extended SCCharts. Core features are tick-boundaries (delayed transitions),
concurrency (with forking and joining), and deterministic scheduling of shared
variable accesses. Extended features are the concept of preemption by using a
strong abort transition type for the self-loop transition triggered by R and the
entry action for initializing or resetting the output O to false.
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Fig. 4. Full compilation tree from Extended SCCharts to VHDL or C code splits into
a high-level part and two different low-level parts

2.3 Compilation Overview

The full compilation tree is illustrated in Fig. 4, using Statecharts notation. In
a way, this compilation tree, where incremental compilation steps correspond
to the edges, is the dual to the compilation control window (Fig. 1), where the
compilation steps correspond to the nodes.

The compilation splits into a high-level and a low-level part. The high-level
compilation involves (1) expanding extended features by performing consecutive
M2M transformations on Extended SCCharts, (2) normalizing Core SCCharts by
using only a small number of allowed Core SCCharts patterns, and (3) straight-
forward (M2M) mapping of these constructs to an SC Graph (SCG).

An SCG is a pair (N , E), where N is a set of statement nodes and E is a
set of control flow edges. The node types are entry and exit connectors, assign-
ments, conditionals, forks and joins, and surface and depth nodes that jointly
constitute tick-boundaries. The edge types are flow edges (solid edges), which
denote instantaneous control flow, pause tick-boundary edges (dotted lines), and
dependency edges (dashed edges), added for scheduling purposes. The SCG of
ABRO that results after applying (2) normalization and (3) mapping to the core
version (cf. Fig. 3c) is shown in Fig. 5.

The normalization of Core SCCharts restricts the patterns to be one of the
constructs shown in the upper part of Fig. 6, which also illustrates how Normal-
ized SCCharts can be mapped directly to SCG elements.

As illustrated in Fig. 7, the meta models of SCCharts and SCGs are both
fairly light-weight, but quite different. Technically, SCGs are just another rep-
resentation of Normalized SCCharts to facilitate further compilation steps. The
low-level transformation steps (cf. Fig. 4) also involve semantics-preserving M2M
transformations. Then the resulting sequentialized SCG, e. g., is used directly to
derive executable VHDL or C code [13].
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Fig. 5. The ABRO SC Graph (SCG). Dependencies (dashed edges) are used to sequen-
tialize the SCG in further low-level compilation steps.

Region Superstate Trigger Action State
(Thread) (Parallel) (Conditional) (Assignment) (Delay)

Normalized
SCCharts

SCG

Fig. 6. Direct mapping from Normalized (Core) SCCharts constructs to SCG elements
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(a) SCCharts Meta Model

(b) SCG Meta Model

Fig. 7. EMF Meta Models used in SCCharts compilation
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Fig. 8. Extended SCCharts features with their SLIC schedule index and their interde-
pendencies

3 Single-Pass Language-Driven Incremental Compilation
(SLIC)

We propose to break down rather complex compilation/synthesis tasks, such as
the transformation of arbitrary SCCharts that may contain extended features
into Core SCCharts, into a sequence of smaller transformation steps. Each trans-
formation step should handle just one language feature at a time. We call this
single-pass language-driven incremental compilation (SLIC). This approach is
not fundamentally new, the concepts of syntactic sugar and language preproces-
sors are quite related. We here advocate to exploit this paradigm specifically for
purposes of user feedback and tool validation.

The SLIC approach has several advantages:

– Deriving complex language constructs as syntactic sugar from a small set of
elementary constructs allows a compact, light-weight definition of the core
semantics.

– Intermediate transformation results are open to inspection, which can also
help certification for safety-critical systems.

– Existing languages and infrastructures for M2M transformations allow high-
level formulations of transformations that can also serve as unambiguous
definitions of advanced language constructs.

– Complex transformations are broken into individual components, which al-
lows a divide-and-conquer validation strategy.

– The modularization of the compilation facilitates language/compiler subset-
ting.
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When developing a SLIC transformation sequence, two non-trivial questions
arise:

Q1. Does a linear, single-pass transformation sequence suffice?
Q2. If so, how must we order the individual transformation steps?

These questions are answered by the transformation relations presented next.

3.1 Transformation Relations

Given a set of language features F , we propose to define each feature f ∈ F
in terms of a transformation rule Tf that expands a model (program) that
uses f into another, semantically equivalent model that does not use f . More
precisely, Tf produces a model not containing f , but possibly containing features
in Prodf ⊆ F . Also, Tf can handle/preserve a certain set of features Handlef ⊆
F . Note that Handlef must include f .

Based on Prod and Handle, we define the following relations on F :

Production Order: f →p g iff g ∈ Prodf . We say that “Tf produces g.”
Handling Order: f →nhb g iff f /∈ Handleg (“f is not handled by Tg”).
SLIC Order: f → g iff f →p g or f →nhb g (“Tf must precede Tg”).

Now we can answer the two questions from above. On Q1: A linear, single-
pass transformation sequence suffices iff the SLIC order is acyclic. On Q2: We
must order the individual transformation steps according to the SLIC order.

If the SLIC order is acyclic, we can implement a static SLIC schedule, which
assigns to each f ∈ F a schedule index i(f) such that f → g implies i(f) < i(g).

3.2 A SLIC Order for SCCharts Compilation

We now discuss the SLIC order for compiling SCCharts. We focus on the “Ex-
pand Extensions” part (see compilation overview, (1) Expand in Fig. 4), but the
same principles apply to the other compilation steps as well.

Extended SCCharts provide a set F of extended features, listed in Fig. 8. The
Extended SCCharts features are grouped into three categories:

C1: Basic Statecharts Features. Common features of various statecharts di-
alects as known from Harel statecharts [5], e. g., entry actions, exit actions
or strong and weak preemption.

C2: SyncCharts Features. Extended SCCharts are quite rich and include,
for example, all of the language features proposed for SyncCharts [1], e. g.,
synchronous signals or suspension.

C3: Further Features. Extended SCCharts include additional features
adopted from other synchronous languages such as weak suspension from
Quartz [10] or deferred transitions from SCADE. We also categorize History
transitions here for language subsetting purposes (cf. Sec. 3.4), even though
they were part of the original Harel statecharts.



472 C. Motika, S. Smyth, and R. von Hanxleden

The transformation rules are not only used to implement M2M transforma-
tions, but also serve to unambiguously define the semantics of the extensions.
Each such transformation is of limited complexity, and the results can be in-
spected by the modeler, or also a certification agency. This is something we see
as a main asset of SCCharts for the use in the context of safety-critical systems.

That the SLIC order for SCCharts is acyclic can be validated by visual in-
spection of Fig. 8, where all features f ∈ F are ordered left-to-right according to
→p (solid arrows) and →nhb (dotted arrows). We can also see the SLIC schedule,
as each f ∈ F is prefixed with a “i(f).” label that shows its schedule index.

Concerning the feature categories C1, C2, and C3, we observe that inter-
category precedence constraints are only of type C2 → C1 or C3 → C1. Thus
we can modularize our schedule according to categories: First transform away
all features from C3, then all features from C2, and finally all features from C1.

Referring back to the interactive user story depicted in Fig. 1, note that the
compilation control window presents a customizable, slightly abstract view of
the transformations and their dependencies depicted in Fig. 8. The user can
customize this view by collapsing/expanding parts of the compilation chain. In
Fig. 1, the user has chosen to expand the Statecharts node, corresponding to C1,
and has selected the Abort Default transformation to be applied (thus shown in
dark blue). The tool automatically selects all “upstream” required transforma-
tions (light blue) as well, as such that the Abort Default transformation is not
confronted with any language constructs it cannot handle.

3.3 Designing the Transformation Rules

Whether the SLIC order is acyclic or not is not an inherent property of the
language features themselves, but depends on how exactly the transformations
for the features are defined. For example, we might have defined our transforma-
tion rules Tf such that each extended feature f would be transformed directly
into Core SCCharts by Tf alone (Prodf = ∅), while preserving all other features
(Handlef = F ). This would have resulted in an empty SLIC order that would be
trivially acyclic. However, this would have defeated the purpose of modularizing
the compilation, as at least some of the transformation rules would have to be
unnecessary complex.

Instead, we wish the transformation for each f to be rather lean. For that
purpose Tf may make use of other features, as reflected by a non-empty Prodf .
Furthermore, in defining Tf , we may restrict the models to be transformed to
not contain all features in F , meaning that Handlef may be small. However,
care must be taken to not introduce cycles this way. This implies that the more
“primitive” a feature f is, the more features Tf it must be able to handle. Fur-
thermore, there is often a trade-off between on the one hand lean transformation
rules where some features undergo a long sequence of transformations and on
the other hand compact, efficient transformation results.
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3.4 Language Subsetting / Constructing DSLs

Given a language L with a set of language features F , a tool smith may wish to
offer a derived language L′ that offers only a subset F ′ ⊆ F of language features
to the user. For example, the SCCharts language proposal is very rich, which
nicely illustrates how a wide range of different features proposed in SyncCharts,
SCADE etc. can be grounded in a small set of Core SCCharts features. However,
this variety of features may be overwhelming for the user. Also, some features
might be rarely used in practice or not be appropriate for certain domains (such
as, in our experience, suspension), or might be considered non-desirable for some
reasons (such as history transitions, which increase the state space drastically).

Given a feature set F and a production order →p, we say that F ′ ⊆ F is a
feasible subset iff for all f ∈ F ′ and g ∈ F , f →p g implies g ∈ F ′. In other
words, the transformations of the features in F ′ do not produce any features
outside of F ′.

A conservative approach to ensure subset feasibility would include in F ′ all
features whose SLIC schedule index is above a certain value. E. g., for SCCharts,
if we define F ′ such that it includes all features with schedule index 10 and higher,
we would obtain all features in category C1, which would be a feasible language
subset. However, the definition of subset feasibility permits other subsets as well.
E. g., the subset of SCCharts features with indices 11, 14, 15, 16, which includes
Aborts (index 11) and all subsequently produced features, would also be feasible.

4 Example: An M2M Transformation Sequence from
Extended ABRO to Core ABRO

This section uses the ABRO example to illustrate how selected Extended SC-
Charts features are incrementally transformed into Core SCCharts. Further de-
tails for these transformations and generalizations of the presented transforma-
tions are given elsewhere [12].

4.1 Aborts

A hierarchical state can be aborted upon some trigger. The ability to specify high-
level aborts is one of the most common motivations for introducing hierarchy into
statecharts. Aborts are thus a powerful means to specify behavior in a compact
manner, but handling them faithfully in simulation and code synthesis is not
trivial. There are two cases to consider, strong aborts, which get tested before
the contents of the aborted superstate gets executed, and weak aborts, which get
tested after the contents of the aborted state get executed.

Consider the original ABRO Extended SCChart as shown in Fig. 3a. ABthenO
is left by a self-loop strong abort transition triggered by R. This abort takes
place regardless of which internal state of ABthenO is active at the time (tick) of
an abort. In case of nested superstates with aborts, this transformation must be
applied from the outside in, so that inner aborts can also be triggered by outside
abort triggers.
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(a) Simple approach (b) WTO approach

Fig. 9. Transformation for Abort

Fig. 9a illustrates how expanding ABRO results in an equivalent SCChart that
does not use the extended feature Abort anymore. The underlying idea is to make
the internal regions of WaitAB terminate explicitly whenever ABthenO is aborted,
and then use a termination transition to leave WaitAB. Note that strong abortion
has the highest priority and thus the transitions triggered by R have the highest
transition priority 1. Also note that in Fig. 9a the condition R was duplicated 4
times. This may result in multiple evaluations of R and thus violates the Write-
Things-Once (WTO) principle. This may not be problematic if the condition
consists of a single flag (in this case R), but can be an issue if the condition
consists of a costly expression; down-stream synthesis may or may not be able
to optimize this again by applying, e. g., common subexpression elimination.
Fig. 9b shows an alternative transformation that meets the WTO principle by
concurrently evaluating R just once and triggering the abort using an auxiliary
variable trig.
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Fig. 10. Transformation for Entry Action Fig. 11. Transformation for Connector

4.2 Entry Actions

When eliminating the extended abort feature from ABRO, the WTO-variant of
the Aborts-transformation produced an auxiliary variable trig together with an
entry action for resetting it to false. Entry actions also are extended SCCharts
features and hence need to be eliminated during compilation to Core SCCharts.
As indicated in Fig. 8, entry actions must be transformed after aborts. Note that
entry actions do not get moved outside of the state that they are attached to,
hence entry actions can also make use of locally declared variables.

When a state S has an associated entry action A, then A should be performed
whenever S is entered, before any internals of S are executed. If multiple entry
actions are present, they are performed in sequential order. A non-trivial issue
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when defining this transformation is that we would like to allow entry actions
to still refer to locally declared variables. Hence we cannot simply attach entry
actions to incoming transitions, as these would then be outside of the scope
of local variables. Our transformation handles this issue by handling all entry
actions within the state they are attached to. This also handles naturally the case
of initial states, which do not have to be entered through an incoming transition.

The transformation result after further transforming ABRO using the entry
action transformation is shown in Fig. 10. The entry actions were inserted before
the original initial state inside ABthenO. A new auxiliary initial state Init and
connectors for sequential ordering of all auxiliary transitions (one for each entry
action) are used. Entry actions are executed instantaneously, hence all transitions
are immediate.

4.3 Connectors

The last feature to eliminate in order to transform the ABRO Extended SCChart
(cf. Fig. 3a) into a Core SCChart (cf. Fig. 3c) are connectors.

Connector nodes, sometimes also referenced as conditional nodes, link multiple
transition segments together to form a compound transition. Connectors typically
serve to make a model more compact, and to facilitate the WTO principle,
without the introduction of further (transient) states.

Our approach to transform connectors is simply to replace each connector
by a state which must be a transient state that is entered and immediately left
again as part of a transition. Therefore, all outgoing transitions must explicitly
be made immediate. This can be seen in Fig. 11.

5 Implementation

The SCCharts tool prototype1 (cf. Fig. 1) is part of KIELER2 and uses the
KLighD diagram synthesis framework [9] for graphical visualization of textually
modeled SCCharts. We implemented all transformations from Extended SC-
Charts to Core SCCharts, the normalization, the SCG mapping and all SCG
transformations (cf. Sec. 2.3) as M2M transformations with Xtend3. To illus-
trate the compact, modular nature of the M2M transformations, Fig. 12 shows
the Connector transformation described in Sec. 4.3. Xtend keywords and Xtend
extension functions are highlighted. The precondition is checked in line 3, i. e.,
whether the considered state is a connector state. Line 5 sets the type of this
state from connector to normal. Finally, lines 7-9 ensure that all outgoing and
previously implicit immediate transitions of this state are now being set explic-
itly to be immediate transitions. As can be seen, the transformation description
is straight-forward and of limited complexity.

1 http://www.sccharts.com
2 http://www.rt.informatik.uni-kiel.de/kieler
3 http://www.eclipse.org/xtend/

http://www.sccharts.com
http://www.rt.informatik.uni-kiel.de/kieler
http://www.eclipse.org/xtend/
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1 def void transformConnector(State state) {
2 // If a state is of type connector, then apply the transformation
3 if (state .type == StateType::CONNECTOR) {
4 // Set the state type to normal
5 state .setTypeNormal
6 // Explicitly set all outgoing transitions to be immediate transitions
7 for ( transition : state .outgoingTransitions ) {
8 transition .setImmediate(true)
9 }

10 }
11 }

Fig. 12. Xtend implementation of transforming connector states

For modeling SCCharts the textual editor shown in Fig. 1 is used. We gener-
ated it using the Eclipse based Xtext framework which produces a full-featured
textual editor for the SCCharts Textual Language (SCT) with syntax high-
lighting, code completion and built-in validation. More specifically, this editor is
generated from an SCT Xtext grammar description declaring the actual concrete
textual syntax for the SCCharts meta model elements (cf. Fig. 7a).

We defined the SCCharts and the SCG transformations on the EMF meta
models. The extended and the normalization transformations of the high-level
synthesis are so-called “inplace” model transformations because they modify the
SCChart model that conforms to the SCCharts meta model shown in Fig. 7a. The
SCG mapping transformation is defined on both the SCCharts meta model (cf.
Fig. 7a) and the SCG meta model (cf. Fig. 7b). The low-level synthesis, e. g., the
sequentialization of SCGs is again defined as several consecutive inplace model
transformations all only based on the SCG meta model.

6 Related Work

Statecharts, introduced by Harel in the late 1980s [5], have become a popular
means for specifying the behavior of embedded, reactive systems. The visual syn-
tax is intuitively understandable for application experts from different domains
and the statechart concepts of hierarchy and concurrency allow the expression
of complex behavior in a much more compact fashion than standard, flat finite
state machines. However, defining a suitable semantics for the statechart syn-
tax is by no means trivial, as evinced by the multitude of different statechart
interpretations. In the 1990s, von der Beeck identified a list of 19 different non-
trivial semantical issues, and compared 24 different semantics proposals [11],
which did not even include the “official” semantics of the original Harel state-
charts (clarified later by Harel [6]) nor the many statechart variants developed
since then, including, e. g., UML statecharts with its run-to-completion seman-
tics. One critical issue in defining a statecharts semantics is the proper handling
of concurrency, which has a long tradition in computer science, yet, as argued
succinctly by Lee [7], has still not found its way into mainstream programming
languages such as Java. Synchronous languages were largely motivated by the de-
sire to bring determinism to reactive control flow, which covers concurrency and
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aborts [2]. SCCharts have taken much inspiration from André’s SyncCharts [1],
introduced as Safe State Machines (SSMs) in Esterel Studio. However, SCCharts
are more liberal that SyncCharts in that they permit multiple variable values
per reaction as long as the SC MoC can guarantee determinism.

Edwards [3] and Potop-Butucaru et al. [8] provide good overviews of compila-
tion challenges and approaches for concurrent languages, including synchronous
languages. We present an alternative compilation approach that handles most
constructs that are challenging for a synchronous languages compiler by a se-
quence of model-to-model (M2M) transformations, until only a small set of Core
SCCharts constructs remains. This applies in particular to aborts in combination
with concurrency, which we reduce to terminations.

The incremental, model-based compilation approach using a high-level trans-
formation language (Xtend) allowed us to build a compiler in a matter of weeks
and to validate it in a divide-and-conquer manner. Furthermore, the ability to
synthesize graphical models, with a high-quality automatic layout, lets the user
fully participate in this incremental transformation, as illustrated in the interac-
tive model-based compilation user story in the introduction. This fits very well
with the pragmatics-aware modeling approach [14], which advocates to separate
models from their view and to let the modeling tool generate customized views
that highlight certain model aspects. In this light, we might say that the interac-
tive model-based transformation provides the user with different views of one and
the same model that differ in abstraction level, from the possibly very abstract
model designed by the user all the way down to the implementation level.

7 Conclusions

The incremental, model-based compilation approach presented here did not orig-
inate from a desire to develop a new, general approach to synthesis, but rather
was the outcome of building a compiler for a specific language, SCCharts. In
fact, when building this compiler we did intend to re-use existing approaches
and technologies as much as possible. Furthermore, the main purpose of M2M
transformation rules that constitute the compiler was originally to unambigu-
ously define the various extended SCCharts features; we were positively surprised
to find that they also produce fairly compact, efficient code as well [13]. In the
end, the desire to quickly prototype a modular compiler, easy to validate and
to customize, prompted us to follow the SLIC approach presented here; and
Xtext, Xtend, KIELER and KLighD, all part of Eclipse, were the key enabling
technologies for the implementation.

When asking what exactly is “model-based” about the SCCharts compilation
approach, one notices that indeed there are many similarities to traditional com-
pilation approaches. For example, the SCCharts with their hierarchical structure
might also be considered a form of abstract syntax tree (AST), and the SCG is
related to other intermediate formats used in compiling synchronous languages.
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However, the SLIC approach is model-driven in the following aspects:

– The compilation steps are M2M transformations where the resulting model
contains all information. There are no other, hidden data structures.

– For the most part, the intermediate transformation steps are in the same lan-
guage as the original model. We just apply a sequence of language sub-setting
operations, transforming away one feature at a time. There is a change of
language when going from normalized SCCharts to the SCG, but that is
mainly for convenience, for example, to be able to separate the surface of a
pause from its depth. However, even that step would not have been strictly
necessary, we could have stayed with the SCCharts meta model all the way
to the final C/VHDL code. In fact, our first implementation had only one
meta model.

We see numerous directions for future work. For example, we want to explore
further the best ways on how to let the user interact with the compiler and how
to manage the model views. Especially for larger models we want to employ
techniques like reference states to gain modularization and preserve scalability.
Regarding scalability and practicability we hope to report on an ongoing larger
case study soon. In this case study our approach is used for designing and im-
plementing a complex model railway controller. The SLIC order for SCCharts,
depicted in Fig. 8, has evolved over time, and we expect it to evolve further. For
example we currently explore tool support for consistent choices of selected trans-
formations, statically from the SLIC order and dynamically from the features
used in concrete models. Also, we are experimenting with alternative transfor-
mation rules for one and the same feature, where the choice of the best rule may
depend on the original model and overall constraints/priorities. Another active
area is that of interactive timing analysis [4], where we investigate how to best
preserve timing-information across M2M transformations. The main advantage
of our approach is its interactivity. Nonetheless we envision a fully automatic
compilation process including the possibility to include our compiler in scripts
(e. g., a Makefile) or using it online in the Web.
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Abstract. In this paper we discuss an elaborate case study utilizing
the domain-specific development of code generators within the Cinco

meta tooling suite. Cinco is a framework that allows for the automatic
generation of a wide range of graphical modeling tools from an abstract
high-level specification. The presented case study makes use of Cinco to
rapidly construct custom graphical interfaces for multi-faceted, concur-
rent systems, comprising non-functional properties like time, probability,
data, and costs. The point of this approach is to provide user commu-
nities and their favorite tools with graphical interfaces tailored to their
specific needs. This will be illustrated by generating graphical interfaces
for timed automata (TA), probabilistic timed automata (PTA), Markov
decision processes (MDP) and simple labeled transition systems (LTS).
The main contribution of the presented work, however, is the metamodel-
based domain-specific construction of the corresponding code generators
for the verification tools Uppaal, Spin, PLASMA-lab, and Prism.

1 Introduction

Code generators can be regarded as the enablers for model-driven software en-
gineering (MDSE) [1], as they provide the means to bridging the final gap to
the actual use of a system. Despite this importance the state of the art is still
pretty disappointing: typically, models and code generators in MDSE environ-
ments are very generic and only generate partial code which needs to be man-
ually completed. This does not only require a lot of expertise but it also leads
to the typical problems of round-trip engineering whenever the systems evolve.
Domain-specific tools have the potential to overcome this situation by providing
full code generation for their naturally more restrictive contexts.

Metamodeling frameworks support the development of domain-specific mod-
eling environments to great extent, but the development of code generators for
a domain-specific language (DSL) defined in those frameworks is still a compli-
cated task despite the existence of special code generator DSLs, such as Xtend [2]
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for the Eclipse modeling ecosystem [3], the MetaEdit+ Reporting Language
(MERL) [4] in the context of Domain-Specific Modeling [5] with MetaEdit+ [6],
or the IPTG language of Eli/DEViL [7,8]. These code generator DSLs provide
means that extend the possibilities of manual programming with simple string
concatenation or template frameworks, but they are difficult to learn and very
generic: they are specific to the underlying metamodeling framework, but do not
exploit the specifics of the considered problem domain.

The Cinco framework1 [9] aims at aiding in the development of domain-
specific modeling tools in a holistic fashion that in particular comprises code
generation. While the domain’s metamodel and the graphical editor can be fully
generated from higher-level specifications, Cinco additionally provides model-
ing tool developers with a domain-specific code generator language specifically
generated for their tool. In fact, this domain-specific code generation language
can be automatically obtained from the same abstract specification as the GUI.

In this paper we discuss an elaborate case study utilizing this domain-specific
development of code generators within the Cinco meta tooling suite: we show
how to rapidly construct custom graphical interfaces for different kinds of concur-
rent systems, comprising non-functional properties like time, probability, data,
and costs. As a result, the corresponding user communities and their favorite
tools are provided with graphical interfaces tailored to their specific needs.
This will be illustrated by generating graphical interfaces for timed automata
(TA) [10], probabilistic timed automata (PTA) [11], Markov decision processes
(MDP) [12] and simple labeled transition systems (LTS) [13]. The main contri-
bution of the presented work, however, is the metamodel-based domain-specific
construction of the corresponding code generators for the verification tools Up-

paal [14], Spin [15], PLASMA-lab [16], and Prism [17].
We do not know of any other approach that provides the automatic generation

of domain-specific code generator languages. As mentioned before, existing lan-
guages are commonly specific to the used modeling framework, but not specific
to one’s very own metamodel. Cinco’s code generation concepts are based on
preliminary work [18,19] for the creation of transformation and code generation
modeling components for arbitrary Ecore [20] metamodels.

The paper is structured as follows: in order to be able to explain the Cin-

co specification, transformation and code generation concepts using the “PSM”
(Parallel Systems Modeling) case study as running example, the upcoming Sec-
tion 2 motivates and explains it in detail. Section 3 then presents the basic
concepts of Cinco and how the specification of the full graphical editor works.
Section 4 details on the code generation concepts and how the individual code
generators for our target tools are realized, before Section 5 elaborates on the
model-to-model transformation of the various source model types into the PSM
intermediate language. The paper concludes with a summary and plans for fu-
ture work in Section 6.

1
Cinco is developed open source under the Eclipse Public License 1.0. The
framework as well as example projects are available at the Cinco website:
http://cinco.scce.info

http://cinco.scce.info
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Fig. 1.Model-to-code (M2C) generation of multiple model checkers’ input formats from
one general model type after model-to-model (M2M) transformations on the specialized
model types

2 The PSM Case Study

There is a wealth of model checking tools of concurrent systems, each with their
own profile concerning the supported communication paradigm and features like
time, probability, data, and costs. It is therefore not surprising that these tools
come with dedicated input languages and formats, which can be graphical as in
the case of Uppaal or textual, as in most other cases. This makes it difficult
to work with (more than one of) these tools, in particular, as one needs to be
aware of their syntactic peculiarities.

The “Parallel Systems Modeling“ (PSM) case study therefore facilitates Cin-

co to rapidly construct custom graphical interfaces for the types of concurrent
systems supported by those tools. The envisioned realization does not only allow
one to customize the graphical interface, but also to generate tool-specific code
which can directly be used as input in the considered tool landscape. In fact, it is
possible to easily design one’s own graphical language which can then be provided
at low cost with code generators for the input formats of the considered tools.

2.1 Architecture

In our case study project several different model types (or languages) are in-
volved, each of them represented by an own metamodel generated from a Cinco

specification. Fig. 1 illustrates their overall architecture and interplay based on
various model to model (M2M) and model to code (M2C) transformations.
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Graphically designed model structures for LTSs, MDPs, TAs, and PTAs are
transformed into the PSM superset language which faithfully captures all lan-
guage paradigms provided by those ‘source’ languages. This richness implies
some discipline in its use: by far not every syntactically correct PSM model
makes sense. Of course, this does not pose any problems for the PSM models
generated from the graphically designed ‘source’ language models, as they are
consistent by construction. Moreover, constraints reminiscent of a type discipline
can be used to address the consistency problem also directly at the PSM level.

The code generators for the considered target tools are then based on this
PSM language to have one common technical input format that is available
to all code generators. Of course, although the PSM models are consistent by
construction, not each of them can be fed into all the code generators, as not
all considered model types are supported by all target tools. Sometimes unsup-
ported features can be emulated by others, e.g. modeling probabilistic decisions
as nondeterministic choices, but in case this is not possible, the respective code
generator will produce an error message.

2.2 Language Feature Selection

As a starting point, we have begun developing the PSM model type to contain
the following language features of LTSs, MDPs, TAs, and PTAs (further features
can be added at need):

Modules (or processes) define the concurrent components of the system.
Each module is designed with a dedicated automaton.

States are the most fundamental modeling components. Their description
typically comprises a name (i.e. a unique identifier), and additional information
in terms of atomic propositions like being a start or an accepting state.

Data is stored in local variables (that belong to a module) or global variables.
They can be updated with arbitrary expressions using assignments. We assume
a C-like syntax for the expressions. Integer and Boolean variables are currently
available, with the former one having a defined range (usually smaller than
[0,MAXINT]).

Time is modeled using dedicated clock variables that all increase at the same
pace. Clocks are always local and can only be reset (i.e. set to 0 using an assign-
ment).

Guards and Invariants are expressions over all the variables that control
the possible evolution of a module. Guards are assigned to edges and control
which transitions are possible in a given a state. Invariants are assigned to a
state and limit the evolution of clock variables in this state.

Probability is frequently used in models to represent uncertain behavior.
It can be inserted using probabilistic decision nodes that split a transition into
several outcomes according to probability weights. Additionally, a rate can be
assigned to each state to model an exponential distribution for modeling the
progress of time.

Nondeterminism is allowed whenever two transitions are enabled at the
same time.
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Fig. 2. Train 2 waiting for Train 1 to pass the gate

Arbitrary Code in form of C functions is realized in two ways. In the first
case a dedicated node type contains a String attribute where the function body
can be inserted. The second case makes use of Cinco’s prime reference concept:
Externally defined components can be placed in the model via drag&drop, creat-
ing a different kind of node that is automatically linked to that external element.
This way arbitrary external libraries of modeling components can be included
without the need to change the tool or metamodel. This closely resembles the
concept of Service Independent Building Blocks (SIBs) from jABC [21].

Communication between processes is realized with channels on via tran-
sitions may be synchronized. They are declared globally and can be of three
types:

– Pairwise (handshake) synchronization involves two transitions (possibly iden-
tified with input and output modalities added to the channel) chosen among
the possible synchronizations.

– Global synchronization involves all the modules that may synchronize on the
channel. Thus it may introduce deadlock in case one of the involved modules
is not ready to participate in the corresponding communication.

– Broadcast synchronization involves a sender (identified with an output modal-
ity) that synchronizes with all the enabled transitions labeled by an input
of the channel.

2.3 Example System

We consider a classical rail road example where two tracks are merged into one
at a gate section and a controller of this system must ensure that trains arriving
from either track will never collide by blocking one of the trains until the other
one has passed (cf. Fig. 2). The time for passing the gate would in reality depend
on several factors (e.g. length, speed, acceleration/deceleration etc.), but for our
simplified example model we consider the amount of wagons the single factor
that determines the passing time.
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3 High-Level Graphical Editor Specification

Technically, our solution is realized using the Cinco meta tooling suite [9], a
framework based on various libraries from the Eclipse ecosystem [22,20,3]. Cin-

co is designed to ease the generation of tailored graphical modeling tools from
specifications in terms of metamodels.

Metamodeling is the modern answer to the development of domain-specific
tools. However, although popular metamodeling solutions – such as the Eclipse
Modeling Framework (EMF) and its multitude of accompanying plug-ins – are
quite rich in the provision of code generation and transformation features, it
is still tedious to develop sophisticated graphical modeling tools on their basis.
The goal of Cinco is to simplify this development by providing means to specify
a tool’s model structure as well as its graphical user interface (and partly also
semantics) in an abstract fashion that suffices to automatically generate the
whole corresponding modeling tool.

The key to obtaining this degree of automation is the restriction of EMF’s
generality to focus on graph-based models consisting of various types of nodes
and edges. With this reduction, Cinco follows the “easy for the many, difficult
for the few”-paradigm that dictates the bulk of problems to be solvable very
easily [23]. In our experience, it is surprising how far this paradigm carries and
how seldom we need to resort to the difficult for the few part.

At the core of each Cinco product2 lies a file in the Meta Graph Language
(MGL) format, which is in fact a domain-specific language for the specifica-
tion of model types consisting of nodes and edges.3 Listing 1.1 shows an ex-
cerpt from the PSM.mgl: the specified node type State as well as the edge
type GuardedTransition have several declared attributes that allow to con-

2 With the term Cinco product (CP) we denote a modeling tool that is developed
using Cinco.

3 This actually makes MGL a meta modeling language or, synonymously, a meta-
metamodel for Cinco products.

1 @style(state , "${number }")
2 node State {
3 attr EInt as number
4 attr EBoolean as isStartState
5 attr EString as invariant
6 attr EString as exponentialRate
7 }
8

9 @style(guardedTransition, "${guard}", "${channel }")
10 edge GuardedTransition {
11 attr EString as guard
12 attr EString as channel
13 sourceNodes (State)
14 targetNodes (State , Assignment , ProbabilisticDecision)
15

16 }

Listing 1.1. Excerpt from the MGL file
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figure their instances. Furthermore, the valid source and target node types are
configured for the GuardedTransition. MGL allows arbitrary annotations to be
added to the elements, which are interpreted by meta plug-ins during the Cinco

tool generation process.
The annotation @style is used to refer to an element from the second core DSL

of Cinco: the style definition file. Elaborating on the possibilities to describe the
nodes’ and edges’ visual appearance in the generated editor is beyond the scope of
this paper.4 Just note that it is possible to combine different shapes, colors, line
types etc. Beyond this static declaration it is also possible to add dynamic ele-
ments. For instance, the contents of attributes can be passed as a parameter to the
style (as done with the parameters guard, channel, and number). Those parame-
ters are formulated in the Java Expression Language (EL). They are evaluated at
runtime and live updated whenever the attribute values change. Furthermore, it
is possible to have arbitrary AppearanceProviders implemented in Java, which
we, for instance, use to dynamically show a small arrow tip in the top left corner
of a State node’s visual representation in case isStartState is true.

Overall, the Cinco PSM tool specification that fully realizes the model and
its editor only consists of 84 lines of MGL code, 155 lines of Style code, and
19 lines of Java code. In contrast, the generated Graphiti editor alone5 already
consists of over 7,000 lines of code. Of course, generated code tends to be a bit
verbose, but it is fair to say that Cinco reduces the amount of code writing by
an order of magnitude. Moreover, the required code is much simpler and better
structured. In particular it does not require special knowledge about Eclipse and
the Graphiti APIs.

Figure 3 shows a screenshot of the generated editor. It consists of some com-
mon Eclipse parts (called views), such as the Project Explorer, Miniature View,
Console, and Properties. In the center is the main editor area showing the model
for our train example. It consists of three Module containers, one for each train
and one for the gate. The gray circles are State nodes, of which the one with the
arrow tip marker depicts the initial state of the module. The small gray squares
represent probabilistic decisions and the blue rectangles are variable assignments.
Small circles with different background colors represent clocks, channels, and
variables. Variables can either be placed within a module to become local vari-
ables, or outside, directly on the diagram canvas to become global variables.
Channels are only allowed outside while clocks must be local.

The train model works as follows: in the transition from the initial state 0 to
state 1 the train’s approach is signaled via channel appr1, the local timer x is
reset and the length of the train, here modeled as a random decision, is assigned
to the variable l. If the train is signaled to stop within 10 time units, it will go
to state 2 and wait for the resume signal on channel go1. Otherwise, it can pass

4 Please refer to [24] for a detailed explanation on the Meta Style Language (MSL)
and the other possibilities of the GUI generator.

5 The Ecore metamodel is generated as well, together with the Java code that imple-
ments certain EOperations. However, much of the corresponding over 6,000 lines of
Java code are generated by the EMF framework without Cinco support.
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the gate. The second train is modeled analogously. The gate will transition from
state 0 to 1 as soon as one of the two trains arrives. If the second train arrives
before the first one has left, the local variable wait is set to true. In the waiting
state 1, as soon as the first train has left, the go signal is given to the other one,
either via state 2 or 4.

4 Code Generation

So far we have explained how Cinco can be used to easily construct a meta-
model and a graphical editor for the PSM superset language. In order to intro-
duce semantics, a code generator needs to be realized, providing a translational
semantics for PSM models. In fact, we will have three different code generators,
one for each target language.

Cinco comes with a meta plug-in for code generation that interprets a
@generate annotation in the MGL file. It generates the required Eclipse code, so
that the programmer of the generator does not need to take care of any Eclipse
APIs. A Generate button is added to the action bar of the Cinco product that
triggers the generation of the currently edited model. The generator realiza-
tion has to implement a certain interface and is then directly provided with the
model, leaving all the Eclipse details transparent to the developer.

4.1 Domain-Specific Code Generation

The (main) metamodel of a Cinco product is generated from the MGL speci-
fication. This means that we have more precise knowledge on the metamodel’s
structure than in the standard, purely Ecore-based EMF settings: models always
have a graph structure with different node, container and edge types. Thus, the
Cinco metamodel generator is directly enabled to generate a library of domain-
specific functionality that allows for systematically traversing a given model
instance. For example, the following operations are directly supported with a
metamodel generated with Cinco:

– Retrieval of successors and predecessors of a given node element. Those
specifically generated getters can even be parameterized with a node type
to only retrieve successors and predecessors of a given type.

– Access to the source and target nodes with correctly typed getters for every
edge type.

– Type sensitive access to all the inner modeling elements of a container (i.e.
nodes or other containers).

Please note that these are only some examples and that we constantly enrich
the Cinco generator with new domain-specific operations. Of course, similar
functionality can also be directly implemented for Ecore metamodels that are
not generated with Cinco. However, this would require a lot of tedious code com-
prising of “instanceof” checks and type casting. In contrast, the Cinco approach
allows for the fully automatic generation of this domain-specific functionality.
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Within the Cinco approach we provide domain-specific functionality for the
development of code generators in a twofold fashion: for Java programmers on
the one hand a dedicated API is generated. Technically, this is for the most part
realized by generating special EOperations and their according implementations
into the metamodel. On the other hand, for domain experts who are not necessar-
ily programmers, we generate the same domain-specific functionalities as mod-
eling components for the jABC process modeling framework [21] (cf. Fig. 4(a)).
The resulting Service-Independent Building Blocks (SIBs) can then easily be
combined with SIBs for output generation (e.g. for StringTemplate [25] or Ve-
locity [26]; see also [18]) into a modeled code generator. Figure 4(b) shows an
excerpt from the modeled Prism code generator (cf. upcoming Sec. 4.2) using
the generated PSM components as well as some generic components for text gen-
eration with StringTemplate (ST on the icon), file I/O, and common tasks such
as iterating over elements and error processing. The first model shows the top
level of process hierarchy (i.e. the generator root model), while the second one
exemplary shows one expanded submodel. While the gain for non-programmers
using the jABC is obvious, we think that also people who know programming
(which probably can be assumed for developers of modeling tools) strongly ben-
efit from our domain-specific API, as it hides the internal Eclipse structures and
is thus also service-oriented in spirit.

Each of the following subsections details on one code generator. As Prism

and PLASMA-lab use the same input format, they are treated in one section,
followed by the Uppaal generator and the Promela generator. The code gen-
erators each assume that certain restrictions apply to the model, as the PSM
language allows us to build models none of the code generators can handle any-
more. Of course, if a new target platform supports more features included in
PSM, they would be easy to capture by a corresponding code generator.

4.2 Prism/PLASMA-Lab

The Reactive Module Language (RML) is a textual language based on the Re-
active Modules of Alur and Henzinger [27]. The language has been introduced in
the model-checker Prism [17] and is also used by the statistical model-checker
PLASMA-lab [16]. It describes a set of concurrent components with four dif-
ferent semantics:

1. Discrete time Markov chains (DTMCs).
2. Continuous time Markov chains (CTMCs).
3. Markov decision processes (MDPs).
4. Probabilistic timed automata (PTAs).

Each semantics imposes some restrictions on the syntax of the language, al-
though the main elements described below are similar. We present briefly the
syntax of the language6 and then discuss the generation of RML models from
our framework.

6 See http://www.prismmodelchecker.org/ for a more complete description.

http://www.prismmodelchecker.org/
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In RML each component is modeled as a module that consists of a set of
local declarations of integer and Boolean variables, and a set of commands. A
command is enabled by a guard and then performs a probability choice among a
set of updates. An update consists of a set of assignments that update the values
of the variables of the model. Commands can be a assigned to a channel, in which
case a global synchronization must be performed between all the modules that
communicate with the channel. In CTMCs probability choices are governed by
rates according to a race semantics, whereas in DTMCs, MDPs and PTAs only
probability values may be used. The sum of the probabilities of a command must
then be equal to 1. RML also allows to model PTAs by introducing real-time
clocks as a new type of variables and an invariant expression to each module.

To generate a RML model from our framework, each state is assigned to a
value of the state variable of the module. Then each meta-transition from a state
to a set of states, passing trough assignments and probability node, is translated
in a command. In this process assignments that happen before a probability
node are copied in each update. This operation is only safe if these assignments
prevent any side effects in the value of the probabilities. Finally, if the model
is not a CTMC, all the probabilities of leaving a probabilistic decision node are
normalized such that in the generated code the sum of the probabilities is always
equal to 1. The resulting generator is able to produce valid RML models from
our meta-model under the following restrictions:

– Synchronizations are only global.

– Clocks are only used in the PTA model.

– Synchronized transitions only update local variables.

Example 1. From the model presented in Fig. 3 we generate the following RML
code:

module Train1

x : clock;

l : [0..4] init 0;

s : [0..4] init 0;

invariant

(s=1 => x<=20+l)&(s=3 => x<=15+l)&(s=4 => x<=5+l)

endinvariant

[appr1] s=0 -> (2)/((2)+(1)):(s’=1)&(x’=0)&(l’=4) +

(1)/((2)+(1)):(s’=1)&(x’=0)&(l’=2);

[stop1] s=1 & x<=10+l -> (s’=2);

[] s=1 & x>=10+l -> (s’=4)&(x’=0);

[go1] s=2 -> (s’=3)&(x’=0);

[] s=3 & x>=7+l -> (s’=4)&(x’=0);

[leave1] s=4 & x>=3+l -> (s’=0);

endmodule
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Fig. 5. UPPAAL model of the train

4.3 UPPAAL

Uppaal [28] allows us to design timed automata models, possibly extended with
variables and stochastic features, and load them from XML files. A model in
Uppaal consists of a set of templates, each modeled by a timed automaton. Local
and global variables can be integers, Booleans, and clocks. A timed automaton
consists of a set of control states, called locations, to which may be assigned
an invariant expression and an exponential rate. Uppaal also allows us to use
probabilistic decision nodes that are used by the statistical model-checker. Then
two types of transitions are possible:

– Transitions between two states, or from a state to a probabilistic decision
node, may comprise a guard expression, a synchronization channel and a set
of assignments.

– Transitions from a probabilistic decision node to a state may comprise a
probability weight and a set of assignments.

We can generate Uppaal models in XML format if the following restrictions
apply:

– The model is only a PTA.
– Synchronizations are pairwise or broadcast, with input and outputmodalities.

Example 2. From the model presented in Fig. 3 we generate the Uppaal model
of Fig. 5. The semantics of colors in this model are the following: invariants are
drawn in purple, guards in green, synchronization in light blue, assignments in
blue, probability weights in brown and exponential rates in red.

4.4 Promela

Promela (short for Process Meta Language) is the input language for the Spin
software model checker [15]. Due to the popularity of Spin, various other tools
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have been adapted to accept Promela input as well (for instance LTSmin [29]),
making it an attractive choice especially for the comparison of different model
checking tools.

The syntax of Promela closely resembles that of the C programming lan-
guage, augmented by inter-process communication constructs such as buffered or
unbuffered channels, atomic sections etc. Moreover, unlike C, Promela allows
for non-deterministic choices via statements with non-disjoint guards.

A Promela model consists of one or more process types or process behaviors
(proctypes), which may be instantiated to form running processes. These pro-
cesses can communicate via (buffered or unbuffered) channels or shared (global)
variables. A process type can be thought of in analogy to a C function that,
when instantiated, is executed in parallel with other running processes. Like
C functions, process type declarations may be parameterized, with the actual
arguments supplied at instantiation time.

While this would theoretically allow for an unbounded number of instantiated
processes (technically, the number of simultaneously running processes is lim-
ited to 255 in Spin), we do not make use of the possibility of run-time process
instantiations: the notion of modules as set out in Sec. 2.2 requires that there
exists an a-priori known, fixed set of parallel components (processes). For process
type declarations which are used for a single process instance only, Promela

provides the active keyword as a prefix to proctype declarations to denote that
the corresponding process type is to be instantiated once at the beginning of the
program.

Unlike the languages presented in the previous sections, Promela neither
supports time nor probabilities. While there do exist extensions for both aspects
(Probmela [30] for probabilistic processes and RT-Promela [31] for real-time
properties), for this case study we chose to focus on the original Promela due
to the popularity of the Spin model checker.

In order to generate Promela files, the model has to fulfill the following
prerequisites:

– no clocks, invariants, or exit rates occur in the model,
– synchronizations are pairwise only, with input and output modalities,
– each guard only contains either an expression over variables or a synchro-

nization via a specific channel, but not both simultaneously.

The last restriction is due to the fact that in Promela, evaluating the syn-
chronization expression chan ? MSG is not side-effect free, and thus cannot be
performed in conjunction with a simple expression such as x >= 10. Note that
we do not forbid probabilistic choices in the model. However, as probabilities can-
not be expressed in Promela, those will be realized as simple non-deterministic
choices.

The translation from an automaton-like structure, as is the modeling for-
malism for process behavior in our tool, to Promela code can be realized in a
fashion similar to that for Prism described in Sec. 4.2: each process has a (local)
integer variable indicating the current state of the process, initialized to the value
corresponding to the respective initial state. The process body then consists of a
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do...od block, executing transition statements (assignments, non-deterministic
choices, and state changes) according to the current state and satisfied guards.
In order to be consistent with the RML notion of updates (cf. Sec. 4.2), each
sequence of transition statements is wrapped in an atomic block.

5 Model-to-Model Transformations

Cinco allows for the easy creation of many different graphical modeling tools.
Thus, the so far presented MGL specification of the modeling language PSM can
simply be stripped down to the needed parts, fed into the Cinco tool generator,
resulting in the automatic creation of a dedicated modeling tool for any language
L ⊆ PSM . This could, for instance, result in an LTS modeling tool that only
contains states and transitions with channels. In fact, the required changes to
the code generators would only be marginal, as one only needs to remove those
parts of the generator code that handle the no longer present artifacts, like
clocks, assignments, variables etc.

The resulting tools look very similar to the full PSM modeler as presented
in Fig. 3. The only immediate difference is that the components palette on the
right contains fewer elements and that the elements when configured in the
Properties view contain fewer parameters. Even though these differences might
look marginal at first sight, they may drastically ease the working with the
specialized tools.

However, manually changing the code generators is impractical, especially
if extensions to PSM are made that would require all derived code generators
to be manually adapted again. Therefore, as already introduced before (cf. also
Fig. 1), we use only one code generator base and provide model-to-model (M2M)
transformations that translate other model types into PSM. As PSM is designed
to provide all the required features, these transformations turn out to essentially
be simple injective mappings, which may e.g., require renaming channels into
alphabet symbols for labeled transition systems.

Figure 6 illustrates this concept in more detail for labeled transition systems.
There exist two different MGL specifications and thus two different metamodels
(PSM.ecore and LTS.ecore) are generated. As explained before, the code gen-
erators operate on the PSM metamodel. Thus the domain-specific LTS models
need to be transformed into PSM models, a fact which is hidden to the user,
who is only confronted with states and transitions.

Of course, the here depicted LTS instance (Trains.lts) does not contain time,
probabilities or variables. Thus, the resulting PSM instance (Trains.psm) se-
mantically differs from the one presented in Fig. 3. It just models the gate as a
semaphore preventing both trains to enter simultaneously. It can, however, now
be translated into all three target languages.

Technically, the realization of the M2M transformations is a special case of the
code generator concepts presented in Sec. 4.1. The only difference is that instead
of generating the domain-specific library of components for one MGL model, we
now have two, and that instead of reading one model type and writing text,
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Fig. 6. Multiple products of the PSM family realized as subsets of the full language

we now read one model type and write the other. We are currently investigating
ways how these transformations can also be created automatically.

6 Conclusion

We have presented the PSM case study, a generic conceptual framework to
rapidly construct custom graphical interfaces with corresponding code gener-
ators for multi-faceted, concurrent systems that is based on the Cinco meta
tooling suite. The point of the Cinco project is the explicit support of domain-
specificity in order to simplify the tailored tool development. The impact of
this approach has been illustrated by generating graphical interfaces for timed
automata, probabilistic timed automata, Markov decision processes, and simple
labeled transition systems, and the corresponding metamodel-based construction
of code generators for Uppaal, Spin, PLASMA-lab, and Prism.

Key to the case study is the development of a ‘unifying’ super-set parallel
systems modeling language (PSM) which serves as a ‘mediator’ between the
multiple ‘source’ modeling languages and the various targeted input formats
for model checking tools. This does not only allow for the generation of the
domain-specific tools, but it also provides a means for systematically studying
the differences and commonalities of the various system scenarios.

PSM is designed to allow the easy specification of model-to-model transforma-
tions from the source models. Moreover, our Eclipse-based framework provides
automatically generated domain-specific code that frees the developer of the
code generator from dealing with intricate Eclipse APIs. We envision that these
features can be combined to further increase the potential of automatic code
generation in order to also automatically generate the required model-to-model
transformations into the intermediate PSM language.
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Abstract. The paper reviews active automata learning with a particu-
lar focus on sources of redundancy. In particular, it gives an intuitive
account of TTT, an algorithm based on three tree structures which
concisely capture all the required information. This guarantees minimal
memory consumption and it drastically reduces the length of member-
ship queries, in particular in application scenarios like monitoring-based
learning, where long counter examples arise. The essential steps and the
impact of TTT are illustrated via experimentation with LearnLib, a free,
open source Java library for active automata learning.

1 Introduction

Most systems in use today lack adequate specification or make use of under-
specified or even unspecified components. In fact, the much propagated compo-
nent-based software design style typically leads to under-specified systems, as
most libraries only provide partial specifications of their components. Moreover,
typically, revisions and last minute changes hardly enter the system specification.
This hampers the application of any kind of formal validation techniques like
model based testing or model checking. Active automata learning [4] has been
proposed as a technique to apply model-based techniques in scenarios where
models are unavailable, possibly incomplete, or erroneous [8,26].

Characteristic for active learning automata learning is its iterative alternation
between a “testing” phase for completing the transitions relation of the model ag-
gregated from the observed behavior, and an equivalence checking phase, which
either signals success or provides a counterexample, i.e., a behavior that distin-
guishes the current aggregate (called hypothesis) from the system to be learned.

This technique, which originally has been introduced for dealing with formal
languages, works very well also for reactive systems, whenever the chosen inter-
pretation of the stimuli and reactions leads to a deterministic language. For such
systems, active automata learning can be regarded as regular extrapolation, i.e.,
as a technique to construct the “best” regular model being consistent with the
observations made.

In this tutorial we present the state of the art of practice-oriented, active au-
tomata learning by using LearnLib,1 a free, open source Java library for active

1 http://www.learnlib.de

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part I, LNCS 8802, pp. 499–513, 2014.
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automata learning, as a means to infer models of software systems. The open
source version of LearnLib is the result of 10 years of research and development:
It is the result of a redesign and re-implementation of the closed source Learn-
Lib [24,28], which has originally been designed to systematically build finite state
machine models of unknown real world systems (telecommunications systems,
web services, etc.).

A decade of experience in the field led to the construction of a platform for
experimentation with different learning algorithms as well as for statistically
analyzing their characteristics in terms of learning effort, run time and mem-
ory consumption. More importantly, LearnLib provides a lot of infrastructure,
enabling easy application in the domain of software systems.

Whereas the tutorial is structured in three parts of equal length covering
(1) the theoretical foundations, (2) active automata learning algorithms, and
(3) applications, the remainder of this paper focuses on providing an intuitive
understanding of how to overcome “historical” shortcomings of the original L∗

algorithm. This results in the TTT algorithm, whose impact is illustrated via
experimentation with LearnLib.

In the following, Section 2 sketches the basics of active automata learning, before
Section 3 discusses various realizations along a concrete example. Subsequently,
Section 4, the main part of the paper, intuitively present TTT, a redundancy-free
algorithm for active automata learning. The paper closes with a brief discussion
of applications in Section 5 and some conclusions and perspectives in Section 6.

2 What Is Active Automata Learning?

We will start by introducing some basic notation and then give a rough sketch
of active learning. Let Σ be a finite set of input symbols a1, . . . , ak. Sequences of
input symbols are called words. The empty word (of length zero) is denoted by ε.
Words can be concatenated in the obvious way: we write uv when concatenating
two words u and v. Finally, a language L ⊆ Σ∗ is a set of words.

Definition 1 (Deterministic finite automaton). A deterministic finite au-
tomaton (DFA) is a tuple 〈Q, q0, Σ, δ, F 〉, where

– Q is the finite set of states,
– q0 ∈ Q is the dedicated initial state,
– Σ is the finite input alphabet,
– δ : Q ×Σ → Q is the transition function, and
– F ⊆ Q is the set of final states.

We write q
a−→ q′ for δ(q, a) = q′ and q

w
=⇒ q′ if for w = a1 · · · an there is a

sequence q = q0, q1, . . . , qn = q′ of states such that qi−1 ai−→ qi for 1 ≤ i ≤ n. +,

A DFA A accepts the regular language LA of words that lead to final states on

A, i.e, LA =
{
w ∈ Σ∗

∣∣∣ q0 w
=⇒ q, with q ∈ F

}
.
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For words over Σ, we can define their residual (language) wrt. L, which is
closely related to the well-known Nerode relation [25]: for a language L let
the residual language of a word u ∈ Σ∗ wrt. L, denoted by u−1L, be the set
{v ∈ Σ∗ |uv ∈ L}.

Definition 2 (Nerode equivalence). Two words w,w′ from Σ∗ are equivalent

wrt. L, denoted by w ≡L w′, iff w−1L = w′−1L. +,

By [w] we denote the equivalence class of w in ≡L. For regular languages (where
≡L has finite index), a DFA AL for L can be constructed from ≡L (cf. [11]): For
each equivalence class [w] of ≡L, there is exactly one state q[w], with q[ε] being

the initial one. Transitions are formed by one-letter extensions, i.e. q[u]
a−→ q[ua].

Finally, a state is accepting if [u] ⊆ L (if not, then [u] ∩ L = ∅, as either ε is
in the residual or not). No DFA recognizing L can have less states than AL,
and since it is unique up to isomorphism, it is called the canonical DFA for L.
This construction and the Nerode relation are the conceptual backbone of active
learning algorithms.

Active learning aims at inferring (unknown) regular languages. Many active
learning algorithms are formulated in the MAT-learning model introduced by [4],
which assumes the existence of a Minimally Adequate Teacher (MAT) answering
two kinds of queries.

Membership queries test whether a word w ∈ Σ∗ is in the unknown language
L. These queries are employed for building hypothesis automata.

Equivalence queries test whether an intermediate hypothesis language LH
equals L. If so, an equivalence query signals success. Otherwise, it will return
a counterexample, i.e., a word w ∈ Σ∗ from the symmetric difference of LH
and L.

The key idea of active learning algorithms, the most prominent example being
Angluin’s L∗ algorithm, is to approximate the Nerode congruence ≡L by some
equivalence relation ≡H such that ≡L (not strictly) refines ≡H. This approx-
imation is achieved by identifying prefixes u, which serve as representatives of
the classes of ≡H, and suffixes v, which are used to prove inequalities of the
respective residuals, separating classes. Throughout the course of the learning
process, the sets of both prefixes and suffixes grow monotonically, allowing for
an increasingly fine identification of representative prefixes.

Having identified (some) classes of ≡L, a hypothesis H is constructed in a
fashion resembling the construction of the canonical DFA (cf. [17] for a detailed
account). Of course, some further constraints must be met in order to ensure a
well-defined construction. For a more detailed description, also comprising the
technical details of organizing prefixes, suffixes and the information gathered
from membership queries, we refer the reader to [4].

As sketched above, H is subjected to an equivalence query, which either sig-
nals success (in which case learning terminates) or yields a counterexample. This
counterexample serves as a witness that the approximation of ≡L is too coarse,
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triggering a refinement of ≡H (and thus H). This alternation of hypothesis con-
struction and hypothesis validation is repeated until an equivalence query finally
signals success. Convergence is guaranteed as ≡H is refined with each equivalence
query, but always remains a (non-strict) coarsening of ≡L.

3 Realization: L∗ and Its Offsprings

In this section, we will discuss briefly (and partially) the lineage of active au-
tomata learning algorithms that originated from the seminal L∗ algorithm and
highlight important conceptual improvements of specific contributions.

3.1 Running Example

Fig. 1 shows the smallest deterministic automaton for our running example: a
language of all words over the alphabet {a, b} with at least two a′s and an odd
number of b′s.

q0 q1 q2

q3 q4 q5

a

b

a

b

a

b

a

b

a

b

a

b

Fig. 1. Minimal acceptor for our running example

3.2 Initial Approach: Observation Table à la Angluin

In her 1987 paper describing the L∗ algorithm, Angluin [4] introduced the ob-
servation table data structure as a means to realize the Nerode approximation
as described in Section 2. Essentially, an observation table is a two dimensional
array partitioned in an upper and a lower part, where the upper part is intended
to model the states of a minimal acceptor, whereas the lower part models the
transitions. Rows are labeled with reaching words (also called access sequences),
and columns with distinguishing futures, i.e., words that are used to prove that
the residual languages of two reaching words are different, or equivalently, that
these reaching words cannot lead to the same state.

Two of the observation tables obtained when learning the running example
(Fig. 1) using L∗ are shown in Figure 2. The first one (Fig. 2, middle) is the
initial one, whereas the second one (Fig. 2, right) is the final one, where the word
bbabbab was used as the first and only counterexample.

The main weakness of this data structure is that it applies the distinguishing
power of a certain distinguishing future similarly to all reaching words, which
requires a huge number of in a sense “unjustified” membership queries. But also
the treatment of counterexamples described in the original L∗ algorithm has its
flaws, which we will discuss in the next section.
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q0 a, b

ε

ε 0

a 0

b 0

ε a ba b aa

ε 0 0 0 0 0

bb 0 0 0 0 0

bba 0 0 1 0 0

bbab 0 1 0 0 1

bbabb 0 0 1 0 0

bbabba 0 0 1 1 0

bbabbab 1 1 0 0 1

b 0 0 0 0 1

a 0 0 1 0 0

ba 0 1 0 0 1

bbb 0 0 0 0 1

bbaa 0 0 1 1 0

bbaba 1 1 0 0 1

bbabbb 0 1 0 0 1

bbabbaa 0 0 1 1 0

bbabbaba 1 1 0 0 1

bbabbabb 0 0 1 1 0

Fig. 2. Initial 1-state hypothesis, corresponding observation table, and observation
table for final hypothesis after processing counterexample w = bbabbab

3.3 Improvement 1: Rivest & Schapire’s Counterexample Analysis

The observation table depicted in the right of Figure 2 contains a lot of redun-
dancy: several rows in the upper part are completely identical. As a consequence,
some of the states in the final hypothesis (Fig. 1) are identified through multiple
prefixes. For example, the state q0 is identified by both ε and bb. Each of these
identifying prefixes requires k rows in the lower part of the table. All of these
need to be considered for consistency checking.

Most of these problems can be alleviated by changing the way how counterex-
amples are handled. Rivest and Schapire [29] presented a method that adds only
a single suffix to the observation table. Moreover, this suffix can be found effi-
ciently, using only O(logm) membership queries for a counterexample of length
m. The original algorithm used a binary search for this task (cf. also [31]); how-
ever, other search strategies might perform significantly better in practice, while
maintaining the worst-case complexity [19].

In fact, the set of suffixes is the only part of the observation table that is
explicitly augmented as a result of counterexample analysis. However, this added
suffix is guaranteed to lead to the table not being closed, which results in a row
being moved from the lower to the upper part of the table.

Using this strategy, rows are only ever moved to the upper part of the table
because they represent a previously undiscovered state: otherwise, they would
not cause an unclosedness. This in turn means that all upper rows refer to
distinct states in the hypothesis, i.e., identifying prefixes are unique! As a direct
consequence, this eliminates the need for checking consistency.



504 F. Howar, M. Isberner, and B. Steffen

ε bbab bab b aba

ε 0 0 0 0 1

a 0 1 0 0 1

ab 0 0 1 0 0

aba 1 0 1 0 0

aa 0 1 0 1 1

b 0 0 0 0 0

aab 1 0 1 0 0

abab 0 1 0 1 1

abb 0 1 0 1 1

abaa 1 0 1 0 0

aaa 0 1 0 1 1

ba 0 0 1 0 0

bb 0 0 0 0 1

q0 q1 q2

q3 q4 q5

a

b

a

b

a

b

a

b

a

b

a

b

Fig. 3. Observation table obtained using Rivest & Schapire’s counterexample analysis
method

ε bbab

ε 0 0

a 0 1

b 0 0

aa 0 1

ab 0 0

q0 q1

a

b a
b

Fig. 4. Intermediate (closed) observation table and corresponding non-canonical hy-
pothesis during Rivest&Schapire’s algorithm. The highlighted cells induce the coun-
terexamples a · bbab and aa · bbab.

An important observation is that the prefix-closedness property of the short
prefix set is maintained. Along with the aforementioned uniqueness property, the
short prefixes now induce a spanning tree on the hypothesis. The corresponding
“tree” transitions are shown in bold in Figure 3 (right). The remaining, “non-
tree” transitions correspond to the long prefixes.

A Side-Effect: Instable Hypotheses. Using Rivest&Schapire’s counterexample
analysis results in the suffix set of the observation table no longer being suffix
closed, as opposed to the original L∗ algorithm. This does not affect correctness,
as suffix-closedness of the discriminator set is not mandatory for realizing the
Nerode approximation described in Section 2. However, there is a curious side
effect: in spite of a closed observation table, the hypothesis might no longer be
consistent with the observations stored in this table. In fact, it might not even
be canonical, as the example of a closed observation table and non-canonical
hypothesis shown in Figure 4 shows.
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ε

bbab q5

bab b

aba q4 q1 q2

q3 q0

Fig. 5. Discrimination tree for final hypothesis, obtained using the Observation Pack
algorithm

Luckily, there is a simple remedy: for each cell in the observation table, we
check if its contents match the output predicted by the hypothesis. If this is
not the case, we have another counterexample which can be treated in the same
fashion as above. Concerns have been voiced that this might lead to an infinite
loop, as in some cases neither the counterexample nor the language accepted by
the hypothesis changes. However, this is not the case: the counterexample anal-
ysis is based on transforming prefixes of the counterexample to access sequences
in the hypothesis. Progress is then ensured by the growth of the state and thus
access sequence set.

Following [17], we refer to hypotheses that do not predict the observation ta-
ble contents correctly as instable hypotheses. This is due to the fact that they
themselves form a source of counterexamples (in conjunction with the under-
lying data structure), triggering their own refinement without the need for an
“external” equivalence query.

3.4 Improvement 2: Discrimination Trees

Rivest&Schapire’s counterexample analysis method ensures that the number of
both rows and columns is bounded by kn and n, respectively. As every cell
in the observation table is filled by performing a membership query, in total
O(kn2) queries are required for constructing the table, plus another O(n logm)
for counterexample analysis (m being the length of the longest counterexample).
This constitutes a major improvement over the original L∗ algorithm, where
the number of rows is dominated by knm, resulting in a query complexity of
O(kmn2).

We can also conclude that the minimum number of columns is  log2 n!, as
c columns allow distinguishing 2c states. However, this is a rather hypothetical
case: the obtained suffixes will usually not be that “informative”. In the example
above (cf. Fig. 3), in fact 5 suffixes are required to distinguish 6 states, even
though theoretically, 3 could suffice (23 = 8 ≥ 6).
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How does this affect the learning process? To answer this question, let us take
a closer look of what happens when we add new rows to the observation table
after moving a row from the lower to the upper part of the table (i.e., after
fixing an unclosedness). The process of filling these new rows with data values
through membership queries has the goal of determining the target state of the
respective transition.

The contents of row abaa can be represented as the 5-dimensional bitvector
1, 0, 1, 0, 0. However, the first value alone is enough to rule out any other existing
state except for q5! Determining the values for all cells in this row thus is not
necessary to accomplish our stated goal of finding the successor state.

The data structure of a discrimination tree, introduced into the context of
active automata learning by Kearns&Vazirani [21], allows for a more fine-grained
classification scheme for distinguishing between states. An example for such a
discrimination tree is showed in Figure 5. Leaves in this tree are labeled with
states of the hypothesis, while inner nodes are labeled with discriminators. Each
inner node has two children, the 0-child (dashed line) and the 1-child (solid line).
The semantics of a discrimination tree is best explained in terms of the “sifting”
operation: given a prefix u ∈ Σ∗, at each inner node labeled with a discriminator
v a membership query for u ·v is posed. Depending on the outcome of this query
(0 or 1), we move on to the respective child of the inner node. This process is
repeated until a leaf is reached, which forms the result of the sifting operation.
Each state labels the leaf in the discrimination tree which is the outcome of
sifting its access sequence into the tree.

For each distinct pair of states, there is exactly one lowest common ancestor
(LCA) in the discrimination tree. The label of the LCA is sufficient evidence
for separating the two states, as it proves them to be Nerode-inequivalent. Dis-
crimination trees are thus redundancy-free in the sense that exactly one such
separator is maintained for every distinct pair of states. In an observation table,
in contrast, the number of discriminators to distinguish any pair of two states is
always fixed, regardless of “how different” the states are: state q5, for example, is
very different from the other states due to its being accepting. This is the reason
why only a single discriminator is enough to distinguish it from any other state.

The discrimination tree in Figure 5 was obtained through the Observation
Pack [12] algorithm, which builds upon Rivest&Schapire’s algorithm, but re-
places the observation table with a discrimination tree. As such, it is not sur-
prising that the overall set of discriminators is the same as that in Figure 3 (left).
Also, the short prefixes (access sequences), along with the spanning tree struc-
ture (Fig. 3, right), remains the same.

Does L∗ “waste” queries? It would be unfair to say that the additional queries
posed when using an observation table were wasted, as an “unexpected” outcome
still leads to a new state being discovered. However, rigorously speaking, they
are misplaced: in the hypothesis construction phase, the prime goal should be
to gather enough information to construct a subsequent hypothesis. The search
for new states, on the other hand, should be deferred to the hypothesis valida-
tion phase (i.e., approximating an equivalence query). The results of the ZULU
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challenge clearly show that membership queries are better spent in the hypothe-
sis validation phase: there the discrimination tree-based Observation Pack algo-
rithm [12] combined with a sophisticated search for counterexamples (“Evolving
Hypothesis”, cf. [12,16]) performed best among all competing ones.

4 The TTT Algorithm

The discrimination tree approach eliminates a large share of the aforementioned
redundancies, as the structure of the discrimination tree ensures that there is
exactly one discriminator that separates each pair of states. The overall number
of membership queries required for hypothesis construction depends on how well
the tree is balanced: it is O(kn2) for a degenerated tree, and O(kn log n) for a
perfectly balanced tree. This makes rebalancing trees seem worthwhile; however,
it can be shown that there are automata for which all discrimination trees are
degenerated. Hence, any queries spent on rebalancing attempts might be in vain.

Nevertheless, there is another aspect, which also exposes a flaw in the com-
plexity measure we have resorted to so far: considering the total number of
queries does not take into account the length of the involved words. This is de-
spite the fact that the time for processing a membership query will inevitably
require an amount of time (at least) proportional to its length. From a practical
standpoint, this could be justified by the assumption that resets often are much
more expensive than processing the actual query. However, from an asymptotic
perspective, this is just a constant factor. Besides, there are settings where the
cost of a single symbol outweighs that of a reset, e.g., when learning web services.
A reset can simply be performed by initiating a new connection and creating a
new session on the server, but the network latency limits the rate in which the
symbols of the respective word can be executed.

Looking at the discrimination tree in Figure 5, one notices that the discrimina-
tors are rather long. Since they are derived as suffixes of former counterexamples,
their length is bounded by m. Moreover, as the introduction of new transitions
in the hypothesis requires sifting through the whole tree, this means that an un-
favorably long counterexample obtained in one hypothesis validation round can
affect the lengths of membership queries in all subsequent hypothesis construc-
tion phases. This renders classical learning algorithms near unusable in settings
where extremely long counterexamples are the norm, such as in monitoring se-
tups (cf. [6,18]).

4.1 The Big Picture

The TTT algorithm [18] addresses this problem by ensuring that the length of
every discriminator in the tree is bounded by n. It does so by re-establishing the
suffix-closedness property of the discriminator set. This enables a very compact
representation of this set, which can then be stored as a trie: a root-directed
tree in which each node corresponds to a word, which can be obtained by con-
catenating the symbols on the path to the root.
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q0 q1 q2

q3 q4 q5

a

b

a

b

a

b

a

b

a

b

a

b

ε

aq5

ba

b

q4

aa

q1q2 q0q3

ε

a b

aa ba

a b

a b

Fig. 6. The three tree-based data structures of TTT: the spanning tree-based hypoth-
esis, the discrimination tree, and the suffix trie. A subset of the connection between
the data structures is represented using dotted lines.

An instance of such a trie can be seen in the right of Figure 6, corresponding
to the discriminator set {ε, a, ba, b, aa}. Note that this discriminator set is the
same as that of the classic L∗ algorithm (cf. Fig. 2).

Figure 6 moreover shows an exemplary view on TTT’s data structures, which
also explain its name: on the left is the transition graph of the hypothesis, which
is constructed around the spanning tree (highlighted transitions). Each state
in this graph corresponds to a leaf in the discrimination tree (middle). The
discriminators labeling inner nodes in this tree are then stored in the mentioned
suffix trie, such that each inner node of the discrimination tree corresponds to
a node in the suffix trie.

The redundancy-freeness of this setup is underlined by the fact that the overall
space requirement is asymptotically the same as that of the transition graph
alone, O(kn). The short-prefix set Sp can be obtained from the spanning tree,
and the discriminators can be obtained from the suffix trie. Moreover, the number
of nodes in each of the trees is bounded by 2n.

4.2 Background: Discriminator Finalization

The TTT algorithm is very similar to the Observation Pack algorithm, but ex-
tends it by one key step: discriminator finalization. This step ensures that every
discriminator occurring at an inner node is a suffix of another discriminator,
which allows it to be stored in the suffix trie.

The process of obtaining such discriminators by prepending a single symbol to
existing discriminators is closely related to the process of minimization (cf. [10]).
For the technical details, we refer the reader to [18] and focus on the “visible”
effect on the internal data structures.



Tutorial: Automata Learning in Practice 509

ε

q0

(1) ε

bbab

q0 q1

(2) ε

bbab q5

bab q1

q0 q4

(3)

ε

bbab q5

bab b

q0 q4 q1 q2

(4) ε

bbab q5

bab b

aba q4 q1 q2

q3 q0

(5)

Fig. 7. Sequence of discrimination trees generated during hypothesis stabilization. The
dashed inner nodes are temporary, and will be finalized in a later step.

As remarked in Section 3, intermediate (instable) hypotheses might be non-
canonical. In these cases, there are pairs of state for which no discriminator
can be obtained from the hypothesis, as they might be equivalent. This calls
for fully stabilizing the hypothesis first, before discriminators can be finalized.
During stabilization, the discrimination tree grows (cf. Fig. 7), but the newly
inserted inner nodes are marked as temporary (dashed outline). These temporary
discriminators are then finalized in a second step, which is illustrated in Figure 8.
In each of the finalization steps, a temporary discriminator is replaced by a new,
final one, which is backed by the hypothesis.

Considering the last discrimination tree shown in Figure 7 (5), only the root
(which is always ε) is final. Hence, any new final discriminator has to consist of
a single symbol (prepended to the empty word). The leaves in the left (“false”)
subtree are q0 through q4. Looking at the hypothesis (Fig. 3, right), this set
of nodes can be partitioned by the discriminators a or b, of which the former
is chosen (Fig. 8 (1)). Note that the new, final discriminator is always placed
above all temporary discriminators, ensuring that all descendant inner nodes
of a temporary inner node are also temporary. Also note that the structure of
the discrimination tree can change, as is the case here, causing the maximum
depth to increase by one. However, experiments have shown that the step of
discriminator finalization often decreases the average tree depth, leading to not
only shorter but also fewer membership queries [18].
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Fig. 8. Sequence of discrimination trees generated during discriminator finalization.
The gray node is the inner node with the most recently finalized discriminator.

5 Applications

Active learning has been applied successfully in a number of interesting case stud-
ies. It has been used to infer models of CTI systems [8,9], web-applications [27],
communication protocol entities [2], the new biometric European passport [3],
bot nets [7], a network of integrated controllers in the door of a car [30], and
enterprise applications [5]. The particular challenges of practical application are
discussed in [14] along with illustrating examples from case studies. The third
part of the tutorial focuses on these challenges:

A: Interacting with real systems
The interaction with a realistic target system comes with two problems. The
technical problem of establishing an adequate interface that allows one to
apply test cases for realizing so-called membership queries, and a conceptual
problem of bridging the gap between the abstract learned model and the
concrete runtime scenario. This gap is usually closed by a so-called map-
per component, which is placed between a learning algorithm and a system
under learning. Mappers translate abstract queries into tests on an actual
system [23,20].
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B: Membership Queries
Whereas small learning experiments typically require only a few hundred
membership queries, learning realistic systems may easily require several
orders of magnitude more. One can either use filters that reduce the number
of queries (e.g., using domain knowledge to answer queries without tests) [22],
or distribute queries to many oracles [13].

C: Reset
Active learning requires membership queries to be independent. Whereas
this is no problem for simulated systems, it may be quite problematic in
practice. Resetting a system can be an expensive task, e.g., for systems that
store state in a database. In such a case it can be beneficial to “re-use”
test cases by suspending their execution and continuing it adding suffixes
incrementally [5].

D: Parameters and value domains
Active learning classically is based on abstract communication alphabets.
Parameters and interpreted values are only treated to an extent expressible
within the abstract alphabet. In practice, this typically is not sufficient, not
even for systems as simple as communication protocols, where, e.g., increas-
ing sequence numbers must be handled, or where authentication requires
matching user/password combinations. There exist multiple approaches that
extend active automata learning to classes of languages with data parameters
(e.g. [15,1]).

E: Equivalence Queries
Equivalence queries compare a learned hypothesis model with the target
system for language equivalence and, in case of failure, return a counterex-
ample exposing a difference. In practice, equivalence queries will have to be
approximated using membership queries. Methods from conformance testing
have been suggested as approximations but are in general too expensive to
be feasible for industry scale applications. Randomized search often proves
to be a viable alternative (cf. [16]).

The tutorial will highlight the solutions and support LearnLib provides for deal-
ing with these challenges.

6 Conclusions

In this paper and the accompanying tutorial we reviewed active automata learn-
ing in three steps. First, we provided some theoretic foundations. In a second
step, we discussed important milestones in the development of active automata
learning algorithms with a particular focus on sources of redundancy. We gave an
intuitive account of TTT, an algorithm based on three tree structures which con-
cisely capture all the required information. The algorithm guarantees minimal
memory consumption and drastically reduces the length of membership queries,
in particular in application scenarios like monitoring-based learning, where long
counter examples arise. Finally, we addressed challenges that usually arise when
using active automata learning to infer models of software systems.
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Today’s development of modern software-based Systems is characterized by (1)
vaguely defined problems (the result of some requirements engineering), (2) typi-
cally expressed in natural language or, in the best case, in a semi-formal notation,
(3) implementation on top of large software libraries or other third party code
as an overall system of millions of lines of code to (4) run on a highly complex
enterprise environment, which may even critically involve services connected via
wide area networks, i.e., the Internet, and it should, of course, be (5) easily
adaptable to changing requests.

Practice answers these requests with quite some success with approaches like
extreme programming and Scrum, which essentially replace any kind of foun-
dational method be close cooperation and communication within the team and
with the customer, combined with early prototyping and testing. Main critique
to this formal methods-free approach is merely its lack of scalability, which is
partly compensated by involving increasingly complex third party components,
while keeping the complexity of their orchestration at a Srum-manageable level.

Does this state of the art reduce the role of the classical formal methods-
based approaches in the sense of Hoare and Dijkstra to the niche of (extremely)
safety-critical systems, simply because it is unclear

– What should be formally verified in cases where the problem is not stated
precisely upfront? In fact, in most software projects, adapting the develop-
ment to the changing needs revealed last-minute is the dominating task?

– What does a fully verified program help, if it comes too late? In fact, in many
projects the half-life period is far too short to accomodate any verification
activities.

In fact, in some sense the opposite is true, namely that the formal methods
developed in the last decade are almost everywhere. E.g., type systems are om-
nipresent, but seemlessly working in the back of most IDE’s, which are typi-
cally supported by complex data flow analyses and sophisticated code generation
methods. In addition, (software) model checking has become popular to control
application-specific properties, and even the originally very pragmatic software
testing community gradually employs more and more model-based technologies.

However, admittedly, development and debugging as supported by complex in-
tegrated development environments (IDEs) like Eclipse and Netbeans or by dedi-
cated bugtracking tools do not attempt to guarantee correctness by construction,

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part I, LNCS 8802, pp. 514–517, 2014.
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the ultimate goal of Dijkstra and Hoare. Rather they are characterized by their
community-driven reactiveness:

– What should be formally verified in cases where the problem is not stated
precisely upfront? In fact, in most software projects, adapting the develop-
ment software is developed quickly by large communities,

– documentation is largely replaced by online forums,
– quality assurance is a community effort,
– success of a software depends on the vitality of its community. to the chang-

ing needs revealed last-minute is the dominating task?

FoMC intends to establish a forum for formal methods-based research that fos-
ters a discipline for rigorously dealing the nature of today’s agile system devel-
opment, which is characterized by unclear premises, unforeseen change, and the
need for fast reaction, in a context of hard to control frame conditions, like third
party components, network-problems, and attacks. Submissions are evaluated
according to these goals. Papers may well focus on individual techniques, but
must clearly position themselves in the FoMC landscape. In particular, FoMC
aims at establishing a common nomenclature to overcome the currently quite
diverse use of notation.

It is planned to complement FoMaC by a sister journal, the LNBI Transac-
tion on Managing Change (ToMaC), which address human factors, project and
risk management, as well as methods to control time to market, total cost of
ownership and return of investment.

1 Profile of FoMaC

FoMaC is concerned with the foundations of mastering change and variabil-
ity during the whole system lifecycles at various conceptual levels. It explicitly
comprises meta modeling as a means for conceptually addressing domain spe-
cialization, which can also be regarded as a technology transfer appoach, where
methods are considered to systematically adapt solutions from one (application)
domain for another domain. In particular, this comprises the generation of and
transformations between domain specific languages, as well as other issues of
domain modeling and validation, which FoMaC addresses for every phase of the
systems’ lifecycles:

Modeling and Design: This is the main level at which ‘classical’ variability
modeling operates. The methods considered here generalize classical modeling to
specifically address variability issues, like where and how to change things, and
technology to maintain structural and semantical properties within the range of
modeled variability. Here methods like feature modeling, ‘150% modeling’, pro-
ductlinemanagement,model tomodel transformations, constraint-based (require-
ment) specification, synthesis-based model completion, aspect-oriented transfor-
mations, model checking, and feature interaction detection are considered.

Implementation: At this level, FoMaC addresses methods beyond classical
parametric and modular programming approaches, like aspect orientation, delta
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programming, program generation, aspect and generative programming, and
program transformation, but also static and dynamic validation techniques, like
program verification, symbolic execution, runtime verification, (model-based)
testing, and test-based modeling,

Runtime and Use: This is the level of self-X technology, where methods are
addressed that allow, steer, and control autonomous evolution of systems during
runtime. These methods comprise techniques to achieve fault tolerance, runtime
planning and synthesis, higher-order exchange of functionality, hot deployment
and fail-over, and they should go hand in hand with the abovementioned dy-
namic validation techniques, like program verification, symbolic execution, run-
time verification, (model-based) testing, test-based modeling, and monitoring.

Maintenance/Evolution/Migration: This level is concerned with the long-
term perspective of system evolution, i.e. the part where the bulk of costs is
accumulated. Central issues here are the change of platform, the merging of sys-
tems of overlapping functionality, the maintenance of downward compatibility,
and the support of a continuous (system) improvement process, as well as contin-
uous quality assurance comprising regression testing, monitoring, delta testing,
and model-based diagnostic features.

2 People and Perspective

Initiatives are driven by people, their visions, their example, and their support.
The very diverse position papers in this track, which range from quite concrete
[4,1,9,2,5] proposals to increasingly ’philosophical’ statements [8,3,6], provide a
flavor of the intended FoMaC spectrum: Everything is allowed, as long as it
clearly contributes to the art of mastering change.

Important is that we start freeing ourselves from methods and notions known
from classical disciplines: Terms like architecture impose the unnecessary and
nightmarish feeling that what we do now is cast in stone and unchangeable
forever, garbage collection suggest waste removal problems, and the typical de-
velopment processes breath the stiffness of classical construction. FoMaC is in-
tended to address these issues not only at the technological level, but also by
supporting a change of mindset by changing terminology: What we need to es-
tablish is a general attitude and corresponding technology that everything can
change at any time in case of need, and that this becomes so easy that most of
the required day-to-day changes can be mastered at the application level or is
even automatically taken care of via synthesis or runtime-adaptivity [7].
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Modern ICT technologies such as the internet, the cloud, and mobile devices
lead to the development of more and more decentralized and distributed sys-
tems which operate in open and non-deterministic environments and interact
with humans or other devices and systems in elaborate ways. Such systems are
often called ensembles (for an overview see [9]). Socio-technical systems such as
ICT-supported ”smart cities” (see e.g. [13]). and cyber-physical systems such as
sensory swarm and bio-cyber systems can be seen as special cases of ensembles
(for an overview see [4]).

Mastering change is one of the main characteristics and challenges for en-
sembles: ensembles have to adapt to changing environments and changing re-
quirements. Ensembles have often to cope with the change of their population:
members can leave the ensemble whereas other entities can become part of the
ensemble. Typically all these changes have to occur without redeployment and
without interruption of the ensemble’s functionality.

Although more and more ensemble systems are developed, foundations for
systematically constructing and analyzing ensembles are missing. The existing
foundational methods typically cannot deal with the dynamically changing na-
ture of ensembles and they are difficult to scale to the size of ensembles. Foun-
dations are needed also to ensure security and privacy of the data collected by
the ensembles and to analyze and evaluate systemic failure modes, i.e., failures
that cannot be traced unambiguously to a single component.

To tackle these challenges several disciplines may contribute foundational
methods:

Concurrent Systems: The area of concurrent systems deals with problems such
as enabling and limiting concurrency, access to shared resources, avoidance of
deadlocks and other anomalies, or communication between processes. Research
in concurrent systems often employs formalisms and techniques such as Petri
nets, process calculi, coordination models and languages. Logics serve to specify
the behaviour systems, ranging from modal and temporal logics to higher-order
logics and term rewriting. E.g. recent results include the Linda-based language
SCEL [5] for specifying ensembles and approaches for black-box and white-box
adaptation [10,3].

Quantitative and Qualitative Analysis: A main focus is the qualitative and
quantitative analysis of systems exploiting such notions as bisimilarity of dif-
ferent processes or reasoning on stochastic properties of systems consisting of
many equivalent processes. Challenges and a promising approach for dealing
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with adaptation of ensembles are described in [8] and [2]. Example results in-
clude applications to robot swarms [20] to smart cities [7].

Adaptive Systems: The area of adaptive systems is increasingly inspired by
nature- or socially-inspired solutions, such as swarm computing [6] and electronic
institutions [14], and also focuses on systems consisting of interacting entities,
but is more concerned with the reaction of whole systems or individual actors
in a system to a changing environment. Research in this area is often focused
on the control of a dynamically changing system by feedback loops [17], on the
emergence and control of self-organized behaviours [11], and in general on the
“laws” and contexts that influence the evolution of the systems properties and
the individuals’ behaviour [16].

Self-Awareness: Concentrating more closely on the individual entities in a sys-
tem, research in self-awareness investigates models needed by agents operating
in an open and changing environment to successfully achieve their goals and to
cooperate with other agents. Many formalisms from artificial intelligence, knowl-
edge representation and reasoning, or machine learning are used, e.g., logical and
action calculi [15], Bayesian networks [12] or reinforcement learning [19], and re-
search often focuses on the application of metacognitive methods to improve the
behaviour of individual agents or the social interactions between agents [1].

While these methods provide starting points for further investigations, none of
them is currently capable of addressing the scale and amount of dynamic change
in ensembles. FOMAC [18] will be an ideal venue to publish further foundational
research that contributes to mastering these challenges.

Acknowledgements. This work has been partially sponsored by the FET-IST
project FP7-257414 ASCENS.

References

1. Anderson, M.L., Perlis, D.: Logic, self-awareness and self-improvement: the
metacognitive loop and the problem of brittleness. J. Log. Comput. 15(1), 21–40
(2005)

2. Bortolussi, L., Nicola, R.D., Gast, N., Gilmore, S., Hillston, J., Massink, M., Trib-
astone, M.: A Quantitative Approach to the Design and Analysis of Collective
Adaptive Systems. In: 1st FoCAS Workshop on Fundamentals of Collective Sys-
tems, Taormina, Sicily, Italy (September 2013)

3. Bruni, R., Corradini, A., Gadducci, F., Lluch Lafuente, A., Vandin, A.: A Con-
ceptual Framework for Adaptation. In: de Lara, J., Zisman, A. (eds.) Fundamen-
tal Approaches to Software Engineering. LNCS, vol. 7212, pp. 240–254. Springer,
Heidelberg (2012)

4. Cengarle, M.V., Trngren, M., Bensalem, S., McDermid, J., Sangiovanni-Vincentelli,
A., Passerone, R.: Structuring of CPS Domain: Characteristics, Trends, Challenges
and Opportunities associated with CPS (2014), http://www.cyphers.eu/sites/
default/files/D2.2.pdf (last accessed: August 03, 2014)

http://www.cyphers.eu/sites/default/files/D2.2.pdf
http://www.cyphers.eu/sites/default/files/D2.2.pdf


520 M. Wirsing and M. Hölzl

5. De Nicola, R., Lluch Lafuente, A., Loreti, M., Morichetta, A., Pugliese, R., Senni,
V., Tiezzi, F.: Programming and Verifying Component Ensembles. In: Bensalem,
S., Lakhneck, Y., Legay, A. (eds.) From Programs to Systems. LNCS, vol. 8415,
pp. 69–83. Springer, Heidelberg (2014)
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Quality of software and software-based systems is playing an increasingly impor-
tant role for the success of products [1]. As requirements to products inevitably
change over time, for instance, new or adapted functionalities, technologies or
regulations have to be taken into account, also software has to change or its qual-
ity decays. As software also becomes more complex and interconnected, master-
ing software quality for rapidly changing software products is challenging and
proactive measures are needed to counter quality decay during software evolu-
tion. A promising cornerstone to continuously control quality in this dynamic
and evolving context are quality models which provide an abstract and ana-
lyzable view of software artifacts with the objective to describe, assess and/or
predict quality [2,3]. Quality models in this broad sense comprise all types of
models supporting analytical quality assurance like hierarchical quality models,
test models, defect models or reliability growth models. These models have a high
potential to improve effectiveness and efficiency of analytical quality assurance
to cope with software change, as they for instance support decisions, automation
and re-use. Nevertheless, their acceptance and spread in the software industry is
still rather low, as there are several unresolved issues that have to be addressed
by upcoming research. Suitable solutions to model-based software quality assur-
ance for analysing the state of the software quality are especially required for
the following current issues:

– Creation and maintenance of models : One main obstacle to dissemination
of model-based approaches in general, is the overhead to initially create
and to continuously maintain models. To lower this barrier, support to ei-
ther automatize model creation and maintenance or to clearly simplify these
tasks is required. Former, can for instance be supported by machine learning
technologies and formal methods. A promising approach in this direction is
Active Continuous Quality Control [4], where incremental active automata
learning technology is applied to infer evolving behavioral automata. Lat-
ter, can be supported by modern modeling workbenches for domain specific
languages [5] which provide powerful model engineering support to simplify
manual model creation and maintenance. In quality assurance, domain spe-
cific languages have recently been applied for modeling tests [6,7].

– Integration of analytics : Software analytics, i.e., the use of analysis, software
data, and systematic reasoning for managers and software engineers with
the aim of empowering stakeholders of software development to make better
decisions is an area of explosive growth [8]. Especially, for software quality
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purposes analytics is promising to evaluate the current quality status, to pre-
dict future statuses, and to continuously monitor quality. Analytics normally
combines some degree of automation with human involvement. The integra-
tion of analytics with available quality models could foster this combination
and lead to new visualization and interpretation of software engineering data
to control quality of evolving software.

– Alignment of quality models with unstructured artifacts : In an industrial set-
ting, quality models never capture relevant quality information completely,
but have to be aligned with material (usually documents) of an unstructured
nature (usually text) like requirements specifications or test reports. Infor-
mation retrieval, as for instance applied in [9] is a promising approach to
support this alignment for mastering change.

– Support for extra-functional aspects : Extra-functional aspects like security,
safety, performance, or sustainability [10] require specific modeling ap-
proaches to cope with change. So far, this problem has not adequately been
tackled for all types of quality models. For instance, further research on
model-based (regression) testing of extra-functional aspects is required [11].

– Balance between quality and risk : Risk is the degree to which a product does
not satisfy the stated and implied needs of its various stakeholders and thus
represents potential damages and losses [12]. The concept of risk supports
decisions on good enough quality for software release or changes and relates
quality investments to budget and time. Recently, risk has especially been
applied to support testing in so called risk-based testing approaches [13], but
further research on the balance between quality and risk is required.

– Justification by empirical evidence: For industrial application, evidence fol-
lowing the strict guidelines of empirical software engineering [14] has to be
provided to show in which context specific model-based quality assurance
approaches actually provide support to master change, and what the prac-
tical limitations of these approaches are. Empirical studies on model-based
quality assurance in general and especially also on its effectiveness and ef-
ficiency are still rare. An exemplary empirical investigation for hierarchical
quality models is provided in [15] and for test models in [16].

Suitable solutions to the issues mentioned before will heavily improve model-
based quality assurance of software and contribute to mastering change in terms
of the manifesto of the LNCS Transactions on Foundations for Mastering Change
(FoMaC) [17]. FoMaC is concerned with mastering change during the whole sys-
tem lifecycle at various conceptual levels, in particular during meta modeling,
modeling and design, implementation, runtime, as well as maintenance, evolu-
tion and migration. Solutions to the issues raised in this paper support mastering
change in all these areas. For instance, the creation and maintenance of quality
models as well as their alignment with requirements address change aspects dur-
ing meta modeling, modeling and design, but also during implementation; sup-
port for extra-functional aspects and analytics as well as balance between quality
promote chanage aspects at runtime as well as during maintenance, evolution
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and migration. Finally, the justification by empirical evidence is a cross-cutting
issue to evaluate technology transfer in any of these areas.
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Building large and complex cyber-physical systems, from automotive controllers,
to pacemakers, to smart power grids, cannot be done by trial-and-error, as this
is neither cost effective nor safe. Model-based design (e.g., see [10]) is a system
design approach which advocates building models of the system under design,
instead of system prototypes. Models are cheaper and faster to build than pro-
totypes, thus yielding a more efficient design process.

Research-wise, model-based design has three elements:

1. Modeling, which addresses the problem of how to express in the best possible
way the system that we want to design. Coming up with the right languages
to capture different types of systems from a variety of domains (automotive,
electronics, energy, health care, biology, etc.) is a major research challenge.

2. Analysis, which addresses the problem of how to ensure that what we de-
signed is really what we want. A variety of analysis techniques are available
to achieve this goal, starting with simulation, the workhorse of system design,
all the way to exhaustive techniques such as formal verification and model
checking (e.g., see [14] for a survey of verification techniques for timed and
hybrid automata, or the textbooks [5,2] for a thorough presentation of the
topic). These techniques allow to test the model, discover bugs, and fix them
early enough in the design process.

3. Implementation, which addresses the problem of how to generate, ideally
fully automatically, working systems from the design models. The goal is
that the resulting system preserves the properties of the original model. This
is important, since we would like to avoid as much as possible having to test
the system itself. Ideally, the system should be equivalent to the model, so
that, assuming that the model is correct, and that the generation process is
not buggy, the generated system is correct by construction. The challenge in
achieving this goal is that there is often a semantic gap between high-level
models and low-level implementations. For instance, the model may assume
a synchronous semantics, whereas the implementation is asynchronous. Some
preliminary research toward bridging such gaps can be found in [4,17,16].

Model-based design raises a number of significant research challenges (what
are the right modeling languages? how to combat state explosion during analysis?
how to bridge the semantic gaps during implementation? etc.). Making progress
in addressing these challenges is necessary, but by no means sufficient. Systems
are rarely built from scratch. They evolve. New systems are built as newer ver-
sions of older systems. The new system reuses many of the components of one
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or more existing systems. Systems are often built by many people organized in
teams with different backgrounds. Communication between such teams is often
difficult. Some systems are developed by open communities of volunteers with
loose organization. In most cases systems are open in the sense that they must
inter-operate with other (existing or to be developed) systems, about which little
is known. This is one of the reasons why system requirements often change. The
assumptions about the environment in which the system is supposed to operate
change over time, and therefore the requirements must change as well. In a world
of millions of programmers and billions of inter-connected devices, these trends
can only intensify. Consequently, the science of system design must encompass
variety and change as its primary goals. This is why a journal on the Foundations
of Mastering Change [13] is timely.

Compositionality is a key element for mastering change. Compositionality is a
heavily used term with many meanings. It can be seen as a cross-cutting concern,
affecting all elements of model-based design. We need compositional modeling
methods, since large and complex models cannot be built monolithically, but by
somehow assembling submodels (e.g., see [18,3,12]). We also need compositional
analysis frameworks such as assume-guarantee reasoning (e.g., see [11,6,8,1]) or
interface theories (e.g., see [7,15]) in order to break up large verification tasks
into smaller and computationally easier subtasks. We also need compositional
implementation methods, for instance, modular code generation [9], which allows
to generate code from part of a model, say, when this part is modified, without
having to re-generate code from the entire model.

The above are some of the topics that could be addressed in this new journal.
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Technische Universität Darmstadt
Department of Computer Science
haehnle@cs.tu-darmstadt.de

In the field of formal analysis of software systems dramatic progress could be
witnessed in the last decade or so. Formal verification of simple safety properties
often can be achieved in a fully automated manner for non-trivial, commercial
code [3]. It can be expected that the verification of generic safety properties (for
example, buffer under-/overflows, null pointer accesses) will soon become part
of the compilation tool chain. Changing compilation targets tend to be managed
simply by recompilation, so: where is the need for managing change in formal
software analysis? Let us try to give an answer in the form of two research
challenges.

Functional Verification. In contrast to checking of safety properties, functional
verification still requires vast efforts. True, even highly complex system software
can be formally verified when sufficient effort is spent, as is demonstrated (for
example) by the L4.verified [5] and Verisoft [2] projects. However, this typi-
cally requires serious effort (ranging between several person months and person
decades), involving formal specification and verification specialists. Even if some
effort can be spent, it remains a central problem of current verification methods
that they are not robust in presence of changes in the verification target: already
small changes can invalidate large parts of an existing verification argument and
might require to redo much of the verification effort. But, as clearly spelled
out in the FoMaC Manifesto [6], change occurs continually during software de-
velopment, and formal methods must cope with it, if they are to be relevant.
Based on current technology, formal verification is simply far too disruptive in
the context of agile development processes and can only be considered as a post
hoc activtity. This renders functional verification impractical for any applica-
tion outside extremely safety-critical systems. Therefore, we pose the following
challenge:

Make formal specification and verification non-disruptive in the pres-
ence of changes in the verification target. Specifically, integrate formal
verification with standard change management mechanisms such as ver-
sion control, regression testing, etc.

As one recent example of the line of work we have in mind, consider [4], which
presents a technique for compositional, contract-based, formal verification in
presence of constant evolutionary changes to the verification target.
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Resource Analysis. Resource analysis is typically fully automatic and requires
little or only generic specifications [1]. This makes it a highly interesting and
useful alternative to full verification in case when the latter cannot be achieved
or is too expensive. But resource analysis became a central issue also for a dif-
ferent reason: requirememts and code are not the only aspects of a system that
can change. In recent years, the need to deal with dynamically changing com-
puting environments, i.e., resources, became a pivotal issue. This is caused by
three nearly parallel developments: the move from single- to multi-core archi-
tectures to compensate for the breakdown of Moore’s law; the advent of cloud
computing technology that renders available resources highly elastic; and the
availability of sensing, computing, and networking capabilities in just any kind
of technical artifact (“cyber-physical system”). As a consequence, modern soft-
ware must be able to take advantage of different resource profiles that even might
change dynamically during execution. To this end it is of prime importance to
be able to analyze and optimize the resource consumption of software. This goes
far beyond the classical topics of worst-case execution time and memory alloca-
tion, but includes parameters such as bandwidth, latency, degree of parallelism,
and, of growing importance, energy consumption. It must be possible to connect
the results of resource analysis with optimization of system configurations and,
ultimately, with dynamic adaptation mechanisms. Hence, our second research
challenge:

Extend resource analysis to a comprehensive set of environmental
parameters including network and energy aspects. Make analysis meth-
ods incremental and change-aware. Use analysis results to generate op-
timized system configurations. Align these with dynamic software adap-
tation mechanisms with the aim of optimized resource consumption in a
dynamically changing environment.
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Martin-Martin, E., Puebla, G., Román-Dı́ez, G.: SACO: Static analyzer for concur-
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1 Position

Over the past, system design was mostly organized around a vertically integrated
development, supporting in-house activities. There, the system was defined as
a stone-block entity impermeable to changes. In this context, rigorous software
design was a very static process which mostly consisted in exploring parts of the
system via techniques known as testing or formal verification [CGP99].

Nowadays, the situation has drastically changed. Indeed, several industrial
sectors involving, e.g, complex (embedded, or cyber physical) systems have re-
cently experienced deep changes in their organization, aerospace and automotive
being the most prominent examples. These sectors have now evolved into more
specialized, horizontally structured companies: Equipment Suppliers (ESs) and
Original Equipment Manufacturers (OEMs). OEMs perform system design and
integration by importing/combining/reusing entire subsystems (also called com-
ponents) provided by ESs. Depending of the situation and the needs of the client,
different subsystems can be added/removed on demand during the entire life-
time of a product. In this context, the ability to efficiently mastering changes
becomes as central as the verification problem. This situation will, at minimum,
generates the following research activities already outlined in [Ste].

– The separation of concerns calls for new system models and high level lan-
guages that allows us not only to capture the behavior of a global entity, but
also to reason (at fine granularity) on the relationship between its compo-
nents. In this context, the use of meta models, interfaces [LKF02, AH01], or
contracts [SBW11, EFN+14] to reason at a high level and separate the con-
cerns will become crucial. In the same spirit, synthesis will definitively play a
crucial role. Particularly, we forseen the use of such technique to synthesize
the possibly dynamic interactions between components of a given system
with the objective of satisfying a given property [BBB+11, ?]. Synthesis will
also be used to reduce the burden in verifying complex systems [GMS14].
Still in the same spirit, we will have to take into account that large-size
systems are now deployed over the internet (medical devices, energy saving
systems, ...). This calls for new language paradigm and new models that take
the resource constraints of this material into account.

– As the relationship between components may be variable and/or adaptive
and dynamic, we also forseen that the combination of models used to describe
components’s behaviors (transition systems, etc) with those used to describe
variability (feature diagrams [Bat05, CBH11], ...) and adaptive changes will
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become central. Initial move in the context of product lines was taken with
Feature Transition Systems [CHS+10]. Other works can be found, e.g, [CA05,
JLM+12], or in [CdLG+09] that poses the foundations for adaptivity. The
challenge is that those new models should be flexible enough so that adding/
removing parts of the system (or parts of its behavior) does not call for
an entirely new modelisation – hence gaining in productivity. This vision,
combined with the one in the previoius item, should be impacted at the high
language level, and formalism such as UML will certainly encompass more
and more variability aspects in a near future.

– New metrics will be needed to quantify the impact of changes [vBKPR14].
This will be important when the designer will have to decided which change
is best for her design (cost, reliability, ...). Existing methodologies mostly
rely on qualitative or Boolean metrics, but in a world of compromises and
optimizations, it is likely that quantities become a first citizen.

– New runtime monitoring techniques [?] that are able to detect changes on
the fly and to react when needed (correction, information, counter example,
...), see e.g., [GMS12]. Such techniques will be of particular interest when
the whole state-space of the system cannot be characterized in advance,
which is the case for most CPS or Systems of Systems. There the principle
of self-adaptivity to potentially unknown changes becomes crucial [FDC14].
Observe that those techniques will certainly have to be combined with more
accurate verification techniques as this is the case in [SS12].

– The design of new verification techniques that not only allows us to ver-
ify parts of the system in an efficient manner, but also quantify the sat-
isfaction with respect to a set of requirements. There, techniques such as
statistical model checking [LDB10] and prediction/learning algorithms may
be exploited at runtime and/or to overcome undecidability and state-space
explosion. Additionally, new formal techniques that are able to take into
account the impact of changes will be needed. The latter will avoid us to
re-perform the entire verication process for each changes. This is particularly
crucial as the system may be part of a line of similar products (for which
the work should be done at a high granularity level) and many changes may
be applied to the system during its lifetime. Also, some product may be
deployed on limited resources, which call for a new dimension in terms of
efficiency.
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Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV 2010.
LNCS, vol. 6418, pp. 122–135. Springer, Heidelberg (2010)

[LKF02] Li, H.C., Krishnamurthi, S., Fisler, K.: Interfaces for modular feature ver-
ification. In: ASE, pp. 195–204 (2002)

[SBW11] Schroeder, A., Bauer, S.S., Wirsing, M.: A contract-based approach to
adaptivity. J. Log. Algebr. Program. 80(3-5), 180–193 (2011)

[SS12] Sharifloo, A.M., Spoletini, P.: LOVER: Light-weight fOrmal verification
of adaptivE systems at run time. In: Păsăreanu, C.S., Salaün, G. (eds.)
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Mastering Change @ Runtime�
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This brief paper is a response to a call [7] for opinion statements from members of
the editorial board of the upcoming journal: LNCS Transactions on Foundations
for Mastering Change (FoMaC). In the call it says:

FoMaC intends to establish a forum for formal methods-based research that
fosters a discipline for rigorously dealing with the nature of today’s agile
system development, which is characterized by unclear premises, unforeseen
change, and the need for fast reaction, in a context of hard to control frame
conditions, like third party components, network-problem, and attacks.

The phases covered span from meta modeling to modeling and design, imple-
mentation, runtime and finally evolution/migration. In the extreme, all software
correctness issues can be considered as purely change issues, where the funda-
mental question is the following: given a program P , potentially empty, will the
addition of the program fragment Δ make P +Δ satisfy a property ψ? Program
fragments Δ can here be understood liberally, as for example edit commands
(replace these lines of code with these lines of code), refinements - as in stepwise
program refinement suggested for wide-spectrum development languages such as
Vdm [2], aspects - as in aspect oriented programming, plans - as in planning (the
Δ is a new plan), etc. As such, in the extreme, the topic of correctness under
change can be considered as the well known topic of correctness. An interesting
question is: what is the connection between the concept of change as a special
topic and then the more general and traditional software correctness issue?

As is well known, analysis for insurance of correctness as well as security can
be performed statically (of code structure) or dynamically (of execution traces).
In the realm of static analysis, version control is of course a basic very useful
technology. One can imagine version control systems being brought to the next
level by being integrated with static analysis tools, explicitly supporting program
refinement, as well as smart IDEs, which visually highlight changes as they are
made in the editor. In general, the integration of specification, programming and
verification, as explored for example in Dafny [3], as well as in the earlier Vdm

[2], should in principle make change easier. This includes adoption of high-level
programming languages such as Scala [6].

However, we observe that ensuring correctness of software using static meth-
ods is extremely challenging, and therefore our systems should be constructed

� The work described in this publication was carried out at Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics
and Space Administration.
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to be robust in the face of errors at runtime. In the realm of dynamic analysis,
one can distinguish between detection of change during runtime, and causing
change during runtime. Detection of change can occur by monitoring a system’s
execution while checking its behavior against a formalized specification of ex-
pected behavior. Here a system can be considered as emitting a sequence of
observable events, which are fed into a monitor, which as a second input takes a
specification of expected behavior. The trace is then matched against the spec-
ification. Events in practice will carry data, and it must be possible to refer
to data in specifications [4]. The specification can be written by humans, or it
can be learned from nominal executions, also referred to as specification mining
[5]. Properties can be expressed in various specification languages, ranging from
state machines, regular expressions, temporal logics, rule-based systems to also
include refinement-based notations as discussed previously.

Detection of a property violation can be used to cause a change of behavior
by triggering fault-protection code, which steers the application out of a bad sit-
uation. The simplest possible fault-protection strategy is to reboot the system,
a strategy which in practice is very common. At the other end of the scale is
planning and scheduling techniques, which continuously adapt to the current sit-
uation. A planner, upon request, generates a new program (plan) to be executed
for the next time period in order to achieve a given goal. Planning is related
to program synthesis. In contrast to planning, program synthesis usually occurs
before deployment and has more static nature, but in theory the two topics are
closely related. The common theme for planning and synthesis is the exploration
of new ways to write programs that make the correctness question, and thereby
change question, less of an issue. For a survey relating verification and validation
to planning and scheduling, see [1].
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Any attempt to explain software engineering to a lay audience soon falls back on
analogy: building software is like building a bridge, a car, a television set. A large
part of the established practice within software engineering is also based on this
premise. However, the analogy is false in some important ways, and herein origi-
nate many of the problems that have bugged the software industry since its birth.

Software is never finished. Early process models of software engineering, based
on conventional wisdom from other engineering disciplines, imagined it as a
cascade of phases, in which there would not be any going back: requirements
capturing, analysis, design, implementation, testing and maintenance. After all,
once a bridge is built, you do not have to redesign it, right?

Wrong — for software. Though these phases exist and it is important to
distinguish them, it has now been known for a long time that things are not
that clear-cut: a software project does not move as a whole from one phase to
the next. More importantly, the process is not that linear: for any serious piece
of software, every single one of these phases is passed through again and again.
Software is never finished, and we’d better accept that and rethink our methods
accordingly.

Of course, software projects do finish (possibly less quickly than foreseen); but
the software product stays. However, it does not stay like a bridge, majestically,
unchanging and for all to use and admire: it is copied and re-used in contexts
it was not developed for, it is extended with little useful bits and pieces of
functionality, it is ported to new platforms, cut up and partially rewritten, until
it ends up in that black zone we call legacy code — for the next project team to
try to understand, curse at and be secretly afraid of.

Verification is never finished. The central belief in the formal methods commu-
nity, voiced strongly and eloquently by its pioneers, is that programs should not
be deployed, maybe not even written, unless and until they are provably and
totally correct. Establishing correctness is usually called verification. We have
since seen that this very hard for practical software, for a large variety of rea-
sons ranging from fundamental to pragmatic; however, watered-down versions,
involving approximative methods for weaker notions of correctness, have been
reasonably successful; an example are the type systems referred to in the man-
ifesto [10], but in specialised contexts also more sophisticated methods such as
model checking [2].

Given that software is never finished, however, and that all phases of devel-
opment are passed through again and again, it follows that verification is never
finished either. Every extension, every modification, every partial reuse needs to
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be re-verified in order to uphold the claim of correctness. Well-known is the case
of the Ariane 5, which failed due to the reuse of a fragment of software that was
correct in its original context. Especially in such a situation, where the original
context is lost and the original design team is no longer around, re-verification
can be even harder than the first time around.

Transformation as a way of life. In software engineering, change is the norm, not
the exception. That being the case, we should also put change at the centre of
our development methods. This is what is proposed under the header of model
transformation [9]. To appreciate what this entails, one first has to broaden
the mind: from software equating (textual) programs, to software consisting
of all digital resources involved, including programs but also design documents,
scripts, libraries, auxiliary inputs, configuration settings and whatnot: everything
that is required to actually deploy the software. We use the term “model” to
encompass each and every such artefact. Now, every change can be understood
as a transformation of one set of models to another.

If we know the source model(s) of a given transformation to be correct —
for instance because we made a dedicated verification effort — then ideally we
should be able to conclude, without further ado, that the target model(s) are as
well. For this to be true, it is enough to know that the change does not destroy
correctness. If the change is ad hoc, say a textual edit to some input file, then
this is in general impossible to know. Therefore, model transformation focusses
on the concept of rules as the motor behind changes: every individual change is
then an instance of a general rule. The preservation of correctness under change
can now ideally be shown on the level of the transformation rules.

Challenges. Model transformation is a very active field of research. The ideal
of correctness-preserving transformation [7] is one aspect of that research. Also
growing is the insight that transformations often need to be invoked backwards,
imposing a bidirectionality constraint [11,1]. To realise this, graph transformation
is widely considered to be a good formal basis [3,4,5]; a lot of recent effort has
been dedicated to lifting existing verification methods to that setting [8,6].

Model transformation as a means of mastering change offers a lot of promise.
To fulfil that promise, further research is sorely needed. We will never go back
to a world without software; so we’d better make sure it is long-lasting, forever
software!
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1 Introduction  

Software is pervasive.   It impacts almost every aspect in our lives.  It wakes us in the 
morning; it cooks our food; it entertains us; it gets us to work; it is involved in almost 
every aspect of our working day.   It is impossible to lead a software-free life. 

Software is the driving force in almost any new technological innovation.  It is 
integral to innovations in medicine, manufacturing, transport, space exploration, etc.; 
almost every field is dependent on software for new innovations and new develop-
ments, leading to economic growth and advancement. 

More and more organizations are—while not in the software business—turning to 
software.   Many companies are finding that they are becoming software companies, 
even though that is not how they started out.   For example, the use of software in cars 
has increased dramatically since the early 1990s, albeit starting from a very low level.  
Nowadays, high-end cars may have upwards of 70 processors on board, with every-
thing from cruise control to entertainment systems controlled by software.  In fact, car 
manufacturer BMW predicts that soon it will employ more software engineers than 
other engineers.   Even computer hardware manufacturers are finding that more and 
more of their business is software. 

2 Software Change 

The great advantage of software is that it can be changed.  If it weren’t to change, 
then we would do things in hardware (where, traditionally, we’ve had better suc-
cesses).  This is also a disadvantage, however.   Since software is perceived as easy to 
change, it is often changed, and changed badly. 

Changes in software have resulted in  the introduction of errors, performance de-
gradation, architectural drift, lack of maintainability, and other problems [1], with a 
number of well-cited failures in the literature. 

Our software systems may have evolved from legacy code or legacy systems, or 
may be the result of a combination of existing component-based systems, possibly 
over significant periods of time.   Alternatively they may have evolved as a result of a 
focused and intentional change in the organization and the architecture in order to 
exploit newer technologies and paradigms (e.g., cloud) believed to be beneficial. 

More and more, our software systems are required to adapt and evolve at run-time 
in order to react to changes in the environment or to meet necessary constraints on the 
system that were not previously satisfied and possibly not previously known.   This is 
the domain of self-managing software [2]. 
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3 Evolving Critical Systems 

In order to manage change in our software systems that are critical to industry and to 
society as a whole, there is a need for further research in the area of Evolving Critical 
Systems [3]. 

Our systems must be described in a manner that enables developers to understand 
the necessary functionality of the system, which is expressed in a clear and precise 
manner, while yet offering sufficient flexibility to follow the processes and practices 
within the organization or necessitated by (possibly regulated) development 
processes.   Our belief is that, as much as possible, a formal approach, as advocated in 
the FoMaC vision [4] is the most appropriate. 

The architecture of the system must be well understood as it will form the basis for 
future decisions on changes to be made as part of the evolution process.  This is par-
ticularly true where the system evolves at run-time [2].   Models of the system are a 
key component which will change over time and offer insights into potential areas of 
difficulty and as the basis for (possibly automated) code generation. 

The system must be structured in a way that change can be managed, and con-
trolled in a clear manner.  The core functionality of the system will be fixed while 
features may be changed, added, adapted, and even deleted, in order to support any 
necessary evolution. 

It is essential that we determine, as part of our change management processes, that 
quality and reliability are not impaired.   This requires continual overview of the de-
velopment and evolutionary processes.  We must ensure that policies and constraints 
are met, while collection and recording data and evidence and computing a range of 
reliability measures at various points in time, which will be appropriately analyzed. 

4 Conclusions 

With good management of change, the quality of software need not deteriorate.  In 
fact, with judicious choices, software quality can be improved as we evolve it [5].   
However, this requires us to be conscious of our processes, the changes we make and 
of the important of software as a key resource for all organizations. 
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1 Change Is not Always Just Change

As we have observed at the International Symposium On Leveraging Applica-
tions (ISoLA) conference over the course of its 10 years and six occurrences,
research and adoption of new technologies, design principles, and tools in the
software design area at large happen, but at a different pace and with different
enthusiasm in different domains.

While the internet-dominated branches have adopted apps, the cloud, and
thinking in collaborative design and viral distribution models, counting among
the enthusiasts those who make a business out of innovation, other markets have
adopted novelties either forced by need, like the transportation-related sectors,
or by law, like the US government mandated higher auditing standards related
to Sarbanes-Oxley, and the financial sector.

Other areas have readily adopted hardware innovation but have tried to deny,
resist, and otherwise oppose software-driven agility deriving from the internet
economy. An illustrative example is the traditional telecommunication compa-
nies, cornered in several markets by the technology that came together with the
social networks wave.

Still others are undecided on what to do but for different reasons; mostly they
are stuck into oligopolies such as in the ERP and business information system-
related enterprise management software industry. These oligopolies set the pace
of adoption: they try on one hand to slowdown change in order to protect their
old products and on the other hand they try with little success to jump on the
internet wagon but failing repeatedly. A prominent example is SAP with their
”On demand” offers, whose development was recently stopped.

One other cause of current indecision, as prominently found in the healthcare
industry, is an unhealthy combination of concurring factors which include:

– the fragmentation of the software and IT market where big players occupy
significant cornerstones,

– the cultural distance between the care providers (doctors, nurses, therapists,
chemists...) and care managers (hospital administrators, payers, and politi-
cians) from the IT professionals and their way of thinking in general and the
software design leading-edge reality in particular,

– and the hyperregulation in several undercorrelated layers of responsibility
by laws as well as by professional organizations and other networks that
represent and defend specific interests of niche actors.
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2 Change at Large

In this very diverse context, we see that change in these different domains faces
an amazing diversification of challenges. These challenges are never addressed
in simple, rational decisions of adoption based on factual measurements of im-
provement of some metric such as cost, efficiency, or performance as in the ideal
world every engineer fancies. Instead, they involve complex processes of a socio-
technical character, where a wealth of organizational layers and both short and
long term interests must be aligned in order to create a sufficiently scoped back-
ing to some envisaged change management measure.

Once this is achieved (good luck with that!), there is the operationalization
problem of facing the concrete individuals that need to be retrained, the concrete
systems that need to be overhauled (or substituted), and the concrete ecosystem
surrounding these islands of change: they need to support or at least tolerate
the intrusion of novelty in a possibly graceful way.

Seen this way, it does not surprise anymore that the success rate of software
projects stagnates in the low double digit quartile. It is also clear that the pure
technical prowess of the staff and team, while a necessary condition for success,
is by far not sufficient to achieve a successful end of a new IT-related project.

While we, within IT, are used to smirk at cartoons that depict traits of the
inner software development teams facets1 , we are not used to look at ourselves
from the ”outside”. For example from the point of view of those other profes-
sionals we de facto closely work with, and whose professional and societal life
we directly or indirectly influence - to the point of true domination2. As Mike
Hinchey writes [4], there is hardly anything today that is not software-impacted.
As Arend Rensink writes [5], software is never finished.

I use to tell my students that creating a piece of software is like getting a
baby. First of all, it takes a couple for it: IT and those who (also) wish this piece
of software and provide their contribution. Although, technically, an initial seed
is enough, the outcome is better if the heterogeneous team collaborates all the
time during the creation, and to prepare a welcoming environment for the new
system in its future home. While we in Software Development care a lot about
the (9 months equivalent of the) creation time and what can go wrong during
this relatively short build period spent in the lab, we hardly practice as much
care and foresight as optimal parents do for the delivery itself and its acclimation
in the operational environment. This phase is called installation or implemen-
tation, depending on whether you are a software engineer or an information
system person, resp. In addition, we fail quite miserably short when considering
the subsequent 18-21 years of nurturing, care, and responsibility. Concerning
maintenance and product evolution, in fact, our practice is still trailing the care
and dedication of good parents. The Manifesto of FoMaC [6] addresses in fact

1 For instance, in the famous ”tree-swing-comic”. Here [2] you find a commented
version and also its derivation history, dating back to the ’70s.

2 This is genuine bidirectional incomprehension: as aptly captured in [1]
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this phase, and what can be done before in order to face it in the most adequate
and informed fashion.

The successive step hinges on the realization that we intrinsically depend upon
the understanding and informed support and collaboration of a huge cloud of
other professionals, without which no software system can be successful in the
long term. As explained in this other story [3], in any IT-related project, we need
the right marketing, the right press releases, the right communication, the right
bosses and the right customers to achieve what can only be a shared, co-owned
success. This is the scope of ToMaC, the sister Transactions o Managing Change
that we are going to launch shortly, concerning this collaborative endeavour
within enterprises and organizations to manage change as an asset.

We really hope, in a few years from now, to be able to look back at this
collection of position statements and see how much changed in the way we deal
with change in IT, economy, and society.
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