
A Risk Assessment Framework

for Software Testing

Michael Felderer, Christian Haisjackl, Viktor Pekar, and Ruth Breu

Institute of Computer Science, University of Innsbruck, Austria
{michael.felderer,christian.haisjackl,viktor.pekar,ruth.breu}@uibk.ac.at

Abstract. In industry, testing has to be performed under severe pres-
sure due to limited resources. Risk-based testing which uses risks to guide
the test process is applied to allocate resources and to reduce product
risks. Risk assessment, i.e., risk identification, analysis and evaluation,
determines the significance of the risk values assigned to tests and there-
fore the quality of the overall risk-based test process. In this paper we
provide a risk assessment model and its integration into an established
test process. This framework is derived on the basis of best practices
extracted from published risk-based testing approaches and applied to
an industrial test process.

Keywords: Risk Assessment, Risk Identification, Risk Analysis, Risk
Evaluation, Risk-Based Testing, Risk Management, Software Testing.

1 Introduction

Risk-based testing (RBT) is a pragmatic and well-known approach to address the
problem of ever limited testing resources that recently gained much attention [1].
It is based on the intuitive idea to focus test activities on those scenarios that
trigger the most critical situations for a software system [2]. Its appropriate
application may then have several benefits. RBT optimizes the allocation of
resources (budget, time, persons), is a means for mitigating risks, helps to early
identify critical areas, and provides decision support for the management. Risk-
based testing involves the identification, analysis and evaluation of product risks,
which are together referred to as risk assessment, and the use of risks to guide
the test process [3].

Because risk identification, analysis, and evaluation determine the significance
of the risk values assigned to tests and therefore the quality of the overall test
process, they are core activities in every risk-based test process. Although sev-
eral RBT approaches are available [4], and the upcoming international standard
ISO/IEC 29119 [5] on testing techniques, processes, and documentation even re-
quires the consideration of risks as an integral part of the test planning process,
a framework on how to integrate risk assessment in a test process has not been
proposed. But such a framework provides guidelines and supports test and pro-
cess managers to establish a risk-based test process on the basis of an existing
test process.

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 292–308, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



A Risk Assessment Framework for Software Testing 293

The objective of this paper is to provide a framework for integrating risk
assessment, i.e., risk identification, analysis, and evaluation, into an established
test process. The framework contains a risk assessment model which configures
the risk-based test process. It is derived on the basis of best practices extracted
from published RBT approaches and applied to an industrial test process.

The remainder of this paper is structured as follows. Section 2 discusses back-
ground on risk-based testing and related work. Section 3 defines a risk assessment
framework for testing purposes. Section 4 shows how this model is applied in
industrial projects. Finally, Section 5 concludes the paper and presents future
work.

2 Background on Risk-Based Testing

Risk-based Testing (RBT) is a type of software testing that considers risks as-
signed to risk items for testing activities [6,7]. In risk-based testing, testing ac-
tivities are supported by risk management activities. It therefore integrates a
risk management process into a test process. In this section we discuss back-
ground on the concept of risk (Section 2.1), test and risk management processes
(Section 2.2) as well as RBT approaches (Section 2.3).

2.1 Concept of Risk

A risk is the chance of injury, damage or loss and typically determined by the
probability of its occurrence and its impact [8]. As it is the chance of some-
thing happening that will have an impact on objectives [9], the standard risk
formalization [3] is based on the two factors probability (P ), determining the
likelihood that a failure assigned to a risk occurs, and impact (I), determining
the cost or severity of a failure if it occurs in operation. Mathematically, the risk
exposure R of an arbitrary asset a, i.e., something to which a party assigns value,
is determined based on the probability P and the impact I in the following way:

R(a) = P (a) ◦ I(a)

In the context of testing, assets are arbitrary testable artifacts also called risk
items. For instance, requirements, components, security risks or failures are typical
risk items to which risk exposure values R as well as tests are assigned. Within
testing, a risk item is assigned to test cases which are typically associated with risk
exposure values themselves derived from the risk items’ risk exposure values. Risk
exposure is sometimes also called risk coefficient, risk value or not distinguished
from the risk itself. The depicted operation ◦ represents a multiplication of two
numbers or a cross product of two numbers or letters (and can principally be an
arbitrarymathematical operationused to determine risk).The factorsP and Imay
be determined directly via suitable metrics or indirectly via intermediate criteria
based on theFactor-Criteria-Metricmodel [10].The probability typically considers
technical criteria like complexity of components assigned to the risk item and the
impact considers business criteria likemonetary loss. Themetrics can bemeasured



294 M. Felderer et al.

automatically, semi-automatically or manually. For instance, the complexity of a
component can be estimated automatically by the McCabe complexity and the
monetary loss can be estimated manually by a customer. Based on the determined
metrics, risk exposure values are computed on the basis of a calculation procedure.
Finally, risk exposure values are assigned to risk levels. A risk level [3] indicates the
criticality of risk items and serves the purpose to compare risk items as well as to
determine the use of resources, e.g., for testing. Risk levels are often defined via risk
matrices combining probability and impact of a risk. An example for a risk matrix
is shown in Fig. 1.

Impact (I)

Probability (P)

10

10

R1

R2

R3

50
0

5

Fig. 1. Risk Matrix Example

The 2x2 risk matrix of Fig. 1. Probability and impact range from 0 to 10
and are shown on the x-axis and y-axis, respectively. Items in the lower left cell
([0..5]× [0..5]) have low risk, items in the upper right cell ([5..10]× [5..10]) have
high risk, and items in the remaining cells ([0..5] × [5..10] and [5..10] × [0..5])
have medium risk. For instance, risk R1 in Figure 1 with value 6× 7 is high, R2

with value 1× 9 is medium, and R3 with value 1× 2 is low.

2.2 Basic Concepts of Test and Risk Management Processes

A test process contains the core activities test planning, test design, test imple-
mentation, test execution as well as test evaluation [3]. Test planning is the activ-
ity of establishing or updating a test plan. A test plan is a document describing
the scope, approach, resources, and schedule of intended test activities [3]. Dur-
ing the test design phase the general testing objectives defined in the test plan
are transformed into tangible test conditions and test cases. Tests are then imple-
mented which contains remaining tasks like preparing test harnesses and test data,



A Risk Assessment Framework for Software Testing 295

orwriting automated test scripts which are necessary to enable the execution of the
implementation-level test cases.The tests are then executed andall relevant details
of the execution are recorded in a test log. During the test evaluation and reporting
phase, the exit criteria are evaluated and the logged test results are summarized in
a test report. Development projects typically contain several test cycles and there-
fore all or some phases of the test process are performed iteratively.

A risk management process contains the core activities risk identification,
risk analysis, risk evaluation, risk treatment, and risk monitoring [9]. In the
risk identification phase risk items are identified. In the risk analysis phase the
probability and impact of risk items and hence their risk exposure values are
estimated. In the risk evaluation phase, the significance of risk is assessed based
on the estimated risk exposure values. As a consequence, risk items may be
assigned to risk levels defining a risk classification and a prioritization. In the
risk treatment phase actions for obtaining a satisfactory situation are determined
and implemented. In case of risk-based testing, testing is applied as a measure
to treat risks. In the risk monitoring phase risks are tracked over time and
their status is reported. In addition, the effect of the implemented actions is
determined. The activities risk identification, risk analysis, and risk evaluation
are often collectively referred to as risk assessment, while the activities risk
treatment and risk monitoring are referred to as risk control. As in the context
of RBT, testing is per definition applied for risk control, only risk assessment,
i.e., risk identification, analysis, and evaluation, has to be integrated into the
test process as a separate activity.

2.3 Risk-Based Testing Approaches

The overall purpose of RBT approaches is to test in an efficient and effective
way driven by risks. As mentioned before, every available risk-based testing ap-
proach therefore integrates testing and risk assessment activities. Several RBT
approaches have been proposed in scientific conferences and journals. We system-
atically extracted these approaches from comprehensive related work sections of
four recently published journal articles on risk-based testing [11,4,12,13] to get a
broad and representative overview of RBT approaches. We considered all RBT
approaches defined in the journal articles themselves as well as all RBT ap-
proaches cited in at least one related work section of the four journal articles. To
guarantee evidence of the approaches and enough details to extract relevant in-
formation, we considered only RBT approaches reported in papers with a length
of at least four pages published in a scientific journal or in conference proceed-
ings. Table 1 lists all collected RBT approaches ordered by the date of their
first publication. Some approaches, i.e., Redmill, Stallbaum, Souza, as well as
Felderer and Ramler are covered by more than one cited publication (see entries
with identifiers 03, 04, 05 and 13 in Table 1). Most listed approaches are cited by
more than one journal article which is an additional indicator for the relevance
of the RBT approaches collected in Table 1.



296 M. Felderer et al.

Table 1. Overview of Identified Risk-based Testing Approaches

ID Approach Description

01 Amland [6] The approach defines a process which consists of the steps (1)
planning, (2) identification of risk indicators, (3) identification
of cost of a fault, (4) identification of critical elements, (5) test
execution as well as (6) estimation to complete. In addition, it is
presented how the approach was carried out in a large project.

02 Chen et al. [14] The approach defines a specification-based regression test selec-
tion with risk analysis. Each test case is a path through an activ-
ity diagram (its elements represent requirements attributes) and
has an assigned cost and severity probability. The test selection
consists of the steps (1) assessment of the cost, (2) derivation of
severity probability, and (3) calculation of risk exposure for each
test case as well as (4) selection of safety tests. The risk exposure
of test cases grouped to scenarios is summed up until one runs out
of time and resources. The approach is evaluated by comparing it
to manual regression testing.

03 Redmill [15,16] The approach reflects on the role of risk for testing in general
and proposes two types of risk analysis, i.e., single-factor analysis
based on impact or probability as well as two-factor analysis based
on both factors.

04 Stallbaum et al. [17,18] The approach is model-based. Risk is measured on the basis of
the Factor-Criteria-Metrics model and annotated to UML use case
and activity diagrams from which test cases are derived.

05 Souza et al. [19,20] The approach defines a risk-based test process including the ac-
tivities (1) risk identification, (2) risk analysis, (3) test planning,
(4) test design, (5) test execution, as well as (6) test evaluation
and risk control. In addition, metrics to measure and control RBT
activities are given. The approach is evaluated in a case study.

06 Zimmermann et al. [21] The approach is model-based and statistical using Markov chains
to describe stimulation and usage profile. Test cases are then gen-
erated automatically taking the criticality of transitions into ac-
count. The approach focuses on safety-critical systems and its ap-
plication is illustrated by examples.

07 Kloos et al. [22] The approach is model-based. It uses Fault Tree Analysis during
the construction of test models represented as state machine, such
that test cases can be derived, selected and prioritized according
to the severity of the identified risks and the basic events that
cause it. The focus of the approach are safety-critical systems and
its application is illustrated by an example.

08 Yoon and Choi [23] The approach defines a test case prioritization strategy for se-
quencing test cases. Each test case is prioritized on the basis of the
product of risk exposure value manually determined by domain ex-
perts and the correlation between test cases and risks determined
by mutation analysis. The effectiveness is shown by comparing the
number and severity of faults detected to the approach of Chen
et al.

09 Zech [24] The approach is model-based and derives a risk model from a
system model and a vulnerability knowledge base. On this basis
a misuse case model is derived and test code generated from this
model is executed. The approach is intended to be applied for
testing cloud systems.

10 Bai et al. [11] The approach addresses risk-based testing of service-based sys-
tems taking the service semantics which is expressed by an OWL
ontology into account. For estimating probability and impact de-
pendencies in the ontology are considered. The approach considers
the continuous adjustment of software and test case measurement
as well as of rules for test case selection, prioritization and service
evaluation. The approach is evaluated by comparing its cost and
efficiency to random testing.



A Risk Assessment Framework for Software Testing 297

Table 1. (continued)

11 Felderer et al. [7] The approach defines a generic risk-based test process contain-
ing the steps (1) risk identification, (2) test planning, (3) risk
analysis, (4) test design as well as (5) evaluation. Steps (2) and
(3) can be executed in parallel. For this test process a risk as-
sessment model based on the Factor-Criteria-Metrics model is de-
fined. The metrics in this model can be determined automatically,
semi-automatically or manually. The approach is illustrated by an
example.

12 Wendland et al. [2] The approach is model-based. It formalizes requirements as inte-
grated behavior trees and augments the integrated behavior tree
with risk information. Then for each risk an appropriate test direc-
tive is identified, and finally both the risk-augmented integrated
behavior tree and the test directive definition are passed into a
test generator.

13 Felderer and Ramler [12,25] The approach defines a process to stepwise introducing risk-based
testing into an established test process. On this basis four stages
of risk-based test integration are defined, i.e., (1) initial risk-based
testing including design and execution of test cases on the basis
of a risk assessment, (2) risk-based test results evaluation, (3)
risk-based test planning, as well as (4) optimization of risk-based
testing. The approach is evaluated in a case study.

14 Ray and Mohapatra [13] The approach defines a risk analysis procedure to guide testing. It
is based on sequence diagrams and state machines. First one esti-
mates the risk for various states of a component within a scenario
and then, the risk for the whole scenario is estimated. The key
data needed for risk assessment are complexity and severity. For
estimating complexity inter-component state-dependence graphs
are introduced. The severity for a component within a scenario
is decided based on three hazard techniques: Functional Failure
Analysis, Software Failure Mode and Effect Analysis and Software
Fault Tree Analysis. The efficiency of the approach is evaluated
compared to another risk analysis approach.

3 Risk Assessment Framework

In this section we present a risk assessment framework for risk-based testing
purposes. This framework is shown in Fig. 3. It contains a risk assessment model
which configures the risk-based test process. The execution of the test process
provides feedback to continuously refine and improve the risk assessment model.
As mentioned in the previous section, the risk-based test process integrates risk
assessment into the test process and uses risks to support all phases of the test
process, i.e., test planning, design, implementation, execution, and evaluation.
The framework is based on the risk-based test process which is configured by and
provides feedback for the risk assessment model and explained as background in
Section 2.

The risk assessment model and its elements therefore determine the overall
risk-based test process and are the main component of our risk assessment frame-
work for testing purposes. The risk assessment model defines the test scope, the
risk identification method, a risk model and the tooling for risk assessment. In
the following, we explain these elements in more detail illustrated by examples
from the RBT approaches collected in Section 2.3. Each mentioned approach is
referred to by its name and identifier. For the often cited approach of Amland [6]
we discuss all aspects of risk assessment model definition.



298 M. Felderer et al.

Feedback

Risk Based Test ProcessRisk Assessment Model

Configuration

Test Planning

Risk Assessment

Test Design

Test Implementation

Test Execution

Test Evaluation

Test Scope

Risk Identification
Methods

Risk Model

Tooling

Risk Item Types

Characteristics

Measurement
Methods

Calculation
Procedure

Risk Levels

Fig. 2. Risk Assessment Framework

3.1 Test Scope

The test scope determines whether and how risk assessment is performed. It
provides the overall testing context and typically considers the test object, test
resources and test strategy. The test object defines the component or system to
be tested and therefore influences the risk identification method and risk model.
Limited test resources, i.e., personnel, time or budget, are typically the main
driver for performing risk-based testing. Thus, the available resources determine
whether a risk-based testing approach is required or not. The test strategy is a
high-level description of the test levels to be performed and the testing within
those levels determining risk-based testing as well.

All listed RBT approaches implicitly presume that prerequisites for the appli-
cation of risk-based testing like limited resources are fulfilled and that the test
objects are defined. Amland (01), for instance, states, “As for all projects, time
and resources were limited.” (cf. [6], page 2). Furthermore, all approaches con-
sider system or integration testing for components, services or complete systems.

3.2 Risk Identification Methods

Risk identification methods are techniques to identify risks items. There are sev-
eral risk identification methods such as brainstorming, risk checklists, and failure
history available [3,26] which can be applied and tailored to a specific RBT con-
text to define a risk model. Different roles of the software engineering process
like product managers, business analysts, software architects, testers or develop-
ers as well as different artifact like requirements specifications, documentation,



A Risk Assessment Framework for Software Testing 299

defect databases or source code can be considered in specific risk identification
methods.

Most RBT approaches do not explicitly mention the underlying risk identi-
fication methods but only present the resulting risk model and its application.
Amland (01), for instance, explains the step ’identification of risk indicators’ in
which risk criteria are selected in a group meeting to guarantee that the used cri-
teria are meaningful to those participating in the process of assessment. Souza et
al. (05) use a taxonomy-based questionnaire answered by the project members,
followed by a brainstorming meeting to identify technical risks.

3.3 Risk Model

The risk model is based on the concept of risk (see Section 2.1 the core artifact
of the risk assessment model. It determines how the risk assessment is conducted
in the risk-based test process. As Fig. 3 shows, the risk model consists of risk
item types, characteristics, measurement methods, a calculation procedure, as
well as risk levels which together define how risks are assessed. In the following,
we explain these parts of the risk model in more detail.

Risk Item Types. The risk items type determines the risk items, i.e., the
elements to which risk exposure values and tests are assigned, and their repre-
sentation. For instance, Amland (01) assigns risks to system functions like ’Close
Account’ collected in a list. Furthermore, Chen et al. (02) assigns risks to test
cases represented as path through an activity diagram, Zimmermann et al. (06)
to critical functions represented as transitions in Markov chains, Kloos et al.
(07) to safety risks represented as fault trees and state machines, Bai et al. (10)
to web services represented as semantic models in OWL-S, and Wendland et al.
(12) to requirements represented in behavior trees. Yoon and Choi (08) consider
abstract sources of risk and assign the number of faults lying within the scope
of a given risk and the test cases covering these faults to it. Felderer and Ramler
(13) discuss different viewpoints for risk assessment, i.e., functional, architectural
as well as development viewpoint, and conclude that the architectural viewpoint
based on the components provides the most comprehensive structure in the con-
sidered project. Finally, Ray and Mohapatra (14) assigns risks to components
represented as state machines, state dependence graphs and fault trees.

Characteristics. Characteristics define factors and their relationship to deter-
mine the risk. As such they define the applied risk concept. Typically, at least
factors for probability and impact are considered which may be further refined
based on the Factor-Criteria-Metrics model [27] defining a tree of factors with
concrete measurable metrics at its leaves. Sometimes there are no defined char-
acteristics and the risk is measured directly.

Amland (01) defines the factors probability and cost. For probability the crite-
ria ’new functionality’, ’design quality’, ’size’, and ’complexity’ are distinguished,
and for cost the criteria ’cost for customer’ and ’fault occurrence’. Furthermore,



300 M. Felderer et al.

Redmill (03) distinguishes between single-factor analysis based on impact or
probability as well as two-factor analysis based on both factors. Stallbaum et al.
(04) as well as Felderer et al. (11) define characteristics explicitly on the Factor-
Criteria-Metrics model. Both distinguish the factors probability and impact and
state that probability is mainly determined by technical criteria and metrics of
software development activities but impact mainly by business criteria and met-
rics of domain analysis. Finally, Ray and Mohaptra (14) take the factors severity
and complexity of components into account.

Measurement Methods. A measurement method defines how values are di-
rectly assigned to factors. The measurement can be performed manually or au-
tomatically. If the measurement is performed manually, the role performing the
estimation and the procedure how the estimation is performed (e.g., a consensus
meeting if several persons perform the estimation) have to be defined. If it is
performed automatically, the measurement object and the measurement tool,
e.g., a static analysis tool, have to be defined. Each measured factor requires a
scale of arbitrary range for its assigned value. For manual measurement, a Likert
scale is typically used where selection items are assigned to values. Automatically
measured values are used directly or they are mapped to another scale.

Amland (01) applies a three-point Likert scale with low (1), medium (2) and
high (3) or all criteria. The numeric values for the probability criteria were de-
termined in a consensus meeting where the roles developer, designer, product
specialist, quality manage, development manager, project manager, sales man-
ager and corporate management were present. The cost criteria were determined
by the customer and the supplier, respectively. Measurement methods similar to
Amland (01) are applied in many industrial settings [12]. More advanced ap-
proaches are presented by Zech (09) who defines an automated approach to
measure security risk values based on a system model and a vulnerability knowl-
edge base.

Calculation Procedure. The calculation procedure defines how risk exposure
values are calculated on the basis of other risk exposure values, characteristics,
measured values and testing information. It determines how to aggregate values,
i.e., which aggregation function to apply, how to scale values and how to weight
different factors.

Amland (01) weights the values for the probability factors and computes the
probability value as their weighted sum. The cost value is the average of the two
cost factor values. The risk exposure value is then the product of the probability
and cost value. Stallbaum et al. (04) determines the risk exposure value for each
action (modeled in an activity diagram) by the product of the probability that an
entity contains a fault and he total damage caused by this fault which are both
measured on a five-level scale from 1 to 5. The risk exposure value of a test case,
which is a sequence of actions, is then the sum of the actions’ risk exposure values.

Risk Levels. Risk levels indicate the criticality of risk items and serve the
purpose to compare risk items as well as to configure testing activities. Risk



A Risk Assessment Framework for Software Testing 301

levels can be expressed either qualitatively or quantitatively [2]. For instance,
numeric risk exposure values can be directly used as quantitative risk levels.
Although, there is no restriction on the number of risk levels, a frequently used
qualitatively scale for risk levels is low, medium, and high. Risk levels are often
defined by the two dimensions probability and impact (each with levels low,
medium and high) which are visualized in a risk matrix. Different areas in the
risk matrix may then mapped to risk levels low, medium and high. If risk levels
are measured qualitatively, factors are either directly measured qualitatively,
e.g., with levels low, medium, and high, or their numeric values are mapped to
these levels.

If risk levels are defined explicitly in the listed approaches, then qualitative
two-dimensional risk levels are applied. Amland (01) and Wendland (12) map
risk items to a 3x3 risk matrix with the two dimensions probability and impact
with levels low, medium and high. The three cells at the lower left corner have
low risk, the three cells at the upper right have high risk, and the remaining
three cells have medium risk. Felderer et al. (11) apply a 2x2 risk matrix to
determine the risk level and map their risk items with probability and impact
values (each measured on a scale from 0 to 9) into this matrix. In the 2x2 risk
matrix the lower left cell shows low risk, the upper right cell high risk, and the
remaining two cells medium risk.

3.4 Tooling

If the risk assessment is not done ad-hoc, it requires tool support to be per-
formed efficiently. The tooling may include printed forms as well as software
tool support to perform the computations in an automatic way. Software tools
supporting risk assessment for testing may be spreadsheets, specific risk assess-
ment or management tools [28], or test or project management tools. The tooling
is often fixed already before the risk model is defined, e.g., because a specific test
management tool has to be used, and influences the definition of the risk model.

Amland (01) uses a spreadsheet for risk assessment. Souza et al. (05) use
a specific risk assessment tool called RBTTool. Felderer et al. (11) use forms
to conduct a risk assessment workshop. Finally, in Section 4 we integrate risk
assessment into a project management tool.

Figure 3 summarizes which risk-based testing approach (RBT Approach) ex-
plicitly addresses which aspect of the risk assessment model. We skip the test
scope as all listed RBT approaches implicitly presume that the prerequisites for
the application of risk-based testing are fulfilled and defined.

The risk identification method is covered explicitly only be approaches 01
and 05. The risk item type is explicitly addressed by all RBT approaches. The
remaining aspects are covered by most approaches. Only approach 01, i.e., Am-
land, covers all listed aspects explicitly.



302 M. Felderer et al.

01 02 03 04 05 06 07 08 09 10 11 12 13 14

Risk Identification Methods x x

Risk Item Type x x x x x x x x x x x x x x

Characteristics x x x x x x x x x x x x

Calculation Procedure x x x x x x x x x x x

Measurement Methods x x x x x x x x x x x

Risk Level x x x x x x x x x x x x x

Tooling x x x x x x x x x

RBT Approach

Fig. 3. Elements of Risk Assessment Framework Covered by RBT Approaches

4 Application of Risk Assessment Model in an Industrial
Test Process

In this section, we show how the risk assessment model is applied in the test
process of a company in the telecommunication domain. The company follows a
structured development and test process on the basis of a clearly-defined generic
system and test model shown in Fig. 4. Further details on the company and its
test process can be found in [29].

In this model, so called features are the central concept to plan and control
implementation and testing. A feature has a concise and complete description of
its functionality, along with non-functional aspects like performance or security.
Features are on the one hand assigned to requirements and on the other hand
to components. A requirement describes a certain functional or non-functional
property of the system and is implemented by a set of features. A component is
an installable artifact that provides the functionality of several features. Com-
ponents are defined hierarchically in a tree. The root component represents the
system and the leaves are units. As features are the tested artifacts, test cases
are assigned to them. Differing from components, testable objects are executable
units composed of one or more component and a test environment. Testable ob-
jects are assigned to the system or a component and have an attached test plan.
A test plan contains test cases grouped either by features or components. Each
test case contains a description, test steps and expected results.

Development and testing follow the V-model. First, a customer solution man-
ager collects the requirements in a user requirements specification. Then, the fea-
tures are defined and the system architecture is derived by a technical solution
manager. The features are assigned to requirements in the technical requirements
specification. The system design is then further refined to concrete components
with assigned units, which are implemented and tested by a developer. As soon
as feature definitions are available, test planning is started. First, testable objects
are defined and a test plan, which is based on formerly defined requirements ac-
ceptance criteria. It contains test cases grouped either by features or components



A Risk Assessment Framework for Software Testing 303

and has a test end criterion. In the test design phase, executable test cases are de-
fined by testers according to the test plan. Test cases are also adopted from existing
components or features. New or changed test cases are reviewed and corrected if
necessary. After the respective testable object (including its test environment) has
been implemented, the test cases are executed. Each test run contains a test result
for each of its executed test cases. Depending on the test results, a problem ticket
is created. As soon as the test end criterion is reached, a test report is provided.

Feature

Risk

wpi

wIi

P1

MP1

System

Component

Unit

Requirement

Test Case

Testable Object

Test Plan

Test Run

P2

MP2

Pn

MPn

I1

MI1

I2

MI2

In

MIn

T1

MT1

T2

MT2

Tn

MTn

Test Result

Fig. 4. System, Test and Risk Assessment Artifacts in Development and Test Pro-
cess [29]

Test Scope. The expected benefits of risk-based testing are mainly decision sup-
port on resource allocation. The time resources for testing are limited as solutions
have to be provided at fixed dates. Therefore, test cases should be prioritized for
execution based on their risk level to mitigate highest risks in the limited test
window. A test end criterion which considers the risk levels of features should
terminate testing.

Risk Identification Methods. Due to the established development and test pro-
cess, features were more or less already fixed as risk items. Risk identification
put its focus on the identification of factors determining the risk assigned to fea-
tures. For this purpose a list of factors is prepared from which suitable factors
are selected by test managers in a separate workshop.



304 M. Felderer et al.

Risk Item Types. As test cases are linked to features, they are used as risk items
to which risk exposure values are assigned as well. Features are traceable to re-
quirements and components and therefore allow integrating a technical view on
risk based on the components as well as a business view based on the require-
ments.

Characteristics. Risk is defined on the basis of the Factor-Criteria-Metrics
model [27]. The definition considers the factors probability P and impact I
as well as the additional factor time T . Probability reflects the technical view,
impact the business view and time the system evolution. The factor values are de-
termined by weighted criteria. The probability factor is composed of the weighted
technical criteria code complexity, data complexity, functional complexity, visi-
bility and third-party software. The impact factor is composed of the user and
business-oriented weighted criteria usage, availability, importance and perfor-
mance. The time factor is composed of the criteria bug tracking, change history,
new technologies and project progress. Each factor is determined by a specific
metric.

Measurement Methods. Probability, impact and time are explicitly defined on
the basis of several criteria. For each criterion metrics are defined to determine
the value in an objective way. The metrics can be determined manually by a
suitable stakeholder or even automatically. For instance, the importance is mea-
sured manually on a five-point Likert scale and the code complexity is measured
automatically by the McCabe complexity [30]. For the automatic measurement
of source code metrics the source code quality management tool Sonar [31] is
applied.

Calculation Procedure. Due to the traceability between requirements, compo-
nents and units via features, the probability criteria are measured for units,
the impact factors for requirements, and the weights are assigned to compo-
nents (from which only a few exist). Time criteria are directly assigned to
features, for which the risk exposure values are calculated (see Fig. 4). The
probability P and the impact I are evaluated by several weighted criteria. For
a risk item a, the probability P is for instance determined by the formula

P (a) = (
m∑

j=0

pj · wj) ÷ (
m∑

j=0

wj), where pj are values for probability criteria and

wj are weight values for the criteria. The range of the criteria values are natural
numbers between 0 and 9, and of the weights real numbers between 0 and 1
(so the weight can be naturally interpreted as scaling factor). The time factor,
which scales the probability, has a range between 0 and 1, and is the mean of
the time criteria values. The risk exposure value of a feature can be calculated
via the formula, R = (P · T ) × I, where P denotes the aggregated probability
factor, I the aggregated impact factor, and T the aggregated time factor which
reduces the value of P over time. Figure 6 shows the computed risk coefficients
for seven features based values for the time criteria bug tracking, change history,
new technologies and project progress. For each feature, the mean of the time



A Risk Assessment Framework for Software Testing 305

criteria values is multiplied with the probability value and then combined with
the impact value. For instance, all time criteria values of Feature 003 in Fig. 6
are 1. Therefore, the time factor T , i.e., the mean of the time criteria values, is
1 as well. With a probability factor P of 5 and an impact factor I of 6.75, the
resulting risk coefficient R is (5 · 1)× 6.75, which corresponds to the value 33.75.

Risk Levels. The scaled probability and impact value defining the risk value
are mapped to a 2x2 risk matrix to determine the risk level. Risk items, i.e.,
features with assigned risk values, mapped to the lower left cell have low risk,
to the upper right cell high risk, and to the remaining two cells medium risk.
Figure 5 shows the applied risk matrix. In this risk matrix, Feature 003 with risk
coefficient (5 · 1)× 6.75 is of high risk.

Impact (I)

Probability . Time (P .T)

9

9

Feature 003

0
0

Fig. 5. Risk Matrix in Industrial Case

Tooling Risk assessment as well as the overall risk-based test process with all
its artifacts and process steps is supported in the project management tool in-
Step [32] which is already established in the company. Figure 6 shows a screen-
shot of the specifically developed risk assessment view of in-Step where the mea-
sures for criteria are entered and processed to calculate risk exposure values. In
addition, for the automatic measurement of source code metrics the source code
quality management tool Sonar [31] is used.

Risk-Based Test Process In the test process risks are explicitly considered in the
test planning, test design and test execution phase. In the test planning phase,
first testable objects, which are executable units composed of one or more com-
ponents and a test environment, are defined. Then a test plan is created on the
basis of formally defined test end criteria, features with attached risk exposure
values and components. A typical test end criterion defines that all features with



306 M. Felderer et al.

Fig. 6. Risk Assessment in Project Management Tool in-Step [29]

high risk have to be tested, features with medium risk are optional candidates
to be tested in order to reach the required test coverage, and features with low
risk are only tested if all others have been tested and resources are available. In
the test design phase, executable test cases are defined by testers according to
the test plan and get assigned the risk exposure value of the feature they are
designed for. Already existing test cases which are applicable are selected from
similar previous components or features. New or changed test cases are reviewed
and corrected if necessary. After the respective testable object (including its test
environment) is available for the test, the test cases are executed ordered by
their risk level and risk exposure values (inherited from the assigned features).
Each test run contains a test result for each of its executed test cases. Depending
on the test results, a problem ticket is created. As soon as the test end criterion
is reached, a test report is created. But the test report itself does not explicitly
take risk information into account.

5 Summary and Future Work

In this paper we presented a risk assessment framework for testing purposes.
The framework is based on the risk-based test process which is configured by and
provides feedback for a risk assessment model. This model is the main component
of our framework and defines the test scope, the risk identification method, a risk
model as well as the tooling for risk assessment. The risk assessment framework
is derived on the basis of best practices extracted from published risk-based
testing approaches and applied to an industrial test process where it guides the
definition and application of the RBT approach.

In future, we intend to provide a catalog with concrete guidelines on how to
configure the risk assessment model to additionally support practitioners. In
addition, we will perform empirical case studies to further evaluate and improve
the risk assessment model.



A Risk Assessment Framework for Software Testing 307

Acknowledgment. This research was partially funded by the research projects
MOBSTECO (FWF P 26194-N15) and QE LaB - Living Models for Open Sys-
tems (FFG 822740).

References

1. Felderer, M., Schieferdecker, I.: A taxonomy of risk-based testing. STTT (2014)
2. Wendland, M.F., Kranz, M., Schieferdecker, I.: A systematic approach to risk-based

testing using risk-annotated requirements models. In: ICSEA 2012, The Seventh
International Conference on Software Engineering Advances, pp. 636–642 (2012)

3. ISTQB: Standard glossary of terms used in software testing, version 2.2. Technical
report, ISTQB (2012)

4. Alam, M.M., Khan, A.I.: Risk-based testing techniques: A perspective study. In-
ternational Journal of Computer Applications 65(1) (2013)

5. ISO: ISO/IEC 29119 Software Testing, Draft (2013)
6. Amland, S.: Risk-based testing: Risk analysis fundamentals and metrics for soft-

ware testing including a financial application case study. Journal of Systems and
Software 53(3), 287–295 (2000)

7. Felderer, M., Haisjackl, C., Breu, R., Motz, J.: Integrating manual and automatic
risk assessment for risk-based testing. In: Biffl, S., Winkler, D., Bergsmann, J.
(eds.) SWQD 2012. LNBIP, vol. 94, pp. 159–180. Springer, Heidelberg (2012)

8. Merriam-Webster: Merriam-Webster Online Dictionary (2009),
http://www.merriam-webster.com/dictionary/risk (accessed: April 04, 2013)

9. Standards Australia/New Zealand: Risk Management AS/NZS 4360:2004 (2004)
10. McCall, J., Richards, P., Walters, G.: Factors in software quality. Technical report,

NTIS, vol. 1, 2 and 3 (1997)
11. Bai, X., Kenett, R.S., Yu, W.: Risk assessment and adaptive group testing of se-

mantic web services. International Journal of Software Engineering and Knowledge
Engineering 22(05), 595–620 (2012)

12. Felderer, M., Ramler, R.: Integrating risk-based testing in industrial test processes.
Software Quality Journal, 1–33 (2013) (online first)

13. Ray, M., Mohapatra, D.P.: Risk analysis: a guiding force in the improvement of
testing. IET Software 7(1), 29–46 (2013)

14. Chen, Y., Probert, R.L., Sims, D.P.: Specification-based regression test selection
with risk analysis. In: Proceedings of the 2002 Conference of the Centre for Ad-
vanced Studies on Collaborative Research, p. 1. IBM Press (2002)

15. Redmill, F.: Exploring risk-based testing and its implications. Software Testing,
Verification and Reliability 14(1), 3–15 (2004)

16. Redmill, F.: Theory and practice of risk-based testing. Software Testing, Verifica-
tion and Reliability 15(1), 3–20 (2005)

17. Stallbaum, H., Metzger, A.: Employing requirements metrics for automating early
risk assessment. In: Proc. of MeReP 2007, Palma de Mallorca, Spain, pp. 1–12
(2007)

18. Stallbaum, H., Metzger, A., Pohl, K.: An automated technique for risk-based test
case generation and prioritization. In: Proceedings of the 3rd International Work-
shop on Automation of Software Test, pp. 67–70. ACM (2008)

19. Souza, E., Gusmao, C., Alves, K., Venancio, J., Melo, R.: Measurement and control
for risk-based test cases and activities. In: 10th Latin American Test Workshop,
pp. 1–6. IEEE (2009)

http://www.merriam-webster.com/dictionary/risk


308 M. Felderer et al.

20. Souza, E., Gusmão, C., Venâncio, J.: Risk-based testing: A case study. In: 2010
Seventh International Conference on Information Technology: New Generations
(ITNG), pp. 1032–1037. IEEE (2010)

21. Zimmermann, F., Eschbach, R., Kloos, J., Bauer, T., et al.: Risk-based statistical
testing: A refinement-based approach to the reliability analysis of safety-critical
systems. In: Proceedings of the 12th European Workshop on Dependable Comput-
ing, EWDC 2009 (2009)

22. Kloos, J., Hussain, T., Eschbach, R.: Risk-based testing of safety-critical embedded
systems driven by fault tree analysis. In: 2011 IEEE Fourth International Confer-
ence on Software Testing, Verification and Validation Workshops (ICSTW), pp.
26–33. IEEE (2011)

23. Yoon, H., Choi, B.: A test case prioritization based on degree of risk exposure and
its empirical study. International Journal of Software Engineering and Knowledge
Engineering 21(02), 191–209 (2011)

24. Zech, P.: Risk-based security testing in cloud computing environments. In: 2011
IEEE Fourth International Conference on Software Testing, Verification and Vali-
dation (ICST), pp. 411–414. IEEE (2011)

25. Felderer, M., Ramler, R.: Experiences and challenges of introducing risk-based
testing in an industrial project. In: Winkler, D., Biffl, S., Bergsmann, J. (eds.)
SWQD 2013. LNBIP, vol. 133, pp. 10–29. Springer, Heidelberg (2013)

26. Pandian, C.R.: Applied software risk management: a guide for software project
managers. CRC Press (2006)

27. Cavano, J., McCall, J.: A framework for the measurement of software quality. ACM
SIGMETRICS Performance Evaluation Review 7(3-4), 133–139 (1978)

28. Haisjackl, C., Felderer, M., Breu, R.: Riscal–a risk estimation tool for software
engineering purposes. In: 2013 39th EUROMICRO Conference on Software Engi-
neering and Advanced Applications (SEAA), pp. 292–299. IEEE (2013)

29. Felderer, M., Ramler, R.: A multiple case study on risk-based testing in industry.
STTT (2014)

30. McCabe, T.: A complexity measure. IEEE Transactions on Software Engineering,
308–320 (1976)

31. SonarSource: Sonar (2013), http://www.sonarsource.org/ (accessed: March 12,
2013)

32. microtool: in-Step (2013), http://www.microtool.de/inStep (accessed: November
30, 2013)

http://www.sonarsource.org/
http://www.microtool.de/inStep

	A Risk Assessment Framework
for Software Testing

	1 Introduction
	2 Background on Risk-Based Testing
	2.1 Concept of Risk
	2.2 Basic Concepts of Test and Risk Management Processes
	2.3 Risk-Based Testing Approaches

	3 Risk Assessment Framework
	3.1 Test Scope
	3.2 Risk Identification Methods
	3.3 Risk Model
	3.4 Tooling

	4 Application of Risk Assessment Model in an Industrial Test Process
	5 Summary and Future Work
	References




