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Abstract. This short note introduces statistical model checking and
gives a brief overview of the Statistical Model Checking, past present and
future session at Isola 2014.

1 Context

Quantitative properties of stochastic systems are usually specified in logics that
allow one to compare the measure of executions satisfying certain temporal prop-
erties with thresholds. The model checking problem for stochastic systems with
respect to such logics is typically solved by a numerical approach [BHHK03,
CG04] that iteratively computes (or approximates) the exact measure of paths
satisfying relevant subformulas; the algorithms themselves depend on the class
of systems being analysed as well as the logic used for specifying the properties.

Another approach to solve the model checking problem is to simulate the
system for finitely many runs, and use hypothesis testing to infer whether the
samples provide statistical evidence for the satisfaction or violation of the speci-
fication. This approach was first applied in [LS91], where it was shown that hy-
pothesis testing could be used to settle probabilistic modal logic properties with
arbitrary precision, leading in the limit to probabilistic bisimulation. More re-
cently [You05a] this approachhas been known as statisticalmodel checking (SMC)
and is based on the notion that since sample runs of a stochastic system are drawn
according to the distribution defined by the system, they can be used to obtain
estimates of the probability measure on executions. Starting from time-bounded
PCTL properties [You05a], the technique has been extended to handle properties
with unbounded until operators [SVA05b], as well as to black-box systems [SVA04,
You05a]. Tools, based on this idea have been built [HLMP04, SVA05a, You05a,
You05b, BDD+11, DLL+11, BCLS13], and have been used to analyse many sys-
tems that are intractable numerical approaches.

The SMC approach enjoys many advantages. First, the algorithms require
only that the system be simulatable (or rather, sample executions be drawn
according to the measure space defined by the system). Thus, it can be applied
to larger class of systems than numerical model checking algorithms, including
black-box systems and infinite state systems. In particular, SMC avoids the
‘state explosion problem’ [CES09]. Second the approach can be generalized to a
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larger class of properties, including Fourier transform based logics. Third, SMC
requires many independent simulation runs, making it easy to parallelise and
scale to industrial-sized systems.

While it offers solutions to some intractable numerical model checking prob-
lems, SMC also introduces some additional problems. First, SMC only provides
probabilistic guarantees about the correctness of the results. Second, the required
sample size grows quadratically with respect to the required confidence of the
result. This makes rare properties difficult to verify. Third, only the simulation of
purely probabilistic systems is well defined. Nondeterministic systems, which are
common in the field of formal verification, are especially challenging for SMC.

2 On Statistical Model Checking

Consider a stochastic system S and a logical property ϕ that can be checked
on finite executions of the system. Statistical Model Checking (SMC) refers to a
series of simulation-based techniques that can be used to answer two questions:
(1) Qualitative: Is the probability for S to satisfy ϕ greater or equal to a certain
threshold? and (2) Quantitative: What is the probability for S to satisfy ϕ? In
contrast to numerical approaches, the answer is given up to some correctness
precision.

In the sequel, we overview two SMC techniques. Let Bi be a discrete random
variable with a Bernoulli distribution of parameter p. Such a variable can only
take 2 values 0 and 1 with Pr[Bi = 1] = p and Pr[Bi = 0] = 1 − p. In our
context, each variable Bi is associated with one simulation of the system. The
outcome for Bi, denoted bi, is 1 if the simulation satisfies ϕ and 0 otherwise.

Qualitative Answer. The main approaches [You05a, SVA04] proposed to answer
the qualitative question are based on sequential hypothesis testing [Wal45]. Let
p = Pr(ϕ). To determine whether p ≥ θ, we can test H : p ≥ θ againstK : p < θ.
A test-based solution does not guarantee a correct result but it is possible to
bound the probability of error. The strength of a test is determined by two
parameters, α and β, such that the probability of accepting K (respectively,
H) when H (respectively, K) holds, called a Type-I error (respectively, a Type-
II error ) is less or equal to α (respectively, β). A test has ideal performance
if the probability of the Type-I error (respectively, Type-II error) is exactly α
(respectively, β). However, these requirements make it impossible to ensure a
low probability for both types of errors simultaneously (see [Wal45, You05a]
for details). A solution is to use an indifference region [p1, p0] (given some δ,
p1 = θ − δ and p0 = θ + δ) and to test H0 : p≥ p0 against H1 : p≤ p1. We now
sketch the Sequential Probability Ratio Test (SPRT). In this algorithm, one has
to choose two values A and B (A > B) that ensure that the strength of the test
is respected. Let m be the number of observations that have been made so far.
The test is based on the following quotient:

p1m
p0m

=

m∏

i=1

Pr(Bi = bi | p = p1)

Pr(Bi = bi | p = p0)
=

pdm
1 (1− p1)

m−dm

pdm
0 (1− p0)m−dm

,
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where dm =
∑m

i=1 bi. The idea is to accept H0 if p1m

p0m
≥ A, and H1 if p1m

p0m
≤ B.

The algorithm computes p1m

p0m
for successive values of m until either H0 or H1

is satisfied. This has the advantage of minimizing the number of simulations
required to make the decision.

Quantitative Answer. In [HLMP04] Peyronnet et al. propose an estimation pro-
cedure to compute the probability p for S to satisfy ϕ. Given a precision δ, the
Chernoff bound of [Oka59] is used to compute a value for p′ such that |p′ − p|≤δ
with confidence 1− α. Let B1 . . . Bm be m Bernoulli random variables with pa-
rameter p, associated to m simulations of the system considering ϕ. Let p′ =∑m

i=1 bi/m, then the Chernoff bound [Oka59] gives Pr(|p′ − p| ≥ δ) ≤ 2e−2mδ2 .
As a consequence, if we take m = �ln(2/α)/(2δ2)�, then Pr(|p′ − p|≤δ) ≥ 1−α.

2.1 Rare Events

Statistical model checking avoids the exponential growth of states associated
with probabilistic model checking by estimating probabilities from multiple ex-
ecutions of a system and by giving results within confidence bounds. Rare prop-
erties are often important but pose a particular challenge for simulation-based
approaches, hence a key objective for SMC is to reduce the number and length
of simulations necessary to produce a result with a given level of confidence.
In the literature, one finds two techniques to cope with rare events: importance
sampling and importance splitting.

In order to minimize the number of simulations, importance sampling (see
e.g., [Rid10, DBNR00]) works by estimating a probability using weighted sim-
ulations that favour the rare property, then compensating for the weights. For
importance sampling to be efficient, it is thus crucial to find good importance
sampling distributions without considering the entire state space. In [CZ11] Zu-
liani and Clarke outlined the challenges for SMC and rare-events. A first theory
contribution was then provided by Barbot et al. who proposed to use reduc-
tion techniques together with cross-entropy [BHP12]. In [JLS12], we presented a
simple algorithm that uses the notion of cross-entropy minimisation to find an
optimal importance sampling distribution. In contrast to previous work, our al-
gorithm uses a naturally defined low dimensional vector of parameters to specify
this distribution and thus avoids the intractable explicit representation of a tran-
sition matrix. We show that our parametrisation leads to a unique optimum and
can produce many orders of magnitude improvement in simulation efficiency.

One of the open challenges with importance sampling is that the variance of
the estimator cannot be usefully bounded with only the knowledge gained from
simulation. Importance splitting (see e.g., [CG07]) achieves this objective by es-
timating a sequence of conditional probabilities, whose product is the required
result. In [JLS13] motivated the use of importance splitting for statistical model
checking and were the first to link this standard variance reduction technique
[KM53] with temporal logical. In particular, they showed how to create score
functions based on logical properties, and thus define a set of levels that delimit
the conditional probabilities. In [JLS13] they also described the necessary and
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desirable properties of score functions and levels, and gave two importance split-
ting algorithms: one that uses fixed levels and one that discovers optimal levels
adaptively.

2.2 Nondeterminism

Markov decision processes (MDP) and other nondeterministic models interleave
nondeterministic actions and probabilistic transitions, possibly with rewards or
costs assigned to the actions [Bel57, Put94]. These models have proved useful
in many real optimisation problems (see [Whi85, Whi88, Whi93] for a survey
of applications of MDPs) and are also used in a more abstract sense to rep-
resent concurrent probabilistic systems (e.g., [BDA95]). Such systems comprise
probabilistic subsystems whose transitions depend on the states of the other
subsystems, while the order in which concurrently enabled transitions execute
is nondeterministic. This order may radically affect the expected reward or the
probability that a system will satisfy a given property. Numerical model check-
ing may be used to calculate the upper and lower bounds of these quantities,
but a simulation semantics is not immediate for nondeterministic systems and
SMC is therefore challenging.

SMC cannot be applied to nondeterministic systems without first resolving
the nondeterminism using a scheduler (alternatively a strategy or a policy). Since
nondeterministic and probabilistic choices are interleaved, schedulers are typi-
cally of the same order of complexity as the system as a whole and may be
infinite.

In [LS14] Jegouret et al presented the basis of the first lightweight SMC
algorithms for MDPs and other nondeterministic models, using an O(1) rep-
resentation of history-dependent schedulers. This solution is based on pseudo-
random number generators and an efficient hash function, allowing schedulers
to be sampled using Monte Carlo techniques. Some previous attempts to apply
SMC to nondeterministic models [BFHH11, LP12, HMZ+12, HT13] have been
memory-intensive (heavyweight) and incomplete in various ways. The algorithms
of [BFHH11, HT13] consider only systems with ‘spurious’ nondeterminism that
does not actually affect the probability of a property. In [LP12] the authors con-
sider only memoryless schedulers and do not consider the standard notion of op-
timality used in model checking (i.e., with respect to probability). The algorithm
of [HMZ+12] addresses a standard qualitative probabilistic model checking prob-
lem, but is limited to memoryless schedulers that must fit into memory and does
not in general converge to the optimal scheduler. Most recently[DJL+], SMC – or
reinforcement learning – has been applied to learn near-cost-optimal strategies
for priced timed stochastic games subject to guaranteed worst-case time bounds.
The method is implemented using a combination of Uppaal-TIGA (for timed
games) and Uppaal SMC and provides three alternatives light-weight datas-
tructures for representing stochastic strategies.
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3 Content of the Session

SMC has been implemented in several prototypes and tools, which includes
Uppaal SMC [DLL+11], Plasma [BCLS13], Ymer [You05b], or COSMOS
[BDD+11]. Those tools have been applied to several complex problems coming
from a wide range of areas. This includes systems biology (see e.g., [Zul14]),
automotive and avionics (see e.g., [BBB+12]), energy-centric systems(see e.g.,
[DDL+13]), or power grids(see e.g., [HH13]).

This isola session discusses several aspects of SMC, which includes: non-
determinism, rare-events, applications to biology/energy-centric/power grids,
and runtime verification procedures suited for SMC. Summary of the contri-
butions:

– In [JLS14], the authors propose new SMC techniques for rare-events. The
main contribution is in extending [JLS13] with new adaptive level algorithms
based on branching simulation, and to show that this permits to get a more
precise estimate of the rare probability. In the authors stud

– In [BLT14], the authors propose to apply simulation-based techniques to
systems whose number of configurations can vary at execution. They develop
a new logic and new SMC techniques for such systems.

– In [BNB+14], the authors provide a complete and detailed comparison of
several SMC model checkers, especially for the real-time setting. The au-
thors present five semantic caveats and give a classification scheme for SMC
algorithms. They also argue that caution is needed and believe that the
caveats and classification scheme in this paper serve as a guiding reference
for thoroughly understanding them.

– In [BGGM14], the authors propose an application of SMC to systems biology.
More precisely, they consider the Wnt-beta-catenin signaling pathway that
plays an important role in the proliferation of neural cells. They analyze
the dynamics of the system by combining SMC with the Hybrid Automata
Stochastic Logic. in

– In [WHL14], the authors consider wireless systems such as satellites and
sensor networks are often battery-powered. The main contributions are (1)
to show how SMC can be used to calculate an upper bound on the attainable
number of task instances from a battery, and (2) to synthesize a battery-
aware scheduler that wastes no energy on instances that are not guaranteed
to make their deadlines.

– In [GPS+14], the authors consider CTL-based measuring on paths, and
generalize the mea- surement results to the full structure using optimal
Monte Carlo estimation techniques. To experimentally validate their frame-
work, they present LTL-based measurements for a flocking model of bird-like
agents.

– In [EHFJ+14], the authors explore the effectiveness and challenges of using
monitoring techniques, based on Aspect-Oriented Programming, to block
adware at the library level, on mobile devices based on Android using miAd-
Blocker. The authors also present the lessons learned from this experience,
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and we identify some challenges when applying runtime monitoring tech-
niques to real-world case studies.

– In [Hav14], the author presents a form of automaton, referred to as data au-
tomata, suited for monitoring sequences of data-carrying events, for example
emitted by an executing software system. He also presents and evaluate an
optimized external DSL for data automata, as well as a comparable unopti-
mized internal DSL (API) in the Scala programming language, in order to
compare the two solutions.
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