
Tiziana Margaria Bernhard Steffen (Eds.)

 123

LN
CS

 8
80

3

6th International Symposium, ISoLA 2014
Imperial, Corfu, Greece, October 8–11, 2014
Proceedings, Part II

Leveraging Applications
of Formal Methods,
Verification and Validation

Specialized Techniques and Applications

Lecture Notes in Computer Science 8803
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Tiziana Margaria Bernhard Steffen (Eds.)

Leveraging Applications
of Formal Methods,
Verification and Validation

SpecializedTechniques andApplications

6th International Symposium, ISoLA 2014
Imperial, Corfu, Greece, October 8-11, 2014
Proceedings, Part II

13

Volume Editors

Tiziana Margaria
University of Limerick, Ireland
E-mail: tiziana.margaria@lero.ie

Bernhard Steffen
TU Dortmund, Germany
E-mail: steffen@cs.tu-dortmund.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-662-45230-1 e-ISBN 978-3-662-45231-8
DOI 10.1007/978-3-662-45231-8
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: Applied for

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Introduction

Welcome to the proceedings of ISoLA 2014, the 6th International Symposium
on Leveraging Applications of Formal Methods, Verification and Validation, that
was held in Imperial, Corfu (Greece) during October 8–11, 2014, endorsed by
EASST, the European Association of Software Science and Technology.

This year’s event was at the same time ISoLA’s tenth anniversary. It also
followed the tradition of its symposia forerunners held 2004 and 2006 in Cyprus,
2008 in Chalkidiki, and 2010 as well as 2012 in Crete, and the series of ISoLA
Workshops in Greenbelt (USA) in 2005, Poitiers (France) in 2007, Potsdam
(Germany) in 2009, in Vienna (Austria) in 2011, and 2013 in Palo Alto (USA).

As in the previous editions, ISoLA 2014 provided a forum for developers,
users, and researchers to discuss issues related to the adoption and use of rigor-
ous tools and methods for the specification, analysis, verification, certification,
construction, test, and maintenance of systems from the point of view of their dif-
ferent application domains. Thus, since 2004 the ISoLA series of events serves the
purpose of bridging the gap between designers and developers of rigorous tools
on one side, and users in engineering and in other disciplines on the other side.
It fosters and exploits synergetic relationships among scientists, engineers, soft-
ware developers, decision makers, and other critical thinkers in companies and
organizations. By providing a specific, dialogue-oriented venue for the discussion
of common problems, requirements, algorithms, methodologies, and practices,
ISoLA aims in particular at supporting researchers in their quest to improve the
usefulness, reliability, flexibility, and efficiency of tools for building systems, and
users in their search for adequate solutions to their problems.

The symposium program consisted of a collection of special tracks devoted to
the following hot and emerging topics:

• Statistical Model Checking, Past Present and Future (K. Larsen, A. Legay)
• Formal Methods and Analysis in Software Product Line Engineering (I.
Schäfer, M. ter Beck)
• Risk-Based Testing (M. Felderer, M. Wendland, I. Schieferdecker)
• Scientific Workflows (J. Kok, A. Lamprecht, K. Turner, K. Wolstencroft)
• Medical Cyber Physical Systems (E. Bartocci, S. Gao, S. Smolka)
• Evaluation and Reproducibility of ProgramAnalysis (M. Schordan,W. Lowe,
D. Beyer)
• Automata Learning (F. Howar, B. Steffen)
• Rigorous Engineering of Autonomic Ensembles (R. de Nicola, M. Hölzl, M.
Wirsing)
• Engineering Virtualized Services (R. Hähnle, E. Broch Johnsen)
• Security and Dependability for Resource Constrained Embedded Systems
(B. Hamid, C. Rudolph)
• Semantic Heterogeneity in the Formal Development of Complex Systems (I.
Ait Sadoune, J.P. Gibson)

VI Introduction

• Evolving Critical Systems (M. Hinchey, T. Margaria)
• Model-Based Code-Generators and Compilers (J. Knoop, W. Zimmermann,
U. Assmann)
• Processes and Data Integration in the Networked Healthcare (J. Mündler,
T. Margaria, C. Rasche)

The symposium also featured:

• Tutorial: Automata Learning in Practice (B. Steffen, F. Howar)
• RERS: Challenge on Rigorous Examination of Reactive Systems (F. Howar,
J. van de Pol, M. Schordan, M. Isberner, T. Ruys, B. Steffen)
• Doctoral Symposium and Poster Session (A.-L. Lamprecht)
• Industrial Day (A. Hessenkämper)

Co-located with the ISoLA Symposium was:

• STRESS 2014 - Third International School on Tool-Based Rigorous Engi-
neering of Software Systems (J. Hatcliff, T. Margaria, Robby, B. Steffen)

We thank the track organizers, the members of the Program Committee and
their subreferees for their effort in selecting the papers to be presented, the
local organization chair, Petros Stratis, and the Easyconference team for their
continuous precious support during the week as well as during the entire two-
year period preceding the events. We also thank Springer for being, as usual, a
very reliable partner for the proceedings production. Finally, we are grateful to
Horst Voigt for his Web support, and to Dennis Kühn, Maik Merten, Johannes
Neubauer, and Stephan Windmüller for their help with the online conference
service (OCS).

Special thanks are due to the following organizations for their endorsement:
EASST (European Association of Software Science and Technology), and our
own institutions, TU Dortmund, and the University of Potsdam.

October 2014 Tiziana Margaria
Bernhard Steffen

Organization

Symposium Chair

Bernhard Steffen

Program Chair

Tiziana Margaria

Program Committee:

Yamine Ait Ameur ISAE-ENSMA, France

Idi Ait-Sadoune SUPÉLEC, France
Uwe Assmann TU Dresden, Germany
Ezio Bartocci TU Wien, Austria
Dirk Beyer University of Passau, Germany
Rocco De Nicola IMT Lucca, Italy
Michael Felderer University of Innsbruck, Austria
Sicun Gao Carnegie Mellon University, USA
J. Paul Gibson Télécom SudParis, France
Kim Guldstrand Larsen Aalborg University, Denmark
Reiner Hähnle TU Darmstadt, Germany
Brahim Hamid IRIT, France
Mike Hinchey Lero, Ireland
Matthias Hölzl Ludwig-Maximilians-University Munich,

Germany
Falk Howar Carnegie Mellon University, USA
Einar Broch Johnsen University of Oslo, Norway
Jens Knoop TU Wien, Austria
Joost Kok LIACS Leiden University, The Netherlands
Anna-Lena Lamprecht University of Potsdam, Germany
Axel Legay Inria, France
Welf Löwe Linnaeus University, Sweden
Tiziana Margaria University of Limerick, Ireland
Christoph Rasche University of Potsdam, Germany
Carsten Rudolph Fraunhofer SIT, Germany
Ina Schäfer TU Braunschweig, Germany
Ina Schieferdecker FU Berlin, Germany
Markus Schordan Lawrence Livermore National Laboratory, USA

VIII Organization

Scott Smolka State University of New York at Stony Brook,
USA

Bernhard Steffen TU Dortmund, Germany
Maurice ter Beek Institute of the National Research Council

of Italy CNR, Italy
Kenneth Turner University of Stirling, UK
Marc-Florian Wendland Fraunhofer Institut, Germany
Martin Wirsing Ludwig-Maximilians-University Munich,

Germany
Katy Wolstencroft LIACS Leiden University, The Netherlands
Wolf Zimmermann Martin-Luther-University Halle-Wittenberg,

Germany

Table of Contents – Part II

Engineering Virtualized Systems

Introduction to Track on Engineering Virtualized Services 1
Reiner Hähnle and Einar Broch Johnsen

Erlang-Style Error Recovery for Concurrent Objects with Cooperative
Scheduling . 5

Georg Göri, Einar Broch Johnsen, Rudolf Schlatte, and Volker Stolz

Fault Model Design Space for Cooperative Concurrency 22
Ivan Lanese, Michael Lienhardt, Mario Bravetti,
Einar Broch Johnsen, Rudolf Schlatte, Volker Stolz, and
Gianluigi Zavattaro

Programming with Actors in Java 8 . 37
Behrooz Nobakht and Frank S. de Boer

Contracts in CML . 54
Jim Woodcock, Ana Cavalcanti, John Fitzgerald, Simon Foster, and
Peter Gorm Larsen

Distributed Energy Management Case Study: A Formal Approach to
Analyzing Utility Functions . 74

Aida Čaušević, Cristina Seceleanu, and Paul Pettersson

Towards the Typing of Resource Deployment . 88
Elena Giachino and Cosimo Laneve

Static Inference of Transmission Data Sizes in Distributed Systems 104
Elvira Albert, Jesús Correas, Enrique Martin-Martin, and
Guillermo Román-Dı́ez

Fully Abstract Operation Contracts . 120
Richard Bubel, Reiner Hähnle, and Maria Pelevina

Statistical Model Checking

Statistical Model Checking Past, Present, and Future
(Track Introduction) . 135

Kim G. Larsen and Axel Legay

An Effective Heuristic for Adaptive Importance Splitting in Statistical
Model Checking . 143

Cyrille Jegourel, Axel Legay, and Sean Sedwards

X Table of Contents – Part II

A Formalism for Stochastic Adaptive Systems . 160
Benôıt Boyer, Axel Legay, and Louis-Marie Traonouez

A Review of Statistical Model Checking Pitfalls on Real-Time
Stochastic Models . 177

Dimitri Bohlender, Harold Bruintjes, Sebastian Junges,
Jens Katelaan, Viet Yen Nguyen, and Thomas Noll

Formal Analysis of the Wnt/β-catenin Pathway through Statistical
Model Checking . 193

Paolo Ballarini, Emmanuelle Gallet, Pascale Le Gall, and
Matthieu Manceny

Battery-Aware Scheduling of Mixed Criticality Systems 208
Erik Ramsgaard Wognsen, René Rydhof Hansen, and
Kim Guldstrand Larsen

Using Statistical Model Checking for Measuring Systems 223
Radu Grosu, Doron Peled, C.R. Ramakrishnan, Scott A. Smolka,
Scott D. Stoller, and Junxing Yang

Blocking Advertisements on Android Devices Using Monitoring
Techniques . 239

Khalil El-Harake, Yliès Falcone, Wassim Jerad,
Mattieu Langet, and Mariem Mamlouk

Monitoring with Data Automata . 254
Klaus Havelund

Risk-Based Testing

Risk-Based Testing (Track Introduction) . 274
Michael Felderer, Marc-Florian Wendland, and Ina Schieferdecker

A Technique for Risk-Based Test Procedure Identification, Prioritization
and Selection . 277

Fredrik Seehusen

A Risk Assessment Framework for Software Testing 292
Michael Felderer, Christian Haisjackl, Viktor Pekar, and Ruth Breu

Data Driven Testing of Open Source Software . 309
Inbal Yahav, Ron S. Kenett, and Xiaoying Bai

Combining Risk Analysis and Security Testing . 322
Jürgen Großmann, Martin Schneider, Johannes Viehmann, and
Marc-Florian Wendland

Table of Contents – Part II XI

Risk-Based Vulnerability Testing Using Security Test Patterns 337
Julien Botella, Bruno Legeard, Fabien Peureux, and
Alexandre Vernotte

Medical Cyber-Physical Systems

Medical Cyber-Physical Systems (Track Introduction) 353
Ezio Bartocci, Sicun Gao, and Scott A. Smolka

Compositional, Approximate, and Quantitative Reasoning for Medical
Cyber-Physical Systems with Application to Patient-Specific Cardiac
Dynamics and Devices . 356

Radu Grosu, Elizabeth Cherry, Edmund M. Clarke,
Rance Cleaveland, Sanjay Dixit, Flavio H. Fenton, Sicun Gao,
James Glimm, Richard A. Gray, Rahul Mangharam,
Arnab Ray, and Scott A. Smolka

On Quantitative Software Quality Assurance Methodologies for Cardiac
Pacemakers . 365

Marta Kwiatkowska, Alexandru Mereacre, and Nicola Paoletti

Model Checking Hybrid Systems (Invited Talk) . 385
Edmund M. Clarke and Sicun Gao

Challenges for the Dynamic Interconnection of Medical Devices 387
Martin Leucker

Temporal Logic Based Monitoring of Assisted Ventilation in Intensive
Care Patients . 391

Sara Bufo, Ezio Bartocci, Guido Sanguinetti, Massimo Borelli,
Umberto Lucangelo, and Luca Bortolussi

Scientific Workflows

Track Introduction: Scientific Workflows . 404
Joost N. Kok, Anna-Lena Lamprecht, Kenneth J. Turner, and
Katy Wolstencroft

Meta-analysis of Disjoint Sets of Attributes in Large Cohort Studies 407
Jonathan K. Vis and Joost N. Kok

Towards a Flexible Assessment of Climate Impacts: The Example
of Agile Workflows for the ci:grasp Platform . 420

Samih Al-Areqi, Steffen Kriewald, Anna-Lena Lamprecht,
Dominik Reusser, Markus Wrobel, and Tiziana Margaria

A Visual Programming Approach to Beat-Driven Humanoid Robot
Dancing . 436

Vid Podpečan

XII Table of Contents – Part II

jABCstats: An Extensible Process Library for the Empirical Analysis
of jABC Workflows . 449

Alexander Wickert and Anna-Lena Lamprecht

Automatic Annotation of Bioinformatics Workflows with Biomedical
Ontologies . 464

Beatriz Garćıa-Jiménez and Mark D. Wilkinson

Evaluation and Reproducibility of Program Analysis

Evaluation and Reproducibility of Program Analysis
(Track Introduction) . 479

Markus Schordan, Welf Löwe, and Dirk Beyer

SWEET – A Tool for WCET Flow Analysis (Extended Abstract) 482
Björn Lisper

Test-Driving Static Analysis Tools in Search of C Code Vulnerabilities
II (Extended Abstract) . 486

George Chatzieleftheriou, Apostolos Chatzopoulos, and
Panagiotis Katsaros

Construction of Abstract Domains for Heterogeneous Properties
(Position Paper) . 489

Xavier Rival, Antoine Toubhans, and Bor-Yuh Evan Chang

Verification of Polyhedral Optimizations with Constant Loop Bounds
in Finite State Space Computations . 493

Markus Schordan, Pei-Hung Lin, Dan Quinlan, and
Louis-Noël Pouchet

The Guided System Development Framework: Modeling and Verifying
Communication Systems . 509

Jose Quaresma, Christian W. Probst, and Flemming Nielson

Processes and Data Integration in the Networked
Healthcare

Processes and Data Integration in the Networked Healthcare
(Track Introduction) . 524

Tiziana Margaria and Christoph Rasche

Simple Management of High Assurance Data in Long-Lived
Interdisciplinary Healthcare Research: A Proposal . 526

Tiziana Margaria, Barry D. Floyd, Rodolfo Gonzalez Camargo,
Anna-Lena Lamprecht, Johannes Neubauer, and Marilia Seelaender

Table of Contents – Part II XIII

Domain-Specific Business Modeling with the Business Model
Developer . 545

Steve Boßelmann and Tiziana Margaria

Dr. Watson? Balancing Automation and Human Expertise in
Healthcare Delivery . 561

Mark Gaynor, George Wyner, and Amar Gupta

Semantic Heterogeneity in the Formal Development
of Complex Systems

Semantic Heterogeneity in the Formal Development of Complex
Systems: An Introduction . 570

J. Paul Gibson and Idir Ait-Sadoune

Modelling and Verifying an Evolving Distributed Control System Using
an Event-Based Approach . 573

Christian Attiogbé

Requirements Driven Data Warehouse Design: We Can Go Further 588
Selma Khouri, Ladjel Bellatreche, Stéphane Jean, and
Yamine Ait-Ameur

On Implicit and Explicit Semantics: Integration Issues in Proof-Based
Development of Systems Version to Read – Version to Read 604

Yamine Ait-Ameur, J. Paul Gibson, and Dominique Méry

Industrial Track

The Technological and Interdisciplinary Evolution in Machine and
Plant Engineering – Industry 4.0 . 619

Axel Hessenkämper

Doctoral Symposium and Poster Session

Integrated Code Motion and Register Allocation . 621
Gergö Barany

On the Algebraic Specification and Verification of Parallel Systems 623
Nikolaos Triantafyllou, Katerina Ksystra, and Petros Stefaneas

Property-Specific Benchmark Generation . 625
Maren Geske

Steering Active Automata Learning with Model-Driven Development . . . 627
Oliver Bauer

XIV Table of Contents – Part II

Generation of Domain-Specific Graphical Development Tools Targeting
Heterogeneous Platforms . 630

Michael Lybecait and Dawid Kopetzki

Living Canvas . 634
Barbara Steffen

Feedback-Based Recognition of Human Identities Using Color and
Depth Data . 636

Frederik Gossen

Real Time Standardization Process Management . 639
Axel Hessenkämper

Author Index . 641

Table of Contents – Part I

Evolving Critical Systems

Evolving Critical Systems - Track Introduction . 1
Mike Hinchey and Tiziana Margaria

Statistical Abstraction Boosts Design and Test Efficiency of Evolving
Critical Systems . 4

Axel Legay and Sean Sedwards

Combinatory Logic Synthesizer . 26
Jan Bessai, Andrej Dudenhefner, Boris Düdder,
Moritz Martens, and Jakob Rehof

Incremental Syntactic-Semantic Reliability Analysis of Evolving
Structured Workflows . 41

Domenico Bianculli, Antonio Filieri, Carlo Ghezzi, and
Dino Mandrioli

Prototype-Driven Development of Web Applications with DyWA 56
Johannes Neubauer, Markus Frohme, Bernhard Steffen, and
Tiziana Margaria

Domain-Specific Languages for Enterprise Systems 73
Jesper Andersen, Patrick Bahr, Fritz Henglein, and Tom Hvitved

Rigorous Engineering of Autonomic Ensembles

Introduction to “Rigorous Engineering of Autonomic Ensembles” –
Track Introduction . 96

Martin Wirsing, Rocco De Nicola, and Matthias Hölzl

Helena@Work: Modeling the Science Cloud Platform 99
Annabelle Klarl, Philip Mayer, and Rolf Hennicker

Formalizing Self-adaptive Clouds with KnowLang . 117
Emil Vassev, Mike Hinchey, and Philip Mayer

Towards Performance-Aware Engineering of Autonomic Component
Ensembles . 131

Tomáš Bureš, Vojtěch Horký, Micha�l Kit, Lukáš Marek, and
Petr T̊uma

Self-expression and Dynamic Attribute-Based Ensembles in SCEL 147
Giacomo Cabri, Nicola Capodieci, Luca Cesari, Rocco De Nicola,
Rosario Pugliese, Francesco Tiezzi, and Franco Zambonelli

XVI Table of Contents – Part I

On Programming and Policing Autonomic Computing Systems 164
Michele Loreti, Andrea Margheri, Rosario Pugliese, and
Francesco Tiezzi

Rigorous System Design Flow for Autonomous Systems 184
Saddek Bensalem, Marius Bozga, Jacques Combaz, and Ahlem Triki

Automata Learning

Learning Models for Verification and Testing — Special Track at ISoLA
2014 - Track Introduction . 199

Falk Howar and Bernhard Steffen

Algorithms for Inferring Register Automata: A Comparison of Existing
Approaches . 202

Fides Aarts, Falk Howar, Harco Kuppens, and Frits Vaandrager

Active Learning of Nondeterministic Systems from an ioco
Perspective . 220

Michele Volpato and Jan Tretmans

Verification of GUI Applications: A Black-Box Approach 236
Stephan Arlt, Evren Ermis, Sergio Feo-Arenis, and Andreas Podelski

Formal Methods and Analysis in Software Product
Line Engineering

Fomal Methods and Analyses in Software Product Line Engineering
(Track Summary) . 253

Ina Schaefer and Maurice H. ter Beek

A Core Language for Separate Variability Modeling 257
Alexandru F. Iosif-Lazăr, Ina Schaefer, and Andrzej W ↪asowski

Domain Specific Languages for Managing Feature Models: Advances
and Challenges . 273

Philippe Collet

Delta-Trait Programming of Software Product Lines 289
Ferruccio Damiani, Ina Schaefer, Sven Schuster, and
Tim Winkelmann

Deployment Variability in Delta-Oriented Models . 304
Einar Broch Johnsen, Rudolf Schlatte, and S. Lizeth Tapia Tarifa

DeltaCCS: A Core Calculus for Behavioral Change 320
Malte Lochau, Stephan Mennicke, Hauke Baller, and Lars Ribbeck

Table of Contents – Part I XVII

Coverage Criteria for Behavioural Testing of Software Product Lines . . . 336
Xavier Devroey, Gilles Perrouin, Axel Legay, Maxime Cordy,
Pierre-Yves Schobbens, and Patrick Heymans

Challenges in Modelling and Analyzing Quantitative Aspects of
Bike-Sharing Systems . 351

Maurice H. ter Beek, Alessandro Fantechi, and Stefania Gnesi

Towards Modular Verification of Software Product Lines
with mCRL2 . 368

Maurice H. ter Beek and Erik P. de Vink

Model-Based Code Generators and Compilers

Model-Based Code-Generators and Compilers - Track Introduction 386
Uwe Aßmann, Jens Knoop, and Wolf Zimmermann

DSL Implementation for Model-Based Development of Pumps 391
Christian Berg and Wolf Zimmermann

Building Code Generators for DSLs Using a Partial Evaluator for the
Xtend Language . 407

Klaus Birken

Back-To-Back Testing of Model-Based Code Generators 425
Sven Jörges and Bernhard Steffen

Rewriting Object Models with Cycles and Nested Collections:
A Model-Based Metaprogramming Problem . 445

Markus Lepper and Baltasar Trancón y Widemann

Compiling SCCharts — A Case-Study on Interactive Model-Based
Compilation . 461

Christian Motika, Steven Smyth, and Reinhard von Hanxleden

Domain-Specific Code Generator Modeling: A Case Study for
Multi-faceted Concurrent Systems . 481

Stefan Naujokat, Louis-Marie Traonouez, Malte Isberner,
Bernhard Steffen, and Axel Legay

Tutorial: Automata Learning in Practice

Tutorial: Automata Learning in Practice . 499
Falk Howar, Malte Isberner, and Bernhard Steffen

XVIII Table of Contents – Part I

LNCS Transactions on Foundations for Mastering
Change

LNCS Transactions on Foundations for Mastering Change: Preliminary
Manifesto . 514

Bernhard Steffen

Formal Methods for Collective Adaptive Ensembles 518
Martin Wirsing and Matthias Hölzl

Current Issues on Model-Based Software Quality Assurance for
Mastering Change . 521

Michael Felderer

Compositional Model-Based System Design as a Foundation for
Mastering Change . 524

Stavros Tripakis

Managing Change in Formal Software Analysis: Two Research
Challenges . 527

Reiner Hähnle

Mastering Changes: Some Research Topics . 530
Axel Legay

Mastering Change @ Runtime . 533
Klaus Havelund

Forever Software . 535
Arend Rensink

Software (must) Change . 538
Mike Hinchey

The Change of Change . 541
Tiziana Margaria

Author Index . 545

Introduction to Track
on Engineering Virtualized Services�

Reiner Hähnle1 and Einar Broch Johnsen2

1 Technical University of Darmstadt, Germany
haehnle@cs.tu-darmstadt.de

2 Dept. of Informatics, University of Oslo, Norway
einarj@ifi.uio.no

Abstract. Virtualization is a key technology enabler for cloud comput-
ing. Despite the added value and compelling business drivers of cloud
computing, this new paradigm poses considerable new challenges that
have to be addressed to render its usage effective for industry. Virtual-
ization makes elastic amounts of resources available to application-level
services; for example, the processing capacity allocated to a service may
be changed according to demand. Current software development meth-
ods, however, do not support the modeling and validation of services
running on virtualized resources in a satisfactory way. This seriously
limits the potential for fine-tuning services to the available virtualized
resources as well as for designing services for scalability and dynamic re-
source management. The track on Engineering Virtualized Services aims
to discuss key challenges that need to be addressed to enable software
development methods to target resource-aware virtualized services.

1 Moving into the Clouds

The planet’s data storage and processing is about to move into the clouds. This
has the potential to revolutionize how we will interact with computers in the
future. Although the privacy of data stored in the cloud remains a challenge,
cloud-based data processing, or cloud computing, is already emerging as an eco-
nomically interesting business model, due to an undeniable added value and
compelling business drivers [5]. One such driver is elasticity: businesses pay for
computing resources when they are needed, instead of provisioning in advance
with huge upfront investments. New resources such as processing power or mem-
ory can be added to the cloud’s virtual computers on the fly, or additional vir-
tual computers can be provided to the client application. Going beyond shared
storage, the main potential in cloud computing lies in its scalable virtualized
framework for data processing. If a service uses cloud-based processing, its ca-
pacity can be automatically adjusted when new users arrive. Another driver is
agility: new services can be deployed quickly and flexibly on the market at limited
cost. This allows a service to handle its end-users in a flexible manner without
requiring initial investments in hardware before the service can be launched.
� Partly funded by the EU project FP7-610582 ENVISAGE: Engineering Virtualized

Services (http://www.envisage-project.eu).

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 1–4, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

2 R. Hähnle and E.B. Johnsen

Reliability and control of resources are barriers to the industrial adoption of
cloud computing today. To overcome these barriers and to gain control of the
virtualized resources on the cloud, client services need to become resource-aware.
Looking beyond today’s cloud, we may then expect virtualized services which
dynamically combine distributed and heterogeneous resources from providers of
utility computing in an increasingly fine-grained way. Making full usage of the
potential of virtualized computation requires that we rethink the way in which
we design and develop software.

2 Empowering the Designer

The elasticity of software executed in the cloud means that its designers are given
far reaching control over the resource parameters of the execution environment,
such as the number and kind of processors, the amount of memory and storage
capacity, and the bandwidth. In principle, these parameters can even be changed
dynamically, at runtime. This means that the client of a cloud service not only
can deploy and run software, but is also in full control of the trade-offs between
the incurred cost and the delivered quality-of-service.

To exploit these new possibilities, software in the cloud must be designed for
scalability. Today, software is often designed based on specific assumptions about
deployment, such as the size of data structures, the amount of random access
memory, the number of processors. Rescaling usually requires extensive design
changes when scalability has not been taken into account from the start. This
consideration makes it clear that it is essential to detect and fix deployment
errors, such as the impossibility to meet a service level agreement, already in
the design phase. To make full usage of the opportunities of cloud computing,
software development for the cloud demands a design methodology that

– can take into account deployment modeling at early design stages and
– permits the detection of deployment errors early and efficiently, preferably

using software tools, such as simulators, test generators, and static analyzers.

Clearly, there is a new software engineering challenge which needs to be ad-
dressed: how can the validation of deployment decisions be pushed up to the
modeling phase of the software development chain without convoluting the de-
sign with deployment details?

3 Controlling Deployment in the Design Phase

When a service is developed today, the developers first design its functionality,
then they determine which resources are needed for the service, and ultimately
the provisioning of these resources is controlled through a service level agreement
(SLA). So far, these three parts of a deployed cloud service tend to live in separate
worlds. It is important to bridge the gaps between them.

The first gap is between the client layer functionality and the provisioning
layer. It can be closed by a virtualization interface which allows the client layer
to read and change resource parameters. The second gap is between SLAs and

Introduction to Track on Engineering Virtualized Services 3

the client layer. Here the key observation is that the service contract part of
an SLA can be formalized as a specification contract with rigorous semantics.
This enables formal analysis of the client behavior with respect to the SLA
at design time. Possible analyses include resource consumption, performance
analysis, test case generation, and formal verification [2]. For suitable modeling
and specification languages such analyses can be highly automated [3].

4 The Papers

The ISoLA track Engineering Virtualized Services, organized in the context of
the EU FP7 project Envisage, reflects the aims laid down above and focuses
on systematic and formal approaches to

– modeling services deployed on the cloud,
– formalizing SLAs, and
– analysis of SLAs.

A crucial aspect in modeling cloud services is the handling of faults and errors.
This is addressed in the papers by Göri et al. [9] and Lanese et al. [10] The former
critically discusses the different choices that have to be made when defining a fault
model for concurrent, actor-based languages. The latter proposes a specific failure
model for concurrent objects with cooperative scheduling that automatically re-
establishes object invariants after program failures, thereby eliminating the need
to manually write this problematic code. The paper by De Boer & Nobakht [7]
shows that high-level modeling of services can be achieved already on the Java

level by embedding an actor-based API with the help of lambda expressions and
extended dynamic invocation support, which is available since Java 8.

There are two papers on formalization of SLAs and service contracts: the
paper by Woodcock et al. [11] describes the COMPASS Modelling Language
CML, which is used to formally model large-scale Systems of Systems and the
contracts which bind them together. The paper by Causevic et al. [6] presents
the REMES HDCL language by way of a case study that formalizes service
negotiation in a distributed energy management scenario.

Moving to analysis, a central aspect in deployment of cloud services is to ob-
tain reliable estimates on resource consumption and, hence, on adequate provi-
sioning. The paper by Giachino & Laneve [8] suggests a type system for a concur-
rent, object-oriented language that permits dynamic scaling out and scaling in.
The type of a program is behavioural and it reflects the resource deployments over
periods of time. On the other hand, the paper by Albert et al. [1] focuses on au-
tomatic inference of upper bounds for the amount of data transmissions that may
occur in a distributed system. Finally, the paper by Bubel et al. [4] concentrates
on formal verification of functional aspects of service contracts: it presents a tech-
nique for compositional verification in presence of constant evolutionary changes
to the verification target.

Taken together, the eight papers in this track comprise an exciting snapshot
of the state-of-art in formal approaches to modeling services deployed on the
cloud as well as to formalization and analysis of SLAs.

4 R. Hähnle and E.B. Johnsen

References

1. Albert, E., Correas, J., Martin-Martin, E., Román-Díez, G.: Static inference of
transmission data sizes in distributed systems. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2014, Part II. LNCS, vol. 8803, pp. 104–119. Springer, Heidelberg (2014)

2. Albert, E., de Boer, F., Hähnle, R., Johnsen, E.B., Laneve, C.: Engineering vir-
tualized services. In: Babar, M.A., Dumas, M. (eds.) 2nd Nordic Symposium on
Cloud Computing & Internet Technologies (NordiCloud 2013), pp. 59–63. ACM
(2013)

3. Albert, E., de Boer, F., Hähnle, R., Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.,
Wong, P.Y.H.: Formal modeling of resource management for cloud architectures:
An industrial case study. Journal of Service-Oriented Computing and Applications
(2013) (Springer Online First), doi:10.1007/s11761-013-0148-0

4. Bubel, R., Hähnle, R., Pelevina, M.: Fully abstract operation contracts. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp. 120–134.
Springer, Heidelberg (2014)

5. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing
and emerging IT platforms: Vision, hype, and reality for delivering computing as
the 5th utility. Future Generation Computer Systems 25(6), 599–616 (2009)

6. Čaušević, A., Seceleanu, C., Pettersson, P.: Distributed energy management case
study: A formal approach to analyzing utility functions. In: Margaria, T., Steffen,
B. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp. 74–87. Springer, Heidelberg
(2014)

7. Nobakht, B., de Boer, F.S.: Programming with actors in Java 8. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp. 37–53. Springer,
Heidelberg (2014)

8. Giachino, E., Laneve, C.: Towards the typing of resource deployment. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp. 88–103. Springer,
Heidelberg (2014)

9. Göri, G., Johnsen, E.B., Schlatte, R., Stolz, V.: Erlang-style error recovery for
concurrent objects with cooperative scheduling. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2014, Part II. LNCS, vol. 8803, pp. 5–21. Springer, Heidelberg (2014)

10. Lanese, I., Lienhardt, M., Bravetti, M., Johnsen, E.B., Schlatte, R., Stolz, V.,
Zavattaro, G.: Fault model design space for cooperative concurrency. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp. 22–36. Springer,
Heidelberg (2014)

11. Woodcock, J., Cavalcanti, A., Fitzgerald, J., Foster, S., Larsen, P.G.: Contracts in
CML. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803,
pp. 54–73. Springer, Heidelberg (2014)

Erlang-Style Error Recovery for Concurrent

Objects with Cooperative Scheduling�

Georg Göri1, Einar Broch Johnsen2, Rudolf Schlatte2, and Volker Stolz2

1 University of Technology, Graz, Austria
goeri@student.tugraz.at

2 University of Oslo, Norway
{einarj,rudi,stolz}@ifi.uio.no

Abstract. Re-establishing a safe program state after an error occurred
is a known problem. Manually written error-recovery code is both more
difficult to test and less often executed than the main code paths, hence
errors are prevalent in these parts of a program. This paper proposes a
failure model for concurrent objects with cooperative scheduling that au-
tomatically re-establishes object invariants after program failures, thereby
eliminating the need to manually write this problematic code. The pro-
posed model relies on a number of features of actor-based object-oriented
languages, such as asynchronous method calls, co-operative scheduling
with explicit synchronization points, and communication via future vari-
ables. We show that this approach can be used to implement Erlang-style
process linking, and implement a supervision tree as a proof-of-concept.

1 Introduction

Crashes and errors in real-world systems are not always due to faulty program-
ming. Especially but not only in distributed systems, error conditions can arise
that are not a consequence of the logic of the running program. Robust systems
must be able to deal with and mitigate such unexpected conditions. At the same
time, error recovery code is notoriously hard to test.

An influential approach to more robust systems is “Crash-Only Software” [4],
i.e., letting system components fail and restarting them. Erlang [2,19] is a widely-
used functional language which successfully adopts these ideas. However, inher-
ent in such subsystem restarts is the accompanying loss of state. This is much less
a problem with programs written in a functional style than with programs writ-
ten using object-oriented techniques, where the objects themselves hold state.
This paper describes an approach to crash-only software which can keep objects
alive without explicit code to restore object invariants.

The approach of this paper is based on concurrent objects which communicate
by means of asynchronous method calls ; the caller allocates a future as a con-
tainer for the forthcoming result of the method call, and keeps executing until
the result of the call is needed. Since execution can get stuck waiting for a reply,

� Partially funded by the EU project FP7-610582 ENVISAGE: Engineering Virtual-
ized Services (http://www.envisage-project.eu).

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 5–21, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

6 G. Göri et al.

we allow process execution to suspend by introducing processor release points
related to the polling of futures. Scheduling is cooperative via release-points in
the code, awaiting either a condition on the state of the object, or the availabil-
ity of the result from a method call. To concretize the approach, we use some
features from the abstract behavior specification language ABS [11], a statically
typed object-oriented modeling language targeting distributed systems. ABS has
a formal semantics implemented in the rewriting logic tool Maude [7], which can
be used to explore the runtime behavior of specifications.

This paper introduces linguistic means to both abort a single computation
without corrupting object state and to terminate an object with all its pending
processes. We provide a formal semantics for how those faults propagate through
asynchronous communication. Callers may decide to not care about faults and
fail themselves when trying to access the result of a call whose computation
aborted, or use a safe means of access that allows them to explicitly distinguish
a fault from a normal result and react accordingly. We show the usefulness of
the new language primitives by showing how they allow us to implement process
linking and supervision hierarchies, the standard recovery features of Erlang.

The rest of the paper is organized as follows. Section 2 describes the ABS
language, Section 3 the novel failure model. Section 4 presents an operational
semantics of a subset of the language, and illustrates the new functionality by
modeling Erlang’s well-known supervision architecture, and Section 5 discusses
related and future work.

2 Behavioral Modeling in ABS

ABS is an abstract, executable, object-oriented modeling language with a formal
semantics [11], targeting distributed systems. ABS is based on concurrent ob-
jects [5, 13] communicating by means of asynchronous method calls. Objects in
ABS support interleaved concurrency based on explicit scheduling points. This
allows active and reactive behavior to be easily combined, by means of a co-
operative scheduling of processes which stem from method calls. Asynchronous
method calls and cooperative scheduling allow the verification of distributed
and concurrent programs by means of sequential reasoning [8]. In ABS this is
reflected in a proof system for local reasoning about objects where the class
invariant must hold at all scheduling points [9].

ABS combines functional and imperative programming styles with a Java-
like syntax. Objects execute in parallel and communicate through asynchronous
method calls. However, the data manipulation inside methods is modeled using a
simple functional language based on user-defined algebraic data types and func-
tions. Thus, the modeler may abstract from the details of low-level imperative
implementations of data structures while maintaining an overall object-oriented
design close to the target system.

The Functional Layer. The functional layer of ABS consists of algebraic data
types such as the empty type Unit, booleans Bool, and integers Int; parametric

Erlang-Style Error Recovery for Concurrent Objects 7

T ::= I | D | D〈T 〉
A ::=X | T | D〈A〉

Dd ::= data D[〈A〉] = [Cons];

Cons ::= Co[(A)]
F ::= def A fn [〈A〉](A x) = e;

e ::= x | v | Co[(e)] | fn(e) | case e {br}
v ::= Co[(v)] | null
br ::= p ⇒ e;
p ::= | x | v | Co[(p)]

P ::= IF CL {[T x;] s }
IF ::= interface I { [Sg] }
CL ::= classC [(T x)] [implements I] { [T x;]M}
Sg ::= T m ([T x])

M ::= Sg {[T x;] s }
g ::= b | x? | g ∧ g
s ::= s; s | skip | if b { s } [else { s }] | while b { s }

| suspend | await g | x = rhs | return e
rhs ::= e | cm | new C (e)
cm ::= [e]!m(e) | x.get

Fig. 1. ABS syntax for the functional (left) and imperative (right) layers. The terms
e and x denote possibly empty lists over the corresponding syntactic categories, and
square brackets [] optional elements.

data types such as sets Set<X> and maps Map<X> (for a type parameter X); and
functions over values of these data types, with support for pattern matching.

The syntax of the functional layer is given in Figure 1 (left). The ground
types T are interfaces I, type names D, and instantiated parametric data types
D〈T 〉. Parametric data types A allow type names to be parameterized by type
variablesX . User-defined data types definitionsDd introduce a nameD for a new
data type, parameters A, and a list of constructors Cons . User-defined function
definitions F have a return type A, a name fn, possible type parameters, a list
of typed input variables x, and an expression e. Expressions e are variables x,
values v, constructor, functional, and case expressions. Values v are constructors
applied to values, or null. Case expressions match an expression e to a list of case
branches br on the form p ⇒ e which associate a pattern p with an expression
e. Branches are evaluated in the listed order, the (possibly nested) pattern p
includes an underscore which works as a wild card during pattern matching;
variables in p are bound during pattern matching and are in the scope of the
branch expression e. ABS provides a library with standard data types such as
booleans, integers, sets, and maps, and functions over these data types.

The functional layer of ABS can be illustrated by considering naive polymor-
phic sets defined using a type variable X and two constructors EmptySet and
Insert:

1 data Set<X> = EmptySet | Insert(X, Set<X>);

Two functions contains, which checks whether an item el is an element in a
set set, and take, which selects an element from a non-empty set set, can be
defined by pattern matching over set:

1 def Bool contains<X>(Set<X> set, X el) =
2 case set {
3 EmptySet => False ;
4 Insert(el, _) => True;
5 Insert(_, xs) => contains(xs, el); };
6

7 def X take<X>(Set<X> set) = case set { Insert(e, _) => e; };

8 G. Göri et al.

The Imperative Layer. The imperative layer of ABS addresses concurrency, com-
munication, and synchronization at the level of objects, and defines interfaces,
classes, and methods. In contrast to mainstream object-oriented languages, ABS
does not have an explicit concept of threads. Instead a thread of execution is
unified with an object as the unit of concurrency and distribution, which elim-
inates race conditions in the models. Objects are active in the sense that their
run method, if defined, gets called upon creation.

The syntax of the imperative layer of ABS is given in Figure 1 (right). A
program P lists interface definitions IF and class definitions CL, and has a
main block {[T x;] s } where the variables x of types T are in the scope of
the statement s. Interface and class definitions, as well as signatures Sg and
method definitions M are as in Java. As usual, this is a read-only field of an
object, referring to the identifier of the object; similarly, we let destiny be a
read-only variable in the scope of a method activation, referring to the future
for the return value from the method activation. Below we focus on explaining
the asynchronous communication and suspension mechanisms of ABS.

Communication and synchronization are decoupled in ABS. Communication
is based on asynchronous method calls, denoted by assignments f=o!m(e) where
f is a future variable, o an object expression, and e are (data value or object)
expressions. After calling f=o!m(e), the caller may proceed with its execution
without blocking on the method reply. Two operations on future variables con-
trol synchronization in ABS. First, the statement await f? suspends the active
process unless a return value from the call associated with f has arrived, allow-
ing other processes in the same object to execute. Second, the return value is
retrieved by the expression f.get, which blocks all execution in the object un-
til the return value is available. Inside an object, ABS also supports standard
synchronous method calls o.m(e).

Objects locally sequentialize execution, resembling a monitor with release
points but without explicit signaling. An object can have at most one active
process. This active process can be unconditionally suspended by the statement
suspend, adding this process to the queue of the object, from which an en-
abled process is then selected for execution. The guards g in await g control
suspension of the active process and consist of Boolean conditions b conjoined
with return tests f? on future variables f and with time-bounded suspensions
duration(e1,e2) which become enabled between a best-case e1 and a worst-
case e2 amount of time. Just like functional expressions, guards g are side-effect
free. Instead of suspending, the active process may block while waiting for a
reply as discussed above, or it may block for some amount of time between a
best-case e1 and a worst-case e2, using the syntax duration(e1,e2) [3]. The
remaining statements of ABS are standard; e.g., sequential composition s1; s2,
assignment x=rhs, and skip, if, while, and return constructs. Right hand side
expressions rhs include the creation of an object new C(e), method calls, and
future dereferencing f.get, in addition to the functional expressions e.

Example. To illustrate the imperative layers of ABS, let us consider an interface
Account, with methods deposit and withdraw, which is implemented by a class

Erlang-Style Error Recovery for Concurrent Objects 9

1 interface Account {
2 Unit deposit (Int amount);
3 Unit withdraw (Int amount);
4 }
5

6 class Account implements Account {
7 List<Int> transactions = Nil; // log of transactions
8 Int balance = 0; // current balance
9 Unit deposit (Int amount) {

10 transactions = Cons(amount, transactions);
11 balance = balance + amount;
12 }
13 Unit withdraw (Int amount) {
14 transactions = Cons(-amount, transactions);
15 if (balance < amount) abort "Insufficient funds";
16 balance = balance - amount;
17 }
18 }

Fig. 2. Bank account with history in ABS

BankAccount (as shown in Figure 2). We see that expressions from the functional
layer are used inside the method implementations; e.g., the constructor Cons is
used in the right hand side of an assignment to extend the list of transactions,
and infix functions + and - are similarly used to adjust the balance.

To approach the theme of the next section, the example does not resolve the
case of negative balance on the account (ignoring the issue of a better design
which checks the condition before updating the history). A call to withdraw will
only succeed if the balance is sufficient; if the balance is less than amount it is
unclear what would be meaningful behavior in order to restore a class invariant
like balance≥0, and the method activation will abort : the previous state of the
object will be restored, and the future storing the implicit return value of Unit
type will be filled with a value indicating that an error occurred.

3 Failure Models and Error handling

Apart from user-specified aborts, it is very common for programs to run into
so-called runtime errors, i.e., abnormal termination in a case where the oper-
ational semantics does not prescribe how the system can proceed. Prominent
representatives of this class of faults are division by zero, null pointer accesses in
languages that allow pointer dereferences, and errors that are propagated from
the runtime system in managed languages, like out of memory errors when no
more objects can be allocated.

In the semantics of the ABS language, behavior in those situations is under-
specified, even though those situations can be encountered by the backends when
running the code generated from an ABS model. For example, in the Maude se-
mantics, a division by zero does not allow further reduction of that process,
which may go unnoticed in the overall system, or lead to a deadlock when other
processes wait on the object. In the Java backend, the underlying Java runtime

10 G. Göri et al.

will generate a Java exception through the primitive math operations, which will
terminate the current (ABS) process, and lead to similar effects as in Maude.

3.1 Design Considerations

Invariants and the system. On abrupt termination of a computation, we need
to establish which reaction would be required. In a distributed, loosely coupled
system, a local error should not affect the complete system. So clearly here the
guiding point must be that we have to keep the effects local. In our actor-based
setting, we can take the locality even further: Although a computation failed,
we can limit the effects to the current process. The object may still be able to
process pending and future requests (although the caller of the failing process
needs to be notified). But what should be the basis for further executions within
this object?

The underlying motivation for the explicit release points in the language are of
course the class invariants that developers rely on when designing their programs.
As such, each method call expects that its respective object invariant holds
upon entry (and upon awakening). This is clearly not the case under abrupt
termination, before which the fields of the object may have been arbitrarily
manipulated—the next release point may not have been reached.

Error handling in an object system. The mechanism we propose, defines the
behavior in case of an error:

– Propagate errors through futures. The caller receives an error when reading
the future.

– Default to having no explicit error handling, in which case a process is ter-
minated, yet the object stays alive.

– Revert any partial state modifications to the current object up to the last
release point.

These concepts are introduced by extending futures to propagate a possible
error in the callee to the caller, providing a method to detect and handle an
error contained in a future, and to terminate the caller in the case an error in a
future is accessed by the default mechanism.

Linguistic support for error handling. We consider the following linguistic sup-
port to enable the envisaged error handling:

– a notion of user-defined error types

– a generalization of futures to either return values or propagate errors

– a statement abort e, which raises an error e and terminates the process

– a statement f.safeget, which can receive errors and values from a future f

– a statement die, which terminates the current object and all its processes

Erlang-Style Error Recovery for Concurrent Objects 11

The occurrence of an error is represented in the model by means of the statement
abort e, where e is an user defined error. These errors are represented by a
special data type (see [15] for an extensive discussion of the potential design
decisions). Such an abort can either be explicit in the model or can occur implicit
either in internals of the execution, to represent distribution, system (e.g. out of
memory) or runtime (e.g. division through zero) errors.

The semantic interpretation is dependent on the kind of ABS process the
evaluation occurs in:

Active Object processes, represent the object’s implicit execution of its run

method. If in that process an abort e statement is evaluated, all current
asynchronous calls to this object will abort with the error e and the references
to this object will become invalid. Further synchronous or asynchronous calls
to this object are equivalent to an abort DeadObject on the caller side. This
mechanism was chosen, as the object behavior (its run method) is seen as
an integral part of its correctness, and like an invalid state also an invalid
termination of this behavior leads to an inconsistent object and therefore
the object cannot be further used.

Asynchronous Call processes evaluated a method call in the called object. An
abort e statement will terminate the process and return the error e to the
associated future. Moreover, the callee will perform a rollback (see below).

Main Process. The main process (similar to Java’s main-method entry point)
represents the begin of the execution, and an abort there will, by convention,
lead to the runtime system being terminated (in principle, this could be han-
dled uniformly like the normal case, but in practice we prefer termination).

An automatic rollback discards all changes to the object’s values since the last
scheduling point, which can be either an await or suspend. This guarantees that
objects only evolve from one state at a scheduling point to another, and not leave
in case of an error an object in a state, which could violate the object invariant.

Extending futures to contain either the computed value or a potential error
raised either by an abort on the callee side (or from the runtime in a distributed
setting), enables error propagation over invocations. Following this, also the
semantics of the Future.get statement needs to be adjusted: a get will, in
presence of an error e in the future, lead to an implicit abort e on the caller
side.

The newly introduced Future.safeget stops this propagation and allows one
to react on errors. safeget returns a value of the algebraic data type Result<T>,
which is defined as Result<T> = Value(T val)|Error(String s). In case the
future contains an error e, the same is returned, otherwise the constructor
Value(T v) wraps the result value v. Note that due to the lack of subtyping
in the type system, currently the only way to communicate an error indication
is through a value of type String, as we cannot define a common type for all
possible (incl. user-defined) errors.

12 G. Göri et al.

The die e statement allows in asynchronous calls to terminate the active object.
Its semantic meaning is the same as an abort e in the execution context of an
active object process or init block. In other words, all pending asynchronous
calls and the active object’s process are terminated. This statement allows to
implement linking (see below), and can be used in distributed models to simulate
a disconnect from an object.

Discussion. We come back to the banking example in Listing 2 to illustrate the
point of rollbacks. The general contract is that the list of transactions should
accurately reflect the current total in the account. As the body of withdraw
needs to modify two fields, we clearly benefit from ABS’s semantics of explicit
release points which guarantees that only one process is executing within the
object (e.g. in Java, we would be required to explicitly declare the method as
synchronized to achieve the same effect).

Nonetheless, even though if only by construction of the example, an abort
would leave the object in an undesired state, as after the modification of the list
of transactions the balance is no longer in sync with the banking transaction
history. If an abort would simply terminate execution of the current process,
and start processing another pending call on the current state of the object, we
would observe invalid results. But with the rollback before processing another
call, this assumption can easily be re-established.

Note that the ABS methodology is only concerned with object invariants,
and this mechanism does not give us totality in the sense that a method either
completes successfully or not at all: a rollback will not undo changes in other
objects that have (transitively) occurred as the result of method calls during
execution of the current process, unlike e.g. in work on a higher-order π-calculus
[16]. This means on the one hand that the developer still has to actively take
into account the workings of error recovery when designing the system, but on
the other hand allows us to implement this feature efficiently by only keeping
track of fields in the current object that are actually touched.

Compared to traditional object-oriented programming, we note that this im-
plicit error handling strategy frees the developers from restoring state explicitly
in an exception handler. However, through the safeget mechanism, they still
have this option open.

3.2 A Practical Application of Error Propagation: Process Linking

The previously presented primitives enable an implementation of Erlang-style
linking between two objects in ABS. These links are part of the foundation for
Erlang’s well known and successful error handling [1]. Erlang’s communication
model is even more loosely coupled than ABS, in that it is based on asynchronous
message passing. As such, there are no method calls or explicit returns, but rather
the callee has to send back a response, which will be queued in the recipient until
extracted from the mailbox. Thus, a failure in the recipient process will either
go unnoticed if no response messages are used or otherwise lead to an expected

Erlang-Style Error Recovery for Concurrent Objects 13

message not being sent/received, and in turn a corresponding potential blockage
can occur in the initial sender.

Erlang’s links enable mutual observation of processes. A process can link itself to
another process. If one of the two processes terminates, the runtime environment
sends an EXIT message to the other process, which contains an exit reason. Un-
less this exit reason is normal (termination because the process reached the end
of the function), the linked process will terminate as well, and in consequence
propagate its own EXIT message to its linked processes. With this error propa-
gation, it is possible to let groups of processes up to the whole system terminate
automatically and clean up components consisting of multiple processes.

To enable processes to observe exit messages or react on them, a process can be
marked to be a system process with the trap exit process flag. Such processes will
not terminate when receiving an EXIT message, but can retrieve this message
from their inbox.

Implementation in the concurrent object model. The implementation idea is to
represent a link by two asynchronous calls, one to each of the objects. Each call
will only terminate upon termination of the object, and thus enables the caller
to take an action.

In Figure 3 a sample implementation is shown, which assumes that each class
implements code similar to the Linkable class. A link can be established by
creating a new object of class Link, where the link gets initialized with references
to both objects (referred to as s and f), and then calling setup on this new link.
The setup method will initiate the calls between the objects, by calling waitOn

and then wait until both calls are processed, where finished calls can be seen by
the counter done.

The waitOn method implemented in the Linkable class places the normally
non-terminating asynchronous call in line 3 to the other Linkable it should link
to. The non-termination is achieved by a simple await false, as can be seen in
the wait method. After those calls are made, the waitOn method reports back
to the Link that it succeeded, and will afterwards await the termination of the
call in line 3. The only possibility for a call to wait to return is when the object
dies. Should now this future ever contain a value it must be an error, where
in line 7 we can now take an action in case that the other object terminated,
which will be in the default case a subsequent termination of the local object,
by executing die e.

Linking in a producer consumer environment can be used to bind both objects
together, so that a termination of the producer or consumer leads to the termi-
nation of the other party as well. In Figure 4 we see a Producer and Consumer,
modeled as ABS classes, where the Producer sends a new input to the Consumer
via an asynchronous call. Both classes have to implement the Linkable interface
and include the shown default implementation of wait and waitOn.

Setting up a Link between Producer and Consumer is performed by the first
two lines in the Producer’s run method. We construct the Link object and

14 G. Göri et al.

1 class Link(Linkable f,Linkable s)
2 implements Link{
3 Int done=0;
4 Unit setup(){
5 f!waitOn(this,s);
6 s!waitOn(this,f);
7 await done==2;
8 }
9

10 Unit done(){
11 done=done+1;
12 }
13 }

1 class Linkable() implements Linkable{
2 Unit waitOn(Link l,Linkable la){
3 Fut<Unit> fut=la!wait();
4 l!done();
5 await fut?;
6 case fut.safeget {
7 Error(e) => die e;
8 }
9 }

10 Unit wait(){
11 await false;
12 }
13 }

Fig. 3. Implementation of links in ABS

1 class Producer(Consumer c)
2 implements Linkable{
3 Unit run(){
4 Link lConsumer= new Link(this,c);
5 await lConsumer!setup();
6 // produce
7 c!consume(X);
8 }
9 // include wait and waitOn

10 }

1 class Consumer()
2 implements Linkable{
3

4 Unit consume(String x){
5 // consume
6 }
7

8 // include wait and waitOn,
9 }

Fig. 4. Links between a Producer and a Consumer

initialize the link via the setup method. A more detailed view of asynchronous
calls and their lifetime is presented in the sequence diagram in Figure 5, ar-
rows represent an invocation and a possible return value, and boxes represent
the duration of the call on the callee side. First, the link is setup, two inputs
are produced, and after that the Consumer aborts, which also terminates the
Producer.

Before the consume calls, all necessary invocations to establish the wait calls,
which can be seen as a monitor if the object is still alive, are shown. After that
we see that two inputs from the Producer are sent to the Consumer, where the
wait calls are still pending. In the end, the Consumer, and in consequence also
the wait call, terminate. The termination leads to the retrieval of the exit reason
(in form of an error) by the Producer from the associated future, which results
in its termination as well.

One of the current limitations of this design is that due to the lack of sub-
classing, the boiler-plate implementation of the methods wait and waitOn in
any class needs to be replicated (such as Producer and Consumer above). ABS
offers so-called deltas to support assembly of software product lines. Although
this feature can be used here in principle to inject code into a class, according to
the current syntax of deltas, the method bodies would still have to be replicated
in each delta. A potential improvement would be an extension of ABS which
would allow injecting code into all classes implementing a particular interface.

Erlang-Style Error Recovery for Concurrent Objects 15

Producer Link Consumer

setup

waitOn

wait

<Reason>

XX

done

waitOn

wait

done

consume

consume

Fig. 5. Asynchronous calls in the Producer-Consumer example

Such functionality is well-known in aspect-oriented programming, and the ABS
compiler should be easy to extend with a similar feature.

4 Operational Semantics and Application

A complete operational semantics of the core ABS language can be found in [11].
This section presents an operational semantics of the new language elements
discussed in Section 3, omitting or simplifying parts that are not necessary for
understanding the new error model. Figure 6 presents the runtime syntax of the
language, while Figure 7 contains the operational semantics rules for the new
rollback behavior, abort and die statements, and error propagation via futures.

The runtime state is a collection cn of objects, futures and method invocations.
Objects are denoted o(a, a′, p, q), where a is the object state, a′ the safe state at
the previous suspension point. Dead objects are represented by their identifier o
only. Object and process states a are mappings from identifiers to values, p is the
currently running process or the symbol idle (denoting an object not currently
running any process), and q is the process queue. A process p is written as {a|s}
with a a mapping from local variable identifiers to values and s a statement list.

In Figure 7 we elide the step of reducing expressions to values – evaluation is
standard and can be seen in [11]. The Suspend rule saves the current state a,
while the Abort rule reinstates a saved state while also removing the current
process and filling the future f with an error term. The Die rule deactivates
the object and fills all futures of the object’s processes with an error term. The

16 G. Göri et al.

cn ::= ε | fut | object | invoc | cn cn
fut ::= f | f(val) a ::= T x v | a, a

object ::= o(a, a′, p, q) | o p ::= process | idle
process ::= {a | s} val ::= v | error

q ::= ε | process | q q v ::= o | f | data
invoc ::= m(o, f, v) error ::= e(val)

Fig. 6. Runtime syntax. Overall program state is a set cn of futures, objects and
invocation messages. Literals v are object identifiers o, future identifiers f , and number
and string literals data.

Dead-Call rule provides a default error term as the result of a method call to
a dead object. The other rules show the behavior of normal execution for these
cases.

4.1 Discussion

From an implementation perspective, we note that the rollback mechanism ap-
pears reasonably cheap, as only that part of the state of the current object needs
to be duplicated which is actually modified. This is easy to implement since ABS
does not have destructive modification of data structures.

How to make best use of the rollback-mechanism is still up to the developer.
We note that compared to traditional exception handling, a single method essen-
tially corresponds to a try-block, whereas the caller specifies through a safeget
and a subsequent case-distinction the possible catch-blocks, or decides to prop-
agate any exceptions through get.

4.2 Application: Supervision

In Erlang the idea to let processes observe each other was taken further by con-
structing trees, where so called supervisors start, observe and restart their child
processes. Supervision is one of the very important concepts, which is part of
Erlang’s highly regarded error handling capabilities [19]. Plugging in a super-
visor as child of another supervisor generates a tree structure, which describes
a structural view on components of a system. This tree structure enables both
restarting of faulty leaves and of larger subtrees in case of repeated errors in a
subsystem. So a faulty system with a supervisor tries to restart larger and larger
parts of the whole system until enough faulty state is discarded and it is able to
continue its operation.

Supervision for concurrent objects. Through linking, we can now apply the con-
cept of supervision to concurrent objects. This enables modeling of a statically
typed supervision tree that maintains active objects.

To achieve a very generalized supervisor implementation we want to separate
it from the concrete way of starting and linking children and want to be able to

Erlang-Style Error Recovery for Concurrent Objects 17

(Suspend)

o(a, a′, {l | suspend; s}, q)
→ o(a, a, idle, {l | s} ◦ q)

(Activate)

p = select(q, a, cn)

o(a, a′, idle, q) cn

→ o(a, a′, p, (q \ p)) cn

(Await-Incomplete)

o(a, a′, {l | await f?; s}, q) f

→ o(a, a′, {l | suspend; await f?; s}, q) f

(Await-Complete)

o(a, a′, {l | await f?; s}, q) f(val)

→ o(a, a′, {l | s}, q) f(val)

(Return)

f = l(destiny)

o(a, a′, {l | return(v); s}, q) f

→ o(a, a, idle, q) f(v)

(Abort)

f = l(destiny)

o(a, a′, {l | abort(v); s}, q) f

→ o(a′, a′, idle, q) f(e(v))

(Async-Call)

fresh(f)

o(a, a′, {l | x = o′!m(v); s}, q)
→ o(a, a′, {l | x = f ; s}, q) m(o′, f, v) f

(Bind-Mtd)

p′ = bind(m, o, v̄, f)

o(a, a′, p, q) m(o, f, v̄)

→ o(a, a′, p, p′ ◦ q)

(Die)

f = l(destiny) cn′ = abort-futures(cn, q, v)

o(a, a′, {l | die(v); s}, q) f cn

→ o f(e(v)) cn′

(Dead-Call)

o f m(o, f, v̄)

→ o f(e("dead object"))

(Read-Fut)

o(a, a′, {l | x = f.get; s}, q) f(v)

→ o(a, a′, {l | x = v; s}, q) f(v)

(Read-Fut-Error)

o(a, a′, {l | x = f.get; s}, q) f(e(v))

→ o(a, a′, {l | abort(v); s}, q) f(e(v))

(Safe-Read)

o(a, a′, {l | x = f.safeget; s}, q) f(val)

→ o(a, a′, {l | x = val; s}, q) f(val)

Fig. 7. Operational semantics. The following helper functions are assumed: bind creates
a new process given a method namem, object o, arguments v and future f ; abort-futures
transforms a configuration, filling all futures f referenced from processes in queue q
with an error term e(v) while returning all other parts of the configuration unchanged;
select chooses a process from a queue q that is ready to run.

18 G. Göri et al.

1 Unit start(SupervisibleStarter child){
2 SupervisorLink sl=
3 new SupervisorLink(this,child);
4 Link l=new Link(sl,this);
5 await l!setup();
6 links=Cons(sl,links);
7 sl.start();
8 }

(a) Start a child

1 Unit died(SupervisibleStarter ss,
2 String error){
3 case strategy {
4 RestartAll => this.restart();
5 RestartOne => this.start(ss);
6 Prop => die error;
7 }
8 }

(b) Handle a deceased child

Fig. 8. Key methods of the Supervisor

define different restart strategies. These strategies define the actions taken if a
child terminates. Therefore we implemented a class Supervisor with following
parameters: a list of SupervisorStarter objects, each of which specifies one
child and implements the start and linking of this child; a strategy, which can
be one of the following:

Restart one: Only the terminated child is restarted.
Restart all: If a child dies, it and all its siblings will be restarted.
Propagate: The supervisor and all children will terminate and the error will

be thereby propagated to the next supervisor, ending at the root node of the
runtime system.

This can be easily extended with other interesting strategies like rate limiting,
e.g. propagating an error if a certain frequency of crashes is exceeded.

The implementation of the supervisor requires special considerations, as a su-
pervisor has to start a list of children, keep track of them, has to detect a link
failure and be able to forcefully terminate a child (for the restart all strategy).
As the standard implementation of the link mechanism, shown in Figure 3, has
on the error receiving side no indication about the source of the link error, ev-
ery link to a child is represented by an object of class SupervisorLink. This
object keeps the reference of the child specification (the SupervisibleStarter

object) and passes it along to the Supervisor’s died method, which is depicted
in Figure 8b. Furthermore this design allows one to forcefully kill one child, by
terminating the associated SupervisorLink, which will—via linking—terminate
the child.

For starting a child, a new SupervisorLink has to be created and linked
to, so that in case the supervisor itself terminates (e.g. when the strategy is
to propagate) all SupervisorLinks and children are terminated as well. This
method is shown in Figure 8a.

5 Conclusion and Related Work

We have presented an extension to a concurrent object language, which incor-
porates automatic rollback to a “safe” (as conceptually defined by the developer

Erlang-Style Error Recovery for Concurrent Objects 19

through a class invariant) state for the object that encountered an abort. Aborts
either occur in the form of runtime errors, through an explicit call similarly to
throwing an exception, or from accessing a future which holds the result of an
aborted computation.

The propagation- and detection mechanism for such faults allows us to model
Erlang-like process linking, and the safe way of accessing futures corresponds
roughly to exception handling with a distinction on the return result (normal
return value vs. fault plus description).

We have implemented the proposed extension in a straight-forward manner in
the prototypical (non-distributed) Erlang backend for ABS, and in the Maude
simulator: The sources are publicly available in the ENVISAGE git repository
at http://envisage-project.eu.

Related Work. Asynchronous computation with futures has been standardized
in the Java API since Java SE 5 [10]. Due to the limitations of the so-called
generics in the type system, no subtyping on futures is possible: this leads to
the situation that (synchronous) method calls may make use of covariant return
types, but for a type B extending A, a Fut cannot be assigned to a Fut<A>.
Our futures, based on ABS, do not have this limitation as futures stem from
the functional data types and thus subtyping over parameterized types is safe
due to the lack of destructive updates/writes. As first-class citizens, the ABS
futures do not offer any cancellation and a process cannot affect another process
except through sending messages (the Java API offers advisory cancellation,
and—discouraged—forceful termination of threads).

Compared to Java futures, the ABS futures are intended to scale massively:
while due to the limitations in Java’s thread model only a restricted (by memo-
ry/stack requirements) number of threads can be effectively active (the standard
reference [10] gives a limit in the “few thousands or tens of thousands”, usually
scheduled by an execution service); their intended use in ABS clearly follows
Erlang’s notion of virtually unbounded, light-weight, disposable threads.

A related failure model for an ABS-like language has also been discussed
in [12]. To enable coordinated rollbacks, compensations are attached to method
returns, in case a later condition indicates that a rollback across method calls
should be necessary. The authors illustrate however that the distributed nature
of compensation still does not make it easier to maintain distributed invariants
involving several objects. Rollbacks in a concurrent system and their intricacies
have also been discussed in the context of a higher-order π-calculus by Lanese
et al. [16]. The entire design space of fault handling in a loosely coupled system
is discussed in [15], but focuses on a more traditional approach of exception
handlers to give developers an explicit means of recovery, instead of the implicit
rollbacks presented here.

Unlike Java Card’s transactions [6] our extension does not allow selective
non-atomic updates, where a persistent value is modified within a transaction
and not rolled back with the transaction. Our implementations do not store the
entire heap upon method activation, but only the state of the current object.

http://envisage-project.eu

20 G. Göri et al.

A corresponding proof-theory as developed by Mostowski [17] for Java Card-
support in the KeY system should likewise be feasible for our approach.

Future work: The current rollback mechanism should also be easy to extend to
transactions through a combination of versioning the object state and specula-
tive execution. Also, rollbacks for a group of objects should at least semantically
be easy to model, yet maintaining object graphs as additional state may make
this approach too costly: every method invocation on another object would make
this object a member of the transaction, and all objects would have to reach
release points simultaneously to commit. Additionally, a distributed implemen-
tation of checking for such a commit would most likely be prohibitive. Instead of
arbitrary object groups derived again following the discussion in [15], one may
instead take advantage of so-called concurrent object groups (which are already
present in ABS, but not discussed in this paper). They are used in ABS to model
groups of objects running e.g. on the same node or hardware. Because of the
intentionally tight coupling, one consideration is that a die-statement may even
have the consequence of terminating the processes of an entire group, instead of
the limited effect on the local object only that we discussed here.

Although the asynchronous communication mechanism together with the in-
troduced failure mechanisms allows us to describe the communication behavior
in a distributed system, the current semantics treats all calls—whether remote or
local—the same. While this location transparency is also a feature of the Erlang
language, it would be useful to reflect the topology of the system and resource
aspects (such as processing power and communication latency) of the different
nodes in a model. To this end, in [14] deployment components were introduced,
which give the modeler the possibility to specify where objects are created and
consequently where their processes run. Note that in contrast to Erlang, objects
are allocated at creation-time, whereas Erlang allocates processes. On top of
deployment components, resource costs and capabilities can be modeled and ex-
ecution times can be estimated under different resource and deployment models.
Simulation can then be used to examine the behavior of the (distributed) system
wrt. artificially injected faults and deadline misses.

With respect to the supervision trees, we note that in the Erlang commu-
nity, since the tree structure is specified through code, there was an interest in
reverse-engineering the actual hierarchy for purposes of static analysis from the
source code [18]. We hope that for top-down development, specification of the
hierarchy can be made independent of the code, and is conversely more amenable
to verification.

References

1. Armstrong, J.: Erlang—a survey of the language and its industrial applications.
In: Proc. INAP, vol. 96 (1996)

2. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf (2007)

Erlang-Style Error Recovery for Concurrent Objects 21

3. Bjørk, J., de Boer, F.S., Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: User-
defined schedulers for real-time concurrent objects. Innovations in Systems and
Software Engineering 9(1), 29–43 (2013)

4. Candea, G., Fox, A.: Crash-only software. In: Jones, M.B. (ed.) HotOS, pp. 67–72.
USENIX (2003)

5. Caromel, D., Henrio, L.: A Theory of Distributed Objects. Springer (2005)
6. Chen, Z.: Java Card Technology for Smart Cards. Addison-Wesley (2000)
7. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,

C.L.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

8. de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg
(2007)

9. Din, C.C., Dovland, J., Johnsen, E.B., Owe, O.: Observable behavior of distributed
systems: Component reasoning for concurrent objects. Journal of Logic and Alge-
braic Programming 81(3), 227–256 (2012)

10. Goetz, B., Peierls, T., Bloch, J., Bowbeer, J., Holmes, D., Lea, D.: Java Concur-
rency in Practice. Addison-Wesley (2006)

11. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A core
language for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011)

12. Johnsen, E.B., Lanese, I., Zavattaro, G.: Fault in the future. In: De Meuter, W.,
Roman, G.-C. (eds.) COORDINATION 2011. LNCS, vol. 6721, pp. 1–15. Springer,
Heidelberg (2011)

13. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. Software and Systems Modeling 6(1), 35–58 (2007)

14. Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: Modeling application-level man-
agement of virtualized resources in ABS. In: Beckert, B., Damiani, F., de Boer,
F.S., Bonsangue, M.M. (eds.) FMCO 2011. LNCS, vol. 7542, pp. 89–108. Springer,
Heidelberg (2013)

15. Lanese, I., Lienhardt, M., Bravetti, M., Johnsen, E.B., Schlatte, R., Stolz, V.,
Zavattaro, G.: Fault model design space for cooperative concurrency. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp. 22–36. Springer,
Heidelberg (2014)

16. Lanese, I., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Controlling reversibility
in higher-order Pi. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS,
vol. 6901, pp. 297–311. Springer, Heidelberg (2011)

17. Mostowski, W.: Formal reasoning about non-atomic Java Card methods in dy-
namic logic. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS,
vol. 4085, pp. 444–459. Springer, Heidelberg (2006)

18. Nyström, J., Jonsson, B.: Extracting the process structure of Erlang applications.
In: Erlang Workshop, Florence, Italy (September 2002),
http://www.erlang.org/workshop/nystrom.ps

19. Vinoski, S.: Reliability with Erlang. IEEE Internet Computing 11(6), 79–81 (2007)

http://www.erlang.org/workshop/nystrom.ps

Fault Model Design Space

for Cooperative Concurrency�

Ivan Lanese1, Michael Lienhardt1, Mario Bravetti1, Einar Broch Johnsen2,
Rudolf Schlatte2, Volker Stolz2, and Gianluigi Zavattaro1

1 Focus Team, Università di Bologna/INRIA, Italy
{lanese,lienhard,bravetti,zavattar}@cs.unibo.it

2 Department of Informatics, University of Oslo, Norway
{einarj,rudi,stolz}@ifi.uio.no

Abstract. This paper critically discusses the different choices that have
to be made when defining a fault model for an object-oriented program-
ming language. We consider in particular the ABS language, and an-
alyze the interplay between the fault model and the main features of
ABS, namely the cooperative concurrency model, based on asynchronous
method invocations whose return results via futures, and its emphasis
on static analysis based on invariants.

1 Introduction

General-purpose modeling languages exploit abstraction to reduce complexi-
ty [20]: modeling is the act of describing a system succinctly by leaving out
some aspects of its behavior or structure. Software models primarily focus on
the functional behavior and the logical composition of the software. Modeling
formalisms can have varying levels of detail and can express structural prop-
erties (for example UML diagrams), interactions (π-calculus), or the effects of
functions or methods (pre- and post-conditions), etc.

Concurrent and distributed systems demand flexible communication forms
between distributed processes. While object-orientation is a natural paradigm
for distributed systems [15], the tight coupling between objects traditionally en-
forced by method calls may be criticized. Concurrent (or active) objects have
been proposed as an approach to concurrency that blends naturally with object-
oriented programming [1, 22, 32]. Several slightly differently flavored concurrent
object systems exist for, e.g., Java [3, 30], Eiffel [5, 26], and C++ [25]. Concur-
rent objects are reminiscent of Actors [1] and Erlang processes [2]: objects are
inherently concurrent, conceptually each object has a dedicated processor, and
there is at most one activity in an object at any time. Thus, concurrent objects
encapsulate not only their state and methods, but also a single (active) thread of
control. In the concurrent object model, asynchronous method calls may be used
to better combine object-orientation with distributed programming by reduc-
ing the temporal coupling between the caller and callee of a method, compared

� Partly funded by the EU project FP7-610582 ENVISAGE.

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 22–36, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Fault Model Design Space for Cooperative Concurrency 23

to the tightly synchronized (remote) method invocation model (of, e.g., Java
RMI [27]). Intuitively, asynchronous method calls spawn activities in objects
without blocking execution in the caller. Return values from asynchronous calls
are managed by futures [14,23,32]. Asynchronous method calls and futures have
been integrated with, e.g., Java [11,19] and Scala [13] and offer a large degree of
potential concurrency for deployment on multi-core or distributed architectures.

ABS is a modeling language targeting distributed systems [17]; the language
combines concurrent objects and asynchronous method calls with cooperative
scheduling of method invocations. In ABS the basic unit of computation is the
concurrent object group (cog): a cog provides to a group of objects a shared
processor. Method invocations on an object of a cog instantiate a new task that
requires the cog’s processor in order to execute. Cooperative scheduling allows
tasks to suspend in a controlled way at explicit points in the code, so that other
tasks of the object can execute. The suspend and await commands are used to
explicitly release the processor: the difference between the two commands is that
await has an associated boolean guard expressing under which condition the task
should be re-activated by the scheduler. Asynchronous method invocations are
used among objects belonging to different cogs; at each asynchronous method
invocation a future is instantiated to store the return value. Futures are first class
citizens in ABS and are accessed via a get command; get is blocking because
a task, executing get on a future of a method invocation which has not yet
completed, blocks and keeps the processor until the future is written. To avoid
keeping the processor, one can use an await f? to ensure that future f contains
a value.

ABS has a formal, executable semantics; ABS models can be run on a variety
of backends and can be verified using the KeY proof checker [4]. In particular,
asynchronous method calls and cooperative scheduling allow the verification of
distributed and concurrent programs by means of sequential reasoning [8]. In
ABS this is reflected in a proof system for local reasoning about objects where
the class invariant must hold at all scheduling points [9]. Although ABS tar-
gets distributed systems, a notable abstraction of the language design is that
faults are currently not considered part of the behavior to be modeled. On the
other hand, dealing with faults is an essential and notoriously difficult part of
developing a distributed system; this difficulty is exacerbated by the lack of clear
structuring concepts [7]. A well-designed model is essential to understand poten-
tial faults and reason about robustness, especially in distributed settings. Thus,
it is interesting to extend a modeling language such as ABS in order to model
faults and how these can be resolved during the system design.

It is common in the literature to distinguish errors due to the software design
(sometimes called faults) from random errors due to hardware (sometimes called
failures). For software deployed on a single machine, such hardware failures
entail a crash of the program. A characteristic of distributed systems is that
failures may be partial [31]; i.e., the failure may cause a node to crash or a
link to be broken while the rest of the system continues to operate. In our
setting, a strict separation between faults and failures may seem contrived, and

24 I. Lanese et al.

we will refer to unintended behavior caused by both the software and hardware
as faults. A fault is masked if the fault is not detected by the client of the service
in which the fault occurs. In hierarchical fault models, faults can propagate
along the path of service requests; i.e., a fault at the server level can result in
a (possibly different) fault at the client level. In a synchronous communication
model, a client object can only send one method call at the time whereas in an
asynchronous communication model, the client may spawn several calls. Thus,
it need not be clear for a client object which of the spawned calls resulted in
a specific fault in the asynchronous case. However, asynchronous method calls
in ABS allow results to be shared before they are returned: futures are first-
class citizens of ABS and may be passed around. First-class futures give rise to
very flexible patterns of synchronization, but they further obfuscate the path of
service requests and thus of fault propagation.

This paper discusses an extension of the semantics of the ABS modeling lan-
guage to incorporate a robust fault model that is both amenable to formal analy-
sis and familiar to the working programmer. The paper considers how faults can
be introduced into ABS in a way which is faithful to its syntax, semantics, and
proof system, and discusses the appropriate introduction of faults along three
dimensions: fault representation (Section 2), fault behavior (Section 3), and fault
propagation (Section 4).

2 How Are Faults Represented?

Exceptions are the language entities corresponding to faults in an ABS program’s
execution. ABS includes two kinds of entities which in principle can be used to
represent faults: objects and datatypes (datatypes [16] are part of the functional
layer of ABS, and abstract simple, common structures like lists and sets).

Exceptions as Objects. Representing exceptions as objects allows for a very flex-
ible management of faults. Indeed, in this setting exceptions would have both a
mutable state and a behavior. Also, one could define new kinds of exceptions us-
ing the interface hierarchy. Finally, exceptions would have identities allowing to
distinguish different instances of the same fault. However, most of these features
are not needed for faults: faults are generated and consumed, but they are static
and with no behavior. Representing them as objects would allow a program-
ming style not matching the intuition and difficult to understand. Furthermore,
in ABS static verification is a main concern, and semantic clarity is more needed
than in other languages. For this reason we think that in the setting of ABS
exceptions should not be objects.

Exceptions as Datatypes. Datatypes fit more with the intuition of exceptions as
described before: they are simple values with no identity nor behavior. However,
in ABS datatypes are closed, meaning that once a datatype has been declared,
it is not possible to extend it with new constructors. This is a potential problem
in using them to represent exceptions. Indeed, we would like the datatype for

Fault Model Design Space for Cooperative Concurrency 25

exceptions to include system-defined exceptions such as Division by Zero or Ar-
ray out of Bound, and to be extended to accommodate user-defined exceptions.
Also, for modularity reasons, programmers of an ABS module should be able to
declare their own exceptions, thus exception declaration cannot be centralized.
User-defined exceptions are not only handy for the programmer, but may also
help the definition of invariants by tracking the occurrence of specific condi-
tions. We discuss below a few possible design choices related to the definition of
user-defined exceptions.

Allow open datatypes in ABS. In this setting exception would be an open dataty-
pe [24], and other ABS datatypes could be open as well. The declaration of
system-defined exceptions can be done as:

open data Exception = NullPointerException
| RemoteAccessException

where the keyword open specifies that the datatype is open (in principle open
and closed datatypes may coexist). Then one can add user-defined exceptions
as:

open data Exception = ... | MyUserDefinedException

However, this is a major modification of datatypes, a key component of ABS,
and introducing this additional complexity only to accommodate exceptions may
not be a good choice. In fact, handling open datatypes is in contrast with the
fact that ABS type system is nominal. One would need to resort to a structural
type system (similar to, e.g., OCaml’s variants [29]) to ensure that a pattern
matching is complete, which is far less natural.

Allow any datatype to be an exception. In this setting any value of any datatype
may be used as an exception (the fact of declaring which datatypes are actually
used as exceptions does not change too much the setting). User-defined datatypes
can be added by simply defining new datatypes. When the programmer wants to
catch an exception, he has to specify which types of exceptions he can catch, and
do a pattern matching both on the type and on its constructor to understand
which particular fault happened. This produces a syntax like:

try { ... }
catch(List e) {
case(e) {
| Empty => ...
| Cons(v,e2) => ...

} }
catch(NullPointerException e) { ... }
catch(_ e) { ... /∗ capture all exceptions ∗/ }

where a special syntax _ is needed to catch exceptions of any type, since there is
no hierarchy for datatypes in ABS. Note that in case the exception has type List
a case is done to analyze its structure. A difficulty in applying this approach to
ABS is due to the fact that in ABS values do not carry their type at runtime,
but adding such an information seems not to have relevant drawbacks.

26 I. Lanese et al.

Exceptions as a new kind of value. In this setting exceptions are a separate kind
of value, at the same level of objects and datatypes. The type Exception is open.
New exceptions (both system- and user-defined) can be declared as follows:

exception NullPointerException
exception RemoteAccessException
...
exception MyUserDefinedException(Int, String)

Pattern matching can be used to distinguish different exceptions:

try { ... }
catch(e) {
NullPointerException => ...
MyUserDefinedException(n,s) => ...
e2 => ...
...

}

Structural typing can be used if one wants to check that all exceptions possibly
raised are caught, as, e.g., in Java.

Discussion. The simplest approach is to model exceptions as a closed datatype.
However, if open exceptions are desired to increase the expressive power, the
last solution is the one with minimal impact on the existing ABS language.
Allowing any datatype as an exception also seems a viable option, but with a
more substantial impact on the existing structure of ABS.

3 Which Is the Behavior of Faults?

Faults interrupt the normal control flow of the program. A first issue concerning
faults is how they are generated. Concerning fault management, it is a common
agreement that faults are manipulated with a try/catch structure, and we do
not see any reason to change this approach in our design for ABS. However, after
this choice has been taken, the design space is still vast and many questions still
need to be investigated.

Fault Generation. In programming languages, faults can be generated either
by an explicit command such as throw f where f is the raised fault, or by a
normal command. For instance, when evaluating the expression x/y a Division
by Zero exception may be raised if y is 0. In this second case, which exception is
raised is not explicit, but defined by the semantics of the command. After having
been raised, the two kinds of exceptions are indistinguishable. A third kind of
exception may be considered in ABS. Indeed, ABS is currently evolving towards
having an explicit distribution, and in this setting localities or links may break.
The only remote interaction in ABS is via asynchronous method invocation,
and the corresponding await/get on the created future. In principle, network
problems could be notified either during invocation, or during the await/get.

Fault Model Design Space for Cooperative Concurrency 27

However, invocation is asynchronous, and will not check for instance whether the
callee will receive and/or process the invocation message. For the same reason,
it is not reasonable that it checks for network problems. Clearly, the get should
raise the fault, since no return value is available.

The behavior of await depends on its intended semantics. If executing the
statement await f? means that the process whose result will be stored in f
has successfully finished, then the await needs to synchronize with the remote
computation and should raise a pre-defined fault upon timeout and network
errors. In this setting thus network faults are raised by both await and get. On
the other hand, if executing await f? gives only the guarantee that a subsequent
f.get will not block, then all faults, including network- and timeout-related
faults, can be raised by get exclusively.

Fault Management. As discussed in the beginning of the section, we use the
common try/catch structure to manage faults. This structure sometimes also
features an additional block finally. The finally block specifies some code that
must be executed both if no exception is raised and if it is. A common use of the
finally block is to release resources which need to be freed whatever the result
of the computation is.

try { ... }
catch(MyFirstException e) { ... }
catch(MySecondeException e) {... }
finally { P }

For instance, P may close a file used inside the try block. The finally block is
very convenient for programming, but may not be needed in the core language.
Indeed, in many cases it can be encoded. The encoding instantiated on the
example above is as follows:

try {
try { ... }
catch(MyFirstException e) { ... }
catch(MySecondeException e) { ... }

} catch(_ e) {
P
throw e;

}
P

Essentially, one has to catch all the exceptions, do P and rethrow the same excep-
tion. P also needs to be replicated at the end, so to be executed if no exception is
raised. Note that this encoding relies on always having exactly one return state-
ment per method, at its end (this is the recommended style of programming in
ABS), and on the ability to catch all exceptions and to be able to rethrow them
identically. Actually, in principle, one can also consider some uncatchable faults,
but this seems not particularly relevant in practice.

For resource management, an alternative to the finally block is the autorelease
mechanism of Java 7 [28], which automatically releases its resource at the end of

28 I. Lanese et al.

the block. Encoding such a mechanism in ABS could be done using an approach
similar to the one above for the finally block.

Fault Effects. We have discussed how to catch faults. However, it may happen
that a fault is not caught inside the method raising it. Then, as already said, the
fault should interrupt the normal flow of computation, i.e. killing the running
process. However, one may decide to kill a larger entity. Suitable candidates in
ABS are the object where the fault has been raised, or its cog. Now, remember
that in ABS there is a strong emphasis on correctness proofs based on invariants,
and that whenever a process releases the lock of an object the class invariant must
hold. An uncaught fault releases the lock by killing the running process. This
means that whenever an uncaught fault may be raised, the invariant must hold.
Since faults may be raised by many constructs, including expressions and get,
ensuring this may be particularly difficult, and may require in practice to manage
all the faults inside the method raising them. However, this is undesirable since
a method may not have enough information to correctly manage a given fault.
One can try to define a weaker invariant, but this may be difficult. A solution is
to decide that a fault may not only kill the process, but also the object whose
invariant may be no more valid. An even more drastic solution is to kill the
whole cog. This may be meaningful if invariants involving different objects (of
the same cog) are considered. However, this kind of invariant is currently not
considered in ABS, thus the introduction of mechanisms for killing a whole cog
seems premature.

Effect Declaration. In classic programming languages, the only effect of an un-
caught fault is to kill the running process. However, we just discussed that also
killing the whole object (or cog) is a possible effect. One may want to have
different effects for different faults. More in general, different faults may have
different properties. Another possible property may describe whether a fault can
be caught or not. Whatever the set of possible properties is, an important issue
is where those properties are associated with the raised fault. One can have a
keyword deadly specifying that a given exception will kill the whole object if
uncaught, while the behavior of just killing the process can be considered the
default behavior. We can see three possibilities here. Properties may be specified:

when an exception is declared: for instance, one may write

deadly exception NullPointerException

A main drawback of this approach is that the same exception will behave
the same everywhere. Intuitively, an exception may be deadly for an ob-
ject where the invariant cannot be restored, and not for another one where
the fault has no impact on the invariant. Note also that if any datatype
can be an exception, then one has to specify properties for each datatype,
e.g. deadly Int. Actually, this second drawback is mitigated by choosing
suitable default values for properties.

when an exception is raised: for instance, one may write

Fault Model Design Space for Cooperative Concurrency 29

throw deadly NullPointerException

or also shorten it into die NullPointerException. Clearly, this ap-
proach is only reasonable for exceptions raised by an explicit throw (unless
one wants to write something like x=y/0 deadly). The approach is also
less compositional, thus less suitable for static analysis. In fact, to under-
stand the behavior of an exception it is not enough to look at declarations.
For instance, the same exception may be either deadly or not for the same
method, depending on how it has been raised. Note also that this approach
would break the encoding of finally above, since there is no way to rethrow
an exception with the exact same properties.

in the signature of the method raising the exception: for instance, one
may write

Int calc(Int x) deadly: NullPointerException {...}

Clearly, this approach is viable only for properties relevant when the ex-
ception exits the method, such as deadly. It would not work for instance
to specify whether an exception can be caught or not. Notice that this ap-
proach integrates well with the declaration of which faults a method may
raise, useful to statically verify that all exceptions are caught. In fact, one
could write

Int calc(Int x) throws: DivisionByZero,
deadly NullPointerException {...}

More in general, this approach is suitable for static analysis, since a method
declaration also provides the information on the behavior of exceptions raised
by the method itself. The same information is useful also for the programmer,
in particular when using methods he did not write himself.

Discussion. We think that in the context of ABS, a fault may have two different
effects: either killing the process or the whole object, depending on whether the
object invariant holds or not. Whether a fault should kill the whole object or not
should be declared at the level of method signature to enhance compositionality.
Note that in the most used object-oriented languages, objects are never killed
as a result of an exception: indeed such a feature is relevant in ABS because of
its emphasis on analysis based on invariants, and no widespread object-oriented
language has been developed according to this philosophy. A possible alternative
to kill the object would be to roll back state changes. A transparent rollback [10]
in our setting could lead to the last release point, where one is sure the invari-
ant holds. However such an approach, discussed in [12], is not always satisfying.
Indeed, rolling back only locally may easily lead to inconsistencies between dif-
ferent local states (what corresponds to break invariants concerning multiple
objects). On the other hand, global rollback as in [21] results in an overly com-
plex semantics. Furthermore, if local rollback is needed in particular cases, it can
usually be encoded. Similarly, the finally construct is not strictly needed, since
with the choices we advocate it can be encoded.

30 I. Lanese et al.

4 How Do Faults Propagate?

We have discussed in the previous section the effect of a fault on the process or
object where it is raised. However, in case of fault, in particular of uncaught fault,
it is reasonable to propagate the exception also to other processes/objects related
to it. In particular, possible targets for propagation are processes interested in
the result of the computation, processes that have been invoked by the failed
one, processes in the same object/cog of the failed one, processes trying to access
an object after it died.

Propagation through the Return Future. In a language with synchronous method
invocation the only process that can directly access the result of the computation
is the caller. However, in languages with asynchronous method invocation any
process receiving the future can directly access the result of the computation. The
caller may be or may not be one of them, and indeed may even terminate before
the result of the computation becomes ready. Thus we discuss here notification of
faults to the processes synchronizing with the future. We have two possibilities:
processes may synchronize with the future either with a get or with an await
statement. The case of get is clear: those processes are interested in the result of
the computation, in case of fault no correct result is available and those processes
need to be notified so that they can decide how to proceed. The natural way
of being notified is that the same exception is raised by get. A process doing
an await is just interested in waiting for the computation to terminate, but not
in knowing its result. Thus we claim that if the computation terminated, either
with a normal value or with an exception, the await should not block and the
exception, if any, should not be raised. The exception would be raised only if
later on a get on the future is performed. This approach requires to put the
fault notification inside the future, and has been explored in the context of ABS
in [18]. Indeed, this is also the approach of Java future library (asynchronous
computation with futures has been standardized in a Java library since Java SE
5 [11]). In contrast to ABS, Java’s API does not distinguish between waiting for
a future to become available, and retrieving the results. In fact, no primitive like
await is available in Java. In addition, Java’s futures do not faithfully propagate
exceptions: the get method on a faulty future always raises the same exception
ExecutionException.

An additional problem is related to concurrency. Indeed, in ABS, one may have
multiple concurrent get and/or await statements on the same future containing
an exception. Let us consider the case of multiple get statements. In this case,
one has to decide whether they all raise the fault contained in the future or just
one of them does. This second solution is more troublesome since to this end,
the first process accessing the future would receive the exception and remove
the fault from the future. The only possibility is to replace it with some default
value, and this requires locking the future. However, this in turn changes the
behavior of futures in a relevant way: Futures are understood as logical variables
that change at most once, and this would no longer be true. Additionally, this
creates a weak synchronization point between two processes accessing the same

Fault Model Design Space for Cooperative Concurrency 31

future. Indeed, if a process knows that a future originally contains an exception,
by accessing it he will know if another process accessed it before. These weak
synchronization points between processes that would be independent otherwise
make the concurrency model and thus the analysis more difficult. Note that
concurrent await statements are not a problem, since they do not locally raise
the fault, but just check whether the future is empty or not.

Propagation through Method Invocations. It may be the case that the failed
computation has invoked methods in other objects, whose execution is no more
necessary after the failure. Indeed, it may even be undesired. For instance, if you
are planning a trip and the booking of the airplane fails, you do not want to
complete the booking of the hotel. Thus a mechanism to cancel a computation
originated by a past method call may be useful. Actually, cancel may have differ-
ent meanings according to the state of the invocation. If the invocation has not
started yet, one can simply remove the invocation message itself. If the invoked
process is running, one may raise the exception. If the execution already com-
pleted, one may do nothing or execute some code to compensate the terminated
execution. This second option has been explored in [18]. The most interesting
case is the one where the invoked process is running. Indeed, in this case the
fault may be raised in any point of the execution, thus dealing with it using a
try-catch would require to have the whole method code, including the return
command, inside the try block. A better approach is to define specific points in
the code where the running process checks for exceptions from its invoker, and
specifying there the code to be executed in this case. A more modular way is
to separate the two issues. One may have a statement check to specify when
to check for faults, and a statement setHandler H establishing that H is the
handler to be used to deal with faults from the invoker from now on. H can be
a simple piece of code, or a function associating pieces of code to exceptions.
Pieces of code may have a return statement, to communicate the result of the
fault management to the invoker. If the execution of the handler terminates suc-
cessfully, the execution of the method code restarts. One may also decide that
the last handler has to be used to compensate the execution if the cancellation
occurs after the termination of the invoked process.

We have described the effect of propagation to invoked processes. However, one
has to understand which invoked processes to consider. The simplest possibility
is to let the programmer decide. We call this approach programmed propagation.
This can be done through a statement f1 = f.cancel(e) where f is the future
corresponding to the invocation to be canceled, e the exception to be raised and
f1 the future storing the result of exception management. Note that the future
f is the right entity to individuate the invocation, since each invocation corre-
sponds to a different future. Note also that with programmed cancel one may
cancel twice the same invocation, and that cancel can be executed by any process
on any future he knows of. Future f1 may contain different values according to
the outcome of the cancel. If the exception sent by the cancel is correctly man-
aged, the handler returns a specific value to fill that future (potentially different
from the value returned as a result of the method, which is in future f). In all

32 I. Lanese et al.

the other cases a system-defined exception is put inside future f1 (one cannot
put there a normal value, since this should depend on the type of the future):

– an exception notStarted if the cancel arrives before the invocation started
(while the future f contains an exception canceled);

– an exception terminated if the cancel arrives after method termination,
and compensations are not used (future f keeps its value);

– an exception noCompensation if the cancel arrives after method termi-
nation, compensations are allowed, but no compensation is specified for the
target method (future f keeps its value);

– an exception CancelNotManaged if the exception arrives when the method
is running, but it is not managed since there is no handler for it (while the
future f stores the exception e).

In case of multiple cancellations, cancellations behave as above according to the
state of the method when they are processed. Note also that the future f is not
changed if it already contains the result of the method invocation.

An alternative approach is to have an automatic propagation of exceptions to
invoked processes. First, one should decide whether to propagate only uncaught
faults, or also managed faults. This last solution is not desirable in general, since
most managed faults should not affect other processes, and can be dealt with
by programmed propagation in case of need. Propagation of uncaught faults,
if desired, should be necessarily done automatically. Now, the problem is to
understand to which method invocations the fault needs to propagate. An upper
bound is given by the futures known by the dying process. One may also consider
that futures on which a get has already been performed are no more relevant.
However, there is no fast and easy answer to this question. We think that a
reasonable solution is to choose the futures which have been created by the
current method execution and on which no get has been performed yet by the
same method. One may also want to check whether the reference to the future
has been passed to another method, and whether this method has performed
a get on the future, but this would make the implementation and the analysis
much more tricky. Similarly, one may want to consider also futures received as
parameters, but again this needs to propagate the information on whether a
future has been accessed or not from one method to the other. Note that in
case of automatic propagation, no information on the result of the cancellation
is needed, since the caller already terminated.

One may want to ensure that children can manage all the faults from their
parent. To this end, each child should declare the exceptions that he can manage
(at any point, since it may be the case that some exceptions can be managed only
at some check due to handler modifications). Then, one can check that these
include all the exceptions the parent may send to him. For automatic propaga-
tion, these coincide with the exceptions the parent may raise. For programmed
propagation, these are the arguments of the various cancel of the corresponding
future in the parent or in methods to which the future is passed.

Fault Model Design Space for Cooperative Concurrency 33

Propagation to Other Processes in the same Object/Cog. We already discussed
the fact that it is important for processes to restore the invariant of the object
or cog before releasing the lock, and in particular before terminating because of
an uncaught exception. In case the invariant cannot be restored, we proposed as
a solution the possibility of killing the whole object/cog. An alternative solution
is to terminate only the process P that first raised the fault, and notifying the
other processes about the uncaught fault, since they may be able to manage it.
Note that when process P is terminated, there is no other running process in
the same cog. Thus the other processes will get the fault notification when they
will be scheduled again. This means that they may get a fault, either when they
start, or when they resume execution at an await or suspend statement. The
fault may then be managed, or propagated as discussed above. In particular, if
not managed, will be propagated to the next process to be scheduled. In this
setting objects never die, but method calls may receive an exception as soon as
they start. If we raise the same exception that was raised by P , then it may be
difficult to track which exceptions may be raised inside any method. A simpler
solution is to have a dedicated exception, e.g., InvariantNotRestored. What said
above for objects holds similarly for cogs, concerning cog invariants. However,
as already said, they are not a main concern in ABS at the moment.

Propagation through Dead Objects/Cogs. Some of the approaches we discussed
involve the killing of an object or cog. We have not yet discussed what hap-
pens when a dead object is accessed (through method invocation). An exception
should be raised. We can follow either the approach discussed above for network
errors, or the one for normal faults. In practice the only difference is whether also
the await will raise such a fault or not. We do not see any particular advantages
or disadvantages for the two approaches: which is the best solution depends on
which one better fits the programmer intuition, which may be different from one
programmer to the other. In both the cases, using a standard exception such as
DeadObject, instead of propagating the exception that caused the death of the
object, simplifies the management. Also, it allows the caller to know whether
the object is dead because of its invocation or it was already dead before.

Discussion. Among the propagation strategies above, propagation through the
return future is nowadays standard, since it is used, e.g., in Java and C#. The
possibility of canceling a running process via a future is also available in Java
and C#, but the possibility of doing it automatically and/or of defining handlers
and compensations for managing cancel requests while the process is running are
not considered. Indeed, these strategies are quite complex, and it is not yet clear
how useful they are in real programming. Also propagation of the fault to other
processes in the same object is not considered in mainstream languages as far
as we know, but we think this is a viable strategy in ABS. In fact, when a
process is not able to restore the object invariant, there are two possibilities:
either destroying the whole object or leave to another method call the task of
restoring it. This second strategy seems also less extreme.

34 I. Lanese et al.

5 Conclusion

We have discussed the design space for fault models to be included in the ABS
modeling language. As future work, we will extend the formal semantics of ABS
with appropriate datatypes for the representation of faults, primitives to raise
and catch faults, and mechanisms to distribute faults to other objects and cogs.

We complete the paper with a review of related fault models (the comparison
with Java has been already discussed throughout the paper).

Functional programming languages, like OCaml or Haskell, also include prim-
itives for faults modeled as exceptions. Both languages allow user-defined excep-
tions, but they implement them in different manners. OCaml uses a special type
(called exn) to type exceptions, and new exceptions can be declared using the syn-
tax exception e of data. In [24], the introduction of open datatypes in Haskell to
encode exceptions is discussed. However, the current implementation of GHC uses
typeclass [6], which allow one to register new datatypes as being exceptions.

Message-Passing Interface (MPI) is a cross-language standard, used, e.g., for C
and Fortran, to program distributed applications. MPI expresses communication
via so-calledMPI functions, the basic ones being SENDand a blockingRECV.The
SENDcanworkwith threemodalities: (buffered send) buffering the data to be sent,
thus returning immediately as we assumed in this paper; (synchronous send) wait-
ing for a corresponding RECV to be posted by the destination before terminating;
or (ready send) failing in the case a corresponding RECV has not yet been posted
by the destination. Dealing with the network, MPI functions represent communi-
cation at a lower level than we do: in MPI also the process of data delivering is
taken into account. SEND (in all its modalities) and RECV have asynchronous
variants, called ISEND and IRECV (where the “I” stands for “initiation”), which
indicate a buffer where to fetch/put data and return immediately. For each such
asynchronous send/receive, functionalities similar to some of the ones considered
in this paper can be used: WAIT makes it possible to wait for the completion of
data sending/receiving (in addition in MPI there is also a function TEST which
returns immediately the status of the data sending/receiving without waiting);
failures (e.g., in the communication while sending/receiving data) are detected
by calling WAIT or TEST; and it is possible to cancel a send/receive by a call
to CANCEL. The semantics of the latter, however, is the removal of the send/re-
ceive, supposing that it has not completed yet, as if it never occurred (a matching
receive/send would perceive, as well, the canceled send/receive as if it never oc-
curred). By combining the mechanisms above it is possible to obtain the waiting
and canceling mechanisms considered in this paper. For example an asynchronous
method invocation can be modeled by executing both ISEND and IRECV, and
cancellation by executing CANCEL both on the send and the receive in the case
the data is still under transmission or just on the receive in the case the send has
completed. In the latter case, if the invoked method performs a ready send at the
end of method execution, it will be notified of the matching IRECV having been
canceled.

In web applications the HTTP protocol is used to realize service invocations
by means of request/response pairs over a TCP/IP connection, as happens in

Fault Model Design Space for Cooperative Concurrency 35

the popular approaches of Java and Javascript, i.e. Asynchronous Javascript and
XML (AJAX) invocations. In Java a method is used to initiate the HTTP re-
quest/response, which differently from the approach considered in this paper,
may yield an error in the case the connection with the HTTP server cannot be
established (timeout based). Then the client goes through a two phase process,
where he first sends data over an output-stream and then, similarly, receives
data. At the server side a symmetric process is followed. Java methods for read-
ing pieces of response data are blocking as for the waiting function used in MPI
and considered in this paper. Similarly, failures are notified via exceptions when
reading response data (or while sending request data). Finally concerning can-
cellation, the HTTP request/response can be aborted as a whole by the client
and this causes the server to detect the failure (an exception is raised) when it is
in the phase of inserting data in the response, i.e. when returning data (or while
reading request data). In Javascript (AJAX) request data are preliminarily put
into memory (as in MPI) and then the request/response is initiated (again this
can fail if connection cannot be established). Such an initiation function also
installs a user-defined function which is expected to manage the data received
once the response is completed (including also managing the case of failure).
This mechanism is an alternative to the waiting function used in MPI and con-
sidered in this paper. Concerning cancellation, it is possible, as in Java, to abort
the HTTP request/response (with the same effect at server side).

References

1. Agha, G., Hewitt, C.: Actors: A conceptual foundation for concurrent object-
oriented programming. In: Research Directions in Object-Oriented Programming,
pp. 49–74. MIT Press (1987)

2. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf (2007)

3. Baduel, L., et al.: Programming, Composing, Deploying, for the Grid. In: Grid
Computing: Software Environments and Tools. Springer (2006)

4. Beckert, B., Hähnle, R., Schmitt, P.H.: Verification of Object-oriented Software:
The KeY Approach. Springer (2007)

5. Caromel, D.: Service, Asynchrony, and Wait-By-Necessity. Journal of Object Ori-
ented Programming, 12–22 (1989)

6. Chen, K., Hudak, P., Odersky, M.: Parametric type classes. In: Proc. of LFP 1992,
pp. 170–181. ACM (1992)

7. Cristian, F.: Understanding fault-tolerant distributed systems. Communications of
the ACM 34(2), 56–78 (1991)

8. deBoer, F.S.,Clarke,D., Johnsen,E.B.:A complete guide to the future. In:DeNicola,
R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg (2007)

9. Din, C.C., Dovland, J., Johnsen, E.B., Owe, O.: Observable behavior of distributed
systems: Component reasoning for concurrent objects. Journal of Logic and Alge-
braic Programming 81(3), 227–256 (2012)

10. Elnozahy, E.N., Alvisi, L., Wang, Y.-M., Johnson, D.B.: A survey of rollback-
recovery protocols in message-passing systems. ACM Computing Surveys 34(3),
375–408 (2002)

11. Goetz, B., Peierls, T., Bloch, J., Bowbeer, J., Holmes, D., Lea, D.: Java Concur-
rency in Practice. Addison-Wesley (2006)

36 I. Lanese et al.

12. Göri, G., Johnsen, E.B., Schlatte, R., Stolz, V.: Erlang-style error recovery for
concurrent objects with cooperative scheduling. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2014, Part II. LNCS, vol. 8803, pp. 5–21. Springer, Heidelberg (2014)

13. Haller, P., Odersky, M.: Scala actors: Unifying thread-based and event-based pro-
gramming. Theoretical Computer Science 410(2-3), 202–220 (2009)

14. Halstead Jr., R.H.: Multilisp: A language for concurrent symbolic computation.
ACM Trans. Prog. Lang. Syst. 7(4), 501–538 (1985)

15. International Telecommunication Union. Open Distributed Processing — Refer-
ence Model parts 1–4. Technical report, ISO/IEC, Geneva (July 1995)

16. Jay, B.: Algebraic data types. In: Pattern Calculus, pp. 149–160. Springer (2009)
17. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A core

language for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011)

18. Johnsen, E.B., Lanese, I., Zavattaro, G.: Fault in the future. In: De Meuter, W.,
Roman, G.-C. (eds.) COORDINATION 2011. LNCS, vol. 6721, pp. 1–15. Springer,
Heidelberg (2011)

19. JSR166: Concurrency utilities, http://java.sun.com/j2se/1.5.0/docs/
guide/concurrency

20. Kramer, J.: Is abstraction the key to computing? Communications of the
ACM 50(4), 36–42 (2007)

21. Lanese, I., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Controlling reversibility
in higher-order pi. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS,
vol. 6901, pp. 297–311. Springer, Heidelberg (2011)

22. Lavender, R.G., Schmidt, D.C.: Active object: an object behavioral pattern for
concurrent programming. In: Pattern Languages of Program Design 2, pp. 483–
499. Addison-Wesley Longman Publishing Co., Inc. (1996)

23. Liskov, B.H., Shrira, L.: Promises: Linguistic support for efficient asynchronous
procedure calls in distributed systems. In: PLDI, pp. 260–267. ACM Press (1988)

24. Löh, A., Hinze, R.: Open data types and open functions. In: Proc. of PPDP 2006,
pp. 133–144. ACM (2006)

25. Morris, B.: CActive and Friends. Symbian Developer Network (November 2007),
http://developer.symbian.com/main/downloads/papers/
CActiveAndFriends/CActiveAndFriends.pdf

26. Nienaltowski, P.: Practical framework for contract-based concurrent object-
oriented programming. PhD thesis, Department of Computer Science, ETH Zurich
(2007)

27. Pitt, E., McNiff, K.: Java.Rmi: The Remote Method Invocation Guide. Addison-
Wesley Longman Publishing Co., Inc. (2001)

28. Ponge, J.: Better resource management with Java SE 7: Beyond syntactic sugar
(May 2011), http://www.oracle.com/technetwork/articles/java/
trywithresources-401775.html

29. Rémy, D.: Type checking records and variants in a natural extension of ml. In:
Proc. of POPL 1989, pp. 77–88. ACM (1989)

30. Schäfer, J., Poetzsch-Heffter, A.: JCoBox: Generalizing active objects to concurrent
components. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 275–299.
Springer, Heidelberg (2010)

31. Waldo, J., Wyant, G., Wollrath, A., Kendall, S.: A note on distributed computing.
In: Vitek, J., Tschudin, C. (eds.) MOS 1996. LNCS, vol. 1222, pp. 49–64. Springer,
Heidelberg (1997)

32. Yonezawa, A.: ABCL: An Object-Oriented Concurrent System. MIT Press (1990)

http://java.sun.com/j2se/1.5.0/docs/guide/concurrency
http://java.sun.com/j2se/1.5.0/docs/guide/concurrency
http://developer.symbian.com/main/downloads/papers/CActiveAndFriends/CActiveAndFriends.pdf
http://developer.symbian.com/main/downloads/papers/CActiveAndFriends/CActiveAndFriends.pdf
http://www.oracle.com/technetwork/articles/java/trywithresources-401775.html
http://www.oracle.com/technetwork/articles/java/trywithresources-401775.html

Programming with Actors in Java 8�

Behrooz Nobakht1,2 and Frank S. de Boer3

1 Leiden Advanced Institute of Computer Science
Leiden University

bnobakht@liacs.nl
2 SDL Fredhopper

bnobakht@sdl.com
3 Centrum Wiskunde en Informatica

frb@cwi.nl

Abstract. There exist numerous languages and frameworks that support an im-
plementation of a variety of actor-based programming models in Java using con-
currency utilities and threads. Java 8 is released with fundamental new features:
lambda expressions and further dynamic invocation support. We show in this pa-
per that such features in Java 8 allow for a high-level actor-based methodology
for programming distributed systems which supports the programming to inter-
faces discipline. The embedding of our actor-based Java API is shallow in the
sense that it abstracts from the actual thread-based deployment models. We fur-
ther discuss different concurrent execution and thread-based deployment models
and an extension of the API for its actual parallel and distributed implementation.
We present briefly the results of a set of experiments which provide evidence of
the potential impact of lambda expressions in Java 8 regarding the adoption of
the actor concurrency model in large-scale distributed applications.

Keywords: Actor model, Concurrency, Asynchronous Message, Java, Lambda
Expression.

1 Introduction

Java is beyond doubt one of the mainstream object oriented programming languages
that supports a programming to interfaces discipline [9,35]. Through the years, Java
has evolved from a mere programming language to a huge platform to drive and envi-
sion standards for mission-critical business applications. Moreover, the Java language
itself has evolved in these years to support its community with new language features
and standards. One of the noticeable domains of focus in the past decade has been dis-
tribution and concurrency in research and application. This has led to valuable research
results and numerous libraries and frameworks with an attempt to provide distribution
and concurrency at the level of Java language. However, it is widely recognized that
the thread-based model of concurrency in Java that is a well-known approach is not

� This paper is funded by the EU project FP7-610582 ENVISAGE: Engineering Virtualized
Services, http://www.envisage-project.eu.

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 37–53, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://www.envisage-project.eu

38 B. Nobakht and F.S. de Boer

appropriate for realizing distributed systems because of its inherent synchronous com-
munication model. On the other hand, the event-driven actor model of concurrency in-
troduced by Hewitt [17] is a powerful concept for modeling distributed and concurrent
systems [2,1]. Different extensions of actors are proposed in several domains and are
claimed to be the most suitable model of computation for many applications [18]. Ex-
amples of these domains include designing embedded systems [25,24], wireless sensor
networks [6], multi-core programming [22] and delivering cloud services through SaaS
or PaaS [5]. This model of concurrent computation forms the basis of the programming
languages Erlang [3] and Scala [16] that have recently gained in popularity, in part due
to their support for scalable concurrency. Moreover, based on the Java language itself,
there are numerous libraries that provide an implementation of an actor-based program-
ming model.

The main problem addressed in this paper is that in general existing actor-based
programming techniques are based on an explicit encoding of mechanisms at the ap-
plication level for message passing and handling, and as such overwrite the general
object-oriented approach of method look-ups that forms the basis of programming to
interfaces and the design-by-contract discipline [26]. The entanglement of event-driven
(or asynchronous messaging) and object-oriented method look-up makes actor-based
programs developed using such techniques extremely difficult to reason about and for-
malize. This clearly hampers the promotion of actor-based programming in mainstream
industry that heavily practices object-oriented software engineering.

The main result of this paper is a Java 8 API for programming distributed systems
using asynchronous message passing and a corresponding actor programming method-
ology which abstracts invocation from execution (e.g. thread-based deployment) and
fully supports programming to interfaces discipline. We discuss the API architecture,
its properties, and different concurrent execution models for the actual implementation.

Our main approach consists of the explicit description of an actor in terms of its
interface, the use of the recently introduced lambda expressions in Java 8 in the imple-
mentation of asynchronous message passing, and the formalization of a corresponding
high-level actor programming methodology in terms of an executable modeling lan-
guage which lends itself to formal analysis, ABS [20].

The paper continues as follows: in Section 2, we briefly discuss a set of related
works on actors and concurrent models especially on JVM platform. Section 3 presents
an example that we use throughout the paper, we start to model the example using a
library. Section 4 briefly introduces a concurrent modeling language and implements
the example. Section 5 briefly discusses Java 8 features that this works uses for imple-
mentation. Section 6 presents how an actor model maps into programming in Java 8.
Section 7 discusses in detail the implementation architecture of the actor API. Section 8
discusses how a number of benchmarks were performed for the implementation of the
API and how they compare with current related works. Section 9 concludes the paper
and discusses the future work.

Programming with Actors in Java 8 39

2 Related Work

There are numerous works of research and development in the domain of actor model-
ing and implementation in different languages. We discuss a subset of the related work
in the level of modeling and implementation with more focus on Java and JVM-based
efforts in this section.

Erlang [3] is a programming language used to build massively scalable soft real-time
systems with requirements on high availability. Some of its uses are in telecoms, bank-
ing, e-commerce, computer telephony and instant messaging. Erlang’s runtime system
has built-in support for concurrency, distribution and fault tolerance. While threads re-
quire external library support in most languages, Erlang provides language-level features
for creating and managing processes with the aim of simplifying concurrent program-
ming. Though all concurrency is explicit in Erlang, processes communicate using mes-
sage passing instead of shared variables, which removes the need for locks. Elixir [33]
is a functional meta-programming aware language built on top of the Erlang VM. It is a
dynamic language with flexible syntax with macros support that leverages Erlang’s abil-
ities to build concurrent, distributed, fault-tolerant applications with hot code upgrades.

Scala is a hybrid object-oriented and functional programming language inspired by
Java. The most important concept introduced in [16] is that Scala actors unify thread-
based and event-based programming model to fill the gap for concurrency program-
ming. Through the event-based model, Scala also provides the notion of continuations.
Scala provides quite the same features of scheduling of tasks as in concurrent Java; i.e.,
it does not provide a direct and customizable platform to manage and schedule priorities
on messages sent to other actors. Akka [15] is a toolkit and runtime for building highly
concurrent, distributed, and fault tolerant event-driven applications on the JVM based
on actor model.

Kilim [31] is a message-passing framework for Java that provides ultra-lightweight
threads and facilities for fast, safe, zero-copy messaging between these threads. It con-
sists of a bytecode postprocessor (a “weaver”), a run time library with buffered mail-
boxes (multi-producer, single consumer queues) and a user-level scheduler and a type
system that puts certain constraints on pointer aliasing within messages to ensure
interference-freedom between threads. The SALSA [34,22] programming language
(Simple Actor Language System and Architecture) is an active object-oriented pro-
gramming language that uses concurrency primitives beyond asynchronous message
passing, including token-passing, join, and first-class continuations.

RxJava [7] by Netflix is an implementation of reactive extensions [27] from Mi-
crosoft. Reactive extensions try to provide a solution for composing asynchronous and
event-based software using observable pattern and scheduling. An interesting direction
of this library is that it uses reactive programming to avoid a phenomenon known as
“callback hell”; a situation that is a natural consequence of composing Future abstrac-
tions in Java specifically when they wait for one another. However, RxJava advocates
the use of asynchronous functions that are triggered in response to the other functions.
In the same direction, LMAX Disruptor [4,8] is a highly concurrent event processing
framework that takes the approach of event-driven programming towards provision of
concurrency and asynchronous event handling. The system is built on the JVM platform
and centers on a Business Logic Processor that can handle 6 million events per second

40 B. Nobakht and F.S. de Boer

on a single thread. The Business Logic Processor runs entirely in-memory using event
sourcing. The Business Logic Processor is surrounded by Disruptors - a concurrency
component that implements a network of queues that operate without needing locks.

3 State of the Art: An Example

In the following, we illustrate the state of the art in actor programming by means of
a simple example using the Akka [32] library which features asynchronous messaging
and which is used to program actors in both Scala and Java. We want to model in Akka
an “asynchronous ping-pong match” between two actors represented by the two inter-
faces IPing and IPong which are depicted in Listings 1 and 2. An asynchronous call by
the actor implementing the IPong interface of the ping method of the actor implement-
ing the IPing interface should generate an asynchronous call of the pong method of the
callee, and vice versa. We intentionally design ping and pong methods to take arguments
in order to demonstrate how method arguments may affect the use of an actor model in
an object-oriented style.

Listing 1. Ping as an interface

1 public interface IPing {
2 void ping(String msg);
3 }

Listing 2. Pong as an interface

1 public interface IPong {
2 void pong(String msg);
3 }

To model an actor in Akka by a class, say Ping, with interface IPing, this class is re-
quired both to extend a given pre-defined class UntypedActor and implement the interface
IPing, as depicted in Listings 3 and 4. The class UntypedActor provides two Akka frame-
work methods tell and onReceive which are used to enqueue and dequeue asynchronous
messages. An asynchronous call to, for example, the method ping then can be modeled
by passing a user-defined encoding of this call, in this case by prefixing the string argu-
ment with the string “pinged”, to a (synchronous) call of the tell method which results
in enqueuing the message. In case this message is dequeued the implementation of the
onReceive method as provided by the Ping class then calls the ping method.

Programming with Actors in Java 8 41

Listing 3. Ping actor in Akka

1 public class Ping(ActorRef pong)
2 extends UntypedActor
3 implements IPing {
4
5 public void ping(String msg) {
6 pong.tell("ponged," + msg)
7 }
8
9 public void onReceive(Object m)

{
10 if (!(m instanceof String)) {
11 // Message not understood.
12 } else
13 if (((String) m).startsWith("

pinged") {
14 // Explicit cast needed.
15 ping((String) m);
16 }
17 }
18 }

Listing 4. Pong class in Akka

1 public class Pong
2 extends UntypedActor
3 implements IPong {
4
5 public void pong(String msg) {
6 sender().tell(
7 "pinged," + msg);
8 }
9

10 public void onReceive(Object m)
{

11 if (!(m instanceof String)) {
12 // Message not understood.
13 } else
14 if (m.startsWith("ponged") {
15 // Explicit cast needed.
16 ping((String) m);
17 }
18 }
19 }

Access to the sender of the message in Akka is provided by sender(). In the main
method as described in Listing 5 we show how the initialize and start the ping/pong
match. Note that a reference to the “pong” actor is passed to the “ping” actor.

Listing 5. main in Akka

1 ActorSystem s = ActorSystem.create
();

2 ActorRef pong = s.actorOf(Props.
create(Pong.class));

3 ActorRef ping = s.actorOf(Props.
create(Ping.class, pong));

4 ping.tell(""); // To get a Future

Further, both the onReceive methods are
invoked by Akka ActorSystem itself. In gen-
eral, Akka actors are of type ActorRef

which is an abstraction provided by Akka
to allow actors send asynchronous mes-
sages to one another. An immediate con-
sequence of the above use of inheritance is
that the class Ping is now exposing a public
behavior that is not specified by its inter-
face. Furthermore, a “ping” object refers to a “pong” object by the type ActorRef .
This means that the interface IPong is not directly visible to the “ping” actor. Addition-
ally, the implementation details of receiving a message should be “hand coded” by the
programmer into the special method onReceive to define the responses to the received
messages. In our case, this implementation consists of a decoding of the message (us-
ing type-checking) in order to look up the method that subsequently should be invoked.
This fundamentally interferes with the general object-oriented mechanism for method
look-up which forms the basis of the programming to interfaces discipline. In the next
section, we continue the same example and discuss an actor API for directly calling
asynchronously methods using the general object-oriented mechanism for method look-
up. Akka has recently released a new version that supports Java 8 features 1. However,
the new features can be categorized as syntax sugar on how incoming messages are
filtered through object/class matchers to find the proper type.

1 Documentation available at http://doc.akka.io/docs/akka/2.3.2/java/
lambda-index-actors.html

http://doc.akka.io/docs/akka/2.3.2/java/lambda-index-actors.html
http://doc.akka.io/docs/akka/2.3.2/java/lambda-index-actors.html

42 B. Nobakht and F.S. de Boer

4 Actor Programming in Java

We first describe informally the actor programming model assumed in this paper. This
model is based on the Abstract Behavioral Specification language (ABS) introduced
in [20]. ABS uses asynchronous method calls, futures, interfaces for encapsulation,
and cooperative scheduling of method invocations inside concurrent (active) objects.
This feature combination results in a concurrent object-oriented model which is inher-
ently compositional. More specifically, actors in ABS have an identity and behave as
active objects with encapsulated data and methods which represent their state and be-
havior, respectively. Actors are the units of concurrency: conceptually an actor has a
dedicated processor. Actors can only send asynchronous messages and have queues for
receiving messages. An actor progresses by taking a message out of its queue and pro-
cessing it by executing its corresponding method. A method is a piece of sequential
code that may send messages. Asynchronous method calls use futures as dynamically

Listing 6. main in ABS

1 ABSIPong pong;
2 pong = new ABSPong;
3 ping = new ABSPing(pong);
4 ping ! ping("");

generated references to return values. The
execution of a method can be (temporar-
ily) suspended by release statements which
give rise to a form of cooperative schedul-
ing of method invocations inside concur-
rent (active) objects. Release statements
can be conditional (e.g., checking a future
for the return value). Listings 7, 8 and 6 present an implementation of ping-pong exam-
ple in ABS. By means of the statement on line 6 of Listing 7 a “ping” object directly
calls asynchronously the pong method of its “pong” object, and vice versa. Such a call
is stored in the message queue and the called method is executed when the message is
dequeued. Note that variables in ABS are declared by interfaces. In ABS, Unit is similar
to void in Java.

Listing 7. Ping in ABS

1 interface ABSIPing {
2 Unit ping(String msg);
3 }
4 class ABSPing(ABSIPong pong)

implements ABSIPing {
5 Unit ping(String msg) {
6 pong ! pong("ponged," + msg);
7 }
8 }

Listing 8. Pong in ABS

1 interface ABSIPong {
2 Unit pong(String msg);
3 }
4 class ABSPong implements ABSIPong

{
5 Unit pong(String msg) {
6 sender ! ping("pinged," + msg

);
7 }
8 }

5 Java 8 Features

In the next section, we describe how ABS actors are implemented in Java 8 as API. In
this section we provide an overview of the features in Java 8 that facilitate an efficient,
expressive, and precise implementation of an actor model in ABS.

Programming with Actors in Java 8 43

Java Defender Methods Java defender methods (JSR 335 [13]) use the new keyword
default. Defender methods are declared for interfaces in Java. In contrast to the other
methods of an interface, a default method is not an abstract method but must have an
implementation. From the perspective of a client of the interface, defender methods
are no different from ordinary interface methods. From the perspective of a hierarchy
descendant, an implementing class can optionally override a default method and change
the behavior. It is left as a decision to any class implementing the interface whether or
not to override the default implementation. For instance, in Java 8 java.util.Comparator

provides a default method reversed() that creates a reversed-order comparator of the
original one. Such default method eliminates the need for any implementing class to
provide such behavior by inheritance.

Java Functional Interfaces Functional interfaces and lambda expressions (JSR 335
[13]) are fundamental changes in Java 8. A @FunctionalInterface is an annotation that
can be used for interfaces in Java. Conceptually, any class or interface is a functional
interface if it consists of exactly one abstract method. A lambda expression in Java 8, is
a runtime translation [11] of any type that is replaceable by a functional interface. Many
of Java’s classic interfaces are functional interfaces from the perspective of Java 8 and
can be turned into lambda expressions; e.g. java.lang.Runnable or java.util.Comparator.
For instance,

(s1, s2)→ return s1.compareTo(s2);

is a lambda expression that can be statically cast to an instance of a
Comparator<String>; because it can be replaced with a functional interface that has a
method with two strings and returning one integer. Lambda expressions in Java 8 do
not have an intrinsic type. Their type is bound to the context that they are used in but
their type is always a functional interface. For instance, the above definition of a lambda
expression can be used as:

Comparator<String> cmp1 = (s1, s2)→ return s1.compareTo(s2);

in one context while in the other:

Function<String> cmp2 = (s1, s2)→ return s1.compareTo(s2);

given that Function<T> is defined as:

interface Function<T> { int apply(T t1, T t2); }

In the above examples, the same lambda expression is statically cast to a different
matching functional interface based on the context. This is a fundamental new feature
in Java 8 that facilitates application of functional programming paradigm in an object-
oriented language.

This work of research extensively uses this feature of Java 8. Java 8 marks many
of its own APIs as functional interfaces most important of which in this context are
java.lang.Runnable and java.util.concurrent.Callable. This means that a lambda ex-
pression can replace an instance of Runnable or Callable at runtime by JVM. We will
discuss later how we utilize this feature to allow us model an asynchronous message

44 B. Nobakht and F.S. de Boer

into an instance of a Runnable or Callable as a form of a lambda expression. A lambda
expression equivalent of a Runnable or a Callable can be treated as a queued message of
an actor and executed.

Java Dynamic Invocation Dynamic invocation and execution with method handles
(JSR 292 [29]) enables JVM to support efficient and flexible execution of method in-
vocations in the absence of static type information. JSR 292 introduces a new byte
code instruction invokedynamic for JVM that is available as an API through
java.lang.invoke.MethodHandles. This API allows translation of lambda expression in
Java 8 at runtime to be executed by JVM. In Java 8, use of lambda expression are fa-
vored over anonymous inner classes mainly because of their performance issues [12].
The abstractions introduced in JSR 292 perform better that Java Reflection API using
the new byte code instruction. Thus, lambda expressions are compiled and translated
into method handle invocations rather reflective code or anonymous inner classes. This
feature of Java 8 is indirectly use in ABS API through the extensive use of lambda ex-
pressions. Moreover, in terms of performance, it has been revealed that invoke dynamic
is much better than using anonymous inner classes [12].

6 Modeling Actors in Java 8

In this section, we discuss how we model ABS actors using Java 8 features. In this
mapping, we demonstrate how new features of Java 8 are used.

The Actor Interface. We introduce an interface to model actors using Java 8 features
discussed in Section 5. Implementing an interface in Java means that the object exposes
public APIs specified by the interface that is considered the behavior of the object.
Interface implementation is opposed to inheritance extension in which the object is
possibly forced to expose behavior that may not be part of its intended interface. Using
an interface for an actor allows an object to preserve its own interfaces, and second, it
allows for multiple interfaces to be implemented and composed.

A Java API for the implementation of ABS models should have the following main
three features. First, an object should be able to send asynchronously an arbitrary mes-
sage in terms of a method invocation to a receiver actor object. Second, sending a
message can optionally generate a so-called future which is used to refer to the re-
turn value. Third, an object during the processing of a message should be able to access
the “sender” of a message such that it can reply to the message by another message. All
the above must co-exist with the fundamental requirement that for an object to act like
an actor (in an object-oriented context) should not require a modification of its intended
interface.

The Actor interface (Listings 9 and 10) provides a set of default methods, namely
the run and send methods, which the implementing classes do not need to re-implement.
This interface further encapsulates a queue of messages that supports concurrent fea-
tures of Java API 2. We distinguish two types of messages: messages that are not

2 Such API includes usage of different interfaces and classes in java.util.concurrent package
[23]. The concurrent Java API supports blocking and synchronization features in a high-level
that is abstracted from the user.

Programming with Actors in Java 8 45

expected to generate any result and messages that are expected to generate a result
captured by a future value; i.e. an instance of Future in Java 8. The first kind of mes-
sages are modeled as instances of Runnable and the second kind are modeled instances
of Callable. The default run method then takes a message from the queue, checks its
type and executes the message correspondingly. On the other hand, the default (over-
loaded) send method stores the sent message and creates a future which is returned to
the caller, in case of an instance of Callable.

Listing 9. Actor interface (1)

1 public interface Actor {
2 public void run() {
3 Object m = queue.take();
4
5 if (m instanceof Runnable) {
6 ((Runnable) m).run();
7 } else
8
9 if (m instanceof Callable) {

10 ((Callable) m).call();
11 }
12 }
13
14 // continue to the right

Listing 10. Actor interface (2)

1
2 public void send(Runnable m) {
3 queue.offer(m);
4 }
5
6 public <T> Future<T>
7 send(Callable<T> m) {
8 Future<T> f =
9 new FutureTask(m);

10 queue.offer(f);
11 return f;
12 }
13 }

Modeling Asynchronous Messages We model an asynchronous call

Future<V> f = e0 ! m(e1, . . . , en)

to a method in ABS by the Java 8 code snippet of Listing 11. The final local variables
u1, . . ., un (of the caller) are used to store the values of the Java 8 expressions e1, . . ., en
corresponding to the actual parameters e1, . . . , en. The types Ti, i = 1, . . . , n, are the
corresponding Java 8 types of ei, i = 1, . . . , n.

Listing 11. Async messages with futures

1 final T1 u1 = e1;
2 . . .
3 final Tn un = en;
4 Future<V> v = e0.send(
5 () → { return m(u1,. . .,un); }
6);

Listing 12. Async messages w/o futures

1 final T1 u1 = e1;
2 . . .
3 final Tn un = en;
4 e0.send(
5 { () → m(u1,. . .,un); }
6);

The lambda expression which encloses the above method invocation is an instance
of the functional interface; e.g. Callable. Note that the generated object which repre-
sents the lambda expression will contain the local context of the caller of the method
“m” (including the local variables storing the values of the expressions e1, . . . , en),
which will be restored upon execution of the lambda expression. Listing 12 models an
asynchronous call to a method without a return value.

46 B. Nobakht and F.S. de Boer

As an example, Listings 13 and 14 present the running ping/pong example, using
the above API. The main program to use ping and pong implementation is presented in
Listing 15.

Listing 13. Ping as an Actor

1 public class Ping(IPong pong)
implements IPing, Actor {

2 public void ping(String msg) {
3 pong.send(() → { pong.("ponged

," + msg) });
4 }
5 }

Listing 14. Pong as an Actor

1 public class Pong implements IPong
, Actor {

2 public void pong(String msg) {
3 sender().send(() → { ping.("

pinged," + msg) });
4 }
5 }

As demonstrated in the above examples, the “ping” and “pong” objects preserve their
own interfaces contrary to the example depicted in Section 3 in which the objects extend
a specific “universal actor abstraction” to inherit methods and behaviors to become
an actor. Further, messages are processed generically by the run method described in
Listing 9. Although, in the first place, sending an asynchronous may look like to be able
to change the recipient actor’s state, this is not correct. The variables that can be used
in a lambda expression are effectively final. In other words, in the context of a lambda
expression, the recipient actor only provides a snapshot view of its state that cannot be
changed. This prevents abuse of lambda expressions to change the receiver’s state.

Modeling Cooperative Scheduling The ABS statement await g, where g is a boolean
guard, allows an active object to preempt the current method and schedule another one.
We model cooperative scheduling by means of a call to the await method in Listing 16.
Note that the preempted process is thus passed as an additional parameter and as such
queued in case the guard is false, otherwise it is executed. Moreover, the generation of
the continuation of the process is an optimization task for the code generation process
to prevent code duplication.

Listing 15. main in ABS API

1 IPong pong = new Pong();
2 IPing ping = new Ping(pong);
3 ping.send(
4 () -> ping.ping("")
5);

Listing 16. Java 8 await implementation

1 void await(final Boolean guard,
2 final Runnable cont) {
3 if (!guard) {
4 this.send(() →
5 { this.await(guard, cont) })
6 } else { cont.run() }
7 }

7 Implementation Architecture

Figure 1 presents the general layered architecture of the actor API in Java 8. It con-
sists of three layers: the routing layer which forms the foundation for the support of

Programming with Actors in Java 8 47

distribution and location transparency [22] of actors, the queuing layer which allows
for different implementations of the message queues, and finally, the processing layer
which implements the actual execution of the messages. Each layer allows for
further customization by means of plugins. The implementation is available at
https://github.com/CrispOSS/abs-api.

Fig. 1. Architecture of Actor API in Java 8

We discuss the architecture from bottom layer to top. The implementation of actor
API preserves a faithful mapping of message processing in ABS modeling language.
An actor is an active object in the sense that it controls how the next message is ex-
ecuted and may release any resources to allow for co-operative scheduling. Thus, the
implementation is required to optimally utilize JVM threads. Clearly, allocating a ded-
icated thread to each message or actor is not scalable. Therefore, actors need to share
threads for message execution and yet be in full control of resources when required. The
implementation fundamentally separates invocation from execution. An asynchronous
message is a reference to a method invocation until it starts its execution. This allows to
minimize the allocation of threads to the messages and facilitates sharing threads for ex-
ecuting messages. Java concurrent API [23] provides different ways to deploy this sep-
aration of invocation from execution. We take advantage of Java Method Handles [29]
to encapsulate invocations. Further we utilize different forms of ExecutorService and
ForkJoinPool to deploy concurrent invocations of messages in different actors.

In the next layer, the actor API allows for different implementations of a queue
for an actor. A dedicated queue for each actor simplifies the process of queuing mes-
sages for execution but consumes more resources. However, a shared queue for a set
of actors allows for memory and storage optimization. This latter approach of deploy-
ment, first, provides a way to utilize the computing power of multi-core; for instance,
it allows to use work-stealing to maximize the usage of thread pools. Second, it en-
ables application-level scheduling of messages. The different implementations cater for
a variety of plugins, like one that releases computation as long as there is no item
in the queue and becomes active as soon as an item is placed into the queue; e.g.

https://github.com/CrispOSS/abs-api

48 B. Nobakht and F.S. de Boer

java.util.concurrent.BlockingQueue. Further, different plugins can be injected to allow
for scheduling of messages extended with deadlines and priorities [28].

We discuss next the distribution of actors in this architecture. In the architecture pre-
sented in Figure 1, each layer can be distributed independently of another layer in a
transparent way. Not only the routing layer can provide distribution, the queue layer
of the architecture may also be remote to take advantage of cluster storage for actor
messages. A remote routing layer can provide access to actors transparently through
standard naming or addresses. We exploit the main properties of actor model [1,2] to
distribute actors based on our implementation. From a distributed perspective, the fol-
lowing are the main requirements for distributing actors:

Reference Location Transparency. Actors communicate to one another using refer-
ences. In an actor model, there is no in-memory object reference; however, every
actor reference denotes a location by means of which the actor is accessible. The
reference location may be local to the calling actor or remote. The reference loca-
tion is physically transparent for the calling actor.

Communication Transparency. A messagem from actor A to actor B may possibly
lead to transferringm over a network such that B can process the message. Thus,
an actor model that supports distribution must provide a layer of remote commu-
nication among its actors that is transparent, i.e., when actor A sends message m,
the message is transparently transferred over the network to reach actor B. For in-
stance, actors existing in an HTTP container that transparently allows such commu-
nication. Further, the API implementation is required to provide a mechanism for
serialization of messages. By default, every object in JVM cannot be assumed to be
an instance of java.io.Serializable. However, the API may enforce that any remote
actor should have the required actor classes in its JVM during runtime which al-
lows the use of the JVM’s general object serialization 3 to send messages to remote
actors and receive their responses. Additionally, we model asynchronous messages
with lambda expressions for which Java 8 supports serialization by specification 4.

Actor Provisioning. During a life time of an actor, it may need to create new actors.
Creating actors in a local memory setting is straightforward. However, the local
setting does have a capacity of number of actors it can hold. When an actor creates
a new one, the new actor may actually be initialized in a remote resource. When
the resource is not available, it should be first provisioned. However, this resource
provisioning should be transparent to the actor and only the eventual result (the
newly created actor) is visible.

We extend the ABS API to ABS Remote API5 that provides the above properties
for actors in a seamless way. A complete example of using the remote API has been

3 Java Object Serialization Specification: http://docs.oracle.com/javase/8/
docs/platform/serialization/spec/serialTOC.html

4 Serialized Lambdas: http://docs.oracle.com/javase/8/docs/api/java/
lang/invoke/SerializedLambda.html

5 The implementation is available at https://github.com/CrispOSS/abs-api
-remote .

http://docs.oracle.com/javase/8/docs/platform/serialization/spec/serialTOC.html
http://docs.oracle.com/javase/8/docs/platform/serialization/spec/serialTOC.html
http://docs.oracle.com/javase/8/docs/api/java/lang/invoke/SerializedLambda.html
http://docs.oracle.com/javase/8/docs/api/java/lang/invoke/SerializedLambda.html
https://github.com/CrispOSS/abs-api-remote
https://github.com/CrispOSS/abs-api-remote

Programming with Actors in Java 8 49

developed6. Expanding our ping-pong example in this paper, Listing 17 and 18 present
how a remote server of actors is created for the ping and pong actors. In the follow-
ing listings, java.util.Properties is used provide input parameters of the actor server;
namely, the address and the port that the actor server responds to.

Listing 17. Remote ping actor main

1 Properties p = new Properties();
2 p.put("host", "localhost");
3 p.put("port", "7777");
4 ActorServer s = new ActorServer(p)

;
5 IPong pong =
6 s.newRemote("abs://pong@http://

localhost:8888",
7 IPong.class);
8 Ping ping = new Ping(pong);
9 ping.send(

10 () -> ping.ping("")
11);

Listing 18. Remote pong actor main

1 Properties p = new Properties();
2 p.put("host", "localhost");
3 p.put("port", "8888");
4 ActorServer s = new ActorServer(p)

;
5 Pong pong = new Pong();

In Listing 17, a remote reference to a pong actor is created that exposes the IPong

interface. This interface is proxied 7 by the implementation to handle the remote com-
munication with the actual pong actor in the other actor server. This mechanism hides
the communication details from the ping actor and as such allows the ping actor to
use the same API to send a message to the pong actor (without even knowing that the
pong actor is actually remote). When an actor is initialized in a distributed setting it
transparently identifies its actor server and registers with it. The above two listings are
aligned with the similar main program presented in Listing 15 that presents the same in
a local setting. The above two listings run in separate JVM instances and therefore do
not share any objects. In each JVM instance, it is required that both interfaces IPing and
IPong are visible to the classpath; however, the ping actor server only needs to see Ping

class in its classpath and similarly the pong actor server only needs to see Pong class in
its classpath.

8 Experiments

In this section, we explain how a series of benchmarks were directed to evaluate the
performance and functionality of actor API in Java 8. For this benchmark, we use a
simple Java application that uses the “Ping-Pong” actor example discussed previously.
An application consists of one instance of Ping actor and one instance of Pong actor. The
application sends a ping message to the ping actor and waits for the result. The ping
message depends on a pong message to the pong actor. When the result from the pong

6 An example of ABS Remote API is available at https://github.com/CrispOSS/abs
-api-remote-sample .

7 Java Proxy: http://docs.oracle.com/javase/8/docs/api/java/lang/
reflect/Proxy.html

https://github.com/CrispOSS/abs-api-remote-sample
https://github.com/CrispOSS/abs-api-remote-sample
http://docs.oracle.com/javase/8/docs/api/java/lang/reflect/Proxy.html
http://docs.oracle.com/javase/8/docs/api/java/lang/reflect/Proxy.html

50 B. Nobakht and F.S. de Boer

Fig. 2. Benchmark results of comparing sampling time of message round trips in ABS API and
Akka. An example reading of above results is that the time shows for p(90.0000) reads as
“message round trips were completed under 10μs for 90% of the sent messages”. The first two
columns show the “minimum” and “mean” message round trip times in both implementations.

actor is ready, the ping actor completes the message; this completes a round trip of a
message in the application. To be able to make comparison of how actor API in Java
8 performs, the example is also implemented using Akka [32] library. The same set
of benchmarks are performed in isolation for both of the applications. To perform the
benchmarks, we use JMH [30] that is a Java microbenchmarking harness developed by
OpenJDK community and used to perform benchmarks for the Java language itself.

The benchmark is performed on the round trip of a message in the application. The
benchmark starts with a warm-up phase followed by the running phase. The benchmark
composes of a number of iterations in each phase and specific time period for each iter-
ation specified for each phase. Every iteration of the benchmark triggers a new message
in the application and waits for the result. The measurement used is sampling time of
the round trip of a message. A specific number of samples are collected. Based on the
samples in different phases, different percentile measurements are summarized. An ex-
ample percentile measurement p(99.9900) = 10 μs is read as 99.9900% of messages
in the benchmark took 10 micro-seconds to complete.

Each benchmark starts with 500 iterations of warm-up with each iteration for 1
micro-second. Each benchmark runs for 5000 iterations with each iteration for 50 micro-
seconds. In each iteration, a maximum number of 50K samples are collected. Each
benchmark is executed in an isolated JVM environment with Java 8 version b127. Each
benchmark is executed on a hardware with 8 cores of CPU and a maximum memory of
8GB for JVM.

The results are presented in Figure 2. The performance difference observed in the
measurements can be explained as follows. An actor in Akka is expected to expose
a certain behavior as discussed in Section 3 (i.e. onReceive). This means that every
message leads to an eventual invocation of this method inside actor. However, in case
of an actor in Java 8, there is a need to make a look-up for the actual method to be
executed with expected arguments. This means that for every method, although in the

Programming with Actors in Java 8 51

presence of caching, there is a need to find the proper method that is expected to be
invoked. A constant overhead for the method look-up in order to adhere to the object-
oriented principles is naturally to be expected. Thus, this is the minimal performance
cost that the actor API in Java 8 pays to support programming to interfaces.

9 Conclusion

In this paper, we discussed an implementation of the actor-based ABS modeling lan-
guage in Java 8 which supports the basic object-oriented mechanisms and principles of
method look-up and programming to interfaces. In the full version of this paper we have
developed an operational semantics of Java 8 features including lambda expressions and
have proved formally the correctness of the embedding in terms of a bisimulation rela-
tion.

The underlying modeling language has an executable semantics and supports a variety
of formal analysis techniques, including deadlock and schedulability analysis [10,19].
Further it supports a formal behavioral specification of interfaces [14], to be used as
contracts.

We intend to expand this work in different ways. We aim to automatically generate
ABS models from Java code which follows the ABS design methodology. Model ex-
traction allows industry level applications be abstracted into models and analyzed for
different goals such as deadlock analysis and concurrency optimization. This approach
of model extraction we believe will greatly enhance industrial uptake of formal meth-
ods. We aim to further extend the implementation of API to support different features
especially regarding distribution of actors especially in the queue layer, and schedul-
ing of messages using application-level policies or real-time properties of a concurrent
system. Furthermore, the current implementation of ABS API in a distributed setting
allows for instantiation of remote actors. We intend to use the implementation to model
ABS deployment components [21] and simulate a distributed environment.

References

1. Agha, G., Mason, I., Smith, S., Talcott, C.: A Foundation for Actor Computation. Journal of
Functional Programming 7, 1–72 (1997)

2. Agha, G.: The Structure and Semantics of Actor Languages. In: de Bakker, J.W., Rozen-
berg, G., de Roever, W.-P. (eds.) REX 1990. LNCS, vol. 489, pp. 1–59. Springer, Heidelberg
(1991)

3. Armstrong, J.: Erlang. Communications of ACM 53(9), 68–75 (2010)
4. Baker, M., Thompson, M.: LMAX Disruptor. LMAX Exchange,

http://github.com/LMAX-Exchange/disruptor
5. Chang, P.-H., Agha, G.: Towards Context-Aware Web Applications. In: Indulska, J., Ray-

mond, K. (eds.) DAIS 2007. LNCS, vol. 4531, pp. 239–252. Springer, Heidelberg (2007)
6. Cheong, E., Lee, E.A., Zhao, Y.: Viptos: a graphical development and simulation environ-

ment for tinyOS-based wireless sensor networks. In: Proc. Embedded Net. Sensor Sys., Sen-
Sys 2005, p. 302 (2005)

7. Christensen, B.: RxJava: Reactive Functional Progamming in Java. Netflix,
http://github.com/Netflix/RxJava/wiki

http://github.com/LMAX-Exchange/disruptor
http://github.com/Netflix/RxJava/wiki

52 B. Nobakht and F.S. de Boer

8. Fowler, M.: LMAX Architecture. Martin Fowler,
http://martinfowler.com/articles/lmax.html

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Abstraction and Reuse
of Object-Oriented Design. In: Nierstrasz, O.M. (ed.) ECOOP 1993. LNCS, vol. 707, pp.
406–431. Springer, Heidelberg (1993)

10. Giachino, E., Grazia, C.A., Laneve, C., Lienhardt, M., Wong, P.Y.H.: Deadlock analysis of
concurrent objects: Theory and practice. In: Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS,
vol. 7940, pp. 394–411. Springer, Heidelberg (2013)

11. Goetz, B.: Lambda Expression Translation in Java 8. Oracle,
http://cr.openjdk.java.net/˜briangoetz/lambda/
lambda-translation.html

12. Goetz, B.: Lambda: A Peek Under The Hood. Oracle, JAX London (2012)
13. Goetz, B.: JSR 335, Lambda Expressions for the Java Programming Language. Oracle

(March 2013), http://jcp.org/en/jsr/detail?id=335
14. Hähnle, R., Helvensteijn, M., Johnsen, E.B., Lienhardt, M., Sangiorgi, D., Schaefer, I.,

Wong, P.Y.H.: HATS abstract behavioral specification: The architectural view. In: Beckert,
B., Damiani, F., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2011. LNCS, vol. 7542, pp.
109–132. Springer, Heidelberg (2013)

15. Haller, P.: On the integration of the actor model in mainstream technologies: the Scala per-
spective. In: Proceedings of the 2nd Edition on Programming Systems, Languages and Ap-
plications Based on Actors, Agents, and Decentralized Control Abstractions, pp. 1–6. ACM
(2012)

16. Haller, P., Odersky, M.: Scala Actors: Unifying thread-based and event-based programming.
Theoretical Computer Science 410(2-3), 202–220 (2009)

17. Hewitt, C.: Procedural Embedding of knowledge in Planner. In: Proc. the 2nd International
Joint Conference on Artificial Intelligence, pp. 167–184 (1971)

18. Hewitt, C.: What Is Commitment? Physical, Organizational, and Social (Revised). In: Nor-
iega, P., Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum, V., Fornara, N., Matson, E.
(eds.) COIN 2006 Workshops. LNCS (LNAI), vol. 4386, pp. 293–307. Springer, Heidelberg
(2007)

19. Jaghoori, M.M., de Boer, F.S., Chothia, T., Sirjani, M.: Schedulability of asynchronous real-
time concurrent objects. J. Log. Algebr. Program. 78(5), 402–416 (2009)

20. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A core language for
abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.)
FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer, Heidelberg (2011)

21. Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: Modeling resource-aware virtualized applica-
tions for the cloud in Real-Time ABS. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS,
vol. 7635, pp. 71–86. Springer, Heidelberg (2012)

22. Karmani, R.K., Shali, A., Agha, G.: Actor frameworks for the JVM platform: a comparative
analysis. In: Proc. Principles and Practice of Prog. in Java (PPPJ 2009), pp. 11–20. ACM
(2009)

23. Lea, D.: JSR 166: Concurrency Utilities. Sun Microsystems, Inc.,
http://jcp.org/en/jsr/detail?id=166

24. Lee, E.A., Liu, X., Neuendorffer, S.: Classes and inheritance in actor-oriented design. ACM
Transactions in Embedded Computing Systems 8(4) (2009)

25. Lee, E.A., Neuendorffer, S., Wirthlin, M.J.: Actor-Oriented Design of Embedded Hardware
and Software Systems. Journal of Circuits, Systems, and Computers 12(3), 231–260 (2003)

26. Meyer, B.: Applying “design by contract”. Computer 25(10), 40–51 (1992)
27. Microsoft. Reactive Extensions. Microsoft, https://rx.codeplex.com/

http://martinfowler.com/articles/lmax.html
http://cr.openjdk.java.net/~briangoetz/lambda/lambda-translation.html
http://cr.openjdk.java.net/~briangoetz/lambda/lambda-translation.html
http://jcp.org/en/jsr/detail?id=335
http://jcp.org/en/jsr/detail?id=166
https://rx.codeplex.com/

Programming with Actors in Java 8 53

28. Nobakht, B., de Boer, F.S., Jaghoori, M.M., Schlatte, R.: Programming and deployment of
active objects with application-level scheduling. In: Proceedings of the 27th Annual ACM
Symposium on Applied Computing, SAC 2012, pp. 1883–1888. ACM (2012)

29. Rose, J.: JSR 292: Supporting Dynamically Typed Languages on the Java Platform. Oracle,
http://jcp.org/en/jsr/detail?id=292

30. Shipilev, A.: JMH: Java Microbenchmark Harness. Oracle,
http://openjdk.java.net/projects/code-tools/jmh/

31. Srinivasan, S., Mycroft, A.: Kilim: Isolation-typed actors for Java. In: Vitek, J. (ed.) ECOOP
2008. LNCS, vol. 5142, pp. 104–128. Springer, Heidelberg (2008)

32. Typesafe. Akka. Typesafe, http://akka.io/
33. Valim, J.: Elixir. Elixir, http://elixir-lang.org/
34. Varela, C.A., Agha, G., Wang, W.-J., Desell, T., El Maghraoui, K., LaPorte, J., Stephens,

A.: The SALSA Programming Language 1.1.2 Release Tutorial. Dept. of Computer Science,
RPI, Tech. Rep., pp. 07–12 (2007)

35. Wirfs-Brock, R.J., Johnson, R.E.: Surveying Current Research in Object-oriented Design.
Commun. ACM 33(9), 104–124 (1990)

http://jcp.org/en/jsr/detail?id=292
http://openjdk.java.net/projects/code-tools/jmh/
http://akka.io/
http://elixir-lang.org/

Contracts in CML

Jim Woodcock1, Ana Cavalcanti1, John Fitzgerald2,
Simon Foster1, and Peter Gorm Larsen3

1 University of York
2 Newcastle University
3 Aarhus University

Abstract. We describe the COMPASS Modelling Language (CML),
which is used to model large-scale Systems of Systems and the con-
tracts that bind them together. The language can be used to document
the interfaces to constituent systems using formal, precise, and verifi-
able specifications including preconditions, postconditions, and invari-
ants. The semantics of CML directly supports the use of these contracts
for all language constructs, including the use of communication chan-
nels, parallel processes, and processes that run forever. Every process
construct in CML has an associated contract, allowing clients and sup-
pliers to check that the implementations of constituent systems conform
to their interface specifications.

1 Introduction

The COMPASS Modelling Language (CML) is a formal language for describing
“Systems of Systems” [29] (SoS). An SoS is a collaboration of smaller indepen-
dent systems to achieve a goal that cannot be readily achieved by any of these
constituents. Typical SoSs include traffic management systems, emergency re-
sponse systems, and home automation systems, all of which include constituent
systems over which there is no overall control. To achieve synergy, contracts
must be negotiated to define the behaviour of the SoS and impose constraints
on the constituents, which are otherwise free to behave independently. If such
an SoS is to be dependable, it is necessary to ensure that all the constituents are
capable of fulfilling their guarantees. We give a mathematically rigorous account
of contracts and system models, so that we can verify their conformance.

The design-by-contract paradigm was originally by Meyer [33], and it needs
adaptation to express SoS contracts. For SoSs, constituent system designers need
to define formal, precise, and verifiable interface specifications for constituents
with preconditions, postconditions, and invariants. The postcondition answers
the question, “What can the client expect?” The precondition answers the ques-
tion, “What can the supplier assume?” The invariant answers the question, “What
is persistent?” These specifications can then act as contracts which inform the
conditions and obligations imposed on a given constituent system.

Parnas calls for formal methods to be “really rethought” [38]; an example he
gives is in rethinking the role of termination. Normally, we require programs to

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 54–73, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Contracts in CML 55

terminate to be considered (totally) correct; an extension of this is partial cor-
rectness, where it is only required that, if the program terminates, then the an-
swer is correct; but many programs are designed to run indefinitely—specifically
reactive systems and particularly SoS. Parnas draws the conclusion that the as-
sertional technique is currently inadequate and that we need to find a good way
to represent normal nontermination in correctness arguments.

CML extends the notion of a contract to language constructs not often dealt
with in the design-by-contract paradigm, including the use of communication
channels, parallel processes, and processes that run forever (addressing Parnas’s
concerns directly). In fact, every process construct in CML has an associated
contract, and this allows clients and suppliers to check that dynamic behaviour
conforms to interface specifications.

In the COMPASS project, CML is central to our approach to SoS engineer-
ing [17]. We base the approach on a combination of the Systems Modelling
Language (SysML) with CML. The former brings facilities for describing sys-
tem architecture and functionality in a largely graphical, multi-view modelling
environment where contracts between constituent systems can be specified at
a high-level of abstraction [5]. CML provides a formal basis for analysing SoS
models based on SysML abstractions, and adds the rich description of data,
functionality, and communication. The loose coupling between SysML and CML
has enabled the use of well-established tools to construct CML models; these are
translated to a CML version that can be subjected to static and dynamic analy-
sis using the Symphony platform and its plug-ins. The viability of the approach
has been demonstrated in diverse ways. For example, in COMPASS, SysML and
CML, and tools supporting them, have been successfully deployed together to
tackle complex problems in, applications such as home automation [4]. Patterns
and profiles have been defined to aid SoS modelling for specific problems such
as fault modelling [1].

Our contribution in this paper is to formalise an approach to modelling of
contracts in CML, drawing on Meyer’s approach to design by contract. In Sec-
tion 2, we give an overview of CML. In Section 3, we describe the method used
to define CML’s semantics, Hoare and He’s Unifying Theories of Programming,
a framework for formalisation of heterogeneous semantics which has a mecha-
nised foundation in Isabelle [18]. In Section 4, we go on to give an overview of
CML’s semantic domains. In Section 5, we give a series of examples of interface
contracts for small fragments of CML processes. In Section 6, we give a complete
example of a system in which contracts are used to specify emergent properties.
Finally, in Section 7 we reflect on what has been achieved.

2 The COMPASS Modelling Language

The COMPASS Modelling Language (CML) has been developed for the mod-
elling and analysis of Systems of Systems (SoSs), which typically are large-scale

56 J. Woodcock et al.

systems composed of independent constituent systems [46]1. CML is based on a
combination of VDM [28,16] and CSP [24,42], in the spirit of Circus [44,35,36].

A CML model consists of a collection of types, functions, channels, and pro-
cesses. The type system of CML is taken directly from VDM and includes sup-
port for numeric types, finite sets, finite maps, and records, all of which can
be further constrained through type invariants. Functions are pure mathemati-
cal mappings between inputs and outputs, which can be specified explicitly via
λ-calculus, or implicitly using pre and postconditions. In general we adopt the
syntax of VDM-SL [14] for the functional and imperative parts of the language,
whilst using Circus style syntax for the concurrent and reactive parts.

Channels and processes are used to model SoSs, their constituent systems,
and the components of these systems. A channel is a medium though which pro-
cesses can communicate with each other, optionally carrying data of a certain
type. Each process encapsulates a number of local state variables, VDM style
operations acting on the state (explicit or implicitly specified), and actions which
specify the reactive behaviour. Actions are defined using CSP style process con-
structs, which enable a process to interact with its environment via synchronous
communications. The main action constructs of the basic CML language with
state, concurrency, and timing are described in Table 1. In addition to the stan-
dard CSP operators, such as prefix a?v -> P and external choice P [] Q, CML
includes support for modelling real-time behaviour such as timeout P [(n)> Q
which will behave like Q after n time units if P does not first interrupt.

Table 1. The core of the CML language

deadlock Stop termination Skip
divergence Chaos assignment (v := e)

specification statement [frame w pre p post q]

simple prefix a -> Skip prefixed action a -> P
guarded action [g] & P sequential composition P ; Q
internal choice P |~| Q external choice P [] Q

parallel composition P [|cs|] Q interleaving P ||| Q
abstraction P \\ A recursion mu X @ P(X)

wait Wait(n) timeout P [(n)> Q
untimed timeout P [> Q interrupt P /\ Q
timed interrupt P /(n)\ Q starts by P startsby(n)

ends by P endsby(n) while while b do P

An example CML process is shown in Figure 1, which models a stack. We first
define the Element type for stacks, which in this case are integers constrained to
values between 0 and 255 (i.e. bytes) through a type invariant. Next we define five
channels with which to communicate with the stack, including an initialisation
channel (init), channels which indicate whether the stack is empty or not (empty,
nonempty), and finally channels to push and pop, which carry elements.
1 The COMPASS project is described in detail at http://www.compass-research.eu.

http://www.compass-research.eu

Contracts in CML 57

The actual Stack process consists of a single state variable stack storing a
sequence of elements. We define two operations, Push and Pop, contractually in
terms of their pre and postconditions, which respectively add and remove an
element from the stack. Push has no precondition, and has the postcondition
that the new stack must have the pushed value at its head, and the previous
value of the stack (denoted by a tilde) at its tail. Pop requires that that the stack
be nonempty, returns the head of the stack, and suitably updates the state. We
also define a simple function to check for emptiness of the stack.

types
Element = int inv x == x >= 0 and x <= 255

channels
init, empty, nonempty
push, pop : Element

process Stack =
begin
state stack : seq of Element

operations
Push(e : Element)
post hd(stack) = e and tl(stack) = stack~

Pop() e : Element
pre stack <> []
post stack = tl(stack~) and e = hd(stack)

functions
isEmpty : seq of Element -> bool
isEmpty(s) == s = []

actions
Cycle =
(push?e -> Push(e)
[] [not isEmpty(stack)] &

(dcl v : Element @ v := Pop() ; pop!v -> Skip)
[] [isEmpty(stack)] & empty -> Skip
[] [not isEmpty(stack)] & nonempty -> Skip) ; Cycle

@ init -> stack := []; Cycle
end

Fig. 1. CML model of a stack

The main reactive cycle of the process is defined through the action Cycle,
that consists of an external choice between four options. The options describe
the following behaviour, respectively:

58 J. Woodcock et al.

– wait for input over the push channel, and then call the Push operation;
– if the stack is not empty, create a local variable v, pop the top of the stack

and assign it to v, and then offer this value over the pop channel;
– if the stack is empty, offer communication on the empty channel;
– if the stack is not empty, offer communication on the nonempty channel.

After each of these behaviours, Cycle recurses. The top-level behaviour of the
process is then given by the main action, defined after the @ symbol. It waits
for an input on init, empties the stack, and then enters Cycle.

Development of CML models is facilitated through Symphony2, an Eclipse-
based integrated development environment. Symphony provides a parser, type
checker, simulator, model checker, and theorem prover for CML, all of which
have been implemented based on a common semantic basis in the UTP.

The semantics of CML is specification oriented: there is a natural notion
of contract for every process language construct and an intuitive refinement
ordering. We next describe both notions and give examples of their use.

3 Unifying Theories of Programming

The semantics of CML is defined in Hoare & He’s Unifying Theories of Program-
ming (UTP), which is a long-term research agenda for computer science and soft-
ware engineering [25,11,45]. It can be described as follows: researchers propose
programming theories and practitioners use pragmatic programming paradigms;
what is the relationship between them? UTP, based on predicative program-
ming [23], gives three principal ways to study such relationships: (i) by com-
putational paradigm, identifying common concepts; (ii) by level of abstraction,
from requirements, through architectures and components, to platform-specific
implementation technologies; and (iii) by method of presentation—namely, de-
notational, algebraic, and operational semantics—and their mutual embeddings.

UTP presents a theoretical foundation for understanding software and systems
engineering. In its original presentation, it describes nondeterministic sequential
programming, the refinement calculus, the algebra of programming, compila-
tion of high-level languages, concurrency, communication, reactive processes, and
higher-order programming [25]. Subsequently, it has been exploited in a diversity
of areas such as component-based systems [49], hardware verification [40,39], and
hardware/software co-design [2].

UTP can also be used in a more active way for constructing domain-specific
languages, especially ones with heterogeneous semantics. Examples include the
semantics for Circus [35,36,44] and Safety-Critical Java (SCJ) [8,10,9], both of
which have been composed from individual, reusable theories of sequential and
concurrent programming. SCJ additionally has real-time tasking and a sophis-
ticated model of memory usage. The analogy for these kinds of compositional
semantics is of a theory supermarket, where you shop for exactly those features
you need, whilst being confident that the theories plug-and-play nicely together.
2 Symphony can be obtained from http://symphonytool.org/

http://symphonytool.org/

Contracts in CML 59

The semantic metalanguage for UTP is an alphabetised version of Tarski’s
relational calculus, presented in a pointwise predicative style that is reminiscent
of the schema calculus in the Z notation [47]. Each programming construct is
formalised as a relation between an initial and an intermediate or final observa-
tion. The collection of these relations forms a theory of a paradigm that contains
three essential parts: an alphabet, a signature, and some healthiness conditions.

The alphabet is a set of variable names that gives the vocabulary for the
theory being studied: names are chosen for any relevant external observations of
behaviour. For instance, programming variables x , y, and z are normally part
of the alphabet. Theories for particular programming paradigms require the
observation of extra information. Some examples from existing theories are: a
flag that says whether the program has started (ok); the current time (clock);
the number of available resources (res); a trace of the events in the life of the
program (tr); a set of refused events (ref); or a flag that says whether the
program is waiting for interaction with its environment (wait).

The signature gives syntactic rules for denoting objects of the theory. Finally,
healthiness conditions identify properties that characterise the predicates of the
theory. They are often expressed in terms of a function φ that makes a program
healthy. There is no point in applying φ twice, since we cannot make a healthy
program even healthier, so φmust be idempotent: P = φ(φ(P)). The fixed-points
of this equation are the healthy predicates of the theory.

An alphabetised predicate (P ,Q , . . . , true) is an alphabet-predicate pair, such
that the predicate’s free variables are all members of the alphabet. Relations are
predicates in which the alphabet comprises plain variables (x , y, z , . . .) and
dashed variables (x ′, a′, . . .); the former represent initial observations, and the
latter, intermediate or final observations. The alphabet of P is denoted αP . A
condition (b, c, d , . . . , true) has no dashed variables. Predicate calculus operators
combine predicates in the obvious way, but with specified restrictions on the
alphabets of the operands and specified resulting alphabet. For example, the
alphabet of a conjunction is the union of the alphabets of its components, and
disjunction is defined only for predicates with the same alphabet.

A distinguishing feature of UTP is the central role played by program correct-
ness, which is defined in the same way in every programming paradigm in [25].
Informally, it is required that, in every state, the behaviour of an implementation
implies its specification. If we suppose that for a predicate P , αP = {a, b, a′, b′},
then the universal closure of P is ∀ a, b, a′, b′ • P , denoted [P]. P is correct with
respect to a specification S providing every observation of P is also an observa-
tion of S : [P ⇒ S]; this is described by S � P (read S is refined by P).

UTP has an infix syntax for the conditional, P � b�Q , and it is defined as
(b ∧ P) ∨ (¬ b ∧ Q), if αb ⊆ αP = αQ . Sequence is modelled as relational
composition: two relations may be composed, providing that their alphabets
match: P(v ′) ; Q(v) =̂ ∃ v0 • P(v0) ∧ Q(v0), if outαP = inαQ ′ = {v ′}. If
A = {x , y, . . . , z} and αe ⊆ A, then the assignment x :=A e defined below, with
expression vector e and variable vector x , changes only x ’s value.

x :=A e =̂ (x ′ = e ∧ y ′ = y ∧ · · · ∧ z ′ = z)

60 J. Woodcock et al.

There is a degenerate form of assignment that changes no variable; it is called
“skip” defined as IIA =̂ (v ′ = v), if A = {v}. Nondeterminism can arise in one
of two ways: either as the result of runtime factors, such as distributed processing
or as the under-specification of implementation choices. Either way, nondeter-
minism is modelled by choice; the semantics is disjunction: P Q =̂ P ∨ Q .

The set of alphabetised predicates with a particular alphabet A forms a com-
plete lattice under the refinement ordering (which is a partial order). The bottom
element is denoted ⊥A, and is the weakest predicate true; this is the program
that aborts, and behaves quite arbitrarily. The top element is denoted �A, and
is the strongest predicate false; this is the program that performs miracles and
implements every specification. Since alphabetised relations form a complete lat-
tice, every construction defined solely using monotonic operators has a complete
lattice of fixed points. The weakest fixed-point of the function F is denoted by
μF , and is simply the greatest lower bound (the weakest) of all the fixed-points
of F . This is defined: μF =̂ {X | F (X) � X }. The strongest fixed-point
νF is the dual of the weakest fixed-point.

4 CML Semantics

Currently, CML contains several language paradigms. These are all presented
through formalisation as UTP theories.

State-based description. The theory of designs provides a nondeterministic
programming language with precondition and postcondition specifications
as contracts, written P � Q , for precondition P and postcondition Q . The
concrete realisation is VDM.

Concurrency and communication. The theory of reactive processes pro-
vides process networks communicating by message passing. The concrete
realisation is CSPM with its rich collection of process combinators.

Object orientation. This theory is built on designs with state-based descrip-
tions structured by sub-typing, inheritance, and dynamic binding, with ob-
ject creation, type testing and casting, and state-component access [7].

References. The theory of heap storage and its manipulations supports a
reference semantics based on separation logic.

Time. The theory of timed traces in UTP supports the observation of events
in discrete time. It is used in a theory of Timed CSP.

As explained in the previous section, the semantic domains are each formalised as
lattices of relations ordered by refinement. Mappings exist between the different
semantic domains that can be used to translate a model from one lattice into
a corresponding model in another lattice. For example, the lattice of designs
is completely disjoint from the lattice of reactive processes, but a mapping R
maps every design into a corresponding reactive process. Intuitively, the mapping
equips the design with the crucial properties of a reactive process: that it has a
trace variable (tr) that records the history of interactions with its environment
and that it can wait for such interactions. A vital healthiness condition is that

Contracts in CML 61

this trace increases monotonically: this ensures that once an event has taken
place it cannot be retracted—even when the process aborts.

Another mapping counteracts R: it is called H , and it is the function that
characterises what it is to be a design. H puts requirements on the use of the
observations ok and ok ′, and it is the former that concerns us here. It states
that, until the operation has started properly (ok is true), no observation can be
made of the operation’s behaviour. So, if the operation’s predecessor has aborted,
nothing can be said about any of the operation’s variables, not even the trace
observation variable. This destroys the requirement of R that restricts the trace
so that it only ever increases monotonically, even when ok is false.

This pair of mappings forms a Galois connection [13], and such pairs exist
between all of CML’s semantic domains. One purpose of a Galois connection is
to embed one theory within another, and this is what gives the compositional
flavour of UTP and CML, since Galois connections compose to form other Galois
connections. For example, if we establish a Galois connection between reactive
processes and timed reactive processes, then we can compose the connection
between designs and reactive processes with this new Galois connection to form
a connection between designs and timed reactive processes.

The possibly obscure mathematical fact that there is a Galois connection be-
tween designs and reactive processes is of great practical value. One of the most
important features of designs is assertional reasoning based on preconditions
and postconditions, including the use of Hoare logic and weakest precondition
calculus. Assertional reasoning, as defined in the theory of designs, can be in-
corporated into the theory of reactive processes by means of the mapping R.

In the theory of designs, a Hoare triple {p}Q {r}, where p is a precondi-
tion, r is a postcondition, and Q is a reactive process, is given the meaning
(R(p � r ′) � Q), which is a refinement assertion. In the specification R(p � r ′)
the precondition p and the postcondition r are assembled into a design, with r as
a condition on the after-state; this design is then translated into a reactive pro-
cess using R. The semantics of the Hoare triple requires that this reactive specifi-
cation is implemented correctly by the reactive process Q . Thus, reasoning with
preconditions and postconditions is, in this way, extended from the state-based
operations of the theory of designs to cover all operators of the reactive language,
including non-terminating processes, concurrency, and communication.

This is the foundation of the contractual approach used in COMPASS: pre-
conditions and postconditions (designs) are embedded in each of the semantic
domains and this brings uniformity through a familiar reasoning technique.

5 Contracts in CML

In this section, we give a series of examples of the use of contracts in CML.

Example 1 (Single shot). The CML action a → Skip will perform one a event
and then terminate. It never diverges, so it has precondition true. Its postcon-
dition depends on whether or not it is waiting, indicated by the observational
variable wait ′ being true. If it is waiting, then it has not performed any events

62 J. Woodcock et al.

and the trace is unchanged (tr ′ = tr), but it is also not refusing to perform the a
event: a /∈ ref ′, where ref ′ is the refusal set. Otherwise, it has performed exactly
one a event (tr ′ = tr � 〈a〉). This precondition-postcondition pair forms a design
that gives the contract for the action; of course, the contract must also insist on
R-healthiness. In full, the contract is as follows.

R(true � (tr ′ = tr ∧ a /∈ ref ′)�wait ′� tr ′ = tr � 〈a〉)

We notice the use of observational variables: ok , ok ′, wait , wait ′, tr , tr ′, ref , and
ref ′. These are “ghost variables”, not code; that is, they are part of the underlying
semantic model and cannot be manipulated at run time. Ghost variables provide
a convenient way of forming contracts by allowing us explicitly to restrict possible
reactive behaviours.

There is a technicality about any assertion involving the ghost variable ref ′. If
an action may refuse a set s , then it may refuse any subset of s . That is, if
an action refuses the set {a, b}, then it will also refuse the sets {a} and ∅, for
example. For this reason, an assertion such as a ∈ ref ′ is unsatisfiable. So if we
really did want to assert that a is always refused, then we would instead say
that it never occurs: it never appears in the trace, rather than restrict refusals.

The precise form of a CML contract is derived from the fact that every CML
action can be expressed in the form R(P � Q). We saw the syntactic form of
a design above; its semantics depends on the two observations mentioned in
Section 4, ok and ok ′: if the design is started (ok is true) in a state in which
the precondition holds (P is true), then it must terminate (ok ′ will be true) and
when it does, the postcondition must hold (Q must be true). This justifies the
definition P � Q = ok ∧ P ⇒ ok ′ ∧ Q for designs.

Example 2 (Chocolate vending machine). We consider a grossly simplified model
of a vending machine VM. A complete transaction with the machine involves
inserting a coin and extracting a chocolate; the machine repeatedly engages in
such transactions as specified by the action below.

VM = coin -> choc -> VM

This is a CML action, but what is the contract? We notice that there is no state,
so the contract must be entirely in terms of the ghost variables ok , ok ′, wait ,
wait ′, tr , tr ′, ref , and ref ′. A reasonable contract for the machine comes in two
parts: a requirement on the user and a requirement on the machine itself.

– The machine should not lose money: every chocolate must be paid for.

NOLOSS = freq(choc,tr’-tr) <= freq(coin,tr’-tr)

– The machine should be fair: the machine should not build up too much credit.

FAIR = freq(coin,tr’-tr) <= freq(choc,tr’-tr) + 1

The auxiliary function freq gives the frequency of an event in a trace. It is defined
below. The specification of the vending machine is given by the conjunction of
these requirements. It is defined below.

Contracts in CML 63

VMSPEC = NOLOSS and FAIR

The VDM (and, therefore, CML) definition of freq is as follows.

freq: Event * (seq of Event) -> nat
freq(e,s) =
if s = [] then
0

else
if hd(s) = e then
1 + freq(e,tl(s))

else
freq(e,tl(s))

How can we check that VM satisfies this specification? There are four principal
ways, two using theorem proving and two using model checking:

1. prove that [VM ⇒ VMSPEC],
2. use the assertional technique (that is, Hoare logic),
3. use a refinement model checker, or
4. use a temporal logic model checker.

(1), (2), and (3) are essentially the same: they check the refinement relation. We
may regard (1) as a full-frontal attack on the problem using a theorem prover. On
the other hand, (2) is more subtle, using inference rules to match the structure of
the implementation VM and check the assertion VMSPEC. For (3), the specification
must be captured as a finite state CML action, just like the implementation. A
model checker (such as [21] or [31]) is then used to check that the observable
behaviours of the implementation are all behaviours of the specification.

For (4), the specification must be captured as an expression in temporal logic;
LTL is commonly used [3], with its operators such as “eventually” and “hence-
forth”. A model checker, such as PAT [31] or the CML model checker [34], is
then used to test whether the system satisfies the temporal logic specification.
Roscoe [43] and Lowe [32] have each studied the relationship between refinement-
based checking and temporal-logic checking. An account of that in the UTP can
justify its use for CML.

To illustrate the use of the refinement model checker, we construct actions
to embody the two parts of the specification. First, for NOLOSS, we construct an
action parametrised by the number of coins and chocolates already dispensed.
NOLOSS is always willing to accept further coins, since that cannot contribute to
a financial loss, but dispenses a chocolate only if there is outstanding credit.

NoLossProc =
coins, chocs: nat @
coin -> NoLossProc(coins+1,chocs)
[]
[chocs < coins] & choc -> NoLossProc(coins,chocs+1)

64 J. Woodcock et al.

The action embodying FAIR complements NOLOSS: it is always willing to dispense
chocolates, since that cannot be unfair to a customer, but accepts a coin only if
at least as many chocolates have been dispensed as paid for.

FairProc = coins, chocs: nat @
[coins <= chocs] & coin -> NoLossProc(coins+1,chocs)
[]
choc -> FairProc(coins,chocs+1)

A vending machine that does nothing makes no loss and is trivially fair, so
NOLOSS and FAIR is not a very good specification; so how do we say something
stronger? There is a liveness aspect to fairness: if the customer has paid for a
chocolate, then the machine should not refuse to dispense it.

FAIR1 = (freq(choc,tr’-tr) < freq(coin,tr’-tr) => choc not in ref’)

Similarly, there is a liveness aspect to profit making: if every chocolate that has
been paid for has been dispensed, then the machine should not refuse a coin.

PROFIT1 = (freq(choc,tr’-tr) = freq(coin,tr’-tr) => coin not in ref’)

The two actions embodying our specification already have these two properties.
Specifications involving ref ′ can be used to assert deadlock freedom. If the

event alphabet for an action is A, then deadlock freedom can be specified as
NONSTOP = ref’ <> A. This states that the action can never reject, that is, refuse,
the entire alphabet of events, and so is never deadlocked.

When checking with a model checker such as FDR3, it is sufficient to check
satisfaction of each part of the specification independently. So to check that the
vending machine does not make a loss and that it is fair to its customers, we can
use the two separate assertions below.

assert NoLossProc [= VM

assert FairProc [= VM

Equivalently, we can check the two properties simultaneously. To do this, we
need to assemble the NoLossProc and FairProc actions in parallel, synchronising
on the choc and coin events as shown below.

assert NoLossProc [|{choc, coin}|] FairProc [= VM

The process Chaos misbehaves badly, like your worst nightmare: it melts down
the reactor; it switches off the in-flight computer; it transfers all your funds into
my bank account. The next examples illustrate its use.

Example 3 (Deferred chaos). Consider the process:

a -> Chaos

3 http://www.fsel.com.

http://www.fsel.com

Contracts in CML 65

This process is perfectly safe, providing its environment never engages in the
event a. So what is the contract? The precondition must record the assumption
that the a event never occurs, which it does as a relation: ¬ (tr � 〈a〉 ≤ tr ′).
The precondition is describing a protocol in terms of the trace, a kind of rely-
condition in the sense of Jones [27]. Now, if we assume that the precondition
holds, then the postcondition is straightforward: the action is forever waiting
(wait ′), and the trace never changes (tr ′ = tr), but a is not refused (a /∈ ref ′).

R(¬ (tr � 〈a〉 ≤ tr ′) � wait ′ ∧ tr ′ = tr ∧ a /∈ ref ′)

Example 4 (Badly behaved vending machine). We now consider the following
badly-behaved vending machine VMC.

VMC =
in2 -> (large -> VMC

[]
small -> out1 -> VMC)

[]
in1 -> (small -> VMC

[]
in1 -> (large -> VMC

[]
in1 -> Chaos))

Initially, VMC is prepared to accept either a £1 coin or a £2 coin. If the £2
coin is inserted, then the customer has a choice between a large and a small
chocolate bar. If the small bar is selected, then the machine offers change of
£1. Alternatively, if the £1 coin is inserted, then a choice is offered between
extracting a small chocolate bar or inserting a further £1 coin. If another £1
coin is inserted, the choice then becomes between extracting a large chocolate
bar or inserting yet another £1 coin, whereupon the machine behaves chaotically.
The precondition here is, therefore, ¬ (tr � [in1, in1, in1] ≤ tr ′).

6 Mini-Mondex

Mondex4 is an electronic purse hosted on a smart card and developed about
fifteen years ago to the high-assurance standard ITSEC Level E6 [26] by a con-
sortium led by NatWest, a UK high-street bank. Eight years ago, a community
effort was launched to mechanically verify the original models of Mondex in a
variety of different notations, in order to compare and contrast their effective-
ness [48,41,22,6,30,20,19]; the problem has now become a benchmark for formal
verification. In this section, we describe a simplified version of the problem: mini-
Mondex, where we ignore faulty behaviour and focus on specifying functional
requirements.

4 http://www.mondex.com.

http://www.mondex.com

66 J. Woodcock et al.

Purses interact using a communications device, and strong guarantees are
needed that transactions are secure in spite of power failures and mischievous
attacks. These guarantees ensure that electronic cash cannot be counterfeited,
although transactions are completely distributed. There is no centralised con-
trol: all security measures are locally implemented, with no real-time external
audit logging or monitoring; key properties emerge from local behaviour.

Our model of Mondex has the following constant values: N, the number of
cards in the system; V, the maximum value that may be held by a card; and M,
the total money supply. These are specified in CML as follows.

values
N: nat = 10
V: nat = 10
M: nat = N*V

There are two types related to these constants: the Index set for cards; and the
Money. The relationship with N and M is made explicit through two invariants.

types
Index = nat
inv i == i in set {1,...,N}

Money = nat
inv m == m in set {0,...,M}

We also specify three functions which are needed for our contract. initseq(n)
builds a sequence of numbers from 0 to n. subtseq(xs, i, n) subtracts n from
the ith item of sequence xs. addseq(xs, i, n) adds n to the ith item of xs.

functions
initseq: nat -> seq of nat
initseq(n) == [i | i in set {0,...,n}]

subtseq: seq of nat * nat * nat -> seq of nat
subtseq(xs, i, n) == xs ++ {i |-> xs(i) - n}
pre len(xs) > i and xs(i) >= n

addseq: seq of nat * nat * nat -> seq of nat
addseq(xs, i, n) == xs ++ {i |-> xs(i) + n}
pre len(xs) > i

There are a number of channels that connect cards with each other and with
the environment. A user can instruct one card to pay another with the event
pay.i.j.n, which corresponds to instructing card i to pay card j the sum of n
money units. The attempted transfer of money is made between cards using the
transfer channel. The transaction may be accepted or rejected.

channels
pay, transfer: Index * Index * Money
accept, reject: Index

Contracts in CML 67

Each card is modelled by an indexed CML process with its encapsulated state.
The state of the process consists of a single component value, which is a natural
number recording the balance in the purse. There are three operations: (i) Init,
which sets the initial value to V; (ii) Credit, which increments the value by the
parameter n; (iii) and Debit, which decrements the value by the parameter n.
There are also three actions: (i) Transfer accepts a pay communication and
analyses it to see if there are sufficient funds to honour the debit, replying ap-
propriately with an accept or reject communication; if there are sufficient funds,
then a transfer message is sent to the receiving card and debits its local state.
(ii) Receive accepts a receive message and credits its local state appropriately.
(iii) Cycle repeatedly offers the Transfer and Receive actions. The @-symbol
marks the main action for the process.

process Card = val i: Index @
begin
state value: nat
operations
Init: () ==> ()
Init() == value := V

Credit: nat ==> ()
Credit(n) == value := value + n

Debit: nat ==> ()
Debit(n) == value := value - n
pre n <= value

actions
Transfer =
pay.i?j?n ->
([n > value] & reject!i -> Skip
[]
[n <= value] & transfer.i.j!n -> accept!i -> Debit(n))

Receive = transfer?j.i?n -> Credit(n)

Cycle = (Transfer [] Receive); Cycle
@

Init(); Cycle
end

The network is defined by the parallel composition of all the indexed cards. We
need to specify the interface for each card to specify its interaction with the rest
of the network. As defined above, Card(i) participates in the following events.

– Every event of the form pay.i.j.n, for any card j and amount n.
– Every event of the form transfer.i.j.n, for any card j and amount n. These

represent the money leaving the card.

68 J. Woodcock et al.

– Every event of the form transfer.j.i.n, for any card j and amount n. These
represent the money entering the card.

– The events accept.i and reject.i.

In the construction of the network, we identify this alphabet of events for each
of the Card(i) processes, and assemble the N cards in parallel.

process Cards =
|| i in set {1,...,N} @
[{| pay.i,transfer.i,accept.i, reject.i|} union
{| transfer.j.i.n | j in set {1,...,N}, n in set {0,...,M}|}

] Card(i)

Cards that share the same event in their alphabet need to synchronise on that
event. The network, therefore, ensures that transfers between cards i and j are
achieved when both cards cooperate.

Finally, we need to hide the internal channels that connect the cards: these
do not form part of the extensional behaviour of the network:

process Network = Cards \ {|transfer|}

We identify the following properties that are required of mini-Mondex.

No counterfeiting: There must be no increase in the total value in the system.
Fairness: There must be no loss of value.
Usefulness: If we demand a transfer from a card that has the required funds,

then the transfer should take place.

We notice that the first two properties above are emergent global properties,
but the system has only local behaviour. In what follows, we describe these
properties using the CML contract Spec below.

This contract models the network as a single process with an Olympian view
of the state of all cards; it has only one state component, valueseq, which is
a sequence of numbers, indexed by card indexes. An invariant requires there
to be an element in the sequence for every card. The valueseq is initialised to
correspond with the initialisation of each card: each containing the value V.

process Spec =
begin
state
valueseq: seq of nat

inv
len(valueseq) = N

operations
Init: () ==> ()
Init() == valueseq := initseq(N)

There are two actions. The first, Pay is parametrised by source and destination
cards and an amount to be paid. Its behaviour starts with the communication

Contracts in CML 69

pay.i.j.n. Following this, there is an analysis of whether the card paying the
amount can afford it. If it cannot, then the transaction is rejected. If it can, then
the payer’s and payee’s values are updated accordingly to reflect the transfer of
money, and the transaction is accepted.

The second action is a repetitive cycle; on each step, a nondeterministic choice
is made of a payer, a payee, and an amount to be paid. Thus, Cycle represents
all possible financially correct transactions.

actions
Pay = i,j: Index, n: Money @
pay.i.j.n ->
if n > valueseq(i) then
reject.i -> Skip

else
(valueseq := subtseq(valueseq,i,n);
valueseq := addseq(valueseq,j,n);
accept.i -> Skip)

Cycle =
(|~| i,j: Index, n: Money @ Pay(i,j,n));
Cycle

@
Cycle

end

Spec gives us an arena in which to specify the correctness of mini-Mondex. The
properties identified above can be described as follows.

No increase in value: sum(valueseq) <= M. (sum returns the sum of the ele-
ments in a sequence.)

No loss in value: sum(valueseq) >= M.
Usefulness If we demand a transfer, and we have got the funds, then the trans-

fer should take place:

forall i, j: Index; n: Money @
tr’-tr <> []
and last(tr’-tr) = transfer.i.j.n
and n >= valueseq(i)
=>
accept.i not in ref’

Finally, we need an invariant that relates the stored state, valueseq, to the history
of transactions. For card i, the communications transfer.i.j represent outgoing
payments; the communications transfer.j.i represent incoming payments; and
the value V represents the initial value in the card.

forall i: {1,...,N} @
valueseq(i) =

70 J. Woodcock et al.

V + transum((tr’-tr) filter { transfer.i.j | j in set {1,...,N} })
+ transum((tr’-tr) filter { transfer.j.i | j in set {1,...,N} })

where

transum(s) =
if s = [] then
0

else
amount(hd(s)) + transum(tl(s))

forall i, j: Index; n: Money @ amount(transum.i.j.n) = n

7 Conclusions

We have presented a series of examples of the use of contracts in CML. It is
based on the semantic embedding of a theory of total correctness based on pre-
conditions and postconditions into the theory that defines the semantic model of
CML. With that, we have a characterisation of preconditions and postconditions
of reactive constructs, including communication, choice, and parallelism.

De Boer describes the postconditions of nonterminating processes as equiva-
lent to false [15], since he considers their states to be unobservable; this is of little
use in reasoning about reactive processes that run forever. As we mentioned in
Section 1, Parnas calls for the development of assertional techniques to handle
the normal nontermination of reactive processes [38]. Our work explicitly consid-
ers stable intermediate states (those satisfying the ghost expression ok ′ ∧ wait ′),
and provides these states with postconditions.

Jones has defined rely and guarantee conditions for assertional reasoning [27]
in the presence of concurrency. These conditions are concerned with properties of
interleaved atomic steps: guarantee conditions describe postconditions for atomic
steps of the process, and rely conditions describe postconditions for atomic steps
of the environment. Both rely and guarantee conditions are relations and, there-
fore, regarded as postconditions. Our postconditions are analogous to guarantee
conditions, except that they relate initial states to intermediate states, rather
than describing the postcondition of an arbitrary atomic step. Similarly, our
preconditions are relational and are analogous to Jones’s rely conditions, except
that, again, they relate initial and intermediate states, rather than describing
the postcondition of an atomic step of the environment.

Future work includes exploring the relationship between our contractual tech-
niques and Jones’s atomic-step semantics for rely and guarantee thinking. The
development of tools to support assertional reasoning in CML is also essential
for its practical relevance and scalability. Symphony does not yet support ghost
variables.

The CML semantics has been partially mechanised in Isabelle, through a se-
mantic embedding of UTP called Isabelle/UTP [18]. In particular we have mech-
anised the theory of designs, the theory of reactive processes, and have prelimi-
nary support for a Hoare calculus, which together provide the building blocks for

Contracts in CML 71

formal verification of contracts as shown in this paper. We have already used Is-
abelle/UTP to construct a CML theorem prover [12], and a verification-condition
generator is a natural next step in this effort. Moreover we are currently work-
ing on a refinement tool for Symphony which provides calculational support for
the CML refinement calculus, building on previous work [37]. This will provide
tool support for showing conformance between a given CML contract and an
underlying SoS, such as the Mondex example.

References

1. Andrews, Z., Fitzgerald, J., Payne, R., Romanovsky, A.: Fault Modelling for Sys-
tems of Systems. In: Proceedings of the 11th International Symposium on Au-
tonomous Decentralised Systems (ISADS 2013), pp. 59–66 (March 2013)

2. Beg, A., Butterfield, A.: Linking a state-rich process algebra to a state-free alge-
bra to verify software/hardware implementation. In: FIT 2010, 8th Intl Conf. on
Frontiers of Information Technology, Islamabad, p. 47. ACM (2010)

3. Ben-Ari, M., Manna, Z., Pnueli, A.: The temporal logic of branching time. In:
White, J., Lipton, R.J., Goldberg, P.C. (eds.) 8th Ann. ACM Symp. on Principles
of Programming Languages, Williamsburg, pp. 164–176. ACM Press (1981)

4. Bryans, J., Fitzgerald, J., Payne, R., Kristensen, K.: Maintaining emergence in
systems of systems integration: a contractual approach using SysML. In: INCOSE
International Symposium (to appear, 2014)

5. Bryans, J., Fitzgerald, J., Payne, R., Miyazawa, A., Kristensen, K.: SysML Con-
tracts for Systems of Systems. In: 9th Intl Conf. on Systems of Systems Engineering
(SoSE). IEEE (June 2014)

6. Butler, M., Yadav, D.: An incremental development of the Mondex system in Event-
B. Formal Asp. Comput. 20(1), 61–77 (2008)

7. Cavalcanti, A., Sampaio, A., Woodcock, J.: Unifying classes and processes. Software
and System Modeling 4(3), 277–296 (2005)

8. Cavalcanti, A., Wellings, A., Woodcock, J.: The Safety-Critical Java memory
model: A formal account. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS,
vol. 6664, pp. 246–261. Springer, Heidelberg (2011)

9. Cavalcanti, A., Wellings, A.J., Woodcock, J.: The Safety-Critical Java memory
model formalised. Formal Asp. Comput. 25(1), 37–57 (2013)

10. Cavalcanti, A., Wellings, A.J., Woodcock, J., Wei, K., Zeyda, F.: Safety-critical
Java in Circus. In: Wellings, A.J., Ravn, A.P. (eds.) The 9th Intl Workshop on
Java Technologies for Real-time and Embedded Systems, JTRES 2011, York, pp.
20–29. ACM (2011)

11. Cavalcanti, A., Woodcock, J.: A tutorial introduction to CSP in Unifying Theories
of Programming. In: Cavalcanti, A., Sampaio, A., Woodcock, J. (eds.) PSSE 2004.
LNCS, vol. 3167, pp. 220–268. Springer, Heidelberg (2006)

12. Couto, L., Foster, S., Payne, R.: Towards verification of constituent systems
through automated proof. In: Proc. Workshop on Engineering Dependable Sys-
tems of Systems (EDSoS). ACM CoRR (2014)

13. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cam-
bridge University Press (2002)

14. Dawes, J.: The VDM-SL Reference Guide. Pitman (1991) ISBN 0-273-03151-1
15. de Boer, F.S., Hannemann, U., de Roever, W.-P.: Hoare-style compositional proof

systems for reactive shared variable concurrency. In: Ramesh, S., Sivakumar, G.
(eds.) FST TCS 1997. LNCS, vol. 1346, pp. 267–283. Springer, Heidelberg (1997)

72 J. Woodcock et al.

16. Fitzgerald, J., Larsen, P.G., Mukherjee, P., Plat, N., Verhoef, M.: Validated Designs
for Object-oriented Systems. Springer (2005)

17. Fitzgerald, J., Larsen, P.G., Woodcock, J.: Foundations for Model-based Engineer-
ing of Systems of Systems. In: Aiguier, M., et al. (eds.) Complex Systems Design
and Management, pp. 1–19. Springer (January 2014)

18. Foster, S., Zeyda, F., Woodcock, J.: Isabelle/UTP: A mechanised theory engineer-
ing framework. In: 5th International Symposium on Unifying Theories of Program-
ming (to appear, 2014)

19. Freitas, L., Woodcock, J.: Mechanising Mondex with Z/Eves. Formal Asp. Com-
put. 20(1), 117–139 (2008)

20. George, C., Haxthausen, A.E.: Specification, proof, and model checking of the
Mondex electronic purse using RAISE. Formal Asp. Comput. 20(1), 101–116 (2008)

21. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 — A
modern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014)

22. Haneberg, D., Schellhorn, G., Grandy, H., Reif, W.: Verification of Mondex elec-
tronic purses with KIV: from transactions to a security protocol. Formal Asp.
Comput. 20(1), 41–59 (2008)

23. Hehner, E.C.R.: Retrospective and prospective for Unifying Theories of Program-
ming. In: Dunne, S., Stoddart, B. (eds.) UTP 2006. LNCS, vol. 4010, pp. 1–17.
Springer, Heidelberg (2006)

24. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
25. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice Hall (1998)
26. ITSEC. Information Technology Security Evaluation Criteria (ITSEC): Prelimi-

nary harmonised criteria. Technical Report Document COM(90) 314, Version 1.2,
Commission of the European Communities (1991)

27. Jones, C.B.: Specification and design of (parallel) programs. In: IFIP Congress, pp.
321–332 (1983)

28. Jones, C.B.: Systematic Software Development using VDM, 2nd edn. Prentice Hall
International (1990)

29. Kopetz, H.: System-of-Systems complexity. In: Proc. 1st Workshop on Advances
in Systems of Systems, pp. 35–39 (2013)

30. Kuhlmann, M., Gogolla, M.: Modeling and validating Mondex scenarios described
in UML and OCL with USE. Formal Asp. Comput. 20(1), 79–100 (2008)

31. Liu, Y., Sun, J., Dong, J.S.: PAT 3: An extensible architecture for building multi-
domain model checkers. In: Dohi, T., Cukic, B. (eds.) IEEE 22nd Intl Symp.
on Software Reliability Engineering, ISSRE 2011, Hiroshima, pp. 190–199. IEEE
(2011)

32. Lowe, G.: Specification of communicating processes: temporal logic versus refusals-
based refinement. Formal Asp. Comput. 20(3), 277–294 (2008)

33. Meyer, B.: Applying "design by contract". IEEE Computer 25(10), 40–51 (1992)
34. Mota, A., Farias, A., Didier, A., Woodcock, J.: Rapid prototyping of a semantically

well founded Circus model checker. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM
2014. LNCS, vol. 8702, pp. 235–249. Springer, Heidelberg (2014)

35. Oliveira, M., Cavalcanti, A., Woodcock, J.: A denotational semantics for Circus.
Electr. Notes Theor. Comput. Sci. 187, 107–123 (2007)

36. Oliveira, M., Cavalcanti, A., Woodcock, J.: A UTP semantics for Circus. Formal
Asp. Comput. 21(1-2), 3–32 (2009)

37. Oliveira, M., Gurgel, A.C., Castro, C.G.: CRefine: Support for the Circus refine-
ment calculus. In: 6th Intl. Conf. on Software Engineering and Formal Methods
(SEFM 2008), pp. 281–290. IEEE Computer Society (November 2008)

Contracts in CML 73

38. Parnas, D.L.: Really rethinking ‘formal methods’. IEEE Computer 43(1), 28–34
(2010)

39. Perna, J.I., Woodcock, J.: Mechanised wire-wise verification of Handel-C synthesis.
Sci. Comput. Program. 77(4), 424–443 (2012)

40. Perna, J.I., Woodcock, J., Sampaio, A., Iyoda, J.: Correct hardware synthesis—an
algebraic approach. Acta Inf. 48(7-8), 363–396 (2011)

41. Ramananandro, T.: Mondex, an electronic purse: specification and refinement
checks with the Alloy model-finding method. Formal Asp. Comput. 20(1), 21–39
(2008)

42. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall Interna-
tional (1997)

43. Roscoe, A.W.: On the expressive power of CSP refinement. Formal Asp. Com-
put. 17(2), 93–112 (2005)

44. Woodcock, J., Cavalcanti, A.: The semantics of Circus. In: Bert, D., Bowen,
J.P., Henson, M.C., Robinson, K. (eds.) ZB 2002. LNCS, vol. 2272, pp. 184–203.
Springer, Heidelberg (2002)

45. Woodcock, J., Cavalcanti, A.: A tutorial introduction to designs in Unifying The-
ories of Programming. In: Boiten, E.A., Derrick, J., Smith, G. (eds.) IFM 2004.
LNCS, vol. 2999, pp. 40–66. Springer, Heidelberg (2004)

46. Woodcock, J., Cavalcanti, A., Fitzgerald, J.S., Larsen, P.G., Miyazawa, A., Perry,
S.: Features of CML: A formal modelling language for systems of systems. In: 7th
Intl Conf. on Systems of Systems Engineering, SoSE 2012, Genova, pp. 445–450.
IEEE (2012)

47. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice-
Hall, Inc. (1996)

48. Woodcock, J., Stepney, S., Cooper, D., Clark, J.A., Jacob, J.: The certification of
the Mondex electronic purse to ITSEC Level E6. Formal Asp. Comput. 20(1), 5–19
(2008)

49. Zhan, N., Kang, E.Y., Liu, Z.: Component publications and compositions. In: But-
terfield, A. (ed.) UTP 2008. LNCS, vol. 5713, pp. 238–257. Springer, Heidelberg
(2010)

Distributed Energy Management Case Study: A Formal
Approach to Analyzing Utility Functions

Aida Čaušević, Cristina Seceleanu, and Paul Pettersson

Mälardalen Real-Time Research Centre (MRTC),
Mälardalen University, Västerås, Sweden

{aida.causevic,cristina.seceleanu,paul.pettersson}@mdh.se

Abstract. The service-oriented paradigm has been established to enable quicker
development of new applications from already existing services. Service nego-
tiation is a key technique to provide a way of deciding and choosing the most
suitable service, out of possibly many services delivering similar functionality
but having different response times, resource usages, prices, etc. In this paper, we
present a formal approach to the clients-providers negotiation of distributed en-
ergy management. The models are described in our recently introduced REMES

HDCL language, with timed automata semantics that allows us to apply UPPAAL-
based tools for model-checking various scenarios of service negotiation. Our tar-
get is to compute ways of reaching the price- and reliability-optimal values of the
utility function, at the end of the service negotiation.

1 Introduction

Service-oriented systems (SOS) represent a promising approach that accommodates
the necessary conceptual foundation to provide quicker application development out
of loosely coupled software entities, called services. The SOS paradigm also provides
a way to connect new systems and services with legacy systems. Service negotiation
is a key technique towards deciding and choosing the most suitable service, out of
possibly many services delivering similar functionality but having different response
times, resource usages, prices, etc.

The literature describes several rather theoretical results that tackle this topic [1–4]
but lack constructs for formal analysis. The benefit of attaching such support to a service
negotiation protocol is the capability of verifying if the negotiation design meets its
specified requirements. Also, formal verification allows one to compute various quality-
of-service (QoS)- optimal paths corresponding to different negotiation scenarios.

Motivated by the above, in this paper we describe the modeling and formal analysis
of a distributed energy management in an open energy market, similar to one described
by Mobach [5]. In an open energy market the traditional energy management does not
suffice anymore, since it is required to facilitate interactions between market partic-
ipants; this means that the management should be supported by a model that allows
energy providers to establish agreements with energy consumers w.r.t. the supply of
energy. The model of the energy market is described in Section 3.

Such a model involving customer-provider negotiation needs to be analyzed for var-
ious strategies that aim at reaching an agreement beneficial for both sides, against spec-
ified requirements. The goal of the analysis presented in this paper is also to validate

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 74–87, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Distributed Energy Management Case Study 75

our service-oriented modeling and analysis framework, that is briefly recalled in Sec-
tion 2. The framework consists of the resource-aware timed behavioral modeling lan-
guage REMES [6], reviewed in Section 2.1, and its underlying formal model described in
terms of timed automata (TA) networks [7,8] (see Section 2.2). The negotiation model is
obtained by composing REMES services, within a corresponding textual service compo-
sition language called Hierarchical Dynamic Composition Language (HDCL) (see Sec-
tion 4), via operators that have been defined formally in our previous work [9]. The salient
point of the approach is the fact that the obtained negotiation model can be analyzed
against safety, timing, and utility constraints, for all possible behaviors of the parties.
This can be achieved by transforming the negotiation model into a TA formal framework,
which has a precise underlying semantics that allows its analysis with UPPAAL tools, for
functional and extra-functional behaviors (timing and resource-wise behaviors) [10]. We
show how to compute the price- and reliability-optimal values of the utility function, at
the end of the service negotiation. The analysis of the energy negotiation process and its
results are described in Section 5. Last but not least, we present some relevant related
work in Section 6, before concluding the paper in Section 7.

2 Background

In this section we briefly overview the preliminaries on the REMES modeling language
and the timed automata formalism, needed to comprehend the rest of the paper.

2.1 REMES - a Language for Behavioral Modeling of SOS

To describe service behavior in SOS, we use the dense-time hierarchical modeling lan-
guage called REMES [6, 9]. The language is well-suited for abstract modeling, it is
hierarchical, has an input/ouput distinction, a well-defined formal semantics, and tool
support for SOS modeling and formal analysis 1 [10,11]. The formal analysis is accom-
plished by semantic transformation of REMES models into timed automata (TA) [7] or
priced timed automata (PTA) [12], depending on the analysis type [10].

A service in REMES can be described graphically (as a mode), or textually, by a list
of attributes (i.e., service type, capacity, time-to-serve, status, service precondition, and
postcondition) exposed at the interface of the REMES service. A REMES service can
be atomic, composite, but also employed in various types of compositions, resulting in
new, more complex services. In order to model the synchronized behavior of parallel
services we have previously introduced a special kind of REMES mode, called AND /
OR mode. By the semantics of the mode, in an AND or an OR mode, the services finish
their execution simultaneously, from an external observer’s point of view. However, if
the mode is employed as an AND mode, the subservices are entered at the same time,
and their incoming edges are not constrained by any boolean enabling condition, called
guard; in comparison, an OR mode assumes that one or all subservices are entered based
on the guards annotated on the incoming edges. Services that belong to this type of
REMES mode and that have to synchronize their behavior at the end of their execution
communicate via ‖SYNC-and (all services take their respective exit edges at the same time

1 More information available at http://www.idt.mdh.se/personal/eep/reseide/

http://www.idt.mdh.se/personal/eep/reseide/

76 A. Čaušević, C. Seceleanu, and P. Pettersson

and mode finishes its execution), or ‖SYNC-or (the mode finishes its execution as soon as
one service has taken an exit edge) operators, respectively (see our previous work [9]).

In order to manipulate services, REMES supports service creation, deletion, compo-
sition, and replacement via REMES interface operations. An example of a create service
operator is given in Eq. 1. Alongside the above operations, REMES is accompanied by a
hierarchical dynamic composition language (HDCL) that facilitates modeling of nested
sequential, parallel or synchronized services and their compositions.

[pre] : service_name == NULL

create : Type× N × N × ′′passive′′ × (Σ → bool) × (Σ → bool) → service_name (1)

{post} : service_name �= NULL ∧ Type ∈ {web service, network service, embedded ∧
∧ capacity ≥ 0 ∧ time − to − serve ≥ 0 ∧ status =

′′
passive

′′

Our system is composed of REMES services that can be analyzed by transforming
them into a formal network of TA that have precise semantics and can be model-checked
against relevant properties (see the following section). In our recent work, we have in-
troduced an analyzable negotiation model into the REMES language [13], that is, an
analyzable high-level description of the negotiation between service clients and ser-
vice providers. The model has an implicit notion of time and supports annotations in
terms of price, quality, etc., all modeled by the REMES textual service composition lan-
guage HDCL. The crux of the model is that it has a formal TA semantics, which lets one
verify various model properties, for all possible executions. For a more thorough de-
scription of the REMES language, we refer the reader to our previous work [6,9,13,14].

2.2 Timed Automata

A timed automaton (TAn) [7, 8] is a finite-state machine enriched with a set of clocks.
All clocks are synchronized and assumed to be real-valued functions of time elapsed
between events. In this work we use TA, as defined in the UPPAAL model-checker,
which allows the use of data variables [15–17].

Let us assume a finite set of real-valued variables C ranging over x, y, etc., stand-
ing for clocks, V a finite set of all data (i.e., array, boolean, or integer), and a fi-
nite alphabet Σ ranging over a, b, etc., standing for actions. A clock constraint is
a conjunctive formula of atomic constraints of the form x ∼ n or x − y ∼ n for
x, y ∈ C,∼∈ {<,≤,=,≥, >} and n ∈ N . The elements of B(C) are called clock
constraints over C. Similarly, we use B(V) to stand for the set of non-clock con-
straints that are conjunctive formulas of i ∼ j or i ∼ k, where i, j ∈ V , k ∈ Z

and ∼ ∈ {<,≤,=, �=,≥, >}. We use B(C, V) to denote the set of formulas that are
conjunctions of clock constraints and non-clock constraints.

Definition 1. A timed automaton A is a tuple (L, l0, C, V, I, Act, E) where: L is a finite
set of locations, l0 is the initial location, C is a finite set of clocks, V is a finite set of
data variables, I : L → B(C) assigns (clock) invariants to locations, Act = Σ ∪
{τ} is a finite set of actions, where τ �∈ Σ denotes internal or empty actions without
synchronization,E ⊆ L×B(C, V)×Act×R×L is the set of edges, where R denotes
the (clock) reset set. In the case of (l, g, a, r, l′) ∈ E, we write l

g,a,r→ l′, where l is the
source location, l′ is the target location, g is a guard, a boolean condition that must
hold in order for the edge to be taken, a is an action, and r is a simple clock reset.

Distributed Energy Management Case Study 77

The semantics of TA is defined in terms of a labeled transition system. A state of a
TAn is a pair (l, u), where l is a location, and u : C → R+ is a clock valuation. The
initial state (l0, u0) is the starting state where all clocks are zero. There are two kinds
of transitions: delay transitions and discrete transitions.

Delay transitions are the result of time passage and do not cause a change of location.

More formally, we have (l, u)
d→ (l, u ⊕ d) if u ⊕ d′ |= I(l) for 0 ≤ d′ ≤ d. The

assignment u⊕ d is the result obtained by incrementing all clocks of the automata with
the delay d.

Discrete transitions are the result of following an enabled edge in a TAn. Conse-
quently, the destination location is changed from the source location to the new target
location, and clocks may be reset. More formally, a discrete transition (l, u)

a→ (l′, u′)
corresponds to taking an edge l

g,a,r→ l′ for which the guard g is satisfied by u. The clock
valuation u′ of the target state is obtained by modifying u according to updates r such
that u′ |= I(l′).

Reachability analysis is one of the most useful analysis to perform on a given TAn.
The reachability problem can be defined as follows: Given two states of the system,
is there an execution starting at one of them that reaches the other? The reachability
analysis can be used to check that an error state is never reached, or just to check the
sanity of the model. A network of TA, A1‖...‖An, over C and Act, is defined as the
parallel composition A1‖...‖An over C and Act. Semantically, a network describes a
timed transition system obtained from the components, by requiring synchrony on delay
transitions, and discrete transitions to synchronize on complementary actions (i.e., a?
(receive synchronization) is complementary to a! (send synchronization)).

Properties of TA can be specified in the Timed Computation Tree Logic (TCTL),
which is an extension of Computation Tree Logic (CTL) with clocks. CTL is a speci-
fication language for finite-state systems used to reason about sequence of events. Let
AP be a set of atomic propositions, p ∈ AP . In this paper, a CTL formula φ is defined
as follows:

φ ::= � | p | ¬φ | φ1 ∧ φ2 | φ1 → φ2 | EFφ | AFφ | AGφ

Each CTL well-defined formula is a pair of symbols. The first operator is a path
operator, either A (“for All paths”), or E (“there Exists a path”). The latter operator, a
temporal operator, is one of the following: F (“in a Future state”), or G (“Globally in
the future”). For example EFφ means that there exists a path such that φ is eventually
satisfied and it is called a reachability property. More details on CTL and TCTL can be
found in earlier work of Alur et al. [18,19]. In the next section we present the details of
the distributed energy management case study.

3 Energy Negotiation Model in REMES HDCL

The energy management system includes an energy consumer (i.e., client) that creates
a request and communicates with energy providers via a mediator. A request contains
information about requested amount of energy, required price per unit of energy, and
expected reliability for energy to be provided. The supply of energy is based on a nego-
tiation carried out between consumers and providers in possibly more than one round,
assuming a certain strategy. The negotiation relies on advertisements, where energy

78 A. Čaušević, C. Seceleanu, and P. Pettersson

providers specify the type of energy to be sold (i.e. depending on the energy source,
diesel generators, wind turbine, etc.), available amount of energy, its reliability, and
price per unit of energy. In this paper’s negotiation model we assume an iterative form of
a Contract Net Protocol (CNP). In the CNP there exist the following roles: the client (an
energy consumer), the manager (a negotiation mediator), and the contractor (an energy
provider). The manager gets a request from a client and aims at finding an appropriate
contractor to fulfill the request via call for proposals (CFP). Based on the response from
contractors the manager decides which offers to present to a client. Depending on the
implemented strategy in each round both the contractors and clients aim to improve on
their previous proposals and request, in order to come closer to the consensus.

The energy consumer is assumed to have a varying energy demand that has to be sat-
isfied over a period of time (i.e., certain periods of the day have higher energy demand
than the others), while at the same time energy providers have varying energy capacity.
In this model, a single day is considered (see Fig. 1), with consumer requests coming
every two hours. Every two hours a new negotiation starts and should provide energy
for two subsequent hours. A consumer initiates the negotiation just before the moment
the energy is to be claimed and used. After a request is created, the mediator negotiates
with the available energy providers, on behalf of the consumer, creating competition
between energy providers. As a result of each request an agreement should be signed
covering the desired energy over a defined period of time. It might be the case that in-
volved parties do not reach a consensus and in that case no agreement is established,
meaning that the client might be out of energy for that period of time.

Fig. 1. An energy demand over a day

In our model, we have implemented three scenarios in which customers have en-
coded different behavior:

– Scenario 1: A customer has maximum bound on the price and the final acceptable
price cannot be more than 20 price units higher than the initial requested price;

– Scenario 2: A customer has no maximum price value, the negotiation can continue
until an agreement is conceived;

– Scenario 3: A customer adapts maximum price trying to get as close as possible to
the offered price, but at the same time not to pay more than double initial price. The

Distributed Energy Management Case Study 79

idea behind this scenario is to get an agreement in the smallest possible number of
price negotiations.

During the negotiation process the provider is not aware which strategy the client uses.
In this paper, we provide a REMES - based description of the distributed energy man-
agement that is furthermore translated to the TA formal framework and analyzed against
safety, timing, and utility constraints (described as a weighted sum of negotiation pref-
erences). In the following section we will provide a REMES HDCL-based model of the
energy negotiation described above.

4 REMES HDCL - Based Energy Negotiation Model

To enable a systematic and analyzable way to model the energy negotiation process,
as described in Section 3, we provide the REMES HDCL description of the model. The
model is based on the set of REMES interface operations and the hierarchical textual
language HDCL [9].

Table 1. Service declaration

00 declare Service ::= < 22 create EP2 (web service, 2, 10, idle,

01 service type : {web service}, 23 (energy_amount == ea2 ∧
02 capacity : N, 24 min_ep2 ≤ ppue ≤ max_ep2 ∧
03 time_to_serve : N, 25 energy_reliability == r_ep2),

04 status : { passive, idle, active}, 26 (energy_amount == ea2-k ∧
05 precondition : predicate, 27 min_ep2 ≤ ppue ≤ max_ep2 ∧
06 postcondition : predicate > 28 energy_reliability == r_ep2)) : Service

07 create Mediator (web service, 2, 10, idle, 29 declare List ::= <[service_name0 : Service, . . .,

08 (reqclient == false, contract == false), 30 service_namen : Service]>

09 (reqclient == true, contract == true)) : Service 31 create list_request : List

10 create Client (web service, 5, 20, idle, 32 create list_offer : List

11 (energy_amount == 0 ∧ t == 0s 33 add Client list_request

12 ∧ min_c ≤ ppue ≤ max_c), 34 add Manager list_request

13 (energy_amount == k ∧ t ≤ 20s ∧) 35 add EP1 list_offer

14 min_c ≤ ppue ≤ max_c) : Service 36 add EP2 list_offer

15 create EP1 (web service, 5, 15, idle, 37 add Manager list_offer

16 (energy_amount == ea1 ∧
17 min_ep1 ≤ ppue ≤ max_ep1 ∧
18 energy_reliability == r_ep1),

19 (energy_amount == ea1-k ∧
20 min_ep1 ≤ ppue ≤ max_ep1∧
21 energy_reliability == r_ep1)) : Service

The model assumes that we first have to declare and instantiate all participating ser-
vices using REMES interface operations. We model one energy consumer, two energy
providers and one mediator that represents the interests of all negotiation participants as

80 A. Čaušević, C. Seceleanu, and P. Pettersson

shown in Table 1 (lines 00-28). However, we have to point out that in case it would be
needed to model more than one energy consumer, and more than two energy providers,
the described model would be able to support it. For each negotiation participant we
have provided a list of service attributes, including their pre-, and postcondtions.

Next, to model the composition of services we need to create the lists (lines 29-32
in Table 1) and add the services to the appropriate lists (see Table 1 lines 33-37). In our
approach we model service negotiation as a service composition via the parallel with
synchronization protocol modeled by the operator ‖SYNC-and . Services that communicate
via ‖SYNC-and operator belong to the special type of REMES mode, called AND mode. By
the semantics of the AND mode, the services connected by this operator start and finish
their execution simultaneously.

Finally, our model of service negotiation is defined by the following:

bool contract := false;
clock h := 0;
DCL_req ::= (list_request, ‖SYNC-and, reqclient)
DCL_offer ::= (list_offer, ‖SYNC-and, reqprovider)
DO

p_offer := negotiation(paramp)
c_request := negotiation(paramc)

OD (c_request < p_offer) ∧ h ≤ 24)
contract := true;

Requirements reqclient and reqprovider are predicates that include both functional and
extra-functional properties of services. In our case, reqclient defines the client’s request
on amount of energy, price per unit of energy (ppue), and expected energy reliability
(eng_rel). On the other hand, reqprovider encompasses properties of the service that is
offered by a provider. Let us assume scenario 1, as described in Section 3 and a negoti-
ation that takes place at 18 o’clock of the day (h == 18). At this specific time reqclient is
described as: h == 18 ∧ energy_amount == 14 ∧ req_ppue == 15,7 ∧ eng_rel == 0,8. The
provider’s offer for a given request is: h == 18 ∧ energy_amount == 14 ∧ offered_ppue
== 20 ∧ eng_rel == 0,8. Generally, the content of the requirement might include dif-
ferent negotiable parameters (denoted by paramp for the provider, and paramc for the
client), such as price, or time at which a service should be available. As soon as the
requirements are known, the negotiation can start. The provider’s offer is calculated
via function negotiation (paramp) and stored in variable p_offer similar to the approach
presented by Kumpel et al. [20]. In case that the provided offer has not met the client’s
expectation, the request (c_request) can be updated using the same function negotiation
(paramc) but with a different parameter (here, we abstract from the function details). The
negotiation process may continue as long as the participants are interested into reaching
an agreement, or in case that the negotiation model is time constrained, as long as time
allows. In our case, the model is time constrained, and the negotiation will continue as
long as an energy supply over a day is not satisfied. The outcome of the negotiation
can either be a contract (c_ request ≥ p_offer) or no contract (c_ request < p_offer). In
our model, the contract will be signed only if the client agrees with the offered energy
amount, the price per unit of energy, and the provided energy reliability. In the example
presented above (scenario 1 and energy negotiation at 18 o’clock), one can notice that
the requested and offered price differ and that the negotiation is needed. If we assume

Distributed Energy Management Case Study 81

the same example, then the negotiation successfully finishes with a contract signed and
the final agreement of the form: h == 18 ∧ energy_amount == 14 ∧ final_ppue == 16 ∧
eng_rel == 0,8.

The REMES language is accompanied with a tool support for constructing models
as one described above in a graphical form [21]. In the following section, we show a
formal analysis of the described REMES negotiation model in order to check whether
the available amount of energy suffices for the client’s needs and at what prices the
negotiation converges. Furthermore we analyze the utility-optimal functions w.r.t. the
price and the energy reliability (a weighted sum of the price and the energy reliability
as the negotiation preferences).

5 Formal Analysis of the Negotiation Model

5.1 The Analysis Goals

In this paper we consider a model that supports a competition between two energy
providers, available for negotiation via a mediator that acts as representative of all par-
ties involved in the negotiation process. We model the described negotiation model us-
ing out textual composition language HDCL, and then analyze the model against several
requirements, such as price, time, and reliability, in order to check whether the available
energy and given prices can satisfy the client’s needs. Also, it is interesting to see how
much time is needed for agreement to converge.

Additionally, we calculate the value of the optimal utility function as a weighted sum
of negotiation preferences w.r.t. the price and the energy reliability (modeled here by a
number), and model-check the trace (a sequence of actions (delays and transitions)) that
leads to such state. We calculate the value of the optimal utility function in order to find
points in time when the utility function is maximized. We assume the utility function
to be maximized for all participants, when the difference between their initial and their
final utility values either do not exist or is insignificant.

In order to ensure that our model has no deadlocks, we specify a safety UPPAAL

property as follows: AG not deadlock. The given property has been verified in UPPAAL

and our model satisfies it. All findings presented in the following are results of model-
checking the described model in UPPAAL.

5.2 A TA Semantic Translation of the REMES Model and Analysis Results

We have analyzed the REMES-based energy negotiation model, by semantically trans-
lating it into a network of TA models, in the UPPAAL 2 model-checker. The model con-
tains five TA connected in parallel: EnergyConsumer, EnergyProvider (used to create
two providers as instances of this TA), Mediator, EnergyProduction1, and EnergyPro-
duction2. Due to space limitation, we present here the TA models of EnergyConsumer,
EnergyProvider, and Mediator, shown in Fig. 2.

The TA of EnergyConsumer has six locations: Start, StartEC, sentReq, received-
Offer, negotiateEC, and checkOffer. A negotiation request is sent every 20 time units

2 See the web page www.uppaal.org for more information about the UPPAAL tool.

82 A. Čaušević, C. Seceleanu, and P. Pettersson

cOffer!

end?

presentOffer?req!

agreement?

agreement?

negotiate?

end?

t<=20

t>=20

CreatedOffer[2] − consumer[id][1] > 4

sentReq receivedOfferStartEC

ECbuyHistory(), ECreset(), t=0

checkOffer

negotiateEC

Start

agreement?

ECnodealHistory(),ECreset(), t = 0

ECbuyHistory(), ECreset(), t = 0

ECbuyHistory(), ECreset(), t = 0

CCounterOffer()

ECreq()

AdaptPrice()

ECnodealHistory(), ECreset(), t = 0

HourCounter()

(a) A TAn of the client

contract == 1

askOffer?

consumer[0][2]*provider[id][2] − consumer [0][1] <= 4 &&
CreatedOffer[1] == provider[id][1]

consumer[0][2]*provider[id][2] − consumer [0][1] > 4 &&
consumer[0][2]*provider[id][2] − consumer [0][1] <= 100

consumer[0][2]*provider[id][2] − consumer [0][1] <= 4 &&
CreatedOffer[1] == provider[id][1]
agreement?

returnOffer?

end?

forwardCoffer?

cngPrice?

contract == 1

consumer[0][2]*provider[id][2] − consumer[0][1] > 100

forall(n:int[1,2]) provider[id][n] != 0

requiredOffer

availableOffer

StartEPEPsellHistory(), EnergySold(), EPreset()

EPnodealHistory(),
EPreset()

reset

negotiateEP

availableUpdatedOffer

makeOffer
createOffer?

EPnodealHistory(), EPreset()

EPreset()

changePrice()

negotiate?

end? agreement?EPreset()

EPoffer()

changePrice()

changePrice(),EPsellHistory(), EnergySold(), EPreset()

(b) A TAn of the provider

tn <= 5

tn <= 20

req?

(provider[0][3] < consumer[0][2] && provider[1][3] < consumer[0][2])

CreatedOffer[2] == 0 && (consumer[0][2]*provider[0][2] − consumer[0][1] > 20 && consumer[0][2]*provider[1][2] − consumer[0][1] > 20)

CreatedOffer[2] >0 &&
CreatedOffer[2] − consumer [0][1] <= 4

end!

agreement!

askOffer!

forwardCoffer!

returnOffer!

negotiate!

CreatedOffer[2] − consumer[0][1] <= 100

CreatedOffer[2] − consumer[0][1] >100

CreatedOffer[2] >0 &&
CreatedOffer[2] − consumer [0][1] < 4 && tn <= 15

receivedReq askForOffer

propagatedOffer

StartM

Mreset(), contract=1

Mreset(),check(), tn = 20

receiveCounterOffer

negotiateM
checkDeal

receivedOffer returnedOffer

presentOffer!

end!

end!

CreatedOfferreset(), tn=0 check()
createOffer!

agreement!

cOffer?

cngPrice!

Mreset(), contract=1

tn = 10

Mreset()

(c) A TAn of the negotiation mediator

Fig. 2. TA models of the negotiation participants

Distributed Energy Management Case Study 83

Fig. 3. Utility function change over a day for scenario 2

(t == 20), corresponding to every two hours as described in the model. Sending a re-
quest for an offer to Mediator, and receiving an offer from Mediator is modeled with
channels req, and presentOffer, respectively. In case that participants need to negotiate
on the current request and offer, they communicate via the broadcast channel negotiate.
When an agreement is made a boolean variable contract is set to 1 and it is propagated
via channel agreement, while on the other hand, in cases when no agreement has been
reached (contract == 0) the channel end is used.

The TA of EnergyProvider consists of seven locations: StartEP, requiredOffer, make-
Offer, availableOffer, availableUpdatedOffer, negotiateEP, and reset. A request for an
offer is received from Mediator via channel askOffer. To create an offer and to further
on propagate it to Mediator channels, createOffer, and returnOffer are used, respectively.
In case that a request has been updated a counter offer is propagated via forwardCoffer
and cngPrice broadcast channels.

The TA of Mediator has nine locations: StartM, receivedReq, askForOffer, received-
Offer, returnedOffer, propagatedOffer, receivedCounterOffer, checkDeal, and negotiateM.
The automaton contains a clock variable tn, used to keep track of the time elapsed from
the moment a request is received to the moment an agreement or no agreement has been
signed.

In our analysis model, we encode the utility function for the consumer, and the
providers, respectively, as a weighted sum of negotiation preferences (i.e., price per
unit of energy and reliability given as a number and not probability), as follows:

utilityc = wc1 × req_ppue+ wc2 × eng_rel (2)

utilityp = wp1 × offered_ppue+ wp2 × eng_rel

The function is calculated for the energy consumer, both energy providers, taking
into consideration the starting request/offer and the final agreement given that they have
different priorities for different preferences. In case of the energy consumer reliability
gets higher priority (wc2), while in the case of the energy providers the energy price is
more important (wp1). In our case study, we consider the utility functions as described

84 A. Čaušević, C. Seceleanu, and P. Pettersson

Fig. 4. Price per unit of energy for scenario 1

in Eq. 2, where wc1, wc2, and wp1, wp2 are client and provider’s preferences on price
and energy reliability, respectively. In the following, we present and discuss the results
of the model verification in UPPAAL model-checker.

Verification shows that in scenario 1, there exists a case in which no agreement has
been reached (8 o’clock), since the initially requested and offered prices were too far
from each other, and since the customer had an upper bound on the price. In the same
scenario, as shown in Fig. 4, in order to provide sufficient energy supply, the client is
forced to spend slightly more money that initially planed, but still within the maximum
price bound.

Fig. 3 depicts the utility function change over a day assuming scenario 2. Based on
the history of previous request, 18 o’clock is considered as the peak hour in consumer’s
energy consumption. At this point in time, the utility function is maximized for each
negotiation participant, respectively (the difference between initial and the final utility
value either does not exist or is insignificant), meaning that the energy market favors
them equally. Consequently, the consumer is prepared to request a reasonable price to
make sure that he gets a required amount of energy. On the other side, the provider’s
offered price depends on the amount of the available energy, that is, the more energy is
available the price is lower and vice versa. This means that the providers are ready for
the peak hour, and have stored greater amount of energy such that they are competitive
enough at the energy market. At 16 o’clock, the provider’s initial and the final utility
is similar, while the customer’s final utility value is slightly lower than the initial value
since the final price is lower than the one requested by the customer. At 20 o’clock the
same situation appears, but in favor of the energy provider.

In scenario 3 we have expected that in total the client would spend more money on
energy due to the fact that he was adapting his requests based on the offered prices.
However, the total price is relatively close to the expected one, probably due to the me-
diator selecting offers on behalf of the client, which leads to the client only receiving
the cheapest offers in the market, in each round. Also, the time spent to negotiate the
energy supply was expected to be lower than in the other two scenarios, but it shows

Distributed Energy Management Case Study 85

Fig. 5. Time required for negotiation

that this scenario was the most time consuming, probably due to the fact that the con-
sumer has to adapt his acceptance threshold all over again, but still to keep within the
maximum available budget (see Fig. 5). At the same time, in each negotiation round,
the mediator has to check all available offers, in order to provide the client with the
cheapest and most fitting one.

It was very interesting to see who owns the market in which scenario. Based on
Fig. 4, in scenario 1 it is obvious that the market is own by the provider, and that even
with the introduced maximum price bound, the providers were able to force the prices
in their favor. Similarly, in the other two scenarios we have noticed that in scenario
3, the agreed prices are in favor of the consumer, while the final prices in scenario
2 are in favor of the energy provider. Overall, the total amount of money spent on
energy in all three scenarios is very close to the initial request, with an average increase
of less than 10% of the initially requested price. Before verifying the time needed in
negotiation, we expected that the participants would converge toward the agreement
the fastest in scenario 3. However, the results have shown the opposite, the slowest
negotiation process was recorded in this scenario, possibly due to the fact that the client
needed to recalculate new prices compared to the previous offers, and based on this the
mediator had to ask for the new offers, always from all providers. One can notice that
the least time is needed in scenario 1, while scenario 2 requires slightly more time.

6 Related Work

Mobach describes a negotiation framework based on the WS-Agreement specification [5],
deployed in domains of distributed agent middleware and distributed energy manage-
ment. The latter case has been simulated and evaluated through the different strategies in
which energy has been distributed to the clients, including negotiation and bidding for
a suitable energy source. The simulation has provided better insight in different nego-
tiation policies, however the model lacks constructs for the formal analysis and means

86 A. Čaušević, C. Seceleanu, and P. Pettersson

to provide performance analysis results. Lapadula et al. provide a description of mod-
eling publication, discovery, negotiation, deployment, and execution of service-oriented
applications in COWS [22], a language that can be translated to CMC model-checker
for analysis purposes. In comparison to this approach, our framework includes analysis
that caters for more than one QoS attribute (performance and reliability), while assum-
ing time in the process too. Capodieci et al. propose an agent-based approach to model
and analyze deregulated energy market [23]. In their work they adapt minority game ap-
proach that enables better distribution of the available resources. The simulation of the
time flow and risk variations is done using stochastic game design. The resulting model
has been simulated using JADE platform. Compared to our work the presented approach
is equally fit for the modeling issues, but it lacks a possibility to exhaustively analyze the
given model that could uncover more information on the issues that they describe.

7 Conclusions

In this paper, we present a case study where our recently introduced approach for auto-
mated service negotiation in REMES has been applied to model and analyze distributed
energy management. The given study has been analyzed by semantically translating
the REMES-based models into a network of TA to enable model-checking in the UP-
PAAL tool. We have focused on three scenarios as described in Section 3 by calculating
the value of the optimal utility function w.r.t. the price and the energy reliability and
model-checked the model to compute the traces that lead to such states. The negotia-
tion model is time constrained, which lets one get an insight into the analysis of the
time needed to reach an agreement. As future work we plan to model an auction-based
energy management which would show the full potential of our negotiation model.

References

[1] Tamma, V., Wooldridge, M., Blacoe, I., Dickinson, I.: An ontology based approach to au-
tomated negotiation. In: Padget, J., Shehory, O., Parkes, D.C., Sadeh, N.M., Walsh, W.E.
(eds.) AMEC 2002. LNCS (LNAI), vol. 2531, pp. 219–237. Springer, Heidelberg (2002)

[2] Resinas, M., Fernandez, P., Corchuelo, R.: A conceptual framework for automated nego-
tiation systems. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL 2006. LNCS,
vol. 4224, pp. 1250–1258. Springer, Heidelberg (2006)

[3] Paurobally, S., Tamma, V.A.M., Wooldridge, M.: A framework for web service negotiation.
TAAS 2(4) (2007)

[4] Mu-kun, C., Chi, R., Liu, Y.: Service oriented automated negotiation system architecture.
In: 6th International Conference on Service Systems and Service Management, ICSSSM
2009, pp. 216–221 (2009)

[5] Mobach, D.: Agent-Based Mediated Service Negotiation. PhD thesis, Vrije University
(2007)

[6] Seceleanu, C., Vulgarakis, A., Pettersson, P.: Remes: A resource model for embedded sys-
tems. In: Proc. of the 14th IEEE International Conference on Engineering of Complex Com-
puter Systems (ICECCS 2009). IEEE Computer Society (June 2009)

[7] Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2),
183–235 (1994)

Distributed Energy Management Case Study 87

[8] Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. In: Desel, J.,
Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124. Springer, Hei-
delberg (2004)

[9] Čaušević, A., Seceleanu, C., Pettersson, P.: Modeling and reasoning about service behaviors
and their compositions. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part II. LNCS,
vol. 6416, pp. 82–96. Springer, Heidelberg (2010)

[10] Ivanov, D., Orlic, M., Seceleanu, C., Vulgarakis, A.: Remes tool-chain - a set of inte-
grated tools for behavioral modeling and analysis of embedded systems. In: Proceedings of
the 25th IEEE/ACM International Conference on Automated Software Engineering (ASE
2010) (September 2010)

[11] Enoiu, E.P., Marinescu, R., Causevic, A., Seceleanu, C.: A design tool for service-oriented
systems. In: 9th International Workshop on Formal Engineering approaches to Software
Components and Architectures (FESCA 2012). ENTCS (March 2012)

[12] Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata. In: Di
Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp.
49–62. Springer, Heidelberg (2001)

[13] Causevic, A., Seceleanu, C., Pettersson, P.: An analyzable model of automated service ne-
gotiation. In: IEEE SOSE 2013: 7th International Symposium on Service Oriented System
Engineering. IEEE (March 2013)

[14] Čaušević, A., Seceleanu, C., Pettersson, P.: Checking correctness of services modeled as
priced timed automata. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II. LNCS,
vol. 7610, pp. 308–322. Springer, Heidelberg (2012)

[15] Bengtsson, J., Griffioen, W.D., Kristoffersen, K.J., Larsen, K.G., Larsson, F., Pettersson, P.,
Yi, W.: Automated verification of an audio-control protocol using uppaal. The Journal of
Logic and Algebraic Programming, 163–181 (2002)

[16] Bengtsson, J., Griffioen, W., Kristoffersen, K., Larsen, K., Larsson, F., Pettersson, P., Yi, W.:
Verification of an audio protocol with bus collision using UPPAAL. In: Alur, R., Henzinger,
T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 244–256. Springer, Heidelberg (1996)

[17] Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL - a tool suite for au-
tomatic verification of real-time systems. In: Alur, R., Sontag, E.D., Henzinger, T.A. (eds.)
HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg (1996)

[18] Alur, R., Courcoubetis, C., Dill, D.: Model-checking for real-time systems. In: Proceedings
of the Fifth Annual IEEE Symposium on Logic in Computer Science, LICS 1990, pp. 414–
425 (June 1990)

[19] Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking in dense real-time. Inf. Com-
put. 104(1), 2–34 (1993)

[20] Kümpel, A., Braun, I., Spillner, J., Schill, A.: (Semi-) automatic negotiation of service level
agreements. In: IADIS International Conference WWW/INTERNET 2010, Timisoara, Ro-
mania, pp. 282–286 (2010)

[21] Enoiu, E.P., Marinescu, R., Causevic, A., Seceleanu, C.: A design tool for service-oriented
systems. In: Proceedings the 9th International Workshop on Formal Engineering approaches
to Software Components and Architectures (FESCA). Electronic Notes in Theoretical Com-
puter Science (ENCTS), vol. 295, p. 95. Elsevier (May 2013)

[22] Lapadula, A., Pugliese, R., Tiezzi, F.: Service discovery and negotiation with cows. Elec-
tron. Notes Theor. Comput. Sci. 200, 133–154 (2008)

[23] Capodieci, N., Cabri, G., Pagani, G.A., Aiello, M.: An agent-based application to enable
deregulated energy markets. In: 2012 IEEE 36th Annual Computer Software and Applica-
tions Conference, pp. 638–647 (2012)

Towards the Typing of Resource Deployment�

Elena Giachino and Cosimo Laneve

Dept. of Computer Science and Engineering, Università di Bologna – INRIA FOCUS
{giachino,laneve}@cs.unibo.it

Abstract. In cloud computing, resources as files, databases, applica-
tions, and virtual machines may either scale or move from one machine
to another in response to load increases and decreases (resource deploy-
ment). We study a type-based technique for analysing the deployments
of resources in cloud computing. In particular, we design a type system
for a concurrent object-oriented language with dynamic resource cre-
ations and movements. The type of a program is behavioural, namely it
expresses the resource deployments over periods of (logical) time. Our
technique admits the inference of types and may underlie the optimisa-
tion of the costs and consumption of resources.

1 Introduction

One of the prominent features of cloud computing is elasticity, namely the
property of letting (almost infinite) computing resources available on demand,
thereby eliminating the need for up-front commitments by users. This elasticity
may be a convenient opportunity if resources may go and shrink automatically
at a fine-grain when user’s needs change. However, current cloud technologies
do not match this fine-grain requirement. For example, Google AppEngine auto-
matically scales in response to load increases and decreases, but it charges clients
by the cycles (type of operations) used; Amazon Web Service charges clients by
the hour for the number of virtual machines used, even if a machine is idle [2].

Fine-grained resource management is an area where competition between
cloud computing providers may unlock new opportunities by committing to more
precise cost bounds. In turn, such cost bounds should encourage programmers
to pay attention to resource managements (that is, releasing and acquiring re-
sources only when necessary) and allow more direct measurement of operational
and development inefficiencies.

In order to let resources, such as files or databases or applications or memo-
ries or virtual machines, be deployed in cloud machines, the languages for pro-
gramming the cloud must include explicit operations for creating, deleting, and
moving resources – resource deployment operations – and corresponding software
development kits should include tools for analysing resource usages. It is worth
to observe that the leveraging of resource management to the programming lan-
guage might also open opportunities to implement Service Level Agreements

� Partly funded by the EU project FP7-610582 ENVISAGE: Engineering Virtualized
Services.

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 88–103, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Towards the Typing of Resource Deployment 89

(SLAs) validation via automated test infrastructure, thus offering the opportu-
nity for third-party validation of SLAs and assessing penalties appropriately.

We study resource deployment (in cloud computing) by extending a simple
concurrent object-oriented model with lightweight primitives for dynamic re-
source management. In our model, resources are groups of objects that can be
dynamically created and can be moved from one (virtual) machine to another,
called deployment components. We then define a technique for analysing and
displaying resource loads in deployment components that is amenable to be pro-
totyped.

The object-oriented language is overviewed in Section 2 by discussing in detail
a few examples. In Section 3, we discuss the type system for analysing the re-
source deployments. Our technique is based on so-called behavioural types that
abstractly describe systems’ behaviours. In particular, the types we consider
record the creations of resources and their movements among deployment com-
ponents. They are similar to those ranging from languages for session types [7]
to process contracts [17] and to calculi of processes as Milner’s CCS or pi-
calculus [19, 20]. In our mind, behavioural types are intended to represent a
part of SLA that may be validated in a formal way and that support composi-
tional analysis. Therefore they may play a fundamental role in the negotiation
phase of cloud computing tradings.

The behavioural types presented in Section 3 are a simple model that may
be displayed by highlighting the resource load of deployment components using
existing tools. We examine this issue in Section 4. Related works are discussed
in Section 5.

The aim of this contribution is to overview our type system for analysing
resource deployments. Therefore the style is informal and problems and (our)
solutions are discussed by means of examples. The details of the technique, such
as the system for deriving behavioural types automatically and the correctness
results, can be found in the forthcoming full paper.

2 dcABS in a Nutshell

Our study targets an ABS-like language. ABS [13] is a basic abstract, executable,
object-oriented modelling language with a formal semantics. In this language,
method invocations are asynchronous: the caller continues after the invocation
and the called code runs on a different task. Tasks are cooperatively scheduled:
every group of objects, called cog, has at most one active task at each time. Tasks
running on different cogs may be evaluated in parallel, while those running on the
same cog must compete for the lock and interleave their evaluation. The active
task of a cog explicitly returns the control in order to let other tasks progress.
Synchronisations between caller and callee is explicitly performed when callee’s
result is strictly necessary by using future variables (see [5] and the references
in there).

In our language, which is called dcABS, programmers may define a fixed num-
ber of (virtual) cloud computing machines, called deployment components (de-
ployment component do not scale), and may use a very basic management of

90 E. Giachino and C. Laneve

Table 1. A simple dcABS program

1 // class C declaration:
2 class C {

3 Bool m (C x) {

4 if (@this != @x) moveto @x else moveto d1;

5 return true; }

6 }

7

8 // available deployment components declaration:
9 data DCData = d0, d1, d2, d3;

10

11 //main statement:
12 C x1 = new cog C(); moveto d1;

13 C x2 = new cog C(); moveto d2;

14 C x3 = new cog C(); moveto d3;

15 Fut<Bool> f1 = x1!m(x2);

16 Fut<Bool> f2 = x2!m(x3);

17 Bool b1 = f1.get;

18 Fut<Bool> f3 = x3!m(x2);

19 Bool b2 = f2.get;

20 Bool b3 = f3.get;

resources that enables cogs movements from one deployment component to an-
other (cogs represents generic resources, such as group of computing entities,
databases, virtual memories and the corresponding management processes). In
dcABS, we also assume that method invocations are synchronised in the same
method body where they occur, except for the main statement. This constraint
largely simplifies the analysis and augment its precision because it reduces the
nondeterminism.

We illustrate the main features of dcABS by means of examples. The details of
the syntax and semantics of dcABS can be found in the (forthcoming) full paper.
Table 1 displays a simple dcABS program. Programs consist of three parts: (i) a
collection of class definitions, (ii) a declaration of the deployment components
that are available, and (iii) a main statement to evaluate. Classes contain field
and method declarations. In the above table, there is one class definition that
covers lines 2–6, the deployment components are declared at line 9, and the main
statement covers lines 12–20. The evaluation of the main statement is performed
in the special cog start that is located on the deployment component that is
declared first; in our example this is d0.

Line 12 contains a definition of dcABS: it creates a new object of class C in
a new cog, locally deployed, and stores a reference to the new object in the
variable x1. The subsequent statement moveto d1 specifies the migration of the
current cog, i.e. cog start, from the current deployment component d0 to the
deployment component d1.

Towards the Typing of Resource Deployment 91

Table 2. A dcABS recursive program

21 class D {

22 Bool move () { moveto d1 ; return true ; }

23

24 Bool multi_create (Int n) {

25 if (n<=0) return true ;

26 else { D x = new cog D () ;

27 Fut<Bool> f = x!multi_create(n-1) ;

28 Bool u = f.get ;

29 Fut<Bool> g = x!move() ;

30 Bool v = g.get ;

31 return true ; } }

32 }

Lines 15, 16 and 18 display method invocations. As mentioned above, in dcABS

invocations are asynchronous : the caller continues executing in parallel with the
called method, which runs in a dedicated task within the cog where the receiver
object resides. For example, line 15 corresponds to spawning the instance of
the body of method m in a new task that is going to run in the cog of the
object referred by x1. A future reference to the returned value is stored in the
variable f1 that has type Fut<Bool>. This means that the value is not ready yet
and, when it will be produced (in the future), it will have type Bool. Line 17
enforces the retrieval of such value by accessing to the corresponding future
reference and waiting for its availability, by means of the operation get. Since
method invocations are asynchronous, the two invocations in lines 15 and 16 are
executed concurrently. The invocation at line 15 is then synchronised at line 17,
but the one at line 16 may continue concurrently with the invocation of line 18,
until they are both synchronised.

The invocations in the main statement execute three instances of method m.
Every instance verifies if the receiver object is co-located with the argument
object and, in case, it performs either a deployment to let the corresponding
cogs be co-located or a deployment to the component d1. The expression @x of
line 4 points to the deployment component where the (cog of the) object referred
by x resides.

Table 2 shows a class definition D with a recursive method multi_create. This
method creates n new cogs co-located with the caller object and moves them to
the deployment component d1.

Analysing the cog-deployment of the programs in Tables 1 and 2 is not
straightforward. For example, significant questions regarding Table 1 are: (i)
what is the cog-load of the component d1 during the lifetime of the main state-
ment? (ii) Can the component d0 be garbage-collected after a while in order to
optimise resource usages? Let the main statement of Table 2 be

92 E. Giachino and C. Laneve

33 // available deployment components declaration:
34 data DCData = d0, d1 ;

35

36 //main statement:
37 D x = new cog D() ;

38 Fut<Bool> f = x!multi_create(10) ;

Then, an important question about Table 2 is: (iii) is there an upper bound to the
number of cogs deployed to d0? The technique we study in the following sections
lets us to answer to such kind of questions in a formal way.

3 Behavioural Types for Resource Deployment

Our technique for analysing resource deployments in dcABS programs is mostly
based on our past experience in designing type inference systems for analysing
deadlock-freedom of concurrent (object-oriented) languages [8–10].

A basic ingredient of every type system is the definition of the association
of types with language constructs. The type system of dcABS associates an ab-
stract deployment behaviour to every statement and expression. Formally, the
association is defined by the typing judgment

Γ;n �c s : � � Γ ′;n′ (1)

to be read as: in an environment Γ and at a timestamp n, the statement s of an
object whose cog is c has a type � and has effects Γ ′ and n′. The pair Γ ′ and n′

is used to type the continuation. To explain (1), consider the line 12 of Table 1:

12 C x1 = new cog C(); moveto d1;

The statement C x1 = new cog C(); has two effects: (i) creating a new co-
located cog (with a fresh name, say c1) , and (ii) populating this new cog with a
new object whose value is stored in x1. As regards (i), there is a deployment of
the new cog at the deployment component where the current cog c resides. We
define this behaviour by means of the type

c1 �→ c

As regards (ii), we record (in the typing judgment) the name of the cog of x1.
In particular, variable assignment may propagate cog names throughout the
program and this may affect the behavioural types. That is, our type system
includes the analysis of aliases (c.f. Γ ′ in (1) is an update of Γ). In particular,
in order to trace propagations of names, we associate to each variable a so-called
future record, ranged over by � and defined in Table 3. A future record may
be either (i) a dummy value -- that models primitive types, or (ii) a record
name X that represents a place-holder for a value and can be instantiated by
substitutions, or (iii) [cog:c, x :�], which defines an object with its cog name c and

Towards the Typing of Resource Deployment 93

Table 3. Future records and behavioural types of dcABS

� ::= -- | X | [cog :c, x:�] | fut(�) future record

� ::= 0 | 〈c
→ c′〉n÷n | 〈c
→ d〉n÷n | 〈C!m(�) → �
′〉m÷n behavioural type

| � + � | � � � | 〈�〉m÷n

the values for fields of the object, or (iv) fut(�), which is associated to method
invocations returning a value with record �. As regards Line 12, since C has no
field, we record in the environment Γ ′ of (1) the binding x1: [cog : c1], where c1
is a fresh cog name.

The statement moveto d1 corresponds to migrating the current cog (i.e. c) to
the deployment component d1. This is specified by the type

c �→ d1.

The above ones are the basic deployment informations of our type system. We
next discuss the management of method invocations, which is the major difficulty
in the design of the type system. In fact, the execution of methods’ bodies
may change deployment informations and these changes, because invocations
are asynchronous, are the main source of imprecision of our analysis. Consider,
for example, line 15 of Table 1

15 Fut<Bool> f1 = x1!m(x2);

and assume that the environment Γ (and Γ ′) in (1) binds method m as follows

Γ (C.m) = ([cog : c], [cog : c′])→ --

where

– [cog : c] and [cog : c′] are the future records of the receiver and of the
argument of the method invocation, respectively,

– -- is the future record of the returned value (it is -- because returned values
have primitive type Bool).

(This association is defined during the typing of the method body – see below.)
The behavioural type of the invocation x1!m(x2) is therefore C!m([cog : c1], [cog :
c2])→ -- where Γ (x1) = [cog : c1] and Γ (x2) = [cog : c2].

There is a relevant feature that is not expressed by the type C!m([cog : c1], [cog :
c2]) → --. The task corresponding to the invocation x1!m(x2) must be assumed
to start when the invocation is evaluated and to terminate when the operation
get on the corresponding future is performed – cf. line 17. During this interval,
the statements of x1!m(x2) may interleave with those of the caller and those
of the other method invocations therein – cf. line 16. To have a more precise
analysis, we label the type of line 15 with the (logical) time interval in which

94 E. Giachino and C. Laneve

it has an effect on the computation. Namely we write 〈�〉m÷n, where m and n
are the starting and the ending interval points, respectively. Our type system
increments logical timestamps in correspondence of

1. cog creations,

2. cog migrations,

3. and synchronisation points (get operations).

For example, the lines 15–20 of the code in Table 1 have associated timestamps

15 Fut<Bool> f1 = x1!m(x2); // timestamp: n
16 Fut<Bool> f2 = x2!m(x3); // timestamp: n
17 Bool b1 = f1.get; // timestamp: n
18 Fut<Bool> f3 = x3!m(x2); // timestamp: n+ 1
19 Bool b2 = f2.get; // timestamp: n+ 1
20 Bool b3 = f3.get; // timestamp: n+ 2

As a consequence, the behavioural type of the above code is

〈C!m(�1, �2)→ --〉n÷n � 〈C!m(�2, �3)→ --〉n÷n+1 � 〈C!m(�3, �2)→ --〉n+1÷n+2

where �1, �2 and �3 are the record types of the objects x1, x2, and x3, respectively.
As we will see in Section 4, this will impact on the analysis by letting us to
consider all the possible computations.

The syntax of behavioural types � is defined in Table 3. Apart those types
that have been already discussed, �+�

′ defines the abstract behaviour of condi-
tionals, � � �′ corresponds to a juxtaposition of behavioural types, and 〈�〉m÷n

defines a behavioural type � to be executed in the interval m÷n. It is worth to
notice that it is the combination of intervals that models the sequential and the
parallel composition: two disjoint intervals specify two subsequent actions, while
two overlapping intervals specify two (possibly) parallel actions. This complies
with dcABS semantics where parallelism is not explicit in the syntax, but it is
generated by the (asynchronous) invocations of methods.

We next discuss the association of a method behavioural type to a method
declaration. To this aim, let us consider lines 3-5 of the code in Table 1:

3 Bool m (C x) {

4 if (@this != @x) moveto @x else moveto d1;

5 return true; }

The behaviour of m in C is given by (�, �′) {�m} → --, where � and �
′ are the

future records of the receiver of the method and of the argument, respectively,
�m is the type of the body and -- is the future record of the returned boolean
value. The records � and �

′ are formal parameters of m. Therefore, it is always
the case that cog and record names in � and �

′ do occur linearly and bind the
occurrences of names in �m. It is worth to notice that cog names occurring in �m

may be not bound. These free names correspond to new cog instructions.

Towards the Typing of Resource Deployment 95

In the case of m in C, its type is:

([cog : c], [cog : c′]){〈c �→ c′〉1÷1 + 〈c �→ d1〉1÷1} → -- .

The behavioural type for the the main statement of Table 1 is:

〈c1 �→ start〉1÷1 � 〈start �→ d1〉2÷2

� 〈c2 �→ start〉3÷3 � 〈start �→ d2〉4÷4

� 〈c3 �→ start〉5÷5 � 〈start �→ d3〉6÷6

� 〈C!m([cog : c1], [cog : c2])→ --〉7÷7

� 〈C!m([cog : c2], [cog : c3])→ --〉7÷8

� 〈C!m([cog : c3], [cog : c2])→ --〉8÷9.

We conclude this section with the typing of the code in Table 2. Method move

in D has type:

([cog : c]) {〈c �→ d1〉1÷1} → --

Method multi_create in D has type:

([cog : c], --) { (2)

0 +

〈c′ �→ c〉1÷1 � 〈D!multi create([cog : c′], --)→ --〉2÷2

�〈D!move([cog : c′])→ --〉3÷3

} → --

We notice that the then-branch is typed with 0. In fact, it does not affect the
method behaviour since it does not contain any deployment information nor
method invocation.

4 Analysis of Behavioural Types

The analysis of behavioural types defined in Section 3 highlights the trend of cog
numbers running in each deployment component over a period of (logical) time.
More specifically, behavioural types are used to compute the abstract states of
a system that record the deployment of cogs with respect to components. The
component load is then obtained by projecting out the number of cogs in a state,
which can be visualised by means of a standard graphic plotter program.

A primary item of this programme is the definition of the semantics of be-
havioural types. To this aim we use deployment environments Σ that map
cog names to sets of deployment components. For example [start �→ {d0}] is
the initial deployment environment. Behavioural types’ semantics is defined by
means of a transition system where states are triples

(
Σ, �, n

)
and transitions(

Σ, �, n
) m÷m′
−→

(
Σ′, �′, n′

)
are defined inductively according to the structure

of �. The basic rules of the transition relation are

96 E. Giachino and C. Laneve

(MoveTo-c)(
Σ, 〈c
→ c′〉m÷m, n

) m÷m−→ (
Σ[c
→ Σ(c′)], 0, max (m,n)

)

(MoveTo-d)(
Σ, 〈c
→ d〉m÷m, n

) m÷m−→ (
Σ[c
→ {d}], 0, max (m,n)

)

(Invk)

C.m = (�){�m}�′ var(�m) \ var(�, �′) = c c′ are fresh

�m[c
′/c][�, �

′
/�, �′] = �

′

(
Σ, 〈C!m(�) → �

′〉m÷m′
, n

) m÷m′−→ (
Σ, 〈�′〉m÷m′

, max (m,n)
)

The rules (MoveTo-c) and (MoveTo-d) update the deployment environment
and return a null behavioural type. Rule (Invk) deals with method invocations
and, apart from instantiating the formal parameters with the actual ones, it cre-
ates fresh cog names that correspond to the new cog operations in the method
body. The inductive rules (that are omitted in this paper) lift the above tran-
sitions to structured behavioural types. In particular, let m ÷ n � m′ ÷ n′ if
and only if n < m′ (� is a partial order). The rule for �1 � · · · � �k enables a

transition
m÷n−→ provided m÷ n is �-minimal in the set of transitions of �1, · · · ,

�k.
In order to illustrate the operational semantics of behavioural types we discuss

the transitions of the type of the main statement in Table 1:

�0 = 〈c1 �→ start〉1÷1 � 〈start �→ d1〉2÷2

� 〈c2 �→ start〉3÷3 � 〈start �→ d2〉4÷4

� 〈c3 �→ start〉5÷5 � 〈start �→ d3〉6÷6

� 〈C!m([cog : c1], [cog : c2])→ --〉7÷7

� 〈C!m([cog : c2], [cog : c3])→ --〉7÷8

� 〈C!m([cog : c3], [cog : c2])→ --〉8÷9.

Let Σ0 = [start �→ d0]. According to the semantics of behavioural types, we have

(
Σ0 , �0, 0

) 1÷1−→ (
Σ1 , �1, 1

) 2÷2−→ (
Σ2 , �2, 2

) 3÷3−→ (
Σ3 , �3, 3

) 4÷4−→ (
Σ4 , �4, 4

)
5÷5−→ (

Σ5 , �5, 5
) 6÷6−→ (

Σ6 , �6, 6
)

where, at each step 1 ≤ i ≤ 6, the type that is evaluated is the one with
interval i÷ i, the deployment environment Σ6 is [start �→ {d3}, c1 �→ {d0}, c2 �→
{d1}, c3 �→ {d2}], and the type �6 is 〈C!m([cog : c1], [cog : c2]) → --〉7÷7 �
〈C!m([cog : c2], [cog : c3])→ --〉7÷8 � 〈C!m([cog : c3], [cog : c2])→ --〉8÷9.

In Figure 1 we have drawn the computations starting at
(
Σ6, �6, 6

)
. Here we

discuss the rightmost computation. In
(
Σ6, �6, 6

)
, the two transitions that are

possible are the method invocations with intervals 7÷ 7 and 7÷ 8. We perform
the one with interval 7 ÷ 8 and, by rule (Invk), we get

(
Σ6, �8, 7

)
, where

�8 = 〈C!m([cog : c1], [cog : c2]) → --〉7÷7 � 〈〈c2 �→ c3〉1÷1 + 〈c2 �→ d1〉1÷1〉7÷8 �
〈C!m([cog : c3], [cog : c2])→ --〉8÷9.

Towards the Typing of Resource Deployment 97

(
Σ6 , �6, 6

)

(
Σ6, �7, 7

) (
Σ6, �8, 7

)

(
Σ7, �9, 7

) (
Σ6, �10, 7

) (
Σ6, �11, 7

) (
Σ8, �11, 7

)

(
Σ7, �13, 8

) (
Σ7, �12, 7

) (
Σ6, �14, 7

) (
Σ8, �14, 7

)

(
Σ9, �16, 8

) (
Σ7, �15, 8

) (
Σ7, �17, 7

) (
Σ10, �17, 7

) (
Σ11, �17, 7

)

(
Σ9, �18, 8

) (
Σ7, �19, 8

) (
Σ10, �19, 8

) (
Σ11, �19, 8

)

(
Σ9, 0, 8

) (
Σ10, 0, 8

) (
Σ12, 0, 8

) (
Σ11, 0, 8

) (
Σ13, 0, 8

)

7÷
7 7÷8

7÷
7 7÷8 7÷

7 7
÷

8

7÷8

8÷
9 7÷8 7÷

7 7
÷

8

7÷8

7÷
7

7÷
7

8
÷

9

7÷8 8÷
9 7

÷
8

7÷8

7÷
7

7÷
7 7÷7

7
÷

8

8÷
9 7

÷
8

7÷8

8÷
9

8÷
9 8

÷
9

7
÷

8

8÷
9

8÷
9 8÷9 8÷

9 8
÷

9

Fig. 1. An example of transition system of behavioural types

At this point there are three options: the method invocation with interval 7÷7
or the evaluation of either 〈c2 �→ c3〉1÷1 or 〈c2 �→ d1〉1÷1, both with interval 7÷8
because underneath a 〈·〉7÷8 context.

By evaluating 〈c2 �→ c3〉1÷1, one obtains
(
Σ8, �11, 7

)
, where Σ8 is [start �→

{d3}, c1 �→ {d0}, c2 �→ {d2}, c3 �→ {d2}]. and �11 is 〈C!m([cog : c1], [cog : c2])→
--〉6÷6 � 〈C!m([cog : c3], [cog : c2])→ --〉7÷8.

In
(
Σ8, �11, 7

)
only one transition is possible: the method invocation with

interval 7÷7. Therefore one has
(
Σ8, �14, 7

)
, where �14 = 〈〈c1 �→ c2〉1÷1+〈c1 �→

d1〉1÷1〉7÷7 � 〈C!m([cog : c3], [cog : c2])→ --〉8÷9.
In the state

(
Σ8, �14, 7

)
the possible transitions are those of the type

〈〈c1 �→ c2〉1÷1 + 〈c1 �→ d1〉1÷1〉7÷7. By letting 〈c1 �→ d1〉1÷1 move, one has(
Σ11, �17, 7

)
, where Σ11 = [start �→ {d3}, c1 �→ {d1}, c2 �→ {d2}, c3 �→ {d2}]

and �17 = 〈C!m([cog : c3], [cog : c2]) → --〉8÷9. Finally, by performing two tran-
sitions labelled 8 ÷ 9, one first unfolds the method invocation and then eval-
uates the corresponding body 〈〈c3 �→ c2〉1÷1 + 〈c3 �→ d1〉1÷1〉8÷9. By letting
〈c3 �→ d1〉1÷1 move, the computation terminates with a deployment environ-
ment Σ13 = [start �→ {d3}, c1 �→ {d1}, c2 �→ {d2}, c3 �→ {d1}].

Given a transition system T as the one illustrated in Figure 1, it is possible
to compute the abstract trace, i.e. the sequence Σ(0) ·Σ(1) ·Σ(2) · · · where Σ(i)
is the deployment environment

Σ(i) : c �→ ∪{Σ(c) | there is � such that
(
Σ, �, i

)
∈ T } .

98 E. Giachino and C. Laneve

For example, letting the deployment environments of Figure 1 be

Σ6 = [start �→ {d3}, c1 �→ {d0}, c2 �→ {d1}, c3 �→ {d2}]
Σ7 = [start �→ {d3}, c1 �→ {d1}, c2 �→ {d1}, c3 �→ {d2}]
Σ8 = [start �→ {d3}, c1 �→ {d0}, c2 �→ {d2}, c3 �→ {d2}]
Σ9 = [start �→ {d3}, c1 �→ {d1}, c2 �→ {d1}, c3 �→ {d1}]
Σ10 = [start �→ {d3}, c1 �→ {d1}, c2 �→ {d2}, c3 �→ {d2}]
Σ11 = [start �→ {d3}, c1 �→ {d2}, c2 �→ {d2}, c3 �→ {d2}]
Σ12 = [start �→ {d3}, c1 �→ {d1}, c2 �→ {d2}, c3 �→ {d1}]
Σ13 = [start �→ {d3}, c1 �→ {d2}, c2 �→ {d2}, c3 �→ {d1}]

we can compute the cog trend for each deployment component. Let Σ(i)|d
def
=

{c | d ∈ Σ(i)(c)}. Then

Σ(i)|d d0 d1 d2 d3

Σ(0) start ∅ ∅ ∅

Σ(1) c1, start ∅ ∅ ∅

Σ(2) c1 start ∅ ∅

Σ(3) c1 c2, start ∅ ∅

Σ(4) c1 c2 start ∅

Σ(5) c1 c2 c3, start ∅

Σ(6) c1 c2 c3 start
Σ(7) c1 c1, c2 c1, c2, c3 start
Σ(8) ∅ c1, c2, c3 c1, c2, c3 start

Graphically (note that d0 starts at level 1, since at the beginning it contains the
“start” cog):

0 2 4 6 8
0

1

2

3

4

We conclude our overview by discussing the issue of recursive invocation. To
this aim, consider the type (2) of the method multi_create in Table 2 and the
main statement

D x = new cog D(); Fut<Bool> f = x!multi_create(4); Bool b = f.get;

whose type is:

�
r
0 = 〈cr1 �→ start〉1÷1 � 〈D!multi create([cog : cr1], --)→ --〉2÷2

Towards the Typing of Resource Deployment 99

Being d0 and d1 the two declared deployment components, we obtain the fol-
lowing computation:(
[start �→ {d0}] , �r

0, 0
)

1÷1−→
(
[start �→ {d0}, cr1 �→ {d0}] , �r

1, 1
)

2÷2−→ 2÷2−→
(
[start �→ {d0}, cr1 �→ {d0}, cr2 �→ {d0}] , �r

3, 2
)

2÷2−→ · · · 2÷2−→
(
[start �→ {d0}, cr1 �→ {d0}, cr2 �→ {d0}, · · · , crn−2 �→ {d0}] , �r

n, 2
)

2÷2−→ 2÷2−→
(
[start �→ {d0}, cr1 �→ {d0}, cr2 �→ {d0}, · · · , crn−2 �→ {d1}] , �r

n+2, 2
)

2÷2−→ · · · 2÷2−→
(
[start �→ {d0}, cr1 �→ {d0}, cr2 �→ {d1}, · · · , crn−2 �→ {d1}] , 0, 2

)
where

�
r
1 = 〈D!multi create([cog : cr1], --)→ --〉2÷2

�
r
2 = 〈 〈cr2 �→ cr1〉1÷1 � 〈D!multi create([cog : cr2], --)→ --〉2÷2

�〈D!move([cog : cr2])→ --〉3÷3 〉2÷2

�
r
3 = 〈 〈D!multi create([cog : cr2], --)→ --〉2÷2 � 〈D!move([cog : cr2])→ --〉3÷3

〉2÷2

· · ·
�
r
n = 〈 〈〈· · · 〈〈D!move([cog : cr(n−2)])→ --〉3÷3〉2÷2

�〈〈D!move([cog : cr(n−3)])→ --〉3÷3 · · · 〉2÷2

�〈D!move([cog : cr3])→ --〉3÷3〉2÷2 � 〈D!move([cog : cr2])→ --〉3÷3

〉2÷2

�
r
n+2 = 〈 〈〈· · · 〈D!move([cog : cr(n−3)])→ --〉3÷3 · · · 〉2÷2

�〈D!move([cog : cr3])→ --〉3÷3〉2÷2 � 〈D!move([cog : cr2])→ --〉3÷3

〉2÷2

We observe the following two facts: first, every transition, except the initial one,
is at logical timestamp 2, because only the outermost interval is observable, while
the nested intervals are only relevant to specify the order of events at the same
level of nesting; second, in case of recursion the specified behaviour is potentially
infinite and parameterised by the number n of transitions, which depends on the
number of recursive invocations.

In visualising the results of the analysis, these two aspects pose some ques-
tions: the first one may lead us to flatten all the events at timestamp 2 as they
happened in parallel, while if observing carefully the computation we notice the
events follow a strict sequence; the second one may make it difficult to graph-
ically represent the unbounded behaviour. To address the first point, we don’t
simply rely on the label of the transition to recognise the state of the computa-
tion, but at each interval the visualiser performs a sort of zoom in, so to magnify
the nested behaviour. The result is the sequentialised behaviour depicted below.
To address the second one, we just approximate the behaviour by letting at most
n nested recursive invocations. The corresponding graphs are as follows, fixing
n = 8, (note that d0 starts at level 1, since at the beginning it contains the
“start” cog):

100 E. Giachino and C. Laneve

0 0.5 1 1.5 2 2.5

0
1
2
3
4
5
6

time

c
o
g
n
u
m
b
e
r

d0

0 0.5 1 1.5 2 2.5

0
1
2
3
4
5
6

In this case, the recursive behaviour corresponds to a pick of deployed cogs in
the interval 2 ÷ 3. This pick grows according to the value of n. The interesting
property we may grasp from the graphs for d0 is that, the upward pick in the
interval 1 ÷ 2 corresponds to a downward pick in the same interval of the same
length. This is due to the property that, for each increment in that interval,
there is a decrement, thus leaving unchanged the number of cogs in d0 (which is
2). A different behaviour is manifested by the graph of the component d1. In this
case, there is a growing increment of deployed cogs according to the increasing
of n. The rightmost function lets us derive that the deployment component d1
may become critical as the computation progresses.

5 Related Work

Resource analysis has been extensively studied in the literature and several meth-
ods have been proposed, ranging from static analyses (data-flow analysis and
type systems) to model checking. We discuss in this section a number of related
techniques and the differences with the one proposed in this paper.

A well-known technique is the so-called resource-aware programming [21] that
allows users to monitor the resources consumed by their programs and to express
policies for the management of such resources in the programs. Resource-aware
programming is also available for mainstream languages, such as Java [4]. Our
typing system may integrate resource-aware programming by providing static-
time feedbacks about the correctness of the management, such as full-coverage
of cases, correctness of the policies, etc.

Other techniques address resource management in embedded systems and
mostly use performance analysis on models that are either process algebra [18], or
Petri Nets [23], or various types of automata [24]. It is also worth to remind that
similar techniques have been defined for web services and business processes [6,
22]. Usually, all these approaches are invasive because they oblige programmers
to declare the cost of transitions in terms of time or in terms of a single resource.
On the contrary, our technique does not assign any commitment to programmers,
which may be completely unaware of resources and their management.

In [1] a quantified analysis targets ABS programs and returns informations
about the different kinds of nodes that compose the system, how many instances
of each kind exist, and node interactions. A resource analysis infers upper bounds

Towards the Typing of Resource Deployment 101

to the number of concrete instances that the nodes and arcs represent. (The anal-
ysis in [1] does not explicitly support deployment components and cog migration;
however we believe that this integration is possible.) An important difference of
this analysis with respect to our contribution is that our behavioural types are
intended to represent a part of SLA that may be validated in a formal way and
that support compositional analysis. It is not clear if these correspondence with
SLA is also possible for the models of [1].

A type inference technique for resource analysis has been developed in [11,12].
They study the problem of worst-case heap usage in functional and (sequential)
object-oriented languages and their tool returns functions on the size of inputs
of every method that highlight the heap consumption. On the contrary, our
technique returns upper bounds disregarding input sizes. However, we think it
is possible to extend our types to enable a transition system model that support
the expressivity of [12] (our current analysis of behavioural types is preliminary
and must be considered as a proof-of-concept). In these regards, we plan to
explore the adoption of behavioural types that depends [3] on the input data of
conditions in if-statements. We observe, anyway, that the generalisation of the
results in [11, 12] to a concurrent setting has not been investigated.

Kobayashi, Suenaga and Wischik develop a technique that is very close to
the one in this paper [16]. In particular, they extend pi-calculus with primi-
tives for creating and using resources and verify whether a program conforms
with resource usage declarations (that may be also automatically inferred). A
difference between their technique and the one in this paper is that here the re-
source analysis is performed ex-post by resorting to abstract transition systems
of behavioural types, while in [16] the analysis is done during the type check-
ing(/inference). As discussed in [9], our technique is in principle more powerful
than those verifying resource usage during the checking/inference of types.

6 Conclusions

This work is a preliminary theoretical study about the analysis of resource de-
ployments by means of type systems. Our types are lightweight abstract descrip-
tions of behaviours that retain resource informations and admit type inference.

The analysis of behavioural types that has been discussed in Section 4 is
very preliminary. In fact, in Example 2, the resource analysis depends on the
input value of the method multi_create. In these cases, a reasonable output of
the analysis is a formula that defines the cog-load of deployment components
according to the actual value in input. As discussed in Section 5, we intend to
investigate more convenient behavioural type analyses, possibly by using more
expressive types, such as dependent ones [3].

One obvious research direction is to apply our technique for defining an infer-
ence system for resource deployment in programming languages, such as ABS or
core ABS, and prototyping it with a tool for displaying the load of deployment
components. The programme is similar to the one developed for deadlock analy-
sis [10]. The next step is then the experiment of the prototype on real programs
in order to have assessments about its performance and precision.

102 E. Giachino and C. Laneve

We also intend to study the range of application of type system techniques
when resources are either cloud virtual machines, or CPU, or memory, or band-
width. The intent is to replace/complement the simulation techniques used
in [14, 15] with static analysis techniques based on types.

References

[1] Albert, E., Correas, J., Puebla, G., Román-Dı́ez, G.: Quantified abstractions of
distributed systems. In: Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940,
pp. 285–300. Springer, Heidelberg (2013)

[2] Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A.,
Lee, G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud
computing. Commun. ACM 53(4), 50–58 (2010)

[3] Bove, A., Dybjer, P.: Dependent types at work. In: Bove, A., Barbosa, L.S., Pardo,
A., Pinto, J.S. (eds.) LerNet ALFA Summer School 2008. LNCS, vol. 5520, pp.
57–99. Springer, Heidelberg (2009)

[4] Czajkowski, G., von Eicken, T.: JRes: A resource accounting interface for Java.
In: Proceedings of OOPSLA, pp. 21–35 (1998)

[5] de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg
(2007)

[6] Foster, H., Emmerich, W., Kramer, J., Magee, J., Rosenblum, D.S., Uchitel, S.:
Model checking service compositions under resource constraints. In: Proc. 6th of
the European Software Engineering Conf. and the Symposium on Foundations of
Software Engineering, pp. 225–234. ACM (2007)

[7] Gay, S., Hole, M.: Subtyping for session types in the π-calculus. Acta Informat-
ica 42(2-3), 191–225 (2005)

[8] Giachino, E., Grazia, C.A., Laneve, C., Lienhardt, M., Wong, P.Y.H.: Deadlock
analysis of concurrent objects: Theory and practice. In: Johnsen, E.B., Petre, L.
(eds.) IFM 2013. LNCS, vol. 7940, pp. 394–411. Springer, Heidelberg (2013)

[9] Giachino, E., Kobayashi, N., Laneve, C.: Deadlock analysis of unbounded process
networks. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp.
63–77. Springer, Heidelberg (2014)

[10] Giachino, E., Laneve, C., Lienhardt, M.: A Framework for Deadlock Detection in
ABS. Software and Systems Modeling (to appear, 2014)

[11] Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate amortized resource analysis.
ACM Trans. Program. Lang. Syst. 34(3), 14 (2012)

[12] Hofmann, M., Rodriguez, D.: Automatic type inference for amortised heap-space
analysis. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp.
593–613. Springer, Heidelberg (2013)

[13] Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A core
language for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011)

[14] Johnsen, E.B., Owe, O., Schlatte, R., Tapia Tarifa, S.L.: Dynamic resource real-
location between deployment components. In: Dong, J.S., Zhu, H. (eds.) ICFEM
2010. LNCS, vol. 6447, pp. 646–661. Springer, Heidelberg (2010)

[15] Johnsen, E.B., Owe, O., Schlatte, R., Tapia Tarifa, S.L.: Validating timed models
of deployment components with parametric concurrency. In: Beckert, B., Marché,
C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 46–60. Springer, Heidelberg (2011)

Towards the Typing of Resource Deployment 103

[16] Kobayashi, N., Suenaga, K., Wischik, L.: Resource usage analysis for the pi-
calculus. Logical Methods in Computer Science 2(3) (2006)

[17] Laneve, C., Padovani, L.: The must preorder revisited. In: Caires, L., Vasconcelos,
V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 212–225. Springer, Heidelberg
(2007)

[18] Lüttgen, G., Vogler, W.: Bisimulation on speed: A unified approach. Theoretical
Computer Science 360(1-3), 209–227 (2006)

[19] Milner, R.: A Calculus of Communicating Systems. Springer (1982)
[20] Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, ii. Inf. and

Comput. 100, 41–77 (1992)
[21] Moreau, L., Queinnec, C.: Resource aware programming. ACM Trans. Program.

Lang. Syst. 27(3), 441–476 (2005)
[22] Netjes, M., van der Aalst, W.M., Reijers, H.A.: Analysis of resource-constrained

processes with Colored Petri Nets. In: Proceedings of the Sixth Workshop on
the Practical Use of Coloured Petri Nets and CPN Tools (CPN 2005). DAIMI,
vol. 576. University of Aarhus (2005)

[23] Sgroi, M., Lavagno, L., Watanabe, Y., Sangiovanni-Vincentelli, A.: Synthesis of
embedded software using free-choice Petri nets. In: Proc. 36th ACM/IEEE Design
Automation Conference (DAC 1999), pp. 805–810. ACM (1999)

[24] Vulgarakis, A., Seceleanu, C.C.: Embedded systems resources: Views on modeling
and analysis. In: Proc. 32nd IEEE Intl. Computer Software and Applications
Conference (COMPSAC 2008), pp. 1321–1328. IEEE Computer Society (2008)

Static Inference of Transmission Data Sizes

in Distributed Systems

Elvira Albert1, Jesús Correas1,
Enrique Martin-Martin1, and Guillermo Román-Dı́ez2

1 DSIC, Complutense University of Madrid, Spain
2 DLSIIS, Technical University of Madrid, Spain

Abstract. We present a static analysis to infer the amount of data
that a distributed system may transmit. The different locations of a dis-
tributed system communicate and coordinate their actions by posting
tasks among them. A task is posted by building a message with the task
name and the data on which such task has to be executed. When the
task completes, the result can be retrieved by means of another message
from which the result of the computation can be obtained. Thus, the
transmission data size of a distributed system mainly depends on the
amount of messages posted among the locations of the system, and the
sizes of the data transferred in the messages. Our static analysis has two
main parts: (1) we over-approximate the sizes of the data at the program
points where tasks are spawned and where the results are received, and
(2) we over-approximate the total number of messages. Knowledge of the
transmission data sizes is essential, among other things, to predict the
bandwidth required to achieve a certain response time, or conversely, to
estimate the response time for a given bandwidth. A prototype imple-
mentation in the SACO system demonstrates the accuracy and feasibility
of the proposed analysis.

1 Introduction

Distributed systems are increasingly used in industrial processes and products,
such as manufacturing plants, aircraft and vehicles. For example, many control
systems are decentralized using a distributed architecture with different process-
ing locations interconnected through buses or networks. The software in these
systems typically consists of concurrent tasks which are statically allocated to
specific locations for processing, and which exchange messages with other tasks
at the same or at other locations to perform a collaborative work. A decen-
tralized approach is often superior to traditional centralized control systems in
performance, capability and robustness. Systems such as control systems are of-
ten critical: they have strict requirements with respect to timing, performance,
and stability. A failure to meet these requirements may have catastrophic con-
sequences. To verify that a given system is able to provide the required quality
of control, an essential aspect is to accurately predict the communication traffic
among its distributed components, i.e., the amount of data to be transmitted
along any execution of the distributed system.

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 104–119, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Static Inference of Transmission Data Sizes in Distributed Systems 105

In order to estimate the transmission data sizes, we need to keep track of
the amount of data transmitted in two ways: (1) by posting asynchronous tasks
among the locations, this requires building a message in which the name of the
task to execute and the data on which it executes are included; (2) by retrieving
the results of executing the tasks, in our setting, we use future variables [8] to
synchronize with the completion of a task and retrieve the result. This paper
presents a static analysis to infer a safe over-approximation of the transmission
data sizes required by both sources of communications in a distributed system.
Our method infers three different pieces of information:

1. Inference of distributed locations. As locations can be dynamically created,
in a first step, we need to find out the locations that compose the system
and give them abstract names which will allow us to track communications
among them during the analysis. This is formalized by means of points-to
analysis [14,13], a typical analysis in pointer-based languages which infers
the memory locations that a reference variable can point to. In our case,
locations are referenced from reference variables, thus the use of points-to
analysis.

2. Inference of number of tasks spawned. The second step is to infer an upper
bound on the number of tasks spawned between each pair of distributed
locations. This is a problem which can be solved by a generic cost anal-
ysis framework such as [3]. In particular, we need to use a symbolic cost
model which allows us to annotate the caller and callee locations when a
task is spawned in the program. In essence, if we find an instruction a!m(x)
which spawns a task m at location a, the cost model symbolically counts
c(this, a,m) ∗ 1, i.e., it counts that 1 task executing m is spawned from the
current location this at a. If the task is spawned within a loop that performs
n iterations, the analysis will infer c(this, a,m) ∗ n.

3. Inference of data sizes. Finally, we need to infer the sizes of the arguments
in the task invocations. Typically, size analysis [7] infers upper bounds on
the data sizes at the end of the program execution. Here, we are interested
in inferring the sizes at the points in which tasks are spawned. In particular,
given an instruction a!m(x), we aim at over-approximating the size of x when
the program reaches the above instruction. If the above instruction can be
executed several times, we aim at inferring the largest size of x, denoted α(x),
in all executions of the instructions. Altogether, c(this, a,m) ∗α(x) is a safe
over-approximation of the data size transmission due to such instruction.
The analysis will infer such information for each pair of locations in the
system that communicate, annotating also the task that was spawned.

We demonstrate the accuracy and feasibility of the presented cost analysis by
implementing a prototype analyzer within the SACO system [2], a static analyzer
for distributed concurrent programs. Preliminary experiments on some typical
applications for distributed programs show the feasibility and accuracy of our
analysis. The tool can be used on-line from a web interface available at
http://costa.ls.fi.upm.es/web/saco.

http://costa.ls.fi.upm.es/web/saco

106 E. Albert et al.

The remaining of the paper is organized as follows. The next section will
present the distribution model that we use to formalize the analysis. Sec. 3
defines the concrete notion of transmission data size that we then want to over-
approximate by means of static analysis. Sec. 4 presents the static analysis that
carries out the three steps mentioned above. Sec. 5 reports on preliminary ex-
perimental results and Sec. 6 concludes.

2 Distribution Model

We consider a distributed programming model with explicit locations and based
on the actor-based paradigm [1]. Each location represents a processor with a
procedure stack and an unordered queue of pending tasks. Initially all processors
are idle. When an idle processor’s task queue is not empty, some task is selected
for execution. Besides accessing its own processor’s global storage, each task can
post tasks to the queues of any processor (message passing), including its own,
and synchronize with the completion of tasks. This synchronization is done by
means of future variables [8]. When a task completes or when it is awaiting for
another task to terminate, its processor becomes idle again, chooses the next
pending task, and so on. This distribution model captures the essence of the
concurrency model of languages like X10 [12], Erlang [6], Scala [10] or ABS [11].

2.1 Syntax

Regarding data, the language contains basic types B (int, bool . . .) and paramet-
ric data types D. Data types are declared by listing all the possible constructors
C and their arguments, a syntax similar to functional languages like Haskell :

(Type variable) N ::= a, b, c . . .
(Basic type) B ::= int | bool | void | . . .
(Data type declaration) Dd ::= data D(N1, . . . , Nn) = C1 | . . . | Ck (n ≥ 0, k > 0)
(Constructor) C ::= Co(N1, . . . , Nn) (n ≥ 0)
(Ground type) T ::= B | D(T1, . . . , Tn) (n ≥ 0)

Example 1 (Data types). We define integer lists and general binary trees as:
data List = Nil | Cons(int, List)
data Tree(a) = Leaf(a) | Branch(a,Tree(a),Tree(a))

Using the previously declared constructors the list l = [1, 2, 3] is defined as
l = Cons(1, Cons(2, Cons(3,Nil))), and the binary tree t with 2 at the root, 1 as left
child and 3 as right child as t = Branch(2, Leaf(1), Leaf(3))

Apart from data type declarations, the language allows the definition of functions
based on pattern matching as in functional languages—e.g. head, tail, length, etc.
This syntax has been omitted for the sake of conciseness, as it does not play an
important role for presenting the analysis.

Regarding programs, the number of distributed locations needs not be known
a priori (e.g., locations may be virtual). Syntactically, a location will therefore

Static Inference of Transmission Data Sizes in Distributed Systems 107

1 main (List l , int s)
{

2 x = newLoc;
3 y = newLoc;
4 z = newLoc;
5 x! extend(l,s);
6 }
7

8 int foo (int i) {
9 return i ;

10 }

11 void extend (List l,int s) {
12 while(s > 0) {
13 Fut f= y!add(l,5) ;
14 await f ?;
15 l = f!get;
16 z! process(l);
17 s = s − 1;
18 }
19 }

20 List add (List l , int e) {
21 List r = Cons(e,l);
22 return r ;
23 }
24 void process (List le) {
25 while(le != Nil) {
26 Int h = head(le)
27 y! foo(h);
28 le = tail (le);
29 }
30 }

Fig. 1. Running Example

be similar to an object and can be dynamically created using the instruction
newLoc. The program is composed by a set of methods finished with a return

instruction M ::=T m(T̄ x̄){s; return x; } where s takes the form:
s ::= s; s | x = e | x = f .get | if e then s else s | while e do s | b = newLoc

| f = b!m(x̄) | await f?
The notation T̄ is used as a shorthand for T1, . . . , Tn, and similarly for other

names. The special location identifier this denotes the current location. For the
sake of generality, the syntax of expressions e is left open. The semantics of
future variables f and concurrency instructions is explained below.

Example 2 (running example). Fig. 1 shows a method main which creates three
distributed locations, x, y and z, and receives a list of integers, l, and one integer, s.
In the example, we assume that x, y and z are global variables and thus accessible
to all methods. Also, we have omitted return instructions in void tasks. Method
main spawns task extend at location x in Line 5 (L5 for short) and sends data l and
x (thus there is data transmission at this point). Method extend extends l with s
new elements. To do this, it invokes method add at location y that extends the list
with a new element (L13). The await instruction at L14 awaits for the termina-
tion of add. The result is retrieved using the get instruction at L15, where besides
we assign the result to l. Within the loop of extend, tasks executing process are
spawned at location z. The execution of process traverses the list in the while loop
and invokes foo for each element in l. An important point to note is that, besides
the data transmitted when asynchronous tasks are spawned, the instruction get
also involves data transmission to retrieve the results.

2.2 Semantics

A program state has the form loc1‖ . . . ‖locn, denoting the currently existing
distributed locations. Each location is a term loc(lid , tid ,Q) where lid is the
location identifier, tid is the identifier of the active task which holds the location’s
lock or ⊥ if the lock is free, and Q is the set of tasks at the location. Only one
task, which holds the location’s lock, can be active (running) at this location. All

108 E. Albert et al.

(newLoc)

t = tsk(tid ,m, l, 〈x = newLoc; s〉), fresh(lid1) , l′ = l[x → lid1]
loc(lid, tid, {t} ∪ Q) �

loc(lid , tid , {tsk(tid ,m, l′, s)} ∪ Q) ‖ loc(lid1,⊥, {})

(async)

l(x) = lid1, fresh(tid1), l1=buildLocals(z̄,m1), l′ = l[f → 〈tid1,⊥,⊥〉]
loc(lid, tid , {tsk(tid ,m, l, 〈f=x!m1(z); s〉)} ∪ Q) ‖ loc(lid1, ,Q′) �

loc(lid , tid , {tsk(tid ,m, l′, s)}∪Q) ‖
loc(lid1, , {tsk(tid1,m1, l1, body(m1)) ∪ Q′})

(return)

l(x) = v, l1(f) = 〈tid ,⊥,⊥〉, l′1 = l1[f → 〈tid , true,⊥〉]
loc(lid, tid , {tsk(tid ,m, l, 〈return x〉)} ∪ Q) ‖ loc(lid1, , {tsk(tid1, , l1,)} ∪ Q1) �

loc(lid ,⊥, {tsk(tid ,m, l, ε(v))} ∪ Q) ‖ loc(lid1, , {tsk(tid1, , l′1,)} ∪ Q1)

(await-t)

t = tsk(tid ,m, l, 〈await f?; s〉), l(f) = 〈tid1, true, 〉
loc(lid , tid , {t} ∪ Q) � loc(lid , tid , {tsk(tid ,m, l, s)} ∪ Q)

(await-f)

t = tsk(tid ,m, l, 〈await f?; s〉), l(f) = 〈tid1,⊥,⊥〉
loc(lid , tid , {t} ∪ Q) � loc(lid ,⊥, {tsk(tid ,m, l, 〈await f?; s〉)} ∪ Q)

(get-r)

l(f) = 〈tid1, true,⊥〉, l′ = l[x → v, f → 〈tid1, true, v〉]
loc(lid, tid , {tsk(tid , m, l, 〈x = f .get; s〉)} ∪ Q) ‖ loc(lid1, , {tsk(tid1, , l1, ε(v))} ∪ Q1) �

loc(lid , tid , {tsk(tid ,m, l′, s)} ∪ Q) ‖ loc(lid1, , {tsk(tid1, , l1, ε(v))} ∪ Q1)

(get-l)

l(f) = 〈tid1, true, v〉, v �= ⊥, l′ = l[x → v]
loc(lid , tid , {tsk(tid ,m, l, 〈x = f .get; s〉)} ∪ Q) � loc(lid , tid , {tsk(tid ,m, l′, s)} ∪ Q)

(select)

select(Q) = tid , t = tsk(tid , , , s)∈Q, s �= ε(v)
loc(lid ,⊥,Q)�loc(lid , tid ,Q)

Fig. 2. (Summarized) Semantics for Distributed Execution

other tasks are pending, waiting to be executed, or finished, if they terminated
and released the lock. A task is a term tsk(tid ,m, l, s) where tid is a unique task
identifier, m is the name of the method executing in the task, l is a mapping
from local variables to their values and s is the sequence of instructions to be
executed or s = ε(v) if the task has terminated with value v.

The execution of a program starts from a method m in an initial state S0 with a
single (initial) location with identifier 0 executing task 0 of the form S0=loc(0, 0,
{tsk(0,m, l, body(m))}). Here, l maps parameters to their initial values and local
references to null (standard initialization), and body(m) refers to the sequence of
instructions in the method m. The execution proceeds from the initial state S0

by selecting non-deterministically one of the locations and applying the semantic
rules depicted in Fig. 2. The treatment of sequential instructions is standard and
thus omitted. The operational semantics � is given in a rewriting-based style
where at each step a subset of the state is rewritten according to the rules as
follows. In newloc, the active task tid at location lid creates a location lid1 which
is introduced to the state with a free lock. async spawns a new task (the initial
state is created by buildLocals) with a fresh task identifier tid1 which is added to

Static Inference of Transmission Data Sizes in Distributed Systems 109

the queue of location lid1—the case lid=lid1 is analogous, the new task tid1 is
simply added to the queue Q of lid . The future variable f allows synchronizing
the execution of the current task with the completion of the created task, and
retrieving its result. The association of the future variable to the task is stored
in the local variables table l′(f)=〈tid1,⊥,⊥〉: the future variable f is linked to
task tid1, the task has not terminated yet (first ⊥ in the tuple), and the result
of the invocation is not available yet (second ⊥). The rule return is used when
a task tid executes a return instruction. The terminating task tid finishes the
execution with value v (its sequence of instructions is set to ε(v)) and the calling
task tid1 is notified that tid has terminated by setting to true the termination
flag of the corresponding future variable—the case lid=lid1 is analogous, but
storing the termination flag in a task in queue Q. In await-t, the future variable
we are awaiting for points to a finished task (it has the termination flag set to
true in the future variable f stored in the local variable table l) and await can be
completed. Otherwise, await-f yields the lock so that any other task of the same
location can take it. The rule get-r retrieves the returning value from the task
tid1 linked to the future variable f , if the corresponding task has terminated and
the value has not been retrieved before. If tid1 has not terminated, it will wait
for the value without yielding the lock. If the returning value has been retrieved
from the remote object already, it is copied locally from the future variable f by
means of get-l. Finally, in rule select an idle location takes a non-finished task
to continue the execution—the function select(Q) non-deterministically returns
a task identifier occurring in Q.
Example 3 (semantics). The following sequence is the beginning of a trace of
the program in Fig. 1 starting from main(Cons(1,Cons(2,Nil)),7). For the sake of
conciseness we represent lists with square brackets—[1,2]—instead of construc-
tors and we use le, la and lp to denote initial local mappings, stressing only the
important changes to them at each step.

S0 ≡ loc(0, 0, {tsk(0,main, lm, 〈x = newLoc; . . .〉)}) �newloc×3

S3 ≡ loc(0, 0, {tsk(0,main, lm[x �→ 1, y �→ 2, z �→ 3], 〈x!extend(l,s)〉)}) ‖ loc(1,⊥, {})
‖ loc(2,⊥, {}) ‖ loc(3,⊥, {}) �async

S4 ≡ loc(0, 0, . . .) ‖ loc(1,⊥, {tsk(1, extend, le, 〈while (s > 0){. . .}〉)})
‖ loc(2,⊥, {}) ‖ loc(3,⊥, {}) �select S5 �

S6 ≡ loc(0, 0, . . .) ‖ loc(1, 1, {tsk(1, extend, le, 〈Fut f=y!add(l,5); . . .〉)})
‖ loc(2,⊥, {}) ‖ loc(3,⊥, {}) �async

S7 ≡ loc(0, 0, . . .) ‖ loc(1, 1, {tsk(1, extend, le[f �→ 〈2,⊥,⊥〉], 〈await f?;. . . 〉)})
‖ loc(2,⊥, {tsk(2, add, la, 〈List r = Cons(e,l);return r〉)}) ‖ loc(3,⊥, {}) �select

S8 ≡ loc(0, 0, . . .)) ‖ loc(1, 1, {tsk(1, extend, le, 〈await f?;. . . 〉)})
‖ loc(2, 2, {tsk(2, add, la, 〈List r = Cons(e,l);return r〉)}) ‖ loc(3,⊥, {}) � S9 �return

S10 ≡ loc(0, 0, . . .) ‖ loc(1, 1, {tsk(1, extend, le[f �→ 〈2, true,⊥〉], 〈await f?;. . . 〉)})
‖ loc(2,⊥, {tsk(2, add, la, ε([5, 1, 2]))}) ‖ loc(3,⊥, {}) �await-t+get-r

S12 ≡ loc(0, 0, . . .) ‖ loc(2,⊥, {tsk(2, add, la, ε([5, 1, 2]))}) ‖ loc(3,⊥, {}) ‖ loc(1, 1,

{tsk(1, extend, le[f�→〈2, true, [5, 1, 2]〉, l �→[5, 1, 2]], 〈z!process(l);. . . 〉)}) �async

S13 ≡ loc(0, 0, . . .) ‖ loc(2,⊥, . . .) ‖ loc(3,⊥, {tsk(3,⊥, lp, body(process))})
loc(1, 1, {tsk(1, extend, le, 〈s = s - 1;. . . 〉)})

110 E. Albert et al.

From state S0 to S3 we create the three locations x(1), y(2) and z(3) applying
rule newloc. In S3 a new task extend is spawned using rule async, that is
placed in the queue of location 1. Since location 1 is idle but the queue contains
the non-finished task 2 in S4, it takes the lock (select) and executes the first
iteration of the loop. In S6 and S7 a new task add is spawned to location 2 and
it takes the lock. Note that in S7 the local mapping is extended to store that
the future variable f is linked to task 2, which is not finished yet (⊥). Task 2
finishes immediately by assigning variable r and returning: it stores the final
value [5,1,2] and notifies task 1 (return). Since task 2 is finished in S10 the
await and get instructions can proceed (rules await-t and get-r resp.), yielding
to S12. Finally, task 2 spawns a new task process in location 3.

3 The Notion of Transmission Data Size

The transmission data size of a program execution is the total amount of data
that is moved between locations. There are two situations that generate data
movement between locations: a) when a task is invoked (in this case it sends a
message to the destination location containing all the arguments); and b) when
the returning value of a task invocation is retrieved (it sends a message contain-
ing that value). Therefore, only these two transitions of states will contribute
to the transmission data size of a program execution. In order to define this
notion we will consider that state transitions are decorated with transmission
data size information: S1 �d

(lid1 ,lid2 ,m) S2, meaning a transmission of d units of
data from object lid1 to lid2 through m. Transitions that do not generate data
transmission will be decorated as S1 �0

ε S2. Since we are considering an abstract
representation of data by means of functional types, we will focus on units of
data transmitted instead of bits, which depends on the actual implementation
and is highly platform-dependent. Concretely, we assume that the cost of trans-
mitting a basic value or a data type constructor is one unit of data. This size
measure is known as term size. However, the static analysis we propose later
would work also with any other mapping from data types to corresponding sizes
(given by means of a function α such as the one below).

Definition 1 (term size). The term size of value v—α(v)—is defined as:

α(v) =

{
1 +

∑n
i=1 α(vi) if v = Co(v1 . . . vn),

1 otherwise.

Example 4 (size measures). Considering the term size measure, the size of the
list l = Cons(1, Cons(2, Cons(3,Nil))) is α(l) = 7 (4 data constructors and 3
integers) and the size of the tree t = Branch(2, Leaf(1), Leaf(3)) is α(t) = 6 (3
constructors plus 3 integers).

Definition 2 (decorated step). A step S1 � S2 using rule R from Fig. 2 is
decorated as follows:

Static Inference of Transmission Data Sizes in Distributed Systems 111

– If R = async then the step is decorated as S1 �d
(lid ,lid1 ,m) S2, where d =

I +
∑

z∈z α(l(z)), and m is the method invoked in the call. The constant
I is the size of establishing the communication, and we add the size of all
the arguments passed to the destination location. Note that a task invocation
inside the same location (lid = lid1) will not generate any transmission, so
in these cases the decoration is S1 �0

ε S2.

– If R = get-r then the decorated step is S1 �d
(lid2 ,lid1 ,m) S2, where d =

I + α(v), v corresponds to the returned value, and m is the method that
returned v. As before, if lid = lid1 then there is no transmission and the
decoration is S1 �0

ε S2.

– If R ∈ {newloc, return, await-t, await-f, get-l, select}, then the step
does not move any data, so it is decorated with an empty label: S1 �0

ε S2.

Observe that rules await-t, await-f and get-l use local variables only, and
therefore do not perform any remote communication. Rule return notifies the
termination of a method to the caller location, although its cost is included in
the size I for establishing the communication included in rule async.

Definition 3 (transmission data size of a trace). Given a decorated trace
T ≡ S0 �d1

o1 S1 �d2
o2 . . .�dn

on Sn, the transmission data size of T—trans(T)—is
defined as:

trans(T) =
n∑

i=1

di

Example 5 (transmission data size). The decorated trace from Ex. 3 is:

Td ≡ S0 �0
ε S1 �0

ε S2 �0
ε S3 �I+6

(0,1,extend) S4 �0
ε S5 �0

ε S6 �I+6
(1,2,add) S7 �0

ε S8

�0
ε S9 �0

ε S10 �0
ε S11 �I+7

(2,1,add) S12 �I+7
(1,3,process) S13

From S3 to S4 it sends a message (I) from location 0 to 1 containing the argu-
ments of the call: l=Cons(1,Cons(2,Nil)) and s=7, where α(l) = 5 and α(7) = 1.
Similarly, from S6 to S7 it sends a message from location 1 to 2 with the ar-
guments l and 5 for task add. In State S9 it executes a return instruction, that
notifies the termination to the caller, but its size is already considered in the
call (S6). The returning value from the call to add is actually received from the
caller at S12, by means of a message from location 2 to 1 with the returning value
r = Cons(5,Cons(1,Cons(2,Nil))), α(r) = 7. Finally, the invocation of task process
in state S12 sends a message from location 1 to 3 containing the argument l =
Cons(5,Cons(1,Cons(2,Nil))), of size 7. Considering this decorated trace, the total
transmission data size is:

trans(Td) = (I + 6) + (I + 6) + (I + 7) + (I + 7) = 4∗I + 26

In other words, the transmission data size is 4∗I units of data for creating 4
messages, and 26 units of data for the transmission of values.

112 E. Albert et al.

The transmission data size of a trace takes into account all the invocation
and returning messages, independently of the location involved. In our setting
we have several locations that can be executing in different machines or CPUs,
so it is interesting to limit transmission data size to some locations. We define
a restriction operator over traces to consider only data-moving steps between
certain locations.

Definition 4 (trace restriction). Given a decorated trace T , two location
identifiers, l1 and l2, a method m, the trace restriction T |

l1
m−→l2

is defined as:

T |
l1

m−→l2
= {Si−1 �di

(l1,l2,m) Si | Si−1 �di

(l1,l2,m) Si ∈ T }

4 Automatic Inference of Transmission Data Sizes

The analysis has three main parts which are introduced in the following sections:
Sec. 4.1 is encharged of inferring the locations in the distributed system and using
them to define the cost centers on which the cost analysis is based; Sec. 4.2
infers upper bounds on the number of tasks spawned along any execution of
the program; Sec. 4.3 over-approximates the sizes of the data transmitted when
spawning asynchronous calls and when retrieving their results.

4.1 Inference of Distributed Locations

Since locations can be dynamically created, we need an analysis that abstracts
them into a finite abstract representation, and that tells us which (abstract)
location a reference variable is pointing-to. Points-to analysis [14,13,15] solves
this problem. It infers the set of memory locations that a reference variable
can point-to. Different abstractions can be used and our method is parametric
on the chosen abstraction. Any points-to analysis that provides the following
information with more or less accurate precision can be used (our implementation
uses [13]): (1) O, the set of abstract locations; (2) a function pt(pp, v) that, for
a given program point pp and variable v, returns the set of abstract locations in
O to which v may point.

Example 6 (distributed locations). Consider the main method shown in Fig. 1
which creates three locations x, y and z at L2, L3 and L4, and which are ab-
stracted, respectively, as ox, oy and oz. By using the points-to analysis we obtain
the following set of objects created along the execution of main, O = {ox, oy, oz}.
Besides, the points-to analysis can infer information for the local variables at
the level of program point, that is, pt(L11, this) = {ox}, pt(L13, y) = {oy},
pt(L16, z) = {oz}, pt(L20, this) = {oy}, pt(L24, this) = {oz}, pt(L26, y) = {oy}
or pt(L8, this) = {oy}.
The distributed locations that the points-to analysis infers are used to define
the cost centers [3] that the resource analysis will use. The notion of cost center
is used to attribute the cost of each instruction to the location that executes it.
In the above example, we have three locations which lead to three cost centers,
c(ox), c(oy) and c(oz).

Static Inference of Transmission Data Sizes in Distributed Systems 113

4.2 Inference of Number of Tasks Spawned

Our analysis builds upon well-established work on cost analysis [9,16,3]. Such
analyses are based on a generic notion of resource which can be instantiated to
measure different metrics such as number of executed instructions, amount of
memory created, number of calls to methods, etc. In particular, the cost model
is used to determine the type of resource we are measuring. Traditionally, a cost
model is a functionM : Instr → N which, for each instruction in the program,
returns a natural number which represents its cost. As examples of cost models
we could have: for counting the number of instructions executed by a program,
the cost model counts one unit for any instruction, i.e.,Mi(ins) = 1; for counting
the number of calls, we can useMc(ins) = 1 if ins ≡ x!m(); and 0 otherwise.
When the analysis uses cost centers, the cost model additionally defines to which
cost center the cost must be attributed. For instance, when counting number of
instructions, we have thatM(i) =

∑
o∈pt(pp,this) c(o)∗1, where pp is the program

point of instruction i, i.e., the instruction is accumulated in all locations that it
can be executed (this is given by the locations to which the this reference can
point).

In what follows, we use the cost analyzer as a black box in the following way.
Given a methodm(x̄) and a cost model, the cost analyzer gives us an upper bound
for the total cost (for the resource specified in the cost model) of executing m
of the form Um(x̄) =

∑n
i=1 cci∗Ci, where cci is a cost center and Ci is a cost

expression that bounds the cost of the computation carried out by the cost center
cci. If one is interested in studying the computation performed by one particular
cost center ccj , we simply replace all cci with i �= j by 0 and ccj by 1. In order to
obtain the cost expression Ci, the cost analyzer needs to over-approximate the
number of iterations that loops perform, and infer the maximum sizes of data.
For the sake of this paper, we do not need to go into the technical details of
this process. To infer an upper bound on the number of tasks spawned by the
program, we simply have to define a number of tasks cost model and use the cost
analyzer as a black box.

Definition 5 (number of tasks cost model). Given an instruction ins at
program point pp, we define the number of tasks cost model,Mt(ins) as a func-
tion which returns c(o1, o2,m) if ins ≡ f=y!m() ∧ o1 ∈ pt(pp, this) ∧ o2 ∈
pt(pp, y) ∧ o1 �= o2, and 0 otherwise.

The main feature of the above cost model is that we use an extended form of cost
centers which are triples of the form c(o1, o2,m), where o1 is the object that is
executing, o2 is the object responsible for executing the call, and m is the name
of the invoked method. These cost centers are symbolic expressions that will be
part of the upper bound computed by the analyzer. Let us see an example.

Example 7 (number of tasks). For the code in Fig. 1, cost analysis infers that the
number of iterations of the loop in extend (at L12) is bounded by the expression
nat(s), where nat(e) returns e if e > 0 and 0 otherwise. Since the size of l is
increased within the loop at L12, the maximum number of iterations for the

114 E. Albert et al.

loop at L25 is produced in the last call to process. Recall that l represents the
term size of the list l (see Def. 1), and it counts 2 units for each element in the list.
Therefore, each iteration of the loop at L25 increments the term size of the list in
2 units and, consequently, the last call to process is done with a list of size l+2∗s.
The loop in process (L25) traverses the list received as argument consuming
2 size units per iteration. Therefore, the expression (l + 2 ∗ s)/2 = l/2 + s
bounds the number of iterations of such loop. As process is called nat(s) times,
nat(s) ∗ nat(l/2 + s) bounds the number of times that the body of the loop at
L25 is executed. Then, by applying the number of tasks cost model we obtain
the following expression that bounds the number of tasks spawned:

Ut
extend(l, s) = c(ox, oy, add) ∗ nat(s)+

c(ox, oz, process) ∗ nat(s)+
c(oz, oy, foo) ∗ (nat(s) ∗ nat(l/2+s))

From the upper bounds on the tasks spawned, we can obtain a range of useful
information: (1) If we are interested in the number of communications for the
whole program, we just replace all expressions c(o1, o2,m) by 1. (2) Replacing
all cost centers of the form c(o, ,)/c(, o,) by 1 for the object o and the re-
maining ones by 0, we obtain an upper-bound on the number of tasks spawned
from/in o. We use, respectively, Um|o→ and Um|→o to refer to the UB on the
outgoing/incoming tasks. (3) Replacing c(o1, o2,) by 1 for selected objects and
the remaining ones by 0, we can see the tasks spawned by o1 in o2, denoted
by Um|o1→o2 . (4) If we are interested in a particular method p, we can replace
c(, , p) by 1 and the rest by 0, we use Um| p−→ to denote it.

Example 8 (number of tasks restriction). Given the upper bound of Ex. 7, the
number of tasks spawned from ox to oy is captured by replacing c(ox, oy,) (the
method is not relevant) by 1 and the rest by 0. Then, we obtain the expression
U t
extend|ox→oy = nat(s), which shows that we have one task for each iteration of

the loop at L13. We can also obtain an upper bound on the number of tasks
from oz to oy, U t

extend|oz→oy = nat(s)∗nat(l/2+s). The number of tasks spawned
using method foo are captured by U t

extend| process−−−−→ = nat(s).

4.3 Inference of Amount of Transmitted Data

Our goal now is to infer, not only the number of tasks spawned, but also the sizes
of the arguments in the task invocation and of the returned values. Formally, this
is done by extending the previous cost model to include data sizes as well. We
rely on two auxiliary functions. Given a variable x at a certain program point,
function α(x) returns the term size of this variable at this point, as defined in
Sec. 3. Besides, after spawning a task, we are interested in knowing whether the
result of executing the task is retrieved, and in such case we accumulate the size
of the return value. This information is computed by a may-happen-in-parallel
analysis [5] which allows us to know to which task a future variable is associated.
Thus, we can assume the existence of a function hasGet(pp) which returns if the
result of the task spawned at program point pp is retrieved by a get instruction.

Static Inference of Transmission Data Sizes in Distributed Systems 115

Now, we define a new cost model that counts the sizes of the data transferred
in each communication by relying on the two functions above.

Definition 6 (data sizes cost model). Given a program point pp we define
the cost model Md(ins) as a function which returns sc(ins) if pp : ins ≡ r =
y!m(x) ∧ o1 �= o2 ∧ o1 ∈ pt(pp, this) ∧ o2 ∈ pt(pp, y), and 0, otherwise; where

sc(ins)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c(o1, o2,m)∗(I +
∑
xi∈x

nat(α(xi)))+c(o2, o1,m)∗(I+nat(α(r))) if hasGet(pp)

c(o1, o2,m)∗(I +
∑
xi∈x

nat(α(xi))) otherwise

Observe that the above cost model extends the one in Def. 5 as it extends the
number of tasks cost model with the sizes of the data transmitted. Intuitively,
as any call always transfers its input arguments, their size is always included
(second case). However, the size of the returned information is only included
when there exists a get instruction that retrieves this information (first case).
In each case, we include the size for sending the messages I. Note that the cost
centers reflect the direction of the transmission, c(o1, o2,m) corresponds to a
transmission from o1 to o2 through a call to m, whereas c(o2, o1,m) corresponds
to the information returned by o2 in response to a call to m spawned by o1. If
needed, call and return cost centers can be distinguished by marking the method
name, e.g., m for calls and mr for returns. As already mentioned, nat denotes
the positive value of an expression. We wrap the size of each argument using
nat because this way the analyzer treats them as an expression whose cost we
want to maximize (the technical details of the maximization operation can be
found in [4]). Therefore, the upper bound inferred by the analyzer using this cost
model already provides the overall information (i.e., number of tasks spawned
and maximum size of the data transmitted).

Example 9 (data sizes cost model). Let us see the application of the cost model
to the calls at L16, L13 and L26. At L16 we have the instruction z!process(l).
As the program does not retrieve any information from process(l), the function
hasGet(L16) returns false, and thus we only include the calling data. Then,
using the points-to information in Ex. 6, the application ofMd at L16 returns:
Md(z!process(l)) = c(ox, oz, process) ∗ I + nat(α(l)). As l is a data structure and
it is modified within the loop, α(l), returns the term size of l. Observe that
the expression captures, not only the objects and the method involved in the
call within the cost center, but also the amount of data transferred in the call,
nat(α(l)). The application ofMd to the call at L13, f = y!add(l,5), returns the
expression:

Md(f=y!add(l0,5)) = c(ox, oy, add) ∗ (I + nat(α(l0)) + nat(α(5)))+
c(oy, ox, add) ∗ (I + nat(α(f)))

In this case, at L15 we have a get for the call at L13, so hasGet(L13) = true.
Note that we use l0 to refer to the value of l at the beginning of the loop and l
to refer to the value of the list after calling add. The application of α(5) returns

116 E. Albert et al.

1, as it is a basic type (counting as one constructor). The call at L27 returns the
expression c(oy, oz , foo) ∗ (I + nat(α(h))).

As we have explained above, the size of a data structure might depend on
the input arguments that in turn can be modified along the program execution.
Consequently, if we are in a loop, for the same program point, the amount of data
transferred in one call can be different for each iteration of the loop. Soundness
of the cost analysis ensures that it provides the worst possible size in such case.
Technically, it is done by maximizing [4] the expressions inside nat within their
calling context.

Example 10 (data sizes upper bound). Once the cost model is applied to all
instructions in the program, we obtain a set of recursive equations which define
the transmission data sizes within the locations in the program. After solving
such equations using [4], we obtain the following expression which defines the
transmission data sizes of any execution starting from extend, denoted by Ud

extend:

Ud
extend(l, s) = c(ox, oy , add) ∗ nat(s) ∗ (I + nat(l + s ∗ 2− 2) + 1)+ 1©

c(oy , ox, add) ∗ nat(s) ∗ (I + nat(l + s ∗ 2))+ 2©
c(ox, oz, process) ∗ nat(s) ∗ (I + nat(l + s ∗ 2))+ 3©
c(oz, oy , foo) ∗ (nat(s) ∗ nat(l/2+s)) ∗ (I + 1) 4©

The expression at 1© includes the transmission from ox to oy . The worst case
size of the list at this point is nat(l+s∗2−2), this is because initially the list has
size nat(l) and at each iteration of the loop, the size is increased in method add
by two elements: Cons and an integer value. As the loop performs s iterations,
in the last invocation to add it has length l + (s − 1) ∗ 2. This size is assumed
for all loop iterations (worst case size), hence we infer that the maximum data
size transmitted from ox to oy is nat(s) ∗ (I + nat(l+ s ∗ 2− 2) + 1), the 1 is due
to the second argument of the call (an integer). At 2©, ox receives from oy the
same list, but including the last element, that is nat(l + s ∗ 2). The same list is
obtained at 3©. In 4©, the cost is constant in all iterations (1 integer).

As already mentioned in Sec. 4.2, the fact that cost centers are symbolic expres-
sions allows us to extract different pieces of information regarding the amount of
data transferred between the different abstract locations involved in the commu-
nications. With Ud we can infer, not only an upper-bound on the total amount
of data transferred along the program execution, but also the size of the data
transferred between two objects, or the incoming/outgoing data sent/received
by a particular object.

Example 11 (data sizes restriction). From Ud
extend(l, s), using the cost centers as

we have explained in Ex. 8, we can extract different types of information about
the data transferred. For instance, we can bound the size of the outgoing data
from location x:

Ud
extend(l, s)|ox→ = nat(s) ∗ (I + nat(l + s ∗ 2− 2) + 1) + nat(s) ∗ (I + nat(l + s ∗ 2))

Or the incoming data sizes for the location y:

Ud
extend(l, s)|→oy = nat(s) ∗ (I + nat(l + s ∗ 2− 2) + 1) + (nat(s) ∗ nat(l/2+s)) ∗ (I + 1)

Static Inference of Transmission Data Sizes in Distributed Systems 117

Table 1. Experimental results (times in ms)

Nodes Methods Pairs

Benchmark loc #c T %n
M %n

m %n
a %m

M %m
m %m

a %p
M %p

m %p
a

BBuffer 200 17 829 25.7 0.6 16.3 43.9 0.1 6.2 7.3 0.0 0.7

MailServer 119 13 693 30.0 4.4 15.4 27.3 0.5 10.0 8.7 0.0 0.6

Chat 302 10 171 40.5 7.5 20.0 12.7 0.1 3.0 9.6 0.0 1.1

DistHT 146 9 1204 48.0 3.0 18.7 40.7 0.3 10.0 8.0 0.0 0.9

BookShop 366 10 3327 58.7 3.9 23.9 23.6 0.1 8.3 29.5 0.0 1.5

PeerToPeer 263 19 62575 27.7 0.1 15.6 20.6 0.1 5.8 5.9 0.0 0.5

Theorem 1 (soundness). Let P be a program and l1, l2 location identifiers.
Let O be the object names computed by a points-to analysis of P . Let o1, o2 be
the abstractions of l1, l2 in O. Then, given a trace T from P with arguments x
we have that

trans(T |
l1

m−→l2
) ≤ Ud

P (x)|o1 m−→o2
.

5 Experimental Results

We have implemented our analysis in SACO [2] and applied it to some typical
examples of distributed systems: BBuffer, a bounded-buffer for communicating
several producers and consumers; MailServer, a client-server distributed system;
Chat, a chat application; DistHT, a distributed hash table; BookShop, a web shop
client-server application; and PeerToPeer, a peer-to-peer network with a set of
interconnected peers. Experiments have been performed on an Intel Core i7 at
3.4GHz with 8GB of RAM, running Ubuntu 12.04.

We have applied our analysis and evaluated the upper bound expressions for
different combinations of concrete input values so as to obtain some quantita-
tive information about the analysis. Table 1 summarizes the results obtained.
Columns Benchmark and loc show, resp. the name and the number of program
lines of the benchmark. Column #c displays the number of locations identified
by the analysis. Column T shows the time to perform the inference of the trans-
mission data sizes. We have studied the transmission data sizes among each pair
of locations identified by the points-to analysis. We have studied data transmis-
sion from three points of view: (1) from a location with the rest of the program,
(2) from a method, and (3) among pairs of locations. In case (1), we try to
identify potential bottlenecks in the communication, i.e., those locations that
produce/consume most of the data in the benchmark. Also, we want to observe
locations that do not have much communication. In the former, such locations
should have a fast communication channel, while in the latter we can still have
a good response time with slower bandwidth conditions. Columns %n

M , %n
m, %n

a

show, respectively, the percentage of the location that accumulates more traffic
(incoming + outgoing) w.r.t. the total traffic in the system, for the location with
less traffic, and the average for the traffic of all locations. Similarly, columns
%p

M , %p
m, %p

a show, for case (3), which is the percentage of the total traffic

118 E. Albert et al.

transmitted by the pair of locations that have more traffic, by the pair with
less traffic and the average between the traffic of all pairs, respectively. Finally,
regarding case (2), columns under Methods show similar information but taking
into account the task that performs the communication, i.e., the percentage of
the traffic transmitted by the task that transmits more (resp., less) amount of
data, %m

M (resp., %m
m), and the average of the transmissions performed by each

task (%m
a).

We can observe in the table that our analysis is performed in a reasonable time.
One important issue is that we only have to perform the analysis once, and the
information can be extracted later by evaluating the upper bound with different
parameters and focusing in the communications of interest. In the columns for
the locations, we can see that all benchmarks are relatively well distributed. The
average of the data transmitted per location is under 25% for all benchmarks.
BookShop is the benchmark which could have a communication bottleneck as it
accumulates in a single location 58.7% of the total traffic. Regarding methods,
it is interesting to see that for all benchmarks no method accumulates more
than 45% of the total traffic. Moreover, the table shows that in all benchmarks
there is at least one method that requires less than 0.5%, in most cases this
method (or methods) is an object constructor. Regarding pairs of locations, in
all benchmarks there is at least one pair of locations that do not communicate,
%p

m = 0 for all benchmarks. This is an expected result, as it is quite often to
have pairs of locations which do not communicate in a distributed program. Our
experiments thus confirm that transmission among pairs of locations is relatively
well distributed, as in most benchmarks, except for BookShop, the pair with
highest traffic requires less than 10% of the total traffic.

6 Conclusions

We have presented a static analysis to soundly approximate the amount of data
transmitted among the locations of a distributed system. This is an important
contribution to be able to infer the response times of distributed components. In
particular, if one knows the bandwidth conditions among each pair of locations,
we can infer the time required to transmit the data and to retrieve the result.
This time should be added to the time required to carry out the computation
at each location, which is an orthogonal issue. Conversely, we can use our anal-
ysis to establish the bandwidth conditions required to ensure a certain response
time. Technically, our analysis is formalized by defining a new cost model which
captures only the data transmission aspect of the application. This cost model
can be plugged into a generic cost analyzer for distributed systems, that directly
returns an upper bound on the transmission data sizes, without requiring any
modification to the other components of the cost analyzer.

Acknowledgments. Thisworkwas fundedpartially by theEUprojectFP7-ICT-
610582 ENVISAGE: Engineering Virtualized Services (http://www.envisage-
project.eu) and by the Spanish projects TIN2008-05624 and TIN2012-38137.

Static Inference of Transmission Data Sizes in Distributed Systems 119

References

1. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge (1986)

2. Albert, E., Arenas, P., Flores-Montoya, A., Genaim, S., Gómez-Zamalloa, M.,
Martin-Martin, E., Puebla, G., Román-Dı́ez, G.: SACO: Static Analyzer for Con-
current Objects. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS,
vol. 8413, pp. 562–567. Springer, Heidelberg (2014)

3. Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M., Puebla, G.: Cost Analysis
of Concurrent OO programs. In: Yang, H. (ed.) APLAS 2011. LNCS, vol. 7078,
pp. 238–254. Springer, Heidelberg (2011)

4. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-Form Upper Bounds in
Static Cost Analysis. Journal of Automated Reasoning 46(2), 161–203 (2011)

5. Albert, E., Flores-Montoya, A.E., Genaim, S.: Analysis of May-Happen-in-Parallel
in Concurrent Objects. In: Giese, H., Rosu, G. (eds.) FMOODS/FORTE 2012.
LNCS, vol. 7273, pp. 35–51. Springer, Heidelberg (2012)

6. Armstrong, J., Virding, R., Wistrom, C., Williams, M.: Concurrent Programming
in Erlang. Prentice Hall (1996)

7. Cousot, P., Halbwachs, N.: Automatic Discovery of Linear Restraints Among Vari-
ables of a Program. In: POPL. ACM Press (1978)

8. de Boer, F.S., Clarke, D., Johnsen, E.B.: A Complete Guide to the Future. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg
(2007)

9. Gulwani, S., Mehra, K.K., Chilimbi, T.M.: Speed: Precise and Efficient Static Es-
timation of Program Computational Complexity. In: Proc. of POPL 2009, pp.
127–139. ACM (2009)

10. Haller, P., Odersky, M.: Scala actors: Unifying thread-based and event-based pro-
gramming. Theor. Comput. Sci. 410(2-3), 202–220 (2009)

11. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A Core
Language for Abstract Behavioral Specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011)

12. Lee, J.K., Palsberg, J.: Featherweight x10: a core calculus for async-finish paral-
lelism. SIGPLAN Not. 45(5), 25–36 (2010), 1693459

13. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized Object Sensitivity for
Points-to Analysis for Java. ACM Trans. Softw. Eng. Methodol. 14, 1–41 (2005)

14. Shapiro, M., Horwitz, S.: Fast and Accurate Flow-Insensitive Points-To Analysis.
In: Proc. of POPL 1997, Paris, France, pp. 1–14. ACM (January 1997)

15. Sridharan, M., Bod́ık, R.: Refinement-based context-sensitive points-to analysis for
Java. In: PLDI, pp. 387–400 (2006)

16. Zuleger, F., Gulwani, S., Sinn, M., Veith, H.: Bound analysis of imperative pro-
grams with the size-change abstraction. In: Yahav, E. (ed.) SAS 2011. LNCS,
vol. 6887, pp. 280–297. Springer, Heidelberg (2011)

Fully Abstract Operation Contracts�

Richard Bubel, Reiner Hähnle, and Maria Pelevina

Department of Computer Science
Technical University of Darmstadt

{bubel,haehnle}@cs.tu-darmstadt.de, m.pelevina@gmail.com

Abstract. Proof reuse in formal software verification is crucial in pres-
ence of constant evolutionary changes to the verification target. Contract-
based verification makes it possible to verify large programs, because each
method in a program can be verified against its contract separately. A
small change to some contract, however, invalidates all proofs that rely
on it, which makes reuse difficult. We introduce fully abstract contracts
and class invariants which permit to completely decouple reasoning about
programs from the applicability check of contracts. We implemented tool
support for abstract contracts as part of the KeY verification system and
empirically show the considerable reuse potential of our approach.

1 Introduction

A major problem in deductive verification of software is to keep up with changes
of the specification and implementation of the target code. Such changes are
inevitable, simply because of bug fixes, but also because in industrial practice
requirements are constantly evolving. The situation is exacerbated when, as it
is often the case, software systems possess a high degree of variability (e.g., in
product line-based development).

To redo most proofs and, in the process of doing this, to re-examine most
specifications is expensive and slow, even in the ideal case when no user in-
teraction with the verification tool is required. Therefore, a research question
in formal verification that is of the utmost practical relevance is how to mini-
mize the amount of verification effort necessary after changes in the underlying
specification and implementation of the target code.

Like most state-of-art formal verification approaches, we assume to work in
a contract-based [1] setting, where the granularity of specification units is at
the level of one method. The most important advantage of method contracts is
the following notion of compositionality: assume a program consists of methods
m ∈ M , each specified with a contract Cm. Now we prove that each method m
satisfies its contract. During this proof, calls inside m to other methods n are
handled by appying their contract Cn instead of inlining the code of n. This
works fine as long as there are no recursive method calls.1 This contract-based

� This work has been partially supported by EC FP7 Project No. 610582 Envisage.
1 There are ways to extend this methodology to recursive method calls, but to keep
the presentation simple, we explicitly exclude recursion in this paper. It is an issue
that is orthogonal to the techniques discussed here.

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 120–134, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Fully Abstract Operation Contracts 121

verification approach is implemented in many state-of-art verification systems,
including KeY [2].

In the context of contract-based verification, the problem of keeping up with
target code changes can be formulated as follows: assume we have successfully
verified a given piece of code p. Now, one of the methodsm called in p is changed,
i.e., m’s contract Cm in general is no longer valid. Therefore, Cm cannot be used
in the proof of p which is accordingly broken and must be redone with the new
contract of m. If m occurs in many places in p, this becomes very expensive.

In previous work [3] we presented a novel approach to mitigate the problem
by introducing the notion of an abstract contract. Abstract contracts do not pro-
vide concrete pre- or postconditions, but only placeholders for them. At the same
time, abstract contracts can be used in a verification system exactly in the same
manner as standard concrete contracts. Even though the proofs resulting from
abstract contracts can (most of the times) not be closed, we still end up with par-
tial proofs whose open goals are pure first-order. These open proofs (or just the
open goals) can be cached, reused, and then verified for different instantiations
for the placeholders. In the present paper we make three contributions:

1. A crucial part of each method contract is its assignable clause, a list of refer-
ences to memory locations whose value might be affected by the execution of
that method. Obviously, the assignable clause is necessary for sound usage of
contracts. In [3] we imposed the restriction that assignable clauses could not
be abstract, they had to be explicitly given. This is a serious restriction, be-
cause it assumes that the changeable locations of a method cannot increase
when its specification is changed. In the present paper we lift this restriction
and, therefore, arrive at a notion of fully abstract method contracts.

2. The specification of a software system usually consists not only of contracts,
but also of class invariants.2 We extended our approach to cover abstract
invariants.

3. The evaluation done in [3] was limited by the fact that we had no native
implementation of our approach, but had to simulate the effects with suit-
ably hand-crafted inputs. Now we have native tool support, integrated into
the KeY verification system for the full Java fragment supported by KeY.
Specifically, we evaluate our approach with two case studies. One of them
was taken unaltered from a different project [4] to demonstrate that our
approach works well in situations not “tailored” to it.

The paper is structured as follows: Section 2 introduces the necessary notions
and theoretical background. Section 3 introduces fully abstract contracts and
explains their usage. We evaluate our approach with two case-studies in Section 4
and conclude the paper with a discussion about related work (Section 5) and a
conclusion (Section 6).

2 Invariants can be simulated by contracts, but specifications become much more suc-
cinct with them, so it is well worth to support them directly.

122 R. Bubel, R. Hähnle, and M. Pelevina

2 Background

Here we present the background required to understand our specification and
verification approach. Our programming language is sequential Java without
floats, garbage collection or dynamic class loading. The specification approach
follows the well-known design-by-contract paradigm [1].

Example 1. Our running example is a software fragment that computes whether
a student passed a course. The concrete passing criteria give rise to different
program versions. The basic version, where a student passes when she has passed
the exam and all labs, is shown in Fig. 1.

The program consists of a single class StudentRecord which implements two
methods. Method passed() is the main method determining whether the stu-
dent has passed. It contains a loop to determine whether all labs were finished
successfully and it invokes method computeGrade() to access the exam grade.

class StudentRecord {
2 int exam; // exam result

int passingGrade ; // minimum grade necessary to pass the exam
4 boolean[] labs = new boolean[10] ; // labs

6 //@ public invariant exam>= 0 && passingGrade>= 0 && ;
//@ public invariant labs . length == 10;

8

/∗@ public normal behavior
10 @ requires true ;

@ ensures \result == exam;
12 @ assignable \nothing; @∗/

int computeGrade(){ return exam; }
14

/∗@ public normal behavior
16 @ ensures \result ==> exam>= passingGrade ;

@ ensures \result ==> (\forall int x; 0<= x && x < 10; labs [x]) ;
18 @ assignable \nothing; @∗/

boolean passed() {
20 boolean enoughPoints = computeGrade() >= passingGrade ;

boolean allLabsDone = true ;
22 for (int i = 0; i < 10; i++) {

allLabsDone = allLabsDone && labs [i] ;
24 }

return enoughPoints && allLabsDone;
26 }

}

Fig. 1. Implementation and specification of class StudentRecord in its basic version

Fully Abstract Operation Contracts 123

As specification language we use the Java Modeling Language (JML) [5]. JML
allows one to specify instance invariants and method contracts. Instance invari-
ants express properties about objects which are established by the constructor
and must be preserved throughout the lifetime of an object. More precisely, if an
instance invariant holds at the beginning of a method, then it must hold again
when it returns, even though it may be violated during its execution.

Example 2. In JML invariants are specified following the keyword ���������

and a boolean expression. The class StudentRecord has two invariants on line 6–
7. The first specifies lower bounds for the grade of an exam and the minimum
grade required to pass the exam. The second invariant fixes the number of labs
to ten. In addition, there are implicit invariants, because JML has a “non-null by
default” semantics: for each field with a reference type there is an invariant spec-
ifying that it is non-null. All invariants are implicitly conjunctively connected
into a single instance invariant (per class).

JML method contracts are specified as comments that appear just before
the method they relate to. A JML method contract starts with the declaration
of a specification case such as �����	
������� or ����������	
�������.
For ease of presentation we consider only method contracts specifying the nor-
mal behaviour, i.e., normal termination of the method without throwing an un-
caught exception. The generalisation to exceptional behaviour specification cases
is straightforward. We introduce JML method contracts by way of example:

Example 3. The contract for method computeGrade() has one normal behaviour
specification case which consists of a precondition (keyword ��������) and a
postcondition (keyword �������). The actual condition is a boolean expression
following the keyword. JML specification expressions are boolean Java expression
plus quantifiers and a few extra operators. For instance, in postconditions it is
possible to access the return value of the method using the keyword \����	� or
to refer to the value of an expression e in the prestate of the method by \�	�(e).

Also part of the specification case definition is the ��������	� clause (also
called modifies clause) which determines the set of locations that may be changed
at most by the method to which the contract applies.

In the contract of computeGrade() the precondition is simply ���� which is
the default and can be omitted. By default the invariant for the callee object
(i.e., the object referred to by ���) is implicitly added as a precondition. The
postcondition states that the return value of the method equals the value of the
field containing the exam grade and the assignable clause specifies the empty
set of locations which expresses that the method is not allowed to modify any
object field or array element. A method may have several specification cases of
the same kind with the obvious semantics.

Definition 1 (Program location). A program location is a pair (o, f) con-
sisting of an object o and a field f .

A program location is an access point to a memory location that a program
might change. Next we formalize method contracts and invariants:

124 R. Bubel, R. Hähnle, and M. Pelevina

Definition 2 (Method contracts, invariants). Let B denote a Java class.
An (instance) invariant for B is a formula invB(v_this, v_heap) where v_this,
v_heap are program variables that refer to the current ��� object and the heap
under which the invariant is evaluated.

Let T m(S1 a1, . . . , Sn an) be a method with return type T and parameters ai
of type Si. A method contract

Cm = (pre, post ,mod)

for m consists of

– a formula pre specifying the method’s precondition;
– a formula post specifying the method’s postcondition;
– an assignable clause mod which is a list of terms specifying the set of program

locations that might be changed by method m.

Each constituent of a contract may refer to method parameters ā = (a1, . . . , an),
the callee using the program variable v_this, and the current Java heap using the
program variable v_heap. In addition, the postcondition can refer to the result
value of a method using the program variable result as well and to the value
of a term/formula in the methods prestate by enclosing it using the transformer
function old.

When verifying whether a method satisfies its contract, we ensure that, if a
method is invoked in a state where the invariant of the ��� object as well as the
method’s precondition holds, then in the final state after the method execution,
both, its postcondition and the instance invariant are satisfied. Stated as a Hoare
triple [6] it looks as follows:

{inv ∧ pre} o.m(ā) {inv ∧ post}

If the method under verification invokes another method n of class B with con-
tract (pre, post,mod), then, during the deductive verification process, we reach
the point where we need to use n’s contract and we need to apply the corre-
sponding operation contract rule:

useMethodContractCn

� inv(heap, o) ∧ pre(heap, o, ā)
� P (heap) ∧ post(U(heap), heap, o, ā)→ Q(U(heap))

{P (heap)} o.n(ā) {Q(heap)}
,

where U(heap) := U(mod)(heap) is a transformer that rewrites the heap rep-
resentation such that all knowledge about the values of the program locations
contained in mod is removed and everything else is unchanged.

The method contract rule generates two proof obligations: the first ensures
that the precondition of n and the invariant of o hold. The second checks whether
the information in the poststate is sufficient to prove the desired property.

A few words on practical issues concerning the transformer U . Such a function
can be realized in different ways, depending on the underlying program logic.

Fully Abstract Operation Contracts 125

In our implementation we use an explicit heap model which is formalized as a
theory of arrays. The transformer U is then realized with the help of a function
anon(h1,mod, h2) which is axiomatized to return a heap that coincides with h1
for all program locations not in mod and with h2 otherwise. The transformer
then introduces a new skolem constant hsk of the heap datatype and returns the
new heap anon(heap,mod, hsk).

3 Abstract Operation Contracts

Abstract operation contracts have been introduced in [3] for the modeling lan-
guage ABS [7] by some of the co-authors of this paper. The original version
required the assignable clause to be concrete. This section presents a fully ab-
stract version of operation contracts for the Java language including an abstract
assignable clause and abstract instance invariants. We introduce first the notion
of placeholders which are declared and used by abstract operation contracts:

Definition 3 (Placeholder). Let B be a class and let T m(T1 p1, . . . , Tn pn)
denote a method declared in B. A placeholder is an uninterpreted predicate or
function symbol of one of the following four types:

Requires placeholder is a predicate R(Heap, B, T1, . . . , Tn) which depends on
the heap at invocation time, the callee (the object represented by ��� in m),
and the method arguments.

Ensures placeholder is a predicate E(Heap,Heap, B, T, T1, . . . , Tn) which de-
pends on the heap in the method’s final state, the heap at invocation time
(to be able to refer to old values), the callee, the result value of m, and the
method arguments.

Assignable placeholder is a function A(Heap, B, T1, . . . , Tn) with return type
LocSet representing a set of locations; the set is dynamic and may depend
on the heap at invocation time, the callee and the method arguments.

(Instance) invariant placeholder is a predicate I(Heap, B) which may de-
pend on the current heap and the instance (the ��� object) for which the
invariant should hold.

Placeholders allow to delay the actual instantiation of a contract or invariant.
We extend the notion of invariant and contract from the previous section by
introducing placeholders for the various constituents.

Definition 4 (Extended invariant). An extended instance invariant InvB :=
(IB,Decls , defI) of class B consists of

– a unique invariant placeholder IB for class B;
– a list Decls declaring the variables v_heap of type Heap and v_this of type B;
– a formula defI which specifies the semantics of IB and that can make use of

the two variables declared in Decls.

We refer to formula IB(v_heap, v_this) as an abstract invariant.

126 R. Bubel, R. Hähnle, and M. Pelevina

Definition 5 (Extended operation contract). An extended operation con-
tract Cm = (Decls , Ca, defs)m for a method m consists of

– Decls a list of variable and placeholder declarations;
– Ca := (prea, posta,moda) the abstract operation contract where the different

constituents adhere to Def. 6;
– defs a list of pairs (P, defP) with a formula defP for each declared placeholder
P ∈ Decls.

Definition 6 (Abstract clauses). The clauses for abstract preconditions prea ,
abstract postconditions posta , and abstract assignable clauses moda are defined
by the following grammar:

prea ::= R | I ∧ prea | prea ∧ prea

posta ::= E ∧ I | E ∧ prea | I ∧ prea

moda ::= A | moda ∪moda

where R,E,A and I are atomic formulas with a requires, ensures, assignable or
invariant placeholder as top level symbol.

To render extended invariants and operation contracts within JML we added
some keywords which we explain along our running example:

Example 4. The following method contract for computeGrade() expresses se-
mantically the same as the one shown in Fig. 1:

/*@ ���	�� �����	
�������

@ ��������
��� computeGradeR;

@ �������
��� computeGradeE;

@ ��������	�
��� computeGradeA;

@

@ ��� computeGradeR = ����;

@ ��� computeGradeE = �����	� == exam;

@ ��� computeGradeA = �������;

@*/

The contract is divided into two sections: the abstract section is in the upper sec-
tion and uses the keywords��������
���, �������
���, and ��������	�
���.
They are mainly used to declare the placeholders’ names. The concrete section
of the contract consists of the last three lines which provide the definition of the
placeholders.

For invariants we do not modify the syntax at all. The placeholder name is
generated automatically and the specified ��������� expression is used as its
definition. In our logical framework based on KeY, invariants are modelled as
JML model fields and the specified invariants have been interpreted as represents
clauses. Hence, adding support for abstract invariants was straightforward.

The advantage of having extended invariants and operation contracts is that
the abstract contract can be used instead of a concrete contract when applying

Fully Abstract Operation Contracts 127

the operation contract rule. It is also not necessary to modify the operation
contract rule which guarantees the soundness of our approach as long as the
original calculus was sound.

By using only abstract contracts, we can construct a proof for the correctness
of a method m without committing to any concrete instantiation of an abstract
contract neither for m itself nor for any of the methods it invokes. Once the
verification conditions for the whole program are computed (e.g., by symbolic
execution, constraint propagation, etc.), possibly followed by additional simpli-
fication steps, the open proof (goals) can be saved and cached.

To support abstract assignable clauses the underlying calculus must provide
means to represent the modified locations within its logic. As mentioned in the
previous section, our formalisation uses the explicit function anon which takes
a location set as argument. Instead of providing a concrete set we use simply its
placeholder.

To finish the proof that a method m adheres to its concrete specification we
can reuse the cached proof (goals) without the need to redo the program trans-
formation and simplification steps (as long as the implementation of m has not
changed). It suffices to replace the introduced placeholders by their actual def-
initions and then continue proof search as usual. Replacing the placeholders by
their definitions can be achieved, for example, by translating each placeholder
definition into a rewrite rule of the underlying calculus which is added as an
axiom.

The saving potential of our approach is particularly strong when verifying
software with a high variability. In addition, our approach does not necessarily
require to adhere to the Liskov principle [8] for specification but allows for a more
flexible approach. We discuss the advantages in detail in the following Section.

4 Evaluation

We evaluate empirically the benefits offered by abstract contracts by measuring
the amount of possible proof reuse. The evaluation is based on an implementation
of our ideas in KeY. Our conjecture is that using abstract contracts results in
considerable savings in terms of proof effort.

We evaluated our approach using two case studies of which each is imple-
mented in several variants. The different variants have a common top-level in-
terface, but differ in the implementation as well as in the concrete specification
of called sub-routines. The abstract specification of each sub-routine, however,
stays the same.

4.1 Description

The first case study Student Record has been already introduced before as a run-
ning example. We implemented several variants which differ in the implementa-
tion and specification of method computeGrade(), but keep method passed()

128 R. Bubel, R. Hähnle, and M. Pelevina

unchanged. The three variants differ in whether and how bonus credits are con-
sidered when computing the final exam grade. Version 3 is the version which
supports no bonus points at all.

The second case study is taken from [4] and implements two classes, Account
and Transaction. It is implemented in five versions. The most basic variant
is shown in (Fig. 2). The class Account implements a simple bank account
with method ���	��� update(��� x) for deposit/withdrawal operations (de-
pending on the sign of parameter x). In addition, there is an inverse operation
���	��� undoUpdate(��� x). Both methods signal whether the operation was
successful with their return value. In the basic variant these methods perform
the update unconditionally (for instance, it is not checked whether the account
has enough savings).

The bank account can also be locked to prevent the execution of any opera-
tion. Locking is supported by methods lock(), unLock() and isLocked(). The
behavior of these methods is not varied among the different variants.

Transactions between accounts are performed by calls to method transfer

implemented by class Transaction. Method transfer() performs a number
of pre-checks to ensure that the transaction will be successful before actually
performing the transfer. For instance, it is checked that the balance of the source
account is not negative, none of the accounts is locked, etc.

The versions differ in specification and/or implementation. The second version
keeps the implementation of all classes unchanged, but simplifies the contract of
method transfer() to cover only the case where a transaction is unsuccessful
because of a negative amount to be transferred. In the third version an over-
draft limit for accounts is supported, i.e., accounts are only allowed to be in
the negative until a certain limit. This feature requires changes in the imple-
mentation and specification of methods update() and undoUpdate(). Method
transfer() needs not to be modified with respect to the basic version. The
fourth version extends the third version by adding a daily withdrawal limit.
Again changes are necessary for the methods update() and undoUpdate(). The
fifth version is again an extension of the third adding a fee to account opera-
tions. The changes affect the implementation and specification for the methods
update(), undoUpdate() and the specification of method transfer().

4.2 Results

For each program in the case studies we conducted three experiments with (i)
fully abstract contracts, (ii) partially abstract contracts (the assignable clause is
concrete, this correpsonds to the setup in [3]), and (iii) concrete contracts.

In each run where the specification was fully or partially abstract, the first
step was to construct a partial proof that eliminates the verified programs and
only uses abstract contracts and abstract invariants. This partial proof was then
cached and reused to actually verify that the different variants satisfy their
specifications. In each experiment with concrete contracts only, we directly ran
the verification process on each program version.

Fully Abstract Operation Contracts 129

������ ����� Account {

�	
 balance = 0;

������	 lock = ����;

/*@ ������ 	��������������

@ �	����� (balance == ����(balance) + x) && ������
;

@ �����	���� balance;

@*/

������	 update(�	
 x) { balance = balance + x; ��
��	
���; }

/*@ ������ 	��������������

@ �	����� (balance == ����(balance) - x) && ������
;

@ �����	���� balance;

@*/

������	 undoUpdate(�	
 x) { balance = balance - x; ��
��	
���; }

/*@ ������ 	��������������

@ �	����� ������
 ==
���.lock;

@*/

������	 /*@ ���� @*/ isLocked() { ��
��	 lock; }

}

������ ����� Transaction {

/*@ ������ 	��������������

@ �������� dest != 	��� && source != 	��� && source != destination;

@ �	����� ������
 ==> (����(dest.balance) + amount == dest.balance);

@ �	����� ������
 ==> (����(source.balance) - amount == source.balance);

@ �����	���� ������
��	�;

@*/

������ ������	 transfer(Account source, Account dest, �	
 amount) {

� (source.balance < 0) amount = -1;

� (dest.isLocked()) amount = -1;

� (source.isLocked()) amount = -1;

�	
 take, give;

� (amount != -1) { take = amount * -1; give = amount; }

� (amount <= 0) { ��
��	 ����; }

� (!source.update(take)) { ��
��	 ����; }

� (!dest.update(give)) {

source.undoUpdate(take);

��
��	 ����;

}

��
��	
���;

}}

Fig. 2. Implementation and specification of the classes Account and Transfer (Ver. 1)

We measured the complexity of the cached proof and the final proofs in terms
of nodes and branches (given in parenthesis). The results for the case studies
are shown in Table 1 and 2. The column Savings shows the amount of proof
effort that has been saved (in terms of nodes) by reusing the cached proof.
The row Total shows the aggregated proof effort (in nodes) for all program
versions. For the experiments using concrete contracts the total equals the sum
of the number of nodes for the different versions, i.e., total =

∑n
i=1 #nodesvi

130 R. Bubel, R. Hähnle, and M. Pelevina

Table 1. Results for StudentRecord example

Version Completely abstract Partially Abstract Concrete

Partial Full Savings Partial Full Savings Full
proof proof proof proof proof

v1
514 (9)

1191 (25) 43%
519 (9)

1145 (25) 45% 919 (21)

v2 1806 (40) 28% 1782 (40) 29% 1419 (36)

v3 1009 (24) 51% 937 (24) 55% 904 (22)

Total 2978 2826 3242

with n being the number of program versions. In case of the experiments using
partially or completely abstract contracts, we compute the total as for concrete
contracts, but subtract n − 1 times the size of the partial proof, i.e., total =
(
∑n

i=1 #nodesvi)− (n− 1) · nodespartial , to account for the proof reuse.

Table 2. Results for Account example

Version Completely abstract Partially Abstract Concrete

Partial Full Savings Partial Full Savings Full
proof proof proof proof proof

v1

1390 (55)

2066 (57) 67%

1408 (55)

1865 (55) 75% 1035 (63)

v2 1882 (57) 74% 1723 (55) 82% 972 (63)

v3 2435 (59) 57% 1896 (55) 74% 1352 (68)

v4 2719 (59) 51% 1975 (55) 71% 1461 (68)

v5 2701 (61) 51% 2073 (57) 68% 1601 (69)

Total 6243 3900 6421

The results show that we achieve a reduced overall effort for fully abstract
contracts as well as for partially abstract contracts. For the considered examples,
the savings are most significant for partially abstract contracts. The reason is
that here assignable clause is concrete, so the application of the contract rule
keeps more information about the heap, while in the fully abstract case almost all
information about the heap is wiped out. As a consequence, branches checking
for NullPointerExceptions, etc., cannot be closed in the abstract proofs.

Another reason why fully abstract contracts save perhpas less than expected is
that in the case studies the assignable clauses in the concrete case contain only
few locations and are mostly stable among the different versions. In the final
version of this paper we will include a case study that shows more variability

Fully Abstract Operation Contracts 131

Table 3. Analysis of the StudentRecord example (specified with concrete contracts)

Version Symbolic execution Full proof Ratio

v1 442 (11) 919 (21) 48%

v2 494 (11) 1419 (36) 35%

v3 410 (11) 904 (22) 45%

with respect to the set of assignable locations to illustrate the savings potential
of fully abstract contracts.

Tables 3 and 4 show the ratio of proof nodes concerned with symbolic execu-
tion (i.e., program transformation) as compared to first-order reasoning. It can
be directly seen that this ratio and the observed savings are strongly correlated.

Table 4. Analysis of the Account example (specified with concrete contracts)

Version Symbolic execution Full proof Ratio

v1 842 (53) 1035 (63) 81%

v2 818 (53) 972 (63) 84%

v3 1037 (56) 1352 (68) 77%

v4 1147 (56) 1461 (68) 79%

v5 1141 (56) 1601 (69) 71%

Fig. 3 illustrates the amortized proof complexity of the Account example:
the proof effort spent for the partial proof is distributed uniformly among the
proofs of all five program versions (in case of partial and fully abstract contracts,
respectively). We can see that using partial contracts perform best, while using
fully abstract contracts leads in most cases to a total proof effort comparable to
concrete ones. The reason is that when using abstract assignable clauses most
knowledge about the heap after a method invocation is lost, prohibiting certain
simplifications and creating more complex first-order problems. Currently, we
investigate whether using SMT solvers for first-order goals (instead of the built-in
KeY prover) can help. This should definitely be the case, provided that by using
SMT solvers one can achieve a considerable speed-up for first-order inference.

132 R. Bubel, R. Hähnle, and M. Pelevina

v1 v2 v3 v4 v5

Fig. 3. Amortized proof complexity (in nodes) for the Account example

5 Related Work

As our work builds upon previous work [3] of some of the co-authors this is also
the closest related work. As stated in the introduction, in the present paper we
added abstract assignable clauses, abstract invariants, a proper implementation
in KeY, plus an evaluation.

Proof reuse has been studied, for instance, in [9,10] where proof replay is
proposed to reduce the verification effort. The old proof is replayed and when this
is no longer possible, a new proof rule is chosen heuristically: in [9] a similarity
measure is utilized, while in [10] differencing operations are applied. The proof
reuse focusses only on the proof structure and does not take the specification
into account like our work.

In [11], a set of allowed changes to evolve an OO program is introduced. For
verified method contracts, a proof context is constructed which keeps track of
proof obligations. Program changes cause the proof context to be adapted so
that the proof obligations that are still valid are preserved and new proof goals
are created. Earlier work along the same lines in the context of VCG is [12].

Reasoning by analogy is applied in [13] to reuse problem solving experience
in proof planning. Generalization of proofs [14,15] facilitates to reuse proofs in
different contexts.

For formal software development in the large [16], evolving formal specifica-
tions are maintained by representing the dependencies between formal specifi-
cations and proofs in a development graph. For each modification, the effect
in the development graph is computed such that only invalidated proofs have
to be re-done. In [17], proofs are evolved together with formal specifications. A
set of basic transformation operations for specifications induces the correspond-
ing transformations of the proofs which may include the creation of new proof
obligations.

In [18] it is assumed that one program variant has been fully verified. By
analyzing the differences to another program variant one obtains those proof

Fully Abstract Operation Contracts 133

obligations that remain valid in the new product variant and that need not
be reestablished. In [19] methods are verified based on a contract which makes
assumptions on the contracts of the called methods explicit.

In [20] abstract predicates are defined as abbreviations for specific properties
to enforce modular reasoning in the sense of information hiding. Inside a module
the definition of the abstract properties can be expanded while outside a module
only the abstract predicates can be used. The paper does not use these abstract
predicates to decouple symbolic execution from the application check of contracts
and an application to proof reuse through caching is not considered.

We are not aware of any specification approach that keeps the used contracts
fully abstract by using placeholder functions and predicates, as done here.

6 Conclusion and Future Work

We introduced fully abstract method contracts and class invariants in the context
of contract-based verification. We showed that this idea can be simply realized
with the help of placeholders. We do not assume any specific specification lan-
guage, target language, or program logic. Any sufficiently expressive program
logic can be used for an implementation. We instantiated and implemented the
framework as part of the KeY verification system with Java as target language,
JML as specification language, and dynamic logic as the program logic. An ex-
perimental evaluation showed that considerable proof reuse in the presence of
changes and variations to specifications and code is possible.

In future work, we intend to investigate amount of savings that is achievable
when using mixed contracts, where abstract contracts are enriched with certain
concrete expressions that can be assumed to be stable across different versions
of a program. Examples are formal parameters or field values can never be null,
system values and boundaries, etc. Using this kind of information should allow
us to simplify the cached proofs even further and increase the savings ratio.
Further, we will investigate whether an inverse assignable clause (which lists the
fields a method must not change) makes sense. Such a clause would enable us to
retain more information after a method invocation and allow for a better reuse
potential.

References

1. Meyer, B.: Applying “design by contract”. IEEE Computer 25(10), 40–51 (1992)
2. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-

ware. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)
3. Hähnle, R., Schaefer, I., Bubel, R.: Reuse in software verification by abstract

method calls. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 300–
314. Springer, Heidelberg (2013)

4. Thüm, T., Schaefer, I., Apel, S., Hentschel, M.: Family-based deductive verification
of software product lines. In: Proceedings of the 11th International Conference on
Generative Programming and Component Engineering, GPCE 2012, pp. 11–20.
ACM, New York (2012)

134 R. Bubel, R. Hähnle, and M. Pelevina

5. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P.,
Kiniry, J., Chalin, P., Zimmerman, D.M.: JML Reference Manual. Draft revision
1.235 (September 2009)

6. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(10) (October 1969)

7. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A core
language for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011)

8. Liskov, B., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst. 16(6), 1811–1841 (1994)

9. Beckert, B., Klebanov, V.: Proof reuse for deductive program verification. In: Third
IEEE International Conference on Software Engineering and Formal Methods, pp.
77–86. IEEE Computer Society (2004)

10. Reif, W., Stenzel, K.: Reuse of proofs in software verification. In: Shyamasundar,
R.K. (ed.) FSTTCS 1993. LNCS, vol. 761, pp. 284–293. Springer, Heidelberg (1993)

11. Dovland, J., Johnsen, E.B., Yu, I.C.: Tracking behavioral constraints during object-
oriented software evolution. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part
I. LNCS, vol. 7609, pp. 253–268. Springer, Heidelberg (2012)

12. Grigore, R., Moskal, M.: Edit & verify. In: First-order Theorem Proving Workshop,
Liverpool, UK (2007)

13. Melis, E., Whittle, J.: Analogy in inductive theorem proving. J. Autom. Reason-
ing 22(2), 117–147 (1999)

14. Walther, C., Kolbe, T.: Proving theorems by reuse. Artificial Intelligence 116(1-2),
17–66 (2000)

15. Felty, A.P., Howe, D.J.: Generalization and reuse of tactic proofs. In: Pfenning, F.
(ed.) LPAR 1994. LNCS, vol. 822, pp. 1–15. Springer, Heidelberg (1994)

16. Hutter, D., Autexier, S.: Formal Software Development in MAYA. In: Hutter,
D., Stephan, W. (eds.) Mechanizing Mathematical Reasoning. LNCS (LNAI),
vol. 2605, pp. 407–432. Springer, Heidelberg (2005)

17. Schairer, A., Hutter, D.: Proof transformations for evolutionary formal software de-
velopment. In: Kirchner, H., Ringeissen, C. (eds.) AMAST 2002. LNCS, vol. 2422,
pp. 441–456. Springer, Heidelberg (2002)

18. Bruns, D., Klebanov, V., Schaefer, I.: Verification of software product lines with
delta-oriented slicing. In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS,
vol. 6528, pp. 61–75. Springer, Heidelberg (2011)

19. Damiani, F., Owe, O., Dovland, J., Schaefer, I., Johnsen, E.B., Yu, I.C.: A trans-
formational proof system for delta-oriented programming. In: SPLC (2), pp. 53–60
(2012)

20. Parkinson, M., Bierman, G.: Separation logic and abstraction. In: Proceedings
of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2005, pp. 247–258. ACM, New York (2005)

Statistical Model Checking

Past, Present, and Future

(Track Introduction)

Kim G. Larsen and Axel Legay

1 Aalborg University, Denmark
2 INRIA Rennes – Bretagne Atlantique, France

Abstract. This short note introduces statistical model checking and
gives a brief overview of the Statistical Model Checking, past present and
future session at Isola 2014.

1 Context

Quantitative properties of stochastic systems are usually specified in logics that
allow one to compare the measure of executions satisfying certain temporal prop-
erties with thresholds. The model checking problem for stochastic systems with
respect to such logics is typically solved by a numerical approach [BHHK03,
CG04] that iteratively computes (or approximates) the exact measure of paths
satisfying relevant subformulas; the algorithms themselves depend on the class
of systems being analysed as well as the logic used for specifying the properties.

Another approach to solve the model checking problem is to simulate the
system for finitely many runs, and use hypothesis testing to infer whether the
samples provide statistical evidence for the satisfaction or violation of the speci-
fication. This approach was first applied in [LS91], where it was shown that hy-
pothesis testing could be used to settle probabilistic modal logic properties with
arbitrary precision, leading in the limit to probabilistic bisimulation. More re-
cently [You05a] this approachhas been known as statisticalmodel checking (SMC)
and is based on the notion that since sample runs of a stochastic system are drawn
according to the distribution defined by the system, they can be used to obtain
estimates of the probability measure on executions. Starting from time-bounded
PCTL properties [You05a], the technique has been extended to handle properties
with unbounded until operators [SVA05b], as well as to black-box systems [SVA04,
You05a]. Tools, based on this idea have been built [HLMP04, SVA05a, You05a,
You05b, BDD+11, DLL+11, BCLS13], and have been used to analyse many sys-
tems that are intractable numerical approaches.

The SMC approach enjoys many advantages. First, the algorithms require
only that the system be simulatable (or rather, sample executions be drawn
according to the measure space defined by the system). Thus, it can be applied
to larger class of systems than numerical model checking algorithms, including
black-box systems and infinite state systems. In particular, SMC avoids the
‘state explosion problem’ [CES09]. Second the approach can be generalized to a

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 135–142, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

136 K.G. Larsen and A. Legay

larger class of properties, including Fourier transform based logics. Third, SMC
requires many independent simulation runs, making it easy to parallelise and
scale to industrial-sized systems.

While it offers solutions to some intractable numerical model checking prob-
lems, SMC also introduces some additional problems. First, SMC only provides
probabilistic guarantees about the correctness of the results. Second, the required
sample size grows quadratically with respect to the required confidence of the
result. This makes rare properties difficult to verify. Third, only the simulation of
purely probabilistic systems is well defined. Nondeterministic systems, which are
common in the field of formal verification, are especially challenging for SMC.

2 On Statistical Model Checking

Consider a stochastic system S and a logical property ϕ that can be checked
on finite executions of the system. Statistical Model Checking (SMC) refers to a
series of simulation-based techniques that can be used to answer two questions:
(1) Qualitative: Is the probability for S to satisfy ϕ greater or equal to a certain
threshold? and (2) Quantitative: What is the probability for S to satisfy ϕ? In
contrast to numerical approaches, the answer is given up to some correctness
precision.

In the sequel, we overview two SMC techniques. Let Bi be a discrete random
variable with a Bernoulli distribution of parameter p. Such a variable can only
take 2 values 0 and 1 with Pr[Bi = 1] = p and Pr[Bi = 0] = 1 − p. In our
context, each variable Bi is associated with one simulation of the system. The
outcome for Bi, denoted bi, is 1 if the simulation satisfies ϕ and 0 otherwise.

Qualitative Answer. The main approaches [You05a, SVA04] proposed to answer
the qualitative question are based on sequential hypothesis testing [Wal45]. Let
p = Pr(ϕ). To determine whether p ≥ θ, we can test H : p ≥ θ againstK : p < θ.
A test-based solution does not guarantee a correct result but it is possible to
bound the probability of error. The strength of a test is determined by two
parameters, α and β, such that the probability of accepting K (respectively,
H) when H (respectively, K) holds, called a Type-I error (respectively, a Type-
II error) is less or equal to α (respectively, β). A test has ideal performance
if the probability of the Type-I error (respectively, Type-II error) is exactly α
(respectively, β). However, these requirements make it impossible to ensure a
low probability for both types of errors simultaneously (see [Wal45, You05a]
for details). A solution is to use an indifference region [p1, p0] (given some δ,
p1 = θ − δ and p0 = θ + δ) and to test H0 : p≥ p0 against H1 : p≤ p1. We now
sketch the Sequential Probability Ratio Test (SPRT). In this algorithm, one has
to choose two values A and B (A > B) that ensure that the strength of the test
is respected. Let m be the number of observations that have been made so far.
The test is based on the following quotient:

p1m
p0m

=

m∏
i=1

Pr(Bi = bi | p = p1)
Pr(Bi = bi | p = p0)

=
pdm
1 (1− p1)m−dm

pdm
0 (1− p0)m−dm

,

Statistical Model Checking, Past, Present, and Future 137

where dm =
∑m

i=1 bi. The idea is to accept H0 if p1m

p0m
≥ A, and H1 if p1m

p0m
≤ B.

The algorithm computes p1m

p0m
for successive values of m until either H0 or H1

is satisfied. This has the advantage of minimizing the number of simulations
required to make the decision.

Quantitative Answer. In [HLMP04] Peyronnet et al. propose an estimation pro-
cedure to compute the probability p for S to satisfy ϕ. Given a precision δ, the
Chernoff bound of [Oka59] is used to compute a value for p′ such that |p′− p|≤δ
with confidence 1− α. Let B1 . . . Bm be m Bernoulli random variables with pa-
rameter p, associated to m simulations of the system considering ϕ. Let p′ =∑m

i=1 bi/m, then the Chernoff bound [Oka59] gives Pr(|p′ − p| ≥ δ) ≤ 2e−2mδ2 .
As a consequence, if we take m = �ln(2/α)/(2δ2)�, then Pr(|p′− p|≤δ) ≥ 1−α.

2.1 Rare Events

Statistical model checking avoids the exponential growth of states associated
with probabilistic model checking by estimating probabilities from multiple ex-
ecutions of a system and by giving results within confidence bounds. Rare prop-
erties are often important but pose a particular challenge for simulation-based
approaches, hence a key objective for SMC is to reduce the number and length
of simulations necessary to produce a result with a given level of confidence.
In the literature, one finds two techniques to cope with rare events: importance
sampling and importance splitting.

In order to minimize the number of simulations, importance sampling (see
e.g., [Rid10, DBNR00]) works by estimating a probability using weighted sim-
ulations that favour the rare property, then compensating for the weights. For
importance sampling to be efficient, it is thus crucial to find good importance
sampling distributions without considering the entire state space. In [CZ11] Zu-
liani and Clarke outlined the challenges for SMC and rare-events. A first theory
contribution was then provided by Barbot et al. who proposed to use reduc-
tion techniques together with cross-entropy [BHP12]. In [JLS12], we presented a
simple algorithm that uses the notion of cross-entropy minimisation to find an
optimal importance sampling distribution. In contrast to previous work, our al-
gorithm uses a naturally defined low dimensional vector of parameters to specify
this distribution and thus avoids the intractable explicit representation of a tran-
sition matrix. We show that our parametrisation leads to a unique optimum and
can produce many orders of magnitude improvement in simulation efficiency.

One of the open challenges with importance sampling is that the variance of
the estimator cannot be usefully bounded with only the knowledge gained from
simulation. Importance splitting (see e.g., [CG07]) achieves this objective by es-
timating a sequence of conditional probabilities, whose product is the required
result. In [JLS13] motivated the use of importance splitting for statistical model
checking and were the first to link this standard variance reduction technique
[KM53] with temporal logical. In particular, they showed how to create score
functions based on logical properties, and thus define a set of levels that delimit
the conditional probabilities. In [JLS13] they also described the necessary and

138 K.G. Larsen and A. Legay

desirable properties of score functions and levels, and gave two importance split-
ting algorithms: one that uses fixed levels and one that discovers optimal levels
adaptively.

2.2 Nondeterminism

Markov decision processes (MDP) and other nondeterministic models interleave
nondeterministic actions and probabilistic transitions, possibly with rewards or
costs assigned to the actions [Bel57, Put94]. These models have proved useful
in many real optimisation problems (see [Whi85, Whi88, Whi93] for a survey
of applications of MDPs) and are also used in a more abstract sense to rep-
resent concurrent probabilistic systems (e.g., [BDA95]). Such systems comprise
probabilistic subsystems whose transitions depend on the states of the other
subsystems, while the order in which concurrently enabled transitions execute
is nondeterministic. This order may radically affect the expected reward or the
probability that a system will satisfy a given property. Numerical model check-
ing may be used to calculate the upper and lower bounds of these quantities,
but a simulation semantics is not immediate for nondeterministic systems and
SMC is therefore challenging.

SMC cannot be applied to nondeterministic systems without first resolving
the nondeterminism using a scheduler (alternatively a strategy or a policy). Since
nondeterministic and probabilistic choices are interleaved, schedulers are typi-
cally of the same order of complexity as the system as a whole and may be
infinite.

In [LS14] Jegouret et al presented the basis of the first lightweight SMC
algorithms for MDPs and other nondeterministic models, using an O(1) rep-
resentation of history-dependent schedulers. This solution is based on pseudo-
random number generators and an efficient hash function, allowing schedulers
to be sampled using Monte Carlo techniques. Some previous attempts to apply
SMC to nondeterministic models [BFHH11, LP12, HMZ+12, HT13] have been
memory-intensive (heavyweight) and incomplete in various ways. The algorithms
of [BFHH11, HT13] consider only systems with ‘spurious’ nondeterminism that
does not actually affect the probability of a property. In [LP12] the authors con-
sider only memoryless schedulers and do not consider the standard notion of op-
timality used in model checking (i.e., with respect to probability). The algorithm
of [HMZ+12] addresses a standard qualitative probabilistic model checking prob-
lem, but is limited to memoryless schedulers that must fit into memory and does
not in general converge to the optimal scheduler. Most recently[DJL+], SMC – or
reinforcement learning – has been applied to learn near-cost-optimal strategies
for priced timed stochastic games subject to guaranteed worst-case time bounds.
The method is implemented using a combination of Uppaal-TIGA (for timed
games) and Uppaal SMC and provides three alternatives light-weight datas-
tructures for representing stochastic strategies.

Statistical Model Checking, Past, Present, and Future 139

3 Content of the Session

SMC has been implemented in several prototypes and tools, which includes
Uppaal SMC [DLL+11], Plasma [BCLS13], Ymer [You05b], or COSMOS

[BDD+11]. Those tools have been applied to several complex problems coming
from a wide range of areas. This includes systems biology (see e.g., [Zul14]),
automotive and avionics (see e.g., [BBB+12]), energy-centric systems(see e.g.,
[DDL+13]), or power grids(see e.g., [HH13]).

This isola session discusses several aspects of SMC, which includes: non-
determinism, rare-events, applications to biology/energy-centric/power grids,
and runtime verification procedures suited for SMC. Summary of the contri-
butions:

– In [JLS14], the authors propose new SMC techniques for rare-events. The
main contribution is in extending [JLS13] with new adaptive level algorithms
based on branching simulation, and to show that this permits to get a more
precise estimate of the rare probability. In the authors stud

– In [BLT14], the authors propose to apply simulation-based techniques to
systems whose number of configurations can vary at execution. They develop
a new logic and new SMC techniques for such systems.

– In [BNB+14], the authors provide a complete and detailed comparison of
several SMC model checkers, especially for the real-time setting. The au-
thors present five semantic caveats and give a classification scheme for SMC
algorithms. They also argue that caution is needed and believe that the
caveats and classification scheme in this paper serve as a guiding reference
for thoroughly understanding them.

– In [BGGM14], the authors propose an application of SMC to systems biology.
More precisely, they consider the Wnt-beta-catenin signaling pathway that
plays an important role in the proliferation of neural cells. They analyze
the dynamics of the system by combining SMC with the Hybrid Automata
Stochastic Logic. in

– In [WHL14], the authors consider wireless systems such as satellites and
sensor networks are often battery-powered. The main contributions are (1)
to show how SMC can be used to calculate an upper bound on the attainable
number of task instances from a battery, and (2) to synthesize a battery-
aware scheduler that wastes no energy on instances that are not guaranteed
to make their deadlines.

– In [GPS+14], the authors consider CTL-based measuring on paths, and
generalize the mea- surement results to the full structure using optimal
Monte Carlo estimation techniques. To experimentally validate their frame-
work, they present LTL-based measurements for a flocking model of bird-like
agents.

– In [EHFJ+14], the authors explore the effectiveness and challenges of using
monitoring techniques, based on Aspect-Oriented Programming, to block
adware at the library level, on mobile devices based on Android using miAd-
Blocker. The authors also present the lessons learned from this experience,

140 K.G. Larsen and A. Legay

and we identify some challenges when applying runtime monitoring tech-
niques to real-world case studies.

– In [Hav14], the author presents a form of automaton, referred to as data au-
tomata, suited for monitoring sequences of data-carrying events, for example
emitted by an executing software system. He also presents and evaluate an
optimized external DSL for data automata, as well as a comparable unopti-
mized internal DSL (API) in the Scala programming language, in order to
compare the two solutions.

References

[BBB+12] Basu, A., Bensalem, S., Bozga, M., Delahaye, B., Legay, A.: Statistical ab-
straction and model-checking of large heterogeneous systems. STTT 14(1),
53–72 (2012)

[BCLS13] Boyer, B., Corre, K., Legay, A., Sedwards, S.: PLASMA-lab: A flexible,
distributable statistical model checking library. In: Joshi, K., Siegle, M.,
Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp.
160–164. Springer, Heidelberg (2013)

[BDA95] Bianco, A., De Alfaro, L.: Model checking of probabilistic and nonde-
terministic systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS,
vol. 1026, pp. 499–513. Springer, Heidelberg (1995)

[BDD+11] Ballarini, P., Djafri, H., Duflot, M., Haddad, S., Pekergin, N.: Cosmos:
A statistical model checker for the hybrid automata stochastic logic. In:
QEST, pp. 143–144. IEEE Computer Society (2011)

[Bel57] Bellman, R.: Dynamic Programming. Princeton University Press (1957)

[BFHH11] Bogdoll, J., Ferrer Fioriti, L.M., Hartmanns, A., Hermanns, H.: Partial
order methods for statistical model checking and simulation. In: Bruni,
R., Dingel, J. (eds.) FMOODS/FORTE 2011. LNCS, vol. 6722, pp. 59–74.
Springer, Heidelberg (2011)

[BGGM14] Ballarini, P., Gallet, E., Le Gall, P., Manceny, M.: Formal analysis of the
wnt/β-catenin pathway through statistical model checking. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp. 193–207.
Springer, Heidelberg (2014)

[BHHK03] Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Model-checking
algorithms for continuous-time markov chains. IEEE 29(6), 524–541 (2003)

[BHP12] Barbot, B., Haddad, S., Picaronny, C.: Coupling and importance sampling
for statistical model checking. In: Flanagan, C., König, B. (eds.) TACAS
2012. LNCS, vol. 7214, pp. 331–346. Springer, Heidelberg (2012)

[BLT14] Boyer, B., Legay, A., Traonouez, L.-M.: A formalism for stochastic adap-
tive systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part II.
LNCS, vol. 8803, pp. 160–176. Springer, Heidelberg (2014)

[BNB+14] Bohlender, D., Bruintjes, H., Junges, S., Katelaan, J., Nguyen, V.Y., Noll,
T.: A review of statistical model checking pitfalls on real-time stochastic
models. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS,
vol. 8803, pp. 177–192. Springer, Heidelberg (2014)

[CES09] Clarke, E.M., Emerson, E.A., Sifakis, J.: Model checking: algorithmic ver-
ification and debugging. Commun. ACM 52(11), 74–84 (2009)

Statistical Model Checking, Past, Present, and Future 141

[CG04] Ciesinski, F., Größer, M.: On probabilistic computation tree logic. In:
Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.)
Validation of Stochastic Systems. LNCS, vol. 2925, pp. 147–188. Springer,
Heidelberg (2004)

[CG07] Cérou, F., Guyader, A.: Adaptive multilevel splitting for rare event anal-
ysis. Stochastic Analysis and Applications 25, 417–443 (2007)

[CZ11] Clarke, E.M., Zuliani, P.: Statistical model checking for cyber-physical
systems. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996,
pp. 1–12. Springer, Heidelberg (2011)

[DBNR00] De Boer, P.-T., Nicola, V.F., Rubinstein, R.Y.: Adaptive importance sam-
pling simulation of queueing networks. In: Winter Simulation Conference,
vol. 1, pp. 646–655 (2000)

[DDL+13] David, A., Du, D., Guldstrand Larsen, K., Legay, A., Mikučionis, M.:
Optimizing control strategy using statistical model checking. In: Brat, G.,
Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 352–367.
Springer, Heidelberg (2013)

[DJL+] David, A., Jensen, P.G., Larsen, K.G., Legay, A., Lime, D., Sorensen,
M.G., Taankvist, J.H.

[DLL+11] David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for
statistical model checking of real-time systems. In: Gopalakrishnan, G.,
Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Hei-
delberg (2011)

[EHFJ+14] El-Harake, K., Falcone, Y., Jerad, W., Langet, M., Mamlouk, M.: Block-
ing advertisements on android devices using monitoring techniques. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp.
239–253. Springer, Heidelberg (2014)

[GPS+14] Grosu, R., Peled, D., Ramakrishnan, C.R., Smolka, S.A., Stoller, S.D.,
Yang, J.: Using statistical model checking for measuring systems. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp.
223–238. Springer, Heidelberg (2014)

[Hav14] Havelund, K.: Monitoring with data automata. In: Margaria, T., Steffen,
B. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp. 254–273. Springer,
Heidelberg (2014)

[HH13] Hermanns, H., Hartmanns, A.: An internet inspired approach to power
grid stability. it - Information Technology 55(2), 45–51 (2013)

[HLMP04] Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate
probabilistic model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004.
LNCS, vol. 2937, pp. 73–84. Springer, Heidelberg (2004)

[HMZ+12] Henriques, D., Martins, J.G., Zuliani, P., Platzer, A., Clarke, E.M.: Sta-
tistical model checking for Markov decision processes. In: 2012 Ninth In-
ternational Conference on Quantitative Evaluation of Systems, pp. 84–93.
IEEE (2012)

[HT13] Hartmanns, A., Timmer, M.: On-the-fly confluence detection for statistical
model checking. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013.
LNCS, vol. 7871, pp. 337–351. Springer, Heidelberg (2013)

[JLS12] Jegourel, C., Legay, A., Sedwards, S.: Cross-Entropy Optimisation of Im-
portance Sampling Parameters for Statistical Model Checking. In: Mad-
husudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 327–342.
Springer, Heidelberg (2012)

142 K.G. Larsen and A. Legay

[JLS13] Jegourel, C., Legay, A., Sedwards, S.: Importance splitting for statistical
model checking rare properties. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 576–591. Springer, Heidelberg (2013)

[JLS14] Jegourel, C., Legay, A., Sedwards, S.: An effective heuristic for adaptive
importance splitting in statistical model checking. In: Margaria, T., Stef-
fen, B. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp. 143–159. Springer,
Heidelberg (2014)

[KM53] Kahn, H., Marshall, A.W.: Methods of Reducing Sample Size in Monte
Carlo Computations. Operations Research 1(5), 263–278 (1953)

[LP12] Lassaigne, R., Peyronnet, S.: Approximate planning and verification for
large Markov decision processes. In: Proceedings of the 27th Annual ACM
Symposium on Applied Computing, pp. 1314–1319. ACM (2012)

[LS91] Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf.
Comput. 94(1), 1–28 (1991)

[LS14] Legay, A., Sedwards, S.: Lightweight Monte Carlo verification of Markov
decision processes (submitted, 2014)

[Oka59] Okamoto, M.: Some inequalities relating to the partial sum of binomial
probabilities. Annals of the Institute of Statistical Mathematics 10, 29–35
(1959)

[Put94] Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley-Interscience (1994)

[Rid10] Ridder, A.: Asymptotic optimality of the cross-entropy method for markov
chain problems. Procedia Computer Science 1(1), 1571–1578 (2010)

[SVA04] Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-
box probabilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004.
LNCS, vol. 3114, pp. 202–215. Springer, Heidelberg (2004)

[SVA05a] Sen, K., Viswanathan, M., Agha, G.A.: Vesta: A statistical model-checker
and analyzer for probabilistic systems. In: QEST, pp. 251–252. IEEE Com-
puter Society (2005)

[SVA05b] Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of
stochastic systems. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005.
LNCS, vol. 3576, pp. 266–280. Springer, Heidelberg (2005)

[Wal45] Wald, A.: Sequential tests of statistical hypotheses. Annals of Mathemat-
ical Statistics 16(2), 117–186 (1945)

[Whi85] White, D.J.: Real applications of Markov decision processes. Inter-
faces 15(6), 73–83 (1985)

[Whi88] White, D.J.: Further real applications of Markov decision processes. Inter-
faces 18(5), 55–61 (1988)

[Whi93] White, D.J.: A survey of applications of Markov decision processes. Journal
of the Operational Research Society 44(11), 1073–1096 (1993)

[WHL14] Wognsen, E.R., Hansen, R.R., Larsen, K.G.: Battery-aware scheduling of
mixed criticality systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014,
Part II. LNCS, vol. 8803, pp. 208–222. Springer, Heidelberg (2014)

[You05a] Younes, H.L.S.: Verification and Planning for Stochastic Processes with
Asynchronous Events. PhD thesis, Carnegie Mellon (2005)

[You05b] Younes, H.L.S.: Ymer: A statistical model checker. In: Etessami, K., Ra-
jamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 429–433. Springer,
Heidelberg (2005)

[Zul14] Zuliani, P.: Statistical model checking for biological applications. CoRR,
abs/1405.2705 (2014)

An Effective Heuristic for Adaptive Importance

Splitting in Statistical Model Checking

Cyrille Jegourel, Axel Legay, and Sean Sedwards

{cyrille.jegourel,axel.legay,sean.sedwards}@inria.fr

Abstract Statistical model checking avoids the intractable growth of
states associated with numerical model checking by estimating the prob-
ability of a property from simulations. Rare properties pose a challenge
because the relative error of the estimate is unbounded. In [13] we de-
scribe how importance splitting may be used with SMC to overcome
this problem. The basic idea is to decompose a logical property into
nested properties whose probabilities are easier to estimate. To improve
performance it is desirable to decompose the property into many equi-
probable levels, but logical decomposition alone may be too coarse.

In this article we make use of the notion of a score function to improve
the granularity of a logical property. We show that such a score function
may take advantage of heuristics, so long as it also rigorously respects
certain properties. To demonstrate our importance splitting approach
we present an optimal adaptive importance splitting algorithm and an
heuristic score function. We give experimental results that demonstrate
a significant improvement in performance over alternative approaches.

1 Introduction

Model checking offers the possibility to automatically verify the correctness of
complex systems or detect bugs [7]. In many practical applications it is also
useful to quantify the probability of a property (e.g., system failure), so the
concept of model checking has been extended to probabilistic systems [1]. This
form is frequently referred to as numerical model checking.

To give results with certainty, numerical model checking algorithms effectively
perform an exhaustive traversal of the states of the system. In most real applic-
ations, however, the state space is intractable, scaling exponentially with the
number of independent state variables (the ‘state explosion problem’ [6]). Ab-
straction and symmetry reduction may make certain classes of systems tractable,
but these techniques are not generally applicable. This limitation has prompted
the development of statistical model checking (SMC), which employs an ex-
ecutable model of the system to estimate the probability of a property from
simulations.

SMC is a Monte Carlo method which takes advantage of robust statistical
techniques to bound the error of the estimated result (e.g., [18,22]). To quantify
a property it is necessary to observe the property, while increasing the number of
observations generally increases the confidence of the estimate. Rare properties

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 143–159, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

144 C. Jegourel, A. Legay, and S. Sedwards

are often highly relevant to system performance (e.g., bugs and system failure are
required to be rare) but pose a problem for statistical model checking because
they are difficult to observe. Fortunately, rare event techniques such as import-
ance sampling [14,16] and importance splitting [15,16,20] may be successfully
applied to statistical model checking.

Importance sampling and importance splitting have been widely applied to
specific simulation problems in science and engineering. Importance sampling
works by estimating a result using weighted simulations and then compensating
for the weights. Importance splitting works by reformulating the rare probability
as a product of less rare probabilities conditioned on levels that must be achieved.

Recent work has explicitly considered the use of importance sampling in the
context of statistical model checking [19,11,2,12]. Some limitations of importance
sampling are discussed in [13]. In particular, it remains an open problem to
quantify the performance of the importance sampling change of measure. A
further numerical challenge arises from properties and systems that require very
long simulations. In these cases the change of measure is only very subtly different
to the original measure and may be difficult to represent with standard fixed
length data types.

Earlier work [21,10] extended the original applications of importance split-
ting to more general problems of computational systems. In [13] we proposed
the use of importance splitting for statistical model checking, specifically link-
ing the concept of levels and score functions to temporal logic. In that work we
considered two algorithms which make use of a fixed number of simulations per
level. The first algorithm is based on fixed levels, chosen a priori, whose prob-
abilities may not be equal. The second algorithm finds levels adaptively, evenly
distributing the probability between them. In so doing, the adaptive algorithm
reduces the relative error of the final estimate.

In what follows we show that importance splitting is an effective technique for
statistical model checking and discuss the important role of the score function.
We motivate and demonstrate the need for fine grained score functions that
allow adaptive algorithms to find optimal levels. We then present a fine grained
heuristic score function and an optimal adaptive importance splitting algorithm
that improve on the performance of previous algorithms. We perform a set of
experiments to illustrate both advantages and drawbacks of the technique.

The remainder of the paper is organised as follows. Section 2 defines the
notation used in the sequel and introduces the basic notions of SMC applied to
rare properties. Section 3 introduces the specific notions of importance splitting
and score functions. Section 4 gives our importance splitting algorithms, while
Section 5 illustrates their use on the dining philosophers protocol.

2 Statistical Model Checking Rare Events

We consider stochastic discrete-event systems. This class includes any stochastic
process that can be thought of as occupying a single state for a duration of time
before an instantaneous transition to a new state. In particular, we consider

An Effective Heuristic for Adaptive Importance Splitting in SMC 145

systems described by discrete and continuous time Markov chains. Sample exe-
cution paths can be generated by efficient discrete-event simulation algorithms

(e.g., [9]). Execution paths are sequences of the form ω = s0
t0→ s1

t1→ s2
t2→ ...,

where each si is a state of the model and ti ∈ R > 0 is the time spent in the
state si (the delay time) before moving to the state si+1. In the case of discrete
time, ti ≡ 1, ∀i. When we are not interested by the times of jump epochs, we
denote a path ω = s0s1.... The length of path ω includes the initial state and is
denoted |ω|. A prefix of ω is a sequence ω≤k = s0s1...sk with k < |ω| ∈ N. We
denote by ω≥k the suffix of ω starting at sk.

In the context of SMC we consider properties specified in bounded temporal
logic, which may evaluate to true or false when applied to a specific path. Given
a stochastic system and a bounded temporal logic property ϕ, our objective is
to calculate the probability γ that an arbitrary execution trace ω satisfies ϕ,
denoted γ = P(ω |= ϕ). Let Ω be the set of paths induced by the initial state
of the system, with ω ∈ Ω and f a probability measure over Ω. To decide the
truth of a particular trace ω′, we define a model checking function z from Ω to
{0, 1} that takes the value 1 if ω′ |= ϕ and 0 if ω′ �|= ϕ. Thus,

γ =

ˆ
Ω

z(ω) df and γ̃ =
1

N

N∑
i=1

z(ωi)

N denotes the number of simulations and ωi is sampled according to f . Note
that the estimate γ̃ is distributed according to a binomial distribution with
parameters N and γ. Hence Var(γ̃) = γ(1−γ)/N and for γ → 0, Var(γ̃) ≈ γ/N .

When a property is not rare there are useful bounding formulae (e.g., the
Chernoff bound [18]) that relate absolute error, confidence and the required
number of simulations to achieve them. As the property becomes rarer, however,
absolute error ceases to be useful and it is necessary to consider relative error,
defined as the standard deviation of the estimate divided by its expectation. For
the binomial random variable described above the relative error of an estimate is
given by

√
γ(1− γ)/Nγ, which is unbounded as γ → 0. In standard Monte Carlo

simulation, γ is the expected fraction of executions in which the rare event will
occur. If the number of simulation runs is significantly less than 1/γ, as is often
necessary when γ is very small, no occurrences of the rare property will likely
be observed. A number of simulations closer to 100/γ is desirable to obtain a
reasonable estimate. Hence, importance sampling and importance splitting have
been developed to reduce the number of simulations required or, equivalently,
to reduce the variance of the rare event and so achieve greater confidence for a
given number of simulations. In this work we focus on importance splitting.

3 Importance Splitting

The earliest application of importance splitting is perhaps that of [14,15], where
it is used to calculate the probability that neutrons pass through certain shielding
materials. This physical example provides a convenient analogy for the more

146 C. Jegourel, A. Legay, and S. Sedwards

general case. The system comprises a source of neutrons aimed at one side of
a shield of thickness T . It is assumed that neutrons are absorbed by random
interactions with the atoms of the shield, but with some small probability γ it is
possible for a neutron to pass through the shield. The distance travelled in the
shield can then be used to define a set of increasing levels l0 = 0 < l1 < l2 < · · · <
ln = T that may be reached by the paths of neutrons. Importantly, reaching
a given level implies having reached all the lower levels. Though the overall
probability of passing through the shield is small, the probability of passing
from one level to another can be made arbitrarily close to 1 by reducing the
distance between the levels.

These concepts can be generalised to simulation models of arbitrary systems,
where a path is a simulation trace. By denoting the abstract level of a path as
l, the probability of reaching level li can be expressed as P(l > li) = P(l > li |
l > li−1)P(l > li−1). Defining γ = P(l > ln) and observing P(l > l0) = 1, it is
possible to write

γ =

n∏
i=1

P(l > li | l > li−1) (1)

Each term of the product (1) is necessarily greater than or equal to γ. The
technique of importance splitting thus uses (1) to decompose the simulation of
a rare event into a series of simulations of conditional events that are less rare.
There have been many different implementations of this idea, but a generalised
procedure is as follows.

Assuming a set of increasing levels is defined as above, at each level a number
of simulations are generated, starting from a distribution of initial states that
correspond to reaching the current level. The procedure starts by estimating
P(l ≥ l1|l ≥ l0), where the distribution of initial states for l0 is usually given (of-
ten a single state). Simulations are stopped as soon as they reach the next level;
the final states becoming the empirical distribution of initial states for the next
level. Simulations that do not reach the next level (or reach some other stopping
criterion) are discarded. In general, P(l ≥ li|l ≥ li−1) is estimated by the number
of simulation traces that reach li, divided by the total number of traces star-
ted from li−1. Simulations that reached the next level are continued from where
they stopped. To avoid a progressive reduction of the number of simulations, the
generated distribution of initial states is sampled to provide additional initial
states for new simulations, thus replacing those that were discarded.

In physical and chemical systems, distances and quantities may provide a
natural notion of level that can be finely divided. In the context of model checking
arbitrary systems, variables may be Boolean and temporal logic properties may
not contain an obvious notion of level. To apply importance splitting to statistical
model checking it is necessary to define a set of levels based on a sequence of
logical properties, ϕi, that have the characteristic

ϕ = ϕn ⇒ ϕn−1 ⇒ · · · ⇒ ϕ0 (2)

Each ϕi is a strict restriction of the property ϕi−1, formed by the conjunction
of ϕi with property ψi, such that ϕi = ϕi−1∧ψi, with ϕ0 ≡ �. Hence, ϕi can be

An Effective Heuristic for Adaptive Importance Splitting in SMC 147

written ϕi =
∧i

j=1 ψj . This induces a strictly nested sequence of sets of paths
Ωi ⊆ Ω:

Ωn ⊂ Ωn−1 ⊂ · · · ⊂ Ω0

where Ωi = {ω ∈ Ω : ω |= ϕi}, Ω0 ≡ Ω and ∀ω ∈ Ω,ω |= ϕ0. Thus, for arbitrary
ω ∈ Ω,

γ =

n∏
i=1

P(ω |= ϕi | ω |= ϕi−1),

which is analogous to (1).
A statistical model checker works by constructing an automaton to accept

traces that satisfy the specified property. In the context of SMC, importance
splitting requires that the state of this automaton be included in the final state
of a trace that reaches a given level. In practice, this means storing the values of
the counters of the loops that implement the time bounded temporal operators.

The choice of levels is crucial to the effectiveness of importance splitting. To
minimise the relative variance of the final estimate it is desirable to choose levels
that make P(ω |= ϕi | ω |= ϕi−1) the same for all i (see, e.g., [8]). A simple
decomposition of a property may give levels with widely divergent conditional
probabilities, hence [13] introduces the concept of a score function and techniques
that may be used to increase the possible granularity of levels. Given sufficient
granularity, a further challenge is to define the levels. In practice these might
be guessed or found by trial and error, but Section 4 gives algorithms that find
optimal levels adaptively.

Score Functions

The goal of a score function S is to discriminate good paths from bad with respect
to the property of interest. This is often expressed as a function from paths to R,
assigning higher values to paths which more nearly satisfy the overall property.
Standard statistical model checking can be seen as a degenerate case of splitting,
in the sense that computing P (ω |= ϕ) is equivalent to compute P (S(ω) ≥ 1)
with the functional equality S = z, where z is the Bernoulli distributed model
checking function.

Various ways to decompose a temporal logic property are proposed in [13].
Given a sequence of nested properties ϕ0 ⇐ ϕ1 ⇐ · · · ⇐ ϕn = ϕ, one may
design a function which directly correlates logic to score. For example, a simple
score function may be defined as follows:

S(ω) =

n∑
k=1

1(ω |= ϕk)

1(·) is an indicator function taking the value 1 when its argument is true and 0
otherwise.

Paths that have a higher score are clearly better because they satisfy more
of the overall property. However in many applications the property of interest

148 C. Jegourel, A. Legay, and S. Sedwards

may not have a suitable notion of levels to exploit; the logical levels may be too
coarse or may distribute the probability unevenly. For example, given the dining
philosophers problem presented in section 5, we know that from a thinking state,
a philosopher must pick one fork and then a second one before eating, but there is
no obvious way of creating a finer score function from these logical subproperties
and actually, the probability of satisfying a subproperty from a state such that
the previous subproperty is satisfied is too low (about 0.06, see Table 1). For
these cases it is necessary to design a more general score function which maps a
larger sequence of nested set of paths to a set of nested intervals of R.

Denoting an arbitrary path by ω and two path prefixes by ω′ and ω′′, an ideal
score function S satisfies the following property:

S(ω′) ≥ S(ω′′)⇐⇒ P(ω |= ϕ | ω′) ≥ P(ω |= ϕ | ω′′) (3)

Intuitively, (3) states that prefix ω′ has greater score than prefix ω′′ if and only
if the probability of satisfying ϕ with paths having prefix ω′ is greater than the
probability of satisfying ϕ with paths having prefix ω′′.

Designing a score function which satisfies (3) is generally infeasible because it
requires a huge analytical work based on a detailed knowledge of the system and,
in particular, of the probability of interest. However, the minimum requirement
of a score function is much less demanding. Given a set of nested properties
ϕ1, . . . ϕi, . . . , ϕn satisfying (2), the requirement of a score function is that ω |=
ϕi ⇐⇒ S(ω) ≥ τi, with τi > τi−1 a monotonically increasing set of numbers
called thresholds. Even a simple score function with few levels (e.g., n = 2) could
nevertheless provide an unbiased estimate with a likely smaller number of traces
than a standard Monte Carlo estimation.

When no formal levels are available, an effective score function may still be
defined using heuristics that only loosely correlate increasing score with increas-
ing probability of satisfying the property. In particular, a score function based
on coarse logical levels may be given increased granularity by using heuristics
between the levels. For example, a time bounded property, not explicitly cor-
related to time, may become increasingly less likely to be satisfied as time runs
out (i.e., with increasing path length). A plausible heuristic in this case is to
assign higher scores to shorter paths. A similar heuristic has been used for im-
portance sampling, under the assumption that the mass of probability in the
optimal change of measure is centred on short, direct paths [19]. In the context
of importance splitting, the assumption is that shorter paths that satisfy the
sub-property at one level are more likely to satisfy the sub-property at the next
level because they have more time to do so. We make use of this heuristic in
Section 4.

4 Importance Splitting Algorithms

We give three importance splitting pseudo-algorithms based on [4]; in the first
one, levels are fixed and defined a priori, the number of levels is an input of
the algorithm; in the second one, levels are found adaptively with respect to a

An Effective Heuristic for Adaptive Importance Splitting in SMC 149

predefined probability, the number of levels is a random variable and is not an
input anymore; the third one is an extension of the second where the probability
to cross a level from a previous stage is set to its maximum. By N we denote
the number of simulations performed at each level. Thresholds, denoted τ , are
usually but not necessarily defined as values of score function S(ω), where ω is
a path. τϕ is the minimal threshold such that S(ω) ≥ τϕ ⇐⇒ ω |= ϕ. τk is the
kth threshold and ωki is the ith simulation on level k. γ̃k is the estimate of γk,
the kth conditional probability P(S(ω) ≥ τk | S(ω) ≥ τk−1).

4.1 Fixed Level Algorithm

The fixed level algorithm follows from the general description given in Section
3. Its advantages are that it is simple, it has low computational overhead and
the resulting estimate is unbiased. Its disadvantage is that the levels must often
be guessed by trial and error – adding to the overall computational cost.

In Algorithm 1, γ̃ is an unbiased estimate (see, e.g., [8]). Furthermore, from
Proposition 3 in [4], we can deduce the following (1− α) confidence interval:

CI =

[
γ̃

(
1

1 + zασ√
N

)
, γ̃

(
1

1− zασ√
N

)]
with σ2 ≥

M∑
k=1

1− γk
γk
, (4)

where zα is the 1− α
2 quantile of the standard normal distribution. Hence, with

confidence 100(1− α)%, γ ∈ CI. For any fixed M , the minimisation problem

min

M∑
k=1

1− γk
γk

with constraint

M∏
k=1

γk = γ

implies that σ is reduced by making all γk equal.
For given γ, this motivates fine grained score functions. When it is not possible

to define γk arbitrarily, the confidence interval may nevertheless be reduced by
increasing N . The inequality for σ arises because the independence of initial
states diminishes with increasing levels: unsuccessful traces are discarded and
new initial states are drawn from successful traces. Several possible ways to
minimise these dependence effects are proposed in [4]. In the following, for the
sake of simplicity, we assume that this goal is achieved. In the confidence interval,
σ is estimated by the square root of

∑M
k=1

1−γ̃k

γ̃k
.

4.2 Adaptive Level Algorithm

The cost of finding good levels must be included in the overall computational cost
of importance splitting. An alternative to trial and error is to use an adaptive
level algorithm that discovers its own optimal levels.

Algorithm 2 is an adaptive level importance splitting algorithm presented first
in [5]. It works by pre-defining a fixed numberNk of simulation traces to retain at
each level. With the exception of the last level, the conditional probability of each

150 C. Jegourel, A. Legay, and S. Sedwards

Algorithm 1: Fixed levels

Let (τk)1≤k≤M be the sequence of thresholds with τM = τϕ
Let stop be a termination condition
∀j ∈ {1, . . . , N}, set prefix ω̃1

j = ε (empty path)
for 1 ≤ k ≤ M do

∀j ∈ {1, . . . , N}, using prefix ω̃k
j , generate path ωk

j until (S(ωk
j) ≥ τk) ∨ stop

Ik = {∀j ∈ {1, . . . , N} : S(ωk
j) ≥ τk}

γ̃k = |Ik|
N

∀j ∈ Ik, ω̃
k+1
j = ωk

j

∀j /∈ Ik, let ω̃
k+1
j be a copy of ωk

i with i ∈ Ik chosen uniformly randomly

γ̃ =
∏M

k=1 γ̃k

Algorithm 2: Adaptive levels

Let τϕ = min {S(ω) | ω |= ϕ} be the minimum score of paths that satisfy ϕ
Let Nk be the pre-defined number of paths to keep per iteration
k = 1
∀j ∈ {1, . . . , N}, generate path ωk

j

repeat

Let T =
{
S(ωk

j),∀j ∈ {1, . . . , N}}
Find maximum τk ∈ T such that |{τ ∈ T : τ > τk}| ≥ N −Nk

τk = min(τk, τϕ)
Ik = {j ∈ {1, . . . , N} : S(ωk

j) > τk}
γ̃k = |Ik|

N

∀j ∈ Ik, ω
k+1
j = ωk

j

for j /∈ Ik do
choose uniformly randomly l ∈ Ik
ω̃k+1
j = max

|ω|

{
ω ∈ pref (ωk

l) : S(ω) < τk
}

generate path ωk+1
j with prefix ω̃k+1

j

M = k
k = k + 1

until τk > τϕ;

γ̃ =
∏M

k=1 γ̃k

An Effective Heuristic for Adaptive Importance Splitting in SMC 151

level is then nominally Nk/N . Making Nk all equal minimizes the overall relative
variance and is only possible if the score function has sufficient granularity.

Use of the adaptive algorithm may lead to gains in efficiency (no trial and
error, reduced overall variance), however the final estimate has a bias of order
1
N , i.e., E(γ̃) = γ

(
1 +O(N−1)

)
. The overestimation (potentially not a problem

when estimating rare critical failures) is negligible with respect to σ, such that
the confidence interval remains that of the fixed level algorithm. Furthermore,
under some regularity conditions, the bias can be asymptotically corrected. The

estimate of γ has the form r0γ0
M0 , withM0 =M−1, r0 = γγ0

−M0 and E[γ̃]−γ
γ ∼

M0

N
1−γ0

γ0
when N goes to infinity. Using the expansion

γ̃ = γ

(
1 +

1√
N

√
M0

1− γ0
γ0

+
1− r0
r0
Z +

1

N
M0

1− γ0
γ0

+ o

(
1

N

))
,

with Z a standard normal variable, γ̃ is corrected by dividing it by 1+ M0(1−γ0)
Nγ0

.

See [4] for more details.

4.3 Optimized Adaptive Level Algorithm

Algorithm 3 defines an optimized adaptive level importance splitting algorithm.
The variance of the estimate γ̃ is:

V ar(γ̃) =
p2

N

(
n0

1− γ0
γ0

+
1− r0
r0

+ o(N−1)

)
and the function f : γ0 �−→ 1−γ0

−γ0 log γ0
is strictly decreasing on]0, 1[. Increasing

γ0 therefore decreases the variance. Ideally, this value is γ0 = 1 − 1
N but it is

more realistic to fix this value for each iteration k at γ0 = 1 − Nk

N , with Nk

the number of paths achieving the minimal score. Another advantage of this
optimized version is that, although the number of steps before the algorithm
terminates is more important, we only rebranch a few discarded traces (ideally
only 1) per iteration.

Remark about Rebranching. At the end of iteration k, we end up with an
estimate of γk and an approximation l̃k of the first entrance state distribution
into level k. The discarded traces must be rebranched over a successful prefix
with respect to distribution l̃k. In practise, to decrease the variance, we do not
pick uniformly an index of a successful path but a cycle of indexes of successful
paths. In doing so we avoid the unlikely but possible rebranching of all the
discarded traces from the same state.

Let Ik and Jk be respectively the sets of indexes of successful and discarded
prefixes. We denote by respectively Ik(j) and Jk(j) the j-th index of Ik and Jk.
Let S|Ik| be the set of permutations of {1, · · · , |Ik|} and ι an element of S|Ik|.

We then build randomly a |Jk|-length vector J̃k with elements of Ik. We choose
uniformly cycle ι of S|Ik| and repeat the chosen cycle if N −|Ik| ≥ |Ik|. The first

152 C. Jegourel, A. Legay, and S. Sedwards

Algorithm 3: Optimized adaptive levels

Let τϕ = min {S(ω) | ω |= ϕ} be the minimum score of paths that satisfy ϕ
k = 1
∀j ∈ {1, . . . , N}, generate path ωk

j

repeat

Let T =
{
S(ωk

j),∀j ∈ {1, . . . , N}}
τk = minT
τk = min(τk, τϕ)
Ik = {j ∈ {1, . . . , N} : S(ωk

j) > τk}
γ̃k = |Ik|

N

∀j ∈ Ik, ω
k+1
j = ωk

j

for j /∈ Ik do
choose uniformly randomly l ∈ Ik
ω̃k+1
j = max

|ω|

{
ω ∈ pref (ωk

l) : S(ω) < τk
}

generate path ωk+1
j with prefix ω̃k+1

j

M = k
k = k + 1

until τk > τϕ;

γ̃ =
∏M

k=1 γ̃k

|Jk| elements are the respective elements of J̃k. Finally, we assign to discarded
prefix ωJk(j) the successful prefix ωJ̃k(j)

= ωIk((ι(j)−1 modulo |Ik|)+1).
This circular sampling has the advantage to resample perfectly with respect

to distribution l̃k.

5 Case Study: Dining Philosophers Protocol

We have adapted a case study from the literature to illustrate the use of heuristic-
based score functions and of the optimized adaptive splitting algorithm with
statistical model checking. We have defined a rare event in the well known prob-
abilistic solution [17] of Dijkstra’s dining philosophers problem . In this example,
there are no natural counters to exploit, so levels must be constructed by con-
sidering ‘lumped’ states.

A number of philosophers sit at a circular table with an equal number of
chopsticks; a chopstick being placed within reach of two adjacent philosophers.
Philosophers think and occasionally wish to eat from a communal bowl. To eat,
a philosopher must independently pick up two chopsticks: one from the left and
one from the right. Having eaten, the philosopher replaces the chopsticks and
returns to thinking. A problem of concurrency arises because a philosopher’s
neighbour(s) may have already taken the chopstick(s). Lehmann and Rabin’s
solution [17] is to allow the philosophers to make probabilistic choices.

We consider a model of 150 ‘free’ philosophers [17]. The number of states in
the model is more than 10177; 1097 times more than the estimated number of

An Effective Heuristic for Adaptive Importance Splitting in SMC 153

protons in the universe. The possible states of an individual philosopher can be
abstracted to those shown in Fig. 1.

Fig. 1. Abstract dining philosopher

0 .00

0 .04

0 .08

0 .12

0 .16

0 .20

90 92 94 96 98 100 102 104 106 108

Fig. 2. Empirical number of levels

Think is the initial state of all philosophers. In state Choose, the philosopher
makes a choice of fork he will try to get first. The transitions labelled by lfree
or rfree in Fig. 1 are dependent on the availability of respectively left or right
chopsticks. All transitions are controlled by stochastic rates and made in com-
petition with the transitions of other philosophers. With increasing numbers of
philosophers, it is increasingly unlikely that a specific philosopher will be satisfied
(i.e., that the philosopher will reach the state eat) within a given number of steps
from the initial state. We thus define a rare property ϕ = Fteat, with t initially
30, denoting the property that a given philosopher will reach state eat within 30
steps. Thus, using the states of the abstract model, we decompose ϕ into nes-
ted properties ϕ0 = FtThink= �, ϕ1 = FtChoose, ϕ2 = FtTry, ϕ3 = Ft1ststick,
ϕ4 = Ft2ndstick, ϕ5 = Fteat. The red lines crossing the transitions indicate these
formal levels on the graph.

Monte Carlo Simulations with PLASMA Statistical Model Checker.
With such a large state space it is not possible to obtain a reference result
with numerical model checking. We therefore performed extensive Monte Carlo
simulations using the parallel computing capability of the PLASMA statistical
model checker [11,3]. The experiment generated 300 million samples using 255
cores and took about 50 minutes. Our reference probability is thus approximately
equal to 1.59× 10−6 with 95%-confidence interval

[
1.44× 10−6; 1.72× 10−6

]
.

Recall and Experiment Protocol. Table 1 recalls, given a score function,
that the parameters of each algorithm for an experiment are the number n of
simulations used at the first iteration and the distance between levels (usually
constant) in the fixed level algorithm or a probability between levels for the
adaptive algorithms.

154 C. Jegourel, A. Legay, and S. Sedwards

Table 1. Parameters in each ISp algorithm

initial parameters n, τk − τk−1, γ0 fixed alg. adaptive alg. optimized alg

Number n of path at first iteration YES YES YES

Step between levels (τk − τk−1) YES NO NO

conditionnal probability γ0 NO YES NO

Note that the conditionnal probability in the optimized algorithm is a function
of n more than an independent parameter.

Four types of importance splitting experiments are driven. The first one uses
the simple score function and the fixed algorithm, the second uses the heuristic
score function and the fixed-level algorithm (with different step values). The
third algorithm uses the adaptive-level algorithm with different γ0 parameters
and finally the fourth set of experiments uses the optimized version of the ad-
aptive algorithm.

For each set of experiments and chosen parameters, experiments are repeated
100 times in order to check the reliability of our results. In what follows, we
remind which statistical notions are exploited and why:

– Number of experiments: used to estimate the variance of the estimator.
– Number of path per iteration: it is a parameter of the algorithm, equal to

the number of paths that we use to estimate a conditionnal probability.
– Number of levels: known in the fixed algorithm, variable in the adaptive

algorithms. In the second case, an average is provided.
– Time in seconds: the average of the 100 experiments is provided.
– The mean estimate is the estimator γ̃ of the probability of interest. The

average of the 100 estimators is provided.
– The relative standard deviation of γ̃ is estimated with the 100 final estimators
γ. A reliable estimator must have a low relative standard deviation (roughly
≤ 0.3).

– The mean value of γk is the average of the mean values of the condition-
nal probabilities in an experiment. It is variable in the fixed algorithm and
supposed to be a constant γ0 in the adaptive algorithms. Because of the dis-
creteness of the score function, the value is only almost constant and slightly
lower than γ0.

– The relative standard deviation of γk is the average of the relative standard
deviations of the conditionnal probabilities in an experiment. By construc-
tion, the value in the adaptive algorithms must be low.

Comparison between Logical and Heuristic Score Function. Let ω be a
path of length t = 30. For each prefix ω≤j of length j, we define the following
function:

Ψ(ω≤j) =

n∑
k=0

1(ω≤j |= ϕk)−
{
∑n

k=1 1(ω≤j |= ϕk)} − j∑n
k=1 1(ω≤j |= ϕk)− (t+ 1)

An Effective Heuristic for Adaptive Importance Splitting in SMC 155

We define score of ω as follows:

S(ω) = max
1≤j≤K

Ψ(ω≤j)

In the following experiment this score function is defined for any path of length
t+1, starting in the initial state ‘all philosophers think’. The second term of Ψ is
a number between 0 and 1, linear in j such that the function gives a greater score
to paths which satisfy a greater number of sub-properties ϕk and discriminates
between two paths satisfying the same number of sub-properties by giving a
greater score to the shortest path. A score in]i− 1, i] implies that a prefix of
the path satisfied at most ϕi. We then compare results with the simple score
function S(ω) =

∑n
k=1 1(ω |= ϕk).

Table 2. Comparison between fixed-level algorithms

Statistics Simple score function Heuristic score function

number of experiments 100 100 100 100

number of path per iteration 1000 1000 1000 1000

number of levels 5 20 40 80

Time in seconds (average) 6.95 13.42 16.64 21.56

mean estimate ×106 (average) 0.01 0.59 1 1.37

mean value of γ̃k 0.06 0.53 0.73 0.86

relative standard deviation of γ̃k 1.04 0.36 0.22 0.15

The experiments are repeated 100 times in order to demonstrate and improve
the reliability of the results. Each conditional probability γk is estimated with a
sample of 1000 paths.

For simplicity we consider a linear growing of score thresholds when we use
the fixed-level algorithm. The simple score function thresholds increase by 1
between each level. When using the heuristic score function, we performed three
sets of experiments involving an increase of 0.2, 0.1 and 0.05 of the thresholds.
These partitions imply respectively 5, 20, 40 and 80 levels.

Table 2 shows that the simple score function likely gives a strong underestim-
ation. It is due to the huge decrease of value of conditional probabilities between
the logical levels. All the estimated conditional probabilities are small and imply
a large theoretical relative variance (V (γ̃)/E [γ̃]). The final levels are difficult to
cross and have probabilities close to 0. A sample size of 1000 paths is obviously
not enough for the last step. On average γ̃5 = 0.003 and in one case the last step
is not satisfied by any trace, such that the estimate is equal to zero.

If a threshold is not often exceeded, it implies that traces will be rebranched
from a very small set of first entrance states at the next level. This leads to
significant relative variance between experiments. A further problem is that the
conditional estimate is less efficient if γk is small. Increasing the number of evenly
spaced levels decrease a priori more smoothly the conditional probabilities and
reinforce the reliability of the results as soon as the relative standard deviation

156 C. Jegourel, A. Legay, and S. Sedwards

of conditional probabilities decreases enough. In the experiments, as expected,
the mean value of conditional probabilities is positively correlated to the number
of levels (respectively 0.06, 0.53, 0.73 and 0.86) and negatively correlated to the
relative standard deviation of conditional probabilities. The results with 40 and
80 levels give results that are apparently close to the reference estimate, but
are nevertheless consistently underestimates. This suggests that the number of
simulations per level is too low.

Two questions arise: how to detect that the simulation is not efficient or robust
and how to improve the results. In answer to the first, there are no general
criteria for judging the quality of an importance splitting estimator. However,
assuming that experiments are repeated a few times, a large relative error of the
estimators (roughly ≥ 0.5), a very low value of conditional probability estimates,
or a large relative error of conditional probability estimates (roughly ≥ 0.2) are
good warnings. As for the second question, a way to improve results with the
fixed level algorithm is simply to increase the number of paths per level or to
increase the number of levels, for the reasons given above.

5.1 Comparison between Fixed and Adaptive Algorithm

The following section illustrates that adaptive algorithms give significantly more
reliable results for slightly increased time. In the following set of experiments we
use the adaptive algorithm with three predefined γ0: 0.6, 0.75 and 0.9. Because
of the granularity of the score function, conditional probabilities are not equal
at each iteration, but their values are kept under control because their relative
standard deviation does not vanish (≤ 0.2). We use 1000 sample paths per level
and repeat the experiments 100 times.

Table 3. Comparison between adaptive algorithms

γ0 0.6 0.75 0.9

number of experiments 100 100 100

number of path per iteration 1000 1000 1000

number of levels (average) 22 34 65

Time in seconds (average) 14.53 16.78 20.05

mean estimate ×106 (average) 0.78 1.14 1.58

relative standard deviation of γ̃ 0.26 0.25 0.23

mean value of γ̃k 0.55 0.68 0.83

relative standard deviation of γ̃k 0.2 0.16 0.12

As we increased the desired γ0, the number of levels and time increase. How-
ever, the final estimate with γ0 = 0.9 matches the Monte Carlo estimator and the
relative standard deviation is minimized. In this experiment the number of levels
found adaptively is on average 65. Even with mean value of conditional prob-
abilities smaller than in the 80-fixed-level experiment, the results show better
convergence, a slightly better speed and lower standard deviation.

An Effective Heuristic for Adaptive Importance Splitting in SMC 157

5.2 Comparison with the Optimized Adaptive Algorithm

This section illustrates a set of experiments using the optimized adaptive al-
gorithm. As previously, we repeated experiments 100 times to check reliability
of our results. For each experiment we use a different number of initial paths:
100, 200, 500 and 1000. In order to give an idea of the gain of time, we also ex-
ecuted a Monte Carlo experiment using 107 paths. The 95%-confidence intervals
are given by (4) for the importance splitting experiments and by the standard

confidence interval

[
γ̃ ± 1.96×

√
γ̃(1−γ̃)

N

]
for Monte Carlo experiment. As the

experiments are repeated several times, we approximate the relative standard
deviation σ by the standard deviation of the estimates divided by the average of
the estimates, instead of assuming full independence between levels and so tak-
ing σ ≈

∑m
k=1

1−γk

γk
. Our approach is more pessimistic and in practise requires

the experiment to be repeated a few times. However, even doing so, the results
are much more accurate than the Monte Carlo approach. For example, 100 ini-
tial paths are used in the first experiment. Roughly speaking, the paths cross
on average 100 other levels and only 11% are rebranched each time. So, only
1200 paths are generated and provide in less than 2 seconds an estimate and a
confidence interval strictly included in the Monte Carlo confidence interval. This
represents a gain greater than 104 with respect to the Monte Carlo experiment.

Table 4. Comparison between optimized adaptive algorithms

Statistics Importance splitting MC

number of experiments 100 100 100 100 1

number of path per iteration 100 200 500 1000 10 million

Time in seconds (average) 1.73 4.08 11.64 23.77 > 5 hours

mean estimate ×106 (average) 1.52 1.59 1.58 1.65 1.5

standard deviation ×106 1.02 0.87 0.5 0.38 0.39

95%-confidence interval ×106 [1.34; 1.74] [1.48; 1.72] [1.54; 1.63] [1.64; 1.66] [0.74; 2.26]

Figure 2 illustrates empirically the convergence of the number of levels to a
Gaussian with low variance (4.23) with respect to the mean of levels (100.65).
Although this fact is only empirical, knowing that the variance is low has some
importance whenever the time budget is critical for more extensive experiments.

6 Conclusion

We have presented an effective heuristic to improve the granularity of score func-
tions for importance splitting. The logical properties used in statistical model
checking can thus be decomposed into a greater number of levels, allowing the
use of high performance adaptive algorithms. We have presented an optimized
adaptive algorithm and shown how, in combination with our heuristic score func-
tion, it significantly improves on the performance of the alternatives. As future
work, we would like to develop a Chernoff bound and sequential hypothesis test
to complement the confidence interval presented here.

158 C. Jegourel, A. Legay, and S. Sedwards

References

1. Baier, C., Katoen, J.-P.: Principles of Model Checking (Representation and Mind
Series). The MIT Press (2008)

2. Barbot, B., Haddad, S., Picaronny, C.: Coupling and importance sampling for
statistical model checking. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 331–346. Springer, Heidelberg (2012)

3. Boyer, B., Corre, K., Legay, A., Sedwards, S.: PLASMA-lab: A flexible, distrib-
utable statistical model checking library. In: Joshi, K., Siegle, M., Stoelinga, M.,
D’Argenio, P. (eds.) QEST 2013. LNCS, vol. 8054, pp. 160–164. Springer, Heidel-
berg (2013)

4. Cérou, F., Del Moral, P., Furon, T., Guyader, A.: Sequential Monte Carlo for rare
event estimation. Statistics and Computing 22, 795–808 (2012)

5. Cérou, F., Guyader, A.: Adaptive multilevel splitting for rare event analysis.
Stochastic Analysis and Applications 25, 417–443 (2007)

6. Clarke, E., Emerson, E.A., Sifakis, J.: Model checking: algorithmic verification and
debugging. Commun. ACM 52(11), 74–84 (2009)

7. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press, Cam-
bridge (1999)

8. Del Moral, P.: Feynman-Kac Formulae: Genealogical and Interacting Particle Sys-
tems with Applications. Probability and Its Applications. Springer (2004)

9. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal
of Physical Chemistry 81, 2340–2361 (1977)

10. Glasserman, P., Heidelberger, P., Shahabuddin, P., Zajic, T.: Multilevel splitting
for estimating rare event probabilities. Oper. Res. 47(4), 585–600 (1999)

11. Jegourel, C., Legay, A., Sedwards, S.: A Platform for High Performance Statistical
Model Checking – PLASMA. In: Flanagan, C., König, B. (eds.) TACAS 2012.
LNCS, vol. 7214, pp. 498–503. Springer, Heidelberg (2012)

12. Jegourel, C., Legay, A., Sedwards, S.: Cross-Entropy Optimisation of Importance
Sampling Parameters for Statistical Model Checking. In: Madhusudan, P., Seshia,
S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 327–342. Springer, Heidelberg (2012)

13. Jegourel, C., Legay, A., Sedwards, S.: Importance splitting for statistical model
checking rare properties. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS,
vol. 8044, pp. 576–591. Springer, Heidelberg (2013)

14. Kahn, H.: Random sampling (Monte Carlo) techniques in neutron attenuation
problems. Nucleonics 6(5), 27 (1950)

15. Kahn, H., Harris, T.E.: Estimation of Particle Transmission by Random Sampling.
In: Applied Mathematics. Series 12, vol. 5. National Bureau of Standards (1951)

16. Kahn, H., Marshall, A.W.: Methods of Reducing Sample Size in Monte Carlo Com-
putations. Operations Research 1(5), 263–278 (1953)

17. Lehmann, D., Rabin, M.O.: On the Advantage of Free Choice: A Symmetric and
Fully Distributed Solution to the Dining Philosophers Problem (Extended Ab-
stract). In: Proc. 8th Ann. Symposium on Principles of Programming Languages,
pp. 133–138 (1981)

18. Okamoto, M.: Some inequalities relating to the partial sum of binomial probabil-
ities. Annals of the Institute of Statistical Mathematics 10, 29–35 (1959)

An Effective Heuristic for Adaptive Importance Splitting in SMC 159

19. Reijsbergen, D., de Boer, P.-T., Scheinhardt, W., Haverkort, B.: Rare event simula-
tion for highly dependable systems with fast repairs. Performance Evaluation 69(7-
8), 336–355 (2012)

20. Rosenbluth, M.N., Rosenbluth, A.W.: Monte Carlo Calculation of the Average
Extension of Molecular Chains. Journal of Chemical Physics 23(2) (February 1955)

21. Villén-Altamirano, M., Villén-Altamirano, J.: RESTART: A Method for Accel-
erating Rare Event Simulations. In: Cohen, J.W., Pack, C.D. (eds.) Queueing,
Performance and Control in ATM, pp. 71–76. Elsevier (1991)

22. Wald, A.: Sequential Tests of Statistical Hypotheses. The Annals of Mathematical
Statistics 16(2), 117–186 (1945)

A Formalism for Stochastic Adaptive Systems

Benôıt Boyer, Axel Legay, and Louis-Marie Traonouez

Inria / IRISA, Campus de Beaulieu, 35042 Rennes CEDEX, France

Abstract. Complex systems such as systems of systems result from the
combination of several components that are organized in a hierarchical
manner. One of the main characteristics of those systems is their ability
to adapt to new situations by modifying their architecture. Those sys-
tems have recently been the subject of a series of works in the software
engineering community. Most of those works do not consider quantitative
features. The objective of this paper is to propose a modeling language
for adaptive systems whose behaviors depend on stochastic features. Our
language relies on an extension of stochastic transition systems equipped
with (1) an adaptive operator that allows to reason about the probability
that a system has to adapt its architecture over time, and (2) dynamic
interactions between processes. As a second contribution, we propose a
contract-based extension of probabilistic linear temporal logic suited to
reason about assumptions and guarantees of such systems. Our work has
been implemented in the Plasma-Lab tool developed at Inria. This tool
allows us to define stochastic adaptive systems with an extension of the
Prism language, and properties with patterns. In addition, Plasma-Lab
offers a simulation-based model checking procedure to reason about finite
executions of the system. First experiments on a large case study coming
from an industrial driven European project give encouraging results.

1 Context

Critical systems increasingly rely on dynamically adaptive programs to respond
to changes in their physical environments. Reasoning about such systems require
to design new verification techniques and formalisms that take this model of
reactivity into account [7].

This paper proposes a complete formalism for the rigorous design of stochastic
adaptive systems (SAS), whose components’ behaviors and environment changes
are represented via stochastic information. Adding some stochastic feature to
components’ models is more realistic, especially regarding the environment as-
pect, e.g. the probability of hardware failure, the fire frequency in a forest or a
growing city population. . .

We view the evolution of our system as a sequence of views, each of them
representing a topology of the system at a given moment of time. In our setting,
views are represented by a combination of Markov chains, and stochastic adap-
tive transitions that describe the environment evolution as transitions between
different views of the SAS (e.g. adding or removing components). Each view
thus associates the new environment behaviour and a new system configuration

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 160–176, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

A Formalism for Stochastic Adaptive Systems 161

View 1 View 2 View 3
p1 p2 p3p1 p1

Local Verif. Local Verif. Local Verif.

Global Verif.

Fig. 1. Illustration of SAS Methodology

(a new topology, addition or suppression of system components. . .). The incre-
mental design is naturally offered to the system architect who can extend easily
an existing model by creating new views.

Properties of views can be specified with Bounded Linear Temporal Logic
(BLTL) that allows to reason about finite execution. To reason about sequences
of view, we propose Adaptive BLTL (A-BLTL) that is an extension of BLTL
with an adaptive operator to reason about the dynamic change of views. We
also show that the formalism extend to contracts that permit to reason about
both assumptions and guarantees of the system.

Consider the system described in Figure 1. This system is composed by three
different views linked by adaptive transitions (represented by dashed arrows).
Each view contains some system components in a particular topology denoting a
configuration of the SAS. Each local property p1, p2, p3 is attached to one or more
views. There is also global property Φ. The SAS is initially designed by View 1
and View 2 and the black dashed arrows. Properties p1, p2 are validated for the
corresponding views and Φ is validated against this complete initial version of
the system. To fit with the upcoming settings of the system, the system architect
updates the model by adding View 3 with new adaptive transitions (in grey).
This requires to only validate p1 and p3 against View 3 and to validate again
the global property Φ against the system including all the three views.

We propose a new Statistical Model Checking (SMC) [22,20] algorithm to
compute the probability for a SAS to satisfy an A-BLTL property. SMC can
be seen as a trade-off between testing and formal verification. The core idea of
SMC is to generate a number of simulations of the system and verify whether
they satisfy a given property expressed in temporal logics, which can be done
by using runtime verification approaches [12]. The results are then used together
with algorithms from the statistical area in order to decide whether the system
satisfies the property with some probability. One of the key points to implement
an SMC algorithm is the ability to bound a priori the size of the simulation, which
is an important issue. Indeed, although the SAS can only spend a finite amount
of time in a given view, the time bound is usually unknown and simulation cannot
be bounded. To overcome the problem, we expand on the work of Clarke [21]
and consider a combination of SMC and model checking algorithm for untimed
systems.

162 B. Boyer, A. Legay, and L.-M. Traonouez

As a second contribution, we propose high-level formalisms to represent both
SAS and A-BLTL/contracts. The formalism used to specify SAS relies on an
extension of the Reactive Module Language (RML) used by the popular Prism
toolset [16]. Properties are represented with an extension of the Goal and Con-
tract Specification Language (GCSL) [2] defined in the DANSE IP project [11].
This language offers English-based pattern to reason about timed properties
without having to learn complex mathematics inherent to any logic.

Finally, as a last contribution, we have implemented our work in Plasma-

Lab [5] – a new powerful SMC model checker. The implementation has been
tested on a realistic case study defined with industry partners of DANSE.

2 Modeling Stochastic Adaptive Systems

In this section, we present the formal model used to encode behaviors of adaptive
systems. In Section 2.1, we introduce Markov chains (MC) to represent individual
components of a view. Then, in Section 2.2, we show how to describe views as
well as relations between views, i.e., adaptive systems.

2.1 Discrete and Continuous Time Markov Chains

Definition 1. A (labelled) transition system is a tuple T = (Q, q,Σ,→, AP, L)
where Q is a set of states, q ∈ Q is the initial state, Σ is a finite set of actions,
→: Q×Σ×Q is the transition relation, AP is a set of atomic propositions, and
L : Q → 2AP is a state labelling function that assigns to each state the set of
propositions that are valid in the state.

We denote by q
a−→ q′ the transition (q, a, q′) ∈→. A trace is a finite or infinite

alternating sequence of states and time stamps ρ = t0q0t1q1t2q2 . . . , such that
∀i.∃ai ∈ Σ.qi

ai−→ qi+1. Time stamps measure the cumulative time elapsed from
a time origin. In discrete time models delays are integer values (i.e., t0 = 0,
t1 = 1, t2 = 2) and therefore they can be omitted. In continuous time models
they are real values. We denote by |ρ| the length of a trace ρ. If ρ is infinite then
|ρ| = ∞. A trace is initial if q0 = q and t0 = 0. We denote by tracen(T) (resp.
trace(T)) the set of all initial traces of length n (resp. infinite traces) in T . Let
0 ≤ i ≤ |ρ|, we denote ρ|i = t0q0t1q1 . . . ti−1qi−1 the finite prefix of ρ of length

i, ρ|i = tiqiti+1qi+1 . . . the suffix of ρ that starts at position i, and ρ[i] = qi the
state at position i.

We now extend transition systems with probabilities to represent uncertainty
of behaviors or of material on which the system is running. We present two
semantics, either with discrete or continuous time, that are both compatible
with our setting. A discrete time Markov chain (DTMC) is a state-transition
system in which each transition is labelled by a probability P(s, s′) to take the
transition from state s to state s′.

Definition 2. A (labelled) DTMC is a tuple D = (Q, q,Σ,→, AP, L,P) where:

A Formalism for Stochastic Adaptive Systems 163

– (Q, q,Σ,→, AP, L) is a labelled transition system,
– P : Q×Q→ [0, 1] is a transition probability matrix, such that

∑
q′∈Q P(q, q′)

=1 for all q ∈ Q,
– → is such that q

a−→ q′ iff P(q, q′) > 0, and for each state q there is at most

one action a ∈ Σ such that q
a−→ q′ for some q′.

In continuous time Markov chains (CTMCs) transitions are given a rate. The
sum of rates of all enabled transitions specifies an exponential distribution that
determines a real value for the time spent in the current state. The ratio of the
rates then specifies which discrete transition is chosen.

Definition 3. A (labelled) CTMC is a tuple C = (Q, q,Σ,→, AP, L,R) where:

– (Q, q,Σ,→, AP, L) is a labelled transition system,
– R : Q×Q→ R≥0 is a transition rate matrix,

– → is such that q
a−→ q′ iff R(q, q′) > 0, and there is a unique a ∈ Σ such

that q
a−→ q′.

In our setting, a view of a system is represented by the combination of sev-
eral components. We can compute the parallel composition C1 ‖ C2 of two
DTMCs (resp. CTMCs) defined over the same alphabet Σ. Let (Q1, q1, Σ,→1

, AP1, L1) and (Q2, q2, Σ,→2, AP2, L2) be the two underlying transition systems.
We first compute their parallel composition, which is a labelled transition sys-
tem (Q, q,Σ,→, AP, L), where Q = Q1 × Q2, q = (q1, q2), AP = AP1 ∪ AP2,
L(q) = L1(q1)∪L2(q2) and the transition relation→ is defined according to the
following rule:

q1
a−→1 q

′
1 q2

a−→2 q
′
2

(q1, q2)
a−→ (q′1, q′2)

(1)

Then, in case of DTMCs, the new transition probability matrix is such that
P((q1, q2), (q

′
1, q

′
2)) = P(q1, q

′
1)∗P(q2, q

′
2), and in case of CTMCs the new transi-

tion rate matrix is such that R((q1, q2), (q
′
1, q

′
2)) = R(q1, q

′
1) ∗R(q2, q

′
2). DTMCs

with different alphabets can also be composed and they synchronize on common
actions. However, if both DTMCs can perform a non synchronized action, a uni-
form distribution is applied to resolve the non determinism. In case of CTMCs,
the two actions are in concurrence, such that if q1

a−→1 q
′
1 with a �∈ Σ2, then

(q1, q2)
a−→ (q′1, q2) and R((q1, q2), (q

′
1, q2)) = R(q1, q

′
1). In what follows, we de-

note by Sys = C1 ‖ C2 ‖ · · · ‖ Cn the DTMC (resp. CTMC) that results from
the composition of the components C1, C2, . . . , Cn.

2.2 Stochastic Adaptive Systems (SAS)

An adaptive system consists in several successive views. It starts in an initial
view that evolves until it reaches a state in which an adaptation is possible. This
adaptation consists in a view change that depends on a probability distribution
that represents uncertainty of the environment.

164 B. Boyer, A. Legay, and L.-M. Traonouez

Definition 4. A SAS is a tuple (Δ,Γ, S, sys,�) where:

– Δ = {C1, C2, . . . , Cn} is a set of DTMCs (resp. CTMCs) that are the com-
ponents of the SAS.

– Γ is the set of views of the SAS, such that each view is a stochastic system
obtained from the parallel composition some components from Δ.

– sys ∈ Γ is the initial view.
– S is the set of states of the SAS. S is the union of the states of each view

in Γ , i.e., for each state s ∈ S there exists {C1, C2, . . . , Ck} ⊆ Δ such that
s ∈ Q1 ×Q2 × · · · ×Qk (where ∀i, 1 ≤ i ≤ k, Qi is the set of states of Ci).

– �⊆ S × [0, 1]S is a set of adaptive transitions.

Observe that the number of components per state may vary. This is due to the
fact that different views may have different components. Observe also that it
is easy to add new views to an existing adaptive system without having to re-
specify the entire set of views. An element (s,p) ∈� consists in a state s from a
view sys ∈ Γ and a probability distribution p over the states in S. When s �= s′,
we denote s � s′ if there exists p such that (s,p) ∈� and p(s′) > 0, which
means that state s can be adapted into state s′ with probability p(s′).

A trace ρ in a SAS is either a finite combination of n traces ρ = ρ0ρ1 . . . ρn,
such that for all 0 ≤ i ≤ n − 1, ρi = t0is0it1is1i . . . tlisli is a finite trace of
sysi ∈ Γ , and sli � s0i+1, and t0i+1 = 0, and ρn is a finite or infinite trace
sysn∈Γ . Otherwise ρmay be an infinite combination of finite traces ρ = ρ0ρ1 . . .
that satisfy for all i the same constraints.

3 A Logic for SAS Properties

3.1 Probabilistic Adaptive Bounded Linear Temporal Logic

We consider quantitative verification of dynamic properties that are expressed
via a quantitative extension of the Adaptive Linear Temporal Logic (A-LTL)
proposed in [23]. Our logic, which we call Adaptive Bounded Linear Tempo-
ral Logic (A-BLTL), relies on an extension of Bounded Linear Temporal Logic
(BLTL) combined with an adaptive operator. Although the logic is not strictly
more expressive than BLTL, it is more suitable to describe properties of individ-
ual views, as well as global properties of the adaptive system, and it allows to
develop specific algorithms for these properties. In the last part of the section,
we also show how one can define contracts on such logic, where a contract [17] is
a pair of assumptions/guarantees that must be satisfied by the system.

We first introduce BLTL, a logic used to express properties on individual
views. In BLTL, formulas are built by using the standard Boolean connectors
∧, ∨, =⇒ , ¬, and the temporal operators G, F , X , U borrowed from Linear
Temporal Logic (LTL). The main difference between BLTL and classical LTL is
that each temporal modality is indexed by a bound k that defines the length of
the run on which the formula must hold. The semantics of a BLTL formula is
defined in Table 1 for finite executions of CTMC/DTMC ρ = t0s0t1s1t2s2 . . . ,

A Formalism for Stochastic Adaptive Systems 165

Table 1. Semantics of BLTL

ρ |= X≤kΦ ≡ ∃i, i = max{j | t0 ≤ tj ≤ t0 + k} and ρ|i |= Φ

ρ |= Φ1 U≤kΦ2 ≡ ∃i, t0 ≤ ti ≤ t0 + k and ρ|i |= Φ2 and ∀j, 0 ≤ j ≤ i, ρ|j |= Φ1

ρ |= Φ1 ∧ Φ2 ≡ ρ |= Φ1 and ρ |= Φ2 ρ |= ¬Φ ≡ ρ �|= Φ
ρ |= P ≡ P ∈ L(s0) ρ |= true ρ �|= false

with |ρ| ≥ k. If |ρ| < k, it is extended by duplicating the last state enough times.
In case formulas are nested, the value of k adapts incrementally.

We now generalize BLTL to adaptive systems. For doing so, we introduce an
adaptive operator in the spirit of [24]. The new logic A-BLTL is an extension of

BLTL with an adaptive operator Φ
Ω
=⇒≤k Ψ , where Φ is a BLTL formula, Ψ is an

A-BLTL formula, Ω is a predicate over the states of different views of the SAS,
and k is a time bound that limits the execution time of the adaptive transition.
We will also consider unbounded versions of the adaptive operator.

Definition 5 (A-BLTL semantics). Let Φ
Ω
=⇒≤k Ψ be an A-BLTL formula

and ρ = t0s0t1s1t2s2 . . . be an execution of the SAS:

ρ |= Φ Ω
=⇒≤k Ψ ≡ ∃i, i = min{j | t0 ≤ tj−1 ≤ t0 + k ∧

ρ|j |= Φ ∧ sj−1 � sj ∧Ω(sj−1, sj)} ∧ ρ|i |= Ψ (2)

The property is unbounded if k =∞, and in that case we write Φ
Ω
=⇒ Ψ .

According to Definition 5, an execution ρ satisfies an adaptive formula Φ
Ω
=⇒≤k

Ψ if and only if there exists a minimal prefix of ρ that satisfies Φ and reaches a
state sj−1, such that Ω(sj−1, sj) is satisfied, and such that the suffix of ρ from
state sj satisfies Ψ . Therefore to satisfy this formula it is necessary to observe
an adaptation compatible with Ω. We relax this constraint by introducing a new

operator Φ
Ω−→≤k Ψ , for which an adaptation is not necessary but triggers a

check of Ψ when it happens. It is equivalent to the following formula: Φ
Ω−→≤k

Ψ ≡ (Φ
Ω
=⇒≤k true) =⇒ (Φ

Ω
=⇒≤k Ψ).

We finally introduce stochastic contracts, that are used to reason about both
the adaptive system and its environment via assumptions and guarantees.

Definition 6 (Contracts for SAS). A contract is defined as a pair (A,G),
where A and G are respectively called the Assumption and the Guarantee. A
SASM satisfies the contract (A,G) iff ∀ρ, ρ |= A⇒ ρ |= G, where ρ is a trace
of M and ρ |= A (resp. G) means the trace ρ satisfies the assumption A (resp.
the guarantee G). In that case we write M |= (A,G).

3.2 Verifying SAS Properties Using SMC

SMC [22,20] is an alternative to model checking [3,9] that employs Monte Carlo
methods to avoid the state explosion problem. SMC estimates the probability

166 B. Boyer, A. Legay, and L.-M. Traonouez

that a system satisfies a property using a number of statistically independent
simulation traces of an executable model. By using results from the statistic area,
SMC decides whether the system satisfies the property with some degree of confi-
dence, and therefore it avoids an exhaustive exploration of the state-space of the
model that generally does not scale up. It has already been successfully experi-
mented in biology area [10,15,16], software engineering [8] as well as industrial
area like aeronautics [4].

The basic algorithm used in SMC is the Monte Carlo algorithm. This algo-
rithm estimates the probability that a system Sys satisfies a BLTL property P
by checking P against a set of N random executions of SyS. The estimation p̂

is given by p̂ =

∑N
1 f(ρi)

N
where f(ρi) = 1 if ρi |= P , 0 otherwise.

Using the formal semantics of BLTL, each execution trace ρi is monitored in or-
der to check if P is satisfied or not. The accuracy of the estimation increases with
the number of monitored simulations. This accuracy can be controlled thanks to
the Chernoff-Hoeffding bound [14]. It relates N to δ and ε, that are respectively
the confidence and the error bound of p̂:

Pr(|p− p̂| < ε) ≥ 1− δ if N ≥
ln(2δ)

2ε2
(3)

According to this relation, the user is able to trade off analysis time in return
for accuracy of the result using the parameters δ and ε.

Knowing that there exists techniques to monitor BLTL properties [13], the

model checking of A-BLTL is rather evident. Given an A-BLTL property Φ1
Ω
=⇒≤k

Φ2, the monitor will first check whether the run satisfies Φ1 using classical run-
time verification techniques. If no, then the property is not satisfied. If yes, then
one checks whether there is a pair of two successive states between t0 and t0 + k
that satisfies Ω. The latter is done by parsing the run. If this pair does not exist,
then the property is not satisfied. Else we start a new monitor from the suffix of
the run starting in the second state of the pair in order to verify Φ2.

3.3 Verifying Unbounded SAS Properties Using SMC

We propose a method inspired by [21] to check unbounded A-BLTL properties.
The principle is to combine a reachability analysis by model checking the un-
derlying finite-state machine, with a statistical analysis of the stochastic model
using the algorithms introduced previously.

We consider an A-BLTL property Φ
Ω
=⇒ Ψ , where Φ and Ψ are BLTL formulas.

We first consider the reachability problem with objective G = {s | ∃s′.s �
s′ ∧ Ω(s, s′)}. The preliminary to the statistical analysis is to compute the set
Sat(Reach(G)), that is all the states of the SAS that may eventually reach a
state in G. This can be computed using classical model checking algorithms for
finite-state machines. Only the underlying automata of the DTMCs or CTMCs
of the SAS is used for this analysis. As stochastic quantities are ignored, efficient
symbolic techniques exist to speed up this process [6].

A Formalism for Stochastic Adaptive Systems 167

1: procedure Check(Φ
Ω
=⇒ Ψ, ρ)

2: if ¬Check(Φ, ρ) then return false
3: end if
4: i ← 0, prec ← null, curr ← null
5: while i < |ρ| do
6: prec ← curr, curr ← ρ[i]
7: if curr �∈ Sat(Reach(G)) then return false
8: end if
9: if Ω(prec, curr) then return Check(Ψ, ρ|i)
10: end if
11: i ← i+ 1
12: end while
13: end procedure

Fig. 2. Algorithm to monitor unbounded A-BLTL properties

Once this preliminary computation is performed, the Check algorithm from
Figure 2 is used to monitor the runs of the SAS. The algorithm takes as input
the A-BLTL property and a run ρ. The run should be in general infinite as there
is no bound on the length of the runs that satisfied an unbounded A-BLTL
property. In that case the states would be generated on-the-fly. The algorithm
returns true or false, whether the run satisfied the property. We also denote
Check(Φ, ρ) as the monitoring of the BLTL property Φ. Then the first step on

line 2 is to monitor Φ on the run ρ. If the result is false then the property Φ
Ω
=⇒ Ψ

is not satisfied. Otherwise the algorithm searches through ρ for two states prec
and curr such that Ω(prec, curr) is true. This is possible if curr belongs to the
precomputed set Sat(Reach(G)). If Ω is satisfied the last step on line 10 is to
monitor Ψ from the current position in ρ.

For homogeneous Markov chains (with constant probability matrices, as it
is the assumption in this paper), the algorithm almost surely (with probability
1) terminates, since it either reaches a state where Ω is unreachable, or the
probability to reach two states that satisfy Ω is not null. It can be iterated to
check sequences of adaptive operators, that is to say properties where Ψ is also
an unbounded A-BLTL.

4 A Software Engineering Point of View

In this section, we propose high level formalisms to specify both adaptive sys-
tems and their properties. Then, we define semantics of those formalisms by
exploiting the definitions introduced in the previous sections. This gives us a
free verification technology for them. The situation is illustrated in Figure 3.

4.1 Adaptive RML Systems as a High Level Formalism for SAS

We represent adaptive systems with Adaptive Reactive Module Language (A-
RML), an extension of the Reactive Module Languages (RML) used by the

168 B. Boyer, A. Legay, and L.-M. Traonouez

A-RML A-GCSL

SAS A-BLTL

Statistical Model Checking

Fig. 3. SAS verification flow

PRISM toolset [16]. Due to space limit, the syntax common to RML and A-
RML is only briefly described here 1.

The RML language is based on the synchronisation of a set of modules defined
by the user. A module is declared as a DTMC or CTMC, i.e., some local variables
with a set of guarded commands. Each command has a set of actions of the form
λi:ai where λi is the probability (or the rate) to execute ai. A-RML extends
RML such that each module can have some parameters in order to define its
initial state.

module MOD_NAME (<Parameters >)

<local_vars >

. . .
[chan] gk -> (λ0:a0) + . . . + (λn:an);

. . .
endmodule

The optional channel identifiers prefixing commands are used to strongly syn-
chronise the different modules of a RML system. A module is synchronised over
the channel chan if it has some commands prefixed by chan. We say a command
is independent if it has no channel identifier.

In A-RML a system is a set of modules and global variables. The modules
synchronise on common channels such that the system commands are the inde-
pendent commands of each module and the synchronised commands. A command
synchronised on chan forces all the modules that synchronised over chan to si-
multaneously execute one of their enabled commands prefixed by chan. If one
module is not ready, i.e. it has no enabled commands for chan, the system has
no enabled command over chan. Similarly to a module, if the system reaches a
state with a non-deterministic choice, it is solved by a stochastic behaviour based
on a uniform distribution. This solution allows to execute the A-RML system in
accordance with the DTMC/CTMC models.

system SYS_NAME (<Parameters >)

<global_variables >

. . .
<module_declarations >

. . .
endsystem

1 The full syntax can be found at http://project.inria.fr/plasma-lab/

http://project.inria.fr/plasma-lab/

A Formalism for Stochastic Adaptive Systems 169

An adaptive system consists in a set of different views, each represented by
an A-RML system, and a list of adaptations represented by adaptive commands.
The adaptive environment is used to specify which one is the initial view and
what adaptations are possible.

adaptive

init at SYS_NAME(<Initial values >)

. . .
{ SYS_NAME | gk } -> λ0:{a0} + . . . + λn:{an};

. . .
endadaptive

An adaptive command is similar to module command. It has a guard gk
that applies to the current view SYS NAME, and a set of actions λi:ai where λi
is the probability (or the rate) to execute action ai = SYS NAME’(e0, . . . , em).
This action defines the next view SYS NAME’ after performing the adaptation.
This view is determined according to the states of the previous view by setting
the parameters of SYS NAME’ with the expressions e0, . . . , em evaluated over
SYS NAME. The execution of the adaptive command is done in accordance with
the SAS semantics.

Theorem 1. The semantics of A-RML can be defined in terms of SAS.

The proof of the above theorem is a direct consequence of the fact that semantics
of RML is definable in terms of composition of MC, and that the definition of
an adaptive command can also be represented as a MC.

4.2 A Contract Language for SAS Specification

The Goal and Contract Specification Language (GCSL) was first proposed in [2]
to formalise properties of adaptive systems in the scope of the DANSE project.
It has a strong semantics based on BLTL but it has a syntax close to the hand
written English requirements. Dealing with formal temporal logic is often an
issue to formalise correctly the initial English requirements. Most of the time
the formalisation frequently contains some mistakes, which is due to the nesting
of the temporal operators. The difficulty for correctly specifying properties is
enough to make the overall methodology useless.

The GCSL syntax combines a subset of the Object Constraint Language
(OCL) [18] (used to define state properties, i.e., Boolean relations between the
system components) and English behavioural patterns used to express the evo-
lution of these state properties during the execution of the system. The usage of
OCL is illustrated in Example 1.

Example 1. We consider a SAS describing the implementation of an emergency
system in a city. The city area is divided as a set of districts where each district
may have some equipment to fight against the fire, e.g. some fire stations with
fire brigades and fire fighting cars. Each district is also characterised by a risk
of fire and the considered damages are mainly related to the population size

170 B. Boyer, A. Legay, and L.-M. Traonouez

of each district. The requirement ”Any district cannot have more than 1 fire
station, except if all districts have at least 1” ensures the minimal condition for
the equipment distribution in the city. We use syntactic coloration to make the
difference between the parts of the language used in the property: the words in
red are identifiers from the model, the blue part is from OCL, like collection
handling, and the black words are variables:
City.itsDistricts→exists(district | district.ownedFireStations > 1) implies

City.itsDistricts→forAll(district | district.ownedFireStations ≥ 1)

GCSL patterns are used to specify temporal properties. In this section we
only present a subset of such patterns that is considered to be general enough to
specify properties of a large set of industry-examples from the DANSE project.
After having read this section, the user shall understand that the set can be
easily increased. Each pattern can nest one or more state properties, denoted
in the grammar by the non-terminals <OCL-prop> and <arith-rel>, that respec-
tively denote a state property written in OCL or an arithmetic relation between
the identifiers used in the model. The non-terminal <int> denotes a finite time
interval over which the temporal pattern is applied, and <N> is a natural number.
The patterns can be used directly or combined with OCL: applying a pattern to
a collection of system components defines a behavioural property that is applied
to each element of the collection. We present below an excerpt of the complete
GCSL grammar available in [2]:

<GCSL> ::= <OCL-coll>->forAll(<variable>| <pattern>)
| <OCL-coll>->exists(<variable>| <pattern>)
| <OCL-prop>
| <pattern>

<pattern> ::= whenever [<prop>] occurs [<prop>] holds during following [<int>]
| whenever [<prop>] occurs [<prop>] implies [<prop>] during following [<int>]
| whenever [<prop>] occurs [<prop>] does not occur during following [<int>]
| whenever [<prop>] occurs [<prop>] occurs within [<int>]
| [<prop>] during [<int>] raises [<prop>]
| [<prop>] occurs [<N>] times during [<int>] raises [<prop>]
| [<prop>] occurs at most [<N>] times during [<int>]
| [<prop>] during [<int>] implies [<prop>] during [<int>] then [<prop>] during [<int>]

<prop> ::= <OCL-prop> | <arith-rel>

Example 2. Consider the following requirement about the model described in
Example 1: ”The fire fighting cars hosted by a fire station shall be used all si-
multaneously at least once in 6 months”. This requirement uses both GCSL and
OCL patterns:
City.itsFireStations→forAll(fStation | Whenever [fStation.hostedFireFighting-

Cars → exists(ffCar | ffCar.isAtFireStation)] occurs, [fStation.hostedFireFight-

ingCars→forall(ffCar | ffCar.isAtFireStation = false)] occurs within [6 months])

We now propose A-GCSL, a syntax extension for GCSL that can be used to
describe adaptive requirements of SAS. A-GCSL extends the GCSL grammar
by adding a new pattern that allows to express adaptive relations as done with
the two adaptive operators defined in Section 3. The first pattern of <dyna-spec>

is equivalent to the operator
Ω
=⇒ and the second one denotes

Ω−→. Any adaptive

A Formalism for Stochastic Adaptive Systems 171

requirement has three elements (A,Ω,G) that are called assumption, trigger and
guarantee, respectively. The assumption and guarantee are specified in GCSL,
whereas the trigger is in OCL. The syntax allows to compose the patterns by
specifying the guarantee with an adaptive pattern. For instance, a composed re-
quirement of the form if Φ1 holds and for all rule that satisfies Ω then (if
Φ2 holds and for all rule that satisfies Ω′ then Φ3 holds) holds is equivalent

to the property Φ1
Ω
=⇒ Φ2 Ω′

=⇒ Φ3. The A-GCSL grammar is the following:

<dyna-spec> ::= if [<GCSL>] holds and for all rule that satisfies [<prop>]
then (<GCSL> | <dyna-spec>) holds

| if [<GCSL>] holds then there exists a rule satisfying [<prop>]
and (<GCSL> | <dyna-spec>) holds

Example 3. Consider again the system in Example 1 and the following A-GCSL
requirement:
if [City.underFire = 0] holds and for all rule such that rule satisfies [Ci-

ty.underFire ≥ 3] then [City.itsDistricts→forall(district | district.decl = false

=⇒ whenever [district.decl = true] occurs, [district.fire = 0] occurs within

[50 hours])] holds

The attribute underFire denotes the number of districts in which a fire has
been declared. If there are more than three fires in the city, then the fire stations
change their usual emergency management into a crisis one. When such manage-
ment is activated, the firemen have 50 hours to fix the problem. The requirement
can be translated in A-GCSL using the following formula:

Φ6 =
(
underF ire = 0

) underFire≥3−−−−−−−−−→≤10000∧
di:district

(
¬di.decl =⇒ G≤10000 (di.decl =⇒ F≤50 di.fire = 0)

)

In [2], we have showed that any GCSL pattern can be translated into a BLTL
formula. The result extends as follows.

Theorem 2. Any A-GCSL pattern can be translated into an A-BLTL property.

This result is an immediate consequence of the definition of the adaptive pattern.

5 Experiments with SAS

Our work has been implemented in a new statistical model checker named
Plasma-Lab [5], a platform that includes efficient SMC algorithms, a graph-
ical user interface (GUI) and multiple plugins to support various modelling lan-
guages. The tool is written in Java that offers maximum cross-platform compat-
ibility. The GUI allows to create projects and experiments, and it implements
a simple and practical mean of distributing simulations using remote clients.
Plasma-Lab also provides a library to write new plugins and create custom
statistical model checkers based on arbitrary modelling languages. Developers

172 B. Boyer, A. Legay, and L.-M. Traonouez

will only need to implement a few simple methods to build a simulator and a
logic checker, and then beneficiate from Plasma-Lab SMC algorithms.

Plasma-Lab can be used as a standalone application or be instantiated
within other softwares. It has already been incorporated in various performance-
critical softwares and embedded hardware platforms. The current plugins allow
to simulate biologic models, models written in RML and A-RML, but it has
also the capabilities to drive an external engine to perform the simulations, like
MATLAB, Scilab, or DESYRE a simulator for adaptive systems developed by
Ales [1].

5.1 CAE Model

Together with our industrial partners in the DANSE project, we have developed
the Concept Alignment Example (CAE). The CAE is a fictive adaptive system
example inspired by real-world Emergency Response data to a city fire. It has
been built as a playground to demonstrate new methods and models for the
analysis and visualization of adaptive systems designs.

The CAE describes the organization of the firefighting forces. We consider in
our study that the city is initially divided into 4 districts, and that the population
might increase by adding 2 more districts. Different and even more complex
examples can be built using the components of this design.

A fire station is assigned to the districts, but as the fire might spread within
the districts, the system can adapt itself by hiring more firemen. We can therefore
design a SAS with three views as described in Figure 4.

View 1

View 2 View 3

FireStation

District

Fig. 4. Components and Views in the CAE model

Adaptive transitions exist between these views to reflect changes in the en-
vironment and adaptations of the system. Initially in View 1, the system can
switch to View 2 when the population of the city increase. This change models
an uncertainty of the environment, and for the purpose of this study we fix its
probability to 0.01 Then, if the number of fires becomes greater than 2, the
system adapts itself by switching to View 3. If the number of fires eventually
reduces and becomes lower than 2, the system might return to View 2. Again,
as this change is uncertain, we fix its probability to 0.8.

A Formalism for Stochastic Adaptive Systems 173

We design several A-RML models of the system that consist in two types of
modules: District and FireStation, both based on a CTMC semantics. First,
we study a model AbstractCAE that is an abstract view of the SAS. In this model,
the Districtmodule, presented below, is characterizedby a constant parameter p,
that determines the probability of fire, and by twoBoolean variables decl and men,
that respectively defines if a fire has been declared and if the firemen are allocated
to the district. The module fireStation has one constant parameter distancei
for each module of the system. This parameter determines the probability to react
at a fire, such that the greater the distance, the lower the probability.However a fire
station can only treat one fire at a time, which is encoded with a Boolean variable
allocated. The fire stations and the districts synchronize on channels allocate
and recover, that respectively allocate firefighters to the district and bring them
back when the fire is treated. The different views are constructed by instantiating
and renaming the modules presented above.

module District (const int p)

decl : bool init false;

men: bool init false;

[] !decl -> p/1000: (decl ’=true);

[allocate] decl & !men -> (men ’= true);

[recover] decl & men -> 1/p: (decl ’=false) & (men ’=false);

endmodule

We refine this model to better encode the behaviour of the SAS. In this new
model ConcreteCAE a new variable fire of module District ranges from 0 to
10 and grades the intensity of the fire. The fire stations can now assign several
cars (from 0 to 5) to each districts. Therefore the variables men and allocated

becomes integers.

module District (const int p)

fire : [0..10] init 0;

decl : bool init false;

men: [0..5] init 0;

[] fire =0 -> p/1000: (fire ’=1);

[] fire >0 & fire <10 -> p/((1+men)*100): (fire ’=fire +1);

[] fire >0 & !decl -> (fire*fire)/10: (decl ’= true);

[allocateSt1] decl & fire >0 -> (fire*fire)/10: (men ’=men +1);

[allocateSt2] decl & fire >0 -> (fire*fire)/10: (men ’=men +1);

[] men >0 & fire >0 -> men /10: (fire ’=fire -1);

[recover] decl >0 & fire =0 -> 1000: (men ’=0)&(decl ’=false);

endmodule

From the two models we can consider several subparts composed by one or
several views of the SAS. Adaptive commands are used to model the transitions
between the different views.

– AbstractCAE 1 consists in View 1 and 2 from model AbstractCAE.
– AbstractCAE 2 consists in View 2 and 3.
– AbstractCAE 3 has the same views as AbstractCAE 2 but is initiated in

View 3 instead of View 2.

174 B. Boyer, A. Legay, and L.-M. Traonouez

– ConcreteCAE 1 only consists in View 1 from model ConcreteCAE.
– ConcreteCAE 2 only consists in View 2.
– ConcreteCAE 3 only consists in View 3.
– ConcreteCAE Full is the full model of ConcreteCAE, with the 3 views and

all the adaptive transitions between them.

5.2 Checking Requirements

The requirements are expressed in A-GCSL and translated to A-BLTL. We first
check the model AbstractCAE against A-BLTL properties with adaptive opera-
tors. Our goal is to verify that the transitions between the different views of the
system occurs and satisfy some properties.

The first property, if [true] holds then there exists a rule satisfying [underfire
≤ 1] and Always [!maxfire], checks that when the system is in View 1, it even-
tually switches to View 2 when the number of districts that have declared a fire
(underfire) is still lower than 1, and that as a result the system remains safe
for a limited time period, i.e., the number of districts that have declared a fire is
not maximum (maxfire is false). To check this property we limit the analysis to
the model AbstractCAE 1 with only View 1 and View 2. The A-GCSL property

is translated in an A-BLTL formula: Φ1 = true
underfire≤1
=======⇒ G≤1000 !maxfire,

and the results in Table 2 show that the probability to satisfy the property is
only 50%. This justify the need to add a second fire station, as in View 3.

The second property, if [true] holds then there exists a rule satisfying [true]
and Always [!maxfire], checks that from View 2 a second fire station is quickly
added, which switches the system to View 3, and that then the system is safe. The
property is checked on the model AbstractCAE 2 using the A-BLTL formula :

Φ2 = true
true
==⇒≤100 G≤10000 !maxfire.

Finally, with the property if [true] holds then there exists a rule satisfying
[true] and [true], we check that from View 3 the system eventually returns to
View 2. Therefore we use the model AbstractCAE 3 that starts in View 3 and

we check the A-BLTL formula Φ3 = true
true
==⇒≤100 true.

The AbstractCAEmodels are simple enough to be able to perform reachability
analyses and check the unbounded A-BLTL properties presented above using
Algorithm 2. In a second step we consider the models ConcreteCAE to better
evaluate the safety of the system. The state spaces of these models contain
several millions of states, and therefore, they can only be analyzed by purely
SMC algorithms. We verify the two following properties:

– Always !maxfire, to check that the maximum of fire intensity of 10 is never
reached in any district. This corresponds to Φ4 = G≤10000 !maxfire.

– Whenever [fire > 0] occurs [fire = 0] within [50 hours], to check that
a fire in a district is totally extinct within 50 hours. This corresponds to
Φ5 = G≤10000

(
d6.fire > 0 =⇒ F≤50 d6.fire = 0

)
.

These two properties are first checked for each view of the system. The results in
Table 2 show that while View 1 and View 3 are surely safe, View 2 is frequently

A Formalism for Stochastic Adaptive Systems 175

unsafe. But when we check these properties on the complete adaptive model
ConcreteCAE Full, with the three views, we can show that the system remains
sufficiently safe. It proves that after a change of the environment (the increase
of population) the system is able to adapt itself to guaranty its safety.

In the last experiment of Table 2 we check the A-GCSL property presented in
Example 3. This bounded adaptive A-GCSL property is checked using the full
ConcreteCAE model.

We have performed each experiment in Plasma-Lab with a confidence δ =
0.01 and an error bound ε = 0.02. The results in Table 2 give the probabilities
estimation and the time needed to perform the computation.

Table 2. Experiments on CAE models

Property CAE Model Estimation interval Consumed Time

Φ1
AbstractCAE 1

View 1, View 2
[0.53, 0.56] 1351s

Φ2
AbstractCAE 2

View 2, View 3
[0.84, 0.86] 11s

Φ3

AbstractCAE 3

AbstractCAE 2 starting

from View 3

[0.98, 1] 1363s

Φ4
ConcreteCAE 6

4 dist. 1 sta.
[0.95, 0.99]

11s

9s

Φ4

Φ5

ConcreteCAE 2

6 dist. 1 sta.

[0.46, 0.5]

[0.21, 0.25]

15s

13s

Φ4

Φ5

ConcreteCAE 3

6 dist. 2 sta.

[0.98, 1]

[0.98, 1]

30s

31s

Φ4

Φ5

ConcreteCAE Full

4-6 dist. 1-2 sta.

[0.89, 0.93]

[0.82, 0.86]

25s

42s

Φ6
ConcreteCAE Full

4-6 dist. 1-2 sta.
[0.47, 0.51] 109s

6 Conclusion

This paper presents a new methodology for the rigorous design of stochastic
adaptive systems. Our model is general, but the verification procedure can only
reason on a finite and known set of views. Our formalism is inspired from [24],
where both the stochastic extension and high level formalisms are not considered.
In future work, we will extend this approach to purely dynamic systems. Another
objective is to extend the work to reason about more complex properties such as
energy consumption. Finally, we shall exploit extensions of SMC algorithms such
as CUSUM [19] which permits to reason on switches of probability satisfaction.
This would allow us to detect emergent behaviors.

References

1. Ales Corp.: Advanced laboratory on embedded systems, http://www.ales.eu.com/
2. Arnold, A., Boyer, B., Legay, A.: Contracts and behavioral patterns for systems of

systems: The EU IP DANSE approach. In: AiSoS. EPTCS (2013)

http://www.ales.eu.com/

176 B. Boyer, A. Legay, and L.-M. Traonouez

3. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
4. Basu, A., Bensalem, S., Bozga, M., Delahaye, B., Legay, A.: Statistical abstraction

and model-checking of large heterogeneous systems. Int. J. Softw. Tools Technol.
Transf. 14(1), 53–72 (2012)

5. Boyer, B., Corre, K., Legay, A., Sedwards, S.: PLASMA-lab: A flexible, dis-
tributable statistical model checking library. In: Joshi, K., Siegle, M., Stoelinga,
M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 160–164. Springer,
Heidelberg (2013)

6. Burch, J.R., Clarke, E., McMillan, K.L., Dill, D., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. In: LICS, pp. 428–439 (1990)

7. Cheng, B.H.C., et al.: Software engineering for self-adaptive systems: A research
roadmap. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.)
Self-Adaptive Systems. LNCS, vol. 5525, pp. 1–26. Springer, Heidelberg (2009)

8. Clarke, E., Donzé, A., Legay, A.: On simulation-based probabilistic model checking
of mixed-analog circuits. Form. Methods Syst. Des. 36(2), 97–113 (2010)

9. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press, Cam-
bridge (1999)

10. Clarke, E.M., Faeder, J.R., Langmead, C.J., Harris, L.A., Jha, S.K., Legay, A.:
Statistical model checking in bioLab: Applications to the automated analysis of
T-cell receptor signaling pathway. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB
2008. LNCS (LNBI), vol. 5307, pp. 231–250. Springer, Heidelberg (2008)

11. DANSE: Designing for adaptability and evolution in sos engineering (December
2013), https://www.danse-ip.eu/home/

12. Havelund, K., Rosu, G.: Preface. ENTCS 70(4), 201–202 (2002), Runtime Verifica-
tion

13. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen,
J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer,
Heidelberg (2002)

14. Hoeffding, W.: Probability inequalities for sums of bounded random variables. Jour-
nal American Statistical Association 58(301), 13–30 (1963)

15. Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A
bayesian approach to model checking biological systems. In: Degano, P., Gorrieri,
R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 218–234. Springer, Heidelberg (2009)

16. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

17. Meyer, B.: Applying “design by contract”. Computer 25(10), 40–51 (1992)
18. OMG: Ocl v2.2 (February 2010), http://www.omg.org/spec/OCL/2.2/
19. Page, E.S.: Continuous inspection schemes. Biometrika 41(1/2), 100–115 (1954)
20. Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of stochastic

systems. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
266–280. Springer, Heidelberg (2005)

21. Younes, H.L.S., Clarke, E.M., Zuliani, P.: Statistical verification of probabilistic
properties with unbounded until. In: Davies, J., Silva, L., Simão, A. (eds.) SBMF
2010. LNCS, vol. 6527, pp. 144–160. Springer, Heidelberg (2011)

22. Younes, S., Clarke, E.M., Gordon, G.J., Schneider, J.G.: Verification and planning
for stochastic processes with asynchronous events. Tech. rep. (2005)

23. Zhang, J., Cheng, B.H.C.: Model-based development of dynamically adaptive soft-
ware. In: ICSE. ACM (2006)

24. Zhang, J., Cheng, B.H.: Using temporal logic to specify adaptive program seman-
tics. Journal of Systems and Software 79(10), 1361–1369 (2006)

https://www.danse-ip.eu/home/
http://www.omg.org/spec/OCL/2.2/

A Review of Statistical Model Checking Pitfalls
on Real-Time Stochastic Models∗

Dimitri Bohlender1, Harold Bruintjes1, Sebastian Junges1,
Jens Katelaan1, Viet Yen Nguyen1,2, and Thomas Noll1

1 Software Modeling and Verification Group,
RWTH Aachen University, Germany

2 Fraunhofer IESE, Germany

Abstract. Statistical model checking (SMC) is a technique inspired
by Monte-Carlo simulation for verifying time-bounded temporal logi-
cal properties. SMC originally focused on fully stochastic models such
as Markov chains, but its scope has recently been extended to cover
formalisms that mix functional real-time aspects, concurrency and non-
determinism. We show by various examples using the tools UPPAAL-
SMC and Modes that combining the stochastic interpretation of such
models with SMC algorithms is extremely subtle. This may yield signifi-
cant discrepancies in the analysis results. As these subtleties are not so
obvious to the end-user, we present five semantic caveats and give a clas-
sification scheme for SMC algorithms. We argue that caution is needed
and believe that the caveats and classification scheme in this paper serve
as a guiding reference for thoroughly understanding them.

1 Introduction

Statistical model checking (SMC) techniques [21] have been proposed for over-
coming many challenges in devising tractable numerical methods for probabilistic
models. Inspired by Monte-Carlo simulation, SMC techniques simulate a random
system for a particular number of times, such that statistical evidence is built
up for deciding whether a property holds on the model. This method is light-
weight and easily parallelizable. Drawn by their tractability, research groups have
subsequently adapted them to more-expressive classes of models [17]. A partic-
ular class, which we refer to as real-time stochastic models, are characterized by
intertwining concurrency, non-deterministic choice, real-time and probabilistic
aspects into a single formalism. We consider these models as partially stochastic,
as they have no common stochastic interpretation on their non-probabilistic lan-
guage elements, such as concurrency. Yet, their potential applications are clear.
For example, real-time stochastic models could be used for expressing safety-
critical embedded systems, which are constructed for validating RAMS (relia-
bility, availability, maintainability and safety) requirements. The probabilistic
∗ This work was partially supported by ESA/ESTEC (contract no. 4000107221 (HAS-

DEL)) and the EU (project reference 318772 (D-MILS) and project reference 318490
(SENSATION)).

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 177–192, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

178 D. Bohlender et al.

features are often used for expressing uncertain faulty/erroneous behavior, like
for example bit-flips, sensor glitches or simply the complete failure of a com-
ponent. Real-time aspects are generally applied for expressing time-critical be-
havior, such as the nominal functional operation, as well as time-constrained
behavior, like failure recovery mechanisms. On top of that, concurrency, both in
the system and its environment, is omni-present to facilitate compositionality.
Non-deterministic choice can be used to express the various potential implemen-
tations in a single model.

At this moment of writing, there are two prominent publicly available SMC
tools that handle a real-time stochastic modeling formalism, namely UPPAAL-
SMC [11] and Modes [7]. While using and comparing them, we noticed un-
intuitive discrepancies in the computed probabilities that could not be easily
dismissed as bugs. After launching a full investigation, we found that there are
deeply-rooted semantic caveats, as well as algorithmic design aspects that have
a major impact on the computed probabilities. They emanate from mixing con-
currency and non-deterministic choice and real-time and probabilistic aspects.
This paper reports on the lessons we learned by the following contributions:

– The identification of five caveats and their interactions in Sections 3 and 4.
– A classification scheme for SMC algorithms, discussed in Section 5.
– Application and practical evaluation of the above with UPPAAL-SMC [11]

and Modes [7] in Section 6.

Note that these lessons strictly apply to real-time stochastic formalisms that
mix all four aspects. Model formalisms that mix two or three of those aspects
tend to have a fully probabilistic semantics. Hence in those cases, such as In-
teractive Markov Chains [15] or Timed Automata, our learned lessons do not
apply. The intent of our lessons is not to judge the use of SMC techniques on
real-time stochastic models. Rather, we believe this paper provides a reference
for users and developers to make an informed and deliberate decision on which
SMC technique suits their purposes.

2 Preliminaries, Notations and Related Work

The results in this paper are scoped to real-time stochastic models, which we
will loosely characterize in this section.

Real-Time Stochastic Models

Real-time stochastic models have a concurrent, a real-time and a probabilistic
dimension. Particular examples of them are (networks of) Priced Timed Au-
tomata (PTA) as used by UPPAAL-SMC [11] and Stochastic Timed Automata
(STA) as used by Modes [7]. Both models share a particular set of ingredients.
The focus of this paper does not lie on the complete semantics of either model
per se, but rather addresses issues related to a wider and more general class of
real-time stochastic automata. Therefore, the semantics only provide a basis for

A Review of SMC Pitfalls on Real-Time Stochastic Models 179

the further discussion in this paper, and do not form a single consistent model.
We refer the reader to the original work on PTA and STA for their complete
semantics.

Timed Processes. We first introduce a timed process, defined as a tuple P =
〈L, l0, I, T, C,A〉, with L the set of locations, l0 the initial location in L, C the
set of real-valued clocks, A the set of actions including internal action τ , and

– I : L → Expr is the function that assigns to each location an invariant
expression in Expr, which is a Boolean expression over the clocks in C.
They restrict the residence time in that location based on the valuation of
the clocks.

– T ⊆ L × A × Expr × 2C × L denotes the set of discrete transitions, with
Expr being the set of Boolean guard expressions over the clocks C.

A transition 〈ls, α, g,X, lt〉 ∈ T allows the system to move from location ls to lt,
executing action α. The transition is only enabled if the expression g evaluates
to true in the current state. Upon execution of the transition, the clocks in set
X are reset to zero.

The continuous state space of a timed process is defined as a set of tuples,
consisting of the process’ current location and valuation of the clocks. For process
P at initial location p0, with a single clock cp assigned the value zero, the state is
defined as 〈p0, (cp, 0.0)〉. For a process with a single clock we abbreviate this by
〈p0, 0.0〉. Transitions between states either delay or are discrete. Delay transitions
progress clock values, e.g. 〈p0, 0.0〉 4.5−−−→〈p0, 4.5〉. Discrete transitions are caused
by a transition in a process’ transition relation, e.g. 〈p0, 4.5〉 α−−→〈p1, 4.5〉. A path
(or sometimes also called trace or run) is a sequence of alternating delay and
discrete transitions, e.g. 〈p1, 6.5〉 2−→〈p1, 8.5〉 α−−→〈p2, 8.5〉 1−→

For expressing concurrency, we define a network of communicating processes
(or sometimes called a network of automata). It consists of one or more timed
processes composed together using a synchronization operator, denoted by ‖. We
define the state space of such a model as the cross-product of the state space
of each individual process. In such a model, discrete transitions occur either
concurrently, synchronizing on the shared communication alphabet of all the
sets A of each process, or independently. When multiple independent transitions
are enabled, a race condition occurs that is resolved by means of a scheduler.
Timed transitions globally increase all clocks at the same rate.

Probabilistic Semantics. In the previous section we described the syntactical
concepts for expressing a network of timed processes. We further extend upon
this by introducing the possible ways of giving them a probabilistic semantics
through inferring probability distributions and assuming a strategy for interpret-
ing concurrency probabilistically.

Two types of stochastic behavior can be specified, namely for discrete tran-
sitions and delay transitions. In the case of a set of non-deterministic discrete
transitions T , a discrete probability distribution Distr(T) can be defined over

180 D. Bohlender et al.

these transitions. This distribution specifies for each transition the probability
of taking that transition, see e.g. [12,19]. Non-deterministic choice on its own,
however, has no probabilistic semantics and thus typically one assumes one while
simulating, like a uniform distribution. Additionally, there are formalisms that
capture a discrete probabilistic distribution over successor locations. However
w.l.o.g. they can be represented by a set of transitions such that we only have
to restrict ourselves to models where transitions only have a single successor lo-
cation. For delay transitions, a probability density function η(l) can be specified
over the possible delay times in the current location l. As we reason over a dense
notion of time, this has to be a continuous distribution. This distribution can be
explicitly specified by the user, or it is inferred from invariants or annotations
on outgoing transitions like guards. Both the inference of a delay distribution
and the choice for a discrete branching distribution come with caveats, which
are discussed in Section 3.

In the face of concurrency, a statistical model checker employs a scheduler
that selects the process to fire the next transition (or processes in the case of
synchronization). This can be a scheduler that assigns a uniform distribution
over the processes with the shortest waiting time, such as in UPPAAL-SMC.
Other approaches exist as well. This also induces a caveat that is discussed in
Section 3.

Recent work of [7] describes networks of Price Timed Automata, extending
PTA [2,5] with exit rates for locations, as well as concurrency and probabilistic
semantics for SMC. Like Timed Automata [1], they support the specification of
clock variables, with location invariants and transition guards. It is the formalism
implemented by the UPPAAL-SMC tool.

The work by [8] describes the MoDeST language that provides constructs
for expressing the concurrency, probabilistically distributed waiting times, prob-
abilistic branching and non-deterministic branching aspects described above. A
set of MoDeST processes are mapped upon a stochastic timed automaton (STA),
which can be viewed as a generalization of Timed Automata and various Markov
processes, e.g. CTMDPs [15]. It is the formalism implemented by the Modes

tool.

Statistical Model Checking

Statistical model checking techniques [17] build upon and extend Monte-Carlo
simulation techniques for verifying temporal bounded properties. These tech-
niques rely on the following components: A path generator (sometimes also re-
ferred to as discrete event simulator), a property checker that decides whether
path generation should continue or not, and an algorithm that decides if more
paths need to be generated. The path generator simulates the behavior of the
model by repeating discrete or delay transitions. Path generation continues un-
til the property can be decided to hold or not, or when a boundary condition
has been met. This is referred to as the termination condition. The Monte-Carlo
method approximates the probability of a property by generating a large number
of random samples. By repeatedly sampling random paths (also called traces or

A Review of SMC Pitfalls on Real-Time Stochastic Models 181

simulations) from the automaton, statistical evidence is built up for disproving
or proving the property of interest. Essentially, each generated path satisfies or
dissatisfies the property. The outcomes of the generated paths are used to sta-
tistically decide whether additional paths are required and what the estimated
probability of the property is. We refer the reader to [17] for an overview of
statistical model checking techniques.

Several statistical model checkers have been built and reported. As the fo-
cus of this paper lies towards real-time stochastic models, only a few model
checkers apply. The PLASMA tool [16,9] can analyze stochastic models such as
Continuous Time Markov Chains (CTMCs) [4] and Markov Decision Processes
(MDPs). It however does not support real-time aspects (yet), so it is omitted
in the remainder of this paper. UPPAAL-SMC [11] and Modes [7] do support
the aforementioned real-time stochastic formalisms and are therefore within the
scope of this paper.

3 Semantic Caveats

As statistical model checking builds upon Monte-Carlo simulations, a fully proba-
bilistic interpretation is required of the real-time stochastic model. This involves
inferring or assuming probabilistic distributions on model elements that have no
probabilistic semantics. The implications of this are however not always made
obvious to the user. We investigated this and summarized the results as a set of
semantic caveats which are elaborated upon in this section.

These caveats can be distinguished into two groups: The first group contains
the caveats that originate from resolving underspecifications in the model, which
are caveats C1, C2 and C3. The second group contains caveats C4 and C5,
which the caveats that arise due to possible inconsistencies in the semantics of
the model after inferring or assuming the probability distributions.

The diagrams in this section are denoted as follows: Nodes correspond to
locations in the model, where the upper part indicates the label of the node; the
lower part indicates either the invariant associated with the location, or the exit
rate of the location. Edges between nodes represent discrete transitions. The
enabled time interval induced by the guard of a transition is shown below the
edge, the action above. Each example has an associated global clock. In order
to simplify the diagrams, this clock has been hidden from the invariants and
guards.

C1 – Underspecified Scheduling between Processes

The range of possible interleavings between concurrent processes is typically left
underspecified during the design of the system and is subject to refinement in
subsequent development phases. As such, we are dealing with an underspecifi-
cation of the possible execution schedule(s). This ensures a conservative over-
approximation of the possible behaviors in the analysis results.

182 D. Bohlender et al.

Statistical model checkers employ a probabilistic interpretation over this form
of underspecification. However, it is not immediately clear what this interpre-
tation should be based on. Depending on how the one-step probabilities are
calculated, this “progress” could depend on a process with the shortest waiting
time (possibly uniformly chosen among multiple waiting times), but may also
be distributed over any process that is capable of making progress after waiting.
Finally, samples from the waiting time distribution may be discarded entirely
if a process fails to find an enabled transition, requiring the sample process to
start over.

C2 – Underspecified Choice within a Process

Within the context of communicating concurrent processes, we identify two kinds
of choice, namely internal and external choice. Internal choice is when multiple
internal transitions emanate from a location in the same process and they are
unobservable by other processes, yet they lead to different successor locations.
With external choice, we have multiple synchronizing transitions emanating from
a single location.

When either choice is underspecified within a single process, i.e. Distr(T)
is not specified, the statistical model checker has to provide a probabilistic in-
terpretation over it (see e.g. [13]). This is typically implicitly interpreted as
equiprobabilistic, but other approaches exist, see e.g. [18] and Section 5. Issues
may arise due to the introduction of a bias towards certain behavior.

Consider the example in Figure 1, with an external choice between actions α
and β, and an internal choice between two α transitions. Applying a strictly uni-
form distribution over all transitions introduces a bias towards action α. However,
applying a uniform distributions over the actions first introduces a bias towards
the transition towards location p3.

C3 – Underspecified Waiting Times

Transition guards and invariants are powerful modeling concepts for expressing
timed behavior. They express the range of time in which certain behavior can
occur, without requiring the user to specify exact time points or delay distri-
butions. However, in the case of such underspecifications, the statistical model
checker has to provide one as well, similar to caveat C2. As an example, Figure 2
shows a process with a transition that is enabled in the interval [1, 5], and an
invariant that is true for all clock values in the interval [0, 5], without specifying
a delay distribution.

Delay distributions may be derived from any combination of invariants, tran-
sition guards and process synchronization. Generally, a uniform distribution is
derived (like in [3]), though other distributions may be used or even required,
see caveat C4. Again, care has to be taken not to introduce any unwanted bias.
Choosing whether or not to derive a distribution based on transition guards or
process communication influences this, see Section 4.

A Review of SMC Pitfalls on Real-Time Stochastic Models 183

p0

≤ 5

p1

p2p3

α

α
β

Fig. 1. Combination of in-
ternal and external choice

p0

≤ 5

p1α

[1, 5]

Fig. 2. Transition enabled
within an interval

p0

λ = 0.5

p1α

[1, 5]

Fig. 3. Use of an exponen-
tial distribution

C4 – Choice of Distributions

The previous caveats discussed underspecifications for which a statistical model
checker has to generate probability distribution functions. However, based on the
structure of the model, different distributions may be applicable. Often uniform
distributions (both discrete and continuous) are employed, based on the notion
of equiprobability. However, other distributions may be used or even required,
for instance if the model specifies a boundary that extends to infinity, or specifies
a deterministic delay by means of a point interval.

This introduces a caveat that requires attention in two directions. First, the
support may not coincide with the enabledness of all transitions, which may lead
for example to a deadlock (see also the accuracy dimension in Section 5). For
instance, Figure 3 exemplifies this with an exponential distribution of which the
support does not match the interval for which the transition is enabled. Second,
and more obvious, the choice of distribution directly influences the bias on the
waiting time.

C5 – Invalid Paths

The modeling formalisms we consider come with an innate degree of abstrac-
tion. This comes with caveats by itself, namely Zeno behaviors, action-locks and
deadlocks, which may generate semantically invalid paths. These caveats are well-
known and widely studied [20]. Akin to analytical model checking techniques,
also for statistical model checking these caveats require serious consideration.

Zeno behaviors may occur as a result of the model not allowing time to
progress beyond a certain point, a timelock, or allowing paths that execute an
infinite number of actions in a finite amount of time. As a result, a statisti-
cal model checker may not terminate its path generation when the termination
condition is based on reaching a certain time bound.

Action-locks occur in the discrete part of the model, when the current state
does not allow any further discrete transitions to be taken for any given delay.

Deadlocks are the combination of action-locks and timelocks. In a deadlocked
state, neither the timed part nor the discrete part of the model can progress, and
path generation will terminate prematurely. Examples of all three behaviors are
shown in Figure 4. Note that for the action- and deadlocks, the behavior occurs
in locations q1 and r1 respectively.

184 D. Bohlender et al.

p0

≤ 5

p1

≤ 5

p2

≤ 5

α

[0, 5]

α

[0, 5]

β

[4, 4]

q0

≤ 5

q1γ

[5, 5]

r0

≤ 5

r1

≤ 5
κ

[5, 5]

Fig. 4. Example processes showing respectively Zeno behavior, an action-lock and a
deadlock

p0

≤ 5

p1

≤ 4

q0

≤ 5

q1α

[0, 5]

α

[2, 5]

Fig. 5. Example network with synchronizing actions

4 Caveat Interactions

Thus far the caveats from the previous section have only been treated as separate
instances. However, it is very well possible that they appear in the model at the
same time, possibly constraining the possible distributions, or affecting the over-
all bias of the outcomes. Therefore, in this section we provide further examples
to highlight the fact that caveats may interact and should not be considered as
isolated entities.

C1,C3 – Event Synchronization with Partially Overlapping
Enabledness Intervals

Underspecification of scheduling is generally dealt with by scheduling the pro-
cess with the shortest waiting time first. Action synchronization requires two
processes to take a discrete transition at the same time. Figure 5 highlights such
a synchronization. Two processes P (left) and Q (right) are defined. Here, the
action α is part of the communication alphabet. Thus the transitions synchro-
nize and are therefore only enabled in the interval [2, 4], due to the interaction
of the guards and the invariants of the target locations.

This example highlights that action synchronization requires the path gen-
erator to consider all processes with synchronizing actions in order to prevent
generating invalid paths that may for example invalidate invariants. For exam-
ple, if only the local transitions in process P is considered, a waiting time of one
may be sampled. However, it cannot synchronize then with process Q, as the
transition is only enabled after time point two.

C2,C3 – Bias of Time Intervals

The bias towards a certain transition greatly depends on the time intervals. Fig-
ure 6 shows three different types of intervals that are subject to underspecifica-
tion of choice as well. In all cases, if the underspecification of choice is resolved
first and uniformly, selecting each outgoing transition with probability 1

2 , the
probability of reaching either of the two target states is equal.

A Review of SMC Pitfalls on Real-Time Stochastic Models 185

p0

≤ 5

p1

p2

α

[0, 4]
β

[4, 5]

q0

≤ 5

q1

q2

γ

[0, 1]
κ

[4, 5]

r0

≤ 5

r1

r2

ν

[0, 5]
μ

[4, 5]

Fig. 6. Examples of underspecification of both choice and time with convex, non-convex
and overlapping intervals respectively

However, resolving the underspecification of time first can cause considerable
differences. In the first example (Figure 6, left), sampling in the interval in
which either transition is enabled will cause a bias towards transition α (with
probability 4

5), as it has a larger interval. In the second case, both intervals are
equally large. However, due to the union of the intervals being non-convex, a
bias may be formed towards transition κ if the simulator generates a delay in
the interval [1, 4] as transition κ is the only transition that will become enabled
after such a time point (see also Section 5.2). The third case shows the effect
of the scope of the samples (Section 5.3). If a single sample is generated for
location r0, the waiting time is uniformly distributed. On the other hand, when
generating a sample for both transitions individually, the probability distribution
over the time intervals is no longer uniform, as the interval [4, 5] of transition μ
will increase the likelihood of picking a delay from that interval (when resolving
the choice first (Section 5.1), the probability of a delay in [4, 5] would become
1
2 ·

1
5 + 1

2 ·
1
1 = 3

5).

5 Classifying SMC Algorithms

All statistical model checkers encounter the caveats outlined in the previous two
sections and their implementations somehow deal with them. There is a range
of possible solutions. We analyzed them and developed a classification scheme
that has four dimensions, which we elaborate upon in the next sections.

5.1 Transition Selection Order – Early versus Delayed

The order solution dimension follows from caveats C1 and C2. It relates to the
moment an enabled transition is chosen with respect to the moment that the
waiting times are sampled. The choice of a particular order also impacts the
accuracy dimension, which is elaborated later on.

Early ordering picks from each process a single enabled transition before sam-
pling a waiting time. Thus, the race between transitions within a process is not
determined by the execution times of the individual transitions. In our setting,
this decision is usually made equiprobabilistically.

In the case of delayed ordering, the waiting time(s) are sampled first, simulat-
ing racing transitions. After sampling, the algorithm picks a winning transition
which is used to extend the path. This choice is typically made equiprobabilisti-
cally between the fastest transitions, similar to racing processes.

186 D. Bohlender et al.

Taking Figure 1 as an example, early ordering would pick either of the 3
transitions – usually uniformly – and sample a delay afterward. Delayed ordering
does the opposite and generates a delay based on location p0 and then pick any
of the (enabled) transitions, possibly based on the delay.

A hybrid approach exists as well. In the work of [18], the preselection policy
allows a set of transitions to be preselected, probabilistically or deterministically,
which may then enter the race between processes. The simulation process then
continues further as with delayed ordering.

5.2 Accuracy of Waiting Time Distributions – Exact versus
Approximate

This dimension follows from caveat C3, the underspecification of time. This
underspecification is resolved using a probability distribution over the possible
time intervals. The simulator may generate such a distribution with a support
that exactly coincides with the time intervals in which any transition is enabled,
or it may approximate these intervals. Information used may stem from source
and target location invariants, and transition guards. Synchronization effects
may be taken into account as well.

In the exact case, the constructed probability distribution has a support that
matches the time points that enable at least one transition. This is a strong
property. Note that the constructed distribution can be non-convex. In the ex-
ample of Figure 6 in the middle, this would mean the sampled waiting time is
generated in the set [0, 1] ∪ [4, 5].

The approximate case allows the distribution to range over an over- or under-
approximation of the set of possible waiting times. That means waiting times can
be sampled for which no transition is enabled. Taking again the middle process of
Figure 6 as an example, based only on the location invariant a possible interval
could be [0, 5]. Over-approximating potentially results in an action-lock (see
caveat C5). It is then up to the SMC algorithm what to do with the current
sampled waiting time. This is the attitude policy and is discussed in Section 5.4.

5.3 Scope of Waiting Time Samples – Location Local versus
Transition Local

The scope dimension follows from caveats C2 and C3 and when multiple tran-
sitions are enabled. A single delay can be sampled for the current location, or
individual delays can be sampled for each transition emanating from the current
location. Such a situation exists in all examples of Figure 6, where one delay may
be generated entailing both transitions, or one delay per transition, totaling two.

We refer to the former solution as the location local scope. The distribution
that is being constructed will account for all enabled time intervals of all non-
deterministic choices. A waiting time sampled from that distribution does not
necessarily imply which transition progresses, as the non-deterministic choices
may have overlapping enabled intervals. As only one sample is generated for all
transitions, the location local scope introduces a bias towards transitions that

A Review of SMC Pitfalls on Real-Time Stochastic Models 187

Table 1. Summary of algorithmic policies

Policy class Transition Policies keeping sample Policies rejecting sample

Memory Enabled Age & Enabling Memory Resampling
Disabled Age Memory Enabling Memory

Attitude Enabled Progressive & Conservative -
Disabled Progressive Conservative

have a larger interval, and may in fact render the simulator incapable of picking
transitions with a deterministic point interval.

The alternative is referred to as the transition local scope. Here a sample
is generated for each non-deterministic choice from a process’ current location.
Then, a race occurs within the process between the individual transitions. The
transition local scope may introduce a bias as well. As was shown in Section 4
(Figure 6 right example), different transition intervals may induce a bias within
the overall distribution of delays, in this case towards [4, 5].

5.4 Race Policy

The race policy dimension addresses the lifetime of sample(s) generated for a
process under a race condition. When the stochastic model is described by non-
memoryless distributions, different probabilistic outcomes can be realized based
on the manner in which samples are retained or discarded, which is decided by a
policy. Such a policy can make different decisions based on winning or losing the
race described by caveat C1 and whether any associated transitions are enabled
or not.

Memory policies describe whether or not the generated sample will be retained
for a future step if the process lost the race. In [18] three policies are described:
age memory, which retains the sample if there is no enabled transition; enabling
memory, which rejects the sample if no transition is enabled; and resampling,
which always rejects the sample. Furthermore, the age and enabling policies
keep the sample if the transition remains enabled.

Attitude policies dictate what samples are valid for a process that won the
race. The conservative policy discards the sample if no transition is enabled. The
progressive policy keeps the sample even if no transition is enabled (potentially
causing an action-lock, see caveat C5). Both policies keep the sample (and use
it) when a transition is enabled, and no policy rejects a sample in such a case.
Both the memory and attitude policies are summarized in Table 1.

6 Applying the Systematization

To put the systematization in this paper to practical terms, we show how
UPPAAL-SMC and Modes deal with the caveats and how their respective

188 D. Bohlender et al.

Table 2. Model checking results from UPPAAL-SMC and Modes on the examples.
The UPPAAL-SMC and Modes columns show the calculated probability intervals.

Caveats Example Property UPPAAL Modes

C2 Figure 1 P(�[0,5](p1∨p2)) [0.66,0.68] [0.66,0.68]
P(�[0,5]p3) [0.32,0.34] [0.32,0.34]

C3 Figure 2 P(�[0,4]p1)a [0.74,0.76] [0.98,1.00]

C4 Figure 3 P(�[0,5]p1) [0.86,0.88] [0.51,0.53]

C1,C3 Figure 5 P(�[0,5](p1∧q1)) errorb [0.98,1.00]

C2,C3 Figure 6 P(�[0,5]p1) [0.79,0.81] [0.98,1.00]
P(�[0,5]p2) [0.19,0.21] [0.00,0.02]

C2,C3 Non-convex Figure 6 P(�[0,5]q1) [0.19,0.21] [0.98,1.00]
P(�[0,5]q2) [0.79,0.81] [0.00,0.02]

C2,C3 Overlapping Figure 6 P(�[0,5]r1) [0.89,0.91] [0.98,1.00]
P(�[0,5]r2) [0.09,0.11] [0.00,0.02]

a A time bound of four was chosen to highlight the difference between UPPAAL-SMC
and Modes scheduling.

b UPPAAL-SMC cannot execute the model as it is not input enabled.

SMC implementations can be classified. We furthermore compared these two
tools using the examples presented in Sections 3 and 4. These examples have
been modeled using the formalism used by the respective tool, and probabilistic
time bounded reachability properties were evaluated to quantify the differences.
The results are presented in Table 2.

For both tools, results were determined with a 0.99 confidence, and a 0.01
error bound. These parameters were chosen as they provide sufficient precision
and confidence to compare the outcomes of the experiments. Note that due to the
existence of an error bound, the results are not exact values but rather intervals.
More detailed results and the sources of the models can be found online [10].

UPPAAL-SMC vs Modes

The path generation algorithm implemented by UPPAAL-SMC is described in
[11]. The algorithm first determines the interval of possible waiting times by
inspecting the invariant of the current active location. It then delays based on a
sample from that interval, and uniformly chooses from the enabled transitions af-
terward. Any previously generated samples are ignored. When multiple processes
are involved, the sample with shortest waiting time is selected.

The behavior of the path generation algorithm in the Modes tool [7] has been
analyzed using the semantics of the MoDeST language, configuration of the
Modes tool and analysis of the experimental results. No information has been
provided by the authors or derivative work on the path generation algorithm of

A Review of SMC Pitfalls on Real-Time Stochastic Models 189

Modes. The Modes tool allows the resolution for both the underspecification
of choice and time to be configured. Underspecification of choice can be resolved
in four ways: The model is rejected; confluence detection is used to remove
spurious non-determinism [14]; partial order reduction is used to remove spurious
non-determinism [6]; or a uniform distribution is applied. Underspecification of
waiting time can be resolved in two ways: Either the model is rejected, or an
as-soon-as-possible (ASAP) scheduler is used (which always selects the shortest
possible waiting time to enable a transition). For the experiments performed in
this section, the uniform distribution is used for underspecification of choice, and
the ASAP scheduler for underspecification of time.

Discussion

Most of the differences in the results can be attributed to the ASAP scheduler
of the Modes tool. Despite having a delayed and approximate scheduling al-
gorithm, the Modes tool always makes a deterministic choice to sample the
shortest possible waiting time. Thus, whereas the results from UPPAAL-SMC
tend towards a uniform distribution when choice is involved, Modes tends to-
wards a Dirac-delta distribution. This can be seen for all the cases involving C3
(Figures 2, 5 and 6). Here, the probability of reaching a certain state within the
specified time bound is approximately either 1.0 or 0.0 for Modes, indicating
the chosen delay is constant.

Both the UPPAAL-SMC and Modes tools make use of a delayed order, re-
solving the underspecification of time before selecting a transition. For Modes,
this can be seen in the results of the C3 case, as only the transition with the
lowest time bound is chosen (due to the ASAP scheduler). In this case, Modes

always chooses a delay of zero and thus, considering the examples in Figure 6,
ends up in locations p1, q1 and r1 respectively. Furthermore, both tools have
an approximate accuracy. UPPAAL-SMC only takes the invariants into account,
over-approximating the possible transition times. Modes only uses the lowest
possible time value, thus under-approximating the possible transition times. For
the scope dimension, both tools use the location local scope: UPPAAL-SMC uses
just the invariants of a location to generate this sample whereas Modes picks
the lowest possible value.

Both tools differ in the applied race policies. In case of UPPAAL-SMC, a
resampling memory policy is used, as previous results are discarded when a new
step is generated, and a progressive attitude policy is used, as a generated de-
lay is always applied even if no transition is enabled. In the case of Modes,
when process loses the race the age memory policy applies, as samples are ex-
plicitly assigned to process variables. However, the attitude policy can not be
determined, as the scheduler ensures that there is always an enabled transition,
as the difference can only be determined for delays after which no transition is
enabled.

An interesting difference in results can be seen for the C4 case (Figure 3).
This can be attributed to a difference in semantics for models containing expo-
nential distributions to sample waiting times. In the example, location p1 can

190 D. Bohlender et al.

only be reached in the interval [1, 5]. Both Modes and UPPAAL-SMC interpret
any sample above five as a deadlock. However, there is a difference in the in-
terpretation of values below one. In UPPAAL-SMC, the outcome of the entire
exponential distribution is shifted to the right by one unit of time, such that a
waiting time below one is never generated. In Modes, a waiting time below one
simply results in a deadlock, explaining the lower probability of reaching p1.

7 Conclusions

The light-weight and scalable nature of statistical model checking techniques
appeal as a practical way to handle the rich semantics of real-time stochastic
models. From experimentation with two publicly available SMC tools, UPPAAL-
SMC and Modes, we however encountered discrepancies in the computed prob-
abilities on structurally equivalent models. They could not easily be dismissed
as tool implementation bugs. In fact, they turned out to be semantic biases that
did not align with our end-user interpretation. In our effort to study and un-
derstand these biases, we investigated how statistical model checkers deal with
concurrency, non-deterministic and real-time aspects and how the discrepancies
in the probabilities can be traced to key SMC tool design and implementation
choices. From the lessons learned in this investigation, we systematized our ob-
servations into five caveats and a classification scheme for SMC algorithms. They
can be used to understand any SMC technique on real-time stochastic models.
We furthermore exemplify the caveats with concrete models, and show and dis-
cuss how two publicly available SMC tools, UPPAAL-SMC and Modes, compute
significantly different probabilities on them.

We restrict our conclusion to the following: the use of SMC techniques on
real-time stochastic models needs to be approached with caution. The system-
atization in this paper helps the end-user to identify and deal with the key points
for caution. In the end, this increased understanding of SMC techniques helps
the end-user to interpret the (difference in) computed probabilities by SMC tools.
Their perceived biases ought not to be straightforwardly seen as an invalidation
of SMC techniques. In fact, these biases may for example perfectly suit the as-
sumptions that hold in the modeling domain (e.g. RAMS or systems biology).
This paper contributes with a systematization for validating the SMC tools’ be-
haviors against these desired assumptions, which might be for example used for
tool certification.

References

1. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

2. Alur, R., La Torre, S., Pappas, G.J.: Optimal Paths in Weighted Timed Automata.
In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS,
vol. 2034, pp. 49–62. Springer, Heidelberg (2001)

A Review of SMC Pitfalls on Real-Time Stochastic Models 191

3. Baier, C., Bertrand, N., Bouyer, P., Brihaye, T., Größer, M.: Probabilistic and
Topological Semantics for Timed Automata. In: Arvind, V., Prasad, S. (eds.)
FSTTCS 2007. LNCS, vol. 4855, pp. 179–191. Springer, Heidelberg (2007)

4. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model Checking Algorithms
for Continuous-Time Markov Chains. IEEE Transactions on Software Engineer-
ing 29(6), 524–541 (2003)

5. Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn, J.,
Vaandrager, F.W.: Minimum-Cost Reachability for Priced Timed Automata. In: Di
Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034,
pp. 147–161. Springer, Heidelberg (2001)

6. Bogdoll, J., Ferrer Fioriti, L.M., Hartmanns, A., Hermanns, H.: Partial Order Meth-
ods for Statistical Model Checking and Simulation. In: Bruni, R., Dingel, J. (eds.)
FMOODS/FORTE 2011. LNCS, vol. 6722, pp. 59–74. Springer, Heidelberg (2011)

7. Bogdoll, J., Hartmanns, A., Hermanns, H.: Simulation and Statistical Model Check-
ing for Modestly Nondeterministic Models. In: Schmitt, J.B. (ed.) MMB & DFT
2012. LNCS, vol. 7201, pp. 249–252. Springer, Heidelberg (2012)

8. Bohnenkamp, H., D’Argenio, P.R., Hermanns, H., Katoen, J.-P.: MODEST: A
Compositional Modeling Formalism for Hard and Softly Timed Systems. IEEE
Transactions on Software Engineering 32(10), 812–830 (2006)

9. Boyer, B., Corre, K., Legay, A., Sedwards, S.: PLASMA-lab: A Flexible, Dis-
tributable Statistical Model Checking Library. In: Joshi, K., Siegle, M., Stoelinga,
M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 160–164. Springer,
Heidelberg (2013)

10. Bruintjes, H., Nguyen, V.Y.: Test results from experiments,
http://www-i2.informatik.rwth-aachen.de/~isola2014/smc/index.html (On-
line; accessed May 14, 2014)

11. Bulychev, P., David, A., Larsen, K.G., Mikučionis, M., Bøgsted Poulsen, D., Legay,
A., Wang, Z.: UPPAAL-SMC: Statistical Model Checking for Priced Timed Au-
tomata. In: Wiklicky, H., Massink, M. (eds.) QAPL. Electronic Proceedings in
Theoretical Computer Science, vol. 85, pp. 1–16. Open Publishing Association
(2012)

12. Fränzle, M., Hahn, E.M., Hermanns, H., Wolovick, N., Zhang, L.: Measurability
and Safety Verification for Stochastic Hybrid Systems. In: HSCC 2011, pp. 43–52.
ACM (2011)

13. Grosu, R., Smolka, S.A.: Monte Carlo Model Checking. In: Halbwachs, N., Zuck,
L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 271–286. Springer, Heidelberg
(2005)

14. Hartmanns, A., Timmer, M.: On-the-Fly Confluence Detection for Statistical
Model Checking. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS,
vol. 7871, pp. 337–351. Springer, Heidelberg (2013)

15. Hermanns, H. (ed.): Interactive Markov Chains. LNCS, vol. 2428. Springer, Hei-
delberg (2002)

16. Jegourel, C., Legay, A., Sedwards, S.: A Platform for High Performance Statistical
Model Checking – PLASMA. In: Flanagan, C., König, B. (eds.) TACAS 2012.
LNCS, vol. 7214, pp. 498–503. Springer, Heidelberg (2012)

http://www-i2.informatik.rwth-aachen.de/~isola2014/smc/index.html

192 D. Bohlender et al.

17. Legay, A., Delahaye, B., Bensalem, S.: Statistical Model Checking: An Overview. In:
Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G.,
Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer,
Heidelberg (2010)

18. Marsan, M.A., Balbo, G., Bobbio, A., Chiola, G., Conte, G., Cumani, A.: The
Effect of Execution Policies on the Semantics and Analysis of Stochastic Petri
Nets. IEEE Transactions on Software Engineering 15(7), 832–846 (1989)

19. Sproston, J.: Decidable Model Checking of Probabilistic Hybrid Automata. In:
Joseph, M. (ed.) FTRTFT 2000. LNCS, vol. 1926, pp. 31–45. Springer, Heidelberg
(2000)

20. Tripakis, S.: Verifying Progress in Timed Systems. In: Katoen, J.-P. (ed.) ARTS
1999. LNCS, vol. 1601, pp. 299–314. Springer, Heidelberg (1999)

21. Younes, H.L., Simmons, R.G.: Statistical Probabilistic Model Checking With a
Focus on Time-Bounded Properties. Information and Computation 204(9), 1368–
1409 (2006)

Formal Analysis of the Wnt/β-catenin Pathway
through Statistical Model Checking

Paolo Ballarini1, Emmanuelle Gallet1,
Pascale Le Gall1, and Matthieu Manceny2

1 Laboratoire MAS, Ecole Centrale Paris, 92195 Châtenay-Malabry, France
{emmanuelle.gallet,pascale.legall,paolo.ballarini}@ecp.fr

2 Laboratoire LISITE, ISEP, 28 Rue Notre-Dame-des-Champs 75006 Paris, France
matthieu.manceny@isep.fr

Abstract. The Wnt/β-catenin signalling pathway plays an important
role in the proliferation of neural cells, and hence it is the main focus of
several research aimed at understanding neurodegenerative pathologies.
In this paper we consider a compact model of the basic mechanisms of
the Wnt/β-catenin pathway and we analyse its dynamics by application
of an expressive temporal logic formalism, namely the Hybrid Automata
Stochastic Logic. This allows us to formally characterise, and effectively
assess, sophisticated aspects of the Wnt/β-catenin pathway dynamics.

Keywords: HASL Model Checking, Stochastic modelling, biological
pathways, Wnt/β-catenin.

1 Introduction

Systems Biology [11] is concerned with the development of formalisms for build-
ing “realistic” models of biological systems, i.e. models capable of reproducing
wet-lab observations. A biological model consists of a set biochemical agents
(i.e. species) whose interactions are expressed by a set of reaction equations.
This leads to either a continuous-deterministic interpretation (i.e. in terms of a
system of differential equations), or to a discrete-stochastic interpretation (i.e.
in terms of a discrete-state stochastic process).

Stochastic modelling and systems biology. Within the discrete-stochastic seman-
tics realm, which is what we consider in this work, molecular interactions are
assumed to be of stochastic nature hence biochemical reactions occur according
to probability distributions. In this case what modellers normally do is to gen-
erate one (or several) trajectory(ies) through stochastic simulation and observe
the evolution of the species (under different model’s configurations) in order to
figure out how a given aspect of the model’s dynamics is affected by the various
elements of the model (i.e. what species/reactions is responsible for a given
observed behaviour). Such an approach has two main advantages: its simplicity
and its low computational cost (the runtime for generating a single trajectory or
a normally small number of trajectories is very low even for large models). On

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 193–207, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

194 P. Ballarini et al.

the other hand the main disadvantage is that it is little formal, meaning that
the modeller must draw conclusions based only on the observation of a single
(stochastic) trajectory (or of a trajectory obtained by averaging a normally small
number of trajectories).

Stochastic model checking and systems biology. Stochastic model checking [12]
(SMC) is a formal technique that allows the modeller to formally express relevant
properties in terms of a (stochastic) temporal logic and to assess them against
a given stochastic model. This is achieved through an automatic procedure
which can either provide an exact answer through exhaustive exploration of
the model’s state space (i.e. numerical model checking [2]) or an estimated
answer resulting from a finite sampling of the model’s trajectory (i.e. statistical
model checking [13]). SMC has at least two main advantages with respect to
informal approaches: first it provides the modeller with a language for capturing
relevant properties formally; second the answer it calculates (e.g. probability
that a property is satisfied by the model) are either exact (i.e. they reflect the
complete set of possible behaviours of the model) or are accurate estimates (i.e.
calculated over a a sufficiently large sample of trajectories). The effectiveness
of SMC in systems biology applications is demonstrated by an ever increasing
number of publications, e.g.[8,10,5].

β-catenin and the WNT Pathway. In cellular biology signalling pathways
are basic mechanisms responsible for controlling a cell’s life-cycle. Simply speak-
ing a signalling pathway represents a cascade of biochemical reactions which is
triggered by a specific signal (i.e. type of molecules) whose presence, normally
at the cell membrane, activates the cascade leading to the “transmission” of the
signal inside the cell (i.e. cytosol and/or nucleus). In this paper we study a model
of the Wnt/β-catenin pathway, a signalling pathway known to be involved in the
pathological degeneration of neuronal cells [14].

Our Contribution. In this work we present preliminary results of application
of formal analysis, based on the so-called Hybrid Automata Stochastic Logic
(HASL) statistical model checking, to a model of the Wnt/β-catenin pathway
presented in [15]. In particular we show how one can define specific HASL for-
mulae for assessing sophisticated characteristics of the Wnt/β-catenin pathway
dynamics. This includes, for example, measuring the temporal location and the
amplitude of transient peaks of nuclear β-catenin, exhibited by certain initial
conditions, or assessing its oscillatory character resulting from other conditions.
If in [15] the analysis of the Wnt/β-catenin model is simply done through plotting
of simulated trajectories, here we move analysis to a higher and more formal level
by demonstrating how, through model checking, one gains access to the analysis
of sophisticated dynamical aspects of the Wnt/β-catenin pathway.

Paper Organisation. We introduce the Wnt/β-catenin mechanism in Section 2
and describe the model presented in [15] which we have used for our analysis. In

Formal Analysis of β-Catenin Dynamics through Statistical Model Checking 195

Section 3 we give a concise description of the HASL statistical model checking
formalism. In Section 4 we present the results obtained by application of HASL
model checking to the analysis of Wnt/β-catenin model. We wrap up the paper
with some conclusive remarks and future perspectives in Section 5.

2 A Model of the Wnt/β-catenin Pathway

Neurodegeneration is the process of progressive lost of structure/function of
neuronal cells (i.e. neurons) which is at the basis of many neurodegenerative
diseases, such as, for example, the Parkison’s disease, Alzheimer’s disease and
the Amyotrophic lateral sclerosis. Research in this field is particularly focused
on the growth of in vitro population of neural cells that may potentially be
used in replacement therapies for neurodegenerative diseases. Cultivated cells
undergo so-called proliferation, a process of successive cell divisions and potential
differentiation into neurones and glial cells.

The Wnt/β-catenin pathway is a signalling pathway known to be involved in
the proliferation/differentiation of neural cells. Specific in vitro experiments [14]
have exhibited a high activity of the Wnt/β-catenin pathway during the differ-
entiation of ReNcell VM (RVM) cells, i.e. a type of cells derived from the brain
of a fetus and that are believed to be an appropriate model for replacement
therapies in neurodegenerative pathologies. The activity of the Wnt/β-catenin
is summarised as follows: in absence of extracellular Wnt molecules (normally
at cell’s membrane), a degradation complex causes the phosphorylation and
subsequent destruction of β-catenin located in the cell’s cytosol (denoted βcyt);
on the other hand in presence of Wnt proteins, the degradation complex is
inactivated resulting in accumulation of βcyt. Furthermore from the cytosol β-
catenin undergoes a (reversible) relocation to the nucleus (denoted βnuc) wherein
it activates the expression of one component of its degradation complex, i.e. the
Axin protein. The above described mechanism is captured by a core-version of
the Wnt/β-catenin pathway model presented in [15]. This consists of the twelve
biochemical reactions illustrated by equations (1).

R1 :Wnt
k1−→ ∅ R7 : AxinP + βcyt

k7−→ AxinP

R2 :Wnt+AxinP
k2−→ Wnt+ Axin R8 : ∅

k8−→ βcyt

R3 :AxinP
k3−→ Axin R9 : βcyt

k9−→ ∅

R4 :Axin
k4−→ AxinP R10 : βcyt

k10−→ βnuc

R5 :AxinP
k5−→ ∅ R11 : βnuc

k11−→ βcyt

R6 :Axin
k6−→ ∅ R12 : βnuc

k12−→ Axin+ βnuc

(1)

The model consists of three basic molecular species: the Axin protein, which
can be either in normal (Axin) or phosphorylated (AxinP) form, the Wnt
protein (Wnt) and the β-catenin which can be either located in the cytosol

196 P. Ballarini et al.

(βcyt) or in the nucleus (βnuc). Equations (1) account for the following aspects:
two reversible events, i.e. the phosphorylation of Axin (reactions R4 and R3) and
the relocation of β-catenin from/to cytosol/nucleus (reactions R10 and R11); the
Wnt enhanced de-phosphorylation of Axin (reaction R2); the nuclear β-catenin
(i.e. βnuc) regulated expression of Axin (reaction R12); the phosphorylated
AxinP enhanced degradation of cytosolic β-catenin (i.e. βcyt) (reaction R7)1; the
constant (DNA regulated) expression of cytosolic β-catenin (i.e. βcyt) (reactions
R8); the degradation of all species i.e. Wnt (reactions R1), Axin in either form
(reactions R5 or R6) and βcyt (reaction R9).

In this paper we focus on the discrete-stochastic interpretation of Equa-
tions (1), hence species populations are expressed in terms of number of molecules
and reactions are of stochastic nature and are assumed to obey the mass action
law (meaning that a reaction’s rate is proportional to the current population of
the reactants, except for R8 whose rate is constant). With respect to the model
configuration we consider two basic sets A and B of parameter values respectively
taken from the sets 3 and 4 in [15], and indicated in Table 1.

Table 1. Parameter sets for stochastic interpretation of Wnt/β-catenin pathway model
given by equations (1)

initial populations (mol.) rate constants (mol. ·min−1)
par. id Set A Set B par. id Set A Set B par. id Set A Set B
nβcyt 11145 12989 k1 0.6 0.27 k6 2.4 · 10−3 4.48 · 10−3

nβnuc 4532 5282 k2 10 20 k7 3 · 10−4 2.1 · 10−4

nAxin 144 252 k3 0.03 0.03 k8 420 600
nAxinP 125 219 k4 0.03 0.03 k9 1.13 · 10−4 1.13 · 10−4

nWnt 1000 1000 k5 4.48 · 10−3 4.48 · 10−3 k10 0.0549 0.0549
k11 0.135 0.135 k12 2 · 10−4 4 · 10−4

Throughout the remainder of the paper we will analyse the Wnt/β-catenin
model by comparing the dynamics corresponding to the two parameter sets of
Table 1. Following [15], we will also consider two variants of the basic model (1).
The first variant, denoted Wnt-inject, represents a single injection of an extra
amount (i.e. 1000) ofWntmolecules in the system at a fixed delay di. The second
variant, denoted Wnt-doped, represents the presence of a doping mechanism that
kicks in at a given delay dd and then it sustainably generates a fresh Wnt molecule
at given frequency (assumed to be exponential distributed with parameter kd).

2.1 Stochastic Petri Net Model of the Wnt/β-catenin Pathway

The COSMOS [3] model checker which we used for analysing the Wnt/β-catenin
pathway model uses Generalised Stochastic Petri Net (GSPN) [1] as modelling
1 Notice that βnuc dependent Axin expression and AxinP enhanced βcyt degradation

determine, de facto, a negative feedback loop between β-catenin and the Axin
protein.

Formal Analysis of β-Catenin Dynamics through Statistical Model Checking 197

R1

Wnt

R2

AxinP

R3 R4 R11

βnuc

βcyt

R10

R9

R8
Wnt-inject

Wnt-dope

Det(di)

Det(dd)

Axin

R7

R12

dopingWnt

1000

startDope

injectingWnt

nA

nAP

nβn

nβc

nW

Exp(k1)

Exp(k2)

Exp(k3)

Exp(k4)

Exp(k5)

Exp(k6)

Exp(k7) Exp(k8)

Exp(k9)

Exp(k10) Exp(k11)

Exp(k12)

R6

R5Exp(kd)

Fig. 1. GSPN model corresponding to Equations (1) of the Wnt/β-catenin pathway

formalism. A GSPN model is a bipartite graph consisting of two classes of nodes,
places and transitions. Places (circle nodes) may contain tokens (representing
the state of the modelled system) while transitions (bar nodes) indicate how
tokens “flow” within the net (encoding the model dynamics). The state of a
GSPN consists of a marking indicating the distribution of tokens throughout
the places (i.e. how many tokens each place contains). A transition is enabled
whenever all of its input places contains a number of tokens greater than or
equal to the multiplicity of the corresponding (input) arc. An enabled transition
may fire consuming tokens (in a number indicated by the multiplicity2 of the
corresponding input arcs) from all of its input places and producing tokens
(in a number indicated by the multiplicity of the corresponding output arcs)
in all of its output places. Transitions can be either timed (denoted by thick
bars) or immediate (denoted by thin bars). Timed transitions are associated
to a probability distribution (e.g. Exponential, Uniform, Deterministic, etc).
In the context of this paper GSPN places represent biological species (and
their marking the molecular population of a species), whereas timed transitions
represent chemical reactions. For more details on GSPN we refer the reader to
the literature [1].

Figure 1 depicts the GSPN model encoding the Wnt/β-catenin chemical equa-
tions (1). The net contains a place for each species of the Wnt/β-catenin model
and a transition for each reaction. Non filled-in transitions are exponentially
distributed (with marking dependent rate) with rate-constant corresponding to
that of either parameter set of Table 1. The sub-net enclosed in dashed line box
(top left) has been added in order to add the Wnt-inject and Wnt-dope behaviour
to the basic model. In order to study the behaviour of the Wnt-inject (Wnt-dope)
variant it suffices to add one token in the initial marking of place Wnt_inject
2 The default multiplicity of an arc is 1 if different is explicitly indicated on the arc.

198 P. Ballarini et al.

(Wnt_dope). Notice that the black filled-in transitions of the Wnt-inject/Wnt-
dope subnet are associated to deterministic delays.

Observing βnuc Dynamics on a Single Stochastic Trajectory. Follow-
ing [15] we first look at the dynamics of nuclear β-catenin (i.e. βnuc) as observed
along a single trajectory simulated over 24 hours (Figure 2 and Figure 3 with
the units on x axis being minutes). Figure 2 compares the behavior of βnuc for
the two parameter sets (Table 1) of the basic Wnt/β-catenin model in presence
of Wnt (initial population of Wnt set to 1000).

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 0 120 240 360 480 600 720 840 960 1080 1200 1320 1440

N
um

be
r

of
 m

ol
ec

ul
es

Time (min)

nucleus beta-catenin - Set A (Wnt-basic)

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500

 9000

 9500

 10000

 10500

 11000

 0 120 240 360 480 600 720 840 960 1080 1200 1320 1440

N
um

be
r

of
 m

ol
ec

ul
es

Time (min)

nucleus beta-catenin - Set B (Wnt-basic)

Fig. 2. Dynamics of βnuc along a 24 hours single trajectory of the Wnt/β-catenin
pathway model with parameter set A (left) and set B (right)

The interpretation in this case is quite straightforward: the presence of an
initial Wnt signal (i.e. of 1000 molecules) triggers a (delayed) peak in βnuc
which however quickly ends due to the steady degradation (and absence of
reintegration) of Wnt. Eventually when all Wnt has faded away βnuc noisily
converges to a certain level. Figure 3 compares the dynamics of βnuc in presence

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500

 9000

 9500

 10000

 10500

 11000

 11500

 0 120 240 360 480 600 720 840 960 1080 1200 1320 1440

N
um

be
r

of
 m

ol
ec

ul
es

Time (min)

nucleus beta-catenin - Set B (Wnt-inject)

 4000
 4500
 5000
 5500
 6000
 6500
 7000
 7500
 8000
 8500
 9000
 9500

 10000
 10500
 11000
 11500
 12000
 12500
 13000

 0 120 240 360 480 600 720 840 960 1080 1200 1320 1440

N
um

be
r

of
 m

ol
ec

ul
es

Time (min)

nucleus beta-catenin - Set B (Wnt-doped)

Fig. 3. Dynamics of βnuc along a single trajectory of the Wnt/β-catenin pathway model
with re-injection of Wnt at t = 450 minutes (left) and with doping of Wnt started at
t = 150 minutes (right) and parameter set B

Formal Analysis of β-Catenin Dynamics through Statistical Model Checking 199

of delayed injection (i.e. Wnt-inject model injecting 1000 Wnt molecules at
di = 450 minutes), and in presence of doping (i.e. modle Wnt-dope with doping
starting at time dd = 150 minutes). The effect of delayed injection of 1000
molecules of Wnt at time di = 450 minutes is highlighted by the presence of
the second peak (Figure 3 left). On the other hand the effect of starting a
persistent doping of Wnt at time dd = 150 minutes results in an oscillatory, yet
rather irregular, behaviour of βnuc (Figure 3 right). In Section 4 we are going to
illustrate how to take advantage of the HASL formalism for formally capturing
the relevant dynamical characteristics of the above shown trajectories.

3 HASL Statistical Model Checking

The Hybrid Automata Stochastic Logic (HASL), introduced in [4], extends
Deterministic Timed Automata (DTA) logics for addressing Markov chain mod-
els [9,7], by employing Linear Hybrid Automata (LHA) as instruments for ad-
dressing a general class of stochastic processes, namely that of Discrete Event
Stochastic Processes (DESP). An HASL formula φ ≡ (A, Z) consists of two
elements: 1) A, a synchronising LHA (i.e. an LHA enriched with DESP state
and/or event indicators) and 2) Z a target expression (see grammar (2)) which
expresses the quantity to be evaluated (either a measure of probability or, more
generically, any real-valued measure).

Thus given a DESP model D and a formula φ ≡ (A, Z) the HASL model
checking procedure employs stochastic simulation to samples trajectories of the
synchronised process D×A, and then use (only) the paths selected by A (i.e.
those paths of D×A that reach an accepting location of A) for estimating the
confidence-interval of the target measure Z. Such a procedure is implemented
within the COSMOS [3] model checking framework, a tool which belongs to the
fast expanding family of statistical model checkers (e.g. [6,16,17]). For practical
reasons in HASL (and in particular within COSMOS) we employ GSPN as high-
level language for expressing a DESP. Below we give the definition of DESP and
LHA and informally describe the synchronisation process (we refer the reader
to [4] for a more formal treatment).

Definition 1 (DESP). A DESP is a tuple
D = 〈S, π0, E, Ind, enabled, delay, choice, target〉 where

– S is a (possibly infinite) set of states,
– π0 ∈ dist(S) is the initial distribution on states,
– E is a set of events,
– Ind is a set of functions from S to R called state indicators (including the

constant functions),
– enabled : S → 2E are the enabled events in each state with for all s ∈ S,
enabled(s) �= ∅.

– delay : S × E → dist(R+) is a partial function defined for pairs (s, e) such
that s ∈ S and e ∈ enabled(s).

200 P. Ballarini et al.

– choice : S × 2E × R+ → dist(E) is a partial function defined for tuples
(s, E′, d) such that E′ ⊆ enabled(s) and such that the possible outcomes of
the corresponding distribution are restricted to e ∈ E′.

– target : S×E×R+→S is a partial function describing state changes through
events defined for tuples (s, e, d) such that e∈enabled(s).

where dist(A) denotes the set of distributions whose support is A.

Dynamics of a DESP. A configuration of a DESP consists of a triple (s , τ ,
sched) with s being the current state, τ ∈ R+ the current time and sched :
E → R+ ∪ {+∞} being the function that describes the occurrence time of
each scheduled event (+∞ if an event is not yet scheduled). The evolution
(i.e simulation) of a DESP D can be informally summarised in terms of an
iterative procedure consisting of the following steps (assuming (s , τ , sched) is
the current configuration of D): 1) determine the set Em of events enabled in
state s and with minimal delay δm; 2) select the next event to occur enext∈Em

by resolving conflicts (if any) between concurrent events through probabilistic
choice according to choice(s, Em, τ); 3) determine the new configuration of the
process resulting from the occurrence of enext, this in turns consists of three
sub-steps: 3a) determine the new state resulting from occurrence of enext, i.e.
s′ = target(s, enext, δm); 3b) update the current time to account for the delay of
occurrence of enext, i.e. τ = τ+δm; 3c) update the schedule of events according to
the newly entered state s′ (this implies setting the schedule of no longer enabled
events to +∞ as well as determining the schedule of newly enabled events by
sampling through the corresponding distribution). The above procedure maps
directly on GSPN models, in which case the set of states S corresponds to the
set of possible markings of a GSPN, the events E correspond to the (timed)
transitions of a GSPN, and the remaining elements (i.e. delay, choice and target)
are determined by the semantics of GSPN (i.e. the so-called token game).

Definition 2. A synchronised Linear Hybrid Automaton is a tuple
A=〈E,L,Λ, I, F,X,flow,→〉 where:

– E is a finite alphabet of events;
– L is a finite set of locations;
– Λ : L→ Prop is a location labelling function;
– I ⊆ L is the initial locations;
– F ⊆ L is the final locations;
– X = (x1, ...xn) is a n-tuple of data variables;
– flow : L �→ Indn associates an n-tuple of indicators with each location

(projection flowi denotes the flow of change of variable xi).
– →⊆ L× (

(Const× 2E) � (lConst× {�}))×Up×L is the set of edges of the LHA

where $ denotes the disjoint union, Const and lConst denotes the set of possible
constraints, respectively left closed constraints, associated with A (see descrip-
tion below) and Up is the set of possible updates for the variables of A.
Furthermore A fulfils the following conditions.

Formal Analysis of β-Catenin Dynamics through Statistical Model Checking 201

– c1 (initial determinism): ∀l �= l′∈I, Λ(l)∧Λ(l′)⇔ false. This must hold
whatever the interpretation of the indicators occurring in Λ(l) and Λ(l′).

– c2 (determinism on events): ∀E1, E2 ⊆ E : E1∩E2 �= ∅, ∀l, l′, l′′ ∈ L,
if l′′ γ,E1,U−−−−→ l and l′′ γ′,E2,U

′
−−−−−→ l′ are two distinct transitions, then either

Λ(l) ∧ Λ(l′) ⇔ false or γ ∧ γ′ ⇔ false. Again this equivalence must hold
whatever the interpretation of the indicators occurring in Λ(l), Λ(l′), γ and
γ′.

– c3 (determinism on �): ∀l, l′, l′′ ∈ L, if l′′ γ,,U−−−→ l and l′′ γ′,,U ′
−−−−→ l′ are

two distinct transitions, then either Λ(l)∧Λ(l′)⇔ false or γ ∧γ′ ⇔ false.
– c4 (no �-labelled loops): For all sequences

l0
γ0,E0,U0−−−−−−→ l1

γ1,E1,U1−−−−−−→ · · · γn−1,En−1,Un−1−−−−−−−−−−−→ ln such that l0 = ln, there exists
i ≤ n such that Ei �= �.

Synchronisation of LHA and DESP. The role of a synchronised LHA A is to
select specific trajectories of a corresponding DESP D while collecting relevant
data (maintained in the LHA variables) along the execution. For the sake of
brevity we omit the formal semantics of the product process D × A in this
paper, but we provide an intuitive description of it.

A state of the D×A process is described as a triple (s, l, ν) where s is the
current state of the DESP, l the current location of the LHA and ν : X → R

the current valuation of the LHA variables. The synchronisation starts from the
initial state (s, l, ν), where s is an initial state of the DESP (i.e. π0(s) > 0),
l is an initial location of the LHA (i.e. l ∈ I) and the LHA variables are all
initial set to zero (i.e. ν = 0)3. Notice that, by initial determinism, for every
s ∈ S there is at most one l ∈ I such that s satisfies Λ(l). From the initial state
the synchronisation process evolves through transitions where each transition
corresponds to traversal of either a synchronised or an autonomous edge of the
LHA (notice that because of the determinism constraints of the LHA edges at
most only one autonomous or synchronised edge can ever be enabled in any
location of the LHA. Furthermore if an autonomous and a synchronised edge
are concurrently enabled the autonomous transition is taken first). If in the
current location of the LHA (i.e. location l of the current state (s, l, ν) of process
D×A) there exists an enabled autonomous edge l γ,,U−−−→ l′, then that edge will be
traversed leading to a new state (s, l′, ν′) where the DESP state (s) is unchanged
whereas the new location l′ and the new variables’ valuation ν′ might differ from
l, respectively ν, as a consequence of the edge traversal. On the other hand if
an event e (corresponding to transition s e−→ s′) triggered by process D occurs in

state (s, l, ν), either an enabled synchronous edge l γ,E′,U−−−−→ l′ (with e∈E′) exists
leading to new state (s′, l′, ν′) of process D×A (from which the synchronised
process will proceed) or the system goes to a dedicated rejecting state ⊥ and
the synchronisation halts (indicating rejection of the trace).

3 Notice that because of the “initial-nondeterminism” of LHA there can be at most
one initial state for the product process.

202 P. Ballarini et al.

HASL expressions. The second component of an HASL formula is an expression
related to the automaton. Such an expression, denoted Z, is based on moments
of a path random variable Y and defined by the grammar (2).

Z ::= c | E[Y] | Z + Z | Z − Z | Z × Z | Z/Z
Y ::= c | Y + Y | Y × Y | Y/Y | last(y) | min(y) | max(y) | int(y)| avg(y)
y ::= c | x | y + y | y × y | y/y

(2)

Z represents the expectation of an arithmetic expression based on LHA data
variables and which uses path operators such as: last(y) (i.e. the last value of y
along a synchronising path), min(y) (max(y)) the minimum (maximum), value
of y along a synchronising path), int(y) (i.e. the integral over time along a path)
and avg(y) (the average value of y along a path). In recent updates the COSMOS
model checker [3] has been enriched with operators for assessing the Probability
(Cumulative) Distribution Function (PDF/CDF) of the value that an expression
Y takes at the end of a synchronising path. This requires specifying a discretised
support of Y through the following syntax: Z = PDF (Y, s, l, h) which means
that the probability of Y to take value in any sub-interval of fixed width s
corresponding to the partition of the considered [l, h] support of Y is going to
be evaluated (assuming that [l, h] is discretised in h− l/s sub-intervals).

l1

l0
ṫ : 1
ṅ : 0

ḃ : 0

�,(n=N),∅
A

{R2},(n<N),{n++, b=βnuc}

E\{R2},(n<N),{b=βnuc}

Fig. 4. Simple example of LHA that synchronises with the Wnt/β-catenin GSPN model
of Figure 1: the automaton selects paths containing N occurrences of reaction R2

Example Figure 4 shows a simple example of LHA that synchronises with the
Wnt/β-catenin GSPN model of Figure 1. It uses three data variables: a clock t
(storing the simulation time), a counter n (counting the number of occurrences
of reactions R2) and a variable b which keeps track of the population of βnuc. In
the initial location l0 the clock variable t grows with constant flow ṫ=1, whereas
n and b flows is null. On occurrence of R2 the top synchronising self-loop edge
on l0 is traversed hence n is incremented whereas on occurrence of any other
reaction the bottom self-loop on l0 is traversed, hence n is not updated. On the
hand b is updated with the current value of βnuc on occurrence of any reaction.
As soon as N occurrences of R2 have been observed the autonomous edge l0 → l1
is traversed and synchronization halts (reaching of accepting location l1). Below
few examples of complete HASL formulae composed with the LHA of Figure 4.

Formal Analysis of β-Catenin Dynamics through Statistical Model Checking 203

– φ1 ≡ (A, E[last(t)]): representing the average time for observing N occur-
rences of R2.

– φ2≡(A, E[max(b)]): representing the maximum population reached by βnuc
within the first N occurrences of R2.

– φ3≡(A, PDF (last(t), 0.1, 0, 10)): representing the PDF of the delay for ob-
serving N occurrences of R2 (computed over the interval [0, 10] with a
discretisation step of 0.1)

4 Model Analysis through HASL Formulae

In order to analyse the dynamics of the Wnt/β-catenin model we define a number
of HASL formulae dedicated to capturing specific dynamical aspects of the GSPN
model in Figure 1.

4.1 Measuring the Maximal Peaks of βnuc Resulting from an
Unsustained Wnt Signal

Both the Wnt-basic and Wnt-inject models are designed to study the behaviour of
the Wnt/β-catenin pathway in presence of an unsustained Wnt signal: i.e. a given
amount of initial Wnt signal is present in the system but is steadily being consumed
(reaction R1) without being reintegrated (Wnt-basic) or being reintegrated once
after a delay di (Wnt-inject). The effect of a non-reintegrated Wnt signal results is
the production of a single peak of βnuc (Figure 2) whereas a single, delayed, rein-
tegration of 1000 Wnt molecules produces a second, shifted peak (Figure 3 left) in
the population of βnuc. We introduce some HASL formulae for formally measuring
the time location and the amplitude of such βnuc transient peaks. Observe that the
analysis of a stochastic model through observation of a single simulated trajectory
(as proposed in [15]) is in general little informative l and even more so in this case
as repeated trajectories of the wntb model exhibit a rather large variance. In the
light a more formal approach is vital to obtain a meaningful analysis.

Automaton Apeaks. The LHA in Figure 5 is conceived for locating the maximal
and minimal peaks along an alternating trace of a given observed species, in
this case βnuc. The automaton uses a number of data variables (Table 2) and is
dependent on two configuration aspects: the setting of a parameter δ (the chosen
noise level, see below) and the partition of the event set E =E+βnuc∪E−βnuc∪
E=βnuc where E+βnut , E−βnuc and E=βnut are the events yielding respectively:
an increase of βnuc, a decrease of βnuc and having no effect on βnuc population.
Specifically, for model (1) we have:E+βnuc ={R10},E−βnuc ={R11} andE=βnuc =
{R1, R2, R3, R4, R5, R6, R7, R8, R9, R12}.
Apeaks consists of an initial location start, a final location end, and 4 inter-

mediate locations (Min,Inc, Max and Dec) where the actual analysis of the
synchronised trajectory takes place. From start (on entering of which the initial
amount of βnuc is stored in x) the processing of the simulated trajectory leads
either to Min or Max depending if the an increase (decrease) of βnuc above

204 P. Ballarini et al.

start

ṫ : 1
noisyDec

ṫ : 1

noisyInc

ṫ : 1

Min

ṫ : 1

�,(
x>
β n
),{
x
:=
β n
}

E+β
n
,�,
∅

E=βn ,�,∅

Max

ṫ : 1

E+βn ,�,{x :=βn} E=βn ,�,∅

E,�,∅

E,�,∅

end

Apeaks

E,�,∅

E−βn ,�,{x :=βn}

E−βn
,�,
∅

�,(x>βn+δ)∧(t<T), {x :=βn,
xmax[n] :=x, tmax[n] := t,¬Up? n++}

�,(
x<
βn
),{
x
:=
βn
}

�,(t=T),∅�,(t=T),∅

�,(t=T),∅

�,(t=T),∅

�,(x>βn+δ),{x :=βn, Up := ⊥}

{x :=βn}

�,(x>βn−δ),{x :=βn, Up := �}

�,(x<βn−δ)∧(t<T), {x :=βn,
xmin[n] :=x, tmin[n] := t,¬Up? n++}

Fig. 5. Aβ_peaks: an LHA for locating the maximal peaks (up to noise level δ) of βn

(below) the chosen level of noise δ is observed (i.e. Apeaks copes fine both in the
case that the observed species initially increases or decreases).

Once in location Min (Max) the behaviour of the automaton depends on
the type of observed event. If an event e∈E+βnuc (e∈E−βnuc) is observed then
location noisyInc (noisyDec) is entered indicating that βnuc has increased
(decreased) although the increase (decrease) has not (yet) exceeded δ (with
respect to the most recent detected minimum (maximum) previously stored in
x). On the other hand if while in Min (Max) an event e∈E−A (e∈E+βnuc) is
observed, then this means that the current value of βnuc went below (above) the
previously detected minimum (maximum) hence x must be updated with the
newly found (potential) minimum (maximum) x := βnuc. Finally an occurrence
of any event e∈E=βnuc while in Min or Max is simply ignored. From noisyInc
(noisyDec) the processing of input trace may lead back to Min (Max) if βnuc
re-decreases (re-increases) below (above) x (hence requiring an update x := βnuc)
or it may lead to Max (Min)as soon as βnuc has increased (decreased) above
(below) the noise level (i.e. x>βnuc−δ). The autonomous edge noisyInc→Max
(noisyDec→Min) is traversed as soon as the value stored in x corresponds to
an actual minimum (maximum) along the processed βnuc trace (i.e. this is the
case when the current value of βnuc gets δ molecules far away from that stored
in x). Hence when traversing noisyInc→Max (noisyDec→Min) we are sure
that x contains a minimum (maximum) thus its value and its occurrence time are
stored in the nth element of the array xmin[n] := x (xmax[n] := x), respectively
tmin[n] := t (tmax[n] := t). The processing terminates (entering of End from
any other location) as soon as the simulation time is t = T at which point all
detected maxima and minima are stored in Apeaks data variables.

Formal Analysis of β-Catenin Dynamics through Statistical Model Checking 205

Table 2. The data variables of automata Apeaks of Figure 5 for locating the peaks of
a noisy oscillatory traces

Data variables
name domain description

t R≥0 time elapsed since beginning measure
n N counter of detected local maxima/minima
up bool boolean flag indicating whether measuring started with detec-

tion of a max or min
x N (overloaded) variable storing most recent detected maxi-

mum/minimum
xmax(xmin) NN array of detected maxima (minima)
tmax(tmin) RN array of detected occurrence time of maxima (minima)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275 0.3

B
nu

c
m

ax
im

al
 p

ea
k

k1 (Wnt decay rate)

first peak
second peak

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275 0.3

T
im

e
of

 B
nu

c
m

ax
im

al
 p

ea
k

k1 (Wnt decay rate)

first peak
second peak

Fig. 6. Average value (left) and occurrence time (right) of the first and second βnuc peak
for the Wnt-inject model in function of Wnt decay rate (highlighted points correspond
to k1 original value as in Table 1 set B)

HASL formulae for measuring the effects of unsustained Wnt signal. Based on
automaton Apeaks we define the following HASL formulae:

– φxmax≡(Apeaks, E[last(xmax[1])]): the average value of the first βnuc max-
imal peak.

– φtmax≡(Apeaks, E[last(tmax[1])]): the average value of the occurrence time
of first βnuc maximal peak.

– φPDFmax≡(Apeaks, PDF (last(tmax[1]), 1, 30, 80)): the PDF of the occur-
rence time of first βnuc maximal peak (computed over the interval [30, 80]
with a discretisation step 1)

Measuring the incidence of Wnt decay rate on βnuc peaks. The decay speed of
the Wnt signal affects the dynamics of βnuc (the temporal location and height
of βnuc peaks). We performed a number of experiments aimed at addressing this
aspect, specifically we assessed φxmax and φtmax against different instances of the
Wnt/β-catenin model with delayed Wnt re-injection (i.e. the Wnt-inject model)
where each instance corresponds to a different value of k1 (the decay rate Wnt).
Figure 6 displays the results concerning the evaluation of the first and second

206 P. Ballarini et al.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

pr
ob

ab
ili

ty

time

first peak

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 450 460 470 480 490 500 510 520 530 540 550

pr
ob

ab
ili

ty

time

second peak

Fig. 7. The PDF of the time of occurrence of the first βnuc peak (left) and second peak
(right) for the Wnt-inject model (with re-injection of 1000 Wnt molecules at t = 450
minutes)

peak of βnuc. They indicate that both the average height (left) and the average
occurrence time (right) of the first and second peaks of βnuc decrease as the Wnt
decay rate k1 increases4. Figure 6 left also shows that the second peak of βnuc
(induced by Wnt re-injection) has, on average, a smaller amplitude than the first
one and with a roughly constant difference of about 10% less between the two
except for a k1 =0.1 for which the first and second peak’s amplitude differs of
about 5%.

Measuring the PDF of occurrence time of βnuc peaks. Figure 7 displays the
PDF of the first (left) and second (right) peak of βnuc obtained by evaluation
of φPDFmax against the Wnt-inject model (parameter set B). Both PDF curves
exhibit a slight long-tail character with the majority of points being to the right
of the maximum likely occurrence time.

5 Conclusion

We have presented a formal study of a stochasticmodel of the Wnt/β-catenin path-
way, a biological mechanism with a relevant role in controlling the life-cycle of neu-
ronal embryonal cells. This model has been previously considered [15] however it
was analysed only informally, i.e. through observation of simulated trajectories.
By means of a powerful formalism (i.e. HASL model checking) we formally charac-
terised and accurately assessed a number of relevant aspects of the Wnt/β-catenin
dynamics. In particular in this work we have focused on studying the effects in-
duces on nuclear β-catenin (a basic element of the Wnt/β-catenin pathway) by the
presence of a degrading (possibly reintegrated) Wnt signal. That included measur-
ing of the average value and the PDF of the occurrence time and the amplitude
of the βnuc peaks resulting from a transitory Wnt signal. We plan to evolve this
preliminary study in several directions, including the formal analysis of the effects
4 Results computed with confidence level 99% and interval-width of 1% of the

estimated measure.

Formal Analysis of β-Catenin Dynamics through Statistical Model Checking 207

induced by a sustained Wnt signal, as well as the analysis of the dynamics of βnuc
over a population of asynchronously evolving cells.

References

1. Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.:
Modelling with Generalized Stochastic Petri Nets. John Wiley & Sons (1995)

2. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model-checking algorithms
for CTMCs. IEEE Trans. on Software Eng. 29(6) (2003)

3. Ballarini, P., Djafri, H., Duflot, M., Haddad, S., Pekergin, N.: COSMOS: a sta-
tistical model checker for the hybrid automata stochastic logic. In: Proceedings of
the 8th International Conference on Quantitative Evaluation of Systems (QEST
2011), pp. 143–144. IEEE Computer Society Press (September 2011)

4. Ballarini, P., Djafri, H., Duflot, M., Haddad, S., Pekergin, N.: HASL: an expressive
language for statistical verification of stochastic models. In: Proc. Valuetools (2011)

5. Ballarini, P., Mäkelä, J., Ribeiro, A.S.: Expressive statistical model checking of
genetic networks with delayed stochastic dynamics. In: Gilbert, D., Heiner, M.
(eds.) CMSB 2012. LNCS, vol. 7605, pp. 29–48. Springer, Heidelberg (2012)

6. Boyer, B., Corre, K., Legay, A., Sedwards, S.: PLASMA-lab: A flexible, dis-
tributable statistical model checking library. In: Joshi, K., Siegle, M., Stoelinga,
M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 160–164. Springer,
Heidelberg (2013)

7. Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: Quantitative model checking of
CTMC against timed automata specifications. In: Proc. LICS 2009 (2009)

8. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B., Sedwards,
S.: Runtime verification of biological systems. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2012, Part I. LNCS, vol. 7609, pp. 388–404. Springer, Heidelberg (2012)

9. Donatelli, S., Haddad, S., Sproston, J.: Model checking timed and stochastic
properties with CSLTA. IEEE Trans. on Software Eng. 35 (2009)

10. Heath, J., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O.: Prob-
abilistic model checking of complex biological pathways. Theoretical Computer
Science 319(3), 239–257 (2008)

11. Kitano, H.: Foundations of Systems Biology. MIT Press (2002)
12. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In:

Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer,
Heidelberg (2007)

13. Legay, A., Delahaye, B.: Statistical model checking: An overview. CoRR,
abs/1005.1327 (2010)

14. Mazemondet, O., Hubner, R., Frahm, J., Koczan, D., Bader, B.M., Weiss, D.G.,
Uhrmacher, A.M., Frech, M.J., Rolfs, A., Luo, J.: Quantitative and kinetic
profile of wnt/β-catenin signaling components during human neural progenitor
cell differentiation. Cell. Mol. Biol. Lett. (2011)

15. Mazemondet, O., John, M., Leye, S., Rolfs, A., Uhrmacher, A.M.: Elucidating the
sources of β-catenin dynamics in human neural progenitor cells. PLOS-One 7(8),
1–12 (2012)

16. Sen, K., Viswanathan, M., Agha, G.: VESTA: A statistical model-checker and
analyzer for probabilistic systems. In: Proc. QEST 2005 (2005)

17. Younes, H.L.S.: Ymer: A statistical model checker. In: Etessami, K., Rajamani,
S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 429–433. Springer, Heidelberg (2005)

Battery-Aware Scheduling

of Mixed Criticality Systems�

Erik Ramsgaard Wognsen, René Rydhof Hansen, and Kim Guldstrand Larsen

Department of Computer Science
Aalborg University, Denmark
{erw,rrh,kgl}@cs.aau.dk

Abstract. Wireless systems such as satellites and sensor networks are
often battery-powered. To operate optimally they must therefore take
the performance properties of real batteries into account. Additionally,
these systems, and therefore their batteries, are often exposed to loads
with uncertain timings. Mixed criticality and soft real-time systems may
accept deadline violations and therefore enable trade-offs and evaluation
of performance by criteria such as the number of tasks that can be com-
pleted with a given battery. We model a task set in combination with
the kinetic battery model as a stochastic hybrid system and study its
performance under battery-aware scheduling strategies. We believe that
this evaluation does not scale with current verification techniques for
stochastic hybrid systems. Instead statistical model checking provides
a viable alternative with statistical guarantees. Based on our model we
also calculate an upper bound on the attainable number of task instances
from a battery, and we provide a battery-aware scheduler that wastes no
energy on instances that are not guaranteed to make their deadlines.

1 Introduction

By their very nature, embedded systems often have to operate independently,
powered only by a battery that may or may not be reliably recharged by an
external power source. As an example of this consider a satellite with solar
panels used to recharge the on-board battery. Since the task load for such a
satellite may vary depending on the current position and activity of the satellite,
it can be difficult to precisely predict energy consumption and, consequently,
whether the mission can be accomplished within the current energy budget. In
this paper we model task loads in combination with the kinetic battery model.
This enables formal (statistical) modeling and verification of energy consumption
and availability, as well as battery state, over extended periods of time for non-
trivial task sets.

For our task model, we want to take into account the timing characteristics,
in terms of arrival periods and patterns, as well as the costs (execution times) of

� This work is partially supported by SENSATION (Self Energy-Supporting Au-
tonomous Computation) under the EU’s Seventh Framework Programme.

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 208–222, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Battery-Aware Scheduling of Mixed Criticality Systems 209

the tasks. For such modeling, timed automata [5] have been proposed and suc-
cessfully used as a modeling formalism. Furthermore, various extensions of timed
automata have been proposed, e.g., for schedulability analysis [23]. Similarly, an-
other extension of timed automata, namely (linearly) priced timed automata [7],
has been demonstrated to be a suitable formalism for modeling batteries [19]. In
particular, this formalism allows for both optimal reachability and optimal infi-
nite runs to be computed in PSPACE [9,10]. However, both the timed automata
model of tasks and the priced timed automata of batteries will be only approx-
imate and leave out important details. More exact battery models, such as the
kinetic battery model [21], will require the use of hybrid automata as modeling
formalism. Also, in modeling of tasks the arrival pattern and execution times
may be refined into stochastic information about arrivals and distributions of
the execution times. In both cases, we will use the notion of stochastic hybrid
systems [11] to allow for more precise models. This enables us to use statistical
model checking [13] to study system performance under various soft real-time
scheduling principles.

2 Related Work

The kinetic battery model, KiBaM, may be directly represented as a hybrid au-
tomaton [17], where the evolution of the levels of “available charge” and “bound
charge” are described by a system of ordinary differential equations depending
on the current load on the battery.

In case the dynamic load of the battery may itself be described as a hybrid
automaton, properties of the overall system (e.g. estimation of battery life-time)
should in principle be amenable to verification using the various abstractions
techniques – e.g. grid partitioning – devised for hybrid systems [3] and with the
assistance of popular modeling and verification systems such as model checking
CHARON, PHAVer, HSolver, d/dt, and CheckMate.

Aiming at more abstract battery models in terms of linear hybrid automata,
timed automata or priced timed automata may allow formal verification (or even
optimization as in [19]) to be performed using popular model checkers such as
HyTech, and UPPAAL or UPPAAL Cora. For a more in-depth account of the
approaches to formal verification of hybrid systems we refer to [4].

Here we want to consider stochastic models of the load of the battery giv-
ing rise to an overall stochastic hybrid automata model [8]. A number of such
formalisms has been proposed varying with respect to the actual placement of
stochastic aspects (at discrete jumps, in the determination of the time of discrete
jumps or during the continuous evolution of continuous variables). In terms of
(approximate) verification of stochastic hybrid systems, we mention the work by
[25,1,2], and the recently released hybrid version of the stochastic modeling and
analysis tool MODEST, HMODEST [16].

In this paper, we will be using the recently developed extension of the model-
ing formalism of UPPAAL supporting (networks of) stochastic hybrid systems
[11]. Rather than supporting formal verification, the new UPPAAL SMC engine

210 E.R. Wognsen, R.R. Hansen, and K.G. Larsen

performs highly scalable, statistical model checking, which allows the probabil-
ities and expected values of a large set of path-based properties and random
variables to be determined not exactly but with a given desired level of con-
fidence. We believe that for evaluating the performance of various (battery-)
scheduling strategies, current verification techniques for stochastic hybrid sys-
tems will not scale. Related to our approach is the statistical model checking of
stochastic hybrid systems presented in terms of Stateflow/Simulink models in
[22,26].

3 Battery Modeling

Batteries consist of electrochemical cells in which electrochemical reactions trans-
form chemical energy to electrical energy. Battery modeling can be used to pre-
dict, among other things, the battery voltage and state of charge during the
run of a battery-powered system. In this paper we restrict our attention to the
state of charge. This is reasonable since the voltage varies considerably less than
the state of charge, and many systems will already employ voltage regulation to
ensure stable a voltage.

Jongerden and Haverkort survey various battery models in [18]. Electrochemi-
cal models are the typical reference models which most closely model the electro-
chemical reactions at the cost of a high complexity and dependence on numerous
physical and chemical attributes of the electrochemical cells. Another approach
is found in electrical circuit models which abstract away the chemical reactions
and model batteries as combinations of electrical components such as capacitors
and resistors. These models are computationally cheaper than electrochemical
models but they are less accurate and depend on a large amount of experi-
mental data to configure. Analytical models further abstract the details of the
reactions. The kinetic battery model by Manwell and McGowan [21] considers
only the rates of the chemical reactions and partitions the charge in the bat-
tery into available and (temporarily) bound charge. A more advanced analytical
model, the diffusion model by Rakhmatov and Vrudhula, considers the concen-
tration of reactants as a continuous gradient between the two electrodes in the
battery. The authors of [18] find analytic models to be the most well suited for
performance modeling and combination with workload models. Specifically the
kinetic battery model has the best accuracy for practical purposes compared to
its complexity.

3.1 The Kinetic Battery Model

The kinetic battery model [21] partitions the charge into two “wells” as illus-
trated in Fig. 1. The outer well, termed the available charge, powers the load
while the inner well, the bound charge, replenishes the outer well. While the
water in the wells represents electric charge it should not be taken as a liquid
electrolyte, and the wells do not represent the physical layout of an electrochem-
ical cell. Charge leaves the battery at the time-dependent rate i. The widths of

Battery-Aware Scheduling of Mixed Criticality Systems 211

b
a

hb

ha

1− c c

k i(t) →

Bound charge Available charge

Fig. 1. Mental model of the kinetic battery model

the available and bound charge wells are c and 1−c, respectively. With the wells
filled to heights ha and hb the charges in the wells are a = cha and b = (1− c)hb.
The charge flows between the wells at a rate proportional to the height difference
with the proportionality factor being the rate constant k. The charges are thus
described by this system of differential equations:⎧⎪⎪⎨⎪⎪⎩

da

dt
= −i+ k(hb − ha) = −i+ k(

b

1− c −
a

c
)

db

dt
= −k(hb − ha) = −k(

b

1− c −
a

c
)

(1)

All variables except c and k may change over time. The system starts in equi-
librium, ha = hb, so with an initial capacity of C we have a(0) = cC and
b(0) = (1− c)C. The battery is considered empty when a = ha = 0 since it can-
not supply any more charge at the given moment even though it may still con-
tain bound charge. In fact, due to the dynamics of the system, the bound charge
cannot reach 0 in finite time. The parameters c and k depend on the battery
technology and can be fitted experimentally but in general the model applies to
all chemical batteries. In our experiments we use c = 1

6 and k = 2.324×10−4 s−1,
similar to the ones used in [19].

The equation system can be solved analytically for a known (piecewise) con-
stant load I. In particular, the available charge a after the current I has been
drawn for time t is calculated as

a(t, I, a0, b0) = a0e
−k′t +

(q0k
′c− I)(1− e−k′t)− Ic(k′t− 1 + e−k′t)

k′
(2)

212 E.R. Wognsen, R.R. Hansen, and K.G. Larsen

where a0 and b0 make up the battery state at relative time t = 0, q0 = a0 + b0,
and k′ = k

c(1−c) . We will exploit this later in the development of a battery-aware

scheduling principle.

3.2 Comparison with an Ideal Energy Source

Much work concerning costs, resources, and energy use an ideal energy source
which is simply a scalar variable that can be changed at will. As long as its value
is positive the system is considered to be healthy, energy-wise. With an explicit
representation of time we describe the energy e as

de

dt
= −i

To illustrate the (large) difference between ideal energy sources and real bat-
teries, we compare the two in Figs. 2 and 3. The former shows a UPPAAL
simulation using an ideal energy source (see Section 4.1) powering a periodic
load with a duty cycle of 50%. The latter shows the same load powered by a
(KiBaM) battery of the same total capacity. We see that conclusions on system
performance may be catastrophically wrong if a battery is modeled as an ideal
energy source.

4 System Modeling

UPPAAL SMC supports the analysis of stochastic hybrid automata (SHA)
that are timed automata whose clock rates can be changed to be constants
or expressions depending on other clocks, effectively defining ODEs [11,12,20].
This generalizes the formalism used in previous work [15,14] where only lin-
ear priced automata were handled. The release UPPAAL 4.1.181 supports fully
hybrid automata with ODEs and a few built-in complex functions (such as
sin, cos, log, exp, sqrt).

A UPPAAL model consist of a network of timed automata. Each component
automaton consists of locations and edges and the components synchronize over
communication channels. We first present the UPPAAL model underlying the
ideal energy source example in Fig. 2.

4.1 Ideal Energy Source

The model is comprised of the three components shown in Fig. 4 as determined
by the system declaration “system Task, EnergySource, Scheduler;”.

The starting location of each component is marked with a concentric circle,
and a rounded ‘U’ marks an urgent location, i.e., one wherein time cannot pass.
Locations can be annotated with names and invariants. Names (e.g., Ready)
have no effect on system behavior. Invariants (e.g., t <= p) are conditions that

1 www.uppaal.org

Battery-Aware Scheduling of Mixed Criticality Systems 213

Fig. 2. Simulation of an ideal energy source (solid line, unit Coulombs) during a peri-
odic load (dashed line, unit milliamperes). The energy runs out just before time 720.

Fig. 3. Simulation of the same periodic load as in Fig. 2 powered by a battery with the
same capacity. The upper solid line represents the total charge in the battery, i.e., the
sum of the bound charge (b, the upper dashed line) and the available charge (a, the
lower solid line). The alternating dotted/dashed line represents the height hb scaled so
it can be compared to the available charge as if it were ha (in reality, ha = a

c
= 6a and

hb = b
1−c

= 6b
5
, so we scale both by 1

6
so a and ha coincide). Just after time 320 the

available charge runs out and the system fails even though the battery has expended
only a good of half its charge. A system with more lenient requirements would be able
to wait for more charge to become available and thus exploit more of the total charge.

214 E.R. Wognsen, R.R. Hansen, and K.G. Larsen

(b) Ideal energy source

(a) Basic task model (c) Scheduler

Fig. 4. UPPAAL models for the ideal energy source example

must hold for the component to be in that location. These conditions range over
clocks and variables which are explained below. Invariants can also specify rates
of growth for clocks (with a prime, e.g., energy’ == -load). In this way, clocks
can be exploited as continuous variables, with differential equations in invariants
describing their dynamics. Clocks with unspecified rates have rate one.

Edges can be annotated with guards, synchronization (explained below), and
updates. Guards (e.g., x == et) are conditions that must hold to take the tran-
sition represented by the edge. Updates (e.g. t = 0) change discrete variables
and clocks. The data declarations for the current example are:

clock energy = 3600.0; bool on = true; // in coulombs, status
const int et = 700, p = 1400; // task execution time and period
const double load_on = 1.0; // active load in amperes
clock t, x; // time since release, accumulated execution time
double load; // instantaneous load in amperes
broadcast chan ready, run; urgent broadcast chan empty;

UPPAAL SMC uses broadcast synchronization between components which
means that sending (e.g., ready!) never blocks the sending component. Any
matching receiver (ready?) that is in a position to follow the synchronization
does so, and all involved components take their transitions simultaneously.

The simulation in Fig. 2 of this system is made with the query

simulate 1 [<=8000] {load*1000, energy}

In the sequel we consider other versions of the presented system components,
starting with the energy source in the next section, the task model in Section 5,
and the scheduler in Section 7.

Battery-Aware Scheduling of Mixed Criticality Systems 215

4.2 UPPAAL KiBaM

The chemical reaction in a battery is a continuous process of convergence towards
equilibrium described by (1). To model this as a stochastic hybrid automaton,
we need only a single location, with (1) given as its invariant. The model is
shown in Fig. 5 and based on the following declarations, here with some sample
values of C, c, and k:

const double C = 3600.0, c = 1.0/6, k = 2.324e-4, k2 = k/c/(1-c);
clock a = c*C, b = (1-c)*C; bool on = true;

As in Fig. 4b we use a self-loop is to signal to the load model when the battery
is empty and to “disconnect” the battery.

Fig. 5. UPPAAL kinetic battery model

While this model cannot be used in non-hybrid model checking, it is a much
simpler and more obviously correct model than the explicitly discretized version
of KiBaM described by timed automata in [19]. That version of KiBaM consists
of two automata with 10 locations and 16 transition in total.

5 Mixed Criticality Systems

Battery-aware scheduling will contribute the most to systems with varying en-
ergy consumption since it allows the battery to recover capacity between high
loads. Consider for example an energy-constrained satellite with an on-board
computer, a radio, and a payload. The on-board computer(s) run relatively fre-
quent tasks while the radio communicates in energy-intensive bursts when the
satellite passes close to ground stations. The payload could be either a spread
out load as the computer or a more “clumped” load as the radio. The on-board
computer manages the battery and receives commands from the ground station
and must always run. With the satellite being semi-autonomous it may however
continue operating while energy conditions are such that the radio or payload
(temporarily) cannot be used.

We consider mixed criticality systems, like the one described, where the com-
puter will run hard real-time control tasks while the radio and payload will be
considered firm real-time tasks in the sense that a task instance that does not
complete within its deadline contributes no value to the operation of the sys-
tem. It is thus allowed to skip task instances (but not “too many”). Taking this
perspective allows trade-offs between missing some deadlines and other aspects
of the system performance, notably the energy. On the other hand, the simplest
way to save energy is to skip each and every task instance so there must be an
additional quality-of-service requirement.

216 E.R. Wognsen, R.R. Hansen, and K.G. Larsen

5.1 Task Model

The speed of the diffusion of reactants in an electrochemical cell gives rise to
a low-pass filtering of the changes in load. Since the speed of the diffusion is
relatively slow there will be very little to gain from battery-aware scheduling at
the scale of milliseconds. From the perspective of the battery we consider the
frequent computer-based tasks to make up a baseline load of the system called
the idle load. Tasks within this group are not explicitly scheduled since they
should never be skipped and their timings are typically on a scale that is too
small to be distinguished from a constant load by the battery. In other words,
they are assumed to be scheduled by a traditional (battery-unaware) scheduler
on a platform with adequate resources.

Thus we consider scheduling of “high-level” tasks with running times in the
scale of minutes on top of a constant idle load. Such high-level tasks may for
example represent an ongoing process such as radio transmission of data or
attitude control, i.e., the spatial orientation of a satellite which may involve pe-
riodical sensing and actuation over a span of minutes while rotational oscillation
is dampened.

Fig. 6. Firm stochastic task model

Fig. 6 shows the task model with its skip transition and counting of the
deadlines made. The model is parameterised by the best-case execution time B,
worst-case execution time W , deadline D, and earliest and latest release times
E and L (where B ≤W ≤ D ≤ E ≤ L), as well as the loads Itask and Iidle . We
are going to consider schedulers that will either skip each instance or start it in
time to finish before its deadline, battery allowing. For traditional schedulability
analysis, the model could be extended with deadline violations leading to an
error location but for now this will complicate the presentation unnecessarily.

The workload is stochastic when B < W or E < L. In UPPAAL SMC uni-
form probability distributions are applied for bounded delays such as these (un-
bounded delays use an exponential distribution). In a location where a stochastic
choice must be made, the component chooses a delay independently of the rest
of the system.

Any empirically determined or otherwise desired distribution can be approx-
imated by a phase-type distribution [24] which can be incorporated into the
model.

Battery-Aware Scheduling of Mixed Criticality Systems 217

6 Bound on Performance

We consider battery-aware scheduling where the challenge in energy constrained
systems lies: In not having enough energy. While satellites typically recharge
their batteries via solar panels, they will need to survive their time on the dark
side of the planet, or handle situations where solar panels fail. And even for
systems with conservative power budgets this may help system designers be less
pessimistic and utilize a larger portion of their chosen battery or alternatively
replace the battery with a smaller, cheaper, or lighter model.

The typical battery situation that is desirable to put off for as long as pos-
sible is running out of energy. But other thresholds can be considered too. For
example, a system may enter a low-power mode at a 20% state of charge but
it is desirable to operate in the normal mode for as long as possible. While
any such threshold can be considered we assume running out of energy as the
demonstration case.

To get an idea for the improvement a battery-aware scheduler could contribute
we consider how many task instances a given battery can deliver in the best case.
If we optimistically view a battery of capacity C as an ideal energy source, we
can in the best case finish

UB ideal =

⌊
C

IB

⌋
(3)

whole task instances that each draw the constant current I for at least the time
B. Here I is the total load on the battery, i.e., I = Itask + Iidle . If Iidle > 0,
UB ideal is not necessarily tight since there is a load on the battery between
task instances. With the shortest task period (E) known, a tight upper bound
under the ideal energy model could be determined. But even this would not
(necessarily) be a tight upper bound under KiBaM, so we will look to that for a
more realistic bound.

As the bound charge in the battery falls during usage the largest possible
value of the quantity hb − ha falls, and with it, the rate of flow from the bound
to the available charge. For a task instance to complete, the necessary charge
must be or become available in the duration of that same instance. At the end of
the battery life this replenishment can happen too slowly to allow enough charge
to be released while the instance is executing.

Using (2) we can calculate the most depleted battery state that can finish
exactly one more task instance in the best case before running dry. Working
backwards from that state we can determine how many instances could be com-
pleted before reaching it. We want to obtain the a0 and b0 that satisfy

a(B, I, a0, b0) = 0 (4)

In the best case, the battery would be in equilibrium before running the last
instance. Using ha = hb ⇔ a/c = b/(1− c)⇔ b = ((1− c)a)/c we get

q0 = a0 + b0 = a0 +
(1− c)a0
c

=
a0
c

(5)

218 E.R. Wognsen, R.R. Hansen, and K.G. Larsen

Substituting (2) into (4) and using (5) we get the total charge in the battery

q0 =
I

k′c
(1 + (k′B − 1)c+ (c− 1)e−k′B) (6)

Under appropriate scheduling, i.e. enough time for replenishment, the first C −
q0 of charge can power as many (say, m) instances as an ideal energy source,
cf. (3). The remainder q0 can power exactly one more instance. However, since
the equilibrium can only be reached in the limit, we require the execution of the
m instances to leave behind strictly greater than q0 total charge such that it is
possible in finite time to release enough available charge to complete the last
instance. To account for this, instead of rounding down (as in (3)) and adding
one, we round up:

UBKiBaM =

⌈
C − q0
IB

⌉
(7)

This bound is closer than UB ideal . But as before, if Iidle > 0, it is not guaranteed
that this number of instances can be reached. Another system requirement is
likely to interfere as well: Quality-of-service, i.e., a specification on the least
number of instances that must meet their deadline. Taking these facts into the
calculation of a tight bound becomes more involved. Instead we turn to statistical
model checking to evaluate performance of actual scheduling principles.

7 Evaluation of Scheduling Principles

As a basis for evaluating energy-aware schedulers we consider the simple, battery-
unaware immediate scheduler, shown in Fig. 4c, which starts task instances as
soon as they are released and never skips them. We will compare this with the
battery-aware “firm scheduler”.

The charge that leaves the battery over time fully determines the state of the
battery2. Since this charge is electrically observable, we assume that a scheduler
can know the internal state of the battery, i.e., the values of the bound and
available charge.

7.1 Firm Scheduler

When a task instance is released, the firm scheduler calculates the worst battery
state that the execution of the task could result in, i.e., the task’s load drawn
from the battery for the worst-case execution time according to (2). If this state
has any available charge left, the instance is started immediately. If the calculated
state has a non-positive available charge, the scheduler awaits the battery state
improving (bound charge becoming available) such that the available charge
would remain positive after executing the task. If the battery state does not

2 Assuming KiBaM adequately models the battery. In practice the age and temper-
ature of the battery as well as measurement accuracy may affect the value of this
technique.

Battery-Aware Scheduling of Mixed Criticality Systems 219

improve enough while there would still be enough time for the instance to finish
before its deadline, the instance is skipped, and no energy is wasted trying to
make it to the deadline. Fig. 7 shows the scheduler. Compared with the example
in Section 4.1 run is now an urgent channel. The firm thresh value, set to 0.1
in our experiments, allows the scheduler to err on the side of caution in the face
of rounding errors in the hybrid system discretization.

Fig. 7. The firm scheduler. The guard on the right hand side uses (2).

7.2 Comparison

We evaluate the schedulers on a system with the same battery as in Section 4.2,
and a task set with B = 100,W = 200, D = 300, E = 300, L = 400, Itask =
0.5, Iidle = 0.02.

As mentioned in Section 5.1, these values give rise to stochastic behavior. The
fundamental principle in UPPAAL SMC is to generate runs and evaluate some
expression on the states along the obtained run. Runs are always bounded, either
by time, by a number of steps, or more generally by cost (when using a clock
explicitly). The engine supports probability evaluation, hypothesis testing, prob-
ability comparison, and value estimation, as well as the simulations previously
seen.

Putting a copy of the battery and task model in parallel with each of the
two schedulers, we can compare them. First we use value estimation and record
the maximal number of task instances completed for the two schedulers over a
specified number of runs, here 1000:

E[<=28800; 1000] (max: Task(0).made)
E[<=28800; 1000] (max: Task(1).made)

Task(0) is controlled by the immediate scheduler and Task(1) by the firm
scheduler. The time bound is set such that even with the task taking its best-case
execution time each time, the battery will be used up. While time is abstract
in UPPAAL, our model is based on real-world values such that one time unit
corresponds to one second. Fig. 8 shows the observed probabilities of completing
the shown numbers of instances under the two schedulers.

The number 1000 was chosen arbitrarily. To get results with statistical guar-
antees we can for example ask the following query: What is the probability that
the immediate scheduler will finish at least 36 instances within eight hours?

220 E.R. Wognsen, R.R. Hansen, and K.G. Larsen

Fig. 8. Comparison of the schedulers using value estimation

Pr[<=28800] (<> Task(0).made >= 36)

UPPAAL answers that the probability is in the interval [0.0504475, 0.10035]
with confidence level 0.95. The result was determined using 455 runs. The prob-
ability uncertainty (here, ε = 0.025) and significance level (here, α = 0.05) are
configurable. We can also ask the tool to perform probability comparison using
sequential testing:

Pr[<=28800] (<> Task(1).made>=36) >= Pr[<=28800] (<> Task(0).made>=36)

With this method, the two probabilities are compared without estimating
them directly and it is thus more efficient. For this query 148 runs were enough
to determine that with confidence level 0.95, the ratio of the two probabilities is
greater than 1.1 (with the extra 0.1 being a safety margin). In other words, the
firm scheduler is better, as expected from Fig. 8.

7.3 Variation on the Firm Scheduler

It may turn out that the firm scheduler as shown is too pessimistic since it only
starts a task instance that is guaranteed to be able to finish. Perhaps by using a
value smaller than W the overall performance may be improved. We introduce
the parameter p and instead of t =W in (2) we use t = B + p(W −B).

Using probability comparison we get that with p = 0.7, it is less likely to
complete 36 instances than with p = 1 (with confidence level 0.95, the ratio is
less than or equal to 0.9 after 374 runs). On the other hand, with p = 0.7 it is
more likely to finish 40 instances (with confidence level 0.95, the ratio is greater
than or equal to 1.1 after 1136 runs) showing that the choice of the best strategy
is not completely straightforward.

8 Conclusion

In this paper we have shown the applicability of statistical model checking to
battery-powered systems. The kinetic battery model has been modeled as a
hybrid system in the UPPAAL formalism in a straightforward way, which has
the advantage that it is easy to see its correctness. We combine the battery with
a high-level mixed criticality real-time task model. Based on the models, we

Battery-Aware Scheduling of Mixed Criticality Systems 221

determine a bound on the performance of a battery-aware scheduler measured
as the number of (non-critical) deadlines that are made. We present a scheduling
principle that takes the inner workings of the kinetic battery model into account
by wasting no energy on task instances that are not guaranteed to make their
deadlines. A variation on this relaxes the guarantee while making it more likely
to complete an especially high number of task instances at the cost of a lower
probability of achieving a moderate number of instances.

Future work includes considering the energy harvesting and the recharging of
batteries. Here the challenge shifts from making a single battery charge last for as
long as possible to prolonging the total lifetime of the rechargeable battery with
respect to reduced capacity. The number and depth of discharge/recharge cycles
as well as the environment temperature affects the total lifetime. Other challenges
include dynamic mission re-planning after changes in the power budget, e.g., as a
consequence of a solar cell damage. Another avenue involves using SMC to approx-
imate optimal scheduling strategies as a scalable alternative to exact optimization.

References

1. Abate, A., Katoen, J.P., Lygeros, J., Prandini, M.: Approximate model checking
of stochastic hybrid systems. European Journal of Control 16, 624–641 (2010),
http://control.ee.ethz.ch/index.cgi?page=publications;action=

details;id=3711

2. Abate, A., Prandini, M., Lygeros, J., Sastry, S.: Probabilistic reachability and
safety for controlled discrete time stochastic hybrid systems. Automatica 44(11),
2724–2734 (2008), http://dx.doi.org/10.1016/j.automatica.2008.03.027

3. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin,
X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theor. Comput. Sci. 138(1), 3–34 (1995)

4. Alur, R.: Formal verification of hybrid systems. In: Proceedings of the Ninth ACM
International Conference on Embedded Software, EMSOFT 2011, pp. 273–278.
ACM, New York (2011), http://doi.acm.org/10.1145/2038642.2038685

5. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

6. Bartocci, E., Bortolussi, L. (eds.): Proceedings First International Workshop on
Hybrid Systems and Biology, HSB 2012, Newcastle Upon Tyne, UK, September 3.
EPTCS, vol. 92 (2012)

7. Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn, J.,
Vaandrager, F.W.: Minimum-cost reachability for priced timed automata. In:
Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS,
vol. 2034, pp. 147–161. Springer, Heidelberg (2001)

8. Blom, H., Lygeros, J.: Stochastic Hybrid Systems: Theory and Safety Critical Ap-
plications, vol. 337 (2006)

9. Bouyer, P., Brihaye, T., Bruyère, V., Raskin, J.F.: On the optimal reachability
problem of weighted timed automata. Formal Methods in System Design 31(2),
135–175 (2007)

10. Bouyer, P., Brinksma, E., Larsen, K.G.: Optimal infinite scheduling for multi-priced
timed automata. Formal Methods in System Design 32(1), 3–23 (2008)

http://control.ee.ethz.ch/index.cgi?page=publications;action=details;id=3711
http://control.ee.ethz.ch/index.cgi?page=publications;action=details;id=3711
http://dx.doi.org/10.1016/j.automatica.2008.03.027
http://doi.acm.org/10.1145/2038642.2038685

222 E.R. Wognsen, R.R. Hansen, and K.G. Larsen

11. David, A., Du, D., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B., Sed-
wards, S.: Statistical model checking for stochastic hybrid systems. In: Bartocci,
Bortolussi (eds.) [6], pp. 122–136

12. David, A., Du, D., Larsen, K.G., Mikucionis, M., Skou, A.: An evaluation frame-
work for energy aware buildings using statistical model checking. Science China
Information Sciences 55(12), 2694–2707 (2012)

13. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for statistical
model checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Heidelberg (2011)

14. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B., van Vliet, J.,
Wang, Z.: Statistical model checking for networks of priced timed automata. In:
Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 80–96.
Springer, Heidelberg (2011)

15. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for statis-
tical model checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S.
(eds.) CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Heidelberg (2011),
http://dl.acm.org/citation.cfm?id=2032305.2032332

16. Hahn, E., Hartmanns, A., Hermanns, H., Katoen, J.P.: A compositional modelling
and analysis framework for stochastic hybrid systems. Formal Methods in System
Design 43(2), 191–232 (2013), http://dx.doi.org/10.1007/s10703-012-0167-z

17. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings of the 11th An-
nual IEEE Symposium on Logic in Computer Science, LICS 1996, pp. 278–292.
IEEE Computer Society, Washington, DC (1996)

18. Jongerden, M.R., Haverkort, B.R.: Which battery model to use? IET Software 3(6),
445–457 (2009)

19. Jongerden, M.R., Haverkort, B.R., Bohnenkamp, H.C., Katoen, J.P.: Maximizing
system lifetime by battery scheduling. In: DSN. IEEE (2009)

20. Larsen, K.G.: Statistical model checking, refinement checking, optimization, . . .
for stochastic hybrid systems. In: Jurdziński, M., Ničković, D. (eds.) FORMATS
2012. LNCS, vol. 7595, pp. 7–10. Springer, Heidelberg (2012)

21. Manwell, J.F., McGowan, J.G.: Lead acid battery storage model for hybrid energy
systems. Solar Energy 50(5), 399–405 (1993)

22. Martins, J., Platzer, A., Leite, J.: Statistical model checking for distributed
probabilistic-control hybrid automata with smart grid applications. In: Qin, S.,
Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 131–146. Springer, Heidelberg
(2011)

23. Mikučionis, M., Larsen, K.G., Rasmussen, J.I., Nielsen, B., Skou, A., Palm, S.U.,
Pedersen, J.S., Hougaard, P.: Schedulability analysis using uppaal: Herschel-planck
case study. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416,
pp. 175–190. Springer, Heidelberg (2010)

24. Pulungan, R., Hermanns, H.: Effective minimization of acyclic phase-type repre-
sentations. In: Al-Begain, K., Heindl, A., Telek, M. (eds.) ASMTA 2008. LNCS,
vol. 5055, pp. 128–143. Springer, Heidelberg (2008)

25. Zhang, L., She, Z., Ratschan, S., Hermanns, H., Hahn, E.M.: Safety verification
for probabilistic hybrid systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV
2010. LNCS, vol. 6174, pp. 196–211. Springer, Heidelberg (2010)

26. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with
application to Stateflow/Simulink verification. Formal Methods in System De-
sign 43(2), 338–367 (2013)

http://dl.acm.org/citation.cfm?id=2032305.2032332
http://dx.doi.org/10.1007/s10703-012-0167-z

Using Statistical Model Checking
for Measuring Systems�

Radu Grosu1, Doron Peled2, C.R. Ramakrishnan3, Scott A. Smolka3,
Scott D. Stoller3, and Junxing Yang3

1 Vienna University of Technology
2 Department of Computer Science, Bar Ilan University

3 Department of Computer Science, Stony Brook University

Abstract. State spaces represent the way a system evolves through its
different possible executions. Automatic verification techniques are used
to check whether the system satisfies certain properties, expressed using
automata or logic-based formalisms. This provides a Boolean indication
of the system’s fitness. It is sometimes desirable to obtain other indi-
cations, measuring e.g., duration, energy or probability. Certain mea-
surements are inherently harder than others. This can be explained by
appealing to the difference in complexity of checking CTL and LTL prop-
erties. While the former can be done in time linear in the size of the
property, the latter is PSPACE in the size of the property; hence practi-
cal algorithms take exponential time. While the CTL-type of properties
measure specifications that are based on adjacency of states (up to a fix-
point calculation), LTL properties have the flavor of expecting some mul-
tiple complicated requirements from each execution sequence. In order to
quickly measure LTL-style properties from a structure, we use a form of
statistical model checking; we exploit the fact that LTL-style properties
on a path behave like CTL-style properties on a structure. We then use
CTL-based measuring on paths, and generalize the measurement results
to the full structure using optimal Monte Carlo estimation techniques.
To experimentally validate our framework, we present measurements for
a flocking model of bird-like agents.

1 Introduction

Model checking aims to check that a model of a system satisfies a given speci-
fication. Recent results [1,7,9] show how to extend model checking into a more
general method for measuring quantitative properties of a given system. Mea-
surements can provide information about time, energy, the probability of an
event occurrence, etc. In this paper, we explore the use of statistical model
checking techniques for measuring quantitative properties of systems. We illus-
trate the power of these techniques for measuring the aggregate behavior of a
flock of bird-like agents.

� The 2nd author is supported by ISF grant “Efficient Synthesis Method of Control
for Concurrent Systems”, award 126/12.

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 223–238, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

224 R. Grosu et al.

Techniques for the verification of quantitative properties have always relied
on the ability to measure the quantities of interest: clock values in real-time
systems, probabilities in stochastic systems, etc. There have been several efforts
to apply similar techniques for measuring more general quantitative properties
based on the operations needed to compute the measurements. For instance,
[1] addresses the problems associated with measurements involving operations
such as limit average, maximum and discounted sum; and [7] provides a logic
for expressing a generalized class of quantitative properties.

In [10], we showed a neighborhood-based measurement scheme that is based on
CTL-like specifications: creating a set of nodes in a graph corresponding to each
state in the state space, and performing a measurement in a distributed manner
propagating values from one node to its neighbors. When performing real-valued
measurements, that scheme was limited to finite structures (weighted automata).
The neighborhood-based measurement has the characteristic of CTL specifica-
tion in the sense that the measurement is based on values that can be, temporar-
ily or permanently, assigned to states. When the specification is sequence-based
(or path-based), as in the logic LTL, or similar specification formalism that
deal with quantitative real-time values that depend on the execution path, this
technique does not work: the value of a state can depend on some complicated
information related to the path through which the state was reached; states with
different histories can have different values, and, to make things more compli-
cated, this is affected from the rest of the execution yet to come. The difference
is similar to the difference between CTL and LTL model checking, e.g., see [6]
and [8]. While in CTL, we can put a temporary Boolean value per state while
calculating subformulas, LTL model checking is done by providing some product
of the state space with an automaton representing some essential summary of
the sequence so far.

Since we are interested here in sequence based measuring, we make the fol-
lowing observation: on a single sequence, the neighborhood-based technique is
the same as for a structure. We thus make our measurement sequence by se-
quence. We are limited in doing so by the fact that there may be infinitely many
sequences and also the sequences themselves can be infinite. Hence, we measure
finitely many sequences, using statistical model checking Monte Carlo technique.
Moreover, we base our measurements on finite prefixes of executions.

While traditional model checking explores the state space exhaustively, sta-
tistical model-checking techniques sample from the state space, ensuring that
sufficient samples are drawn, in order to verify a given property with a de-
sired confidence level and error margin. Given a stochastic system S, a Boolean
(temporal) property φ, and a real-valued parameter θ, statistical model check-
ing determines whether pr(S |= φ) ≥ θ [14,22]. This paper explores the use of
Monte Carlo techniques for simultaneously measuring Boolean and quantitative
properties, where the quantitative measures are dependent on the Boolean part.

Using Statistical Model Checking for Measuring Systems 225

Technical Approach and Contributions

1. Specification of measurement computations. Following [10], we describe a
specification formalism closely resembling a synchronous dataflow language
for measurement computation. At a high level, we associate a set of mea-
surement variables with each state in the state space. We specify a mecha-
nism for computing the values of variables at a state, based on the values
of variables at the state’s neighbors. The formalism is general enough to
encode bounded model checkers (MCs) [13,16] for Boolean temporal proper-
ties expressed in CTL or LTL. The advantage of the proposed measurement
specification and related MC algorithm is in its simplicity and efficiency. It
allows one to assemble the measurement specification from subproperties,
just as CTL combines its temporal specification from its subformulas. The
synchronous dataflow framework can be viewed as a generalization of testers
proposed in [18]. Section 3 describes the specification formalism in greater
detail.

2. Model measurement using Monte Carlo techniques. The computational mech-
anism described by the synchronous dataflow formalism associates a set of
measures with each system execution (which may be trace or tree, depend-
ing on whether the property is linear or branching-time). The quantity of
interest at a higher level may be an aggregate property covering the set of
possible system executions (e.g., the average over possible runs). To this end,
we develop a Monte Carlo technique (MCT) for generating a suitable set of
samples (traces or trees) so that aggregate quantities can be computed to
a desired confidence bound. The novelty of our MCT is that it jointly com-
putes Boolean (satisfaction) and real (e.g., mean) values, using information
from both strands to improve efficiency. Section 4 describes our MCT.

3. An integrated model of flocking. A number of different flocking models (FMs)
have been developed to describe and explain the flocking behavior of birds
[19,21,15,4,3]. The FMs generally consider each bird as an agent, where all
agents are governed by the same control law. Certain input variables in
the law executed by each agent are based on the attributes (e.g., velocity,
position) of other agents in the flock. Such FMs are useful in understanding
how emergent behaviors of the collection of agents arise from decisions made
individually by each agent. We consider an integrated FM that uses a control
law comprising a variety of terms from the existing literature. We consider
quantitative objectives for the flock’s behavior (e.g., velocity matching, the
extent to which the velocities of agents are aligned), given in our measure-
ment-specification formalism. The results of the measurement can be used to
synthesize parameters (e.g., weights of different terms in the flocking control
law) that optimize the objectives. Section 2 describes the FM in detail.

Section 5 reports preliminary results for measuring the velocity-matching objec-
tive of the flocking model. The results provide insight into the effectiveness of
two approaches to controlling the accuracy of the Monte Carlo estimation.

226 R. Grosu et al.

2 Flocking

We illustrate our method with measurements of the behavior of a flock of agents.
The flocking model is biologically inspired and may be useful in the design of
controllers for unmanned vehicles. In our flocking model, autonomous agents
move in 2-dimensional space; the generalization to 3 dimensions is straightfor-
ward. Each agent’s motion is determined by a locally executed control law. Every
agent runs the same control law. Each agent has sensors that report the positions
and velocities of all agents. The control law takes that information as input and
returns an acceleration (i.e., change in velocity) for the agent.

Our broader goal is to develop methods for the design of control laws that
cause the flock’s behavior to satisfy given Boolean and quantitative objectives.
An example of a Boolean objective is collision avoidance, i.e., that agents al-
ways maintain a specified minimum separation from each other. An example of
a quantitative objective is velocity matching (VM), i.e., that agents gradually
match velocities with each other, so the entire flock moves together. Note that
this is a quantitative objective when the goal is to maximize VM, and a Boolean
objective when the goal is to achieve VM above a specified threshold.

The control law typically contains several terms, each aimed at satisfying one
or more objectives, and numerous parameters, including a weight for each term.
Our broader goal is to develop methods that find values for the parameters
that best achieve the specified Boolean and quantitative objectives. The two
key components of the design method are an optimization framework and a
measurement framework, used to measure how well the behavior of a flock with
a given control law satisfies specified objectives.

There is some existing work on using genetic algorithms to adjust parameters
in flocking control laws [2,20]. They consider relatively limited and specific forms
for the flocking control law and the objectives; in particular, the objective is
expressed as a fitness function that is simply hand coded in a programming
language. In contrast, our work aims to be more general and flexible, both in
terms of considering a larger variety of terms in the flocking control law, including
the terms in the flocking models in [19,21,15,4,3], and considering more varied
and complex objectives, expressed more abstractly in a measurement framework.

Running Example. To illustrate the ideas in this paper, we consider a control
law with a few selected terms. Let x(t) and v(t) be the vector of 2-dimensional
positions and velocities, respectively, of all agents at time t. Let xi(t) and vi(t) be
the position and velocity, respectively, of agent i at time t. Let k be the number
of agents. The equation of motion and the control law are given in Figure 1. The
acceleration is a weighted sum of the terms described next, with the speed limit
function spdLim (formal definition omitted) applied to the sum to ensure that
the magnitude of the velocity does not exceed vmax = 2.

The velocity-averaging term va, adopted from Cucker and Dong’s model [3], is
designed to align the velocities of all agents, by gradually shifting them towards
the flock’s average velocity. The strength function φ specifies the strength of the
velocity-matching influence between two agents as a function of the distance
between them; H , β, ..., are parameters of the model.

Using Statistical Model Checking for Measuring Systems 227

ẋi(t) = vi(t) (1)

v̇i(t) = spdLim(wva · va i(t) + wca · cai(t) + wctr · ctr i(t) + wrpl · rpl i(t)) (2)

vai(t) =
k∑

j=1

φ(||xi(t)− xj(t)||)(vj(t)− vi(t)) (3)

φ(r) =
H

(1 + r2)β
(4)

cai(t) = VM (t)
∑
j �=i

f(||xi(t)− xj(t)||2)(xi(t)− xj(t)) (5)

VM (t) = (
1

k

∑
i>j

||vi(t)− vj(t)||2) 1
2 (6)

f(r) = (r − dca)
−2 (7)

ctr i(t) =
||vi(t)||

||relCtr i(t)|| · relCtr i(t)− vi(t) (8)

nborsi(t, d) = {j | j �= i ∧ ||xj(t)− xi(t)|| ≤ d} (9)

relCtr i(t) =

⎛
⎝ 1

|nborsi(t)|
∑

j∈nborsi(t,dctr)

xj(t)

⎞
⎠− xi(t) (10)

rpl i(t) =
||vi||

||offset i(t)||
· offset i(t)− vi (11)

offset i(t) =
1

|nbors i(t, drpl)|
∑

j∈nborsi(t,drpl)

(xj − xi) (12)

Fig. 1. Flocking model

The collision avoidance term ca, adopted from Cucker and Dong’s model [3],
is designed such that the separation between every pair of agents is always larger
than d2ca . The velocity matching function VM (called alignment measure in [3])
measures the alignment the velocities of all agents (smaller values indicate better
alignment). The repelling function f specifies the strength of the collision-avoi-
dance influence between two agents as a function of the distance between them.

The centering term ctr , adopted from Reynolds’ model [19], causes agents
to form cohesive groups (sub-flocks), by shifting each agent’s velocity to point
towards the centroid (i.e., average) of the positions of its dctr -neighbors, where an
agent’s d-neighbors are the agents within distance d of the agent. The function
nbors i(t, d) returns the set of indices of d-neighbors of agent i at time t. The
function relCtr i(t) returns the relative position (i.e., relative to agent i’s current
position) of the centroid of its dctr -neighbors at time t. The definition of ctr i(t)
applies a scaling factor to relCtr i(t) that yields a vector with the same magnitude
as vi(t) and pointing in the same direction as relCtr i(t).

The repulsion term, adopted from Reynolds’ model [19], causes agents to move
away from their drpl -neighbors. The function offset i(t) returns the average of the

228 R. Grosu et al.

offsets (i.e., differences in position) between agent i and its drpl -neighbors. The
scaling factor applied to the offset in the definition of rpl i(t) is similar to the
scaling factor used in the centering term.

The initial state is chosen stochastically. In our experiments, agents’ initial
positions are chosen uniformly at random in the box [0..k, 0..k], and their initial
velocities are chosen uniformly at random in [0..1, 0..1]. In more detailed models,
stochastic environmental factors (e.g., wind) can be modeled with probabilistic
transitions. In this case, the simulator would select from the corresponding prob-
ability distribution when the transition is taken.

Our experiments use the following parameter values: k = 10, wva = 0.6, wca =
0.1, wctr = 0.2, wrpl = 0.1, H = 0.1, β = 1/3, d2ca = 0.1, dctr = 5, drpl = 3. We
simulate the behavior of the flock using discrete-time simulations with a time
step of 1 second and a duration of 50 seconds of simulation time. We chose this
duration since we experimentally observed that the velocity-matching objective
function stabilizes within 50 steps (a larger value had little effect).

Objective: Velocity Matching. We consider velocity matching as an objective for
the running example. We use the velocity-matching function VM in equation (6)
to measure how well the velocities are aligned in a state. Note that smaller values
indicate better alignment. We consider two aspects of how well velocity matching
is achieved: (1) how long it takes for VM to fall below a specified threshold θ
and remain below θ for the rest of the execution; we measure this time as a
fraction of the duration of the simulated execution, so the value is between 0
and 1; and (2) the average value of VM after it falls below the threshold θ and
remains there; we measure this as a fraction of the maximum possible value of
VM , so the value is also between 0 and 1. To combine these two quantities into
a single fitness measure suitable for use in an optimization framework, we take
a linear combination of them, with weights 0.01 and 0.99, respectively, so that
these two quantities are of the same scale. In Section 3, we describe how to
formally compute this linear combination using an LTL-style measurement.

3 Neighborhood-Based and Sequence-Based
Measurements

In this section, we provide a formalism for expressing neighborhood-based mea-
surements. Our formalism is state-based: each state is assumed to contain a
tuple of constants and measurement variables. The variables are initiated, then,
at each clock tick, the states, synchronously, exchange their values with their
neighbor states, and apply an update function to obtain a new measurement.
An expression over the state variables is assigned to each state, and its value
is calculated at each tick. The value of the expression must decrease with each
update, so that it bounds the amount of steps that can be performed by each
state.

Using Statistical Model Checking for Measuring Systems 229

Definition 1. A state space S is a triple 〈S, s0, R〉 where

S is a finite set of states.
s0 ∈ S is the initial state.
R ⊆ S × S is a relation over S, where if (s, s′) ∈ R, then s′ is the successor of
s.

Let R•(s) = {q|R(s, q)} be the successors of s, •R(s) = {q|R(q, s)} its predeces-
sors, and N(s) = •R(s)∪R•(s). Let n(s) = |N(s)| be the number of neighbors
of S. We assume that the size z of the state space, and the length of its maximal
path (its width) w are known.

Often, the state space is generated from some given system, where the states
represent, e.g., the assignment of values to variables, and a successor state is
generated from its predecessor by firing some atomic transition. The connection
between a system and its state space is orthogonal to the focus of this paper.

3.1 Neighborhood-Based Measurement

In [10], we propose a measuring specification based on neighborhoods for a state
space. We associate with each state the following components:

– A tuple of measurement variables V over some finite domains.
– Initial value for each measurement variable from its domain.
– A well founded set 〈W,<〉, where W is a set of values and < is a partial

order on W where no infinite decreasing chain exists.
– An expression E, based on the variables V that results in values from W .

We denote the current value of E at state s as E(s).
– Each state may have some constants assigned to it (this can be extended so

that constants are assigned also to edges).
– An update function f for the variables V . It can be based on the current

version T of the variables (denoted by T (s)), the constants on the state,
and a version V q for each neighbor q of s (also, constants on the edges to
and from neighbors). For some purposes, it is sufficient to use updates based
only on successors or on predecessors. The update function must satisfy that
E > E′, where E′ is the expression E after applying the update.

The measuring specification is, in itself, also an algorithm, which can be im-
plemented directly. Basically, it consists of the following:

With each tick of the clock, execute per each state of the state s space:
If E(s) is not minimal, then do
Send T (s) to all neighbors.
Receive T q(s) from the neighbors, q ∈ {q1, q2, . . . qn(s)} of s.
Let V := f(V, V q1 , . . . , V qn(s)) od

Note that with the recalculation of the values of V in the state, the expression
E would decrease.
Example. An example of measuring is to find what is the maximal value as-
signed to any node reachable from the current node. We set up the following:

230 R. Grosu et al.

– A constant c per each state (denoted c(s)) representing the measured value.
– A variable m that contains the current calculated maximum, initialized to
c.

– A counter d initialized to w, the width of the structure.
– The well founded domain is the natural numbers with the usual <. The

decreasing expression E assigned to each state is simply d.
– The update function takes the values of successor states R• and calculates

the multiple assignment

(m, d) := (max(m,m1,m2, . . .mn(s)), d− 1)

We show now (see also [10]) an implementation of CTL model checking us-
ing our measuring principles. This algorithm resembles the original Clarke and
Emerson algorithm [6], with the help of bounded model checking. This is just
an example to show that the power of our measuring formalism exceeds that
of CTL model checking. However, one may want to use the formalism without
fixing a different temporal property as the basis for measurements.

Recall that the syntax of the CTL formulas is as follows:

ϕ := p|¬ϕ|(ϕ ∨ ϕ)|EXϕ|(ϕ ∧ ϕ)|(ϕEUϕ)|(ϕAUϕ)

The semantics is as usual, see [6].
First, the variables for model checking a CTL property ϕ include for each

subformula η a variable vη. These variables have three possible values: U, T
and F, where U (for undefined) being the initial value. There is also a phase
counter variable pc, which is set initially to the number of subformulas in ϕ, and
a downcounter dc. The downcounter is set to 1 at the beginning phases that are
associated with Boolean subformulas or EX , and to w (or to z) when the phase
is associated with EU or AU . This is because information as far as s state away
from the current state may affect the value of the EU or AU formula.

Now, at each step, we decrement one from dc, and if it reaches 0, decrement
one from pc, unless it is zero, and then we terminated. When we move to a
new phase, we set dc to 1 or w, according to the type of the subformula. We
handle the subformulas according to their size. In this way, when dealing with
some subformula η, the measurement variables for its subformulas are already
calculated and set to T or F. Depending on the type of the subformula, we
perform an action. For a Boolean operators, we perform the same operator on
the values of the corresponding measurement variables, e.g., if the subformula is
(η ∨ ρ) then we set v(η∨ρ) to vη ∨ vρ. Since we use three valued logic, we need to
extend the Boolean operators. Accordingly, we have (T∨U) = T, (F∧U) = F,
and the symmetric situations. For the other cases involving at least one U, the
result is U.

For the subformula (ηEUρ), we obtain at each step the values of vqi(ηEUρ) from

each successor q ∈ N(s). The values vρ and vη are calculated in a previous phase.
Then we set up

v(ηEUρ) := vρ ∨ (vη ∧
∨

q∈N(s)

vq(ηEUρ))

Using Statistical Model Checking for Measuring Systems 231

For (ηAUρ), just replace in the formula above
∨

i∈1..m with
∧

i∈1..m. Now, if we
finished the current phase (dc becomes 0) and v(ηEUρ) is still U, then we set it
to F.

In [10], we showed how to use such a measuring specification for calculating
whether a robot can be reached into some docking station before its battery
is critically discharged. There, we used the backwards propagation of values to
check whether the shortest paths from each state are still short enough we used
forwards propagation to check whether critical discharge (including over cycles
in the path of the robot) occur.

3.2 Path Measurements

We discuss now measurements that depends on the history of the execution, as
well as its future. While our measurement formalism does not depend on a logic,
it is easy to explain the different characterization of such measurement using
the different requirements between verifying the temporal logics CTL and LTL.
The temporal logic LTL [17] has a different characterization than CTL, since it
can claim multiple properties for each single execution path. In fact, there is an
exponential number of ways, in the size of the LTL property, in which a state can
evolve to satisfy the property, depending on its history. Model checking of LTL
properties is facilitated by a product of the state space with an automaton that
represents updating and memorizing the available possibilities. For this reason,
the neighborhood based measurement we proposed in [10] would make very little
sense for path based properties (such as LTL formulas).

There are two problems that we need to face in such measuring:

1. The paths that are measured may be infinite. Although it is known that if
there is an execution that satisfies an LTL property then there is one that is
ultimately periodic (see, e.g., [8]), i.e., consists of a finite prefix, and a finite
part that repeats indefinitely. However, measuring non-Boolean properties
may have different results where ultimately periodic sequences are not good
representatives (see, e.g., [1] for measuring the limit of the average of values
along a sequence).

2. There are multiple paths in the structure (possibly infinite), and we are
interested to give a measurement of all the paths, or sufficiently many of
them.

In order to tackle problem 1, we assume measurements that are affected mainly
by a finite prefix of sequences. We may then decide to use some limit on the
length of a sequence, and show, separately, how measurements are affected by
changing this limit. In order to tackle problem 2, we use generalized Monte-Carlo
measurements, and are satisfied when we can conclude that a large enough num-
ber of executions (defined as a parameter), has guaranteed some measurement
threshold. This means that we have to provide the threshold (some value that
the measurements either surpass or do not reach), and a the level of confidence
required for this threshold.

232 R. Grosu et al.

3.3 Example: Velocity Matching Based Measurement

As an example, we show how to measure the objective of velocity matching in
Section 2 using our measurement formalism. Although the measurement does not
necessarily depend on having a temporal property associated with the measure
(e.g., calculating the average, the sum, etc.) we can, in this case look at the
LTL property ϕVM := FGp, (eventually always p), where p is the proposition
VM ≤ θ, and VM is the (normalized) velocity matching in a state.

Note that since in path measurement we have only a single successor and a
single predecessor, we can distinguish them, e.g., denote the successor version of
v by v′ (and if we look at the predecessors, denote the predecessor of v by v′′).

The variables we use are as follows:

– Boolean variables: Bp, BGp and BFGp, all initialized to U.
– Real variables:
• vm: the velocity matching value, initialized to 0.
• avg: the average velocity matching when Gp holds, initialized to 0.
• step: the number of steps from current state to the first state where Gp
holds, initialized to ∞.
• lc: the linear combination of avg and step, initialized to 0.

– Down counter: l, which is initialized to w, the length of the paths we use (we
use a constant length, which is 50)

– The values got from the successor are marked by a prime, i.e., BGp
′, BFGp

′,
avg′, etc. For the tester corresponding to the last state of the path who has
no successor, we assume the following: BGp

′ = T, BFGp
′ = F, avg′ = 0,

step′ =∞.

At each step, we calculate the following:

– If l > 0:
• Bp = p.
• BGp = Bp ∧BGp

′.
• BFGp = BGp ∨BFGp

′.
• vm = VM (s), the velocity matching value in current state s. The calcu-
lation of VM (s) is explained in Section 2.
• avg = if (BGp = T) then (avg′ ∗ (w − l) + vm)/(w − l + 1) elseavg′.
• step = if (BGp = T) then 1 else (step′ + 1).
• lc = 0.99 ∗ avg + 0.01 ∗ (step/w).
• l := l − 1.

The well founded ordering is the value of l. That is, we terminate when l = 0.
At this point, we can take values (BFGp, lc) from the initial node of the sequence.

4 Generalized Monte-Carlo Measurements

The formalism discussed in Section 3 takes as input a bounded sequence s1:n and
returns a measure of it. For example, for the flocking model (FM) we presented in
Section 2, we return a pair (b, r) of a Boolean and real value, respectively, where

Using Statistical Model Checking for Measuring Systems 233

b is the value of FG(VM ≤ θ), and r is the weighted sum of two quantities: how
long it takes (as a fraction of n) for VM to fall below threshold θ and remain
there; and, when b is true, the average of VM for the (maximal) subsequence
where G(VM ≤ θ) holds.

A particular sequence s1:n is generated by running a k-agent FM for a given
initial state, which is assumed to be distributed in the box [0..k, 0..k], for agent
positions, and in the box [0..1, 0..1], for agent velocities. The FM assumes that
these distributions are uniform, but, in general, they can be any arbitrary dis-
tribution, including Gaussian.

Since each pair (b, r) is the result of an initialized execution of the FM, both b
and r are the values of independent, identically distributed (IID) random variables
Z =(B,R). Assuming that r belongs to the interval [0, 1] is not a limitation, as
one can always normalize the values of R, provided that one knows its range. We
do exactly this in Sections 2-3, where the fitness value of the flock we compute
is the weighted sum of two [0, 1]-normalized quantities.

A generalized measurement aims to efficiently obtain a joint estimate
μZ =(μB, μR) of the mean values E[B], E[R] of B and R, respectively. Since an
exact computation of μZ is almost always intractable (e.g. NP-hard), a Monte
Carlo (MC) approach is used to compute an (ε, δ)-approximation of this quantity.

The main idea of MC is to use N random variables (RVs) Z1, . . . , ZN , also
called samples, IID distributed according to Z and with mean μZ , and to take
the sum μ̃Z = (Z1 + . . . + ZN)/N as the value approximating the mean μZ .

While MC techniques were used before to measure the satisfaction probability
of temporal logic formulas [11,9,14], or to compute the mean of an RV [5,12],
the main novelty of this paper is to jointly measure the Boolean satisfaction and
the mean real value. The Boolean-value computation is informing the real-value
computation and vice versa, thereby increasing the efficiency of our approach.

Additive approximation. An important issue in an MC approximation scheme is
to determine an appropriate value for N . If μZ is expected to be large, then one
can exploit the Bernstein inequality and fix N to be Υ ∝ ln(1/δ)/ε2. This results
in an additive or absolute-error (ε, δ)-approximation scheme:

Pr[μZ − ε ≤ μ̃Z ≤ μZ + ε] ≥ 1− δ

where μ̃Z approximates μZ with absolute error ε and with probability 1− δ.
If Z is assumed to be a Bernoulli RV, then one can use the Chernoff-Hoeffding

instantiation of the Bernstein inequality, and further fix the proportionality con-
stant to Υ =4 ln(2/δ)/ε2, as in [11]. This bound can also be used for the joint
estimation of RV Z =(B,R), as B is a Bernoulli RV, and the proportionality
constraint of the Bernstein inequality is also satisfied for RV R. This results in
the additive approximation algorithm (AAA) below.
It is important to note that in AAA, the number of samples N depends only on
ε and δ, and is totally oblivious to the mean value μZ to be computed.

Multiplicative approximation. In case the mean value μZ is very low, the additive
approximation μ̃Z may be meaningless, as the absolute error may be considerably

234 R. Grosu et al.

AAA algorithm
input: (ε, δ) with 0 < ε < 1 and δ > 0.
input: Random vars Zi with i > 0, IID.

output: μ̃Z approximation of μZ.

(1) Υ = 4 ln(2 / δ) /ε2;
(2) for (N = 0; N≤ Υ; N++) S = S +ZN;

(3) μ̃Z = S/N; return μ̃Z;

larger than the actual value μZ . In such cases, a multiplicative or relative-error
(ε, δ)-approximation scheme is more appropriate:

Pr[μZ −μZε ≤ μ̃Z ≤ μZ +μZε] ≥ 1− δ

where μ̃Z approximates μZ with relative error μZε and with probability 1− δ.
In contrast to the Chernoff-Hoeffding bound Υ =4ln(2/δ)/ε2, required to

guarantee an absolute error ε with probability 1− δ, the zero-one estimator the-
orem in [12] requires a bound proportional to N =4ln(2/δ)/μZε

2 to guarantee
a relative error μZε with probability 1− δ.

When applying the zero-one estimator theorem, one encounters, however, two
main difficulties. The first is that N depends on 1/μZ, the inverse of the value
that one intends to approximate. This problem can be circumvented by finding
an upper bound κ of 1/μZ and using κ to compute N . Finding a tight upper
bound is, however, in most cases very difficult, and a poor choice of κ leads to a
prohibitively large value for N .

An ingenious way of computing N without relying on μZ or κ is provided by
the Stopping Rule Algorithm (SRA) of [5]. When E[Z] = μZ > 0 and Σi=1Zi ≥
Υ , the expectation E[N] of N equals Υ .

SRA algorithm
input: (ε, δ) with 0 < ε < 1 and δ > 0.
input: Random vars Zi with i > 0, IID.

output: μ̃Z approximation of μZ.

(1) Υ = 4 (e - 2) ln(2 / δ) /ε2; Υ1 = 1 + (1 + ε)Υ;
(2) for (N = 0, S = 0; S≤Υ1; N++) S = S +ZN;

(3) μ̃Z = S/N; return μ̃Z;

The second difficulty in applying the zero-one estimator theorem is the factor
1/μZε

2 in the expression for N , which can render the value of N unnecessarily
large. A more practical approach is offered by the generalized zero-one estimator
theorem of [5] which states that N is proportional to Υ ′ = 4ρZ ln(2/δ)/(μZε)

2,
where ρZ = max{σ2Z , εμZ} and σ2Z is the variance of Z. Thus, if σ2Z , which
equals μZ(1− μZ) for Z a Bernoulli random variable, is greater than εμZ , then
σ2Z ≈ μZ , ρZ ≈ μZ and therefore Υ ′ ≈ Υ . If, however, σ2Z is smaller than εμZ ,
then ρZ = εμZ and Υ ′ is smaller than the Υ by a factor of 1/ε.

To obtain an appropriate bound in either case, [5,9] have proposed the optimal
approximation algorithm (OAA) shown above. This algorithm makes use of the

Using Statistical Model Checking for Measuring Systems 235

OAA algorithm
input: Error margin ε and confidence ratio δ with 0 < ε ≤ 1 and 0 < δ ≤ 1.
input: Random vars Zi, Z

′
i with i > 0, IID.

output: μ̃Z approximation of μZ.

(1) Υ = 4 (e - 2) ln(2 / δ) /ε2; Υ2 = 2 (1 +
√
ε) (1 + 2

√
ε) (1 + ln(3/2) / ln(2/δ)) Υ;

(2) μ̂Z = SRA(min{1/2,√ε}, δ/3,Z);
(3) N = Υ2 ε / μ̂Z; S = 0;

(4) for (i =1; i≤ N; i++) S = S + (Z′
2i−1 -Z

′
2i)

2 / 2;

(5) ρ̂Z = max{S/N, ε μ̂Z};
(6) N = Υ2 ρ̂Z / μ̂2

Z; S = 0;

(7) for (i =1; i≤ N; i++) S = S +Zi;

(8) μ̃Z = S / N; return μ̃Z;

outcomes of previous experiments to compute N , a technique also known as
sequential MC. The OAA algorithm consists of three steps. The first step calls
the SRA algorithm with parameters (

√
ε, δ/3) to obtain an estimate μ̂Z of μZ .

The choice of parameters is based on the assumption that ρZ = εμZ , and ensures
that SRA takes 3/ε less samples than would otherwise be the case. The second
step uses μ̂Z to obtain an estimate of ρ̂Z . The third step uses ρ̂Z to obtain
the desired value μ̃Z . Should the assumption ρZ = εμZ fail to hold, the second
and third steps will compensate by taking an appropriate number of additional
samples. As shown in [5], OAA runs in an expected number of experiments that
is within a constant factor of the minimum expected number.

For simplicity, both in SRA and in OAA, we only showed the joint variable
Z =(B,R), and used a generic RV ρ̂Z . In our implementation, however, we
distinguish between the mean and the variances of B and R, and if we observe
that the variance of R is very low, we stop, even if the variance of B is larger,
as R is determining the value of B.

5 Experimental Results

We have implemented our flocking model presented in Section 2 in MATLAB.
Recall that the property we measure is ϕVM defined in Section 3.

In order to get an approximate measure for the flocking model, within a re-
quired error margin ε and confidence level δ, we applied the generalized Monte-
Carlo estimation (GMCE) algorithms discussed in Section 4. The GMCE algo-
rithms use both the the boolean values b and the real values r obtained from
the path measurements (b, r), in order to determine the stopping time, and to
compute the mean values μB and μR of interest.

Every path measurement (b, r) is obtained by running the measurement al-
gorithm defined in Section 3.3, over a random execution of the flocking model.
This execution is generated by our discrete-time simulator, by first choosing the
initial state uniformly at random and then integrating the differential equations
given in Section 2, Figure 1.

236 R. Grosu et al.

Table 1 shows the results of 5 runs of OAA with θ = 0.05, ε = 0.3 and δ = 0.3.
In the table, μR is the real part of the output of OAA; it estimates the mean
of the quantitative measurement we defined in Section 3.3 for ϕVM . N is the
number of samples used to compute μR.

We omit the boolean part μB because it is always one for this example. We
also show the average (Avg) and the standard deviation (Std) of the results. We
compare our results with the AAA algorithm where a fixed number of samples
N is used, N = 4log(2/δ)/ε2, as shown in Table 2. The OAA algorithm requires
significantly more samples, but considerably reduces the standard deviation.

Table 1. Results obtained from OAA

Runs μR N
1 0.00644 66846
2 0.00651 65592
3 0.00646 66696
4 0.00648 66173
5 0.00646 66588
Avg 0.00647 66379
Std 2.659e-05 505.9

Table 2. Results obtained from AAA

Runs μR N
1 0.00681 84
2 0.00685 84
3 0.00589 84
4 0.00630 84
5 0.00585 84
Avg 0.00634 84
Std 0.00047 0

Note that, in Table 2, we use the same error margin and confidence level as
in Table 1. This additive approximation is, however, meaningless, because the
additive error is much greater than μR itself. If we want to achieve the same
accuracy as OAA, the error margin for AAA should be set to ε′ = μR ∗ ε ≈
0.00194. This results in the sample size N = 4log(2/δ)/ε′2 = 2, 016, 282, which
is significantly larger than the sample size used in OAA.

Table 3 shows the results when we choose different values of ε and δ for the
OAA algorithm. It is clear that choosing smaller values of ε and δ results in
smaller standard deviations at the expense of a larger sample size. We obtain
values of μR that are, however, highly consistent with one another from different
values of ε and δ.

Table 3. OAA with different ε and δ

ε = 0.1, δ = 0.3 ε = 0.1, δ = 0.5 ε = 0.3, δ = 0.3 ε = 0.3, δ = 0.5
Avg μR 0.00647 0.00648 0.00646 0.00648
Std μR 1.816e-05 2.370e-05 2.659e-05 3.267e-05
Avg N 131861 102412 66379 51410
Std N 326.2 447.7 505.9 216.8

6 Conclusions

Algorithmic methods for checking the consistency between a system and its
specification [6] have been generalized into measuring properties of systems [1].

Using Statistical Model Checking for Measuring Systems 237

The study of such measurement techniques provided interesting algorithmic,
complexity and computability results.

In a previous work [10] we proposed a simple formalism for fast measurement,
based on repeatedly observing the neighborhood of the states of the system.
Information about partial measurements flow through the states to and from
its neighbor states. Instead of providing a global logic base specification, which
assert about the different paths of the state space, and their interconnection,
our formalism is based on the view of a state and the information that flows
through it from its predecessors and successors. An expression over some well
founded set is used to control the termination of the accumulative data flow based
measuring. This setting is quite general, and allows measurements that combine
different arguments, both Boolean and numeric. The formalism is simple, and
the measurement is efficient. If the measurement is provided in terms of some
logic formalism, then it needs to be translated into our formalism.

Our measurement formalism is not appropriate for any formalism. An im-
portant class of such formalisms are those that are dependent on some memory
accumulated on the execution path. In such specification, different paths that
lead to the same state may result in different measurements. Even if the amount
of memory needed to keep track of the history of the path is finite, the measure-
ment is not unique per given state (as it depends on the history of the path).
Performing the measurement path by path is often not feasible as there can be in-
finitely many or prohibitively many paths. We propose here a tradeoff between
accuracy and exhaustiveness, based on statistical model checking [9,11,12,20].
We neighborhood measurement techniques to a statistically big enough sample
of paths, and use statistical inference to conclude the measurement of the system.

Such complex measurements can appear naturally in systems that combine
physical parameters and in biological systems. As a running example we used
models for birds flocking [19,21,15,4,3,2,20]. Based on several researched mod-
els for flocking, we want to measure the well behavior of their combination. In
particular, the eventual well matching of speeds among birds. We cast the even-
tual speed matching measurement in terms of our formalism. Then we make
experiments based on statistical model checking implemented using MATLAB.

References

1. Chatterjee, K., Doyen, L., Henzinger, T.A.: Expressiveness and closure properties
for quantitative languages. Logical Methods in Computer Science 6(3) (2010)

2. Conley, J.F.: Evolving boids: Using a genetic algorithm to develop boid behaviors.
In: Proceedings of the 8th International Conference on GeoComputation (Geo-
Computation 2005) (2005), http://www.geocomputation.org/2005/

3. Cucker, F., Dong, J.G.: A general collision-avoiding flocking framework. IEEE
Trans. on Automatic Control 56(5), 1124–1129 (2011)

4. Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. on Automatic
Control 52(5), 852–862 (2007)

5. Dagum, P., Karp, R., Luby, M., Ross, S.: An optimal algorithm for Monte Carlo
estimation. SIAM Journal on Computing 29(5), 1484–1496 (2000)

http://www.geocomputation.org/2005/

238 R. Grosu et al.

6. Emerson, E.A., Clarke, E.M.: Characterizing correctness properties of parallel pro-
grams using fixpoints. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980.
LNCS, vol. 85, pp. 169–181. Springer, Heidelberg (1980)

7. Finkbeiner, B., Sankaranarayanan, S., Sipma, H.: Collecting statistics over runtime
executions. Formal Methods in System Design 27(3), 253–274 (2005)

8. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verifi-
cation of linear temporal logic. In: PSTV, pp. 3–18 (1995)

9. Grosu, R., Smolka, S.: Quantitative model checking. In: Proc. of the 1st Interna-
tional Symposium on Leveraging Applications of Formal Methods (ISOLA 2004),
Paphos, Cyprus, pp. 165–174 (November 2004)

10. Grosu, R., Peled, D., Ramakrishnan, C.R., Smolka, S.A., Stoller, S.D., Yang,
J.: Compositional branching-time measurements. In: Bensalem, S., Lakhneck, Y.,
Legay, A. (eds.) From Programs to Systems. LNCS, vol. 8415, pp. 118–128.
Springer, Heidelberg (2014)

11. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic
model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
73–84. Springer, Heidelberg (2004)

12. Karp, R., Luby, M., Madras, N.: Monte-Carlo approximation algorithms for enu-
meration problems. Journal of Algorithms 10, 429–448 (1989)

13. Latvala, T., Biere, A., Heljanko, K., Junttila, T.A.: Simple bounded LTL model
checking. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp.
186–200. Springer, Heidelberg (2004)

14. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: An overview.
In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer,
Heidelberg (2010)

15. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: Algorithms and theory.
IEEE Trans. on Automatic Control 51(3), 401–420 (2006)

16. Penczek, W., Wozna, B., Zbrzezny, A.: Bounded model checking for the universal
fragment of ctl. Fundam. Inf. 51(1), 135–156 (2002)

17. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57 (1977)
18. Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In:

Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 573–586.
Springer, Heidelberg (2006)

19. Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. In:
Proceedings of the 14th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH 1987), pp. 25–34. ACM (1987)

20. Stonedahl, F., Wilensky, U.: Finding forms of flocking: Evolutionary search in
ABM parameter-spaces. In: Bosse, T., Geller, A., Jonker, C.M. (eds.) MABS 2010.
LNCS, vol. 6532, pp. 61–75. Springer, Heidelberg (2011)

21. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase
transition in a system of self-driven particles. Physical Review Letters 75, 1226–
1229 (1995)

22. Younes, H.K.L.: Verification and Planning for Stochastic Processes. Ph.D. thesis,
Carnegie Mellon (2005)

Blocking Advertisements on Android Devices
Using Monitoring Techniques�,��

Khalil El-Harake, Yliès Falcone,
Wassim Jerad, Mattieu Langet, and Mariem Mamlouk

Laboratoire d’Informatique de Grenoble, Vérimag, University of Grenoble-Alpes, France
First.Last@imag.fr

Abstract. This paper explores the effectiveness and challenges of using moni-
toring techniques, based on Aspect-Oriented Programming, to block adware at
the library level, on mobile devices based on Android. Our method is systematic
and general: it can be applied to block advertisements from existing and future
advertisement networks. We also present miAdBlocker, an industrial proof-of-
concept application, based on this technique, for disabling advertisements on a
per-application basis. Our experimental results show a high success rate on most
applications. Finally, we present the lessons learned from this experience, and we
identify some challenges when applying runtime monitoring techniques to real-
world case studies.

1 Introduction

Smartphone usage has dramatically increased over the past decade, presently account-
ing for 57.6% of mobile devices. On mobile devices, Android [1], is the leading plat-
form holding 78.4% of the market [2]. The downside is that the popularity of Android
made it a primary target of adware: studies show that 49% of the applications on the
market are bundled with at least one ad library [3]. It has also become common practice
for application developers to bundle multiple advertisement libraries into their software.

The prevalence of adware, reduces device performance, detracts from user experi-
ence, significantly contributes to battery drain [4], and raises privacy concerns through
the collection of sensitive information (such as user location) [5].

In this paper we present how monitoring techniques can be used to disable adver-
tisements in Android applications. More particularly, we are interested in enforcement
monitoring where a so-called enforcement monitor receives the sensitive events from the
application under scrutiny and uses an internal decision procedure to determine whether
each event should be allowed or not. Using Aspect-Oriented Programming [6] (AOP), we
insert, at the bytecode-level, enforcement monitors that give users the ability to disable
advertisements in Android on a per-application basis. Our technique minimally modifies
a targeted application in the sense that only the initial behavior related to the display of
advertisements is impacted while the rest of the host application functions normally.

� The work presented in this paper is partially funded by Institut Carnot LSI.
�� This paper is an academic study of the effectiveness of using monitoring techniques on a

large-scale and challenging case study. By no means it should be seen as an attempt to actually
suppress advertisements in applications nor to jeopardize the source of income of the actors
involved in the Android ecosystem.

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 239–253, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

240 K. El-Harake et al.

Unlike other methods that work by modifying the host operating system, our method
works on an unrooted stock Android device. Our method also differs from similar solu-
tions that perform bytecode transformation, and relies on custom security languages, or
low-level transformation using intermediate representations of bytecode [7,8]. We rely
on Aspect-Oriented Programming, via the standard AspectJ compiler [9], which devel-
opers are more likely to be familiar with. A detailed comparison with related work, can
be found in Sec. 7.

Contributions. The contributions of this paper are to:

– Introduce the use of AOP as a method for disabling ads on Android applications;
– Present miAdBlocker, an end-user application, implementing the technique;
– Discuss results evaluating the approach in practice;
– Explore the limitations of using AOP to modify closed-source applications and

block advertisements.

Paper Organization. The rest of this paper is structured as follows. Section 2 presents
background notions. The method for suppressing advertisements is presented in Sec. 3.
Section 4 presents miAdBlocker, our industrial proof-of-concept that implements the
method presented in Sec. 3. miAdBlocker comprises i) a completely re-developed ver-
sion of Weave Droid [10], ii) an aspect that allows to suppress advertisements in many
Android applications, and adds user-oriented features. Section 5 presents our evalua-
tion of the method on a sample of 860 popular Android applications retrieved “off-the-
shelf” from Google Play. In Sec. 6, we discuss some of the issues (and possible counter
measures) encountered when applying miAdBlocker to Android applications. Section 7
discusses related work. Finally, Sec. 8 presents some concluding remarks and open per-
spectives.

2 Background

This section presents some background notions on Android, advertisement libraries,
aspect-oriented programming used in our approach.

2.1 Android and Advertisement Librairies

Android is an open-source operating system based on Linux. Android is primarily used
on mobile devices such as smartphones and tablets. Android applications are primarily
developed in Java, and while it is possible to use native code for development, only 4.52%
of applications on the market use it [11]. Unlike typical Java applications which run on
a Java Virtual Machine (JVM), Android applications use the Dalvik Virtual Machine
(DVM). The DVM and JVM have significant differences, such as differences in bytecode
encoding, their differences and resulting problems are discussed briefly in Sec. 6.

Android applications are distributed as APK (Android Package) files (see Fig. 1(a)).
APK files consist of the application’s manifest, resources, application bytecode encoded
for the DVM as a single classes.dex file, and signatures over the APK file for ver-
ifying its authenticity. An Android application runs in its own process, with its own

Blocking Advertisements on Android Devices 241

APK

Signature

DEX

Class 0

...

Class N

(a) Simplified
structure of an
APK.

Application Call

Android API

Operating System

(b) Android API call.

Fig. 1. General Information on the functioning of Android Application

2 4 6 8
0%

10%

20%

30%

Number of ad libraries bundled

P
er
ce
n
t
of

ap
p
s

Fig. 2. Number of bundled advertisement libraries in applications

Dalvik Virtual Machine (DVM) instance. When a method call to a privileged resource
is made, the call goes through the Android API, see Fig. 1(b), and the application frame-
work checks if the originating application has the permission for proceeding with the
request.

Advertisement libraries are often bundled with Android applications. An analysis of
100 applications containing advertisements on the market revealed that 40% of the ap-
plications contained 6 or more advertisement libraries, see Fig. 2. While another study,
showed that 35% of applications contained 2 or more advertisement libraries [12].

Android does not have a built-in, in-process permission separation mechanism for
libraries. As with all libraries bundled into an Android application, these advertisement
libraries share the access permissions of the host application.

2.2 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) is an established paradigm developed in the 1990s
at Xerox PARC [13]. AOP aims to facilitate modularity through the use of aspects, with
each aspect being the embodiment of a so-called cross-cutting concern, i.e., parts of a
program that rely on or must affect other parts of the system.

242 K. El-Harake et al.

Application Ad
Library

Android API

Kernel

Fig. 3. View of an application at runtime with an ad library

Aspects are implemented through the use of three main concepts: joint points, point-
cuts, and advices.

Joint-Point: A join point is an identifiable point during the runtime of a program, such
as on the execution or call of a method.

PointCut: A pointcut is an expression for matching on joint points, for example the
below pointcut matches on join points where a call to a method in the package
com.google.ads is made.
call(* com.google.ads..*(..))

Advice: An advice is a piece of code that can be attached to run either after, before,
or around a pointcut. For example, by using an around advice on a method, one
can decide to proceed or not with the actual method call. Context information for
making decisions regarding granting permissions can also be obtained by matching
on the call arguments, or on other information via AspectJ’s thisJoinPoint special
variable. See Listing 1 for an example of an advice definition.

Object around() :

call(* com.google.ads..*(..)) {

return null;

}

Listing 1: Example of an around advice that can be used to block certain ads by inter-
cepting calls to the com.google.ads package

AspectJ is an AOP implementation created at Xerox PARC for Java. The AspectJ
compiler allows to perform weaving into JVM bytecode, through it, one can use aspects
to modify compiled applications even without having access to the source code.

2.3 Weave Droid

Weave Droid [10] is a tool for weaving AspectJ aspects into an Android application.
As input Weave Droid takes an APK, and a set of aspects that will be weaved into
the APK. Weave Droid supports embedded weaving, where the entire weaving process
is performed on the Android device, as well as cloud-based weaving, where the input

Blocking Advertisements on Android Devices 243

Application Call

Advice

Android API

Operating System

Fig. 4. Monitored Android API call

WeaveDroid

APK

Signature

DEX

Class 0

...

Class N

DVM→JVM

i

Weaving

ii

JVM→DVM

iii

Merging

iv

Signing

v

APK’

Signature’

DEX’

Class 0’

...

Class N’

Aspect

Advice 0

...

Advice N
. . .

Aspect

Advice 0

...

Advice N

Fig. 5. Pipeline of weaving process

required for weaving is sent to be processed on a Weave Droid server after which the
output is returned back to the device.

The Weave Droid process is split into 5 stages:
i Conversion of the input APK from DVM bytecode format to JVM format. This

process uses the dex2jar library. This step is necessary as AspectJ is only capable of
weaving JVM format bytecode. This conversion process has limitations that are dis-
cussed in Sec. 6.1.

ii Weaving of the input aspects with the JVM bytecode from stage i . The AspectJ
compiler is used to handle the compilation and weaving of the aspects as well as inject-
ing a library dependency required by the aspects.

iii Conversion of the JVM bytecode to DVM bytecode format. This process uses the
dx tool. This stage is necessary as Android expects the bytecode in DVM format.

iv Merging the modified bytecode into the input APK. From stage iii we obtain a
DVM bytecode file, we use this file to replace the classes.dex file present in the
input APK.

v Signing of the modified APK. For Android applications to run, a valid signature is
required. Modification of the APK from stage iv results in the APK’s signatures being
broken, to resolve this, we erase the existing signatures and re-sign the APK.

244 K. El-Harake et al.

Application Ad
Library

Android API

Kernel

Original System

→

Application

Monitor

Ad
Library

Android API

Kernel

Monitored System

Fig. 6. Comparison of original application with the monitored application

The APK resulting from the Weave Droid process will exhibit the functionality in-
troduced by the aspects, and will differ structurally from the original as follows:

– Bytecode and size, due to weaving of the aspects and inclusion of their library
dependency.

– Signature, as a result of breaking the APK signature in stage iv and re-signing in
stage v .

3 Ad Suppression Method

In our solution we use the Weave Droid engine to weave the ad-blocking aspects into
the application.

Class.forName("com.google.ads.AdActivity")

.getDeclaredMethod("startActivity")

.invoke(null);

Listing 2: Example of a method invocation via the reflection API

3.1 Aspect Creation

When writing aspects that modify the behavior of applications, we must take into ac-
count different mechanisms by which a method can be triggered. Adware applications
are notorious for their use of dynamic method invocation as a means of defeating static
analysis. For example through the reflection API a method call can be invoked. Listing 2
is an example call to a method that would not be intercepted by the pointcut example
specified in Sec. 2.2.

Other factors that must be taken into account, include properly allocating and deallo-
cating intercepted objects that require them. For example some objects such as Broad-
castReceiver must be registered and unregistered.

Another issue which we must take care of is returning proper pseudo-objects in cases
where we wish to spoof information such as contact lists, instead of simply blocking a
method and returning null, which may cause the program to crash.

Blocking Advertisements on Android Devices 245

Listing 3, is a snippet of aspect code which blocks invocations to the method ”load-
NewAd” within the ”com.inmobi.androidsdk” package, while allowing other method
calls for the package to pass through. The snippet takes into account indirect calls via
the reflection API, by wrapping an advice around calls to the ”java.lang.reflect.Method.
invoke” method.

Object around() : execution(* com.inmobi.androidsdk.*.loadNewAd(..)) {

return null;

}

Object around(): call(Object java.lang.reflect.Method.invoke(..)) {

java.lang.reflect.Method target =

(java.lang.reflect.Method)(thisJoinPoint.getTarget());

Object[] args = thisJoinPoint.getArgs();

if (args != null && args.length > 0 && args[0] != null) {

String receiver = args[0].getClass().getName();

if (target.getName().compareTo("loadNewAd") == 0

&& receiver.startsWith("com.inmobi.androidsdk"))

return;

}

return proceed();

} Listing 3: Shortened example of aspect code for blocking inmobi ads

3.2 Amending the Application

In this section we describe the steps taken by our implementation for suppressing the
advertisements of an input application (see Fig. 7).

Input miAdBlocker Output

APK

Signature

DEX

App Classes

...

Ad Library

Ad Analyzer

WeaveDroid

APK’

Signature’

DEX’

App Classes

...

�
�
�
�
�

Ad Library

ii

ii

i

iii

Fig. 7. Pipeline of advertisement suppression process

i The application’s APK file is passed to the Ad Analyzer. The Ad Analyzer searches
through the libraries used by the application and compares them to a list of known
advertisement network libraries. Using this list the Ad Analyzer determines the set of
aspects to use for ad blocking.

246 K. El-Harake et al.

(a) Showing the list of applica-
tions harboring advertisement li-
braries.

(b) Confirmation before process-
ing an application.

Fig. 8. miAdBlocker in action

ii The application’s APK file, and the set of aspects required for blocking the adver-
tisements specific to it are passed to Weave Droid, which may be remote or local. Weave
Droid handles weaving of the aspects into the application.

iii Finally, Weave Droid outputs a new APK. The output APK contains the ad blocking
behavior in it, and therefore fail to display ads.

4 Implementation: miAdBlocker

miAdBlocker, is a user-friendly Android application based on the methodology de-
scribed in Sec. 3. miAdBlocker is implemented using Java in 7,260 lines of code (LoC),
and uses a remote Weave Droid server for weaving enforcement monitors inside appli-
cations. The application allows users to selectively disable the advertisements of ap-
plications installed on their device. The implementation supports devices running on
Android version 2.3.3 and higher. It uses a 2,190 LoC aspect library capable of dis-
abling over 30 different ad network libraries.

At startup miAdBlocker scans all the applications installed on the system; detecting
for the presence of advertisement libraries. Then, a list is populated with all the appli-
cations that are candidates for ad-blocking, as seen in Fig. 8(a). The user may select the
application for which he wants to block ads. Once the user has indicated that he wants
ads to be removed from the application, a confirmation dialog window is displayed as
seen in Fig. 8(b).

While weaving directly on the device is possible, due to the inherent limitations and
performance issues of weaving aspects directly on android devices [10], miAdBlocker
defaults to querying a Weave Droid server, to handle the process.

Blocking Advertisements on Android Devices 247

Fig. 9. An application before (left) and after (right) being processed by miAdBlocker

5 Evaluation

This section presents our evaluation of miAdBlocker with “off-the-shelf” Android ap-
plications retrieved from Google Play.

5.1 Case Study

We ran and experiment focused on analyzing the reliability of miAdBlocker to amend
applications with ad-blocking enforcement monitors, while preserving the features of
the target application (the application should remain functionable and its performance
should not be degraded).

To evaluate the proposed method of ad-blocking in Android applications, we tested
a sample of 860 popular applications from different categories (games, utilities, misc),
and recorded the success or failure of an application.

There are three phases to our testing process. If any error occured during a phase, the
application was considered to have failed the current tests, and the tests after it.

Applications that were successfully modified, had their modified versions put through
the execution test. Due to the time consuming nature of thoroughly testing applications,
for the third test a randomized sample of applications from those that were successful
in the execution test were selected for this stage.

Modification. Amending the application with ad-blocking aspects and repackaging it.
Execution. Installing, initial launch, and uninstallation of the amended application.
Thorough. All activity windows of an application were checked to ensure proper func-

tioning.

Table 1 shows the results of the three test phases. For each phase we show the number
of applications tested, and their success rate. In each of the phases we encountered errors
which we explain below.

Modification involves invoking the Weave Droid pipeline which consists of several
sub-steps as seen in Fig. 5. In the first step we have to perform DVM→JVM bytecode
retargeting, this process is error prone and discussed in Sec. 6.1. We also encountered

248 K. El-Harake et al.

Table 1. Number of applications tested and their success rates at each of the stages

Modification Execution Thorough

Games 341 96.19% 328 85.98% 52 77.61%
Utility 95 98.95% 94 96.81% 52 94.12%
Misc 424 97.41% 413 93.22% 30 100%

applications exploiting limitations in the retargeting tool dex2jar, for example by using
method and field names obfuscated with unicode characters dex2jar crashes. During
the weaving phase AspectJ encountered “missing type” errors due to the presence of
calls, and type references that do not have their corresponding libraries bundled with
the application.

In the execution and thorough testing phase, we had crashes due to the introduction
of errors in the modification phase. We also encountered errors possibly due to the
presence of anti-tampering code, and found that game applications in particular had a
much higher rate of failure at execution than other application categories.

Remark 1 (A note on performance and file size overhead). The aspects applied to the
programs affect their performance. However as with the work done previously we found
that the types of aspects developed for ad-blocking had a negligible effect on perfor-
mance degredation [10]. Rather we observed performance improvements, bandwidth
savings, and energy savings. Indeed, our aspects are woven at compile time, and dis-
able a significant amount of code from being run.

The amendment process requires the inclusion of a fixed 117KB library, as well as
the newly woven classes/aspects bytecode. A review of the APK sizes before and after
the ad-blocking transformation, showed that there was a negligible increase in APK size
in the range of 0-5%, and overall averaged near 0%.

6 Discussion

While there are currently many challenges faced from a bytecode weaving approach,
there remain advantages, in that it is a more targeted approach and unlike other ap-
proaches it does not require alteration of the host operating system, nor use of superuser
permissions, both of which may result in voiding of the device warranty. This section
discusses some of the challenges faced (and possible counter measures) when applying
runtime monitoring and miAdBlocker to Android applications.

Analysis of 100 applications on the market revealed that the majority of those tested
used features such as encryption and classloaders. These features may be used to cir-
cumvent methods relying on static analysis and bytecode weaving. Further implications
of using these features are discussed in the rest of this section. We believe these issues
were not raised by previous monitoring frameworks applied to academic benchmarks.
These issues are to be considered when using a monitoring framework for third-party
applications. See Table 2 for the results of the analysis.

Blocking Advertisements on Android Devices 249

Table 2. Some features used by 100 free applications with advertisements from the top 200 on
Google Play

Feature Percent of Apps Tested

Reflection 99%
Encryption 96%
ClassLoader 99%
Native Code 0%
Calls External Executable 88%

6.1 DVM to JVM Retargeting

There are significant differences between the register-based Dalvik Virtual Machine and
the stack-based Java Virtual Machine, these differences result in information loss when
converting bytecode from one format to the other. The information loss is a cause for
some of the errors we encounter when running our tool-chain. As resolving this issue is
an active area of research [14], in time we expect success rates to increase.

Malware has also been known to take advantage of bugs in present in retargeting
software, preventing proper conversion [15]. Modifying the AspectJ compiler to target
Dalvik bytecode directly is a possible solution for avoiding the problems introduced by
intermediate retargeting software.

6.2 Native Code

Our method is limited to the modification of Java-based applications, and may be by-
passed in applications using native code. But as stated earlier, due to the difficulties of
developing apps using native code, only a small percentage of the available applications
available use it, and even the ones that use it only use it in small critical performance
areas.

6.3 Tamper Detection

Applications using tamper detection can detect unauthorized modification. Developers
can integrate this detection using tools such as Arxan [16] and Google LVL [17]. Upon
the detection of tampering, applications may be designed to exit, or behave improperly.

Detection typically revolves around signature verification. Application modification
as a side-effect results in different signatures compared to the original application.

As miAdBlocker and Weave Droid by design modify the application package, they fall
prey to this detection; contributing to the failure rates seen during application execution.
Bypassing this mechanism would allow for higher success rates. We will briefly discuss
countermeasures for two basic common techniques, of implementing this detection.

Package signature verification. Applications are signed by the developers using a pri-
vate key that is only accessible by them. When an application is modified, the original
signature will no longer correspond to it. An application without a valid signature will

250 K. El-Harake et al.

fail to run. Thus, to have a usable application the tamperer must sign it with their own
key. A detection mechanism could be for the application to compare its current signa-
ture against a copy of the signature known to be authentic.

Signature[] sig =

getPackageManager()

.getPackageInfo(app, PackageManager.GET_SIGNATURES)

.signatures;

if (sig[0].hashCode() != authenticSignature) fail();

Listing 4: Example implementation of tamper detection

A countermeasure could be to store the valid package signature before transforma-
tion, and to intercept package manager calls in the modified application. The modified
application would return the original recorded application’s signature, thus passing this
test.

File signature verification. File signature verification is another form of protection used
by application developers. The method involves computing a checksum value of the ap-
plication files, using a hash function. Detection can be performed at application startup
by recomputing the checksum values of the current files and comparing them against
the previously computed authentic hashes.

Counter-measures could be to:

– Keep a copy of the unmodified application, and intercepting Java’s file system li-
braries. When an application wishes to access its own files, the interception method
redirects access to the original versions that would pass the signature checks.

– Intercept common hash functions used for signature checking, and return a precom-
puted correct hash upon request.

Amending applications with more complicated verification systems can be done by
integrating verification library subversion tools into the Weave Droid pipeline.

6.4 Dynamically Loaded Code

Java allows for code not present in the application to be loaded at runtime from either
a local path, or an online location, using a ClassLoader. As this code is not present
for Weave Droid to perform transformations on, the dynamically loaded code is free
of the behaviors enforced upon the rest of the application. Developers may use this
mechanism to dynamically load advertisements, bypassing ad blocking utilities based
on static analysis and bytecode transformation.

Our technique can be extended to handle such cases via interception of calls to the
ClassLoader. A custom ClassLoader can then analyze and send the code to a Weave
Droid server. There, the desired behavior is enforced on the code, then returned to the
device for execution.

Blocking Advertisements on Android Devices 251

Table 3. Comparison of the requirements of several ad-blocking applications

Requirements

Root Proxy Reboot

Adblock plus � � �

AirPush Block � � �

Adway � � �

MyInternetSecurity � � �
MiAdBlocker � � �

6.5 Obfuscation

Obfuscation is a technique employed by developers to protect their applications against
reverse engineering and analysis. Through obfuscation, the names of methods, classes
and packages are rewritten while preserving the functionality of the app. Tools such as
ProGuard fulfill this purpose. This technique renders aspects that would have worked,
targeting specific pointcuts based on names unusable.

However, we did not encounter much problems in this regard when blocking ad
libraries, as it is common practice to preserve the public APIs of said libraries due to
issues arising from their obfuscation.

Another type of obfuscation can be performed involves storing the code in encrypted
form, this code is then decrypted and loaded by a ClassLoader at runtime. Our solu-
tion of intercepting the ClassLoader would properly account for this problem, as the
ClassLoader must take in the unencrypted bytecode.

6.6 Signature Modification

A side-effect of this modification is that market updates are not properly detected for
the modified application, and if one wishes to update directly from the market, they
would have to first uninstall or restore the application, before they can move to a newer
version. To solve this issue a separate mechanism must be used to check and handle
updates.

7 Related Work

7.1 Comparison with Ad-Blocking Software on the Market

We made a survey of the ad blocking solutions found on Google Play and compiled the
results (see Table 3). Compared to the other tools on the market that were surveyed,
miAdBlocker had less requirements for enforcement of ad blocking, making it more
user-friendly.

252 K. El-Harake et al.

7.2 Comparison with Similar Research Projects

miAdBlocker [10], was extended upon. The Weave Droid engine is now reimplemented
in 6,130 lines of Java code, with a focus on robustness. Originally Weave Droid only
handled Google ads; with miAdBlocker we can handle over 30 different advertisement
networks.

Aurasium [18] is a policy enforcer that intercepts Android applications via a native
library layer. Unlike their method, our method has the benefit of using monitors with
awareness of the call context in Java, giving us the advantage of selectively enforcing
monitors on a finer-grained level (such as per library level).

Bartel, et al. [8] present a method and implementation that performs static analysis.
Our system differs in that we can make decisions dynamically with the awareness of
context and avoids the false positives usually induced when using static analysis. For
instance, our tool can detect specific (dynamically computed) URLs instead of only
detecting that an HTTP connection is made in the application.

8 Conclusion and Future Work

8.1 Conclusion

This paper studies the use of monitoring techniques on a real application scenario: block-
ing advertisement on third-party Android applications retrieved “off-the-shelf” from
public repositories such as Google Play. Our purpose was to produce a tool that goes
beyond usual research prototypes in runtime verification as we aimed to reach a level
of maturity allowing our tool to be publicly released and delivered to users without any
computer-science background.During our case studies we encountered many challenges
such as the number and heterogeneity of Android applications on which our technique
has to be tested, the diversity of the possibilities for developers to displaying advertise-
ments, the discrepancy between the Dalvik format (executable) and the bytecode format
(instrumentable). The challenges stem from the facts that we target third-party applica-
tions, from many developers, in a domain where a strong competition exists between
applications.

We use good practices obtained from research endeavors in the runtime verification
community and encode monitoring using Aspect-Oriented Programming. Our experi-
ments show that using AOP via AspectJ is an effective technique to modify existing
closed source applications to incorporate ad-blocking monitors. Unlike tools relying on
low-level bytecode analysis and transformation, AOP allows for easier targeting and
modification of existing application code; through specification of transformation sites
via a pointcut matching system. Our method also has the benefit over other solutions in
that it has been implemented and tested to work embedded from an android device, and
as a cloud-based service.

Our experiments showed a good success rate overall, with better success rates de-
pending on the category of the application. Analysis of applications on the market how-
ever, showed the heavy presence of features that could be used for circumvention of the
enforcement mechanism. These features are targeted in a newer implementation.

Blocking Advertisements on Android Devices 253

8.2 Future Work
Even if our approach is dedicated to blocking advertisement on Android applications
the challenges encountered in this paper will remain when applying monitoring in other
application domains sharing features (e.g., third-party applications). Thus, we believe
that future research endeavors in the runtime verification community should consider
extending monitoring techniques to deal with the issues of dynamically loaded code,
obfuscation, and tamper-resistant code, for the purpose of yielding a higher success
rate at integrating effective monitors.

References

1. Google Inc.: Android (2014), http://www.android.com,
http://developer.android.com

2. Gartner: Market share analysis: Mobile phones, worldwide, 4q13 and 2013 (2013)
3. Pearce, P., Felt, A.P., Nunez, G., Wagner, D.: Addroid: Privilege separation for applications

and advertisers in android. In: Proceedings of the 7th ACM Symposium on Information,
Computer and Communications Security, pp. 71–72. ACM (2012)

4. Pathak, A., Hu, Y.C., Zhang, M.: Where is the energy spent inside my app?: Fine grained
energy accounting on smartphones with eprof. In: Proceedings of the 7th ACM European
Conference on Computer Systems, pp. 29–42 (2012)

5. Stevens, R., Gibler, C., Crussell, J., Erickson, J., Chen, H.: Investigating user privacy in an-
droid ad libraries. In: Proceedings of Mobile Security Technologies Workshop, MoST (2012)

6. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Irwin,
J.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS,
vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

7. Backes, M., Gerling, S., Hammer, C., Maffei, M., von Styp-Rekowsky, P.: AppGuard – en-
forcing user requirements on android apps. In: Piterman, N., Smolka, S.A. (eds.) TACAS
2013. LNCS, vol. 7795, pp. 543–548. Springer, Heidelberg (2013)

8. Bartel, A., Klein, J., Monperrus, M., Allix, K., Traon, Y.L.: Improving privacy on android
smartphones through in-vivo bytecode instrumentation. CoRR abs/1208.4536 (2012)

9. Xerox Corporation: Aspectj programming guide (2014),
http://www.eclipse.org/aspectj/

10. Falcone, Y., Currea, S.: Weave Droid: aspect-oriented programming on Android devices:
fully embedded or in the cloud. In: Goedicke, M., Menzies, T., Saeki, M. (eds.) ASE, pp.
350–353. ACM (2012)

11. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off of my market: Detecting malicious
apps in official and alternative android markets. In: NDSS. The Internet Society (2012)

12. Shekhar, S., Dietz, M., Wallach, D.S.: Adsplit: Separating smartphone advertising from ap-
plications. In: USENIX (2012)

13. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Irwin,
J.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS,
vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

14. Octeau, D., Jha, S., McDaniel, P.: Retargeting android applications to java bytecode. In:
Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of
Software Engineering, p. 6. ACM (2012)

15. Chenette, S.: Building custom android malware, BruCON (2013)
16. Arxan: Ensureit R© for android on arm (2013)
17. Google Inc.: Licensing overview - android developers (2014)
18. Xu, R., Saı̈di, H., Anderson, R.: Aurasium: Practical policy enforcement for android appli-

cations. In: Proceedings of the 21st USENIX Conference on Security Symposium, Security
2012, p. 27. USENIX Association, Berkeley (2012)

http://www.android.com
http://developer.android.com
http://www.eclipse.org/aspectj/

Monitoring with Data Automata

Klaus Havelund�

Jet Propulsion Laboratory
California Institute of Technology

California, USA

Abstract. We present a form of automaton, referred to as data au-
tomata, suited for monitoring sequences of data-carrying events, for ex-
ample emitted by an executing software system. This form of automata
allows states to be parameterized with data, forming named records,
which are stored in an efficiently indexed data structure, a form of
database. This very explicit approach differs from other automaton-based
monitoring approaches. Data automata are also characterized by allow-
ing transition conditions to refer to other parameterized states, and by
allowing transitions sequences. The presented automaton concept is in-
spired by rule-based systems, especially the Rete algorithm, which is
one of the well-established algorithms for executing rule-based systems.
We present an optimized external DSL for data automata, as well as a
comparable unoptimized internal DSL (API) in the Scala programming
language, in order to compare the two solutions. An evaluation compares
these two solutions to several other monitoring systems.

1 Introduction

Runtime verification (RV) is a sub-field of software reliability focused on how
to monitor the execution of software, checking that the behavior is as expected,
and if not, either produce error reports or modify the behavior of the soft-
ware as it executes. The executing software is instrumented to emit a sequence
of events in some formalized event language, which is then checked against a
temporal specification by the monitor. This can happen during test before de-
ployment, or during deployment in the field. Orthogonally, monitoring can occur
online, simultaneously with the running program, or offline by analyzing log files
produced by the running program. Many RV systems have appeared over the
last decade. The main challenges in building these systems consist of defining
expressive specification languages, which also makes specification writing attrac-
tive (simple properties should have simple formulations), as well as implement-
ing efficient monitors for such. A main problem is how to handle data-carrying
events efficiently in a temporal setting. Consider for example the following event
stream consisting of three grant(t, r) events (resource r is granted to task t):

� The work described in this publication was carried out at Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics
and Space Administration.

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 254–273, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Monitoring with Data Automata 255

〈grant(t1, a), grant(t2, b), grant(t3, a)〉, and consider the property that no re-
source should be granted to more than one task at a time. When receiving the
third event grant(t3, a), the monitor has to search the relevant history of seen
events, which, if one wants to avoid looking at the entire history, in the presence
of data ends up being a data indexing problem in some form or another.

RV systems are typically based on variations of state machines, regular ex-
pressions, temporal logics, grammars or rule-based systems. Some of the most
efficient RV systems tend to be limited wrt. expressiveness [2], while very expres-
sive systems tend to not be competitive wrt. efficiency. Our earlier work includes
studies of rule-based systems, including Ruler [6] and LogFire [15]. As exam-
ple of a rule in a rule-based system, consider: Granted(t, r) ∧ grant(t′, r) ⇒
Error(t, t′, r). The state of a rule-system can abstractly be considered as con-
sisting of a set of facts, referred to as the fact memory, where a fact is a named
data record, a mapping from field names to values. A fact represents a piece
of observed information about the monitored system. A condition in a rule’s
left-hand side can check for the presence or absence of a particular fact, and
the action on the right-hand side of the rule can add or delete facts. Left-hand
side matching against the fact memory usually requires unification of variables
occurring in conditions. In case all conditions on a rule’s left-hand side match
(become true), the right-hand side action is executed. The rule above states that
if the fact memory contains a fact that matches Granted(t, r) for some task t and
resource r, and a grant(t′, r) event is observed, then a new fact Error(t, t′, r)
is added to the fact memory. A well-established algorithm for efficiently exe-
cuting rule-based systems is the Rete algorithm [12], which we implemented
in the LogFire system [15] as an internal DSL (API essentially) in the Scala

programming language, while adopting it for runtime verification (supporting
events in addition to facts), and by optimizing fact search using indexing.

While an interesting solution, the Rete algorithm is complex. Our goal is to
investigate a down-scaled version of Rete to an automaton-based formalism,
named data automata (Daut), specifically using the indexing approach imple-
mented in [15]. Two alternative solutions are presented and compared. First,
data automata are presented as a so-called external DSL, a stand-alone formal-
ism, with a parser and interpreter implemented in Scala. The formalism has
some resemblance to process algebraic notations, such as CSP and CCS. Sec-
ond, we present an unoptimized internal DSL (Daut

int), an API in the Scala

programming language, with a very small implementation, an order of magni-
tude smaller compared to the external DSL (included in its entirety in Appendix
A). An internal DSL has the advantage of offering all the features of the host
programming language in addition to the features specific to the DSL itself. We
compare these two solutions with a collection of other monitoring systems.

The paper is organized as follows. Section 2 outlines related work. Section
3 presents data automata, as the external DSL named Daut, including their
pragmatics, syntax, and semantics. Section 4 presents an indexing approach
to obtain more efficient monitors for data automata. Section 5 presents the
alternative internal Scala DSL namedDaut

int, which also implements the data

256 K. Havelund

automaton concept. Section 6 presents an evaluation, comparing performance
with other systems. Section 7 concludes the paper.

2 Related Work

The inspiration for this work has been our work on the rule-based LogFire

system [15], which again was inspired by theRuler system [6]. The external DSL
is closely related to LogScope [4]. The internal Scala DSL is a modification of
the internal Scala DSL TraceContract [5]. As such this work can be seen
as presenting a reflection of these four pieces of work.

The first systems to handle parameterized events appeared around 2004, and
include such systems as Eagle [3] (a form of linear μ-calculus), Jlo [18] (lin-
ear temporal logic), TraceMatches [1] (regular expressions), and Mop [16]
(allowing for multiple notations). Mop seems the most efficient of all systems.
The approach applied is referred to as parametric trace slicing. A trace of data
carrying events is, from a semantic point of view, sliced to a set of propositional
traces containing propositional events, not carrying data (one trace for each
binding of data parameters) which are then fed to propositional monitors. In
practice, however, the state of a monitor contains, simplified viewed, a mapping
from bindings of parameter values to propositional monitor states. This indexing
approach results in an impressive performance. However, this is at the price of
some lack of expressiveness in that properties cannot relate different slices, as
also pointed out in [2]. MopBox [10] is a modular Java library for monitoring,
implementing Mop’s algorithms.

Quantified Event Automata [2] is an automaton concept for monitoring pa-
rameterized events, which extends the parametric trace slicing approach used in
Mop by allowing event names to be associated with multiple different variable
lists (not allowed in Mop), by allowing non-quantified variables to vary during
monitoring, and by allowing existential quantification in addition to universal
quantification. This results in a strictly more expressive logic. This work arose
from an attempt to understand, reformulate and generalize parametric trace
slicing, and more generally from an attempt to explore the spectrum between
Mop and more expressive systems such as Eagle and Ruler, similar to what
is attempted in the here presented work. The work is also closely related to Or-

chids [13], which is a comprehensive state machine based monitoring framework
created for intrusion detection.

Several systems have appeared that monitor first order extensions of propo-
sitional linear temporal logic (LTL). A majority of these are inspired by the
classical rules (Gerth et. al) for rewriting LTL. These extensions include [17], an
extension of LTL with a binding operator, and implemented using alternating
automata; LTL-FO

+ [14], for parameterized monitoring of Xml messages com-
municated between web-services; Mfotl [7], a metric first-order temporal logic
for monitoring, with time constraints as well as universal and existential quan-
tification over data; LTL

FO [8], based on spawning automata; and [11], which
uses a combination of classical monitoring of propositional temporal properties
and SMT solving.

Monitoring with Data Automata 257

Listing 1. Monitor for requirements R1 and R2

monitor R1R2 {
init always Start {
grant(t , r) → Granted(t,r)
release (t , r) :: ¬Granted(t,r) → error

}

hot Granted(t,r) {
release (t ,r) → ok
grant(,r) → error
}
}

3 The Daut Calculus

3.1 Illustration by Example

We shall introduce Daut by example. Consider a scenario where we have to
write a monitor that monitors sequences of grant(t, r) and release(t, r) events,
representing respectively granting a resource r to a task t, and task t releasing
resource r. Consider furthermore the two requirements R1: “a grant of a resource
to a task must be followed by a release of that resource by the same task, without
another grant of that resource in between (to the same task or any other task)”,
and R2: “a resource cannot be released by a task, which has not been granted the
resource”. These requirements can be formalized in Daut as shown in Listing
1. The monitor has the name R1R2. It contains two states Start and Granted,
the latter of which is parameterized with a task t and a resource r. The Start
state is the initial state indicated by the modifier init. Furthermore, it is an
always state, meaning that whenever a transition is taken out of the state, an
implicit self-loop keeps the state around to monitor further events. In the Start
state when a grant(t, r) event is observed, a Granted(t, r) state is created. If a
release(t, r) event is observed, and the condition occurring after :: is true, namely
that there is no Granted(t, r) state active, it is an error. The state Granted(t, r)
is a so-called hot state, which essentially is a non-final state. It is an error to
remain in a hot state at the end of a log analysis.

The formalism allows for various abbreviations. For example, it is possible
to write transitions at the top level, as a shorthand for introducing a state
with modifiers init and always. This is illustrated by the monitor in Listing 2,
which is semantically equivalent to the monitor in Listing 1. Also, target states
can be “inlined”, making it possible to write sequences of transitions without
mentioning intermediate states. This is a shorthand for the longer form where
each intermediate state is named. As an example, requirement R1 can be stated

258 K. Havelund

Listing 2. Simplified monitor

monitor R1R2 {
grant(t , r) → Granted(t,r)
release (t , r) :: ¬Granted(t,r) → error

hot Granted(t,r) {
release (t ,r) → ok
grant(,r) → error
}
}

Listing 3. Monitor for requirement R1

monitor R1 {
grant(t , r) → hot {

release (t ,r) → ok
grant(,r) → error
}
}

succinctly as shown in Listing 3. Such nesting can be arbitrarily deep, corre-
sponding to time lines. This makes it possible to write monitors that resemble
temporal logic, as also was possible in TraceContract [5].

In general, states can be parameterized with arbitrary values represented by
expressions in an expression language (not just identifiers as in some RV ap-
proaches, for example Mop). The formalism allows counting, as an example.
The right-hand sides of transitions can for brevity also be conditional expres-
sions, where conditions can refer to state and event parameters, as well as other
states. To summarize, this automaton concept supports parameterized events,
parameterized states, transition conditions involving state and event parameters
as well as other parameterized states, expressions as arguments to states, and
conjunction of conditional target states. What is not implemented from classical
rule-based systems is disjunction of target states (as in Ruler), variables and
general statements as actions, deletion of facts in general (only the state from
which a transition leads is deleted when taking the transition, except if it is an
always state), and general unification across conditions. A further extension of
this notation (not pursued in this work) could allow declaration of variables lo-
cal to a monitor, reference to such in conditions, as well as arbitrary statements
with side-effects on these variables in right-hand side actions. The internal Scala
DSL Daut

int presented in Section 5 does support these extensions.

Monitoring with Data Automata 259

3.2 Syntax

The presentation of data automata shall focus on the syntax of such, as used in
the specifications seen in the previous subsection. The full grammar for Daut

is shown in Figure 1, using extended BNF notation, where 〈N〉 denotes a non-
terminal, 〈N〉 ::= . . . defines the non-terminal 〈N〉, S∗ denotes zero or more
occurrences of S, S∗∗ denotes zero or more occurrences of S separated by commas
(’,’), S | T denotes the choice between S and T , �S �denotes optional S, bold
text represents a keyword, and finally ‘. . .’ denotes a terminal symbol.

〈Specification〉 ::= 〈Monitor〉*

〈Monitor〉 ::= monitor 〈Id〉 ‘{’ 〈Transition〉* 〈State〉* ‘}’

〈State〉 ::= 〈Modifier〉* 〈Id〉 � (〈Id〉**) � � ‘{’ 〈Transition〉* ‘}’ �

〈Modifier〉 ::= init | hot | always

〈Transition〉 ::= 〈Pattern〉 ‘::’ 〈Condition〉 ‘→’ 〈Action〉**

〈Pattern〉 ::= 〈Id〉 ‘(’〈Id〉**‘)’

〈Condition〉 ::= 〈Condition〉 ‘∧’ 〈Condition〉
| 〈Condition〉 ‘∨’ 〈Condition〉
| ‘¬’ 〈Condition〉
| ‘(’〈Condition〉‘)’
| 〈Expression〉 〈relop〉 〈Expression〉
| 〈Id〉 � ‘(’〈Expression〉**‘)’ �

〈Action〉 ::= ok
| error
| 〈Id〉 � ‘(’〈Expression〉**‘)’ �
| if ‘(’ 〈Condition〉 ‘)’ then 〈Action〉 else 〈Action〉
| 〈Modifier〉* ‘{’ 〈Transition〉* ‘}’

Fig. 1. Syntax of Daut

The syntax can briefly be explained as follows. A 〈Specification〉 consists of
a sequence of monitors, each representing a data automaton. A 〈Monitor〉 has
a name represented by an identifier 〈Id〉, and a body enclosed by curly brack-
ets. The body contains a sequence of transitions and a sequence of states. The
transitions are short for an initial always state containing these transitions.
A 〈State〉 is prefixed with zero or more modifiers (init, always, or hot), has a
name, and an optional list of (untyped) formal parameters, and an optional body
of transitions leading out of the state. A 〈Transition〉 consists of a pattern that
can match (or not) an incoming event, where already bound formal parameters
must match the parameters of the event, followed by a condition. If the pat-
tern matches and the condition evaluates to true, the action is executed, leaving

260 K. Havelund

the enclosing state unless it is an always state. A 〈Condition〉 conforms to the
standard Boolean format including relations over values of expressions. The last
alternative 〈Id〉 � ‘(′〈Expression〉∗∗‘)′� allows to write state expressions as condi-
tions. A state expression of the form id(exp1, . . . , expn) is true if there is a state
active with parameters equal to the value of the expressions. This specifically
allows to express past time properties. An 〈Action〉 is either ok, meaning the
transition is taken without further action (a skip), error, which causes an error
to be reported, the creation of a new state (target state), a conditional action,
useful in practice, or the derived form of a modifier-prefixed block of transitions,
avoiding to name the target state.

3.3 Semantics

Basic Concepts. The semantics is defined as an operational semantics. We
first define some basic concepts. We shall assume a set Id of identifiers and a
set V of values. An environment env ∈ Env = Id

m→ V is a finite mapping from
identifiers to values. An event e ∈ Event = Id × V ∗ is a tuple consisting of an
event name and a list of values. We shall write an event (id, 〈v1, . . . , vn〉) as:
id(v1, . . . , vn). A trace σ ∈ Trace = Event∗ is a list of events. A state identifier
id is associated with a sequence of formal parameters id1, . . . , idn. A particular
state s ∈ State = id(v1, . . . , vn), for v1, . . . , vn ∈ V , represents an instantiation
of the formal parameters. For such a state we can extract the environment with
the following notation: s.env of type Env, formed from the binding of the formal
parameter ids to the values: s.env = [id1 �→ v1, . . . , idn �→ vn].

The semantics of each single monitor in a specification is a labeled transition
system: LTS = (Config,Event,→, i, F). Here Config ⊆ State is the set of all
possible states (possibly infinite depending on the value domain). Event is a
set of parameterized events. → ⊆ Config× (Event × B) × Config is a transition
relation, which defines transitions from a configuration to another as a result of
an observed event, while “emitting” a Boolean flag being false iff. an error has
been detected. i ⊆ Config is the set of initial states, namely those with modifier
init (these cannot have arguments). Finally, F ⊆ Config is the set of final states
id(v1, . . . , vn) where id is not declared with modifier hot.

The operational semantics to be presented defines how a given configuration
con evolves to another configuration con′ on the observation of an event e. In
addition, since such a move can cause an error state to be entered, a Boolean
flag, the status flag, will indicate whether such an error state has been entered
in that particular transition. The result of transitions will hence be pairs of the
form (flag, con) ∈ Boolean × Config, also called results (res). Furthermore, we
shall use the value ⊥ to indicate that an evaluation has failed, for example if no
transitions are taken out of a state. Consequently we need to be able to compose
results, potentially being ⊥, where combination of two proper results is again
a result consisting of the conjunction of flags and union of configurations. We
define two operators, ⊕⊥ (for combining results that can potentially be ⊥), and
⊕ (for combining proper results):

Monitoring with Data Automata 261

res⊥ ⊕⊥ res′⊥ =
case (res⊥, res′⊥) of

(⊥, r)⇒ r
(r,⊥)⇒ r
(r1, r2)⇒ r1 ⊕ r2

(b1, con1)⊕ (b2, con2) =
(b1 ∧ b2, con1 ∪ con2)

Note that this semantics will yield a status (true or false) for each observed
event depending on whether an error state has been entered in that specific
transition. This status does not reflect whether an error state has been entered
so far from the beginning of the event stream. This form of non-monotonic result
computation allows the result to switch for example from false in one step to
true in the next, and is useful for online monitoring, where it is desirable to know
whether the current event causes an error. The result across the trace can simply
be computed as the conjunction over all emitted status flags. In case a 4-valued
logic is desired [9], this is easily calculated on the basis of the contents of the
current configuration (false: if error reached, and if not, true: if it contains no
states, possibly false: if it contains at least one non-final state, and possibly true:
if it contains only final states, one or more).

Operations Semantics. The LTS denoted by a monitor is defined by the
operational semantics presented in Figure 2. The semantics is defined for the
kernel language not including (i) always states, (ii) transitions at the outermost
level, and (iii) inlined states (all states have to be explicitly named).

Rule E (Evaluate) is the top-level rule, and reads as follows. A configuration

con evolves (
e,b−→ below the line) to a configuration con′ on observation of an

event e, while emitting a status flag b, if (
e
↪→ above the line): con, con, where the

second con functions as an iterator, yields the status b and configuration con′.
Rule E-ss1 (Evaluate set of states) defines how the state iterator set is tra-

versed (
e
↪→), here in the situation where the state iterator set has become empty.

Rule E-ss2 defines the evaluation in the case where the state iterator is not empty,
by selecting a state s, which then is evaluated using

e�−→, and then evaluating

the remaining states ss recursively with
e
↪→.

Rule E-s1 (Evaluate state) defines the evaluation of a state (
e�−→) by evaluat-

ing (
e

=⇒) its transitions t.ts in the configuration and in the environment t.env
associated with the state. Here in the situation where none of the transitions
fire, represented above the line by the result of

e
=⇒ being the value ⊥. Rule E-s2

defines the evaluation in the situation where at least one of the transitions fire.
Rule E-ts1 (Evaluate transitions) defines the evaluation (

e
=⇒) of a list of

transitions in the environment of the current state being evaluated. Here in the
situation where this list is empty. In this case ⊥ is returned to indicate that no
transitions fired. Rule E-ts2 defines the evaluation in the case where there is at
least one transition t to be evaluated using

e
⇀ to a result, potentially ⊥, and

then evaluating the remaining transitions ts recursively with
e

=⇒.

262 K. Havelund

E
con, con

e
↪→ b, con′

con
e,b
−→ con′

E-ss1
con, {}

e
↪→ (true, {}) E-ss2

con, s
e

	−→ res

con, ss
e
↪→ res′

con, s ∪ ss
e
↪→ res⊕ res′

E-s1
con, s.env, s.ts

e
=⇒⊥

con, s
e

	−→ true, {s}
E-s2

con, s.env, s.ts
e

=⇒ res

con, s
e

	−→ res

E-ts1
con, env,Nil

e
=⇒⊥ E-ts2

con, env, t
e
⇀ res⊥

con, env, ts
e

=⇒ res′⊥

con, env, 〈t〉�ts
e

=⇒ res⊥ ⊕⊥ res′⊥

E-t1

t is ‘pat :: cond → rhs′

[[pat]]P env e =⊥

con, env, t
e
⇀⊥ E-t2

t is ‘pat :: cond → rhs′

[[pat]]P env e = env′

[[cond]]Ccon env′ = false

con, env, t
e
⇀⊥

E-t3

t is ‘pat :: cond → rhs′

[[pat]]P env e = env′

[[cond]]Ccon env′ = true

[[rhs]]Rcon env′ = res

con, env, t
e
⇀ res

Fig. 2. Operational semantics of Daut

Monitoring with Data Automata 263

Finally, rule E-t1 (Evaluate transition) defines the evaluation (
e
⇀) of a monitor

transition t, which has the syntactic format: pat :: cond → rhs, in the environ-
ment of the current state being evaluated. Recall that a transition consists of a
pattern pat against which an observed event is matched. If successfully matched,
the condition cond is evaluated, and if true, the right-hand side action rhs is
executed. Rule E-t1 defines the evaluation in the situation where the pattern
pat does not match the event, either because the event names differ or because
the actual parameters of the event do not match the assignments to the formal
parameters defined by env. In this case ⊥ is returned to indicate that no transi-
tions fired. The semantics of patterns is defined by the evaluator [[]]P in Figure
3. Rule E-t2 defines the evaluation in the case where the pattern does match, but
where the condition, evaluated by [[]]C in Figure 3, evaluates to false. Rule E-t3
defines the evaluation in the case where the pattern matches and the condition
evaluates to true. In this case the right-hand side rhs is evaluated with [[]]R in
Figure 4.

Semantic Functions. The semantic functions referenced in Figure 2 are de-
fined in Figures 3 and 4. The semantics of expressions is the obvious one and is
not spelled out. The semantics of conditions is also the obvious one, except for
the semantics of state predicates of the form id(exp1, . . . , expn): the expression
arguments are evaluated and the result is true if and only if the resulting state
is contained in the configuration con1. The semantics of the right-hand side, a
comma separated list of actions of type Action∗∗, is obtained by evaluating each
action to a result, and then ‘and’ (∧) the flags together and ‘union’ (∪) the con-
figurations together. The semantics of an action is a pair consisting of a status
flag and a configuration, the flag being false if the action is error.

4 Optimization

The operational semantics presented in Figure 2 in the previous section is based
on iterating through the configuration, a set of states, (rules E-ss1 and E-ss2),
state by state, evaluating the event against each state. This is obviously costly.
A better approach is to arrange the configuration as an indexed structure which
makes it efficient for a given event to extract exactly those states that have
transitions labeled with event patterns where the event name is the same, and
where the formal parameters are bound to values (in the state’s environment env)
that match those in the corresponding positions in the incoming event. We here
ignore “don’t care” patterns, which match any event (the actually implemented
algorithm deal with these as well). In the following we highlight some of the
classes implementing such an optimization in the Scala programming language.
First the top-level Monitor class:

1 The actually implemented semantics is a little more complicated by allowing selected
arguments to the state predicate to be the “don’t care” value ‘ ’, meaning that the
search will not care about the values in these positions. However, the automaton
concept is meaningful without this additional feature.

264 K. Havelund

[[]]P : Pattern → Env → Event → Env⊥
[[pat]]P env id(v1, . . . , vn) =

case pat of
“ ” ⇒ env // don’t care pattern matches all
id(id1, . . . , idn) ⇒ // event names match

let env′ = {id1 	→ v1, . . . , idn 	→ vn} in
if (∀id ∈ (dom(env) ∩ dom(env′)) • env(id) = env′(id)))

then env ⊕ env′

else ⊥ // bindings do not match
id′(. . .) where id �= id′ ⇒⊥ // event names do not match

[[]]C : Cond → Config → Env → B

[[cond]]Ccon env =
case cond of

...
id(exp1, . . . , expn) ⇒ id([[exp1]]env, . . . , [[expn]]env)) ∈ con

[[]]E : Exp → Env → B

...

Fig. 3. Semantics of patterns, conditions and expressions

class Monitor(automaton: Automaton) {
val config = new Config(automaton)
...
def verify (event: Event) {
var statesToRem: Set[State] = {}
var statesToAdd: Set[State] = {}
for (state ∈ config .getStates(event)) { // efficient search for states
val (rem, add) = execute(state, event)
statesToRem ++= rem
statesToAdd ++= add
}
statesToRem foreach config.removeState
statesToAdd foreach config.addState
}
}

The monitor (parameterized with the abstract syntax tree, automaton, repre-
senting the monitor) contains a instantiation of the Configuration class. The
verify method is called for each event. It maintains two sets, one containing
states to be removed from the configuration as a result of taking transitions,
and one for containing states to be added. These sets are used to update the

Monitoring with Data Automata 265

[[]]R : Action∗∗ → Config → Env → Result

[[act1, . . . , actn]]
Rcon env =

let
results = {[[acti]]con env | i ∈ 1..n}
status =

∧
{b | (b, con′) ∈ results}

con′′ =
⋃
{con′ | (b, con′) ∈ results}

in
(status, con′′)

[[]]A : Action → Config → Env → Result

[[act]]Acon env =
case act of

ok ⇒ (true, {})
error ⇒ (false, {})
id(exp1, . . . , expn) ⇒ (true, {id([[exp1]]env, . . . , [[expn]]env)})
if (cond) then act1 else act2 ⇒

if ([[cond]]con env)then [[act1]]con env else [[act2]]con env

Fig. 4. Semantics of transition right-hand sides

configuration at the end of the method. The essential part of this method is the
expression: config.getStates(event), which extracts only the relevant states for a
given event.

The Configuration class is defined next. The core idea is to maintain two kinds
of nodes: state nodes and event nodes. There is one state node for each named
state. It contains at any point in time an index of all the states with that name,
only distinguished by their parameters. Likewise, there is one event node for each
transition, representing the event pattern on that transition. The event node is
linked to the source state of the transition. The state nodes and event nodes are
mapped to by their names. Since an event name can occur on several transitions,
an event name is mapped to a list of event nodes:

class Config(automaton: Automaton) {
var stateNodes: Map[String, StateNode] = Map()
var eventNodes: Map[String, List[EventNode]] = Map()
...
def getStates(event: Event): Set[State] = {
val (eventName, values) = event
var result : Set[State] = Set()
eventNodes.get(eventName) match {
case None ⇒
case Some(eventNodeList) ⇒
for (eventNode ∈ eventNodeList) {

266 K. Havelund

result ++= eventNode.getRelevantStates(event)
}

}
result

}
}

Themethod getStates returns the set of states relevant for a given event. It does this
by first looking up all the event nodes for that event (those with the same name),
each corresponding to a particular transition, and for each of these it retrieves the
relevant states in the corresponding state node. The details of how this works is
given by the classes EventNode and StateNode, where sets and maps are mutable
(updated point wise for efficiency reasons). The class EventNode is as follows:

case class EventNode(stateNode: StateNode,
eventIds: List [Int] , stateIds : List [String]) {
...
def getRelevantStates(event: Event): Set[State] = {
val (, values) = event
stateNode.get(
stateIds ,
for (eventId ∈ eventIds) yield values(eventId)

)
}
}

An event node contains a reference to the state node it is connected to (the source
state of the transition the event pattern occurs on), a list of parameter positions in
the event that are relevant for the search of relevant states, and a list of the formal
parameter names in the associated state these parameter positions correspond to.
To calculate the states relevant for an event, the state node’s get method is called
with two arguments: the list of formal state parameters that are relevant, and the
list of values they have in the observed event. The state node is as follows:

case class StateNode(stateName: String, paramIdList: List[String]) {
var index: Map[List[String], Map[List[Value], Set[State]]] = Map()
...
def get(paramIdList: List[String] , valueList : List [Value]): Set[State] =
{
index(paramIdList).get(valueList) match {
case None ⇒ emptySet
case Some(stateSet) ⇒ stateSet
}
}
}

Monitoring with Data Automata 267

Listing 4. A monitor with a cancel option

monitor R3 {
grant(t , r) → Granted(t,r)

hot Granted(t,r) {
release (t ,r) → ok
cancel(r) → ok
}
}

A state node defines the name of the state, as well as its parameter identifier
list (formal parameters). It contains an index, which maps a projection of the
parameter identifiers to yet a map, which maps lists of values for these parame-
ters to states which bind exactly those values to those parameters. A similar put
method is defined, which inserts a state in the appropriate slot.

As an example, consider the monitor in Listing 4, where a depletable resource
(can be assigned simultaneously to more than one task) either can get released
by the task that it was granted to, or it can be canceled for all tasks that
currently hold it. Suppose we observe the events 〈grant(t1, a), grant(t2, a)〉. Then
the index for the state node for Granted will look as follows:

〈t, r〉 �→ [〈t1, a〉 �→ {Granted(t1, a)}, 〈t2, a〉 �→ {Granted(t2, a)}]
〈r〉 �→ [〈a〉 �→ {Granted(t1, a), Granted(t2, a)}]

5 Internal DSL

The internal DSL, Daut
int, is defined as an API in Scala. Scala offers various

features which can can make an API look and feel like a DSL. These include
implicit functions, possibility to omit dots and parentheses in calls of methods
on objects (although not used here), partial functions, pattern matching, and
case classes. Daut

int is a variation of TraceContract, presented in [5], which
explains in more detail how to use Scala for defining a domain specific language
for monitoring. TraceContract is a larger DSL, also including an embedding
of linear temporal logic. However, it does in its pure form not support specifica-
tion of past time properties (additional rule-based constructs had to be added to
support this). Daut

int is much simpler, just focusing on data automata, and it
supports specification of past time properties by allowing transition conditions
to refer to other parameterized states. This is achieved by defining states as case
classes. A main advantage of an internal DSL is the ability to mix the DSL with
code. Although not shown here, monitors can freely mix DSL constructs and pro-
gramming constructs, such as variable declarations and assignment statements.
For example, the right-hand side of a transition can include Scala statements.

268 K. Havelund

Listing 5. Events (Daut
int)

� �

trait Event
case class grant(task: String, resource: String) extends Event
case class release(task: String, resource: String) extends Event

�� �

The complete implementation of Daut
int is shown in Appendix A. As shown

in Section 6, this simple DSL is surprisingly efficient compared to many other
systems (except for Mop), which is interesting considering that it consists of
very few lines of code. We shall not here explain the details, and refer to [5] for
the general principles of implementing a similar DSL. Instead we shall illustrate
what the Daut monitors presented in Section 3 look like in Daut

int. First we
need to define the events of interest, see Listing 5. This is done by introducing
the trait (similar to an abstract class) of events Event and then defining each
type of event as a case class subclassing Event. In contrast to normal classes, case
classes allow pattern matching over objects of the class, including its parameters.
The monitors in listings 2 and 3 can be programmed as shown in Listing 6.

Note the similarity with the correspondingDautmonitors. A monitor extends
the Monitor class, which is parameterized with the event type. The method
whenever takes a partial function as argument and creates an initial always
state from it. A partial function can in Scala be defined with a sequence of
case statements using pattern matching over the events, defining the domain
of the partial function. A state is modeled as a class that subclasses one of
the pre-defined classes: state, hot, or always, defining respectively normal final
states, non-final states, and final states with self-loops. The transitions in a state
are declared with the when method which, just as the whenever method, takes
a partial function representing the transitions as argument. Note that in order
to enforce a pattern to match on values bound to an identifier, the identifier
has to be quoted, as in ‘t‘. Finally, Daut

int allows to combine monitors in a
hierarchical manner, for the purpose of grouping monitors together. A monitor
can be applied as shown in Listing 7, creating an instance and subsequently
submitting events to it.

6 Evaluation

This section describes the benchmarking performed to evaluate Daut, the ab-
stract operational semantics Daut

sos, and the internal DSL, Daut
int. The sys-

tems are evaluated against seven other RV systems, also evaluated in [15], which
also explains the evaluation setup in details. The experiments focus on analysis
of logs (offline analysis), since this has been the focus of our application of RV.
The evaluation was carried out on an Apple Mac Pro, 2× 2.93 GHz 6-Core Intel
Xeon, 32GB of memory, running Mac OS X Lion 10.7.5. Applications were run

Monitoring with Data Automata 269

Listing 6. Monitors (Daut
int)

� �

class R1R2 extends Monitor[Event] {
whenever {
case grant(t, r) ⇒ Granted(t, r)
case release(t , r) if !Granted(t, r) ⇒ error
}

case class Granted(t: String, r : String) extends hot {
when {
case release (‘ t ‘, ‘ r ‘) ⇒ ok
case grant(, ‘r ‘) ⇒ error
}
}
}

class R1 extends Monitor[Event] {
whenever {
case grant(t, r) ⇒ hot {
case release (‘ t ‘, ‘ r ‘) ⇒ ok
case grant(, ‘r ‘) ⇒ error
}
}
}

�� �

Listing 7. Applying a monitor (Daut
int)

� �

object Main {
def main(args: Array[String]) {
val obs = new R1R2

obs. verify (grant("t1", "A"))
obs. verify (release ("t1", "A"))

obs.end()
}
}

�� �

270 K. Havelund

in Eclipse JUNO 4.2.2, running Scala IDE version 3.0.0/2.10 and Java 1.6.0.
The systems compared are explained in [15]. All monitors check requirements
R1 and R2 (page 257), formalized in Daut in Listing 2 and in Daut

int in Listing
6 (first monitor). Logs can abstractly be seen as sequences of events grant(t, r)
and release(t, r), where t and r are integer values. The logs are represented as
CSV files, and parsed with a CSV-parsing script.

Table 1. Results of tests 1-7. For each test is shown the memory of the test, length
of the trace, and time taken to parse the log (subtracted in the following numbers).
For each tool two numbers are provided - above line: number of events processed
by the monitor per millisecond, and below line: time consumed monitoring (min-
utes:seconds:milliseconds, with minutes and seconds left out if 0). DNF stands for
‘Did Not Finish’.

trace nr. 1 2 3 4 5 6 7

memory 1 1 5 30 100 500 5000
length 30,933 2,000,002 2,100,010 2,000,060 2,000,200 2,001,000 1,010,000
parsing 3 sec 45 sec 47 sec 46 sec 46 sec 46 sec 24 sec

LogFire

26
1:190

42
47:900

41
50:996

34
58:391

23
1:27:488

8
3:55:696

1
15:54:769

Rete/UL

38
816

109
18:428

75
28:141

41
48:524

14
2:26:983

4
8:25:867

0.4
43:33:366

Drools

10
3:97

8
4:1:758

9
3:47:535

9
3:34:648

8
4:14:497

7
4:36:608

3
5:4:505

Ruler

95
326

138
14:441

78
27:77

8
4:5:593

0.8
41:39:750

0.034
977:20:636 DNF

LogScope

17
1:842

15
2:11:908

7
4:54:605

2
21:42:389

0.4
76:17:341

0.09
369:25:312

0.01
2074:43:470

TraceContract

48
645

69
28:851

37
57:428

6
5:58:497

0.9
36:29:594

0.036
919:5:134 DNF

Daut

49
631

84
23:847

86
24:338

89
22:432

90
22:298

86
23:287

80
12:612

Daut
sos 102

302
192

10:435
79

26:438
24

1:22:727
8

4:19:697
2

16:27:990
0.18

92:2:26

Daut
int 233

133
1715
1:166

770
2:729

373
5:368

195
10:236

54
36:929

5
3:6:560

Mop

595
52

1381
1:448

1559
347

1341
1:491

7143
280

7096
282

847
1:193

The experiment consists of analyzing seven different logs: one log, numbered
1, generated from the Mars Curiosity rover during 99 (Mars) days of operation
on Mars, together with six artificially generated logs, numbered 2-7, that are
supposed to stress test the algorithms for their ability to handle particular sit-
uations requiring fast indexing. The MSL log contains a little over 2.4 million
events, of which 30.933 are relevant grant and release events, which are extracted
before analysis. The shape of this log is a sequence of paired grant and release
events, where a resource is released in the step immediately following the grant
event (after all other events have been filtered out). In this case we say that the
required memory is 1: only one (task, resource) association needs to be remem-
bered at any point in time. In this sense there is no need for indexing since only
one resource is held at any time. This might be a very realistic scenario in many

Monitoring with Data Automata 271

cases. The artificially generated logs experiment with various levels of memory
amongst the values: {1, 5, 30, 100, 500, 5000}. As an example, a memory value of
500 means that the log contains 500 grant(t, r) events for all different values of
(t, r), before any resources are released, resulting a memory of size 500, which
then has to be indexed. The results are shown in Table 1.

The table shows that Mop outperforms all other systems by orders of magni-
tude. This fundamentally illustrates that the indexing approach used, although
leading to limited expressiveness, has major advantages when it comes to ef-
ficiency. A more surprising result, however, is that the internal DSL Daut

int

outperforms all other tools, except Mop, for lower memory values. Furthermore,
as a positive result, the optimized Daut presented in this paper performs better
than the other systems (again except Mop) for high memory values.

7 Conclusion

We have presented data automata, their syntax, semantics and efficient imple-
mentation. We consider data automata as providing a natural solution to the
monitoring problem. The formalism and indexing algorithm have been motivated
based on our experiences with rule-based systems, hence exploring the space be-
tween standard propositional automata and fully general rule-based systems.
The algorithm is much less complex than the Rete algorithm, often used in
rule-based systems, and appears to be more efficient. However, the implementa-
tion is not as efficient as the state-of-the-art RV system Mop. On the other hand,
the notation is more expressive. We have shown an implementation in Scala of
an internal DSL which models data automata, but with the additional advan-
tage of providing all of Scala’s features. The implementation is very simple,
but moderately competitive wrt. efficiency.

References

1. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, O.,
de Moor, O., Sereni, D., Sittamplan, G., Tibble, J.: Adding trace matching with
free variables to AspectJ. In: OOPSLA 2005. ACM Press (2005)

2. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quantified
Event Automata: Towards Expressive and Efficient Runtime Monitors. In: Gian-
nakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68–84. Springer,
Heidelberg (2012)

3. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verifica-
tion. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 44–57.
Springer, Heidelberg (2004)

4. Barringer, H., Groce, A., Havelund, K., Smith, M.: Formal analysis of log files. J.
of Aerospace Computing, Information, and Communication 7(11), 365–390 (2010)

5. Barringer, H., Havelund, K.: TraceContract: A Scala DSL for trace analysis.
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 57–72. Springer,
Heidelberg (2011)

272 K. Havelund

6. Barringer, H., Rydeheard, D.E., Havelund, K.: Rule systems for run-time monitor-
ing: from Eagle to RuleR. J. Log. Comput. 20(3), 675–706 (2010)

7. Basin, D., Klaedtke, F., Müller, S.: Policy monitoring in first-order temporal logic.
In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 1–18.
Springer, Heidelberg (2010)

8. Bauer, A., Küster, J.-C., Vegliach, G.: From propositional to first-order monitoring.
In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 59–75. Springer,
Heidelberg (2013)

9. Bauer, A., Leucker, M., Schallhart, C.: The good, the bad, and the ugly, but how
ugly is ugly? In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp.
126–138. Springer, Heidelberg (2007)

10. Bodden, E.: MOPBox: A library approach to runtime verification. In: Khurshid,
S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 365–369. Springer, Heidelberg
(2012)

11. Decker, N., Leucker, M., Thoma, D.: Monitoring modulo theories. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 341–356. Springer,
Heidelberg (2014)

12. Forgy, C.: Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence 19, 17–37 (1982)

13. Goubault-Larrecq, J., Olivain, J.: A smell of Orchids. In: Leucker, M. (ed.) RV
2008. LNCS, vol. 5289, pp. 1–20. Springer, Heidelberg (2008)

14. Hallé, S., Villemaire, R.: Runtime enforcement of web service message contracts
with data. IEEE Transactions on Services Computing 5(2), 192–206 (2012)

15. Havelund, K.: Rule-based runtime verification revisited. Software Tools for Tech-
nology Transfer (STTT) (April 2014) (published online)

16. Meredith, P., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview of the MOP run-
time verification framework. Software Tools for Technology Transfer (STTT) 14(3),
249–289 (2012)

17. Stolz, V.: Temporal assertions with parametrised propositions. In: Sokolsky, O.,
Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp. 176–187. Springer, Heidelberg
(2007)

18. Stolz, V., Bodden, E.: Temporal assertions using AspectJ. In: Proc. of the 5th Int.
Workshop on Runtime Verification (RV 2005). ENTCS, vol. 144(4), pp. 109–124.
Elsevier (2006)

Monitoring with Data Automata 273

A The Internal Scala DSL Daut
int

class Monitor[E <: AnyRef] {
val monitorName =

this.getClass().getSimpleName()

var monitors: List[Monitor[E]] = List()
var states : Set[state] = Set()

var statesToAdd: Set[state] = Set()
var statesToRemove: Set[state] = Set()

def monitor(monitors: Monitor[E]∗) {
this.monitors ++= monitors

}

type Transitions =
PartialFunction[E, Set[state]]

def noTransitions: Transitions =
{

case if false ⇒ null
}

class state {
var transitions : Transitions =

noTransitions

def when(ts: Transitions) {
this. transitions = ts

}

def apply(event: E): Option[Set[state]] =
if (transitions .isDefinedAt(event))

Some(transitions(event)) else None
}

class always extends state
class hot extends state
case object error extends state
case object ok extends state

def stateExists(
pred: PartialFunction[state , Boolean]):

Boolean =
{

states exists (pred orElse {
case ⇒ false })

}

def state(ts : Transitions): state =
{

val e = new state
e.when(ts)
e

}

def always(ts: Transitions): state =
{

val e = new always
e.when(ts)
e

}

def hot(ts: Transitions): state =
{

val e = new hot
e.when(ts)
e

}

def error(msg: String): state =
{

println("\n *** " + msg + "\n")
error

}

def whenever(ts: Transitions) {
states += always(ts)

}

implicit def stateToBoolean(s: state): Boolean =
states contains s

implicit def unitToSet(u: Unit): Set[state] =
Set(ok)

implicit def stateToSet(s: state): Set[state] =
Set(s)

implicit def statePairToSet(
ss : (state , state)): Set[state] =

Set(ss . 1, ss. 2)

implicit def stateTripleToSet(
ss : (state , state , state)): Set[state] =

Set(ss . 1, ss. 2, ss. 3)

def verify (event: E) {
for (s ∈ states) {

s(event) match {
case None ⇒
case Some(stateSet) ⇒

if (stateSet contains error) {
println("\n *** error !\n")

} else {
for (state ∈ stateSet) {

if (state != ok) {
statesToAdd += state

}
}

}
if (! s.isInstanceOf[always]) {

statesToRemove += s
}

}
}
states −−= statesToRemove
states ++= statesToAdd
statesToAdd = Set()
statesToRemove = Set()
for (monitor ∈ monitors) {

monitor.verify(event)
}

}

def end() {
val hotStates =

states filter (.isInstanceOf[hot])
if (!hotStates.isEmpty) {

println(" *** hot states in " + monitorName)
hotStates foreach println

}
for (monitor ∈ monitors) {

monitor.end()
}

}
}

Risk-Based Testing

(Track Introduction)

Michael Felderer1, Marc-Florian Wendland2, and Ina Schieferdecker2

1 University of Innsbruck, Innsbruck, Austria
michael.felderer@uibk.ac.at

2 Fraunhofer Institute FOKUS, Berlin, Germany
{marc-florian.wendland,ina.schieferdecker}@fokus.fraunhofer.de

1 Motivation and Goals

In many development projects, testing has to be done under severe pressure due
to limited resources, a challenging time schedule, and the demand to guarantee
security and safety of the released software system. Risk-based testing, which
utilizes identified risks of a software system for testing purposes, has a high po-
tential to improve testing in this context. It optimizes the allocation of resources
and time, is a means for mitigating risks, helps to early identify critical areas,
and provides decision support for the management [1, 2]. Risk-based testing is
a type of software testing that explicitly considers risks of the software system
as the guiding factor to solve decision problems in all phases of the test process,
i.e., test planning, design, implementation, execution and evaluation [3–5]. It is
based on the intuitive idea to focus testing activities on those areas that trigger
the most critical situations for a software system [6]. The precise understanding
of risks as well as their focused treatment by risk-based testing has become one
of the cornerstones for critical decisions within complex software development
projects and recently gained much attention [7]. Lately, the international stan-
dard ISO/IEC/IEEE 29119 Software Testing [8] on testing techniques, processes
and documentation even explicitly considers risks as an integral part of the test
planning process. As a result, several risk-based testing approaches (e.g., [9] or
[10]) and empirical studies (e.g., [11] or [12]) have recently been provided to ad-
dress increased practical need in this area, but further research is still inevitable.

This special track on risk-based testing serves as a platform for researchers
and practitioners to present approaches, results, experiences and advances in
risk-based testing. Its goal was to bring together researchers and practitioners
working in the area of risk-based testing to discuss actual challenges and solu-
tions to them. For this purpose, we invited leading researchers and practitioners
to present their solutions to tackle actual challenges of risk-based testing. The
invited format ensured broad coverage of this important topic. All contributed
papers represent systematic rather than ad-hoc proposals which makes them in-
teresting for a wide audience. Together, the papers in this track, which are sum-
marized in the next section, provide a comprehensive and up-to-date overview
of the communitys response to challenges of risk-based testing.

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 274–276, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Risk-Based Testing 275

2 Contributions

The special track comprises six contributed papers summarized in the following
paragraphs.

Seehusen [13] presents a technique for risk-based test procedure identification,
prioritization, and selection. The technique takes a risk model in the form of a
risk graph as input, and produces a list of prioritized selected test procedures as
output. The technique is generic as it can be used with many existing risk docu-
mentation languages and many kinds of likelihood and risk types. In the paper,
the technique is demonstrated on the CORAS threat diagram language [14].

Felderer et al. [15] present a framework for integrating risk assessment, i.e.,
risk identification, analysis and evaluation, into an established test process. Their
framework contains a risk assessment model which configures the test process.
This model and its artifacts therefore determine the overall risk-based test pro-
cess and are the main component of their risk assessment framework for testing
purposes. The risk assessment model defines the test scope, the risk identification
method, a risk model, and the tooling for risk assessment. It is derived on the
basis of best practices extracted from published risk-based testing approaches
and applied to an industrial test process.

Yahav et al. [16] address the quality risk of open source software components.
For this purpose, Yahav et al. predict occurrence of bugs in these components
using communication and community data, i.e., data on email communication
traffic and social network dynamics on the basis of regression models. The in-
formation on predicted bugs is then intended to be used to allocate test efforts.
The approach is illustrated with data from four open source projects.

Grossmann et al. [17] present an approach called Risk-Based Security Testing
that combines risk analysis and risk-based test design activities based on formal-
ized security test patterns. The involved security test patterns are formalized by
using a minimal test design strategies language framework which is represented
as a UML profile. Such a (semi-)formal security test pattern is then used as the
input for a test generator accompanied by the test design model out of which the
test cases are generated. The approach is based on the CORAS method [14] for
risk analysis activities. Finally, a tool prototype is presented which shows how
to combine the CORAS-based risk analysis with pattern-based test generation.

Botella et al. [18] describe an approach to security testing called Risk-Based
Vulnarability Testing, which is guided by risk assessment and coverage to per-
form and automate vulnerability testing for web applications. Risk-Based Vul-
nerability testing adapts model-based testing techniques using a pattern-based
approach for the generation of test cases according to previously identified risks
and criticalities. For risk identification and analysis, the CORAS method [14]
is utilized. The integration of information from risk analysis activities with the
model-based test generation approach is realized by a test purpose language. It
is used to formalize security test patterns in order to make them usable for test
generators. Risk-Based Vulnerability Testing is applied to security testing of a
web application.

276 M. Felderer, M.-F. Wendland, and I. Schieferdecker

References

1. Felderer, M., Haisjackl, C., Breu, R., Motz, J.: Integrating manual and automatic
risk assessment for risk-based testing. In: Biffl, S., Winkler, D., Bergsmann, J.
(eds.) SWQD 2012. LNBIP, vol. 94, pp. 159–180. Springer, Heidelberg (2012)

2. Felderer, M., Ramler, R.: Experiences and challenges of introducing risk-based
testing in an industrial project. In: Winkler, D., Biffl, S., Bergsmann, J. (eds.)
SWQD 2013. LNBIP, vol. 133, pp. 10–29. Springer, Heidelberg (2013)

3. Gerrard, P., Thompson, N.: Risk-based e-business testing. Artech House Publishers
(2002)

4. Schieferdecker, I., Grossmann, J., Schneider, M.: Model-based security testing. In:
Proceedings 7th Workshop on Model-Based Testing (2012)

5. Felderer, M., Ramler, R.: Integrating risk-based testing in industrial test processes.
Software Quality Journal 22(3), 543–575 (2014)

6. Wendland, M.F., Kranz, M., Schieferdecker, I.: A systematic approach to risk-based
testing using risk-annotated requirements models. In: ICSEA 2012, The Seventh
International Conference on Software Engineering Advances, pp. 636–642 (2012)

7. Felderer, M., Schieferdecker, I.: A taxonomy of risk-based testing. STTT (2014),
doi:10.1007/s10009-014-0332-3

8. ISO: ISO/IEC/IEEE 29119 Software Testing (2013),
http://softwaretestingstandard.org/ (accessed: August 12, 2014)

9. Neubauer, J., Windmüller, S., Steffen, B.: Risk-based testing via active continuous
quality control. STTT (2014), doi:10.1007/s10009-014-0321-6

10. Carrozza, G., Pietrantuono, R., Russo, S.: Dynamic test planning: a study into an
industrial context. STTT (2014), doi:10.1007/s10009-014-0319-0

11. Felderer, M., Ramler, R.: A multiple case study on risk-based testing in industry.
STTT (2014), doi:10.1007/s10009-014-0328-z

12. Erdogan, G., Li, Y., Runde, R.K., Seehusen, F., Stølen, K.: Approaches for the
combined use of risk analysis and testing: A systematic literature review. STTT
(2014), doi:10.1007/s10009-014-0330-5

13. Seehusen, F.: A technique for risk-based test procedure identification, prioritization
and selection. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS,
vol. 8803, pp. 277–291. Springer, Heidelberg (2014)

14. Lund, M.S., Solhaug, B., Stolen, K.: Model-driven Risk Analysis. Springer (2011)
15. Felderer, M., Haisjackl, C., Pekar, V., Breu, R.: A risk assessment framework for

software testing. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS,
vol. 8803, pp. 292–308. Springer, Heidelberg (2014)

16. Yahav, I., Kenett, R.S., Bai, X.: Data driven testing of open source software. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp. 309–321.
Springer, Heidelberg (2014)

17. Großmann, J., Schneider, M., Viehmann, J., Wendland, M.-F.: Combining risk
analysis and security testing. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part
II. LNCS, vol. 8803, pp. 322–336. Springer, Heidelberg (2014)

18. Botella, J., Legeard, B., Peureux, F., Vernotte, A.: Risk-based vulnerability testing
using security test patterns. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part
II. LNCS, vol. 8803, pp. 337–352. Springer, Heidelberg (2014)

http://softwaretestingstandard.org/

A Technique for Risk-Based Test Procedure

Identification, Prioritization and Selection

Fredrik Seehusen

Department for Networked Systems and Services, SINTEF ICT
PO Box 124 Blindern, N-0314 Oslo, Norway

fredrik.seehusen@sintef.no

Abstract. We present a technique for risk-based test procedure identi-
fication, prioritization, and selection. The technique takes a risk model
in the form of a risk graph as input, and produces a list of prioritized
selected test procedures as output. The technique is general in the sense
that it can be used with many existing risk documentation languages
and many kinds of likelihood and risk types.

Keywords: Risk assessment, testing, security, risk-based testing.

1 Introduction

Risk-based testing is an approach in which risk assessment results are used to
guide the testing process. Most risk-based approaches can be classified into one
of two categories: (1) approaches that use risk to prioritize the parts of the
system under test where the testing should be focused, and (2) approaches that
use risk to identify potential test procedures.

Our contribution in this paper is a technique which belongs in the second
category. The technique is unique in that risk assessment results are not only used
to identify test procedures, but also to prioritize and select the test procedures
that should be further refined into concrete test procedures and test cases. There
are no other techniques to risk-based testing that we are aware of that address
both of these issues.

In this paper, we assume that risk assessment results are documented in the
form of a so-called risk graph [3]. A risk graph can be seen as an abstraction of
many risk assessment languages. The main research questions addressed in this
paper are:

– How can risk graphs be used as a basis for test procedure identification, and
what is the best way of doing it?

– What estimates are needed in order to prioritize test procedures identified
in a risk graph, and how can these be used to automatically calculate a
priority?

– What estimates are need in order to select the test procedures that will be
used as a starting point for further testing, and how can we calculate an
optimal test procedure selection?

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 277–291, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

278 F. Seehusen

A risk graph can be seen as a set of statements about the world. In the paper, we
argue that testing a risk graph corresponds to checking the degree to which its
statements are correct. Furthermore, we argue that prioritization should be based
on the notions of severity and confidence. Put simply, severity is an estimate
of the impact that a statement of a risk graph has on the risk values, and
confidence is an estimate of how confident we are about the correctness of a
statement. Finally, we argue that in order to do test procedure selection, we
must in addition take into account an estimate of the effort it would take to
refine and implement the test procedures.

This paper is structured as follows: In Sect. 2, we define risk graphs precisely.
In Sect.3, we discuss how to use risk graphs as a basis for test procedure iden-
tification. In Sect. 4 and Sect. 5 we present our technique for test procedure
prioritization and selection, respectively. In Sect. 6 we give an example for how
to apply the technique to a specific risk assessment language. Finally, in Sect. 7
we discuss related work, and in Sect. 8 we provide conclusions and discuss future
work.

2 Risk Graphs

A risk graph is a common abstraction of many existing risk modeling languages
such as fault trees [10], event trees [9], attack trees [19], Bayesian networks [5],
and CORAS threat diagrams [13]. Risk graphs are used as language for struc-
turing events leading to incidents and to estimate the likelihood of incidents [3].
A risk graph consists of a set of nodes and a set of edges between the nodes.
Both the nodes and the edges may be assigned likelihood values. The nodes typi-
cally represent occurrences of events, and the likelihood value of a node specifies
how likely it is that its associated event will occur. Edges represent causal re-
lationships between nodes. Likelihood values of edges should be understood as
conditional likelihood values. In risk graphs, nodes may also be assigned conse-
quence values, and the risk value of a node is a function of its likelihood and
consequence value.

In the following we first, in Sect. 2.1 define likelihood graphs (graphs with
likelihood values). Then we define risk graphs (in Sect. 2.2) in terms of likelihood
graphs.

2.1 Likelihood Graphs

In this section, we define likelihood graphs as well as some operations on likeli-
hood graphs which will be needed later for defining the test procedure prioriti-
zation technique.

A likelihood graph is a directed acyclic graph whose nodes and edges may be
annotated by likelihood values. There are many ways of specifying likelihoods
(e.g. as probabilities, frequencies, intervals of these, or probability distributions).
In order to define a technique which is applicable regardless of the kind of like-
lihood values we use, we will parameterize likelihood graphs by the notion of a
likelihood structure.

Risk-Based Test Procedure Identification, Prioritization and Selection 279

Definition 1. (Likelihood Structure) A likelihood structure λ is a tuple
(L,⊕,⊗, 1, 0) consisting of

– a set L of likelihood values;
– two elements 1 ∈ L and 0 ∈ L known as the maximum and minimum likeli-

hood values of λ, respectively;
– a binary operator ⊕ on L, known as the or-operator of λ;
– a binary operator ⊗ on L, known as the and-operator of λ.

We denote by λ.L, λ.0, λ.1, λ.⊕, and λ.⊗, the likelihood values, the minimum
value, the maximum value, the or-operator, or the and-operator of λ, respectively.
We sometimes drop the λ. prefix when λ is clear from the context.

Example 1. To express likelihoods in terms of, say, mutually exclusive probabil-
ities, we have to instantiate the elements of the likelihood structure as follows

– the set of likelihood values is the set of all real numbers between 0 and 1;
– the maximum value is 1 and the minimum value is 0;
– the or-operator is defined by addition, i.e. l⊕ l′ � l + l′;
– the and-operator is defined by multiplication i.e. l⊗ l′ � l ∗ l′.

We will call this likelihood structure the mutually exclusive probability structure,
and denote it by p for reference in later examples.

Having defined likelihood structures, we are now ready to define likelihood
graphs.

Definition 2. (Likelihood Graph) A likelihood graph G over a likelihood struc-
ture λ is a tuple (Q,E, l) consisting of

– a set of nodes Q;
– a set of edges E ⊆ Q×Q;
– a partial function l ∈ Q ∪ E → λ.L assigning likelihood values to nodes and

edges.

We denote by G.Q, G.E, and G.l, the nodes, edges, and likelihood assignment
function of G. We sometimes just write Q, E, or l if G is clear from the context.
We require that all likelihood graphs be acyclic.

Example 2. Fig. 1 shows an example of a likelihood graph. Here all edges have
been assigned probability likelihood values. The nodes are not assigned likelihood
values, they are labeled by S1 to S6, but this is for reference purposes only. The
graph shown in Fig. 1, contains some value annotations that are not part of the
likelihood graph (the values Low, Medium, and High, and the values 2 and 5 on
node S5 and S6). Ignore this for now, it will be explained later.

If e = (p, q) is an edge, then the source and target nodes of the edge are defined
by src(e) � p and tar(e) � q. If G is a likelihood graph and p is a node in G,
then we denote by src(G, p), all the edges in G that have p as target, i.e.,

src(G, p) � {e ∈ G.E | tar(e) = p}

280 F. Seehusen

S1

S2

S3

S4

S6 [5]

S5 [2]

2/3, Low

1/4, Medium

1/6, High

2/3, Low

1/3, Medium

2/3, Medium

1/3, Low

1/3, High

Fig. 1. Example of a risk graph with confidence values on edges

To specify the test procedure prioritization function later, we need to be able to
calculate the likelihood values of nodes in a graph based on the likelihood values
of the edges. This is defined in the following.

Definition 3. (Calculated likelihood of a node) Let G be a likelihood graph over
a likelihood structure λ where λ.⊕ is commutative. Then the likelihood value of
a node p in G, written l[G, p], as calculated from the edges in G, is defined by

l[G, p] �
{⊕

e∈src(G,p) l(e)⊗ l[G, src(e)] if src(G, p) �= ∅
1 if src(G, p) = ∅

Note that the order in which the likelihood values are summed should not matter.
Therefore we have required that ⊕ must be commutative.

Example 3. Assuming the likelihood structure p defined in Example 1, we can
calculate all the likelihood values of the nodes of the likelihood graph in Fig. 1
based on the likelihood values of the edges. We then get: S1 = 1, S2 = 2

3 ,
S3 = 13

36 , S4 = 1
4 , S5 = 61

108 , and S6 = 19
108 .

Before we continue, we define a helper function which will be needed later.

Definition 4. (Weight replacement) If e is an edge in G and l is a likelihood
value of the likelihood structure of G, then the likelihood graph obtained by re-
placing the likelihood value of e by l is denoted by we(G, e, l).

2.2 Risk Graphs

In this section, we define the notion of a risk graph, which is basically just a
likelihood graph whose nodes may be assigned consequence values in addition
to likelihood values. Risk values may then be calculated as a function of likeli-
hood and consequence values. Similar to what we did for likelihood graphs, we
parameterize risk graphs with the notion of a risk structure.

Definition 5. (Risk Structure) A risk structure ρ is a tuple (λ,C,R,), rv) con-
sisting of

Risk-Based Test Procedure Identification, Prioritization and Selection 281

– a likelihood structure λ;
– a set of consequence values of C and a set of risk values R;
– a risk difference operator) ∈ R × R → R that takes two risk values, and

yields the difference, expressed as a real number, between the risks;
– a risk value function rv ∈ λ.L × C → R mapping likelihood values of λ and

consequence values into risk values.

We are now ready to define risk graphs.

Definition 6. (Risk graph) A risk graph G over a risk structure ρ, is a tuple
(Q,E, l, c), consisting of

– a likelihood graph (Q,E, l) over ρ.λ;
– a partial function c ∈ Q→ ρ.C assigning consequence values of ρ to nodes.

If G is a risk graph, then we denote by G.Qc, or just Qc if G is clear from the
context, the set of all nodes in G that have a consequence value assigned to it.

In a given risk graph, we refer to all nodes that have a likelihood and a conse-
quence value as risk nodes, or just risks for short.

Example 4. A typical risk structure in our experience uses real values as con-
sequences and defines the risk value as the product of a likelihood and a con-
sequence value. We call this risk structure r and define it more precisely as
follows:

– the likelihood structure of r is p as defined in Example 1;
– the set of consequence values are defined by real values from 1 to 5;
– the set of risks R is defined as the set of all non-negative real numbers;
– the operator) is defined by r) r′ � (r − r′)2;
– the risk value function is defined by rv(l, c) � l ∗ c.

In the risk graph shown in Fig. 1, we have annotated the nodes S5 and S6 with
the consequence values 2 and 5, respectively.

3 Test Procedure Identification

In this section, we discuss how a risk graph can be used as the basis for identifying
test procedures. In particular, we are interested in finding a systematic technique
for translating the risk graph into a list of (potential and as of yet not prioritized)
textual descriptions that can be used as a starting point for (manual) refinement
into a detailed test procedure that will eventually result in execution of test cases.
Hence, our notion of a test procedure is more precisely an initial or a high-level
test procedure.

A risk graph can be seen as a set of statements about the world. We take
the position that testing a risk graph corresponds to checking the degree to
which its statements are true. Consequently, every statement X of a risk graph
corresponds to a test procedure description of the form Check the degree to which
X is true, or just Check X for brevity.

We discuss three kinds of statements that are expressed by a risk graph.

282 F. Seehusen

Node statements A node in a risk graph is a statement about the likelihood of
occurrence of an event. The meaning of each node p with likelihood l can be
expressed by a statement of the form p occurs with likelihood l. In many risk
assessment languages, nodes often correspond to threat scenarios, misuse
cases, or unwanted incidents and they are labeled with a textual description
for explanatory purposes. For instance, a node with likelihood l might be
given the description SQL injection successful (as in Fig.2), in which case its
meaning can be expressed by the statement SQL injection successful occurs
with likelihood l.

Edge statements An edge in a risk graph is a statement about the likelihood
of its target node occurring given that its source node has occurred. The
meaning of an edge (p, q) with likelihood l is therefore a statement of the
form: p leads to q with conditional likelihood l. In risk assessment languages,
it is often the case that some kind of vulnerability has to be exploited, or
some fault has to occur in order to get from p to q. Therefore checking
statements about edges would often also involve checking for vulnerabilities
or faults.

Path statements A path is a sequence of edges, starting with an initial node
and ending up in a final node. The statement derived from a path is a
concatenation of the statements derived from its edges, while injecting the
work then between each edge statement.

All three statement kinds are possible starting points for a test procedure identi-
fication. However, our experience suggests that taking the edges as the starting
point is the best choice. The problem with using the nodes as a starting point
is that the likelihood of a node p in a risk graph depends on all edges and nodes
that may lead up to p; to test the degree to which the degree to which the like-
lihood of p is true would in many cases amount to checking the degree to which
the likelihoods of all its proceeding nodes and edges are true. This could result
in a lack of traceability between the risk graph and the things that are actually
tested.

The reason why we prefer edges over paths is that a path is just a sequences
of edges, so by checking each edge in the path separately, we are able to check
the entire path anyway. Although a path can provide a more precise charac-
terization of the likelihood that the source p of an edge (p, q) can occur, this
characterization has not been needed in practice in our experience.

For a given risk assessment language which may be seen as an instance of a
risk graph, we may derive more descriptive statements by taking into account
particularities of the language. We show an example of this in Sect. 6.

Example 5. In our technique, the two test procedures that can be derived from

the edges S1
2/3−−→ S2 and S1

1/4−−→ S3 shown in Fig. 1 are: Check that S1 leads to
S2 with likelihood 2

3 , and Check that S1 leads to S3 with likelihood 1
4 .

Risk-Based Test Procedure Identification, Prioritization and Selection 283

4 Test Procedure Prioritization

In this section, we describe a function for prioritizing test procedures on the basis
of risk graphs.We take the position that every edge in a risk graph corresponds to
a potential test procedure. Since there is a one to one correspondence between
edges and test procedures, we will sometimes use the terms interchangeably.
Hence, when we talk about prioritization of edges, we are also talking about
prioritization of test procedures.

In order to prioritize a test procedure of the form Check X , where X is a
statement about the world derived from a risk graph G, we take two notions
into account:

Severity This is an estimate of the impact of whether X is true or not has on
the risks of G. The intuition is that a high degree of impact should result
in a high priority. In the extreme case, whether statement X is true or not
has zero impact on the risk graph, therefore there no point in checking the
degree to which X is true.

Confidence This is an estimate of how confident we are about the correctness
of X . Intuitively, the less confident we are about the correctness of X , the
more it makes sense to test it. In the extreme case, if we are completely
confident in the correctness of X , then there is no point in checking whether
X is true, because then we strongly believe that this will not give us any
new information.

In some cases, the likelihood structure can be used for expressing confidence. For
instance, if we use a likelihood structure whose likelihood values are intervals
then we can use the size of the intervals as a measure of confidence. However, in
general, the likelihood values cannot always be used to express confidence. For
this reason, we introduce the notion of a confidence annotation that we can use
to express the notion of confidence precisely and to annotate risk graphs with
confidence values.

Definition 7. (Confidence annotation) A confidence annotation φ is a tuple
(E, λ, Z, ci, z) consisting of

– a set of edges E and a likelihood structure λ;
– a set of confidence values Z;
– a confidence interval function ci ∈ (λ.L × Z) → (λ.L × λ.L) mapping a

likelihood value and a confidence value into a pair of likelihood values (l, l′)
referred to as a confidence interval, where l is the minimum confidence value
and l′ is the maximum confidence value.

– a function z ∈ E → Z mapping edges to confidence values.

Given a risk graph G over ρ and confidence annotation φ whose edges are the
same as G.E, and a test procedure derived from an edge e in G, we can now
calculate the priority of the test procedure as follows:

284 F. Seehusen

– Calculate the confidence interval ci(l(e), z(e)) = (lmin, lmax) of edge e;
– Construct a risk graph Gmin (the best case risk graph) obtained by replac-

ing l with a minimum likelihood value lmin, and then recalculating all the
likelihood values of the nodes using Def. 3.

– Construct a risk graph Gmax (the worst case graph) in the same way by
replacing l with a maximum likelihood value lmax.

– Add up the difference between the risk values of each node of Gmin and
Gmax.

In the following, we define this precisely.

Definition 8. (Priority) Given a risk graph G over risk structure ρ and confi-
dence annotation φ with the same edges as G, the priority of an edge e, denoted
p[G, e], is defined as follows

p[G, e] �
∑

p∈G.Qc

rv(l[Gmax, p], c(p))) rv(l[Gmin, p], c(p))

where Gmin = we(G, e, lmin) and Gmax = we(G, e, lmax) for (lmin, lmax) =
ci(l(e), z(e)).

The function is lifted to a set of edges E such that p[G,E] yields the sum of the
priorities in E, i.e.

p[G,E] �
∑
e∈E

p[G, e]

Example 6. In Fig. 1, we have illustrated a risk graph annotated with confidence
values. The confidence values are taken from a confidence annotation whose:

– edges E is the edges of the risk graph represented in Fig.1;
– likelihood structure is p as defined in Ex. 1;
– confidence values Z is defined by {Low,Medium,High};
– confidence interval function ci is defined by ci(l, Low) � int(l, 0.05),
ci(l,Medium) � int(l, 0.125), and ci(l, High) � int(l, 0.25), where int is
a function defined by int(l, n) � (max(l − n, 0),min(l+ n, 1);

– confidence annotation function z is defined as in Fig. 1.

Assume that we want to calculate the priority of the edge S1
2/3,Low−−−−−→ S2 in

Fig. 1. Following the steps of the procedure, we:

– Calculate the confidence interval ci(23 , Low) = (0.617, 0.717).
– Replace the likelihood of the edge by its minimum likelihood 0.617, and

recalculate the likelihood values of the risk graph. For the risk nodes S5 and
S6, we get likelihood values 0.532, and 0.176, respectively;

– Calculate the maximum risk graph by replacing the edge likelihood by the
maximum likelihood 0.717. For the risk nodes S5 and S6, we get likelihood
values 0.599 and 0.176, respectively.

Risk-Based Test Procedure Identification, Prioritization and Selection 285

– Calculate the risk node difference. For S5 we get rv(0.532, 2))rv(0.599, 2) =
((0.532∗2)−(0.599∗2))2 = 0.018. For S6 we get rv(0.176, 5))rv(0.176, 5) = 0.
This yields a priority of 0.018 for edge S1 → S2.

Similarly, we can calculate the priority of edge S1 → S3. This yields a priority
of 0.204. Hence edge S1 → S3 has a higher priority than edge S1 → S2.

5 Test Procedure Selection

In the previous section, we defined a function for prioritizing each edge in a
risk graph under the assumption that each edge represented a potential test
procedure. In this section, we define a technique for selecting the test procedures
that should be further refined into detailed test procedures.

A simple technique would be to select all test procedures that have a higher
priority than some priority threshold. However, it is often not the case that every
potential test procedure represented by a risk graph can be refined into meaning-
ful test cases given the scope and focus of the testing, and the knowledge, effort
and tools available by the testing team. Furthermore, the time and resources
required to implement a test procedure can vary significantly. To take this into
account we need more information than what is expressed in the risk graph. We
therefore introduce a notion of effort annotation.

Definition 9. (Effort annotation) An effort annotation ea is a triple
(E, ef,max) consisting of

– a set of edges E;
– a function ef ∈ E → R mapping edges to effort estimates expressed as real

values;
– a number max ∈ R representing the maximum effort available for testing.

The effort annotation allows us assign effort estimates to edges in a graph, indi-
cating the effort that it will take to implement and perform the corresponding
test procedure. If an edge in a graph is not assigned any effort by the effort
annotation, then we assume that the edge is not considered for test selection.
E.g., if a given test procedure is completely out of scope then we can indicate
this by not assigning any effort estimates to it.

A test procedure selection derived from a risk graph G is a subset of the edges
of G. We say that a test selection E of G is valid w.r.t. to effort annotation ea,
if all edges in E are assigned to an effort estimate by ea and the sum of effort
estimates of E is less than or equal to the maximum effort of ea. This is precisely
defined in the following.

Definition 10. (Valid test procedure selection) Given a graph G over an effort
assignment ea, we say that a set of edges E is a valid test procedure selection
for a risk graph G under ea, denoted vs[G,E], if

E ⊆ G.E ∩ ea.E ∧ (
∑
e∈E

ea.ef(e)) ≤ ea.max

286 F. Seehusen

A test procedure selection for a risk graph G is considered optimal if it is a valid
selection of G and there are no other valid selections with a higher priority. This
is formally defined in the following.

Definition 11. (Optimal test procedure selection) Given a risk graph G over an
effort estimate ea, we say that the set of edges E is an optimal test procedure
selection for G, denoted os[G,E], if

vs[G,E] ∧ (∀E′ | vs[G,E′]⇒ p[G,E′] ≤ p[G,E])

Example 7. Continuing Ex. 6, assume an effort assignment ea whose edges ea.E
is the set of all edges going from S1; whose effort function assigns the number
2 to each edge in ea.E; whose maximum available effort ea.max is 4. Since the
sum of the effort assignment of the three edges in ea.E is greater than ea.max,
ea.E is not a valid test selection. In this case, a valid test procedure selection
can only contain two edges, and the optimal test procedure selection is in this
case the two edges going from S1 with the highest priority.

6 An Extended Example

Up to this point, we have only exemplified our technique on risk graphs. In this
section, we demonstrate our technique on the CORAS threat diagram language.
An example of a CORAS threat diagram is shown in Fig. 2. The diagram depicts
some scenarios in which a hacker can disclose confidential user data or cause a
service to become unavailable.

Fig. 2. Example of a CORAS threat diagram

ACORASdiagram can be seen as an instance of a risk graph, but there are some
minor differences. InCORAS, a nodemay be of one of three kinds: A threat, a threat
scenario, or an unwanted incident. Examples of these are in Fig. 2 the nodes labeled
’Hacker’, ’Social engineering attempted’, and ’Confidential user data disclosed’,

Risk-Based Test Procedure Identification, Prioritization and Selection 287

respectively. There are two kinds of annotations in CORAS: vulnerabilities and
assets. Vulnerabilities are shown as open locks andmay be attached to edges, while
assets are shown as money bags and are attached to unwanted incidents. A label
on the edge between an asset and an unwanted incident denotes the consequence
value of the unwanted incident, e.g. the unwanted incident ’Confidential user data
disclosed’ in Fig. 2 has a consequence value of 4.

As with risk graphs, nodes and edges may be assigned likelihoods. In CORAS
diagrams, the likelihoods (if any) are often written inside square brackets. The
empty bracket [] means that a node does not have a likelihood. In addition to
this, we have also annotated effort estimates on some of the edges (although this
is not standard CORAS convention), i.e. an edge whose label has the form l; ;n
means that the edge has a likelihood of l and an effort estimate of n.

In the diagram shown in Fig. 2, likelihood values are given as probability
intervals, and we make no assumption about the independence of the occurrence
of nodes in the diagram. In particular, we assume a likelihood structure d whose

– set of likelihood values is the set of all pairs (n, n′) of real numbers between
0 and 1 such that n is less than or equal to n′, i.e. L � {(n, n′) ∈ {0, . . . , 1}×
{0, . . . , 1}|n ≤ n′};

– maximum value is (1, 1) and the minimum value is (0, 0);
– or-operator is defined as follows: (n, n′) ⊕ (m,m′) � (max((n, n′), (m,m′)),

(n+m,n′+m′)), where max is function that takes two intervals and returns
the maximum of those, i.e., max((n, n′), (m,m′)) yields (n, n′) if n′ > m′ or
n′ = m′ ∧ n ≥ m, otherwise it yields (m,m′);

– and-operator is defined by interval multiplication i.e. (n, n′) ⊗ (m,m′) �
(n ∗m,n′ ∗m′).

In addition, we assume the risk structure rd, whose

– likelihood structure is d as defined above;
– consequence values are defined by real values from 1 to 5;
– risk values R is the set pairs of all non-negative real numbers;
– difference operator) is defined by (n, n′)) (m,m′) � (n−m)2+(n′−m′)2;
– risk value function is defined by rv((n, n′), c) � (n ∗ c, n′ ∗ c).

Since we are using likelihood intervals, we can use the size of the intervals as
an estimate of confidence, thus there is no need to annotate the edges with
additional confidence estimates. Formally, we use the confidence annotation ca
whose:

– edges E is the set of edges of the risk graph represented in Fig. 2;
– likelihood structure is d defined above;
– confidence values Z is defined by {⊥};
– confidence interval function ci is defined by ci(l,⊥) = l;
– confidence annotation function z annotates all edges by ⊥.

CORAS threat diagrams contain more information than risk graphs, and this
information can be used in order to define a more meaningful translation of

288 F. Seehusen

edges to textual descriptions representing test procedures. In fact, CORAS threat
diagrams already have a translation into English text [13]. We can use this in
our technique for test procedure identification and prioritization.

The result of using the test procedure technique on the risk graph represented
in Fig. 2 over the risk structure rd and with the confidence annotation ca is
shown in Table. 1. As discussed previously, many of the edges of the risk graph
represented in Fig. 2 have been annotated with estimate values. These values
are to be understood as an estimate of the number of days it will take to refine
and perform the test procedure corresponding to a given edge. For instance,
performing the test procedure with the highest priority in Table. 1 is estimated
to take two days. Not all edges have been annotated with efforts. Edges without
effort annotation are understood as being out of scope. As shown in Fig. 2, the
confidence regarding the likelihood of whether a hacker will launch an SQL attack
in the first place is fairly low (ranging from 0.125 to 0.875). This contributes in
giving the corresponding test procedure a high priority. However, these kinds of
test procedures can be difficult to perform, at least using conventional security
testing techniques, hence it is in this case excluded from the test selection. Given
that an attack is performed however, it is often possible to test whether the
system has any vulnerabilities that can be exploited by the attack. These kinds
of test procedures have been given effort estimates.

Table 1. List of prioritized test procedures

Test procedure PriorityEffort

Check that SQL injection launched leads to SQL injection
successful with conditional likelihood [0.0, 0.6], due to vul-
nerability Insufficient user input validation.

4.421 2 days

Check that Hacker initiates SQL injection launched with likelihood
[0.125, 0.875].

3.240 N / A

Check that Hacker initiates Social engineering attempted with like-
lihood [0.0, 0.45].

2.203 N / A

Check that SQL injection successful leads to Confidential
user data disclosed with conditional likelihood [0.35, 1.0].

1.863 2 days

Check that Social engineering attempted leads to Hacker obtains
account user name and password with conditional likelihood [0.2,
0.8], due to vulnerability Lack of user security awareness.

1.166 7 days

Check that Hacker initiates Denial of service attack launched with
likelihood [0.0, 0.65].

0.439 N / A

Check Denial of service attack launched leads to Service unavailable
with conditional likelihood [0.1, 0.5], due to vulnerabilities Poor
server/network capacity and Non-robust protocol implementation.

0.270 4 days

Check that Hacker obtains account user name and password leads
to Confidential user data disclosed with conditional likelihood [1.0,
1.0].

0.000 1 day

If we assume that we have a maximum of seven days available for testing,
then an optimal test procedure selection are the two test procedures shown in
bold face in Table. 1.

Risk-Based Test Procedure Identification, Prioritization and Selection 289

7 Related Work

Although there are several approaches that use risk assessment to identify and
prioritize tests, most of these approaches are based on already existing techniques
from risk assessment and testing. Very few new techniques are proposed that
specifically combine risk assessment and testing.

Almost all the approaches to risk-based testing use risk assessment in one of
two ways. Either (I) the risk assessment is used to prioritize those parts/features
of the system under test that are most risky, or (II) risk assessment is used to
identify tests (often as part of a failure/threat identification process).

The approaches that we know of that fall into category (I) are Bach [1],
Redmill [17,15,16], Souza et al. [21,20], Bai et al. [2], Felderer et al [7], Rosenberg
et al. [18], and Wong et al. [23]. All of these approaches use already existing
techniques such as HAZOP [10] to identify risks, or code complexity measures
to identify areas of code that are most likely to fail. In addition, they do not use
risk assessment for the purpose of risk identification.

The approaches that we are aware of that fall into category (II) are Murthy et.
al. [14], Zech et al. [25,24], Casado et al. [4], Kumar et al. [12], and Gleirscher [8].
None of these approaches use the risk assessment results for test prioritization.

Of the two categories of risk-based approaches, our technique fits best into
category (II). However, it is unique in that it takes test prioritization into ac-
count. Furthermore, unlike the techniques used by the approaches that are cited
above, it has been particularly developed for the purpose of risk-based testing.

The only approaches that we are aware of that present novel techniques that
are specifically intended to be used in a risk-based testing setting are Chen et. al
[6], Kloos et. al. [11], and Stallbaum et. al. [22]. All of approaches assume that a
test model is already available at the start of the process. They then discuss how
to update/annotate the test model based on risk information, and how this can
be used to prioritize test cases. This process is very different from the process
our technique is intended to support, since we do not assume that a test model
is available.

8 Conclusion and Future Work

We have presented a technique for risk-based test procedure identification, prior-
itization, and selection. The technique takes a risk graph (with some additional
annotations) as input, and yields a prioritized list of initial test procedures as out-
put. The technique is general in the sense that it can be used with many kinds of
risk documentation languages, and many kinds of likelihood and risk types.

A risk graph is as set of nodes and edges that can be seen as a set of statements
about the likelihood of occurrence of events, how the events are related, and the
consequence of events occurring. We have argued that testing an element of the
risk graph corresponds to checking the degree to which its statement about the
world is correct. Our notion of a test procedure is then a textual description
of the form Check the degree to which X is true where X is a statement about
the world derived from the risk graph. These kinds of test procedures are meant

290 F. Seehusen

as starting points for refinement into more detailed test procedures that will
eventually be used to derive concrete test cases.

We have defined a technique for test procedure prioritization that is based
on two notions: severity and confidence. Severity is an estimate of the impact of
the statement being tested has on the risk values, and confidence is an estimate
of how confident we are about the correctness of the statement. In the paper,
we have defined these notions precisely, and based on this, defined a test proce-
dure prioritization function that can be automated. Finally, we have defined a
technique for test procedure selection which is based on a notion of effort.

Although risk-based testing has been discussed a lot in the literature, most
approaches rely on already existing techniques from risk assessment which are
not specific to risk-based testing. Furthermore, most approaches to risk-based
testing either address risk-based test identification or risk-based test prioritiza-
tion. Our technique is unique in that it addresses both these issues.

The technique described in the paper only works if we assume that all like-
lihood values of edges are known. However, our experience suggests that this is
not always the case. In fact, we more often have the likelihoods for the nodes. In
future work, we will address this issue. In addition, as part of future work, we
will define a visualization technique for showing the priority of a test procedure
in terms of its impact on the risk picture. Currently, priorities are only given as
real values which only give a sense of the relative importance of the test proce-
dures, but not much else. We have already implemented the technique for test
prioritization. However, we plan to integrate this into the CORAS tool for risk
assessment, and this is still ongoing work.

Acknowledgments. This work has been conducted as a part of the EU project
RASEN (316853) funded by the European Commission within the 7th Frame-
work Program.

References

1. Bach, J.: Heuristic risk-based testing. Software Testing and Quality Engineering
Magazine 11, 9 (1999)

2. Bai, X., Kenett, R.S.: Risk-based adaptive group testing of semantic web services.
In: Proc. of the 33rd Annual IEEE International Computer Software and Applica-
tions Conference (COMPSAC), pp. 485–490. IEEE Computer Society (2009)

3. Brændeland, G., Refsdal, A., Stølen, K.: Modular analysis and modelling of risk
scenarios with dependencies. Journal of Systems and Software 83(10), 1995–2013
(2010)

4. Casado, R., Tuya, J., Younas, M.: Testing long-lived web services transactions
using a risk-based approach. In: Proc. 10th International Conference on Quality
Software (QSIC), pp. 337–340. IEEE Computer Society (2010)

5. Charniac, E.: Bayesian networks without tears: making bayesian networks more
accessible to the probabilistically unsophisticated. AI Magazine 12(4), 50–63 (1991)

6. Chen, Y., Probert, R.L., Sims, D.P.: Specification-based regression test selection
with risk analysis. In: Proc. of the 2002 Conference of the Centre for Advanced
Studies on Collaborative Research, CASCON 2002, p. 1. IBM Press (2002)

Risk-Based Test Procedure Identification, Prioritization and Selection 291

7. Felderer, M., Haisjackl, C., Breu, R., Motz, J.: Integrating manual and automatic
risk assessment for risk-based testing. In: Biffl, S., Winkler, D., Bergsmann, J.
(eds.) SWQD 2012. LNBIP, vol. 94, pp. 159–180. Springer, Heidelberg (2012)

8. Gleirscher, M.: Hazard-based selection of test cases. In: Proc. of the 6th Interna-
tional Workshop on Automation of Software Test, pp. 64–70. ACM (2011)

9. International Electrotechnical Commission. Event Tree Analysis in Dependability
Management - Part 3: Application Guide - Section 9: Risk Analysis of Technological
Systems. IEC 60300 (1990)

10. International Electrotechnical Commission. IEC 61025 Fault Tree Analysis, FTA
(1990)

11. Kloos, J., Hussain, T., Eschbach, R.: Risk-based testing of safety-critical embed-
ded systems driven by fault tree analysis. In: Proc. of IEEE Fourth International
Conference on Software Testing, Verification and Validation Workshops (ICSTW),
pp. 26–33. IEEE (2011)

12. Kumar, N., Sosale, D., Konuganti, S.N., Rathi, A.: Enabling the adoption of aspects
- testing aspects: A risk model, fault model and patterns. In: Proc. of the 8th ACM
International Conference on Aspect-oriented Software Development, AOSD 2009,
pp. 197–206. ACM (2009)

13. Lund, M.S., Solhaug, B., Stølen, K.: Model Driven Risk Analysis - The CORAS
Approach. Springer (2011)

14. Murthy, K.K., Thakkar, K.R., Laxminarayan, S.: Leveraging risk based testing in
enterprise systems security validation. In: Proc. of the First International Con-
ference on Emerging Network Intelligence, pp. 111–116. IEEE Computer Society
(2009)

15. Redmill, F.: Exploring risk-based testing and its implications: Research articles.
Softw. Test. Verif. Reliab. 14(1), 3–15 (2004)

16. Redmill, F.: Theory and practice of risk-based testing. Software Testing, Verifica-
tion and Reliability 15(1), 3–20 (2005)

17. Redmill, F., Chudleigh, M.F., Catmur, J.R.: Principles underlying a guideline for
applying HAZOP to programmable electronic systems. Reliability Engineering and
System Safety 55(3), 283–293 (1997)

18. Rosenberg, L., Stapko, R., Gallo, A.: Risk-based object oriented testing. In: Proc.
of the 24th Annual Software Engineering Workshop. NASA (1999)

19. Schneider, B.: Attack trees: modeling security threats. Dr. Dobb’s Journal of Soft-
ware Tools 24(12), 21–29 (1999)

20. Souza, E., Gusmão, C., Venancio, J.: Risk-based testing: A case study. In: Proc.
of ITNG, pp. 1032–1037. IEEE Computer Society (2010)

21. Souza, E., Gusmão, C., Venancio, J., Alves, K., Melo, R.: Measurement and control
for risk-based test cases and activities. In: Proc. of Test Workshop (LATW 2009),
pp. 1–6. IEEE (2009)

22. Stallbaum, H., Metzger, A., Pohl, K.: An automated technique for risk-based test
case generation and prioritization. In: Proc. of the 3rd International Workshop on
Automation of Software Test, pp. 67–70. ACM (2008)

23. Wong, W.E., Qi, Y., Cooper, K.: Source code-based software risk assessing. In:
Proc. of the 2005 ACM Symposium on Applied Computing, SAC 2005, pp. 1485–
1490. ACM (2005)

24. Zech, P., Felderer, M., Breu, R.: Towards a model based security testing approach
of cloud computing environments. In: 2012 IEEE Sixth International Conference on
Software Security and Reliability Companion (SERE-C), pp. 47–56. IEEE (2012)

25. Zech, P., Felderer, M., Breu, R.: Towards risk - driven security testing of service
centric systems. In: QSIC, pp. 140–143. IEEE (2012)

A Risk Assessment Framework

for Software Testing

Michael Felderer, Christian Haisjackl, Viktor Pekar, and Ruth Breu

Institute of Computer Science, University of Innsbruck, Austria
{michael.felderer,christian.haisjackl,viktor.pekar,ruth.breu}@uibk.ac.at

Abstract. In industry, testing has to be performed under severe pres-
sure due to limited resources. Risk-based testing which uses risks to guide
the test process is applied to allocate resources and to reduce product
risks. Risk assessment, i.e., risk identification, analysis and evaluation,
determines the significance of the risk values assigned to tests and there-
fore the quality of the overall risk-based test process. In this paper we
provide a risk assessment model and its integration into an established
test process. This framework is derived on the basis of best practices
extracted from published risk-based testing approaches and applied to
an industrial test process.

Keywords: Risk Assessment, Risk Identification, Risk Analysis, Risk
Evaluation, Risk-Based Testing, Risk Management, Software Testing.

1 Introduction

Risk-based testing (RBT) is a pragmatic and well-known approach to address the
problem of ever limited testing resources that recently gained much attention [1].
It is based on the intuitive idea to focus test activities on those scenarios that
trigger the most critical situations for a software system [2]. Its appropriate
application may then have several benefits. RBT optimizes the allocation of
resources (budget, time, persons), is a means for mitigating risks, helps to early
identify critical areas, and provides decision support for the management. Risk-
based testing involves the identification, analysis and evaluation of product risks,
which are together referred to as risk assessment, and the use of risks to guide
the test process [3].

Because risk identification, analysis, and evaluation determine the significance
of the risk values assigned to tests and therefore the quality of the overall test
process, they are core activities in every risk-based test process. Although sev-
eral RBT approaches are available [4], and the upcoming international standard
ISO/IEC 29119 [5] on testing techniques, processes, and documentation even re-
quires the consideration of risks as an integral part of the test planning process,
a framework on how to integrate risk assessment in a test process has not been
proposed. But such a framework provides guidelines and supports test and pro-
cess managers to establish a risk-based test process on the basis of an existing
test process.

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 292–308, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

A Risk Assessment Framework for Software Testing 293

The objective of this paper is to provide a framework for integrating risk
assessment, i.e., risk identification, analysis, and evaluation, into an established
test process. The framework contains a risk assessment model which configures
the risk-based test process. It is derived on the basis of best practices extracted
from published RBT approaches and applied to an industrial test process.

The remainder of this paper is structured as follows. Section 2 discusses back-
ground on risk-based testing and related work. Section 3 defines a risk assessment
framework for testing purposes. Section 4 shows how this model is applied in
industrial projects. Finally, Section 5 concludes the paper and presents future
work.

2 Background on Risk-Based Testing

Risk-based Testing (RBT) is a type of software testing that considers risks as-
signed to risk items for testing activities [6,7]. In risk-based testing, testing ac-
tivities are supported by risk management activities. It therefore integrates a
risk management process into a test process. In this section we discuss back-
ground on the concept of risk (Section 2.1), test and risk management processes
(Section 2.2) as well as RBT approaches (Section 2.3).

2.1 Concept of Risk

A risk is the chance of injury, damage or loss and typically determined by the
probability of its occurrence and its impact [8]. As it is the chance of some-
thing happening that will have an impact on objectives [9], the standard risk
formalization [3] is based on the two factors probability (P), determining the
likelihood that a failure assigned to a risk occurs, and impact (I), determining
the cost or severity of a failure if it occurs in operation. Mathematically, the risk
exposure R of an arbitrary asset a, i.e., something to which a party assigns value,
is determined based on the probability P and the impact I in the following way:

R(a) = P (a) ◦ I(a)
In the context of testing, assets are arbitrary testable artifacts also called risk

items. For instance, requirements, components, security risks or failures are typical
risk items to which risk exposure values R as well as tests are assigned. Within
testing, a risk item is assigned to test cases which are typically associated with risk
exposure values themselves derived from the risk items’ risk exposure values. Risk
exposure is sometimes also called risk coefficient, risk value or not distinguished
from the risk itself. The depicted operation ◦ represents a multiplication of two
numbers or a cross product of two numbers or letters (and can principally be an
arbitrarymathematical operationused to determine risk).The factorsP and Imay
be determined directly via suitable metrics or indirectly via intermediate criteria
based on theFactor-Criteria-Metricmodel [10].The probability typically considers
technical criteria like complexity of components assigned to the risk item and the
impact considers business criteria likemonetary loss. Themetrics can bemeasured

294 M. Felderer et al.

automatically, semi-automatically or manually. For instance, the complexity of a
component can be estimated automatically by the McCabe complexity and the
monetary loss can be estimated manually by a customer. Based on the determined
metrics, risk exposure values are computed on the basis of a calculation procedure.
Finally, risk exposure values are assigned to risk levels. A risk level [3] indicates the
criticality of risk items and serves the purpose to compare risk items as well as to
determine the use of resources, e.g., for testing. Risk levels are often defined via risk
matrices combining probability and impact of a risk. An example for a risk matrix
is shown in Fig. 1.

Impact (I)

Probability (P)

10

10

R1

R2

R3

50
0

5

Fig. 1. Risk Matrix Example

The 2x2 risk matrix of Fig. 1. Probability and impact range from 0 to 10
and are shown on the x-axis and y-axis, respectively. Items in the lower left cell
([0..5]× [0..5]) have low risk, items in the upper right cell ([5..10]× [5..10]) have
high risk, and items in the remaining cells ([0..5] × [5..10] and [5..10] × [0..5])
have medium risk. For instance, risk R1 in Figure 1 with value 6× 7 is high, R2

with value 1× 9 is medium, and R3 with value 1× 2 is low.

2.2 Basic Concepts of Test and Risk Management Processes

A test process contains the core activities test planning, test design, test imple-
mentation, test execution as well as test evaluation [3]. Test planning is the activ-
ity of establishing or updating a test plan. A test plan is a document describing
the scope, approach, resources, and schedule of intended test activities [3]. Dur-
ing the test design phase the general testing objectives defined in the test plan
are transformed into tangible test conditions and test cases. Tests are then imple-
mented which contains remaining tasks like preparing test harnesses and test data,

A Risk Assessment Framework for Software Testing 295

orwriting automated test scripts which are necessary to enable the execution of the
implementation-level test cases.The tests are then executed andall relevant details
of the execution are recorded in a test log. During the test evaluation and reporting
phase, the exit criteria are evaluated and the logged test results are summarized in
a test report. Development projects typically contain several test cycles and there-
fore all or some phases of the test process are performed iteratively.

A risk management process contains the core activities risk identification,
risk analysis, risk evaluation, risk treatment, and risk monitoring [9]. In the
risk identification phase risk items are identified. In the risk analysis phase the
probability and impact of risk items and hence their risk exposure values are
estimated. In the risk evaluation phase, the significance of risk is assessed based
on the estimated risk exposure values. As a consequence, risk items may be
assigned to risk levels defining a risk classification and a prioritization. In the
risk treatment phase actions for obtaining a satisfactory situation are determined
and implemented. In case of risk-based testing, testing is applied as a measure
to treat risks. In the risk monitoring phase risks are tracked over time and
their status is reported. In addition, the effect of the implemented actions is
determined. The activities risk identification, risk analysis, and risk evaluation
are often collectively referred to as risk assessment, while the activities risk
treatment and risk monitoring are referred to as risk control. As in the context
of RBT, testing is per definition applied for risk control, only risk assessment,
i.e., risk identification, analysis, and evaluation, has to be integrated into the
test process as a separate activity.

2.3 Risk-Based Testing Approaches

The overall purpose of RBT approaches is to test in an efficient and effective
way driven by risks. As mentioned before, every available risk-based testing ap-
proach therefore integrates testing and risk assessment activities. Several RBT
approaches have been proposed in scientific conferences and journals. We system-
atically extracted these approaches from comprehensive related work sections of
four recently published journal articles on risk-based testing [11,4,12,13] to get a
broad and representative overview of RBT approaches. We considered all RBT
approaches defined in the journal articles themselves as well as all RBT ap-
proaches cited in at least one related work section of the four journal articles. To
guarantee evidence of the approaches and enough details to extract relevant in-
formation, we considered only RBT approaches reported in papers with a length
of at least four pages published in a scientific journal or in conference proceed-
ings. Table 1 lists all collected RBT approaches ordered by the date of their
first publication. Some approaches, i.e., Redmill, Stallbaum, Souza, as well as
Felderer and Ramler are covered by more than one cited publication (see entries
with identifiers 03, 04, 05 and 13 in Table 1). Most listed approaches are cited by
more than one journal article which is an additional indicator for the relevance
of the RBT approaches collected in Table 1.

296 M. Felderer et al.

Table 1. Overview of Identified Risk-based Testing Approaches

ID Approach Description

01 Amland [6] The approach defines a process which consists of the steps (1)
planning, (2) identification of risk indicators, (3) identification
of cost of a fault, (4) identification of critical elements, (5) test
execution as well as (6) estimation to complete. In addition, it is
presented how the approach was carried out in a large project.

02 Chen et al. [14] The approach defines a specification-based regression test selec-
tion with risk analysis. Each test case is a path through an activ-
ity diagram (its elements represent requirements attributes) and
has an assigned cost and severity probability. The test selection
consists of the steps (1) assessment of the cost, (2) derivation of
severity probability, and (3) calculation of risk exposure for each
test case as well as (4) selection of safety tests. The risk exposure
of test cases grouped to scenarios is summed up until one runs out
of time and resources. The approach is evaluated by comparing it
to manual regression testing.

03 Redmill [15,16] The approach reflects on the role of risk for testing in general
and proposes two types of risk analysis, i.e., single-factor analysis
based on impact or probability as well as two-factor analysis based
on both factors.

04 Stallbaum et al. [17,18] The approach is model-based. Risk is measured on the basis of
the Factor-Criteria-Metrics model and annotated to UML use case
and activity diagrams from which test cases are derived.

05 Souza et al. [19,20] The approach defines a risk-based test process including the ac-
tivities (1) risk identification, (2) risk analysis, (3) test planning,
(4) test design, (5) test execution, as well as (6) test evaluation
and risk control. In addition, metrics to measure and control RBT
activities are given. The approach is evaluated in a case study.

06 Zimmermann et al. [21] The approach is model-based and statistical using Markov chains
to describe stimulation and usage profile. Test cases are then gen-
erated automatically taking the criticality of transitions into ac-
count. The approach focuses on safety-critical systems and its ap-
plication is illustrated by examples.

07 Kloos et al. [22] The approach is model-based. It uses Fault Tree Analysis during
the construction of test models represented as state machine, such
that test cases can be derived, selected and prioritized according
to the severity of the identified risks and the basic events that
cause it. The focus of the approach are safety-critical systems and
its application is illustrated by an example.

08 Yoon and Choi [23] The approach defines a test case prioritization strategy for se-
quencing test cases. Each test case is prioritized on the basis of the
product of risk exposure value manually determined by domain ex-
perts and the correlation between test cases and risks determined
by mutation analysis. The effectiveness is shown by comparing the
number and severity of faults detected to the approach of Chen
et al.

09 Zech [24] The approach is model-based and derives a risk model from a
system model and a vulnerability knowledge base. On this basis
a misuse case model is derived and test code generated from this
model is executed. The approach is intended to be applied for
testing cloud systems.

10 Bai et al. [11] The approach addresses risk-based testing of service-based sys-
tems taking the service semantics which is expressed by an OWL
ontology into account. For estimating probability and impact de-
pendencies in the ontology are considered. The approach considers
the continuous adjustment of software and test case measurement
as well as of rules for test case selection, prioritization and service
evaluation. The approach is evaluated by comparing its cost and
efficiency to random testing.

A Risk Assessment Framework for Software Testing 297

Table 1. (continued)

11 Felderer et al. [7] The approach defines a generic risk-based test process contain-
ing the steps (1) risk identification, (2) test planning, (3) risk
analysis, (4) test design as well as (5) evaluation. Steps (2) and
(3) can be executed in parallel. For this test process a risk as-
sessment model based on the Factor-Criteria-Metrics model is de-
fined. The metrics in this model can be determined automatically,
semi-automatically or manually. The approach is illustrated by an
example.

12 Wendland et al. [2] The approach is model-based. It formalizes requirements as inte-
grated behavior trees and augments the integrated behavior tree
with risk information. Then for each risk an appropriate test direc-
tive is identified, and finally both the risk-augmented integrated
behavior tree and the test directive definition are passed into a
test generator.

13 Felderer and Ramler [12,25] The approach defines a process to stepwise introducing risk-based
testing into an established test process. On this basis four stages
of risk-based test integration are defined, i.e., (1) initial risk-based
testing including design and execution of test cases on the basis
of a risk assessment, (2) risk-based test results evaluation, (3)
risk-based test planning, as well as (4) optimization of risk-based
testing. The approach is evaluated in a case study.

14 Ray and Mohapatra [13] The approach defines a risk analysis procedure to guide testing. It
is based on sequence diagrams and state machines. First one esti-
mates the risk for various states of a component within a scenario
and then, the risk for the whole scenario is estimated. The key
data needed for risk assessment are complexity and severity. For
estimating complexity inter-component state-dependence graphs
are introduced. The severity for a component within a scenario
is decided based on three hazard techniques: Functional Failure
Analysis, Software Failure Mode and Effect Analysis and Software
Fault Tree Analysis. The efficiency of the approach is evaluated
compared to another risk analysis approach.

3 Risk Assessment Framework

In this section we present a risk assessment framework for risk-based testing
purposes. This framework is shown in Fig. 3. It contains a risk assessment model
which configures the risk-based test process. The execution of the test process
provides feedback to continuously refine and improve the risk assessment model.
As mentioned in the previous section, the risk-based test process integrates risk
assessment into the test process and uses risks to support all phases of the test
process, i.e., test planning, design, implementation, execution, and evaluation.
The framework is based on the risk-based test process which is configured by and
provides feedback for the risk assessment model and explained as background in
Section 2.

The risk assessment model and its elements therefore determine the overall
risk-based test process and are the main component of our risk assessment frame-
work for testing purposes. The risk assessment model defines the test scope, the
risk identification method, a risk model and the tooling for risk assessment. In
the following, we explain these elements in more detail illustrated by examples
from the RBT approaches collected in Section 2.3. Each mentioned approach is
referred to by its name and identifier. For the often cited approach of Amland [6]
we discuss all aspects of risk assessment model definition.

298 M. Felderer et al.

Feedback

Risk Based Test ProcessRisk Assessment Model

Configuration

Test Planning

Risk Assessment

Test Design

Test Implementation

Test Execution

Test Evaluation

Test Scope

Risk Identification
Methods

Risk Model

Tooling

Risk Item Types

Characteristics

Measurement
Methods

Calculation
Procedure

Risk Levels

Fig. 2. Risk Assessment Framework

3.1 Test Scope

The test scope determines whether and how risk assessment is performed. It
provides the overall testing context and typically considers the test object, test
resources and test strategy. The test object defines the component or system to
be tested and therefore influences the risk identification method and risk model.
Limited test resources, i.e., personnel, time or budget, are typically the main
driver for performing risk-based testing. Thus, the available resources determine
whether a risk-based testing approach is required or not. The test strategy is a
high-level description of the test levels to be performed and the testing within
those levels determining risk-based testing as well.

All listed RBT approaches implicitly presume that prerequisites for the appli-
cation of risk-based testing like limited resources are fulfilled and that the test
objects are defined. Amland (01), for instance, states, “As for all projects, time
and resources were limited.” (cf. [6], page 2). Furthermore, all approaches con-
sider system or integration testing for components, services or complete systems.

3.2 Risk Identification Methods

Risk identification methods are techniques to identify risks items. There are sev-
eral risk identification methods such as brainstorming, risk checklists, and failure
history available [3,26] which can be applied and tailored to a specific RBT con-
text to define a risk model. Different roles of the software engineering process
like product managers, business analysts, software architects, testers or develop-
ers as well as different artifact like requirements specifications, documentation,

A Risk Assessment Framework for Software Testing 299

defect databases or source code can be considered in specific risk identification
methods.

Most RBT approaches do not explicitly mention the underlying risk identi-
fication methods but only present the resulting risk model and its application.
Amland (01), for instance, explains the step ’identification of risk indicators’ in
which risk criteria are selected in a group meeting to guarantee that the used cri-
teria are meaningful to those participating in the process of assessment. Souza et
al. (05) use a taxonomy-based questionnaire answered by the project members,
followed by a brainstorming meeting to identify technical risks.

3.3 Risk Model

The risk model is based on the concept of risk (see Section 2.1 the core artifact
of the risk assessment model. It determines how the risk assessment is conducted
in the risk-based test process. As Fig. 3 shows, the risk model consists of risk
item types, characteristics, measurement methods, a calculation procedure, as
well as risk levels which together define how risks are assessed. In the following,
we explain these parts of the risk model in more detail.

Risk Item Types. The risk items type determines the risk items, i.e., the
elements to which risk exposure values and tests are assigned, and their repre-
sentation. For instance, Amland (01) assigns risks to system functions like ’Close
Account’ collected in a list. Furthermore, Chen et al. (02) assigns risks to test
cases represented as path through an activity diagram, Zimmermann et al. (06)
to critical functions represented as transitions in Markov chains, Kloos et al.
(07) to safety risks represented as fault trees and state machines, Bai et al. (10)
to web services represented as semantic models in OWL-S, and Wendland et al.
(12) to requirements represented in behavior trees. Yoon and Choi (08) consider
abstract sources of risk and assign the number of faults lying within the scope
of a given risk and the test cases covering these faults to it. Felderer and Ramler
(13) discuss different viewpoints for risk assessment, i.e., functional, architectural
as well as development viewpoint, and conclude that the architectural viewpoint
based on the components provides the most comprehensive structure in the con-
sidered project. Finally, Ray and Mohapatra (14) assigns risks to components
represented as state machines, state dependence graphs and fault trees.

Characteristics. Characteristics define factors and their relationship to deter-
mine the risk. As such they define the applied risk concept. Typically, at least
factors for probability and impact are considered which may be further refined
based on the Factor-Criteria-Metrics model [27] defining a tree of factors with
concrete measurable metrics at its leaves. Sometimes there are no defined char-
acteristics and the risk is measured directly.

Amland (01) defines the factors probability and cost. For probability the crite-
ria ’new functionality’, ’design quality’, ’size’, and ’complexity’ are distinguished,
and for cost the criteria ’cost for customer’ and ’fault occurrence’. Furthermore,

300 M. Felderer et al.

Redmill (03) distinguishes between single-factor analysis based on impact or
probability as well as two-factor analysis based on both factors. Stallbaum et al.
(04) as well as Felderer et al. (11) define characteristics explicitly on the Factor-
Criteria-Metrics model. Both distinguish the factors probability and impact and
state that probability is mainly determined by technical criteria and metrics of
software development activities but impact mainly by business criteria and met-
rics of domain analysis. Finally, Ray and Mohaptra (14) take the factors severity
and complexity of components into account.

Measurement Methods. A measurement method defines how values are di-
rectly assigned to factors. The measurement can be performed manually or au-
tomatically. If the measurement is performed manually, the role performing the
estimation and the procedure how the estimation is performed (e.g., a consensus
meeting if several persons perform the estimation) have to be defined. If it is
performed automatically, the measurement object and the measurement tool,
e.g., a static analysis tool, have to be defined. Each measured factor requires a
scale of arbitrary range for its assigned value. For manual measurement, a Likert
scale is typically used where selection items are assigned to values. Automatically
measured values are used directly or they are mapped to another scale.

Amland (01) applies a three-point Likert scale with low (1), medium (2) and
high (3) or all criteria. The numeric values for the probability criteria were de-
termined in a consensus meeting where the roles developer, designer, product
specialist, quality manage, development manager, project manager, sales man-
ager and corporate management were present. The cost criteria were determined
by the customer and the supplier, respectively. Measurement methods similar to
Amland (01) are applied in many industrial settings [12]. More advanced ap-
proaches are presented by Zech (09) who defines an automated approach to
measure security risk values based on a system model and a vulnerability knowl-
edge base.

Calculation Procedure. The calculation procedure defines how risk exposure
values are calculated on the basis of other risk exposure values, characteristics,
measured values and testing information. It determines how to aggregate values,
i.e., which aggregation function to apply, how to scale values and how to weight
different factors.

Amland (01) weights the values for the probability factors and computes the
probability value as their weighted sum. The cost value is the average of the two
cost factor values. The risk exposure value is then the product of the probability
and cost value. Stallbaum et al. (04) determines the risk exposure value for each
action (modeled in an activity diagram) by the product of the probability that an
entity contains a fault and he total damage caused by this fault which are both
measured on a five-level scale from 1 to 5. The risk exposure value of a test case,
which is a sequence of actions, is then the sum of the actions’ risk exposure values.

Risk Levels. Risk levels indicate the criticality of risk items and serve the
purpose to compare risk items as well as to configure testing activities. Risk

A Risk Assessment Framework for Software Testing 301

levels can be expressed either qualitatively or quantitatively [2]. For instance,
numeric risk exposure values can be directly used as quantitative risk levels.
Although, there is no restriction on the number of risk levels, a frequently used
qualitatively scale for risk levels is low, medium, and high. Risk levels are often
defined by the two dimensions probability and impact (each with levels low,
medium and high) which are visualized in a risk matrix. Different areas in the
risk matrix may then mapped to risk levels low, medium and high. If risk levels
are measured qualitatively, factors are either directly measured qualitatively,
e.g., with levels low, medium, and high, or their numeric values are mapped to
these levels.

If risk levels are defined explicitly in the listed approaches, then qualitative
two-dimensional risk levels are applied. Amland (01) and Wendland (12) map
risk items to a 3x3 risk matrix with the two dimensions probability and impact
with levels low, medium and high. The three cells at the lower left corner have
low risk, the three cells at the upper right have high risk, and the remaining
three cells have medium risk. Felderer et al. (11) apply a 2x2 risk matrix to
determine the risk level and map their risk items with probability and impact
values (each measured on a scale from 0 to 9) into this matrix. In the 2x2 risk
matrix the lower left cell shows low risk, the upper right cell high risk, and the
remaining two cells medium risk.

3.4 Tooling

If the risk assessment is not done ad-hoc, it requires tool support to be per-
formed efficiently. The tooling may include printed forms as well as software
tool support to perform the computations in an automatic way. Software tools
supporting risk assessment for testing may be spreadsheets, specific risk assess-
ment or management tools [28], or test or project management tools. The tooling
is often fixed already before the risk model is defined, e.g., because a specific test
management tool has to be used, and influences the definition of the risk model.

Amland (01) uses a spreadsheet for risk assessment. Souza et al. (05) use
a specific risk assessment tool called RBTTool. Felderer et al. (11) use forms
to conduct a risk assessment workshop. Finally, in Section 4 we integrate risk
assessment into a project management tool.

Figure 3 summarizes which risk-based testing approach (RBT Approach) ex-
plicitly addresses which aspect of the risk assessment model. We skip the test
scope as all listed RBT approaches implicitly presume that the prerequisites for
the application of risk-based testing are fulfilled and defined.

The risk identification method is covered explicitly only be approaches 01
and 05. The risk item type is explicitly addressed by all RBT approaches. The
remaining aspects are covered by most approaches. Only approach 01, i.e., Am-
land, covers all listed aspects explicitly.

302 M. Felderer et al.

01 02 03 04 05 06 07 08 09 10 11 12 13 14

Risk Identification Methods x x

Risk Item Type x x x x x x x x x x x x x x

Characteristics x x x x x x x x x x x x

Calculation Procedure x x x x x x x x x x x

Measurement Methods x x x x x x x x x x x

Risk Level x x x x x x x x x x x x x

Tooling x x x x x x x x x

RBT Approach

Fig. 3. Elements of Risk Assessment Framework Covered by RBT Approaches

4 Application of Risk Assessment Model in an Industrial
Test Process

In this section, we show how the risk assessment model is applied in the test
process of a company in the telecommunication domain. The company follows a
structured development and test process on the basis of a clearly-defined generic
system and test model shown in Fig. 4. Further details on the company and its
test process can be found in [29].

In this model, so called features are the central concept to plan and control
implementation and testing. A feature has a concise and complete description of
its functionality, along with non-functional aspects like performance or security.
Features are on the one hand assigned to requirements and on the other hand
to components. A requirement describes a certain functional or non-functional
property of the system and is implemented by a set of features. A component is
an installable artifact that provides the functionality of several features. Com-
ponents are defined hierarchically in a tree. The root component represents the
system and the leaves are units. As features are the tested artifacts, test cases
are assigned to them. Differing from components, testable objects are executable
units composed of one or more component and a test environment. Testable ob-
jects are assigned to the system or a component and have an attached test plan.
A test plan contains test cases grouped either by features or components. Each
test case contains a description, test steps and expected results.

Development and testing follow the V-model. First, a customer solution man-
ager collects the requirements in a user requirements specification. Then, the fea-
tures are defined and the system architecture is derived by a technical solution
manager. The features are assigned to requirements in the technical requirements
specification. The system design is then further refined to concrete components
with assigned units, which are implemented and tested by a developer. As soon
as feature definitions are available, test planning is started. First, testable objects
are defined and a test plan, which is based on formerly defined requirements ac-
ceptance criteria. It contains test cases grouped either by features or components

A Risk Assessment Framework for Software Testing 303

and has a test end criterion. In the test design phase, executable test cases are de-
fined by testers according to the test plan. Test cases are also adopted from existing
components or features. New or changed test cases are reviewed and corrected if
necessary. After the respective testable object (including its test environment) has
been implemented, the test cases are executed. Each test run contains a test result
for each of its executed test cases. Depending on the test results, a problem ticket
is created. As soon as the test end criterion is reached, a test report is provided.

Feature

Risk

wpi

wIi

P1

MP1

System

Component

Unit

Requirement

Test Case

Testable Object

Test Plan

Test Run

P2

MP2

Pn

MPn

I1

MI1

I2

MI2

In

MIn

T1

MT1

T2

MT2

Tn

MTn

Test Result

Fig. 4. System, Test and Risk Assessment Artifacts in Development and Test Pro-
cess [29]

Test Scope. The expected benefits of risk-based testing are mainly decision sup-
port on resource allocation. The time resources for testing are limited as solutions
have to be provided at fixed dates. Therefore, test cases should be prioritized for
execution based on their risk level to mitigate highest risks in the limited test
window. A test end criterion which considers the risk levels of features should
terminate testing.

Risk Identification Methods. Due to the established development and test pro-
cess, features were more or less already fixed as risk items. Risk identification
put its focus on the identification of factors determining the risk assigned to fea-
tures. For this purpose a list of factors is prepared from which suitable factors
are selected by test managers in a separate workshop.

304 M. Felderer et al.

Risk Item Types. As test cases are linked to features, they are used as risk items
to which risk exposure values are assigned as well. Features are traceable to re-
quirements and components and therefore allow integrating a technical view on
risk based on the components as well as a business view based on the require-
ments.

Characteristics. Risk is defined on the basis of the Factor-Criteria-Metrics
model [27]. The definition considers the factors probability P and impact I
as well as the additional factor time T . Probability reflects the technical view,
impact the business view and time the system evolution. The factor values are de-
termined by weighted criteria. The probability factor is composed of the weighted
technical criteria code complexity, data complexity, functional complexity, visi-
bility and third-party software. The impact factor is composed of the user and
business-oriented weighted criteria usage, availability, importance and perfor-
mance. The time factor is composed of the criteria bug tracking, change history,
new technologies and project progress. Each factor is determined by a specific
metric.

Measurement Methods. Probability, impact and time are explicitly defined on
the basis of several criteria. For each criterion metrics are defined to determine
the value in an objective way. The metrics can be determined manually by a
suitable stakeholder or even automatically. For instance, the importance is mea-
sured manually on a five-point Likert scale and the code complexity is measured
automatically by the McCabe complexity [30]. For the automatic measurement
of source code metrics the source code quality management tool Sonar [31] is
applied.

Calculation Procedure. Due to the traceability between requirements, compo-
nents and units via features, the probability criteria are measured for units,
the impact factors for requirements, and the weights are assigned to compo-
nents (from which only a few exist). Time criteria are directly assigned to
features, for which the risk exposure values are calculated (see Fig. 4). The
probability P and the impact I are evaluated by several weighted criteria. For
a risk item a, the probability P is for instance determined by the formula

P (a) = (
m∑
j=0

pj · wj) ÷ (
m∑
j=0

wj), where pj are values for probability criteria and

wj are weight values for the criteria. The range of the criteria values are natural
numbers between 0 and 9, and of the weights real numbers between 0 and 1
(so the weight can be naturally interpreted as scaling factor). The time factor,
which scales the probability, has a range between 0 and 1, and is the mean of
the time criteria values. The risk exposure value of a feature can be calculated
via the formula, R = (P · T) × I, where P denotes the aggregated probability
factor, I the aggregated impact factor, and T the aggregated time factor which
reduces the value of P over time. Figure 6 shows the computed risk coefficients
for seven features based values for the time criteria bug tracking, change history,
new technologies and project progress. For each feature, the mean of the time

A Risk Assessment Framework for Software Testing 305

criteria values is multiplied with the probability value and then combined with
the impact value. For instance, all time criteria values of Feature 003 in Fig. 6
are 1. Therefore, the time factor T , i.e., the mean of the time criteria values, is
1 as well. With a probability factor P of 5 and an impact factor I of 6.75, the
resulting risk coefficient R is (5 · 1)× 6.75, which corresponds to the value 33.75.

Risk Levels. The scaled probability and impact value defining the risk value
are mapped to a 2x2 risk matrix to determine the risk level. Risk items, i.e.,
features with assigned risk values, mapped to the lower left cell have low risk,
to the upper right cell high risk, and to the remaining two cells medium risk.
Figure 5 shows the applied risk matrix. In this risk matrix, Feature 003 with risk
coefficient (5 · 1)× 6.75 is of high risk.

Impact (I)

Probability . Time (P .T)

9

9

Feature 003

0
0

Fig. 5. Risk Matrix in Industrial Case

Tooling Risk assessment as well as the overall risk-based test process with all
its artifacts and process steps is supported in the project management tool in-
Step [32] which is already established in the company. Figure 6 shows a screen-
shot of the specifically developed risk assessment view of in-Step where the mea-
sures for criteria are entered and processed to calculate risk exposure values. In
addition, for the automatic measurement of source code metrics the source code
quality management tool Sonar [31] is used.

Risk-Based Test Process In the test process risks are explicitly considered in the
test planning, test design and test execution phase. In the test planning phase,
first testable objects, which are executable units composed of one or more com-
ponents and a test environment, are defined. Then a test plan is created on the
basis of formally defined test end criteria, features with attached risk exposure
values and components. A typical test end criterion defines that all features with

306 M. Felderer et al.

Fig. 6. Risk Assessment in Project Management Tool in-Step [29]

high risk have to be tested, features with medium risk are optional candidates
to be tested in order to reach the required test coverage, and features with low
risk are only tested if all others have been tested and resources are available. In
the test design phase, executable test cases are defined by testers according to
the test plan and get assigned the risk exposure value of the feature they are
designed for. Already existing test cases which are applicable are selected from
similar previous components or features. New or changed test cases are reviewed
and corrected if necessary. After the respective testable object (including its test
environment) is available for the test, the test cases are executed ordered by
their risk level and risk exposure values (inherited from the assigned features).
Each test run contains a test result for each of its executed test cases. Depending
on the test results, a problem ticket is created. As soon as the test end criterion
is reached, a test report is created. But the test report itself does not explicitly
take risk information into account.

5 Summary and Future Work

In this paper we presented a risk assessment framework for testing purposes.
The framework is based on the risk-based test process which is configured by and
provides feedback for a risk assessment model. This model is the main component
of our framework and defines the test scope, the risk identification method, a risk
model as well as the tooling for risk assessment. The risk assessment framework
is derived on the basis of best practices extracted from published risk-based
testing approaches and applied to an industrial test process where it guides the
definition and application of the RBT approach.

In future, we intend to provide a catalog with concrete guidelines on how to
configure the risk assessment model to additionally support practitioners. In
addition, we will perform empirical case studies to further evaluate and improve
the risk assessment model.

A Risk Assessment Framework for Software Testing 307

Acknowledgment. This research was partially funded by the research projects
MOBSTECO (FWF P 26194-N15) and QE LaB - Living Models for Open Sys-
tems (FFG 822740).

References

1. Felderer, M., Schieferdecker, I.: A taxonomy of risk-based testing. STTT (2014)
2. Wendland, M.F., Kranz, M., Schieferdecker, I.: A systematic approach to risk-based

testing using risk-annotated requirements models. In: ICSEA 2012, The Seventh
International Conference on Software Engineering Advances, pp. 636–642 (2012)

3. ISTQB: Standard glossary of terms used in software testing, version 2.2. Technical
report, ISTQB (2012)

4. Alam, M.M., Khan, A.I.: Risk-based testing techniques: A perspective study. In-
ternational Journal of Computer Applications 65(1) (2013)

5. ISO: ISO/IEC 29119 Software Testing, Draft (2013)
6. Amland, S.: Risk-based testing: Risk analysis fundamentals and metrics for soft-

ware testing including a financial application case study. Journal of Systems and
Software 53(3), 287–295 (2000)

7. Felderer, M., Haisjackl, C., Breu, R., Motz, J.: Integrating manual and automatic
risk assessment for risk-based testing. In: Biffl, S., Winkler, D., Bergsmann, J.
(eds.) SWQD 2012. LNBIP, vol. 94, pp. 159–180. Springer, Heidelberg (2012)

8. Merriam-Webster: Merriam-Webster Online Dictionary (2009),
http://www.merriam-webster.com/dictionary/risk (accessed: April 04, 2013)

9. Standards Australia/New Zealand: Risk Management AS/NZS 4360:2004 (2004)
10. McCall, J., Richards, P., Walters, G.: Factors in software quality. Technical report,

NTIS, vol. 1, 2 and 3 (1997)
11. Bai, X., Kenett, R.S., Yu, W.: Risk assessment and adaptive group testing of se-

mantic web services. International Journal of Software Engineering and Knowledge
Engineering 22(05), 595–620 (2012)

12. Felderer, M., Ramler, R.: Integrating risk-based testing in industrial test processes.
Software Quality Journal, 1–33 (2013) (online first)

13. Ray, M., Mohapatra, D.P.: Risk analysis: a guiding force in the improvement of
testing. IET Software 7(1), 29–46 (2013)

14. Chen, Y., Probert, R.L., Sims, D.P.: Specification-based regression test selection
with risk analysis. In: Proceedings of the 2002 Conference of the Centre for Ad-
vanced Studies on Collaborative Research, p. 1. IBM Press (2002)

15. Redmill, F.: Exploring risk-based testing and its implications. Software Testing,
Verification and Reliability 14(1), 3–15 (2004)

16. Redmill, F.: Theory and practice of risk-based testing. Software Testing, Verifica-
tion and Reliability 15(1), 3–20 (2005)

17. Stallbaum, H., Metzger, A.: Employing requirements metrics for automating early
risk assessment. In: Proc. of MeReP 2007, Palma de Mallorca, Spain, pp. 1–12
(2007)

18. Stallbaum, H., Metzger, A., Pohl, K.: An automated technique for risk-based test
case generation and prioritization. In: Proceedings of the 3rd International Work-
shop on Automation of Software Test, pp. 67–70. ACM (2008)

19. Souza, E., Gusmao, C., Alves, K., Venancio, J., Melo, R.: Measurement and control
for risk-based test cases and activities. In: 10th Latin American Test Workshop,
pp. 1–6. IEEE (2009)

http://www.merriam-webster.com/dictionary/risk

308 M. Felderer et al.

20. Souza, E., Gusmão, C., Venâncio, J.: Risk-based testing: A case study. In: 2010
Seventh International Conference on Information Technology: New Generations
(ITNG), pp. 1032–1037. IEEE (2010)

21. Zimmermann, F., Eschbach, R., Kloos, J., Bauer, T., et al.: Risk-based statistical
testing: A refinement-based approach to the reliability analysis of safety-critical
systems. In: Proceedings of the 12th European Workshop on Dependable Comput-
ing, EWDC 2009 (2009)

22. Kloos, J., Hussain, T., Eschbach, R.: Risk-based testing of safety-critical embedded
systems driven by fault tree analysis. In: 2011 IEEE Fourth International Confer-
ence on Software Testing, Verification and Validation Workshops (ICSTW), pp.
26–33. IEEE (2011)

23. Yoon, H., Choi, B.: A test case prioritization based on degree of risk exposure and
its empirical study. International Journal of Software Engineering and Knowledge
Engineering 21(02), 191–209 (2011)

24. Zech, P.: Risk-based security testing in cloud computing environments. In: 2011
IEEE Fourth International Conference on Software Testing, Verification and Vali-
dation (ICST), pp. 411–414. IEEE (2011)

25. Felderer, M., Ramler, R.: Experiences and challenges of introducing risk-based
testing in an industrial project. In: Winkler, D., Biffl, S., Bergsmann, J. (eds.)
SWQD 2013. LNBIP, vol. 133, pp. 10–29. Springer, Heidelberg (2013)

26. Pandian, C.R.: Applied software risk management: a guide for software project
managers. CRC Press (2006)

27. Cavano, J., McCall, J.: A framework for the measurement of software quality. ACM
SIGMETRICS Performance Evaluation Review 7(3-4), 133–139 (1978)

28. Haisjackl, C., Felderer, M., Breu, R.: Riscal–a risk estimation tool for software
engineering purposes. In: 2013 39th EUROMICRO Conference on Software Engi-
neering and Advanced Applications (SEAA), pp. 292–299. IEEE (2013)

29. Felderer, M., Ramler, R.: A multiple case study on risk-based testing in industry.
STTT (2014)

30. McCabe, T.: A complexity measure. IEEE Transactions on Software Engineering,
308–320 (1976)

31. SonarSource: Sonar (2013), http://www.sonarsource.org/ (accessed: March 12,
2013)

32. microtool: in-Step (2013), http://www.microtool.de/inStep (accessed: November
30, 2013)

http://www.sonarsource.org/
http://www.microtool.de/inStep

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 309–321, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Data Driven Testing of Open Source Software

Inbal Yahav, Ron S. Kenett, and Xiaoying Bai

Graduate School of Business Administration, Bar Ilan University
Inbal.yahav@biu.ac.il

The KPA Group, Israel, Univ. of Torino, Italy and NYU-Poly, NY, USA
ron@kpa-group.com

Dept. of Comp. Science and Technology, Tsinghua University, China
baixy@tsinghua.edu.cn

Abstract. The increasing adoption of open source software (OSS) components in
software systems introduces new quality risks and testing challenges. OSS com-
ponents are developed and maintained by open communities and the fluctuation
of community members and structures can result in instability of the software
quality. Hence, an investigation is necessary to analyze the impact open commu-
nity dynamics and the quality of the OSS, such as the level and trends in internal
communications and content distribution. The analysis results provide inputs to
drive selective testing for effective validation and verification of OSS compo-
nents. The paper suggests an approach for monitoring community dynamics con-
tinuously, including communications like email and blogs, and repositories of
bugs and fixes. Detection of patterns in the monitored behavior such as changes in
traffic levels within and across clusters can be used in turn to drive testing efforts.
Our proposal is demonstrated in the case of the XWiki OSS, a Java-based envi-
ronment that allows for the storing of structured data and the execution of server
side scripts within the wiki interface. We illustrate our concepts, methods and ap-
proach behind this approach for risk based testing of OSS.

1 Introduction

Open Source Software (OSS) is playing a leading role in current information technol-
ogy practices. Its pervasive adoption is not without risks for an industry that has expe-
rienced significant failures in product quality, timelines and delivery costs. Inadequate
testing and risk management has been identified among the top deficiencies when
implementing OSS-based solutions. A crucial aspect in managing and mitigating OSS
adoption risks is that of deeply understanding the behavior and dynamics of the OSS
communities that provide the software components. This can be achieved via the
analysis of big amounts of data related, for example, to community activeness, relia-
bility, or capacity of managing the OSS component maintenance and evolution. In
this work we combine and understanding of OSS community dynamics with advanced
analytic methods and an underlying approach of risk based testing to address the is-
sues listed above. Our goal is to provide OSS adopters and OSS integrators with an
approach for designing tests in a focused and adaptable way.

310 I. Yahav, R.S. Kenett, and X. Bai

The paper begins with a section providing background on OSS testing and a review
of related work. Section 3 provides a comprehensive presentation of analytics for
capturing community and communication data from OSS communities. Section 4
introduces the XWiki case study used to demonstrate the proposed approach and sec-
tion 5 provides numerical results in the context of this case study. A final section
concludes with a highlight of our proposal and directions for future work.

2 Background and Related Work

Software testing is an investigation conducted to provide stakeholders with informa-
tion about the quality of the product or service under test. Software testing can also
provide an objective, independent view of the software quality and performance that
allows the business stakeholders to assess and understand the quality of software im-
plementation. Test techniques include executing a program or application with the
intent of finding software bugs.

The software testing activity consists of processes for validating and verifying that
a computer program/application/product meets the requirements that guided its design
and development, works as expected, can be implemented with the same characteris-
tics, and satisfies the needs of stakeholders.

Traditionally, most of the test effort occurs after the requirements have been de-
fined and the coding process has been completed. In the Agile approaches most of the
test effort is on-going and development is incremental. In general, the testing metho-
dology is governed by the chosen software development methodology [1].

In most cases, tests are performed by test engineers. Testers can be part of the de-
velopment organization, part of the user’s organization or operate as an independent
entity. The advantages of an independent functional test team are that test team re-
sources are efficiently distributed and can be easily reassigned to different products,
test engineers are working according to a proven testing methodology, which gives
them the ability to test faster, better and at lower costs, knowledge and experience is
accumulated across many projects, is formalized and shared, the complexities of test-
ing issues are handled professionally until they are fixed and verified and verification
of the software is done professionally, providing sufficient coverage of the new code.
Testing can never completely identify all the defects within software. Instead, it fur-
nishes a criticism or comparison that compares the state and behavior of the product
against documents such as requirements documents or design documents. A primary
purpose of testing is to detect software failures so that defects may be discovered and
corrected, before full scale operational deployment.

Testing is inherent in a wide range of software applications. For an example of a
risk based methodology for group testing of web services see [3]. Another type of
testing is focused on usability of software applications where analytic methods like
Bayesian networks and Markov models are used to analyze weblogs [4,5]. Some early
attempts have been published where analytic methods are used to analyze characteris-
tics of software failures [1, 7, 8]. In this work we use analytics to correlate dynamics
of open source communities with reported bugs. A related work focused on risk man-
agement and business risks is presented in [2].

 Data Driven Testing of Open Source Software 311

In open source software (OSS) development, the identification of factors affecting
software quality is critical for the design of an effective testing strategy.

Open Source Software (OSS) is supplied by an OSS community, can be produced
in-house; can be part of the organization’s value proposition, can be used as infra-
structure for the development of software or for the execution of business processes;
can be sold in order to allow for revenues; can determine customer segments or can be
used in order to lower costs.

Several European research projects considered the problem of evaluating the quali-
ties and characteristics of OSS software. FLOSSMetrics (http://flossmetrics.org/)
objective was to construct, publish and analyze a large scale database with informa-
tion and metrics about OSS development coming from several thousand software
projects, using existing methodologies, and tools already developed. The objective of
the QualiPSO project (http://qualipso.org) was to improve the quality of OSS projects,
in particular focusing on its maturity. It provides a maturity model, similar to CMMI
(Kenet and Baker, 2010), which is composed of a list of topics to be addressed by a
project in order to be categorized in one of the three levels of maturity defined. The
project also produced several tools that help to analyze the source code, the bug track-
ing systems, and a platform to integrate these tools. The QualOSS project
(http://www.qualoss.eu/) defined a method to assess the quality of OSS projects, more
concretely, their qualities of robustness and evolvability. To do so, it designed a quali-
ty model, and described a process for the quality assessment. In this case, the assess-
ment is made manually by means of long checklists. It also provides a tool to
facilitate the process. The quality model of QualOSS is composed of three types of
interrelated elements: quality characteristics, concrete attributes of a product or com-
munity, metrics (about 150), concrete aspects that can be measured, and indicators,
that define how to aggregate and evaluate the measurement values to obtain consoli-
dated information. OSSMETER (http://www.ossmeter.eu) aims to develop a platform
that supports decision makers in the process of discovering, comparing, assessing and
monitoring the health, quality, impact and activity of open-source software. To
achieve this, OSSMETER computes trustworthy quality indicators by performing
advanced analysis and integration of information from diverse sources including the
project metadata, source code repositories, communication channels and bug tracking
systems of OSS projects. The RISCOSS project (www.riscoss.eu) develops a platform
is to monitor and flag changes to measurable properties of open source artifacts that
are indicative of the occurrence of potential business risks to adopting organizations.
RISCOSS is based on an organizational mapping using the i* methodology and com-
bines disjunctive logic reasoning with statistical analysis for risk monitoring and risk
mitigation management [2].

3 Open Source Software Assessment Based on Community and
Communication Data

In this work we focus on analyzing data from OSS communities to drive testing activ-
ities of OSS adopters. We use throughout examples from the XWiki community in-
troduced in section 3 which is also part of RISCOSS.

312 I. Yahav, R.S. Kenett, and X. Bai

Fig. 1. Approach Overview

Figure 1 gives an overview of the proposed approach. The data-driven testing sys-
tem (DDT) serves as a broker between OSS adopters and OSS communities. For a
OSS project, the adopters always concerns various quality issues including both soft-
ware issues (such as reliability, performance, and interoperability) and community
issues (such as maturity, expertise, and stability). DDT aims to provide recommenda-
tions to OSS adopters in response to their quality queries, by continuous monitoring
and evaluation of projects in OSS communities.

DDT basically contains two parts: quality centered data analytics, and data-driven
test selection. OSS projects are usually developed and maintained by open communi-
ties. The fluctuation of community members and structures can results in instability of
the software quality. For example, voluntary developers may join and quit the com-
munity flexibly. There is no guarantee of consistent quality between different ver-
sions, code branches, and development groups. Hence, an investigation is necessary to
analyze the correlation between the social aspects of open communities and the quali-
ty of the OSS, such as the dynamics in communications and content distribution. The
traceability ensures that whenever a change is detected, a regression process will be
triggered automatically to evaluate quality risks in terms of bug probability.

The analysis results can be taken as inputs to drive selective testing for effective
validation and verification of OSS projects. As exhaustive testing is infeasible in most
cases due to time and resources limitations, selective testing techniques are usually
needed to allocate test resources to the most critical components and features. Risk-
based testing is a technique to schedule tests according to the risk measurements on
the object under tests. In this research, the monitored community dynamics are used
to measure the risk of an OSS component to guide the component’s testing activities.

As shown in Figure 1, three repositories are built to support the process. Social re-
pository stores the social network data for the community. Bug repository is the core
connection between community behavior and project quality. It will trace bug reports
in the community from various aspects, such as by project, by version, by code

 Data Driven Testing of Open Source Software 313

branches, by modules, by developer, by different role and group. Test repository trac-
es test scripts to OSS projects.

We focus here on insights for OSS test strategy design generated by a two level
analysis. First, we investigate the relationship between the social network of the
XWiki communities and the timing and frequency of bug reports. Specifically, we
examine whether software projects with more bug reports have a stronger (weaker)
developer community, and whether software projects with more bug reports have
more frequent (less frequent) email communications.

Secondly, we examine whether the developers’ communications and communities
can be used to predict bug reports, and consecutively, used within a mechanism for
dynamic test selection. Such an early bug predictor can provide an effective test selec-
tion and initiation strategy. The next section introduces the XWiki community.

4 The XWiki Case Study

XWiki (http://www.xwiki.com) is a Java-based environment that allows for the stor-
ing of structured data and the execution of server side script within the wiki interface.
XWiki was originally written by Ludovic Dubost in 2003. In 2006, the Apache Ma-
ven developer, Vincent Massol became the lead developer of the OOS XWiki. In this
work, we use XWiki data to demonstrate our data driven testing approach. Specifical-
ly consider an adopter of XWiki and related contributed projects. The adopter has
integrated these OSS components in a proprietary system and is designing a test strat-
egy that covers XWiki functionality in terms of its contributed OSS projects. Given
the dynamics of the OSS community and the evolution of the XWiki components, the
test strategy needs to be updated and adapted. The approach introduced here is data
driven and based on online analytics. The data used here consists of: mailing lists
archives of users and developers, IRC chat archives, commits via git, code review
comments, and information about bugs and releases. To illustrate our method we
focus on users and developers email communications. Emails are available since 2005
to 2013, a total of nearly 60,000 massages (including original messages and replies).
We generate the social network of communication, analyze the community of mem-
bers, and monitor their within and across community massages exchange.

Email data, by nature, is very noisy. Users can use different accounts to post and
reply messages. Content exchanged is free text, and as such contains typos, syn-
onyms, plurals, and more. A massive data pre-processing step is required in order to
generate an informative social network. In this work, we use a name-scheme match-
ing approach to detect multiple user’s accounts. In specific, we use full and partial
texts comparisons to find plausible users matches and their probability. We then score
our results with manual intervention.

Content analysis is based on keywords extraction from XWiki’s list of projects
(http://jira.xwiki.org/secure/BrowseProjects.jspa#all). Mentions of projects in an
email communication (title only) are counted. Email communications are then classi-
fied to zero or more projects. For example, the text ‘LDAP authentication not work-
ing’ is classified as related to the project ”LDAP”.

314 I. Yahav, R.S. Kenet

Information regarding
(http://jira.xwiki.org/browse
indication of “missed test”,
test cases before bugs are b

In this research we use d
in XWiki contributed projec

Fig.

5 Numerical Anal

5.1 OSS Community A

In general, three types of c
munity: (1) team members
users. The official roles of
(www.xwiki.com/lang/en/C

To detect the developers
Moore community detectio
social network of develope
communities that were dete

tt, and X. Bai

bugs reports is also available for XWiki proje
e/XWS-220?jql=). We use information about bugs as
, and focus on developing a mechanism that select and
eing reported.
data from Emails between users and lists of reported b
cts (see Figure 2).

 2. Sources of data in XWiki case study

lysis

Analytics: Data Preprocessing

communities make up the social network of an OSS co
s, (2) developers (contributors) and expert users, and
f XWiki team members is available on the XWiki web
Company/Team).
s’ and expert users’ communities we use Clauset-Newm
n algorithm [6]. As input to the algorithm, we use the s
ers only, disregarding members’ and users’ network. T
ected by the algorithm are given in Figure 3.

ects
s an
run

bugs

om-
(3)

bsite

man-
sub-
The

F

Data Driven Testing of Open Source Software

Fig. 3. Developers’ communities

Fig. 4. Communities of XWiki OSS

315

316 I. Yahav, R.S. Kenett, and X. Bai

The figure depicts the directed graph of developers’ email communications, clus-
tered into 6 communities (G1 through G6). Node size corresponds to centrality in the
entire network (including team members and users). Dark arcs in the network corres-
pond to communication via the developers’ email channel. Light arcs correspond to
communication via the users’ email channel.

From the 6 communities detected, the first community (G1) has no inter-
community communication, or across developers’ communities. The G1 cluster,
therefore gathers small developers or expert users that communicate with either users
or members of the OSS team. The other 5 communities (G2 through G6) communi-
cate both within the community and across the developers’ communities.

Communication across the communities is plotted in Figure 4.
This rendering and analysis of communication dynamics is used as data prepro-

cessing in the insight generation process described above.

5.2 Bugs and Social Networks: First Level Analytics

Following the social analysis data preprocessing, we study the relationship between
the social network of OSS community and reported bug. At first, we ignore the time-
liness dimension and the communities’ dynamics of the problem, and examine a snap-
shot of the entire data at aggregation. The rationale behind predicting bugs is as fol-
lows: if we can predict bugs in a specific component before the actual report, we can
use this information to automatically run test cases related to this component, and fix
the bug before it affects the users. In other words, bugs prediction is used as a proxy
for required test cases.

Fig. 5. The relationship between bugs and centrality of developers that talk about the project

0

0.5

1

1.5

2

2.5

3

3.5

0 100000 200000 300000 400000 500000

L
og

(N
um

B
ug

s)

Mean Betweeness Centrality

Figure 5 depicts the rela
trality of the people who d
that talk of a project, the la
are two plausible explanati
developers, or (2) experts u
project is used by central,
tected). In the first explanat
use drives communication t
likely.

Next, we add the time d
between cumulative commu
bugs over time, for a selec
communications and report
nitely clear for some.

Fig. 6. Total communications
reports; Black: email commun

Projects XECLIPSE and
email communication. A p
reported bugs in project XO
behave differently from XE
identify a good predictor o
communication levels with
drive the test selection and

5.3 Test Case Selection

In this section we develop
ported on a given project, i
of efficient test selection.

Data Driven Testing of Open Source Software

ationship between reported bugs per project and the c
discuss them. It shows that the more central are the peo
arger is the number of bugs reported in the project. Th
ions to this relationship: (1) risky projects “attract” cen
users and developers find more bugs (in other words,
frequent users, it is more likely that its bugs will be

tion, bugs drive communication. In the second explanati
that drives bug detection. A combination of the two is a

dimension to our analysis. Figure 6 illustrates the relat
unication over time and the cumulative number of repor
cted list of contributed projects. The relationship betw
ted bugs is not consistent for all project, although it is d

related to several projects vs. reported bugs over time. Gray:
ications.

d XCONTRIB show a similar patter linking bug reports
possible explanation for the low and saturated number
OFFICE is bug under-reporting. Project CURRIKI seem
ECLIPSE and XCONTRIB. Our goal here, however, i
of the occurrence of bugs that is calculated from the em
hin the OSS community. Such prediction can be used
activation process as presented in section 2.

n: : Second Level Analytics

a prediction model that predicts whether a bug will be
in a certain day. This information can be used as the ba

317

cen-
ople
here
ntral
if a
de-

ion,
also

tion
rted

ween
defi-

bug

and
r of

ms to
s to

mail
d to

e re-
asis

318 I. Yahav, R.S. Kenett, and X. Bai

We model a bug occurrence indicator at time t, for project p, with a logistic regres-
sion (denoted f) of the email communications in different communities (c), and the
time of the last reported bug. Equation 1 presents the conceptual prediction model.

 , (1)

To avoid model over-fitting, we consider projects with over 20 reported bugs, and
mentioned over 20 times in email communications. That leaves us with a subset of 4
contributed projects, namely CURRIKI, XCONTRIB, XECLIPSE, and XOFFICE.

In a first analysis, we fit a single model to all 4 projects. The resulted logistic coef-
ficients are given in Table 1. Coefficients of communities’ communications are hig-
hlighted in gray. Several communities’ communications, such as that of G2, G3, Re-
search group and others, appear as very informative in predicting reporting of bugs.

Table 1. Logistic regression for predicting bug indicators

Coefficient Estimate p-value
(Intercept) -0.69 0.00
Project XCONTRIB -0.96 0.03
Proj XECLIPSE -0.40 0.34
Proj XOFFICE -0.01 0.98
Community G1 -0.43 0.72
Community G2 0.26 0.12
Community G3 0.25 0.13
Community G4 0.04 0.70
Community G5 0.12 0.20
Community G6 -0.20 0.15
Community Management -0.10 0.31
Community Marketing, Commu-

nication and Product Marketing 0.42 0.30
Community Platform and SaaS 15.44 0.98
Community Research 0.39 0.03
Community Sales and Client

Projects 1.66 0.01
Community Tech Support 0.07 0.56
Community Users 0.02 0.90
time Since Last Bug 0.00 0.45

The overall performance of the model is evaluated by a lift curve shown in Figure

7. The gray lift represents a performance of a model that does not use communica-
tions as predictors. Clearly, its performance is poor (very close to random). The black
lift represents the performance of the model described above, which does use email

 Data Driven Testing of Open Source Software 319

communications as predictors. The delta AUC (Area Under the Curve) of the two
models, is the contribution of our approach to the problem of efficient test case selec-
tion.

Fig. 7. Lift curve of the logistic regression with communication (black) and without (grey)

We next summarize the prediction performance in a confusion matrix (we use a de-
fault cutoff value on the probability of 0.5)

Table 2. Confution matrix of the logistic regression

Actual / Predicted Predicted no-bug Predicted bug
No-bug 77 127
Bug 19 97

In a second analysis, we generate a separate logistic model for each project. The

separation of the models provides more flexibility in estimation of the communities’
coefficient. This implies that different communities can be informative for predicting
bugs in different projects. In Table 3 we list the most informative communities for
each project. As expected, the list differs from one project to another. Interestingly,
there is no benefit to our social networks clusters when predicting reported bugs for
project XOFFICE. Again, the reason might be a possible under-reporting phenome-
non in this project.

320 I. Yahav, R.S. Kenett, and X. Bai

Table 3. Logistic regression per project: Informative communities

Project Most informative communities
CURRIKI Management (p-value = 0.31)
XCONTRIB G6 (p-value = 0.14),

Management (p-value = 0.14),
Sales and Client Projects (p-value = 0.24),
G2 (p-value = 0.25)

XECLIPSE G2 (p-value = 0.02)
G6 (p-value = 0.31)

XOFFICE None

Confusion matrixes of our prediction model, per project, are given in Tables 4

through 7. The results show a very high detection level, with relatively low false de-
tection, for most projects.

Table 4. Confusion matrix for project CURRIKI

Actual / Predicted Predicted no-bug Predicted bug
No-bug 53 0
Bug 1 26

Table 5. Confusion matrix for project XCONTRIB

Actual / Predicted Predicted no-bug Predicted bug
No-bug 43 10
Bug 3 24

Table 6. Confusion matrix for project XECLIPSE

Actual / Predicted Predicted no-bug Predicted bug
No-bug 37 9
Bug 11 23

Table 7. Confusion matrix for project XOFFICE

Actual / Predicted Predicted no-bug Predicted bug
No-bug 40 12
Bug 5 23

6 Summary and Conclusions

The objective of this study is to evaluate the feasibility of driving test efforts of OSS
components on the basis OSS community data. The goal is to predict occurrence of
bugs using email communication traffic and social network dynamics with data from
an OSS community. The approach bears some similarity to customer targeting efforts
by commercial banks who want to identify soon to be home buyers or Facebook that

 Data Driven Testing of Open Source Software 321

attempts to identify high school students applying for college in order to direct pro-
motional campaigns. Here we want to prioritize testing effort. The open access of web
data and advanced analytics, such as social network analysis, provide new opportuni-
ties in such rational test effort design. The amount and granularity of the available
data determines the level of detail of the testing strategy implementation. With
enough data, one can pinpoint bugs of specific types and locations.

In this work we mainly focused on data stratified by projects contributed to the
XWiki platform. More in depth studies are required to map bugs to specific features
and trigger such focused tests. Future research will also involve a wide breath ap-
proach. Typically OSS-based solutions are not developed in isolation. Instead, they
exist in the wider context of an organization or a community, in larger OSS-based
software ecosystems, which include groups of projects that are developed and co-
evolve within the same environment, but also further and beyond their context, in-
cluding the organization itself. Testing such ecosystems provides added complexities
that require innovative solutions. We believe that properly combining analytic tools,
with an in depth study of OSS community dynamics can lead to improvements in
dealing with these issues.

Acknowledgement. The work of RSK was partially funded by the RISCOSS project
under the EC 7th Framework Programme FP7/2007-2013 under the agreement num-
ber 318249.

References

1. Kenett, R.S., Baker, E.: Process Improvement and CMMI for Systems and Software. CRC
Press (2010)

2. Franch, X., Susi, A., Annosi, M.C., Ayala, C., Glott, R., Gross, D., Kenett, R., Mancinelli,
F., Pop Ramsamy, C.T., Ameller, D., et al.: Managing risk in open source software adop-
tion. In: Proc. 8th Int. Conf. on Software Engineering and Applications (ICSOFT-EA
2013). SciTePress (2013)

3. Bai, X., Kenett, R.S., Yu, W.: Risk assessment and adaptive group testing of semantic web
services. International Journal of Software Engineering and Knowledge Engineer-
ing 22(05), 595–620 (2012)

4. Harel, A., Kenett, R.S., Ruggeri, F.: Modeling web usability diagnostics on the basis of
usage statistics. In: Statistical Methods in eCommerce Research, pp. 131–172 (2008)

5. Kenett, R.S., Harel, A., Ruggeri, F.: Controlling the usability of web services. International
Journal of Software Engineering and Knowledge Engineering 19(05), 627–651 (2009)

6. Clauset, A., Newman, M.E., Moore, C.: Finding community structure in very large net-
works. Physical Review E 70(6), 066111 (2004)

7. Nagappan, N., Ball, T., Zeller, A.: Mining metrics to predict component failures. In: Pro-
ceedings of the 28th International Conference on Software Engineering (ICSE 2006), pp.
452–461. ACM, New York (2006)

8. Hata, H., Mizuno, O., Kikuno, T.: Bug prediction based on fine-grained module histories.
In: Proceedings of the 2012 International Conference on Software Engineering (ICSE
2012), pp. 200–210. IEEE Press, Piscataway (2012)

9. Kim, S., Whitehead Jr., E.J., Zhang, Y.: Classifying Software Changes: Clean or Buggy?
IEEE Trans. Softw. Eng. 34(2), 181–196 (2008)

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 322–336, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Combining Risk Analysis and Security Testing*

Jürgen Großmann, Martin Schneider,
Johannes Viehmann, and Marc-Florian Wendland

Fraunhofer FOKUS,
Kaiserin-Augusta-Allee 31,
D-10589 Berlin, Germany

{Juergen.Grossmann,Martin.Schneider,Johannes.Viehmann,
Marc-Florian.Wendland}@Fokus.Fraunhofer.de

Abstract. A systematic integration of risk analysis and security testing allows
for optimizing the test process as well as the risk assessment itself. The result of
the risk assessment, i.e. the identified vulnerabilities, threat scenarios and un-
wanted incidents, can be used to guide the test identification and may comple-
ment requirements engineering results with systematic information concerning
the threats and vulnerabilities of a system and their probabilities and conse-
quences. This information can be used to weight threat scenarios and thus help
identifying the ones that need to be treated and tested more carefully. On the
other side, risk-based testing approaches can help to optimize the risk assess-
ment itself by gaining empirical knowledge on the existence of vulnerabilities,
the applicability and consequences of threat scenarios and the quality of coun-
termeasures. This paper outlines a tool-based approach for risk-based security
testing that combines the notion of risk-assessment with a pattern-based ap-
proach for automatic test generation relying on test directives and strategies
and shows how results from the testing are systematically fed back into the risk
assessment.

Keywords: Risk assessment, security testing, test pattern.

1 Introduction

Security is crucial in various market sectors, including IT, health, aviation and aero-
space. In the real world, perfect security often cannot be achieved. Trust allows
human beings to take remaining risks. Before trusting, before taking risks, it is rea-
sonable to carefully analyze the chances, the potential benefits and the potential losses
as far as possible. For technical systems, services and applications such an analysis
might include risk assessment and security testing.

Those offering security critical technical systems, applications or services can ben-
efit from careful risk analysis and security testing in two ways: They can use the

* The research leading to these results has also received funding from the European Union’s

Seventh Framework Programme (FP7/2007-2013) under grant agreements no 316853 and no
318786.

 Combining Risk Analysis and Security Testing 323

results to detect and treat potential weaknesses in their products. Additionally, they
can use the results to communicate the identified remaining risks honestly, which can
be very important to create trust.

This paper introduces new concepts to integrate compositional risk assessment and
security testing into a single process. Furthermore, ideas for increasing the reusability
of the risk analysis and security testing artifacts are presented. A focal point is laid
onto the systematic integration of risk information and the test design process. In this
paper, we present an approach to model-based risk-driven test design. We are going to
employ so called test models, a formal specification of test design techniques (as part
of the model) as well as model-based representation of risk information in order to
actually generate test artifacts (such as test cases and test data) based on risk.

Implementing the described methodology in a tool in order to make it practically
applicable for large scale systems for which manual analysis is not practicable is cur-
rently ongoing work.

2 The Problems

There is little doubt that security critical technical systems should be carefully ana-
lyzed. However, both risk assessment and security testing might be difficult and ex-
pensive. Each activity on its own requires experts. The systematic integration of both
is a non-trivial challenge, especially in industrial projects where testers are not neces-
sarily experts in security testing and risk analysis.

Typically, risk assessment is performed at a high level of abstraction and results
depend on the experience and on subjective judgment of the analysts. Hence, results
might be imprecise, unreliable and uncertain.

In contrast to risk assessment, security testing does produce objective and precise
results – but only for those things that are actually tested. Even for small systems,
complete testing is usually not possible since it would take too long and it would be
by far too expensive. The selection of relevant test cases is a critical decision. Even
highly insecure system can produce lots of correct test verdicts if the “wrong” test
cases have been created and executed. Thus, the selection of appropriate test cases
needs to be carried out in a systematic and comprehensible manner. Risk-based test-
ing in general is a means to justify why a certain test case or test datum has been de-
signed and executed in the first place. According to Bach [15], risk-based testing aims
at testing the right things of a system at the right time. The idea of risk-based testing
is simple: Identify prior to test case design those scenarios that provoke the most criti-
cal situations for a system to be tested and ensure that these critical situations are both
effectively mitigated and sufficiently tested.

Additionally, test results can be systematically integrated with the risk assessment
results in order to verify whether the assumed criticality of the system to be tested
actually corresponds to the actual implementation of the system. By doing so, the risk
analysis results can be refined with respect to the actual test results. If the tests pass,
the security properties are met and the integration of the security measures seem
to be properly realized. Thus, we have gained confidence that at least for the tested

324 J. Großmann et al.

situations the system is secure. If a test has failed, thus, if an unwanted incident oc-
curred, we gained confidence that the countermeasures are insufficient or could be
circumvented for at least one case. This might require additional counter measures to
be specified and implemented or deficient countermeasure implementations to be
fixed. The main problem is that there is a lack of reliable and applicable methodolo-
gies on how to integrate the various pieces of information relevant for a risk-based
testing or test-based risk assessment approach in a systematic way.

3 State of the Art

Risk assessment means to identify, analyze and evaluate risks, which threaten assets
[1] [2]. There are lots of different methods and technologies established for risk as-
sessment, including Fault Tree Analysis (FTA) [4], Event Tree Analysis (ETA) [5],
Failure Mode Effect (and Criticality) Analysis (FMEA/FMECA) [3] and the CORAS
method [6]. However, most traditional risk assessment technologies analyze systems
as a whole [7]. They do not offer support for compositional risk assessment. Compo-
sitional risk assessment combines risk analysis results for components of a complex
modular system to derive a risk picture for the entire complex system without looking
further into the details of its components. Nevertheless, for the mentioned risk as-
sessment concepts, there are some publications dealing with compositional risk analy-
sis, e.g. [8] for FTA and [9] for FMEA.

While traditional testing tries to test specified functionality, security testing aims
for identifying weaknesses and vulnerabilities to uncover unwanted behavior.

Currently, there are basically two different ways how security testing and security
risk analysis can be combined [10]. Test Based Security Risk Assessment (TBRA)
tries to improve the security risk analysis with the help of security risk testing and the
final output results are risk analysis artifacts. There have been several publications
about this approach, e.g. [11] [12], but there is no general applicable methodology and
not much tool support.

In contrast to Test Based Security Risk Assessment, the Risk Based Security Test-
ing (RBST) approach tries to improve security testing with the help of security risk
analysis and the final results are test result reports. There are lots of different me-
thods, some trying to identify test cases while others try to prioritize test cases or to
do both. For example, Kloos et al. uses fault trees as the starting point for identifying
test cases [13]. Stallbaum and Metzger automated the generation of risk-based test
suites based on previously calculated requirements metrics [16] [17]. A prototype
research tool called RiteDAP has been presented as being able to generate test cases
out of weighted activity diagrams. Basically, it ranks paths in the activity diagram due
to the risk they include.

Bauer and Zimmermann have presented a methodology called sequence-based
specification to express formal requirements as low-level mealy machines for embed-
ded safety-critical systems (e.g., [18] [19]). They build a system model based on the
requirements specification. Afterwards, the outcome of a hazard analysis is weaved
into the mealy machine. The correctness of the natural language requirements is

 Combining Risk Analysis and Security Testing 325

actually assumed to hold. Finally, they describe an algorithm that derives test models
that include critical transitions out of the system model for each single identified ha-
zard in order to verify the implementation of a corresponding safety function.

Chen discussed an approach for risk-based regression testing optimization [20]. In
this approach, the author applies a risk value to each test case to prioritize them.
Based on these risk values, the test cases are comparable and can be prioritized to
either be included in, or excluded from, a re-running regression testing process. Fel-
derer et al. [28] describe methodology for risk-based testing that prioritizes tests on
basis of a set of metrics that concisely determine testing and product related risks.
Zech [29] describes a methodology for risk-based security testing in cloud computing
environments. His approach uses dedicated and formalized test models to identify
risks and specify negative requirements by means of so called misuse cases.

Security testing and thus, risk-based security testing could additionally gain from
reusing existing test knowledge. Security test patterns are a way to formulate a solu-
tion for recurring security testing problems in a structured way where the solution of
such a pattern is used in a different way each time [23]. Several patterns in the context
of security testing were already defined by Smith [23] and Vouffo [24]. These pat-
terns describe the problem or goal to be solved as well as the solution to solve this
problem or to achieve this goal. They also refer to known applications, other test pat-
terns and categorize the kind of pattern along the security approach (e.g. ‘prevention’
for patterns that impede unwanted incidents). However, all existing patterns have in
common that they do not provide the information in a way that allow
(semi-)automatic test case generation for the purpose of risk-based security testing.

With RBST and TBRA, there are at least two different ways how risk assessment and
security testing can interact, but of course it should be possible to combine both, too.
Erdogan et al. use a combination of both approaches [11], but it does not propose any
technique or detailed guideline for how to update the risk model based on the test results.

In this paper, we describe an approach that will combine RBST, TBRA and the use
of security test patterns. The approach will be presented together with a methodology
specifying how it should be done in the context of a model-based testing process.

4 Combination of RA and Security Testing

TBSR and RBST can benefit from one another. Indeed, it might be helpful to switch
multiple times between security testing and security risk analysis because after each
round of testing and transferring the test results back into the risk picture, the risk
analysis might be more precise and thus allow a better identification and prioritization
of the next most critical and relevant test cases. Such an iterative process is not linear,
it is an incremental process that can be visualized as a cycle. Fig. 1 illustrates our
combined TBSR and RBST process.

Note that in our approach, security risk analysis is seen as both the starting point
and the end point for the combined TBSR and RBST process. The main reason for
this design decision is that risk analysis might also include aspects that cannot be
tested while all test results can be regarded as risk analysis artifacts, too.

Security risk analysis can be conducted with any established method. In our im-
plementation, we use the CORAS method, which is at the beginning only performed

326 J. Großmann et al.

till CORAS step 6, i.e. risk estimation with threat diagrams. The results of this initial
analysis are typically expressed with risk graphs or tables containing likelihood and
consequence values. This initial analysis is based on literature, vulnerability databases
and the system model. Its results are highly dependent on the experience and the skills
of the risk analysis team. Important aspects might have been missed completely and
the just guessed likelihood values are eventually very uncertain.

Fig. 1. Combined TBSR and RBST process

4.1 Selecting Elements to Test

Though the initial analysis might be imprecise and incomplete, it is a good starting
point for the first round of the security testing process, because it gives at least an idea
of some things that could go wrong.

While a risk graph like the CORAS threat diagram which contains faults or un-
wanted incidents can be immediately interpreted as an indicator for what should be
tested (i.e. trying to trigger the faults/unwanted incidents), it is not obvious how the
testing should be done and which tests are the most significant. Since security testing
can be expensive and since often both time and resources available for testing are
rather limited, it would be most helpful to identify the most relevant test cases and to
test these in the first place, at best in an automated way.

Multiple methods can be used to identify the most critical aspects that should be
tested in the first place. One risk based prioritization method tries to evaluate the criti-
cality of individual risk analysis artifacts. For example, it can use likelihood values
and relations between different elements in a risk graph to calculate likelihood values
for dependent incidents or faults. By setting these likelihood values in relation to the
potential consequences, for any risk analysis artifact a risk value can be calculated.
This approach is appropriate if the highest risks should be tested first.

Another prioritization method is motivated by the fact that risk estimates are often
not precisely known. It tries to identify the impact that errors in the estimates for like-
lihood or consequence values for individual risk analysis artifacts would have for the

Identify and assess
threats and risks

Map security test
patterns to risk

analysis artefacts

Generate test code
and test data

Do automated tests,
prepare results for
use in risk analysis

Security risk analysis

Test case generation

Te
st

 e
xe

cu
ti

on
Test iden

tification
and selection

Start with security
risk analysis

Results are risk and
treatment diagrams

RBST

TBSR

 Combining Risk Analysis and Security Testing 327

entire risk picture. Besides assessments by the analysts how much confidence they
have in their results and how precise these are, it is also possible to do simulations
with the minimal and maximal possible values for each single risk artifact and to
compare the resulting overall risk pictures, for example. This method is appropriate to
focus on those elements for which the uncertainty of the risk estimation is high and
the consequences of errors in the estimates are most significant.

In our combined TBSR and RBST process, only a single risk analysis artifact
which should be tested next has to be selected by one of these prioritization methods.

Knowing what should be tested next is fine. However, it can be challenging to
create effective test cases and to create appropriate metrics that allow sound conclu-
sions for the risk picture. Instead of reinventing the wheel each and every time, it
makes sense to create and to use a catalogue of test patterns. Ideally, the elements of a
test pattern library do already contain information how they are associated with cer-
tain risk analysis artifacts.

4.2 Applying Test Patterns Using Models

Once all relevant information for the test design process are brought together, consoli-
dated and ready for being exploited by the tester, it needs to be decided how the test
design process should be carried out. In our methodology, we rely on a model-based and
risk-driven approach for deriving test cases, test data, and/or test code in an automated,
yet comprehensible way. In order to apply model-based techniques, a model has to be
created or obtained. A model that was designed for the derivation of test artifacts is
called test model. A test model is a “… model that specifies various testing aspects, such
as test objectives, test plans, test architecture, test cases, test data etc.” [21]

Models (and so are test models as well) in general are designed for a specific ob-
jective. In our methodology, the security test patterns that apply to a certain threat
scenario represent these objectives for the design of a test model and, in addition, they
specify what test design techniques should be applied in order to derive test cases. A
conceptual model of the dependencies is depicted in Fig. 2.

Fig. 2. Testing using patterns

328 J. Großmann et al.

Our approach to model-based test design is based on the UML Testing Profile and
an additional extension for describing test design directives and test design tech-
niques. A test design strategy describes a single technique to derive test cases or test
data either in an automated manner (i.e., by using a test generator) or manually (i.e.,
performed by a test designer). A test design strategy represents the logic of a certain
test design technique (such as structural coverage criteria or equivalence partitioning)
and is understood as logical instructions for the entity that finally carries out the test
derivation process. Examples for test design techniques standardized by ISO 29119
[27] are state transitions testing, scenario testing or the data-specific techniques boun-
dary values analysis or equivalence partitioning. Further well-known test design tech-
niques that are frequently applied in model-based testing are described by Utting [22].

Fig. 3. UML Profile for Test Design Strategies

A test design directive governs an arbitrary number of test design strategies that a
test generator has to obey. Therefore, it assembles appropriately deemed test design
strategies to eventual fulfill the objective of a security test pattern. In risk-based secu-
rity testing, we want to ensure that threat scenarios are tested thoroughly because they
are deemed critical to the success of the system. In our risk-driven test design metho-
dology, we capture the information on how to derive test cases for a specific risk
(transitively referred to through security test pattern) in a test design directive in order
to enable an automated derivation of test cases and test data. Directives make the
entire test design activities more systematic, understandable and, even more impor-
tant, reproducible. The test generation process can be easily adjusted to changed
needs by just re-defining a test directive’s strategy. This means that whenever the risk
assessment for a threat scenario is updated, it is easily possible to adjust the intensity
of the associated test design strategies and for the respective security test pattern.

The security test patterns so far are defined using natural language. This impedes
(semi-) automatic test design. In order to enable test case generation from security test
patterns in a (semi-) automated manner, we adapted the structure of security test
pattern.

 Combining Risk Analysis and Security Testing 329

Table 1 shows an excerpt of a security test pattern. The relevant fields for a map-
ping between risk analysis artifacts and patterns and for test generation are marked
gray. An identifier from the Common Attack Pattern Enumeration and Classification
[265] allows to map identified threat scenarios from the risk model to security test
patterns. In order to support different abstraction levels of risk models where identi-
fied threat scenarios are less specific, security test patterns are forming a hierarchy of
generalizations. This hierarchy of patterns is realized with the field 'Generalization
of’. As a consequence of more general patterns, the test strategies would be more
general resulting in a larger number of generated test cases based on such a pattern.

The revised solution of a security test patterns contains, beside the solution de-
scription in natural language, two fields for (semi-)automatic test case generation: test
design technique, that identifies a particular method for test case generation, and test
strategies, that specifies in which way the test design technique shall be applied in
order to generate test cases that are able to find the weakness the security test pattern
is intended for. Such test strategies can be implemented by test case generators.

Additionally, the effort of testing for such a vulnerability as well as the effectiveness
are recorded for a solution that estimate the effort for testing using the specified solution,
i.e. the manual effort, and the effectiveness, i.e. how likely it is to find a vulnerability
using the described solution. This information allows to select the best pattern if different
patterns are applicable and resources are limited, or to prioritize several patterns. The
field ‘Metrics’ specifies security testing metrics that allow to aggregate test results and
estimate the exploitability of a revealed vulnerability based on the test results.

Table 1. Excerpt of Adapted Security Test Pattern

Pattern Name SQL Injection
CAPEC-ID(s) 66
Weakness
Description

Discussion of the weakness in natural language

Solution Solution in natural language for manual testing
Test Design
Technique

Data fuzzing

Test Strategies SQL Injection
Effort Low to medium: can be highly automated using

fuzzing techniques or SQL injection dictiona-
ries.

Effectiveness Medium to high, depending on detection capa-
bilities by access to the affected database and
to error messages

Metrics subject of future research
Generalization
of

Improper Input Validation

In order to instantiate such a test pattern, several pieces of information are re-

quired. These are at least the interfaces, methods and parameters to be used by a pat-
tern in order to stimulate the system under test. This information can be retrieved
from the system under test or from a model of the system under test.

330 J. Großmann et al.

4.3 Test Result Aggregation and Integration

The final step in our combined process (i.e. the actual TBSR step) is the test result
aggregation and the integration of the test results into the risk picture. Therefore, the
risk analysis process restarts with the test results as new additional input information
for the risk analysts. These test results might bring vulnerabilities, threat scenarios
and faults / unwanted incidents to attention that were not recognized before.

Additionally, the estimation of likelihoods might become more precise taking the
test results into consideration. The risk picture can be iteratively improved by starting
again with selecting the next risk analysis artifact that should be studied in detail with
the help of security testing.

5 Compositional Risk Analysis and Security Testing Tool

Based on our ideas for RBST in combination with TBSR we have developed a tool
providing assistance for the entire process. In order to reduce the amount of manual
work as far as possible, the tool tries to maximize the reusability of risk analysis arti-
facts and testing artifacts and to use automation where it is possible.

For risk analysis, the tool uses an extended version of CORAS supporting compo-
sitionality with the help of reusable threat interfaces as described in [14]. The risk
graph that is generated with our tool contains besides the risk related information
some information about the system that is analyzed itself, i.e. the instances of threat
interfaces describe the components in detail. This information is valuable especially
for automated testing. However, first of all, this system information needs to be intro-
duced into the risk graph. Our tool automatically generates partial threat interfaces for
components from existing compiled binaries or from source code for the components.
Hence, there is no need to manually create models describing the interfaces if none
are available.

The risk analysts complete the partial threat interfaces by adding unwanted inci-
dents, threat scenarios and vulnerabilities. While this involves some manual work, the
analysts can take advantage of our tool’s assistants using existing risk related databas-
es like CWE [26] or CAPEC [27]. Inserted risk analysis artifacts can be associated
with the system model by drag and drop. For example, CWE based vulnerabilities can
be dragged to input ports of threat interface instances, which automatically associates
the risk graph element with the system port. The analyst is further supported with
suggestions for other nodes like threat scenarios which might typically also be rele-
vant in conjunction with already inserted nodes. For such suggested elements, even
the relations to present nodes are created automatically as soon as they are inserted.

Using these assistants, negative risk analysis becomes a feasible option for ana-
lysts. In negative risk analysis, instead of trying to identify the relevant risks, initially
it is assumed that all known risk artifacts (e.g. any CWE and CAPEC derived ele-
ments) are relevant. Only those that are for sure not relevant are removed. All remain-
ing risks are considered to be relevant risks until proven otherwise.

Once the threat interfaces are complete with all the risks and relations that the ana-
lysts can identify without testing or simulation, the next step to verify and improve the

 Combining Risk Analysis and Security Testing 331

risk picture is test identification and selection. Our tool automatically identifies ap-
propriate test patterns for many CAPEC based threat scenarios from its test pattern
library. Based on the potential consequences described in the test pattern, it is possible
to generate unwanted incidents representing these consequences. By dragging the
unwanted incidents to output ports of threat interface instances it is possible to map
the unwanted incidents to components of the system that is analyzed.

In order to select the most critical scenarios to be tested in the first place, our tool
can calculate likelihood values for dependent incidents using Monte Carlo Simulation.
Initially, at least CWE derived vulnerabilities contain some initial default likelihood
value that can be used for such calculations.

The next steps in our process are test case generation and test execution. Actually,
the so far modelled graph with attached test patterns might already contain sufficient
information to create and execute test cases automatically. If additional information is
required, e.g. to clarify the mapping to the input ports of system under test if different
mappings are possible, then our tool will ask the user to make some manual input.

How exactly the test generation and execution work will be shown in more detail
below. The next step in our process is to update the risk graph with information ob-
tained from the security testing. Metrics are required to calculate likelihood values
based on the occurrence of the associated unwanted incidents observed in the tested
system. The metrics should contain functions or tables setting test results and test
coverage in relation to probability values per usage value (e.g. analyzed time span).
Ideally, test patterns contain sound metrics. Given such metrics, our tool calculates
likelihood values based on the tests and updates the risk graph with these values if the
user decides to do so.

In addition to the associated unwanted incidents that have already been identified
in the risk analysis and that are explicitly monitored in the security testing process,
unexpected things might happen as a result of security testing, too. For example, an
unexpected kind of exception could be thrown by the system under test. If our tool
monitors unexpected behavior, the tool generates new unwanted incidents expressing
the previously not expected behavior, which can then be inserted in the risk graph by
drag and drop. The relation from the threat scenario that was tested is automatically
added.

5.1 Example: Identifying and Testing Risk of Integer Overflows

In order to explore the potential as well as the limitations of our tool and to improve it
further, we have created multiple sample program libraries and applications just to
analyze and test them.

By dragging the threat interface icon to the risk graph drawing area, our tool al-
lows to load system information from compiled programs, libraries or source code.
Currently, .Net binaries and sources are fully supported. In the future, it will also
analyze components from COM libraries and Java sources. For demonstration, we
choose a C# written library. Our tool uses reflection to get information about exported
types, functions and to generate partial threat interfaces for the elements the user
chooses.

332 J. Großmann et al.

In our example, we choose to analyze a static function from our sample library called
PrintNextNumberToString. For its one and only input parameter of type ‘signed 32 bit
integer’, in the menu of that input port control, our tool automatically suggests a vulne-
rability “Integer Overflow or Wraparound”, which was generated from CWE-190. The
vulnerability contains an initial likelihood value “Medium” because CWE-190 says this
is the likelihood that such a weakness is exploited. This likelihood information can be
used for identifying the priority of testing related threat scenarios.

The menu of the CWE based vulnerability “Integer Overflow or Wraparound” con-
tains suggestions for potentially related threat scenarios that correspond to CAPEC
attack patterns. In the example, the threat scenario “Forced Integer Overflow” is sug-
gested, which is based on CAPEC-92. The analyst can insert the threat scenario by
dragging it to the risk graph. The relation from the vulnerability “Integer Overflow or
Wraparound” to the “Forced Integer Overflow” threat scenario is automatically added.

The menu of the threat scenario contains a list of all applicable test patterns from
our test pattern library. Each test pattern contains a list of unwanted incidents that
might be the result of executing an instance of the test pattern. For test patterns related
to “Forced Integer Overflow”, there is an unwanted incident called “Unhandled
arithmetic overflow”. The unwanted incident can be dragged to the risk graph. Typi-
cally, it will be added to some output port of a function in a threat interface instance
where the unwanted incident could be detected.

Currently, there are two test patterns available in the library of our tool to test for
forced integer overflows. They differ in their strategies, directives and metrics. One test
pattern only generates the extreme and special integer values like maximum, minimum
and zero. The second test pattern additionally uses a data fuzzing strategy and creates a
certain number of random test values. The generator of the second test pattern has mul-
tiple optional parameters. One can be used to directly set the number of fuzz test cases
that should be generated. Our tool allows setting this parameter manually. However,
there are also parameters available that forward values from the risk analysis and then
the test pattern calculates the number of test cases that should be generated based on
these values. These parameters are namely values for estimated likelihood, uncertainty,
impact on the entire risk picture and the potential consequences. The higher these values
are, the more test cases are generated. All values are optional. Hence, it is for example
no problem if no consequence values have been estimated so far.

Both test patterns use the same idea to test for integer overflows: First, two different
versions of the component that should be tested are generated. One test version that will
throw an exception on any arithmetic integer overflow unless the code explicitly pre-
vents it and one unmodified release version. If the source code is available, this is easy
for any .Net program: Arithmetic overflow exceptions can be activated by a compiler
switch. The tool generates the test version without requiring manual actions. Note:
Though not yet implemented, it would principally also be possible to generate a test
version from an IL assembly, so it could be done without access to source code, too.

Each test value is first tried with the test version of the component that will throw
arithmetic overflow exceptions by default. If an overflow exception is thrown, then the
same test value is tested against the release version that does not throw arithmetic over-
flow exceptions by default. If again the overflow exception is observed, then the release

 Combining Risk Analysis and Security Testing 333

version detects the overflow correctly. Of course, when the tested function is called, the
overflow exceptions must be treated properly, but throwing the exception itself in the
release version is not considered to be an error, it is not necessarily an unwanted inci-
dent. If treated correctly by the caller, the program might continue without problems.

In contrast, if only the test version throws an overflow exception and the release
version does not throw an overflow exception, then the release version calculates
eventually wrong values and there is probably no way to detect the error.

Besides detecting arithmetic overflow exceptions, any other exception that occurs
during the test is regarded to be an unexpected exception and it is reported as a poten-
tially new unwanted incident to our tool. Fig. 4 shows how the testing is evaluated.

Fig. 4. Testing for Integer overflows

Our tool compiles code taken or automatically generated from test patterns. For ac-
tually executing the test cases, the risk graph is evaluated to identify which functions
have to be called with which parameters and what has to be monitored. In the exam-
ple we present here, this requires no additional manual work at all.

In our sample library, there are multiple functions that can be tested for forced in-
teger overflows. Some are more complex and do expect more than just a single input
value. To test such functions, it is necessary to assign test case generators to each
input parameter. This can be done by assigning threat scenarios and by choosing test
patterns. Then, only one of the test patterns is actually tested at a time, i.e. its test
strategies are compiled and executed. From the other test patterns, only the test data
generators are used. Since by default all possible combinations of the generated test
values for each parameter are tested, the amount of test cases can grow very quick by
doing so. Alternatively, our tool also allows to create data generators that just produce
test data. However, these do require manual writing of code. Finally, there are con-
stant values assignable in an easy way.

Test execution

Execution of individual test case Result

Test for unhandled integer overflow

Generator

Extreme /
special values

Test case
input data

Fuzz values

For each

Exception Pass

Execute on
test version

Unexpected
result

Fail
Arithmetic
overflow
exception

Execute on
release version

Other exception

Aggregation

Number of occurred integer overflows
and a list of other exceptions

Yes

Yes

Yes

No

No

No

334 J. Großmann et al.

Both test patterns from o
contain a metric which can
produce an integer overflo
uses fuzzing, the metric us
executed to calculate covera
value if the analyst confirm

5.2 First Evaluation

In the optimal case, our too
few mouse actions are requ
tests. The example shows t
have to be created manually
if well-defined test patterns

Using our tool, modeling
is great much assisted wit
based on test results. Likel
sults. Furthermore, for depe

Though our tool is in an
tive workflow. Fig. 5 shows
and to reduce dependency u

Fig. 5. Screens

Currently, our test patter
velop test patterns that are
systems and that can thoug
without manually writing c
tively few cases.

our library that are applicable to test for integer overflo
n be used to calculate the likelihood that an attacker w
w by calling the tested function. For the test pattern t
ses the total number of test cases that are generated
age. The risk graph can be updated with the new likeliho

ms it.

ol assists the risk analysts and testers so much that onl
uired to do combined risk analysis with automated secu
that no single line of code has to be written, no test ca
y and no manual interpretation of the test results is requi
 are available and applied correctly.
g of the risk graph remains a manual task. But the ana
th existing artifacts from libraries and artifacts genera
lihoods can automatically be calculated based on test
endent incidents, likelihood values can be calculated.
n early phase of development, it already provides an in
s the UI of our tool. It proves to save some amount of w
upon the skills and the judgment of the analysts and teste

shot of the tool analyzing and testing the example

rn library is pretty small and it is quite a challenge to
e general and flexible enough to be applicable for dive
gh be instantiated without lots of manual work – especia
code. Hence, practical usability is for now limited to re

ows
will
that
and
ood

ly a
urity
ases
ired

alyst
ated

re-

ntui-
work

ers.

de-
erse
ally
ela-

 Combining Risk Analysis and Security Testing 335

The tool we developed is a standalone application. However, its core is an API
which can be integrated in and used by other tools. Indeed, it will be possible to use
our tool only for parts of the combined risk analysis and security testing process.

6 Conclusion, Ongoing and Future Work

Though there are lots of technologies and tools for risk assessment and security test-
ing, applying them for large complex systems is still a challenge.

Development of the methodology and the tool described here is still in an early
stage. Our efforts are driven by case studies. These provide use cases and require-
ments inspiring our development. We plan to test and to evaluate our method and our
tool by using them within these case studies. Additionally, we will analyze the same
use cases with other existing methods and tools so that we can compare the results in
relation to the effort for the different approaches.

Our vision is that risk assessment should become a process that typically takes place in
an open collaboration. Risk analysis results and test patterns should be made accessible
for anybody as reusable artifacts. We plan to create a public open database for that pur-
pose. This data would be helpful for other developers reusing the analyzed component as
they could integrate the risk analysis artifacts in their own compositional risk assessment
for their products. Reusing the test patterns could reduce testing costs and improve test-
ing quality. The end users could benefit from such a database, too, because they could
inform themselves about the remaining risks in a standardized way.

References

1. International Organization for Standardization: ISO 31000 Risk management – Principles
and guidelines (2009)

2. International Organization for Standardization: ISO Guide 73 Risk management – Vocabu-
lary (2009)

3. Bouti, A., Kadi, D.A.: A state-of-the-art review of FMEA/FMECA. International Journal
of Reliability, Quality and Safety Engineering 1, 515–543 (1994)

4. International Electrotechnical Commission: IEC 61025 Fault Tree Analysis (FTA) (1990)
5. International Electrotechnical Commission: IEC 60300-3-9 Dependability management –

Part 3: Application guide – Section 9: Risk analysis of technological systems – Event Tree
Analysis (ETA) (1995)

6. Lund, M.S., Solhaug, B., Stølen, K.: Model-Driven Risk Analysis – The CORAS Ap-
proach. Springer (2011)

7. Lund, M.S., Solhaug, B., Stølen, K.: Evolution in relation to risk and trust management.
Computer 43(5), 49–55 (2010)

8. Kaiser, B., Liggesmeyer, P., Mäckel, O.: A new component concept for fault trees. In: 8th
Australian Workshop on Safety Critical Systems and Software (SCS 2003), pp. 37–46.
Australian Computer Society (2003)

9. Papadoupoulos, Y., McDermid, J., Sasse, R., Heiner, G.: Analysis and synthesis of the be-
haviour of complex programmable electronic systems in conditions of failure. Reliability
Engineering and System Safety 71(3), 229–247 (2001)

10. Erdogan, G., Li, Y., Runde, R.K., Seehusen, F., Stølen, K.: Conceptual Framework for the
DIAMONDS Project. Oslo (May 2012)

336 J. Großmann et al.

11. Erdogan, G., Seehusen, F., Stølen, K., Aagedal, J.: Assessing the usefulness of testing for
validating the correctness of security risk models based on an industrial case study. In:
Proc. Workshop on Quantitative Aspects in Security Assurance (QASA 2012), Pisa (2012)

12. Benet, A.F.: A risk driven approach to testing medical device software. In: Advances in
Systems Safety, pp. 157–168. Springer (2011)

13. Kloos, J., Hussain, T., Eschbach, R.: Risk-based testing of safety-critical embedded sys-
tems driven by fault tree analysis. In: Software Testing, Verification and Validation Work-
shops (ICSTW 2011), pp. 26–33. IEEE (2011)

14. Viehmann, J.: Reusing Risk Analysis Results - An Extension for the CORAS Risk Analy-
sis Method. In: 4th IEEE International Conference on Information Privacy, Security, Risk
and Trust (PASSAT 2012), Amsterdam, pp. 742–751. IEEE (2012)

15. Bach, G.J.: Heuristic Risk-Based Testing. Software Testing and Quality Engineering Mag-
azine, 96–98 (November 1999)

16. Stallbaum, H., Metzger, A.: Employing Requirements Metrics for Automating Early Risk
Assessment. In: Proceedings of the Workshop on Measuring Requirements for Project and
Product Success, MeReP 2007, at Intl. Conference on Software Process and Product Mea-
surement, Spain, pp. 1–12 (2007)

17. Stallbaum, H., Metzger, A., Pohl, K.: An Automated Technique for Risk-based Test Case
Generation and Prioritization. In: Proceedings of 3rd Workshop on Automation of Soft-
ware Test, AST 2008, Germany, pp. 67–70 (2008)

18. Bauer, T., et al.: From Requirements to Statistical Testing of Embedded Systems. In:
Software Engineering for Automotive Systems (ICSE), pp. 3–10 (2007)

19. Zimmermann, F., Eschbach, R., Kloos, J., Bauer, T.: Risk-based Statistical Testing: A Re-
finement-based Approach to the Reliability Analysis of Safety-Critical Systems. In: Pro-
ceedings of the 12th European Workshop on Dependable Computing (EWDC), France
(2009)

20. Chen, Y., Probert, R., Sims, P.: Specification-based Regression Test Selection with Risk
Analysis. In: Proceedings of the 2002 conference of the Centre for Advanced Studies on
Collaborative research (CASCON 2002), p. 1 (2002)

21. Object Management Group (OMG): UML Testing Profile, http://www.omg.org/
spec/UTP

22. Utting, M., Legeard, B.: Practical Model-based testing – A Tools Approach. Elsevier
(2007)

23. Smith, B.: Security Test Patterns (2008), http://www.securitytestpatterns.
org/doku.php

24. Vouffo Feudjio, A.-G.: Initial security test patterns catalogue. DIAMONDS project deli-
verable D3.WP4.T1

25. MITRE: Common Attack Pattern Enumeration and Classification (2014),
http://capec.mitre.org

26. MITRE: Common Weakness Enumeration (2014), http://cwe.mitre.org
27. International Organization for Standardization: ISO/IEC 29119-1 Systems and software

engineering—Software testing—Part 1: Concepts and definitions (2013)
28. Felderer, M., Haisjackl, C., Breu, R., Motz, J.: Integrating manual and automatic risk as-

sessment for risk-based testing. In: Biffl, S., Winkler, D., Bergsmann, J. (eds.) SWQD
2012. LNBIP, vol. 94, pp. 159–180. Springer, Heidelberg (2012)

29. Zech, P., et al.: Towards a model based security testing approach of cloud computing envi-
ronments. In: 2012 IEEE Sixth International Conference on Software Security and Relia-
bility Companion (SERE-C). IEEE (2012)

Risk-Based Vulnerability Testing
Using Security Test Patterns

Julien Botella1, Bruno Legeard1,2, Fabien Peureux1,2, and Alexandre Vernotte2

1 Smartesting R&D Center - 2G, Avenue des Montboucons, 25000 Besançon, France
{botella,legeard,peureux}@smartesting.com

2 Institut FEMTO-ST, UMR CNRS 6174 - Route de Gray, 25030 Besançon, France
{blegeard,fpeureux,avernott}@femto-st.fr

Abstract. This paper introduces an original security testing approach
guided by risk assessment, by means of risk coverage, to perform and au-
tomate vulnerability testing for Web applications. This approach, called
Risk-Based Vulnerability Testing, adapts Model-Based Testing techni-
ques, which are mostly used currently to address functional features.
It also extends Model-Based Vulnerability Testing techniques by driv-
ing the testing process using security test patterns selected from risk
assessment results. The adaptation of such techniques for Risk-Based
Vulnerability Testing defines novel features in this research domain. In
this paper, we describe the principles of our approach, which is based
on a mixed modeling of the System Under Test: the model used for au-
tomated test generation captures some behavioral aspects of the Web
applications, but also includes vulnerability test purposes to drive the
test generation process.

Keywords: Risk-Based Testing, Security test pattern, Model-Based Tes-
ting, Web application vulnerability, CORAS, SQL Injection.

1 Introduction

Based on the current state of the art on security and on all the security reports
like OWASP Top Ten 2013 [1], CWE/SANS 25 [2] and WhiteHat Website Se-
curity Statistic Report 2013 [3], Web applications are the most popular targets
when speaking of cyber-attacks. The fact that modern society relies on the Web
a little more everyday foregrounds the challenges of IT security, particularly in
terms of data privacy, data integrity and service availability.

The mosaic of technologies used in current Web applications (e.g., HTML5
and JavaScript frameworks) increases the risk of security breaches. This situation
has led to significant growth in application-level vulnerabilities, with thousands
of vulnerabilities detected and disclosed annually in public databases such as the
MITRE CVE - Common Vulnerabilities and Exposures [2]. The most common
vulnerabilities found on these databases especially emphasize the lack of resis-
tance to code injection of the kind SQL Injection (SQLI) or Cross-Site Scripting
(XSS), which have many variants. This kind of vulnerabilities indeed appears in
the top list of current Web applications attacks.

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 337–352, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

338 J. Botella et al.

Application-level vulnerability testing is first performed by developers, but
they often lack the sufficient in-depth knowledge in recent vulnerabilities and re-
lated exploits. This kind of tests can also be achieved by companies specialized
in security testing, in penetration testing for instance. These companies monitor
the constant discovery of such vulnerabilities, as well as the constant evolution
of attack techniques. But they mainly use manual approaches, making the dis-
semination of their techniques very difficult, and the impact of this knowledge
very low. Finally, Web application vulnerability scanners can be used to auto-
mate the detection of vulnerabilities, but since they often generate many false
positive and false negative results, human investigation is also required [4,5].

This paper proposes a Risk-Based Vulnerability Testing (RBVT) approach in
order to improve the overall level of Web application security by increasing the
accuracy and precision of security testing according to the risk assessment. To
achieve this goal, the approach consists to drive the test generation strategy using
risk metrics and relevant vulnerability test patterns, which are directly related
to risk assessment process of the System Under Test (SUT). This objective also
includes the development of a tool supporting this RBVT process in order to
automate the detection of such vulnerabilities, and therefore to get feedback
about risk assessment. Hence the main contributions of the paper relate to the
proposal of a risk-based and pattern-driven approach to generate vulnerability
test cases for Web applications. More precisely, they are the following:

– Techniques addressing both risk-based test identification, by means of vul-
nerability test patterns, and test prioritization to drive the overall testing
generation process.

– The extension of a test purpose language to drive the test generation engine
through models in order to cover the targeted vulnerability test patterns.

– The full automation, ensuring risk traceability, of the test purpose selection
(given by the risk model), test case execution and verdict assignment from
risk assessment results.

The paper is organized as follows: Section 2 introduces the context and the
principles of the RBVT approach. Section 3 details the use of the RBVT by
describing the content of the testing input artefacts, the test pattern language
and the risk-driven test generation, which is illustrated using a simple example of
Web application, namely eCinema. Related work about vulnerability detection is
discussed in Section 4. Finally, conclusion and future works are given in Section 5.

2 Context and Principles of the RBVT Approach

Model-Based Testing (MBT) [6] is a software testing approach in which both
test cases and expected results are automatically derived from an abstract model
of the SUT. MBT is usually performed to automate and rationalize functional
black-box testing. It is a widely-used approach that has gained much interest
in recent years, from academic as well as industrial domains, especially by in-
creasing and mastering test coverage, including support for certification, and by
providing the degree of automation needed for accelerating the test process [7].

Risk-Based Vulnerability Testing Using Security Test Patterns 339

More precisely, MBT techniques derive abstract test cases (including stimuli
and expected outputs) from an abstract model, and enable the generation of
executable tests from these abstract test cases. The abstract model, called test
model, formalizes the behavioural aspects of the SUT in the context of its en-
vironment and at a given level of abstraction. It thus captures the control and
observation points, the expected dynamic behaviour, the data associated with
the tests, and finally the initial state of the SUT. The test cases generated from
such models allow to validate the functional aspects of the SUT by comparing
back-to-back the results observed on the SUT with those specified by the model.
Therefore MBT aims to ensure that the final product conforms to the initial
functional requirements. However, if these techniques are used to cover the func-
tional requirements specified in the test model of the SUT, they are also limited
to this scope since what is not modeled cannot be tested.

The proposed approach to perform vulnerability testing is based on MBT
process, and is thus composed of the four activities depicted in Figure 1:

① the Test Purposes activity consists of formalizing test purposes from vulne-
rability test goals that the generated test cases have to cover;

② the Modeling activity aims to define a model that captures the behavioral
aspects of the SUT in order to generate consistent (from a functional point
of view) sequences of stimuli;

③ the Test Generation activity comprises the automated production of abstract
test cases from the artefacts defined during the two previous activities;

④ the Adaptation, Test Execution and Observation activity aims (i) to translate
the generated abstract test cases into executable scripts, (ii) to execute these
scripts on the SUT, (iii) to observe the SUT responses and to compare them
to the expected results in order to assign the test verdict and automate the
detection of vulnerabilities.

Test
Purposes

Model

Vulnerability
Test

Patterns

Adaptation

Security Test Engineer

Test Execution

1

2

Automated
Test

Generation

3

4

Vulnerability
Tests

SUT

Functionnal
Specification

Legend :

Fig. 1. Model-based vulnerability testing process

For a further description of each activities of this model-based vulnerability
testing process, a detailed presentation can be found in [8].

340 J. Botella et al.

All these activities are supported by a dedicated toolchain, which is based
on an existing MBT software named CertifyIt [9] provided by the company
Smartesting1. This software is a test generator that takes as input a test model,
written with a subset of UML/OCL (called UML4MBT [10]), which captures
the behavior of the SUT. Concretely, a UML4MBT test model consists of (i)
UML class diagrams to represent the static view of the system (with classes,
associations, enumerations, class attributes and operations), (ii) UML Object
diagrams to list the concrete objects used to compute test cases and to define
the initial state of the SUT, and (iii) state diagrams (annotated with OCL con-
straints) to specify the dynamic view of the SUT. OCL expressions provide the
expected level of formalization necessary for model-based testing modeling since
an operational interpretation of OCL postconditions makes it possible to de-
termine its effect (this specific interpretation of OCL, called OCL4MBT [10],
basically consists to interpret OCL equality as an assignment). That is why such
UML4MBT test models have a precise and unambiguous meaning, so that these
models can be understood and processed by the CertifyIt technology. This pre-
cise meaning makes it possible to simulate the execution of the test models and
to automatically generate test cases by applying predefined coverage strategies
or by applying test directives formalized by a dedicated test purpose language.

A test purpose is a high-level expression that formalizes a test intention linked
to a test objective to drive the automated test generation on the test model. This
is a textual language based on regular expressions, allowing the formalization
of vulnerability test intention in terms of states to be reached and operations
to be called. This test purpose language has been originally designed to drive
model-based test generation for security components, typically Smart card ap-
plications and cryptographic components [11]. This test purpose language has
been extended to be able to formalize typical vulnerability test patterns for Web
applications in conjunction with generic and specific test models.

Each of such generated test cases is typically an abstract sequence of high-level
actions (operations) specified in the UML4MBT test models. These generated
test sequences contain the sequence of stimuli to be executed, but also the ex-
pected results (to perform the observation activity), obtained by resolving the
associated OCL4MBT constraints. About this vulnerability testing process, it
should be noted that, within the traditional MBT process that allows to gener-
ate functional test cases, positive test cases are computed to validate the SUT
in regards to its functional requirements. We call “positive test” a test case that
checks whether a sequence of stimuli produces the expected effects with regards
to the specifications. When a positive test is in success, it demonstrates that the
tested scenario is implemented correctly. Within vulnerability testing approach,
“negative test cases” have to be produced: typically, attack scenarios to obtain
data from the SUT in an unauthorized manner. A negative test case thus targets
an unexpected use of the SUT in order to show that the SUT allows something
that it is not supposed to allow. In our approach, when a negative test case
succeeds, it highlights a problem in the SUT.

1 http://www.smartesting.com

http://www.smartesting.com

Risk-Based Vulnerability Testing Using Security Test Patterns 341

We propose to drive this vulnerability testing process by risk assessment in
order to perform and automate risk-based testing for Web applications. Risk
& requirements-based testing was originally the title of an article from James
Bach [12]. This article was underlining the creative aspects of software testing
to manage stated and unstated requirements depending on risks associated with
the SUT. Risk may be defined as the combination of the impact of the severity
(consequence) and the likelihood (probability) of a hazardous failure of the SUT.
A risk-based testing management method focuses on risk assessment and test
prioritization based on requirements. Within MBT, this approach influences the
entire testing process, and has the following impacts:
– Risk analysis drives the development and maintenance of test generation

artefacts: the level of detail as well as the scope of test generation models
are determined according to established priorities. This impacts the test
models, which have to capture risk aspects besides functional features.

– During the test generation phase, test selection criteria applied on the test
models are specified to cover risk and priorities for requirements coverage.

Therefore, MBT allow to implement risk-based testing in the modeling phase
by adapting modeling effort to risk analysis and assessment, and in the test
generation phase by adapting test selection criteria to risk-based test priorities.
RBVT aims to integrate the existing model-based vulnerability testing approach
with risk-based testing approach. Concretely, it consists somehow to drive the
test generation regarding risk assessment results and using dedicated vulnerabi-
lity test patterns. The RBVT overall testing process is depicted in Figure 2.

Fig. 2. Risk-Based Vulnerability Testing overall process

RBVT process starts by risk analysis, for example with an approach such as
CORAS [13], which provides a customized language for threat and risk modeling.
Security test patterns based on identified and prioritized vulnerabilities from the
risk analysis provide a starting point for test case generation: they indeed link
the risk analysis results and security testing goal by providing information how
relevant vulnerability test cases can be derived from risk assessment.

342 J. Botella et al.

In order to generate these expected vulnerability test cases, test cases are
automatically derived from a formalization of the security test patterns using
the test purpose language. Finally, the last step consists to export the abstract
test cases into an execution environment, in which they are concretized using
a dedicated adaptation layer to be executed. Moreover, this process makes it
possible to manage the traceability between the targeted security test patterns
(formalized with test purposes) and the associated generated test cases. This
management is performed through the automated generation, during the test
generation process, of a traceability matrix that links vulnerabilities to generated
test cases. To support this RBVT process, the CertifyIt technology has been
extended by the following developments:

– Import of the risk analysis results. It enables to select the related test pur-
poses and to prioritize them regarding risk identification and estimation.

– Test purpose language extensions. On the one hand, the definition of keywords
enables to provide generic Test Purposes related to security test patterns, and
to help for maintenance and reuse. On the other hand, a mechanism to link a
Test Purpose to a requirement identifier has been created to ensure the tra-
ceability through the all test generation process.

– Test Purpose catalogue import/export. It makes it possible to reuse and
apply generic Test Purposes on several SUT.

3 Applying the RBVT Approach

In this section, we detail each activity of the process introduced in Figure 2,
including the features introduced at the end of the previous section. For each
activity, we present its objectives as well as the tooling that automates it. The
eCinema running example is used to illustrate our statements. Basically, eCinema
is a simple Web application that allows a customer to buy tickets on line before
to go to his favorite cinema. The welcome screen, depicted in Figure 3, displays
the list of available movies and show times.

Fig. 3. eCinema welcome screen

Risk-Based Vulnerability Testing Using Security Test Patterns 343

Before selecting tickets, a user should be logged to the system. This requires
a registration. A registration is valid when a user gives a name (not already
used) and a valid password. A valid new registration implies that the user is
automatically logged in. When logged in, the user can buy tickets. If tickets are
available, he can buy some of them and see his basket to verify his selection.
When checking his selection, the user can delete tickets and then the number of
available tickets for the session is automatically updated.

3.1 Selection and Prioritization of Vulnerabilities from Risk
Analysis

The starting point of the process is the identification and prioritization of the
vulnerabilities, which are defined by a risk analysis activity. These results are
indeed used to drive the test generation strategy. Our approach is based on
the CORAS risk assessment method [13]. CORAS is a model-driven method for
risk analysis featuring a tool-supported modelling language especially designed
to model risks that are common for a large number of systems. Such models
serve as a basis to perform risk identification and prioritization. For example,
Figure 4 shows an example of CORAS threat diagram describing SQL Injection
vulnerability that can occur when a user is logging the eCinema Web application.
In this context, due to the insufficient user validation threat, SQL Injection
successful is a threat scenario and can lead to the unwanted incident defined
by the disclosure of confidential information. The likelihood of the threat is
considered as possible and its consequence moderate.

Fig. 4. CORAS model example for SQL Injection vulnerability

Each identified threat scenario is linked to a dedicated vulnerability test pat-
tern (vTP). A vTP defines the testing procedure allowing the detection of the
corresponding threat in a Web application. There are as much vTP as there are
types of application-level breaches. The ITEA2 DIAMONDS2 research project
provided a first definition, as well as a first listing of vTP [14], which has been
2 http://www.itea2-diamonds.org

http://www.itea2-diamonds.org

344 J. Botella et al.

Name SQL Injection
CWE-ID(s) CWE-89
Description The software constructs all or part of an SQL

command using externally-influenced input from
an upstream component, but it does not neutral-
ize or incorrectly neutralizes special elements that
could modify the intended SQL command when
it is sent to a downstream component.

Objective(s) Based on attack pattern CAPEC-66
1. Use the application, client or Web browser to
inject SQL constructs input through text fields or
through HTTP GET parameters.
2. Use a possibly modified client application or
Web application debugging tool such to submit
SQL constructs for submitted values or to modify
HTTP POST parameters, hidden fields, non-free
form fields, etc.
3. Check for error messages, delays, disclosed val-
ues in the client application and new / modified
/ deleted values in the database. Detect if a user
input can embed malicious datum enabling a Re-
flected XSS attack.

Test Data SQL Injection Cheat Sheet
... ...
References OWASP Top 10 (2013): A1-Injection, CAPEC-

7: Blind SQL Injection, CAPEC-66: SQL Injec-
tion, OWASP Testing Guide: Testing for SQL In-
jection (OWASP-DV-005), OWASP: Automated
Audit using SQLMap

Fig. 5. Vulnerability test pattern for SQL Injection

extended for test generation needs. Figure 5 presents an excerpt of the vulnera-
bility test pattern defining the SQL Injection.

The vulnerability test patterns that have to be used by the test generation
algorithm are gathered from the threat scenarios of each CORAS model related
to the SUT. Moreover, likelihood and consequence are also collected from the
CORAS model to assign a priority to the threat scenarios, and thus to prioritize
them. Figure 6 shows the risk assessment matrix that enables to set such priority.

Fig. 6. Risk evaluation matrix

The assigned priority level (from 1 to 5) will be used during test case gene-
ration to select the coverage of the test purpose (priority 1 defines the lower
coverage and so less generated test cases, whereas priority 5 defines the higher
coverage and so more generated test cases). The CWE identifiers and the

Risk-Based Vulnerability Testing Using Security Test Patterns 345

corresponding priority levels are then exported to CertifyIt in order to drive
the test generation process, which is presented in the next subsections.

3.2 Formalizing Vulnerability Test Patterns into Test Purposes

In the test generation tool, dedicated and generic test purposes make it possible
to formalize each vTP imported from risk assessment. A test purpose is a high
level expression that formalizes a test intention linked to a test objective to drive
the automated test generation on the test model. It allows the formalization of
vulnerability test intention in terms of states to be reached and operations to be
called. The language relies on combining keywords, to produce expressions that
are both powerful and easy to read. Basically, a test purpose is a sequence of
major stages to be reached. A stage is a set of operations or behaviors to use,
or/and a state to reach. Transforming the sequence of stages into a complete
test case, based on the test model, is left to the MBT technology (more details
will be given in subsection 3.4). Furthermore, at the beginning of a test purpose,
are defined iterators that are used in the stages in order to introduce context
variations (the threat priority exported from CORAS model is then used to set
a given level of variation combinations). Each combination of possible values of
iterators produces a specific test case.

Figure 7 shows the instantiated test purpose formalizing the vTP of Figure 5.
This schema precises that for all malicious data enabling the detection of SQL
Injection and from all sensible Web pages, it is required to do the following
actions: (i) use any operation to activate the sensible page, (ii) inject malicious
data in all the user inputs of the page, (iii) check if the page is sensible to the
attack. The keywords ALL_* define enumerations of values allowing to master
the final amount of test cases regarding test priority.

Fig. 7. Test purpose formalizing the SQL Injection vTP (of Figure 5)

Finally, variants of malicious data are defined during the modeling activity,
variants of the procedure are defined during the adaptation and execution ac-
tivity. In order to generate tests from models, the test purposes is used in con-
junction with the test model, which is introduced in the next subsection.

3.3 Modeling

As for every MBT approach, the modeling activity consists of designing a test
model that will be used as basis to generate the abstract test cases. This model
uses the UML notation to represent the Web application to be tested. We will

346 J. Botella et al.

see that some parts of the model are generic and re-usable for modeling any Web
applications, while some other parts are specific to the Web application that is
considered. We present in the following the used UML diagrams (classes, objects,
statechart diagrams), and their respective use in the context of our approach.

Class diagrams specify the static aspect of the model, by defining in an ab-
stract manner the structure and entities managed by the SUT. Classes model
business objects. Associations model relations between business objects. Enu-
merations model sets of abstract values, and literals model each value. Class
attributes model evolving characteristics of business objects. Class operations
model points of control and observation of the SUT (we describe here the nav-
igation between pages). In the context of Web applications, the model presents
some generic parts, shown in Figure 8, which are the same for all considered
Web applications:
– four classes (WebAppStructure, Page, Action and Data) and their associa-

tions respectively model the general structure of the application, the avail-
able pages (or screens in case single-URL applications), the available actions
on each page, and the user inputs of each action potentially used to inject
an attack vector (i.e. malicious data to perform the attack). The login page
of an application is modeled using:
• a particular ’Login’ Page, modeling the application’s login page;
• a particular ’Login’ Action, modeling the sending of the form to the server
• two particular Data, modeling the user’s name and password

– the Threat class models the potential threats: its operations injectXSS() and
checkXSS() model the means to exercise and observe the attack.

Fig. 8. Generic class diagram of the SUT structure

Figure 9 presents the class model of the eCinema example. These classes are
eCinema specific classes, and are in addition to the generic classes presented in
Figure 8. This class diagram displays the additional classes ECinema and User
to respectively model the SUT and its potential users.

The UML statechart diagram graphically represents the behavioral aspect of
the SUT, modeling the navigation between pages in the Web applications. States
model Web pages, and transitions model the available links between these Web
pages (HTML links, form submissions, etc.). Triggers of transitions are the UML
operations of the SUT class. Guards of transitions (specified using OCL4MBT)
precisely define the execution context of the transition. Finally, the effects of
the transitions (also specified using OCL4MBT) precisely describe its expected
behavior that should be modeled for vulnerability test generation. Figure 10
presents the statechart diagram of the eCinema example.

Risk-Based Vulnerability Testing Using Security Test Patterns 347

Fig. 9. eCinema-specific class diagram

Fig. 10. eCinema statechart diagram

The UML object diagram models the initial state of the SUT by instantiating
the class diagram: the instances model business entities available at the initial
state, and the links instantiate the associations between these instances. In our
approach, the object diagram models the Web pages and the user inputs of these
pages. Figure 11 presents the initial state of the eCinema example. It specifies:
(a) one user, with its credentials, and (b) the pages and user inputs of eCinema.

These last two parts (namely, the statechart diagrams and the object dia-
grams) are necessarily specific to each considered application.

Fig. 11. eCinema object diagram for the initial state

348 J. Botella et al.

3.4 Test Generation and Execution

The main purpose of the test generation activity is to produce test cases from
both the model and the test purposes. Three phases compose this activity. The
first phase transforms the model and the test purposes into elements computable
by the CertifyIt MBT tool. Notably, test purposes are transformed into test tar-
gets, which can be seen as a sequence of intermediate objectives used by the
symbolic generator. Hence, the sequence of stages of a test purpose is mapped
to a sequence of intermediate objectives of a test target. Furthermore, this first
phase manages the combination of values between iterators of test purposes, such
that one test purpose produces an amount of test targets depending of the prior-
ity level calculated during risk assessment. The generator respectively calculates
the first N combinations such that N = maxCombination/(5 − priority + 1)
where maxCombination and priority respectively denote the maximum amount
of possible combinations and the priority level. For example, if the priority is 5
(the higher), all the combinations of values between iterators are expanded.

The second phase produces the abstract test cases from the test targets. This
phase is left to the test case generator. An abstract test case is a sequence of steps,
where a step corresponds to a completely valued operation call. An operation call
represents either a stimulation or an observation of the SUT. Each test target
produces one test case (i) verifying the sequence of intermediate objectives and
(ii) verifying the model constraints. Note that an intermediate objective (and
hence, a test purpose stage) can be transformed into several steps.

Finally, the third phase exports the abstract test cases into the execution
environment. In our case, it consists of (i) creating a JUnit test suite, where
each abstract test case is exported as a JUnit test case, and (ii) creating an
interface. This interface defines the prototype of each operation of the SUT. The
implementation of these operations is in charge of the test automation engineer.

In the test model, all data used by the application (page, user input field, ma-
licious datum, user credentials, etc.) are specified in an abstract way. Hence, the
test suite cannot be executed as it is. The gap between abstract keywords used
in abstract test cases and the real API of the SUT must be filled. Stimuli must
also be adapted. When exporting abstract test cases, the MBT tool provides an
interface defining each operation signature. The test automation engineer is in
charge to implement the automated execution of each operation of this interface.
Since we are testing Web applications, two ways of automation are proposed:

– the GUI level: we stimulate and observe the application via the client-side
GUI of the application. Even if this technique is time consuming, it could
be necessary when the client-side part of the application embeds JavaScript
scripts. For this technique, Selenium framework is used.

– the HTTP level: we stimulate and observe the application via HTTP mes-
sages send to (and received from) the server-side application. This technique
is extremely fast and can be used to bypass HTML and JavaScript limita-
tions. For this technique, we are using the Apache HTTPClient Java library.

Risk-Based Vulnerability Testing Using Security Test Patterns 349

4 Related Work

Related work on vulnerability detection can be classified into two categories:
static and dynamic analysis security testing. Static Application Security Tes-
ting (SAST) are white-box approaches including source, byte and object code
scanners and static analysis techniques. Dynamic Application Security Testing
(DAST) includes black-box web application scanners, fuzzing techniques and
emerging model-based security testing approaches. In practice, these techniques
are complementary, addressing different types of vulnerabilities. For example,
SAST techniques are known to be efficient to detect buffer overflow and badly
formatted string, but weak to detect SQLI, XSS or CSRF vulnerabilities. RBVT
is a dynamic testing technique, so this section focuses on DAST techniques by
providing a state of the art of emerging model-based security testing techniques.

Web application vulnerability scanners aim to detect vulnerabilities by injec-
ting attack vectors. These tools generally include three main components [15]: a
crawler module to follow Web links and URLs in the Web applications in order
to retrieve injection points, an injection module which analyzes Web pages, input
points to inject attack vectors (such as SQL Injection), and an analysis module
to determine possible vulnerabilities based on the system response after attack
vector injection. As shown in recent comprehensive studies [16,17], corroborated
by research papers [4,5] and confirmed by our own experience with tools such
as IBM AppScan3, these tools suffer from two major weaknesses that highly
decrease their practical usefulness:

– Limitations in application discovery As black-box Web vulnerability
scanners ignore any request that can change the state of the Web applica-
tions, they miss large parts of the application. Therefore, these tools test
generally a small part of the Web applications due to the ignorance of the
application behavioral “intelligence”. Due to the growing complexity of the
Web applications, they have trouble dealing with specific issues such as in-
finite Web sites with random URL-based session IDs or automated form
submission.

– Generation of many false positive results The already-mentioned bench-
mark shows that a common drawback of these tools is the generation of false
positives at a very important rate either for Reflected XSS, SQL Injection
or Remote File Inclusion vulnerabilities. The reason is that these tools use
brute force mechanisms to fuzz the input data in order to trigger vulnera-
bilities and establish a verdict by comparison to a reference execution trace.
Therefore, they lack precision to assign the verdict, as they do not compute
the topology of the Web applications to precisely know where to observe.

These strong limitations of existing Web vulnerability scanners lead to the
key objectives of model-based vulnerability testing techniques: better accuracy in
vulnerability detection, both by better covering the application (by capturing the
behavioral intelligence) and by increasing the precision of the verdict assignment.
3 http://www.ibm.com/software/awdtools/appscan/

http://www.ibm.com/software/awdtools/appscan/

350 J. Botella et al.

In this way, model-based security testing are emerging techniques aiming to
leverage model-based approaches for security testing [18]. This includes:

– Model-based test generation from security protocol, access-control
or security-oriented models. Various types of models of security aspects
of the SUT have been considered as input to generate security test. For
example, [19] proposes a method using security protocol mutation to infer
security test cases. [20] develops a model-based security test generation ap-
proach from security models in UMLSec. [21] presents a methodology to
exploit a model describing a Web application at the browser level to guide
a penetration tester in finding attacks based on logical vulnerabilities.

– Model-based fuzzing. This approach applies fuzzing operator in conjunc-
tion with models. Fuzzing techniques relate to the massive injection of invalid
or atypical data (for example by randomly corrupting an XML file) generally
by using a randomized approach [22]. Test execution results can therefore
expose various invalid behaviors such as crash effects, failing built-in code
assertions or memory leaks. [23] proposes an approach that generates in-
valid message sequences instead of invalid input data by applying behavioral
fuzzing operators to valid message UML sequence diagrams.

– Model-based test generation from weakness or attack models. Test
cases are generated using threat, vulnerability or attacker models, which re-
flects the attack steps and the required associated data. For example, in [24],
threats of security policies modeled with UML sequence diagrams allow to
extract event sequences that should not occur during the system execution.

Complementary to these model-based techniques for security testing, our
Risk-Based Vulnerability Testing approach is based on a model that captures
functional behavioral features of the SUT, but also specifies the fields that al-
low possible attacks. This feature enables to generate more accurate test cases.
Moreover, contrary to functional MBT, the proposed RBVT process is directly
driven by the risk analysis (with CORAS) and the vulnerability test patterns,
so that the behavioral model is restricted to the only elements that are needed
to compute risk-based vulnerability test cases.

5 Conclusion and Future Works

This paper has introduced the RBVT approach, that integrates techniques ad-
dressing both risk-based test identification and test prioritization to drive the
overall model-based testing generation process. System requirements are used to
write the UML test model, while the CORAS security model (in relation with
associated generic test pattern catalogue) enables to define selected test pur-
poses and to prioritize them regarding risk assessment. The UML test model
completed with selected test purposes defines the input of the test generation
tool CertifyIt, which automatically derives abstract risk-based vulnerability test
cases and next test scripts that can be executed on the SUT. The overall pro-
cess ensures the traceability between the generated test cases and the targeted
vulnerabilities identified during risk assessment.

Risk-Based Vulnerability Testing Using Security Test Patterns 351

To achieve and automate this process, we have developed and extended the ex-
isting MBT toolchain, based on CertifyIt, in order to manage the risk treatment
by applying appropriate testing strategies regarding risk assessment. Concretely,
the generation of test cases is driven by the risk assessment results, in terms of
system perimeter, type of vulnerabilities and associated risk level.

The future work leads in three main research directions: (1) extending the
method by covering more vulnerability classes, both technical (such as CSRF,
file disclosure and file injection) and logical (such as the integrity of data over
applications business processes). We will also (2) investigate methods to gather
and aggregate test results, which could be used to automatically complement the
risk assessment picture. This feature is indeed enabled by the risk traceability
matrix from/to generated test cases and vulnerability objectives. Finally, we
want to (3) study the scalability of the testing process to address large scale
systems. To reach this goal, we propose to define and support a compositional
testing approach by proposing a model composition strategy.

Acknowledgements. The evolution of Smartesting technology to support this
risk-based vulnerability test generation is mostly developed within the Euro-
pean FP7 project RASEN4, which aims to provide risk-based security testing
techniques for large-scale networked systems.

References

1. Wichers, D.: Owasp top 10 (October 2013), https://www.owasp.org/index.php/
Category:OWASP_Top_Ten_Project (last visited: February 2014)

2. MITRE: Common weakness enumeration (October 2013), http://cwe.mitre.org/
(last visited: February 2014)

3. Whitehat: Website security statistics report (October 2013), https://www.
whitehatsec.com/assets/WPstatsReport_052013.pdf (last visited: February
2014)

4. Doupé, A., Cova, M., Vigna, G.: Why Johnny can’t pentest: An analysis of black-
box web vulnerability scanners. In: Kreibich, C., Jahnke, M. (eds.) DIMVA 2010.
LNCS, vol. 6201, pp. 111–131. Springer, Heidelberg (2010)

5. Finifter, M., Wagner, D.: Exploring the relationship between web application de-
velopment tools and security. In: Proc. of the 2nd USENIX Conference on Web Ap-
plication Development (WebApps 2011), Portland, OR, USA, pp. 99–111. USENIX
Association (June 2011)

6. Utting, M., Legeard, B.: Practical Model-Based Testing - A tools approach. Morgan
Kaufmann, San Francisco (2006)

7. Dias-Neto, A., Travassos, G.: A Picture from the Model-Based Testing Area: Con-
cepts, Techniques, and Challenges. Advances in Computers 80, 45–120 (2010),
ISSN: 0065-2458

8. Lebeau, F., Legeard, B., Peureux, F., Vernotte, A.: Model-Based Vulnerability
Testing for Web Applications. In: Proc. of the 4th Int. Workshop on Security
Testing (SECTEST 2013), Luxembourg, pp. 445–452. IEEE CS Press (March 2013)

4 http://www.rasenproject.eu/

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://cwe.mitre.org/
https://www.whitehatsec.com/assets/WPstatsReport_052013.pdf
https://www.whitehatsec.com/assets/WPstatsReport_052013.pdf
http://www.rasenproject.eu/

352 J. Botella et al.

9. Bouquet, F., Grandpierre, C., Legeard, B., Peureux, F.: A test generation solution
to automate software testing. In: Proc. of the 3rd Int. Workshop on Automation of
Software Test (AST 2008), Leipzig, Germany, pp. 45–48. ACM Press (May 2008)

10. Bouquet, F., Grandpierre, C., Legeard, B., Peureux, F., Vacelet, N., Utting, M.: A
subset of precise UML for model-based testing. In: Proc. of the 3rd Int. Workshop
on Advances in Model-Based Testing (AMOST 2007), London, UK, pp. 95–104.
ACM Press (July 2007)

11. Botella, J., Bouquet, F., Capuron, J.F., Lebeau, F., Legeard, B., Schadle, F.:
Model-Based Testing of Cryptographic Components – Lessons Learned from Ex-
perience. In: Proc. of the 6th Int. Conference on Software Testing, Verification and
Validation (ICST 2013), Luxembourg, pp. 192–201. IEEE CS (March 2013)

12. Bach, J.: Risk and Requirements-Based Testing. Computer 32(6), 113–114 (1999)
13. Lund, M.S., Solhaug, B., Stølen, K.: Model-Driven Risk Analysis: The CORAS

Approach, 1st edn. Springer Publishing Company, Incorporated (2010)
14. Vouffo Feudjio, A.G.: Initial Security Test Pattern Catalog. Public De-

liverable D3.WP4.T1, Diamonds Project, Berlin, Germany (June 2012)
http://publica.fraunhofer.de/documents/N-212439.html (last visited: Febru-
ary 2014)

15. Bau, J., Bursztein, E., Gupta, D., Mitchell, J.: State of the Art: Automated Black-
Box Web Application Vulnerability Testing. In: Proc. of the 31st Int. Symp. on
Security and Privacy (SP 2010), Oakland, CA, USA, pp. 332–345. IEEE CS (May
2010)

16. Allan, D.: Web application security: automated scanning versus manual penetra-
tion testing. IBM White Paper (2008) ftp://ftp.software.ibm.com/software/
rational/web/whitepapers/r_wp_autoscan.pdf (last visited: February 2014)

17. SecToolMarket: Price and Feature Comparison of Web Application Scanners
(February 2014), http://www.sectoolmarket.com/ (last visited: February 2014)

18. Schieferdecker, I., Grossmann, J., Schneider, M.: Model-based security testing. In:
Proc. of the 7th Int. Workshop on Model-Based Testing (MBT 2012), Tallinn,
Estonia. EPTCS, vol. 80, pp. 1–12. Open Publishing Association (March 2012)

19. Dadeau, F., Héam, P.-C.: Kheddam, R.: Mutation-Based Test Generation from
Security Protocols in HLPSL. In: Proc. of the 4th Int. Conf. on Software Testing,
Verification and Validation, Berlin, Germany, pp. 240–248. IEEE CS (March 2011)

20. Jürjens, J.: Model-based Security Testing Using UMLsec: A Case Study. The Jour-
nal of Electronic Notes in Theoretical Computer Science (ENTCS) 220(1), 93–104
(2008)

21. Buchler, M., Oudinet, J., Pretschner, A.: Semi-Automatic Security Testing of Web
Applications from a Secure Model. In: Proc. of the 6th Int. Conference on Software
Security and Reliability (SERE 2012), Gaithersburg, MD, USA, pp. 253–262. IEEE
CS (June 2012)

22. Takanen, A., De Mott, J., Miller, C.: Fuzzing for Software Security Testing and
Quality Assurance. Artech House, Inc., Norwood (2008)

23. Schneider, M., Großmann, J., Tcholtchev, N., Schieferdecker, I., Pietschker, A.: Be-
havioral Fuzzing Operators for UML Sequence Diagrams. In: Haugen, Ø., Reed, R.,
Gotzhein, R. (eds.) SAM 2012. LNCS, vol. 7744, pp. 88–104. Springer, Heidelberg
(2013)

24. Wang, L., Wong, E., Xu, D.: A threat model driven approach for security testing.
In: Proc. of the 3rd Int. Workshop on Software Engineering for Secure Systems
(SESS 2007), Minneapolis, MN, USA. IEEE CS (May 2007)

http://publica.fraunhofer.de/documents/N-212439.html
ftp://ftp.software.ibm.com/software/rational/web/whitepapers/r_wp_autoscan.pdf
ftp://ftp.software.ibm.com/software/rational/web/whitepapers/r_wp_autoscan.pdf
http://www.sectoolmarket.com/

Medical Cyber-Physical Systems
(Track Introduction)

Ezio Bartocci1, Sicun Gao2, and Scott A. Smolka3

1 Vienna University of Technology, Austria
2 Carnegie Mellon University, USA

3 Stony Brook University, USA

1 Introduction

Rapid progress in modern medical technologies has led to a new generation of health-
care devices and treatment strategies. Examples include electro-anatomical mapping
and intervention, bio-compatible and implantable devices, minimally invasive embed-
ded devices, and robotic prosthetics.

Medical Cyber-Physical Systems (CPS) refer to modern medical technologies in
which sophisticated and highly complex embedded systems equipped with network
communication capabilities, are responsible for monitoring and controlling the physical
dynamics of patients’ bodies. These systems share a key characteristic: the tight integra-
tion of digital computation, responsible for control and communication in discrete-time,
with a physical system, obeying laws of physics and evolving in continuous-time.

Malfunctioning of these devices can do great harm to human health. The verifica-
tion, validation and certification of their reliability and safety are extremely important
and still very challenging tasks, owing to the complexity of the involved interactions.
Research in formal methods is leading to mathematically rigorous techniques for ensur-
ing the correct design and implementation.

The behavior of Medical CPS is characterized by the nonlinear interaction between
discrete (computing device) and continuous phenomena (the patient’s body). For this
reason, research on hybrid systems verification [6,8,11,12,5] plays a key role in analysing
such systems. Furthermore, the modelling and the efficient simulation of the patient body
is becoming very important for the design and validation of Medical CPS and for the
development of personalised treatment strategies.

GPGPUs (General-Purpose Computing on Graphics Processing Units) are increas-
ingly being used to achieve simulation speeds [3,18] in near real-time for complex spa-
tial patterns indicative of cardiac arrhythmic disorders. Real-time simulation of organs
without the need for supercomputers may soon facilitate the adoption of model-based
clinical diagnostics and treatment planning. This will reduce also the number of exper-
iments and tests, reducing the discomfort for the patient and legal issues.

The availability of software and hardware accelerators (such as FPGA) for real-
time verification (monitoring) of signals, makes this approach very attractive also in
medicine, for instance to monitor the ECG signal [2] or the flow/pressure curves of
assisted ventilation of a patient in intensive care [7]. Formal specification languages,
such as Temporal Logics (TL), have proved to be a powerful and natural framework

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 353–355, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

354 E. Bartocci, S. Gao, and S.A. Smolka

to describe complex temporal properties of systems [10]. In this context, one impor-
tant research challenge will be to combine machine learning and model checking tech-
niques [14,1] to learn from a training set of data the TL specifications that can better
discriminate normal physiological behaviors from critical ones [2].

2 Overview of the Session Papers

The session consisted of five contributed papers. The paper by Grosu et al. [13] offers
an insight of a joint US project proposal, that involves several american universities
and institutions, on the development of a model-based design framework for medical
devices to verify and to test the safety and efficacy of device software for implantable
cardiac devices such as pacemakers and defibrillators. In the last twenty years the rate
of software failures of all medical devices recalled from the market have more than dou-
bled. Thus, there is a great need of a formal design methodology or open experimental
platforms that can be used to ensure the correct operation of medical devices within the
physiological closed-loop context.

On the same line of research is the paper by Kwiatkowska et al. [15]. This contribution
gives an overview of a model-based framework developed on hybrid automata [4,14] to
support a range of quantitative verification techniques [8,16] for the analysis of safety,
reliability and energy usage of pacemakers. This framework aims also to provide tech-
niques for parametric analysis of personalised physiological properties to test in silico
new implantable device designs on patients, thus reducing the cost and discomfort.

The paper by Clarke et al. [9] presents the research in progress of the authors on
model checking of safety-critical hybrid systems involving both discrete and continuous
behaviors, such as medical devices of various sorts. Current industrial model checkers
do not scale to handle realistic hybrid systems. The key idea proposed in this paper
is to handle more complex systems by combining existing discrete methods in model
checking with new algorithms based on computable analysis.

The paper by Leucker et al. [17] presents some open research and technical chal-
lenges, legal issues and proposed solutions concerning the integration testing required
when medical devices produced by different manufacturers need to be interconnected.
Medical CPS, especially when operated in the surgery room, are safety critical systems,
upon which the patient’s life may depend. Hence, the certification of a well-behave in-
tegration may have a tremendous economical impact, reducing the life-threatening risks
for the patients.

Finally, the paper by Bufo et al. [7] introduces a novel approach to automatically
detect ineffective breathing efforts in patients in intensive care subject to assisted ven-
tilation. The method is based on synthesising from data temporal logic formulae which
are able to discriminate between normal and ineffective breaths.

References

1. Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: On the robustness of temporal proper-
ties for stochastic models. In: Proc. of HSB 2013. EPTCS, vol. 125, pp. 3–19 (2013)

2. Bartocci, E., Bortolussi, L., Sanguinetti, G.: Data-driven statistical learning of temporal logic
properties. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 23–37.
Springer, Heidelberg (2014)

Medical Cyber-Physical Systems 355

3. Bartocci, E., Cherry, E.M., Glimm, J., Grosu, R., Smolka, S.A., Fenton, F.H.: Toward real-time
simulation of cardiac dynamics. In: Proc. of CMSB 2011, pp. 103–112. ACM (2011)

4. Bartocci, E., Corradini, F., Di Berardini, M.R., Smolka, S.A., Grosu, R.: Modeling and simula-
tion of cardiac tissue using hybrid I/O automata. Theor. Comput. Sci. 410(33-34), 3149–3165
(2009)

5. Bartocci, E., Corradini, F., Entcheva, E., Grosu, R., Smolka, S.A.: CellExcite: An efficient
simulation environment for excitable cells. BMC Bioinformatics 9(suppl. 2), S3 (2008)

6. Bartocci, E., Liò, P., Merelli, E., Paoletti, N.: Multiple verification in complex biological sys-
tems: The bone remodelling case study. T. Comp. Sys. Biology 14, 53–76 (2012)

7. Bufo, S., Bartocci, E., Sanguinetti, G., Borelli, M., Lucangelo, U., Bortolussi, L.: Tempo-
ral logic based monitoring of assisted ventilation in intensive care patients. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp. 393–405. Springer, Heidelberg
(2014)

8. Chen, T., Diciolla, M., Kwiatkowska, M., Mereacre, A.: Quantitative verification of im-
plantable cardiac pacemakers over hybrid heart models. Inf. and Comp. 236, 87–101 (2014)

9. Clarke, E.M., Gao, S.: Model checking hybrid systems. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2014, Part II. LNCS, vol. 8803, pp. 387–388. Springer, Heidelberg (2014)

10. Donzé, A., Maler, O., Bartocci, E., Nickovic, D., Grosu, R., Smolka, S.: On temporal logic
and signal processing. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561,
pp. 92–106. Springer, Heidelberg (2012)

11. Gao, S., Kong, S., Clarke, E.M.: dReal: An SMT solver for nonlinear theories over the re-
als. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 208–214. Springer,
Heidelberg (2013)

12. Grosu, R., Batt, G., Fenton, F.H., Glimm, J., Le Guernic, C., Smolka, S.A., Bartocci, E.:
From cardiac cells to genetic regulatory networks. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 396–411. Springer, Heidelberg (2011)

13. Grosu, R., et al.: Compositional, approximate, and quantitative reasoning for medical cyber-
physical systems with application to patient-specific cardiac dynamics and devices. In:
Chakraborty, S., Mukund, M. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp. 360–365.
Springer, Heidelberg (2014)

14. Grosu, R., Smolka, S.A., Corradini, F., Wasilewska, A., Entcheva, E., Bartocci, E.: Learning
and detecting emergent behavior in networks of cardiac myocytes. Commun. ACM 52(3),
97–105 (2009)

15. Kwiatkowska, M., Mereacre, A., Paoletti, N.: On quantitative software quality assurance
methodologies for cardiac pacemakers. In: Chakraborty, S., Mukund, M. (eds.) ISoLA 2014,
Part II. LNCS, vol. 8803, pp. 366–386. Springer, Heidelberg (2014)

16. Kwiatkowska, M., Lea-Banks, H., Mereacre, A., Paoletti, N.: Formal modelling and valida-
tion of rate-adaptive pacemakers. In: IEEE International Conference on Healthcare Informat-
ics, ICHI 2014 (to appear, 2014)

17. Leucker, M.: Challenges for the dynamic interconnection of medical devices. In:
Chakraborty, S., Mukund, M. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp. 389–392.
Springer, Heidelberg (2014)

18. Murthy, A., Bartocci, E., Fenton, F., Glimm, J., Gray, R., Cherry, E., Smolka, S., Grosu, R.:
Curvature analysis of cardiac excitation wavefronts. IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics 10(2), 323–336 (2013)

Compositional, Approximate, and Quantitative
Reasoning for Medical Cyber-Physical Systems

with Application to Patient-Specific
Cardiac Dynamics and Devices

Radu Grosu1, Elizabeth Cherry2, Edmund M. Clarke3, Rance Cleaveland4,
Sanjay Dixit5, Flavio H. Fenton6, Sicun Gao3, James Glimm1, Richard A. Gray7,

Rahul Mangharam5, Arnab Ray8, and Scott A. Smolka1

1 Stony Brook University
2 Rochester Institute of Technology

3 Carnegie Mellon University
4 University of Maryland

5 University of Pennsylvania
6 Georgia Institute of Technology

7 U.S. Food and Drug Administration
8 Fraunhofer USA Center for Experimental Software Engineering

Abstract. The design of bug-free and safe medical device software is challeng-
ing, especially in complex implantable devices that control and actuate organs
who’s response is not fully understood. Safety recalls of pacemakers and im-
plantable cardioverter defibrillators between 1990 and 2000 affected over 600,000
devices. Of these, 200,000 or 41%, were due to firmware issues that continue to
increase in frequency. According to the FDA, software failures resulted in 24%
of all medical device recalls in 2011. There is currently no formal methodology
or open experimental platform to test and verify the correct operation of medical-
device software within the closed-loop context of the patient.

The goal of this effort is to develop the foundations of modeling, synthesis and
development of verified medical device software and systems from verified closed-
loop models of the device and organ(s). Our research spans both implantable med-
ical devices such as cardiac pacemakers and physiological control systems such
as drug infusion pumps which have multiple networked medical systems. These
devices are physically connected to the body and exert direct control over the
physiology and safety of the patient. The focus of this effort is on (a) Extend-
ing current binary safety properties to quantitative verification; (b) Development
of patient-specific models and therapies; (c) Multi-scale modeling of complex
physiological phenomena and compositional reasoning across a range of model
abstractions and refinements; and (d) Bridging the formal reasoning and auto-
mated generation of safe and effective software for future medical devices.

1 Introduction

Between 1992-1998, less than 10% of medical devices were recalled due to software
issues. This rate has more than doubled in 2011 with software failures accounting for

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 356–364, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Compositional, Approximate, and Quantitative Reasoning 357

24% of all medical device recalls. There is currently no formal design methodology or
open experimental platforms that can be used to ensure the correct operation of medical
devices within the physiological closed-loop context. Furthermore, the present approach
of ad hoc and open-loop testing of medical device software and the design process sig-
nificantly increase the time and cost for validation and do not provide strong guarantees
on the safety and efficacy of the closed-loop system of the device and the patient. Given
the increasing complexity and features built in medical devices, the rate and volume of
devices recalled will continue on its current trajectory, unless a systematic approach for
medical device software verification, validation and testing, within clinical and physio-
logical relevant contexts, is adopted.

The focus of this proposal is on the development of a model-based design frame-
work for medical devices to verify and test the safety and efficacy of device software
for implantable cardiac devices such as pacemakers and defibrillators. This will be ac-
complished in three phases:

(a) Integrated Functional and Formal Modeling: We propose a multi-scale modeling
approach where abstract physiological and device models are used to prove basic safety
closed-loop properties and progressively refined models automatically prove more com-
plex properties. We are particularly interested in cases where the device may drive the
heart into unsafe states, such as in Pacemaker Mediated Tachycardia. To accomplish
this, we will develop approximate and probabilistic physiological models for quantita-
tive verification for competitive analysis of new cardiac rhythm therapies.

(b) Patient-specific Modeling: Using the generalized modeling approaches we will
now employ patient data to develop patient-specific tuned heart models and conduct
sensitivity and parametric analysis for model-based clinical trials of implantable cardiac
devices.

(c) Pre-Clinical Validation and Platforms The modeling effort will be directed and
supported by clinical validation with evaluation of therapies on animal models and or-
gans. The heart and device models and the therapies developed in this effort will be
implemented in closed-loop testing platforms to standardize the toolchains for low-cost
and efficient medical device software evaluation. With collaboration with the US FDA,
the proposed framework, models, platforms and toolchain will be harmonized into the
current regulatory guidelines for development of high-confidence medical device soft-
ware and systems.

1.1 From Verified Models to Verified Code for Medical Devices

Model-based approaches are revolutionizing the development of cyber-physical sys-
tems in general, and embedded control systems in particular. In these paradigms, which
are variously called Model-Based Development (MBD) or Model-Driven Engineering
(MDE), engineers first build models of the components of the system under devel-
opment. They then use simulations to verify that the system exhibits desired proper-
ties [3, 4, 9, 17, 19], synthesis techniques (“autocoding”) to generate portions of the
implementation automatically, and hybrid simulation/hardware-test infrastructure
(“hardware-in-the-loop testing”) to verify implementations of components as they be-
come available. The motivations for MBD/MDE approaches stem from time and cost

358 R. Grosu et al.

efficiencies in engineering processes: the “virtual prototyping” enabled by computer-
based modeling permits much more thorough analysis of a design, at much lower cost,
than does traditional physical prototyping.

The use of MBD/MDE is especially advanced in the automotive and aerospace con-
trol domains, where detailed simulation models for the physics of controlled systems
(“plants”) have been developed and serve as the basis for assessing models of con-
trol strategies proposed by engineers building these vehicles. In other domains, such as
medical-device design, these techniques have yet to achieve much headway, due in part
to a lack widely accepted behavioral models for human biological systems, but also due
to the wide variability observed in individual patient’s biological functions.

The goals of this proposal are to develop the theoretical and practical underpinnings
of a new verification framework for cyber-physical systems that would support compo-
sitional, highly parameterizable, approximate, and quantitative reasoning; to build the
tool support for conducting the deep analysis this framework will allow; and to use
these tools and techniques to advance the state of the art in cardiac therapy devices.
We are particularly interested in closed-loop verification of cardiac device software and
therapies [15, 19]. In this setting, a computational model of the heart (the biological
plant) is under closed-loop control of a computational model of the cardiac device (the
controller), and verification is conducted on this closed-loop system. Moreover, we will
develop a multi-scale formal modeling approach, in which simpler properties are veri-
fied using more abstract models for the heart and device, while more complex properties
require progressively refined plant and controller models.

We are also very interested in developing patient-specific heart models, which we
plan to obtain from ablation and other cardiac-related procedures. Having such models
in the verification loop will improve the level of confidence in the safety and efficacy of
the device, thereby potentially reducing the expense of failed clinical trials.

An architectural overview of our proposed framework, which we call HYRES, is
given in Figure 1.1 In what follows, we summarize our proposed work on the verifica-
tion technology needed to support closed-loop verification of medical CPSs, its appli-
cation to cardiac devices, especially the recent proposed Low-Energy Anti-Fibrillatory
Pacing (LEAP) [16] approach of PIs Fenton and Cherry and its interaction with more
traditional pacing and anti-arrhythmic therapies and our planned education and outreach
activities.

2 Computational Foundations for Medical CPSs

Compositional Reasoning (Plug and Play). If two components (subsystems) are ap-
proximately equivalent (they can simulate each other’s behavior up to a small error δ),
then it would be highly desirable if you could replace one with the other in a larger con-
text in a guaranteed safe manner; i.e., the resulting total behaviors are approximately
equivalent up to a small error ε, which is a function of δ. For this to be the case, one
needs to provide appropriate proof rules (based most likely on a small-gain condition),
since in most interesting cases the larger context is nonlinear.

1 The name HYRES derives from Hybrid systems, a modeling formalism for CPSs amenable to
formal verification, and the Resolution or precision at which the verification is carried out.

Compositional, Approximate, and Quantitative Reasoning 359

Fig. 1. The HYRES framework for closed-loop verification of Medical CPS. The verification
technologies we propose to develop are shown on the left, the intended applications on the right,
and the supporting computational platforms and repositories along the bottom of the figure. A
hierarchy of models, capturing the electrophysiology of the heart at varying levels of complexity,
will be devised using abstraction and refinement techniques. The figure shows a highly detailed
model at the base of the hierarchy, which is spatially abstracted to obtain a grid-based compu-
tational model, which is further abstracted to obtain a network of Timed automata for reasoning
about timing-related properties.

PIs Grosu, Smolka and others have recently used this kind of reasoning to show that
the 13-variable sodium-channel component of the 67-variable IMW cardiac-cell model
(Iyer-Mazhari-Winslow) can be replaced by an approximately bisimilar, 2-variable HH-
type (Hodgkin-Huxley) abstraction [12–14, 18] . Moreover, this substitution of (ap-
proximately) equals for equals is safe in the sense that the approximation error between
sodium-channel models is not amplified by the feedback-loop context in which it is
placed.

Being able to reason about dynamical systems compositionally [1, 13, 14] is im-
portant for two reasons: the plug-and-safely-play nature of compositional reasoning is
highly efficient, as it avoids the state-explosion problem that bedevils automated verifi-
cation; and composition of subsystems can be used to uncover bad interactions between
subsystems, AKA the feature interaction problem.

360 R. Grosu et al.

Compositional reasoning can also be used as basis for synthesis: not just controller
synthesis (well-studied), but plant synthesis. That is, given a controller, infer the plant
for which it works.

Approximate Logical Reasoning (Maximum Precision). When proving that a system
satisfies a particular property, there is a “Plank discretization” (precision) limit. For
example, suppose a curve (given by an analytic function) separates the plane, and that
there is a small grid of “Plank size”. For the grid squares cut by the (zero-width) curve,
we cannot say whether they are on one side or the other of the curve (that is, satisfy or
do not satisfy the property). For all other squares, one has a definitive answer.

Approximate verification can also be used to turn an undecidable decision problem
over the reals into a decidable decision problem, and efficiently at that. In a multi-
time-scale approach to verification, choose the level of approximation that matches the
granularity of the time-scale under consideration.

The team brings expertise in this approach to the proposed effort in the form of
the dReal and dReach reachability analysis platform for nonlinear hybrid systems, cul-
tivated by PIs Gao and Clarke during the course of the CMACS NSF Expedition in
Computing. In the spirit of this proposal, Gao and Clarke have applied dReal/dReach
to the analysis of a highly nonlinear cardiac-cell model [7–9].

Quantitative Logical Reasoning (How Good). Classical temporal-logic model check-
ing provides a boolean yes/no answer to the question “Does a systemΣ satisfy a tempo-
ral logic formula ϕ?” When Σ is a dynamical system such as a CPS, one can demand a
more quantitative assessment of how well Σ does or does not satisfy ϕ. If ϕ is satisfied
by Σ, then how robustly is it satisfied? If ϕ is violated, then how badly is it violated?
How many (abstract) points in the state space violate the property? If a point violates
the property, then by how much does it violate it? Quantitative reasoning [2, 10, 11] can
be seen as lifting the model checking problem from a boolean setting to one in which
the results are interpreted over a metric space.

With quantitative reasoning, once can also augment temporal logic with quantitative
operators. For example, consider the following convergence property FG(x ≤ τ),
which states that eventually the value of x is always less than or equal to threshold τ .
In the quantitative setting, one can also measure the speed at which the G-subformula
eventually becomes true, and the average value of x, once x always ≤ τ .

Quantitative reasoning can also play a role diagnostically. Consider the safety prop-
erty: an ICD should not deliver an inappropriate shock, or the occurrence of one should
be minimized. Quantitatively, one can compute e.g. the average amount of energy con-
sumed by an ICD every time an inappropriate shock is delivered to the patient.

Adversarial Reasoning (Games, and Open Systems). The controller and the plant
do not always represent a closed system. They may be in a game-like situation with the
environment from which they receive additional adversarial input. A winning strategy
for the controller + system is one for which they behave safely regardless of the the
moves the environment makes. The environment may be nondeterministic (making it
difficult to compete against), or stochastic (making it somewhat easier to deal with

Compositional, Approximate, and Quantitative Reasoning 361

as one can then model it with belief states and partially observable Markov decision
processes).

Closed-loop Verification with Automated Model Abstraction and Refinement.
While complex physiological models of the heart with over 4 million finite elements or
100K ODEs exist, they do not provide a suitable level of interaction with a device such
as a pacemaker which only observes the state of the heart from two or three points. We
propose a multi-scale formal modeling approach to verify a set of closed-loop properties
(i.e., where the heart can affect the device and, more importantly, where the device can
drive the heart into safe/unsafe states).

In this approach, simpler properties are verified with more abstract models of the
heart/device, while more complex properties require progressively refined plant models.
In support of this approach, we will develop automated a Counter-Example-Guided
Abstraction and Refinement (CEGAR) framework to balance model complexity and
fidelity in accordance with increasingly complex closed-loop issues such as Pacemaker
Mediated Tachycardia, where the pacemaker drives the heart into an unsafe state.

3 Application to Patient-Specific Cardiac Models, Therapies, and
Devices

Patient-Specific Modeling The construction of patient-specific heart models will en-
able:

– Improved level of confidence in the safety and efficacy of the device with a patient-
model in the loop. This will reduce the expense of failed clinical trials and poten-
tially reduce the extent of clinical trials, in general.

– Physicians to maintain actionable patient records between operations and perform
pre-op evaluations on these models.

– Semi-automatic tuning of device parameters to the specific patient requirements.
– Model-based training of EP fellows and medical students.

The requisite data will be obtained from ablation and other medical, cardiac-related
procedures. We will use this data to learn/personalize heart models, device settings,
etc. We refer to this process as Patent-Specific (P-S) Modeling. In order to have P-S
heart models, we will need to incorporate patient data in our models and tool chain.
The most accurate patient data comes from the electro-physiology study before implan-
tation. Catheters with probes are inserted into the patient’s heart and local electrical
activities are recorded as Electrogram (EGM) signals. From the EGM signals, we can
extract timing delays between different heart locations. As the VHM and EP studies use
the same parameters, we can incorporate patient EGM data to form a P-S heart model.
We will pursue this in two steps:

(1) Model Construction Using Synthetic EGMs: The VHM is able to generate syn-
thetic EGM signals. Since EGM signals mainly carry timing information, the synthetic
EGMs are comparable to realistic EGMs - however with known probability distribu-
tions. As the VHM is a more controlled environment than a real patient, it is much

362 R. Grosu et al.

easier to evaluate for quantitative verification for patient-specific conditions.
(2) Model Construction using Realistic EGMs: We will use EGMs from a real pa-
tient to construct our model. This will require noise filtering, determining the catheter
positioning and benchmark analysis for the constructed model.

We are also interested in Property-Based Modeling. If one is only interested in
timing-related aspects of patient therapy, as may be the case with a pacemaker, learn
a Timed Automaton (TA) model of the patient’s heart and of the device. If voltage is
of interest, for example in the treatment of VT and VFib, learn a voltage-based Hybrid
Automaton (HA) model.

A key aspect of property-based modeling will be to ensure that the models we derive
are related to one another in the ways we intend them to be. For example, is the TA
model an abstraction of the HA model? We can ensure this is the case by following a
process of abstraction refinement in deriving e.g. the HA model from the TA one.

Such a framework will allow for enforcement of property priorities, where under
certain physiological conditions, some properties may be violated while higher-priority
properties remain enforced. This will allow for verification of multi-scale and multi-
mode systems, whose properties must adapt to the mode of the patient.

Closed-Loop Verification of Cardiac Therapies and their Interactions. We will
put a P-S cardiac model in the loop with a cardiac device with P-S parameter settings,
and apply the analysis techniques developed in Part I of the proposal to the result-
ing systems. Recent work by the PIs in compositional verification [12–14, 18] (Grosu
and Smolka), approximate verification [5–8] (Clarke and Gao), and quantitative rea-
soning [10] (Grosu, Smolka, and others) on which this proposal will build makes us
confident that we will be successful.

We will consider both pacemakers and ICDs and their interactions. Some devices
combine a pacemaker and ICD in one unit for persons who need both functions, and
this is becoming more and more common. Thus, the need to carefully analyze their
interactions is on the rise.

Low-Energy Anti-Fibrillatory Pacing (LEAP). PIs Fenton, Cherry, and others have
developed a new approach to eradicating life-threatening arrhythmias. Instead of one
large jolt of electricity to the heart, the new approach, called low-energy anti-fibrillatory
pacing (LEAP), uses a series of smaller electrical pulses. An article describing this
breakthrough appeared in a recent issue of Nature [16]. The goal of LEAP is not to
eliminate the arrhythmia at once, but rather to synchronize the electrical state of the
heart gradually. In this way, undesirable side effects can be avoided while still restoring
the heart to its normal condition.

Computational modeling, initially using simple models and then more complex mod-
els [3, 17], validated this approach and provided guidance for a series of preclinical
experimental trials that demonstrated LEAP’s effectiveness. The modeling and analysis
techniques put forth in this proposal will be used to further optimize the method so that
it can be used in human clinical trials. We will also study its interactions with other
pacing-based therapies.

Compositional, Approximate, and Quantitative Reasoning 363

References

1. Bartocci, E., Bortolussi, L., Nenzi, L.: A temporal logic approach to modular design of syn-
thetic biological circuits. In: Gupta, A., Henzinger, T.A. (eds.) CMSB 2013. LNCS (LNBI),
vol. 8130, pp. 164–177. Springer, Heidelberg (2013)

2. Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: On the robustness of temporal prop-
erties for stochastic models. In: Proc. of HSB 2013: The 2nd Intern. Workshop on Hybrid
Systems and Biology. EPTCS, vol. 125, pp. 3–19 (2013)

3. Bartocci, E., Cherry, E.M., Glimm, J., Grosu, R., Smolka, S.A., Fenton, F.H.: Toward real-
time simulation of cardiac dynamics. In: Proceedings of the 9th International Conference on
Computational Methods in Systems Biology, CMSB 2011, pp. 103–112. ACM, New York
(2011)

4. Bartocci, E., Singh, R., von Stein, F.B., Amedome, A., Caceres, A.J., Castillo, J., Closser, E.,
Deards, G., Goltsev, A., Ines, R.S., Isbilir, C., Marc, J.K., Moore, D., Pardi, D., Sadhu, S.,
Sanchez, S., Sharma, P., Singh, A., Rogers, J., Wolinetz, A., Grosso-Applewhite, T., Zhao,
K., Filipski, A.B., Gilmour, R.F., Grosu, R., Glimm, J., Smolka, S.A., Cherry, E.M., Clarke,
E.M., Griffeth, N., Fenton, F.H.: Teaching cardiac electrophysiology modeling to undergrad-
uate students: Laboratory exercises and GPU programming for the study of arrhythmias and
spiral wave dynamics. Adv. Physiol. Educ. 35(4), 427–437 (2011)

5. Gao, S., Avigad, J., Clarke, E.M.: Delta-complete decision procedures for satisfiability over
the reals. In: Proceedings of the 6th International Joint Conference on Automated Reasoning
(IJCAR), pp. 286–300 (2012)

6. Gao, S., Avigad, J., Clarke, E.M.: Delta-decidability over the reals. In: Proceedings of the
27th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 305–314
(2012)

7. Gao, S., Kong, S., Clarke, E.M.: dReal: An SMT solver for nonlinear theories over the reals.
In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 208–214. Springer,
Heidelberg (2013)

8. Gao, S., Kong, S., Clarke, E.M.: Satisfiability modulo ODEs. In: Proceedings of the 13th
International Conference on Formal Methods in Computer Aided Design, FMCAD (2013)

9. Grosu, R., Batt, G., Fenton, F.H., Glimm, J., Le Guernic, C., Smolka, S.A., Bartocci, E.:
From cardiac cells to genetic regulatory networks. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 396–411. Springer, Heidelberg (2011)

10. Grosu, R., Peled, D., Ramakrishnan, C.R., Smolka, S.A., Stoller, S.D., Yang, J.: Composi-
tional branching-time measurements. In: Bensalem, S., Lakhneck, Y., Legay, A. (eds.) FPS
2014 (Sifakis Festschrift). LNCS, vol. 8415, pp. 118–128. Springer, Heidelberg (2014)

11. Grosu, R., Peled, D., Ramakrishnan, C.R., Smolka, S.A., Stoller, S.D., Yang, J.: Using statis-
tical model checking for measuring systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014,
Part II. LNCS, vol. 8803, pp. 223–238. Springer, Heidelberg (2014)

12. Islam, M.A., Murthy, A., Bartocci, E., Girard, A., Smolka, S., Grosu, R.: Compositionality
results for cardiac cell dynamics. In: Gupta, A., Henzinger, T.A. (eds.) CMSB 2013. LNCS,
vol. 8130, pp. 242–244. Springer, Heidelberg (2013)

13. Islam, M.A., Murthy, A., Bartocci, E., Cherry, E.M., Fenton, F.H., Glimm, J., Smolka, S.A.,
Grosu, R.: Model-order reduction of ion channel dynamics using approximate bisimulation.
Theoretical Computer Science (in press, 2014)

14. Islam, M.A., Murthy, A., Girard, A., Smolka, S.A., Grosu, R.: Compositionality results for
cardiac cell dynamics. In: Proc. of HSCC 2014: The 17th International Conference on Hybrid
Systems: Computation and Control, HSCC 2014, pp. 243–252. ACM, New York (2014)

15. Jiang, Z., Pajic, M., Alur, R., Mangharam, R.: Closed-loop verification of medical devices
with model abstraction and refinement. STTT 16(2), 191–213 (2014)

364 R. Grosu et al.

16. Luther, S., Fenton, F.H., Kornreich, B.G., Squires, A., Bittihn, P., Hornung, D., Zabel, M.,
Flanders, J., Gladuli, A., Campoy, L., Cherry, E.M., Luther, G., Hasenfuss, G., Krinsky, V.I.,
Pumir, A., Gilmour, R.F., Bodenschatz, E.: Low-energy control of electrical turbulence in
the heart. Nature 475(7355), 235–239 (2011)

17. Murthy, A., Bartocci, E., Fenton, F., Glimm, J., Gray, R., Cherry, E., Smolka, S., Grosu, R.:
Curvature analysis of cardiac excitation wavefronts. IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics 10(2), 323–336 (2013)

18. Murthy, A., Islam, M.A., Bartocci, E., Cherry, E.M., Fenton, F.H., Glimm, J., Smolka, S.A.,
Grosu, R.: Approximate bisimulations for sodium channel dynamics. In: Gilbert, D., Heiner,
M. (eds.) CMSB 2012. LNCS, vol. 7605, pp. 267–287. Springer, Heidelberg (2012)

19. Pajic, M., Jiang, Z., Lee, I., Sokolsky, O., Mangharam, R.: From verification to implemen-
tation: A model translation tool and a pacemaker case study. In: Proceedings of IEEE 18th
Real Time and Embedded Technology and Applications Symposium, Beijing, China, April
16-19, pp. 173–184 (2012)

On Quantitative Software Quality Assurance

Methodologies for Cardiac Pacemakers

Marta Kwiatkowska, Alexandru Mereacre, and Nicola Paoletti

Department of Computer Science, University of Oxford, UK

Abstract. Embedded software is at the heart of implantable medical de-
vices such as cardiac pacemakers, and rigorous software design method-
ologies are needed to ensure their safety and reliability. This paper gives
an overview of ongoing research aimed at providing software quality as-
surance methodologies for pacemakers. A model-based framework has
been developed based on hybrid automata, which can be configured with
a variety of heart and pacemaker models. The framework supports a
range of quantitative verification techniques for the analysis of safety,
reliability and energy usage of pacemakers. It also provides techniques
for parametric analysis of personalised physiological properties that can
be performed in silico, which can reduce the cost and discomfort of test-
ing new designs on patients. We describe the framework, summarise the
results obtained, and identify future research directions in this area.

Keywords: model-based design; quantitative verification; hybrid au-
tomata; heart modelling; cardiac pacemakers.

1 Introduction

The growing reliance on implantable medical devices controlled by embedded
software calls for rigorous software design methodologies to ensure their safe op-
eration and to avoid costly device recalls. We focus here on cardiac pacemakers,
which are battery-powered devices implanted under a patient’s skin that sense
the electrical signals in the heart and regulate the heart rhythm. Of paramount
importance here is the safety of the device’s operation, but analysis of char-
acteristics such as energy usage are also needed to improve the designs. An
important observation is that evaluating the operation of the pacemaker must
take into account the characteristics of the heart rhythm of the patient, and
therefore personalisation of the methodology is desirable.

Several models for pacemakers have been proposed, to mention
[10, 16, 17, 19, 21, 24, 25]. Since the basic function of the pacemaker is to main-
tain a normal heart rhythm of 60-100 beats per minute (BPM), the models need
to capture real-time, in addition to being able to sense electrical signals, typically
(non-linear) continuous flows. Therefore, natural models for the pacemaker are
(deterministic) timed or hybrid automata, which are then composed with a heart
model, typically a hybrid automaton, for the analysis. An important consider-
ation in our work has been stochasticity, which manifests itself in several ways:

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 365–384, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

366 M. Kwiatkowska, A. Mereacre, and N. Paoletti

sensor noise, modulated rate in response to activity level, as well as the random-
ness in the timing of the heart beats, which is specific to the patient and can
switch between normal and diseased behaviours. We have thus concentrated our
efforts on developing effective methodologies to provide software quality assur-
ance for pacemakers in presence of stochasticity through quantitative verification
techniques.

This paper reports on a comprehensive model-based framework to provide
software quality assurance for cardiac pacemakers developed within the VERI-
WARE and VERIPACE projects and described in [4–6, 18]. The framework is
based on hybrid input-output automata models, and can be instantiated with
a number of heart models, including a model based on synthetic ECG that can
be learnt from patient data and a physiologically-relevant heart model built
as a network of cardiac cells. Models of pacemakers of differing functionalities
can be plugged into the framework for analysis: we consider a basic pacemaker
design inspired by [17], an advanced design that can handle pacemaker me-
diated tachycardia, as well as a rate-adaptive pacemaker. We implement the
framework in Simulink and provide a broad range of analysis techniques, which
are based on simulation, as well as approximate quantitative verification, for
checking safety, reliability and detailed energy-usage. We also develop analysis
methods for advanced physiological properties, including pacemaker mediated
tachycardia correction and parametric analysis to support in silico testing of the
rate-modulation functionality under different personalised scenarios, e.g., age of
the patient and activity level. We demonstrate the usefulness of our methodology
through a range of experiments. Finally, we summarise future research directions
and challenges in this area.

2 Model-based Framework for the Verification of
Pacemakers

Our framework for modelling and quantitative verification of pacemaker models
is based on the formalism of hybrid input-output automata [20], and supports
the composition of a heart model and a pacemaker model on which verification
is performed. We consider a discrete-time simulation semantics, which enables a
sound and straightforward encoding of the formal specification into MATLAB
Simulink/Stateflow models. In the following, we recall the basic details of the
framework that we introduced in [6].

Let X = {x1, . . . , xd} be a set of variables in R. An X -valuation is a function
η : X → R assigning to each variable x ∈ X a real value η(x). Let V(X)
denote the set of all valuations over X . A constraint on X , denoted by grd, is
a conjunction of expressions of the form x !" c for variable x ∈ X , comparison
operator !" ∈ {<,≤, >,≥} and c ∈ R. Let B(X) denote the set of constraints
over X . Let Y(X) denote the set of all real-valued functions over 2X . We define
L(X) := {x := u | x ∈ X ∧ u ∈ X ∪ {0}} to be the set of update assignments
over the set of variables X .

On Software Quality Assurance for Cardiac Pacemakers 367

Definition 1 (Hybrid I/O Automaton). A hybrid I/O automaton (HIOA)
A = (X , Q, q0, E1, E2, Inv,→,Diff) consists of:

– a finite set of variables X ;
– a finite set of modes Q, with the initial mode q0 ∈ Q;
– a finite set E1 of input actions and a finite set E2 of output actions with
E = E1 ∪ E2;

– an invariant function Inv : Q→ B(X);
– a transition relation →⊆ Q× (E ∪ {ς})× B(X)× 2L(X) ×Q, where ζ is the

internal action; and
– a derivative function Diff : Q × X → Y(X) that assigns a function to a

variable x ∈ X .
We use a network of HAs for the composition of more than one HA. In order

to obtain a deterministic network we impose some restrictions on HAs as follows:

– they must be input enabled, meaning that, for each mode and each input
action, there is an edge labelled by the input action;

– the output actions have the highest priority, meaning that they are always
urgent, i.e., if at any state the output action is enabled, the system must
execute that action;

– the input actions are never enabled unless the corresponding output actions
from the environment synchronise with them: once they can be synchronised,
they are urgent;

– for each mode, there is a self-loop labelled by the internal action.

Definition 2 (Network of hybrid automata). Let m be the number of HAs
in the network. A state of the network is

(
(q(1), η(1)), · · · , (q(m), η(m))

)
. There is

a transition(
(q

(1)
i , η

(1)
i), . . . , (q

(m)
i , η

(m)
i)

)
→
(
(q

(1)
i+1, η

(1)
i+1), . . . , (q

(m)
i+1 , η

(m)
i+1)

)
,

where

– either, for each 1 ≤ k ≤ m, (q
(k)
i , η

(k)
i) has a continuous evolution;

– or, for each 1 ≤ k ≤ m, (q
(k)
i , η

(k)
i) has a discrete transition. If, for some k,

(q
(k)
i , η

(k)
i) enables an output action a ∈ E(k)

2 , then all the other (q
(k′)
i , η

(k′)
i)

must take a corresponding input action a ∈ E(k′)
1 (notice that this is guar-

anteed by input enabledness); otherwise, each state evolves by taking the in-
ternal action.

We assume in our framework that both the heart model and the pacemaker
model are specified as hybrid input-output automata. To allow user-specified
models, we define fixed component interfaces for the heart and pacemaker mod-
els, as shown in Figure 1. The heart and the pacemaker communicate via in-
put and output actions which are marked by ? and ! respectively. The pace-
maker communicates with the heart through four output actions, Vs(at)!, Vs(at)!,
Vs(vt)! and Vs(vt)!. The actions Vs(at)! and Vs(at)! denote the beginning and
the end of the atrial stimulus, respectively, while Vs(vt)! and Vs(vt)! denote the
beginning and end of the ventricle stimulus. The heart communicates with the
pacemaker using two output actions Aget! and Vget!.

368 M. Kwiatkowska, A. Mereacre, and N. Paoletti

Heart
Aget!

Vget!

Vs(at)? Vs(at)?

Vs(vt)?

Vs(vt)?

(a) Heart model

Pacemaker
Aget?

Vget?

Vs(at)!

Vs(at)!

Vs(vt)! Vs(vt)!

(b) Pacemaker model

Fig. 1. Interfaces for the heart and pacemaker models

3 Heart Modelling

In this section we present two heart models, the ECG and the cardiac cell net-
work model, and we show how they can be connected to the pacemaker and
integrated within the overall verification framework. Each heart model has its
own advantages and disadvantages. For instance, the ECG heart model can be
easily adapted to a given patient, whereas the cardiac cell heart model is more
physiologically relevant. By providing a common interface to the pacemaker, we
can effectively evaluate and compare the behaviour of multiple heart models in
a modular fashion.

3.1 The ECG Heart Model

This heart model is based on synthetic ECG rhythms developed by Clifford
et al. [8]. An ECG is a signal recorded from the surface of the human chest,
which describes the activity of the heart. The ECG signal is an approximation
of the electrical activity inside the human heart. An example ECG is given in
Figure 2(a).

Typically, an ECG signal describes a cardiac cycle composed of three main
waves, P, QRS and T. The P wave denotes the atrial depolarisation. The QRS
wave reflects the rapid depolarisation of the right and left ventricles. The T wave
denotes the repolarisation of the ventricles. In Figure 2(b) we present the hybrid
automaton for the ECG heart model. It is based on a system on nonlinear
ODE with two variables x(t) (the value of the ECG signal at time t) and θ.
Here θ1 represents the beginning of the P wave; θ2 represents the beginning
of the Q wave; αxi and bxi , respectively, are the amplitude and width of the
Gaussian functions used to model the ECG; θ ∈ [−π, π] is the cardiac phase;
Δθxi = (θ − θxi)mod 2π; and ω = 2πh

60
√
hav

is the angular velocity, where h is

the instantaneous (beat-to-beat) heart rate in BPM and hav is the mean of the
last n heart rates (typically with n = 6) normalized by 60 BPM. To use the
ECG heart model one has to define the instantaneous (beat-to-beat) heart rate
function h(t) (t ∈ R≥0), which specifies the distance between two consecutive
R-events (highest peak in Figure 2(a)). Technically, it is equivalent to the so
called RR-series χ(n), n ∈ {1, . . . , N}, where N denotes the length of the series.

On Software Quality Assurance for Cardiac Pacemakers 369

(a) Example electrocardiogram [23]

q0

ẋ = −
∑

i

αx
i ω

(bx
i)

2 Δθx
i exp

[
−(Δθx

i)2

2(bx
i)

2

]
θ̇ = ω

q0

ẋ = −
∑ αx

i ω

(b)2 Δθxx
i exp

[
−(i)

2(bx
i)

2

]
= ω

Δθx
i

{Aget!}, {θ = θ1}, {∅}

{Vget!}, {θ = θ2}, {∅}
(b) ECG hybrid automaton

Fig. 2. ECG heart model

The value of χ(n) denotes the time between two consecutive heart beats. More
details on the construction of the function h(t) can be found in [23].

3.2 The Cardiac Cell Heart Model

This heart model is based on modelling the electrical conduction system (ECS)
of the heart (see [6]). The ECS is a network of nerves whose role is to propagate
the action potential (AP) through the heart tissue. We abstract the conduction
system as a network of cardiac cells, a model that is both physiologically mean-
ingful and computationally tractable (in [6] we model a network of 33 cells).
The ECS of the heart consists of conduction pathways with different conduction
delays. Cells are connected by pathways. The delays of the pathways depend on
the physiology of the tissue considered, and can be tuned to reproduce various
tissue diseases.

Our model consists of the SA node, whose role is to generate sequences of AP
signals which are propagated through the ECS of the heart, and 32 cells that
share similar properties.

The cell model in Figure 3, taken from [26], consists of four modes, each
associated with an AP phase: resting and final repolarisation (q0), stimulated
(q1), upstroke (q2), and plateau and early repolarisation (q3). The cell model is
characterised by two timed periods: effective refractory period (ERP) is the time
period where the cell cannot be stimulated and relative refractory period (RRP)
is the time period where a secondary excitation event is possible.

The variables of the model are: the membrane voltage v, which controls mode
switches; ist, which is the stimulus current; and a restitution-related variable vn,
used to modify the next ERP phase upon a new round of excitation. Specifically,
this is achieved through the function f(λ) = 1+13 6

√
λ (mode q3), where λ =

vn
VR

and VR is a model-specific constant called repolarisation voltage [26].

370 M. Kwiatkowska, A. Mereacre, and N. Paoletti

q3

v < VO

v > VR

q0

v < VR

q1

v < VT

q2
v̇ = α2v
v < VO

v > VT

q2q

v̇ = α0v+g(�v) v̇ = ist+g(�v)

{Vs?}, {v < VT}, {vn := v}

{V s?}, {v < VT}, {∅}

{ς}, {v ≥ VT}, {∅}
{ς}, {v ≥ V

T }, {∅}
{ς}, {v ≤ VR}, {∅}

{Vget!}, {v ≥ VO}, {∅}
v̇ = α3vf (λ)

Fig. 3. Hybrid automaton for a ventricular cardiac cell

We denote with v = [v1 . . . vN]T the vector of the membrane voltages of a net-
work with N cells. We define a function gk(v) to express the voltage contribution
to a cell k from the neighbouring cells, as follows:

gk(v) =

N∑
i=1,i�=k

vi(t− δki) · aki − vk · dk, (1)

where aki is the gain applied to the potential vi from cell i, δki is the time it
takes for the potential to reach cell k, and dk is the distance coefficient. These co-
efficients depend on the conduction system, and in particular on the conduction
delays.

In Figure 4(a) we depict three blocks representing the connection of cells in
the ECS. This component provides a template suitable for potentially including
any kind of multi-cellular model of the cardiac tissue, and defines the interface
with the pacemaker model.

Every cell in the atrium and the ventricle blocks can be stimulated by the
pacemaker using the input actions Vs(at)?, Vs(at)? and Vs(vt)?, Vs(vt)?, respec-
tively. The output actions Aget! and Vget! notify the pacemaker that the AP
in the atrium and the ventricle (where the pacemaker leads are inserted) have
reached a given threshold. The function v(t) is the output voltage from a given
cell, which is the endpoint of the source block.

Figure 4(b) shows the Simulink implementation of a cardiac cell, which is
given by three main blocks: Event generator, Hybrid set and Subsystem. The
Event generator block is responsible for generating the input events to the cell.
The Hybrid set implements the cell hybrid automaton model (see Fig. 3). The
Subsystem block performs the integration procedure to compute the voltage level
of the cell. In Figure 4(c), a simplified network of six cells is depicted. Each cell
block is composed from the three sub-blocks shown in Figure 4(b) and connected
to other cells through delay and gain components.

On Software Quality Assurance for Cardiac Pacemakers 371

SA node
�v(t)

Atrium
�v(t)

Ventricle

Vs(at)?s(

Vs(at)? Aget!

Vs(vt)?

Vs(vt)? Vget!

Vs?

Vs?

(a) Electrical conduction system model

(b) Cell block (c) Cell connection

Fig. 4. Cardiac cell model

3.3 Switching between Different Heart Behaviours

The introduced heart models can exhibit only a single heart behaviour, such as
normal, bradycardia or tachycardia, which is determined by the frequency of the
RR-series (and sets the firing rate of the SA node in the cardiac cell model).

However, a real human heart exhibits several spontaneous changes of heart
rhythms. In [6], we reproduce such dynamics by modelling the probabilistic
transition between three modes, imposing a Normal (N), Bradycardia (B) and
Tachycardia (T) rhythm, respectively, according to a prescribed RR-series for
each mode. We also assume an initial distribution α ∈ Distr({N,B, T }) and
transition probabilities Pi ∈ Distr({N,B, T }) for i ∈ {1, 2, 3}. We want to re-
mark that both the initial distribution and the transition probabilities between
behaviours can be learned from patient data, which enables the parametrization
of personalized heart models.

4 Pacemaker Modelling

In this section we provide the specification of two pacemaker models in our
framework. We consider the model by Jiang et al. [17], hereafter called the basic
pacemaker, which is specified as a network of Timed Automata (TA); and an
extension of the basic pacemaker presented in [6, 18], which we call the enhanced
pacemaker, with advanced features such as sensing noise, energy consumption,

372 M. Kwiatkowska, A. Mereacre, and N. Paoletti

and the ability to adapt the pacing rate depending on the physical activity of
the patient.

4.1 Basic Pacemaker Model

The pacemaker is implanted under the chest skin and sends impulses to the
heart at specific time intervals. The role of the basic pacemaker is to keep the
heart rhythm at a given rate. It has two leads: one for the atrium and one for
the ventricle. Each lead has the ability to sense or deliver an electrical signal.

The basic pacemaker model consists of five core TA components, named ac-
cording to their specific function: LRI, AVI, URI, PVARP and VRP. The lower
rate interval (LRI) component (Fig. 5(a)) has the function of keeping the heart
rate above a given minimum value. The atrio-ventricular interval (AVI) compo-
nent (Fig. 5(c)) is designed to maintain the synchronisation between the atrial
and the ventricular events. An event is when the pacemaker senses or gener-
ates an action. The AVI component also defines the longest interval between
an atrial event and a ventricular event. The post ventricular atrial refractory
period (PVARP) component (Fig. 5(b)) notifies all other components that an
atrial event has occurred. The upper rate interval (URI) component (Fig. 5(d))
sets a lower bound on the times between consecutive ventricular events. Finally,
the ventricular refractory period (VRP) component (Fig. 5(d)) filters noise and
early events that may cause undesired behaviour.

Three additional components, Interval, Counter and Duration (Figure 5(e)
and (f)), are included in the basic pacemaker to detect and correct pacemaker
mediated tachycardia (PMT), an event occurring when the pacemaker increases
the heart rate inappropriately. Such components switch the functioning modes
of the pacemaker from DDD (pacing and sensing of the atrium and ventricle)
to VDI (pacing and sensing only the ventricle). More details will be given in
Section 5.1, and can be found in [6, 17].

There are four actions in the pacemaker model that serves as the interface with
a generic heart model: the input actions Aget? and Vget? notify the pacemaker
when there is an AP from the atrium or from the ventricle, respectively (see also
Sect. 3.2), and likewise for the output actions AP! and VP! are responsible for
pacing the atrium and the ventricle.

4.2 Enhanced Pacemaker Model

In this section, we extend the functionalities of the basic pacemaker model by
considering noise, energy consumption and rate modulation through physiolog-
ical sensors.

Pacing Noise. One of the important design issues of pacemakers is the need to
tolerate noise. For instance, when the pacemaker tries to deliver a beat, the beat
might get lost due to noise on the channel. The basic pacemaker is constructed
under the simplified assumption that it can pace the heart perfectly. Here we

On Software Quality Assurance for Cardiac Pacemakers 373

(a) LRI component (b) PVARP component (c) AVI component

(d) URI and VRP
components

(e) Interval component

(f) Counter and Duration component

Fig. 5. Timed automata of the five core pacemaker components (a,b,c,d), and of In-
terval, Counter and Duration components for PMT analysis (e,f). Locations labelled
with C indicate committed locations that do not allow time to elapse.

consider a more realistic scenario, modelling the so called “failure-to-capture”,
a kind of sensing noise due to insufficient contact between the lead and the
myocardium, or due to lead fracture [11]. In particular, we add to the fixed
stimulus current ist (cf. Figure 3) a normally distributed noise with mean μ and
variance σ2 each time the pacemaker wants to pace the cell.

In this way, if the noise added to the channel is too high, a “missing stimulus”
is generated, i.e. the stimulus from the pacemaker will not be high enough to
stimulate the cell.

374 M. Kwiatkowska, A. Mereacre, and N. Paoletti

Energy. Pacemaker’s life time is limited and is crucially dependent on the
battery embedded into the devices. When the battery depletes, the pacemaker
needs to be re-implanted, and hence the analysis of energy usage and, ultimately,
the design of more energy-efficient devices are indispensable.

In our framework, we consider the so called Kinetic Battery model (KiBaM)
[22] to describe the dynamics of energy consumption. The model consists of the
following system of ODEs:

dy1(t)

dt
= −ι(t) + k

(
y2(t)

1− c −
y1(t)

c

)
,
dy2(t)

dt
= −k

(
y2(t)

1− c −
y1(t)

c

)
. (2)

The battery charge is distributed in two wells: the available-charge y1(t) and the
bound-charge y2(t). The current applied to the battery at time t is described by
the function ι(t). When the value of ι(t) is zero the battery enters the recovery
mode, where the energy from the bound-charge well flows to the available-charge
well. This mode allows a nearly discharged battery to recover in a period of zero
or low current by increasing its available-charge. When the current ι(t) is not
zero, both charges y1(t) and y2(t) decay over time. The battery is considered to
be empty when there is no charge in the available-charge well, i.e., y1(t) = 0.
For details on the composition between the KiBaM and the pacemaker model
see [6].

Rate Adaptive Pacemaker. Physiological sensors are an essential compo-
nent of the so-called rate adaptive (RA) pacemaker, where the pacing rate is
adjusted according to the levels of activity (physical, mental or emotional) de-
tected in the patient. RA pacemakers represent the only choice for individuals
with chronotropic incompetence, that is, when the heart rate cannot naturally
adapt to increasing demand (e.g. AV block). A number of different pacing meth-
ods and sensors have been developed so far [2]. However, they require extensive
testing on cardiac patients especially to assess the device under varying levels
of physical exercise. Our model-based framework provides an effective test-bed
for these kinds of devices, where different (and possibly multiple) sensors can be
integrated into available pacemaker models, and formal verification enables the
automated design and debugging of rate modulation protocols in order to ensure
safe behaviour of the heart under the different stress levels which the patient can
undergo.

In [18], we develop a HIOA model of a VVIR pacemaker (sensing and pacing
of the ventricle, and with rate modulation) based on a QT interval (QTI) sensor,
a highly specific metabolic sensor that exploits the fact that physical activity
shortens the QT interval (see Fig. 2a), and thus requires an increased heart rate.
We implement the QT sensor through a runtime ECG detection algorithm that
allows to simulate and validate the model with patient ECG data.

The RA component (Fig. 6) is connected to the components of the VVI pace-
maker and is responsible for changing the pacing rate (TLRI) according to the
signals from the QT sensor, which outputs an action TE! whenever a T wave is
detected. To this aim, we established a relationship between QTI lengths and

On Software Quality Assurance for Cardiac Pacemakers 375

TLRI by means of a non-linear regression analysis performed over ECG data
from the PhysioNet database [1], and described by the following equation

RR(QT) = − log ((a− QT)/b)

k
(3)

where a, b and k are the estimated regression parameters; QT is the QTI length;
and RR is the RR interval length which is used to update TLRI.

From the initial state q0, the RA component waits for a ventricle sense or
pace event (Vget or VP, resp.) to start timers tVP and tQT. tVP defines the re-
fractory window of size TR where the RA component disables the pacemaker
inputs, while tQT models the duration of the QT interval and is terminated by
the synchronization with a TE! signals. If the obtained tQT falls within an admis-
sible interval [T l, T u], the corresponding adapted value for TLRI is calculated
through function fQT, which applies the above regression law over the mean of
the last four detections. This averaging mechanism ensures prompt response to
fast changing QTIs and, at the same time, allows us to mitigate the effects of
wrongly sensed intervals.

The ECG detection algorithm implemented in the QT sensor component relies
on a signal processing algorithm based on [12, 27], and is thoroughly explained
in [18]. Note that the behaviour of the QT sensor is inherently stochastic, since
it processes and filters ECG signals that are subject to random noise. However,
other sources of uncertainty can be incorporated, like random under- and over-
sensing.

q0 q1 q2

Vget?/

{tVP := 0},
{tQT := 0}

VP?/

{tVP := 0},
{tQT := 0}

tVP ≥ TR

{tQT≥Tl∧tQT≤Tu}∧TE?/
{TLRI := fQT(tQT)}

{tQT>Tu}

VP?/

tVP ≥ TRT

VP?/

{tVP := 0},
{tQT := 0}

{t ≥T t ≤T } TE?/

q0 q

Vget?/

{tVP := 0},
{{ttQTQT := 0:= 0}}

{ QT u}

Fig. 6. Hybrid automaton of the rate adaptive component

5 Pacemaker Verification

In this section, we report some experimental results obtained in the evaluation
of our framework with the basic and the enhanced pacemaker models. All the
following experiments have been performed with the cardiac cell model. First,
we show how the pacemaker corrects bradycardia when the probability of devi-
ating from the normal behaviour is varied, and how cases of pacemaker mediated

376 M. Kwiatkowska, A. Mereacre, and N. Paoletti

tachycardia are solved by mode switching. Second, we evaluate the behaviour of
our model under different levels of sensing noise; we analyse the energy consump-
tion of the pacemaker and its dependence on the pacing rate; and we conduct
experiments for the rate-modulation property, considering multiple inputs from
the QT sensor and physical exercise curves.

5.1 Verification of the Basic Pacemaker Model

Probabilistic Switching. We conduct experiments considering the probabilis-
tic transitions between different heart behaviours, as explained in Sect. 3.3.

0 0.2 0.4 0.6 0.8 1
5

10

15

20

25

30

35

40

Probability of Bradycardia

N
um

be
r

of
 v

en
tr

ic
le

 b
ea

ts

Fig. 7. Paced ventricular beats at varying
probabilities of Bradycardia behaviour

In this analysis, we obtain a rela-
tionship between the probability to
generate bradycardia and the num-
ber of pacemaker beats to the ven-
tricle, shown in Figure 7. We range
the probability from 0.05 to 0.95 and
run 40 experiments, each representing
8 minutes of heart beat. We clearly
observe that, by increasing the proba-
bility of a bradycardia behaviour, the
pacemaker delivers more beats to the
ventricle. This gives evidence for the
ability of our pacemaker to correct
random bradycardia episodes.

Pacemaker Mediated Tachycardia. In human hearts, the atrium can beat
faster than the ventricle, at ratio 2:1 or 3:1. The resulting heart beat can still
be regular due to a special cell called the AV node, which has a blocking period
longer than the other cells. The AV node connects the ECS of the atrium to
the ECS of the ventricle. The pacemaker tries to maintain a 1:1 AV conduction
through the AVI component. Thus, in the event of PMT, the pacemaker increases
the beats in the ventricle inappropriately. In order to avoid this behaviour we
need to switch the pacemaker from the DDD mode to the VDI mode when the
PMT event is detected. After PMT is successfully corrected and a normal heart
beat is re-established, the pacemaker can switch back to the DDD mode.

In Figure 8 we show an experiment where a tachycardia episode in the ventricle
due to PMT (red curve), is corrected by a mode switch from DDD to VDI at
time 13. As a result, the number of ventricle beats decreases and the regular
heart rhythm is recovered (blue curve).

5.2 Verification of the Enhanced Pacemaker Model

Noise. Here we address the occurrence of random “failure to capture” events,
generated by the presence of random noise on the pacemaker leads (illustrated

On Software Quality Assurance for Cardiac Pacemakers 377

Fig. 8. AP in the ventricle during a PMT episode. The red curve shows a tachycardia
frequency, corrected through mode switch at time 13 (blue curve).

in Section 4.2). In the following experiments, two parameters are considered: the
mean μ and the variance σ2 of the normally distributed noise. Figure 9(a) shows
the number of ventricular beats for different values of μ (red line with μ = −0.3,
green line with μ = −0.2 and blue line with μ = −0.1). We choose a negative μ
in order to simulate the undersensing effect. In each experiment with fixed mean
μ, we make the variance range from 0.1 to 1 with step of 0.1.

The results demonstrate that, when Gaussian noise with small mean (indicat-
ing a high degree of undersensing) is added to the stimulus, the number of beats
in the ventricle decreases, since more beats induced by the pacemaker will be
lost. On the other hand, increasing the variance of the normal distribution will
yield a higher number of beats. Indeed, higher variance to the noise, when cen-
tred at negative mean, produces better chances of picking positive samples from
the normal distribution. This, in turn, implies a better chance for the stimulus
to be high enough to stimulate the cell.

Energy. In this analysis, we are interested in the energy consumption of the
pacemaker when setting the SA node to induce bradycardia, thus forcing the
device to deliver paced beats. Figure 9(b) shows the results obtained by varying
two parameters, TAVI and TURI, which are the default programmable param-
eters used by technicians to ensure a heart beat between 60 and 100 BPM. We
make TAVI range in the interval [70 − 300] ms with 10 ms increment, and the
value of TURI in [50 − 175] BPM with 5 BPM increment. Fig. 9(b) evidences
a steep increase in energy consumption when TURI< 50 or TAVI> 200. This
behaviour is caused by the fact that we are forcing the pacemaker to wait less
between two consecutive ventricular events. Therefore, the pacemaker will initi-
ate most of the ventricular beats before the occurrence of a natural beat, thus
leading to a more prominent depletion of battery charge.

Parametric Analysis and Sensor Induced Tachycardia. We perform an
exhaustive parameter exploration for evaluating the behaviour of the rate

378 M. Kwiatkowska, A. Mereacre, and N. Paoletti

(a) Number of ventricle beats with ran-
dom undersensing at different variances.

100

150

200

250

300

20
40

60
80

2000

2200

2400

2600

2800

3000

TAVI [msec]
TURI [msec]

E
ne

rg
y

(b) Battery charge in 1 min period under
Bradycardia, at varying TAVI and TURI.

Fig. 9. Sensing noise (a) and energy consumption (b) experiments in the enhanced
pacemaker verification

adaptive pacemaker model over a wide spectrum of firing rates of the sinus
node (SA node) and QTI lengths. The SA frequency models the ideal heart rate
demand and expresses the levels of stress and activity; the QTI lengths detected
by the QT sensor are used to update the pacing rate as illustrated in Sect. 4.2.
For evident vital reasons, the application on real devices and patients of this
kind of quantitative analyses can involve only a limited range of safe parameter
settings and feasible activity levels, and is therefore insufficient for assessing the
effects of sensors faults and of extreme SA rates.

Instead, with our formal framework, we can distinguish the parameter regions
under which the pacemaker correctly operates from those where phenomena of
sensor-induced tachycardia (SIT) occur, i.e. when sensors malfunctioning (in
our case, wrongly detected short QTIs) lead to inappropriately fast pacing rate.
Figure 10 compares the number of ventricular beats in healthy conditions (a)
and in presence of AV block (b), over 552 different combinations of QTI lengths
and SA firing rates.

Such analysis provides evidence of a diagonal threshold of ideal QTI lengths
and SA rates, below which we observe a SIT phenomenon, characterized by a
ventricular rate constantly higher than the SA rate, which is amplified as the
QTI decreases. This faulty behaviour is slightly less evident in the AV block
scenario, because of the number of beats lost by the defective AV node. On
the other hand, if for each SA rate appropriate QTIs are considered (above the
ideal threshold), we observe a regular pattern in the number of ventricular beats.
With a healthy AV node, they increase linearly in the number of SA beats, thus
reproducing a correct conduction system. In the case of AV block, the frequency
in the ventricle grows linearly before reaching a final plateau, indicating the
inability to deliver high frequencies.

On Software Quality Assurance for Cardiac Pacemakers 379

360

385

410

435

460

485 60

70
80

90

100
110

120

40

60

80

100

120

140

160

180

200

220

SA beats [BPM]QT interval length [ms]

V
 b

ea
ts

 [B
P

M
]

(a) V beats, Normal AV node

360

385

410

435

460

485 60

70
80

90

100
110

120

40

60

80

100

120

140

160

180

200

220

SA beats [BPM]QT interval length [ms]

V
 b

ea
ts

 [B
P

M
]

(b) V beats, AV block

Fig. 10. Number of ventricular beats (z-axis) over multiple QTIs (x-axis) and SA node
firing frequencies (y-axis)

Modulation during Physical Activity. We validate our VVIR model by
comparing it to its fixed-rate counterpart (VVI) over typical exercise curves of
a young (Fig. 11(a)) and old (Fig. 11(b)) individual. Heart rate during physi-
cal exercise is characterized by four stages: neural slope (initial fast increase);
metabolic slope (slower increase); decay (fast decrease during recovery); and
resting. Since old subjects cannot generally provide the same exercise intensity
as young individuals, their activity curves are characterized by a lower maximum
heart rate.

Results during a 20 minutes exercise demonstrate that our VVIR implementa-
tion successfully manages to modulate the pacing rate according to the intensity
of physical activity in both classes of patients. Minor rate discrepancies occur
in the most intense phases; these are, however, negligible if compared to the
behaviour of the fixed rate pacemaker (unable to provide an appropriate rate at
SA rates higher than 110 BPM). Moreover, no SIT events are detected during
exercise, regardless the intensity of physical activity.

6 Future Directions

In the previous section we described the verification of the pacemaker model to-
gether with two heart models: the ECG and the cardiac cell network. In future,
we plan to use more advanced heart models to capture the physiological char-
acteristics of the heart. Also, we plan to synthesise crucial timing parameters of
the pacemaker model such that it satisfies a given specification.

380 M. Kwiatkowska, A. Mereacre, and N. Paoletti

2 4 6 8 10 12 14 16 18 20
60

70

80

90

100

110

120

130

140

Time [minutes]

B
ea

ts
 [B

P
M

]

V beats, VVIR
V beats, VVI
SA beats

(a) Young patient

0 2 4 6 8 10 12 14 16 18 20
60

70

80

90

100

110

120

130

140

Time [minutes]

B
ea

ts
 [B

P
M

]

V beats, VVIR
V beats, VVI
SA beats

(b) Old patient

Fig. 11. Rate modulation during exercise in young (a) and old (b) patients. The SA
rate (black dashed line) gives the metabolic demand following typical activity curves.
The number of ventricular beats is compared between the VVIR (green curve) and the
VVI (red curve) pacemakers.

6.1 The Minimal Ventricular Cardiac Cell Heart Model

As an alternative to the previous heart models we propose to use the minimal
ventricular (MV) model of Bueno-Orovio et al. [3]. Unlike the previous two
models, the MV model can reproduce realistic and important AP phenomena,
e.g. alternans [14], and yet is computationally more efficient than some of the
other models in the literature. Using the techniques from Grosu et al. [13], we
can abstract the MV model into a network of hybrid automata (see Figure 12)
that fits our developed framework for pacemaker verification. For details see [15].

The MV model describes the flow of currents through a cell. The model is de-
fined by four nonlinear PDEs representing the transmembrane potential x1(d, t),
the fast channel gate x2(d, t), and two slow channel gates, x3(d, t) and x4(d, t).
All of the four variables are time and position d := (dx, dy, dz) ∈ R3 depen-
dent. For one dimensional tissue, i.e., d := dx, the evolution of transmembrane
potential is given by:

∂x1(dx, t)

∂t
= D

∂2x1(dx, t)

∂d2x
+ e(x1, t)− (Jfi + Jso + Jsi), (4)

where D ∈ R is the diffusion coefficient, e(d, t) is the external stimulus applied
to the cell, Jfi is the fast inward current, Jsi is the slow inward current and
Jso is the slow outward current. The currents Jfi, Jso and Jsi are described by
Heaviside function. For more details see [3]. To define the propagation of the
action potential on a cardiac ring of length L, we set the boundary conditions
to: xi(0, t) = xi(L, t) for all i ∈ {0, . . . , 4} and t ∈ R.

HA Approximation. One alternative to solving these highly nonlinear PDEs
is to discretize space and hybridize the dynamics. The result is the HA model.
Following the approach of [13], we first hybridize the dynamics and obtain a HA

On Software Quality Assurance for Cardiac Pacemakers 381

Fig. 12. Left: top-level Simulink/Stateflow model for a ring of five cardiac cells; the
Pacemaker block stimulates one cell. Center: Stateflow model of a single cardiac cell.
Right: dynamics and guards in 3 locations of a single cell.

(a) (b)

Fig. 13. Reach set projected on x11 (AP) for stimulation period of 1000 msec (a) and
600 msec (b) with x-axis for time and y-axis for voltage

with 29 locations. The basic idea is to approximate the Heaviside function from
Jfi, Jso and Jsi with a sequence of ramp functions. Each location of the resulting
HA contains a multi-affine ODE such as:

ẋ1 = −0.935x1 + 12.70x2 − 8.0193x1x2 + 0.529x3x4 + 0.87 + st

ẋ2 = −0.689x2; ẋ3 = −0.0025x3; ẋ4 = 0.0293x1 − 0.0625x4 + 0.0142,

where st is the time-varying stimulus input. The 29 locations represent the final
HA model of a single cardiac cell. By discretising the spatial location we obtain
a network of cells that can be connected in a ring or in a tree depending on the
physiological characteristics of the heart that we would like to model. In Figure
12 we depict a Simulink/Stateflow implementation of 5 cardiac cells connected
in a ring; in Figure 13 we depict the voltage level of a cardiac cell for a set of
initial conditions.

In [15] we have developed techniques on how to compute the over-
approximation of the reach set, i.e., the voltage level of the cardiac cell at a
given time moment, for a network of cardiac cells given by the MV model. As

382 M. Kwiatkowska, A. Mereacre, and N. Paoletti

a future direction we plan to connect the minimal ventricular cardiac cell heart
model to the pacemaker model, and investigate more advanced specifications
such as linear duration properties [7].

6.2 Automated Synthesis of Pacemaker Software

Pacemaker devices have a limited number of programmable parameters and there
is considerable agreement among manufacturers on the appropriate values to set
according to the considered heart condition, implying that the same pacemaker
settings are used for large classes of cardiac patients exhibiting the same disease.

We believe that model synthesis methods can significantly advance the auto-
mated design of highly personalized pacemaker devices where, instead of choosing
among a limited number of condition-specific settings, parameters are automat-
ically derived according to patient’s clinical history, and continuously adapted
to reflect the real-time monitoring of her/his conditions.

Given that patient-specific models of the heart can be constructed from the
detailed electro-physiological data obtainable with current diagnostic means,
and given a (formal) property describing the desired behaviour of the heart,
synthesis techniques would provide pacemaker models that are correct-by-design,
so that, when composed with the heart model, the required behaviour is ensured
without the burden of formally verifying the property against all the possible
combinations of parameters.

Moreover, synthesis methods for implantable pacemakers need to cope with
a range of uncontrollable parameters, which, unlike the controllable timings of
a pacemaker, cannot be adjusted to our needs. Think, for example, about the
timing at which ventricle beats are fired, or any other physiological parameter
of the heart. Hence, the purpose is to find a positive solution to an optimal
synthesis problem, which consists in finding optimal values for the controllable
parameters such that the composed heart-pacemaker model meets the required
(healthy) behaviour specification, regardless of the uncontrollable parameters.
As usual, the notion of optimality underlies a quantitative objective function we
want to maximize or minimize (e.g. energy consumption).

In [9], an initial approach to the optimal synthesis of pacemaker devices is pro-
posed, based on symbolic constraint reasoning, and with application to networks
of timed I/O automata.We are currently working to extend the approach towards
richer and more complex models, featuring hybrid and probabilistic dynamics.

7 Conclusion

In this paper, we presented a model-based framework for the formal analysis of
implantable pacemakers, which supports the plug-in and the integration of differ-
ent heart and pacemaker models by means of a small set of pre-defined interfaces
and modelling templates. In the composed heart-pacemaker model, stochastic-
ity comes into play in several ways, such as in the probabilistic behaviour of the
heart or in the occurrence of random sensor faults. The framework enables the
analysis of a broad range of electro-physiological and device-related properties,

On Software Quality Assurance for Cardiac Pacemakers 383

computed through simulation or quantitative verification, thus providing safety
guarantees of the pacemaker in presence of multiple sources of uncertainty. Tool
support is of crucial importance, and we, indeed, provide a sound implementation
of the formal framework in MATLAB Simulink/Stateflow.

We evaluated our framework over two heart models, the ECG and the cardiac
cell model; and over an enhanced pacemaker design, built by modularly adding
advanced functionalities, including energy, sensor noise and rate-adaptation on top
of a basic model inspired by [17]. We reported here only some of the experimental
results obtained in previous work [4–6, 18], showing how quantitative verification
can provide practical guidance for safer and more efficient designs of pacemaker
devices, and, ultimately, give insight into the defective dynamics of heart diseases.

Current research efforts are directed towards the analysis of more advanced
and physiologically accurate heart models, and to the synthesis of pacemaker
parameters. As future work, we aim to formulate and implement novel synthesis
methods, able to automatically derive not just pacemaker parameters, but also
complete specifications of pacing algorithms and protocols, which are optimal
under safety and cost-effectiveness, and account for the stochastic dynamics of
the heart and sensors.

Acknowledgments. This work is supported by the ERC AdG VERIWARE,
ERC PoC VERIPACE and the Institute for the Future of Computing, Oxford
Martin School.

References

1. PhysioNet, http://www.physionet.org/physiobank/
2. Barold, S.S., Stroobandt, R.X., Sinnaeve, A.F.: Cardiac pacemakers and resyn-

chronization step by step: An illustrated guide. John Wiley & Sons (2010)
3. Bueno-Orovio, A., Cherry, E.M., Fenton, F.H.:Minimal model for human ventricular

action potentials in tissue. Journal of Theoretical Biology 253(3), 544–560 (2008)
4. Chen, T., Diciolla, M., Kwiatkowska, M., Mereacre, A.: Quantitative verification

of implantable cardiac pacemakers. In: 2012 IEEE 33rd Real-Time Systems Sym-
posium (RTSS), pp. 263–272. IEEE (2012)

5. Chen, T., Diciolla, M., Kwiatkowska, M., Mereacre, A.: A simulink hybrid heart
model for quantitative verification of cardiac pacemakers. In: Proceedings of the
16th International Conference on Hybrid Systems: Computation and Control
(HSCC 2013), pp. 131–136 (2013)

6. Chen, T., Diciolla, M., Kwiatkowska, M., Mereacre, A.: Quantitative verification of
implantable cardiac pacemakers over hybrid heart models. Information and Com-
putation (in press, 2014)

7. Chen, T., Diciolla, M., Kwiatkowska, M.Z., Mereacre, A.: Verification of linear
duration properties over continuous-time markov chains. ACM Trans. Comput.
Log. 14(4), 33 (2013)

8. Clifford, G., Nemati, S., Sameni, R.: An Artificial Vector Model for Generating
Abnormal Electrocardiographic Rhythms. Physiological Measurements 31(5), 595–
609 (2010)

9. Diciolla, M.: Quantitative Verification of Real-Time Properties with Application
to Medical Devices. PhD thesis, Department of Computer Science. University of
Oxford (2014)

http://www.physionet.org/physiobank/

384 M. Kwiatkowska, A. Mereacre, and N. Paoletti

10. Gomes, A.O., Oliveira, M.V.M.: Formal specification of a cardiac pacing system.
In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 692–707.
Springer, Heidelberg (2009)

11. Greenhut, S., Jenkins, J., MacDonald, R.: A stochastic network model of the in-
teraction between cardiac rhythm and artificial pacemaker. IEEE Transactions on
Biomedical Engineering 40(9), 845–858 (1993)

12. Gritzali, F., Frangakis, G., Papakonstantinou, G.: Detection of the P and T waves
in an ECG. Computers and Biomedical Research 22(1), 83–91 (1989)

13. Grosu, R., Batt, G., Fenton, F.H., Glimm, J., Le Guernic, C., Smolka, S.A., Bar-
tocci, E.: From cardiac cells to genetic regulatory networks. In: Gopalakrishnan, G.,
Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 396–411. Springer, Heidelberg
(2011)

14. Guevara, M.R., Ward, G., Shrier, A., Glass, L.: Electrical alternans and period-
doubling bifurcations. Computers in Cardiology, 167–170 (1984)

15. Huang, Z., Fan, C., Mereacre, A., Mitra, S., Kwiatkowska, M.: Invariant verification
of nonlinear hybrid automata networks of cardiac cells. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 373–390. Springer, Heidelberg (2014)

16. Jiang, Z., Pajic, M., Connolly, A., Dixit, S., Mangharam, R.: Real-time heart model
for implantable cardiac device validation and verification. In: ECRTS, pp. 239–248
(2010)

17. Jiang, Z., Pajic, M., Moarref, S., Alur, R., Mangharam, R.: Modeling and verifica-
tion of a dual chamber implantable pacemaker. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 188–203. Springer, Heidelberg (2012)

18. Kwiatkowska, M., Lea-Banks, H., Mereacre, A., Paoletti, N.: Formal modelling
and validation of rate-adaptive pacemakers. In: IEEE International Conference on
Healthcare Informatics 2014, ICHI 2014 (to appear, 2014)

19. Lian, J., Krätschmer, H., Müssig, D., Stotts, L.: Open source modeling of heart
rhythm and cardiac pacing. Open Pacing Electrophysiol. Ther. J. 3, 4 (2010)

20. Lynch, N., Segala, R., Vaandrager, F., Weinberg, H.B.: Hybrid I/O automata.
In: Alur, R., Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, pp.
496–510. Springer, Heidelberg (1996)

21. Macedo, H.D., Larsen, P.G., Fitzgerald, J.: Incremental Development of a Dis-
tributed Real-Time Model of a Cardiac Pacing System Using VDM. In: Cuellar,
J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 181–197. Springer, Heidelberg
(2008)

22. Manwell, J.F., McGowan, J.G.: Lead acid battery storage model for hybrid energy
systems. Solar Energy 50(5), 399–405 (1993)

23. McSharry, P.E., Clifford, G.D., Tarassenko, L., Smith, L.A.: A dynamical model for
generating synthetic electrocardiogram signals. IEEE Transactions on Biomedical
Engineering 50(3), 289–294 (2003)

24. Méry, D., Singh, N.K.: Pacemaker’s Functional Behaviors in Event-B. Rapport de
recherche, MOSEL - INRIA Lorraine - LORIA (2009)

25. Tuan, L.A., Zheng, M.C., Tho, Q.T.: Modeling and verification of safety critical
systems: A case study on pacemaker. In: 2010 Fourth International Conference
on Secure Software Integration and Reliability Improvement (SSIRI), pp. 23–32.
IEEE (2010)

26. Ye, P., Entcheva, E., Grosu, R., Smolka, S.A.: Efficient modeling of excitable cells
using hybrid automata. In: Proc. of CMSB, vol. 5, pp. 216–227 (2005)

27. Yeh, Y.C., Wang, W.J.: QRS complexes detection for ECG signal: The Difference
Operation Method. Computer Methods and Programs in Biomedicine 91(3), 245–
254 (2008)

Model Checking Hybrid Systems

(Invited Talk)

Edmund M. Clarke and Sicun Gao

Carnegie Mellon University

Abstract. We present the framework of delta-complete analysis for
bounded reachability problems of hybrid systems. We perform bounded
reachability checking through solving delta-decision problems over the
reals. The techniques take into account of robustness properties of the
systems under numerical perturbations. Our implementation of the tech-
niques scales well on several highly nonlinear hybrid system models that
arise in biomedical applications.

1 Introduction

Formal verification is difficult for hybrid systems with nonlinear dynamics and
complex discrete controls [1,7]. A major difficulty of applying advanced verifi-
cation techniques in this domain comes from the need of solving logic formulas
over the real numbers with nonlinear functions, which is notoriously hard.

Recently, we have defined the δ-decision problem that is much easier to solve
[3,2]. Given an arbitrary positive rational number δ, the δ-decision problem asks
if a logic formula is false or δ-true (or, dually, true or δ-false). The latter answer
can be given, if the formula would be true under δ-bounded numerical changes
on its syntactic form [3]. The δ-decision problem is decidable for bounded first-
order sentences over the real numbers with arbitrary Type 2 computable func-
tions. Type 2 computable functions [8] are essentially real functions that can
be approximated numerically. They cover almost all functions that can occur
in realistic hybrid systems, such as polynomials, trigonometric functions, and
solutions of Lipschitz-continuous ODEs. We can now develop a new framework
for solving bounded reachability problems for hybrid systems based on solving
δ-decisions. We show that this framework makes bounded reachability of hy-
brid systems much more tractable. Moreoever, our practical implementation can
handle highly nonlinear hybrid systems.

The framework of δ-complete analysis consists of techniques that perform
verification and allow bounded errors on the safe side. For bounded reachability
problems, δ-complete analysis aims to find one of the following answers:

– safe (bounded): The system does not violate the safety property within a
bounded period of time and a bounded number of discrete mode changes.

– δ-unsafe: The system would violate the safety property under some δ-bounded
numerical perturbations.

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 385–386, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

386 E.M. Clarke and S. Gao

Thus, when the answer is safe, no error is involved. On the other hand, a system
that is δ-unsafe would violate the safety property under bounded numerical per-
turbations. Realistic hybrid systems interact with the physical world and it is
impossible to avoid slight perturbations. Thus, δ-unsafe systems should indeed
be regarded as unsafe, under reasonable choices of δ. Note that such robustness
problems can not be discovered by solving the precise decision problem, and the
use of δ-decisions strengthens the verification results.
δ-Complete reachability analysis reduces verification problems to δ-decision

problems of formulas over the reals. It follows from δ-decidability of these formu-
las [3] that δ-complete reachability analysis of a wide range of nonlinear hybrid
systems is decidable. Such results stand in sharp contrast to the standard high
undecidability of bounded reachability for simple hybrid systems.

We emphasize that the new framework is immediately practical. We imple-
mented the techniques in our open-source tool dReach based on our nonlinear
SMT solver dReal [4]. In our previous work, we have shown the underlying solver
scales on nonlinear systems [5]. The tool has successfully verified safety proper-
ties of various nonlinear models that are beyond the scope of existing tools, such
as the cardiac cells model as studied in [6].

References

1. Alur, R.: Formal verification of hybrid systems. In: EMSOFT, pp. 273–278 (2011)
2. Gao, S., Avigad, J., Clarke, E.M.: Delta-complete decision procedures for satisfia-

bility over the reals. In: Proceedings of the 6th International Joint Conference on
Automated Reasoning (IJCAR), pp. 286–300 (2012)

3. Gao, S., Avigad, J., Clarke, E.M.: Delta-decidability over the reals. In: Proceedings
of the 27th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
pp. 305–314 (2012)

4. Gao, S., Kong, S., Clarke, E.M.: dReal: An SMT solver for nonlinear theories over the
reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 208–214.
Springer, Heidelberg (2013)

5. Gao, S., Kong, S., Clarke, E.M.: Satisfiability modulo ODEs. In: Proceedings of
the 13th International Conference on Formal Methods in Computer Aided Design,
FMCAD (2013)

6. Grosu, R., Batt, G., Fenton, F.H., Glimm, J., Le Guernic, C., Smolka, S.A., Bar-
tocci, E.: From cardiac cells to genetic regulatory networks. In: Gopalakrishnan, G.,
Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 396–411. Springer, Heidelberg
(2011)

7. Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292 (1996)
8. Weihrauch, K.: Computable Analysis: An Introduction (2000)

Challenges for the Dynamic Interconnection

of Medical Devices

Martin Leucker

Institute for Software Engineering and Programming Languages
University of Lübeck

leucker@isp.uni-luebeck.de

Abstract. Medical devices, especiallywhenoperated in the surgery room,
are safety critical systems, as the patient’s life may depend on them. As
such, there are high legal requirements to meet by the manufacturers of
such devices. One of the typical requirements is that whenever medical de-
vices are interconnected, the whole setup has to be approved by the cor-
responding legal body. For economical reasons, however, it is desirable to
interconnect devices from different manufacturers in an individual fashion
for each surgery room. Then however no integration test has been carried
out a priori and thus the whole setup could not have been approved. In
other words such economical demands impose challenges both on the tech-
nical as well as the legal situation. In this contribution, we report on these
challenges as well as on first ideas to address them.

1 The Quest

The medical and health treatment of patients becomes more and more a highly
technological procedure by sophisticated machines. Especially operations are car-
ried out with the help of a collection of different, specialized devices. In Figure 1,
a typical situation in a brain surgery is shown. The doctor is using an electroni-
cally enriched microscope to cut with an hf-intersector parts of some meningeom
located in the patients brain. The position of the tumor was first identified using
a device shown in the back of the picture. As expected, the patient is connected
both to a ventilator as well as to an anesthetic machine during the whole oper-
ation. Most of the machines log their respective data for later use and are thus
initialized with the main data of the patient.

All of these machines perform safety critical tasks and are as such safety
critical systems. Each of them has to be approved by a legal body before it
may be used in the operation room. The only exception is the application of
individual machines approved by the doctor.1

To assure the safety of medical devices, they have to be developed following in-
ternationally accepted norms. For software of medical devices, for example, it has

1 In this paper, we loosely follow the legal situation in Europe, which is similar, at
least on the high-level discussion carried in this paper, to that in the US. Note that
the aim of this paper is to give high-level account to the field but not a detailed and
precise description of the legal situation.

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 387–390, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

388 M. Leucker

Fig. 1. Snapshot from a brain surgery

to be developed using a predefined processmodel, for example the V-model or agile
approaches.Moreover a dedicated risk analysis has to be carried out to identify the
potential hazards the system under scrutiny may cause. Last but not least, dedi-
cated verification of the system, typically carried out by intensive testing, has to be
done and checked by the legal body. See [1], [2] and [3] for European directives that
should be followed via following the corresponding national laws, e.g. the Mediz-
ingproduktegesetz in Germany, and, [4] for a more elaborate description of the legal
situation in Europe when building medical devices.

Steadily rising health costs call for optimization also in the surgery room. One
axis for optimization is the interconnection of medical devices. Then, patients
data can be shared among the different machines. Moreover, for example, the hf-
intersector may be controlled via the microscope allowing the doctor to operate
two machines with a single interface. This would enable him or her to operate
in a more convenient and thus also more efficient fashion.2

A technically similar but legally different setting is to interconnect devices to
create systems with a new functionality. For example, using an electronically ad-
justable infusion pump together with suitable sensorsmight turn the whole system
into an autonomous system acting as an anestletic machine. Technically, the un-
derlying machines are also just connected. However, a new system is created, for
which the risks it may cause in the applied situation are unclear a priori.

2 The Challenges

Whenever medical devices are connected to form a single device in the opera-
tion room, the whole setup has to be approved, typically by a legal body.3 In

2 In Germany, there is a huge effort to foster such interconnection of medical devices
within the public funded project OR.NET. See http://www.ornet.org and [5] for
further details.

3 There is also the possibility of a self-approval by a doctor or a hospital. However,
this is often only carried out in highly advanced clinics.

http://www.ornet.org

Challenges for the Dynamic Interconnection of Medical Devices 389

practice, this implies that usually machines are not interconnected at all as it
is to cumbersome to approve a large number of different setups. The only ex-
ception is the possible interconnection of devices from a single manufacturer as
the manufacturer may use this as an argument to promote its devices. Both for
financial and technical reasons, it would however be desirable to interconnect
devices from different manufacturers, allowing the hospital to select the devices
with the best values for each individual task.

The main problems to overcome for reaching this goal, is risk management
and the verification of the whole setup of devices.

3 The Approach—And Further Challenges

As each device is built and approved separately, a risk analysis has been car-
ried out for each device. However, it seems not possible to assess the risk of a
combined system plainly by looking a the risk of each individual system. In the
situation studied in this paper, however, some modular risk analysis seems pos-
sible. Each device has its own, predefined functionality which may be enhanced
by information/functionality provided by some other device. Assuming the safe
operation of this other devices, it may be analyzed a priori, in which way the
other machine influences the risks of the studied machine.

Nevertheless, a formal study on risks and when an how to reason about risk in
a modular fashion is desirable, in general, and for the application in this setting
of interconnected medical devices.

Testing of the whole setup of different devices has not been carried out by
the manufacturers of the devices but each device has been tested individually.
Looking at the complete setup, a unit test but no integration test has be per-
formed. Thus, it would be desirable to perform an integration test dynamically
at runtime.

To this end, we propose the following scheme:

– Each device comes with two operation modes. One is a stand-alone mode
while the other mode is used when connected with other devices

– The connection of devices goes via precisely specified interfaces. Such a spec-
ification defines pre and post conditions for the values exchanged via the in-
terface but also temporal requirements of the sequence of data transmitted
via the interface. The latter implies, for example, that some communication
protocol to be performed via the interface is precisely stated in the interface
specification. See [6] for corresponding initial work in this direction.

– From the interface specification, monitoring devices may be synthesized us-
ing runtime verification techniques [7]. Such monitors may be used to check
the data exchange of the connected devices.

A system of systems may then work as follows:

– When a device is not connected to any other device, it works in its stand-
alone mode.

390 M. Leucker

– When a device is connected to some other device, the compatibility of the
interface specifications has to analyzed, as for example in [8]. If the two
systems may not work together according to their specification, both work
in the stand-alone mode. Otherwise, they work in the connected mode. Work
on mediator synthesis may enhance the interconnection of devices [9].

– Whenever a system works in the connected mode, it uses the automatically
synthesized monitors to check whether each other device follows its interface
specification. Whenever a failure is detected, each system may fall back to
its stand-alone mode.

It has to be investigated in which way the huge body of work on interface
specifications, such as interface automata, as well as the findings in the field
of runtime verification and runtime reflection [10] may be used with possibly
adaption to realize the safe operation of connected devices in the surgery room.

References

1. Directive 93/42/EEC: Council Directive 93/42/EEC of 14 June 1993 concerning
medical devices, OJ L 169 of 12 July 1993

2. Directive 98/79/EC: Directive 98/79/EC of the European Parliament and of the
Council of 27 October 1998 on in vitro diagnostic medical devices, OJ L 331 of 7
December 1998

3. Directive 90/385/EEC: Council Directive 90/385/EEC of 20 June 1990 on the
approximation of the laws of the Member States relating to active implantable
medical devices, OJ No L 189 of 20 July 1990

4. Johner, C., Hölzer-Klüpfel, M., Wittorf, S.: Basiswissen Medizinische Software:
Aus- und Weiterbildung zum Certified Professional for Medical Software. Dpunkt
(2011)

5. Kühn, F., Leucker, M.: Or.net: Safe interconnection of medical devices - (position
paper). In: Gibbons, J., MacCaull, W. (eds.) FHIES 2013. LNCS, vol. 8315, pp.
188–198. Springer, Heidelberg (2014)

6. de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC/SIGSOFT FSE, pp.
109–120. ACM (2001)

7. Leucker, M., Schallhart, C.: A brief account of runtime verification. Journal of
Logic and Algebraic Programming 78(5), 293–303 (2009)

8. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Jurdziński, M., Mang, F.Y.C.:
Interface compatibility checking for software modules. In: Brinksma, E., Larsen,
K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 428–441. Springer, Heidelberg (2002)

9. Bennaceur, A., Chilton, C., Isberner, M., Jonsson, B.: Automated mediator synthe-
sis: Combining behavioural and ontological reasoning. In: Hierons, R.M., Merayo,
M.G., Bravetti, M. (eds.) SEFM 2013. LNCS, vol. 8137, pp. 274–288. Springer,
Heidelberg (2013)

10. Leucker, M.: Checking and enforcing safety: Runtime verification and runtime re-
flection. ERCIM News 2008(75) (2008)

Temporal Logic Based Monitoring of Assisted
Ventilation in Intensive Care Patients

Sara Bufo1, Ezio Bartocci2, Guido Sanguinetti3,4,
Massimo Borelli1, Umberto Lucangelo5, and Luca Bortolussi1,6,7

1 Department of Mathematics and Geosciences, University of Trieste, Italy
2 Faculty of Informatics, Vienna University of Technology, Austria

3 School of Informatics, University of Edinburgh, UK
4 SynthSys, Centre for Synthetic and Systems Biology, University of Edinburgh, UK

5 Department of Medicine, University of Trieste, Italy
6 Computer Science Department, Saarland University, Saarbrücken, Germany

7 CNR/ISTI, Pisa, Italy

Abstract. We introduce a novel approach to automatically detect ineffective
breathing efforts in patients in intensive care subject to assisted ventilation. The
method is based on synthesising from data temporal logic formulae which are able
to discriminate between normal and ineffective breaths. The learning procedure
consists in first constructing statistical models of normal and abnormal breath sig-
nals, and then in looking for an optimally discriminating formula. The space of for-
mula structures, and the space of parameters of each formula, are searched with an
evolutionary algorithm and with a Bayesian optimisation scheme, respectively. We
present here our preliminary results and we discuss our future research directions.

1 Introduction

Temporal logic (TL) has proved to be a powerful and natural framework to describe
complex temporal properties of systems. In fact, temporal logic formulae describe tem-
poral patterns between events in a form which is close to our way of thinking, and as
such they are intelligible and suitable to represent behavioral specifications. The avail-
ability of efficient verification and monitoring algorithms, that can check if a property
is satisfied by a model or an observed run of a system, has further fostered this logical
approach as a tool for design.

Monitoring, in particular, is applied mainly to engineered systems, as TL can natu-
rally be used to encode the desired behavioural specifications the system should satisfy,
which are provided by the designer [17]. The availability of software and hardware for
real time verification, however, makes this approach very attractive also in medicine, for
instance to monitor the ECG signal or the flow/pressure curves of assisted ventilation
of a patient in intensive care.

The main obstacle in this respect is that the behavioural specification we should ob-
serve are unknown: how can we describe by a TL formula the emergence of a dangerous
clinical condition? The experience of physicians can help us identify situations in which
the observed signals are prodrome to the insurgence of clinical complications, but a pre-
cise characterisation of these conditions in TL is by no means easy to obtain. Such a
description would enable practitioners to use available monitoring tools, constructing
devices that can support physicians in critical care choices.

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 391–403, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

392 S. Bufo et al.

The alternative to the unfeasible manual derivation of such specifications is to learn
TL formulae from observed data, in the form of (manually) annotated signals. For in-
stance, we can have as input from physicians a set of flow/pressure curves in which
abnormal respiratory acts have been identified. Learning a TL specification of such ab-
normalities essentially means to construct a TL classifier of signals, that can separate
normal breaths from critical ones. An appealing aspect of classifying by TL formulae
would be the ease of interpretation of results, and the possibility of obtaining actionable
physiological insights from the classifier. While statistical classifiers such as support
vector machines often achieve impressive accuracy, this comes at the cost of develop-
ing opaque non-linear maps which offer little in the way of physiological insight.

Learning TL specifications from data is a problem that has recently received a certain
attention in the literature [2,12,19,40,41,24], and which will be discussed in the related
work section (Section 5). A frequently encountered problem with these approaches is
the very large amount of data needed to learn inductively properties which are robust to
noise in the observations [2,24]. The approach we consider here, which has been intro-
duced in [4,5], tries to recast the learning problem within a solid statistical framework.
Our strategy, instead, is to first infer a generative statistical model of the observed data,
and then learn temporal specifications that have a high probability of being true in the so
obtained model. This naturally keeps the effects of noise under control in a systematic
way, but also solves the data shortage problem, as we can generate as much synthetic
data as needed. In this work we consider a variant of this learning problem in which we
aim at distinguishing two sets of signals, the good and the bad ones. This is obtained by
constructing a statistical model for each class of signals, and then assigning to each TL
formula a score which is high when the formula is true with high probability in a model
and false with high probability in the other one.

From a medical perspective, we have started applying this framework to the identi-
fication of respiratory problems in patients in intensive care, which are breathing under
assisted ventilation. In particular, our goal is to classify single respiratory acts into nor-
mal and abnormal. In principle, we want to look for different types of abnormality,
although at this stage we focussed on ineffective triggering efforts, i.e. on the asyn-
chrony between the flow of the ventilator and the attempt of the patient to start a new
breath. Although a single occurrence of such event per se is not dangerous, and as such
is largely ignored in practice, a long sequence of them can lead to severe clinical com-
plications. This, and the fact that most ventilators in the market are not equipped with
monitoring routines, motivates the investigation of this problem. More details, also from
a biological and clinical perspective, will be given in Section 2.

In Section 3, instead, we discuss the basic steps of our methodological approach,
namely the construction of statistical generative models of the signals we consider,
which here take the form of a Stochastic Hybrid System (Section 3.1), the TL we use,
which is the time-bounded fragment of Metric Temporal Logic (Section 3.2), the pro-
cedure to learn the structure of TL classifiers (based on an Evolutionary Algorithm,
Section 3.4), and the method to learn the best formula parameters, based on Bayesian
optimisation (Section 3.5). Some results are presented in Section 4, while conclusions
will be drawn in Section 6.

Temporal Logic Based Monitoring of Assisted Ventilation 393

2 Assisted Ventilation and Patient Ventilator Asynchronies

Pulmonary ventilation is the process of air flowing into and out of the lungs and occurs
because the pressure of the atmosphere and of the gases inside the lungs differ.

During inspiration, the diaphragm and the external intercostal muscles contract, lead-
ing to an increase in volume of the thoracic cavity. As a result, the pressure within the
lungs decreases and falls below atmospheric pressure and air flows into the lungs.
On the contrary, in the expiratory phase the relaxation of the diaphragm decreases the
thoracic volume and the sign of the pressure gradient changes (becomes positive), caus-
ing the direction of flow to be reversed. As air moves when breathing is accomplished,
oxygen gas and carbon dioxide are exchanged.

In patients suffering from acute respiratory failure, such gas exchange is inadequate
and normal pulmonary ventilation is augmented or replaced by a mechanical venti-
lator. Mechanical ventilators are machines that generate a controlled flow of gas and
constantly measure the airway pressure (Paw), the quantity of air that enters the lungs
per unit time (flow Q) and how much air enters and leaves the lungs (volume V). De-
spite the possibility of continuously monitoring such ventilatory parameters (Paw, Q
and V), one of the major clinical concerns in mechanical ventilation is represented by
asynchronies, a generic term describing a wide class of ’poor interactions’ between the
mechanical ventilator and human breathing. Asynchronies affect more than one third of
mechanically ventilated patients [35,37,13] and, despite the debated question of cause-
effect relation to poor outcome [10], they generate stress and discomfort for the patient,
providing uncontrolled delivery of large volumes or high pressures to the patient res-
piratory system. Asynchronies potentially contribute to ventilator induced lung injury
[39,36,30,38,23]. Asynchronies can appear during all the phases of the respiration: the
triggering phase; the pressure-delivery phase; the cycling-off phase [22]. During the ini-
tial triggering phase, triggering delay, ineffective inspiratory effort and auto-triggering
may occur. During the pressure-delivery phase the ineffective triggering is the major
concern, but also inadequate or excessive ventilator assist is a problem, as well as the
lack for an optimal setting of pressure rise time. During the cycling-off phase the prema-
ture opening (inadequate assist and double triggering) and the late opening (triggering
delay and ineffective effort) of the expiratory valves are the major concerns [36,23,22].
Asynchronies can also interact appearing into one breathing act [27]. Only sophisti-
cated ventilators are currently equipped with supplementary devices (e.g. neurally ad-
justed ventilation, [32]) that reveal and quantify [31] the presence of such phenomena.
A human intervention is therefore often required to analyse and interpret data. For this
reason, simple algorithms based on standard waveforms of pressure, flow and volume
able to detect anomalies will be useful tools to automatise the diagnostic process [22].
Currently, various algorithm have been presented. While in [15] the ineffective inspira-
tion triggering efforts have been addressed by a FORTRAN procedure evaluating phase
portrait flow loops, other authors [13,28,29,8] directly investigate on numerical or ana-
lytical aspects of flow Q waveform.

In this context, two problems call for consideration, i.e. the classification of single
breathing acts and the recognition of sequences of breaths exhibiting a pattern leading
to severe respiratory failure.

394 S. Bufo et al.

Learning logical formulae discriminating between different conditions is a possible
line of research in both cases and could be easily put into practice implementing moni-
toring algorithms in cheap hardware such as FPGA-based devices.

In this paper the focus is set on the first problem. In particular, we are interested in
learning temporal logic properties that characterise single breathing acts. The methodol-
ogy that we illustrate is then applied to a specific case, i.e. the recognition of ineffective
inspiratory efforts considering flow data. An ineffective inspiratory effort (IE) is a con-
dition that arises when a patient receiving mechanical ventilation tries to inspirate when
the pressure gradient is positive and the drop in pressure related to the activation of the
inspiratory muscles is unable to change the sign of the gradient, causing inspiration and
triggering of a new ventilation cycle not to occur. A single breath may be affected by
one or more IE and the presence of each IE may be revealed by the presence of a hump
in the flow curve, see Figure 1.

●●
●
●●●●
●
●●
●
●
●
●
●
●
●
●●
●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●
●●●●●●●●●●●●

●●●
●
●●●●
●
●
●
●
●
●
●
●
●
●
●●
●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●
●
●●●●●●●●●●●●

●●
●●●●●●●●●●

●●●●●●
●●●

●
●
●●●
●
●●
●
●
●
●
●
●
●
●●
●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●
●
●
●

●

●

●
●
●●●●●●●●●●●●

●●●
●
●●●
●
●
●●
●
●
●
●
●
●
●●
●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

4600 4800 5000 5200 5400

0
50

0
15

00
25

00

P
aw

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●

●●●●●
●●●●●●●●●●●●●

●
●●
●●
●
●●
●●
●●
●●●

●

●

●

●

●

●●●●
●●●●●

●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●

●●●●●
●●●●●●●●●●●●

●●●●●●●●
●
●●●
●●
●●
●●
●●
●●●

●
●

●

●

●
●●●
●●●●
●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●

●●●●●
●●●●●●

●●●●●●
●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●●●
●

●
●●●
●
●
●
●●
●●
●●

●

●

●

●
●

●●●
●●●
●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●

●●●●●●●●●
●●●●●●●●●●●

●
●
●●●
●
●●
●●
●●
●●●

4600 4800 5000 5200 5400

−1
00

00
0

10
00

0

Q

Fig. 1. Paw and Q tracings of two standard breaths and a breathing act with an IE divided into
single respiratory acts (red lines). The different phases used to build the stochastic models of flow
curves (Section 3.1) are also highlighted (blue lines).

3 Methodology

The general problem of learning temporal properties of a system A can be rephrased
and recast within specific contexts, in accordance with the available data and the final
objective. We assume that the system is observable and system observations are avail-
able and conceive properties as logical statements. Within this framework, we consider
a discriminative variation of the learning problem, i.e. a second system B is introduced
and properties that best discriminate between A and B (i.e. logical formulae that are
satisfied by A and not by B) are searched for. Different approaches to this problem
are possible. At a high level, our methodology starts by devising a data-driven statis-
tical abstraction of each system. In this way, systems are represented by generative
models which can be simulated ad libitum (preventing the occurrence of data shortage
problems) and properties describe the trajectories sampled from the models. The sec-
ond step is the property synthesis phase, where learning of formulae is performed. In

Temporal Logic Based Monitoring of Assisted Ventilation 395

more detail, a score function R(ϕ), depending on the formula ϕ, based on the simu-
lation of both models and representative of the discriminating power of each formula
is introduced and optimised. Even though other choices are possible, we have decided
to consider structure and parameter formulae components separately and tackle these
suboptimisation problems using a local search algorithm and a Bayesian optimisation
approach, respectively.

In the following sections, the methodology introduced above will be applied to learn
properties of flow curves of MV breathing acts with an ineffective effort (IE, system
A). In order to capture properties that are related to the IE only, standard breath flow
curves are considered as system B . The statistical models used to represent A and B are
Stochastic Hybrid Systems (Section 3.1) and the logic chosen to specify properties is
MITL[a,b] (Section 3.2). The score function R(ϕ) is based on the log odds ratio (Section
3.3) and is optimised considering structure and parameter formulae components sep-
arately. Structural learning is accomplished with an Evolutionary Algorithm (Section
3.4) and formula parameters are refined resorting to a Bayesian optimisation routine
(Section 3.5).

3.1 Statistical Modelling of Ventilation Signals

The models chosen to represent flow curves are Stochastic Hybrid Systems [11,16] de-
vised from clinical data of a patient assisted through mechanical ventilation. The train-
ing data used to build our models were organised as discrete time series and sampled
flow values of 46 breathing acts with an IE in the expiration phase (A training data) and
251 standard breaths (B training data), from a single patient. We will now briefly illus-
trate how the model of system B was built. Then, we will explain how we derived the
model of system A from this. Looking at the flow curve structure, we can see that each
breath can be naturally divided into five parts or phases (see Figures 1 and 2). Within
each phase, representing the discrete skeleton of the hybrid model, we described the
evolution by continuous components representing the flow value and the duration of
the phase. Time is kept discrete, to mimic the sampling frequency of real data, equal
to 100Hz. We supposed that the length of each phase was normally distributed, and
devised mean and variance parameters of each discrete sub-model from training data.
A new duration (truncated to the closer time step) is sampled every time the system
changes phase, hence this operation can be formally modelled as part of the reset func-
tion attached to each discrete transition. The flow component was instead treated as a
discrete dynamical model: the flow value at a time instant t is a function of the flow
value at the time instant t− 1. Visual inspection of normal patient traces (shown in e.g.
Figure 2) suggested that, within each breathing phase, a linear first-order autoregressive
model may be appropriate. The resulting model of system B is therefore⎧⎪⎪⎪⎨⎪⎪⎪⎩

f low(t + 1) = fk(f low(t))+ εk

fk(f low(t)) = ak · f low(t)+ bk

εk ∼N (0,α2
k)

lengthk ∼N (µk,σ2
k)

396 S. Bufo et al.

Parameters ak,bk and αk are calculated using linear regression from B training data.
Whereas for k = 1, . . . ,4 the slope ak and the intercept bk are constant, for k = 5 these
coefficients depend on the length (i.e. on the realization of length5). This choice is based
on the observation that length, intercept and slope of final parts are highly correlated.

The model of system A was built in a similar way from the correspondent training
data. Inspection of sample IE trajectories revealed a conspicuous anomaly in phase 5 of
the breathing act; we therefore introducted a novelty factor in the phase 5 submodel to
capture the presence of the IE. We decided to tackle this part introducing a hierarchical
model, i.e. to describe an IE signal as a normal signal plus a perturbation, which for
IE in the expiration phase is a sinusoidal-like hump, see Figure 3.1. We constructed a
statistical model of such a hump by fitting a polynomial curve (whose degree, equal to
seven, was selected by optimising the Aikake information content [7]).

Fig. 2. Scheme of the stochastic hybrid model of standard breath flow curves. Each phase corre-
sponds to the highlighted segment of the flow curve.

3.2 Metric Interval Temporal Logic

We consider here MITL[a,b] [1,26] a fragment of the Metric Temporal Logic [25] with
linear time-bounded temporal operators which has proven to be an efficient formalism
to characterise properties of real-valued signals evolving in continuous time. For this
reason, we have decided to adopt this logic to specify properties of the trajectories
sampled from our models.

The syntax of MITL[a,b] is given by the following grammar:

ϕ ::=� | µ | ¬ϕ | ϕ1∧ϕ2 | ϕ1U[a,b]ϕ2

where � is the true formula and temporal modalities are restricted to intervals of the
form [a,b] with 0 ≤ a < b and a,b ∈ Q≥0. Formulae are built from atomic proposi-
tions µ using boolean operators ¬, ∧ and time-constrained versions of the until operator

Temporal Logic Based Monitoring of Assisted Ventilation 397

Fig. 3. (a) Flow signal f (part 5, black) of a breathing act with an IE with overlapped the normal
signal n (red). (b) Perturbation of the signal , computed as f −n.

U. Atomic propositions are boolean predicate transformers, i.e. operators transforming
real-valued functions into boolean signals, which provide a true (�) or false (⊥= ¬�)
value to the formula at each time instant.

Further temporal modalities are derived from the MITL[a,b] syntax and commonly
used. As an example, time-bounded eventually ♦[a,b]ϕ ≡ � U[a,b] ϕ and time-bounded
globally 	[a,b]ϕ≡¬♦[a,b] ¬ϕ can be defined as usual from the until operator. MITL[a,b]
formulae are interpreted over a time instant t and a real-valued function x, and the
satisfaction relation is given in a standard way, see e.g. [26]. We recall that a stochastic
model induces a distribution on the space of trajectories, hence we can compute the
probability of the set of trajectories that satisfies a given MITL[a,b] formula ϕ. We will
refer to such probability p(ϕ) as the satisfaction probability of ϕ, see e.g. [3] for further
details. In the context of this work, we estimated such a probability by statistical means,
resorting to Statistical Model Checking [14,42].

3.3 Discrimination Function

The problem of finding formulae that are likely to be satisfied by trajectories sampled
from the model of system A but not by trajectories sampled from the model of system B
is translated into an optimisation problem of the discrimination function R(ϕ) associated
with a MITL[a,b] formula ϕ. A possible choice for such function is R(ϕ) = L(ϕ), the log
odds ratio between the satisfaction probabilities

L(ϕ) = log
p(ϕ | A model)
p(ϕ | B model)

(3.1)

In this case, penalty terms could be introduced to favour formulae which satisfy certain
properties (e.g. thus penalising complex formulae over simple ones).

398 S. Bufo et al.

3.4 Structural Learning

We will now present how the structure of the discriminating MITL[a,b] formulae (i.e.
the formulae which optimise ϕ) was found. As previously mentioned, we decided to
tackle this optimisation problem using an Evolutionary Algorithm (EA) [20]. EAs are a
class of search and optimisation algorithms inspired by models of the natural selection
of species. The main idea of an EA is to consider a starting (usually randomly cho-
sen) population of candidate solutions (the starting generation) and iteratively evolve
it towards better solution sets. Each iterative step produces a new generation by ma-
nipulating the previous one using stochastic operators (the genetic operators) and the
procedure ends when a fixed number of generations has elapsed or some form of con-
vergence criterion has been met. The most simple EAs are based on the use of three
genetic operators which resemble the biological principles of survival of the fittest (se-
lection operator), reproduction (recombination operator) and gene mutation (mutation
operator). In the framework of EAs, selection is used to choose the individuals (par-
ents) that will pass the information they contain to the next generation, recombination
to generate new (and possibly better) individuals by combining parental individuals
information and mutation to introduce innovation in the population. One of the main
attraction of EAs is that operators are practically implemented by simple algorithms
and usually finds very quickly good solutions.

When learning discriminating formulae in our case study, we considered popula-
tions of MITL[a,b] formulas, represented by their parsing trees. Within this framework,
recombination and mutation are simply implemented by performing with a certain prob-
ability an exchange of parental subformulas (recombination) and a modification of a
node (mutation, e.g. of a boolean or temporal operator).

3.5 Parameter Learning

We now turn to the issue of tuning the parameters of formulae to maximise their satis-
faction probability. More specifically, suppose to have a MITL[a,b] formula ϕθ which de-
pends on some continuous parameters θ. We aim to maximise its discriminative power
R(ϕθ) defined in equation (3.1). Naturally, this quantity is an intractable function of the
formula parameters; yet its value at a finite set of parameters can be noisily estimated
using a stochastic model checking procedure, i.e. by simulating the model for a cer-
tain number n of times, checking the formula in each run, and then estimating R(ϕθ)
from the so generated data. The problem is therefore to identify the maximum of an
intractable function with as few (approximate) function evaluations as possible. This
problem is closely related to the central problem of reinforcement learning of determin-
ing the optimal policy of an agent with as little exploration of the space of actions as
possible. We therefore adopt a provably convergent stochastic optimisation algorithm,
the GP-UCB algorithm [33], to solve the problem of continuous optimisation of for-
mula parameters. Intuitively, the algorithm interpolates the noisy observations using a
stochastic process (a procedure called emulation in statistics) and uses the uncertainty
in this fit to determine regions where the true maximum can lie. This algorithm has
already been used in a formal modelling scenario in [9].

Temporal Logic Based Monitoring of Assisted Ventilation 399

4 Results: Monitoring Ineffective Respiratory Acts

We present here the results obtained by applying our learning procedure on discrimina-
tion of IE occurring during expiration. Taking into account only the expiratory phase,
only the last part of the trajectories sampled from the statistical models (i.e. phase 5) is
considered. Accordingly, the time instant 0 of the MITL[a,b] formulae refers to the time
instant when phase 5 is entered. The set of MITL[a,b] formulae examined is built over
the set of atomic propositions

P = { f low≤ λ}∪{ f low≥ λ}∪
{

f low′ ≤ µ
}
∪
{

f low′ ≥ µ
}

where f low′(t) = f low(t +1)− f low(t). We search for short formulae maximising the
discrimination function R(ϕ) associated with a MITL[a,b] formula ϕ, described in 3.3.
Since a trajectory sampled from a statistical model does not have a fixed duration (it
is thus not always possible to know a priori if its truth value over a MITL[a,b] formula
ϕ is definable), a penalty term U(ϕ) is introduced to keep track of the number of non-
sufficiently long trajectories generated during the calculation of the value of ϕ over ϕ.
As a result, R(ϕ) = L(ϕ)− S(ϕ)−U(ϕ), where L(ϕ) is the log odds ratio between the
satisfaction probabilities and S(ϕ) is a size penalty. We experimented our learning al-
gorithm by testing different parameters and settings, such as different variants of the
Evolutionary Algorithm operators, the frequency of utilisation of GP-UCB within the
evolutionary algorithm (i.e., we optimised all elements of a population, only best can-
didate solutions, only best solutions at the end of the algorithm), and the values of the
penalty terms. The best formulae obtained are

ϕ1 =	[0.4518,0.8609](♦[0.7853,0.9394]([0.6370,0.8222](♦[0.7923,0.8070](f low ≥−4554.0))))

ϕ2 ≡ ♦[0.3966,1.6705](f low′ ≤ −144.2708)

Their satisfaction probabilities pA(ϕ) = p(ϕ | A model) and pB(ϕ) = p(ϕ | B model),
summarised in the table below, were estimated by statistical model checking [42,14].

ϕ1 ϕ2

pA 0.5040 0.88523
pB < 10−3 < 10−3

If we inspect these two formulae, we can easily understand their meaning. Formula ϕ1

roughly forces the signal to be longer than 3 seconds (forcing the flow to be defined
at that time), and captures the fact that IE respiratory acts tends to last longer than
normal ones. Formula ϕ2, instead, detects a quick drop in the flow, corresponding the
decreasing part of the hump, which is generally not present in a normal breath.

Formulae were then validated on real data from the same patient considered in the
training phase, specifically on a test set of 345 standard breaths and 77 breathing acts
with an IE. In this phase, ϕ1 was able to recognise 33 ineffective efforts, whereas ϕ2

26. False positives (i.e. normal breaths satisfying formulae) were detected during val-
idation of ϕ1 only. We decided to merge these two formulae using logical disjunction
and validate the obtained formula ϕ1 ∨ϕ2. As a result, 58 ineffective efforts (75.3%)
and 336 standard breaths (97.4%) were correctly classified.

400 S. Bufo et al.

5 Related Work

Mining temporal logic specifications from data is an emerging field of computer aided
verification [2,5,12,19,40,41]. This task usually depends on the availability of a fully
specified model, enabling a quantitative evaluation of the probability that a certain for-
mula will hold. Machine learning techniques, such as decision trees [19] or stochastic
optimisation methods [41,40] can be then employed to improve the confidence with
which the formula will be satisfied.

Learning temporal logic specifications directly from observed traces of the system
remains a more challenging problem. In general, solving the full structure and param-
eter learning problem is infeasible, due to the intractability resulting from a hybrid
combinatorial/continuous optimisation problem. Heuristic search approaches have been
proposed in [12]; while these may prove effective in specific modelling problems, they
generally do not offer theoretical guarantees, and can be prone to over-fitting/vulnerable
to noise. Geometric approaches such as the one proposed in [2] rest on solid mathemat-
ical foundations but can also be vulnerable to noise, and require potentially very large
amounts of data to permit identification. The work of [24], instead, employs a notion
of robustness of satisfiability of a formula to guide an optimisation based mining pro-
cedure. While this approach can be applied also in a model-free scenario, empirical
estimation of the robustness of a formula may require the observation of a large number
of traces of the system. Furthermore, the approach is based on some monotony proper-
ties of a subset of formulae which does not hold for the log-odd ratio score.

Our approach instead combines statistical modelling ideas from machine learning
with formal verification methods. In this respect, our work is related to a number
of other recent attempts to deploy machine learning tools within a verification con-
text [5,6,34,21]. Similar ideas to the ones used in this paper have been deployed on
the parameter synthesis problem in [5,9,3], where the GP-UCB algorithm was used to
identify the parameters of a model which maximised the satisfaction/robustness of a for-
mula. Statistical abstractions draw their roots in the emulation field in statistics: within
the context of dynamical systems, emulation has been recently used in [18] to model
compactly the interface between subsystems of complex gene regulatory networks.

6 Conclusions
We presented a method to learn temporal properties discriminating two classes of tem-
poral signals. First, we derive the generative statistical models of the two sets. Then, we
explore the formula space searching for good discriminating formulae with a combina-
tion of evolutionary algorithms and bayesian optimisation strategies. This method has
been applied to detect ventilator asynchronies in patients in intensive case, and exem-
plified on the detection of ineffective respiratory efforts during expiration.

The method we presented is still in a preliminary development stage, and has some
limitations. First of all, the trained formulae consider only the flow; keeping track of
pressure should increase its performance. Secondly, the parameters of the formulae de-
pend on properties of input signals like the range of the flow and the average phase
duration, so that they tend to be patient specific. One way to attack this problem would
be to optimise again the (key) parameters while starting monitoring a new patient. A

Temporal Logic Based Monitoring of Assisted Ventilation 401

more interesting alternative can be to normalise flow and pressure signals so that their
duration and range becomes the same for any patient. We are currently investigating the
benefits and limits of this idea. More generally, a difficulty we found is that the hard
time bounds of formulae conflict with the different durations of breaths even for a sin-
gle patient. Possible solutions we are investigating include adding more discrete phases
to the generative models or checking properties of signals in the flow/pressure phase
space, rather than of the time-flow/pressure representation.

Another issue with the current approach is the score function. The log odd ratio, in
fact, tends to privilege the decrease of the satisfaction probability of the formula in the
second model rather than its increase in the first one, i.e. to decrease the false positive
rate rather then the false negative one. The reason for this is readily explained: if the
probability in the second model passes from 10−3 to 10−2 then the log odd ratio de-
creases by an additive term of − log10, while if the satisfaction probability of the first
model passes from 0.5 to 1, the log odd ratio in increased only by log2. Hence, bet-
ter scoring function are needed. Indeed, this is confirmed by the following experiment
with the formula ϕ2 of Section 4: we run the GP-UCB algorithm optimising only its
satisfaction probability in the first model, varying the threshold θ0 ≈−144 in the range
[−300,−30]. In this case, the problem resulted monotonic and the optimum is obtained
for θ∗ = −30. With this new parameter, the discriminative power of the formula ϕ2

alone on the validation set passed from a false negative (false positive) rate of 60% (of
0%) to a rate of 8% (of 3.3%).

The presented method can be further extended in trying to detect other kinds of asyn-
chronies and surely requires extensive testing before reaching one of our final goals, i.e.
its implementation in a dedicated hardware.

Acknowledgements. L.B. acknowledges partial support from the EU-FET project
QUANTICOL (nr. 600708) and by FRA-UniTS. G.S. acknowledges support from the
ERC under grant MLCS306999. E.B. acknowledges the support of the IKT der Zukunft
of Austrian FFG project HARMONIA (nr. 845631).

References

1. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM 43(1),
116–146 (1996)

2. Asarin, E., Donzé, A., Maler, O., Nickovic, D.: Parametric Identification of Temporal Prop-
erties. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 147–160. Springer,
Heidelberg (2012)

3. Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: On the robustness of temporal prop-
erties for stochastic models. In: Proc. of HSB 2013, pp. 3–19 (2013)

4. Bartocci, E., Bortolussi, L., Sanguinetti, G.: Learning temporal logical properties discrimi-
nating ECG models of cardiac arrhytmias. CoRR abs/1312.7523 (2013)

5. Bartocci, E., Bortolussi, L., Sanguinetti, G.: Data-driven statistical learning of temporal logic
properties. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 23–37.
Springer, Heidelberg (2014)

6. Bartocci, E., Grosu, R., Karmarkar, A., Smolka, S.A., Stoller, S.D., Zadok, E., Seyster, J.:
Adaptive runtime verification. In: Qadeer, S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687,
pp. 168–182. Springer, Heidelberg (2013)

402 S. Bufo et al.

7. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)
8. Blanch, L., Sales, B., Montanya, J., Lucangelo, U., Garcia-Esquirol, O., Villagra, A., Chacon,

E., Estruga, A., Borelli, M., Burgueño, M., Oliva, J., Fernandez, R., Villar, J., Kacmarek, R.,
Murias, G.: Validation of the better care system to detect ineffective efforts during expiration
in mechanically ventilated patients: A pilot study. Intensive Care Med. (in press)

9. Bortolussi, L., Sanguinetti, G.: Learning and Designing Stochastic Processes from Logical
Constraints. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013.
LNCS, vol. 8054, pp. 89–105. Springer, Heidelberg (2013)

10. Branson, R.: Patient-ventilator interaction: The last 40 years. Respir. Care 56(1), 15–24
(2011)

11. Bujorianu, M.L., Lygeros, J.: General stochastic hybrid systems. In: IEEE Mediterranean
Conference on Control and Automation MED, vol. 4, pp. 1872–1877 (2004)

12. Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.: Machine learning biochemical net-
works from temporal logic properties. In: Priami, C., Plotkin, G. (eds.) Trans. on Comput.
Syst. Biol. VI. LNCS (LNBI), vol. 4220, pp. 68–94. Springer, Heidelberg (2006)

13. Chen, C., Lin, W., Hsu, C., Cheng, K., Lo, C.: Detecting ineffective triggering in the expira-
tory phase in mechanically ventilated patients based on airway flow and pressure deflection:
Feasibility of using a computer algorithm. Crit. Care Med. 36(2), 455–461 (2008)

14. Clarke, E., Donzé, A., Legay, A.: On simulation-based probabilistic model checking of
mixed-analog circuits. Formal Methods in System Design 36(2), 97–113 (2010)

15. Cuvelier, A., Achour, L., Rabarimanantsoa, H., Letellier, C., Muir, J., Fauroux, B.: A nonin-
vasive method to identify ineffective triggering in patients with noninvasive pressure support
ventilation. Respiration 80(3), 198–206 (2010)

16. Davis, M.: Markov Models and Optimization. Chapman & Hall (1993)
17. Donzé, A., Maler, O., Bartocci, E., Nickovic, D., Grosu, R., Smolka, S.: On temporal logic

and signal processing. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561,
pp. 92–106. Springer, Heidelberg (2012)

18. Georgoulas, A., Clark, A., Ocone, A., Gilmore, S., Sanguinetti, G.: A subsystems approach
for parameter estimation of ode models of hybrid systems. In: Proc. of HSB 2012. EPTCS,
vol. 92 (2012)

19. Grosu, R., Smolka, S.A., Corradini, F., Wasilewska, A., Entcheva, E., Bartocci, E.: Learning
and detecting emergent behavior in networks of cardiac myocytes. Commun. ACM 52(3),
97–105 (2009)

20. Hoos, H.H., Stützle, T.: Stochastic local search: Foundations & applications. Elsevier (2004)
21. Kalajdzic, K., Bartocci, E., Smolka, S.A., Stoller, S.D., Grosu, R.: Runtime Verification with

Particle Filtering. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 149–
166. Springer, Heidelberg (2013)

22. Kondili, E., Akoumianaki, E., Alexopoulou, C., Georgopoulos, D.: Identifying and relieving
asynchrony during mechanical ventilation. Expert Rev. Respir. Med. 3(3), 231–243 (2009)

23. Kondili, E., Prinianakis, G., Georgopoulos, D.: Patient-ventilator interaction. Br. J.
Anaesth. 91(1), 106–119 (2003)

24. Kong, Z., Jones, A., Ayala, A.M., Gol, E.A., Belta, C.: Temporal Logic Inference for Classi-
fication and Prediction from Data. In: Proc. of HSCC 2014 (2014)

25. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Syst. 2,
255–299 (1990)

26. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech,
Y., Yovine, S. (eds.) FORMATS/FTRTFT 2004. LNCS, vol. 3253, pp. 152–166. Springer,
Heidelberg (2004)

27. Mellott, K., Grap, M., Munro, C., Sessler, C., Wetzel, P., Nilsestuen, J., Ketchum, J.: Patient
ventilator asynchrony in critically ill adults: Frequency and types. Heart Lung 43(3), 231–
243 (2014)

Temporal Logic Based Monitoring of Assisted Ventilation 403

28. Mulqueeny, Q., Ceriana, P., Carlucci, A., Fanfulla, F., Delmastro, M., Nava, S.: Automatic
detection of ineffective triggering and double triggering during mechanical ventilation. In-
tensive Care Med. 33(11), 2014–2018 (2007)

29. Mulqueeny, Q., Redmond, S., Tassaux, D., Vignaux, L., Jolliet, P., Ceriana, P., Nava, S.,
Schindhelm, K., Lovell, N.: Automated detection of asynchrony in patient-ventilator interac-
tion. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 5324–5327 (2009)

30. Sassoon, C., Foster, G.: Patient-ventilator asynchrony. Curr. Opin. Crit. Care 7(1), 28–33
(2001)

31. Sinderby, C., Liu, S., Colombo, D., Camarotta, G., Slutsky, A., Navalesi, P., Beck, J.: An
automated and standardized neural index to quantify patient-ventilator interaction. Critical
Care 17, 239 (2013)

32. Sinderby, C., Navalesi, P., Beck, J., Skrobik, Y., Comtois, N., Friberg, S., Gottfried,
S.B., Lindström, L.: Neural control of mechanical ventilation in respiratory failure. Nat.
Med. 5(12), 1433–1436 (1999)

33. Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.W.: Information-theoretic regret bounds
for gaussian process optimization in the bandit setting. IEEE Transactions on Information
Theory 58(5), 3250–3265 (2012)

34. Stoller, S.D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka, S.A., Zadok, E.:
Runtime Verification with State Estimation. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS,
vol. 7186, pp. 193–207. Springer, Heidelberg (2012)

35. Thille, A., Rodriguez, P., Cabello, B., Lellouche, F., Brochard, L.: Patient-ventilator asyn-
chrony during assisted mechanical ventilation. Intensive Care Med. 32(10), 1515–1522
(2006)

36. Tobin, M.J., Jubran, A., Laghi, F.: Patient-ventilator interaction. Am. J. Respir. Crit. Care
Med. 163(5), 1059–1063 (2001)

37. Vignaux, L., Vargas, F., Roeseler, J., Tassaux, D., Thille, A., Kossowsky, M.P., Brochard, L.,
Jolliet, P.: Patient-ventilator asynchrony during non-invasive ventilation for acute respiratory
failure: A multicenter study. Intensive Care Med. 35(5), 840–846 (2009)

38. de Wit, M., Miller, K., Green, D., Ostman, H., Gennings, C., Epstein, S.: Ineffective trigger-
ing predicts increased duration of mechanical ventilation. Crit. Care Med. 37(10), 2740–2745
(2009)

39. Wrigge, H., Reske, A.: Patient-ventilator asynchrony: Adapt the ventilator, not the patient!
Crit. Care Med. 41(9), 2240–2241 (2013)

40. Xiaoqing, J., Donzé, A., Deshmukh, J.V., Seshia, S.A.: Mining Requirements from Closed-
loop Control Models. In: Proc. of HSCC 2013, pp. 43–52. ACM (2013)

41. Yang, H., Hoxha, B., Fainekos, G.: Querying Parametric Temporal Logic Properties on Em-
bedded Systems. In: Nielsen, B., Weise, C. (eds.) ICTSS 2012. LNCS, vol. 7641, pp. 136–
151. Springer, Heidelberg (2012)

42. Younes, H.L.S., Kwiatkowska, M., Norman, G., Parker, D.: Numerical vs. statistical proba-
bilistic model checking: An empirical study. In: Jensen, K., Podelski, A. (eds.) TACAS 2004.
LNCS, vol. 2988, pp. 46–60. Springer, Heidelberg (2004)

Track Introduction: Scientific Workflows

Joost N. Kok1, Anna-Lena Lamprecht2,
Kenneth J. Turner3, and Katy Wolstencroft1

1 Leiden Institute of Advanced Computer Science, Leiden University,
2300 RA Leiden, The Netherlands

joost@liacs.nl, k.j.wolstencroft@liacs.leidenuniv.nl
2 Chair for Service and Software Engineering, University of Potsdam,

14482 Potsdam, Germany
lamprecht@cs.uni-potsdam.de

3 Computing Science and Mathematics, University of Stirling,
Stirling, FK9 4LA, United Kingdom

kjt@cs.stir.ac.uk

In recent years, numerous software systems have been developed specifically for
supporting the management of scientific processes and workflows (see, e.g., [1] or
[2] for surveys). Research in this comparatively new field is currently evolving in
interesting new directions. Already at the ISoLA symposium in 2010 we focused
on workflow management for scientific applications in the scope of a symposium
track on “Tools in scientific workflow composition” [3]. It comprised papers on
subjects such as tools and frameworks for workflow composition, semantically
aware workflow development, and automatic workflow composition, as well as
some case studies, examples, and experiences. This ISoLA 2014 special track on
“Scientific workflows” focuses again on the various topics connected to scientific
processes and workflows. The track comprises five papers, of which three are
concerned with concrete workflow applications, and two with the analysis and
annotation of (scientific) workflows. They are surveyed briefly in the following.
The papers describe research with four different workflow management systems
in a broad range of scientific disciplines, including bioinformatics, biomedical
sciences, climate change, and robotics. The diversity of approaches and research
domains covered will allow participants to share experiences and explore cross-
cutting concerns in workflows research.

Workflow Applications

The paper Meta-analysis of Disjoint Sets of Attributes in Large Cohort
Studies [4] (by Jonathan Vis and Joost Kok) describes a workflow application
from the biomedical field. It introduces the problem of classification in large
cohort studies with heterogeneous data and proposes an approach for cross-
sectional investigation of the data to see the relative power of the different groups.
The authors use the Weka KnowledgeFlow environment [5] to define automated
workflows for data cleaning, data selection, classifier training and meta-learning,
which can again be combined into larger workflows.

Towards a flexible assessment of climate impacts: The example of
agile workflows for the ci:grasp platform [6] (by Samih Alareqi, Steffen

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 404–406, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Track Introduction: Scientific Workflows 405

Kriewald, Anna-Lena Lamprecht, Dominik Reusser, Markus Wrobel and Tiziana
Margaria) is an example from the geoinformatics (climate impact research) do-
main. In this project the jABC modeling framework [7] is used to define climate
impact analysis workflows that can easily be used and adapted by researchers
without programming experience. The application is based on the data and func-
tionality that is available in the ci:grasp platform (Climate Impacts: Global and
Regional Adaptation Support Platform, [8]), but can in contrast to the static
web platform be tailored to the user’s specific data and scenarios.

A workflow example from the robotics domain is presented in A visual pro-
gramming approach to beat-driven humanoid robot dancing [9] (by Vid
Podpečan). Using the Choreographe visual programming environment, a propri-
etary workflow environment for NAO robots [10], and the Aubio [11] audio signal
processing tool workflow components and workflows are developed for teaching
a humanoid robot to dance to a given song (with respect to the detected beat).

Workflow Analysis and Annotation

In jABCstats: An Extensible Process Library for the Empirical Anal-
ysis of jABC Workflows [12] (by Alexander Wickert and Anna-Lena Lam-
precht) the authors describe how they used the jABC modeling framework [7] to
develop a collection of workflows that make it possible to easily perform different
empirical analyses of jABC workflows. While further extensions are envisaged,
currently the library can be used to assess workflow sizes, service usage and the
use of workflow patterns. The paper presents first results from the analysis of
jABC workflows from different scientific application domains.

Finally, the paper Automatic annotation of bioinformatics workflows
with biomedical ontologies [13] (by Beatriz Garćıa-Jiménez and Mark D.
Wilkinson) is concerned with an approach to automatically annotate (legacy)
scientific workflows and their component services with ontology terms. For the
case study presented in the paper, the authors use Taverna [14] workflows from
the myExperiment [15] workflow repository and different existing ontologies from
the bioinformatics and biomedical domains.

References

1. Taylor, I.J., Deelman, E., Gannon, D.B., Shields, M.: Workflows for E-Science:
Scientific Workflows for Grids. Springer (2007)

2. Scientific workflow system - Wikipedia, the free encyclopedia (last accessed June
27, 2014)

3. Kok, J.N., Lamprecht, A.-L., Wilkinson, M.D.: Tools in Scientific Workflow Com-
position. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part I. LNCS, vol. 6415,
pp. 258–260. Springer, Heidelberg (2010)

4. Vis, J.K., Kok, J.N.: Meta-Analysis of Disjoint Sets of Attributes in Large Cohort
Studies. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803,
pp. 407–419. Springer, Heidelberg (2014)

406 J.N. Kok et al.

5. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.:
The weka data mining software: An update. SIGKDD Explor. Newsl. 11(1), 10–18
(2009)

6. Al-Areqi, S., Kriewald, S., Lamprecht, A.-L., Reusser, D., Wrobel, M., Margaria,
T.: Towards a flexible assessment of climate impacts: The example of agile work-
flows for the ci:grasp platform. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014,
Part II. LNCS, vol. 8803, pp. 420–435. Springer, Heidelberg (2014)

7. Steffen, B., Margaria, T., Nagel, R., Jörges, S., Kubczak, C.: Model-Driven De-
velopment with the jABC. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS,
vol. 4383, pp. 92–108. Springer, Heidelberg (2007)

8. ci:grasp 2.0: Home (last accessed June 27, 2014)
9. Podpečan, V.: A visual programming approach to beat-driven humanoid robot

dancing. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803,
pp. 436–448. Springer, Heidelberg (2014)

10. Aldebaran Robotics - Humanoid robotics & programmable robots (last accessed
June 27, 2014)

11. Aubio, a library for audio labeling (last accessed June 27, 2014)
12. Wickert, A., Lamprecht, A.-L.: jABCstats: An Extensible Process Library for the

Empirical Analysis of jABC Workflows. In: Margaria, T., Steffen, B. (eds.) ISoLA
2014, Part II. LNCS, vol. 8803, pp. 449–463. Springer, Heidelberg (2014)

13. Garćıa-Jiménez, B., Wilkinson, M.D.: Automatic annotation of bioinformatics
workflows with biomedical ontologies. In: Margaria, T., Steffen, B. (eds.) ISoLA
2014, Part II. LNCS, vol. 8803, pp. 464–478. Springer, Heidelberg (2014)

14. Wolstencroft, K., Haines, R., Fellows, D., Williams, A., Withers, D., Owen, S.,
Soiland-Reyes, S., Dunlop, I., Nenadic, A., Fisher, P., Bhagat, J., Belhajjame, K.,
Bacall, F., Hardisty, A., Nieva de la Hidalga, A., Balcazar Vargas, M.P., Sufi, S.,
Goble, C.: The taverna workflow suite: Designing and executing workflows of web
services on the desktop, web or in the cloud. Nucleic Acids Research 41(W1),
W557–W561 (2013)

15. Goble, C.A., Bhagat, J., Aleksejevs, S., Cruickshank, D., Michaelides, D., Newman,
D., Borkum, M., Bechhofer, S., Roos, M., Li, P., Roure, D.D.: myExperiment: A
repository and social network for the sharing of bioinformatics workflows. Nucleic
Acids Research 38(suppl. 2), W677–W682 (2010)

Meta-analysis of Disjoint Sets of Attributes

in Large Cohort Studies�

Jonathan K. Vis1,2 and Joost N. Kok1,2

1 Department of Molecular Epidemiology, Leiden University Medical Center, Leiden,
The Netherlands

2 Leiden Institute of Advanced Computer Science, Leiden University, Leiden,
The Netherlands

Abstract. We will introduce the problem of classification in large co-
hort studies containing heterogeneous data. The data in a cohort study
comes in separate groups, which can be turned on or off. Each group
consists of data coming from one specific measurement instrument. We
provide a “cross-sectional” investigation on this data to see the relative
power of the different groups. We also propose a way of improving on the
classification performance in individual cohort studies using other cohort
studies by using an intuitive workflow approach.

Keywords: meta-analysis, machine learning, data mining, classifica-
tion, feature selection, cohort studies.

1 Introduction

Cohort studies are frequently used in the biomedical field. The aim is to identify
so-called risk factors correlated to a phenotype, usually a disease. A cohort is a
group of people sharing a common characteristic during a certain period. Within
this period some people either develop the studied phenotype or already exhibit
it from the start. This subgroup is referred to as the case group, while the
remainder of the people are designated as controls.

Nowadays a variety of different types of biomedical data can be gathered.
Often physiological data such as gender, age, blood pressure and heart rate
are present together with genomics data either consisting of the complete ge-
nomic sequence, but more often, in the form of single nucleotide polymorphisms
(SNPs). While some disease have a clear genomic origin, many others are cause
by a more complex combination of effects, therefore, data about the presence or
concentration of all kinds of substances within the body such as metabolites.

As new data generating methods become available during the period of a co-
hort study data is accumulated. Different types, e.g., genomics or metabolites, of
data are collected from the same group of people resulting in more of less disjoint
data sets describing a self-contained set of attributes of the same individual. It
is unclear whether these data sets have the power to augment each other or

� This publication was supported by the Dutch national program COMMIT.

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 407–419, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

408 J.K. Vis and J.N. Kok

whether they express the same knowledge. For example, due to a genomic defect
a certain substance (metabolite) is under- or overexpressed.

The abundance of attributes per person results often in a skewed data set;
a few instances versus a lot of attributes. As a consequence finding correlations
in the data becomes tricky This effect is enhanced by the fact that widening
(adding attributes) a data set is cheaper then adding more individuals. Which
is even impossible at a later stage of the study.

Adding data is never free. This is especially the case in the biomedical field.
The preparation and construction of these data sets are labor intensive and
expensive in a financial sense. Furthermore, this process imposes a burden on
the individuals from whom the samples must be taken. This results in a clear
motivation to study the usefulness of the gathering of groups of additional data.

In this paper we investigate three cohort studies which each consists of a
number of sets of attributes. In contrast to the more generally applied feature
selection, we add whole sets of features instead of single features. We are primar-
ily not so much interested in the absolute classification, but more in the added
improvement on the classification of these separate sets. In addition, we propose
a method of improving classification in one cohort study by adding data from
different cohort studies.

The remainder of the paper is organized as follows. In Section 2 we formalize
a problem statement as well as introduce the cohort studies used in the experi-
ments. Section 3 describes the workflow and tooling. We present the experiments
in Section 4, and the conclusions to the study in Section 5.

2 Problem Statement

In contrast to the classic feature selection problem, we have a number of disjoint
sets of attributes that can either be included as a whole or they can be completely
excluded from the study. Furthermore, we have a number of separate studies
(concerning the same phenotype and covering the same sets of attributes) that
can be pooled together in order to augment classifying power on a separate
study. Given this setting, we define two meta-analysis problems:

1. Can we say something about the relative power of the (combinations of) sets
of attributes?

2. Can data from different cohort studies be used to augment classifying power
for a single study?

2.1 Anatomy of the Data Sets

As we are dealing with humans represented in these cohort studies, we must
observe caution not to accidentally expose any details of these individuals nor
are we authorized to publish any identifying details about the studies themselves.
Therefore we choose not to describe the actual cohort studies used, but we will
give a feeling for the characteristics of these studies.

Meta-analysis of Disjoint Sets of Attributes 409

In the cohort studies we are interested in the classification of a certain pheno-
type: an aging related disease. Earlier attempts to characterize this disease have
resulted in a reasonably small (about 10) set of so-called risk factors which seem
highly correlated with this disease. These risk factors are all physiological (e.g.,
age and sex), and, compared to many of the other attributes, easily gathered.

In this study we will use three real cohort studies. The typical number of
instances per study is between 1,000 and 2,000 of which approximately 25% is
an identified case example (an individual exhibiting the disease).

2.2 Disjoint Sets of Attributes

The data in these cohort studies can be partitioned in disjoint sets of attributes
describing a certain type of features. The first set we consider is the set of risk
factors derived from earlier studies. We use this as a baseline for our study. Next,
we have a set of several dozens of general physiological and behavioral character-
istics. Both sets are rather easily constructed and therefore commonly present
in similar studies. We have a set of genetic data containing several hundreds of
SNPs, which are already selected as promising candidates for correlation regard-
ing this disease. And finally, two sets of metabolitic data: concentration levels
of several dozens of Free Fatty Acids (FFA), and about a hundred metabolites
measured with NMR (nuclear magnetic resonance) spectroscopy, represented as
areas under curve.

As the last three sets of data are considerably more difficult in terms of labor
and finances to gather we are especially interested in their “added value” with
regard to the general study and each other.

Fig. 1. Schematic representation of the mining space. Each cube represents the clas-
sification power for the corresponding classifier on a combination of disjoint sets of
attributes from a certain cohort study.

410 J.K. Vis and J.N. Kok

3 Workflows

To find answers to the problems stated in Section 2, we consider all possible
combinations of the disjoint sets of attributes (except for selecting no data at
all) from all combinations of cohort studies. For each partition of the data we
calculate the classification power of all classifiers, see Figure 1.

We propose an automated workflow for the calculation of all data points in
Figure 1 in Figure 2. As a first approach all workflows are implemented as batch
scripts using the pipes and filters design pattern. In particular a selection of the
standard Unix tools is used to perform the splitting of the respective data sets,
the creation of folds, and data cleaning. We often augment the pipes and filters
pattern [4] by the data-driven pattern of the make utility. Commonly make is used
to automatically build executables from source code, however it is not limited
to building software. Indeed its data-driven paradigm combined with the power
of declarative programming makes it especially useful in data centric workflows
as described in [11].

Fig. 2. Graphical representation of the automated mining process. It shows the parti-
tioning of the data and its distribution over the classifiers.

Meta-analysis of Disjoint Sets of Attributes 411

Although workflows have been introduced in the biomedical field, e.g., [9], we
observe that ad hoc solutions are frequently used preferring agile development
over reusability and scalability. In our particular case we want to combine data
from separate data sets making the need for scalability more important. Further-
more we acknowledge that our first approach is highly technical and probably
difficult to maintain in the biomedical field. Most researchers in this field dealing
with the data mining tasks on large cohort studies are not computer scientists or
programmers. In order to enable them to conduct their independent research on
these data sets, we have to provide them with high-level and easy to understand
formal workflows.

To make our workflow accessible and reusable we introduced a more formal
workflow. As most of our classifiers (see Section 3.1) are taken from the Weka
toolbox [5], it seems natural to use the Weka KnowledgeFlow environment to
design our workflows. Even though this environment is hardly a general workflow
tool, our primary tasks are data mining related further advocating the use of
this specialized toolkit.

To cater for a number of different recurring subtasks we designed four separate
workflows in the Weka KnowledgeFlow environment, see Figure 3:

(a) Data cleaning — In order to link several data sets together it is impera-
tive that corrupt and inaccurate instances and attributes are detected and
corrected;

(b) Data selection — Usually a single data set is used for training and validation
purposes, here we deal with data from separate sets. This workflow enables
the preselection of instances from these separate sets;

(c) Classifier training — This is the backbone of the actual data mining process.
It is a fairly standard classifier training workflow;

(d) Meta-learning — To effectively combine the results from the individual min-
ing processes, we use the meta-learning workflow. It deals in particular with
the hierarchical approach discussed in Section 4.4.

412 J.K. Vis and J.N. Kok

(a
)
D
a
ta

cl
ea
n
in
g
w
o
rk
fl
ow

.
A

si
m
p
li
fi
ed

v
er
si
o
n
is
sh
ow

n
h
er
e:

n
o
t
a
ll
fi
lt
er
s
a
re

p
re
se
n
t.

(b
)
D
a
ta

se
le
ct
io
n
w
o
rk
fl
ow

.

(c
)
C
la
ss
ifi
er

tr
a
in
in
g
w
o
rk
fl
ow

.
N
o
t
a
ll
cl
a
ss
ifi
er
s
a
re

in
-

cl
u
d
ed

in
th
is

re
p
re
se
n
ta
ti
o
n
.

(d
)
M
et
a
-l
ea
rn
in
g
w
o
rk
fl
ow

.

F
ig
.
3
.
W
ek
a
K
n
ow

le
d
g
eF

lo
w

w
o
rk
fl
ow

s

Meta-analysis of Disjoint Sets of Attributes 413

These separate workflows can in turn be combined into larger workflows if
desired. Note that the meta-learning workflow is similar to the normal learning
workflow, making the meta-level concept easier to understand, which is visualized
in the actual workflows.

Although the Weka KnowledgeFlow environment might not be a full-scale
workflow modelling language, it is well-suited for the analyses in this paper. By
using largely classifiers from the Weka toolbox we avoid issues of incorporating
different data mining tools. In a more general case it is often advantageous to
use many different tools. Under this precondition it becomes difficult to solely
use the Weka toolkit as a workflow modelling language and it is recommended
to use a general workflow modelling framework like Taverna [15]. For this paper
we will consider this to be future work.

3.1 Classifiers

In our case we are interested in classification: to find causal attributes for the
presence of a phenotype. The data at our disposal is highly heterogeneous in
nature, therefore, we will use a variety of classifiers each especially suited to one
or more types of attributes. We include also two techniques from the statistical
field for comparison: regression analysis. Statistics are still widely used within
the biomedical field.

We acknowledge the fact that there are many more methods available, how-
ever, we tried to create a “cross-section” of the many types of classifiers existing
today. A clear focus is on the more widely used methods. We present each method
together with a motivation why this particular method seems to be useful on
our data as well as the tool/implementation used:

– Logistic regression [6] — often used in statistical analysis, here used as com-
parison;

– Least squares [1] — often used in statistical analysis, here used as compari-
son;

– Bayesian network [10] — often used in the medical field;

– Decision tree (C4.5) [12] — baseline for many knowledge discovery methods;

– Random forest [2] — baseline for many knowledge discovery methods;

– Neural network (multilayer perceptron with one hidden layer) [13] — espe-
cially useful for the large quantities of numerical data;

– Support vector machine (linear) [3] — baseline for many knowledge discovery
methods;

– Subgroup discovery [7,8] — identifying subgroups might be useful in describ-
ing possibly different forms of the disease.

For practical reasons mostly implementations from the Weka toolbox are used.
We believe that the actual implementation of the algorithm is not affecting the
results. Nor are we primarily interested in the actual classifying power, but more
in the added value of the disjoint sets of attributes.

414 J.K. Vis and J.N. Kok

3.2 Quality Metrics

A lot of different quality metrics have been used to describe the performance of
classifiers. Most of them are defined in term of the confusion matrix containing
the number of true positives, true negatives, false positives, and false negatives.
Commonly used metrics include: precision and recall, sensitivity and specificity,
and receiver operating characteristic. As we are trying to characterize the relative
performance of several methods, we choose a method that can be expressed as a
single number. We used the so-called weighted relative accuracy (WRAcc) [14]:

WRAcc(Class← Cond) = p(Cond) · (p(Class|Cond)− p(Class)).

The WRAcc embodies a trade-off between standard accuracy and generality
without sacrificing to much accuracy. Often this metric performs well and tends
to yield fewer and simpler patterns, which are considered to be an asset in the
biomedical field as usually the resulting patterns have to be explained in this
field.

4 Experiments

In this section we will describe the computer experiments. Note that we are not
primarily interested in the classification performance of the disease, but rather
to investigate the effects of augmenting the separate sets with each other with
regard to this classification problem.

In all experiments we use stratified 10-fold cross-validation. Each data set
is randomly partitioned into ten equal size subsamples in such a way that the
proportion of the cases versus the controls is constant. A single subsample is
designated to be the validation data for the trained model, while the remaining
nine subsamples are combined to train the model.

As a baseline we use the current standard risk prediction method derived
from earlier studies, which is a non-linear function over all features captured
within the risk factor set. The performance of this method on our three studies
is described in Table 1.

Table 1. The performance of the current standard risk prediction method

Study WRAcc

Cohort Study I 79.08
Cohort Study II 84.90
Cohort Study III 87.13

Meta-analysis of Disjoint Sets of Attributes 415

4.1 Classification Power of Disjoint Sets of Attributes

As a first experiment we investigate the additional classification power gained by
adding each disjoint data set. We did this for all three cohort studies. We took
all combinations of the disjoint sets and calculated their respective predictive
power, see Table 2. We do not show the combinations where the risk factors are
included, because they result in every case in a WRAcc that is very close to the
WRAcc of the risk factors alone. With the notable exception of the “all” data
set, where all attributes (including the risk factors) are considered. Note that
the set of FFAs is not available for Cohort Study II.

Table 2. The WRAcc for combinations of the disjoint sets of attributes

Cohort Study I
set(s) logistic

regression
least
squares

bayesian
systems

decision
tree

random
forest

neural
network

SVM subgroup
discovery

all 80.98 73.98 59.96 74.63 78.07 58.09 66.59 62.03
risk factors 73.08 64.55 55.26 71.79 71.14 51.22 63.99 57.38
NMR 62.63 57.45 50.08 62.40 65.08 50.00 57.02 56.44
SNP 65.74 60.01 59.00 63.87 61.79 51.52 56.41 56.04
FFA 66.56 56.29 54.14 62.98 64.01 53.74 58.00 57.25
{NMR, SNP, FFA} 70.15 57.78 50.26 63.57 70.60 52.59 61.15 55.80
{NMR, SNP} 65.12 62.59 50.11 65.21 64.09 53.97 62.05 51.09
{NMR, FFA} 68.07 63.67 53.28 62.20 61.52 54.07 59.22 54.31
{SNP, FFA} 65.57 58.73 58.21 58.40 66.93 53.99 58.49 54.73

Cohort Study II
set(s) logistic

regression
least
squares

bayesian
systems

decision
tree

random
forest

neural
network

SVM subgroup
discovery

all 90.02 81.05 67.80 86.18 88.42 54.92 85.05 58.51
risk factors 89.98 76.50 74.61 85.98 83.60 52.76 83.73 68.59
NMR 75.61 61.57 56.47 65.99 70.52 57.63 67.72 55.76
SNP 69.61 67.13 60.66 72.61 72.98 57.01 77.53 61.25
{NMR, SNP} 72.70 60.01 57.51 72.93 72.65 59.13 63.17 51.81

Cohort Study III
set(s) logistic

regression
least
squares

bayesian
systems

decision
tree

random
forest

neural
network

SVM subgroup
discovery

all 93.97 79.32 77.60 84.72 87.35 70.88 83.85 77.35
risk factors 89.98 72.22 52.07 85.05 77.61 65.65 75.56 67.04
NMR 74.45 68.23 51.72 72.05 82.16 58.47 71.61 50.99
SNP 73.85 61.91 57.59 69.72 70.94 57.81 69.79 53.21
FFA 73.55 57.78 52.76 79.89 76.33 58.66 69.61 67.46
{NMR, SNP, FFA} 77.14 66.07 54.45 70.60 78.21 56.98 70.11 57.00
{NMR, SNP} 75.21 71.43 58.61 73.98 66.89 53.47 75.36 58.25
{NMR, FFA} 77.86 70.45 72.20 78.76 76.51 50.73 69.56 60.79
{SNP, FFA} 76.63 65.84 62.97 65.41 76.33 63.89 66.48 51.66

As can be observed from Table 2, the small set of risk factors is able to
outperform all of the other combinations of (much larger) sets of attributes in
term of absolute predictive power regardless of the classifier. However, some
classifiers are able to outperform the risk factors at specific sets. For instance,
neural networks seem to perform better on some of the sets of attributes that
contain predominantly numerical data. Furthermore, in all cases providing all
data to the classifier improves its prediction power. This is not generally true.
As most classifiers use a heuristic method to combine certain attributes, it can
be the case that adding data obscures the underlining patterns, which result in

416 J.K. Vis and J.N. Kok

a reduced performance. This effect can also be observed in Table 2, e.g., when
combining {NMR, SNP, FFA} which results sometimes in a lower WRAcc than
the combination {NMR, FFA}.

Based on the results for the three cohort studies, we cannot draw statistically
significant conclusions about the relative power of the groups of attributes. For this
we should include additional cohort studies. The meta-analysis method can then
provide very useful insights for the classification problems of the cohort studies.

4.2 Using Classifiers across Cohort Studies

In this second experiment, we are interested in the performance of the classifiers
(trained and validated on their respective cohort studies) in Table 2 on other
studies. We hope to acquire insight in the generality of the classifiers. In Table 3,
we present the measured predictive power of the classifier trained and validated
on Cohort Study I (as this is the largest) tested on Cohort Study II and Cohort
Study III. Note that the set of FFAs is not available for Cohort Study II.

Table 3. The performance (WRAcc) of the classifiers trained on Cohort Study I and
tested on Cohort Study II and Cohort Study III

Cohort Study II
set(s) logistic

regression
least
squares

Bayesian
systems

decision
tree

random
forest

neural
network

SVM subgroup
discovery

all 75.69 58.03 51.74 60.76 69.65 53.13 56.37 57.93
risk factors 61.08 61.34 52.49 63.13 64.85 49.70 67.97 56.05
NMR 59.90 51.00 50.93 62.85 67.60 52.88 56.62 49.10
SNP 58.35 66.65 59.59 59.47 60.93 53.54 53.12 45.64
{NMR, SNP} 56.67 54.11 36.01 63.43 72.22 48.28 68.04 52.32

Cohort Study III
set(s) logistic

regression
least
squares

Bayesian
systems

decision
tree

random
forest

neural
network

SVM subgroup
discovery

all 54.01 49.98 36.72 53.84 57.42 64.42 48.44 43.47
risk factors 57.77 42.50 28.42 52.18 67.53 55.16 61.57 49.83
NMR 55.31 50.87 32.19 59.29 64.09 46.22 61.01 53.77
SNP 41.52 46.40 42.65 50.71 61.71 59.21 58.38 38.71
FFA 46.46 47.73 53.07 52.13 63.96 59.29 55.50 40.19
{NMR, SNP, FFA} 51.80 55.18 47.43 50.43 47.54 58.22 52.49 44.19
{NMR, SNP} 52.83 50.86 37.63 56.65 69.83 55.98 50.20 34.31
{NMR, FFA} 48.39 39.44 30.73 49.68 65.93 58.51 50.64 49.15
{SNP, FFA} 58.05 44.58 29.26 59.19 55.67 58.19 58.49 50.07

The results in Table 3 are not as good as expected. Although the performance
on Cohort Study I is reasonable good, the performance on Cohort Study III is
not very good, as, most scores are just above 50%. Apparently the model for
Cohort Study I is not capable of predicting the disease in more general cases.
The predictive power maintained on Cohort Study I is notably better. A possible
explanation being the low number of cases in Cohort Study III. It might even be
possible that these cases are of a different type with regard to the predominant
cases characterized in Cohort Study I as overfitting seems not to be the problem
when training on the Cohort Study I.

Meta-analysis of Disjoint Sets of Attributes 417

The remaining forms of cross model testing are not shown here as they yield
significantly less performance results. Again presumably because of the low ratio
of cases versus controls in this study.

4.3 Combining All Data from Different Studies

As is apparent from the experiments in Section 4.2, the generality of the con-
structed classifiers can be improved. We introduce a new experiment: instead
of training and validating on a separate study we will combine all data into a
single data set. 90% of this data set is used to train and validate the classifiers
(as usual using 10-fold cross validation). The resulting classifiers are then tested
on the respective 10% of the disjoint sets from their original cohort studies. Thus
avoiding the pitfall of overfitting. These results are shown in Table 4.

Table 4. WRAcc of the classifiers trained on all data combined and tested on disjoint
sets of attributes

Cohort Study I
set(s) logistic

regression
least
squares

Bayesian
systems

decision
tree

random
forest

neural
network

SVM subgroup
discovery

all 58.23 59.19 51.70 62.63 65.30 69.52 58.04 46.51
risk factors 54.40 58.03 45.04 57.28 57.56 57.10 55.21 40.09
NMR 52.12 42.76 45.95 57.91 59.58 49.18 52.54 40.94
SNP 44.50 43.31 50.86 53.83 50.53 62.42 56.36 36.24
{NMR, SNP} 52.87 40.10 49.21 58.85 48.43 54.47 39.50 43.53

Cohort Study II
set(s) logistic

regression
least
squares

Bayesian
systems

decision
tree

random
forest

neural
network

SVM subgroup
discovery

all 78.60 62.16 62.75 69.94 72.45 59.24 70.33 65.39
risk factors 73.15 53.76 45.12 57.57 60.89 56.31 50.48 58.42
NMR 64.36 59.89 59.15 62.02 67.19 52.38 65.13 55.43
SNP 61.82 62.74 54.49 60.99 66.53 50.89 50.69 56.50
{NMR, SNP} 68.79 54.79 62.04 65.00 64.20 48.63 69.18 50.98

Cohort Study III
sets(s) logistic

regression
least
squares

Bayesian
systems

decision
tree

random
forest

neural
network

SVM subgroup
discovery

all 65.20 59.21 64.09 66.01 70.45 58.88 65.83 62.41
risk factors 59.50 59.41 62.51 55.83 69.86 58.14 54.11 47.66
NMR 60.81 52.77 50.66 53.76 68.82 49.10 56.10 58.86
SNP 55.78 51.16 45.95 63.36 66.35 54.66 45.71 45.90
{NMR, SNP} 60.16 51.57 61.45 59.84 55.08 52.61 65.55 59.26

The predictive power described in Table 4 is indeed more promising than in
Table 3. However, we lose a lot of accuracy on all of the separate studies at
the benefit of a more stable (general) classifier. We feel that the added benefit
of stability does not outweigh the medical consequences of losing that much
performance, and is, therefore, not satisfactory in practise.

4.4 A Hierarchical Approach

Next we present a hierarchical approach to improve the overall performance
of the classifiers on the disjoint sets of attributes. Based on the observation

418 J.K. Vis and J.N. Kok

in Table 2 that some classifiers yield better results on certain sets. We want
to make use of this feature by applying the best performing classifier on each
of the disjoint sets, and combine their predictions in some way. Note that we
will consider the single sets only. Applying this method to all combinations of
the disjoint sets will be regarded as future work. Reminding the results from
the experiments performed in Section 4.2 and Section 4.1, we will once again
consider the studies separately.

We will use two methods of combining the predictions of the individual classi-
fiers: majority voting and a linear perceptron, a simple form of a neural network
consisting of only an input layer (the predictions) and an output layer of one
node: the ultimate prediction based on the predictions of the individual classi-
fiers. In case of majority voting we do not need to train the hierarchical method,
so no addition data is required. This is not the true for in case of the linear
perceptron that needs to be trained as well. We use the same partitioning strat-
egy as used in Section 4.3 in order to avoid overfitting. In Table 5 we present
the performance of the hierarchically linked classifiers trained on their respective
studies, but selected based on their individual performance on Cohort Study III,
and, in case of the classifiers trained on the Cohort Study III data, the data from
Cohort Study I.

Table 5. The WRAcc of the hierarchically linked classifiers

study majority linear perceptron

Cohort Study I 73.43 82.83
Cohort Study II 83.28 90.74
Cohort Study III 92.33 94.55

As is apparent in Table 5, we are able to improve upon the predictive power of
the individual classifiers as is shown in Table 2 when using a linear perceptron.
The majority voting approach seems to be inferior to using the flat data. Prob-
ably, this is caused by the fact that all data sets are weighted equally, where
as analyzing the data directly retains the possibility of weighting groups and
individual attributes differently. The (small) increase in performance of the hier-
archical approach by using a linear perceptron might be explained by a divide-
and-conquer argument. By presenting the classifiers with smaller data set they
are more easily capable of fitting a model there on. Apparently, these individual
models can be combined just by using a simple weighting scheme.

5 Conclusions

In this paper we investigated the added benefits of augmenting large cohort stud-
ies with disjoint sets of attributes and data from other studies. We provided a
“cross-sectional” study of different classifiers on the heterogeneous data available
within these studies. As expected, knowledge discovery on this kind of studies

Meta-analysis of Disjoint Sets of Attributes 419

is not a trivial task. We compared our results with a baseline standard risk
prediction method used in literature. We shown that our methods are able to
match its performance, and, in some cases, are able to outperform it. In partic-
ular an hierarchical approach seem to yield good results. We have demonstrated
that applying machine learning techniques combined with workflow tooling are
valuable in solving this task.

As this is rather a small preliminary study, extending this research onto more
large cohort studies, and investigating for different phenotypes is regarded to be
a valid pointer towards future research.

References

1. Borowiak, D.: Linear Models, Least Squares and Alternatives. Technometrics 43(1),
99 (2001)

2. Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)
3. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and

Other Kernel-based Learning Methods. Cambridge University Press (2000)
4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of

Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc.,
Boston (1995)

5. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.:
The weka data mining software: An update. SIGKDD Explor. Newsl. 11(1), 10–18
(2009)

6. Hosmer Jr., D.W., Lemeshow, S., Sturdivant, R.X.: Applied Logistic Regression.
Wiley (2013)

7. Lavrač, N., Kavšek, B., Flach, P., Todorovski, L.: Subgroup discovery with CN2-
SD. The Journal of Machine Learning Research 5, 153–188 (2004)

8. Meeng, M., Knobbe, A.: Flexible Enrichment with Cortana Software Demo. In:
Proceedings of BeneLearn, pp. 117–119 (2011)

9. Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver,
T., Glover, K., Pocock, M.R., Wipat, A., Li, P.: Taverna: A Tool for the Composi-
tion and Enactment of Bioinformatics Workflows. Bioinformatics 20(17), 3045–3054
(2004)

10. Pearl, J.: Causality: Models, Reasoning and Inference, vol. 29. Cambridge Univer-
sity Press (2000)

11. Robinson, C., Thain, D.: Automated packaging of bioinformatics workflows for
portability and durability using makeflow. In: Proceedings of the 8th Workshop on
Workflows in Support of Large-Scale Science, WORKS 2013, pp. 98–105. ACM,
New York (2013)

12. Rokach, L.: Data Mining with Decision Trees: Theory and Applications, vol. 69.
World Scientific (2007)

13. Rosenblatt, F.: Principles of Neurodynamics. Perceptrons and the Theory of Brain
Mechanisms. Technical report, DTIC Document (1961)

14. Todorovski, L., Flach, P., Lavrač, N.: Predictive Performance of Weighted Relative
Accuracy. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000.
LNCS (LNAI), vol. 1910, pp. 255–264. Springer, Heidelberg (2000)

15. Wolstencroft, K., Haines, R., Fellows, D., Williams, A., Withers, D., Owen, S.,
Soiland-Reyes, S., Dunlop, I., Nenadic, A., Fisher, P., et al.: The Taverna workflow
suite: Designing and executing workflows of Web Services on the desktop, web or
in the cloud. Nucleic Acids Research 41(W1), W557–W561 (2013)

Towards a Flexible Assessment of Climate

Impacts: The Example of Agile Workflows
for the ci:grasp Platform

Samih Al-Areqi1, Steffen Kriewald2, Anna-Lena Lamprecht1,
Dominik Reusser2, Markus Wrobel2, and Tiziana Margaria1

1 Chair for Service and Software Engineering, Potsdam University,
14482 Potsdam, Germany

http://www.cs.uni-potsdam.de/sse

{samih,lamprecht,margaria}@cs.uni-potsdam.de
2 Potsdam Institute for Climate Impact Research (PIK)

14412 Potsdam, Germany
http://www.pik-potsdam.de

{kriewald,reusser,wrobel}@pik-potsdam.de

Abstract. The Climate Impacts: Global and Regional Adaptation Sup-
port Platform (ci:grasp) is a web-based climate information service for
exploring climate change related information in its geographical context.
We have used the jABC workflow modeling and execution framework to
make flexibilized versions of the processes implemented in ci:grasp avail-
able to the scientific community. The jABC permits us to leverage the
processes to an easily accessible conceptual level, which enables users to
flexibly define and adapt workflows according to their specific needs. The
workflows are suitable as graphical documentation of the processes and
are directly repeatable and reusable, which facilitates reproducibility of
results and eventually increases the productivity of researchers working
on climate impact risk assessment. In this paper, we use variations of
workflows for the assessment of the impacts of sea-level rise to demon-
strate the flexibility we gained by following this approach.

Keywords: scientific workflows, agile methods, model-driven develop-
ment, climate information, climate impact risk assessment.

1 Introduction

Analyzing and assessing potential impacts of climate change are critical and
challenging tasks that require the processing of large and heterogeneous datasets.
These analyses are particularly demanding because of the multi-scale and
multi-objective nature of environmental modeling for climate change impact as-
sessment [16,9]. Harmonization efforts of scenarios and input data for impact
modeling allow for the first time to compare results and assess major sources of
uncertainty [31]. There is a large number of emission scenarios, climate models,

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 420–435, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://www.cs.uni-potsdam.de/sse
http://www.pik-potsdam.de

Towards a Flexible Assessment of Climate Impacts 421

impact models and fundamental modeling assumptions available. Combining dif-
ferent modeling approaches, various data sources, multiple objectives and basic
assumptions for climate impact assessment is a complex challenge.

Fig. 1. Overview of the information available on ci:grasp

ci:grasp1 is a web-based climate information service. It aims to support deci-
sion makers to better understand impacts of climate change, to prioritize adapta-
tion needs, and to plan and implement appropriate adaptation measures [33,34].
It models climate information and related knowledge in the form of text, maps,
and graphs. Main drivers for climate change included on ci:grasp are sea level
rise (SLR), change in temperature and precipitation and increased drought risk.
These drivers, as well as more frequent extreme events expected under a changing
climate, provide a high risk for human lives and cause massive economic dam-
ages. Figure 1 gives a short overview of the information presented on ci:grasp.

The ci:grasp platform provides a very rich and well-organized collection of data
including 400 adaptation projects and thousands of maps on climate impacts,
but it is nonetheless static in the sense that accessible content is being prepared,
computed and stored in advance: the processes generating the data displayed on
ci:grasp are hidden from the end user and typically carried out by experts calling
a number of scripts manually. Our goal is hence to automate these processes and
make them visible and accessible for the researchers working with them, so that
they can easily and dynamically adapt them to their specific needs and perform
analyses tailored to their specific needs.

To this aim, we use the jABC process modeling and execution framework [27]
as workflowmanagement system. The jABC is the current reference implementa-
tion of the XMDD (eXtreme Model-Driven Design) paradigm [12,23], an extreme
version of model-driven development that supports a very flexible and agile de-
velopment of service-oriented applications by turning system development into
user-centric orchestration of intuitive service functionality [22].

1 http://www.cigrasp.org

http://www.cigrasp.org

422 S. Al-Areqi et al.

In this paper, we use variations of workflows for the assessment of SLR re-
lated impacts as examples to demonstrate the flexibility that is gained by using
the jABC for the management of ci:grasp’s processes. The paper is an extended
version of a short technical paper [1] accompanying a presentation at this year’s
International Congress on Environmental Modelling and Software (iEMSs 2014).
It is structured as follows. Section 2 introduces the jABC framework, then Sec-
tion 3 gives some background information on the SLR application example. Sec-
tion 4 describes how we decomposed the ci:grasp’s original assessment of the
impact of sea level rise into basic computational services, which we then used as
workflow building blocks together with additional functionality from the jABC.
Section 5 discusses three examples of workflow variations that we built for the
SLR analysis case. Section 6 concludes the paper with a summary, discussion
and ideas for future work.

2 The jABC Modeling Framework

The jABC [27] is a multi-purpose and domain-independent framework for model-
driven application development. It inherits the power of eXtreme Model-Driven
Design (XMDD) [12,23] to enable end users to easily use and compose services
into agile workflows. Its way of handling the collaborative design of complex
software systems has proven to be effective and adequate for the cooperation
of non-programmers and technical people. In fact, the jABC also complies with
the best practices for scientific software development recently described by [32]
and has been used in a number of scientific workflow projects in the last years
(cf., e.g., [21,14,5]). The framework has furthermore been extended by function-
ality for semantics-based semi-automatic service composition [15,24], which has
been shown to be beneficial especially for dealing with variant-rich scientific
workflows [13].

The jABC has a comprehensive and intuitive graphical user interface that
facilitates workflow development. jABC users easily develop workflow applica-
tions by composing reusable building-blocks (called Service-Independent Build-
ing Blocks, or SIBs) into hierarchical (flow-) graph structures (called Service
Logic Graphs, or SLGs) that are executable models of the application. The
workflow development process is furthermore supported by an extensible set of
plugins providing additional functionalities, so that the SLGs can be analyzed,
verified, executed, and compiled directly in the jABC. Figure 2 gives an im-
pression of the graphical user interface of the jABC in action: The SLG on the
canvas has been created using SIBs from the library (displayed in the upper
left of the window) in a drag&drop fashion, and connecting them with labeled
branches representing the flow of control. After the parameters of the SIBs have
been configured (in the SIB inspector in the lower left), the workflow is ready
for execution. The small window in the upper left corner of the figure is the
control panel of the Tracer plugin that steers the execution of the models. It
indicates that it is currently executing a SIB, and the green-colored branches
of the model on the canvas visualize where the execution has currently arrived.

Towards a Flexible Assessment of Climate Impacts 423

Fig. 2. User interface of the jABC in action

The third window in the figure shows an (intermediate) result from the workflow
execution and has been opened by the currently executed SIB.

In contrast to many other scientific workflow management systems (like, e.g.,
Kepler [17], Triana [28], or VisTrails [3]), whose models represent the flow of
data, jABC workflows are control-flow models of the application. While data-
flow modeling often appears to be more intuitive in the beginning, it soon reaches
its limits when it comes to expressing more complex workflow structures. Control
structures like conditional branchings or loops, which are required for supporting
the explorative nature of scientific computations, can not be represented by
pure data flow models. Therefore, many data flow-oriented systems like those
mentioned above include possibilities for defining control flow structures within
their workflows. These definitions are however usually less intuitive, and also with
them it can still be difficult or impossible to realize particular complex workflow
structures that are natural in the control flow formalism (cf., e.g., [13]).

3 Example: Assessing the Impact of Sea-Level Rise

For the example of sea-level rise (SLR) that we focus on in this paper, climate
change is assessed with respect to the potential loss of agricultural production,
calories available and effect for food security [25], but also with respect to prop-
erties of rural and urban damage functions [2]. To this end, heterogeneous data
(such as, e.g., elevation, land-use, population density or yield data) has to be
used, which comes in different formats and at different scales, requiring adequate
integration and aggregation. For the efficient identification of potentially flooded
areas, the srtmtools-package [11] for the data analysis language R [26] provides

424 S. Al-Areqi et al.

necessary methods to produce results presented on ci:grasp. ci:grasp then allows
users to adjust parameters and explore results for coastal regions over the world
in an interactive viewer and locate potential need for prevention measures.

For our SLR impact analyses the first step is the identification of potentially
vulnerable areas. To this end a digital elevation model (DEM) can be used to
identify land-area which is hydraulically connected to the sea and below a certain
elevation. This was done following the 8 neighbour rule algorithm implemented in
the srtmtools-package. For the included examples the SRTM90 [10] database of
terrain elevation with a 90x90 meters spatial resolution and a vertical resolution
of 1 meter were used as default dataset. For a given region the srtmtools-package
downloads automatically the necessary data from CGIAR-CSI Database [10].
However, any other DEM can also be used.

The second step in SLR impact analysis is the combination of the vulnerable
areas with data of interest, for example the type of flooded land2 or the potential
yield- and calorie-loss.

For the evaluation of the potential yields from the threatened crop lands the
datasets from the Global Agro-Ecological Zones (GAEZ) [8] were used. The
GAEZ provides global information of actual and potential agricultural produc-
tion, with regard to climate, soil and terrain conditions, such as land cover,
irrigation potentials, protected areas, population density, livestock density and
accessibility. It describes biophysical limitations and potentials for crop produc-
tion as well as dependencies on different input levels of fertilizers or different
farming techniques. This information is available for a range of different climate
scenarios, including a reference climate (average time period 1961–1990). Fur-
thermore, GAEZ is based on published outputs for several IPCC scenario from
various global and regional climate models, such as the MPI ECHAM4 model.
Overall there are information on yield constraints, crop calendars, harvested
area, and production potential estimates for eleven major crop groups, 49 major
crops and 92 crop types. Productivity estimates are made for rain-fed farming
and several irrigation systems [29].

To deal with different resolutions of various datasets the srtmtools-package
provides a re-sampling function which gives the exact amount of flooded land
per grid-cell for a different resolution. As a consequence every data which is a
linear function of the area can be treated in a similar manner.

4 Domain Modeling

Working with the jABC consists of basically two phases: domain modeling and
workflow design. The domain modeling, as detailed for our example in this sec-
tion, involves the integration of the required computational services and their
organization in domain-specific taxonomies. In particular, we explain how we
turned the original srtmtools package into a collection of reusable services that

2 The MODIS dMCD12Q1 product version 5.1 2010 was used for the land-cover in-
formation. Downloaded from the data pool
ftp://e4ftl01.cr.usgs.gov/MOTA/MCD12Q1.051/

Towards a Flexible Assessment of Climate Impacts 425

can be used as workflow building blocks in the jABC, and how these services are
organized by a newly defined domain-specific service taxonomy.

We use the term servification to refer to the process of turning arbitrary soft-
ware components into proper services that are adequate, for example, for (re-)
use in workflow management systems. This is in accordance with the service
orientation paradigm, which postulates that any kind of computational resource
should be seen and handled as a service – that is, a well-defined unit of function-
ality with a well-defined interface – to provide a high level of abstraction and
reusability (cf., e.g., [19]).

In the Java-based jABC framework, we can in fact use everything as a service
that is in some way programmatically accessible. This is apparently the case
for Java APIs and Web Services, but includes also classic command line tools,
scripts and ”headless” operations modes as provided by some desktop applica-
tions, which can be executed just based on input parameters and without any
user interaction. Depending on the technicalities of the chosen service, its in-
tegration into the jABC can be straightforward or challenging, but being able
to use the services from an intuitive graphical interface typically outweighs the
service integration costs. For more elaborate discussions of costs and benefits of
servification in the jABC context, the reader is referred to [4,20,13].

For the servification of the SLR impacts assessment tools described in Sec-
tion 3, the various existing R scripts, which have been used to produce the data
available on the ci:grasp platform, have been decomposed into separate and in-
dependent functions and equipped with well-defined inputs and outputs in order
to provide proper services adequate for the envisaged application. Technically,
these services are currently simply provided in the form of autonomously run-
ning R scripts, so that they can easily be encapsulated into SIBs and be used
as workflow building blocks within the jABC. So far, 22 services for different
data loading, resampling, computations, and data output tasks have been cre-
ated (see Table 1). To create full workflows in the jABC, these services can be
combined with the standard SIB libraries provided by the jABC, for, e.g., data
input/output, for evaluating conditions and for basic user interaction.

Figure 3 shows how the SLR services can be taxonomically classified into dif-
ferent groups. Concretely, it defines four subclasses of SLR services: data loading
(comprising 5 of the services), resampling (4), computation (8), and output (5).
Output contains another subclass to group different services that produce static
maps, which comprises two of the output services, while the other three are
directly classified as outputs.

5 Workflow Examples

Based on the newly created domain-specific services and the large library of SIBs
for common functionality that comes with the jABC framework, we could easily
construct different workflows for SLR impact assessment in an agile workflow-
based way. The complete project currently comprises around 31 different models,
composed of more than 180 SIBs and spanning three hierarchy levels.

426 S. Al-Areqi et al.

Table 1. Services for SLR analysis workflows

Name Description Inputs Outputs

Load SRTM
elevation data

Download the digital elevation
model (DEM)for the selected area.

Region coordinates Region.rds file

Compute flooded
Areas

Compute the flooded areas for a re-
gion based on its DEM.

Region.rds Landloss.rds file

Load population
data

Load population data from global
map data based on land loss data.

Population
data(.tif) and
Landloss.rds

Population.rds
file

Load landuse
data

Load landuse data from global
map data based on landloss data.

Landuse data (.tif)
and Landloss.rds

Landuse.rds file

Load yield data Load yield data (actual or poten-
tial).

Yield data (.asc) Yield.rds file

Load calories
data

Load calories data (actual or po-
tential).

Calories data.csv Calories.rds file

Resample
landuse data

Resample land use data with land
loss data (flooded areas).

Landloss and
Landuse rds files

Landuse-
sample.rds
files

Resample
population data

Resample population data with
land loss data (flooded areas).

Landloss and
Population.rds files

Population-
sample.rds

Resample yield
data

Resample yield data with land use
data and yield data with landuse-
sample and landuse data.

Landuse,
Landuse-sample
and Yield rds files

Yield-sample
and
Yield-flooded-
sample.rds
files

Resample
calories data

Resample calories data with land
use data.

Landuse,
Landuse-sample
and Calories.rds

Calories-
sample.rds
file

Compute
population at
risk of migration

Estimates the number of people
that would be affected.

Population and
Population-
sample.rds

Result.rds

Compute rural
and urban GDP
at risk

Estimates potential economic
damage in coastal communities.

Population and
Population-
sample.rds

Result.rds

Compute
potential
landloss (ha)

Estimates the area that will be po-
tentially inundated.

Landloss and
Landuse-sample rds
files

Result.rds

Compute land
loss classes

Define the type of land affected,
from 1 – 16 different land types.

Landuse-sample rds
file and number of
classes

Several
results.rds files

Compute yield
loss

Compute actual and potential pro-
duction value affected in USD.

Yield, Yield-sample
and Yield-flooded-
sample.rds
files

Result.rds

Compute caloric
energy loss

Estimates actual and potential
number of peoples’ annual diets
lost.

Calories and
Calories-sample rds
files

Result.rds

Compute
production
affected()

Estimates the economic value of
the agricultural loss.

Yield, Yield-sample
and Yield-flooded-
sample.rds
files

Result.rds

Generate
Interactive map
output

Generate an interactive map out-
put using the Google Maps API5.

Result.rds Interactive map

Generate Static
map Png output

Create static map in Png format. Result.rds Png file

Generate Static
map Pdf output

Create static map in Pdf format. Result.rds Pdf file

Produce
GeoTIFF output

Create a geo-referenced file (Geo-
TIFF, ASCII) which can be used
for further external GIS process-
ing.

Result.rds Geo-referenced
file

Produce text
output

Create a text file containing some
summary and statistic informa-
tion.

Result.rds Text file

Towards a Flexible Assessment of Climate Impacts 427

Fig. 3. Taxonomic classification of SLR services

In the following we discuss three selected examples in greater detail: a sim-
ple example of an SLR impact assessment workflow as a basis for developing
variations (Section 5.1), an extended version of the basic workflow with several
predefined variation points (Section 5.2), and a parameter exploration variant
that performs the same analysis for a range of SLR values to create data for com-
paring different possible scenarios (Section 5.3). After that, Section 5.4 sketches
further possible variations.

5.1 Basic Workflow

Figure 4 (center) shows a simple workflow for assessing the impact of sea-level
rise on the agricultural yield loss for a region to be selected by the user. From
left to right (the SIB with the underlined name denotes the starting point), it
performs (1) selection of the working directory for input and output data; (2)
definition of the investigated area by coordinates; (3) downloading the digital
elevation model of the selected area; (4) entering of the magnitude of sea level
rise; (5) computation of the flooded area; (6) computation of the yield loss due
to the flooding; and (7) generation of an output file with results in PDF format.

Some of the SIBs are marked by a green circle, which indicates that the func-
tionality represented by this building block is actually more complex and defined
in a separate model, as so-called submodel. For example, SIB (3) encapsulates
a submodel for the selection and loading of elevation data (shown at the top of
the figure): A dialog is displayed where the user has to select if he/she wants to
use own elevation data or predefined SRTM elevation data with a 90m resolu-
tion. Depending on the selection, either the own data is loaded from a file or the
predefined data is downloaded from an online source.

As another example for hierarchical modeling, the SIB (6) is a composite
service that allows for the computation of several types of yield loss for different

428 S. Al-Areqi et al.

Fig. 4. Basic workflow for SLR impact assessment regarding yield loss

climate scenarios. As the figure (bottom) shows, the submodel contains another
submodel, which again contains a submodel. The load potential yield data SIB
in the submodel of SIB (6) is in fact another submodel that loads potential yield
data, which again makes use of a submodel that handles yield data sets selection.
Not shown in the figure, it offers the users the alternatives to work with own
data or to select and extract available GAEZ data automatically, similar to the
elevation data selection described above.

This hierarchical modeling style allows to organize workflow applications in
different levels of abstraction, from coarse-granular and more conceptual views
at the higher levels, down to fine-granular and more technical views at the lower
levels.

5.2 Workflow with Variation Points

Figure 5 shows an extension of the workflow for SLR impact assessment described
above. It comprises a number of preconfigured variation points, which make it
easy for the user to build variants of the workflow: he/she just needs to change
the execution path in order to include additional options from the variation
points, simply by dragging the connecting branches to other SIBs.

Variation point 1 allows for easy modification of the definition of the region
considered for the analysis. Besides entering the coordinates directly (as in the
basic example), it is also possible to enter the name of a place or an address that
is then used as the center of the region, or to select a region interactively on a
map.

Towards a Flexible Assessment of Climate Impacts 429

Fig. 5. Workflow for SLR impact assessment with preconfigured variation points

Variation Point 2 contains a collection of different computations, summarized
in Table 2, that can be selected according to the concrete objectives when as-
sessing SLR impacts. In fact, some of these computations are using the same
concrete computing service. However they behave in different manner based on
the variation of data loading services. For example, to compute the yield loss ac-
tually two computational services are developed (compute potential and actual
yield loss) with respect for analysis objective and for the type of data. As has
been sketched in Figure 4, all these computations are in fact realized by separate
workflow models.

Variation Point 3 provides SIBs for creating different output formats. Users
can select one or more (by including a sequence of output-generating SIBs)
formats for the presentation of the final results, including (a) static maps in
different formats (jpeg,pdf,png,ps), (b) an interactive map using the Google
Maps API3, (c) a text-file containing a summary and (d) a geo-referenced file
(GeoTiff, ASCII) which can be used for further external GIS processing.

Through these variation points, flexible adjustment of the SLR impact assess-
ment is available at the user level. For example, the connections in the Figure 5
may have been defined by user aiming to assess the number of people that po-
tentially affected by a submergence of land triggered by a certain magnitude of
sea-level rise: The region is specified via entering the address or name of a place,
and taking the surrounding region. After the loading of the elevation data, en-
tering the magnitude of SLR to be considered and computation of the flooded

3 https://developers.google.com/maps/

https://developers.google.com/maps/

430 S. Al-Areqi et al.

Table 2. Overview of computation services of Variation Point 2

SIB Description

compute rural and urban GDP at risk focuses on potential economic damage in
coastal communities

compute population at risk of migration focuses on the number of people that would
be affected

compute actual/potential yield loss compute actual/potential production value
affected in USD

compute actual/potential production af-
fected ($)

focuses on the economic value of the agri-
cultural loss

compute actual/potential caloric energy
loss

focuses on the actual and potential peoples’
annual diets lost

compute land loss classes determine 1 – 16 different land types

compute potential land loss (ha) determine the area that will be potentially
inundated

areas, the computation of population potentially affected is performed. Finally,
the outputs are shown in two different views.

5.3 Parameter Exploration Workflow

Generating and comparing projections for different scenarios is a common ap-
proach to address the inherent uncertainties in assessing future climate change.
Figure 6 shows an example of a workflow that performs a parameter exploration
by iterating over different magnitudes of SLR. Here, the user enters not only
a single SLR magnitude, but a comma-separated list of potential increases in
sea-level. This step of the workflow execution is shown in the Figure 6. The
workflow iterates over the list elements, computing the potentially flooded area
for a different magnitude of SLR in every iteration. As shown in Figure 7, the
user obtains a set of maps, each representing a different scenario. Although this
is only a simple example, it demonstrates well the possibility to use the jABC
for performing an analysis for parameters automatically, which in this case pro-

Fig. 6. Workflow for the iteration over different values of SLR

Towards a Flexible Assessment of Climate Impacts 431

Fig. 7. Exploration of flooded areas with different SLR values (2, 3, 4)

vides a convenient way to generate outputs for multiple scenarios to deal with
the uncertainty about the magnitude of SLR under climate change.

5.4 Further Variations

The three examples have already given a good impression of the workflow mod-
eling capabilities of the jABC framework: the SLGs are hierarchical and support
reuse of submodels, and being control-flow models of the developed applica-
tions they also allow to include essential control structures such as conditional
branchings and loops into the workflows. Parallel execution is also supported by
a fork/join mechanism that distributes the execution flow into different threads.

With these capabilities in mind, we can imagine, for instance, also the follow-
ing variations of the SLR impact assessment workflow:

– Exploration of other parameters than the magnitude of SLR, for example
different land use data sets and different land loss classes.

– Flexible inclusion of different data. This is easiest if data is available in
machine-readable format through the web.

– A combination of an iterative execution with predefined variation points, to
make it easier to vary the parameter exploration workflow.

6 Discussion and Conclusion

We showed how the XMDD-oriented workflow development style supported by
the jABC process modeling and execution framework permits us to leverage the
processes implemented in the ci:grasp platform to a user-accessible level, and
thus to enable users to flexibly define and perform multi-objective workflows
tailored to their specific needs. The described level of flexibility is essentially
achieved by:

– rigorous service orientation, turning basic components as well as their com-
positions into flexibly reusable pieces of functionality,

432 S. Al-Areqi et al.

– hierarchical modeling that allows to represent processes on different levels
of abstraction (ranging from completely user-accessible top-level workflows
that hide all technical details to fine-granular service compositions on the
lower levels) and makes them reusable, and

– an intuitive graphical interface that makes it easy also for non-programmers
to design and adapt workflows according to their specific preferences and
constraints.

For the exemplary scenario of assessing the impact of sea-level rise, we dis-
cussed how we decomposed the ci:grasp’s original implementation into basic
computational services, which we then used as workflow building blocks. To-
gether with additional functionality from the jABC, we built a flexible library
of directly executable workflows for this type of analysis. With this library of
workflows various kinds of SLR analyses can be easily and flexibly created ac-
cording to the user’s objectives and preferences. This is a relevant contribution
to the community of climate impact assessment, as the variety of SLR assess-
ment tools is still limited [7]. To illustrate this, we discussed three exemplary
workflow incarnations and sketched further possible variations.

Instead of restricting access to a pre-selected set of results these three work-
flows allow the user to generate tailor-made analyses. To provide worldwide
coverage on ci:grasp we made use of datasets available globally. For regional
analyses more detailed or accurate data may be available. The basic workflow
allows the user to use such regional data for investigating the impact of sea-
level rise. In addition, modifying the scenarios through the possibility to choose
a user-defined magnitude of sea-level rise may reveal additional insight to the
standard scenarios of 1, 2 and 3 m present in ci:grasp, for example to evaluate
extreme storm surges. The Web Mapping Service (WMS) technology used in
ci:graps does not provide a powerful interface for further detailed analysis. The
workflow with Variation Points provides flexibility in the choice of the output
format and enables the user to perform unexpected additional analyses which
are currently not provided through the web-page.

In addition to the personalized results, such a user friendly and flexible en-
vironment for SLR analysis has the potential to motivate sharing and reuse of
code. This directly increases the reproducibility of scientific analyses, which is
core to the scientific process (cf., e.g., [18]). The sharing of models can be further
leveraged by making software publishable, citable and recognized as scientific
achievement. A recent movement pursuing these goals is sciforge [6], which aims
at establishing the missing link between papers and published data.

Ultimately, we can envision a transformation of environmental impact assess-
ment with easy inclusion of large and heterogeneous data sets, shared and flexi-
ble assessment models and powerful visualization of the large set of results [30].
User friendly workflow systems are one essential building block to allow for such
a transformation.

Having such a vision in mind, in a next step other impact assessment models
than the one applied in ci:grasp may go through a similar servification process,
extending the library with additional and alternative services. Note that the

Towards a Flexible Assessment of Climate Impacts 433

response time of computationally expensive models can pose additional chal-
lenges in this context. Moreover, more flexible inclusion of various, heterogeneous
data sources can be achieved with additional SIBs.

Furthermore, it will be beneficial to improve the multi-objective and multi-
scale risk assessment by the use of semantics-based workflow design methodol-
ogy, similar to the work described by [13]. As the successful application of such
methodologies crucially depends on adequate domain modeling, a major part
of our future work will focus on the application and design of domain-specific
ontologies. Once a semantics-based workflow design framework is available, the
integration of the computational part of an impact assessment into a broader
adaptation cycle will be possible.

References

1. Al-areqi, S., Kriewald, S., Lamprecht, A.L., Reusser, D., Wrobel, M., Margaria,
T.: Agile Workflows for Climate Impact Risk Assessment based on the ci:grasp
Platform and the jABC Modeling Framework. In: International Environmental
Modelling and Software Society (iEMSs) 7th Intl. Congress on Env. Modelling and
Software (accepted, 2014)

2. Boettle, M., Rybski, D., Kropp, J.P.: How changing sea level extremes and protec-
tion measures alter coastal flood damages. Water Resour. Res. 49(3), 1199–1210
(2013)

3. Callahan, S., Freire, J., Freire, J., Santos, E., Scheidegger, C., Silva, C., Vo, H.:
Managing the evolution of dataflows with vistrails. In: Proceedings of the 22nd
International Conference on Data Engineering Workshops, p. 71 (2006)

4. Doedt, M., Steffen, B.: An Evaluation of Service Integration Approaches of Busi-
ness Process Management Systems. In: Proc. of the 35th Annual IEEE Software
Engineering Workshop, SEW 2012 (2012)

5. Ebert, B.E., Lamprecht, A.L., Steffen, B., Blank, L.M.: Flux-P: Automating
Metabolic Flux Analysis. Metabolites 2(4), 872–890 (2012),
http://www.mdpi.com/2218-1989/2/4/872

6. Hammitzsch, M.: The SciForge Project Team: sciforge: Publication and citation of
scientific software with persistent identifiers (April 2014),
http://www.sciforge-project.org

7. Hinkel, J., Vuuren, D.P., Nicholls, R.J., Klein, R.J.T.: The effects of adaptation
and mitigation on coastal flood impacts during the 21st century. An application of
the DIVA and IMAGE models. Climatic Change 117(4), 783–794 (2012)

8. IIASA/FAO: Global agro-ecological zones (gaezv3.0) (2012),
http://www.gaez.iiasa.ac.at/ (last accessed March 7, 2014)

9. IPCC: Summary for Policymakers. In: Parry, M., Canziani, O., Palutikof, J., van
der Linden, P., Hanson, C. (eds.) Climate Change 2007: Impacts, Adaptation and
Vulnerability. Contribution of Working Group II to the Fourth Assessment Report
of the Intergovernmental Panel on Climate Change, pp. 7–22. Cambridge Univer-
sity Press, Cambridge (2007), http://scholar.google.com/scholar?hl=en
&btnG=Search&q=intitle:Contribution+of+Working+Group+I+to+the+Fourth+

Assessment+Report+of+the+Intergovernmental+Panel+on+Climate+Change#6

10. Jarvis, A., Reuter, H., Nelson, A., Guevara, E.: Hole-filled srtm for the globe version
4 (2008), http://srtm.csi.cgiar.org/

http://www.mdpi.com/2218-1989/2/4/872
http://www.sciforge-project.org
http://www.gaez.iiasa.ac.at/
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Contribution+of+Working+Group+I+to+the+Fourth+Assessment+Report+of+the+Intergovernmental+Panel+on+Climate+Change#6
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Contribution+of+Working+Group+I+to+the+Fourth+Assessment+Report+of+the+Intergovernmental+Panel+on+Climate+Change#6
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Contribution+of+Working+Group+I+to+the+Fourth+Assessment+Report+of+the+Intergovernmental+Panel+on+Climate+Change#6
http://srtm.csi.cgiar.org/

434 S. Al-Areqi et al.

11. Kriewald, S.: srtmtools: SRTM tools (2013), r package version 2013-00.0.1
12. Kubczak, C., Jörges, S., Margaria, T., Steffen, B.: eXtreme Model-Driven Design

with jABC. In: CTIT Proc. of the Tools and Consultancy Track of the Fifth Eu-
ropean Conference on Model-Driven Architecture Foundations and Applications
(ECMDA-FA), vol. WP09-12, pp. 78–99 (2009)

13. Lamprecht, A.-L.: User-Level Workflow Design. LNCS, vol. 8311. Springer, Heidel-
berg (2013)

14. Lamprecht, A.L., Margaria, T., Steffen, B., Sczyrba, A., Hartmeier, S., Giegerich,
R.: GeneFisher-P: Variations of GeneFisher as processes in Bio-jETI. BMC Bioin-
formatics 9(suppl. 4), S13 (2008),
http://www.ncbi.nlm.nih.gov/pubmed/18460174

15. Lamprecht, A.L., Naujokat, S., Margaria, T., Steffen, B.: Synthesis-Based Loose
Programming. In: Proc. of the 7th Int. Conf. on the Quality of Information
and Communications Technology (QUATIC 2010), Porto, Portugal, pp. 262–267
(September 2010)

16. Lissner, T.K., Reusser, D.E., Schewe, J., Lakes, T.: Linking human well-being and
livelihoods with climate change impacts: contextualizing uncertainty in projections
of water availability. HESSD (in press, 2014)

17. Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee,
E.A., Tao, J., Zhao, Y.: Scientific Workflow Management and the Kepler Systems.
Concurrency and Computation: Practice & Experience 18(10), 1039–1065 (2006),
http://dx.doi.org/10.1002/cpe.v18:10

18. Ludäscher, B., Altintas, I., Bowers, S., Cummings, J., Critchlow, T., Deelman, E.,
Roure, D.D., Freire, J., Goble, C., Jones, M., et al.: Scientific process automation
and workflow management. In: Scientific Data Management: Challenges, Existing
Technology, and Deployment. Computational Science Series, pp. 476–508 (2009)

19. Margaria, T.: Service is in the Eyes of the Beholder. IEEE Computer (November
2007)

20. Margaria, T., Boßelmann, S., Doedt, M., Floyd, B.D., Steffen, B.: Customer-
Oriented Business Process Management: Visions and Obstacles. In: Hinchey, M.,
Coyle, L. (eds.) Conquering Complexity, pp. 407–429. Springer, London (2012),
http://books.google.de/books?hl=de&lr=&id=98KSFSfRO0EC

21. Margaria, T., Kubczak, C., Njoku, M., Steffen, B.: Model-based Design of Dis-
tributed Collaborative Bioinformatics Processes in the jABC. In: Proceedings of
the 11th IEEE International Conference on Engineering of Complex Computer Sys-
tems (ICECCS 2006), pp. 169–176. IEEE Computer Society, Los Alamitos (2006)

22. Margaria, T., Steffen, B.: Agile IT: Thinking in User-Centric Models. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17, pp. 490–502. Springer, Heidelberg
(2009)

23. Margaria, T., Steffen, B.: Service-Orientation: Conquering Complexity with
XMDD. In: Hinchey, M., Coyle, L. (eds.) Conquering Complexity, pp. 217–236.
Springer, London (2012), http://dx.doi.org/10.1007/978-1-4471-2297-5_10

24. Naujokat, S., Lamprecht, A.-L., Steffen, B.: Loose Programming with PROPHETS.
In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 94–98. Springer,
Heidelberg (2012)

25. Pradhan, P., Lüdeke, M., Reusser, D.E., Kropp, J.P.: Food Self-Sufficiency across
scales: How local can we go? Environmental Science and Technology (under review,
2014)

26. R Core Team: R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria (last accessed March 7, 2014)

http://www.ncbi.nlm.nih.gov/pubmed/18460174
http://dx.doi.org/10.1002/cpe.v18:10
http://books.google.de/books?hl=de&lr=&id=98KSFSfRO0EC
http://dx.doi.org/10.1007/978-1-4471-2297-5_10

Towards a Flexible Assessment of Climate Impacts 435

27. Steffen, B., Margaria, T., Nagel, R., Jörges, S., Kubczak, C.: Model-Driven De-
velopment with the jABC. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS,
vol. 4383, pp. 92–108. Springer, Heidelberg (2007),
http://dx.doi.org/10.1007/978-3-540-70889-6_7

28. Taylor, I., Shields, M., Wang, I., Harrison, A.: The Triana Workflow Environment:
Architecture and Applications. In: Workflows for e-Science, ch. 20, pp. 320–339.
Springer, New York (2007)

29. Tóth, G., Kozlowski, B., Prieler, S., Wiberg, D.: GAEZ Data Portal - Users’s
Guide. Tech. rep., IIASA, FAO, Rome, Italy (2012)

30. Vitolo, C., Buytaert, W., El-khatib, Y., Reusser, D.: Big Data for environmen-
tal modelling: A review of web technologies. Environmental Modeling & Software
(under review, 2014)

31. Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., Schewe, J.:
The inter-sectoral impact model intercomparison project (isi-mip): Project frame-
work. Proceedings of the National Academy of Sciences 111(9), 3228–3232 (2014),
http://www.pnas.org/content/111/9/3228.abstract

32. Wilson, G., Aruliah, D., Brown, C.T., Hong, N.P.C., Davis, M., Guy, R.T., Had-
dock, S.H., Huff, K.D., Mitchell, I.M., Plumbley, M.D., et al.: Best practices for
scientific computing. PLoS Biology 12(1), e1001745 (2014)

33. Wrobel, M., Bisaro, A., Reusser, D., Kropp, J.P.: Novel approaches for web-based
access to climate change adaptation information – mediation adaptation plat-
form and ci:grasp-2. In: Hřeb́ıček, J., Schimak, G., Kubásek, M., Rizzoli, A.E.
(eds.) ISESS 2013. IFIP AICT, vol. 413, pp. 489–499. Springer, Heidelberg (2013),
http://dx.doi.org/10.1007/978-3-642-41151-9_45

34. Wrobel, M., Reusser, D.: Towards an Interactive Visual Understanding of Climate
Change Findings on the Net: Promises and Challenges. In: Schneider, B., Nocke, T.
(eds.) Image Politics of Climate Change, pp. 187–210. Transcript, London (2014),
http://www.transcript-verlag.de/978-3-8376-2610-0/image-politics-of-

climate-change

http://dx.doi.org/10.1007/978-3-540-70889-6_7
http://www.pnas.org/content/111/9/3228.abstract
http://dx.doi.org/10.1007/978-3-642-41151-9_45
http://www.transcript-verlag.de/978-3-8376-2610-0/image-politics-of-climate-change
http://www.transcript-verlag.de/978-3-8376-2610-0/image-politics-of-climate-change

A Visual Programming Approach

to Beat-Driven Humanoid Robot Dancing

Vid Podpečan1,2

1 Jožef Stefan Institute, Ljubljana, Slovenia
2 Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia

vid.podpecan@ijs.si

Abstract. The paper presents a workflow-based approach to the classic
task of teaching a humanoid robot to dance to a given song with re-
spect to the detected beat. Our goal is to develop workflow components
which enable the construction of complex dance choreographies using vi-
sual programming only. This eliminates tedious programming of dance
moves and their synchronisation to the music thus enabling the robot
animator to design the choreography at a higher conceptual level. The
presented work is based on the Choregraphe visual programming envi-
ronment for the NAO robot platform and the Aubio open source tool for
the extraction of annotations from audio signals.

Keywords: robot, NAO, dance, workflow, beat.

1 Introduction

Artificial intelligence and mimicking human behaviour and movement are two
of the classical goals in the development of humanoid robots. The research in
robot artificial intelligence is typically focused on cognitive tasks such as object
recognition and interaction with the world, speech recognition and reproduction,
learning from sensory data, planning etc. Mimicking of human movement and
behaviour includes developing mechanical equivalents of parts of human body
(e.g., hands and joints), programming of basic human physical abilities such
as fluid body motion, running, jumping, grabbing objects and higher level be-
haviour such as facial expressions, gestures, postures, and coordinated motion
which is typically related to external stimuli, such as sports activities or dance,
for example.

The development of self-operating mechanical agents can be traced back to
Ancient China, Ancient Greece and Egypt. Knowledge of mechanics, hydraulics
and pneumatics [12] was used by ancient engineers to develop machines which
were able to perform some relatively simple functions automatically. Between
the 17th and 19th centuries, several complex animal and human mechanical
automata were built, e.g., mechanical birds, puppets, etc. Although Leonardo
da Vinci made plans for a humanoid robot as early as 15th century, the first
“true” humanoid robots with a limited set of human-like abilities were built
only in the beginning of 20th century. The development of electronic circuits

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 436–448, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

A Visual Programming Approach to Beat-Driven Humanoid Robot Dancing 437

and microprocessors and advances in computer science and mechanics provided
the necessary boost for this research field.

Several humanoid robot platforms were developed in the last two decades.
They provide sufficient hardware (sensors and mechanical parts) to enable pro-
gramming of human-like activities. State-of-the-art showcase robots such as
ASIMO [13] have achieved a widespread fame for performing complex tasks in
front of international audiences. On the other hand, small, affordable robot plat-
forms such as the NAO family were developed to enable research in humanoid
robots with the aim to create an intelligent robot companion. Since the intro-
duction of the NAO robot family, a vast amount of research on different topics
featuring the NAO robot has been published. In this work, we are interested in
programming dancing skills using the NAO platform and open-source software.

Dance is a form of movement involving whole body which is typically - but
not always - performed to external stimuli such as rhythm or music. It may
include emotional expression and social interaction which are inseparably linked
to various types of intelligence. Obviously, for a humanoid robot two separate
problems need to be solved: coordinated and aesthetically pleasing movement
and expression of individuality and intelligence. While the first problem can be
approached using existing methods in robotics, the second one is a computational
creativity problem.

In this work we focus on simplifying the task of humanoid robot dance pro-
gramming by using workflows and audio signal analysis and event extraction.
Our approach eliminates programming by providing workflow components which
enable visual design of the choreography which is driven by the extracted audio
events (onsets). The robot animator can thus focus on perfecting the moves and
their logical alignment to a given song.

The NAO platform offers the following options for programming the robot.
First, the Choregraphe workflow environment can be used to compose the robot
behaviour or action (custom workflow components can also be programmed di-
rectly by writing code snippets in the Python language). Second, several pro-
gramming languages can be used to program the robot directly, e.g., Python,
C++, .Net languages, Urbi, etc. As the second solution requires extensive knowl-
edge of robotics and programming, our approach extends the Choregraphe repos-
itory with new components which can be used to design a dance choreography
using visual programming only. However, an advanced user can modify the com-
ponents according to her needs or develop new ones.

The rest of the paper is structures as follows. In Section 2 we give an overview
of the related work on robot dance programming. Section 3 introduces the Chore-
graphe workflow environment, describes our approach and its components in
details and gives an overview of the recognised limitations. In Section 4 we
demonstrate our approach on a simple use case. Section 5 concludes the paper
and discusses directions for further work.

438 V. Podpečan

2 Related Work

Coordinated and creative robot behaviour has been studied intensively in the
last few decades. Due to the vast amount of published research work we limit
our discussion to the latest and most similar approaches with respect to the
employed robot platform, the general concept and the implementation details.

Conceptually most similar to our approach is the work by Oliviera, Gouyon
and Reis [11]. Their framework, based on the Lego Mindstorms NXT platform,
tries to simulate dancing behaviour by exracting rhythmic information from au-
dio signals and generate the corresponding behaviour. The Marsyas open source
software for audio processing is used to perform onset detection while the devel-
oped user interface allows for defining and saving the dance choreography into
an XML file.

The approach of Tanaka et al. [15,16] was implemented on the QRIO robot
(developed by Sony, now discontinued). The goal was to explore dance interac-
tion between QRIO and children in a classroom environment by detecting and
mimicking human movements in order to explore the potential use of interactive
robots as instructional tools in education.

The work of Xia et al. [18] extends the idea of robot dance programming with
automated planning of a sequence of dance movements which is aligned to the
detected beat and emotions. The approach was implemented on the NAO robot
platform and extends authors’ previous work on extracting beats and emotions
from music audio signals.

Shinozaki, Iwatani and Nakatsu [14] have presented an attempt to construct
a robot dance system consisted of three units: dance unit sequence generation,
dance unit database and dance unit concatenation. They have collaborated with
a human dancer and recorded his performance. The selected moves and gestures
were replicated on the robot and stored into the database. As the neutral posture
is required between two dance units, any sequence of moves can be performed
by the robot.

The work of Angulo et al. [1] is targeted at the Sony Aibo animal robot
platform where the goal is to create a system which interacts with the user
and generates a random sequence of movements for the robot thus creating a
human-robot interaction system.

Grunberg et al. [7] have developed an autonomous dancing humanoid system
which is also based on beat detection in real time. The beat information is sent
to the gesture generation and control system which tries to combine the gestures
into a smooth robot motion. The approach, which is a continuation of their
earlier work [6], can be deployed on the small, relatively inexpensive Robonova
platform or the larger and more complex Hubo humanoid robot.

The goal of the study of Nakaoka et al. [10] is to develop a technology for
archiving human dance motions and their reconstruction by a humanoid robot.
Their system, deployed on the HRP-1S robot, generates feasible robot leg mo-
tions which are based on the recorded human motions.

A different approach to robot dance programming was presented by Aucou-
turier, Ogai and Ikegami [2]. Instead of preprogrammed or animated dance moves

A Visual Programming Approach to Beat-Driven Humanoid Robot Dancing 439

a special type of chaotic dynamics is used to generate robot moves in a seemingly
autonomous manner. The generated behaviour is complex but deterministic (as
a solution of a non-linear dynamical system) and adapted to the given audio
sample. The experiments were performed on the MIURO system, a two-wheeled
musical player which can be controlled using a computer.

Finally, the highly influential Evolution of Dance video by Judson Laipply
served as an inspiration for the robot version of the same dance1 (which also
went viral) in which the NAO robot was carefully animated to reproduce the
human dance performance with great success.

3 Workflow-Based Approach to Robot Dance
Programming

The goal of this work is to enable the composition of dance choreographies
in the NAO robot workflow environment (Choregraphe, the proprietary NAO
visual programming software developed by Aldebaran Robotics). In this section
an overview of the approach is given first which is followed by a description of
the visual programming environment for NAO. Workflow constituents, which
make possible to construct dance choreography workflows are described next.
The section concludes with an overview of recognised limitations.

3.1 An Overview of the Approach

Our idea of simplified programming of a dancing robot is based on the concept of
a central workflow component, which extracts events from a given audio signal
and provides various types of impulses, one time and periodical, which can be
used to start and/or stop selected robot behaviours and actions. Consequently,
the dance performance can be scripted using appropriate workflow components
which perform certain robot actions in a given time frame or beat frame.

The quality of the final robot dance performance is based on: (a) the accuracy
of the extracted audio events, (b) the quality and size of the library of animated
robot actions, (c) the quality of arrangement of robot actions, and (d) fine-tuning
of the animated robot actions for the particular musical piece.

Developing robot dance choreography in a workflow environment introduces
few important advantages (which are not specific to robot programming but
are valid for any workflow-based solution). First, once the basic building blocks
are implemented, no expert knowledge is needed to compose a solution or new
use cases (in our case, few basic components are already provided by Chore-
graphe while the majority was developed from scratch). Second, different values
of parameters and choreography arrangements can easily be tested. Third, easy
sharing of the complete solutions is one of the key features of workflows. Fi-
nally, debugging and explanations of the implemented steps and procedures are

1 http://www.youtube.com/watch?v=2laujomh0JY

http://www.youtube.com/watch?v=2laujomh0JY

440 V. Podpečan

greatly simplified. However, the ease of use and simplicity also introduce cer-
tain drawbacks. The most notable limitations of our approach are discussed in
Section 3.4.

To our best knowledge the presented work is the first attempt to create a
complete robot dance choreography using an executable workflow2. Most typi-
cally, the performance is either implemented in a single program or composed
of few interconnected modules. For example, Oliveira et. al [11] connect the
music analysis module built with Marsyas [17] with a simple, manually devel-
oped graphical user interface. Ellenberg et. al [6] have also developed a simple
graphical user interface which serves as a glue for the implemented audio pro-
cessing algorithms and robot control routines. Both graphical user interfaces are
intuitive and seem relatively flexible, however, they cannot compare to a fully
featured visual programming environment.

3.2 The Choregraphe Visual Programming Environment

Choregraphe is a multi-platform application which is a part of the NAO robot
platform that enables creating complex robot behaviour without writing program
code. It allows to develop animations and behaviours and test them on the real
or the simulated robot. The application is based on the visual programming
paradigm. It provides a wide range of visual programming components, e.g.,
flow control, basic robot motions, audio and speech, robot sensing, robot vision
etc. New components of three different types can be added: script, timeline and
flow diagram.

The first type allows for advanced visual programming where the behaviour of
the component and the manipulation of its inputs and outputs is implemented in
the Python programming language. The second type enables designing complex
robot motion using the timeline editor, recording mode and animation mode.
Finally, the flow diagram allows for nested diagrams which is a very useful feature
when designing large and complex procedures.

The granularity of visual programming components in Choregraphe is some-
what finer than in a typical scientific workflow system. Data mining and knowl-
edge discovery workflows in various scientific domains are usually constructed
from several high-level data manipulation and visualisation steps, such as data
parsing, missing value handling, noise and outlier detection and removal, discreti-
sation, dimensionality reduction and visualisation, etc. because the majority of
data mining workflow software is designed to be data-driven. For example, work-
flow environments such as KNIME [3], RapidMiner [9] and Taverna [8] support
looping and conditional execution to some extent but in most cases their pres-
ence in a data mining workflow indicates inappropriate design of the solution or
a problem which is structurally too complex for a single workflow.

On the other hand, workflows constructed in Choregraphe are event-based.
Event signals may carry additional data but in most cases only trigger some

2 It is also true that only few visual programming environments for robots exist.
Besides Choregraphe, Microsoft Robotics Developer Studio is an example of a fully
featured programming environment for building robotics applications.

A Visual Programming Approach to Beat-Driven Humanoid Robot Dancing 441

specific action or excite the connected input. The Choregraphe visual program-
ming environment was designed in a way which simplifies robot programming
and our approach is based on its features. For a detailed overview of the Chore-
ographe software we refer the reader to the official documentation3. Here we only
summarise the most important facts which are relevant for further discussion:

– the communication between workflow components is event based,
– the event signal, which is sent from one component to another, can also carry

information,
– several input/output types are available:

1. bang: a simple event without data
2. number: a float or an int or an array of numbers
3. string: a string or an array of strings
4. dynamic: either a simple event (bang) or an event carrying data (number,

string, array of numbers, strings and arrays)
– new workflow components can be programmed by providing code snippets

in Python,
– workflow components have full access to the Python language environment

and the NAO robot operating system NAOqi,
– meta workflows are supported (workflow components can be grouped and

converted into a single workflow component which contains a nested sub-
workflow).

Because Choregraphe’s workflows can grow quite large and complex when imple-
menting an elaborate robot behaviour, nested workflows can be used to organise
and group the components into a hierarchical structure.

3.3 The Developed Workflow Components

As our goal is to enable robot dancing which is aligned to the detected beat,
the most important workflow component is the beat detector which performs the
analysis of a given audio signal and detects onsets, i.e., high energy peaks. For the
audio analysis task we have employed the Aubio open source tool [4,5] which is
designed for the extraction of annotations from audio signals. More specifically,
the aubioonset component which extracts musical onset times is used. Aubio
has no mandatory software dependencies which makes it a perfect choice for the
optimised Linux distribution which runs on the NAO robot. We have compiled
the library using the OpenNAO virtual machine, made available by Aldebaran
Robotics4.

We have integrated aubioonset using two workflow components as follows.
The first component receives an audio file in the PCM wave format and runs
aubioonset from Python. It supports the same main extraction options as the

3 https://community.aldebaran-robotics.com/doc/1-14/software/choregraphe/

index.html
4 Alternatively, any Linux distribution with GNU gcc compiler can be used to cross-
compile for NAO.

https://community.aldebaran-robotics.com/doc/1-14/software/choregraphe/index.html
https://community.aldebaran-robotics.com/doc/1-14/software/choregraphe/index.html

442 V. Podpečan

command line utility: (a) onset detection method, (b) onset threshold, (c) si-
lence threshold, (d) buffer size, and (e) hop size. The first three parameters are
the most important as they enable fine tuning for different audio signals. The
component returns a Pyhon array of detected time points marking musical onset
times.

The second component which is actually the “heart” of the workflow, receives
the computed array of onset time points and generates periodic and/or one-time
events. For periodic beat-based events the component provide several downsam-
pled outputs (e.g., 1x, 2x, 4x, 8x, etc.) but new, custom outputs can also be
added. Events for the beginning and end of a specified time period are also
available.

Another important workflow component is selector which activates one of its
outputs according to the specified user preferences. For example, when triggered,
the component can randomly choose one of the outputs and activates it by
sending the bang signal. Several selectors can be used in a workflow in order
to group similar behaviours (a selector hierarchy can be also easily constructed
in order to organise the workflow on the logical level). While randomisation is
currently the only available selection method, we are planning to develop a more
intelligent approach which will be based on the emotions extracted from the
audio sample.

The allow n times component is a generalisation of the Choregraphe’s only
once component. It allows the signal to pass n-times. Its typical usage in the
workflow is to allow only n repetitions of a selected robot action or actions.

Few general dance gestures and motions were also developed using Chore-
graphe’s recording capabilities. The recording mode enables the user to record
the positions of all movable robot parts and stores them for editing and replay
but also offers export in the form of raw numerical and time data. Using the
recording mode, we have produced several workflow components of the type
“timeline” which are performed by the robot when selected by the selector com-
ponent during the performance. 9 gestures are available (see Figure 1 for an
example):

– both hands move above the head and back

– swimming motion with both hands

– left (right) palm moves across the face

– left (right) hand does a full circle at the chest level

– short knee motion

– “yes” and “no” head motions

Finally, an extensive repertoire of Choregraphe’s built-in components is available
and can be used to: (a) program certain robot actions such as such as light
signals with built-in LEDs (eyes, ears and chest button) and audio input/output,
(b) control the flow of execution using if, for, switch, stop and other control
structures, (c) make use of sensor data and (d) handle communication (IR and
network).

A Visual Programming Approach to Beat-Driven Humanoid Robot Dancing 443

(a) (b) (c) (d)

Fig. 1. Few samples of the NAO robot model performing dance gestures. When the
dance choreography workflow is running, gestures are performed according to the ex-
tracted beat and selected at random using the selector component.

3.4 Limitations

Because the proposed workflow-based approach is intuitive, easy to use and
based on existing software, this also introduces certain limitations.

The aubioonset tool from the aubio library only provides accurate onset de-
tection (local onset peaks) but does not try to compute the global tempo. This
can lead to undesired robot behaviour, e.g., rhythmical motions are interrupted
during longer silent periods.

Although a simple beat-driven dance choreography workflow can be con-
structed in minutes, the resulting dance will indeed seem “robotic” as certain be-
haviour will be repeated continuously (unless some clever randomisation method
is employed). On the other hand, long and complex choreography workflows may
introduce the problem of synchronisation. Small, insignificant delays which are
unavoidable when executing workflow components may add up to a significant
delay which can cause the robot to become desynchronised with the rhythm.
This is especially important for very fast beats such as those found in uptempo
electronic dance music.

Currently, the adaptation of the speed of robot moves for a particular musical
genre has to be done manually as the detected onsets are only used to initiate
robot actions, not to set their execution time frame. However, although the
animations of robot moves are measured in time frames, they can be easily
compressed or expanded given the number of beats the actions should take and
the global value of beat per minute. The dynamic adaptation of the duration of
robot actions is left for future work.

Finally, our approach is targeted solely to the NAO robot platform. While
the components can be easily reprogrammed for different robot hardware, the
most attractive part, namely the dance workflow composition, requires a capable
workflow execution environment which is able to communicate with the robot
platform.

444 V. Podpečan

4 Experiments

We have performed experiments with the developed approach on a few audio
samples. A classic 80’s disco song ”Hands Up (Give Me Your Heart)” by Ottawan
was selected as a test case as it features a regular beat at moderate speed and
the appropriate disco dance gestures are both recognisable and easy to animate.

Figure 1 shows a 3D model of the NAO robot performing few selected dance
gestures. In this simple experiment, only the developed basic gestures (see Sec-
tion 3.3) and built-in light effects were used. For a more elaborate dance choreog-
raphy, new gestures have to be recorded or programmed and stored into separate
workflow components.

The workflowwhich implements a simple dance to the song mentioned above is
shown in Figure 2. It can be easily extended by providing new gestures and moves
and adding selector and allow n times components to control the performance.
The workflow works as follows. From a high level perspective, it is composed of
three parts: the preparatory steps, the dance performance and the conclusion of
the performance.

The preparatory phase begins with instructing the robot to go to the prede-
fined “StandInit” posture from which he is able to perform any action or move.
The next component moves the hands to a low position which is the starting
position for dance moves. The last two preparatory steps load the audio file on
the robot and run the aubioonset tool to extract the beat. The resulting array of
float values indicating the beat onset times is then send to the core component
of the workflow, the beat emitter.

The main part of the workflow (the dance performance) consists of several time-
line components containing animated robot dancemoves, few selector components
and the beat emitter. The beat emitter contains a loop which periodically emits
signals on its outputs. Several outputs are already available but Choregraphe soft-
ware also allows for adding and modifying new inputs/outputs on the fly. In the
current setup, 6 user-configurable outputs are available. Each of them can emit the
beat signalwith the period from1 up to 1024 beats. Outputs with the longer period
are used to trigger robot moves with long duration (raising both hands, swimming
motion, etc.) while the ones with the short period control fast events such as blink-
ing, nodding and contraction of knees. 4 selector components are used to group
dance gestures into logical groups in order to organise the structure of the work-
flow. Note that for the adaptation of the workflow to another musical piece there
are no mandatory changes (from the technical perspective). However, in order to
achieve an aesthetically pleasant performance, specific moves and gestures have
to be developed which are suitable for the chosen musical piece. Also, the current
setup is rather simple and does not take into account the structure of the musical
piece: introduction, verse, chorus, etc.

The last part of the workflow concludes the performance as follows. First, the
robot is put again into the stable “StandInit” posture. The animated forehead
wiping is performed next which is followed by bowing to the audience and blow-
ing a kiss. Finally, the robot is put into the sitting position and the motors of
his joints are turned off.

A Visual Programming Approach to Beat-Driven Humanoid Robot Dancing 445

Fig. 2. A workflow in the Choregraphe virtual programming environment implement-
ing a simple dance using the developed components and few animated robot actions

446 V. Podpečan

The majority of workflow components used in this experiment were developed
from scratch. With the exception of few general supporting and basic robot con-
trolling component such as “Goto posture”, “Motor on/off” and “Load file”, the
visual programming elements were either implemented (script components) or
animated (timeline components). Examples of the former are e.g., beat detec-
tor, beat emitter and move selector while the examples of the latter are dance
gestures such as “both hands up”, “left palm to face”, “right hand out”, “nod”,
etc.

5 Conclusions and Further Work

In this paper we have presented an approach which enables implementing beat-
synchronised dance choreographies for the NAO robot platform using visual
programming in the Choregraphe software environment. The developed workflow
components allow the robot animator to compose a dance choreography in very
short time without programming and/or expert knowledge of the robot software
interfaces.

The approach is simple and intuitive and can give satisfactory results with
little effort as only general knowledge about visual programming using the Chore-
graphe environment is required in order to construct a simple dance choreogra-
phy. However, there are several limitations which have to be taken into account
(see Section 3.4 for an overview). As our main future goal, we plan to improve
onset detection to produce the accurate global tempo instead of local peaks.
This will improve the dance performance enormously as the robot events will be
synchronised to the beat as it is perceived by humans.

Furthermore, in order to improve the individuality of a performance we are
investigating options to detect emotions from audio in order to intelligently select
an appropriate gesture. Employing natural language processing techniques to
extract additional information from lyrics is also an interesting option.

An independent evaluation of the developed dance performances is also re-
quired in order to be able to compare to the existing related work in formal
terms. This also implies the development of several new dance choreographies.

Finally, we will create an extensive library of NAO robot gestures and moves
for different music styles and develop automated music classification by genre
which will be used to select the appropriate family of robot moves from the
library.

Acknowledgements. This work was supported by FP7 projects WHIM (The
What-if Machine) under the Grant Agreement No. 611560 and MUSE (Ma-
chine Understanding for interactive StorytElling) under the Grant Agreement
No. 296703.

A Visual Programming Approach to Beat-Driven Humanoid Robot Dancing 447

References

1. Angulo, C., Comas, J., Pardo, D.: Aibo jukeBox – A robot dance interactive expe-
rience. In: Cabestany, J., Rojas, I., Joya, G. (eds.) IWANN 2011, Part II. LNCS,
vol. 6692, pp. 605–612. Springer, Heidelberg (2011)

2. Aucouturier, J.-J., Ogai, Y., Ikegami, T.: Making a robot dance to music using
chaotic itinerancy in a network of fitzhugh-nagumo neurons. In: Ishikawa, M., Doya,
K., Miyamoto, H., Yamakawa, T. (eds.) ICONIP 2007, Part II. LNCS, vol. 4985,
pp. 647–656. Springer, Heidelberg (2008)

3. Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Ohl,
P., Sieb, C., Thiel, K., Wiswedel, B.: KNIME: The Konstanz Information Miner.
In: Studies in Classification, Data Analysis, and Knowledge Organization (GfKL
2007). Springer (2007)

4. Brossier, P.M.: Automatic Annotation of Musical Audio for Interactive Applica-
tions. Ph.D. thesis, Centre for Digital Music, Queen Mary, University of London
(August 2006)

5. Brossier, P.M.: Aubio, a library for audio labelling (2014), http://aubio.org/
6. Ellenberg, R., Grunberg, D., Kim, Y., Oh, P.: Exploring creativity through hu-

manoids and dance. In: Proceedings of the 5th International Conference on Ubiq-
uitous Robots and Ambient Intelligence, URAI 2008 (November 2008)

7. Grunberg, D.K., Ellenberg, R., Kim, I.H., Oh, J.H., Oh, P.Y., Kim, Y.E.: Develop-
ment of an autonomous dancing robot. International Journal of Hybrid Information
Technology 3(2) (2010)

8. Hull, D., Wolstencroft, K., Stevens, R., Goble, C.A., Pocock, M.R., Li, P., Oinn,
T.: Taverna: A tool for building and running workflows of services. Nucleic Acids
Research 34(Web-Server-Issue), 729–732 (2006)

9. Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: Yale: Rapid proto-
typing for complex data mining tasks. In: Ungar, L., Craven, M., Gunopulos, D.,
Eliassi-Rad, T. (eds.) KDD 2006: Proceedings of the 12th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 935–940. ACM,
New York (2006)

10. Nakaoka, S., Nakazawa, A., Yokoi, K., Ikeuchi, K.: Leg motion primitives for a
dancing humanoid robot. In: Proceedings of the IEEE International Conference on
Robotics and Automation, ICRA 2004, vol. 1, pp. 610–615 (April 2004)

11. Oliveira, J., Gouyon, F., Reis, L.P.: Towards an interactive framework for robot
dancing applications. In: International Conference on Digital Arts, Porto, Portugal
(2008)

12. Rosheim, M.: Robot Evolution: The Development of Anthrobotics. Wiley inter-
science publication, Wiley (1994)

13. Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N., Fujimura,
K.: The intelligent ASIMO: System overview and integration. In: IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, vol. 3, pp. 2478–2483
(2002)

14. Shinozaki, K., Iwatani, A., Nakatsu, R.: Concept and construction of a dance robot
system. In: Proceedings of the 2nd International Conference on Digital Interactive
Media in Entertainment and Arts, DIMEA 2007, pp. 161–164. ACM, New York
(2007)

http://aubio.org/

448 V. Podpečan

15. Tanaka, F., Fortenberry, B., Aisaka, K., Movellan, J.R.: Plans for developing real-
time dance interaction between QRIO and toddlers in a classroom environment.
In: Proceedings of the 4th International Conference on Development and Learning,
pp. 142–147 (July 2005)

16. Tanaka, F., Suzuki, H.: Dance interaction with QRIO: A case study for non-boring
interaction by using an entrainment ensemble model. In: 13th IEEE International
Workshop on Robot and Human Interactive Communication, ROMAN 2004, pp.
419–424 (September 2004)

17. Tzanetakis, G., Cook, P.: Marsyas: A framework for audio analysis. Organized
Sound 4, 2000 (2000)

18. Xia, G., Tay, J., Dannenberg, R., Veloso, M.: Autonomous robot dancing driven by
beats and emotions of music. In: Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems, AAMAS 2012, vol. 1, pp. 205–
212. International Foundation for Autonomous Agents and Multiagent Systems,
Richland (2012)

jABCstats: An Extensible Process Library

for the Empirical Analysis of jABC Workflows

Alexander Wickert and Anna-Lena Lamprecht

Chair for Service and Software Engineering, University of Potsdam,
August-Bebel-Str. 89, 14482 Potsdam, Germany
{awickert,lamprecht}@cs.uni-potsdam.de

http://www.cs.uni-potsdam.de/sse

Abstract. The jABC is a multi-purpose modeling framework that has
been used for model-driven development of workflows and processes in
different application domains. In this paper we present jABCstats, an
extensible process library for analyzing jABC workflows empirically. We
also discuss first results of its application to scientific workflows modeled
with the jABC, which give insights into typical workflow sizes and into
the kinds of services and the workflow patterns commonly used.

Keywords: jABCstats, scientific workflows, model-driven development,
jABC, service usage, workflow motifs, workflow patterns.

1 Introduction

The notion of scientific workflows has been used as a concept for bridging the
(semantic) gap between IT and scientific applications for more than a decade
now. Numerous systems with different characteristics have been developed for
supporting the design, management and execution of scientific workflows, and
new ones continue to be developed. At the same time, a tremendous amount of
scientific workflows has been designed with these systems, and provides a rich
source for the systematic analysis of scientific workflows (cf., e.g., [4,11,21]). A
better understanding of their characteristics can in fact give direction to the
improvement of scientific workflow management systems in the future.

In our work with scientific processes (cf., e.g., [3,7,8,9,12,13]), we use the
jABC framework [20] as workflow management system and the jETI technol-
ogy [14] for remote service integration. The jABC is a multi-purpose and domain-
independent modeling framework that is primarily used for user-centric
development of process and workflow applications according to the XMDD (eX-
treme Model-Driven Design) paradigm [15,16]. Users simply create hierarchical
models called Service Logic Graphs (or SLGs) from collections of reusable work-
flow building blocks, called Service-Independent Building Blocks (or SIBs) via
an intuitive graphical user interface. The SIBs encapsulate accessible units of
functionality, which can be calls to library functions or remote services, as well
as auxiliary functionality such as basic data manipulations or condition evalu-
ations. The SLGs are flow-graph structures that graphically represent the flow

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 449–463, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://www.cs.uni-potsdam.de/sse

450 A. Wickert and A.-L. Lamprecht

of control, that is, the order in which the SIBs are executed. Figure 1 gives an
impression of how the individual SIBs form an SLG on the modeling canvas and
how workflow execution is animated by the built-in interpreter.

Fig. 1. Graphical user interface of the jABC framework

In fact, the SLGs provide a comprehensive and powerful modeling formalism,
so that parts of the jABC have themselves been developed as jABC workflows
(e.g., [6,17]). This paper describes another self-application called jABCstats. It
is an extensible library of processes (realized as jABC workflows) that provides
functionality for empirical analysis of jABC workflows. The statistics that can
currently be generated by jABCstats provide detailed counts of all SIBs (both
individually and package-wise) and of selected workflow patterns that are used
by the examined workflows.

We used the library to analyze a first selection of scientific workflows modeled
with the jABC. The workflows were created by computer science, bioinformatics
and geoinformatics students in the scope of three courses on workflow modeling
that we taught in the last terms. Note that the workflows were not prescribed,
the students were themselves responsible for defining the (scientific) process
applications for their projects. Hence, this collection appears to be an adequate
sample for studying general characteristics of scientific workflows. The analysis
results that we obtained from this first sample give insights into typical workflow
sizes and into the kinds of services and the workflow patterns commonly used.

The paper is structured as follows: Section 2 describes the extensible process
library and how its workflows perform the analyses. Section 3 presents some first
results from the analysis of scientific workflows modeled in the jABC, discusses
our findings and compares them to related work. Section 4 closes the paper with
a summary and ideas for future work.

jABCstats: Empirical Analysis of jABC Workflows 451

2 Extensible Process Library for Generating Statistics

This section describes the main workflows of the process library that creates
statistics about jABC workflows. Note that the process library was completely
modeled using the standard SIB library that is shipped with every jABC dis-
tribution, that is, there was neither the need to implement any new SIBs, nor
the need to call scripts or (web) services. To give an overview of the processes
contained in the library and their relationships, Figure 2 visualizes the hierarchy
of all process models. It easily can be seen that the maximum model depth is 4,
but one can also see that the four main processes (re-)use other models. For in-
stance, Main GetSingleModelStatistic and Main GetSeveralModelStatis-

tics both contain the model GetModelStatistics as a submodel.

Fig. 2. The hierarchy of the models of the process library

Due to the limited space in this paper, we will in the following only describe
the three top levels of this model hierarchy. Currently, four different (extensible)
core processes are available, as summarized in Table 1 (Note that subdirectories
will always be ignored and only *.csv files created with workflow no. 1 or 2 are
supported as valid inputs for workflow no. 3 and 4.):

1. a process for generating the statistic for only one single jABC model file,
2. a process for generating the statistics for several jABC model files,
3. a process for summarizing several *.csv statistics files, and
4. a process for merging several *.csv statistics files.

The following descriptions of jABC workflows always go from left to right
and from top to bottom. The super model depicted in Figure 3 is the most
general model, prepared to call all four core workflows. It starts with the SIB

452 A. Wickert and A.-L. Lamprecht

Table 1. Overview of the core processes and their inputs and outputs

Process Inputs Outputs

1. Generating single statistic One single jABC
model *.xml file.

Corresponding *.csv file with
statistic.

2. Generating several statistics Directory with
several jABC
model *.xml files.

Directory with all corresponding
*.csv files with statistics.

3. Summarizing statistics Directory with
several *.csv files.

One single *.csv file containing
total values summarized for all
SIBs and their namespace hierar-
chies in one row.

4. Merging statistics Directory with
several *.csv files.

One single *.csv file, where every
row contains the numbers of one
input *.csv file (extended over all
SIBs and their namespace hierar-
chies of all *.csv files).

PutBoolean - interactive (with the underlined caption). The first three SIBs
define three Boolean values:

1. interactive – If true, messages will be displayed during workflow execution.
2. createFile – If true, an output file will be created on the local file system.
3. showStats – If true, the generated statistics will be shown.

Fig. 3. General model with variation point for the four core functionalities
(Super Model)

Next, the SIB EvaluateCondition tests the condition whether the statistics
should not be shown and the file should not be created. This catches just the

jABCstats: Empirical Analysis of jABC Workflows 453

case when the user sets the parameters in this senseless way. If this is the case
(true branch), the workflow will terminate and - if interactive is true - will show
a message that nothing is to do. Otherwise (false branch), the workflow goes
on with PutString - separator (in the rectangle) that sets the separator of
the *.csv file (default is semicolon ;). The following rounded rectangle marks a
variation point (cf., e.g., [19]) in the model. At this point, different submodels
(representing the four core processes described above) can be chosen. Therefore
one simply has to connect the outgoing branch of PutString - separator to
the SIB representing the process of choice. In Figure 3 it is currently connected to
Main GetSeveralModelStatistics, thus only this process will be executed at
runtime of this model. All other SIBs in the rounded rectangle are alternatives.
If any error occurs during the execution of the submodel and interactive is set
true, then an error message will be shown to the user.

2.1 A Process for Generating the Statistic for Only One jABC
Model

In the following, the process for generating the statistic for only one single jABC
model (Figure 4) will be explained in more detail. This model is in fact very
simple. There is only one SIB that sets the path to the current jABC *.xml
model file and a second SIB that calls the next submodel GetModelStatistics.
The reason for aggregating the workflow this way is simply that it facilitates the
reuse of GetModelStatistics that is also used in the next process, described in
Section 2.2.

Fig. 4. Main model for generating statistics for only one jABC model (Main Get-
SingleModelStatistic)

Figure 5 takes a closer look at the GetModelStatistics process. The first
component ExtractSIBs extracts all SIBs that are stored in the jABC *.xml
file using a regular expression and stores them in a collection. The code snippet
below shows how a SIB description in the jABC model *.xml file looks like:

<sib>

<id>a4312a58-6825-4835-ac80-2a62e8f906eb</id>

<name>MacroSIB</name>

<label>_Main_GetSingleModelStatistic</label>

<taxonomy>de.metaframe.jabc.sib.MacroSIB</taxonomy>

...

</sib>

454 A. Wickert and A.-L. Lamprecht

Fig. 5. Actual model for generating statistics for a jABC model (GetModelStatistics)

The full SIB name (namespace and concrete SIB) that is relevant for the analysis
is located between the tags <taxonomy> and </taxonomy>. In the above example,
de.metaframe.jabc.sib.MacroSIB is extracted and the complete namespace is
divided into all of its hierarchy levels.

Then, in CountSIBsPerCategory, all SIBs and all of their partial names-
paces are counted and put into a sorted map, where the key is the partial
namespace/complete SIB name and the value is the number of occurrences.
EvaluateBoolean - createFile? tests whether the user selected to create a
*.csv file from the results of CountSIBsPerCategory. If yes, WriteStatsInCSV
writes the results into a *.csv file, where the first row contains the partial name-
spaces/complete SIB names and the second row contains the corresponding num-
bers of occurrences. Table 2 shows some columns of the resulting output *.csv
file of GetModelStatistics. One can see that the occurrences of SIBs in all
namespace levels are counted. The total number of SIBs in the analyzed model
is thus 13, and all belong to the de.* package. There are 4 MacroSIBs, but
no other SIBs of package de.metaframe.* are used in Super Model, thus the
counts for namespace de.metaframe.* and all packages inside it are exactly 4.

Finally, EvaluateCondition - showStats && interactive tests if show-

Stats and interactive are true. Only in this case (true branch), ShowStats
shows the resulting statistics in a dialog window to the user.

Table 2. Snippet of statistical output of GetModelStatistics

#allSIBs de.* de.metaframe.* de.metaframe. de.metaframe. de.metaframe. . . .
jabc.* jabc.sib.* jabc.sib.MacroSIB

13 13 4 4 4 4 . . .

2.2 A Process for Generating Statistics for Several jABC Models

The process depicted in Figure 6 generates statistics for several jABC model
*.xml files. As indicated in the previous section, decomposing a model into dif-
ferent submodels allows one to reuse them easily, and so the only necessary work

jABCstats: Empirical Analysis of jABC Workflows 455

to create the functionality for generating statistics for several models was in fact
to model an iteration around GetModelStatistics. The output *.csv files are
exactly like in Table 2.

At first, PutFile - XML dir defines the directory that contains all jABC
*.xml files. ScanDirectory puts all *.xml files into a collection and GetSize gets
the size of this collection (= number of *.xml files). The next condition tests, if
the number of *.xml files is greater than 0. If not (false branch) and interactive
is true, a dialog will be shown to the user that the chosen directory contains
no *.xml files. Otherwise (true branch of EvaluateCondition), the *.xml files
will be iterated and for each file GetModelStatistics will be executed (see
rectangle). (Note that until this point there is no check whether the .xml files
are valid jABC models. If it is not a valid jABC model, then the file will be
skipped. Also errors in the submodel will not terminate the whole process.) If
interactive is true, a final message informs the user that the complete process
is finished.

Fig. 6. Main model for generating statistics for several jABC models (Main Get-
SeveralModelStatistics)

2.3 A Process for Summarizing Statistics

As a consequence of the ongoing work with the examined workflows and the work
with the created *.csv files, ideas for further functionalities were developed. One
idea that already has been realized is described in this subsection and another
one in Section 2.4.

The first idea was to have a process that is able to take several *.csv files (as
created by the processes described above) as input and summarize the numbers of
all columns automatically. The resulting output is a new *.csv file that contains
again exactly two rows like in Table 2. With this functionality, one could e.g.
summarize the statistics of all individual workflows of one project in a single
*.csv file.

456 A. Wickert and A.-L. Lamprecht

The process for summarizing statistics of several *.csv files can be seen in
Figure 7. It starts with GetCSVFiles that retrieves all *.csv files as a collection
from the input directory. Then, GetAllSIBNames extracts all SIB and package
names from every input *.csv file. Afterwards, SumStats summarizes the num-
bers of all SIBs and all (partial) namespaces to total numbers. The rest of the
workflow is like in Figure 5.

Fig. 7.Main model for summarizing statistics from several *.csv files (Main SumStats)

2.4 A Process for Merging Statistics

The last functionality merges statistics of several *.csv files into one *.csv file,
with the purpose to give a complete overview of different workflow projects or
models. Therefore, every row in the output table contains the numbers of one
input *.csv file, and the columns, as before, cover all SIBs and their namespace
hierarchies. A snippet from an example output *.csv file generated by this process
(applied on the process itself) can be seen in Table 3. The resulting merged
*.csv file contains a lot of columns, especially some of them contain many 0s
(like CheckVariable) because this SIB was only used in few models. Hence, the
output can get very big when many different SIBs have been used in the different
projects. Consequently, the execution time of this workflow increases also very
fast, thus we will have to investigate in optimization possibilities here as the
development and use of the library continues.

Figure 8 depicts the model of this process. It starts (like in Figure 7) with
GetCSVFiles that retrieves all *.csv files as a collection from the input direc-
tory. GetAllSIBNames then extracts all SIB names from every input *.csv file.
Afterwards, MergeStats merges the stats of all input *.csv files into one single
*.csv file extended over all SIBs and their namespace hierarchies of all *.csv
files. The way of writing the *.csv file (WriteTextFile) and showing the re-
sults (ShowTextDialog) differs from the previous processes. The submodels are
replaced by atomic SIBs because (for performance reasons) the string that con-
tains the output content of the *.csv file is already constructed while merging
the statistics.

jABCstats: Empirical Analysis of jABC Workflows 457

Fig. 8. Main model for merging statistics from several *.csv files (Main MergeStats)

Table 3. Snippet of statistical output of Main MergeStats

name of CSV file #allSIBs de.* de. de. de. de. de. de.
jabc.* jabc. jabc. jabc. jabc. jabc.

sib.* sib. sib. sib. sib.
com- com- common. common. . . .
mon.* mon. basic. basic.

basic.* Check- PutFile
Variable

Main GetSeveral- 10 10 9 9 9 4 0 1 . . .
ModelStatistics

Main GetSingle- 2 2 1 1 1 1 0 1 . . .
ModelStatistic

Main MergeStats 7 7 4 4 4 2 0 0 . . .

Main SumStats 7 7 2 2 2 2 0 0 . . .

GetModelStatistics 6 6 2 2 2 2 0 0 . . .

. .

2.5 Extensions of the Current Process Library

Extensions of the current process library are easily possible due to its hierarchi-
cal and modular structure. Figure 9 exemplarily shows how two new submod-
els, GetMaxModelDepth and AnalyzeModelPatterns, can be integrated into the
GetModelStatistics workflow. They have not yet been modeled completely,
but we are working on them. GetMaxModelDepth is going to automatically de-
termine the maximal depth of a jABC workflow (i.e. the maximal number of
hierarchy levels) and AnalyzeModelPatterns is going to count typical control-
flow patterns in the workflow, such as sequences, choices, forks and loops.

3 First Results

As a first study with our new process library for empirical analyses of workflows,
we analyzed a set of 54 scientific workflows projects consisting of 241 individ-
ual workflow models that were created by computer science, bioinformatics and
geoinformatics students in the scope of three Master-level courses on workflow

458 A. Wickert and A.-L. Lamprecht

Fig. 9. Variant of GetModelStatistics with two new analysis functionalities

modeling that we taught in the last terms. Note that the workflows were not
prescribed at all, but the students (as Master students are already advanced
in their respective fields) were themselves responsible for defining the scientific
process applications of their projects. As a consequence, the workflow projects
deal with a wide range of scientific topics, and accordingly a large variety of tools
and services is used within the workflows. As such, this collection appears to be
an adequate sample for studying general characteristics of scientific workflows.
As detailed in the following, our first findings largely comply with results from
previous empirical studies on scientific workflows and substantiate different im-
pressions that we got in our and the students’ work with scientific workflows.

0
50

10
0

15
0

N
um

be
r o

f S
IB

s

Number of SIBs

N
um

be
r o

f p
ro

je
ct

s

0 50 100 150 200

0
20

40
60

80
10

0
12

0 121

64

29

11
7

2 2 2 0 0 1 0 1 0 0 1 0

Fig. 10. Size of the examined workflows with respect to the number of used SIBs

In our sample, the size of the workflows (simply measured by the total number
of SIBs in the workflow model(s)) ranges from 2 to 156, with a mean of 15.9,
a median of 10 and a standard deviation of 18.3, as visualized by the box plot
in Figure 10 (left). The histogram in Figure 10 (right) shows in more detail
that in fact most of the workflows (121) consist of only up to 10 SIBs, about
a quart (64) comprise between 10 and 20 SIBs, and only every eights workflow
between 20 and 30. Only 9 workflows are composed of more than 50 SIBs. A
similar distribution of workflow sizes has already been described by Littauer

jABCstats: Empirical Analysis of jABC Workflows 459

et al. in their paper “Trends in Use of Scientific Workflows: Insights from a Public
Repository and Recommendations for Best Practices” [11], where they analyzed
workflows stored in the myExperiment [5] public workflow repository. Indeed,
we observed that most workflow designers develop their applications making use
of several quite small submodels. This separates different levels of abstraction,
prevents the models from becoming unmanageably large (which starts to be the
case when the workflow model does not properly fit onto the modeling canvas
any more), and results in small and easily reusable units of functionality.

Local Services

Remote Services

Sub-Workflows
ExecuteCommand

Total SIB usage based on service type (3807 SIBs)

Basic SIBs

Collection SIBs

GUI SIBs

I/O SIBs

Control SIBs
jETI helpers

other

Local services (2944 SIBs)

Fig. 11. Usage of different types of services

Figure 11 gives more information about the services that were used in the
workflows. Following the service types distinguished by Wassink et al. in their
study “Analysing Scientific Workflows: Why Workflows Not Only Connect Web
Services” [21], the left pie chart visualizes the share of local services (detailed
below), remote services (calls to Web services and jETI [14] services), sub-
workflows (GraphSIBs and MacroSIBs) and ExecuteCommand SIBs (that call
scripts or tools) in the total number of SIBs. In concert with their results, lo-
cal services make up the largest part of SIBs, followed by the remote services.
While we have then found a slightly bigger proportion of sub-workflows than
of ExecuteCommand SIBs, Wassink et al. identified slightly more scripting tasks
than sub-workflows in their sample.

The right pie chart in Figure 11 shows the composition of the local services
used in the workflows. The largest part is made up by the Basic SIBs, which
provide basic functionality for workflow modeling (such as basic data process-
ing functions and control structures) and are part of the jABC’s standard SIB
library (the so-called Common SIBs). Second-largest part are the GUI SIBs, an-
other part of the Common SIBs, which can be used for including dialogs for user
interaction in the workflow. This complies with an observation that Garijo et
al. made in their study “Common motifs in scientific workflows: An empirical
analysis” [4], namely that steps for human interaction are increasingly used in
scientific workflows. The third-largest share of local services used in the ana-
lyzed workflows are “other” SIBs that comprise different kinds of local services

460 A. Wickert and A.-L. Lamprecht

that are not part of any jABC standard library. Thus, these SIBs were primarily
implemented for particular projects. The remaining parts of the pie chart are
distributed between four other standard SIB libraries, namely the Collection

SIBs and the I/O SIBs from the Common SIBs library, as well as the Control

SIBs as part of the jABC framework and the jETI helper SIBs that come with
the jETI remote execution plugin [14].

Sequence
(2087)

E. Choice
(513)

S. Merge
(183)

Loop
(235)

Fork
(35)

Join
(28)

0
50

0
10

00
15

00
20

00

Fig. 12. Usage of workflow patterns

In order to learn more about the programmatic structure of scientific work-
flows, i.e., how the services are actually connected, we work on extending the
process library to identify and count typical patterns that are used in scientific
workflows (cf. Section 2.5). As a start, we focus on general, domain-independent
workflow patterns as described by [1], which are particularly suitable to assess the
control-flow and data-flow structures of a workflow. The current version of the
corresponding analysis process is able to identify and count sequences, exclusive
choices, simple merges, loops, forks, and joins. The detection of other patterns is
the subject of future work. Figure 12 shows the preliminary results for our sam-
ple: The sequence pattern (simple sequential execution of two services) is by far
the most-used pattern, with 2090 occurrences in the analyzed workflows. Exclu-
sive choices (conditional branchings), simple merges (convergence of branches)
and loops (repetitive behavior) also occur quite often, while parallel executions
(fork/join) do in fact only play a minor role. As control-flow structures like
conditional branchings and loops are apparently used very frequently, workflow
systems should provide the possibility to include them in their workflows. While
this is natural in control flow-based systems like the jABC, other mechanisms
for their definition have to be developed for data flow-oriented systems.

4 Conclusion

We have presented a process library for the empirical analysis of jABC workflows
that is itself composed of jABC workflow models and applied it to a selection of

jABCstats: Empirical Analysis of jABC Workflows 461

scientific workflows created by our students to generate first results. Note that
in contrast to the analysis workflow described in [21], our workflow is completely
modeled with the available standard SIB libraries of the jABC, that is, no addi-
tional scripts or services were implemented. In essence, our first results, covering
workflow size and service usage, comply with the results obtained by previous
studies on scientific workflows, such as [4,11,21]. As we have a large number of
jABC workflows from a variety of application domains available, we are going
to carry on this first study and analyze other sets of workflows as well. It will
be especially interesting to investigate the differences between the various ap-
plication domains, such as scientific and business processes and their different
sub-domains.

In the context of empirical analysis of scientific workflows, it would be es-
pecially interesting to perform the analyses on the workflows in the myExper-
iment [5] workflow repository in order to compare the results for the jABC
workflows with results for workflows from a data source that is often considered
representative for the scientific community. Since the process library is currently
limited to jABC workflows, it requires to extend the library to cover other mod-
eling languages, which in particular means to extend those parts of the process
library that deal with the processing of the concrete workflow models, which are
of course tailored to the specific language. For the counting of used services (indi-
vidually and in categories) the XML file in which the model is stored is analyzed.
Since many workflow systems use some XML dialect for storing their workflows,
it tends to be straightforward to adapt the process to be able to deal with other
languages as well. For the analysis of the workflow patterns (structure of the
model), an extension to other workflow languages requires more effort, since it
is necessary that the workflows can be loaded and analyzed programmatically.
Since the analyses are implemented for control-flow SLGs of the jABC frame-
work, it will in particular be easier to transfer them to other control-flow models
than to conceptually different data-flow models.

Currently, we are working on making the functionality of this the process li-
brary available as a jABC plugin, so that the analysis of workflows can easily be
performed via the graphical user interface of this model-driven framework. As
detailed in [18], plugin-based extensions are explicitly foreseen by the framework
and it provides interfaces that greatly simplify their development and integra-
tion. Following the example of the PROPHETS process synthesis plugin [17],
where users can define their own synthesis processes that are then executed by
the plugin, we also plan to make it possible that users can define own analysis
workflows. This would enable users to flexibly adapt the workflow analyses to
their specific preferences and interests.

At the same time, we are exploring different extensions of the currently im-
plemented functionality. It would for instance be desirable to generate the SIB
statistics according to some domain-specific taxonomy (currently this is done
according to the package hierarchy of the Java classes of the SIBs), to make
use of the jABC’s model checking plugin GEAR [2] for static analyses with re-
gard to data-flow properties and program correctness, and to generate charts

462 A. Wickert and A.-L. Lamprecht

and other visualizations automatically. More advanced than the analysis of
domain-independent workflow patterns but also by far more complex, would
be the identification of domain-specific workflow patterns, as sketched in [7],
that could be used for semantics-based workflow design support, for instance
with the PROPHETS [10,17] process synthesis plugin.

References

1. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow Patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)

2. Bakera, M., Margaria, T., Renner, C., Steffen, B.: Tool-supported enhancement of
diagnosis in model-driven verification. Innovations in Systems and Software Engi-
neering 5, 211–228 (2009), http://dx.doi.org/10.1007/s11334-009-0091-6

3. Ebert, B.E., Lamprecht, A.L., Steffen, B., Blank, L.M.: Flux-P: Automating
Metabolic Flux Analysis. Metabolites 2(4), 872–890 (2012),
http://www.mdpi.com/2218-1989/2/4/872

4. Garijo, D., Alper, P., Belhajjame, K., Corcho, O., Gil, Y., Goble, C.: Common
motifs in scientific workflows: An empirical analysis. Future Generation Computer
Systems (2013) (in press), http://www.sciencedirect.com/science/
article/pii/S0167739X13001970

5. Goble, C.A., Bhagat, J., Aleksejevs, S., Cruickshank, D., Michaelides, D., Newman,
D., Borkum, M., Bechhofer, S., Roos, M., Li, P., Roure, D.D.: myExperiment: A
repository and social network for the sharing of bioinformatics workflows. Nucleic
Acids Research 38(suppl. 2), W677–W682 (2010), http://nar.oxfordjournals.
org/cgi/content/abstract/38/suppl 2/W677

6. Jörges, S.: Construction and Evolution of Code Generators. LNCS, vol. 7747.
Springer, Heidelberg (2013)

7. Lamprecht, A.-L. (ed.): User-Level Workflow Design. LNCS, vol. 8311. Springer,
Heidelberg (2013)

8. Lamprecht, A.L., Margaria, T., Steffen, B.: Bio-jETI: A framework for semantics-
based service composition. BMC Bioinformatics 10(suppl. 10), S8 (2009)

9. Lamprecht, A.L., Margaria, T., Steffen, B., Sczyrba, A., Hartmeier, S., Giegerich,
R.: GeneFisher-P: variations of GeneFisher as processes in Bio-jETI. BMC Bioin-
formatics 9(suppl. 4), S13 (2008), http://www.ncbi.nlm.nih.gov/
pubmed/18460174

10. Lamprecht, A.L., Naujokat, S., Margaria, T., Steffen, B.: Synthesis-Based Loose
Programming. In: Proc. of the 7th Int. Conf. on the Quality of Information
and Communications Technology (QUATIC 2010), Porto, Portugal, pp. 262–267
(September 2010)

11. Littauer, R., Ram, K., Ludäscher, B., Michener, W., Koskela, R.: Trends in Use of
Scientific Workflows: Insights from a Public Repository and Recommendations for
Best Practices. In: 7th International Digital Curation Conference (2011)

12. Margaria, T., Kubczak, C., Njoku, M., Steffen, B.: Model-based Design of Dis-
tributed Collaborative Bioinformatics Processes in the jABC. In: Proceedings of
the 11th IEEE International Conference on Engineering of Complex Computer Sys-
tems (ICECCS 2006), pp. 169–176. IEEE Computer Society, Los Alamitos (2006)

13. Margaria, T., Kubczak, C., Steffen, B.: Bio-jETI: A service integration, design,
and provisioning platform for orchestrated bioinformatics processes. BMC Bioin-
formatics 9(suppl. 4), S12 (2008)

http://dx.doi.org/10.1007/s11334-009-0091-6
http://www.mdpi.com/2218-1989/2/4/872
http://www.sciencedirect.com/science/article/pii/S0167739X13001970
http://www.sciencedirect.com/science/article/pii/S0167739X13001970
http://nar.oxfordjournals.org/cgi/content/abstract/38/suppl_2/W677
http://nar.oxfordjournals.org/cgi/content/abstract/38/suppl_2/W677
http://www.ncbi.nlm.nih.gov/pubmed/18460174
http://www.ncbi.nlm.nih.gov/pubmed/18460174

jABCstats: Empirical Analysis of jABC Workflows 463

14. Margaria, T., Nagel, R., Steffen, B.: jETI: A Tool for Remote Tool Integration.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 557–562.
Springer, Heidelberg (2005), http://www.springerlink.com/content/
h9x6m1x21g5lknkx

15. Margaria, T., Steffen, B.: Agile IT: Thinking in User-Centric Models. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17, pp. 490–502. Springer, Heidelberg
(2009)

16. Margaria, T., Steffen, B.: Service-Orientation: Conquering Complexity with
XMDD. In: Hinchey, M., Coyle, L. (eds.) Conquering Complexity, pp. 217–236.
Springer, London (2012), http://dx.doi.org/10.1007/978-1-4471-2297-5_10

17. Naujokat, S., Lamprecht, A.-L., Steffen, B.: Loose Programming with PROPHETS.
In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 94–98. Springer,
Heidelberg (2012)

18. Naujokat, S., Neubauer, J., Lamprecht, A.L., Steffen, B., Jörges, S., Margaria, T.:
Simplicity-First Model-Based Plug-In Development. In: Garbervetsky, D., Kim, S.
(eds.) Special Issue of the 2nd International Workshop on Developing Tools as
Plug-ins. Software: Practice and Experience. John Wiley & Sons, Ltd. (to appear)

19. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag New York, Inc., Secaucus
(2005)

20. Steffen, B., Margaria, T., Nagel, R., Jörges, S., Kubczak, C.: Model-Driven De-
velopment with the jABC. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS,
vol. 4383, pp. 92–108. Springer, Heidelberg (2007),
http://dx.doi.org/10.1007/978-3-540-70889-6_7

21. Wassink, I., van der Vet, P.E., Wolstencroft, K., Neerincx, P.B., Roos, M., Rauw-
erda, H., Breit, T.M.: Analysing Scientific Workflows: Why Workflows Not Only
Connect Web Services. In: IEEE Congress on Services, pp. 314–321 (2009)

http://www.springerlink.com/content/h9x6m1x21g5lknkx
http://www.springerlink.com/content/h9x6m1x21g5lknkx
http://dx.doi.org/10.1007/978-1-4471-2297-5_10
http://dx.doi.org/10.1007/978-3-540-70889-6_7

Automatic Annotation of Bioinformatics

Workflows with Biomedical Ontologies

Beatriz Garćıa-Jiménez and Mark D. Wilkinson

Biological Informatics Group
Center for Plant Biotechnology and Genomics (CBGP), UPM - INIA

28223 Pozuelo de Alarcón (Madrid), Spain
beatriz.garcia@upm.es, markw@illuminae.com

http://www.wilkinsonlab.info

Abstract. Legacy scientific workflows, and the services within them,
often present scarce and unstructured (i.e. textual) descriptions. This
makes it difficult to find, share and reuse them, thus dramatically re-
ducing their value to the community. This paper presents an approach
to annotating workflows and their subcomponents with ontology terms,
in an attempt to describe these artifacts in a structured way. Despite a
dearth of even textual descriptions, we automatically annotated 530 my-
Experiment bioinformatics-related workflows, including more than 2600
workflow-associated services, with relevant ontological terms. Quantita-
tive evaluation of the Information Content of these terms suggests that,
in cases where annotation was possible at all, the annotation quality was
comparable to manually curated bioinformatics resources.

Keywords: scientific workflows, web services, bioinformatics, semantic
annotation, text mining, ontologies, tags, term extraction.

1 Introduction

As the demand grows for more transparent and reproducible scientific research
[1], it becomes increasingly urgent to adopt more formal strategies for record-
ing scientific methodology. The most common approach to such explicit process
modelling takes the form of a scientific workflow. These digital artifacts formally
describe the series of steps by which a scientific experiment was/will be con-
ducted. Workflows may exist at a variety of levels of abstraction, ranging from
general process overviews, to specific tools, the data-flow connections between
them, and their associated execution parameters.

Formal workflows are generally authored and/or executed using purpose-built
software, and a variety of design and enactment environments are used by e-
scientists, such as Taverna [2], Kepler [3], Wings [4], and Vistrails [5]. These
environments serve three main purposes: first, they attempt to generalize the
interfaces between different workflow components (e.g. Web Services versus local
command-line tools or scripts) so that they can be connected together without
concern for the precise mechanism by which data will be passed between the

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 464–478, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Automatic Annotation of Bioinformatics Workflows 465

components; second, they often offer a means to facilitate component discovery
at design-time, either by menu-driven component selection [2], by contextually-
aware suggestion [6], or by semi or fully automated construction [7] [4] to simplify
the design process and/or reduce errors; finally, at enactment time, they mediate
the data flow between components and, generally, capture additional information
about the provenance of the workflow execution.

Apart from the key goal of enhancing the explicitness and transparency of
scientific methodology, one of the most touted benefits of formal workflows is
that they can, in principle, be shared, reused, and repurposed. With this goal,
and in parallel with the increasing use of formal workflows in e-science, projects
have emerged that aim to capture and publish these workflows for the purpose
of rediscovery and reuse. The primary such repository in the Life Sciences is
myExperiment [8], which archives workflows from most design and enactment
environments.

To facilitate discovery, workflows submitted to myExperiment can be anno-
tated with both a block of descriptive text, as well as free-text keywords or
“tags”; however there is little to no control over the quality or quantity of these
annotations. Task-appropriate workflow discovery, then, relies largely on the
matching of keywords from within these freeform, sometimes very limited tex-
tual sources. Similarly, detailed comprehension of the functionality and suitabil-
ity of a discovered workflow also depends largely on human interpretation of
these textual annotations. For example, if the workflow requires edits for repur-
posing, deep examination of the individual workflow subcomponents is required
in order to identify which portion of the workflow requires revision. Unfortu-
nately, workflows are seldom, if ever, annotated at this level of granularity. As
such, it becomes necessary to resolve the individual subcomponents to their own
sources of documentation. Such documentation might be available, for example,
within the WSDL document for a Web Service, or the record of that service in
BioCatalogue, both of which are, again, either freeform tags or narrative text.
While such traversals are plausible, there is currently no infrastructure that can
reliably mechanize the traversal from a workflow subcomponent to its indepen-
dent documentation. Moreover, the documentation of these subcomponents is
as unregulated and often as sparse as that of the workflow itself, thus making
them of dubious utility.

One approach to improving the status quo would be to semantically annotate
both workflows and their subcomponents with ontological terms. Semantic an-
notations have numerous benefits over keyword and free-text annotations, such
as supporting query expansion, filtering, precision, and computational tractabil-
ity for formal verification and validation of workflow structures. There are cur-
rently no widely accepted standards for representing or annotating workflows
though a variety of de facto standards are available; conversely, more widely
accepted standards are available by which to capture semantic annotations for
individual workflow components. For example, the World Wide Web consortium
has recommended the SAWSDL standard for capturing ontological and con-
trolled vocabulary terms within the structure of a traditional WSDL document

466 B. Garćıa-Jiménez and M.D. Wilkinson

representing a Web Service. This is intended to act as a bridge between tra-
ditional Web Services, and “Semantic Web Services”, where each field in the
conventional Web Service interface definition can now be mapped into an on-
tological context, together with an (optional) machine-readable data structure
mapping, such as XSLT. Projects such as EMBRACE [9] are taking on the task
of annotating legacy Web Services into SAWSDL using ontological terms from
bioinformatics ontologies, in particular, EDAM (EMBRACE Data And Methods
ontology [10]). Other projects aim to take advantage of even richer semantics.
The SADI [11], SHARE [7] and Wings [4] projects all capture rich semantic
annotations at the level of both the overall workflow, as well as the individ-
ual subcomponents, and hence, both support (to some degree) fully automated
workflow assembly. In all of these cases, however, the semantic annotations are
generated manually, either at the time of service/workflow authoring, or as part
of a legacy migration and curation process. As such, it would be highly desir-
able to “boot-strap” the semantic annotation of legacy workflows and workflow
subcomponents through some form of automated semantic annotation.

Here we describe an approach to the semantic annotation of legacy workflows
in the myExperiment repository, as well as their component services. Workflows
are first filtered to eliminate any steps that are exclusively syntactic transfor-
mations (“shims” [12]), with the resulting workflow skeleton containing only
“biologically meaningful” operations. These skeletons are then mined using in-
formation from a variety of sources, including the myExperiment and BioCat-
alogue [13] repository entries, the BioMoby registry [14], and WSDL source
documents. Mined descriptions are then processed to discover matches to nine
relevant ontologies from the OBO Foundry. The resulting workflow templates
are then reassembled using the representation of the Open Provenance Model
for Workflows (OPMW) [15, 16] from the Wings project, which includes well-
defined facets for capture of rich semantic annotations. Finally, we describe our
degree of success in extracting such annotations, as well as attempting to quan-
titatively evaluate the quality of these annotations in terms of their Information
Content [17].

2 Material and Methods

Section 2 describes the steps we undertook in our efforts to automatically anno-
tate myExperiment workflows using terms from bioinformatics-relevant ontolo-
gies.

Overall, the system consumes Taverna workflows in Taverna 1 (scufl) or Tav-
erna 2 (t2flow) formats [2], and outputs a set of ontology annotations linked to
each available and ‘biologically meaningful’ service within each input workflow.
As a secondary output, the partially-abstracted workflow (i.e. without data-type
transformation nodes) is provided in scufl or t2flow format.

The following subsections describe the four primary phases of our analytical
approach: 1) Filtering for bioinformatics-relevant workflows, 2) Cleaning “shim”
services, 3) Retrieving service descriptions and 4) Entity extraction from de-
scriptions to create the output semantic annotations.

Automatic Annotation of Bioinformatics Workflows 467

2.1 Step 1: Filtering for Bioinformatics-Relevant Workflows

Our first requirement was to differentiate bioinformatics-oriented workflows from
those relevant to other areas of investigation. As a first attempt, we selected
workflows with the ‘Bioinformatics’ tag; however, we observed that only 5% of
Taverna workflows are described with this tag, leading to a high false-negative
rate. We adjusted our criterion to search for specific bioinformatics-oriented
topics, using relevant branches of EDAM [10] as our source vocabulary. Relevant
EDAM terms were derived using the ‘edamdef’ command from the EMBOSS
package v6.4.0-4 [18], which allows us to search the definition of EDAM classes
and returns terms matching the query term(s). The query:

edamdef -namespace topic -subclasses -query bioinformatics

‘edamdef’ returned 190 terms related to ‘bioinformatics’ from the ‘topic’
sub-ontology of EDAM. The description, title and tags of each myExperiment
workflow were then searched using each of these terms, using the text mining
Peregrine SKOS CLI software [19]. This filtering process resulted in 1206 pre-
sumptively bioinformatics-related workflows.

From manual inspection of these 1206 workflows, it became apparent that
there were still an unacceptable number of false negatives because of the lack
of an EDAM term in the description, title, or tags. Importantly, it was also
apparent that some selected EDAM terms were too general, resulting in an un-
acceptable number of false positive workflows. For example, many false positives
were discovered by matching the EDAM term ‘workflows’ (1022 cases, mixed
with true positives) or ‘ontologies’ (29 cases).

After several iterations of trial and error together with manual verification
of filtered and non-filtered workflows, we curated the list of filter terms, re-
moving many of the most general EDAM classes which select workflows not
specifically related to bioinformtics (e.g. ontologies, rna, structure, text mining,
threading and workflows) and adding new specific terms to include bioinformat-
ics workflows not retrieved with the EDAM classes (e.g. alignment, bioinfor-
matics, BioMarker, bioMart, BioMoby, blast, chEBI, chemical, cheminformat-
ics, EBI, ebi.ac.uk, ensembl, entrez, FASTA, GenBank, Gene expression, gene
list, gene name, Gene Ontology, gene pattern, geneontology, genetic, genotyp-
ing, GO term, InterPro, Kegg, metagenomics, microarray, molecular, molecule,
ncbi, openPHACTS, pathway, Pfam, phylogenetic, protein, PubMed, SNP, so-
matic, SwissProt, systems biology uniprot, UniprotId and wikipathways). We
then repeated the filtering process. Again, a manual examination of a subset of
the filtered workflows suggested that approximately 95% of the erroneous fil-
tering had been eliminated; the identified false positives had been eliminated,
preserving the true positives, and many of the false negatives were now discov-
ered. Remaining false negatives consisted of workflows with no description, no
tags, no title and/or words not correctly space-separated—effectively, impossible
to discover using our approach. We believe, however, that this set of terms pro-
vides sufficient filtering precision to be used in an automated annotation pipeline
leading to a dataset of sufficiently high-quality to be used in downstream data
mining.

468 B. Garćıa-Jiménez and M.D. Wilkinson

At the end of this filtering phase, from an input of 1839 workflows, 775 work-
flows were determined to be relevant to bioinformatics, although just 739 work-
flows are available to download from myExperiment (4.65% not downloadable).
Among the 739 available workflows, 272 of them are in Taverna 1 format (scufl)
and 467 in Taverna 2 format (t2flow).

2.2 Step 2: Cleaning “shim” Services

Taverna workflows have been reported as containing many “shim” services [20]
—that is, workflow elements that execute data transformations (merging, for-
matting, or parsing), but not biologically meaningful analyses [21]. These shims
represent structural transformations, not biologically relevant transformations
we are interested in. They do not contribute to our understanding of the science
behind a workflow, and as such, we undertook to automatically identify and
remove them from the workflow prior to the annotation phase of our analysis.

According to the Taverna User Manual1, we considered as shim services the
following categories: XML splitter, spreadsheet import, string/text constant,
beanshell, local service and Xpath; and as non-shim services: WSDL, REST,
bioMoby, bioMart, soaplab and Rshell. When a shim service is removed, the
steps before and after that shim are reconnected in our dataset, thus preserving
the “flow” of the workflow. Note, however, that the resulting T2flow files cannot
be accurately visualized in Taverna (though they appear to be XML schema-
compliant); nevertheless, since visualization was not our objective, nor was the
objective to create a “runnable” workflow, this was not problematic for the re-
mainder of our analysis. In some cases, the pruned workflow has services without
inputs and/or outputs, and in other cases, pruned workflow is left with only in-
puts and outputs, if all its processors are shims. Figure 1 shows an example of
a Taverna workflow before and after cleaning shims.

At the end of this second data preparation phase, we retain the same number
of workflows overall, however each workflow now has fewer component processors.
77 workflows contained only shim services, and were therefore “empty” after this
data preparation phase.

2.3 Step 3: Retrieving Service Descriptions

Here, we query myExperiment and a variety of service metadata repositories
to obtain a textual description of each remaining service in each workflow. We
focus our efforts on annotations present in WSDL, BioMoby, SoapLab, REST
and nested workflows services, since they are the most frequent services in our
workflows (see section 3.1) and have obvious metadata sources within which to
search for annotations.

For each service, we attempt to construct a textual description that is com-
posed of (if available): service name + service description + operation name +
operation description. These four different elements are discovered from a variety

1 http://dev.mygrid.org.uk/wiki/display/taverna/Service+types

Automatic Annotation of Bioinformatics Workflows 469

(a) Before (b) After

Fig. 1. Example of workflow with cleaned shim services. (a) The original work-
flow is myExperiment workflow #1180, and (b) its associated service without shims.

of sources and sites, using several keys (e.g. endpoint URI or service name), with
continuous checking for errors, and with multiple, possibly redundant attempts,
attempting to locate the richest, most descriptive source possible until a descrip-
tion is found or all possibilities have been expended. The sources included any
or all of: the myExperiment workflow entry; Scufl and T2flow files from myEx-
periment [8]; the WSDL source document for each service; the BioMoby registry
entry [14]2; and the BioCatalogue service repository [13] through its API to spe-
cific endpoint searches and general searches. For Scufl files, service descriptions
were sometimes available for services within these files. T2Flow files do not have
a descriptive field, other than for nested workflows, and as such it was always
necessary to attempt retrieval of the WSDL source document, MOBY registry
entry, or retrieve the relevant record from the BioCatalogue repository.

Disappointingly, very frequently, a dearth of annotations at the service level
meant that the final textual description of a service was limited to just the service
name (912 of 3560 bioinformatics services - 25.62%) with 246 services having no
annotation whatsoever.

2.4 Step 4: Entity Extraction from Descriptions to Create Semantic
Annotations

The final step in our annotation pipeline is to execute text analytics on the
description from step 3, in order to ontologically annotate the services and,

2 http://moby.ucalgary.ca/cgi-bin/getServiceDescription

470 B. Garćıa-Jiménez and M.D. Wilkinson

subsequently, the workflow of which they are component. As such, the input to
this step in the pipeline is a descriptive paragraph, and the output is a list of
relevant ontology classes associated with that service description.

The ontologies that acted as the vocabulary source for the text analysis were:
BioAssay Ontology (BAO), Bioinformatics Web Service Ontology (OBIWS),
Biomedical Resource Ontology (BRO), EDAM Ontology of Bioinformatics Op-
erations and Data Formats (EDAM), Experimental Factor Ontology (EFO), In-
formation Artifact Ontology (IAO), Mass Spectrometry Ontology (MS), Medical
Subject Headings (MESH), National Cancer Institute Thesaurus (NCIT), Neu-
roscience Information Framework Standard (NIFSTD), Ontology for Biomedical
Investigations (OBI), Semanticscience Integrated Ontology (SIO) and Software
Ontology (SWO).

These ontologies cover a variety of categories of concepts relevant to bioinfor-
matic workflows, such as operations, topics, algorithms, etc. All of them must
belong to the OBO Foundry [22] and BioPortal [23] library of ontologies, and
thus can be used for annotation using the Open Biomedical Annotator [24]. The
Open Biomedical Annotator is an application available from BioPortal [23], an
open repository of commonly used biomedical ontologies and related tools. The
Open Biomedical Annotator web service matched words in our descriptive para-
graph to classes in selected ontologies by doing an exact string comparison (a
‘direct’ match) between our description and ontology class names, synonyms and
identifiers.

In some cases, we noticed duplicated annotations (with the same or different
URI), due to overlapping or explicit relations among different ontologies (e.g.
SWO imports EDAM). In section 3.2 we present results referring to the total
numbers of annotations before and after removing duplicated terms, where dupli-
cation is defined as sharing the same URI, but appearing in different ontologies.
To remove the redundancy, we consider SWO, OBIWS, OBI, EFO and NIFSTD
have preference to their imported ontologies. Terms with the same name/label,
but differing URIs, are not considered to be identical, since that would require
a deep, manual interpretation of the semantics of that term within each of the
ontologies.

530 workflows from the 739 available bioinformatics workflows were success-
fully annotated with one or more ontological classes.

3 Results

First, this section presents a study of the workflows in terms of various categories
of sub-component composition. Subsequently, we expose an analysis of the quan-
tity and quality of the derived semantic annotations, based on a calculation of
the Information Content represented by the set of semantic terms discovered.
Finally, a sample of the final workflow annotations represented according to the
OPMW model is provided.

Automatic Annotation of Bioinformatics Workflows 471

3.1 Understanding Workflow Composition

Figure 2 illustrates the distribution of the different categories of services in all 739
bioinformatics workflows, split into shim and non-shim components. The most
notable observation in Fig. 2 is that the number of shim elements far exceeds
the number of biologically meaningful elements; more than 65% of all workflow
components are shims (see Fig. 2(center)). This reinforces the importance of step
2 of our annotation system, but also highlights the complexity and penetrance
of data transformation problems in bioinformatics, at least in part due to the
proliferation of data formats, as has been argued for at least a decade [25].

Fig. 2. Average distribution of shim and non-shims services. In the center, the
global average distribution between shim and non-shims services in all bioinformatic
workflows. On both sides, the average distribution of shim (right) and non-shim (left)
categories of services.

Among the non-shim services (see Fig. 2(left)), the most frequent are WSDL
services, where, together with SOAP and BioMoby services, these make-up 60%
of all biologically-meaningful services. The most common categories of shim ser-
vices (see Fig. 2(right)) are local, constant and beanshell/scriptvalue services,
covering more than an 80% of all shims combined.

On average, each bioinformatic-related workflow has 16.74 components, where
11.13 are shims and 4.81 are non-shim services. The remaining 0.80 are other
unclassified services. We observe that the ratio of shim/non-shim services is
higher in T2flow format (12.50/4.81) than in Scufl format (8.77/4.83), where
more than 2.5 shims are included per each domain service.

3.2 Annotation Analysis

In the final step of our analysis, we attempt to quantitatively evaluate the degree
to which this annotation methodology yielded useful results.

472 B. Garćıa-Jiménez and M.D. Wilkinson

One immediate consideration is that not all the services and workflows were
amenable to automated annotation at all (i.e. had little or no information to mine
for annotations). We consider this to be a failure of the scientific community,
rather than a failure of our analysis, and as such, we take this into-account with
respect to our final evaluation of the pipeline’s success.

In total, we obtain 70636 ontological annotations spanning 2922 different on-
tological classes, of which 64324 are non-redundant (i.e. the identical URI ap-
pearing in multiple ontologies). This means we achieve at least one annotation
for 2605 of 3560 non-shim services (73.17%). In terms of workflows, we collect
the annotations of their instantiated services, without taking the order of the
services into account. This allowed us to annotate 530 out of 739 workflows
(71.72%) with at least one ontology class.

Clearly, not all semantic annotations are equally informative. For example,
the ontology term “analysis” is less informative than the ontology term “fastq
file parser”. Thus, we attempted to measure the informativeness and the relative
quality of our automatically-generated annotations. To achieve this, we apply a
semantic metric based on Information Theory —the Information Content (IC)
[17]— and we computed the IC value of each automatically-selected ontology
term, each service, and each workflow.

We choose an intrinsic IC metric for a variety of reasons, such as the topology
of the taxonomy, the lack of a “gold standard” annotated knowledgebase, and
in order to avoid biases and the dependence on external annotations. Among
the three available alternatives for intrinsic IC [17], we chose the Zhou et al.
metric [26] which takes into account the number of descendants in a similar
manner to that proposed by Seco et al. [27], but where the former approach
also includes the depth of a term in the taxonomy. Although Sanchez et al. [17]
improves this statistic by including the number of subsumers, we prefer Zhou et
at. since they define a normalized metric, which therefore allows us to compare
IC values of terms from distinct ontologies.

Using the Zhou et al. metric, we compute the IC values of each ontology class
with the Semantic Measures Library Toolkit [28]. Thereafter, we describe the
‘informativity’ of the set of semantic annotations associated with a service as
the IC for that service, computed as the best (the maximum) IC value of every
ontology annotation associated to that service. This measure is independent of
the redundancy present within the annotation terms, since it takes only the
maximum for any given term. Finally, we defined the degree of informativity
of the annotations of an entire workflow, as the IC per workflow, computed
as the average of all the IC values of the services within the workflow. The
top row in Fig. 3 shows the resulting IC value distribution of those automatic
annotation. Note that only services that had some analysable description are
included in these IC values computations, since the others could not be scored.
Other reasons for not being scorable include annotation with obsolete terms,
or terms not included in the main ontology hierarchy since they are external
properties associated with a core ontology class, and therefore not part of the IC

Automatic Annotation of Bioinformatics Workflows 473

IC per ontology annotation

IC

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

00
0

20
00

0

IC per service

IC

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

0
60

0
10

00

IC per workflow

IC

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

60
10

0

IC per GO annotation

IC

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

00
0

30
00

0

IC per gene

IC

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
40

00
80

00
12

00
0

Fig. 3. Histograms of Information Content (IC) values associated to onto-
logical annotations. Top row (grey columns) shows IC distribution of automated
annotations generated by our system. Bottom row (white columns) shows IC distri-
bution of manual GO annotations of Arabidopsis Thaliana. Frequency axes are not
directly comparable.

statistic, such as terms from MESH qualifiers and MESH supplementary concept
records.

Having selected an intrinsic metric for IC, we were consequently unable to
objectively define what a “good” IC value would be. Moreover, we do not have
access to a “gold standard” set of annotated bioinformatics services with which
to compare our automated annotations. As such, we opted to execute our IC
analysis on a set of ontological annotations done largely manually, and considered
to be of high-quality by the community. In particular, we take the set of genes
of Arabidopsis thaliana manually annotated with Gene Ontology (GO) terms
from the TAIR FTP site [29]. We compute the IC values for each gene, as the
IC of the set of GO terms associated with that gene, using the same procedure
as with our automatic annotations; thus, we infer a hypothetical correspondence
between an annotated locus, and an annotated service. The results of these IC
values corresponding to manual annotations is shown in bottom row of Fig. 3.

When both rows are compared in Fig. 3, we observe a similar distribution
of IC values resulting from our automated annotations (top row) compared to
the (largely) manual annotations (bottom row), with the notable exception of
the high number of services with annotation IC of 0 (due to a lack of anno-
tations). On average, the IC value per automated annotation is 0.7139 versus
0.5986 for the manual GO annotations (first column) and the average IC value
per annotated service is 0.8707 if all IC=0 services are excluded 0.6801 if they

474 B. Garćıa-Jiménez and M.D. Wilkinson

are included) versus 0.7172 of manual annotation per gene. We note that genes
of unknown function (5229 Arabidopsis genes) are excluded from the GO anno-
tation file, in a manner similar to our filtering-out of services with no annotation,
increasing the validity of this comparison. Therefore, we could conclude that the
informativeness, in terms of IC values, of our automatic annotations are as good
or better than what we might expect from manual annotations.

To compare IC values split by ontology, we compute IC per ontology as the av-
erage of all the annotations within each ontology. We conclude SIO provides the
best annotations (0.8172), followed by NCIT (0.7529) and SWO (0.7519); addi-
tionally, MESH has the highest minimum IC value (0.3459). In terms of quantity
of annotations, NCIT is the best with 31853 annotations (1544 different terms).
The ten most frequent annotations were (in descending order): job resource (NIF-
STD), computer job (NCIT), occupation (NCIT), gene/s (MESH and NCIT),
protein (EFO and NCIT) and database (NIFSTD, MESH and EDAM).

3.3 Workflow Annotations in OPMW Model

To make our annotations available in a structured and reusable way, we chose
to represent them in RDF as instances of the Workflow Template Process class3

from the Open Provenance Model for Workflows (OPMW) ontology [15, 16].
While it may appear to be more desirable to publish these as SAWSDL docu-
ments, as recommended by EMBRACE, we elected not to do so, since (a) not
all of our annotated services are originally published as WSDL and, moreover
(b) there is no obvious way to re-publish the derived SAWSDL files in a way
that would be discoverable/usable by the community (i.e. they cannot be re-
associated with their respective services or workflows in either the BioCatalogue
or myExperiment repositories).

Figure 4 shows the OPMW structure that describes the semantic annotations
of one service. Our RDF output files4, includes an instance of this model for each
non-shim available service of each annotated bioinformatics workflow. Using this
RDF file, our annotations are available and could be easily integrated in other
systems requiring structured annotations of bioinformatic services.

<SERVICE URL>

a opmw:ProcessTemplate, <ontology class 1 URL>, <ontology class ...>, <ontology class N>;

opmw:template <WORKFLOW URL>; # link to workflow which this service is part of.

opmw:uses <DATA URL>. # link to previous service in the workflow.

Fig. 4. Abstract structure to define our semantic annotations in one service

In addition to this primary output, we also provide the derived set of partially-
abstracted workflows (i.e. after removing non-biologically-meaningful steps) in

3 http://www.opmw.org/ontology/WorkflowTemplateProcess
4 Available at http://wilkinsonlab.info/myExperiment Annotations/OPMW/*

Automatic Annotation of Bioinformatics Workflows 475

Taverna formats5 with the caveat that these are for informational purposes only,
and cannot be accurately visualized, nor run, in Taverna.

4 Discussion and Conclusions

The limitations of this approach to bootstrapping annotations are obvious (both
a priori and as borne-out in the results). Namely, there was a well anticipated
difficulty in finding descriptive annotations which could be mined for semantic
meaning. Beyond that, however, the heterogeneity of the content and represen-
tation of the workflows also made it difficult to discover, mine, and even select
appropriate ontologies for the annotation effort. We will now go into some details
about how this affected the accuracy and/or comprehensiveness of each step in
our annotation pipeline.

With respect to the first step —filtering for bioinformatics-related workflows—
when a workflow is submitted to myExperiment, fields that could justifiably be
considered “core metadata”, such as description, and title, are not mandatory.
The same can be said of service submission to the various Web Service registries.
Disappointingly, workflow and service submitters therefore can, and too often do,
opt to disregard these most basic metadata elements. Given that we depended
on this metadata for our first-pass filter of relevance, we can be certain that our
outcomes were adversely affected by these “nuisance-behaviours”. In the absence
of these basic information elements, it would be extremely difficult even for a
human to determine the function and/or relevance of a workflow for a particular
task, and it was clearly an insurmountable problem for an automated annotation
pipeline. Finally, one additional limitation to our success in the first stage of
our pipeline was that not all selected workflows were available to download.
MyExperiment returned ‘not found’ or ‘not authorized’ errors in these cases,
and thus these workflows had to be removed from our analysis.

Lack of descriptive annotations became acutely problematic in step 3 of our
pipeline, when we attempted to construct a description of individual services
within the workflow. It was frequently the case (25.62% of ‘biologically relevant’
services) that the files describing a service would have no description at all
beyond the service name. We would suggest that such lax, nonchalant behaviours
on the part of submitting scientists entirely defeats the purpose of submitting
to a public repository. Therefore we believe that it would not be unreasonable
for the various workflow and service registries to be more demanding of authors
with regard to these fundamental annotations.

This same problem manifested itself in the semantic annotation retrieval from
step 4, where the quantity and quality of the derived annotations depend, obvi-
ously, on the amount of descriptive text available; the longer the description, the
more informative the annotations in most cases. For example, services with short
descriptions (such as “prophet: Scan one or more sequences with a Gribskov or
Henikoff profile”, with 63 characters), result in few and very general ontology

5 Available at http://wilkinsonlab.info/myExperiment Annotations/abstract

workflows/

476 B. Garćıa-Jiménez and M.D. Wilkinson

annotations (Sequence analysis (EDAM) and scan (MS), with a IC per service of
0.5785). While services with longer descriptions result often in many and specific
ontology annotations (such as “Eigen analysis”, with 3946 characters, with 263
annotations, with an IC per service of 0.9588).

A distinct source of error arose from service deprecation. Several services
referred-to in workflows had been deprecated, and the sources of documentation
(if they ever existed) were absent. Although through manual exploration we
determined that some of these deprecated services have been replaced by new
services, and these new services had annotations in Biocatalogue, it was very
difficult to automatically discover when such deprecation/replacement had taken
place based on the reference to that service in the original workflow, and it
was not clear how to automate this complex traversal. It seems, therefore, that
some clearly-defined method for tracking versioning is required for workflow sub-
components, and that this tracking mechanism should have features that allow
it to be automated.

Finally, existing annotations were missed due to external repositories’ errors
and bad (malformed or inappropriate) responses to search queries. These cases,
though representing only a fraction of the entries, were the result of either un-
stable interfaces and/or errors (or non-documented limitations) in the various
APIs.

Finally, related to the quality of the automated annotations, we emphasise
that IC value can only give a measure of the informativeness of the annotations;
it cannot report on their appropriateness vis-à-vis the real function of the service
or workflow. Moreover, IC value is determined largely by the topology of the on-
tology, and because ontologies vary in their granularity from branch-to-branch,
high IC values do not necessarily imply “rich” annotations. For example, some
annotations with high IC values, such as patient, synonym, human and length,
with IC scores greater than 0.95, do not seem, subjectively, particularly infor-
mative in the context of the aims of our study. However, IC is an objective and
useful measure when an ontology is applied to annotate a knowledge base [30]
and we could not identify an objective alternative.

Altogether, we feel there is significant room for improvement in the straightfor-
ward capture of core, non-semantic metadata at the point of resource submission.
We demonstrate here how this, in turn, could allow automated semantic anno-
tations of surprisingly high quality to be extracted via text mining approaches.
Such semantic annotations could then be used to improve the submission pro-
cess itself, by for example, detecting when certain important types of metadata
are missing, and/or prompting for likely annotations based on existing patterns
detected by Machine Learning techniques.

Acknowledgments. MDW is funded by the Isaac Peral/Marie Curie Cofund
programme (FP7) of the European Union and UPM; BGJ is funded by the Isaac
Peral Programme of UPM.

Automatic Annotation of Bioinformatics Workflows 477

References

1. Micheel, C.M., Nass, S.J., Omenn, G.S. (eds.): Evolution of Translational Omics
Lessons Learned and the Path Forward. The Institute of Medicine of the National
Academies (2012)

2. Oinn, T., Addis, M., Ferris, J., et al.: Taverna: A tool for the composition and
enactment of bioinformatics workflows. Bioinformatics 20(17), 3045–3054 (2004)

3. Altintas, I., Berkley, C., Jaeger, E., et al.: Kepler: An extensible system for design
and execution of scientific workflows. In: Proceedings of the 16th International
Conference on Scientific and Statistical Database Management, pp. 423–424 (2004)

4. Gil, Y., Ratnakar, V., Kim, J., et al.: Wings: Intelligent Workflow-Based Design of
Computational Experiments. IEEE Intelligent Systems (2011)

5. Callahan, S.P., Freire, J., Santos, E., et al.: Vistrails: visualization meets data man-
agement. In: Proceedings of the 2006 ACM SIGMOD, pp. 745–747. ACM (2006)

6. Withers, D., Kawas, E., McCarthy, L., Vandervalk, B., Wilkinson, M.:
Semantically-Guided Workflow Construction in Taverna: The SADI and BioMoby
Plug-Ins. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part I. LNCS, vol. 6415,
pp. 301–312. Springer, Heidelberg (2010)

7. Vandervalk, B.P., McCarthy, E.L., Wilkinson, M.D.: SHARE: A Semantic Web
Query Engine for Bioinformatics. In: Gómez-Pérez, A., Yu, Y., Ding, Y. (eds.)
ASWC 2009. LNCS, vol. 5926, pp. 367–369. Springer, Heidelberg (2009)

8. Goble, C.A., Bhagat, J., Aleksejevs, S., et al.: myExperiment: A repository and
social network for the sharing of bioinformatics workflows. Nucleic Acids Re-
search 38(suppl. 2), W677–W682 (2010)

9. Rice, P.M., Bleasby, A.J., Haider, S.A., et al.: EMBRACE: Bioinformatics data
and analysis tool services for e-Science. In: Second IEEE International Conference
on e-Science 2006, p. 146 (2006)

10. Ison, J., Kala, M., Jonassen, I., et al.: EDAM: An ontology of bioinformatics op-
erations, types of data and identifiers, topics and formats. Bioinformatics 29(10),
1325–1332 (2013)

11. Wilkinson, M.D., Vandervalk, B., McCarthy, L.: The Semantic Automated Dis-
covery and Integration (SADI) Web service Design-Pattern, API and Reference
Implementation. Journal of Biomedical Semantics 2(1), 8 (2011)

12. Radetzki, U., Leser, U., Schulze-Rauschenbach, S.C., et al.: Adapters, shims, and
glue–service interoperability for in silico experiments. Bioinformatics 22(9), 1137–
1143 (2006)

13. Bhagat, J., Tanoh, F., Nzuobontane, E., et al.: BioCatalogue: A universal catalogue
of web services for the life sciences. Nucleic Acids Research (May 2010)

14. Wilkinson, M.D., Senger, M., Kawas, E., et al.: Interoperability with Moby 1.0–
it’s better than sharing your toothbrush! Briefings in Bioinformatics 9(3), 220–231
(2008)

15. Garijo, D., Gil, Y.: A new approach for publishing workflows: Abstractions, stan-
dards, and linked data. In: Proceedings of the WORKS 2011, Held in Conjunction
with SC 2011, Seattle, Washington, pp. 47–56. ACM (2011)

16. Garijo, D., Gil, Y.: Towards open publication of reusable scientific workflows: Ab-
stractions, standards, and linked data. Technical report (January 2012)

17. Sáchez, D., Batet, M., Isern, D.: Ontology-based information content computation.
Knowledge-Based Systems 24(2), 297–303 (2011)

18. Rice, P., Longden, I., Bleasby, A.: EMBOSS: The European Molecular Biology
Open Software Suite. Trends in Genetics 16(6), 276–277 (2000)

478 B. Garćıa-Jiménez and M.D. Wilkinson

19. Schuemie, M., Jelier, R., Kors, J.: Peregrine: Lightweight gene name normalization
by dictionary lookup. Peregrine CLI SKOS. In: Proceedings of the Biocreative 2
Workshop, Madrid, April 23-25 (2007),
https://trac.nbic.nl/biosemantics/wiki/PeregrineSKOSCLI

20. Garijo, D., Alper, P., Belhajjame, K., et al.: Common motifs in scientific workflows:
An empirical analysis. In: 8th IEEE International Conference on eScience (2012)

21. Wolstencroft, K., Haines, R., Fellows, D., et al.: The Taverna workflow suite: de-
signing and executing workflows of Web Services on the desktop, web or in the
cloud. Nucleic Acids Research 41(W1), W557–W561 (2013)

22. Smith, B., Ashburner, M., Rosse, C., et al.: The OBO Foundry: coordinated evo-
lution of ontologies to support biomedical data integration. Nature Biotechnol-
ogy 25(11), 1251–1255 (2007)

23. Whetzel, P.L., Noy, N.F., Shah, N.H., et al.: BioPortal: Enhanced functionality
via new Web services from the National Center for Biomedical Ontology to access
and use ontologies in software applications. Nucleic Acids Research 39(suppl. 2),
W541–W545

24. Shah, N., Bhatia, N., Jonquet, C., et al.: Comparison of concept recognizers for
building the Open Biomedical Annotator. BMC Bioinformatics 10(suppl. 9) (2009)

25. Lord, P., Bechhofer, S., Wilkinson, M.D., Schiltz, G., Gessler, D., Hull, D., Goble,
C., Stein, L.: Applying Semantic Web Services to Bioinformatics: Experiences
Gained, Lessons Learnt. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F.
(eds.) ISWC 2004. LNCS, vol. 3298, pp. 350–364. Springer, Heidelberg (2004)

26. Zhou, Z., Wang, Y., Gu, J.: A new model of information content for semantic
similarity in wordnet. In: Second International Conference on FGCNS 2008, vol. 3,
pp. 85–89 (December 2008)

27. Seco, N., Veale, T., Hayes, J.: An intrinsic information content metric for semantic
similarity in wordnet. In: ECAI 2004, including PAIS 2004, pp. 1089–1090 (2004)

28. Harispe, S., Ranwez, S., Janaqi, S., et al.: The semantic measures library and
toolkit: fast computation of semantic similarity and relatedness using biomedical
ontologies. Bioinformatics 30(5), 740–742 (2014)

29. Lamesch, P., Berardini, T.Z., Li, D., et al.: The Arabidopsis Information Resource
(TAIR): improved gene annotation and new tools. Nucleic Acids Research 40(D1),
D1202–D1210 (2012)

30. Good, B.M.: Strategies for amassing, characterizing, and applying third-party
metadata in bioinformatics. PhD thesis, University of British Columbia (2009)

https://trac.nbic.nl/biosemantics/wiki/PeregrineSKOSCLI

Evaluation and Reproducibility

of Program Analysis
(Track Introduction)

Markus Schordan1, Welf Löwe2, and Dirk Beyer3

1 Center for Applied Scientific Computing
Lawrence Livermore National Laboratory, CA, USA

schordan1@llnl.gov
2 Department of Computer Science

Linnaeus University, Sweden
welf.lowe@lnu.se

3 Faculty of Computer Science and Mathematics
University of Passau, Germany

Track Description

Today’s popular languages have a large number of different language constructs
and standardized library interfaces. The number is further increasing with every
new language standard.Most published analyses therefore focus on a subset of such
languages or define a language with a few essential constructs of interest. More re-
cently, program-analysis competitions [4,6,7,1] aim to evaluate comparatively im-
plemented analyses for a given set of benchmarks. The comparison of the analyses
focuses on various aspects: (a) the quality of established structures and automata
describing the behavior of the analyzed program, (b) the verification of various
specified program properties, (c) the impact on a client analysis of particular in-
terest, and (d) the impact of analysis precision on program optimizations.

This track is concerned with the methods of comparative evaluation of pro-
gram analyses and how analysis results can be represented such that they re-
main reproducible and reusable as intermediate results for other analyses. We
therefore focus on how analysis results can be specified and how to allow an
exact re-computation of the analysis results irrespectively of a chosen (internal)
intermediate representation. This includes specification languages for program
properties and program-analysis results, its representation in existing analysis
infrastructures, compilers, and tools, along with meta-models and evolution of
these representations. It also requires to address the reuse of verification re-
sults, the combination of multiple verifiers using conditional model checking [2],
and how to overcome obstacles in combining tools that implement different ap-
proaches (e.g., model checking and data-flow analysis). To further fuel discussion
of the above topics, this track also includes a panel, in which the various pre-
sented approaches and tools are discussed interactively.

Contributions
Björn Lisper presents SWEET [8], a tool for worst-case execution time (WCET)
analysis. It aims to estimate the longest possible execution time for a piece of

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 479–481, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

480 M. Schordan, W. Löwe, and D. Beyer

code executing uninterrupted on a particular hardware. The tool combines a
number of different analyses that have been developed over the years. SWEET
establishes flow facts about a program for computing an estimate of the ex-
ecution time. The portability of the analyses is addressed by operating on a
representation of the input program in the open intermediate format ALF [5].

George Chatzieleftheriou, Apostolos Chatzopoulos, and Panagiotis Katsaros
present a methodology for systematically evaluating and comparing analysis
tools [3]. The methodology aims to systematically vary analysis requirements
in order to detect code defects, and assess a static-analysis tool’s effectiveness
in a wide range of potential coding complexities. Following this methodology,
an extensive evaluation is performed on a publicly available test suite consisting
of 750 programs for 30 distinct code defects. The investigated code defects for
C programs include integer overflows, truncation errors, format-string vulner-
abilities, memory leaks, absence of failure checks, and deadlocks in concurrent
programs. Since the evaluation can be repeated at any time, it also allows to
investigate and assess the improvements of released versions of a given tool.

In the last decades, several branches of the static analysis of imperative pro-
grams have made significant progress, such as in the inference of numeric invari-
ants or the computation of data-structure properties (using pointer abstractions
or shape analyzers). Although simultaneous inference of invariants of the shape
of dynamic data structures and the numeric values stored in theses memory cells
is often needed, the case of combing both is especially challenging and less well
explored. Notably, simultaneous shape-numeric inference raises complex issues
in the design of the static analyzer itself. Xavier Rival, Antoine Toubhans, and
Bor-Yuh Evan Chang present an approach for the modular construction of static
analyzers with abstract domains for heterogeneous properties [10]. It is based on
the combination of multiple atomic abstract domains to describe several kinds
of memory as well as value properties.

Markus Schordan, Pei-Hung Lin, Dan Quinlan, and Louis-Nol Pouchet present
an approach for verifying polyhedral optimizations of programs with floating-
point operations [11]. The presented approach is independent from floating-point
precision and therefore applies to a large number of optimization variants, in-
dependent from a respective platform and details in modeling floating-point
precision. By combining partial evaluation, a rewrite system, and matching, the
semantic equivalence of the original and the optimized program is verified for
various polyhedral optimization variants. More than 1000 variants are verified
for the benchmarks in the publicly available Polybench/C 3.2 benchmark suite 1.

In a world that increasingly relies on the Internet to function, application de-
velopers rely on the implementations of protocols to guarantee the security of data
transferred.Whether a chosen protocol gives the required guarantees, andwhether
the implementationdoes the same, is usuallyunclear. JoseQuaresma,ChristianW.
Probst, and Flemming Nielson present the guided system-development
framework [9], which aims at making development and verification of secure

1 http://www.cs.ucla.edu/~pouchet/software/polybench/

http://www.cs.ucla.edu/~pouchet/software/polybench/

Evaluation and Reproducibility of Program Analysis (Track Introduction) 481

communication systems easier by bridging the gap between system development
and verification of communication protocols.

The combination of various areas of program analysis that are presented in
this track, from timing analysis to abstract domains for heterogeneous prop-
erties, verification of floating-point computations to protocols, development of
secure communication systems, and extensive evaluations of program-analysis
tools, forms a rich basis for the discussion of aspects of evaluation and repro-
ducibility. Together, these contributions provide an overview of the comprehen-
sive response of the research community to the increasing importance of analysis
and verification in the design and development of evolving software.

References

1. Beyer, D.: Status report on software verification (competition summary SV-COMP
2014). In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp.
373–388. Springer, Heidelberg (2014)

2. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model
checking: A technique to pass information between verifiers. In: Bultan, T., Robil-
lard, M. (eds.) Proc. FSE. ACM (2012)

3. Chatzieleftheriou, G., Chatzopoulos, A., Katsaros, P.: Test-driving static analysis
tools in search of C code vulnerabilities II (Extended abstract). In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp. 486–488. Springer,
Heidelberg (2014)

4. Combe, D., de la Higuera, C., Janodet, J.-C.: Zulu: An interactive learning com-
petition. In: Yli-Jyrä, A., Kornai, A., Sakarovitch, J., Watson, B. (eds.) FSMNLP
2009. LNCS (LNAI), vol. 6062, pp. 139–146. Springer, Heidelberg (2010)

5. Gustafsson, J., Ermedahl, A., Lisper, B., Sandberg, C., Källberg, L.: Alf: A lan-
guage for WCET flow analysis. In: OASIcs-OpenAccess Series in Informatics,
vol. 10. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2009)

6. Howar, F., Isberner, M., Merten, M., Steffen, B., Beyer, D.: The RERS Grey-
Box Challenge 2012: Analysis of event-condition-action systems. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 608–614. Springer,
Heidelberg (2012)

7. Howar, F., Isberner, M., Merten, M., Steffen, B., Beyer, D., Pasareanu, C.S.: Rig-
orous Examination of Reactive Systems. The RERS Challenges 2012 and 2013. In:
Software Tools for Technology Transfer (2014)

8. Lisper, B.: SWEET – A tool for WCET flow analysis (Extended abstract). In:
Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp. 482–
485. Springer, Heidelberg (2014)

9. Quaresma, J., Probst, C.W., Nielson, F.: The Guided System Development Frame-
work: Modeling and verifying communication systems. In: Margaria, T., Steffen, B.
(eds.) ISoLA2014,Part II. LNCS, vol. 8803, pp. 509–523. Springer,Heidelberg (2014)

10. Rival, X., Toubhans, A., Chang, B.-Y.E.: Construction of abstract domains for het-
erogeneous properties (Position paper). In: Margaria, T., Steffen, B. (eds.) ISoLA
2014, Part II. LNCS, vol. 8803, pp. 489–492. Springer, Heidelberg (2014)

11. Schordan, M., Lin, P.-H., Quinlan, D., Pouchet, L.-N.: Verification of polyhedral
optimizations with constant loop bounds in finite state space computations. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp. 493–
508. Springer, Heidelberg (2014)

SWEET – A Tool for WCET Flow Analysis
(Extended Abstract)

Björn Lisper

School of Innovation, Design, and Engineering, Mälardalen University,
SE-721 23 Västerås, Sweden

1 Introduction

Worst-Case Execution Time (WCET) analysis [14] aims to estimate the longest
possible execution time for a piece of code executing uninterrupted on a particu-
lar hardware. Such WCET estimates are used when analysing real-time systems
with respect to possible deadline violations. For safety-critical real-time systems,
safe (surely not underestimating) estimates are desirable. Such estimates can be
produced by a static WCET analysis that takes all possible execution paths and
corresponding hardware states into account.

Static WCET analysis has been around for 20 years, and a number of tools
have emerged such as aiT [5], Otawa [2], Bound-T [8], Heptane [3], TuBound [11],
and Chronos [10]. Most tools today use the so-called “Implicit Path Enumera-
tion Technique” (IPET) [12]. In IPET, execution times are estimated from local
WCET bounds for small program fragments (typically basic blocks). Each such
fragment p is given an execution counter #p recording its number of executions:
the execution time for a path is then approximated from above by the sum∑

p WCET (p) ×#p, where WCET (p) is the local WCET bound for p. WCET
estimation can now be formulated as maximising this sum subject to program
flow constraints on the execution counters. If these constraints are linear, then
the WCET estimation becomes an Integer Linear Programming (ILP) problem
that can be solved by a standard ILP solver. It turns out that very many im-
portant program flow constraints can be expressed as linear constraints.

Thus, in the IPET model the WCET estimation problem is nicely decomposed
into three distinct parts: the low-level analysis, which computes local WCETs
using hardware timing models, the program flow analysis that derives program
flow constraints (“Flow Facts”) from the program code, and the final calculation
where the ILP problem is solved to produce the WCET bound. Notably the
program flow analysis will not need any information about hardware timing, but
can be based entirely on the functional semantics of the code. Flow Facts can
indeed be seen as a special kind of loop invariants.

2 SWEET

SWEET (SWEdish Execution Time tool) is a tool that derives Flow Facts au-
tomatically. SWEET can compute a variety of Flow Facts, from simple loop

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 482–485, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

SWEET – A Tool for WCET Flow Analysis (Extended Abstract) 483

User
annotations

Program flow
constraints

Other interesting
information

estimate
BCET/WCET

Flow analysis

ALF

C

PowerPC

ARM7

Etc...

SWEET

Timing model
for ALF

Calculation

analysis)

(integrated
with flow

Fig. 1. The structure of SWEET

iteration bounds to complex infeasible path constraints. It can analyze a vari-
ety of code formats through translation into the intermediate format ALF [6].
SWEET is open source: comprehensive information about the tool is found on-
line [13]. In Fig. 1 the structure of SWEET is shown.

An earlier version of SWEET (“NIC-SWEET”) was integrated into a research
compiler, and could analyze code generated by that compiler. This version of
SWEET was a full WCET analysis tool using the IPET model. The current
version (“ALF-SWEET”) is a specialised program flow analysis tool.

SWEET uses Abstract Execution (AE) [7] to derive Flow Facts. AE can be
seen as a very context-sensitive value analysis, where different loop iterations
are analysed separately. This gives the analysis a flavor of symbolic execution,
executing the program in the abstract domain using abstract states rather than
concrete states. AE is based on the theory of abstract interpretation: thus it
is safe, and computed Flow Facts will never underestimate the set of possible
program paths. SWEET currently uses an abstract domain of bounded intervals,
but AE also works with other abstract domains.

Abstract states reaching a condition may contain concrete states for which
the condition evaluates to true and false, respectively. Then the abstract state is
split into a different abstract state for each outcome of the condition. To curb the
potential explosion of states SWEET offers a variety of merge strategies, where
abstract states are merged in certain program points using their least upper
bound operator. By selecting the proper strategy, the tradeoff between precision
and analysis speed can be fine-tuned.

AE is a potentially very general technique to derive Flow Facts. It can in prin-
ciple deal with loops of any form, as long as the abstract domain can express the
semantics of the loop conditions accurately enough. AE can also bound recur-
sion depth. The price to pay for this generality is a risk of nontermination. The
current implementation in SWEET has some limitations: recursion is not han-
dled, as well some forms of unstructured loops. The use of interval domain also
yields some limitations. SWEET currently handles nontermination by allowing
the user to set a timeout where the analysis is aborted.

484 B. Lisper

The environment of the analysed code may be important to know for the
analysis. For instance, the values of some variables may be confined to certain
ranges. SWEET provides abstract input annotations, where such constraints can
be specified. The AE can use this information to compute tighter Flow Facts.

SWEET uses recorders and collectors to compute Flow Facts during the
AE [7]. Recorders are attached to abstract states, and contain information that
is successively accumulated into the collectors during the abstract execution.
Collectors are pertinent to scopes (typically loops), and their final values are
used to produce Flow Facts for that scope. For instance, to compute an upper
loop bound the recorder is the execution counter for the loop header, and the
collector is a number containing the highest value of this counter seen for any
abstract state in the loop so far. Other, more complex Flow Facts are generated
using more elaborate recorders and collectors.

SWEET can compute different kinds of Flow Facts specified by a combination
of attributes telling the type of bound (upper/lower/infeasible), where to put
execution counters, and Flow Fact context. The Flow Facts can thus be context
sensitive (call strings), and they can pertain to different scopes (e.g., an execution
counter for the loop body in a nested loop can be relative to either the inner
or outer loop). SWEET has an expressive language for expressing these Flow
Facts. In addition, SWEET can generate Flow Facts in the annotation formats
of the commercial WCET analysis tools aiT and RapiTime.

In order to keep SWEET portable across different formats it analyses the
intermediate format ALF [6]. Other languages and formats can be analysed if
translated into ALF. To facilitate this, ALF is designed to faithfully represent
high-level languages (like C) as well as machine code. Currently two translators
from C to ALF exist, as well as a translator from PowerPC binaries to ALF.

The current version of SWEET lacks a low-level analysis. It can however
use simple timing models for ALF to obtain WCET estimates. This estimation
is done directly in the AE by treating time as a variable being incremented
for each executed statement [4]. The AE thus computes an interval bounding
the execution time. This interval also bounds the execution time from below,
thus providing a Best Case Execution Time (BCET) estimate. Such simple cost
models are way to coarse to provide both safe and tight WCET/BCET bounds,
but they can nevertheless be useful to provide approximate bounds, for instance
for early source-level timing estimation [1].

SWEET can also provide information from its rich set of internal analyses
supporting the AE. Such analyses include a conventional value analysis, data
flow analysis, construction of control flow and call graphs, and program slicing.

3 Conclusions

We have presented SWEET, a tool for generating precise Flow Facts. It is de-
signed for maximal interoperability. It can be used both as a standalone analysis
tool, or as a “plugin” providing Flow Facts to other tools: indeed, SWEET is an
important component in the Open Timing Analysis Platform [9]. Its main use
is however as a vehicle for program analysis research targeting real-time code.

SWEET – A Tool for WCET Flow Analysis (Extended Abstract) 485

References

1. Altenbernd, P., Ermedahl, A., Lisper, B., Gustafsson, J.: Automatic generation
of timing models for timing analysis of high-level code. In: Faucou, S. (ed.) Proc.
19th International Conference on Real-Time and Network Systems (RTNS 2011),
Nantes, France (Sepember 2011)

2. Ballabriga, C., Cassé, H., Rochange, C., Sainrat, P.: OTAWA: An open toolbox
for adaptive WCET analysis. In: Min, S.L., Pettit, R., Puschner, P., Ungerer, T.
(eds.) SEUS 2010. LNCS, vol. 6399, pp. 35–46. Springer, Heidelberg (2010)

3. Colin, A., Puaut, I.: A modular and retargetable framework for tree-based WCET
analysis. In: Proc. 13th Euromicro Conference on Real-Time Systems (ECRTS
2001) (June 2001)

4. Ermedahl, A., Gustafsson, J., Lisper, B.: Deriving WCET bounds by abstract
execution. In: Healy, C. (ed.) Proc. 11th International Workshop on Worst-Case
Execution Time Analysis (WCET 2011), Porto, Portugal (July 2011)

5. Ferdinand, C., Heckmann, R., Franzen, B.: Static memory and timing analysis of
embedded systems code. In: 3rd European Symposium on Verification and Valida-
tion of Software Systems (VVSS 2007), Eindhoven, The Netherlands, pp. 153–163.
No. 07-04 in TUE Computer Science Reports (March 2007)

6. Gustafsson, J., Ermedahl, A., Lisper, B., Sandberg, C., Källberg, L.: ALF – a lan-
guage for WCET flow analysis. In: Holsti, N. (ed.) Proc. 9th International Work-
shop on Worst-Case Execution Time Analysis (WCET 2009), pp. 1–11. OCG,
Dublin (2009)

7. Gustafsson, J., Ermedahl, A., Sandberg, C., Lisper, B.: Automatic derivation of
loop bounds and infeasible paths for WCET analysis using abstract execution. In:
Proc. 27th IEEE Real-Time Systems Symposium (RTSS 2006), pp. 57–66. IEEE
Computer Society, Rio de Janeiro (2006)

8. Holsti, N., Saarinen, S.: Status of the Bound-T WCET tool. In: Proc. 2nd Inter-
national Workshop on Worst-Case Execution Time Analysis, WCET 2002 (2002)

9. Huber, B., Puffitsch, W., Puschner, P.: Towards an open timing analysis platform.
In: Healy, C. (ed.) Proc. 11th International Workshop on Worst-Case Execution
Time Analysis (WCET 2011), Porto, Portugal (July 2011)

10. Li, X., Liang, Y., Mitra, T., Roychoudhury, A.: Chronos: A timing analyzer for
embedded software. Science of Computer Programming 69(1-3), 56–67 (2007)

11. Prantl, A., Schordan, M., Knoop, J.: TuBound – a conceptually new tool for worst-
case execution time analysis. In: Kirner, R. (ed.) Proc. 8th International Workshop
on Worst-Case Execution Time Analysis (WCET 2008), Prague, Czech Republic,
pp. 141–148 (July 2008)

12. Puschner, P.P., Schedl, A.V.: Computing maximum task execution times – a graph-
based approach. Journal of Real-Time Systems 13(1), 67–91 (1997)

13. SWEET home page (2011), http://www.mrtc.mdh.se/projects/wcet/sweet/
14. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.,

Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P., Staschulat, J., Stenström, P.: The worst-case execution time prob-
lem — overview of methods and survey of tools. ACM Transactions on Embedded
Computing Systems (TECS) 7(3), 1–53 (2008)

http://www.mrtc.mdh.se/projects/wcet/sweet/

Test-Driving Static Analysis Tools

in Search of C Code Vulnerabilities II

(Extended Abstract)

George Chatzieleftheriou, Apostolos Chatzopoulos, and Panagiotis Katsaros

Department of Informatics, Aristotle University of Thessaloniki
54124 Thessaloniki, Greece

{gchatzie,aachatzop,katsaros}@csd.auth.gr

Keywords: static analysis, software security, benchmark tests.

A large number of tools that automate the process of finding errors in programs
has recently emerged in the software development community. Many of them
use static analysis as the main method for analyzing and capturing faults in the
source code. Static analysis is deployed as an approximation of the programs’
runtime behavior with inherent limitations regarding its ability to detect actual
code errors. It belongs to the class of computational problems which are unde-
cidable [2]. For any such analysis, the major issues are: (1) the programming
language of the source code where the analysis is applied (2) the type of errors
to be detected (3) the effectiveness of the analysis and (4) the efficiency of the
analysis.

In order to incorporate a static analysis tool for detecting potential code
defects in the software development cycle, significant costs are required. Thus, it
is important to know if such a tool is effective in finding all types of errors and
especially the critical ones for ensuring product quality. It is also a matter of
major importance to know how efficient a tool is with respect to the size of the
code bases being analyzed. When two or more static analysis tools are compared
based on code bases from existing software projects the results are biased: they
actually refer to the tools’ capability to detect only the defects within the tested
code bases, which are characterized by a specific degree of program complexity
and size. We believe that empirical studies on open source programs should be
completed with evaluation results, which cover systematically the most frequent
code defects in a specific software context.

The main focus of our work [1] is on software security and reliability. We
have created a versatile test suite, which implements code defects for the C
programming language. Our test suite is based on those errors which are more
often reported in public catalogs. We have identified major defect categories,
such that all examined defects are classified in one of them. Category Gen-
eral includes three types of flaws, namely division by zero, use of uninitialized
variables and null pointer dereference. The second category, Integers, includes
integer overflows, sign and truncations errors. Direct overflows, off-by-one errors
and unbounded copies appear in categories Arrays and Strings along with the
format string vulnerabilities [8], string truncation and null termination errors.

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 486–488, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Test-Driving Static Analysis Tools in Search 487

Many frequent C code defects are presented in category Memory, such as double
free attempts, improperly allocated memory, initialization errors, memory leaks,
absence of failure checks and access in previously freed memory. Category File
operation contains the errors of redundant file closure, omission of file closure,
absence of failure check and access in a file that is either, previously closed,
not opened or opened with a different mode. Last but not least, category Con-
currency errors includes deadlocks and time-of-check-time-of-use (TOCTOU)
errors.

Our methodology aims to systematically vary analysis requirements in order
to detect the mentioned code defects, and assess the static analysis tool effective-
ness in a wide range of potential coding complexities. Our publicly available test
suite consists of 750 programs for 30 distinct code defects from the mentioned
categories. All programs include one line with the tested flaw and another line
of code used to check the tools’ capability to avoid reporting spurious errors.
The test suite was applied to four open-source [3] [4] [5] [6], and two commer-
cial tools [7], whose effectiveness was measured using metrics such as accuracy,
precision, recall, specificity and F-measure. Accuracy is the ratio of correct clas-
sifications over the total number of observations. Precision is the ratio of the
number of true positives over the number of reported errors. Recall is the ratio
of the number of true positives over the number of actual errors. Specificity is
the ratio of the number of true negatives over the sum of true negatives and false
positives. The F-measure provides an aggregate measure for precision and recall,
two metrics that are characterized by an intrinsic tradeoff. We also measured the
tools’ efficiency in terms of running time and peak memory usage.

We have evaluated the tools’ effectiveness based on a wide range of C con-
structs and different conditions of language semantics under which the defects
may arise. Each defect is reproduced in many different programs, which are used
to assess the default configuration of the static analysis tools with respect to their
path sensitivity, context sensitivity and alias analysis capabilities. The test pro-
grams for analyzing the tools’ efficiency were automatically generated such that
for each case of different program size between 1000 and 7000 lines of code, three
programs with different analysis sensitivity requirements are considered, namely
path sensitivity, context-sensitivity and alias analysis.

The main outcome from test driving the referenced static analysis tools showed
that only one open-source tool can compete and in fact was found superior
over the commercial ones, in terms of precision. On the other hand, the tested
commercial tools had a higher recall compared to all tested open source tools.
This finding shows that their analyses are designed and configured, such that
they are able to detect as many defects as possible with slightly lower precision
than the tool described in [6]. However, the higher precision of the open-source
tool is accompanied by a significant cost in analysis efficiency: for test programs
with 7000 lines of code the average analysis running time was more than two
times the average running time of the commercial tools.

Our methodology can be easily extended towards diverse quality contexts and
softwaredomains, and can be enriched for tool comparisons for other programming

488 G. Chatzieleftheriou, A. Chatzopoulos, and P. Katsaros

languages. As an interesting scenario, we consider its application for validating
runtime safety of applications for a mobile computing platform. Such a type of
validation is often a formal requirement for the distribution of applications through
internet-wide markets and the procedure usually requires certification based on
platform-specific security needs.

The results show how the evaluated tools compete in terms of important
tradeoffs between analysis effectiveness and efficiency, as well as between pre-
cision and recall. The degree of extensibility and customization that each tool
offers to the user should also be taken into account. In the last few years, the the-
ory and the technology of static program analysis is rapidly developed and the
market’s driving forces call for new ways to balance the discussed tradeoffs be-
tween analysis effectiveness and efficiency. For this reason, we believe that there
is an undeniable need to regularly repeat and publish every few years systematic
studies such the one reported in [1].

Acknowledgment. This research has been co-financed by the European Union
(European Social Fund ESF) and Greek national funds through the Operational
Program “Education and Lifelong Learning” of the National Strategic Reference
Framework (NSRF) - Research Funding Program: Thalis Athens University of
Economics and Business - SOFTWARE ENGINEERING RESEARCH PLAT-
FORM.

References

1. Chatzieleftheriou, G., Katsaros, P.: Test-Driving Static Analysis Tools in Search of
C Code vulnerabilities. In: Proc. of the 2011 IEEE 35th Annual Computer Software
and Applications Conference Workshops, COMPSACW 2011 (2011)

2. Landi, W.: Undecidability of static analysis. ACM Lett. Program. Lang. Syst. 1(4),
323–337 (1992)

3. Evans, D., Larochelle, D.: Improving Security Using Extensible Lightweight Static
Analysis. IEEE Softw. 19(1), 42–51 (2002)

4. Holzmann, G.J.: Static source code checking for user-defined properties. In: Proc.
IDPT, vol. 2 (2002)

5. Cppcheck - A Tool for static C/C++ static code analysis,
http://sourceforge.net/apps/mediawiki/cppcheck

6. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C: A software analysis perspective. In: Eleftherakis, G., Hinchey, M., Hol-
combe, M. (eds.) SEFM 2012. LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg
(2012)

7. Parasoft C++ Test, http://www.parasoft.com/
8. One, A.: Smashing the stack for fun and profit. Phrack Magazine 7(49), 14–16 (1996)

http://sourceforge.net/apps/mediawiki/cppcheck
http://www.parasoft.com/

Construction of Abstract Domains
for Heterogeneous Properties

(Position Paper)�

Xavier Rival1, Antoine Toubhans1, and Bor-Yuh Evan Chang2

1 INRIA, ENS, CNRS, Paris, France
2 University of Colorado, Boulder, Colorado, USA

{rival,toubhans}@di.ens.fr, bec@cs.colorado.edu

Abstract. The aim of static analysis is to infer invariants about programs that are
tight enough to establish semantic properties, like the absence of run-time errors.
In the last decades, several branches of the static analysis of imperative programs
have made significant progress, such as in the inference of numeric invariants
or the computation of data structures properties (using pointer abstractions or
shape analyzers). Although simultaneous inference of shape-numeric invariants is
often needed, this case is especially challenging and less well explored. Notably,
simultaneous shape-numeric inference raises complex issues in the design of the
static analyzer itself. We study the modular construction of static analyzers, based
on combinations of atomic abstract domains to describe several kinds of memory
properties and value properties.

Static Analysis to Infer Heterogeneous Properties. Static analysis by abstract interpre-
tation [4] utilizes an abstraction to over-approximate (non-computable) sets of program
states, using computer-representable elements, that stand for logical properties of con-
crete program states. As an example, for numerical properties, the interval abstract do-
main [4] uses constraints of the form n ≤ x and x ≤ p to describe possible values of
variable x, where n, p are scalars.

To construct a static analyzer capable of inferring sound approximations of program
behaviors, one designs an abstract domain, which consists of an abstraction, and ab-
stract operations for sound post-condition operators, join and widening:

1. An abstraction is defined by a set of abstract elements A and a concretization func-
tion γ : A → P(C), which maps each abstract property a into the set of con-
crete elements γ(a) that satisfy it. The set A of abstract elements will be assumed
to be defined by a grammar of admissible logical predicates (e.g., for intervals,
a(∈ A) ::= a ∧ a | n ≤ x | x ≤ p).

2. A post-condition operator is a function f : A → A which over-approximates a
concrete operation f : C → P(C) encountered in programs (as, e.g., a test).

3. Abstract join computes an over approximation of union and widening [4] enforces
the termination of abstract iterates for the analysis of loops.

� The research leading to these results has received funding from the European Research Council
under the FP7 grant agreement 278673, Project MemCAD and the United States National
Science Foundation under grant CCF-1055066.

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 489–492, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

490 X. Rival, A. Toubhans, and B.-Y.E. Chang

state 1:

&x

−8

n :

d : 18

n :

d : 5

n :

d : 81

n :

d : 23

0x0n :

d :

state 2:

&x

−5

n :

d : 29

n :

d : 36

0x0n :

d :

Fig. 1. Heterogeneous property abstraction

The combination of post-condition operators and widening operators allows us to define
a sound static analyzer [4].

In the following, we discuss the design of an abstraction able to handle heteroge-
neous properties, about both data-structures and values. For instance, Figure 1 shows a
couple of concrete states containing lists of numbers that are all positive except for the
first one, which belongs to interval [−10, 0]: our goal is to engineer abstract domains
able to express such properties, yet can be applied to many static analysis problems.

Abstraction of dynamic memory properties. For instance, a memory abstract domain
consists of a set of predicates describing memory regions, together with operators for
the analysis of memory operations (look-ups, assignments) and widening. XISA [3,2]
relies on points-to predicates, inductive predicates and segment predicates. A simplified
version of this abstraction, where the only inductive predicates and segments that are
considered are lists boils down to the following:

symbolic variables α, α′, . . . denote values and addresses
m(∈M) ::= m ∗m separating conjunction of predicates

| α · f �→ α′ cell field f at address α containing value α′

| list(α) a list at address α
| list(α′) =∗ list(α) a list segment starting at α and ending at α′

The XISA [3] implementation actually represents a larger set of predicates, with arbi-
trary inductive definitions (including trees, doubly-linked lists and others). Other anal-
ysis frameworks utilize other sets of logical properties, such as, e.g., TVLA [9], which
is based on reachability predicates.

Adding tracking for value properties, and departing from monolithic abstract domains.
Once an abstraction has been defined for memory states, it is natural to extend it with
value properties, so as to let the analysis infer constraints over both the structure of data
and their values. A straightforward way to achieve this, and to add interval constraints
over values is to extend the definition of abstract elements by m ::= . . . | m ∧ α ≤
n | m ∧ n ≤ α | However, this implies the abstract operations (post-condition
operators, join and widening) have to be extended so as to deal with both structures and
value properties, at the same time: therefore abstract operations are bound to become
overly complex. Moreover, this approach is awkward, as it does not build upon existing
abstract operations of value abstractions such as intervals [4] or octagons [8], which
means it will not easily benefit from the efficient algorithms designed to infer such

Construction of Abstract Domains for Heterogeneous Properties (Position Paper) 491

properties (the same also applies to the memory abstraction). Besides, it makes it harder
to switch from one value abstraction to another at a later point, hence reducing the
flexibility of the analysis.

In the following, we advocate a modular abstract domain design, which:
– separates concerns in the abstract domain designs;
– reuses existing abstract domains algorithms;
– allows one to tune distinct parts of the abstractions independently.

Such design has been extensively used in the ASTRÉE static analyzer [1], which makes
intensive use of reduced product [5] among other abstract domain combination tech-
niques [6]. This design contributed not only to the precision and efficiency of the anal-
ysis, but also to making it easier to extend [6].

Abstraction of value properties, and combined abstract domain. To achieve a modular
abstract domain design, we set up a different abstract domain V that will only track
value properties (and not memory layout as the previously defined M does), and define
a new abstract domain S for states that combines both:

m(∈M) ::= . . . defined as before
v(∈ V) ::= true | v ∧ v | α ≤ n | n ≤ α value predicates
s(∈ S) ::= m ∧ v conjunction of sub-properties

In essence, S defines a reduced product [5] of the memory abstraction M and value
abstraction V. As such, it completely separates memory and value abstraction concerns,
which makes the abstract domain fully modular [11]. Indeed, both sub-components can
be implemented in distinct ML modules, and S is defined as a ML functor. In practice,
this functor should ensure that the symbolic variables used in the value abstraction are
consistent with the memory cell contents and addresses symbols defined in the memory
abstraction (thus it implements a co-fibered abstract domain [12], which essentially
generalizes the notion of reduced product).

Both concrete states of Figure 1 can be abstracted by α �→ α0 ∗ α0 · n �→ α1 ∗
α0 · d �→ α′0 ∗ lpos(α1) ∧ α = &x ∧ −10 ≤ α′0 ∧ α′0 ≤ 0, where inductive definition
lpos describes all lists of positive numbers.

Separate combination of memory abstractions. So far, we combined abstract domains
capturing distinct sets of properties. Yet, this abstract domain decomposition approach
can be pushed further. As an example, ASTRÉE [1] relies on a decomposition of the
numerical abstract domain into simpler abstractions that handle specific sets of proper-
ties. Likewise, a similar approach can be applied to the memory abstraction part. One
approach to do this is to split concrete heaps and apply distinct memory abstractions to
disjoint regions [11]:

m(∈M) ::= m0 ∗m1 where m0 ∈M0 ∧m1 ∈M1

m0(∈M0) ::= . . . defines a 1st memory abstract domain, e.g., for lists
m1(∈M1) ::= . . . defines a 2nd memory abstract domain, e.g., for arrays

This construction allows one to apply parsimoniously expensive memory abstractions
to the memory regions that require them, while lighter weight abstractions can be used
for simpler structures. This results in better control of the analysis complexity. A cost

492 X. Rival, A. Toubhans, and B.-Y.E. Chang

is that the analyzer now has to resolve memory fragments across sub-domains, and to
also select which memory fragment is the most adequate to account for each memory
allocation.

Reduced product of memory abstractions. Likewise, one can design a reduced prod-
uct [5] of memory abstract domains [10]:

m(∈M) ::= m0 ∧m1 where m0 ∈M0 ∧m1 ∈M1

Such a composed abstraction is adequate when considering overlaid data structures [7]
(such as lists or trees of objects with a common field pointing to class methods) and
separates the concerns of analyzing each aspects of the structures. In turn, it imposes
on the analysis the burden to let logical predicates represented in one sub-domain be
usable to refine the computations done in the other sub-domain.

Modular abstract domain design. A modular abstract domain significantly simplifies
the design of static analyzers while offering additional flexibility and control. The cost
for this benefit is the innovation needed to design these more complex and general
abstract domain combinators, but this cost is quickly amortized with the ability to reuse
these combinators to realize arbitrary static analyzer configurations.

References

1. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: A static analyzer for large safety-critical software. In: PLDI (2003)

2. Chang, B.-Y.E., Rival, X.: Relational inductive shape analysis. In: POPL (2008)
3. Chang, B.-Y.E., Rival, X., Necula, G.C.: Shape analysis with structural invariant checkers.

In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 384–401. Springer,
Heidelberg (2007)

4. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: POPL (1977)

5. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: POPL (1979)
6. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: Com-

bination of abstractions in the astrée static analyzer. In: Okada, M., Satoh, I. (eds.) ASIAN
2006. LNCS, vol. 4435, pp. 272–300. Springer, Heidelberg (2008)

7. Lee, O., Yang, H., Petersen, R.: Program analysis for overlaid data structures. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 592–608. Springer, Heidelberg
(2011)

8. Miné, A.: The octagon abstract domain. HOSC 19(1), 31–100 (2006)
9. Sagiv, M., Reps, T.W., Wilhelm, R.: Solving shape-analysis problems in languages with de-

structive updating. In: POPL (1996)
10. Toubhans, A., Chang, B.-Y.E., Rival, X.: Reduced product combination of abstract do-

mains for shapes. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS,
vol. 7737, pp. 375–395. Springer, Heidelberg (2013)

11. Toubhans, A., Chang, B.-Y.E., Rival, X.: An abstract domain combinator for separately
conjoining memory abstractions. In: Müller-Olm, M., Seidl, H. (eds.) SAS 2014. LNCS,
vol. 8723, pp. 285–301. Springer, Heidelberg (2014)

12. Venet, A.: Abstract cofibered domains: Application to the alias analysis of untyped programs.
In: Cousot, R., Schmidt, D.A. (eds.) SAS 1996. LNCS, vol. 1145, pp. 366–382. Springer,
Heidelberg (1996)

Verification of Polyhedral Optimizations

with Constant Loop Bounds
in Finite State Space Computations

Markus Schordan1, Pei-Hung Lin1, Dan Quinlan1, and Louis-Noël Pouchet2

1 Lawrence Livermore National Laboratory
{schordan1,lin32,dquinlan}@llnl.gov
2 University of California Los Angeles

pouchet@cs.ucla.edu

Abstract. As processors gain in complexity and heterogeneity, compilers
are asked to perform program transformations of ever-increasing complex-
ity to effectively map an input program to the target hardware. It is criti-
cal to develop methods and tools to automatically assert the correctness of
programs generated by such modern optimizing compilers.

We present a framework to verify if two programs (one possibly be-
ing a transformed variant of the other) are semantically equivalent. We
focus on scientific kernels and a state-of-the-art polyhedral compiler
implemented in ROSE. We check the correctness of a set of polyhe-
dral transformations by combining the computation of a state transition
graph with a rewrite system to transform floating point computations
and array update operations of one program such that we can match
them as terms with those of the other program. We demonstrate our
approach on a collection of benchmarks from the PolyBench/C suite.

1 Introduction

The hardware trend for the foreseeable future is clear: symmetric parallelism
such as in SIMD units is ubiquitous; heterogeneous hardware exemplified by
System-on-Chips becomes the solution of choice for low-power computing; and
processors’ instruction sets keep growing with specialized instructions to leverage
additional acceleration/DSP hardware introduced by manufacturers. This ever-
increasing complexity of the computing devices is exacerbating the challenge of
programming them: to properly harness the potential of a given processor, one
has to significantly transform/rewrite an input program to match the features
of the target hardware. Advanced program transformations such as coarse-grain
parallelization, vector/SIMD parallelization, data locality optimizations, etc. are
required to achieve good performance on a particular hardware. Aggressive opti-
mizing compilers, as exemplified by polyhedral compilation [1], aim at automating
these transformation stages to deliver a high-performance program that is trans-
formed for a particular hardware. From a single input source, these compilers

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 493–508, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

494 M. Schordan et al.

perform highly complex loop transformations to expose the proper granularity of
parallelism and data locality needed for a given processor. Such transformations
include complex loop tiling and coarse-grain parallelization.

Polyhedral compilers have shown great promises in delivering high-performance
for a variety of targets from a single input source (for example to map affine stencil
computations for CPUs [2,3], GPUs [4] and FPGAs [5]), where each target requires
its dedicated set of program transformations. However, asserting the correctness
of the generated code has become a daunting task. For example, on a 2D Finite-
Difference Time-Domain kernel, after transformation the loop bound expressions
of the only parallel OpenMP for loop generated are about 15 lines long, making
manual inspection out of reach.We also remark that verifying the polyhedral com-
piler engine itself, PoCC [6], which is the result of 8 years of multi-institution de-
velopment is also out of reach: the compiler is actually around 0.5 million lines of
code,making the effort of producing a certification of these compiler optimizations
in a manner similar to Leroy’s Compcert work [7] extremely high.

In addition to high-level program transformations that are performed by the
compiler, a series of low-level implementation choices can significantly challenge
the design of a verification system. A compelling example relates to the floating
point number implementation chosen by the back-end compiler. If one program is
implemented using double precision (e.g., 64 bits) and the other program is im-
plemented using for instance specialized 80 bits instructions, even if they are two
totally equivalent programs in terms of semantics the output produced by these
programs is likely to differ slightly: successive rounding and truncation effects will
affect the output result, this even if the program is fully IEEE compliant.

We are in need for an automated system that asserts the correctness of the
generated code by such optimizing compilers, in a manner that is robust to the
back-end implementation decisions made by the compiler. Previous work such as
Verdoolaege’s [8] has focused on determining if two programs, in particular two
affine programs [9], are semantically equivalent. Such tools require the input
program (control flow and data flow) to be precisely modeled using combina-
tions of affine forms of the surrounding loop iterators and program parameters.
In contrast, our work uses a more practical approach with strong potential to be
generalized to larger classes of programs. In the present work we focus on equiva-
lence of affine programs where the value of all program parameters (e.g., problem
size) is known at compile-time, with only simple data-dependent conditionals.

In this work, we propose an automated system to assert the equivalence of
two affine programs, one of them being generated by the PolyOpt/C[1] compiler.
At a high level, we combine the computation of a state transition graph with
a rewrite system to transform the floating point operations and array update
operations of one program such that we can match them (as terms) with those
of the other program. We make the following contributions.

– We develop a new approach for determining the equivalence of two affine
programs with simple data-dependent control-flow, leveraging properties of
polyhedral optimizations to design a simple but effective rewriting system
and equivalence checker.

Verification of Polyhedral Optimizations with Constant Loop Bounds 495

– We provide extensive analysis of our method in terms of problem sizes and
equivalence checking time.

– We evaluate our method on a relevant subset of polyhedral optimizations,
asserting the correctness of PolyOpt/C on a collection of numerical kernels.
Our work led to finding one bug in PolyOpt/C, which was not caught with
its current correctness checking test suite.

The rest of the paper is organized as follows. Sec. 2 describes polyhedral
transformations and the class of programs analyzed in this paper. Sec. 3 describes
our equivalence checking method. Sec. 4 provides extensive evaluation of our
approach, asserting the correctness of PolyOpt/C for the tested benchmarks.
Sec. 5 discusses related work, before concluding.

2 Polyhedral Program Transformations

Unlike the internal representation that uses abstract syntax trees (AST) found in
conventional compilers, polyhedral compiler frameworks use an internal represen-
tation of imperfectly nested affine loop computations and their data dependence
information as a collection of parametric polyhedra, this enables a powerful and
expressive mathematical framework to be applied in performing various data
flow analysis and code transformations. Significant benefits over conventional
AST representations of computations include the effective handling of symbolic
loop bounds and array index functions, the uniform treatment of perfectly nested
versus imperfectly nested loops, the ability to view the selection of an arbitrarily
complex sequence of loop transformations as a single optimization problem, the
automatic generation of tiled code for non-rectangular imperfectly nested loops
[10,2,11], the ability to perform instancewise dataflow analysis and determine
the legality of a program transformation using exclusively algebraic operations
(e.g., polyhedron emptiness test) [9,12], and more [13]. The polyhedral model is
a flexible and expressive representation for loop nests with statically predictable
control flow. Loop nests amenable to this algebraic representation are called
static control parts (SCoP) [9,13], roughly defined as a set of consecutive state-
ments such that loop bounds and conditionals involved are affine functions of
the enclosing loop iterators and variables that are constant during the SCoP
execution (whose values are unknown at compile-time, a.k.a. program parame-
ters). Numerous scientific kernels exhibit those properties; they can be found in
image processing filters, linear algebra computations, etc.as exemplified by the
PolyBench/C test suite [14].

In a polyhedral compiler, program transformations are expressed as a reorder-
ing of each dynamic instance of each syntactic statement in the program. The
validity of this reordering is determined in PolyOpt/C by ensuring that the or-
der in which each operation is accessing the same array cell is preserved in the
transformed code, this follows the usual definition of data dependence preserving
transformations [15]. No transformation on the actual mathematical operations
used during the computation is ever performed: each statement body has its
structure and arithmetic operations fully preserved after loop transformations.

496 M. Schordan et al.

Strength reduction, partial redundancy elimination, and other optimizations
that can alter the statement body are not considered in the
traditional parallelization/tiling polyhedral transformations [2] that we evalu-
ate in PolyOpt/C. These properties allow the design of an analysis and a simple
but effective rewriting rule system to proof equivalence, as shown in later Sec. 3.

In this work, we focus exclusively on polyhedral program variants that are
generated by a polyhedral compiler, PolyOpt/C. Details on the variants consid-
ered are found in later Sec. 4. That is, the codes we consider for equivalence
checking are affine programs that can be handled by PolyOpt/C. Technically,
we consider a useful subset of affine programs where the loop bounds are fully
computable at compile-time. That is, once the program has been transformed by
PolyOpt/C (possibly containing program parameters, such as the problem/array
sizes), the resulting program must have all parameters replaced by a numerical
value, to ensure that loop bound expressions can be properly computed and ana-
lyzed by our framework. Looking at PolyBench/C benchmarks, a sample dataset
is always provided, which implies that we know, at compile time, the value of
all program parameters.

3 Approach

In our approach we verify that the sequence of update operations involving float-
ing point operations on each array element in the original program is exactly the
same as in an optimized version of the program. Our verification is a combina-
tion of static analysis, program rewrite operations, and a comparison based on
an SSA form [16] where each array element is represented as a different variable
(with its own SSA number).

Algorithm 1. DetermineFloatingPointAssignmentSequenceInSSA

Data: P : Program
Result: Sssa: sequence of floating point operations in SSA Form
STG=compute-STG(P);
A=extract-floating-point-assignment-sequence(STG);
foreach a ∈ A do

rewrite(a) – apply rewrite rules 1-10

Sssa=determineSSA(A);

In Algorithm 2 we use Algorithm 1 to determine the sequence of update
operations for each program. Algorithm 1 first computes (statically) a state
transition graph (STG). In the STG each node represents the state before an
assignment or a condition. Edges represent state transitions. In our benchmark
programs the loops have constant numeric bounds. We can therefore compute in
each state a concrete value of each iteration variable. Floating point operations
and updates on arrays are not evaluated. Next the (non-evaluated) operations
on floating point variables are collected as a sequence of terms (function extract-
array-element-assignment-sequence).We then apply 10 rewrite rules to normalize

Verification of Polyhedral Optimizations with Constant Loop Bounds 497

Algorithm 2. Verify

Data: P1, P2 : Programs to verify
Result: result: true when Programs can be determined to be equivalent,

otherwise false
S1=DetermineFloatingPointAssignmentSequenceInSSA(P1);
S2=DetermineFloatingPointAssignmentSequenceInSSA(P2);
S′
1=sort(S1); – sort by unique lhs SSA variable of assignment

S′
2=sort(S2); – sort by unique lhs SSA variable of assignment

if match(S′
1,S

′
2) then

return true;
else

return false;

all extracted array updates. We remark that the foreach loop in Algorithm 1
is actually a parallel loop: each term rewriting can be computed independently
of the others. On the normalized sequence of assignments we then determine an
SSA Form.

Algorithm 2 matches the determined (normalized) floating point update se-
quences. Because these sequences are in SSA form, we can reorder them for the
purpose of comparison. We sort each sequence and match the two sorted se-
quences of terms representing the assignments. If both sequences are equal, then
the programs have been verified to perform an identical sequence of updates
on floating point values. In the following sections we discuss each operation in
detail.

3.1 Example

As running example we use the (smallest) benchmark Jacobi-1d-Imper. The
original loop body is shown in Fig. 1 and an optimized variant (“tile 8 1 1”
variant) is shown in Fig. 2. In the following sections we describe how to analyze
and transform both programs to automatically verify that both programs are
equivalent and the optimization performed by polyOpt/C is indeed semantics
preserving and correct.

3.2 State Transition Graph Analysis

#pragma scop
for (t = 0; t < 2; t++) {

for (i = 1; i < 16 - 1; i++)
B[i] = 0.33333 * (A[i-1] + A[i] + A[i + 1]);

for (j = 1; j < 16 - 1; j++)
A[j] = B[j];

}
#pragma endscop

Fig. 1. Original Jacobi-1d-Imper benchmark (only the loop is shown). The variable t
is used for computing the number of steps and is set to 2 in the experiments. Array
size is 16.

498 M. Schordan et al.

#pragma scop

{

int c0;

int c2;

for (c0 = 1; c0 <= 17; c0++) {

if (c0 >= 15) {

if ((c0 + 1) % 2 == 0) {

A[14] = B[14];

}

}

for (c2 = (0 > (((c0 + -14) * 2 < 0?-(-(c0 + -14) / 2) : ((2 < 0?

(-(c0 + -14) + - 2 - 1) / - 2 : (c0 + -14 + 2 - 1) / 2))))?

0 : (((c0 + -14) * 2 < 0?-(-(c0 + -14) / 2) :

((2 < 0?(-(c0 + -14) + - 2 - 1) / - 2 : (c0 + -14 + 2 - 1) / 2)))));

c2 <= ((1 < (((c0 + -2) * 2 < 0?

((2 < 0?-((-(c0 + -2) + 2 + 1) / 2) : -((-(c0 + -2) + 2 - 1) / 2))) :

(c0 + -2) / 2))?1 : (((c0 + -2) * 2 < 0?

((2 < 0?-((-(c0 + -2) + 2 + 1) / 2) : -((-(c0 + -2) + 2 - 1) / 2))) : (c0 + -2) / 2))));

c2++) {

B[c0 + -2 * c2] = 0.33333 * (A[c0 + -2 * c2 - 1] + A[c0 + -2 * c2] + A[c0 + -2 * c2 + 1]);

A[c0 + -2 * c2 + -1] = B[c0 + -2 * c2 + -1];

}

if (c0 <= 3) {

if ((c0 + 1) % 2 == 0) {

B[1] = 0.33333 * (A[1 - 1] + A[1] + A[1 + 1]);

}

}

}

}

#pragma endscop

Fig. 2. Optimized Jacobi-1d-Imper benchmark (“tile 8 1 1” variant)

The state transition graph represents all possible states of a program. We use
a symbolic representation of states where values and relations between variables
are represented as predicates. If the concrete value of a variable is known, then all
arithmetic operations are performed on this variable (without approximation). If
no value is known (for example an input variable) then predicates are established
to represent the set of possible states and a path-sensitive analysis is performed.
The computation of the state transition graph (STG) has also been used in
the RERS Challenge [17] 2012 and 2013 where the STG was then used for
the verification of linear temporal logic formulas. For the verification of the
polyhedral optimizations we use the STG to reason on the states of the program
and extract the sequence of all floating point and array update operations that
can be performed by the program. The implementation is integrated in our ROSE
tool CodeThorn.

3.3 Floating Point Operation and Array Access Extraction

The floating point operation and array access extraction follows the reachability
in the state transition graph (STG) from a selected node. In our case the selected
node is the entry node of the function that contains the PolyOpt/C generated
loop nest. These are marked in the PolyBench/C programs with pragmas (see
Fig. 1 and 2).

Since we consider only the limited form of loops with constant numeric bounds,
the entire state space of the loop can be computed in a form that is equivalent
to loop unrolling. Our analyzer can also extract predicates from conditions for

Verification of Polyhedral Optimizations with Constant Loop Bounds 499

variables with unknown values. For the benchmarks this is not relevant though,
because variables in those conditions have no data dependence on input values.
The benchmarks contain conditions inside the loop body, guarding array up-
dates, but those conditions only contain loop iteration variables. Since the values
for the loop iteration variables are determined by the analysis (when computing
the state transition graph), those conditions can be evaluated as well. Therefore,
for the polyhedral benchmarks, our path sensitive analyzer can establish ex-
actly one execution path for each given benchmark. From this determined state
transition sequence we extract the terms of the floating point variable updates
(including arrays). Only those terms representing variable updates and its cor-
responding state (containing a property state with a mapping of each iteration
variable to a value) are relevant for the remaining phases.

3.4 Rewrite Rules

We establish a small set of rewrite rules which are sufficient to verify the given
benchmarks. The rewrite rules operate on the extracted terms of the program
representing floating point operations and array updates (as described in Section
3.3).

1. Minus(IntV al.val)⇒ IntV al.val′ = −IntV al.val
2. AddAssign($L, $R)⇒ Assign($L,Add($L, $R))
3. SubAssign($L, $R)⇒ Assign($L, Sub($L, $R))
4. MulAssign($L, $R)⇒ Assign($L,Mul($L, $R))
5. DivAssign($L, $R)⇒ Assign($L,Div($L, $R))
6. Add(IntV al1, IntV al2)⇒ IntV al.val = IntV al1.val + IntV al2.val
7. Sub(IntV al1, IntV al2)⇒ IntV al.val = IntV al1.val − IntV al2.val
8. Mul(IntV al1, IntV al2)⇒ IntV al.val = IntV al1.val ∗ IntV al2.val
9. Div(IntV al1, IntV al2)⇒ IntV al.val = IntV al1.val / IntV al2.val
10. If a variable v in term t has a constant value c in the associated state S in

the STG, then replace the variable v with the constant c in the term t.

The rewrite rules are applied to each extracted assignment separately (i.e.
each array assignment and floating point variable assignment). Rule 1 eliminates
the unary minus operator. Rules 2-5 eliminate compound assignment operators
that modify the same variable and replace it with the assignment operator. This
step is a normalization step for the next phase where SSA Form is established.
Keeping in mind that we want to verify the property of the polyhedra generated
code that ensures that the lexicographic order is preserved, we do not want to
reorder array updates. More specifically, we do not want to reorder any floating
point operations. Rules 6-9 perform constant folding for terms with one arith-
metic operator and two constant operands. In Rule 10 the variables are replaced
with the constant value that has been established in the state transition graph
for that variable. Note that this rule is crucial as the iteration variables in the
original program and generated variants have different names. Since this rule
eliminates variable names, matching can be performed based on array variable
index values.

500 M. Schordan et al.

The rewrite rules are applied on each assignment representing an array update
or floating point operation (which may contain array access expressions with
index computations) until no rule can be applied anymore. Expressions that are
not matched by the rewrite rules remain unchanged. The rewrite rules guarantee
termination by design.

3.5 Verification

The verification steps consist of representing all indexed array elements as unique
variables (each array element is considered as one unique variable), generating
Static Single Assignment Form [16] for the sequence of array updates and floating
point operations, and the final equality test (matching) of the SSA forms.

Represent each Variable and Array Element as One Variable and Gen-
erate SSA Form. In Fig. 3 the final result for our running example Jacobi-1d
is shown. The expressions of all assignments to arrays have been rewritten ap-
plying rules 1-10 (see Section 3.4). Each array element is treated as one separate
variable. For example, a[0] is treated as a different variable to a[1]. The se-
quence of array operations (of the entire program extracted from the STG) is
shown. For this sequence we establish SSA Form. The SSA numbers are post-
fixed to each element. For example B[1]=...; A[1]=B[1] becomes B[1]_1=...;
A[1]_1=B[1]_1. Note that the array notation is only for readability. At this
stage it is only relevant to have a unique name for each memory cell (i.e. we
could also rename the array element to B_1_1)

This step is similar with the compiler optimization of scalar replacement of
aggregates (SRoA) and variables as also performed by LLVM after loop unrolling.
In particular, LLVM also generates an SSA Form after this replacement. Thus,
our approach is in this respect similar to existing analyses and transformations in
existing compilers and may be suitable for a verifying compiler that also checks
whether the transformed program preserves the program semantics w.r.t. the
sequence of floating point operations. Note that SRoA is usually only applied
up to a certain size of an aggregate as well.

The SSA numbering allows to define a set of assignments while preserving
all data dependencies. If the sets are equal for two given programs, they are
guaranteed to have the same sequence of updates and operations on all float-
ing point variables independent from their values. Note that the benchmarks
do contain conditionals inside the loop. But those can be completely resolved
in the computation of the state transition graph when applied to integers for
which constant values can be inferred. In cases where the value is unknown (e.g.
a test on floating point values) the term remains in the expression; i.e. the ana-
lyzer performs a partial evaluation of the program and the non-evaluated part is
represented as term. For the given benchmarks the SSA Form for the extracted
sequence of updates does not require phi-assignments. The reason is that the
benchmarks only contain conditionals on index variables which become constant
after unrolling. Also see Fig. 2 for an example of a benchmark code with such
properties. The ternary operator inside expressions is used inside floating point

Verification of Polyhedral Optimizations with Constant Loop Bounds 501

Jacobi-1D-Imper (original) Jacobi-1D-Imper (Variant tile 8 1 1)
B[1]_1 = 0.33333 *(A[0]_0 + A[1]_0 + A[2]_0)
B[2]_1 = 0.33333 *(A[1]_0 + A[2]_0 + A[3]_0)
B[3]_1 = 0.33333 *(A[2]_0 + A[3]_0 + A[4]_0)
B[4]_1 = 0.33333 *(A[3]_0 + A[4]_0 + A[5]_0)
B[5]_1 = 0.33333 *(A[4]_0 + A[5]_0 + A[6]_0)
B[6]_1 = 0.33333 *(A[5]_0 + A[6]_0 + A[7]_0)
B[7]_1 = 0.33333 *(A[6]_0 + A[7]_0 + A[8]_0)
B[8]_1 = 0.33333 *(A[7]_0 + A[8]_0 + A[9]_0)
B[9]_1 = 0.33333 *(A[8]_0 + A[9]_0 + A[10]_0)
B[10]_1 = 0.33333 *(A[9]_0 + A[10]_0 + A[11]_0)
B[11]_1 = 0.33333 *(A[10]_0 + A[11]_0 + A[12]_0)
B[12]_1 = 0.33333 *(A[11]_0 + A[12]_0 + A[13]_0)
B[13]_1 = 0.33333 *(A[12]_0 + A[13]_0 + A[14]_0)
B[14]_1 = 0.33333 *(A[13]_0 + A[14]_0 + A[15]_0)
A[1]_1 = B[1]_1
A[2]_1 = B[2]_1
A[3]_1 = B[3]_1
A[4]_1 = B[4]_1
A[5]_1 = B[5]_1
A[6]_1 = B[6]_1
A[7]_1 = B[7]_1
A[8]_1 = B[8]_1
A[9]_1 = B[9]_1
A[10]_1 = B[10]_1
A[11]_1 = B[11]_1
A[12]_1 = B[12]_1
A[13]_1 = B[13]_1
A[14]_1 = B[14]_1
B[1]_2 = 0.33333 *(A[0]_0 + A[1]_1 + A[2]_1)
B[2]_2 = 0.33333 *(A[1]_1 + A[2]_1 + A[3]_1)
B[3]_2 = 0.33333 *(A[2]_1 + A[3]_1 + A[4]_1)
B[4]_2 = 0.33333 *(A[3]_1 + A[4]_1 + A[5]_1)
B[5]_2 = 0.33333 *(A[4]_1 + A[5]_1 + A[6]_1)
B[6]_2 = 0.33333 *(A[5]_1 + A[6]_1 + A[7]_1)
B[7]_2 = 0.33333 *(A[6]_1 + A[7]_1 + A[8]_1)
B[8]_2 = 0.33333 *(A[7]_1 + A[8]_1 + A[9]_1)
B[9]_2 = 0.33333 *(A[8]_1 + A[9]_1 + A[10]_1)
B[10]_2 = 0.33333 *(A[9]_1 + A[10]_1 + A[11]_1)
B[11]_2 = 0.33333 *(A[10]_1 + A[11]_1 + A[12]_1)
B[12]_2 = 0.33333 *(A[11]_1 + A[12]_1 + A[13]_1)
B[13]_2 = 0.33333 *(A[12]_1 + A[13]_1 + A[14]_1)
B[14]_2 = 0.33333 *(A[13]_1 + A[14]_1 + A[15]_0)
A[1]_2 = B[1]_2
A[2]_2 = B[2]_2
A[3]_2 = B[3]_2
A[4]_2 = B[4]_2
A[5]_2 = B[5]_2
A[6]_2 = B[6]_2
A[7]_2 = B[7]_2
A[8]_2 = B[8]_2
A[9]_2 = B[9]_2
A[10]_2 = B[10]_2
A[11]_2 = B[11]_2
A[12]_2 = B[12]_2
A[13]_2 = B[13]_2
A[14]_2 = B[14]_2

B[1]_1 = 0.33333 *(A[0]_0 + A[1]_0 + A[2]_0)
B[2]_1 = 0.33333 *(A[1]_0 + A[2]_0 + A[3]_0)
A[1]_1 = B[1]_1
B[3]_1 = 0.33333 *(A[2]_0 + A[3]_0 + A[4]_0)
A[2]_1 = B[2]_1
B[1]_2 = 0.33333 *(A[0]_0 + A[1]_1 + A[2]_1)
B[4]_1 = 0.33333 *(A[3]_0 + A[4]_0 + A[5]_0)
A[3]_1 = B[3]_1
B[2]_2 = 0.33333 *(A[1]_1 + A[2]_1 + A[3]_1)
A[1]_2 = B[1]_2
B[5]_1 = 0.33333 *(A[4]_0 + A[5]_0 + A[6]_0)
A[4]_1 = B[4]_1
B[3]_2 = 0.33333 *(A[2]_1 + A[3]_1 + A[4]_1)
A[2]_2 = B[2]_2
B[6]_1 = 0.33333 *(A[5]_0 + A[6]_0 + A[7]_0)
A[5]_1 = B[5]_1
B[4]_2 = 0.33333 *(A[3]_1 + A[4]_1 + A[5]_1)
A[3]_2 = B[3]_2
B[7]_1 = 0.33333 *(A[6]_0 + A[7]_0 + A[8]_0)
A[6]_1 = B[6]_1
B[5]_2 = 0.33333 *(A[4]_1 + A[5]_1 + A[6]_1)
A[4]_2 = B[4]_2
B[8]_1 = 0.33333 *(A[7]_0 + A[8]_0 + A[9]_0)
A[7]_1 = B[7]_1
B[6]_2 = 0.33333 *(A[5]_1 + A[6]_1 + A[7]_1)
A[5]_2 = B[5]_2
B[9]_1 = 0.33333 *(A[8]_0 + A[9]_0 + A[10]_0)
A[8]_1 = B[8]_1
B[7]_2 = 0.33333 *(A[6]_1 + A[7]_1 + A[8]_1)
A[6]_2 = B[6]_2
B[10]_1 = 0.33333 *(A[9]_0 + A[10]_0 + A[11]_0)
A[9]_1 = B[9]_1
B[8]_2 = 0.33333 *(A[7]_1 + A[8]_1 + A[9]_1)
A[7]_2 = B[7]_2
B[11]_1 = 0.33333 *(A[10]_0 + A[11]_0 + A[12]_0)
A[10]_1 = B[10]_1
B[9]_2 = 0.33333 *(A[8]_1 + A[9]_1 + A[10]_1)
A[8]_2 = B[8]_2
B[12]_1 = 0.33333 *(A[11]_0 + A[12]_0 + A[13]_0)
A[11]_1 = B[11]_1
B[10]_2 = 0.33333 *(A[9]_1 + A[10]_1 + A[11]_1)
A[9]_2 = B[9]_2
B[13]_1 = 0.33333 *(A[12]_0 + A[13]_0 + A[14]_0)
A[12]_1 = B[12]_1
B[11]_2 = 0.33333 *(A[10]_1 + A[11]_1 + A[12]_1)
A[10]_2 = B[10]_2
B[14]_1 = 0.33333 *(A[13]_0 + A[14]_0 + A[15]_0)
A[13]_1 = B[13]_1
B[12]_2 = 0.33333 *(A[11]_1 + A[12]_1 + A[13]_1)
A[11]_2 = B[11]_2
A[14]_1 = B[14]_1
B[13]_2 = 0.33333 *(A[12]_1 + A[13]_1 + A[14]_1)
A[12]_2 = B[12]_2
B[14]_2 = 0.33333 *(A[13]_1 + A[14]_1 + A[15]_0)
A[13]_2 = B[13]_2
A[14]_2 = B[14]_2

Fig. 3. Example: Extracted assignments (updates) from the programs in Fig. 1 (left
column) and Fig. 2 (right column) after rewrite and renaming in SSA Form. The
rewrite rules that are applied are those listed in Section 3.4. Rewrite statistics for this
example are shown in Table 2 (see rows for jacobi-1d-imper and jacobi-1d-imper-tile-
8-1-1). The number of extracted assignments is 56 and the number of applied rewrite
operations differs significantly, but the final results are two sequences of assignments
that are equivalent - they do differ in the interleaving of the assignments, but the order
of updates on all SSA variables is identical. This is checked by Algorithm 2 after sorting
both sequences by the updated SSA variable.

502 M. Schordan et al.

stddev[0]_18 = stddev[0]_17 / float_n_0

stddev[0]_19 = sqrt(stddev[0]_18)

stddev[0]_20 =(stddev[0]_19 <= eps_0?1.0 : stddev[0]_19)

stddev[1]_1 = 0.0

stddev[1]_2 = stddev[1]_1 +(data[0][1]_0 - mean[1]_18) *(data[0][1]_0 - mean[1]_18)

Fig. 4. Fragment of verified update sequence for datamining/correlation benchmark

computations though. But since we represent in our analysis all floating point
values to be an unknown value, the different states that are established by the
analyzer during the expression analysis are determined to be equal, and thus,
only a single state transition is established in the STG for such an assignment
(see Fig. 4) and the extracted computation remains a sequence of assignments for
the given programs. For each PolyBench/C 3.2 benchmark exactly one sequence
of computations can be extracted.

Equality Test of SSA Forms. The final step in the verification is to deter-
mine the equivalence of the SSA Forms of two program variants. Our approach
considers a verification to be successful if the term representations of the set of
assignments in SSA Form is equal.

The interleaving of the assignments may differ as is demonstrated also in the
example in Fig. 3, but the sequence of updates for each array element must be
exactly the same. In particular, also the operations on the rhs of each assign-
ment must match exactly (term equivalence). For the example in Fig. 3 this is
indeed the case. For example the sequence of updates on the elements of B[1]_1,
B[2]_1 B[3]_1 etc. is exactly the same in both columns. This holds for all SSA
enumerated variables.

For all the evaluated benchmarks the extracted SSA Forms match exactly as
unordered sets. The small set of rewrite rules presented in Section 3.4 is sufficient
to proof equivalence for the Polybech/C 3.2 benchmarks.

Supported Language Subset. In Fig. 4 a fragment of the update sequence for
the correlation benchmark is shown. It includes the use of a floating point variable
which is assigned a value outside the polyhedral optimized program section and
therefore has SSA number 0, the ternary operator, an external function call
(sqrt), and a computation involving different arrays and their elements. This
code does not have a static control-flow, because of the ternary operator leading
to a data-dependent assignement of the value. Previous work on affine program
equivalence [8] cannot handle such case, in contrast our approach supports such
construct.

For a defined set of external function calls we assume that the functions are
side effect free (e.g. sqrt). For each PolyBench/C benchmark and PolyOpt/C
generated variant with constant array bounds, our analysis can determine an
STG with exactly one floating point computation sequence. We consider cases
where more than one execution path is represented in the STG in our future
work.

Verification of Polyhedral Optimizations with Constant Loop Bounds 503

Error Detection. When the equality test fails, then the semantic equivalence
of two programs cannot be established. This can have two reasons i) the pro-
grams are different, ii) our rewrite system is not powerful enough to establish a
normalized representation such that the two programs’ sequence of floating-point
operations can be matched. For two benchmarks we determined differences in the
update sequence (cholesky and reg detect), as shown in Sec. 4.3. The difference
is reported as the set of non-matching assignments.

4 Results

Our implementation is based on ROSE [18]. The computation of the state tran-
sition graph (STG) has also been used in the RERS Challenge [17] 2012 and
2013.

The rewrite system is based on the AstMatching mechanism in ROSE and
implements the small number of rules that turned out to be sufficient to verify
benchmarks of the PolyBench/C suite.

Benchmarks in PolyBench/C 3.2 contain SCoPs and represent computation
in linear algebra, datamining, and stencil computing. PolyOpt/C performs data
dependence analysis, loop transformation and code generation based on the poly-
hedral model. Because of the transformation capability and its integration in
the ROSE compiler, PolyOpt/C is chosen as the optimization driver in the ex-
periments. Optimization variants in this study are mainly generated from the
following two transformations:

– Tiling-driven transformations: the ”–polyopt-fixed-tiling” option in Poly-
Opt/C implements arbitrarily complex sequences of loop transformations
to maximize the tilability of the program, applies tiling, and expose coarse-
grain or wavefront parallelism between tiles [2]. It allows to specify the tile
size to be used in each tiled dimension.

– Data locality-driven transformations: we use the Pluto algorithm [2] for max-
imal data locality, and test the three different statement fusion schemes
(minfuse, maxfuse and smartfuse) implemented in PolyOpt/C.

Figure 5 illustrates the transformation flow. Each benchmark code with a
constant array size (size in each dimension) is given to PolyOpt/C. The following
variants are generated for the study:

1. Loop fusion: Polyhedral transformation performs multiple transformations in
a single phase. In this variant, we apply the three fusion schemes: maxfuse,
smartfuse and nofuse to drive the loop transformation. A combination of
loop permutation, skewing, shifting, fusion and distribution is implemented
for each of the three statement fusion schemes.

2. Loop tiling: PolyOpt/C takes 3 parameters to form a tile size for single
and multi-dimensional tiling. Tile sizes with number of power of two are
commonly seen in real applications. Other special tile sizes, such as size in
prime numbers, or non-tilable sizes (size larger than problem/array size), are

504 M. Schordan et al.

source code

loop fusion loop tiling

maxfuse smartfuse nofuse tile size (x,y,z) =
({1,5,8,16,32},{1,5,8,16,32},{1,8})

Fig. 5. Transformation variants: 53 variants are generated for each benchmark (3 for
fusion and 5× 5× 2 = 50 for tiling)

also included to prove a broader span for verification: the polyhedral code
generator CLooG [11] integrated in PolyOpt/C generates a possibly different
code for each of these cases. Some tile sizes might not be applicable to all
benchmarks (e.g., those which cannot be tiled along multiple dimensions),
but PolyOpt/C still generates a valid output with 0D or 1D tiling for the
verification. Note that we also want to verify certain corner cases in the code
generation.

With our approach we can verify all PolyOpt/C generated optimization vari-
ants for PolyBench/C 3.2. As shown in Table 1) PolyOpt/C generated 53 variants
for all but two benchmarks. Unfortunately, for ’doitgen’ only the 3 fusion vari-
ants could be generated, and for dynprog the fusion and tiling variants could not
be generated (due to an error in PolyOpt/C 0.2). For all other benchmarks all
variants were generated (in total 53×28). We verified 53×28+3 = 1487 variants,
and found errors in the fusion and the tiling variants of the cholesky benchmark
and errors in the tiling variants of ’reg detect’ (in total 3 + 50 + 50 = 103).
The array size is set to 16 for each dimension in the 1D ,2D, and 3D cases and
stepsize is set to 2 (stepsize is the time dimension for stencil benchmarks). The
total verification time for all 1487 variants is 1.5 hours, as shown in column 3 in
Table 1.

We recall a critical aspect of affine programs is that they have a control flow
that only depends on loop iterators and program parameters. That is, while only
one C program is generated by PolyOpt/C, it is by construction expected to be
valid for any value the program parameters can take (e.g., the array size N).
Checking the correctness of this code for a small array size (e.g., N = 16) still
stresses the entire code for the benchmarks we considered.

4.1 State Space and Rewrite Operations Statistics

In Table 2 detailed statistics on some of the benchmarks are shown. The statistics
include the number of computed states in the state transition graph and how
often each rewrite rule has been applied for a benchmark variant. The original
program is listed by the name of the benchmark itself. Optimization variants are
denoted by the benchmark name prefixed with the variant name.

Verification of Polyhedral Optimizations with Constant Loop Bounds 505

Table 1. The benchmarks in the Polybench/C 3.2 suite with information whether
we successfully verified the PolyOpt/C generated variants. For two benchmarks our
verification procedure helped to find a bug in some fusion and tiling optimizations in
PolyOpt/C 0.2.

Benchmark Verification (Size 16) Total Run Time

2mm, 3mm, adi, atax, bicg, covariance,
durbin, fdtd-2d, gemm, gemver, gesummv,
jacobi-1d, jacobi-2d, lu, ludcmpm, mvt,
seidel, symm, syr2k, syrk, trisolv, trmm,
correlation, gramschmidt, fdtf-ampl, floyd-
warshall

for 26 benchmarks all 53 variants ver-
ified

1h:30m:02s

dotitgen all fusion variants verified
cholesky errors found in fusion and tiling opt
reg detect errors found in tiling opt

doitgen tiling variants not available -
dynprog variants not available -

4.2 Run Times

The run times for each benchmark and each generated optimization variant is
shown in the last column in Table 2. This includes all phases (parsing, STG
analysis, update extraction, update normalization, and sorting of the update
sequence). The total verification time of an original program and a variant is the
sum of the total time (as shown in Table 2 of both entries in the table plus the
time for comparison. The final comparison is linear in the number of assignments
because Algorithm 1 also includes sorting by the unique SSA assignment variable
on lhs of each update operation.

For example, to verify that the benchmark jacobi-1d-imper and the polyhe-
dral optimization variant tile_8_1_1 are equivalent, the total verification time
is the sum of the run times for the original benchmark and the variant (each one
shown in last column in Table 2) and the time for matching the assignments of
the two sorted lists of assignments (not shown). Note that this is also valid for
any pair of variants for the same benchmark, hence the original benchmark only
needs to be analyzed once. The total run time for the verification of all 1487
generated benchmark variants, including all operations, is shown in Table 1.

4.3 Bug Found Thanks to Verification

While our verification asserted the correctness of 1383 different program variants
generated by PolyOpt/C for the tested problem sizes, a significant outcome is
the finding of a previously unknown bug, resulting in differences in cholesky and
reg detect variants. For cholesky we determined that one assignment pair (for
A[1][0]_1) does not match (see Fig. 6). All other 951 assignments do match.

The current test suite of PolyOpt/C checks the correctness of the transformed
code by checking if the output of the computation is strictly identical for the ref-
erence and transformed codes. Under this scheme, errors that amount to chang-
ing the order of two update operations (thereby violating the dependence between
such operations) may not be caught: in practice, IEEE floating point operations
are often commutative/associative and therefore changing the order of their com-

506 M. Schordan et al.

Table 2. Shows from left to right for some selected benchmark results: the number of
computed states in the STG, number of extracted assignments (updates), how often
the rewrite rules 1-10 were applied, and the run time

Benchmark-Variant States Updates R1 R2-5 R6-9 R10 Run Time

3mm 40922 13056 0 12288 0 75264 5.72 secs
3mm-fuse-smartfuse 40925 13056 0 12288 0 75264 5.74 secs
3mm-tile-8-1-1 50916 13056 0 12288 0 75264 6.18 secs
covariance 9125 2992 0 2704 0 15440 1.50 secs
covariance-fuse-smartfuse 9128 2992 0 2704 0 15440 1.50 secs
covariance-tile-8-1-1 12652 2992 0 2704 0 15440 1.62 secs
fdtd-2d 4731 1442 0 0 1860 13144 1.49 secs
fdtd-2d-fuse-smartfuse 4734 1442 0 0 1860 13144 1.52 secs
fdtd-2d-tile-8-1-1 5436 1442 17700 0 28260 21356 2.94 secs
fdtd-apml 52829 34816 0 0 12544 353792 23.33 secs
fdtd-apml-fuse-smartfuse 52832 34816 0 0 12544 353792 23.22 secs
fdtd-apml-tile-8-1-1 60171 34816 0 0 12544 353792 23.66 secs
floyd-warshall 13388 4096 0 0 0 57344 2.98 secs
floyd-warshall-fuse-smartfuse 13391 4096 0 0 0 57344 3.00 secs
floyd-warshall-tile-8-1-1 15776 4096 0 0 0 57344 3.10 secs
gramschmidt 14072 4504 0 2176 0 29712 2.11 secs
gramschmidt-fuse-smartfuse 14120 4504 0 2176 0 29712 2.14 secs
gramschmidt-tile-8-1-1 18924 4504 0 2176 0 29712 2.31 secs
jacobi-1d-imper 194 56 0 0 56 168 371.06 ms
jacobi-1d-imper-fuse-smartfuse 196 56 0 0 56 168 369.01 ms
jacobi-1d-imper-tile-8-1-1 232 56 208 0 420 312 396.92 ms
jacobi-2d-imper 2602 784 0 0 1568 6272 663.44 ms
jacobi-2d-imper-fuse-smartfuse 2605 784 0 0 1568 6272 663.97 ms
jacobi-2d-imper-tile-8-1-1 3923 784 7192 0 15032 11680 1.46 secs
seidel-2d 1309 392 0 0 4704 7840 1.03 secs
seidel-2d-fuse-smartfuse 1312 392 0 0 4704 7840 1.02 secs
seidel-2d-tile-8-1-1 2144 392 11760 0 28224 19600 2.28 secs
trmm 6794 1920 0 1920 0 11520 1.22 secs
trmm-fuse-smartfuse 6797 1920 0 1920 0 11520 1.24 secs
trmm-tile-8-1-1 9438 1920 3840 1920 7680 15360 2.39 secs

Benchmark Original Program Variant tile 8 1 1 (Detected Errors)

cholesky A[1][0]_1 = x_2 * p[0]_1 A[1][0]_1 = x_1 * p[0]_1

reg detect mean[0][0]_1 = sum_diff[0][0][15]_1 mean[0][0]_1 = sum_diff[0][0][15]_0

mean[0][0]_2 = sum_diff[0][0][15]_2 mean[0][0]_2 = sum_diff[0][0][15]_1

mean[0][1]_1 = sum_diff[0][1][15]_1 mean[0][1]_1 = sum_diff[0][1][15]_0

mean[0][1]_2 = sum_diff[0][1][15]_2 mean[0][1]_2 = sum_diff[0][1][15]_1

mean[1][1]_1 = sum_diff[1][1][15]_1 mean[1][1]_1 = sum_diff[1][1][15]_0

mean[1][1]_2 = sum_diff[1][1][15]_2 mean[1][1]_2 = sum_diff[1][1][15]_1

Fig. 6. Errors found in generated optimized programs. The equality check in Algorithm
2 reported semantic inequality because the right-hand-sides of some corresponding
assignments are different. Shown are those floating-point operations that do not match.

putation may not always lead to a different final result. The clear merit of our ap-
proach is demonstrated by finding a bug that could hardly be caught by classical
testing means, but was immediately found by our verification process. In addition,
the ability to point to the set of operations that do not match greatly helps the bug
finding process.

Verification of Polyhedral Optimizations with Constant Loop Bounds 507

5 Related Work

Existing research adopts various approaches to verify the transformation results.
Focusing on affine programs, Verdoolaege et al. develop an automatic equivalence
proofing [8]. The equivalence checking is heavily dependent upon the fact that
input programs have an affine control-flow, as the method is based on mathemat-
ical reasoning about integer sets and maps built from affine expressions, and the
development of widening/narrowing operators to properly handle non-uniform
recurrences. In contrast, our work has a strong potential for generalization be-
yond affine programs. In fact, we already support some cases of data-dependent
control-flow in the verification, something not supported by previous work [8].

Karfa et al. also designed a method exclusively for a subset of affine programs,
using array data dependence graphs (ADDGs) to represent the input and trans-
forming behaviors. An operator-level equivalence checking provides the capabil-
ity to normalize the expression and establish matching relations under algebraic
transformations [19]. Mansky and Gunter [20] use the TRANS language [21] to
represent transformations. The correctness proof is verified by Isabelle [22], a
generic proof assistant, implemented in the verification framework.

6 Conclusion

We have presented an approach for verifying that the implementation of Poly-
Opt/C for polyhedral optimizations is semantics preserving. Our approach first
performs a static analysis and determines a list of terms representing the updates
on floating point variables and array elements. This sequence is then rewritten
by a rewrite system and eventually an SSA Form is established where each ar-
ray element is treated as a separate variable. When the sets of array updates
are equal and all terms match exactly then we have determined that the pro-
grams are indeed semantically equivalent. Otherwise we do not know whether
the programs are equivalent or not. With our approach we were able to verify
all PolyOpt/C 0.2 generated variants for PolyBench/C 3.2, out of which 1384
variants were shown to be correct, and we found errors in 103 generated variants,
corresponding to one bug occuring for two benchmarks. This bug was not previ-
ously known and was not caught by the existing test suite of PolyOpt/C, which
is based only on checking that the output data produced by the transformed
code is identical to the output produced by the reference code. We limited our
evaluation to a size of 16 (for each array dimension) because our approach re-
quires to analyze the entire state space of the loop iterations and we wanted to
keep the overall verification time for all benchmarks and variants within a few
hours, such that the verification procedure can be used in the release process of
PolyOpt/C in future.

References

1. Pouchet, L.N.: PolyOpt/C 0.2.0: A Polyhedral Compiler for ROSE (2012),
http://www.cs.ucla.edu/~pouchet/software/polyopt/

http://www.cs.ucla.edu/~pouchet/software/polyopt/

508 M. Schordan et al.

2. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical auto-
matic polyhedral program optimization system. In: ACM SIGPLAN Conference
on Programming Language Design and Implementation (June 2008)

3. Kong, M., Veras, R., Stock, K., Franchetti, F., Pouchet, L.N., Sadayappan, P.:
When polyhedral transformations meet simd code generation. In: PLDI (June
2013)

4. Holewinski, J., Pouchet, L.N., Sadayappan, P.: High-performance code generation
for stencil computations on gpu architectures. In: ICS (June 2012)

5. Pouchet, L.N., Zhang, P., Sadayappan, P., Cong, J.: Polyhedral-based data reuse
optimization for configurable computing. In: FPGA (February 2013)

6. Pouchet, L.N.: PoCC 1.2: The Polyhedral Compiler Collection (2012),
http://www.cs.ucla.edu/~pouchet/software/pocc/

7. Leroy, X.: The Compcert C compiler (2014), http://compcert.inria.fr/
compcert-C.html

8. Verdoolaege, S., Janssens, G., Bruynooghe, M.: Equivalence checking of static affine
programs using widening to handle recurrences. ACM Transactions on Program-
ming Languages and Systems (TOPLAS) 34(3), 11 (2012)

9. Feautrier, P.: Some efficient solutions to the affine scheduling problem, part II:
Multidimensional time. Intl. J. of Parallel Programming 21(6), 389–420 (1992)

10. Irigoin, F., Triolet, R.: Supernode partitioning. In: ACM SIGPLAN Principles of
Programming Languages, pp. 319–329 (1988)

11. Bastoul, C.: Code generation in the polyhedral model is easier than you think. In:
IEEE Intl. Conf. on Parallel Architectures and Compilation Techniques (PACT
2004), Juan-les-Pins, France, pp. 7–16 (September 2004)

12. Pouchet, L.N., Bondhugula, U., Bastoul, C., Cohen, A., Ramanujam, J., Sadayap-
pan, P., Vasilache, N.: Loop transformations: Convexity, pruning and optimization.
In: POPL, pp. 549–562 (January 2011)

13. Girbal, S., Vasilache, N., Bastoul, C., Cohen, A., Parello, D., Sigler, M., Temam,
O.: Semi-automatic composition of loop transformations. Intl. J. of Parallel Pro-
gramming 34(3), 261–317 (2006)

14. Pouchet, L.N.: PolyBench/C 3.2 (2012),
http://www.cs.ucla.edu/~pouchet/software/polybench/

15. Allen, J., Kennedy, K.: Optimizing Compilers for Modern Architectures. Morgan
Kaufmann Publishers (2002)

16. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems 13(4), 451–490 (1991)

17. Steffen (Organizer), B.: RERS Challenge: Rigorous Examination of Reactive Sys-
tems (2010, 2012, 2013, 2014), http://www.rers-challenge.org

18. Quinlan, D., Liao, C., Matzke, R., Schordan, M., Panas, T., Vuduc, R., Yi, Q.:
ROSE Web Page (2014), http://www.rosecompiler.org

19. Karfa, C., Banerjee, K., Sarkar, D., Mandal, C.: Verification of loop and arithmetic
transformations of array-intensive behaviors. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 32(11), 1787–1800 (2013)

20. Klein, G.: A framework for formal verification of compiler optimizations. In: Kauf-
mann, M., Paulson, L. (eds.) ITP 2010. LNCS, vol. 6172, pp. 371–386. Springer,
Heidelberg (2010)

21. Kalvala, S., Warburton, R., Lacey, D.: Program transformations using temporal
logic side conditions. ACM Transactions on Programming Languages and Systems
(TOPLAS) 31(4), 14 (2009)

22. Paulson, L.C.: Isabelle Page, https://www.cl.cam.ac.uk/research/hvg/Isabelle

http://www.cs.ucla.edu/~pouchet/software/pocc/
http://compcert.inria.fr/compcert-C.html
http://compcert.inria.fr/compcert-C.html
http://www.cs.ucla.edu/~pouchet/software/polybench/
http://www.rers-challenge.org
http://www.rosecompiler.org
https://www.cl.cam.ac.uk/research/hvg/Isabelle

The Guided System Development Framework:

Modeling and Verifying Communication Systems

Jose Quaresma, Christian W. Probst, and Flemming Nielson

Technical University of Denmark
{jncq,cwpr,fnie}@dtu.dk

Abstract. In a world that increasingly relies on the Internet to func-
tion, application developers rely on the implementations of protocols to
guarantee the security of data transferred. Whether a chosen protocol
gives the required guarantees, and whether the implementation does the
same, is usually unclear. The Guided System Development framework
contributes to more secure communication systems by aiding the devel-
opment of such systems. The framework features a simple modelling lan-
guage, step-wise refinement from models to implementation, interfaces
to security verification tools, and code generation from the verified speci-
fication. The refinement process carries thus security properties from the
model to the implementation. Our approach also supports verification of
systems previously developed and deployed. Internally, the reasoning in
our framework is based on the Beliefs and Knowledge tool, a verification
tool based on belief logics and explicit attacker knowledge.

1 Introduction

Developing secure communication systems is difficult. Application developers
rely on the implementations of protocols to guarantee the security of data trans-
ferred. Whether a chosen protocol gives the required guarantees, and whether
the implementation does the same, is usually unclear.

Verifying secure communication systems is difficult, too, though for different
reasons. While a plethora of formal approaches and tools for protocol verification
exist, they are often not accessible to developers, and only connect the guarantees
to the implementation of the protocol.

The Guided System Development (GSD) framework aims at making develop-
ment and verification of secure communication systems easier by bridging the
gap between system development and verification of communication protocols.
The knowledge and skills required to successfully use a security verification tool
are significant. With the GSD framework [1,2] it is possible to use such tools
and have access to their results without the need for that specific knowledge.

The main achievement of the GSD framework is to make building secure
communication systems the only option. This is reached through a number of
components: a simple and intuitive modelling language, step-wise refinement of
guarantees from the model to its implementation, built-in interfaces to estab-
lished security verification tools, and finally code generation.

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 509–523, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

510 J. Quaresma, C.W. Probst, and F. Nielson

The rest of the paper is structured as follows: after an introduction of a run-
ning example we use throughout the paper, Sec. 2 discusses related work. In
Sec. 3 we present an overview of the framework. We then introduce the Ab-
stract Global level in Sec. 4 and the Concrete level in Sec. 5. In Sec. 6, we
present the interface to verification tools and code output. We evaluate the tool
in Sec. 7 by presenting its usage on the modelling and verification of the Au-
tomatic Dependent Surveillance-Broadcast (ADS-B) system, a new air traffic
management surveillance system that is replacing the radar as the main means
for traffic management in the near future. Finally, Sec. 8 concludes the paper
and discusses future work.

1.1 The Message Board

To illustrate the use of GSD, we use the communication behind a message board
as an example. This message board allows a user to share a message either
anonymously and/or confidentially. The combination of these properties gives
rise to four different kinds of messages:

1. The message sent can be seen by everybody without any guarantees regard-
ing the identity of the sender,

2. The message sent can be seen by everybody and it has guarantees regarding
the identity of the sender,

3. The message sent can only be seen by a particular user without guarantees
regarding the identity of the sender, or

4. The message sent can only be seen by a particular user and it has guarantees
regarding the identity of the sender

For space reasons, we only model sending a message in an authenticated
way, i.e., that other users have guarantees regarding the message’s author.

2 Related Work

CaPiTo [3] connects the abstract specification of Service-Oriented Systems with
the standard protocol suites used in industry in an independent way, i.e., the
description of the system in terms of messages exchanged is separated from the
description of which standard suites are going to be used. This separation of con-
cerns when modelling a Service-Oriented System greatly inspired our framework.
Furthermore, CaPiTo also allows the verification of the modeled protocols and
the code generation of parts of the system. This is accomplished by providing
a specification language, means to verify the security of the specified protocol,
and the translation from the protocol specification language into an executable
language. Compared with CaPiTo, our modelling language is simpler and more
intuitive, it has views of different levels of the system, and connects to more
verification tools, including a GSD-specific tool introduced in Sec. 6.1.

The Guided System Development Framework 511

AVANTSSAR aims at validating trust and security of Service-Oriented Ar-
chitectures. Compared with the GSD framework, the AVANTSSAR project1

requires a higher level of expertise to start using it and does not provide auto-
matic code generation, functionality that we believe is important when providing
tools to help system designers and programmers.

A similar tool to the GSD framework is the Automatic Generation, Verifica-
tion and Implementation of Security Protocols (AGVI) toolkit [4], that allows
the system designer to describe the security requirements and the system spec-
ification. In AGVI a protocol generator creates candidate protocols that satisfy
the given system requirements. After that, the protocols are analysed [5] and the
ones that do not satisfy the desired security properties are discarded. Finally,
a code generator translates the formal protocol specification into Java code. In
comparison to AGVI, the GSD modelling language focusses on properties of
communication. Furthermore, the GSD frameworks can by design be extended
new formal verification tools, new output languages, new abstract ways of rep-
resenting message security properties in the modelling language (extending the
security modules presented in Sec. 4.2), and also new ways of implementing the
different security modules.

There also exist more targeted work on modeling and implementation of secure
communication systems. When compared to the GSD framework, these tools
usually feature more concrete and complex modelling languages and target a
specific verification tool. FS2PV [6] derives a formal model from a protocol code
written in F (a first-order subset of F#) and symbolic libraries. The translation
is made to π-calculus, which can then be verified by ProVerif [7]. Swamy et
al. [8] developed a dependently typed language (F*) aimed at secure distributed
programming. Programs written in F* are translated to .NET bytecode. Other
more recent work [9] enables the verification of a protocol with CryptoVerif [10]
and then translates that specification into OCaml.

3 Framework Overview

The overall structure of the GSD framework is shown in Fig. 1. The framework
is composed by three levels that represent different levels of abstraction. System
developers specify the desired system at the Abstract Global level, using security
modules (Sec. 4.2), to specify the required security assurances for the data being
exchanged in the modeled system.

By unfolding the security modules using plugins, the Abstract Global level
is transformed into a model of the system in the Concrete Global level. Plugins
connect the abstract modules of the Abstract Global level with their imple-
mentations. For instance, if there is a security module in the Abstract Global
specification that requires some data to be sent in a confidential way, this trans-
lation would replace it with an implementation of, for example, the Transport
Layer Security (TLS) cryptographic protocol. The use of plugins, which is simi-
lar to the work by Gao et al. [3], separates the desired security assurances of the

1 http://www.avantssar.eu, last accessed May 2014.

http://www.avantssar.eu

512 J. Quaresma, C.W. Probst, and F. Nielson

endpoint projection

unfolding security models

verification tools

code generators

Abstract Global

Concrete Global

Concrete Endpoint

Fig. 1. Overview of the Guided System Development framework

exchanged data and the way to provide those assurances. In Sec. 5.1, we discuss
the use of plugins and the flexibility that they provide.

A specification at the Concrete Global level is made more concrete using
endpoint projection, resulting in the Concrete Endpoint level. This step separates
the specifications for each individual, and is closer to the final implementation
and to some of the verification tools (Sec. 5.2).

Contracts, another component of GSD, represent the desired outcomes of
the different security modules in the Abstract Global level; they describe the
modules’ semantics. For example, part of the contract for the confidentiality
module expresses that only the intended recipient of a message sent confidentially
is able to read the message. Contracts enable some preliminary reasoning in
the Abstract Global level, and the verification of the implementations of each
security module by comparing the desired outcomes with the outcomes achieved
by the different implementations.

3.1 Framework Inputs and Outputs

The modeling language used in GSD is strongly influenced by Alice and Bob
notation, a simple and intuitive way of modelling communication system. The
example in Fig. 2 uses this notation to model a message msg being sent by a
principal called User to another principal called Board. The complete language
syntax for the input language (in the Abstract Global level) is presented in Fig. 3.

When building a system with secure communications using GSD, the input
for the framework is the specification of the system in the Abstract Global level,
which includes security assurances for the exchanged messages. The language
at this level is simple and intuitive and when using it, the step-wise refinement
will lead to an implementation that provides the specified security assurances.

User → Board : msg

Fig. 2. Example of sending a message from User to Board in Alice and Bob notation

The Guided System Development Framework 513

system ::= stm; | system stm;

stm ::= principal → principal : msgs

principal ::= string

msgs ::= msg | msgs, msg

msg ::= el | secModule

el ::= string

secModule ::= secAssurance(args)

secAssurance ::= Auth | freshAuth | Conf | Sec | freshSec
args ::= string | args, string

Fig. 3. Syntax of the language in the Abstract Global level

It is, however, also possible to use the framework by writing the specification
in one of the other two abstraction levels presented before. If so, one would not
take full benefit of GSD, but would still benefit from some of the connections
to the verification tools and code outputs. We believe that this option is useful
for more experienced system developers or for already implemented systems, in
which case a specification closer to the implementation might be easier to write.

The outputs of GSD can be divided into two categories: the information from
the supported verification tools and the implementation of the modeled system.
We present these in more detail in Sec. 6.

4 Abstract Global Level

The goal at this level is to provide the developer with a simple and intuitive
language that has the necessary tools to model the communication system that
is being developed. As shown in Fig. 3, and as mentioned in Sec. 3.1, this language
is similar to the Alice and Bob notation but extends that notation with security
modules, which are presented in Sec. 4.2.

The logic used to express (and reason about) security properties is based on
BAN logic [11] and more generally on SVO logic [12], a logic that unifies several
different belief logics, including BAN logic itself. We use BAN and SVO to reason
about the beliefs of the principals involved in the different message exchanges.
Based on the beliefs at the end of a series of message exchanges, we are able to
argue about security properties of the exchanged messages.

4.1 The Logic

BAN and SVO logics focus on the beliefs that legitimate principals are able to
infer from a message exchange, and target authentication. Such logics are not
less suited to directly reason about confidentiality, since confidentiality concerns
what some non-legitimate principal might, or might not, be able to see from a

514 J. Quaresma, C.W. Probst, and F. Nielson

P Received el - principal P received an Element el;
P Sees el - principal P sees a specific Element el;
P Believes t - principal P believes in a specific Term t;
P Said el - principal P said, at some point in time, a specific Element el;
P Says el - principal P recently said the Element el;
Conc(el1,el2) - concatenation of two Elements;

Fig. 4. Terms in our logic

message exchange. There are several approaches to handle confidentiality in this
case. We extend belief logics with explicit reasoning about the knowledge of non-
legitimate principals: the beliefs they are able to infer from the message exchange
and what they are able to see and (most importantly for the confidentiality
reasoning) what they not are able to see about the exchanged messages. The
chosen approach results in a simple model that is easy to reason about.

We consider non-legitimate principals to be Dolev-Yao attackers [13], i.e., they
are not only able to see all the exchanged messages but also capable of initiating
protocol communications with legitimate principals and to forge new messages
based on acquired knowledge.

Our logic is composed by principals and elements (all the artifacts that can be
sent from one principal to another). The different terms in our logic are shown
in Fig. 4. The rules used to reason about this logic are introduced in Sec. 6.1.

User → Board : Auth (User , message)

Fig. 5. Specification of User sending a message to the Board in an authenticated way

4.2 The Security Modules

The most important elements at the Abstract Global level are the security mod-
ules, which model security assurances for data exchanges:

– None is not actually a security module, but sends data in plaintext.
– Auth sends data such that the receiver can identify the sender.
– Strong Auth adds freshness to the Auth module to prevent replay attacks.
– Conf sends data sent such that only the intended receiver can read it.
– Sec is the conjugation of the Auth and the Conf modules.
– Strong Sec is the conjugation of the Strong Auth and the Conf modules.

Fig. 5 shows how to model the authenticated message sent by User to Board.

4.3 Semantics of the Security Modules

In GSD contracts are attached to the security modules on the Abstract Global
level, describing the results of using the different modules. This can be used to

The Guided System Development Framework 515

define module semantics and to verify different implementations of a module by
checking the specified security properties against the respective implementations.

Before defining the contracts, we briefly discuss the use of integrity in GSD.
Integrity can have different meanings depending on the field it is being used
in, and can even have slightly different definitions in the same field. Here, we
consider integrity to mean that a message is not corrupted over time or in tran-
sit [14]. For message exchange, integrity is guaranteed when the contents of a
message cannot be changed in transit without changes being instantly observable
by the recipient. In the GSD framework we assume integrity in all exchanged
messages, e.g., by sending a signed digest of the message together with the full
message. With integrity, we have the following rule (where P sees m means that
any principal is able to see m):2

X → Y : m

P sees m

We can now present the rules for the different security modules. Please note
that for the sake of space, we only present the more simple Auth and Sec modules.

Authentication. When a principal seesAuth(X,w), he knows that the message
was sent by X , but knows nothing about the freshness of the message:

Z sees Auth(X,w)

Z sees w, Z believes X said w

Confidentiality. A message that is confidential to X can only be read by him:

Z sees Conf(X,w), Z is X

Z sees w

Security. The security module combines authentication and confidentiality:

Z sees Sec(V,X,w), Z is X

Z sees w, Z believes V said w

Applying the rules presented above to the conjugation of the authentication
and the confidentiality modules results in the same beliefs that were presented
above for the security module:

X → Y : Conf(Y,Auth(m))

P sees Conf(Y,Auth(X,m))

Y sees Conf(Y,Auth(X,m)), Y is Y

Y sees Auth(X,m)

Y sees m, Y believes X said m

2 We extend BAN and SVO logics with principal variables P that represent all the
principals that see the messages being exchanged.

516 J. Quaresma, C.W. Probst, and F. Nielson

5 The Concrete Levels

There are two concrete levels in GSD: the Concrete Global level (Sec. 5.1) and
the Concrete Endpoint level (Sec. 5.2). The model of the system on these levels
is closer to the languages used by the verification tools and the implementation,
but not as simple and intuitive as the one in the Abstract Global level.

5.1 Concrete Global Level

We obtain the Concrete Global level by unfolding the different modules at the
Abstract Global level. The different plugins for each of the different security
modules and represent implementations of the corresponding security module,
for example, implementations using TLS, WS-Security, or a Public Key Infras-
tructure (PKI). As previously mentioned, it is possible to verify the chosen im-
plementation for a security module by checking that it satisfies the respective
contract.

From this level the GSD framework interfaces with the Beliefs and Knowledge
tool (Sec. 6.1) and the Open-Source Fixed-Point Model-Checker (Sec. 6.3). s.

For our example system we choose to implement the Auth module using a
PKI infrastructure. The result of applying that plugin to the Auth module is
shown in Fig. 6.

5.2 Concrete Endpoint Level

In order to translate from the Concrete Global level to the Concrete Endpoint
level, we apply an endpoint projection [15]. This technique extracts the views of
the different principals present in a specification of the global view of the system.
The resulting model at this level has the views of the different principals that
participate in the communication system.

This translation is performed by going through the model with a global view
of the system and, for each of the actions in the model, generating the corre-
spondent actions that are performed by the different principals. For example,a
message being sent from A to B in the global view, is projected to the indepen-
dent specification of the correspondent actions of A and B, i.e., A would send the
message and B would receive it.

The model of our message board example at this level is shown in Fig. 7.

6 Verification Tools and Code

In this section we present the formal methods tools that GSD currently interfaces
with. The Beliefs and Knowledge tool (Sec. 6.1) was developed as part of the

User → Board : User , Encryption (message , PrivKey (User)) ;

Fig. 6. An authenticated message of the example system in the Concrete Global level

The Guided System Development Framework 517

1 User :
2 send (Board , (User , Encryption (message , PrivKey (User))))
3 Board :
4 r e c e i v e (User , (User , Encryption (message , PrivKey (User))))

Fig. 7. An authenticated message of the example system in the Concrete Endpoint
level

– A −→ B : m =⇒ P Received m - When a message is sent between two principals,
every principal with access to the Ether will receive that message.

– A Received el =⇒ A Sees el - If a principal receives an Element, he is able to
see it (note that the principal might be able to see the Element, but not what is
inside it).

– A Sees Enc(el,privKey(P)) ∧ A Sees pubKey(P) =⇒ A Sees el ∧
A Believes P Said el - If principal A sees a message encrypted with another
principal’s private key and if A has access to the correspondent public key then A
can see the encrypted element and also knows who sent it.

Fig. 8. Examples of the systems predefined rules

GSD framework. The GSD framework outputs the system model to code by
replacing the different elements of the Concrete Endpoint specification with pre-
determined Java blocks implementing those elements.

6.1 The Beliefs and Knowledge Tool

The Beliefs and Knowledge tool (BAK) verifies the security of communication
protocols by reasoning about the beliefs and the knowledge that the different
principals involved in a communication system acquire throughout message ex-
change. The tool uses the Z3 SMT Solver [16] and adds an extra layer that
facilitates the modeling of message exchanges and the reasoning about those
messages.

Predefined System Rules. The extra layer defined in the BAK tool is com-
posed of predefined system and inference rules specifying how principals con-
struct and read the exchanged messages, how they acquire the different beliefs,
etc. Some examples of these rules are shown in Fig. 8. A and B represent spe-
cific principals, P represents any principal, m represents a message in plain-
text, Enc(el, k) represents the encryption of the element el with the key k, and
pubKey(x) and privKey(x) represent the public and private keys of principal x.

The third rule of Fig. 8 specifies which beliefs a principal can infer from a
message encrypted with a private key: if the principal knows the correspondent
public key, then he is able to decrypt it, see the element that had been encrypted,
and have assurances on which principal encrypted the element. In Fig. 9, that
rule is presented in SMT-LIB2.

There are two inputs for the BAK tool: a model (M) of the system we want
to analyse and the goals we want to verify. Given these, the tool tests each goal

518 J. Quaresma, C.W. Probst, and F. Nielson

1 (a s s e r t (! (f o r a l l ((x Pr in c ipa l) (w Pr in c ipa l) (e l Element))
2 (! (=> (and (Sees x (EncModule e l (PrivKey w)))
3 (Sees x (PubKey w)))
4 (and (Sees x e l)
5 (Be l i e v e s x (Said w e l)))
6)
7 : patte rn ((Sees x (EncModule e l (PrivKey w))))
8)
9)

10 : named privKeyDecryption)
11)

Fig. 9. One of the system rules regarding decryption.

(MsgSent User Board (Conc User (EncModule message (PrivKey User))))

Fig. 10. An authenticated message of the example system modeled in SMT-LIB2

(goal) against the modeled system. One implication of the way SMT works and
the way we are modelling the system rules and the system itself is that we need
to test the goals in the negated form. Both in the set of predefined system and
inference rules (R) and in the system model (M) we only assert positive facts.
When testing a goal in the positive form, the SMT solver will always find a model
where the goal would be satisfiable since there will never be a negative rule to
contradict the goal in the positive form. On the other hand, when testing a goal in
the negative form it might contradict one of the assertions that are derived from
R ∧M , which can be interpreted as all the knowledge, i.e., assertions, that can
be derived from the system model. In that case the result will be unsatisfiable.
If the negated goal does not contradict any of the assertions that are derived
from R ∧M , then the result will be satisfiable.

Therefore, we use R ∧ M ∧ (¬goal) to verify the system. If the system is
satisfiable, then there is a representation of R ∧M where ¬goal holds, which
tells us that goal is not an assertion derived by R ∧ M . Due to the way we
model the system and the system rules, this means that goal does not hold in
the system. On the other hand, if the system is unsatisfiable, then there is no
interpretation of R ∧M where (¬goal) holds. That can only happen if goal is
derived from R ∧M , which means that goal holds in the system. So, if any of
the original goals we want to test is in the positive form we negate it before
performing the test and interpret the result given by the tool according to that.

Fig. 10 shows the model of the authenticated message in SMT-LIB2, a stan-
dard format accepted as input by several SMT solvers, including Z3.

Tool Outputs. When analyzing R∧M ∧ (¬goal), the BAK tool does not only
return satisfiability but also provides extra information that helps understanding
and analysing the obtained results. If the system and the goal being analysed
are satisfiable, then the tool also returns the representation that satisfies the
assertions. On the other hand, if system and goal are unsatisfiable, the tool re-
turns the unsatisfiability core, i.e., a small set of assertions that make the system

The Guided System Development Framework 519

unsat (privKeyDecryption)

Fig. 11. Output of the BAK tool for the example system.

1 <User , Board , User , { | message | } : K User−>. 0
2 |
3 (Board , User ; board1 , board2) . decrypt board2 as { | ; message | } : K User+ in 0

Fig. 12. The automatically generated LySa code of the authenticated message in the
example system

unsatisfiable. This set is not guaranteed to be minimal, but it provides useful
information regarding the system and the analysis result. Extracting informa-
tion from a satisfiable model is not as simple as extracting information from the
unsatisfiability core since the model tends to be complex and not easily readable.

For the example system the implementation of our authentication message
should give guarantees regarding the authenticity of the message. It is possible to
test this by verifying that Board knows that the messagewas sent by User, which
is specified as Board believes (User said message) in belief logic. The result
of applying the BAK tool to this goal in the negative form is shown in Fig. 11.

The first line tells us that the system model together with that negated goal
is unsatisfiable, which mean that the goal we wanted to verify holds. The second
line of the output is the unsatisfiability core returned by Z3. It is the name of the
rule shown in Fig. 9 and it tells us that the Board obtained the belief specified
in the goal by decrypting the message.

6.2 LySatool

The LySatool [17] performs security analyses of protocols described in LySa
[18]. The tool performs a static analysis of the LySa specification of the protocol
in the presence of a Dolev-Yao attacker [13]. The LySatool is implemented in the
Standard ML (SML) functional programming language and it starts by encoding
the analysis into a proper constraint language and then uses Succinct Solver [19]
to compute the least solution to those constraints.

The LySa code that is generated by our framework is shown in Fig. 12.

6.3 The Open-Source Fixed-Point Model-Checker

The Open-Source Fixed-Point Model-Checker (OFMC) [20] is a symbolic se-
curity protocol analyser that detects attacks on the protocol and performs a
bounded session verification by exploring the transition system of the protocol
representation. Its primary input language is the Intermediate Format (IF) [21]
specification, which describes a security protocol as an infinite-state transition
system using set rewriting. The tool also accepts AnB [22] as input, a language
similar to Alice and Bob notation, which is then automatically translated to
IF, defining a formal semantics for AnB in terms of IF. OFMC uses several

520 J. Quaresma, C.W. Probst, and F. Nielson

User → Board : User ,{ message} inv (pk (User)) ;

Fig. 13. The automatically generated AnB code of the authenticated message in the
example system

techniques that significantly reduce the search space of a protocol without in-
troducing, or excluding, any attacks. Two of the major used techniques are lazy
intruder and constraint differentiation. The first is a symbolic representation of
the intruder while the latter is a general search-reduction technique. In Fig. 13,
one can see the part of AnB code that corresponds to our authenticated message.

7 Evaluating GSD on ADS-B

In a recent evaluation, GSD was used to model and verify the Automatic Depen-
dent Surveillance-Broadcast (ADS-B) 3 system [23], an air traffic management
surveillance system that is being deployed with the intent of replacing the radar
as the main system for airspace traffic management. This section first introduces
the current implementation of ADS-B and then presents the way GSD was used
to verify ADS-B.

Fig. 14. Overview of the ADS-B system

7.1 The ADS-B System

ADS-B is a large wireless network, composed by ground stations and aircrafts
that communicate with each other: the aircrafts report flight information (such
as their position, velocity, and intent) and receive traffic and other information
from the ground stations, as shown in Fig. 14. The main benefit of ADS-B is the
provided higher accuracy regarding the aircraft position, which is crucial in an
airspace where the aircraft density is increasingly higher.

3 ADS-B General Information, http://www.faa.gov/nextgen/implementation/
portfolio/trans support progs/adsb/general/, last accessed May 2014.

http://www.faa.gov/nextgen/implementation/portfolio/trans_support_progs/adsb/general/
http://www.faa.gov/nextgen/implementation/portfolio/trans_support_progs/adsb/general/

The Guided System Development Framework 521

system goals

Concrete Global

BAK

(negated)
goal holds? unsat coresat model

unsat core
input

out out

Fig. 15. The GSD framework applied to ADS-B

The legitimate agents taking part in the ADS-B communication system are
the aircraft and the ground-stations. ADS-B has two components that allow
these agents to communicate: ADS-B Out and ADS-B In. ADS-B Out con-
sists of the messages that are broadcasted by the aircraft and ADS-B In con-
cerns the capability of receiving the ADS-B Out messages. A message contains
the aircraft’s position and speed (both acquired through a positioning system,
presently GPS) and potentially other information, such as intent. These broad-
casted messages are received by the ground-stations and, in case ADS-B In is
being used, the former will also be received by the aircraft that are within range
of the broadcaster aircraft. As explained above, an aircraft is only capable of
receiving air-to-air ADS-B messages broadcasted from other aircraft if it has
equipment that provides ADS-B In capabilities. Another part of ADS-B In is
the information broadcasted by the ground-stations. This will consist of traffic
and weather information. During the transitional phase, the traffic information
will have a mixture of ADS-B and Radar information, enabling the ADS-B In
equipped aircraft to have a full view of the airspace surrounding it.

7.2 Applying GSD to ADS-B

The GSD framework was used to model and analyse the current implementation
of ADS-B and its potential extensions as shown in Fig. 15. The most abstract
level of the framework (Abstract Global) was not used, since that level is targeted
for developing secure systems from scratch and not for modelling and analysing
systems previously developed. Furthermore, the Concrete Endpoint level was
not used either, since there was no interest in code, and the translation to the
used tool to analyse our model is made from the Concrete Global level.

The ADS-B system model was used as input to the Concrete Global level,
which was automatically translated into a language that can be used by the
BAK tool (presented in Sec. 6.1) to verify the system and its properties (or
goals), which are the other input to the framework.

GSD enabled the formal verification of the built-in security of the ADS-B
communication system and reported that the system provides no authentication
or confidentiality. GSD also enabled the security verification of the extensions

522 J. Quaresma, C.W. Probst, and F. Nielson

suggested by Valovage et al. [24,25] and, in this case, it reported that authenti-
cation and confidentiality were provided in their respective extensions.

8 Conclusion

The Guided System Development framework aims at helping developers building
secure communication systems. It does so by enabling the modelling of systems
in a simple and intuitive language, its verification by connecting that model to
different formal verification tools, and translating it to code. In this paper we
presented the capabilities of the GSD Framework by discussing the process of
modelling, verifying, and implementing an authenticated broadcasted message.
We also introduced the Beliefs and Knowledge tool, which extends belief logics
with explicit attacker knowledge and uses the Z3 SMT Solver to enable the
verification of security properties of communication systems. Furthermore, we
presented an evaluation of a new airspace navigation system and its proposed
extensions using GSD to model and verify the system’s communications.

We believe that this framework represents a big step towards closing the
gap between systems development and verification, but more work is necessary:
We aim at extracting more information from the satisfiability model return by
the BAK tool in order to provide more complete feedback to the developer,
finalising the interfaces with LySatool and OFMC, and optimising the overall
tool integration so that it is easier to use for the system developers. We also
work on interfacing to and integrating the results from more analysis tools.

Acknowledgements. We would like to thank Roberto Vigo, Sebastian
Mödersheim (both from the Technical University of Denmark), and Kristin
Y. Rozier (from NASA Ames Research Center) for many fruitful discussions.

References

1. Quaresma, J., Probst, C.W., Nielson, F.: The Guided System Development Frame-
work. In: Pettersson, P., Seceleanu, C. (eds.) Proceedings of the 23rd Nordic Work-
shop Programming Theory, Väster̊as, Sweden, pp. 69–72 (October 2011)

2. Quaresma, J.: On Building Secure Communication Systems. PhD thesis, Technical
University of Denmark (2013)

3. Gao, H., Nielson, F., Nielson, H.: Protocol Stacks for Services. In: Foundations of
Computer Security (2009)

4. Song, D., Perrig, A., Phan, D.: Agvi—automatic generation, verification, and im-
plementation of security protocols. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV
2001. LNCS, vol. 2102, pp. 241–245. Springer, Heidelberg (2001)

5. Song, D.X., Berezin, S., Perrig, A.: Athena: A novel approach to efficient automatic
security protocol analysis. Journal of Computer Security 9(1), 47–74 (2001)

6. Bhargavan, K., Fournet, C., Gordon, A.D., Tse, S.: Verified interoperable imple-
mentations of security protocols. ACM Transactions on Programming Languages
and Systems (TOPLAS) 31(1), 5 (2008)

The Guided System Development Framework 523

7. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In:
Proceedings of te 14th IEEE Computer Security Foundations Workshop, pp. 82–96
(2001)

8. Swamy, N., Chen, J., Fournet, C., Strub, P.Y., Bhargavan, K., Yang, J.: Secure
distributed programming with value-dependent types. In: Proceeding of the 16th
ACM SIGPLAN International Conference on Functional Programming, ICFP 2011,
pp. 266–278. ACM, New York (2011)

9. Cade, D., Blanchet, B.: From computationally-proved protocol specifications to
implementations. In: 2012 International Conference on Availability, Reliability and
Security (ARES), pp. 65–74. IEEE (2012)

10. Blanchet, B.: A computationally sound mechanized prover for security protocols.
IEEE Transactions on Dependable and Secure Computing 5(4), 193–207 (2008)

11. Burrows, M., Abadi, M., Needham, R.: A logic of authentication. ACM Trans.
Comput. Syst. 8, 18–36 (1990)

12. Syverson, P.: A unified cryptographic protocol logic. Technical report, DTIC Doc-
ument (1996)

13. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions on
Information Theory IT-29(2), 198–208 (1983)

14. Cullen, C.T., Hirtle, P.B., Levy, D., Lynch, C.A., Rothenberg, J.: Authenticity in
a digital environment (2000)

15. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centred program-
ming for web services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
2–17. Springer, Heidelberg (2007)

16. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

17. Buchholtz, M.: User’s Guide for the LySatool version 2.01. DTU (April 2005)
18. Bodei, C., Buchholtz, M., Degano, P., Nielson, F., Nielson, H.: Static validation of

security protocols. Journal of Computer Security 13(3), 347–390 (2005)
19. Nielson, F., Riis Nielson, H., Sun, H., Buchholtz, M., Rydhof Hansen, R., Pilegaard,

H., Seidl, H.: The succinct solver suite. In: Jensen, K., Podelski, A. (eds.) TACAS
2004. LNCS, vol. 2988, pp. 251–265. Springer, Heidelberg (2004)

20. Mödersheim, S., Viganò, L.: The open-source fixed-point model checker for sym-
bolic analysis of security protocols. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.)
FOSAD 2007/2008/2009. LNCS, vol. 5705, pp. 166–194. Springer, Heidelberg
(2009)

21. AVISPA: Deliverable 2.3: The intermediate format (2003),
http://www.avispa-project.org

22. Mödersheim, S.: Algebraic Properties in Alice and Bob Notation. In: 2009 Interna-
tional Conference on Availability, Reliability and Security (ARES), pp. 433–440.
IEEE (2009)

23. RTCA: DO-242A: Minimum Aviation System Performance Standards for Auto-
matic Dependent Surveillance Broadcast (ADS-B). Technical report, RTCA (2002)

24. Valovage, E.: Enhanced ADS-B Research. In: 2006 IEEE/AIAA 25th Digital Avion-
ics Systems Conference, pp. 1–7 (October 2006)

25. Viggiano, M., Valovage, E., et al.: Secure ADS-B Authentication System and
Method (October 12, 2007), WO Patent 2,007,115,246

http://www.avispa-project.org

Processes and Data Integration

in the Networked Healthcare

(Track Introduction)

Tiziana Margaria1 and Christoph Rasche2

1 Chair of Service and Software Engineering, University Potsdam, Germany
margaria@cs.uni-potsdam.de

2 Chair of Management, Professional Services and Sports Economics, University
Potsdam, Germany

christoph.rasche@uni-potsdam.de

Forward-looking issues in the Information and Communication Technology (ICT)
for healthcare and medical applications include process integration, data anno-
tation, ontologies and semantics, but also any automatization approach that is
not imposed from the IT experts (in-house support or external consultants) but
instead allows more flexibility and also a more direct ownership of the processes
and data by the healthcare professionals themselves. In the ISoLA-Med work-
shop in Potsdam in June 2009 and in this track at ISoLA 2012 we showed that a
set of innovative research topics related to the future of healthcare systems hinge
on the notion of simplicity, for both the end users and the designer, developers,
and to support change management and the agility of evolution.

Current hot issues that are expected to shape the competitiveness of the Euro-
pean ICT in the next few decades and which require investigation from the per-
spective of simplicity in IT at the networked system level revolve around the notion
of simplicity [2] and its elevation to a design paradigm including:

– Balancing IT-aspirations with user demands: How to bridge the widening
gap between software engineers and front-end clients.

– From sophisticated to smart technologies: User empowerment through sim-
plicity, manageability, adaptability, robustness, and target group focus.

– Handing over IT power to the co-value creating customers: Users as process
designers, owners and change agents.

– Competing for the future: Sketching viable IT-roadmaps for multiple strate-
gies.

In this track, we consider three facets of the IT effects on the healthcare sector
that show a high potential for IT-based process support and optimization:

– Simple Management of High Assurance Data in Long-lived Interdisciplinary
Healthcare Research: A Proposal [4] describes the data management needs of
a large interdisciplinary research project coordinated at the Cancer
Metabolism Research Group in the Institute of Biomedical Sciences at USP
in Brazil. There, the central issue is which kind of IT can allow the healthcare

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 524–525, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Processes and Data Integration in the Networked Healthcare 525

specialists to model, govern, and manage complex data landscapes, consider-
ing that in such a research context the production, reliability, and long term
availability of high quality and high assurance data are of vital importance.
The authors sketch how the combination of DyWA and jABC provides a
foundation for meeting those needs.

– Domain-specific Business Modeling with the Business Model Developer [1]
presents a tool and the underlying framework for the creation of domain-
specific business models, and its application in a consortial project concern-
ing business models for Personalized Medicine. The few existing business
modeling tools do not allow analysis and essentially mimic pencil and paper
approaches. In contrast, the BMD allows a domain-specific library of para-
metric model components with declared areas of applicability, that serves as
a basis for the development of custom techniques for business model analysis.

– Dr. Watson? Balancing Automation and Human Expertise in Healthcare De-
livery [3] (short paper) describes how to identify process design changes that
support the integration of new information technologies into the healthcare
delivery process. It is illustrated on a technology-based remote diagnosis of
radiology images to address the increasing demand for the reading of mam-
mograms.

References

1. Boßelmann, S., Margaria, T.: Domain-specific business modeling with the business
model developer. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS,
vol. 8803, pp. 545–560. Springer, Heidelberg (2014)

2. Margaria, T., Steffen, B.: Simplicity as a Driver for Agile Innovation. IEEE Com-
puter 43, 90–92 (2010)

3. Gaynor, M., Wyner, G., Gupta, A.: Dr. Watson? Balancing automation and human
expertise in healthcare delivery. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014,
Part II. LNCS, vol. 8803, pp. 561–569. Springer, Heidelberg (2014)

4. Margaria, T., Floyd, B.D., Camargo, R.G., Lamprecht, A.-L., Neubauer, J., Seelaen-
der, M.: Simple management of high assurance data in long-lived interdisciplinary
healthcare research: A proposal. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014,
Part II. LNCS, vol. 8803, pp. 526–544. Springer, Heidelberg (2014)

Simple Management of High Assurance Data

in Long-Lived Interdisciplinary Healthcare
Research: A Proposal

Tiziana Margaria1, Barry D. Floyd2, Rodolfo Gonzalez Camargo3,5,
Anna-Lena Lamprecht1, Johannes Neubauer4, and Marilia Seelaender3

1 Chair Service and Software Engineering, University of Potsdam, Germany
{margaria,lamprecht}@cs.uni-potsdam.de

2 Orfalea College of Business, California Polytechnic State University, USA
bfloyd@calpoly.edu

3 Cancer Metabolism Research Group, Institute of Biomedical Sciences,
University of São Paulo, Brazil

rodolfogcamargo@usp.br, seelaend@icb.usp.br
4 Chair Programming Systems, TU Dortmund, Germany

johannes.neubauer@cs.tu-dortmund.de
5 Chair Biochemistry of Nutrition I, Institute for Nutritional Sciences,

University of Potsdam, Germany
rogonzal@uni-potsdam.de

Abstract. Healthcare research data is typically produced, curated, and
used by scientists, physicians, and other experts that have little or no
professional affinity to programming and IT system design. In the con-
text of evidence-based medicine or translational medicine, however the
production, reliability, and long term availability of high quality and
high assurance data is of paramount importance. In this paper we re-
flect on the data management needs we encountered in our experience as
associated partners of a large interdisciplinary research project coordi-
nated at the Cancer Metabolism Research Group, Institute of Biomedical
Sciences at University of São Paulo in Brazil. Their research project in-
volves extensive collection of detailed sample data within a complicated
environment of clinical and research methods, medical, assessment, and
measurement equipment and the regulatory requirements of maintaining
privacy, data quality and security.

We use this example as an illustrative case of a category of needs
and a diversity of professional and skills profiles that is representative
of what happens today in any large scale research endeavor. We derive
a catalogue of requirements that an IT system for the definition and
management of data and processes should have, how this relates to the
IT development and XMDD philosophy, and we briefly sketch how the
DyWA + jABC combination provides a foundation for meeting those
needs.

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 526–544, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Simple Management of High Assurance Data 527

1 Introduction

Evidence based medicine [2] informs the therapeutic decisions through knowl-
edge derived from research and patient-related clinical data. In this approach
the knowledge of the single specialist and healthcare professional plays a role in
guaranteeing the best possible decisions of patient care, and the individual knowl-
edge and experience is enhanced by the collective experience of similar cases. The
quality and reliability of medical evidence therefore is crucially connected with
the availability and the accessibility of high-quality collections of data. This is
particular critical for rare conditions; fortunately there are registers of such con-
ditions in place. At the European level, for example, the EPIRARE platform [1]
is a European platform for rare disease repositories that aims at coordinating
the effort at the European level connected with the existing national level of rare
disease repositories. These platforms have the goal of defining the needs of the
EU registries and databases on rare diseases, identifying key issues to prepare a
legal basis, agreeing on a common data set and elaborate procedures for quality
control, as well as on the register and platform scope, governance and long-term
sustainability.

In the USA, the NIH maintains a registry of patients and a data repository
especially for rare diseases (GRDR) [3]. Citing their homepage, “The goal is to
establish a data repository of de-identified patient data, aggregated in a stan-
dardized manner, using Common Data Elements (CDEs) and standardized ter-
minology. This data will be available to all investigators to enable analyses across
many rare diseases and to facilitate various biomedical studies, including clinical
trials, in pursuit of developing drugs and therapeutics to improve the healthcare
and the quality of life for the many millions of people who are diagnosed with
rare diseases. De-identification of patient’s data will utilize the Global Unique
Identifiers (GUID) system which could also link patient’s data to bio-specimen
data set.”

The issues central to research, translational medicine, and evidence-based
medicine are closely related with the questions of data collection, maintenance,
and availability for use in the scientific processes and in patient care. Reuse of
data cannot happen without adequate IT support, and it cannot be pervasive
nor sustainable if the use, maintenance, and evolution of the data and the pro-
cesses are kept culturally separated from the scientists and medical professionals
that produce, curate, and use that data. The largest barrier to adoption and
“ownership” of data and process management is the illiteracy or semi-literacy of
these highly skilled and motivated user groups in IT related matters and data
management in particular.

Accordingly, in this paper, we discuss the task of medical research and the
need for easy-to-use process and data modeling tools in a multi-dimensional,
heterogeneous environment. This need is conjoined with the impelling need for
high process and data quality. We illustrate our points on a specific case study
concerning a consortium of researchers studying the systemic inflammation in
cachectic cancer patients, a condition that is not rare, but so far under-studied. In
particular, we resort to a before/after illustration style, providing direct evidence

528 T. Margaria et al.

of the different levels of formalization we are achieving once the proper IT means
are introduced.

The paper is structured as follows. Section 2 introduces the case study and
illustrates the diversity of knowledge, heterogeneity of expertise and goals as well
as the geographic distribution of the participating research groups. Section 3
discusses the needs and characteristics of proper data management. The current
situation is illustrated in Section 4. Section 5 introduces the data modeling in
DyWA and finally Section 6 summarizes our discussion and perspectives.

2 A Translational Medicine Research Project: Fighting
Cachexia in Cancer Patients

The Cancer Metabolism Research Group at the Institute of Biomedical Sciences,
University of São Paulo, São Paulo, Brazil, in conjunction with medical staff at
the University Hospital at the University of São Paulo and other researchers
located in Spain, Italy, USA and Germany are actively engaged in conducting
clinical trials to understand the dynamics of cachectic cancer. Cachexia is de-
fined in [9] as “a multifactorial syndrome defined by an ongoing loss of skeletal
muscle mass [...] that cannot be fully reversed by conventional nutritional support
and leads to progressive functional impairment”. Cancer cachexia is frequently
under-diagnosed due to a large variety of symptoms and effects that make it
difficult to recognize in the early stages of the disease. It is therefore under-
treated until a late, sometimes terminal, status is reached. This research project
aims at facilitating early diagnosis and treatment by establishing practical cri-
teria that are applicable in clinical practice. Which parameters to observe and
which thresholds to use are, in fact, still open questions. There is increasing
consensus that systemic inflammation may be related to the onset of cachexia,
so inflammation-based markers are being studied as a means of diagnosis and
prognosis. There is growing evidence from studies on humans and animals [4]
that by acting on the inflammation, cachexia may be attenuated.

Thus, this research project1 involves extensive collection of detailed sample
data within a multidiscipinary environment of clinical and research methods,
medical, assessment, and measurement equipment and the regulatory require-
ments of maintaining privacy, data quality and security. Currently, in this project
the research staff has a focus on medical excellence and analysis, not on data
management and security.

2.1 How the Project Is Organized

The main goal of the research is to study at the molecular level resident/recruited
cell interaction and relative contribution to local (and systemic) inflammation

1 Project “Systemic Inflammation in Cachectic Cancer Patients: Mechanisms and
Therapeutical Strategies. A Translational Medicine Approach”, funded by FAPESP
(2013-2017).

Simple Management of High Assurance Data 529

in the adipose tissue, skeletal muscle, liver and tumor of cancer patients in an
attempt to describe patterns that lead to the onset, maintenance and aggravation
of cachexia.

A second goal is to propose and test therapeutic strategies to counteract
chronic system inflammation in cachexia. With this purpose, a protocol of patient
and control group physical exercise has been established for chronic submaximal
intensity endurance exercise. Measuring the effects of this training period is thus
a further goal of the project.

The main challenges from an IT point of view are the heterogeneities and the
diversity, with the following two main aspects.

2.2 Interdisciplinarity: Rich Life Science Expertise, Minimal
Information Technology (IT) Knowledge

This study on cachexia cancer is a highly interdisciplinary project where teams
of researchers with very disparate backgrounds cooperate in an effort to holis-
tically understand the mechanisms underlying this devastating condition. The
represented disciplines include: molecular biology, biochemistry, physiology, psy-
chology, oncology, surgery, psychology, radiology, nutrition sciences, and kine-
siology. As we see, the medical and life science skills are strongly represented.
The IT side is represented by the collaboration of a knowledge representation
colleague at USP and external support by T. Margaria’s group in Potsdam.

2.3 Geographic Distribution: The Different Groups Participating,
Medical and IT

This project spans also different geographical areas additionally to the different
organizational affiliations and differences in expertise and tasks. The core groups
focusing on medical research activities are located in Brazil, in a collaboration
among different Institutes of USP, the USP University Hospital and UNIFESP
in São Paulo, and the Universidade de Mogi das Cruzes (UMC). However, a
second layer of research groups cooperates remotely in a worldwide range on
topics as shown in Table 1.

IT expertise is externally contributed by technical specialists at the Univer-
sity of Potsdam in Germany and at California State Polytechnic University in
the USA. It is possible, and actually hoped for, that in the course of the project
other groups with medical skills and/or technical expertise will join this collab-
oration. Such an extension would be an excellent indication of the relevance and
quality of the research. We expect that the additional groups will pursue their
own research goals, but be interested in accessing subsets of the data that is
currently being collected. Such a perspective brings us to the issue of the long
term availability and curation of the data set and the documentation of the data
collection, current analyses and results.

The following two tables provide background information about the location
and affiliations of the project participants. Table 1 focuses on all the current

530 T. Margaria et al.

Table 1. Remote associated groups and their geographical location and affiliation

Group Institute/Country

Alessandro Laviano, Department of Clinical Medicine
Maurizio Muscaritoli Sapienza University of Rome,

Rome, Italy.

Giorgio Trinchieri, Center for Cancer Research
Romina Goldzmid National Cancer Institute,

Bethesda, Maryland USA

Josep M. Argilés, Cancer Research Group,
Silvia Busquets Institut de Biomedicina, Univ. Barcelona

Barcelona, Spain

Nicolaas Deutz Department of Health & Kinesiology
Texas A&M University
Bryan, Texas, USA

Stephen Farmer Department of Biochemistry
Boston University School of Medicine
Boston, MA, USA

Gerhard Paul Püschel Institute of Nutritional Science
University of Potsdam
Potsdam, Germany

Tiziana Margaria Institute of Informatics
University of Potsdam
Potsdam, Germany

Barry D. Floyd California State Polytechnic University
San Luis Obispo, CA, USA

remote participants, medical and IT, while Table 2 focuses on the medical re-
searchers and provides details about their specialties and medical research foci.

In this articulated context, a proper data management, elastic and sustainable,
made for growth, is a clear wish. Fortunately, there is no legacy with which we
need to maintain compatibility.

3 Needs of Proper Data Management

Data management is critically important in medical research projects, because
any tainting or imprecision can undermine trust. Individual treatments, gov-
ernment policies, and societal initiatives among many other aspects critically
depend on the correctness of outcomes based on collected and interpreted data,
and high quality data requires a consistent understanding and application of
effective processes and controls. In modern experimental science, this happens
with the help of IT. The simplified data life cycle as shown in Fig. 1 encom-
passes collection, storage, publication, access/update, maintenance/integration,
and archive/destruction. Our current emphasis in this project is on developing
an infrastructure that maintains the data and provides appropriate access to
medical researchers over a long term and still largely unknown use of these data.

Simple Management of High Assurance Data 531

T
a
b
le

2
.
O
v
er
v
ie
w

o
f
th
e
m
a
in

p
a
rt
ic
ip
a
ti
n
g
m
ed

ic
a
l
re
se
a
rc
h
g
ro
u
p
s

532 T. Margaria et al.

Fig. 1. Standard data life cycle in scientific data management

It is therefore organized in an agile fashion that allows ease of use, integration
and evolution as new data arises and new technologies, users, and user groups
come into being.

We first summarize the essentials of the data management lifecycle, and then
discuss briefly the process aspect of data manipulation and governance.

3.1 Lifecycle in Scientific Data Management

Data collection. Data management is expert knowledge intensive, requiring an
understanding of which data needs to be collected. Raw, primary data should
be collected as close to the source of the data as possible and at the least possi-
ble level of aggregation. For example, collecting a subject’s weight and height is
preferable to recording their BMI, which can be computed from these two mea-
sures. Where the data is collected and under which experimental or measurement
conditions play important roles in putting effective collection techniques in place,
as well how the data arrives and its arrival speed. Quality must be controlled
from the inception, because it is mostly impossible a-posteriori to rectify in-
correct or missing information. For instance, acceptable ranges of values (e.g.,
patient weight) and uniqueness constraints (e.g., patient email address) must be
identified and, if possible, checked directly at collection time in order to make
any corrections immediately at the source. The appropriate representations (e.g.,
text, numbers, pictures), i.e. in the IT world the data types must be identified
and recorded, along with their units of measurements (e.g., mg). Similarly, any
encoding (e.g. m/f for gender) must be identified and retained. This is part of
the additional information (in IT terms, the metadata and environment descrip-
tion) needed to later understand, correctly interpret, and possibly establish the
validity or usability of the data. Any change in an encoding (for example in
Sweden a new gender value ”X” was included), as well as in the experimental
or measurement conditions (like changes in any equipment, solutions, or meth-
ods that are used to collect data or data samples), the date/time of the change
must be stored. Such changes may in fact impact the suitability, precision, and
correctness of subsequent analyses and interpretations.

Data representation includes also considering privacy issues: information about
a patient’s identification should be managed so that only those who have the
right to know the association between the patient identity data (e.g., name,
address, phone) and the patient study data (e.g., weight, tumor classification)
have access to both sets of information. This means assigning a unique identifier

Simple Management of High Assurance Data 533

to the patient and then using this patient id when storing patient study data.
These two sets of data must then be managed. This can often mean using differ-
ent physical data stores (e.g., in paper based systems the sets of paper must be
stored in different locations). In computer based systems, including appropriate
access controls can be effective. In some cases, both the data and the meta data
must be controlled. In terms of privacy, letting inappropriate personnel know
what data is being collected and thus allowing inferences to be conducted, can
be invasive to the patient’s privacy.

Data storage. Proper storage has come to include security aspects, to minimize
the potential for data leakage beyond legitimate access. The location where data
will be stored, the technical formats as well as potential data volumes play a role
in establishing and maintaining security, reducing errors in any data movement
(e.g., from hard copy to digital) as well as for any curation activity that might
take place in the future. For example, data stored on older technologies or in ap-
plication software that becomes unsupported may become unreadable over time;
moreover, understanding that some data technologies fail after lengthy periods
of time is important when determining where and how redundantly to store the
data. Potential data loss through technology failures, natural or manmade dis-
asters should be managed and mitigated against. This leads to policies for fault
tolerance, system resilience, and the choice of appropriate backup and recovery
technologies.

How data is best stored depends on the expected access and update pattern.
How the data is to be used, by whom, and from where are all key aspects of
the data storage design. For example, storing data in a spreadsheet provides a
lower level of access and usability than in a professional database management
system. Storing data on a USB-stick or on one laptop is less desirable because
(1) sharing is hard (especially globally), (2) keeping track of where the data is
located is difficult, (3) managing different versions of the data is time consuming
and error prone, and (4) is very insecure, resulting in a high risk of data loss.

Governance. On the governance side, ease of access to the users must still be
traded off against the wish to grant controlled access, i.e. given proper creden-
tials. Setting up a secure system with appropriate safeguards and with an ad-
equate role/rights management requires understanding which personnel will be
given authorization to operate and in which way: input, view, change, or, poten-
tially, also delete data. This access and permission control may be established at
different levels of the data hierarchy, for example defining a fine granular permis-
sion system that individually consents e.g. viewing only certain fields/attributes
of a record versus seeing or manipulating the entire record or potentially all of
a complete file/table/object.

In the current project we foresee for the moment a data owner-centered man-
agement of data, meaning that the researcher, or unit, and/or possibly institution
who creates the data is also the (only) instance who can manipulate it and pos-
sibly invalidate or delete it. We currently tend to not allow deletes, but just let
obsolete or incorrectly entered data to be marked as invalid, in order to guarantee

534 T. Margaria et al.

completeness of the data set. Other participating entities are allowed to view and
read the data, e.g. in order to use it in computations or for classification purposes,
but without any modifying rights (pure passive access).

Concomitantly, maintaining a record of any access to confidential data is
essential. Such a logging scheme provides an indirect level of control simply by
letting users know that all accesses are recorded. Many funding and oversight in-
stitutions mandate that such controls and records be maintained. These records
must also be out of the reach of any of the database administrators and only
allowed to be viewed / maintained by authorized, study personnel.

End of life. The end of the data life cycle is the archiving / destruction. This must
be planned for in advance as well: If data is to be maintained for a long period
of time, an appropriate long-term storage technology must be put into place.
If the data is to be destroyed, all its images (e.g., currently used data stores,
backup data stores, data which has been ’checked out’ by study personnel and
stored separately) must be identified and effectively erased using current state
of the art technologies. Ideally, therefore, there should be also a register of the
images, that tracks who and when they were made and thus how many of them
are currently in existence and who is responsible for each of them.

Security and auditing. As we see, the issues of ownership, security and auditing
are actually overarching the entire lifecycle. Data ownership must be identified
and assigned from the very beginning of the project. As the owner is responsible
for any key decisions about data use and data access, managing ownership issues
and rights of access and use is especially important if, like in our project, the data
is expected to evolve and be used for other not currently specified applications.
Often there are specific data collection and use agreements in place with any
patients / subjects: they state how the data may be used and the owner must
abide by these agreements. It is the owner who assigns rights to any legitimate
project partner, and it is the owner’s responsibility to ensure that the use will
respect any usage restriction.

Thus, the security and auditing aspects discussed in the access/update stage
actually pervade the entire life cycle and are a cross-cutting concern of global
reach for the entire system. Data leakages happen in fact often inadvertently.

In this line of thoughts, it is natural to think that any action performed on
the data, as well as its governance and analysis, are actually connected with a
recipe how to properly do it. In the IT world, recipes are processes.

3.2 The Need of Proper Process Management

The management as well as the analysis of data are themselves processes. Actu-
ally, any handling that answers a “How” question is a process: it is an explanation
of the (human and automated) steps that need to be done to transform data
into any kind of results and outcome. We find in this research project for ex-
ample processes that explain how data and samples are collected and treated,
computation processes that transform the collected raw data into information

Simple Management of High Assurance Data 535

(e.g. the computation of the BMI) or decisions (for example, how to perform the
classification for the patient grouping described in Sect. 4). Data management
and governance are also linked to processes: how do we define who can input,
verify, correct, deactivate data, define or modify computational processes, per-
form statistical analyses? How do we grant, modify, and revoke access rights to
data, information, and processes themselves?

These are all implicit requirements for the use of an integrated process mod-
eling tool. Such a tool should easily manage the data, through processes that are
domain-specific scientific workflows [15,14,17,16,18]. It should also manage and
steer the entire system including the processes and the meta-data needed for
the governance, that are instances of otherwise application-domain independent
data management related processes. While scientific workflows describe how to
carry out the experiments and analyses specific to this project, the generic data
management-related processes describe in general e.g. how to log in and authen-
ticate a user, how to define or change roles and rights, how to create periodic
reports that summarize the status and monitor the health of the data and its ac-
cess. They are simply instantiated and configured to define how to handle these
tasks for this specific experiment and these specific participating researchers.

In an evolving project, ideally, we wish thus more than just a database: we
need a flexible system where to design and evolve the data and the processes
in an agile fashion, possibly putting these tasks in the hands of the researchers
themselves. This excludes direct programming as well as the most traditional
process and workflow management tools, because they are not integrated with
the data definition and management layer, and require complex mappings be-
tween the two.

A model-based approach has the advantage of describing (instead of prescrib-
ing) the processes. State-of-the-art Model Driven Development (MDD) offers a
number of advantages for early validation and verification of the behaviors at
the model level, prior to coding, for example by model checking [6,22]. Addition-
ally, eXtreme MDD [21] offers also the advantage of co-creation, co-design and
co-evolution of the models also for domain experts like our researchers in the
project, that are not IT experts. The key to this new level of accessibility is a
domain specific language for the things (data and functionalities) that populate
the models of the experiments and data analyses, combined with a mathemati-
cally and software technically precise and complete graphical definition of these
behaviors in terms of workflows that orchestrate the operation of functionalities
on those data items. The jABC [28,24,23] is a framework that supports this agile
way of enacting the XMDD paradigm in a continuous model driven engineering
fashion [20]. It delivers the full functionality of early validation and verification
[11] as well as the executability via code generation [13].

4 How the Work Is Being Conducted to Date

The current data collection procedures include a variety of processes and data
collection instruments. These include records created online by the participating

536 T. Margaria et al.

hospital, pdf files of data analysis results created by participating labs, hardcopy
survey instruments such as questionnaires, and MS Excel spreadsheets. Each of
these technologies stems from the various partners associated with the project,
and together they pose a challenge in such as disparate, diverse organizational
setting. We illustrate the general situation on a subset of these data collection
activities. We chose to focus on the collection of data with an emphasis on the
use of MS Excel spreadsheets, that include data and also computations, and to
illustrate some challenges and potential opportunities for improvements.

A key task in the research project is the classification of study participants
(patients) into various control and experimental groups. The media used so far to
collect the data about each patient and then assign him/her to the appropriate
group include standard questionnaires like EORTC’s QLQ-C30 [7] concerning
quality of life, basic patient data records stored at the University Hospital, and
other datasets that include anthropometric data like gender, age, and height.

To assess patient conditions over the course of the study, time series data such
as weight (which is a very important measure for cachexia patients) is tracked.
Other measurements and experiments concern the concentration of certain sub-
stances in the blood or in tissues, and their analysis with respect to DNA, RNA,
or proteins.

In the course of the project, the raw data is gradually collected, classified, and
then used in correlations and statistical analyses in order to find out significant
patterns, dependencies, or similarities.

4.1 Example: Assigning Patient to Groups

The model for assigning patients into appropriate study groups was implemented
in MS Excel, with data entry and its analysis all in one table – the typical
situation spreadsheet users face. We use the definition of cachexia by Evans et
al. [8] requiring a weight loss of at least 5% in 12 months or less, plus a positive
assessment on at least three of the following criteria:

– Decreased muscle strength
– Fatigue
– Anorexia
– Low fat free mass index
– Abnormal biochemistry:
• Increased inflammatory markers CRP (>5.0mg/l), Il-6 (>4.0pg/ml)
• Anemia
• Low serum albumin

The spreadsheet models both the patient data along and the assessment data
on these criteria.

4.2 Illustration of Spreadsheet Use

The first step is to define an identification ID for the patient (entered in cell A3)
based on the last patient of the same project. Then, information on gender, age,

Simple Management of High Assurance Data 537

height, previous and current weight is entered into cells in the upper right hand
corner of the spreadsheet.

– Once this information is filled, the spreadsheet calculates the percentage of
weight loss and the Body mass Index (BMI) as shown in the upper right hand
corner, resulting in an assessment for the first criteria of percent weight loss.

– The second, third and fourth criteria are based on the answers given in the
Quality of life questionnaire QLC-30 (validated in Portuguese).

– The fifth criterion is based on DEXA Scan analysis or MUAMA (mid upper
arm muscle circumference) for age and gender (see [8] for details).

– The sixth criterion is based on serum analysis of biochemical parameters,
which are performed by different groups and submitted via a PDF document
to be entered into the spreadsheet.

Once the spreadsheet is filled, the model calculates the number of fulfilled
criteria and identifies the appropriate group for the patient (e.g., cancer without
cachexia or the control group).

Fig. 2. Patient Group Classification. Group evaluation for this patient a) record in
case of cancer (see field G4), on the left, and b) in absence of cancer, on the right.

We see in Fig. 2 how the Patient Group Classification is carried out on a spe-
cific example, collecting and combining data items and information items proven-
ing from different exams and questionnaires. On the left we see the evaluation for
this (assumed) patient in presence of a weight loss of 11% in the observed time
frame and in presence of a cancer diagnosis (field G4 of the excel spreadsheet).
As we see, most data concurring to the multidimensional classification stems
from heterogeneous sources: patient demographics, height, blood values, weight
difference, and selected well-being indicators from the standardized QLQ-C30
questionnaire. Several criteria combine data from different provenance, and the
final grouping depends on a number of these criteria. Part of the classification
algorithm, as implemented in the excel spreadsheet, is shown on the right in the
input mask as original excel formula. The computed classification outcome is
reported in field G23: cancer without cachexia. On the right we see the cachexia
index evaluation for the same patient data but in absence of cancer: we see that

538 T. Margaria et al.

now criteria 1 and 4 are not met anymore, and thus the corresponding subtables
are now red, and we see that the group cachexia classification outcome in field
G23 now excludes the patient.

4.3 Discussion on the Current Modeling Approach

The use of an MS Excel spreadsheet shows several shortcomings.The data entry
process must be conducted twice, once at the source collection point and again
into the model. Currently no data quality controls are implemented: syntactic
checks of wellformedness (e.g. data range constraints) are missing. Importantly,
the current design allocates one spreadsheet per patient: this makes aggregate
data analysis and reporting difficult. Once entered into the model, there is limited
(if any) data sharing. The high number of patients and data demands a better
and organized way to record and integrate all the information available. Of
critical importance is additionally that the data is tightly coupled with this
version / understanding of the definition of cachexia. Currently there are more
than one definition, and if it were desired to assess the patient on a different
definition/model, all the data would need to be reentered.

In large collaborative projects such as this, where many participants and
groups wish to work in a virtually shared data and knowledge space, no
researcher or individual has a global expertise. Different research groups are
responsible for and interested in subsets of the data, processes, and results.
Moreover, even in the same group there are roles and specializations. We need
therefore to be able to guarantee to each actor the needed access to own and
other data, while at the same time preserving the quality and the scope restric-
tions. In order to make the data and results available to all the scientists in the
project in an adequate fashion, and later also to other scientists (in the spirit of
open research and evidence-based medicine), data must be collected, stored and
managed with the highest possible accuracy and care, and with a concurrent fo-
cus on sharing. That is, ideally the data should be stored on a central repository,
maintained permanently, and be separated from the processes / analysis tools
that are to be applied to the data.

It is clear from this setting that some information can be made public only
after scientific publications have been submitted or accepted, and that there
is an articulated access right management structure that governs the access
and operations at the project, research group, specialty, and individual level
concerning entire data sets, but also down to the single stored data element. An
example of this is for instance the patient ID anonymization, that renders the
concrete identity of the single patient accessible to a tiny subset of the project
researchers.

In general, we talk here of conducting experiments, production and handling
of blood and tissue samples, conduction of supervised and monitored physical
exercise training sessions, management of radiologic data, and statistical analyses
based on subsets of these raw data. Right now, the work is mostly done manually,
with the guideline of textual descriptions, called Protocols. The person carrying
on the work is mostly expert in one or two areas, and mostly for example not

Simple Management of High Assurance Data 539

in statistical analysis. The collected data and intermediate results, for example
a classification of the patient along the cachexia gravity scale, are kept locally,
in inhomogeneous data sets (e.g. excel sheets) or stored in paper form (e.g. the
questionnaires).

Our goal is to create, together with the project members, a web-based biomed-
ical web application that allows the collection of the raw data with appropriate
controls and constraints, supports their transformation into information units re-
quired by each participant while supporting the easy adaptation and evolution
of the processes and the data that emerge. Importantly, this tool will provide
the ability to adapt to the changing and evolving knowledge and needs, as well
as from the growing needs once the external associated research groups and the
public at large will join the use of the data and results.

5 Data Modeling in DyWA

The chosen approach to data modeling privileges the ease of modification and
evolution. As explained in Sect. 3, it adopts a model driven approach and it offers
the co-creation and co-evolution of data and process models. In the following,
we explain briefly the specific approach we adopt (DyWA [27]) and illustrate on
the same example the outcome after modeling.

5.1 The DyWA Approach to Integrated and Agile Data Modeling

A proper domain modeling is an essential part of the requirement analysis in a
software project. In a classical setting, IT experts typically use graphical model-
ing techniques like UML class diagrams if they are software engineers, or entity
relationship diagrams if they are information systems or database experts. In
general, changes or extensions to the domain model underlying and software
application are however not primarily foreseen. Refactorings and changes of the
DB schema lead to complex, global reaching, and error-prone migrations and
therefore it is possibly avoided in the classical development process. Agile meth-
ods [19] try to counter this schema lock-in syndrome at least at the level of the
business logic, encouraging short and targeted development cycles as a means
for a more flexible reactivity to change requests. The Dynamic Web Application
(DyWA) [27,10] offers an additional agile handling also of the data structures
of an application, and integrates the definition and management of the domain
model into the process management of jABC4. This way, a truly collaborative
design and evolution of data and processes puts for the first time the evolution
of data domain and behavior on an equal footing.

In this concrete case, the processes that are currently textually or implic-
itly described in protocols should be collaboratively modeled, and formalized in
(agile) process models. As shown in Fig. 3, the prototype based interaction of
domain modeling and process modeling, in short cycles successively defines, im-
proves, refines, and diversifies the data and the operations on and around them.
The lead, ownership, and the decision power are in the hands of the researchers,

540 T. Margaria et al.

Fig. 3. Agile collaborative software development with DyWA and jABC4

in a competence based style [5]. Data and process models should be dynamically
modifiable, with an ease of modification that closely follows the change of needs,
the growth of the groups and the diversification of the actors.

The concrete interplay of the two tools supports the four phases:

1. Domain modeling
2. Automatic Generation of the domain-specific data types and of the code

for the CRUD operations upon them, with deployment in the jABC4 as a
domain specific collection of services

3. Process definition and validation/verification in jABC, using these domain
specific services plus a growing collection of similar services that are either
domain-independent (e.g. export as file, or as CSV) or provene from other
domains. Examples of such domains are geo-information and visualization,
e.g. to create maps of prevalence of certain phenomena, or statistical analysis
with Matlab or GNU R.

4. Code generation for the finished and verified processes and their deployment
into DyWA, that now exploits its nature as web application to immediately
make these processes available to the users worldwide.

This way, we achieve the central repository and easy access to it that we had
set as primary criterion for the collection, management, and fruition of the data.
Details on the characteristics of jABC that make it particularly adequate as a
high-assurance process design tool for scientific workflows in a volatile environ-
ment (like in the design of scientific experiments) are available in [26,25] and
[12,14].

5.2 How the Example Has Been Treated

The modeling in DyWa was carried out by three senior students of Business
Information Systems in the business school in CalPoly. They had some expla-
nations on the overall project structure by other team members, and a brief

Simple Management of High Assurance Data 541

Fig. 4. The Patient Group Assessment type in DyWA. Type collection (on left) and
complex type type composition (on right). The green types are domain-specific types
modeled after the spreadsheet.

introduction to DyWA and to jABC4. They had previous experience of domain
modeling in the traditional E/R style, but this was not a prerequisite. They
were provided with the questionnaire and the spreadsheet of Section 4, they in-
terpreted the spreadsheet and turned its data definition part into a collection of
types in DyWA.

As we see in Fig. 4, there is now in DyWA a collection of types (on the left)
corresponding to the sub-elements of the excel spreadsheet. They include the
basic demographics and anthropometrics (in the type Patient), but also types for
other more complex measurements like the MUAMA Assessment, that includes
the computation of a MUAMA Score, and is used in the Fat Free Mass Index
Assessment. The basic data items, like age, gender, height, weight, are collected
as primitive data, in accordance with the data collection principles enunciated
in Sect. 3.1. Derived values like the BMI or the MUAMA Score, are going to
be computed by means of little computational processes, and the dependencies
between types, in terms e.g. of the Used-in relation, are automatically tracked
by the DyWA infrastructure.

In terms of agility and long term evolution support of data structures, DyWA
features a built-in staged development that makes change management easier.
Changes in the definition of data types are not immediate (like in excel, which
is an interpreted programming environment), but decoupled from the running
version. Therefore any change is first only marked for change or for deletion, and

542 T. Margaria et al.

there are built-in checks that make sure that no change will become operational if
the processes that use that data have not been correspondingly updated. Users
can therefore safely experiment on the data and process definitions, without
affecting the operational version that continues to run undisturbed.

In terms of processes, for the moment we are addressing the built-in com-
putations of the excel classification spreadsheet and modeling them as jABC4
processes that use the CRUD operations automatically generated by DyWA for
all the types there defined. The idea is to create a library of domain-specific
SIBs (or units of operation) and processes that users can then easily modify and
adapt, in a domain-bootstrapping fashion.

6 Discussion and Perspectives

The role of long term data management usability coupled with tools to provide
security, access, privacy and quality is paramount in the realm of healthcare
systems. In order to react positively to changes in processes, tools, methods, and
data, the systems of tomorrow must embrace agility. Static designs built with old
school thinking need to be replaced with tools that provide the aforementioned
performance gains. Data design and collection systems such as DyWA are the
future in data management and especially in data management of mission critical
applications where potential failures can negatively impact research results and
the concomitant informing of health care policies, practice and research.

Importantly, research results can no longer be siloed. Transparency, appro-
priate shared access, and knowledge growth are key to the health of today’s
international society. Data management systems that adopt such a perspective
with realize the high potential gains that data analytics can bring to the provi-
sion of new understandings and ultimately treatments and hopefully cures.

As noted earlier, an important performance factor in medical research systems
is the security and tracking of all data transactions, e.g. a sequence of CRUD op-
erations. Importantly, identifying and maintaining role based access techniques
at entry to facilitate and restrict access to the correct individuals must be em-
bedded directly into the design of the meta data of the system as well as into
the technical infrastructure and enables this functionality.

Our work with the ‘engaged professional’ suggests that the power in our think-
ing and approach enables these end users to be proactive in the creation and use
of the data management systems and repositories. Deskilling these technologies
provides an impact that is immeasurable in the creation of new medical knowl-
edge through domain skilled design and through the building of international
research alliances through data collaborations.

Acknowledgments. We thank Markus Frohme and Dennis Kühn (TU Dort-
mund) for their support with the modeling tools (DyWA and jABC), Aaron
James, Nathan Chen and Jessica Liang (CalPoly), Michele Joana Alves, Katrin
Radloff and Emidio Matos (USP) for their help in understanding the project

Simple Management of High Assurance Data 543

organization. This work was partially funded with the following grants: PRO-
BRAL 369/12 (2011-2013), ITSy EU FP7-ICT-2009-5 Project 258058 (2010-11),
FAPESP 12/50079-0.

References

1. Epirare, the European platform for rare disease registries,
http://www.epirare.eu/

2. Evidence-based medicine, http://ebm.bmj.com/site/about/whyread.xhtml
3. Global rare diseases patient registry and data repository,

http://rarediseases.info.nih.gov/research/pages/43/global-rare-

disease-patient-registry-and-data-repository

4. Argilés, J.M., Busquets, S., López-Soriano, F.J.: Anti-inflammatory therapies in
cancer cachexia. European Journal of Pharmacology 668(suppl. 1), S81–S86 (2011),
http://www.sciencedirect.com/science/article/pii/S0014299911007783,
pharma-Nutrition

5. Rasche, C., Margaria, T., von Reinersdorff, A.B.: Value delivery through it-based
healthcare architectures: towards a competence-based view of services. 25 Jahre
ressourcen- und kompetenzorientierte Forschung: der kompetenzbasierte Ansatz
auf dem Weg zum Schlüsselparadigma in der Managementforschung, pp. 417–443
(2010)

6. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge (1999)

7. European Organisation for Research and Treatment of Cancer (EORTC): Qlq-c30:
quality of life questionnaire, http://groups.eortc.be/qol/eortc-qlq-c30

8. Evans, W.J., Morley, J.E., Argilés, J., Bales, C., Baracos, V., Guttridge, D., Jatoi,
A., Kalantar-Zadeh, K., Lochs, H., Mantovani, G., Marks, D., Mitch, W.E., Mus-
caritoli, M., Najand, A., Ponikowski, P., Rossi Fanelli, F., Schambelan, M., Schols,
A., Schuster, M., Thomas, D., Wolfe, R., Anker, S.D.: Cachexia: a new definition.
Clin. Nutr. 27(6), 793–799 (2008)

9. Fearon, K., Strasser, F., Anker, S.D., Bosaeus, I., Bruera, E., Fainsinger, R.L.,
Jatoi, A., Loprinzi, C., MacDonald, N., Mantovani, G., Davis, M., Muscaritoli, M.,
Ottery, F., Radbruch, L., Ravasco, P., Walsh, D., Wilcock, A., Kaasa, S., Baracos,
V.E.: Definition and classification of cancer cachexia: an international consensus.
The Lancet Oncology 12(5), 489–495 (2011)

10. Frohme, M.: Agile Domänenmodellierung für prozessgesteuerte Webanwendungen.
Bachelor thesis, TU Dortmund (2013)

11. Jonsson, B., Margaria, T., Naeser, G., Nyström, J., Steffen, B.: Incremental require-
ment specification for evolving systems. Nordic J. of Computing 8, 65–87 (2001),
http://dl.acm.org/citation.cfm?id=774194.774199

12. Jörges, S., Lamprecht, A.L., Margaria, T., Schaefer, I., Steffen, B.: A Constraint-
based Variability Modeling Framework. International Journal on Software Tools
for Technology Transfer (STTT) 14(5), 511–530 (2012),
http://www.springerlink.com/content/e453185h7726137l/

13. Jörges, S., Margaria, T., Steffen, B.: Genesys: service-oriented construction of
property conform code generators. Innovations in Systems and Software Engineer-
ing 4(4), 361–384 (2008)

14. Lamprecht, A.-L.: User-Level Workflow Design. LNCS, vol. 8311. Springer, Heidel-
berg (2013)

http://www.epirare.eu/
http://ebm.bmj.com/site/about/whyread.xhtml
http://rarediseases.info.nih.gov/research/pages/43/global-rare-disease-patient-registry-and-data-repository
http://rarediseases.info.nih.gov/research/pages/43/global-rare-disease-patient-registry-and-data-repository
http://www.sciencedirect.com/science/article/pii/S0014299911007783
http://groups.eortc.be/qol/eortc-qlq-c30
http://dl.acm.org/citation.cfm?id=774194.774199
http://www.springerlink.com/content/e453185h7726137l/

544 T. Margaria et al.

15. Lamprecht, A.-L., Margaria, T. (eds.): Process Design for Natural Scientists - An
Agile Model-Driven Approach. CCIS, vol. 500. Springer, Heidelberg (2014)

16. Lamprecht, A.-L., Margaria, T., Steffen, B.: Seven Variations of an Align-
ment Workflow - An Illustration of Agile Process Design and Management
in Bio-jETI. In: Măndoiu, I., Wang, S.-L., Zelikovsky, A. (eds.) ISBRA
2008. LNCS (LNBI), vol. 4983, pp. 445–456. Springer, Heidelberg (2008),
http://dx.doi.org/10.1007/978-3-540-79450-9_42

17. Lamprecht, A.L., Naujokat, S., Margaria, T., Steffen, B.: Semantics-based compo-
sition of EMBOSS services. Journal of Biomedical Semantics 2(suppl. 1), S5 (2011),
http://www.jbiomedsem.com/content/2/S1/S5

18. Margaria, T., Kubczak, C., Njoku, M., Steffen, B.: Model-based Design of Dis-
tributed Collaborative Bioinformatics Processes in the jABC. In: Proceedings of
the 11th IEEE International Conference on Engineering of Complex Computer Sys-
tems (ICECCS 2006), pp. 169–176. IEEE Computer Society, Los Alamitos (2006)

19. Margaria, T., Steffen, B.: Agile IT: Thinking in User-Centric Models. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17, pp. 490–502. Springer, Heidelberg
(2008)

20. Margaria, T., Steffen, B.: Continuous Model-Driven Engineering. IEEE Com-
puter 42(10), 106–109 (2009)

21. Margaria, T., Steffen, B.: Service-Orientation: Conquering Complexity with
XMDD. In: Hinchey, M., Coyle, L. (eds.) Conquering Complexity, pp. 217–236.
Springer, London (2012), http://dx.doi.org/10.1007/978-1-4471-2297-5_10

22. Müller-Olm, M., Schmidt, D., Steffen, B.: Model-Checking - A Tutorial Introduc-
tion. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS, vol. 1694, pp. 330–354.
Springer, Heidelberg (1999), http://dx.doi.org/10.1007/3-540-48294-6_22

23. Neubauer, J.: Higher-Order Process Engineering. Phd thesis, Technische Univer-
sität Dortmund (2014), http://hdl.handle.net/2003/33479

24. Neubauer, J.: Higher-Order Process Engineering: The Technical Background. Tech.
rep., Technische Universität Dortmund (April 2014),
http://hdl.handle.net/2003/33102

25. Neubauer, J., Steffen, B.: Plug-and-Play Higher-Order Process Integration. IEEE
Computer 46(11), 56–62 (2013)

26. Neubauer, J., Steffen, B.: Second-Order Servification. In: Herzwurm, G., Margaria,
T. (eds.) ICSOB 2013. LNBIP, vol. 150, pp. 13–25. Springer, Heidelberg (2013),
http://dx.doi.org/10.1007/978-3-642-39336-5_2

27. Neubauer, J., Frohme, M., Steffen, B., Margaria, T.: Prototype-Driven Develop-
ment of Web Applications with DyWA. In: Margaria, T., Steffen, B. (eds.) ISoLA
2014, Part I. LNCS, vol. 8802, pp. 56–72. Springer, Heidelberg (2014)

28. Steffen, B., Margaria, T., Nagel, R., Jörges, S., Kubczak, C.: Model-Driven De-
velopment with the jABC. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS,
vol. 4383, pp. 92–108. Springer, Heidelberg (2007),
http://dx.doi.org/10.1007/978-3-540-70889-6_7

http://dx.doi.org/10.1007/978-3-540-79450-9_42
http://www.jbiomedsem.com/content/2/S1/S5
http://dx.doi.org/10.1007/978-1-4471-2297-5_10
http://dx.doi.org/10.1007/3-540-48294-6_22
http://hdl.handle.net/2003/33479
http://hdl.handle.net/2003/33102
http://dx.doi.org/10.1007/978-3-642-39336-5_2
http://dx.doi.org/10.1007/978-3-540-70889-6_7

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 545–560, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Domain-Specific Business Modeling with the Business
Model Developer

Steve Boßelmann and Tiziana Margaria

Department of Computer Science
University of Potsdam
August-Bebel-Str. 89

14482 Potsdam, Germany
{bossel,margaria}@cs.uni-potsdam.de

Abstract. Discussing business models of companies and organizations based on
graphical representations that emphasize essential factors has increased in
recent years, particularly from a business perspective. However, feasible
implementations of business modeling tools are rare, as they tend to be domain
specific but at the same time tailored towards the requirements of a
heterogeneous group of stakeholders. We present the Business Model
Developer (BMD) and the underlying framework for the creation of domain-
specific business models. The approach relies on the definition of a domain-
specific library of model components as well as structured parameters with
different scopes, i.e. declared areas of applicability. This setup forms the basis
for the development of custom techniques for model analysis. We align the
development process with the approach of Extreme Model Driven Development
(XMDD) to keep it as simple as possible for domain experts to contribute in
tailoring the tool towards specific needs. Furthermore, we present a practical
application in the healthcare domain, as the BMD has been developed and
applied in the course of a joint project in the area of Personalized Medicine.

Keywords: business model, personalized medicine, model-driven software
development, simplicity.

1 Introduction

Modeling tools like the Business Model Canvas (BMC) [1] receive significant
attention in the area of business strategy. However, the term ‘tool’ is ambiguous and
in this case should be interpreted as a ‘best practice’ approach to gathering the most
important business-related aspects by asking the right questions. However, from a
computer science perspective there are virtually no sophisticated tools that support
business model design by means of applying formal semantics, neither in general nor
for specific areas of application. This lack of formalism reflects the fact that on the
one hand there is neither common understanding about a suitable ontology nor about
component types that business models should actually comprise. Hence particular
model characteristics depend on the application area as well as on the actual business
domain.

546 S. Boßelmann and T. Margaria

As a consequence, the tool development process depends on inter-disciplinary
collaboration and communication. It requires immediate contribution of a
heterogeneous group of stakeholders involving business management, finance and
economics researchers, depending on the tool’s field of application and intended
purpose. Business models – like models in general – represent a common language
for these stakeholders with often entirely different disciplinary backgrounds, as they
enable the depiction of key aspects to support discussions and decision-making [2].
However, most of these stakeholders typically lack broad knowledge of formal
models and software engineering skills. Hence, a decent amount of simplicity
throughout the development lifecycle is key for success. The notion of simplicity as a
driving paradigm in information system development has been explicitly identified as
an important research topic, yet it is still poorly understood [3,4] and not widely
adopted in research [5].

In order to integrate stakeholders with different disciplinary backgrounds in the
modeling and comprehension process in a possibly simple and intuitive way, we
follow the approach of Extreme Model Driven Development (XMDD) [6], an
advancement of Continuous Model-Driven Engineering [7]. In this context, we direct
our development efforts towards leveraging the jABC framework [8] as our main
development environment as it supports XMDD in a consistent manner.

Regarding the structure of this article, first of all we will present the basic
modeling concepts of the Business Model Developer in Section 2, especially the
domain-specific setup based on a component library and structured parameters. In
Section 3 we describe the practical setting of the healthcare-related joint project
where the tool has been developed and applied in practice. Here we also describe the
main features of the tool’s user interface, the actual steps for designing business
models as well as an example of applied model analysis. Finally, Section 4 concludes
with some thoughts and ideas for future work.

2 Domain Specification

The presented approach to business modeling is based on the Business Model
Ontology (BMO) [9] that results from Osterwalder’s research comprising balanced
score cards [10], value chains [11], and stakeholder analysis [12]. The BMO defines
nine separate model segments that represent semantic categories. Reasonably
arranged, they form the well-known partition of the Business Model Canvas. We will
refer to these as ‘canvas categories’ throughout this article. The BMC is a conceptual
template to be filled with the actual modeling entities to depict “a description of the
value a company offers to one or several segments of customers and the architecture
of the firm and its network of partners for creating, marketing and delivering this
value and relationship capital, in order to generate profitable and sustainable
revenue streams” [9]. We will refer to these modeling entities as ‘model components’
whenever we want to stress that they constitute the actual model. On the other hand,
each of these model components represents a business-related entity to be referred to
as ‘business item’ throughout this article.

 Domain-Specific Business Modeling with the Business Model Developer 547

With the definition of the canvas categories the Business Model Canvas comprises
a description of nine specific containers to hold items but only loosely restricts the
kind of items to be placed inside. The Business Model Canvas is a handcrafted
approach to business model design. Typically, in workshops and moderated modeling
sessions users brainstorm, create notepads with keywords and place them on a
physical Business Model Canvas such as on a flipchart. Starting with a bare canvas it
remains up to the modeler to create a design that is semantically correct. This holds
for the pen-and-paper approach as well as for the commercial BMC software tool
[13], which basically allows for the placement of generic, virtual notepads onto a
virtual canvas.

In contrast, our approach facilitates a pre-defined domain-specific setup of the
modeling environment. The definition of this setup takes place in a distinct
customization step preceding the actual model design. Typically, different
stakeholders are involved in this customization step, spanning application experts,
domain experts as well as the modeler representing the actual user from the
application domain the Business Model Developer is tailored to. This way, user needs
can be communicated and considered in an immediate manner. The setup is not fixed
but can at any time be adapted to changes in market conditions and stakeholder
requirements. This allows for an iterative development and continuous improvement
of the tool’s setup to best reflect the application domain.

A domain-specific setup of the Business Model Developer consists of the
definition of a library of building blocks that represent available model components,
along with a list of parameter definitions to be applied to these model components.
The following sub-sections provide a more detailed description of these aspects.

2.1 Library of Building Blocks

The core of the proposed domain-specific setup of the Business Model Developer is
the definition of a library of building blocks that represent available model
components. Providing such a library of building blocks has two advantages over
approaches that merely rely on generic elements, like labeled notepads.

• On the one hand, listing appropriate model components offers the modeler an
incentive to discover unused potential as they represent business items that are
relevant for the considered domain and hence outline aspects that otherwise might
not have been taken into account.

• On the other hand, a library of building blocks provides the components for a
sound business model instead of serving the user a completely blank canvas with
which to begin.

As this way the modeling part as such does not start with a bare canvas, the building
blocks provide valuable assistance and guidance e.g. to entrepreneurs for designing
first business models. This approach of providing building blocks in such a fashion is
similar in concept to graphics tools that provide the feature of drawing basic shapes
instead of leaving the user with a freehand pen and some good advice on how to do it.
Additionally, a pre-defined set of building blocks serves as a shared vocabulary that

548 S. Boßelmann and T. Margaria

participants with different professional background can agree upon in order to
increase communicability and information exchange amongst them. This
understanding is essential because business models – just like models in general – are
created to point out crucial aspects and hence support decision-making.

The underlying framework of the Business Model Developer provides full
interchangeability regarding the library of building blocks. This way the model
components can be specified for the actual application domain and tailored towards
the modelers’ requirements. Furthermore, each building block is determined for a
specific canvas category. Hence the whole library can be sorted according to the
canvas categories. During the modeling process this enables filtering of applicable
model components to exactly those that can be placed inside a respective canvas
category. This way, the modeling software supports the modeler in the creation of
models that are syntactically correct by preventing misplaced model components.
This is a real advantage over the unrestricted placement of generic labeled notepads.

2.2 Classification of Business Items

In general, the elements within our proposed library of building blocks do not
correspond to individual business items but represent classes of items. As an example,
the library would contain an abstract element ‘Research Institution’ for the canvas
category ‘Key Partners’ instead of listing all universities that exist. Hence, in order to
express that ‘University of Potsdam’ is a key partner, the modeler can select the
building block ‘Research Institution’ which triggers the creation of a corresponding
model component. This model component is interpreted as an instance of the class
represented by the selected building block. Thus, the creation process is referred to as
‘instantiation’ and the class represented by the building block is referred to as the
model component’s type. A single canvas category can hold multiple instances of a
single class, i.e. one single building block. The modeler can specify a custom name
for each instance according to the respective business item it is intended to represent.
To conclude our illustrative example, the modeler would specify the name ‘University
of Potsdam’ for the instantiated model component of class ‘Research Institution’.

The classes of business items represented by building blocks can be defined in
such a manner that they correspond to very specific sets of items. This way, a building
block can indirectly even represent a single business item. As the type of each model
component remains accessible over the model’s lifetime, this information can be
evaluated by software, which in a succeeding step might trigger some reasoning based
on this information. In particular, type information is an essential aspect for the
definition of rules to be checked and verified at model design time as well as the
application of any model analysis technique. Hence, the structure of the library of
building blocks not only is tailored to the respective business domain in terms of
providing a common language. It also needs to comply with analysis requirements
eventually formulated by stakeholders interested in evaluation. For example, if a
specific analysis technique requires the distinction between different types of research
institutes within the partner network, the library of building blocks can be defined
accordingly by providing separate building blocks for each of these types.

 Domain-Specific Business Modeling with the Business Model Developer 549

2.3 Specification of Building Blocks

The classification of business items to be used in the design of business models
facilitates the restriction of items to be placed inside a specific canvas category. The
required knowledge base enabling this evaluation can be specified by an appropriate
ontology model, as ontologies are used to formally describe the terms of a domain as
well as the relations between them [14]. Generally, the vocabulary of ontology
models bases on the concept of classes and individuals, the latter representing
instances of classes. In order to avoid confusion, they are referred to as ‘ontology
classes’.

Ontology Models. In the context of the Business Model Developer we use ontology
models to specify a taxonomy of building blocks. The hierarchical structure of this
taxonomy corresponds to the set of canvas categories, i.e. it contains a list of building
blocks for each of the latter. Such a list can be specified by naming the identifier of an
ontology model as well as a set of ontology classes within this model. The actual
instances of these ontology classes are considered as building blocks for the
respective canvas category. These instances are specified as individuals within the
same ontology model. These individuals are connected to the respective ontology
class via an instanceOf relation. We refer to the combination of ontology identifier
and related ontology classes as ‘ontology sector’.

As the desired set of building blocks for a specific canvas category can be spread
over multiple ontology models, the Business Model Developer allows for the
specification of multiple ontology sectors for each canvas category. Taking
inheritance into account, the actual list of building blocks for a specific canvas
category is constructed by collecting and combining the instances of the ontology
classes for each respective ontology sector.

The presented approach for the specification of building blocks allows for using
existing ontology models. For many domains, ontologies have been maintained that
are freely accessible via online libraries1. Alternatively, custom ontology models
might be defined and tailored towards specific use cases. We are using the Web
Ontology Language (OWL) [15] for this approach. In particular, we use the OntED
plugin of the jABC framework [8] that provides a graphical editor for the creation of
OWL-based ontology models. Hence, according to the XMDD approach [5] we create
a graphical model for specific needs within our main development environment.

Custom Taxonomies. The specification of a custom taxonomy of building blocks is
straightforward. The corresponding ontology model contains ontology classes that are
classified according to the canvas categories, i.e. there is an OWL class for each
canvas category, respectively. Subsequently, any building block that should be
assigned to this category is defined as an instance of this class by creating an OWL
individual connected via the instanceOf relation. As an example, Fig. 1 shows a tiny
snippet of the ontology model created this way. It shows that according to the canvas

1 Ontology data sharing, e.g. http://www.ontobee.org and
 http://www.obofoundry.org

550 S. Boßelmann and T

category ‘Value Propo
ValueProposition. Building
represented as OWL individ

F

The specification of buil
at runtime. Hence, the Bus
the ontology model. Base
blocks are filtered for each
achieved this way allows
correct placement on the ca

Finally, a well-defined
analysis of a business mod
not be applicable on non-
creative freedom of the mo
extension of the component
user needs to create a busin
represented by the building
can be used just like any oth
be considered for model ana

2.4 Parameterization o

Besides this library of bu
Model Developer comprise
components. As these com
more detailed characteriz
components with user-prov
some examples, these param
key partner, the costs of a sp

T. Margaria

ositions’ the ontology contains the OWL cl
g blocks for this canvas category are instances of this cl
duals.

Fig. 1. Snippet of the ontology model

lding blocks with the use of ontology models is evalua
siness Model Developer immediately reacts on changes
ed on the information within the ontology, the build
h canvas category. The restricted use of model compone

for avoiding mistakes during the design process as
anvas is enforced.

set of classified building blocks paves the way for
del as well as specific model checking routines that wo
-classified entities. However, in order to not restrict
odeler the Business Model Developer allows for the ad-
t library by custom-typed model components whenever
ness item that does not fit in the pre-defined type sche
 blocks. At design time, model components of custom t
her model component of pre-defined type, but they will
alysis.

of Business Items

ilding blocks the domain-specific setup of the Busin
es a list of parameter definitions to be applied to mo

mponents represent business items, parameters allow fo
ation of a business model by the enrichment of
vided content in the form of parameter values. To na
meters enable the user to state the type of interaction wit
pecific key resource or the value of a revenue stream.

lass
ass,

ated
s to

ding
ents
the

the
ould

the
hoc
the

eme
type
not

ness
odel
or a

its
ame
th a

 Domain-Specific Business Modeling with the Business Model Developer 551

Parameter Scopes. Parameters can be generic, i.e. they are existent at every model
component but they can also be specific for a limited subset. Especially the subset of
building blocks for a specific canvas category is of particular interest in this context.
Hence we use the concept of scopes for parameters. In particular, right in between
generic parameters (canvas scope) and component-specific parameters (component
scope) we introduce category-specific parameters (category scope). Besides the
straightforward definition of component-specific parameters, the technical realization
is based on the definition of parameter templates to be linked with canvas categories
or the canvas itself. At instantiation time of a specific model component the parameter
templates of the respective category as well as the ones of the canvas are instantiated
as well and linked to this component. From now on they are treated just like any
normal parameter that is directly associated with a model component.

Parameters with limited scope override parameters with wider scope if the
respective parameter keys are identical. This makes it possible to define parameters
for all the items of a specific canvas category without knowing the actual component
library but at the same time allow amending some of these parameters for a single
component wherever it is required. However, a parameter’s scope is not visible to the
user of the Business Model Developer because from a user’s perspective scopes are
considered technical detail irrelevant for the actual use of parameters. The use of a
parameter as well as its appearance for the user is realized independently of its actual
scope.

Category-Specific Parameters. An example of a category-specific parameter is the
parameter ‘Timing of Interaction’. With the help of this parameter the user can
provide details on when exactly the interaction with a specific associate partner takes
place. Hence, the scope of this parameter is the single canvas category ‘Key
Partners’. The parameter is applicable for any model component to be instantiated
within this canvas category, independent of the actual component type. This illustrates
that category-specific parameters can be defined independently of the actual set of
model components related to this category. Parameters can even be domain-
independent. In our illustrative example, the parameter ‘Timing of interaction’ is
applicable to whatever model component is instantiated within the category ‘Key
Partners’, as it only exploits the fact that this component is meant to represent an
associated partner in the context of a business model and there is some kind of
interaction with this partner at some point in time.

In some cases, the scope of a parameter can span multiple canvas categories. Cost
factors are a typical example. They can be specified for most of the model
components, while for some categories (e.g. customer segments) specifying costs
makes less sense. Hence, they are not defined as generic parameters with global
scope. On the other hand, for example any key partner, key resource or key activity
can induce costs. Hence, the scope of the parameter ‘Cost Factor’ is defined as a set
of canvas categories.

Parameter Structure. From a technical perspective, the Business Model Developer
provides a default parameter construct that covers literal value types as well as custom

552 S. Boßelmann and T. Margaria

value objects. It is designed to either hold a single value or a list of values. In both
cases a set of selectable values can be specified from which the parameter value (or
multiple values) can be chosen from. This parameter structure with a pre-defined list
of selectable values is similar to the structure of multiple-choice questionnaires.
Hence it enables the transfer of survey structures in an immediate manner. At the
same time, it allows for an evaluation, just like the types of model components can be
considered e.g. in the context of any analysis algorithm. User-specified parameter
values remain accessible over the complete lifetime of the business model. Depending
on the combination of parameter values various characteristics might be identified and
depending on the latter appropriate rules might be triggered or conclusions might be
drawn. In combination with the types of the respective model components that hold
the parameters this opens a lot of potential for analysis techniques that would not be
applicable in tools that solely rely on pure graphical representation.

The depicted approach bases on a generic parameter structure and already covers a
wide range of common parameter constructs. However, the underlying framework of
the Business Model Developer does not restrict the type of parameters and allows for
their extension by programming custom parameters into code.

3 Business Modeling in Personalized Medicine

The Business Model Developer has been developed in the course of the joint project
Service Potentials in Personalized Medicine (DPM) [16], funded by the German
Federal Ministry of Education and Research (BMBF). The main objective of the
project was a market analysis of Personalized Medicine to identify key actors, drivers
and barriers, that included the analysis of current and future business models within
this specific market segment. The Business Model Developer was developed not only
under consideration of the project’s findings but also practically applied in interview
sessions with industry experts as well as repeatedly tested and evaluated by project
partners. Experiences and insights achieved this way have directly influenced further
improvement of the Business Model Developer.

The frontend of the Business Model Developer that has been developed for the
DPM project is an Android-based App for Tablets. The following subsections
comprise a short description of the tool’s user interface as well as how to create
business models with it.

3.1 Filling the Canvas

The visualization of the workspace is based on the design of the Business Model
Canvas and adopts the arrangement of its nine canvas categories. The modeler
successively enriches them with model components from the library of building
blocks. This library is accessed via the context menu of a canvas category and the
listed building blocks are restricted to those that are suitable for the respective
category. This way, the user interface avoids the misplacement of model components
in a rigorous manner.

 Domain-Specific Business Modeling with the Business Model Developer 553

Fig. 2. Screenshot of the canvas with colored model components and labeled relations, an
item’s context menu (middle) and the overlay inspector showing the item’s parameter values
(right).

Domain-Specific Components. In the context of the DPM project the library
contains components that are most likely for business models in the area of
Personalized Medicine. The building blocks have been identified by the evaluation of
surveys and interviews with industry experts with a focus on diagnostic companies
[17]. As an example, building blocks for the category Key Partners span general
entities like Research Institutes, Companies and Investors. At the same time the
Business Model Developer lists items that are very specific for the domain of
diagnostic companies, such as Biobanks, Biological Databases as well as Researching
Physicians. Analogously, the building blocks for other canvas categories are tailored
towards this distinct field of application.

Selecting one of the listed building blocks leads to a dialog that asks the user for
the name of the model component to be instantiated. Furthermore, associated
parameters are listed for the user to provide appropriate values. Depending on the
type of parameter, the user can select from pre-defined values or provides custom
textual or integer input. Having done so, the new model component is instantiated
according to the user’s input and visualized by means of a labeled rectangular shape
inside the dedicated area of the canvas representing the respective canvas category.
The user is able to assign custom colors to the items’ shapes in order to emphasize
special group memberships of items. Fig. 2 shows a screenshot of an example model
as well as the main components of the user interface.

Accessing Parameters. Parameters and their values are not visualized on the canvas
directly. Instead, an overlay dialog (referred to as an inspector) is shown that covers

554 S. Boßelmann and T. Margaria

parts of the canvas whenever a model component is selected. The inspector lists de-
tailed information on the component’s type as well as all of the corresponding
parameters and respective parameter values. The latter may be manipulated in the
inspector directly, be it simple key-value pairs or structured parameters with pre-
defined value lists. As soon as the item is unselected any changes are applied and the
inspector fades out.

The parameter ‘Cost Factor’ represents an exception from the inspector-based
approach of parameter visualization. These parameters are displayed in the upper
corner of the respective item’s rectangle shape. Both values, fix costs and costs per
anno are displayed at the same time. This provides a fast overview over the model’s
different cost factors while maintaining the visual link to the associated model
component. Additionally, the computed total costs are depicted in the lower corner of
the canvas category ‘Cost Structure’, again separated into fix costs and costs per
anno. As an alternative, the inspector shows a list of all cost factors whenever the
canvas category ‘Cost Structure’ is selected. They appear like parameters grouped by
the name of the model component that holds the respective parameter. Their values
can be changed directly via the inspector. Doing so will update the value of the costs
parameter of the respective model component.

3.2 Modeling the Relations

The Business Model Developer provides an additional feature for emphasizing
interrelations between business items, like for example dependencies. The modeler
can specify relations between two particular model components. As business models
typically contain various types of relations between their components, facilitating the
explicit specification of these relations provides genuine added value for model
creation. From an opposite perspective, without the ability of specifying relations
business models would lack essential information needed for its understanding and
interpretation. As an example, providing lists of key resources and key activities does
not state anything about how resources are allocated to the respective activity.
However, resource allocation can be understood as a type of relation between
resources and activities. Hence the allocation can be clearly specified by linking each
resource to the respective activity it is related to. This and other common types of
relations within business models have been identified and described along with the
creation of the Business Model Ontology [9]. However, the Business Model Canvas
does not cover the explicit creation of relations. Hence, the modeling of relations by
means of the Business Model Developer represents another valuable extension of the
underlying BMC framework.

The graphical representation of relations is based on directed edges that may be
labeled. While the direction of the edge supports the interpretation of the relation,
labeling the edge allows to clearly specifying the type of the represented relation
between the respective business items. That means, in order to specify a relation
between two specific business items the modeler creates a directed edge between the
model components that represent these items and labels it accordingly. Fig. 3 shows
some illustrative examples for different types of relations.

The visualization of edges can be customized by means of variable line
thickness. This feature can be used to emphasize different weighting of relations in a

 Domain-Specific Business Modeling with the Business Model Developer 555

qualitative manner. In particular, thicker lines stand for stronger relations. Fig. 3
shows an illustrative example of an activity that is supported by two different key
partners. The thickness of the edges representing the relation ‘supports’ differs,
suggesting the interpretation that one of the actors is more supportive than the other.

Fig. 3. Examples of the use of relations. Top-left: Using line thickness to emphasize qualitative
differences between two relations of the same type. Top-right: Resource allocation. Bottom:
Indicating different channels for different customer segments.

The user can further adjust the visualization of edges by means of deviation points.
They are interpreted as reference points that mark a path the respective edge is drawn
along. This feature is solely a graphical aspect, as deviation points do not have any
semantics.

3.3 Guided Modeling with the ‘Wizard’

While the above concepts of creating business models rely on direct interaction with
the canvas, the Business Model Developer provides an alternative way to develop a
model. In this approach the user accesses a ‘Wizard’ which is dialog-based, i.e. the
modeler follows a structured approach similar to a questionnaire. The Wizard lists
the nine categories of the canvas in a pre-defined order and guides the user through
the necessary steps to fill them with model components. This guidance is realized by
means of significant descriptions and supporting hints regarding the meaning of the
different categories as well as the purpose of parameters.

This Wizard-based approach is especially helpful for beginners as it supports
the creation of first business models in a directed fashion, improving completeness.

556 S. Boßelmann and T

The actual graphical repres
the background based on th
with the Wizard. The user
time, as filling some catego
not only provide initial guid
business model. Thus, the
state.

3.4 Business Model An

Typed model components a
form the basis for the appli
a systematic analysis techn
comparison of business m
regarding business models
been defined via the DPM-s
of this data, they identified
instances of business mode
calculation of cluster mem
model designed to current
cluster analysis makes use
components that have been
values of the corresponding

Fig. 4.

In the specific context of
area of Personalized Medic
On the one hand, the typ

T. Margaria

sentation of the business model is successively created
he information the modeler provides during the interact
can trigger the creation of this canvas-based view at

ories might as well be skipped. However, the Wizard d
dance. It is intended to be used as an alternate view on
Wizard can be re-entered at any time and for any mo

nalysis

as well as structured parameters with limited value ran
cation of model analysis. In the course of the DPM proj

nique has been developed by the colleagues that enable
models [17]. This analysis is based on the collected d

of diagnostic companies, accessing the same data that
specific library of building blocks. Based on the evaluat
d distinct clusters that represent a partition over differ
els. The Business Model Developer enables the automa

mbership and thus enables the comparison of the busin
market reality in the area of Personalized Medicine. T
of the accessible information regarding the types of mo

n used within each canvas category as well as the selec
g parameters.

Screenshot of the result of cluster analysis

f the DPM project, focusing on diagnostic companies in
cine, the cluster analysis is based on two main dimensio
pe of the respective offer is analyzed. Service-cente

d in
tion
any

does
the

odel

nges
oject
es a
data
has
tion
rent
ated
ness
The
odel
cted

 the
ons.
ered

 Domain-Specific

business models are rated a
manufacturing. This type of
the canvas category ‘Key A
the number of different app
This information is specifie
that is specific for the c
dimensions, other aspects li
As the details of the cluste
interested user to the respec

Taking the actual mod
computes the distance to ea
investigated business mode

As a result, the Business
information on what the re
overview of derived cluste
matrix representation along
distances to the respective c
have been given descriptive
the user, the tool provides
which has been obtained fr
This information spans a d
management recommendati
as well as possible steps tow
the business model. Fig. 5 s

The user is able to creat
impact of changes by repea
simulate alternatives of the
taken in order to achieve re

Fig. 5. Screens

c Business Modeling with the Business Model Developer

as completely different to those that are centered on prod
f offer corresponds to the type of the components placed

Activities’. The second dimension of the cluster analysi
plication fields of the offered diagnostic product or serv
ed by means of distinct values for a respective parame
anvas category ‘Value Proposition’. Besides these t
ike the research dependency influence the cluster analy
er technique are out of focus for this article, we refer
ctive publication for a complete discussion [17].
del characteristics into account, the cluster algorit
ach cluster center using a specific calculation function. T
l is assigned to the cluster with smallest distance.
s Model Developer provides the modeler some descript
esult of the cluster analysis means as well as a diagr
rs. Fig. 5 shows an example of this analysis in form o
g with a membership ranking that reflects the calcula
cluster center. The four different clusters within the ma
e names and each of them is selectable. When selected
 him with detailed information on the respective clus
rom the data on business models belonging to this clus
depiction of cluster-typical customer segments as well
ions that describe the potential of the strategic orientat
wards new customer segments by means of realignmen
shows an example.
te multiple variations of his business model and assess
atedly applying the cluster analysis. This way, the user
model characteristics and identify the steps that need to
alignment of the current model.

shot of information provided for a specific cluster

557

duct
d in
is is

vice.
eter
two

ysis.
the

thm
The

tive
ram
of a
ated
atrix
d by
ster,
ster.
l as
tion

nt of

the
can

o be

558 S. Boßelmann and T. Margaria

3.5 Continuous Development and Evaluation

The Business Model Developer has been developed by means of an agile
development process focusing on continuous extension and improvement based on an
early prototype. The overall approach has been aligned to our experience based on
Extreme Model-Driven Development (XMDD) [5], which demands continuous
integration of the application expert. Hence, the tool development has been aligned to
regular feedback from project partners and industry experts in order to rapidly
implement change requests and to avoid undesirable development in an early state.

In the course of the DPM project, feedback on the Business Model Developer has
been collected from various sources, spanning regular meetings of the project’s
steering committee, expert interviews as well as tool presentations at healthcare-
related exhibitions. In general, we observed great interest in the Business Model
Developer and a low barrier to entry even for users lacking experience in business
model design. The clear structure of the tool and in particular the guided modeling
with the Wizard allows for the design of first business models in an immediate and
intuitive manner. Having created a first model, the more sophisticated functionality of
the tool can be discovered in subsequent steps as it has been integrated in an
unobtrusive manner.

Besides change requests, we could identify interesting ideas and suggestions for
useful extensions of the Business Model Developer, which could not be addressed
anymore during the DPM project. Most of them are related to the integration of
related concepts regarding strategic planning as well as to the operationalization of
business models. Based on these suggestions we have identified potential for future
extensions to be considered in terms of further development.

4 Conclusion and Future Work

With the Business Model Developer we have introduced a tool for the design and
analysis of business models that leverages the advantages of domain-specific setups
based on typed model components and structured parameters with predefined value
sets. We argued that this paves the way for facilitating syntactical correctness at
model design time as well as for the application of model analysis techniques.

We have applied it to the business models by the DPM industry partners,
suggesting that it can meet the real-life requirements regarding business model
creation and analysis. Validation and evaluation studies in other practical domains
have still to come.

Two directions of ongoing important extension address the flexibilization and ad-
hoc adaptation of the canvas partitioning, and the connection to the business process
modeling for the process-driven development that comes with the XMDD philosophy.

4.1 Customizable Canvas Partitioning

Currently, the Business Model Developer adopts the nine canvas categories of the
BMC. However, the presented approach spanning a domain-specific tool setup is not

 Domain-Specific Business Modeling with the Business Model Developer 559

restricted to the number of categories. This leads to the idea of extending the
presented approach by including the actual partitioning of the canvas into the domain-
specific tool setup. Besides the library of building blocks and the category-specific
parameters the categorization itself might form a third variation point in tailoring a
modeling tool towards a specific application area. This especially addresses the need
for an additional canvas category that has repeatedly been expressed by business
experts we have spoken to. Customizable canvas categories would enable slight
variations of the BMC-based approach in an immediate manner. But from a wider
perspective, such a tool would not be limited to business modeling. The more abstract
approach can be used for arranging a pre-determined set of domain-specific
components and create relations between them on a customizable canvas in terms of
its partitioning into distinct categories. This would open up new opportunities in
various application fields.

4.2 Application of Process-Driven Development

The cluster analysis described in the previous section is an excellent example of the
tool’s core logic. In general, analysis techniques might comprise sophisticated
calculations based on complex decisions relying on various aspects of the actual
model state. Such techniques may be developed by business analysis experts and
implemented into software tools by development staff. This is the point at which the
domain expert loses control over the development process; from the user’s
perspective it is not traceable whether the implementation of the algorithm is correct
or not.

 Applying model-driven development utilizing the jABC framework represents an
alternate approach that keeps the domain expert connected and involved into the
development process at any time. Encapsulated services, which are the basic model
entities by means of the jABC framework, can be generated from the domain-specific
setup of the Business Model Developer using the Genesys compiler [18]. These
services can be used within the jABC to create executable process models
representing the desired analysis process. Finally, code can be generated from these
process models and integrated into the Business Model Developer to be invoked for
the analysis of created business models. This model-driven approach simplifies the
design of model analysis processes that are tailored towards the respective domain-
specific modeling environment of the Business Model Developer.

References

1. Osterwalder, A., Pigneur, Y.: Business model generation. John Wiley & Sons, Inc. (2010)
2. Kühne, T.: Matters of (Meta-) Modelling. Software and Systems Modeling 5, 369–385

(2006)
3. Margaria, T., Steffen, B.: Simplicity as a Driver for Agile Innovation. Computer 43(6),

90–92 (2010)
4. Floyd, B.D., Boßelmann, S.: ITSy - Simplicity Research in Information and

Communication Technology. IEEE Computer 46(11), 26–32 (2013)

560 S. Boßelmann and T. Margaria

5. Margaria, T., Hinchey, M.: Simplicity in IT: The Power of Less. IEEE Computer 46(11),
23–25 (2013)

6. Margaria, T., Steffen, B.: Service-Orientation: Conquering Complexity with XMDD. In:
Hinchey, M., Coyle, L. (eds.) Conquering Complexity. Springer (2012)

7. Margaria, T., Steffen, B.: Continuous Model-Driven Engineering. Computer 42, 106–109
(2009)

8. Steffen, B., Margaria, T., Nagel, R., Jörges, S., Kubczak, C.: Model-Driven Development
with the jABC. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS, vol. 4383, pp. 92–108.
Springer, Heidelberg (2007)

9. Osterwalder, A.: The Business Model Ontology - A Proposition in a Design Science
Approach. PhD Thesis, Universite de Lausanne (2004)

10. Kaplan, R., Norton, D.: The balanced scorecard: Measures that drive performance.
Harvard Business Review 70(1) (1992)

11. Porter, M.E.: Competitive advantage. Free Press, New York (1985)
12. Freeman, R.E.: Strategic management: A stakeholder approach. Pitman, Boston (1984)
13. Strategyzer, http://www.strategyzer.com
14. Guarino, N.: Formal ontology, conceptual analysis and knowledge representation.

International Journal of Human and Computer Studies 43(5/6), 625–640
15. Motik, B., Patel-Schneider, P.F., Parsia, B., Bock, C., Fokoue, A., Haase, P., ... Smith, M.:

OWL 2 Web Ontology Language: Structural Specification and functional-style Syntax.
W3C Recommendation 27, 17 (2009)

16. Project “Service Opportunities in Personalized Medicine”, http://dpm.ceip.de
17. Kamprath, M., Halecker, B.: A Systematic Approach for Business Model Taxonomy -

How to Operationalize and Compare large Quantities of Business Models? In: 5th ISPIM
Innovation Symposium (2012)

18. Jörges, S. (ed.): Construction and Evolution of Code Generators. LNCS, vol. 7747, pp. 3–
221. Springer, Heidelberg (2013)

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 561–569, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Dr. Watson? Balancing Automation
and Human Expertise in Healthcare Delivery

Mark Gaynor1, George Wyner2, and Amar Gupta3

1 Saint Louis University, School for Public Health and Social Justice, St. Louis, MO, USA
mgaynor@slu.edu

2 Boston College, Carroll School of Management, Chestnut Hill, MA, USA
george.wyner@bc.edu

3 Pace University, Seidenberg School of Computer Science and Information Systems,
New York City, NY, USA
agupta@pace.edu

Abstract. IBM’s Watson, the supercomputer that beat two Jeopardy champions
in a televised competition, has inevitably engendered speculation about what
this surprising performance bodes for the role of computers in the workplace.
How can Dr. Watson be best utilized in medicine and clinical support systems?
This paper defines Computer Enhanced Medicine technology for healthcare as
any medical application where the required tasks are split between a human
being and a computer-controlled device.

Keywords: Clinical Support System, Computer Enhanced Medicine, Tele-
health.

1 Introduction

IBM’s Watson, the supercomputer that beat two Jeopardy champions in a televised
competition, has inevitably engendered speculation about what this surprising
performance bodes for the role of computers in the workplace. The inevitable
question, asked of any newly arrived celebrity, is “Watson, what are you going to do
next?” As reported in the New York Times [1], the answer provided by IBM is:
Watson will be taking on healthcare. The New York Times adds that IBM’s Watson,
which uses statistical natural-language processing techniques [2] is working with
oncologists at Cedars Sinai Cancer Institute and is also being trained as a medical
student at the Cleveland Clinic. This seems like a timely choice, given that despite
many advances in medicine, healthcare remains a labor-intensive field that is fraught
with costly mistakes, which is one reason that healthcare costs have soared over time.
It has been harder to increase productivity in this sector because the delivery of
healthcare includes hard-to-replace human components. However, advances in
computing and communications technology, of which Watson is only the latest, are
altering the global healthcare landscape by providing application and infrastructure
designers with new technology that has the potential to reduce costs and improve
outcomes. These new technologies can:

562 M. Gaynor, G. Wyner, and A. Gupta

• Enable detailed analysis of healthcare data to elicit underlying trends and
interrelationships; for example, analysis of mammography data from a
heterogeneous patient group over a geographically diverse region;

• Facilitate transmission and integration of healthcare records, such as the sharing of
pre-hospital electronic medical records;

• Enable healthcare professionals to render assistance to patients separated by
significant geographic distances from each other, such as remote computer
enhanced diagnosis of radiological images.

We refer to these applications of technology to healthcare as Computer Enhanced
Medicine (CEM) which we define as any medical application in which the tasks
required to accomplish the application are split between a human being and a
computer controlled device, and for which this combination can potentially yield
better outcomes than can be obtained by humans alone or computers alone. This
definition includes many types of telemedicine, client-server, beacon alert type
services, and peer-to-peer applications. These applications can range from complex,
such as providing real-time support for emergency trauma patients based on
transmission of real-time vital signs, to relatively simple, such as translating and
scanning paper/film based medical records into electronic form.

While CEM has great promise, the challenge remains in how to incorporate
computers into healthcare delivery processes where human judgment has traditionally
been deemed to be essential to so many tasks.

Watson’s victory illustrates that even applications based on the latest advances in
technology can require human intervention. While Watson’s performance in
Jeopardy was impressive, it was glaringly off-base in its choice of “Toronto” as the
response to this clue about a US City: “Its largest airport is named for a World War II
hero; its second largest for a World War II battle.” In Watson’s favor, one must
acknowledge that there is a Toronto, Kansas (and that Watson’s second choice was
actually the correct answer, Chicago), and also that Watson indicated its lack of
confidence in its own answer by appending several question marks. However, this
does reinforce the sense that in any domain where the cost of a single very wrong
answer is high, human judgment must continue to be in the loop, and clearly
healthcare is such a domain.

One example of this issue can be found in radiology. When a human radiologist
looks at a mammogram, there is a significant chance for a false positive or a false
negative in terms of interpreting the mammogram and diagnosing potential problems.
New computer-based techniques for “reading” digital mammograms can be used to
reduce the potential probability for false positives and false negatives. However, a
human radiologist must review the results generated by the computer in order to avoid
the risk of costly computer errors due to obvious and subtle errors that a trained
human radiologist can quickly spot. Such need for human involvement in several
steps in the healthcare delivery process poses a challenge to the deployment of new
technologies.

We believe that a part of the difficulty is the focus placed by system design
methodologies on automating existing processes. Liu and Wyner [3] refer to this as

 Dr. Watson? Balancing Automation and Human Expertise in Healthcare Delivery 563

the “automation approach,” which consists of examining the individual activities in a
process to identify those amenable to automation or some form of computer support.
As such, this approach is dependent on how the process to be supported is
conceptualized. For example, an automation approach to designing a system to
prescribe drugs might focus on quick data entry and a paperless workflow, but if one
takes into account the possibility of connectivity to an Electronic Medical Record
(EMR) and a current database of known drug interactions, then one can reframe the
process to include enhanced and automated checking for interactions between the
drug being prescribed and those already taken by the patient. Often the most dramatic
benefits of computer-enhanced work depend on significant, in some cases radical,
changes in the underlying business process.

In the case of healthcare, the automation of existing processes will be constrained
by the presence of tasks that require a skilled professional (e.g., physician, nurse, or
pharmacist) and such tasks must be taken off the table in any discussion of computer-
based process enhancement.

Our premise is that this characteristic of healthcare delivery processes, while being
a limiting factor, also serves as a basis for exploring possible process redesign to
enable more effective use of IT. The problem, as we see it, is that the automation
decision has been largely attempted at too coarse grained a level: replacing an
existing human activity in the process by an entirely automated activity. We believe a
more useful approach would be to take a finer grained view of the existing process.
Specifically, analysts should: (i) closely examine each task that appears to require
manual action by a healthcare professional and (ii) identify the sub-tasks that
comprise this task.

By breaking down a single manual task, one may be able to identify sub-tasks that
can be fully or partially automated without removing critical human involvement in
the task as a whole. As we shall illustrate, this approach can provide a way to
integrate new computer technologies into an existing healthcare process by
redesigning critical activities in the process to allow for a sensible division of labor
among skilled professionals and advanced information technologies. By subdividing
tasks in a manner that facilitates adoption of emerging computer and communications
technology, we can reap the potential benefits of CEM, including the intelligent use of
technology to improve patient care while reducing costs, and the efficient allocation
of scarce human resources by taking advantage of technology.

2 A Methodology for Balancing Automation and Human
Expertise

We have developed a new approach, PAVDOT (Partial Automation Via Decomposition
of Tasks), to provide analysts with guidance on how to uncover these additional
opportunities for integrating new information technologies into the healthcare delivery
process. PAVDOT was developed based on insights gained by two of the authors over
several research projects, some of which are discussed in the examples below.
PAVDOT is a distillation of the insights gained from actual experiences.

564 M. Gaynor, G. Wyner, and A. Gupta

PAVDOT consists of the following steps:

1. Define Scope: Choose area(s) for enhancement. One can use an established
framework such as Balanced Scorecard, Six-Sigma, Lean Value Stream, or Value
Chain Analysis. However, a more informal approach can be used, provided that it
results in a principled decision on where the organization should focus its system
enhancement efforts. For example, one might simply ask stakeholders what their
pain points are. The output of this step should be a specified scope that defines the
focus of the steps that follow.

2. Identify Key Activities: Identify the key activities associated with the processes
to be enhanced. While this can be done using a process-mapping technique such as
a flow chart, activity diagram, or BPMN, an elaborate process model is not always
necessary or even helpful. What is needed is a list of activities that can be
considered for decomposition (in step 4 below). An additional output of this step
may be the surfacing of some requirements for the process system redesign. Such
requirements can be captured for later use in the subsequent design process.

3. Assemble Technology Toolbox: Survey enabling technologies for opportunities to
enhance or automate parts of the process. Examples include Neural and Bayesian
Networks from the machine learning area of AI, cloud and high-speed broadband
networking in the distributed computing and networking area, and inexpensive
massive storage along with an excess of CPU cycles in the systems area. Note that
the above examples are deliberately heterogeneous in nature, including long
established mainstream technologies and newer techniques, as well as a mix of
general approaches and specific technologies. The specific techniques to be
included are going to depend on the specific project and the results of the survey of
enabling technologies. The resulting set of possible technologies will serve as a
technology “tool box” from which analysts can select appropriate technologies in
the process redesign that is conducted in step 4.

4. Redesign Process by Partial Automation: Decompose one or more activities
(identified in step 2 above) to allow an existing manual task to be distributed
among both human actors and the technologies identified in step 3. This key re-
design step depends not only on the technology toolbox, but also on institutional
policies governing authorization, and the nature of the overall task. Assign tasks to
human or automated actors as appropriate. In this step, tasks may need to be
adapted to the capabilities of technologies, and new applications based on those
technologies may need to be developed or adapted to the requirements of the
specific tasks to be automated. One example of this notion is the migration to
interoperable Electronic Medical Records (EMR). EMRs change the process flow
in most organizations and create new opportunities for applications such as
checking for adverse drug interactions and allergies when electronically
prescribing medication. The output of this step is a set of changes to the existing
process, consisting of newly defined activities and a plan to automate some of
those activities using specific technologies, which in turn may result in changes to
the remaining manual activities.

 Dr. Watson? Balancing Automation and Human Expertise in Healthcare Delivery 565

Together the four steps of PAVDOT are intended to help generate new alternative
task decompositions that might not otherwise be considered. The core of our proposal
is contained in step 4, which directs the analyst to develop a fine-grained view of the
process under discussion.

3 Radiology Example

The potential value of PAVDOT is analyzed by illustrating how it might be applied in
radiology. Teleradiology is one form of telemedicine with a long history [4] and a
solid business case with enough patients [5]. The important issues for debate have
shifted from technical concerns about transmission speed and image compression to
more management related issues such as governance, medico-legal issues and quality
assessment [6]. For radiology we expect PAVDOT to help generate ideas about
different ways change the process of patient care.

3.1 Technology-Based Remote Diagnosis of Radiology Images (TDRI)

Technology based remote diagnosis of radiology images (TDRI) is a type of
teleradiology that involves remote interpretation of the medical image by a computer
based application.

Current trends in healthcare are dictating the growth of teleradiology. First, there is
a growing shortage of radiologists, because of a significant number of radiologists
retiring from practice and training programs not keeping pace with growing demand.
Second, the aging population and the advent of newer imaging technologies are
leading to annual increases in imaging volumes; for example, a 13% increase in the
utilization of radiological imaging was observed among Medicare beneficiaries.
Third, the increased use of imaging technologies in trauma situations has led to a
corresponding need for round-the-clock radiological services in hospital emergency
rooms. The concept of Technology-based Diagnosis of Radiology Images offers the
potential to use the scarce resource of radiologists in a more efficient manner.
Kalyanpur et al proposed a service delivery model for TDRI that coordinates both
workflow and payments [7].

Mammography is an example of a teleradiology sub-specialty that can benefit from
intelligent computer technology. One out of eight women in the US will develop
breast cancer during her lifetime. Early detection is a woman’s best weapon against
breast cancer, which is 97% curable when detected and treated in the early stages.
The mammogram is the gold standard for screening breast cancer. With the trend
towards people living longer lives and taking proactive measures for their health, the
demand for mammograms is increasing at a significant pace. The number of
mammograms performed each year is rapidly increasing because of three factors: (i)
More women in the traditional age group are undergoing mammograms; (ii) The
mammograms are performed more frequently than before; and (iii) The recommended
age for conducting mammograms has been gradually lowered by medical agencies.
All these factors increase the aggregate work on the radiologists.

566 M. Gaynor, G. Wyner, and A. Gupta

The issue of errors in mammography (both false positives and false negatives) has
been studied in detail by many researchers. Estimates are that radiologist miss 10% -
20% of the cancers currently detectable by a screening mammogram, which allows
the disease at least another year to progress. There is a high degree of liability for
radiologists due to missed diagnoses. To mitigate this problem, some radiology
screening centers employ two radiologists to read each case. This approach involves
significant cost to support an additional radiologist, reduces the number of total
mammograms that can be performed within a center, and is problematic due to the
shrinking numbers of radiologists in the field of mammography, especially in the U.S.

We describe how PAVDOT could be applied to this domain with the following
steps:

• Step 1: Define Scope: Given the preceding discussion, the important area to
address in our analysis would be how to redesign the process of reading
mammograms to optimize the productivity of radiologists, reduce the incidence of
errors (both false positives and false negatives), and reduce the costs incurred in
performing mammograms. This will be the scope for our analysis.

• Step 2: Identify Key Activities: The key activities in the traditional mammography
process might be listed as follows:

1. Order. The primary care physician orders the test.
2. Image. An analog or digital Mammography image is created.
3. Diagnose. The image is evaluated, taking into account the patient’s medical

history.
4. Report. The radiologist creates a report of the diagnosis.

• Step 3: Assemble Technology Toolbox: Technologies that exist or are emerging
with the potential to enable CEM innovation in mammography include:

1. Inexpensive access to large amounts of storage for digital images.
2. Availability of fast networks to transfer large images.
3. Access to longitudinal data of mammogram images across a broad range of the

population.
4. Availability of Artificial Intelligence algorithms such as neural networks that

can learn how to predict relationships in unstructured data.
5. Specific technologies based on the above. For example, the Portuguese system

developed by INESC Porto and FEUP has been 100% effective in detecting
malignant tumors (www2.inescporto.pt/ip-en/news-events/press-releases/
software-portugues-possibilita-analise-automatizada-de-mamografias).

Our goal in identifying these technologies is to choose a range of important
enabling technologies both general and quite specific (item 5 on the list) in order to
stimulate thinking about the widest range of options.

• Step 4: Redesign Process by Partial Automation: Based on the technologies
above, the task most likely to benefit from partial automation would be activity 3,
the Diagnose activity. Considering that two radiologists are sometimes employed,

 Dr. Watson? Balancing Automation and Human Expertise in Healthcare Delivery 567

we consider decomposition of this activity into two sub-activities: Suggest
Diagnosis (The image is evaluated here) and Confirm Diagnosis (The image is
evaluated, taking into account both the diagnosis suggested and the patient’s
medical history).

We observe that a partial automation strategy might be to assign the first of these
two activities to a computerized system, allowing a radiologist to confirm the
suggested diagnosis.

This would yield the following amended process:
1. Order. The primary care physician orders the test.
2. Image. A digital Mammography image is created.
3a. Suggest Diagnosis. The image is evaluated automatically using Computer

Aided Detection (CAD) techniques.
3b. Confirm Diagnosis. A radiologist, taking into account both the diagnosis

suggested in activity 3a and the patient’s medical history, evaluates the image.
4. Report. The radiologist creates a report of the diagnosis.
The primary task in this process is diagnosis: a radiologist or computer-based

application examines the image in order to diagnose the patient. The
decomposition of this single task into two sub-tasks, as discussed above, allows a
technology-based solution to suggest a diagnosis that can be confirmed by a
certified radiologist. The sub-division of the diagnosis task allows for a more
flexible use of technology by permitting some, but not all of the diagnosis effort
needs to be automated. Note that the computerized diagnosis is based on the image
alone, whereas the radiologist takes the patient’s full medical record into account.
This reflects the current limitations of CAD technology. However, by having the
image-only reading precede the radiologist’s diagnosis, significant benefits can be
achieved.

4 Discussion

This use of Computer Aided Detection (CAD) techniques in mammography could
mitigate the problem of the growing shortage of radiologists, as well as reduce or
eliminate many of the instances of missed symptoms. By using a CAD-based
approach in conjunction with a human radiologist, one essentially attains the scenario
of two independent readings of each mammogram, with the human radiologist being
actively involved in the process and making the final determination in all cases. The
advantages of this approach are: (i) The capital investment of using a CAD service is
significantly less, when compared to that of employing a second radiologist; (ii)
Current and previous cases can be made available to the radiologist on-line for
necessary comparison; (iii) Results and information can be made available anywhere
via the Internet; and (iv) Improvements to the algorithm and core technology can be
readily disseminated. Further, the suggested approach reduces the incidence of second
visits and the level of patient anxiety, by providing expert (specialty) second opinions
when needed in a timely manner through a teleradiology model. This approach was
originally proposed in 2001 and 2002 [8].

568 M. Gaynor, G. Wyner, and A. Gupta

There are several problems with the automatic evaluation of radiologic images.
Once a computer algorithm suggests a particular diagnosis it might create a bias
towards agreement. This can lead to increased false positives, which can cause
extreme distress when serious conditions such as breast cancer are incorrectly
diagnosed. With good user design and inclusion of features critical to success these
problems can be minimized [9]. Dr. Watson does not present a diagnosis of a specific
condition, but a list of possible diagnoses and their probabilities. This encourages the
care provider to explore a greater breath of conditions, hopefully without biasing the
decision because of the probability estimates.

General radiology and mammography differ in one important respect:
mammography is more amenable to computer-aided diagnosis because of the large
database of available images. As discussed above, combining a common test with a
comprehensive database is well suited to computer analysis. However, as suggested
by the discussion of Watson, it is unlikely that current technology will be deemed
sufficient for confirming a medical diagnosis without human intervention. In this
case, the sub-division of the diagnosis task into the two activities –Suggest Diagnosis
and Confirm Diagnosis -- promotes a more efficient and flexible use of computer
technology to improve both the speed and the quality of the diagnosis.

5 Concluding Remarks

The traditional model of healthcare required that medical personnel be in immediate
proximity to their patients. Computers can not only search through millions of images
of mammograms in very short periods of time in order to locate those images that
match the key characteristics of the one currently under review in the clinic, but
computers can learn from these vast data sets; such power is clearly beyond the
capability of a single doctor or even groups of doctors.

This paper does not address the many regulatory, legal, and privacy issues
concerned with exchanging personal health care data. For example, in the United
States where States regulate medical certification it has been difficult for tele-health
to cross state lines. One bright exception is Veterans Affairs that allows it’s care
providers to practice across State lines.

Learning systems such as Watson hold tremendous potential to improve health
outcomes while reducing costs. To reach the full potential of CEM the technology
must be intelligently applied. Watson’s mixed performance on Jeopardy is a reminder
that humans must review any decision that has a high cost of error.

This technology evolution has the potential to create exciting possibilities with
CEM because it enables faster, higher quality, and more cost effective medical
services by applying intelligent technology to tasks that are traditionally
accomplished without computer applications. The Mammography diagnosis case
study is a good illustration of this. Using emerging computing technology to suggest
abnormalities and a list of possible causes based on a comprehensive database will
find trends that are hard for humans to discover.

 Dr. Watson? Balancing Automation and Human Expertise in Healthcare Delivery 569

In evaluating the potential of PAVDOT, we must point out that the example above
has been simplified and is an illustration of how PAVDOT might be applied, not a
report of an actual case study of PAVDOT, which is still in its early stages of
development. That said, however, the example suggests the potential value of an
approach like PAVDOT and suggests how it might be applied to generate new
alternatives for combining human and computational resources in order to improve
outcomes and reduce costs. It is important to note that PAVDOT is focused on
helping analysts and stakeholders to generate new “partial automation” alternatives
for consideration. It does not evaluate such alternatives nor does it take into
consideration issues like change management, nor is it intended to serve as a design
methodology. That said, we believe that PAVDOT does have the potential to nudge
analysts and other stakeholders in the direction of better aligning work flow with
computer technology, and that this is an important potential benefit worthy of further
investigation.

Our preliminary experience with PAVDOT suggests a possible future trend in the
design of CEM. We predict that healthcare will increasingly use a portfolio approach
comprised of three closely-coordinated components seamlessly interwoven together:
healthcare tasks performed only by humans, healthcare tasks performed by combining
humans with computers, and healthcare tasks performed by computers without direct
human involvement. We are hopeful that this three-pronged approach can lead to
better and more cost-effective healthcare.

References

1. Lohr, S.: Software Assistants for doctors Are Making Progress. New York Times (2013)
2. Edwards, C.: Using Patient Data for Personalized Cancer Treatments. Communications of

the ACM 57(6), 13–16 (2014)
3. Liu, X., Wyne, G.: Coordination Analysis: A Method for Deriving Use Cases from Process

Dependencies. In: 4th International Conference on Design Science Research in
Information Systems and Technology, DESRIST 2009 (2009)

4. Goldberg, M.: Teleradiology and Telemedicine. Radiologic Clinics of North
America 34(3), 647–665 (1996)

5. Bergmo, T.: An Economic Analysis of Teleradiology Versus a Visiting Radiologist
Service. Journal of Telemedicine and Telecare 10, 310–314 (2003)

6. Binkhuysen, B.: Teleradiology: Evolution and Concepts. European Journal of
Radiology 78(2) (2010)

7. Kalyanpur, A., Neklesa, V., Pham, D., Forman, H., Stein, S., Brink, J.: Implementation of
an International Teleradiology Staffing Model. Radiology 232 (2004)

8. Gupta, A., Norman, V., Mehta, V., Benghiat, G.: Contata Health Inc. (2002)
9. Kawamoto, K.: Improving clinical practice using clinical decision support systems: A

systematic review of trials to identify features critical to success. BMJ 330, 765 (2005)

Semantic Heterogeneity in the Formal

Development of Complex Systems:
An Introduction�

J. Paul Gibson1 and Idir Ait-Sadoune2

1 Département Logiciels-Réseaux, Telecom-SudParis, Évry, France
(SAMOVAR UMR 5157)

paul.gibson@telecom-sudparis.eu
2 Supelec, Gif Sur Yvette, France
idir.aitsadoune@supelec.fr

System engineering is a complex discipline[1], which is becoming more and more
complicated by the heterogeneity of the subsystem components[2] and of the
models involved in their design. This complexity can be managed only through
the use of formal methods[3]. However, in general the engineering of software in
such systems leads to a need for a mix of modelling languages and semantics; and
this often leads to unexpected and undesirable interactions between components
at all levels of abstraction[4]. There are currently no generally applicable tools
for dealing with this heterogeneity of interactions in the engineering of complex
systems.

The heterogeneity exists in 3 different dimensions:

– Abstraction — as software engineers move from requirements to implemen-
tation, the semantics of the modelling languages move from the problem
domain to the solution domain. Thus, it is quite common to see two or more
languages used as the modelling moves from the abstract to the concrete
(from the non-operational to the operational)[5].

– Systems of systems — software should not be isolated from the system and
environment in which it is intended to operate. Systems are now engineered
from components including software, hardware, wet-ware, etc The types
of these subsystems can vary greatly: synchronous or asynchronous, deter-
ministic or non-deterministic, parallel or sequential, etc It is unlikely
that a single language is best suited to modelling such heterogeneity[6].

– Synthesis and analysis — the language in which one models a system is
not usually the same language in which one reasons about the relationship
between models, and the correctness of one model with respect to another[7].

There needs to be a clear separation of concerns, in these 3 dimensions, in order
to facilitate re-usable models, methods, tools and software processes (methodolo-
gies). There also needs to be a simple way of integrating the different concerns.

� This work was supported by grant ANR-13-INSE-0001 (The IMPEX Project
http://impex.gforge.inria.fr) from the Agence Nationale de la Recherche
(ANR).

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 570–572, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

paul.gibson@telecom-sudparis.eu
idir.aitsadoune@supelec.fr

Semantic Heterogeneity 571

As with object oriented architectures, low coupling and high cohesion are strong
indicators of good design[8]. In a formal approach to system engineering we
need low coupling between our different modelling languages and high cohesion
within them. This can be best achieved by formal specification of good interfaces
between the different types of semantics. Currently, the state of the art in het-
erogeneous system modelling is away from an ideal development environment,
where the interfacing (between different semantic models) would be automated.
This is the long-term objective, but we have only recently embarked on the
journey towards this goal.

A previous thematic track initiated the research in the direction of the prob-
lems arising due to the heterogeneous nature of formal modelling[9] . Two of the
published papers illustrated different techniques for managing the heterogeneity.
In Leveraging Formal Verification Tools for DSML Users: A Process Modeling
Case Study[10], we see a model driven development approach where formal meth-
ods are used to translate between different modelling languages. In An Onto-
logical Pivot Model to Interoperate Heterogeneous User Requirements[11] we see
a pivotal ontological model being used to manage heterogeneity of vocabularies
and heterogeneity of formalisms during requirements modelling.

In this thematic track, we emphasis the complex nature of systems engineer-
ing and the need for automated tool support for integrating different semantic
models. We note that the accepted papers discuss not only theoretical aspects,
but also hint at methodological aspects which are key to industrial transfer of
these approaches. In Modelling and Verifying an Evolving Distributed Control
System Using an Event-based Approach[12] we see component-based system en-
gineering where abstraction plays a key role in permitting the integration of
different component types (specified using different semantic models), and rea-
soning about their dynamic interaction. In Requirements driven Data Warehouse
Design: We can go further[13] we see that ontological reasoning mechanisms can
used to automatically construct a set of requirements that are coherent and non-
conflictual, even when expressed in a variety of modelling languages. Finally, the
paper On Implicit and Explicit Semantics: Integration issues in proof-based de-
velopment of systems[14] illustrates how formal ontologies can be used to model
re-usable domain knowledge in an explicit manner, and how this knowledge can
be used to prove the correctness of a system that operates within the domain
environment. Refinement of the system model can then be used to guarantee
correct construction of a system within the specified context.

The track demonstrates that progress is being made in this very challenging
area. However, much more is left to do.

References

1. Stevens, R., Brook, P.: Systems engineering: coping with complexity. Pearson Ed-
ucation (1998)

2. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S.,
Sachs, S., Xiong, Y.: Taming heterogeneity-the ptolemy approach. Proceedings of
the IEEE 91(1), 127–144 (2003)

572 J.P. Gibson and I. Ait-Sadoune

3. Balarin, F., Lavagno, L., Passerone, C., Sangiovanni-Vincentelli, A., Sgroi, M.,
Watanabe, Y.: Modeling and designing heterogeneous systems. In: Cortadella, J.,
Yakovlev, A., Rozenberg, G. (eds.) Concurrency and Hardware Design. LNCS,
vol. 2549, pp. 228–273. Springer, Heidelberg (2002)

4. Gibson, J., Mermet, B., Méry, D.: Feature interactions: A mixed semantic model
approach. In: McGloughlin, H., O’Regan, G. (eds.) 1st Irish Workshop on Formal
Methods (IWFM 1997). Electronic Workshops in Computing, Dublin, Ireland, BCS
(July 1997)

5. Hazzan, O., Kramer, J.: The role of abstraction in software engineering. In: Com-
panion of the 30th International Conference on Software Engineering, ICSE Com-
panion 2008, pp. 1045–1046. ACM, New York (2008)

6. Baldwin, W.C., Sauser, B.: Modeling the characteristics of system of systems. In:
IEEE International Conference on System of Systems Engineering, SoSE 2009, pp.
1–6. IEEE (2009)

7. Adrion, W.R., Branstad, M.A., Cherniavsky, J.C.: Validation, verification, and
testing of computer software. ACM Computing Surveys (CSUR) 14(2), 159–192
(1982)

8. Briand, L.C., Wüst, J., Daly, J.W., Victor Porter, D.: Exploring the relationships
between design measures and software quality in object-oriented systems. Journal
of Systems and Software 51(3), 245–273 (2000)

9. Ait-Ameur, Y., Méry, D.: Handling heterogeneity in formal developments of hard-
ware and software systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part
II. LNCS, vol. 7610, pp. 327–328. Springer, Heidelberg (2012)

10. Zalila, F., Crégut, X., Pantel, M.: Leveraging formal verification tools for dsml
users: A process modeling case study. In: Margaria, T., Steffen, B. (eds.) ISoLA
2012, Part II. LNCS, vol. 7610, pp. 329–343. Springer, Heidelberg (2012)

11. Boukhari, I., Bellatreche, L., Jean, S.: An ontological pivot model to interoperate
heterogeneous user requirements. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012,
Part II. LNCS, vol. 7610, pp. 344–358. Springer, Heidelberg (2012)

12. Attiogbé, C.: Modelling and verifying an evolving distributed control system using
an event-based approach. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part II.
LNCS, vol. 8803, pp. 573–587. Springer, Heidelberg (2014)

13. Khouri, S., Bellatreche, L., Jean, S., Aı̈t-Ameur, Y.: Requirements driven data
warehouse design: We can go further. In: Margaria, T., Steffen, B. (eds.) ISoLA
2014, Part II. LNCS, vol. 8803, pp. 588–603. Springer, Heidelberg (2014)

14. Ait-Ameur, Y., Gibson, J.P., Méry, D.: On implicit and explicit semantics: Inte-
gration issues in proof-based development of systems. In: Margaria, T., Steffen, B.
(eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp. 604–618. Springer, Heidelberg
(2014)

Modelling and Verifying an Evolving Distributed

Control System Using an Event-Based Approach

Christian Attiogbé

LINA - UMR CNRS 6241 - University of Nantes
F-44322 Nantes Cedex, France

Christian.Attiogbe@univ-nantes.fr

Abstract. Evolving distributed systems are made of several physical
devices distributed through a network and a set of functionalities or
applications hosted by the physical devices. The configuration of the
physical components may be modified through the time, hence the con-
tinuous evolving of the whole system. This should affect neither the
hosted software components nor the global functionning of the whole
system. The components of the systems are software components or phys-
ical components but their abstract models are considered with the aim
of modelling and reasoning. We show that an event-based approach can
be benefically used to model and verify this kind of evolving control sys-
tems. The proposed approach is first presented, then the CCTV case
study is introduced and modelled. The resulting model is structured as
a B abstract machine. The functional properties of the case study are
captured, modelled and proved. The refinement technique of Event-B is
used to introduce and prove some properties.

Keywords: Heterogenous components, Modelling, Event-B, Property
verification.

1 Introduction

Many software applications are required for decentralized control of highly inter-
acting components; they need to be not only reliable but also extensible hence
the use of evolving distributed control systems.

Context. The study of distributed systems has been the subject of years of re-
search and development [6,5,9]; several results exist at operating systems, mid-
dleware and application levels. However specific attention was paid to static
distributed environment where the involved hosts (client and server processes or
peers), are known and clearly identified as well as their architecture or configura-
tion. Three main architectures have governed the design of distributed applica-
tions: two-tier with the interaction between a client and a server, three-tier with
two levels of interaction (client-server, server-host) and n-tier architectures. The
later is the more general one: a client process located on any host may interact
via a middleware with one or several distributed servers.

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 573–587, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

574 C. Attiogbé

The client/server two-tier architecture, generalized to n-tier and improved
with the peer-to-peer architecture, is used to structure most of the distributed
applications.

However, when the environment is not static but dynamic, ie its architecture
is evolving according to the (re)configuration of the hosts, then additional dif-
ficulties should be considered, more precisely at the system design level. These
difficulties rely on the identification of the hosts, the structuring of the exchanged
messages, the dynamic aspect of the links and consequently the structure of the
overall architecture of the system. Notably, instead of addressing a request to a
given server, a thin client will address a request to its environment. There is a
shift from the client-server relationship to a more flexible relationship between
an application and its virtual environment. Modelling and analysis should not
consider the precisely known interacting entities but their virtual counterpart.

Motivation. The current keen interest for virtualized distributed environment
(aka cloud, grid) pushes a difficulty at application modelling level because, more
and more applications are dedicated to evolving distributed environment, to
store data, to request functionalities or services, etc. Evolving distributed sys-
tems are those with an adhoc highly changing architecture, due to the behaviour
of their components. Heterogeneity of components (physical devices, software,
various models) is a specific feature of these systems. In this work we target
such evolving distributed systems and more specifically modelling and reason-
ing on a system which will be implemented or deployed as an evolving dynamic
distributed system. That means the interacting processes are neither explicitly
known nor explicitly identified, but the expected behaviour should be described
and formally analysed. This is a key to mastering heterogeneity.

Contribution.We propose an event-based approach to make it easy the modelling
and the analysis of evolving distributed applications. We show the effectiveness
of the proposed approach on a case study: a CCTV1 control system which may
evolve depending on the used devices and their reconfiguration. The approach
is based on the use of a virtual network of processes, an event-based modelling
and refinement; it can be exploited as a pattern in many other similar cases.

Organisation. The remainder of the article is structured as follows. Section 2 is
devoted to the evolving systems considered in the paper; their specificities are
underlined and then we present the CCTV case study (Sect. 2.2). Section 3 and
Section 4 are the core of the paper. We present the used approach (Sect. 3.2)
and its application to the modelling and verification of the CCTV case study
(Sect. 4). Finally, Section 5 concludes the article with some lessons and future
work.

1 Closed-Circuit Television.

Modelling and Verifying an Evolving Distributed Control System 575

2 Evolving Distributed Systems

2.1 Issues on Evolving Distributed Systems

The correction of distributed systems is still a challenging concern according
to modelling, verification and implementation; this is essentially due to master-
ing complex non-deterministic behaviours, concurrency and safety. Moreover the
adoption of the service-oriented paradigm enhances not only the need of assis-
tance methods and techniques to build distributed systems but also the needs
of highly evolving distributed systems. Processes that represent parts of the sys-
tem are dynamically linked and unlinked, their behaviours may vary in the time;
consequently the global architecture of the system is changing dynamically.

One solution for resolving the difficulties is to build a formal model which
serves as a basis for the rigorous analysis and for the construction of (parts of)
the system.

Consider a system made of an undefined number of peers which cooperate
and provide services; the peers may be mobile, linked and unlinked to different
other peers. New peers may be involved with respect to needed functionalities.
The architecture of the system is therefore continuously changing.

The message-passing technique with explicit naming and peers identification
is not tractable in such an adhoc context; an implicit message passing is needed
instead. The evolving should not prevent from maintaining the functionalities
and the required properties of a distributed system. Among the issues to be
addressed for this purpose, we consider:

– the modelling issue, in order to best capture the requirements and provide
a faithful model. Appropriate structuring mechanisms are needed to get an
extensible and open system instead of a closed one.

– the reasoning issue, in order to provide method and guidelines to study
desired properties. This should be achievable in parts of the global formal
model.

We use a real life CCTV case study to present our contribution. This kind
of system is often distributed and highly evolving due to the evolution of the
architecture of the devices to be controlled.

2.2 The CCTV Control System

A CCTV2 system is often used for the surveillance of industrial plants, the
surveillance of homes or the control of various distributed equipments from a
central or a decentralized control room. There are several devices which are
linked to their controllers, but this architecture is changing with respect to spe-
cific surveillance policies or the adding of new devices, the removing of existing
devices. In a basic CCTV system the video captured by cameras are displayed
on dedicated screens which may have their own controller.

2 Closed-Circuit Television.

576 C. Attiogbé

The CCTV system may evolve in such a way that, instead of displaying the
video from cameras directly on screens, Digital Video Recorders (DVR) are
added to record the video which are used or analyzed later for various purposes
(Video Contents Analysis). Consequently, the architecture of system changes:
the videos are now recorded before being displayed on the screens.

The system is made of a set of cameras linked with control screens which
are under the supervision of humans. The cameras are directed towards parts
of a predefined area to be controlled for surveillance or intrusion detection. The
cameras send video streams to the control unit which displays the streams on
activated screens. More cameras and screens may be added to cover some un-
reached area without changing the functioning of the system. Thus the CCTV
control system is made on the one hand with several controllers, and on the other
hand with control screens, control cameras and video display units. The video
captured by the cameras are displayed on screens. A controller is linked with one
or several (input) cameras, it displays its output on one or several screens, and
it may have a DVR for storage.

The requirements stipulate that initially there is no recording of video; then
it can be decided to record and save the video while displaying them. Hence a
digital video recorder component will be introduced in the system. Accordingly,
the video stream will not only be the input of the screens but also the input of
the recorder if any.

Some functional properties are required to ensure the good functioning of the
control system. We identify and name each of them in order to refer to them in
the analysis section. They are summarized in Tab. 1.

Table 1. Synthesis of the functional requirements

FReq AreaOK All the area to be supervised is under control
FReq ctrlNCam Each controller can manage several cameras
FReq cam1Ctrl Each camera is managed by only one controller
FReq DispOk All the captured videos are displayed on some screens
FReq RecDispOK All active cameras should be under control
FReq RecOK All video received from the cameras are recorded
FReq NewDev It should be possible to add new cameras and screens

We have to model and analyse the functioning of this control system which
i) is made of several controllers, ii) manages several different devices, and iii)
has a varying architecture.

3 Modelling and Verification Approach

To master the dynamic aspect of evolving systems and the heterogeneity of their
components, abstract models with a light composition approach are required.
One solution is to view the systems as a virtual net of components; the com-
ponents may share abstract channels for communication. At a more concrete

Modelling and Verifying an Evolving Distributed Control System 577

level of each component, independently from the other components, the abstract
channels may be implemented in various way.

3.1 The Core Modelling Approach

Our approach is based on an event-based composition as a weak coupling of
processes that will interact through a common state space that includes abstract
channels dedicated to message passing. Our initial work was introduced in [3].
The model of a global system consists of

– a global state space made of the data types identified in the requirements;
– a set of process types that describe the identified components of the global

system. The component may be physical or logical. We have to identify
which are the interacting processes and the messages that they exchange.
Each process has its state space, a part of which is shared with the global
state space;

– a set of abstract channels to support the communication with the messages
that are exchanged among the process types. These channels are part of the
global state;

– a set of behavioural descriptions of the process types (they have the form of
guarded events).

A control is then handled via the interaction between the components which are
modelled as process types. Typically the sense/control/output steps in the stan-
dard cycle of control system are handled by the exchanges of messages through
the involved components.

3.2 Event-Based Global Model: Virtual Net of Interacting
Components

We define and link process types via identified common data and abstract chan-
nels for interaction (see Fig. 1). The process types are the models of the com-
ponents identified within the requirements. The abstract channels are modelled
according to the interaction needs. Therefore each process type uses the defined
abstract channels and state, independently from the other processes; it is the
message-bus paradigm; here the buses convey messages with data types. Note
that this is a refined view which is compliant with the classical approach of
modelling a distributed system by a graph whose nodes are the state machines
describing processes. In our case the nodes stand for process types, and the
abstract channels denote the graph edges and more specifically the interaction
means: we have a virtual net of components interacting through the channels.

Therefrom, we have guidelines to help in discovering and modelling the de-
sired behaviours of a system with various architectures, including dynamic ones.
We emphasize an event-based view at global level, for composing processes. In
the description of the behaviour of each process type, only the common ab-
stract channels are used for interaction purpose, enabling thus an independent

578 C. Attiogbé

Fig. 1. Virtual net of process types

behaviour with respect to the other processes. They can be of any type, enforcing
thus their heterogeneity. Consequently, the architecture of the processes which
are connected via the abstract channels is highly flexible. It enables any number
of process types, and any number of processes of each type to be composed. In
term of distributed control, we can handle in this way the composition of any
number of interacting devices and controllers.

For practical experimentation, we use the Event-B notation and method[2].
Event-B is based on first-order logic and set-theory enabling one to use the ap-
propriate mathematical toolkit to capture modelling aspect. To introduce a few
notation, total function (denoted by the symbol→), surjective function (denoted
by the symbol→→) are very useful to express easily some properties as we will see
in the modelling and verification part. In the scope of the Event-B method, our
process types are modelled as Event-B machines; asynchronous communication
is modelled with the interleaved composition of process behaviours which are
viewed as event occurrences.

Handling the Evolving of Architecture. An architecture is the set of pro-
cesses of various types connected to the abstract channels at a given moment.
That is the processes sharing the abstract channels conveying the message pass-
ing events from a current configuration. The configuration is submitted to re-
structuring or changes when the processes evolve.

An instance of a defined process type may join the configuration at any time.
In the same way a process may leave a given configuration at any time. These
behaviours do not change the modelling of the whole system.

Interaction Aspects. Common abstract channels are introduced to link inter-
acting processes and make them communicate. An abstract channel is modelled
as a set; we keep it abstract to handle asynchronism. But later in the specification
process the channels can be refined, for example as FIFO Queues. The abstract
channel is used to wait for a message or to deposit it. The interaction between
the processes is then handled using the common abstract channels. Therefore,
communications are achieved in a completely decoupled way to favour dynamic
structuring. A process may deposit a message in the channel, generating thus an
event; other processes may retrieve the message from the channel.

Modelling and Verifying an Evolving Distributed Control System 579

Therefore we use guarded events, message passing and the ordering of event
occurrences; the processes synchronise and communicate through the enabling
or disabling of their events. An event is used to model the waiting for a data
by a process; it may be blocked until the availability of the data which enables
the event guard. The availability of the data is the effect produced by another
process event. Consider for example the case of processes exchanging messages,
one process waits for the message, hence there should be an event with a disabled
guard; another process with an enabled guard performs its behaviour which re-
sults in sending the message.

Composition of the processes. Practically the composition is implicit during
the modelling of the unstructured systems considered here. But a bottom-up
view may be adopted, where the composition of process types is made explicit.

The described processes Pi are combined by a fusion operation
⊎

that merges
an undefined number of process types. The semantics of the fusion operator
comes from the conjunction of processes paradigms[10,1]. The fusion operator
merges the state spaces and the events of the processes into a single global system
Sysg which has the conjunction of the invariants, and which in turn can also be
involved in other fusion operations.

Sysg =̂
⊎
i

Pi =
⊎
i

〈Si ,Ei ,Evti〉 = 〈Sg ,Eg ,Evtg〉

According to the fusion operator, when process types are merged, a variable
denoting a set of current processes is introduced for each type; this variable is
used to identify the processes of the concerned type and to distinguish the events
related to each type. The processes access the global state and communicate with
others, through their events.

4 Modelling and Verifying the CCTV System

From the requirements we identify the following components: cameras, screens,
controllers, DVR. They have specific behaviours, they are loosely linked and their
number is varying. We use abstract channels to model the shared communication
links (videoChannel, · · ·).

The behaviour of a camera is to send a stream of captured signals to the
linked screens via the control units (the controllers). The behaviour of a screen
consists in visualising the streams of signals received from the cameras. A DVR
saves a stream of signal from cameras and also sends them on the screens.

4.1 A Glimpse of the Constructed Model

Following our analysis, the components of the CCTV system, viewed as process
types, have been gradually modelled using their weak composition. The result
of the composition is a virtual net of processes which is structured using the B
notation (with an abstract machine as the structuring unit). As enabled by the

580 C. Attiogbé

flexibility of the fusion operator used to weakly compose the process types, at the
first abstract level, we have combined only the Cameras and the Screens in order
to capture earlier the feature imposed by the requirements; it is as if the cameras
are linked directly with screens. At a second abstraction level, the controllers are
introduced via a refinement where the virtual net is enlarged by other processes;
now it is as if the link between cameras and screens is detailed. Using this two-
levels abstraction, we can handle some properties considering that the policy
deployed by the controllers and hence the evolving of the architecture does not
impact on the properties to be preserved. This is essentially the initial problem to
be solved when considering evolving distributed system. This approach enables
us to master the complexity of the model and also to master the verification of
the properties. It can be used elsewhere as a modelling and verification pattern.

The structuring of the state space is achieved using identified data types, a set
of state variables and an invariant that describes the properties of the processes
(camera, screen):

machine CameraHdl
· · ·
invariant /* state space predicate */

connectedCameras ⊆ CAMERA
/* the set of connected cameras */

∧ connectedScreens ⊆ SCREEN
/* the set of connected screens */

∧ activeCameras ⊆ CAMERA
∧ activeScreens ⊆ SCREEN
∧ activeCameras ⊆ connectedCameras
/* the active cameras are part of the connected ones */

∧ activeScreens ⊆ connectedScreens
∧ display ∈ activeCameras →→ activeScreens
/* the active cameras are connected to active screens */
/* All the active screens are used */

∧ videoChan ∈ P(VIDEO × CAMERA)
/* abstract channel: set of video+cameraId */

∧ nootherPriority ∈ BOOL
∧ videoStream ∈ VIDEO
→ activeScreens

/* the video are displayed on one screen */
∧ displayedVideo ∈ P(VIDEO)
∧ activeDVR ⊆ DVR

/* the set of active DVR */
∧ videoStore ∈ VIDEO
→ activeCameras

/* to store the video from the cameras */
∧ · · · /* more properties are added below */

Fig. 2. Abstract model of the CCTV system

Modelling and Verifying an Evolving Distributed Control System 581

The evolving of the system depends on the behaviour (modelled as a set of
events) that defines the involved processes. The events considered for the Camera
model description are summarised in Tab. 2.

Table 2. Camera handling events

Behaviour related to Camera

Event Description

addCamera a new camera is added
activateCamera one camera is activated
sendVideo a camera sends a video
rmvCamera a camera is removed

Table 3. Screen handling events

Behaviour related to Screen

Event Description

addScreen a screen is added
getVideo a screen gets a video
displayVideo a screen displays a video
rmvVideo a screen is removed
addDVR a DVR is added
getVideoDVR a DVR gets a video

The B specification to manage a Camera is the abstract machine equipped
with these related events (see Fig. 3). In the same way the behaviour dedicated
to the screen control is depicted in Fig. 4.

4.2 Mastering the Architecture and Its Modelling

One of the advantages of the composition of the process types by the fusion op-
erator is that an important part of the model can be incrementally analysed, by
considering each process type, whatever the order. Not all the behaviours can be
analysed this way due to the lack of information for the interaction between the
processes; but as soon as the appropriate types are introduced the interaction
analysis is achieved. From the composition point of view it is very beneficial
for mastering the evolving architecture. The reconfiguration of the system ar-
chitecture for example does not impact on the modelling and the control of the
system. However there are some limitations to this type of composition: one can
neither constrain the composition nor hide some communication channels. From
the heterogeneity point of view, data abstraction and behavioural abstraction
allow to consider in the same way heterogeneous components via their process
types.

We do not deal with the parameterisation of the architecture in this case
study.

582 C. Attiogbé

machine CameraHdl
sets CAMERA, SCREEN, VIDEO
variables

connectedCameras, activeCameras, display , videoChan, nootherPriority
activeDVR, videoStore

invariant

/* state space predicate, as given above (Fig. 4.1) */
initialisation

connectedCameras, activeCameras, display , videoChan,
nootherPriority , activeDVR, videoStore := ∅, ∅, ∅, ∅, ∅, ∅, ∅

events

addCamera =̂ · · ·
; activateCamera =̂ · · ·
; sendVideo =̂ · · ·
; rmvCamera =̂ · · ·
end

Fig. 3. Structure of the Camera abstract machine

machine ScreenHdl
sets SCREEN, VIDEO /* abstract sets */
variables

connectedScreens, activeScreens, display , videoChan, nootherPriority ,
videoStream , displayedVideo, activeDVR, videoStore

invariant

/* state space predicate, as given in Fig. 4.1 */
initialisation

connectedScreens, activeScreens, display , videoChan, nootherPriority ,
videoStream , displayedVideo, activeDVR, videoStore := ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅

events

addScreen =̂ · · ·
; getVideo =̂ · · ·
; displayVideo =̂ · · ·
; rmvVideo =̂ · · ·
; addDVR =̂ · · ·
; getVideoDVR =̂ · · ·
; · · ·
end

Fig. 4. Structure of the screen abstract machine

Modelling and Verifying an Evolving Distributed Control System 583

4.3 Verifying the Properties

The requirements stipulate that the system may satisfy the properties introduced
in the table Tab.1 (see Sect. 2.2). Some of them are captured without restructur-
ing. Some others are restructured; for instance, the requirement FReq RecDispOK
is rephrased as follows: all active cameras are recorded and displayed when the
DVR is activated.

Properties Descriptions

FReq DispOK:
All the captured videos are displayed on some screens.

FReq RecDispOK:
When the DVR is installed, all the displayed video are recorded and save

to ensure the DCA.
FReq RecOK:

All active camera are recorded and displayed

We have completely modelled and analyzed the system using the presented
approach, including the properties formalized (in Event-B) as follows.

The property FReq DispOK is modelled as follows:
((activeDVR �= {} ∧ videoStore �= {})⇒

((dom(videoStore) ⊆ displayedVideo)
∨ (dom(videoStore)\

(displayedVideo ∩ dom(videoStore))
⊆ dom(videoStream))))

The set inclusion is used in this formalisation to capture the FReq DispOK prop-
erty.

The properties FReq cam1Ctrl and FReq DispOK are captured through a total
surjective function: display ∈ activeCameras →→ activeScreens .
Indeed the domain (activeCameras) of the total function indicates that all the
active cameras are displayed. The property FReq RecOK is captured in the in-
variant with the same total surjective function (because all the active cameras
that are displayed on the screens are recorded when the VCR is used).

The property FReq NewDev is handled through the events (addCamera, acti-
vateCamera) of themachineCameraHdl and the event addScreen of the ScreenHdl
machine; they impact on the variable display.

The abstract machine corresponding to the composition of the process types
is obtained by the merging of the parts of the machines of the processes. The
resulting machine is named IntergratedVideoSys. This later is refined in the fol-
lowing.

Refinement and Verification. The properties FReq ctrlNCam and
FReq cam1Ctrl are captured through a refinement (named IntergratedVideoSys r1)
of the abstract machine modelled previously.

584 C. Attiogbé

To master the modelling and the verification of the required properties we use
the refinement technique available in the Event-B method. During the analysis
of the case, one can note that the three properties FReq DispOk, FReq ctrlNCam
and FReq cam1Ctrl are dependent and we model them gradually. Indeed from
an abstract point of view the FReq DispOk property is captured with a single
total function display, expressing that each camera (video) is displayed on one
screen and all the videos are displayed. Thus in the first abstract machine we
do not introduce the properties FReq ctrlNCam and FReq cam1Ctrl; they are
introduced in a refinement.

The refinement we have used is summarized as follows: a function f : A→→ B
is refined by two relations g and h defined using the same sets A, B together
with a new set I such that:

g : A→ I ∧ h : I →→ B ∧
f ⊆ (g; h)

More specifically, I stands for the set of Controllers which have been intro-
duced in the refinement; the total function g and the relation h are used to
capture respectively the properties FReq cam1Ctrl and FReq ctrlNCam.

Consequently, the three properties are proved using the refinement of the pre-
vious abstract machine. This refinement process is a practical modelling and ver-
ification pattern easily reusable for similar cases of control involving controllers
and controlled units in this decentralized way.

The abstract machine and its refinement have been implemented using the
Rodin toolkit (see Fig. 5 for the synthetic architecture).

The proof statistics (with the refinement related to the propertiesFReq DispOk,
FReq ctrlNCam and FReq cam1Ctrl) obtained from the Rodin toolkit are drawn in
the following table Tab. 4 . The contextmachines have their names suffixed by Ctx,
they contain the definitions of sets which are shared by the other machines of the
B project. The context machines do not generate proof obligations.

Table 4. Proof statistics

ElementName Total Auto Undischarged
PO proved PO

IVS CCTV (project) 30 30 0

IntegratedVideoSysRef Ctx 0 0 0

IntegratedVideoSys Ctx 0 0 0

IntegratedVideoSys 24 24 0

IntegratedVideoSys r1 6 6 0

All the proof obligations for the correctness of our models (containing the
required properties) have been automatically discharged by the Rodin toolkit.

Modelling and Verifying an Evolving Distributed Control System 585

Fig. 5. Structure of the models (a snapshot from the Rodin toolkit)

4.4 Further with the Interoperability

A key to handle heterogeneity and semantic interoperability is the use of a lay-
ered structure composed of formal models, where the inner layer, the most ab-
stract one, is the most commonly homogeneous in terms of concepts, relations
and properties. The outermost layers are those with more specific details in the
models. Note that the proposed method should be viewed from the abstract layer
which is one of the many levels needed to master heterogeneity and semantic in-
teroperability. Indeed, from a low abstraction level, several formal descriptions
with various semantic models may be associated to one given component of a
system. However changing the abstraction level to the higher one, details are
forgotten until one can reach an abstract level where the semantics models are
interoperable; this corresponds to the event level and the virtual component
net level adopted in the current proposed work. The global properties and their
analysis are only possible at this level.

Establishing bridges between formal models, using for instance the matching
between domain specific ontological concepts is necessary to deal with inter-
mediary abstraction layers. A reference compatibility layer is required as the
commonly shared semantics; this is the smallest set of properties shared by all
components of a system. As far as the implementation is concerned, this refer-
ence compatibility layer is captured by the invariant of our Event-B model. For
this purpose, the choice of Event-B is worthwhile since Logics and Set Theory
have very basic concepts which can be easily shared or implemented with other
formalisms. Likewise, when we have to consider the composition of components
modelled with different formalisms, on the one hand the bridging between the
formalisms and on the other hand the reference to a compatibility layer are the
key solutions.

586 C. Attiogbé

Therefore a tool specific analysis is required when different formal models
are considered to tackle different facets of a system. When it is necessary and
possible, equivalence proofs should be conducted but this is not required for all
the different facets. Interfaces between the models have to be built even with the
vision of narrowing or widening the models and their coverage.

In approaches such as Ptolemy [7,8] or ModelHex [4], the compatibility be-
tween computation models or their synchronisation are emphasized; this is like
a semantic adaptation in order to make the models compatible. The main dif-
ference between these approaches and our is that we do not achieve a semantic
adaptation since we consider that the heterogeneity is inherently a feature of
complex systems. Rather we try to handle heterogeneity but by maintaining
consistency between the involved components.

5 Conclusion

We have presented a method to model and analyse a distributed control system
with a varying architecture. The method is based on the composition of the iden-
tified physical and logical components of the system described at the abstract
level. The components are described as process types. Their composition is based
on the sharing of abstract channels denoting message buses, used by the processes
to communicate without the identification of the interacting peers. This enables
us to handle the distributed and dynamic architecture of the control system. The
method helps to structure and model interacting components as process types.
To put into practice, the Event-B notation and method are used. It follows that
the refinement technique permits to handle some properties via refinement of
abstract structure defined at earlier steps. Especially, in order to handle the in-
dependence of the control with respect to the controllers and their architecture,
the desired relationships between the controlled units are established at abstract
level as if they are directly linked; then controllers are introduced in a refinement
and appear between the linked controlled units. All the properties are proved ei-
ther at abstract level or in the refinement. Experimentations are conducted with
a CCTV case study using AtelierB and Rodin. Our experiment is easily reusable
in other case studies involving a control system with a dynamic architecture.
The two-levels specification can be considered as the reference pattern when we
distinguish firstly at the abstract level the end-point relationship between the
controlled units (ie of the desired control policy) and secondly the structuring
of the controllers and their link as intermediary agents between the controlled
units. Further works are scheduled on the parametrisation of the architecture of
the controllers. In the current case of the CCTV the structuring constraints are
fixed. However, in some control systems for instance in embedded control sys-
tems, in order to manage energy consumption, the structure of the system can
be reconfigured. This leads us to think about various behavioural modes and to
define the structuring and thus the architecture with respect to these modes. The
desired properties and hence their proofs will depend on the behavioural modes.
But this can be as well analysed as various refinements of the same abstract
machine of the ongoing architecture.

Modelling and Verifying an Evolving Distributed Control System 587

References

1. Abadi, M., Lamport, L.: Conjoining Specifications. ACM Trans. Program. Lang.
Syst. 17(3), 507–535 (1995)

2. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press (2010)

3. Attiogbé, C.: Event-Based Approach to Modeling Dynamic Architecture: Applica-
tion to Mobile Adhoc Network. In: Margaria, T., Steffen, B. (eds.) ISoLA 2008.
CCIS, vol. 17, pp. 769–781. Springer, Heidelberg (2008)

4. Boulanger, F., Jacquet, C., Hardebolle, C., Dogui, A.: Heterogeneous model com-
position in modhel’x: the power window case study. In: Proceedings of Gemoc 2013,
Workshop on the Globalization of Modeling Languages, Miami, Florida, USA, 10
pages (September 2013)

5. Lamport, L.: The implementation of reliable distributed multiprocess systems.
Computer Networks 2, 95–114 (1978)

6. Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed System.
Commun. ACM 21(7), 558–565 (1978)

7. Lee, E.A.: Disciplined Heterogeneous Modeling. In: Petriu, D.C., Rouquette, N.,
Haugen, Ø. (eds.) MODELS 2010, Part II. LNCS, vol. 6395, pp. 273–287. Springer,
Heidelberg (2010)

8. Ptolemaeus, C. (ed.): System Design, Modeling, and Simulation using Ptolemy II.
Ptolemy.org (2014)

9. Tanenbaum, A.S., van Renesse, R.: Distributed Operating Systems. ACM Comput.
Surv. 17(4), 419–470 (1985)

10. Zave, P., Jackson, M.: Conjunction as Composition. ACM Transactions on Software
Engineering and Methodology 2(4), 379–411 (1993)

Requirements Driven Data Warehouse Design:

We Can Go Further

Selma Khouri1,2, Ladjel Bellatreche1, Stéphane Jean1, and Yamine Ait-Ameur3

1 LIAS/ISAE-ENSMA – Poitiers University, France
{selma.khouri,bellatreche,jean}@ensma.fr

2 National High School for Computer Science (ESI), Algiers, Algeria
s khouri@esi.dz

3 ENSEEIHT/IRIT, Toulouse, France
yamine@enseeiht.fr

Abstract. Data warehouses (DW) are defined as data integration sys-
tems constructed from a set of heterogeneous sources and user’s require-
ments. Heterogeneity is due to syntactic and semantic conflicts occurring
between used concepts. Existing DW design methods associate hetero-
geneity only to data sources. We claim in this paper that heterogeneity
is also associated to users’ requirements. Actually, requirements are col-
lected from heterogeneous target users, which can cause semantic con-
flicts between concepts expressed. Besides, requirements can be analyzed
by heterogeneous designers having different design skills, which can cause
formalism heterogeneity. Integration is the process that manages hetero-
geneity in DW design. Ontologies are recognized as the key solution for
ensuring an automatic integration process. We propose to extend the use
of ontologies to resolve conflicts between requirements. A pivot model is
proposed for integrating requirements schemas expressed in different for-
malisms. A DW design method is proposed for providing the target DW
schema (star or snowflake schema) that meets a uniformed and consistent
set of requirements.

Keywords: Data warehouse, semantic heterogeneity, formalism hetero-
geneity, integration, ontology-based design.

1 Introduction

Data warehouses are defined as data integration systems which data are ex-
tracted from a set of heterogeneous sources and materialized in a unified view,
in order to answer business and analysis requirements collected from users and
decision makers. Concept heterogeneity is one of the most critical issues in DW
system design. Heterogeneity is often associated to data. It is caused by syn-
tactic and semantic conflicts occurring between data stored in different sources.
However, same conflicts can occur when gathering requirements from users and
decision makers. For example naming conflicts occur when concept naming
differs between users (eg. synonymy and homonymy conflicts). Scaling con-
flicts arise when different value measures are used when expressing requirements

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 588–603, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Requirements Driven Data Warehouse Design 589

(for example the price of a product can be given in dollar or in euro). Confound-
ing conflicts occur when concepts used by users seem to have the same meaning,
but differ in reality due to different measuring contexts. For example, a property
price is applied only to new products for user 1, but is applied to all products for
user 2. Representation conflicts arise when designers describe the same concept
in different ways. For example, customer’s name is represented by two attributes
FirstName and LastName for designer 1, and only by one attribute Name for
Designer 2. The projection of requirements on the ontology helps to identify
these conflicts and inconsistencies in order to resolve them.

A second type of heterogeneity concerns formalisms used to define the require-
ments model. Different formalisms can be used by designers for defining user’s
requirements. This situation is particularly observed with the development of
global enterprises having various corporations that can spread over different
states, countries or even continents, where the number of designers may increase
and become strongly heterogeneous. Each designer has its own design habits.
Consequently, they may use different vocabularies and formalisms to represent
their requirements. This brings several challenging issues related to requirements
integration: (i) how to integrate vocabularies, (ii) how to integrate the formalisms
and (iii) how to identify conflicts and inconsistencies between requirements in
an efficient way.

Unfortunately, most DW design methods focus on data integration and omit
requirements integration. This can be explained by the slow evolution of DW
design methods. In the first generation of DW design, dedicated studies have
mainly concerned three phases [9]: logical design phase that defines a unified
view of data, the ETL (Extract-Transform-Load) phase that extracts data from
sources, transforms data if necessary and loads data into the target schema,
the physical design phase that implements the final DW schema and defines
some relevant optimization structures. Issues related to integration were man-
aged in the ETL phase. In the second generation of DW design, two additional
phases were added: requirements definition and conceptual design phase. Kim-
ball’s studies [12] introduced requirements definition in DW design. Different
requirements driven design methods followed proposing to define DWs from a
set of users’ requirements. Other hybrid methods proposed to define DWs from
both sources and requirements. The conceptual design phase has completed the
design cycle in order to provide a DW schema independent of all implementation
issues, which facilitates its validation by users However, integration issues were
not studied for these additional phases, and concerned exclusively managing
conflicts occurring between data sources. There is now a consensus on a typical
DW life cycle that includes the following phases [8]: requirements definition,
conceptual design, logical design, ETL phase and physical design.

Several studies were proposed in the literature related to the problem of data
integration. The major progress toward automatic integration resulted from some
levels of explicit representation of data meaning through ontologies [4]. Ontolo-
gies are defined as consensual and explicit representations of conceptualization.
Some DW design methods have proposed the use of domain ontologies in order

590 S. Khouri et al.

to manage conflicts between sources. The main proposition of this paper is to
extend the use of ontologies in order to manage requirements conflicts. Further-
more, we take advantage of an important ontological skill: reasoning in order
to identify different relationships between requirements, and to obtain a design
schema of better quality. Three main contributions are proposed in this paper:

– Concerning formalism heterogeneity: two feasible scenarios may be offered
to designers: (i) they use a generic formalism (pivot model) to express their
requirements. Pivot model is a solution that reduces the complexity of ex-
changing different models. (ii) Designers keep using their favorite formalism
and a mapping between their model and the pivot one is established. This
scenario is better than the first one since it provides more autonomy to de-
signers. We propose as a first contribution, a pivot model between three
requirements formalisms usually used in DW design (process driven formal-
ism, use case formalism and goal formalism).

– Concerning vocabulary heterogeneity: conflicts occurring between data stored
in sources or between requirements collected from users can be solved if the
meaning of each object (term) used is defined precisely and explicitly. We
thus propose the use of a shared ontology integrating data sources. The sec-
ond contribution consists of connecting the requirements pivot model to this
ontology in order to eliminate all semantic conflicts, and unify the heteroge-
neous vocabularies used during requirements collection.

– Reasoning: Ontological reasoning mechanisms are then used to identify dif-
ferent relationships between requirements, which constitutes the third con-
tribution. Only a set of consistent requirements is recorded to identify the
target DW schema.

In order to realize these contributions, we propose a design method for DW
schema definition, covering the following phases: requirements definition and
analysis, conceptual design, logical design and physical design. This method takes
as inputs: a shared ontology integrating sources and a set of users’ requirements
(collected from heterogeneous users and defined using different formalisms). It
provides a DW schema (star or snowflake) covering a set of consistent require-
ments. We used Lehigh University Benchmark1 (LUBM) ontology to illustrate
our proposal. Figure 1 illustrates the proposed approach.

The rest of the paper is organized as follows: section 2 presents related works.
Section 3 presents the proposed design method. The pivot and the ontology
models are first described. Ontological reasoning mechanisms are used in order to
analyze the given set of requirements. The four design phases are then presented.
Section 4 presents the implementation of our approach. We illustrate how the
analysis of requirements allows obtaining a DW schema of better quality. Section
5 concludes the paper.

1 swat.cse.lehigh.edu/projects/lubm/

Requirements Driven Data Warehouse Design 591

Fig. 1. Approach overview

2 Related Work

This section presents different studies related to DW design, we focus on efforts
proposing requirements driven approaches. Then, we present studies using on-
tologies to define a DW schema. Finally, we present studies using ontologies for
analyzing requirements and reasoning on them.

2.1 DW Design: A Requirements Driven Perspective

The purpose of DW design schema is to define a target schema providing a uni-
fied view of data and answering a set of requirements. This schema must handle
multidimensional concepts (facts, dimension, measures, dimensions attributes
and hierarchies). The DW schema can be defined at different abstraction levels:
conceptual, logical or physical. Different methods have been proposed to define
this design schema. The instability of DW life cycle makes most research efforts
concentrate on one or two design phases. Proposed studies usually deal with the
definition of DW schema or the ETL phase populating the schema. The ETL
phase is out of the scope of this study. The definition of the requirements phase
in DW design emerged from different studies proposing: supply driven, demand
driven and hybrid approaches.

Requirements definition plays a crucial role in DW design and determines
its functional behavior and all needed enterprise information. The requirement
engineering process can be divided into four activities: requirements elicitation
and analysis, specification, validation and management. Requirements elicitation
and analysis in DW design literature differ according to the object analyzed.

592 S. Khouri et al.

We distinguish: (1) Process driven analysis [22] that analyzes requirements by
identifying business processes of the organization, (2) User driven analysis that
identifies requirements of target users and unifies them in a global model like
[3,14] that develops use case models to define DW requirements, and (3) Goal
driven analysis [6] that identifies goals and objectives that guide decisions of
the organization at different levels. These requirements can be functional or non
functional.

Lopez et al. [15] classify requirements specification techniques into three cat-
egories: (i) informal techniques using natural language, sometimes with struc-
turing rules, (ii) semi-formal techniques generally based on graphic notations
with a specified syntax like IStar or UML diagrams [14] and (iii) formal tech-
niques based on mathematical or logical notations providing a precise and non-
ambiguous framework for requirements modeling. For example, [11] propose to
use description logic formalism to define requirements.

Several research efforts were proposed to deal with formalism heterogeneity
problem. The work of [21] is an example of these studies, where the authors
propose solutions to integrate semi-formal formalisms (that use diagram and
tabular techniques) and formal formalisms (that use mathematics, logic or alge-
bra). However, this effort has not been made for DW design.

2.2 Ontologies for Designing DWs

Ontologies have been introduced in DW design for integrating heterogeneous
sources. In these studies, a domain ontology is assumed existent. The set of
sources reference this ontology. These references can be defined a priori during
the source design, or a posteriori using matching algorithms that align sources
to the ontology. Bellatreche et al. [1] provide an overview of different integration
scenarios based on ontologies. Ontological methods for designing DWs emerged
recently, following both supply driven and demand driven approaches. The first
two methods are mainly supply-driven, where a domain ontology is used as a
schema integrating data sources: [17] defines the DW multidimensional model
(facts and dimensions) from an OWL ontology by identifying functional depen-
dencies (Functional ObjectProperties) between ontological concepts. Nebot et al.
[16] define a semi-automatic method to build multidimensional tables from se-
mantic data guided by the user requirements. We proposed in [11] a hybrid design
method that extends the use of ontologies for resolving two issues: integration of
sources and for the specification of the requirements model. However, formalism
heterogeneity issue is not studied in this work. Romero et al. proposed in [18]
a hybrid method producing a multidimensional model from an OWL ontology
describing sources. Requirements are then used to identify the ETL operations
needed for mapping sources to target data stores.

2.3 Ontologies for Requirements Engineering

Requirements engineering field has used ontologies since the 80’s and still in re-
cent works to support analysis and reasoning on requirements. Proposed studies

Requirements Driven Data Warehouse Design 593

provide solutions dedicated for transactional systems (not decisional ones). As
instance, [10] proposed an ontological method for analyzing requirements, where
a mapping between specified requirements and ontological elements is estab-
lished. This ontology consists of a thesaurus and inference rules. [13] proposed
an approach to improve requirements specified in natural language by the use
of linguistic ontologies. [19] studied the problem of requirements expression and
their refinement. The authors propose the use of goal-oriented analysis language
to describe each requirement that can be refined into sub-goals. The major-
ity of these studies manage heterogeneity of vocabularies, but they ignore the
heterogeneity of the used modeling languages.

Other studies used ontologies for reasoning about requirements. As instance,
Siegemund et al.[20] used ontologies for structuring concepts, requirements and
relationships captured during requirements elicitation. The approach provides :
an ontology-based requirements meta model describing meta data and require-
ments relationships, and a set of consistency and completeness rules for vali-
dating the requirement Specification. Goknil et al.[7] propose a metamodel sup-
porting the common concepts of some requirements modeling approaches. Four
types of requirements relationships are identified: Refines, Requires, Conflicts,
and Contains. Based on this formalization, analysts can perform reasoning on
requirements to detect implicit relations and inconsistencies. The entered re-
quirements and their relations are stored in an OWL ontology.

We notice however that these studies are dedicated for transactional require-
ments. Surprisingly, no effort has been made for exploiting ontological specifi-
cation and its reasoning capabilities for analyzing DW user’s requirements in
order to enhance the DW schema defined. Besides, the main limitation of these
ontological proposals is about the consensuality of their ontologies. The ontology
presented in these studies is not consensual, it is only defined to store a set of
relevant requirements. This limits designers that aim to share and exchange their
models with other project groups referencing the same requirements ontologies.
We assume in our approach the existence of a consensual ontology defined by
domain experts.

3 Preliminaries : Ontology Formalism

OWL is the ontology definition language endorsed by the World Wide Web
Consortium (W3C). OWL language is based on description logic formalism (a
first order logic). DL formalism is defined as the formalism used to define logics
specifically designed to represent structured knowledge and to reason upon. We
used DL concepts definition to formalize the ontology model. The ontology model
is formally defined as follows OM: <C, R, Ref (C), Formalism>

– C: denotes Concepts of the model (atomic concepts and concept descrip-
tions).

– R: denotes Roles (relationships) of the model. Roles can be relationships
relating concepts to other concepts, or relationships relating concepts to
data-values (like Integers, Floats, etc).

594 S. Khouri et al.

Fig. 2. A partial view of LUBM ontology schema

– Ref : C ∪ R → (Operator, Exp(C,R)). Ref is a function defining termino-
logical axioms of a DL TBOX. Operators can be inclusion (�) or equality
(≡). Exp(C,R) is an expression over concepts and roles of OM using con-
structors of description logics such as union, intersection, restriction, etc.
(e.g., Ref(Student)→(�, Person ∀takesCourse(Person, Course))).

– Formalism is the formalism followed by the global ontology model like RDF,
OWL, etc.

In our context, we assume the existence of a shared global ontology. An ontology
is shared when the sources are committed to using its ontological definitions,
which are accepted and eventually standardized. Each contributor of a project
shall reference that ontology ”as much as possible” (i.e. each local class must
reference its smallest subsuming class in the shared ontology) Locally, designers
may extend it by other concepts and properties to fitful his local requirements.
As consequence, each designer will have his own ontology (called local ontology).
The designers may communicate through the common used concepts defined in
the shared ontology.

4 Proposed Method

We present in this section the method we propose to design DW schemas. We
describe our proposal following the design steps: requirements definition, con-
ceptual design, logical design and physical design.

Requirements Driven Data Warehouse Design 595

4.1 Requirements Definition

This phase includes three steps: (1) definition of the pivot model, (2) connec-
tion of the pivot model to the ontology model and (3) ontological analysis of
requirements.

Definition of the Pivot Model: in order to identify the different compo-
nents of our pivot model, we deeply studied three important formalisms used
in requirements-driven DW design : Goal-Oriented formalism, Process-Oriented
language (we studied MCT model, a process model of MERISE, a french model-
ing methodology), and UML use case formalism. We proposed in [2] the proposed
pivot model. Let’s take the following requirement example to illustrate the model
concepts: ”the system should analyze attendance of students to courses”.

Threemain components are identified: Actions, Results andCriteria (Fig3.(b)).
Each requirement is designated by one action to accomplish (Analyze Attendance).
If a requirement includes more than one action, it can be decomposed in multi-
ple requirements (one for each action). Each requirements is influenced by one
or many criteria (Student, Course). Each requirement have a result to fulfill (At-
tendance) that can be measured by a formal or semi formal metric (the number of
students attending the course). Each requirement involves one or many actors that
interact with the system to achieve the requirement. Two types of requirement are
distinguished: functional and non-functional. Requirements can be related with
each other through one of the following relationships: (Requires,Refines,Contains
and Conflicts). These relationships will be populated by using reasoning rules on
requirements.

Formally, we define a requirement as follows:
Requirement :< A,R,M, C >, in which:

– A: the action that a system performs to yield an observable result.
– R: the results realized by the system.
– M = {m1,m2,...,mn}, a set of metrics quantifying the result.
– C = {c1,c2,...,cn}, a set of sequence of criteria influencing the requirement’s

result.

Connection of Ontology Model to Requirements Model: the domain
ontology is used in our approach as a formal and consensual domain dictio-
nary, from which the designer can choose the most relevant concepts to express
collected requirements. Requirements are structured using the proposed pivot
model. They are afterwards expressed at the ontological level. In order to achieve
this, we defined a mapping between coordinates of each requirement (Action and
Criteria) and the resources (concepts) of the domain ontology. The connection
between the ontology and requirement pivot model is presented in figure 3, where
part (a) presents a fragment of the ontology metamodel connected to the pivot
model (part (b)). The merged meta-model, calledOntoPivot is defined as follows:

596 S. Khouri et al.

OntoP ivot :< GO,Pivotmodel >, Ontological Pivot, such that:

– GO : < C,R,Ref(C), F ormalism > is the global shared ontology
– Pivotmodel: < Actor,Requirement,Relationship >, such that:

• Requirement:< A,R,M, C >, such that:
∗ A = {a1,a2,...,an}, set of actions. For each a ∈ A,

a∈ 2CU2RU2Ref (ontological domain).
∗ C = {c1,c2,..., cn}, set of criteria. For each c ∈ C, c∈ 2CU2RU2Ref .

• Relationships = {Contains,Refines,Conflicts, Requires}, set of re-
lations between requirements. For each relation ∈ Relationships,
relation∈ 2R.

(b)(a) (b)(a)

Fig. 3. Pivot metamodel connected to the ontology metamodel [2]

Note that each requirement can introduce new concepts to the ontology. For
example, the requirement ”the system should analyze attendance of students to
courses” will be defined as a new concept in the ontology (having action, re-
sult, criteria and metric properties). This concept is defined as an instance of
a meta concept ”owl:Requirement” extending OWL meta model (see figure 4).
This requirement concept can introduce a new concept ”AnalyzeAttendance”,
whereas students and courses are already defined in the shared ontology. Con-
sistency reasoning mechanism is used to identify incoherences and correct them.
This process allows the definition of an application ontology, which combines a
domain ontology and task (requirements) ontology.

Ontological Analysis of Requirements: once requirements are structured
using the pivot model and expressed formally using the ontology model, they
are analyzed to discover hidden relationships between them. As stated in the
literature, four main relationships between requirements can be defined: contains,
refines, requires and conflicts. Some reasoning mechanisms are already supported
by the ontology like the equivalence between requirements concepts, others must
be defined as new rules. Let’s assume that: Subclass(C) is the set of subclasses of

Requirements Driven Data Warehouse Design 597

each class c ∈ C, Role(c) is the set of roles having class c as domain, Action(R)
denotes the action class of requirement R, Criteria(R) denotes the set of criteria
classes of Requirement R. If a role is used to define a requirement’s action, its
domain class is returned. If an expression (using Ref function) is used to define
requirement’s action or result, it is considered as a defined class. We formally
defined the following reasoning rules to identify the four relationships between
requirements:

– Refinement relationship: A requirement R refines a requirement R’ if R is
derived from R’ by adding more details to its properties [7]. Formally, refines
relation is defined as follows:
R refines R’ if
Action(R) � Action(R’) AND
(Criteria(R) ⊂ Subclass(Criteria(R’)) OR Criteria(R) ⊂ Role(Criteria(R’)))

Example 1. R: The system shall analyze messages sent to individuals, teams,
or all course participants at once.
R’: The system shall analyze messages sent.
where: Action(R) and Action(R’): AnayzeMessagesSent,
Criteria (R): {Individual, Team, Participant}, Criteria (R’): {�}
We observe that : Action(R) ≡ Action(R’) and Criteria(R) ⊂ Subclass
(Criteria(R’))

– Containment relationship: A requirement R contains a requirement R’ if R’
are parts of the whole R1 (part-whole hierarchy) [7]. Formally, containment
relation is defined as follows:
R contains R’ if
Action(R) � Action(R’) And
Criteria(R) ⊂ Criteria(R’)

Example 2. R: The system shall allow lecturers to analyze enrollment poli-
cies based on grade, first-come first-serve and department.
R’: The system shall allow lecturers to analyze enrollment policies based on
grade.
where: Action(R) and Action(R’): AnalyzeEnrollment,
Criteria (R): {Grade, Position,Department}, Criteria (R’): {Grade}
We observe that : Action(R) ≡ Action(R’) and Criteria(R) ⊂ Criteria(R’)

– Conflict relationship: A requirement R conflicts with a requirement R2 if the
fulfillment of R1 excludes the fulfillment of R2 and vice versa [7]. Formally,
conflicts relation is defined as follows:
R refines R’ if
Action(R) owl : disjointWith Action(R’) And
Criteria(R) ⊆ Subclass(Criteria(R’)) OR Criteria(R) ⊆ Criteria(R’)

Example 3. R: The system shall allow lecturers to limit the number of stu-
dents subscribing to a course.
R’: the system shall have no maximum limit on the number of course par-
ticipant ever.

598 S. Khouri et al.

where: Action(R): LimitNbStudent and Action(R’): NotLimitNbStudent,
Criteria (R): {Student, Course}, Criteria (R’): {Participant, Course}
We observe that : Action(R) owl : disjointWith Action(R’)
and Criteria(R) ⊂ Subclass(Criteria(R’))

– Require relationship: A requirement R requires a requirement R2 if R1 is
fulfilled only when R2 is fulfilled [7]. We introduce for this relation a new
relation ’owl:Require’ between OWL entities (E1 owl:Require E2) extending
OWL meta model, that denotes that entity E1 is a precondition for entity
E2. Formally, requires relation is defined as follows:

R requires R’ if
Action(R) owl : Require Action(R’) And
Criteria(R) ⊆ Subclass(Criteria(R’)) OR Criteria(R) ⊆ Criteria(R’)

Example 4. R: The system shall allow analyze students notification.
R’: the system shall provide messaging facilities.
where: Action(R): AnalyzeNotification and Action(R’): ProvideMessaging,
Criteria (R): {Student}, Criteria (R’): {�}
We observe that : Action(R) owl : Require Action(R’)
and Criteria(R) ⊂ Subclass(Criteria(R’))

4.2 Conceptual Design

A DW ontology (DWO) viewed as a conceptual abstraction of the DW , is
defined from the global domain ontology (GO) by extracting all concepts and
properties used by user requirements. Three scenarios are possible:

1. DWO = GO: the GO corresponds exactly to users’ requirements,
2. DWO ⊂ GO: the DWO is extracted from the GO,
3. DWO ⊃ GO: the GO does not fulfill all users’ requirements.

We defined in [11] different reasoning mechanisms for checking the consistency of
the ontology and for identifying multidimensional concepts. We also proposed an
algorithm that analyses users’ requirements in order to identify the multidimen-
sional role of concepts and properties and store them as ontological annotations.
The multidimensional annotation of DWO is based on user requirement. Follow-
ing Kimball’s definition, we consider that each requirement Result is the fact to
analyze, each of its metrics is a measure candidate for this fact, and each of its
criteria is a candidate dimension. Facts are linked to dimensions by looking for
one-to-many relationships between corresponding ontological concepts. Dimen-
sions hierarchies are formed by looking for many-to-one relationships between
dimensions linked to the same fact. This annotation is validated by the designer.
DWO definition extends DO formalization as follows: <C, R, Ref (C), For-

malism, Multidim> where Multidim : C ∪ R → Role. Multidim is a function
that denotes the multidimensional role (fact, dimension, measure, attribute di-
mension) of concepts and roles.

Requirements Driven Data Warehouse Design 599

4.3 Logical Design

The logical model of the DW is generated by translating the annotated DWO
into a relational model. Several works in the literature proposed methods for
translating ontologies described in a given formalism (PLIB, OWL, RDF) to a
relational or object-relational representation. This translation can follow three
possible relational representations: vertical, binary and horizontal. Vertical rep-
resentation is used for RDF ontologies, and stores data in a unique table of
three columns (subject, predicate, object). In a binary representation, classes
and properties are stored in tables of different structures. Horizontal represen-
tation translates each class as a table having a column for each property of
the class. We proposed in [5] a set of translation rules for representing PLIB
and OWL ontology (classes, properties and restrictions) in a relational schema
following the binary and horizontal representations.

4.4 Physical Design

This last phase implements the final DW schema using a chosen DBMS. Both
conventional or semantic data repositories can be used to implement the DW
schema. Semantic data repository stores both the logical and conceptual schema
(in the form of a local ontology). As we extended the ontology with the require-
ments model, even requirements can be stored in the repository. We implemented
the obtained DW schema using two semantic repositories: OntoBD (academic
database) and Oracle semantic database. OntoDB supports a horizontal storage
layout, whereas Oracle supports a vertical storage layout.

5 Implementation

In order to implement our approach, we used LUBM ontology related to univer-
sity domain, and the CMS (course management system) requirements
document2. CMS provides a set of 60 requirements related to teaching and man-
agement of courses including interactions with students taking the course. Re-
quirements have been adapted to a decisional application. We modified actions of
requirements to analysis actions, which are more suitable for DW applications.

The implementation of LUBM ontology is made using Protege framework, de-
fined as free, open-source ontology editor and framework for building intelligent
systems (http://protege.stanford.edu/). The ontology is defined using OWL2
language. The definition of the pivot requirements model at the ontological level
is defined by the extension of OWL ontology meta model. Figure 4 illustrates this
extension. Requirement meta class is defined as a new class instantiating meta
class ’class’, which defines all classes of the ontology. The whole pivot model is
defined. Action, Criteria and Result are defined as properties of Requirement
class, they have owl:Class or owl:Property as a range. Each CMS requirement is
defined as an instance of this Requirement class. Relationships between require-
ments are defined as roles.
2 The full requirements document is available at
http://www.home.cs.utwente.nl/~goknila/sosym/

http://www.home.cs.utwente.nl/~goknila/sosym/

600 S. Khouri et al.

Fig. 4. OWL meta model extended with the requirement pivot model using Protege
Editor

The set of reasoning rules, identifying relationships between requirements,
are implemented in a java program accessing the ontology using OWL API
(owlapi.sourceforge.net/). Each relationship inferred is stored in the ontology
for the corresponding requirements. The program identified a set of relationships
between defined requirements: 20 refinement relationships, 10 containment rela-
tionships, 12 require relationships and 4 conflict relationships. Figure 5 presents
a set of requirements and discovered relationships between them. The schema is
obtained using Protege plugin OntoGraf 3.

The DWO is defined from LUBM ontology using the modularity method
OWLExtractor. This method is chosen because it is dedicated for OWL ontolo-
gies and it provides a Protege plugin implementing the method. The method
takes as inputs the domain ontology and a signature (set of terms which will
be extracted in the local ontology). In our approach, the signature corresponds
to the set of requirements. We identified a subset of relevant requirements by
analyzing the relationships between them. For example, refinement and con-
tainment relationships allow to eliminate some redundant requirements. When
a requirement contains other requirements, the first requirement is kept, the
contained requirement can be ignored. When a requirement refines another re-
quirement, the first one gives more details (usually more criteria) to the second
one. The second requirement can thus be ignored. Require relationship allow
to identify the set of requirements that must be included in the final schema
as they present necessary prerequisites to other requirements. Conflict relation-
ships allow to identify requirements that cannot be fulfilled together, and cause
inconsistencies. The designer must choose one of these conflictual requirements.
Each requirement has a priority attribute, which can be used to eliminate re-
quirements having the lowest priority. Require relationship can also be used. If
a requirement is required by other requirements, it is more careful to not reject
it.

3 http://protegewiki.stanford.edu/wiki/OntoGraf

http://protegewiki.stanford.edu/wiki/OntoGraf

Requirements Driven Data Warehouse Design 601

Fig. 5. Discovered relationships between requirements

Fig. 6. DW Multidimensional schema obtained

The annotation algorithm is executed to annotate the extracted ontology by
multidimensional annotations. Figure 6 illustrates the obtained multidimensional
schema.

The reasoning rules help us to obtain a DW schema of better quality. Suppose
that step 2 (analysis of requirements) is ignored. This would provide a schema
containing conflict requirements. For example, the schema cannot answer the non
functional requirement stating that the system should ”limit space of storage for
courses”, and another requirement stating that the system should ”maximize
space of specific courses ”. The schema would include redundant concepts due
to the presence of containment and refinement relations between requirements.
In fact, instead of managing and validating 60 requirements, we just have to
manage 40 requirements. The validation of this schema is easier since it has to
be validated by a consistent subset of requirements.

602 S. Khouri et al.

6 Conclusion

VariousDW design methods have been proposed covering different design phases:
conceptual, logical, physical and ETL design phases. Most of these methods
consider integration issues related to data, but ignore requirements integration.
User’s requirements are collected from heterogeneous users, which usually causes
semantic conflicts. Requirements are analyzed and formalized by different de-
signers, which can cause schematic and formalisms heterogeneity. We propose
in this paper to manage requirements integration for DW definition through
an ontology-based design method. The method takes as inputs a set of require-
ments, and a shared ontology integrating sources. For handling formalisms het-
erogeneity, we defined a pivot model between three formalisms usually used for
DW requirements models (process, use case and goal formalisms). The pivot
model is connected to the shared ontology. This connection allows expressing
requirements using ontological concepts which eliminates semantic conflicts. It
also allows reasoning on requirements in order to identify semantic relationships
between requirements (refine, contain, require and conflict relationships). The
DW schema is then defined by following three design stages: conceptual, logical
and physical design. The target DW schema is defined from a set of coherent
and consistent requirements. We illustrated the proposed approach using LUBM
ontology and requirements defined in the CMS requirements document.

There are different open issues that we are currently working on like: the
management of requirements evolution, the completion of the approach with the
ETL process for loading data, and the evaluation of the approach in a large scale
case study in which we evaluate DW quality metrics and get designers feedback.

References

1. Bellatreche, L., Dung, N.X., Pierra, G., Hondjack, D.: Contribution of ontology-
based data modeling to automatic integration of electronic catalogues within en-
gineering databases. Computers in Industry 57(8), 711–724 (2006)

2. Boukhari, I., Bellatreche, L., Khouri, S.: Efficient, unified, and intelligent user
requirement collection and analysis in global enterprises. In: Proceedings of In-
ternational Conference on Information Integration and Web-based Applications &
Services, p. 686. ACM (2013)

3. Bruckner, R., List, B., Schiefer, J.: Developing requirements for data warehouse
systems with use cases. In: Proc. 7th Americas Conf. on Information Systems, pp.
329–335 (2001)

4. Doan, A., Halevy, A.Y., Ives, Z.G.: Principles of Data Integration. Morgan Kauf-
mann (2012)

5. Fankam, C.: OntoDB2 : Un systeme flexible et efficient de Base de Donnees á
Base Ontologique pour le Web semantique et les donnees techniques. PhD thesis,
ENSMA (December 2009)

6. Giorgini, P., Rizzi, S., Garzetti, M.: Goal-oriented requirement analysis for data
warehouse design. In: Proceedings of the 8th ACM International Workshop on
Data Warehousing and OLAP, pp. 47–56. ACM (2005)

Requirements Driven Data Warehouse Design 603

7. Goknil, A., Kurtev, I., Berg, K., Veldhuis, J.-W.: Semantics of trace relations in re-
quirements models for consistency checking and inferencing. Softw. Syst. Model. 10,
31–54 (2011)

8. Golfarelli, M.: From user requirements to conceptual design in data warehouse
design a survey. In: Data Warehousing Design and Advanced Engineering Appli-
cations Methods for Complex Construction, pp. 1–16 (2010)

9. Inmon, W.H.: Building the data warehouse. J. Wiley (2002)
10. Kaiya, H., Saeki, M.: Ontology based requirements analysis: Lightweight seman-

tic processing approach. In: Proceedings of the Fifth International Conference on
Quality Software, pp. 223–230. IEEE Computer Society (2005)

11. Khouri, S., Boukhari, I., Bellatreche, L., Jean, S., Sardet, E., Baron, M.: Ontology-
based structured web data warehouses for sustainable interoperability: Require-
ment modeling, design methodology and tool. Computers in Industry, 799–812
(2012)

12. Kimball, R., Reeves, L., Thornthwaite, W., Ross, M., Thornwaite, W.: The Data
Warehouse Lifecycle Toolkit: Expert Methods for Designing, Developing and De-
ploying Data Warehouses, 1st edn. John Wiley & Sons, Inc., New York (1998)

13. Körner, J.S., Torben, B.: Natural language specification improvement with ontolo-
gies. Int. J. Semantic Computing 3, 445–470 (2009)

14. List, B., Schiefer, J., Tjoa, A.M.: Process-oriented requirement analysis supporting
the data warehouse design process a use case driven approach. In: Ibrahim, M.,
Küng, J., Revell, N. (eds.) DEXA 2000. LNCS, vol. 1873, pp. 593–603. Springer,
Heidelberg (2000)

15. López, O., Laguna, M.A., Garćıa, F.J.: Metamodeling for requirements reuse. In:
Anais do WER02-Workshop em Engenharia de Requisitos, Valencia, Spain (2002)

16. Nebot, V., Berlanga, R.: Building data warehouses with semantic web data. Deci-
sion Support Systems (2011)

17. Romero, O., Abelló, A.: Automating multidimensional design from ontologies. In:
Proceedings of the ACM Tenth International Workshop on Data Warehousing and
OLAP, pp. 1–8. ACM (2007)

18. Romero, O., Simitsis, A., Abelló, A.: Gem: Requirement-driven generation of etl
and multidimensional conceptual designs. In: Data Warehousing and Knowledge
Discovery, pp. 80–95 (2011)

19. Saeki, M., Hayashi, S., Kaiya, H.: A tool for attributed goal-oriented requirements
analysis. In: 24th IEEE/ACM International Conference on Automated Software
Engineering, pp. 674–676 (2009)

20. Siegemund, K., Edward, J., Thomas, Y., Yuting, Z., Pan, J., Assmann, U.: To-
wards ontology-driven requirements engineering. In: 7th International Workshop
on Semantic Web Enabled Software Engineering (October 2011)

21. Wieringa, R., Dubois, E.: Integrating semi-formal and formal software specification
techniques. Information Systems 23(3-4), 159–178 (1998)

22. Winter, R., Strauch, B.: A method for demand-driven information requirements
analysis in data warehousing projects. In: Proceedings of the 36th Annual Hawaii
International Conference on System Sciences, 2003, pp. 9–19. IEEE (2003)

On Implicit and Explicit Semantics:

Integration Issues in Proof-Based Development
of Systems�

Version to Read

Yamine Ait-Ameur1, J. Paul Gibson2, and Dominique Méry3

1 IRIT - ENSEEIHT. Institut de Recherche en Informatique de Toulouse - École
Nationale Supérieure d’ Électrotechnique, d’Électronique, d’Informatique,

d’Hydraulique et des Télécommunications (ENSEEIHT)
yamine@enseeiht.fr

2 Département Logiciels-Réseaux, IT-SudParis, Évry, France
paul.gibson@it-sudparis.eu

3 Université de Lorraine, LORIA CNRS UMR 7503, Vandœuvre-lès-Nancy, France
mery@loria.fr

Abstract. All software systems execute within an environment or con-
text. Reasoning about the correct behavior of such systems is a ternary
relation linking the requirements, system and context models. Formal
methods are concerned with providing tool (automated) support for the
synthesis and analysis of such models. These methods have quite success-
fully focused on binary relationships, for example: validation of a formal
model against an informal one, verification of one formal model against
another formal model, generation of code from a design, and generation
of tests from requirements. The contexts of the systems in these cases
are treated as second-class citizens: in general, the modelling is implicit
and usually distributed between the requirements model and the system
model. This paper is concerned with the explicit modelling of contexts as
first-class citizens and illustrates concepts related to implicit and explicit
semantics on an example using the Event B language.

Keywords: Verification, modelling, Contexts, Domains.

1 Introduction: Implicit versus Explicit — The Need for
Formality

In general usage, “explicit” means clearly expressed or readily observable whilst
“implicit” means implied or expressed indirectly. However, there is some inconsis-
tency regarding the precise meaning of these adjectives. For example, in logic and
belief models [1] “a sentence is explicitly believed when it is actively held to be
true by an agent and implicitly believed when it follows from what is believed.”

� This work was supported by grant ANR-13-INSE-0001 (The IMPEX Project
http://impex.loria.fr) from the Agence Nationale de la Recherche (ANR).

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 604–618, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://impex.loria.fr

Implicit and Explicit Semantics 605

However, in the semantic web [2] “Semantics can be implicit, existing only in the
minds of the humans [. . .]. They can also be explicit and informal, or they can be
formal.” The requirements engineering community use the terms to distinguish
between declarative (descriptive) and operational (prescriptive) requirements [3]
where they acknowledge the need for “a formal method for generating explicit,
declarative, type-level requirements from operational, instance-level scenarios in
which such requirements are implicit”. We propose a formal treatment of the
adjectives implicit and explicit when engineering software and/or systems.

Nowadays, several research approaches aim at formalizing mathematical the-
ories for the formal development of systems. Usually, these theories are defined
within contexts, that are imported and and/or instantiated. They usually repre-
sent the implicit semantics of the systems and are expressed by types, logics, al-
gebras, etc. based approaches. To our knowledge, no work adequately addresses
the formal description of domains expressing the semantics of the universe in
which the developed systems run and their integration in the formal develop-
ment process. This domain information is usually defined in an “ontology” [4].

Several relevant properties are checked by the formal methods. These prop-
erties are defined on the implicit semantics associated to the formal technique
being used. When considering these properties in their context with the associ-
ated explicit semantics, these properties may be no longer respected. Without a
more formal system engineering development approach, based on separation of
implicit and explicit, the composition of software and/or system components in
common contexts risks compromising correct operation of the resulting system.
This is a significant problem when software and/or systems are constructed from
heterogeneous components [5] that must be reliable in unreliable contexts [6].

To clarify, this paper is concerned with the separation of concerns when rea-
soning about properties of models. Although the concerns need to be cleanly
separated, the models need to be tightly integrated: achieving both is a signifi-
cant challenge.

2 Integrating Implicit and Explicit: Formal Methods and
Ontologies

Allowing formal methods users and developers to integrate — in a flexible and
modular manner — both the implicit semantics, offered by the formal method
semantics, and the explicit semantics, provided by external formal knowledge
models like ontologies, is a major challenge. Indeed, the formal models should
be defined in the formal modelling language being used, and explicit refer-
ence and/or annotation mechanisms must be provided for associating explicit
semantics to the formal modelling concepts. Once this integration is realized,
the formalisation and verification of several properties related to the hetero-
geneous models’ integration becomes possible. The most important properties
that need to be addressed relate to interoperability, adaptability, dissimilarity, re-
configurability and identification of degraded modes. Refinement/instantiation
and composition/decomposition could play a major role for specifying and

606 Y. Ait-Ameur, J.P. Gibson, and D. Méry

verifying these properties. Currently, no formal method or formal technique pro-
vides explicit means for handling such an integration.

In the context of formal methods, it is well known that several formal meth-
ods for system design and verification have been proposed. These techniques
are well established on a solid formal basis and their domain of efficiency, their
strengths and weaknesses are well acknowledged by the formal methods com-
munity. Although, some ad-hoc formalisation of domain knowledge [7] within
formal methods is possible, none of these techniques offers a built-in mechanism
for handling explicit semantics.

Regarding ontologies and domainmodelling,most of theworkhas been achieved
in the large semantic web research community. There, the problem consists of an-
notatingweb pages and documentswith semantic information belonging to ontolo-
gies. Thus, ontologies havemainly been used for assigningmeanings and semantics
to terms occurring in documents. Once, these meanings are assigned, formal rea-
soning can be performed due to the ontologies being based on descriptive logic. In
general, however, the documents to be annotated do not conform to anymodel and
the domain associated to the documents is not fixed. Therefore, ontologies behave
like a model associated to the resources that are annotated.

We propose an integration of both worlds. On the one hand, formal methods
facilitate prescriptive modelling whereas, on the other hand, ontologies provide
mechanisms for explicit descriptive semantics. We conclude by noting that, in
most cases, the formal models are usually defined in a fixed and limited appli-
cation domain well understood by the developers.

3 A Simple Example

The illustration of the addressed problem and the underlying ideas are given
in this section through a simple case study. As a first step, we demonstrate
a typical development involving solely a formal model; and in a second step
we show how formalized explicit knowledge contributes to identifying relevant
problems related to heterogeneity.

Let us consider a simple system issued from avionic system design. We identify
two sub-systems: the first one is part of the flight management system acting in
the closed world (heart of the avionic systems), it produces flight information like
altitude and speed; and the second is the display part of a passenger information
system (open world). It displays, to the passengers, information issued from the
closed world, here altitude and speed. The information is transmitted from the
closed world to the open world within a communication bus. Communications
are unidirectional from the closed world to the open world only.

The development of this system considers a formally expressed specification
which is refined twice. Figure 1 shows the structure of the development for this
case study. The next two subsections show the two proposed formal developments
expressed within the Event B formal method.

We note that this example is intended only as a proof-of-concept. Its goal
is not to demonstrate the power of our approach, it shows only that there is

Implicit and Explicit Semantics 607

Compute_aircraft_info Display_aircraft_info

alt

speed

Compute_aircraft_info_1 Display_aircraft_info_1

alt

speed

alt_bus

speed_bus

Read_alt

read_peed

write_info_on_bus

read_info_from_bus

display_alt

display_speed

display_alt

display_speed

Machine level
Aircraft produces

info to be displayed

First refinement
Introduction of an

abstract protocol with
read and write events

Second refinement
Introduction of

a bus b as a
concrete

network with read
and write events

Compute_aircraft_info_2 Display_aircraft_info_2

alt

speed

value_of_alt_on_bus(b)

value_of_speed_on_bus(b)

Read_alt
read_peed

write_info_on_bus_1

read_info_from_bus_1

display_alt

display_speed

Fig. 1. A global view of the formal development

utility in separating the implicit and explicit semantics and that there is at least
one such way of doing this separation in Event-B. This demonstrates that a
fully formal and automated approach is feasible. Further work — on a range of
case studies — will examine and compare different mechanisms for implementing
the approach, with particular emphasis on scaleability and universality: can we
model much larger, heterogeneous, domains of knowledge?

3.1 Formal Model with Implicit Semantics

In the implicit semantics, the models are constructed within the modelling ca-
pabilities offered by the modelling language.

The Machine Level: Specification. The first formal specification of the
problem expresses that the system should communicate a computed value to
be displayed. Variables, described in the invariant clauses, are speed (record-
ing the effective speed), alt (recording the effective altitude), display speed
(recording the displayed speed), display alt (recording the displayed altitude)
and consumed (recording the control and the synchronisation between the pro-
duced and the consumed values. Two events are defined, one producing the
information to be displayed and a second displaying this information.

608 Y. Ait-Ameur, J.P. Gibson, and D. Méry

EVENT Compute aircraft info
WHEN

grd1 : consumed = 1
THEN

act1 : alt :∈ N1

act2 : speed :∈ N1

act3 : consumed := 0
END

EVENT Display aircraft info
WHEN

grd1 : consumed = 0
THEN

act1 : display alt := alt
act2 : display speed := speed

END

inv1 : speed ∈ N1

inv2 : alt ∈ N1

inv3 : consumed ∈ {0, 1}
inv4 : display speed ∈ N1

inv5 : display alt ∈ N1

Event Compute aircraft info models the up-
date step for the altitude and the speed; the
consumed variable is set to 0 and the event Dis-
play aircraft info is triggered when the variable
Display aircraft info is updated by the sent
value.

The invariant types and constrains the variables within numerical bounds; it
does not take into account the fact that the produced values and consumed values
belong to different domains. The ontological context is to provide information for
relating these two domains. The main idea is to annotate the model by expressing
the knowledge domain using the context models in figure 2.

First Refinement: Introducing an Abstract Communication Protocol.
The new model First Refinement extends the state by new variables recording
the traffic of messages through a bus. It specifies that we have to manage the
transmission of messages with the addition of new control variables (written,
read, displayable). Two new events model the reading and the writing to and
from the bus. The two abstract events are refined by strengthening guards with
respect to the new control variables (read, written, displayable). The new model
introduces an abstract protocol for the bus.
EVENT compute aircraft info 1

REFINES compute aircraft info
WHEN

grd1 : consumed = 1
grd2 : written = 1
grd3 : read = 1
grd4 : displayable = 1

THEN

act1 : alt :∈ N1

act2 : speed :∈ N1

act3 : consumed := 0
END

EVENT Display aircraft info 1
REFINES Display aircraft info
WHEN

grd1 : consumed = 0
grd2 : written = 0
grd3 : read = 0
grd4 : displayable = 1

THEN

act1 : display alt := read alt
act2 : display speed := read speed
act3 : displayable := 0

END

The two next events model the abstract protocol for exchanging the data.
They describe the fact that a value is written to and then read from an abstract
bus.
EVENT write info on bus

WHEN

grd1 : consumed = 0
grd2 : written = 1
grd3 : read = 1
grd4 : displayable = 1

THEN

act1 : alt bus := alt
act2 : speed bus := speed
act3 : written := 0

END

EVENT read info from bus
WHEN

grd1 : consumed = 0
grd2 : written = 0
grd3 : read = 1
grd4 : displayable = 1

THEN

act1 : read alt := alt bus
act2 : read speed := speed bus
act3 : read := 0

END

Implicit and Explicit Semantics 609

Second Refinement: Concretizing the Bus for Communication. The
current system is still abstract and we have to add details concerning the bus.
Finally, the four events of the model First Refinement are refined to concretize
actions over the bus b. The two first events are directly related to the computa-
tion and display components.

EVENT compute aircraft info 2
REFINES compute aircraft info 1
WHEN

grd1 : consumed = 1
grd2 : written = 1
grd3 : read = 1
grd4 : displayable = 1

THEN

act1 : alt :∈ N1

act2 : speed :∈ N1

act3 : consumed := 0
END

EVENT Display aircraft info 2
REFINES Display aircraft info 1
WHEN

grd1 : consumed = 0
grd2 : written = 0
grd3 : read = 0
grd4 : displayable = 1

THEN

act1 : display alt := read alt
act2 : display speed := read speed
act3 : displayable := 0

END

The next two events are the operations over the bus. They precise how the
speed and altitude information are written to and read from the bus b
EVENT read info from bus 2

REFINES read info from bus
WHEN

grd1 : consumed = 0
grd2 : written = 0
grd3 : read = 1
grd4 : displayable = 1
THEN

act1 : read alt := value of alt on bus(b)
act2 : read speed := value of speed on bus(b)
act3 : read := 0
END

EVENT write info on bus 2
REFINES write info on bus
WHEN

grd1 : consumed = 0
grd2 : written = 1
grd3 : read = 1
grd4 : displayable = 1

THEN

act1 : value of alt on bus(b) := alt
act2 : value of speed on bus(b) := speed
act5 : written := 0

END

3.2 Formal Model with Explicit Semantics

The previous development follows the formal modelling approach provided by the
Event B method, focusing on the binary relation referred to in the introduction
of this paper.

The second development, presented below, introduces the explicit knowledge
carried out by ontologies, it is used for coding the ternary relationship referred to
in the introduction. In the case of Event B, it is formalized within contexts. The
ternary relationship is obtained by annotation i.e. linking the model elements,
variables in our case, to the explicit knowledge. In the following we illustrate
the process of handling explicit domain knowledge in Event B models, using the
same aircraft case study as before.

Contexts for Defining Explicit Domain Knowledge. The first step con-
sists of introducing the explicit domain knowledge through a formal model for
ontologies. It will be used to annotate the concepts seen in the previous models.

In the simple case we are addressing, this knowledge is defined by contexts
(see figure 2). In this case, we are concerned by the description of the units that
may be associated to the altitude and to the speed.

Meters, inches, kilometers per hour, and miles per hour are introduced to
define distance speed measures. Conversion functions, that define equivalences

610 Y. Ait-Ameur, J.P. Gibson, and D. Méry

CONTEXT domain knowledge for units
CONSTANTS

inches,meters,mph, kph, inch2meters,mphour2kphour
AXIOMS

axm1 : inches ⊆ N1

axm2 : meters ⊆ N1

axm3 : mph ⊆ N1

axm4 : kph ⊆ N1

axm5 : inches �= ∅

axm6 : meters �= ∅

axm7 : mph �= ∅

axm8 : kph �= ∅

axm9 : inch2meters ∈ inches → meters
axm10 : mphour2kphour ∈ mph → kph

END

Fig. 2. The ontological context

in terms of ontology definitions, are described by the functions inch2meters and
mphour2kphour. We do not detail the defintions of these two functions but they
can be made more precise by an implementation step at a later phase in the
process.

Annotation: Associating Explicit Knowledge to Model Variables. Once
the explicit knowledge has been formalized, it becomes possible to annotate the
concepts available in the obtained formal models. In our case, the variables are
annotated by explicitly referring to the ontology defined in the context of figure 2.
Measurement units are introduced in an explicit way.
The variables are then defined as fol-
lows. When the annotations have been
specified, the verification of the previ-
ous development defined in section 3.1
is no longer correct. Some proof obliga-
tions cannot be satisfied due to incoher-
ent assignments.

inv1 : speed ∈ mph
inv2 : alt ∈ inches
inv3 : consumed ∈ {0, 1}
inv4 : display speed ∈ kph
inv5 : display alt ∈ meters

The new invariant defines the ontological constraints that should be satis-
fied by the events. For example, one of the generated proof obligations for
checking the preservation of inv5 : display alt ∈ meters by the event Dis-
play aircraft info fails to prove that alt ∈ meters. Thus, we should modify the
event Display aircraft info by removing the previous act1 and act2 and by adding
the ontological information provided by the two functions inch2meters and
mph2kphour in the rewritten actions nact1 and nact2 . The example is sim-
ple and gives an obvious way to solve the unproved proof obligation: without
refinement it may be much more difficult to discover why similar proof obliga-
tions are not discharged.

Consequently, the following events — Display air craft info and Compute aircraft
info — require further description. In Particular, Display aircraft info has been
modified in order to handle converted values issued from Compute aircraft info.

Implicit and Explicit Semantics 611

EVENT Compute aircraft info
WHEN

grd1 : consumed = 1
THEN

act1alt :∈ inches
act2speed :∈ mph
act3consumed := 0

END

EVENT Display aircraft info
WHEN

grd1 : consumed = 0
THEN

nact1display alt := inch2meters(alt)
nact2 : display speed := mphour2kphour(speed)

END

First Refinement: Introducing an Abstract Communication Protocol.
As a next step, we can add new features in the current model Main exchange by
refining it into First Refinement Dom.

The new model First Refinement Dom performs the same extension of the state
as in the previous case using implicit knowledge. This is quite natural since none
of these state variables (i.e. written, read, displayable) are annotated. Two new
events model the reading to and the writing from the bus. The invariant is
extended by sub-invariants inv6 . . . inv15. Notice the introduction of new kinds
of invariants, labeled inv13 and inv14, borrowed from the context where the
explicit knowledge is described. They define ontological invariants.

inv1 to inv5 of last model
inv6 : speed bus ∈ kph
inv7 : read alt ∈ meters
inv8 : read speed ∈ kph
inv9 : alt bus ∈ meters
inv10 : written ∈ {0, 1}
inv11 : read ∈ {0, 1}
inv12 : displayable ∈ {0, 1}
inv13 : (written = 0) ⇒ (alt bus = inch2meters(alt) ∧ speed bus = mphour2kphour(speed))
inv14 : (read = 0) ⇒ (read alt = alt bus ∧ read speed = speed bus)
inv15 : (displayable = 0) ⇒ (display alt = read alt ∧ display speed = read speed)

The two abstract events are refined by strengthening guards with respect to
the new control variables (read, written, displayable). The new model introduces
an abstract protocol for the bus.
EVENT compute aircraft info 1

REFINES compute aircraft info
WHEN

grd1 : consumed = 1
grd2 : written = 1
grd3 : read = 1
grd4 : displayable = 1

THEN

act1 : alt :∈ inches
act2 : speed :∈ mph
act3 : consumed := 0

END

EVENT Display aircraft info 1
REFINES Display aircraft info
WHEN

grd1 : consumed = 0
grd2 : written = 0
grd3 : read = 0
grd4 : displayable = 1

THEN

act1 : display alt := read alt
act2 : display speed := read speed
act3 : displayable := 0

END

The two next events model the abstract protocol for exchanging
the data. The abstract protocol manages the relationship between the mea-
surement units. The ontological annotation appears in the invariant inv13: the
protocol ensures the correct communication.

612 Y. Ait-Ameur, J.P. Gibson, and D. Méry

EVENT write info on bus
WHEN

grd1 : consumed = 0
grd2 : written = 1
grd3 : read = 1
grd4 : displayable = 1

THEN

act1 : alt bus := inch2meters(alt)
act2 : speed bus := mphour2kphour(speed)
act3 : written := 0

END

EVENT read info from bus
WHEN

grd1 : consumed = 0
grd2 : written = 0
grd3 : read = 1
grd4 : displayable = 1

THEN

act1 : read alt := alt bus
act2 : read speed := speed bus
act3 : read := 0

END

Context Extension: Need of Explicit Knowledge for the Bus. The cur-
rent system is still abstract and we have to add details concerning the bus. Fol-
lowing good engineering practice, the communication bus should be described
independently of any usage in a given model. Here again, an ontology of commu-
nication medias is needed. It is defined in a context that extends the one defined
for measure units. The bus has specific properties that are expressed in a new
context domain knowledge for protocols(in figure 3.2).

CONTEXT domain knowledge for protocols
EXTENDS domain knowledge for units
SETS

bus, bus type
CONSTANTS

unidirectional, bidirectional, type of bus
AXIOMS

axm1 : bus type = {unidirectional, bidirectional}
axm2 : type of bus ∈ bus → bus type
axm3 : bus �= ∅

axm4 : ∃bb·(bb ∈ bus ∧ type of bus(bb) = unidirectional)
END

Fig.3.Context for the bus

Notice that the definition of
explicit knowledge is mod-
ular. It uses contexts that
import only those ontologies
that are needed for a given
development. Moreover, it is
flexible since contexts can
be changed, if the domain
knowledge or the nature of
the manipulated concepts
evolves.

The whole formal development of the system does not need to be rewritten.

Second Refinement: Concretizing the Bus for Communication. The
new invariant extends the previous one, whilst integrating the state of the bus.
It also asserts that the bus is unidirectional. The invariant Ninv3 : b ∈ bus is an
ontological invariant and the context enriches the description of the domain.

Ninv1 : value of speed on bus ∈ bus → kph
Ninv2 : value of alt on bus ∈ bus → meters
Ninv3 : b ∈ bus
Ninv4 : (written = 0) ⇒ (value of speed on bus(b) = mphour2kphour(speed))
Ninv5 : (written = 0) ⇒ (value of alt on bus(b) = inch2meters(alt))
Ninv51 : type of bus(b) = unidirectional
Ninv6 : (read = 0) ⇒ (read speed = value of speed on bus(b))
Ninv7 : (read = 0) ⇒ (read alt = value of alt on bus(b))
Ninv8 : alt bus = value of alt on bus(b)
Ninv9 : speed bus = value of speed on bus(b)

Finally, the four events of the model First Refinement Dom are refined to con-
cretize the actions over the bus b. The two first events are directly related to the
computation and display components.

Implicit and Explicit Semantics 613

EVENT compute aircraft info 2
REFINES compute aircraft info 1

WHEN

grd1 : consumed = 1
grd2 : written = 1
grd3 : read = 1
grd4 : displayable = 1

THEN

act1 : alt :∈ inches
act2 : speed :∈ mph
act3 : consumed := 0

END

EVENT Display aircraft info 2
REFINES Display aircraft info 1
WHEN

grd1 : consumed = 0
grd2 : written = 0
grd3 : read = 0
grd4 : displayable = 1

THEN

act1 : display alt := read alt
act2 : display speed := read speed
act3 : displayable := 0

END

The two next events — read info from bus 2 and write info on bus 2 — model
operations over the bus. They both deal with ontological annotations, where the
more detailed characteristics of the bus are necessary for guaranteeing the safety
of the global system.

EVENT read info from bus 2
REFINES read info from bus
WHEN

grd1 : consumed = 0
grd2 : written = 0
grd3 : read = 1
grd4 : displayable = 1

THEN

act1 : read alt := value of alt on bus(b)

act2 :

(
read speed :=
value of speed on bus(b)

)

act3 : read := 0
END

EVENT write info on bus 2
REFINES write info on bus

WHEN

grd1 : consumed = 0
grd2 : written = 1
grd3 : read = 1
grd4 : displayable = 1

THEN

act1 :

(
value of alt on bus(b) :=
inch2meters(alt)

)

act2 :

(
value of speed on bus(b) :=
mphour2kphour(speed)

)

act5 : written := 0
END

The summary of proof obligations tells us that the proof is not complex.
In fact, the example is simple and does not require further interaction as the
ontological annotations help to automatically derive the proofs.

4 Discussion

4.1 Proof-Based Development Methods for Safe and Secure Models
and Systems: The Importance of Refinement

Deductive verification for program correctness has outstanding challenges. For-
mal methods toolsets assist the developer who is trying to check a set of proof
obligations using a proof assistant. In contrast to these semi-automatic proof
techniques, model checking [8] appears to be a better solution when the devel-
oper does not want to interact with the proof tool and, although model checking
is addressing specific systems with a reasonable size or is applied on abstractions
of systems to facilitate the proof, there are limits to the use of model checking-
based techniques. Finally, another solution is to play with abstractions and to
apply the abstract interpretation [9] engine by defining appropriate abstractions
and domains of abstractions for analysing a program. Deductive verification
techniques, model checking and abstract interpretation analyse programs or sys-
tems which are already built and we call this the a posteriori approach where
the process of analysis tries to extract semantic information from the text of the
program or the system.

614 Y. Ait-Ameur, J.P. Gibson, and D. Méry

The correct-by-construction approach [10] advocates the development of a
program using a process which is proof-guided or proof-checked and which leads
to a correct program. This is an a-priori verification approach. These proof-based
development methods [11] integrate formal proof techniques in the development
of software and/or systems. The main idea is to start with a very abstract model
of the system under development. Details are gradually added to this first model
by building a sequence of more concrete ones. The relationship between two
successive models in this sequence is that of refinement [11]

The essence of the refinement relationship is that it preserves already proven
system properties including safety properties and termination. At the most ab-
stract level it is obligatory to describe the static properties of a model’s data by
means of an invariant predicate. This gives rise to proof obligations relating to
the consistency of the model. These are required to ensure that data properties
which are claimed to be invariant are preserved by the events or operations of
the model.

The Event B Method [12] is a refinement-based, correctness-by-construction
approach for the development of event-based systems (or, more generally, event-
based models). Several case studies [13] show that the Event B method provides
a flexible framework for developing complex systems in an incremental and proof-
based style. Since refinement necessitates checking proof obligations, an idea is
to introduce concepts of reusability and instantiation of Event B models [14,15]:
making it possible to re-apply already developed and proven models.

Refinement is a critical step in formal design: as we move from the abstract
to the concrete we transform our requirements into an operational solution.
Without refinement, the correctness of non-trivial design steps is usually a com-
putational intensive (often intractable) problem. Refinement allows us to split
the design phase into a sequence of refinement steps, each of which is proven
correct through the discharging of proof obligations. When the sequence is well-
engineered, this can often be done in an automated fashion. The role of the
software engineer is to “find” such a sequence. The purpose of this research is
to aid the engineer in this task.

4.2 Explicit Semantics of Modelling Domains and Domain
Ontologies

According to Gruber [4], an ontology is a specification of a conceptualisation. An
ontology can be considered as the modelling of domain knowledge. Nowadays,
ontologies are used in many diverse research fields and several proposals for
ontology models and languages and corresponding operational systems have been
developed in the last decade. The main characteristics of an ontology are: being
formal and consensual and offering referencing capabilities.

As both an ontology and a conceptual model define a conceptualization of a
part of the world, we must clarify their similarities and differences. Conceptual
models respect the formal criterion. Indeed, a conceptual model is based on a rig-
orously formalized logical theory and reasoning is provided by view mechanisms.
However, a conceptual model is application requirement driven: it prescribes

Implicit and Explicit Semantics 615

and imposes which information will be represented in a particular application
(logical model). Thus, conceptual models do not fulfil the consensual criterion.
Moreover, an identifier of a conceptual model defined concept is a name that can
be referenced only inside the context of an Information System. Thus, conceptual
models also do not fulfil the capability to be referenced criterion [16].

Several ontology models — like OWL [17] and KAON [18] for description logic,
and PLIB [19] and MADS [20] for database design — are based on construc-
tors provided by conceptual models based on either database or knowledge base
models. These models add other constructors that facilitate satisfaction of the
consensual criterion (context definition, multi-instantiation) and the capability
to be referenced criterion.

Within our approach, it is clear that re-usable domain knowledge can, and
should, be integrated into the modelling of a system’s environment. A problem
with current modelling approaches is that this knowledge is often distributed be-
tween the inside and the outside of a system in an ad-hoc fashion. By formalising
the notion of ontology we can encourage (perhaps oblige) system engineers to be
more methodological in how they structure and re-use their ontologies. We are
currently investigating whether this can be done through a better integration of
existing ontology models into our Event-B framework (through annotations) or
whether we need to build a re-usable ontological framework in Event-B, moti-
vated by the aspects of existing ontology models that we have found useful in
our case studies.

4.3 Properties and Methodology

The separation of implicit from explicit gives rise to many difficulties with respect
to the methodological aspects of developing software and/or systems, but it
opens up many opportunities with respect to the types of properties that can be
handled more elegantly. Building on the notion of functional correctness— where
a software and/or a system must be verified to meet its functional requirements
when executing in a well-behaved environment — we must consider the issue of
system reliability being compromised. In such circumstances we would like the
behaviour to degrade in a controllable, continuous, manner rather than having a
non-controllable abrupt crash. One of the advantages of the proposed approach is
that we can automatically distinguish between problems due to an environment
which is not behaving as expected (where the system makes an assumption
about its environment which is false some time during execution) and an internal
fault (where the environment makes some assumption about the system which
is false some time during execution). We can also automatically execute some
self-healing mechanism that is guaranteed — through formal verification — to
return the system and its environment to a safe, stable state.

The key to our methodology is the integration of the implicit and explicit mod-
elling, which is shown in figure 3. The architecture should be generally applicable
to the development of software and/or systems in a wide range of problem do-
mains. This needs to be validated through application of the tools and techniques
in a range of case studies that go beyond the case study presented in this paper.

616 Y. Ait-Ameur, J.P. Gibson, and D. Méry

The development approach may also be considered generic with respect to its
application using a variety of formal techniques rather than specific to a single
(set of) method(s).

Fig. 3. A research architecture

As a minimum, the formal models must offer mechanisms for (de)composing
systems, as well as for refinement and instantiation. The separation of implicit
and explicit semantics is critical to independent development and verification.
Furthermore, as illustrated in the case study of this paper, their integration
must be directly supported by the development architecture: the implicit mod-
els will reference the explicit semantics which will provide annotations for the
operational models. The best means of supporting this integration require fur-
ther work: especially when we consider that combining top-down and bottom-up
approaches in a formal development process is already very challenging. Initial
work has shown us that the combination of different software development tech-
niques (in particular, refinement with composition) is a major challenge. This is
normally done in an ad-hoc manner, where the many different composition mech-
anisms lead to sate explosion problems when analysing behaviour. We propose
working in an algebraic manner, which will constrain the ways in which compo-
sition can be performed: making our methodology simpler and more amenable
to automated verification. A simplification of the semantics of composition risks

Implicit and Explicit Semantics 617

reducing the expressiveness of our language, but we argue that finding the bal-
ance is a key part of making our approach both sound, in theory, and applicable,
in practice. This balance is necessarily different when considering implicit and
explicit aspects of modelling. Without a separation of these concerns, we risk a
compromise which helps in the development of neither. Through separation, we
can better balance the modelling of each.

5 Conclusions

We have argued that many problems in the development of correct software
and/or systems could be better addressed through the separation of implicit
and explicit semantics. The key idea is to re-formalize correctness as a ternary
(rather than binary) relation.

We have proposed that traditional formal methods need to be better inte-
grated with ontology models, in order to support a clearer separation of con-
cerns.

Through a simple example, we have illustrated how ontological semantics
can be specified using Event B contexts and that this information can be inte-
grated with the behavioral requirements — in an incremental fashion — through
refinement. The simple example addresses the simple problem of information in-
terchange. (A good example of the consequences of not modelling this formally
can be found in the report on the Mars Climate Orbiter [21] where confusing
imperial and metric measurements caused a critical failure.)

A main contribution of the paper is to place the implicit-explicit structure
within the context of the relevant state-of-the-art. We emphasise the impor-
tance of building on well-established formal methods, treating domain/context
ontology models as first-class citizens during development, and the need for a
pragmatic approach that integrates into existing methods in a unified and co-
herent fashion.

Finally, we give an overview of where we think further research needs to
be done, formulating the goals as the need for an architecture of inter-related
research tasks.

References

1. Levesque, H.J.: A logic of implicit and explicit belief. In: Brachman, R.J. (ed.)
AAAI, pp. 198–202. AAAI Press (1984)

2. Uschold, M.: Where are the semantics in the semantic web? AI Mag. 24, 25–36
(2003)

3. van Lamsweerde, A., Willemet, L.: Inferring declarative requirements specifications
from operational scenarios. IEEE Trans. Softw. Eng. 24, 1089–1114 (1998)

4. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl.
Acquis. 5(2), 199–220 (1993)

5. Ait-Ameur, Y., Méry, D.: Handling heterogeneity in formal developments of hard-
ware and software systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part
II. LNCS, vol. 7610, pp. 327–328. Springer, Heidelberg (2012)

618 Y. Ait-Ameur, J.P. Gibson, and D. Méry

6. Garlan, D., Schmerl, B.: Model-based adaptation for self-healing systems. In: Pro-
ceedings of the First Workshop on Self-healing Systems, WOSS 2002, pp. 27–32.
ACM, New York (2002)

7. Bjorner, D.: Software Engineering 1 Abstraction and Modelling; Software Engineer-
ing 2 Specification of Systems and Languages, Software Engineering 3 Domains,
Requirements, and Software Design. Texts in Theoretical Computer Science. An
EATCS Series. Springer (2006)

8. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (2000)
9. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252 (1977)

10. Leavens, G.T., Abrial, J.R., Batory, D., Butler, M., Coglio, A., Fisler, K., Hehner,
E., Jones, C., Miller, D., Peyton-Jones, S., Sitaraman, M., Smith, D.R., Stump, A.:
Roadmap for enhanced languages and methods to aid verification. In: Proceedings
of the 5th International Conference on Generative Programming and Component
Engineering, GPCE 2006, pp. 221–236. ACM, New York (2006)

11. Back, R.J.R.: On correct refinement of programs. Journal of Computer and Systems
Sciences 23(1), 49–68 (1981)

12. Abrial, J.R.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press (2010)

13. Abrial, J.R., Cansell, D., Méry, D.: A mechanically proved and incremental devel-
opment of ieee 1394 tree identify protocol. Formal Asp. Comput. 14(3), 215–227
(2003)

14. Abrial, J.R., Hallerstede, S.: Refinement, decomposition, and instantiation of dis-
crete models: Application to event-b. Fundam. Inf. 77(1-2), 1–28 (2007)

15. Cansell, D., Gibson, J.P., Méry, D.: Refinement: A constructive approach to for-
mal software design for a secure e-voting interface. Electr. Notes Theor. Comput.
Sci. 183, 39–55 (2007)

16. Jean, S., Pierra, G., Aı̈t-Ameur, Y.: Domain ontologies: A database-oriented anal-
ysis. In: Cordeiro, J.A.M., Pedrosa, V., Encarnação, B., Filipe, J. (eds.) WEBIST
(1), pp. 341–351. INSTICC Press (2006)

17. Bechhofer, S., Van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D., Patel-
Schneider, P., Stein, L., et al.: Owl web ontology language reference. W3C recom-
mendation 10, 2006-01 (2004)

18. Bozsak, E., Ehrig, M., Handschuh, S., Hotho, A., Maedche, A., Motik, B., Oberle,
D., Schmitz, C., Staab, S., Stojanovic, L., et al.: Kaon—towards a large scale
semantic web. E-Commerce and Web Technologies, 231–248 (2002)

19. Pierra, G.: Context-explication in conceptual ontologies: the plib approach. In:
Proceedings of the 10th ISPE International Conference on Concurrent Engineering
(CE 2003). Enhanced Interoperable Systems, vol. 26, p. 2003 (2003)

20. Parent, C., Spaccapietra, S., Zimányi, E.: Spatio-temporal conceptual models: data
structures + space + time. In: Proceedings of the 7th ACM International Sympo-
sium on Advances in Geographic Information Systems, GIS 1999, pp. 26–33. ACM,
New York (1999)

21. Stephenson, A., Mulville, D., Bauer, F., Dukeman, G., Norvig, P., LaPiana, L.,
Rutledge, P., Folta, D., Sackheim, R.: Mars climate orbiter mishap investigation
board phase I report. Technical report, NASA, Washington, DC (1999)

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 619–620, 2014.
© Springer-Verlag Berlin Heidelberg 2014

The Technological and Interdisciplinary Evolution
in Machine and Plant Engineering – Industry 4.0

Axel Hessenkämper

GEA Westfalia Separator Group GmbH

In machine and plant engineering, the terms Industry 4.0, Internet of Things (IoT) and
Cyber Physical Systems (CPS) are currently very present and are discussed, defined
and described differently.

To meet future requirements of machines and plants it is necessary to combine
modern and state of the art technologies of information technology with the classic,
industrial processes and systems. Today, 80% of the innovations in production
technology go back to the integration of information technology in mechanical
engineering. [1]

The reduced complexity in machine and process operation (usability, simplicity
and flexibility), a fast and continuous analysis of data and a simple diagnosis of the
machinery and equipment are only examples of a future production. Not only
the machines and processes itself have to be user friendly and more flexible, the
engineering of the systems have to face the same challenge. Engineers need
manageable and complexity reduced high capable tools and systems to be able to
meet future requirements. Simplicity in the exchange and reusability of every
software component at any time is truly component-based engineering. [3] The above
mentioned points require sustainable research efforts to create systems that meet the
actual demands and lead to systems which in their flexibility and in the support of
reducing complexity contribute manageability – and not, even again are a source of
additional complexity. [2]

To apply the techniques of information technology to the manufacturing and
development of the classic processes and systems requires an interdisciplinary
exchange in order to create a mutual understanding. Information technology needs to
have a rough understanding of the requirements of machine design technology and
vice versa. Interdisciplinary also means that workers with their skills and experience
will be more involved in both, the creative design and planning process as well as the
operational environment. [2]

As part of the Industrial Day 2014, first interdisciplinary applications and ideas of
information technology combinations with classical processes and systems, as well as
further requirements are presented. Three major world leading automation equipment
vendors are presenting their Industry 4.0 approaches and how they interpret the
evolutionary steps towards it.

The way towards the Production of tomorrow by the use of scientific automation
systems and platforms will be presented by Mr. Gerd Hoppe from Beckhoff
Automation GmbH.

 A. Hessenkämper

620

Dr. Detlef Pauly, Siemens AG, will show some brief explanations concerning the
background of Industry 4.0 and present the trend in manufacturing and automation
towards a Digital Enterprise and how this is addressed by companies and major
automation vendors.

An increase of capabilities in industrial control systems is raising the complexity of
the systems. The acceptance by the users of these complex systems is only
guaranteed, if the simplicity is increasing too. Diego Escudero from Omron
Electronics will present a robotics function in combination with a vision system as an
example of simple programming and high flexibility automation system.

References

1. Bundesministerium für Bildung und Forschung: Zukunftsbild “Industrie 4.0”. Bonn (2014)
2. Kagermann, W.H.: Umsetzungsempfehlung für das Zukunftsprojekt Industrie 4.0. Büro

der Forschungsunion im Stifterverband für die Deutsche Wissenschaft e.V., Berlin (2012)
3. Margaria, T., Steffen, B.: Simplicity as a Driver for Agile Innovation. IEEE

Computer 43(6), 90–92 (2010)

Integrated Code Motion and Register Allocation

Gergö Barany�

Vienna University of Technology

1 Problem and Research Question

Code motion and register spilling are important but fundamentally conflicting
program transformations in optimizing compiler backends. Global code motion
aims to place instructions in less frequently executed basic blocks, while instruc-
tion scheduling within blocks or regions (all subsumed under ‘code motion’)
arranges instructions such that independent computations can be performed in
parallel. These optimizations tend to increase the distances between the defini-
tions and uses of values, leading to more overlaps of live ranges. In general, more
overlaps lead to higher register pressure and insertion of more expensive regis-
ter spill and reload instructions in the program. Eager code motion performed
before register allocation can thus lead to an overall performance decrease.

On the other hand, register allocation before code motion will assign unre-
lated values to the same physical register, introducing false dependences between
computations. These dependences block opportunities for code motion that may
have been legal before assignment of registers. This is an instance of the phase
ordering problem: Neither ordering of these phases of code generation provides
optimal results. A common way to sidestep this problem is by solving both
problems at once in an integrated fashion.

The aim of this thesis is to develop a fully integrated approach to global
code motion and register allocation. The expected result is an algorithm that
determines an arrangement of instructions that leads to minimal spill code while
performing as much global and local code motion as possible.

The expected contributions of the method developed in this thesis are twofold:
First, the only global algorithm that integrates code motion/scheduling issues
and register allocation on the scope of whole functions; second, an algorithm
that is guided by the exact needs of the register allocator rather than by an
estimate of register pressure computed beforehand.

The algorithm can be tuned to give higher preference to either code motion or
spilling; by evaluating various settings of the tuning parameter, we can find the
best trade-off between these two conflicting phases for any given input program.
It is expected that preferring minimal spilling is often, but not always, the best
choice.

� This work was supported by the Austrian Science Fund (FWF) under con-
tract P21842, Optimal Code Generation for Explicitly Parallel Processors,
http://www.complang.tuwien.ac.at/epicopt/.

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 621–622, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://www.complang.tuwien.ac.at/epicopt/

622 G. Barany

2 Related Work

The proposed technique has some similarities to previous integrated scheduling
and register allocation approaches by Norris and Pollock [3], Berson et al. [2], and
Touati [4]. All of these add ordering arcs to data dependence graphs to ensure
register reuse. However, all of these techniques schedule only within basic blocks.
As such, they are also limited to using estimated register pressure information
at the start and end of each block; in contrast, the proposed global technique
developed for this thesis will tightly integrate the register allocator’s exact model
of the spilling problem with its scheduling choices.

3 Methods

The effectiveness of the approach will be demonstrated by an implementation
in the LLVM compiler framework, evaluated using the standard SPEC CPU
benchmark suite. The relevant quantity to be evaluated is the change in program
execution time.

4 Preliminary Results

Careful benchmarking of code generated by the algorithm showed that some
speedups are possible this way, although on average, the effect is small [1]. Some
benchmarks are slowed down because minimal spilling is not the optimal choice
if it blocks code motion opportunities.

5 Next Steps

As the preliminary results showed, optimizing code motion for minimal spilling
is not always the best trade-off. Tolerating some spills in exchange for more ag-
gressive code motion opportunities sometimes results in much faster code over-
all. A parameter capturing this trade-off was added to the problem formulation,
and the search for the best parameter value for each benchmark is currently in
progress.

References

1. Barany, G., Krall, A.: Optimal and heuristic global code motion for minimal spilling.
In: Jhala, R., De Bosschere, K. (eds.) Compiler Construction. LNCS, vol. 7791, pp.
21–40. Springer, Heidelberg (2013)

2. Berson, D.A., Gupta, R., Soffa, M.L.: Integrated instruction scheduling and register
allocation techniques. In: Carter, L., Ferrante, J., Sehr, D., Chatterjee, S., Prins,
J.F., Li, Z., Yew, P.-C. (eds.) LCPC 1998. LNCS, vol. 1656, pp. 247–262. Springer,
Heidelberg (1999)

3. Norris, C., Pollock, L.L.: A scheduler-sensitive global register allocator. In: Super-
computing 1993, pp. 804–813 (1993)

4. Touati, S.A.A.: Register saturation in superscalar and VLIW codes. In: Wilhelm,
R. (ed.) CC 2001. LNCS, vol. 2027, pp. 213–228. Springer, Heidelberg (2001)

On the Algebraic Specification

and Verification of Parallel Systems�

Nikolaos Triantafyllou, Katerina Ksystra, and Petros Stefaneas

National Technical University of Athens

1 Problem and Research Question

Observational Transition Systems (OTS) are a rich subclass of behavioral al-
gebraic specifications, used to model, specify and verify distributed systems.
Usually, due to the abstraction level of these specification techniques in order
to obtain an implementation, refinement of the original specification is required.
However, existing refinement methodology was not designed to support concur-
rent systems and indeed its use can lead to un-intentional semantics.

2 Related Work

Most of the existing related work is concerned with reasoning about programs
where two or more processes share a memory location (for reading and writing,
this is called a data race). In [1] the authors argue that because the hardware
and software implementations of multi-core systems do not provide a sequen-
tially consistent shared memory (they use relaxed memory models) the existing
approaches for reasoning about concurrent programs are not applicable. To this
end they provide a semantic foundation for reasoning about such programs and
demonstrate the usefulness of their approach on a variety of low-level concur-
rency algorithms. However, their methodology does not provide support for au-
tomation and as they state can be tedious in its current form. Also, in [2] the
authors develop an integrated approach to the verification of behaviorally rich
programs, with proof support from the HOL4 theorem prover and deal with the
issues of data-race they encounter in their case study using locks.

3 Methods

The problem of the existing refinement methodology arises because as it is clearly
stated in [3] the issue of concurrency is not addressed by their methodology, but the

� This research has been co-financed by the European Union (European Social Fund
- ESF) and Greek national funds through the Operational Program ′Education and
Lifelong Learning′ of the National Strategic Reference Framework (NSRF) - Research
Funding Program: THALES: Reinforcement of the interdisciplinary and/or inter-
institutional research and innovation

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 623–624, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

624 N. Triantafyllou, K. Ksystra, and P. Stefaneas

existing refinement methodology only considers serial evaluation by term rewrit-
ing. Thus, it was not meant to be used for the refinement of concurrent systems
(defined using [4]). However, in many cases it is required to refine the abstract
specification to reach an implementation. To counter the above stated problem we
propose a novel extension of the OTS methodology called Threaded-OTS
(ThOTSs) which permits the safe use of the existing refinement methodology pre-
sented in [3]. The key idea behind ThOTSs is that the state changing operations
(transitions) of a behavioral object have a start and an end. Inbetween these, there
exists no guarantee for the values characterizing the state (observers). We can
only safely reason that the value of the observers will either have changed or it
will have not. To capture this, the observers must stop being deterministic once
a transition has started executing. To define this, we replace the classical OTS
observers with oracles, boolean observation operations that return true for both
the expected value of the observer after the execution of the transition and for the
previous value of the observer. Only when a transition has finished executing does
the system re-enter a deterministic state.

4 Preliminary Results

We demonstrated using a simple mutual exclusion system why the existing
methodology is indeed not suited for the refinement of OTS specifications of
concurrent distributed systems. Next, we demonstrated using the same exam-
ple, that ThOTSs are safe to use with the existing refinement methodology. Fi-
nally, we presented a proof as to why ThOTSs can be safely refined using [3]. To
the best of our knowledge the proposed methodology is the first OTS/CafeOBJ
framework that can be used in conjunction with the refinement method of [3] to
safely reason about concurrent distributed systems.

5 Next Steps

In the future we intend to better evaluate the applicability of the proposed frame-
work on real life systems by conducting case studies. Additionally, we wish to
develop alternative refinement methods that will be safe to use for all behavioral
specifications (including concurrent ones).

References

1. Owens, S.: Reasoning about the implementation of concurrency abstractions on x86-
TSO. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 478–503. Springer,
Heidelberg (2010)

2. Ridge, T.: Verifying distributed systems, the operational approach. In: Proceedings
of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pp. 429–440 (2009)

3. Malcolm, G., Goguen, J.A.: Proving Correctness Of Refinement And Implementa-
tion, Technical Monograph, Oxford University Computing Laboratory (1994)

4. Diaconescu, R.: Behavioural specification for hierarchical object composition. The-
oretical Computer Science 343(3), 305–331 (2005)

Property-Specific Benchmark Generation

Maren Geske

TU Dortmund

1 Problem and Research Question

There are countless software verification tools most of which specialize in a very
narrow set of tasks to master a certain class of verification problems. As a con-
sequence, many of the benchmark prolems these tools are typically evaluated on
focus on a small set of phenomena. This way, tool developers miss the oppor-
tunity to assess, optimize and test their tools in a broader context. Moreover,
it makes it extremely difficult for prospective users to identify the tool most
suitable for the problem setting they are facing.

The aim of my research is to develop a framework that generates benchmarks
of a given complexity profile from a set of properties of tailored complexity.
The benchmarks can be used to compare tools concerning their abilities, but
can also be used to improve or optimize the verification process. The generation
process is adjustable in form of restrictions concerning program complexity and
supported language constructs as well as the programming language in general.
It is designed to also emit a comprehensive “solution” in form of satisfied and
unsatisfied LTL formulae and reachability specifications that describe the pro-
gram behavior. The benchmarks are generated from automata synthesized from
a given specification that characterizes the behavioral properties of the program.
The program logic is crafted by encoding the automaton states using variables
and data structures such that transitions are realized by variable assignments
and data restructuring. The resulting code structure of an automaton is then fur-
ther altered by property-preserving transformations, ensuring that the program
remains in conformance to the specification.

As there are countless possibilities to design generation constraints, the variety
of supported transformations is constantly increasing, but will only ever remain
a fraction of all possible transformations. Currently the framework supports
arithmetic expressions, value ranges and simple array operations. Internally, code
motion [3] is used to break the correlation between code blocks and automaton
transitions. A constant dialogue with the verification community is desired to
make the generator more useful for all engineers and users.

2 Related Work

There are several benchmark suites generators being built for specific problem
fields. However, to the best of my knowledge there is no approach which aims at
generating a benchmark suite for a wide range of different software verification
tools. Related research are nontheless obfuscation techniques in general [1] and
methods like code motion [3] to alter the control flow of the programs.

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 625–626, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

626 M. Geske

3 Methods

The benchmarking suite is regularily used to create test problems for the RERS
program validation and verification challenge [2]. New ideas and suggestions are
discussed with the participants before being integrated into the generator. This
ensures that the benchmarks built with this framework realize desired features
of a benchmark generator. To ensure the correctness of the generated programs
concerning their specification, a test suite is being built internally that is backed
by active automata learning [5].

4 Preliminary Results

Generated programs in C and Java were used in three editions of RERS from
2012 on and were therefore pedantically analyzed by several verification tools.
The participants acknowledged the problems as “challenging”, since they showed
some weaknesses in their tools and helped to improve the verification process.

5 Next Steps

As the first experiments at RERS showed it is fairly easy to create big and
complex programs. However, the goal is to create structurally interesting prob-
lems that are similar to real code, meaning they should include a lot of different
structures that are common in handwritten code. The next milestone is there-
fore to include restructuring functions for arrays as simple objects and complex
code structures in form of custom data structures. The whole framework should
finally be highly parametrized concerning used code elements [4] and support
numerous frequently used programming languages.

References

1. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transformations.
Technical Report 148, Department of Computer Science, University of Auckland
(July 1997)

2. Howar, F., Isberner, M., Merten, M., Steffen, B., Beyer, D.: The RERS grey-box
challenge 2012: Analysis of event-condition-action systems. In: Margaria, T., Steffen,
B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 608–614. Springer, Heidelberg
(2012)

3. Knoop, J., Rüthing, O., Steffen, B.: Lazy code motion. In: Proceedings of the ACM
SIGPLAN 1992 Conference on Programming Language Design and Implementation,
PLDI 1992, pp. 224–234. ACM, New York (1992)

4. Neubauer, J., Steffen, B., Margaria, T.: Higher-order process modeling: Product-
lining, variability modeling and beyond. In: Festschrift for Dave Schmidt, pp. 259–
283 (2013)

5. Steffen, B., Howar, F., Merten, M.: Introduction to active automata learning from
a practical perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS,
vol. 6659, pp. 256–296. Springer, Heidelberg (2011)

Steering Active Automata Learning

with Model-Driven Development

Oliver Bauer

TU Dortmund, Chair for Programming Systems
Otto-Hahn-Str. 14

D-44227 Dortmund, Germany

1 Problem and Research Question

The last decades showed that Active Automata Learning (AAL) can be applied
successfully to a broad range of real-life systems to overcome the situation of
missing adequate models that are necessary for many formal verification tech-
niques or model-based testing approaches to automatically generate test suites.

Through Model-Driven Development (MDD) it is possible that domain ex-
perts are able to express workflows in a model-based fashion for some resp.
domain without programming skills. In an extreme occurrence (cf. the XMDD
approach [2]) it include benefits like on-the-fly model verification to minimize
architectural failures and supports full code generation to create executable ap-
plication drafts.

My research will focus on improving the interplay of AAL and XMDD to
enhance the applicability of AAL for domain experts that are not meant to be
programmers. The overall approach is intended to lead the domain expert from
the beginning through different steps like generation of learning setups, usage of
domain-specific filter techniques for inference acceleration, code generation and
support for manual test sequence evaluation during the process execution.

2 Related Work

The libalf library [1] is an open source automata learning framework containing
various active and passive learning algorithms for inferring finite-state automata.
For real-life applications a comprehensive set of filtering techniques is necessary
to infer models of evolving software products [6]. With our new open source
LearnLib 1 those already have been applied successfully with ease [7].

The Eclipse Modeling Framework (EMF) rapidly receives growing interest for
developing software in a model driven way but the corresponding diversity of
APIs elongate the resp. training period to get productive. Our new jABC4 [5]
nicely integrates with modern technologies and allows developing applications in
an XMDD fashion without the hurdles of long training periods to get productive.

LearnLib Studio [4] is based on previous versions of LearnLib and jABC and
allows some of my research intend up to some extent. Especially in leading the
domain expert through the whole process i’d like to improve previous work.

1 http://www.learnlib.de

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 627–629, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://www.learnlib.de

628 O. Bauer

3 Methods

My work will focus on improving the usability of AAL and MDD for domain
experts in a comprehensible way. The result will be evaluated along different case
studies on a modern technology stack to show the ease of the taken approach.

4 Preliminary Results

Fig. 1 depicts a generic learning loop that has already been applied in simulated
environments and real-life applications. The overall learning pattern (search and
refinement phase) is itself purely generic such that is works in many environments
and different configurations. Depending on the abstraction a user wants to see
the whole process could also be used as a ”learning loop” building-block.

Fig. 1. Generic learning loop of LearnLib created with jABC4

5 Next Steps

Providing model based domain-specific optimizations, supporting full code gen-
eration and a guidance through the whole process along different case studies of
the approach will conclude the proposed research topic. The developed strategy
will illustrate the ease of bringing together AAL and XMDD while still illustrat-
ing the gain and flexibility of the involved technologies [3]. The proposed research
intends to establish a basis for modern testing technology in a model-driven and
automatic way fleshed out by concrete real life case studies that could be made
by domain experts that are possibly non-programmers.

References

1. Bollig, B., Katoen, J.-P., Kern, C., Leucker, M., Neider, D., Piegdon, D.R.: libalf:
The Automata Learning Framework. In: Touili, T., Cook, B., Jackson, P. (eds.)
CAV 2010. LNCS, vol. 6174, pp. 360–364. Springer, Heidelberg (2010)

2. Margaria, T., Steffen, B.: Agile IT: Thinking in User-Centric Models. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17, pp. 490–502. Springer, Heidelberg
(2008)

3. Margaria, T., Steffen, B.: Simplicity as a Driver for Agile Innovation (2010)

Steering Active Automata Learning with Model-Driven Development 629

4. Merten, M., Steffen, B., Howar, F., Margaria, T.: Next Generation Learnlib. In:
Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 220–223.
Springer, Heidelberg (2011)

5. Neubauer, J.: Higher-Order Process Engineering. Phd thesis, TU Dortmund (2014)
6. Steffen, B., Howar, F., Merten, M.: Introduction to Active Automata Learning

from a Practical Perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS,
vol. 6659, pp. 256–296. Springer, Heidelberg (2011)

7. Windmüller, S., Neubauer, J., Steffen, B., Howar, F., Bauer, O.: Active continuous
quality control. In: CBSE, pp. 111–120 (2013)

Generation of Domain-Specific

Graphical Development Tools Targeting
Heterogeneous Platforms

Michael Lybecait and Dawid Kopetzki

TU Dortmund University
Department of Computer Science
Chair for Programming Systems

1 Problem and Research Question

Nowadays, model-driven engineering (MDE) paradigms are used in software de-
velopment since the systems under development become larger and more and
more complex. The main concept of these paradigms is the specification of an
abstraction of the system called model. In a later development step the model
is used to generate code which eases the development of the system. Popular
model-driven engineering paradigms are Model-Driven Architecture (MDA) [6]
developed by the Object Management Group [12] and the Eclipse Modeling
Framework [1] which consist of several modeling frameworks and tooling. How-
ever, a significant drawback of these model-driven paradigms is the lack of effi-
cient synchronization mechanisms between the models and code. Furthermore,
MDA which is used for model-driven development of large heterogeneous systems
suffer from further problems [3]:

– MDA requires the definition of several layers of models through which all
system changes have to be propagated which is error-prone and costly.

– To synchronize changes between model and code some kind of round trip
engineering is required.

– MDA approaches enforces either one monolithic tool which is hard to adopt
for new demands or several tools arranged in a chain which have to be
smoothly integrated in the development process.

Furthermore, this general development approaches require the developer’s knowl-
edge of both the application domain as well as the target platform. Additionally,
the generality of MDA makes full code generation of tools impossible.

The ultimate goal would be to develop a metamodeling framework that facil-
itates fully automatic generation of fully functional modeling tools for different
platforms. As input for this framework should serve an abstract tool specification
provided by a developer who only has knowledge about the tool’s domain.

The first step towards such a tool is the restriction to a specific domain. As a
consequence, a domain-specific language (DSL) can be provided for the defini-
tion of an abstract tool specification. Unfortunately, a complete specification of

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 630–633, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Generation of Domain-Specific Graphical Development Tools 631

a modeling tool, especially the functional behavior, would blow-up the domain-
specific language. Therefore, we want to follow the simplicity approach [9] by
generating the majority of code and additionally, providing an interface to ex-
tend the tool’s functionality on a domain-specific level. Furthermore, an abstract
specification of target platforms would provide the deployment of the tool for a
wide filed of application without the need of an application expert.

2 Related Work

Several approaches exist which aim to solve the problems mentioned in the pre-
vious section. The authors in [2] propose an source code generator for large
multilayer architectures. However, this approach is meant to support a software
engineer by generating specific code snippets which have to be manually inte-
grated into the software. Kelly and Tovanen present in [5] the domain-specific
modeling (DSM) approach which enables full code generation. Typically, these
applications are generated for one specific platform. As the DSM, our approach
should allow for the specification of full code generable applications with the
possibility of functional extendability on a domain-specific level. able applica-
tions with the possibility of functional extendability on a domain-specific level.
In addition, we plan to add an abstract, platform independent specification of
target platforms for which the application should be generated.

3 Methods

With the Cinco metamodeling suite [10] one can define an abstract tool spec-
ification for modeling tools based on graph-like models. The tool generation is
implemented by means of the Java Application Building Center [8][11]. Cinco

is realized within the Eclipse Modeling Framework (EMF) which provides sev-
eral advantages such as a metamodeling language (Ecore) with ready-to-use
persistence mechanisms and frameworks which ease the development of differ-
ent editors (textual/graphical) in the Eclipse context. By building up on Ecore,
TransEM [7] can be used to generate domain-specific SIBs for each kind of
domain corresponding to Cinco’s metamodel. Consequently, the development
in jABC and the usage of a meta-metamodel for all abstract tool specifications
created by Cinco ensures an agile software development process of the Cinco

framework. Cinco is itself a domain specific tool for creating domain specific
tools. By applying the methods on the Cinco development process, we continu-
ally improve Cinco. This will help the development of domain specific tools in
the future.

4 Preliminary Results

As a proof of concept, first modeling tools were developed with Cinco, i.a. tools
for modeling timed automata, probabilistic timed automata, Markov decision

632 M. Lybecait and D. Kopetzki

processes , labeled transition systems and petri nets. Some of these tools include
a code generator. Using the TransEM in combination with code generator
frameworks such as Genesys [4] the code generator itself can be modeled with
the jABC.

5 Next Steps

As mentioned earlier the Model-Driven Architecture [6] describes several types of
models, which are the platform independent model (PIM), the platform specific
model (PSM) and the code. A tool that is to be run on various platforms, can be
described in a PIM. This PIM has then to be transformed to several PSMs that
confirm to the wished platform architectures (PA). If there is a metamodel such
platform architectures and a metamodel for the PIM in question, TransEM

can be used to generate a transformation language, that can be used to describe
a transformation from a PIM to a PSM for a given platform architecture. Fig-
ure 1 shows the generation of a PSM from a PIM given a platform architecture
specification. With Cinco exists a domain specific language (DSL) to define a
PIM for the tool. Further work has to be done to define a DSL for platform
architecture specifications.

Fig. 1. MTL for PSM from PIM and Platform architectures

Generation of Domain-Specific Graphical Development Tools 633

References

1. Eclipse Modeing Framework, http://www.eclipse.org/modeling/emf/
2. Altiparmak, H.C., Tokgoz, B., Balcicek, O.E., Ozkaya, A., Arslan, A.: Source

code generation for large scale applications. In: 2013 International Conference
on Technological Advances in Electrical, Electronics and Computer Engineering
(TAEECE), pp. 404–410. IEEE (2013)

3. Herrmann, C., Krahn, H., Rumpe, B., Schindler, M., Völkel, S.: Scaling-up model-
based-development for large heterogeneous systems with compositional modeling.
In: Arabnia, H.R., Reza, H. (eds.) Software Engineering Research and Practice,
pp. 172–176. CSREA Press (2009), http://dblp.uni-trier.de/db/conf/
serp/serp2009.html#HerrmannKRSV09

4. Jörges, S. (ed.): Construction and Evolution of Code Generators. LNCS, vol. 7747.
Springer, Heidelberg (2013)

5. Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling: Enabling Full Code Genera-
tion. Wiley-IEEE Computer Society Press, Hoboken (2008)

6. Kleppe, A.G., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architec-
ture: Practice and Promise. Addison-Wesley Longman Publishing Co., Inc., Boston
(2003)

7. Lybecait, M.: Entwicklung und Implementierung eines Frameworks zur grafischen
Modellierung von Modelltransformationen auf Basis von EMF-Metamodellen und
Genesys (2012)

8. Margaria, T., Steffen, B.: Business Process Modelling in the jABC: The One-Thing-
Approach. In: Cardoso, J., van der Aalst, W. (eds.) Handbook of Research on
Business Process Modeling. IGI Global (2009)

9. Margaria, T., Steffen, B.: Simplicity as a Driver for Agile Innovation. Com-
puter 43(6), 90–92 (2010)

10. Naujokat, S., Lybecait, M., Steffen, B., Kopetzki, D., Margaria, T.: Full Generation
of Domain-Specific Graphical Modeling Tools: A Meta2modeling Approach (under
submission, 2014)

11. Neubauer, J., Steffen, B., Margaria, T.: Higher-Order Process Modeling: Product-
Lining, Variability Modeling and Beyond. Electronic Proceedings in Theoretical
Computer Science 129, 259–283 (2013)

12. Object Management Group (OMG): Object Management Group, www.omg.org,
(last accessed May 20, 2014)

http://www.eclipse.org/modeling/emf/
http://dblp.uni-trier.de/db/conf/serp/serp2009.html#HerrmannKRSV09
http://dblp.uni-trier.de/db/conf/serp/serp2009.html#HerrmannKRSV09
www.omg.org

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 634–635, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Living Canvas

Barbara Steffen

University of Twente

1 Problem and Research Question

Nowadays strategic analyses are important for companies and organizations to
survive in the fast developing and moving environments of today. To support
managers analysis templates have been developed which give a static overview of the
most important factors when thinking of new strategies and analysing the current
circumstances of the organization and its market exploitation potential. However,
these templates are static and only designed to structure manual textual input.

But how far can this state of the art be extended by exploiting automated means
know from computer science for analysing and controlling the interaction with the
canvas? Is it possible to better guide the user, prohibit misuse, and to generate
valuable feedback and recommendations?

2 Related Work

By developing and defining nine general building blocks meant to be usable in all
organizations and situations the Business Model Canvas (BMC) by Osterwalder [1] was
a break through. It is a widely used template supporting the development of business
strategies. The nine separate but connected building blocks form an overview of the
organization’s situation. The building blocks can be structured in three categories
infrastructure management, product innovation and customer relationship. The purpose
of the template is to remind managers of the essential factors when thinking of a
valuable strategy. Thus it can be regarded as a guideline for a process of strategic
innovation. Osterwalder’s template is available in form of a huge sized poster or as an
App providing the user with a static layout to be filled out manually.

The Strategy Sketch by Kraaijenbrink [2] elaborates the BMC in three respects:
It adds two ‘missing’ elements, the strategic purpose and the competition, and it

keeps all elements and therefore the argumentation on the same level of abstraction. The
strategy sketch consists of ten elements. Most of them match the building blocks of the
BMC, but there are also some adjustments as exchanging or renaming elements.

3 Methods and Preliminary Results

Recently, the Business Model Developer tool has been developed by Boßelmann [3].
It is a tool inspired by the BMC that is developed with the goal to enact the currently
passive canvases with computer science technology. This comprises the definition and
validation of relations between various building blocks, the enforcement of adequate

 Living Canvas 635

types of entries, as well as feedback in terms of computed results or hints concerning
missing information. In addition it can be adapted to different forms of templates as
the BMC or the Strategy Sketch.

4 Next Steps

On the basis of the current state of the Business Model Developer tool a domain
specific version for the project ‘Comitato Girotondo’ [4] will be developed. To reach
the state of a functioning example for this project the two templates the Business
Model Canvas and the Strategy Sketch will be used in the form they were published
for further comparisons and analysis. What are the main differences? Are they
significant? Does it make sense to implement both into this tool and shall it even be
possible to create a mix or new elements individually?

The example shall then proof that a tool is able to act as a `living´ model which
supports the user in making the best decisions by considering all the information
available. The goal is to fill the tool regarding this specific domain with enough
information to provide a user-friendly service in a simplicity-oriented fashion [5].

References

1. Osterwalder, A., Pigneur, Y.: Business model generation. John Wiley & Sons, Inc. (2010)
2. Kraaijenbrink, J., http://kraaijenbrink.com/blog/
3. Boßelmann, S., Margaria, T.: Domain-Specific Business Modeling with the Business

Model Developer. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS,
vol. 8803, pp. 545–560. Springer, Heidelberg (2014)

4. ComitatoGirotondo, GassinoTorinese (TO), Italy, http://www.comitato-girotondo
.org/

5. Margaria, T., Steffen, B.: Simplicity as a Driver for Agile Innovation. IEEE
Computer 43(6), 90–92 (2010)

Feedback-Based Recognition of Human

Identities Using Color and Depth Data

Frederik Gossen

TU Dortmund University
frederik.gossen@udo.edu

1 Motivation

Usually admission control, in places like fitness studios, is done using RFID
chips these days. People have to swipe their cards to enter certain areas. This
technology is a very reliable and yet somewhat comfortable way to check peoples’
identities. The idea of this bachelor thesis was to improve the aspect of comfort
at the cost of a relatively low loss of accuracy by recognizing human identities
from visual features. The focus lies on spatial normalization of human faces and
its impact on holistic facial recognition methods such as PCA. Ideally precise
alignment of faces should improve recognition significantly. Also the impact of
the chosen camera sensor will be evaluated.

This work was inspired and supported by sysTeam GmbH Dortmund.

2 Related Work

Significant process has been made in face recognition over the last years using
both 2D and 3D data [1]. Most importantly for this thesis are holistic methods
which process images as a whole [1, pp. 45–48]. Normalization steps can have
a significant impact on the recognition rate here since these methods are often
susceptible to illumination and face orientation. Other methods extract features
from the data which can be more robust to varying conditions [1, pp. 43–44].
Both approaches can be applied to 2D and 3D data.

3 Problem and Research Question

This thesis focuses on extraction and spatial normalization of human faces from
color and depth sensor data. In particular frontal face images are generated
from potentially rotated views of a person’s face. Two different cameras and one
Microsoft Kinect are used as sensors to capture individuals. The sensors’ infor-
mation will be merged and the face of interest will be cropped out of the data.
It will then be aligned and processed with holistic facial recognition methods.

In a first step the depth images are transformed into a point cloud in eu-
clidean space. Color information is then added either from the Kinect’s camera
itself or from one of the external cameras. In the second case camera calibration
parameters have to be learned from annotated sample images.

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 636–638, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Feedback-Based Recognition of Human Identities 637

In a next step faces are detected in camera images using a Haar Fature-
based Cascade Classifier. This generally results in more than one face, since the
classifier is tuned to have a high detection rate at the cost of a relatively high
false alarm rate. Hence the main face of interest has to be selected in a further
step using additional depth information. Multiple features are evaluated to rate
each of the candidate faces. Finally the highest rated face is cropped out of the
point cloud using a sphere around the face’s nose tip.

In order to estimate the head pose, facial feature points are detected in the
camera images and are then projected onto the point cloud. Using the spatial
information of eye and mouth corners it is possible to estimate the head pose.
The information can also be used to get reference points from other regions of
the face that might have less noise in depth information such as cheeks. These
reference points are likely to lead to a more accurate estimation of the head pose.
Other methods of head pose estimation include plane fitting on the center face
[2]. Finally the face is rotated accordingly to generate a frontal view.

Since these views are generally not positioned perfectly, a final step of align-
ment is applied. The frontal view images are translated and rotated in order to
maximize horizontal symmetry. Another criterion is to align the face according
to its elliptic shape.

The impact of these normalization steps will be evaluated on a test set of
10 subjects looking in 4 different directions. Thus recognition rates for each
direction and holistic method can easily be compared.

4 Outlook

Currently, extracting facial information from the captured sensor data results
in frontal images of relatively low resolution. Since the camera images provide
significantly more pixels than the Kinect’s depth image, color information is used
only partially. One next step might be to interpolate points between the captured
ones and to map the known color information onto them. This will improve the
resolution of computed frontal images and hence might lead to better base for
recognition.

Another next step will be to extract visual features from the generated frontal
faces rather than just processing them with holistic methods. These could be ge-
ometric measures but also features extracted at certain facial feature points [2]
[3]. The features can be evaluated with regard to their reliability and expres-
siveness. Once promising features are found, they can be combined to achieve
an even stronger recognition system [4] [5].

Finally both, the recognition system and the RFID technology, can be put
together in a way that the RFID technology is used as a fall back method in
case a person was not reliably recognized in the first place. This setup will not
only improve the aspect of the access control system’s comport, but it also allows
to collect training data for each individual over time.

638 F. Gossen

References

1. Jafri, R., Arabnia, H.: A survey of face recognition techniques. JIPS 5, 41–68 (2009)
2. Uřičář, M., Franc, V., Hlaváč, V.: Detector of facial landmarks learned by the struc-

tured output SVM. In: VISAPP 2012, pp. 547–556 (2012)
3. Wiskott, L., Fellous, J., Krüger, N., von der Malsburg, C.: Face recognition by elastic

bunch graph matching. In: Sommer, G., Daniilidis, K., Pauli, J. (eds.) CAIP 1997.
LNCS, vol. 1296, pp. 355–396. Springer, Heidelberg (1997)

4. Neubauer, J., Steffen, B., Margaria, T.: Higher-order process modeling: Product-
lining, variability modeling and beyond. In: Festschrift for Dave Schmidt, pp. 259–
283 (2013)

5. Heusch, G., Marcel, S.: Face authentication with salient local features and static
bayesian network. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp.
878–887. Springer, Heidelberg (2007)

T. Margaria and B. Steffen (Eds.): ISoLA 2014, Part II, LNCS 8803, pp. 639–640, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Real Time Standardization Process Management

Axel Hessenkämper

University of Potsdam

1 Problem and Research Question

Today, High-Tech companies not only have to develop the most innovative products
and solutions for their customers, but also to develop methods, systems and
procedures for internal process improvement and lean structures. Product and Product
line standardization is the most common approach to cut costs by reducing assembly
time, raising scale effects in procurement, service strategies, and optimizing time to
market. However, the standardization process becomes increasing complex with the
number of products and the amount of parts within these products. Moreover, the ratio
of Software and IT-Technology compared to physical parts within a machine is also
growing. This makes standardization an expensive enterprise with difficult to predict
impact, due to the complex and often unknown interdependencies within the overall
production process. Thus methods are required to manage and structure the
standardization process in a more transparent way, ideally allowing time and cost
estimations, as well as project-accompanying audits.

The thesis aims at developing a comprehensive modeling solution that allows all
stakeholders to easily follow the production process, identify their responsibilities,
and act according to the imposed standardization discipline. In particular the solution
should provide each stakeholder with a tailored view that focusses on the relevant
information for their next step(s). This tailoring is important to let people with
different backgrounds and responsibilities cooperate in a consistent fashion without
being disturbed by information concerning other responsibility profiles. E.g.
managers are provided with cost information, state of the global process, or warnings,
in case some unforeseen hurdles appear, while technicians obtain their technological
tasks with their individual deadlines. In fact, essential data like the actual costs,
project progress and the exceedance of deadlines will be displayed and monitored in
real-time. Even better, task owners may get push-notifications before exceeding due
dates or reaching standardization process limits and status meetings can be held
without preparing a huge amount of slides, sheets and graphs, as all these data are
continuously available.

2 Related Work

Approaching the simplicity in exchanging components at any time with the slogan
“IT simply works” by Maragria and Steffen [1] is pointing in the direction of
standards and frameworks to be used for product development and processes. The
model, developed by Lee and Tang [4] identifies the economic outcome of the
investment in standardization in a much simpler and not all-encompassing way, like

640 A. Hessenkämper

aimed at with this thesis. The founder and Senior Advisor of the Lean Enterprise
Institute, James P. Womack, is researching and transferring the way of Lean Thinking
since 1991 in many industries.

3 Methods

Key to this development is the one-thing approach [2], which guarantees the
continuous availability of one comprehensive model, the one thing, capturing all the
required information. In particular it allows providing each stakeholder with a tailored
view that focusses on the relevant information for the next step(s). This is important
to easy the interaction in a way that all the involved parties can adequately participate,
a precondition for the success of the introduction of a new technology [1].

4 Preliminary Results

Definition of an industrial standardization case as a proof of concept for the
development of the above mentioned technology was accomplished. The domain
modeling for the conceptual approach and gathering the requirements has started.

5 Next Steps

The variable variant modelling and product line development by Jörges, Lamprecht,
Margaria, Schaefer and Steffen [3] describes a modelling framework with the
approach towards standardization and product lining which will be used as the basic
functionality for the development of this thesis. The domain model has to be enriched
by the industrial standardization case requirements such as tailored view options,
interdependencies of the products, the processes and the stakeholders and adding
functions to enclose economic aspects.

References

1. Margaria, T., Steffen, B.: Simplicity as a Driver for Agile Innovation. IEEE
Computer 43(6), 90–92 (2010)

2. Margaria, T., Steffen, B.: Agile IT: Thinking in User-Centric Models. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17, pp. 490–502. Springer, Heidelberg (2008)

3. Jörges, S., Lamprecht, A.-L., Margaria, T., Schaefer, I., Steffen, B.: A constraint-based
variability modeling framework. STTT 14(5), 511–530 (2012)

4. Lee, H.L., Tang, C.S.: Modelling the Costs and Benefits of Delayed Product Differentiation.
Management Science 44(1), 40–53 (1997)

Author Index

Aarts, Fides I-202
Ait-Ameur, Yamine II-588, II-604
Ait-Sadoune, Idir II-570
Al-Areqi, Samih II-420
Albert, Elvira II-104
Andersen, Jesper I-73
Arlt, Stephan I-236
Aßmann, Uwe I-386
Attiogbé, Christian II-573

Bahr, Patrick I-73
Bai, Xiaoying II-309
Ballarini, Paolo II-193
Baller, Hauke I-320
Barany, Gergö II-621
Bartocci, Ezio II-353, II-391
Bauer, Oliver II-627
Bellatreche, Ladjel II-588
Bensalem, Saddek I-184
Berg, Christian I-391
Bessai, Jan I-26
Beyer, Dirk II-479
Bianculli, Domenico I-41
Birken, Klaus I-407
Bohlender, Dimitri II-177
Borelli, Massimo II-391
Bortolussi, Luca II-391
Boßelmann, Steve II-545
Botella, Julien II-337
Boyer, Benôıt II-160
Bozga, Marius I-184
Bravetti, Mario II-22
Breu, Ruth II-292
Bruintjes, Harold II-177
Bubel, Richard II-120
Bufo, Sara II-391
Bureš, Tomáš I-131

Cabri, Giacomo I-147
Capodieci, Nicola I-147
Čaušević, Aida II-74
Cavalcanti, Ana II-54
Cesari, Luca I-147
Chang, Bor-Yuh Evan II-489

Chatzieleftheriou, George II-486
Chatzopoulos, Apostolos II-486
Cherry, Elizabeth II-356
Clarke, Edmund M. II-356, II-385
Cleaveland, Rance II-356
Collet, Philippe I-273
Combaz, Jacques I-184
Cordy, Maxime I-336
Correas, Jesús II-104

Damiani, Ferruccio I-289
de Boer, Frank S. II-37
De Nicola, Rocco I-96, I-147
de Vink, Erik P. I-368
Devroey, Xavier I-336
Dixit, Sanjay II-356
Düdder, Boris I-26
Dudenhefner, Andrej I-26

El-Harake, Khalil II-239
Ermis, Evren I-236

Falcone, Yliès II-239
Fantechi, Alessandro I-351
Felderer, Michael I-521, II-274, II-292
Fenton, Flavio H. II-356
Feo-Arenis, Sergio I-236
Filieri, Antonio I-41
Fitzgerald, John II-54
Floyd, Barry D. II-526
Foster, Simon II-54
Frohme, Markus I-56

Gallet, Emmanuelle II-193
Gao, Sicun II-353, II-356, II-385
Garćıa-Jiménez, Beatriz II-464
Gaynor, Mark II-561
Geske, Maren II-625
Ghezzi, Carlo I-41
Giachino, Elena II-88
Gibson, J. Paul II-570, II-604
Glimm, James II-356
Gnesi, Stefania I-351
Gonzalez Camargo, Rodolfo II-526

642 Author Index

Göri, Georg II-5
Gossen, Frederik II-636
Gray, Richard A. II-356
Großmann, Jürgen II-322
Grosu, Radu II-223, II-356
Gupta, Amar II-561

Hähnle, Reiner I-527, II-1, II-120
Haisjackl, Christian II-292
Hansen, René Rydhof II-208
Havelund, Klaus I-533, II-254
Henglein, Fritz I-73
Hennicker, Rolf I-99
Hessenkämper, Axel II-619, II-639
Heymans, Patrick I-336
Hinchey, Mike I-1, I-117, I-538
Hölzl, Matthias I-96, I-518
Horký, Vojtěch I-131
Howar, Falk I-199, I-202, I-499
Hvitved, Tom I-73

Iosif-Lazăr, Alexandru F. I-257
Isberner, Malte I-481, I-499

Jean, Stéphane II-588
Jegourel, Cyrille II-143
Jerad, Wassim II-239
Johnsen, Einar Broch I-304, II-1, II-5,

II-22
Jörges, Sven I-425
Junges, Sebastian II-177

Katelaan, Jens II-177
Katsaros, Panagiotis II-486
Kenett, Ron S. II-309
Khouri, Selma II-588
Kit, Micha�l I-131
Klarl, Annabelle I-99
Knoop, Jens I-386
Kok, Joost N. II-404, II-407
Kopetzki, Dawid II-630
Kriewald, Steffen II-420
Ksystra, Katerina II-623
Kuppens, Harco I-202
Kwiatkowska, Marta II-365

Lamprecht, Anna-Lena II-404, II-420,
II-449, II-526

Lanese, Ivan II-22

Laneve, Cosimo II-88
Langet, Mattieu II-239
Larsen, Kim Guldstrand II-135,

II-208
Larsen, Peter Gorm II-54
Le Gall, Pascale II-193
Legay, Axel I-4, I-336, I-481, I-530,

II-135, II-143, II-160
Legeard, Bruno II-337
Lepper, Markus I-445
Leucker, Martin II-387
Lienhardt, Michael II-22
Lin, Pei-Hung II-493
Lisper, Björn II-482
Lochau, Malte I-320
Loreti, Michele I-164
Löwe, Welf II-479
Lucangelo, Umberto II-391
Lybecait, Michael II-630

Mamlouk, Mariem II-239
Manceny, Matthieu II-193
Mandrioli, Dino I-41
Mangharam, Rahul II-356
Marek, Lukáš I-131
Margaria, Tiziana I-1, I-56, I-541,

II-420, II-524, II-526, II-545
Margheri, Andrea I-164
Martens, Moritz I-26
Martin-Martin, Enrique II-104
Mayer, Philip I-99, I-117
Mennicke, Stephan I-320
Mereacre, Alexandru II-365
Méry, Dominique II-604
Motika, Christian I-461

Naujokat, Stefan I-481
Neubauer, Johannes I-56, II-526
Nguyen, Viet Yen II-177
Nielson, Flemming II-509
Nobakht, Behrooz II-37
Noll, Thomas II-177

Paoletti, Nicola II-365
Pekar, Viktor II-292
Peled, Doron II-223
Pelevina, Maria II-120
Perrouin, Gilles I-336
Pettersson, Paul II-74

Author Index 643

Peureux, Fabien II-337
Podelski, Andreas I-236
Podpečan, Vid II-436
Pouchet, Louis-Noël II-493
Probst, Christian W. II-509
Pugliese, Rosario I-147, I-164

Quaresma, Jose II-509
Quinlan, Dan II-493

Ramakrishnan, C.R. II-223
Rasche, Christoph II-524
Ray, Arnab II-356
Rehof, Jakob I-26
Rensink, Arend I-535
Reusser, Dominik II-420
Ribbeck, Lars I-320
Rival, Xavier II-489
Román-Dı́ez, Guillermo II-104

Sanguinetti, Guido II-391
Schaefer, Ina I-253, I-257, I-289
Schieferdecker, Ina II-274
Schlatte, Rudolf I-304, II-5, II-22
Schneider, Martin II-322
Schobbens, Pierre-Yves I-336
Schordan, Markus II-479, II-493
Schuster, Sven I-289
Seceleanu, Cristina II-74
Sedwards, Sean I-4, II-143
Seehusen, Fredrik II-277
Seelaender, Marilia II-526
Smolka, Scott A. II-223, II-353,

II-356
Smyth, Steven I-461
Stefaneas, Petros II-623
Steffen, Barbara II-634
Steffen, Bernhard I-56, I-199, I-425,

I-481, I-499, I-514
Stoller, Scott D. II-223
Stolz, Volker II-5, II-22

Tapia Tarifa, S. Lizeth I-304
ter Beek, Maurice H. I-253, I-351, I-368
Tiezzi, Francesco I-147, I-164
Toubhans, Antoine II-489
Trancón y Widemann, Baltasar I-445
Traonouez, Louis-Marie I-481, II-160
Tretmans, Jan I-220
Triantafyllou, Nikolaos II-623
Triki, Ahlem I-184
Tripakis, Stavros I-524
Tůma, Petr I-131
Turner, Kenneth J. II-404

Vaandrager, Frits I-202
Vassev, Emil I-117
Vernotte, Alexandre II-337
Viehmann, Johannes II-322
Vis, Jonathan K. II-407
Volpato, Michele I-220
von Hanxleden, Reinhard I-461

W ↪asowski, Andrzej I-257
Wendland, Marc-Florian II-274, II-322
Wickert, Alexander II-449
Wilkinson, Mark D. II-464
Winkelmann, Tim I-289
Wirsing, Martin I-96, I-518
Wognsen, Erik Ramsgaard II-208
Wolstencroft, Katy II-404
Woodcock, Jim II-54
Wrobel, Markus II-420
Wyner, George II-561

Yahav, Inbal II-309
Yang, Junxing II-223

Zambonelli, Franco I-147
Zavattaro, Gianluigi II-22
Zimmermann, Wolf I-386, I-391

	Introduction
	Organization
	Table of Contents – Part II
	Engineering Virtualized Systems
	Introduction to Track on Engineering Virtualized Services
	1 Moving into the Clouds
	2 Empowering the Designer
	3 Controlling Deployment in the Design Phase
	4 ThePapers
	References

	Erlang-Style Error Recovery for ConcurrentObjects with Cooperative Scheduling
	1 Introduction
	2 Behavioral Modeling in ABS
	3 Failure Models and Error handling
	3.1 Design Considerations
	3.2 A Practical Application of Error Propagation: Process Linking

	4 Operational Semantics and Application
	4.1 Discussion
	4.2 Application: Supervision

	5 Conclusion and Related Work
	References

	Fault Model Design Spacefor Cooperative Concurrency
	1 Introduction
	2 How Are Faults Represented?
	3 Which Is the Behavior of Faults?
	4 How Do Faults Propagate?
	5 Conclusion
	References

	Programming with Actors in Java 8
	1 Introduction
	2 Related Work
	3 State of the Art: An Example
	4 Actor Programming in Java
	5 Java 8Features
	6 Modeling Actors in Java 8
	7 Implementation Architecture
	8 Experiments
	9 Conclusion
	References

	Contracts in CML
	1 Introduction
	2 The COMPASS Modelling Language
	3 Unifying Theories of Programming
	4 CMLSemantics
	5 Contracts inCML
	6 Mini-Mondex
	7 Conclusions
	References

	Distributed Energy Management Case Study: A Formal Approach to Analyzing Utility Functions
	1 Introduction
	2 Background
	2.1 REMES - a Language for BehavioralModeling of SOS
	2.2 Timed Automata

	3 Energy Negotiation Model in REMES HDCL
	4 REMES HDCL - Based Energy Negotiation Model
	5 Formal Analysis of the Negotiation Model
	5.1 The Analysis Goals
	5.2 A TA Semantic Translation of the REMES Model and Analysis Results

	6 Related Work
	7 Conclusions
	References

	Towards the Typing of Resource Deployment
	1 Introduction
	2 dcABS in a Nutshell
	3 Behavioural Types for Resource Deployment
	4 Analysis of Behavioural Types
	5 Related Work
	6 Conclusions
	References

	Static Inference of Transmission Data Sizesin Distributed Systems
	1 Introduction
	2 Distribution Model
	2.1 Syntax
	2.2 Semantics

	3 The Notion of Transmission Data Size
	4 Automatic Inference of Transmission Data Sizes
	4.1 Inference of Distributed Locations
	4.2 Inference of Number of Tasks Spawned
	4.3 Inference of Amount of Transmitted Data

	5 Experimental Results
	6 Conclusions
	References

	Fully Abstract Operation Contracts
	1 Introduction
	2 Background
	3 Abstract Operation Contracts
	4 Evaluation
	4.1 Description
	4.2 Results

	5 Related Work
	6 Conclusion and Future Work
	References

	Statistical Model Checking
	Statistical Model CheckingPast, Present, and Future
	1 Context
	2 On Statistical Model Checking
	2.1 Rare Events
	2.2 Nondeterminism

	3 Content of the Session
	References

	An Effective Heuristic for Adaptive ImportanceSplitting in Statistical Model Checking
	1 Introduction
	2 Statistical Model Checking Rare Events
	3 Importance Splitting
	4 Importance Splitting Algorithms
	4.1 Fixed Level Algorithm
	4.2 Adaptive Level Algorithm
	4.3 Optimized Adaptive Level Algorithm

	5 Case Study: Dining Philosophers Protocol
	5.1 Comparison between Fixed and Adaptive Algorithm
	5.2 Comparison with the Optimized Adaptive Algorithm

	6 Conclusion
	References

	A Formalism for Stochastic Adaptive Systems
	1 Context
	2 Modeling Stochastic Adaptive Systems
	2.1 Discrete and Continuous Time Markov Chains
	2.2 Stochastic Adaptive Systems (SAS)

	3 A Logic for SAS Properties
	3.1 Probabilistic Adaptive Bounded Linear Temporal Logic
	3.2 Verifying SAS Properties Using SMC
	3.3 Verifying Unbounded SAS Properties Using SMC

	4 A Software Engineering Point of View
	4.1 Adaptive RML Systems as a High Level Formalism for SAS
	4.2 A Contract Language for SAS Specification

	5 Experiments with SAS
	5.1 CAE Model
	5.2 Checking Requirements

	6 Conclusion
	References

	A Review of Statistical Model Checking Pitfalls on Real-Time Stochastic Models
	1 Introduction
	2 Preliminaries, Notations and Related Work
	3 Semantic Caveats
	4 Caveat Interactions
	5 Classifying SMC Algorithms
	5.1 Transition Selection Order – Early versus Delayed
	5.2 Accuracy of Waiting Time Distributions – Exact versus Approximate
	5.3 Scope of Waiting Time Samples – Location Local versus Transition Local
	5.4 Race Policy

	6 Applying the Systematization
	7 Conclusions
	References

	Formal Analysis of the Wnt/β-catenin Pathwaythrough Statistical Model Checking
	1 Introduction
	2 A Model of the Wnt/β-catenin Pathway
	2.1 Stochastic Petri Net Model of the Wnt/β-catenin Pathway

	3 HASL Statistical Model Checking
	4 Model Analysis through HASL Formulae
	4.1 Measuring the Maximal Peaks of βnuc Resulting from anUnsustained Wnt Signal

	5 Conclusion
	References

	Battery-Aware Schedulingof Mixed Criticality Systems
	1 Introduction
	2 Related Work
	3 Battery Modeling
	3.1 The Kinetic Battery Model
	3.2 Comparison with an Ideal Energy Source

	4 System Modeling
	4.1 Ideal Energy Source
	4.2 UPPAAL KiBaM

	5 Mixed Criticality Systems
	5.1 Task Model

	6 Bound on Performance
	7 Evaluation of Scheduling Principles
	7.1 Firm Scheduler
	7.2 Comparison
	7.3 Variation on the Firm Scheduler

	8 Conclusion
	References

	Using Statistical Model Checkingfor Measuring Systems
	1 Introduction
	2 Flocking
	3 Neighborhood-Based and Sequence-Based Measurements
	3.1 Neighborhood-Based Measurement
	3.2 Path Measurements
	3.3 Example: Velocity Matching Based Measurement

	4 Generalized Monte-Carlo Measurements
	5 Experimental Results
	6 Conclusions
	References

	Blocking Advertisements on Android Devices Using Monitoring Techniques
	1 Introduction
	2 Background
	2.1 Android and Advertisement Librairies
	2.2 Aspect-Oriented Programming
	2.3 Weave Droid

	3 Ad Suppression Method
	3.1 Aspect Creation
	3.2 Amending the Application

	4 Implementation: miAdBlocker
	5 Evaluation
	5.1 Case Study

	6 Discussion
	6.1 DVMto JVM Retargeting
	6.2 Native Code
	6.3 Tamper Detection
	6.4 Dynamically Loaded Code
	6.5 Obfuscation
	6.6 Signature Modification

	7 Related Work
	7.1 Comparison with Ad-Blocking Software on the Market
	7.2 Comparison with Similar Research Projects

	8 Conclusion and Future Work
	8.1 Conclusion
	8.2 FutureWork

	References

	Monitoring with Data Automata
	1 Introduction
	2 Related Work
	3 TheDaut Calculus
	3.1 Illustration by Example
	3.2 Syntax
	3.3 Semantics

	4 Optimization
	5 Internal DSL
	6 Evaluation
	7 Conclusion
	References

	Risk-Based Testing
	Risk-Based Testing
	1 Motivation and Goals
	2 Contributions
	References

	A Technique for Risk-Based Test ProcedureIdentification, Prioritization and Selection
	1 Introduction
	2 Risk Graphs
	2.1 Likelihood Graphs
	2.2 Risk Graphs

	3 Test Procedure Identification
	4 Test Procedure Prioritization
	5 Test Procedure Selection
	6 An Extended Example
	7 Related Work
	8 Conclusion and Future Work
	References

	A Risk Assessment Frameworkfor Software Testing
	1 Introduction
	2 Background on Risk-Based Testing
	2.1 Concept of Risk
	2.2 Basic Concepts of Test and Risk Management Processes
	2.3 Risk-Based Testing Approaches

	3 Risk Assessment Framework
	3.1 Test Scope
	3.2 Risk Identification Methods
	3.3 Risk Model
	3.4 Tooling

	4 Application of Risk Assessment Model in an Industrial Test Process
	5 Summary and Future Work
	References

	Data Driven Testing of Open Source Software
	1 Introduction
	2 Background and Related Work
	3 Open Source Software Assessment Based on Community andCommunication Data
	4 The XWiki Case Study
	5 Numerical Analysis
	5.1 OSS Community Analytics: Data Preprocessing
	5.2 Bugs and Social Networks: First Level Analytics
	5.3 Test Case Selection: : Second Level Analytics

	6 Summary and Conclusions
	References

	Combining Risk Analysis and Security Testing
	1 Introduction
	2 The Problems
	3 State of the Art
	4 Combination of RA and Security Testing
	4.1 Selecting Elements to Test
	4.2 Applying Test Patterns Using Models
	4.3 Test Result Aggregation and Integration

	5 Compositional Risk Analysis and Security Testing Tool
	5.1 Example: Identifying and Testing Risk of Integer Overflows
	5.2 First Evaluation

	6 Conclusion, Ongoing and Future Work
	References

	Risk-Based Vulnerability Testing Using Security Test Patterns
	1 Introduction
	2 Context and Principles of the RBVT Approach
	3 Applying the RBVT Approach
	3.1 Selection and Prioritization of Vulnerabilities from Risk Analysis
	3.2 Formalizing Vulnerability Test Patterns into Test Purposes
	3.3 Modeling
	3.4 Test Generation and Execution

	4 Related Work
	5 Conclusion and Future Works
	References

	Medical Cyber-Physical Systems
	Medical Cyber-Physical Systems
	1 Introduction
	2 Overview of the Session Papers
	References

	Compositional, Approximate, and Quantitative Reasoning for Medical Cyber-Physical Systems with Application to Patient-Specific Cardiac Dynamics and Devices
	1 Introduction
	1.1 From Verified Models to Verified Code for Medical Devices

	2 Computational Foundations for Medical CPSs
	3 Application to Patient-Specific Cardiac Models, Therapies, and Devices
	References

	On Quantitative Software Quality AssuranceMethodologies for Cardiac Pacemakers
	1 Introduction
	2 Model-based Framework for the Verification of Pacemakers
	3 Heart Modelling
	3.1 The ECG Heart Model
	3.2 The Cardiac Cell Heart Model
	3.3 Switching between Different Heart Behaviours

	4 Pacemaker Modelling
	4.1 Basic Pacemaker Model
	4.2 Enhanced Pacemaker Model

	5 Pacemaker Verification
	5.1 Verification of the Basic Pacemaker Model
	5.2 Verification of the Enhanced Pacemaker Model

	6 Future Directions
	6.1 The Minimal Ventricular Cardiac Cell Heart Model
	6.2 Automated Synthesis of Pacemaker Software

	7 Conclusion
	References

	Model Checking Hybrid Systems
	1 Introduction
	References

	Challenges for the Dynamic Interconnectionof Medical Devices
	1 TheQuest
	2 The Challenges
	3 The Approach—And Further Challenges
	References

	Temporal Logic Based Monitoring of Assisted Ventilation in Intensive Care Patients
	1 Introduction
	2 Assisted Ventilation and Patient Ventilator Asynchronies
	3 Methodology
	3.1 Statistical Modelling of Ventilation Signals
	3.2 Metric Interval Temporal Logic
	3.3 Discrimination Function
	3.4 Structural Learning
	3.5 Parameter Learning

	4 Results: Monitoring Ineffective Respiratory Acts
	5 Related Work
	6 Conclusions
	References

	Scientific Workflows
	Track Introduction: Scientific Workflows
	References

	Meta-analysis of Disjoint Sets of Attributesin Large Cohort Studies
	1 Introduction
	2 Problem Statement
	2.1 Anatomy of the Data Sets
	2.2 Disjoint Sets of Attributes

	3 Workflows
	3.1 Classifiers
	3.2 Quality Metrics

	4 Experiments
	4.1 Classification Power of Disjoint Sets of Attributes
	4.2 Using Classifiers across Cohort Studies
	4.3 Combining All Data from Different Studies
	4.4 A Hierarchical Approach

	5 Conclusions
	References

	Towards a Flexible Assessment of ClimateImpacts: The Example of Agile Workflowsfor the ci:grasp Platform
	1 Introduction
	2 The jABC Modeling Framework
	3 Example: Assessing the Impact of Sea-Level Rise
	4 Domain Modeling
	5 WorkflowExamples
	5.1 Basic Workflow
	5.2 Workflow with Variation Points
	5.3 Parameter Exploration Workflow
	5.4 Further Variations

	6 Discussion and Conclusion
	References

	A Visual Programming Approachto Beat-Driven Humanoid Robot Dancing
	1 Introduction
	2 Related Work
	3 Workflow-Based Approach to Robot Dance Programming
	3.1 An Overview of the Approach
	3.2 The Choregraphe Visual Programming Environment
	3.3 The Developed Workflow Components
	3.4 Limitations

	4 Experiments
	5 Conclusions and Further Work
	References

	jABCstats: An Extensible Process Libraryfor the Empirical Analysis of jABC Workflows
	1 Introduction
	2 Extensible Process Library for Generating Statistics
	2.1 A Process for Generating the Statistic for Only One jABC Model
	2.2 A Process for Generating Statistics for Several jABC Models
	2.3 A Process for Summarizing Statistics
	2.4 A Process for Merging Statistics
	2.5 Extensions of the Current Process Library

	3 First Results
	4 Conclusion
	References

	Automatic Annotation of BioinformaticsWorkflows with Biomedical Ontologies
	1 Introduction
	2 Material andMethods
	2.1 Step 1: Filtering for Bioinformatics-Relevant Workflows
	2.2 Step 2: Cleaning “shim” Services
	2.3 Step 3: Retrieving Service Descriptions
	2.4 Step 4: Entity Extraction from Descriptions to Create Semantic Annotations

	3 Results
	3.1 Understanding Workflow Composition
	3.2 Annotation Analysis
	3.3 Workflow Annotations in OPMW Model

	4 Discussion and Conclusions
	References

	Evaluation and Reproducibility of Program Analysis
	Evaluation and Reproducibilityof Program Analysis
	References

	SWEET – A Tool for WCET Flow Analysis (Extended Abstract)
	1 Introduction
	2 SWEET
	3 Conclusions
	References

	Test-Driving Static Analysis Toolsin Search of C Code Vulnerabilities II
	References

	Construction of Abstract Domains for Heterogeneous Properties (Position Paper)
	References

	Verification of Polyhedral Optimizationswith Constant Loop Boundsin Finite State Space Computations
	1 Introduction
	2 Polyhedral Program Transformations
	3 Approach
	3.1 Example
	3.2 State Transition Graph Analysis
	3.3 Floating Point Operation and Array Access Extraction
	3.4 Rewrite Rules
	3.5 Verification

	4 Results
	4.1 State Space and Rewrite Operations Statistics
	4.2 Run Times
	4.3 Bug Found Thanks to Verification

	5 Related Work
	6 Conclusion
	References

	The Guided System Development Framework:Modeling and Verifying Communication Systems
	1 Introduction
	1.1 The Message Board

	2 Related Work
	3 Framework Overview
	3.1 Framework Inputs and Outputs

	4 Abstract Global Level
	4.1 The Logic
	4.2 The Security Modules
	4.3 Semantics of the Security Modules

	5 The Concrete Levels
	5.1 Concrete Global Level
	5.2 Concrete Endpoint Level

	6 Verification Tools and Code
	6.1 The Beliefs and Knowledge Tool
	6.2 LySatool
	6.3 The Open-Source Fixed-Point Model-Checker

	7 Evaluating GSD on ADS-B
	7.1 The ADS-B System
	7.2 Applying GSD to ADS-B

	8 Conclusion
	References

	Processes and Data Integration in the Networked Healthcare
	Processes and Data Integrationin the Networked Healthcare
	References

	Simple Management of High Assurance Datain Long-Lived Interdisciplinary HealthcareResearch: A Proposal
	1 Introduction
	2 A Translational Medicine Research Project: Fighting Cachexia in Cancer Patients
	2.1 How the Project Is Organized
	2.2 Interdisciplinarity: Rich Life Science Expertise, Minimal Information Technology (IT) Knowledge
	2.3 Geographic Distribution: The Different Groups Participating, Medical and IT

	3 Needs of Proper Data Management
	3.1 Lifecycle in Scientific Data Management
	3.2 The Need of Proper Process Management

	4 How the Work Is Being Conducted to Date
	4.1 Example: Assigning Patient to Groups
	4.2 Illustration of Spreadsheet Use
	4.3 Discussion on the Current Modeling Approach

	5 Data Modeling in DyWA
	5.1 The DyWA Approach to Integrated and Agile Data Modeling
	5.2 How the Example Has Been Treated

	6 Discussion and Perspectives
	References

	Domain-Specific Business Modeling with the BusinessModel Developer
	1 Introduction
	2 Domain Specification
	2.1 Library of Building Blocks
	2.2 Classification of Business Items
	2.3 Specification of Building Blocks
	2.4 Parameterization of Business Items

	3 Business Modeling in Personalized Medicine
	3.1 Filling the Canvas
	3.2 Modeling the Relations
	3.3 Guided Modeling with the ‘Wizard’
	3.4 Business Model Analysis
	3.5 Continuous Development and Evaluation

	4 Conclusion and Future Work
	4.1 Customizable Canvas Partitioning
	4.2 Application of Process-Driven Development

	References

	Dr. Watson? Balancing Automationand Human Expertise in Healthcare Delivery
	1 Introduction
	2 A Methodology for Balancing Automation and HumanExpertise
	3 Radiology Example
	3.1 Technology-Based Remote Diagnosis of Radiology Images (TDRI)

	4 Discussion
	5 Concluding Remarks
	References

	Semantic Heterogeneity in the Formal Development of Complex Systems
	Semantic Heterogeneity in the FormalDevelopment of Complex Systems:An Introduction
	References

	Modelling and Verifying an Evolving DistributedControl System Using an Event-Based Approach
	1 Introduction
	2 Evolving Distributed Systems
	2.1 Issues on Evolving Distributed Systems
	2.2 The CCTV Control System

	3 Modelling and Verification Approach
	3.1 The Core Modelling Approach
	3.2 Event-Based Global Model: Virtual Net of Interacting Components

	4 Modelling and Verifying the CCTV System
	4.1 A Glimpse of the Constructed Model
	4.2 Mastering the Architecture and Its Modelling
	4.3 Verifying the Properties
	4.4 Further with the Interoperability

	5 Conclusion
	References

	Requirements Driven Data Warehouse Design:We Can Go Further
	1 Introduction
	2 Related Work
	2.1 DW Design: A Requirements Driven Perspective
	2.2 Ontologies for Designing DWs
	2.3 Ontologies for Requirements Engineering

	3 Preliminaries : Ontology Formalism
	4 ProposedMethod
	4.1 Requirements Definition
	4.2 Conceptual Design
	4.3 Logical Design
	4.4 Physical Design

	5 Implementation
	6 Conclusion
	References

	On Implicit and Explicit Semantics:Integration Issues in Proof-Based Developmentof Systems
	1 Introduction: Implicit versus Explicit — The Need for Formality
	2 Integrating Implicit and Explicit: Formal Methods and Ontologies
	3 A Simple Example
	3.1 Formal Model with Implicit Semantics
	3.2 Formal Model with Explicit Semantics

	4 Discussion
	4.1 Proof-Based Development Methods for Safe and Secure Models and Systems: The Importance of Refinement
	4.2 Explicit Semantics of Modelling Domains and Domain Ontologies
	4.3 Properties and Methodology

	5 Conclusions
	References

	Industrial Track
	The Technological and Interdisciplinary Evolutionin Machine and Plant Engineering – Industry 4.0
	References

	Doctoral Symposium and Poster Session
	Integrated Code Motion and Register Allocation
	1 Problem and Research Question
	2 Related Work
	3 Methods
	4 Preliminary Results
	5 NextSteps
	References

	On the Algebraic Specificationand Verification of Parallel Systems
	1 Problem and Research Question
	2 Related Work
	3 Methods
	4 Preliminary Results
	5 NextSteps
	References

	Property-Specific Benchmark Generation
	1 Problem and Research Question
	2 Related Work
	3 Methods
	4 Preliminary Results
	5 NextSteps
	References

	Steering Active Automata Learningwith Model-Driven Development
	1 Problem and Research Question
	2 Related Work
	3 Methods
	4 Preliminary Results
	5 NextSteps
	References

	Generation of Domain-SpecificGraphical Development Tools TargetingHeterogeneous Platforms
	1 Problem and Research Question
	2 Related Work
	3 Methods
	4 Preliminary Results
	5 NextSteps
	References

	Living Canvas
	1 Problem and Research Question
	2 Related Work
	3 Methods and Preliminary Results
	4 Next Steps
	References

	Feedback-Based Recognition of HumanIdentities Using Color and Depth Data
	1 Motivation
	2 Related Work
	3 Problem and Research Question
	4 Outlook
	References

	Real Time Standardization Process Management
	1 Problem and Research Question
	2 Related Work
	3 Methods
	4 Preliminary Results
	5 Next Steps
	References

	Table of Contents – Part I
	Evolving Critical Systems
	Rigorous Engineering of Autonomic Ensembles
	Automata Learning
	Formal Methods and Analysis in Software Product Line Engineering
	Model-Based Code Generators and Compilers
	Tutorial: Automata Learning in Practice
	LNCS Transactions on Foundations for Mastering Change

	Author Index

