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Abstract. We study the Reliable Broadcast problem in incomplete net-
works against a Byzantine adversary. We examine the problem under the
locally bounded adversary model of Koo (2004) and the general adversary
model of Hirt and Maurer (1997) and explore the tradeoff between the
level of topology knowledge and the solvability of the problem.

We refine the local pair-cut technique of Pelc and Peleg (2005) in
order to obtain impossibility results for every level of topology knowledge
and any type of corruption distribution. On the positive side we devise
protocols that match the obtained bounds and thus, exactly characterize
the classes of graphs in which Reliable Broadcast is possible.

Among others, we show that Koo’s Certified Propagation Algorithm
(CPA) is unique against locally bounded adversaries in ad hoc networks,
that is, it can tolerate as many local corruptions as any other non-faulty
algorithm; this settles an open question posed by Pelc and Peleg. We
also provide an adaptation of CPA against general adversaries and show
its uniqueness. To the best of our knowledge this is the first optimal
algorithm for Reliable Broadcast in generic topology ad hoc networks
against general adversaries.

1 Introduction

A fundamental problem in distributed networks is Reliable Broadcast (Byzantine
Generals), in which the goal is to distribute a message correctly despite the
presence of Byzantine faults. That is, an adversary may control several nodes
and be able to make them deviate from the protocol arbitrarily by blocking,
rerouting, or even altering a message that they should normally relay intact
to specific nodes. In general, agreement problems have been primarily studied
under the threshold adversary model, where a fixed upper bound t is set for
the number of corrupted players and broadcast can be achieved if and only if
t < n/3, where n is the total number of players. The Broadcast problem has
been extensively studied in complete networks under the threshold adversary
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model mainly in the period from 1982, when it was introduced by Lamport,
Shostak and Pease [11], to 1998, when Garay and Moses [5] presented the first
fully polynomial Broadcast protocol optimal in resilience and round complexity.

The case of Reliable Broadcast under a threshold adversary in incomplete net-
works has been studied to a much lesser extent, in a study initiated in [1,2,10],
mostly through protocols for Secure Message Transmission which, combined with
a Broadcast protocol for complete networks, yield Broadcast protocols for in-
complete networks. Naturally, connectivity constraints are required to hold in
addition to the n/3 bound. Namely, at most t < c/2 corruptions can be tolerated,
where c is network connectivity, and this bound is tight[1].

In the case of an honest dealer, particularly meaningful in wireless networks,
the impossibility threshold of n/3 does not hold; for example, in complete net-
works with an honest dealer the problem becomes trivial regardless of the number
of corrupted players. However, in incomplete networks the situation is different.
A small number of traitors (corrupted players) may manage to block the entire
protocol if they control a critical part of the network, e.g. if they form a separator
of the graph. It therefore makes sense to define criteria (or parameters) depend-
ing on the structure of the graph, in order to bound the number or restrict the
distribution of traitors that can be tolerated.

An approach in this direction is to consider topological restrictions on the
adversary’s corruption capacity. We will first focus on local restrictions, the
importance of which comes, among others, from the fact that they may be used
to derive criteria which can be employed in ad hoc networks. Such a paradigm
is the t-locally bounded adversary model, introduced in [9], in which at most a
certain number t of corruptions are allowed in the neighborhood of every node.

The locally bounded adversarial model is particularly meaningful in real-life
applications and systems. For example, in social networks it is more likely for an
agent to have a quite accurate estimation of the maximum number of malicious
agents that may appear in its neighborhood, than having such information, as
well as knowledge of connectivity, for the whole network. In fact, this scenario
applies to all kinds of networks, where each node is assumed to be able to estimate
the number of traitors in its close neighborhood. It is also natural for these
traitor bounds to vary among different parts of the network. Motivated by such
considerations, in this work we will introduce a generalization of the t-locally
bounded model.

1.1 Related Work

Considering t-locally bounded adversaries, Koo [9] proposed a simple, yet power-
ful protocol, namely the Certified Propagation Algorithm (CPA) (a name coined
by Pelc and Peleg in [14]), and applied it to networks of specific topology. CPA
is based on the idea that a set of t+1 neighbors of a node always contain an hon-
est one. Pelc and Peleg [14] considered the t-locally bounded model in generic
graphs and gave a sufficient topological condition for CPA to achieve Broad-
cast. They also provided an upper bound on the number of corrupted players
t that can be locally tolerated in order to achieve Broadcast by any protocol,
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in terms of an appropriate graph parameter; they left the deduction of tighter
bounds as an open problem. To this end, Ichimura and Shigeno [8] proposed
an efficiently computable graph parameter which implies a more tight, but not
exact, characterization of the class of graphs on which CPA achieves Broadcast.
It had remained open until very recently to derive a tight parameter revealing
the maximum number of traitors that can be locally tolerated by CPA in a
graph G with dealer D. Such a parameter is implicit in the work of Tseng et al.
[16], who gave a necessary and sufficient condition for CPA Broadcast. Finally,
in [12] such a graph parameter was presented explicitly, together with an efficient
2-approximation algorithm for computing its value.

A more general approach regarding the adversary structure was initiated by
Hirt and Maurer in [7] where they studied the security of multiparty computation
protocols with respect to an adversary structure, i.e. a family of sets of players,
such that the adversary may entirely corrupt any set in the family. This line of
work has yielded results on Broadcast against a general adversary in complete
networks [4] but, to the best of our knowledge, the case of Broadcast against
general adversaries in incomplete networks has not been studied as such.1 A
study on the related problem of Iterative Approximate Byzantine Consensus
against general adversaries can be seen in [15] where a similar model for the ad
hoc case is considered.

1.2 Our Results

In this work we study the tradeoff between the level of topology knowledge and
the solvability of the problem, under various adversary models.

We first consider a natural generalization of the t-locally bounded model,
namely the non-uniform t-locally bounded model which subsumes the (uniform)
model studied so far. The new model allows for a varying bound on the number
of corruptions in each player’s neighborhood. We address the issue of locally
resilient Broadcast in the non-uniform model. We present a new necessary and
sufficient condition for CPA to be t-locally resilient by extending the notion of
local pair cut of Pelc and Peleg [14] to the notion of partial local pair cut. Note
that although equivalent conditions exist [16,12], the simplicity of the new condi-
tion allows to settle the open question of CPA Uniqueness [14] in the affirmative:
we show that if any safe (non-faulty) algorithm achieves Broadcast in an ad hoc
network then so does CPA. We next prove that computing the validity of the
condition is NP-hard and observe that the latter negative result also has a pos-
itive aspect, namely that a polynomially bounded adversary is unable to design
an optimal attack unless P = NP.

We next shift focus on networks of known topology and devise an optimal
resilience protocol, which we call Path Propagation Algorithm (PPA). Using PPA
we prove that a topological condition which was shown in [14] to be necessary

1 Some related results are implicit in [10], but in the problem studied there, namely
Secure Message Transmission, additional secrecy requirements are set which are out
of the scope of our study.
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for the existence of a Broadcast algorithm is also sufficient. Thus, we manage to
exactly characterize the class of networks for which there exists a solution to the
Broadcast problem. On the downside, we prove that it is NP-hard to compute an
essential decision rule of PPA, rendering the algorithm inefficient. However, we
are able to provide an indication that probably no efficient protocol of optimal
resilience exists, by showing that efficient algorithms which behave exactly as
PPA w.r.t. decision do not exist if P �= NP.

We then take one step further, by considering a hybrid between ad hoc and
known topology networks: each node knows a part of the network, namely a
connected subgraph containing itself. We propose a protocol for this setting
as well, namely the Generalized Path Propagation Algorithm (GPPA). We use
GPPA to show that this partial knowledge model allows for Broadcast algorithms
of increased resilience.

Finally, we study the general adversary model and show that an appropriate
adaptation of CPA is unique against general adversaries in ad hoc networks.
To the best of our knowledge this is the first algorithm for Reliable Broadcast
in generic topology ad hoc networks against a general adversary. We show an
analogous result for known topology networks, which however can be obtained
implicitly from [10] as mentioned above.

We conclude by discussing how to extend our results to the case of a corrupted
dealer by simulating Broadcast protocols for complete networks.

A central tool in our work is a refinement of the local pair-cut technique of
Pelc and Peleg [14] which proves to be adequate for the exact (in most cases)
characterization of the class of graphs for which Broadcast is possible for any
level of topology knowledge and type of corruption distribution. A useful by-
product of practical interest is that the refined cuts can be used to determine
the exact subgraph in which Broadcast is possible.

For clarity we have chosen to present our results for the t-local model first
(Sections 3,4,5), for which proofs and protocols are somewhat simpler and more
intuitive, and then for the more involved general adversary model (Section 6).

2 Problem and Model Definition

In this paper we address the problem of Reliable Broadcast with an honest dealer
in generic (incomplete) networks. As we will see in Section 6, this case essentially
captures the difficulty of the general problem, where even the dealer may be
corrupted. The problem definition follows.

Reliable Broadcast with Honest Dealer. The network is represented by a graph
G = (V,E), where V is the set of players, and E represents authenticated chan-
nels between players. We assume the existence of a designated honest player,
called the dealer, who wants to broadcast a certain value xD ∈ X , where X is
the initial input space, to all players. We say that a distributed protocol achieves
Reliable Broadcast if by the end of the protocol every honest player has decided
on xD, i.e. if it has been able to deduce that xD is the value originally sent by
the dealer and output it as its own decision.
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The problem is trivial in complete networks; we will consider the case of in-
complete networks here. For brevity we will refer to the problem as the Broadcast
problem.

We will now formally define the adversary model by generalizing the notions
originally developed in [9,14]. We will also define basic notions and terminology
that we will use throughout the paper. We refer to the participants of the protocol
by using the terms node and player interchangeably.

Corruption function. Taking into account that each player might be able to es-
timate her own upper bound on the corruptions of its neighborhood, as discussed
earlier, we introduce a model in which the maximum number of corruptions in
each player’s neighborhood may vary from player to player. We thus generalize
the standard t-locally bounded model [9] in which a uniform upper bound on
the number of local corruptions was assumed. Here we consider t : V → N to be
a corruption function over the set of players V .

Non-Uniform t-Locally Bounded Adversary Model. The network is represented
by a graph G = (V,E). One player D ∈ V is the dealer (sender). A corruption
function t : V → N is also given, implying that an adversary may corrupt at
most t(u) nodes in the neighborhood N (u) of each node u ∈ V . The family of
t-local sets plays an important role in our study since it coincides with the family
of admissible corruption sets.

Definition 1 (t-local set). Given a graph G = (V,E) and a function t : V → N

a t-local set is a set C ⊆ V for which ∀u ∈ V, |N (u)∩C| ≤ t(u). For V ′ ⊆ V a
t-local w.r.t. V ′ set is a set C ⊆ V for which ∀u ∈ V ′, |N (u) ∩ C| ≤ t(u).

Uniform vs Non-Uniform Model. Obviously the original t-locally bounded model
corresponds to the special case of t being a constant function. Hereafter we will
refer to the original t-locally bounded model as the Uniform Model as opposed
to the Non-Uniform Model which we introduce here.

In our study we will often make use of node-cuts which separate some players
from the dealer, hence, node-cuts that do not include the dealer. From here on
we will simply use the term cut to denote such a node-cut. The notion of t-local
pair cut was introduced in [14] and is crucial in defining the bounds for which
correct dissemination of information in a network is possible.

Definition 2 (t-local pair cut). Given a graph G = (V,E) and a function
t : V → N, a pair of t-local sets C1, C2 s.t. C1 ∪ C2 is a cut of G is called a
t-local pair cut.

The next definition extends the notion of t-local pair cut and is particularly
useful in describing capability of achieving Broadcast in networks of unknown
topology (ad hoc networks) where each player’s knowledge of the topology is
limited in its own neighborhood.

Definition 3 (t-partial local pair cut). Let C be a cut of G, partitioning
V \C into sets A,B �= ∅ s.t. D ∈ A. C is a t-partial local pair cut (t-plp cut) if
there exists a partition C = C1 ∪ C2 where C1 is t-local and C2 is t-local w.r.t.
B.
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In the uniform model the Local Pair Connectivity (LPC(G,D)) [14] parameter
of a graph G with dealer D, was defined to be the minimum integer t s.t. G has
a t-local pair cut. To define the corresponding notion in the non-uniform model
we need to define a (partial) order among corruption functions. Nevertheless, for
reasoning about our results it suffices to consider the following decision problem:

Definition 4 (pLPC). Given a graph G, a dealer D and a corruption function
t determine whether there exists a t-plp cut in G.

Definition 5 (t-locally resilient algorithm). An algorithm which achieves
Broadcast for any t-local corruption set in graph G with dealer D is called t-
locally resilient for (G,D).

Definition 6 (safe / t-locally safe algorithm). A Broadcast algorithm which
never causes an honest node to decide on an incorrect value, is called safe.
A Broadcast algorithm which never causes an honest node to decide on an in-
correct value under any t-local corruption set, is called t-locally safe.

3 Ad Hoc Networks

3.1 Certified Propagation Algorithm (CPA)

The Certified Propagation algorithm [9] uses only local information and thus is
particularly suitable for ad hoc networks. CPA is probably the only Broadcast
algorithm known up to now for the t-locally bounded model, which does not
require knowledge of the network topology. We use a modification of the original
CPA that can be employed under the non-uniform t-locally bounded adversary
model. Namely a node v, upon reception of t(v) + 1 messages with the same
value x from t(v) + 1 distinct neighbors, decides on x, sends it to all neighbors
and terminates. It can easily be proven by induction that CPA is a t-locally safe
Broadcast algorithm.

3.2 CPA Uniqueness in Ad Hoc Networks

Based on the above definitions we can now prove the CPA uniqueness conjecture
for ad hoc networks, which was posed as an open problem in [14]. The conjecture
states that no algorithm can locally tolerate more corrupted nodes than CPA in
networks of unknown topology.

We consider only the class of t-locally safe Broadcast algorithms. We assume
the ad hoc network model, as described e.g. in [14]. In particular we assume that
nodes know only their own labels, the labels of their neighbors and the label of
the dealer. We call a distributed Broadcast algorithm that operates under these
assumptions an ad hoc Broadcast algorithm.

Theorem 1 (Sufficient Condition). Given a graph G, a corruption function
t and a dealer D, if no t-plp cut exists, then CPA is t-locally resilient for (G,D).
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Proof. Suppose that no t-plp cut exists in G. Let T be the corruption set; clearly
T ∪N(D) is a cut on G as defined before (i.e. not including node D). Since T is
t-local and T ∪N(D) is not a t-plp cut there must exist u1 ∈ V \ (T ∪N (D)∪D)
s.t. |N(u1) ∩ (N(D) \ T )| ≥ t(u1) + 1. Since u1 is honest it will decide on
the dealer’s value xD. Let us now use the same argument inductively to show
that every honest node will eventually decide on the correct value xD through
CPA. Let Ck = (N(D) \ T ) ∪ {u1, u2, ..., uk−1} be the set of the honest nodes
that have decided until a certain round of the protocol. Then Ck ∪ T is a cut.
Since T is t-local, by the same argument as before there exists a node uk s.t.
|Ck ∩N(uk)| ≥ t(uk)+1 and uk will decide on xD. Eventually all honest players
will decide on xD. Thus CPA is t-locally resilient in G.

Theorem 2 (Necessary Condition). Let A be a t-locally safe ad hoc Broad-
cast algorithm. Given a graph G, a corruption function t and a dealer D, if a
t-plp cut exists, then A is not t-locally resilient in (G,D).
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Fig. 1. Graphs G and G′

Proof. Assume that there exists a t-plp cut C = T ∪H in graph G with dealer
D with T being the t-local set of the partition and H the t-local w.r.t. to B set
(Figure 1). Let G′ be a graph that results from G if we remove some edges that
connect nodes in A ∪ T ∪H with nodes in H so that the set H becomes t-local
in G′ (e.g. we can remove all edges that connect nodes in A∪ T ∪H with nodes
in H). Note that the existence of a set of edges that guarantees such a property
is implied by the fact that H is t-local w.r.t. B.

The proof is by contradiction. Suppose that there exists a t-locally safe Broad-
cast algorithm A which is t-locally resilient in graph G with dealer D. We con-
sider the following executions σ and σ′ of A :

Execution σ is on the graph G with dealer D, with dealer’s value xD = 0, and
corruption set T ; in each round, all players in T perform the actions that perform
in the respective round of execution σ′ (where T is a set of honest players).

Execution σ′ is on the graph G′ with dealer D, with dealer’s value xD = 1,
and corruption set H ; in each round, all players in H perform the actions that
perform in the respective round of execution σ (where H is a set of honest
players).

Note that T,H are admissible corruption sets in G,G′ respectively due to their
t-locality. It is easy to see that H∪T is a cut which separatesD from B in both G
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and G′ and that actions of every node of this cut are identical in both executions
σ, σ′. Consequently, the actions of any honest node w ∈ B must be identical in
both executions. Since, by assumption, algorithm A is t-locally resilient on G
with dealer D, w must decide on the dealer’s message 0 in execution σ on G with
dealer D, and must do the same in execution σ′ on G′ with dealer D. However,
in execution σ′ the dealer’s message is 1. Therefore A makes w decide on an
incorrect message in (G′, D). This contradicts the assumption that A is locally
safe.

We can show that if we drop the requirement for t-local safety, then the
theorem does not hold. Intuitively, the reason is that an ad hoc protocol that
assumes certain topological properties for the network may be t-locally resilient
in a family of graphs that have the assumed topological properties. Indeed,
Pelc and Peleg [14] introduced another algorithm for the uniform model, the
Relaxed Propagation Algorithm (RPA) which uses knowledge of the topology of
the network and they proved that there exists a graph G′′ with dealer D for
which RPA is 1-locally resilient and CPA is not. So if we use RPA in an ad hoc
setting assuming that the network is G′′ then this algorithm will be t-locally
resilient for (G′′, D) while CPA will not. Non-t-local safety of RPA can easily
be shown. This shows that there exists non-safe algorithms of higher resilience
than CPA. The next corollary is immediate from Theorems 1,2.

Corollary 1 (CPA Uniqueness). Given a graph G and dealer D, if there
exists an ad hoc Broadcast algorithm which is t-locally resilient in (G,D) and
t-locally safe, then CPA is t-locally resilient in (G,D).

3.3 Hardness of pLPC

Ichimura and Shigeno in [8] prove that the set splitting problem, known as NP-
hard [6], can be reduced to the problem of computing the minimum integer t
such that a t-local pair cut exists in a graph G. By generalizing the notion of the
t-local pair cut to that of t-plp cut and defining the pLPC problem analogously
one can use a nearly identical proof to that of [8] and show that the pLPC
problem is NP-hard. For completeness the proof is given in the full version2.

Theorem 3. pLPC is NP-hard.

Therefore, computing the necessary and sufficient condition for CPA to work
is NP-hard. Observe that this negative result also has a positive aspect, namely
that a polynomially bounded adversary is unable to always compute an optimal
attack unless P = NP.

4 Known Topology Networks

4.1 The Path Propagation Algorithm

Considering only safe Broadcast algorithms, the uniqueness of CPA in the ad
hoc model implies that an algorithm that achieves Broadcast in cases where

2 All omitted proofs are deferred to the full version.
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CPA does not, must operate under a weaker model e.g., assuming additional
information on the topology of the network. It thus makes sense to consider the
setting where players have full knowledge of the topology of the network. In this
section we propose the Path Propagation Algorithm (PPA) and show that is of
optimal resilience in the full-knowledge model. For convenience we will use the
following notions: a set S ⊆ V \D is called a cover of a set of paths P if and
only if ∀p ∈ P , ∃s ∈ S s.t. s ∈ p (s is a node of p). With tail(p) we will denote
the last node of path p. The description of PPA follows.

Protocol 1: Path Propagation Algorithm (PPA)

Input (for each node v): graph G, dealer D, t(v) = max #corruptions in N(v).
Message format : pair (x, p), where x ∈ X (message space), and p is a path of G
(message’s propagation trail).

Code for D: send message (xD, D) to all neighbors, decide on xD and terminate.

Code for v �= D: upon reception of (x, p) from node u do:

if (v ∈ p) ∨ (tail(p) �= u) then discard the message
else send (x, p||v) 3 to all neighbors.

if decision(v) �= ⊥ then send message (decision(v), v) to all neighbors.

function decision(v)

(* dealer propagation rule *)

if v ∈ N (D) and v receives (xD, D) then return xD.

(* honest path propagation rule *)

if v receives (x, p1), . . . , (x, pn) ∧ � t-local cover of {p1, . . . , pn}
then return x else return ⊥.

The correctness of the honest path propagation rule is trivial: if a path is
entirely corruption free, then value x, which is relayed through that path, is
correct. Checking whether tail(p) �= u we ensure that at least one corrupted
node will be included in a faulty path. Observe that each player can check the
validity of the honest path propagation rule only if it has knowledge of the
corruption function t and the network’s topology.

4.2 A Necessary and Sufficient Condition

We will now show that the non-existence of a t-local pair cut is a sufficient con-
dition for PPA to achieve Broadcast in the t-locally bounded model in networks
of known topology (proof omitted).

3 By p||v we denote the path consisting of path p and node v, with the last node of p
connected to v.
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Theorem 4 (Sufficiency). Given a graph G with dealer D and corruption
function t, if no t-local pair cut exists in (G,D) then all honest players will
decide through PPA on xD.

Using the same arguments as in the proof of the necessity of condition t <
LPC(G,D) [14] it can be seen that the non-existence of a t-local pair cut is
a necessary condition for any algorithm to achieve Broadcast under the non-
uniform model.

Theorem 5 (Necessity). Given a graph G with dealer D and corruption func-
tion t, if there exists a t-local pair cut in (G,D) then there is no t-locally resilient
algorithm for (G,D).

Thus the non-existence of a t-local pair cut proves to be a necessary and
sufficient condition for the existence of a t-locally resilient algorithm in both the
uniform and the non-uniform model. Therefore PPA is of optimal resilience.

4.3 On the Hardness of Broadcast in Known Networks

In order to run PPA we have to be able to deduce whether a corruption-free path
exists among a set of paths broadcasting the same value. Formally, given a graph
G(V,E), a set of paths P and a node u (the one that executes decision(u))
we need to determine whether there exists a t-local cover T of P . We call this
problem the Local Path Cover Problem, LPCP (G,D, u, t,P) and show that is
NP-hard (proof omitted).

Theorem 6. It is NP-hard to compute LPCP (G,D, u, t,P).

The above theorem implies that PPA may not be practical in some cases, since
its decision rule cannot be always checked efficiently. It remains to show whether
any other algorithm which has the same resilience as PPA can be efficient. The
following theorem provides an indication that the answer is negative, by showing
that algorithms which behave exactly as PPA w.r.t. decision are unlikely to be
efficient (proof omitted).

Theorem 7. Assuming P �= NP, no safe fully polynomial protocol Π can satisfy
the following: for any graph G, dealer D, corruption function t, and admissible
corruption set C executing protocol ΠC , a node u decides through PPA on a
value x iff u will decide on x by running Π on (G,D, t, C,ΠC).

5 Partial Knowledge

Until now we have presented optimal resilience algorithms for Broadcast in two
extreme cases, with respect to the knowledge over the network topology: the ad
hoc model and the full-knowledge model. A natural question arises: is there any
algorithm that works well in settings where nodes have partial knowledge of the
topology?
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To address this question we devise a new, generalized version of PPA that
can run with partial knowledge of the topology of the network. More specifically
we assume that each player v only has knowledge of the topology of a certain
connected subgraph Gv of G which includes v. Namely if we consider the family
G of connected subgraphs of G we use the topology view function γ : V → G,
where γ(v) represents the subgraph over which player v has knowledge of the
topology. We also define the joint view of a set S as the subgraph γ(S) of G with
node-set V (γ(S)) =

⋃
u∈S V (γ(u)) and edge-set E(γ(S)) =

⋃
u∈S E(γ(u)). We

will call an algorithm which achieves Broadcast for any t-local corruption set in
graph G with dealer D and view function γ, (γ, t)-locally resilient for (G,D).

Now given a corruption function t and a view function γ we define the Gener-
alized Path Propagation Algorithm (GPPA) to work exactly as PPA apart from
a natural modification of the path propagation rule.

Generalized path propagation rule: Player v receives the same value x from a
set P of paths that are completely inside γ(v) and is able to deduce (from the
topology) that no t-local cover of P exists.

Remark. Note that GPPA generalizes both CPA and PPA. Indeed, if ∀v ∈
V, γ(v) = N (v), then GPPA(G,D, t, γ) coincides with CPA(G,D, t). If, on the
other hand, ∀v ∈ V, γ(v) = G then GPPA(G,D, t, γ) coincides with PPA(G,D, t).
We also notice that, quite naturally, as γ provides more information for the topol-
ogy of the graph, resilience increases, with CPA being of minimal resilience in
this family of algorithms, and PPA achieving maximal resilience.

To prove necessary and sufficient conditions for GPPA being t-locally resilient
we need to generalize the notion of t-plp cut as follows:

Definition 7 (type 1 (γ, t)-partial local pair cut). Let C be a cut of G,
partitioning V \ C into sets A,B �= ∅ s.t. D ∈ A. C will be called a type 1
(γ, t)-partial local pair cut (plp1 cut) if there exists a partition C = C1 ∪C2 s.t.
C1 is t-local and C2 is t-local in the graph γ(B).

Definition 8 (type 2 (γ, t)-partial local pair cut). Let C be a cut of G,
partitioning V \ C into sets A,B �= ∅ s.t. D ∈ A. C will be called a type 2
(γ, t)-partial local pair cut (plp2 cut) if there exists a partition C = C1 ∪C2 s.t.
C1 is t-local and ∀u ∈ B, C2 ∩N(u) is t-local in the graph γ(u).

We can now show the following two theorems. The proofs build on the tech-
niques presented for CPA and PPA and are omitted.

Theorem 8 (sufficient condition). Let t be corruption function and γ be a view
function, if no (γ, t)-plp2 cut exists in G with dealer D then GPPA(G,D, t, γ) is
(γ, t)-locally resilient for G,D.

Theorem 9 (necessary condition). Let t be a corruption function, γ be a
view function and A be a t-locally safe ad hoc Broadcast algorithm. If a (γ, t)-
plp1 cut exists in graph G with dealer D, then A is not (γ, t)-locally resilient for
G,D.
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One can argue that increased topology knowledge implies increased resilience
for GPPA compared to CPA; for example, the sufficient condition of GPPA holds
in settings where the sufficient condition of CPA does not hold. An overview of
our results concerning the t-local model with respect to the level of topology
knowledge appears in Figure 2.

Notice that the reason for which GPPA is not optimal is that nodes in γ(v)
do not share their knowledge of topology. An optimal resilience protocol would
probably include exchange of topological knowledge among players.

G

∃ safe, t-locally resilient
Ad-Hoc algorithm (CPA)

⇔
� a t-plp cut

� a t-local pair cut

∃ t-locally resilient algorithm (PPA)
⇔

� a type 1 (γ, t)-plp cut

� a type 2 (γ, t)-plp cut
⇒

∃ a safe, (γ, t)-locally
resilient algorithm (GPPA)

Fig. 2. Overview of conditions concerning the existence of t-locally resilient algorithms
with respect to the level of topology knowledge. Note that G refers to the family of
pairs (G,D).

6 General Adversary

Hirt and Maurer in [7] study the security of multiparty computation protocols
with respect to an adversary structure, that is, a family of subsets of the players;
the adversary is able to corrupt one of these subsets. More formally, a structure
Z for the set of players V is a monotone family of subsets of V , i.e. Z ⊆ 2V ,
where all subsets of Z are in Z if Z ∈ Z. Let us now redefine some notions that
we have introduced in this paper in order to extend our results to the case of
a general adversary. We will call an algorithm that achieves Broadcast for any
corruption set T ∈ Z in graph G with dealer D, Z-resilient. We next generalize
the notion of a t-local pair cut.

Definition 9 (Z-pair cut). A cut C of G for which there exists a partition
C = C1 ∪ C2 and C1, C2 ∈ Z is called a Z-pair cut of G.

Known Topology Networks. We adapt PPA in order to address the Broad-
cast problem under a general adversary. The Generalized Z-PPA algorithm can
be obtained by a modification of the path propagation rule of PPA (Protocol 1).
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Z-PPA Honest Path Propagation Rule: player v receives value x from a set P of
paths and is able to deduce that for any T ∈ Z, T is not a cover of P .

Moreover, the following theorems can be easily shown using essentially the
same proofs as for Theorems 4, and 5 and replacing the notion of t-local pair
cut with that of Z-pair cut.

Theorem 10 (Sufficiency). Given a graph G, dealer D, and an adversary
structure Z, if no Z-pair cut exists, then all honest players will decide on xD

through Z-PPA.

Theorem 11 (Necessity). Given a graph G, dealer D, and an adversary struc-
ture Z, if there exists a Z-pair cut then there is no Z-resilient Broadcast algo-
rithm for (G,D).

Ad Hoc Networks. Since in the ad hoc model the players know only their own
labels, the labels of their neighbors and the label of the dealer it is reasonable to
assume that a player has only local knowledge on the actual adversary structure
Z. Specifically, given the actual adversary structure Z we assume that each
player v knows only the local adversary structure Zv = {A ∩N (v) : A ∈ Z}.

As in known topology networks, we can describe a generalized version Z-CPA
of CPA, which is an ad hoc Broadcast algorithm for the general adversary model.
In particular, we modify the propagation rule of CPAin the following way.

Z-CPA Propagation Rule: if a node v is not a neighbor of the dealer, then upon
receiving the same value x from all its neighbors in a set N ⊆ N (v) s.t. N /∈ Zv,
it decides on value x.

In order to argue about the topological conditions which determine the effec-
tiveness of Z-CPA we generalize the notion of partial t-local pair cut.

Definition 10 (Z-partial pair cut). Let C be a cut of G partitioning V \ C
into sets A,B �= ∅ s.t. D ∈ A. C is a Z-partial pair cut (Z-pp cut) if there
exists a partition C = C1 ∪ C2 with C1 ∈ Z and ∀u ∈ B, N (u) ∩ C2 ∈ Zu.

Analogously to CPA Uniqueness, we can now prove Z-CPA Uniqueness in the
general adversary model (proofs omitted).

Theorem 12 (Sufficient Condition). Given a graph G, dealer D, and an
adversary structure Z, if no Z-pp cut exists, then Z-CPA is Z-resilient.

Theorem 13 (Necessary Condition). Let A be a safe ad hoc Broadcast al-
gorithm. Given a graph G, dealer D, and an adversary structure Z, if a Z-pp
cut exists then A is not Z-resilient for G,D.

Complexity of Z-CPA. Regarding the computational complexity of Z-CPA one
can observe that it is polynomial if and only if for every player v there exists
a polynomial (w.r.t. the size of G) algorithm B which given a set S ⊆ N (v)
decides whether S ∈ Zv. Since Z-CPA is clearly polynomial in round complexity
and communication complexity, if such an algorithm B exists, Z-CPA is fully
polynomial.
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Dealer Corruption. We have studied the problem of Broadcast in the case where
the dealer is honest. In order to address the general case in which the dealer
may also be corrupted one may observe that for a given adversary structure Z
and graph G, Z-resilient Broadcast in ad hoc networks can be achieved if the
following conditions both hold:

1. �Z1, Z2, Z3 ∈ Z s.t. Z1 ∪ Z2 ∪ Z3 = V .
2. ∀v ∈ V there does not exist a Z-pp cut for G with dealer v.

Condition 1 was proved by Hirt and Maurer [7] sufficient and necessary for
the existence of secure multiparty protocols in complete networks. Z-resilient
Broadcast in the general case where the network is incomplete can be achieved by
simulating any protocol for complete graphs (e.g. the protocol presented in [4]) as
follows: each one-to-many transmission is replaced by an execution of Z-CPA. It
is not hard to see that the conjunction of the above two conditions is necessary
and sufficient for Broadcast in incomplete networks in the case of corrupted
dealer. Analogously, the same result holds in networks of known topology, if we
replace Condition 2 with the corresponding Z-pair cut condition. Naturally, the
above observations hold also in the special case of a locally bounded adversary.

7 Open Questions

Necessary and sufficient criteria for Broadcast on known topology and ad-hoc
networks are NP-hard to compute. It remains open to define and study mean-
ingful approximation objectives.

We conjecture that in the known topology locally bounded setting no safe,
fully polynomial algorithm can achieve optimal resilience. We have provided an
indication towards proving this in Subsection 4.3.

Regarding the partial knowledge model discussed in Section 5, GPPA is not
of optimal resilience. Devising such an algorithm would be of great interest. One
direction towards this, is to consider discovering the network topology under a
Byzantine adversary, as studied in [13,3].

In the ad hoc general adversary setting, we proved that Z-CPA is unique, thus
having optimal resilience. We conjecture that it is also unique w.r.t. polynomial
time complexity, i.e., if a safe protocol achieves Broadcast in polynomial time
then so does Z-CPA.
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