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Abstract. Transactional memory (TM) algorithms are subtle and the
TM correctness conditions are intricate. Decomposition of the correct-
ness condition can bring modularity to TM algorithm design and veri-
fication. We present a decomposition of opacity called markability as a
conjunction of separate intuitive invariants. We prove the equivalence of
opacity and markability. The proofs of markability of TM algorithms can
be aided by and mirror the algorithm design intuitions. As an example,
we prove the markability and hence opacity of the TL2 algorithm. In
addition, based on one of the invariants, we present lower bound results
for the time complexity of TM algorithms.

1 Introduction

A transactional memory (TM) [24, 36] is a concurrent object that encapsulates
and manages accesses to an array of memory locations. The clients of a TM are
transactions, sequences of accesses to the encapsulated locations. A transactional
processing system is the composition of a TM and a set of client transactions.
While the clients issue the invocation events, the TM issues the response events.
Researchers have proposed several TM correctness conditions including opacity
[20], VWC [25], TMS1 and TMS2 [13], and DU-opacity [2] that characterize the
required safety conditions on TM response events.

Considering strength of the promised safety properties, designing a correct
TM is an art. TM algorithms whether in software [9, 11,12, 15,23, 35|, hard-
ware [1,7,22,37] or hybrid [8, 10, 26, 31, 32| are subtle and prone to bugs [30].
Thus, verification of TM algorithms by model checking [4-6,16-18,33], invariant
generation [14] and theorem proving [28] has been a topic of recent attention.
Verifying a complicated monolithic condition for a realistic specification of a
TM algorithm can be a formidable problem. Can the correctness condition of
TM be stated as a conjunction of simpler intuitive conditions? In other words,
is there an meaningful decomposition of the correctness condition? What are
the separate invariants that the TM designers should maintain? Decomposition
of the correctness condition enhances the understanding of the correctness and
brings modularity to the algorithm design. It showcases different aspects of cor-
rectness and helps designers concentrate on maintaining one aspect at a time.
More importantly, separation has obvious benefits of modularity and scalabil-
ity for verification. Furthermore, it supports studying the time complexity and
performance of TM algorithms.
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We decompose opacity to separate intuitive invariants. We define that an
execution history is markable if there is a specific ordering relation on the set
of transactions and read operations called marking such that three invariants
are satisfied. We prove that markability is required and sufficient for opacity.
At a high level, the first invariant called write-observation requires that each
read operation returns the most current value. The second invariant called read-
preservation requires that the read location is not overwritten in the interval
that the location is read and the transaction takes effect. The third invariant
is the well-known real-time-preservation property. We show that the marking
relation for the TL2 algorithm [11] can be defined using the execution order and
the linearization order of method calls on the used synchronization objects and
proofs of markability can be aided by and mirror the algorithm design intuitions.
We prove markability and hence opacity of TL2. Finally, inspired by the read-
preservation invariant, we present lower bound results for the time complexity
of a class of TM algorithms.

In the following sections, we first introduce the notion of markability and
present the marking of TL2 as an example. We then formally define markability,
and present the marking theorem that states the equivalence of opacity and
markability. Next, we formally state the marking relation of TL2 and state that
TL2 is markable and hence opaque. Finally, we present our lower bound results
for the time complexity of TM algorithms.

2 Write-observation and Read-preservation

In this section, we explain the main ideas behind markability by focusing on
complete histories with only global reads and writes. A history is complete if
every transaction in it is either aborted or committed. A read R by a transaction
T is global if T' has no write to the same location before R. A write W by a
transaction 7T is global if T has no write to the same location after W.

A transaction history is markable if and only if there exists a marking of
it that is write-observant, read-preserving, and real-time-preserving. We explain
each property in turn.

A marking of a transaction history is a relation on the union of the transactions
and the read operations in the history. We can think of the marking as the union
of a collection of orders: The effect order: The effect order is a total order of
the transactions. The access orders: Consider an unaborted read operation R
on a location i. Let us refer to the committed transactions that have write
operation(s) to location i as writers of i. For each such R, the access order is
an antisymmetric relation that orders R and every writer of i. The effect order
represents the order in which the transactions appear to take effect. The access
order of a read operation R from a location i represents where the access to @
by R has happened between the accesses to i by the writers of 4.

Note that marking not only recognizes the points where transactions take ef-
fect but also the points where reads take place. The effect point of a transaction
captures the point where the whole transaction takes effect. But a transaction
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Fig. 1. Illustrations of Write-observation and Read-preservation

is split into multiple operations. Particularly, read operations observe values be-
fore the commit operation is even invoked. Any value that the TM algorithm
returns in response to a read invocation should be justified at the point where the
transaction takes effect. There is a point where each writer transaction writes the
new value to the underlying shared objects. Every read operation reads the value
that it returns at a certain point between the write points of the writer trans-
actions. The access order captures this design decision. Having the access order
in addition to the effect order makes it possible to decompose the consistency
condition into two orthogonal invariants. Particularly, the read-preservation in-
variant makes sure that the read value is not overwritten in the interval between
the point where a read happens and the point where the transaction takes effect.
Next, we will explain write-observation and read-preservation invariants in turn.

At a high level, write-observation means that each read operation should read
the most current value. Let us explain this idea in more detail. Consider an
unaborted read operation R from a location i. Let pre-accessors be the writers
of i that come before R in the access order for R. We can use the effect order to
determine the last pre-accessor that is, the pre-accessor that is greatest in the
effect order. Write-observation requires that the value that R reads be the same
as the value written by the last pre-accessor.

Figure 1 illustrates the write-observation and read-preservation invariants.
Each sub-figure shows a marking relation C. In every sub-figure, the effect order
isTy C Ty, C T3 C T, and the transaction T3 performs the read operation
R. In Figure 1(a), 71 and T4 are writers of ¢ and the access order for R is
{T1 C R,RC T4}. T is the last pre-accessor for R. Thus, by write-observation,
R is expected to return the value that T writes to 7.

At a high level, read-preservation means that the location read by a read
operation is not overwritten between the points that the read takes place and
the transaction takes effect. Let us explain this idea in more detail. Consider an
unaborted read operation R by a transaction 7' from a location 4. Intuitively,
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read-preservation requires that no writer of i comes between R and T in the
marking relation. More precisely, read-preservation requires that there is no
writer T” of i that accesses i after R and takes effect before T and there is
no writer 7" of i that takes effect after T and accesses i before R. (Note that de-
pending on whether a transaction takes effect earlier or later in its lifetime, one of
these two conditions is usually trivially true.) In other words, read-preservation
requires the writers to both access ¢ and take effect on the same side of R and
T. More precisely, if a writer T" accesses i before R (T’ is marked before R in
the access order), then T” takes effect before T (T" is marked before T in the
effect order) too. Similarly, read-preservation requires that if 77 accesses i after
R, it takes effect after T too.

The marking relation in Figure 1(a) satisfies read-preservation as there is no
writer between R and T3. The transaction T accesses i before R and takes effect
before T3 too. The transaction Ty accesses i after R and takes effect after T3 too.
Figures 1(b) and 1(c) show markings that are not read-preserving. In Figure 1(b),
Ty, T» and T4 are writers of ¢ and the access order is {11 T R,RC Ty, R C Ty}.
The transaction T is between R and T3. Therefore, the marking is not read-
preserving. In Figure 1(c), 71 and T4 are writers of ¢ and the access order is
{Ty C R, Ty C R}. The transaction T4 is between T3 and R. Therefore, the
marking is not read-preserving.

The real-time-preservation condition requires that if all the events of a trans-
action T happen before all the events of another transaction 1", then T is less
than T” in the effect order.

Our marking theorem says that a history is opaque if and only if it is mark-
able. So, to prove opacity, we can focus on proving markability. The algorithm
designer can usually define the marking relation readily from the guarantees
(such as linearization orders) of the used shared objects. In contrast to opacity,
markability of the algorithm can be established by modular verification of the
separate markability conditions that involve different aspects of the algorithm.

If a transaction history H is markable, we can show that H is opaque. We
construct a justifying history by ordering the transactions in the effect order.
Consider an arbitrary read R from i by T. We call the writers of ¢ that take
effect before T, pre-effectors. Let the last pre-effector be the pre-effector that is
the greatest in the effect order. We need to show that the value that R returns
is the value that the last pre-effector writes. We recall that we refer to the
writers of 7 that access i before R as pre-accessors and refer to the pre-accessor
that is greatest in the effect order as the last pre-accessor. First, we argue that
pre-accessors are exactly pre-effectors. If a writer of i accesses before R, by read-
preservation, it does not take effect after T'. Thus, by totality of effect order, it
takes effect before T'. In the other direction, if a writer of i takes effect before T,
by read-preservation, it does not access after R. Thus, as the access order orders
R and every writer of i, T accesses before R. Second, from write-observation,
we have that R returns the value written by the last pre-accessor. Thus, from
the two above statements, we have that R returns the value written by the last
pre-effector. This is the essence of the condition needed to prove opacity.
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3 Marking TL2

Now, we look at the marking of the TL2 algorithm [11] as an example. TL2
is specified in Figure 2. The specification first declares the type of the used
synchronization objects and then defines the methods of the TM interface.

In the init method, each transaction t reads the current snapshot version from
clock at 101 and writes it to the read version register rver[t] at 102. The read
version is read at RO7 and CO08 to validate the read values. TL2 is a deferred-
update TM algorithm. A value that a transaction ¢ writes to a location is buffered
in the write set wset[t] at W01 and is written back to register reg[i] at C16;
while ¢ is committing. TL2 records a version in the register ver[i] for the value
stored in the register reg[i]. The version register ver[i] is updated to ascending
numbers at C17; after new values are written back to reg[i] at C'16;. The try-
lock lock[i] is used for exclusive access to the registers for location 7. At commit,
the lock lock[i] of each location ¢ in the write set wset[t] is acquired at C01 to
C06. (If a lock cannot be acquired, the previously acquired locks are released
at C05 and the transaction is aborted at C06.) Then, a new snapshot number
is read from clock at C07. Then, for each location in the read set rset[t], first
lock[i] and then ver[i] are read at C'10; and C'11; and the read is validated. (If a
read is not validated, the acquired locks are released at C'13 and the transaction
is aborted at C14.) Finally, the value buffered for each location i in wset[t] is
written back at C15; to C'18;. For each pair in the write set wset[t], the following
three operations are executed in order. First, the buffered value is written back
to regli], then ver[i] is updated, and then lock[i] is released. To read a location 4,
a transaction reads ver[i], reg[i], lock[i] and again ver[i] in order at R03 to R06
and then validates the read. (If the validation fails, the transaction is aborted.)
Finally, 7 is added to the read set rset[t] and the read value is returned.

Let us describe the marking relation for TL2. The clock object numbers the
snapshots. Every transaction reads an initial snapshot number at 701. A com-
mitting transaction makes a new snapshot at C07. The effect point of a TL2
transaction is 101, if it is live or aborted and, is C07, if it is committed. The ef-
fect order of transactions is the linearization order of clock for their effect points.
The access point of a read operation is at R04 where regli] is read and the access
point of a writer of ¢ is C16; where reg[i] is written. Consider a read R from
1 and a writer 7" to 4. If the access point of T” is executed before the access
point of R, then T’ is ordered before R in the access order of R. Otherwise,
T’ is ordered after R in the access order of R. The access and effect points for
markability of a TM are reminiscent of the linearization points for linearizability
of a concurrent data structure.

One of the two conjuncts of the read-preservation property requires that for
every transaction 7' with an unaborted read operation R from a location i, there
is no writer T” of 4 such that T’ takes effect after T" and accesses i before R.
Let us see how TL2 preserves this property. We assume that there exists such
a writer 77 and show that the validation checks embodied in TL2 detect the
existence of T” and abort R. We consider a transaction T with a read operation
R from a location ¢ and a writer T” of . We assume that T” takes effect after
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reg: BasicRegister[|I]],
ver: AtomicRegister[|I|],
lock: TryLock[|I|],

clock: SCounter,

def mztt()

I01 >  snap = clock.read()
102 > rver[t].write(snap)
103 > return ok

def read.(7)

RO1 > pv = wset[t].get (i)

rver: ThreadLocal BasicRegister,

rset: ThreadLocal BasicSet,

wset: ThreadLocal BasicMap,

Iset: ThreadLocal BasicSet

def commit,()

C01 > foreach (i € wset[t])

C02; > locked = lockli].trylock()
f (—locked)

C03; > lset.add(7)

else

if (pv# 1) c04; > foreach (j € Ilset)
R0O2>  return pv C05;5 > lock[j].unlock()
C06; > return A

RO3 > s1 = ver[i].read()
R04 > v = reg[i].read()
RO5 > I = lock[i].read()
RO6 > s2 = ver[i].read() C08 > sver = rver[t].read()
RO7 > sver = rver[t].read() if (wver # sver + 1)
if (=(=l A s1 =352 A s2 < sver)) C09 > foreach (i € rsetlt])

RO8 1>  return A C10; > I = lock[i].read()
C11; > s = wverli].read()

if (=(=l A s < sver))

CO7 > wver = clock.iaf ()

R09 > rvert].add(i)

R10 > return v C12; > foreach (j € lset)
{R03 — R04, R04 — R05, R05 — R06} C13; > lock[j].unlock()
def write:(i,v) C14; > return A

WOl wsett].put(i,v)

W02 > return ok C15 > foreach ((4,v) € wset[t])

def abort.() C_16; >

A0l >  return A C17; > wverli].write(wver)
C18; > lockli].unlock()

reg[i].write(v)

C191> return C
{C01 — C07, C10 — C11, C09 — C15,
Cl16 — C17,C17 — C18}

Fig. 2. TL2 Algorithm Specification

T and T’ accesses i before R. For brevity, we consider only the case that T
is a live or aborted (not a committed) transaction. Figure 3 depicts the two
transactions. We use the binary operators <x to denote execution order, ~x to
denote concurrent execution and 3x to denote in-order or concurrent execution
of method calls. We use the binary operators <ciock, <ver[i] a0d <joc[s) to denote
the linearization order of clock, ver[i] and lock[i] respectively.! We recall that the

! We have formally proved the markability of TL2 using a novel program logic [27]
that facilitates reasoning about execution and linearization orders. To keep the focus
of this paper on markability, we use a simplified reasoning instead of the logic.
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I01 >  snap = clock.read() C02; > lock[i].trylock()
102> rver(t].write(snap)

CO7 >  wwver = clock.iaf ()

C16; > regli].write(v)
RO4 > v =regli].read() C17; > werlil.write(wver)
RO5 > 1= lock[i].read() C18; > lock[i].unlock()
RO6 > s2 = ver[i].read()
RO7T > sver = rver[t].read()
if (=(=l A s1=s2 A s2 < sver))
return A

Fig.3. TL2 Read-Preservation Example

real-time-preservation property of a linearizable object o states that if a method
call my on o is executed before another method call ms on o, then my is linearized
before mo. Equivalently, if m; is linearized before mo, then m; is executed before
or concurrent to meo. By the marking relation defined above, from the premise
that T” takes effect after T', and that T is aborted and 7" is committed, we have
(1) 101 < oer CO7. Similarly, by the marking relation defined above, from the
premise that 7" accesses i before R, we have (2) C'16; <,g;) R04. The method
calls R05 and C18; are on the object lock[i]. We consider two cases for the
linearization order of them and show that R returns A in both cases. Case 1:
(3) RO5 <joekfy) C18;. From the execution, we have (4) C02; <x C16; and (5)
R04 <x RO05. By the real-time-preservation property for ver[i] on 2, we have (6)
C16; Zx RO04. By the transitivity of the execution order on 4, 6 and 5, we have
C02; <x RO05; thus, by the real-time-preservation property for lock[i], we have
(7) C02; <iock) RO5. From 7 and 3, we have that R05 is executed when lock]i]
is acquired. Therefore, R0O5 returns true i.e. [ = true. Thus, the validation check
fails and R returns A.

Case 2: (8) C18; <jocks) R05. By the real-time-preservation property for
lock[i], from 8, we have (9) C18; Sx R05. From the execution, we have (10)
C17;, <x C18; and (11) R05 <x R06. By the transitivity of the execution or-
der on 10, 9 and 11, we have (12) C'17, <x R06. By the real-time-preservation
property for ver[i], from 12, we have (13) C17; <,er[; R06. It is straightforward
to separately prove that (14) The register ver[i] is updated only to ascending
numbers. From 14 and 13, we have that R06 reads a value that is greater than
or equal to the value that C17; writes i.e. (15) s2 > wver. From 1, and that iaf
returns the incremented value, we have (16) snap < wver. The value of sver is
read at RO7 from rver. The thread-local register rver is only assigned at 102 to
snap. Thus, we have (17) snap = sver. From 15, 16 and 17, we have so > sver.
Thus, the validation check fails and R returns A in this case too.
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Please see the appendix [29] for the proof of markability of TL2 and also the
marking relations for DSTM (visible reads) [23] and NORec [9] TM algorithms.

4 Markability

In this section, we first present preliminary definitions about execution histories
and then, present the formal definition of markability and state its equivalence
to opacity.

4.1 Histories

Strings. We use |s| to denote the size of the string s. If s and sg are strings, we
write s1 € so iff 1 is a subsequence of ss. For example, bd € abede. Let s be an
isogram string (i.e. contains no repeating occurrence of the alphabet.) For any
S1, S2, we write s; <y so iff the last element of s; occurs before the first element
of s in s. For example, ab <lgpeqde de.

Method Calls and Events. An invocation event is of the form inv(I> o.ny(v))
where [ is a label, o is an object, n is a method name, T is a transaction identifier
and v is a value. A response event is of the form ret(l > v) where [ is a label
and v is a value. A completed method call is the sequence of an invocation event
and the matching response event (with the same label). We use [> o.np(v):v to
denote the completed method call inv(l> o.np(v)) - ret(l> v).

Operations on Event Sequences. Let E and E’ be event sequences. We use
E - E’ to denote the concatenation of E and E’. For a transaction T, we use
E|T to denote the subsequence of all events of T in E. A sequence of events
is sequential if and only if it is a sequence of completed method calls possibly
followed by an invocation event. A transaction T is sequential in a sequence of
events E if E|T is sequential.

Execution History. An execution history is an event sequence where invocation
events have unique labels and every transaction is sequential. We say label [ is
in X and write [ € X if there is an invocation event with label [ in X. We
use I, R and W to denote labels. As the labels are unique in a history, the
following functions on labels are defined. The functions objx, namex, transx,
arglx, arg2x, retvx map labels to the receiving object, the method name, the
transaction identifier, the first and the second arguments, and the return value
associated with the labels. Similary, ¢ Ev and r Ev functions on labels map labels
to the invocation and the response events associated with the labels.

Real-time Relations. For an execution history X, we define the method call
real-time relations < x and <x on labels as follows: First, Iy <x 2 iff rEv(l1)<x
iE’U(lQ). Second, h 2XxlLiff ] <x s VI =15

For an execution history X, we define the transaction real-time relations < x
and Xx as follows. First, T <x T’ iff X|T <x X|T’. Second, T' KXx T" iff
T<xT' vT=T.
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Transactional Memory. The transactional memory is a singleton object mem
that encapsulates a set of locations where each location, i € I, I = {1,...,m}
encapsulates a value v. The object mem has five methods init:(), read:(i),
write(i,v), commit,() and abort,(). The parameter ¢ is the invoking transaction
identifier. The method call init,() initializes ¢ and returns ok. The method call
ready (i) returns the value of location i or aborts ¢ and returns A. The method
writet(i,v) writes v to location 4 and returns ok or aborts ¢ and returns A. The
method commit;() tries to commit transaction ¢. If ¢ is successfully committed,
it returns C; otherwise, it returns A. The method abort,() aborts ¢ and returns
A. The object mem can be implicit, that is read; (i) abbreviates mem.ready ().
The reserved values ok, A, C denote successful completion of writes and, abortion
and commitment of transactions respectively.

Transaction History. A transaction history H is an execution history such that
H|mem = Hp,; - H' with the following conditions. Hry;; is the following history
that initializes every location to vy. Hrnit = loi>initr, () - loo>writer, (1, vo):0k -
oo+ lom > writeq, (m, vg):0k - lo. > commity,:C. For every T € H', the history
H'|T is a prefix of E.E’. The event sequence F is the initialization method
call I > initp() (for some 1), and then a sequence of reads [ > readr(i):v and
writes [ > writer(i,v) (for some I, i, and v). The event sequence E’ is one of
the following sequences (for some [, i, and v): (1) inv(l > readr(i)), ret(l> A),
(2) inv(l>writer(i,v)), ret(l>A), (3) inv(l>commitr()), ret(l>C), (4) inv(l>
commitr()), ret(l>A), or (5) inv(l>abortr()), ret(l>A). Let T History denote
the set of transaction histories. Let Trans(H) denote the set of transactions of
H. The projection of H on i, written H|i, denotes the subsequence of history H
that contains exactly the events on location i. For a TM algorithm specification
7, let H(7) denote the set of complete transaction histories that result from
execution of transactions with .

4.2 Formal Definition of Markability

First, we present some preliminary definitions in Figure 4. (We use the prefix
T before some of the terms for transactions to avoid confusion with similar
terms that are usually used for general concurrent objects.) A transaction T is
committed or aborted in a transaction history H if there is respectively a commit
or abort response event for T in H. A completed transaction is either committed
or aborted. A live transaction is a transaction that is not completed. A pending
transaction has a pending event and a commit-pending transaction has a commit
pending event. An extension of a history is obtained by committing or aborting
its commit-pending transactions and aborting the other live transactions.

A local read is a read that is preceded by a write by the same transaction to
the same location. Intuitively, a local read should read a value that is previously
written by the same transaction and hence the name. A global read is a read that
is not local. A local write is a write that precedes a write by the same transaction
to the same location. A local write is overwritten by the same transaction and
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Committed(H) ={T | 3l € H: obju(l) = mem A transg(l) =T A
retvg(l) = C}
Aborted(H) ={T |3l € H: obju(l) = mem A transg(l) =T A
retvg (1) = A}
Completed(H) = Committed(H) U Aborted(H )
Live(H) = Trans(H) \ Completed(H)
CommitPending(H) ={T |T € Live(H) A 3l € H:
obju(l) = mem A obju(l) = mem A transg(l) =T}
TExtension(H) = {H' | H' € THistory A 3H": H = H-H" A
Trans(H") C Trans(H) A VT: |H"|T| < 1A
Live(H) \ CommitPending(H) C Aborted(H') A
CommitPending(H) C Completed(H')}
TReads(H) ={R|R€ H A obju(R) =mem A namen(R) = read A
retvg (R) # A}
TWrites(H) = {W | W € H A obju(W) =mem A namen (W) = write A
retog (W) # A}
LocalTReads(H) = {R | R € TReads(H) N 3W € TWrites(H):
transg(R) = transag (W) A
arglg(R) = arglg(W) A W <u R}
GlobalT Reads(H) = T Reads(H) \ LocalT Reads(H)
LocalTWrites(H) = {W | W € TWrites(H) A AW’ € TWrites(H):
transuy (W) = transg(W') A
arglg(W) =arglg(W') A W <g W'}
GlobalTWrites(H) = TWrites(H) \ LocalTWrites(H)
Writersu(i) ={T | T € Trans(H) A 3l € TWrites(H): arglu(l) =i A
transg(l) =T AN T € Committed(H)}

Fig. 4. Basic Definitions

hence the name. A global write is a write that is not local. The writers of i are
the committed transactions that write to location i.

Markability is defined in Figure 5. A marking C of a transaction history
is the union of the following relations on the set of transactions and the global
reads. The effect order: The set of transactions is totally ordered by the marking
relation C. In other words, the marking relation C is total, antisymmetric and
transitive on the set of transactions. The access orders: For each global read R
from a location i, R and every writer of i are ordered by the marking relation C.
In other words, the marking relation C totally orders every global read R from
a location ¢ with respect to writers of ¢ and is antisymmetric.

The write-observation property is comprised of the two properties: local write-
observation and global write-observation. Local write-observation requires that
every local read R from a location i returns the value written by the last write
to i that is executed before R by the same transaction. As we defined before,
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Marking(H) = {C |
VT1,7T2,T3 € Trans(H):
(TTCT2 v T2C T1) A
(TTET2 A T2CT1) = (T1=1T2) A
(TTET2) A (T2CT3) = (T1C T3) A
VR,T: Let i = argluy(R): (R € GlobalT Read(H) N T € Writersu(i)) =
(RCT V TCR)A
(RET=-TCR) A (TCR=-RCT)}
NoWriteBetweeny (W, R) <
VW' e TWrites(H): W g W V R<g W'
LocalWriteObs(H) <
VR € LocalT Reads(H): Let T = transu(R),i = arglu(R),H = H|Ti:
IW € TWrites(H'):
W <g R A NoWriteBetweeny: (W, R) A retvg:/(R) = arg2y (W)
NoWriter Betweenn ;(x,C,x') <
VT € Writersg(i): TCx V o' CT
LastPreAccessory c(T',R) < Let i = arglu(R), T = transg(R):
T € Writersu(i) AN T' T N T' = R AN NoWriter Betweenn (T, C, R)
GlobalWriteObs(H,C) <
VR € GlobalT Reads(H): IW € GlobalTWrites(H): Let T' = transy(W):
LastPreAccessorg,c(T', R) A
argla(R) = arglg(W) A retvg(R) = arg2u(W)
WriteObs(H,C) <
LocalWriteObs(H) N GlobalWriteObs(H,C)
ReadPres(H,C) <
VR € GlobalT Reads(H): Let i = arglu(R),T = transu(R):
NoWriter Betweeng i (R,C,T) N NoWriter Betweeng,;(T,C, R)
RealTimePres(H,C) <
X CLC
FinalStateM arkable = {H |
H € THistory A 3H' € TExtension(H): 3C € Marking(H'):
WriteObs(H',E) A ReadPres(H',C) A RealTimePres(H',C)}

Fig. 5. FinalStateMarkable

pre-accessors of R are the writers of ¢ that are ordered before R in the access
order and the last pre-accessor of R is the one that is greatest in the effect order.
Global write-observation requires that the value that every global read R from
a location i returns is the value written by the global write to ¢ by the last
pre-accessor transaction of R.

The Read-preservation property requires that for every global read R from
location ¢ by transaction 7', there is no writer transaction T” of ¢ such that 7"
is marked between R and T (i.e. T” accesses i after R and takes effect before
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T), or similarly, 77 is marked between T and R (i.e. T’ takes effect after T' and
accesses i before R).

The real-time-preservation property requires that if T is before T’ in the
transaction real-time order, then T takes effect before 7" as well.

A transaction history is final-state-markable if and only if there exists a mark-
ing for an extension of it that is write-observant, read-preserving, and real-time-
preserving.

The marking theorem states that a transaction history is final-state-opaque
if and only if it is final-state-markable. The formal definition of opacity and the
proofs are available in the appendix [29].

Theorem 1 (Marking). FinalStateOpaque = FinalStateMarkable.

5 Opacity of TL2

Now, we define the marking relation for the TL2 algorithm in Figure 2. We use
the call string label [;’ls to denote the method call labeled 5 that is executed in
the body of the method call labeled I;. We use initOf g (T') and commitOf g (T)
to denote the init and commit method calls of T' in H.

Definition 1 (Marking TL2). Consider an execution history H € H(TL2).
Let

B (T) = {initOfH(T)’I()l if T € Aborted(H)
commitOf g (T)'C07  if T € Committed(H)
readAcc(R) = R'R04
writeAce(T, i) = commitOf g (T) C16;

The marking T for H is the reflezive closure of the relation T that is defined as
follows:

{(T,T) | T, T" € Trans(H) A EfF(T) <aoen Eff(T")} U

{(T,R) | Let i = argl(R): R € GlobalT Reads(H),T € Writersg (i) A
writeAcc(T, i) <g readAcc(R)} U

{(R,T) | Let i = argl(R): R € GlobalT Reads(H),T € Writersg (i) A
readAcc(R) g writeAce(T, i)}

The following theorems state the markability and the opacity of T'L2.
Theorem 2 (Markability of TL2). VH cH(T'L2): H € FinalStateMarkable
Corollary 1 (Opacity of TL2). VH € H(T'L2): H € FinalStateOpaque

The appendix [29] presents the proofs. The above corollary states that every
history of TL2 is final-state-opaque. As the set of histories of a TM algorithm
is prefix-closed, a TM algorithm is opaque if and only if every history of it is
final-state-opaque. (See [21], Observation 7.4.) Therefore, TL2 is opaque.
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6 The Cost of Read Validation

The read-preservation invariant requires the TM algorithm to check that a read
location is not overwritten between the point where the location is read and
the point where the transaction takes effect. This requirement motivated us to
study how read-preservation can influence the time complexity of TM operations
and helped us construct client scenarios that exhibit lower bounds. We present
a generalization of the seminal lower bound result presented in [20]. We first
recall some definitions from previous works on the inherent complexity of TM
[3,19, 20, 34].

An aborted transaction that did not invoke an abort operation is said to be
forcefully aborted. We say that two transactions conflict if they access the same
location and one of them writes to the location. A TM algorithm is (weakly)
progressive if and only if it forcefully aborts a transaction only when it conflicts
with a live transaction. More precisely, it aborts a transaction only when there is
a time t at which it conflicts with another concurrent transaction that is live at
time ¢ (not committed or aborted by time ¢). In addition to providing progress,
progressive TM algorithms are expected to retry transactions less frequently and
therefore, improve performance.

A TM algorithm is invisible-reads if and only if the read operation does not
mutate (i.e. change the state of) any base object. Mutating base objects can
potentially invalidate the caches and adversely affect performance. Thus, most
high-performance TM algorithms are invisible-reads. A transaction is read-only
if and only if it does invoke any write operations. We assume that the abort
operation for a read-only transaction does not mutate any base shared object.

Two transactions contend on a base object o if and only if they access o and at
least one of them mutates o. A TM algorithm is (strictly) disjoint-access-parallel
if and only if two transactions contend on a base object only if they access a
common memory location. Disjoint-access-parallelism can improve scalability as
transactions that access disjoint memory locations access disjoint base objects.

A TM algorithm is single-version if and only if it stores a single value for each
memory location in the base objects.

Theorem 3. The time complexity of the commit operation of every opaque,
progressive, disjoint-access-parallel and invisible-reads TM algorithm is £2(|R|)
where R is the read set.

This theorem shows that designers should pick at least one of the following
sources of inefficiency in the design of every opaque TM algorithm: aborting
non-conflicting transactions, sharing base objects between transactions that ac-
cess disjoint locations, visible reads or linear-time complexity of the commit
method. As an example, TL2 shares the clock object between all transactions
and is, therefore, not disjoint-access-parallel. In addition, it has linear-time read-
validation in the commit method.

Theorem 4. The time complexity of the commit operation of every opaque,
progressive, and invisible-reads TM algorithm that stores information about a



404 M. Lesani and J. Palsberg

constant number of locations in each shared object is 2(|R|) where R is the read
set.

The above theorem generalizes Theorem 3 of [20] by dropping the single-
version requirement. Note that the assumption about limited capacity of shared
objects is stated before the theorem in [20] and explicitly in the theorem here.
We leave the proofs to the appendix [29].

7 Conclusion

We presented a decomposition of opacity called markability as a conjunction of
separate invariants. We proved the equivalence of opacity and markability. We
showcased the applicability of markability as a proof technique for opacity by
stating the marking relation and proving the markability of the TL2 algorithm. In
addition, we presented a lower bound for the time complexity of TM algorithms.
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