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Abstract. In this paper we consider dynamic networks that can change over
time. Often, such networks have a repetitive pattern despite constant and oth-
erwise unpredictable changes. Based on this observation, we introduce the notion
of a ρ-recurring family of a dynamic network, which has the property that the
dynamic network frequently contains a graph in the family, where frequently
means at a rate 0<ρ≤1. Using this concept, we reduce the analysis of max-
degree random walks on dynamic networks to the case for static networks. Given
a dynamic network with a ρ-recurring family F , we prove an upper bound of
O
(
ρ−1t̂hit(F) logn

)
on the hitting and cover times, and an upper bound of

O
(
ρ−1(1− λ̂(F))−1 log n

)
on the mixing time of random walks, where n is

the number of nodes, t̂hit(F) is upper bound on the hitting time of graphs in F ,
and λ̂(F) is upper bound on the second largest eigenvalue of the transition matri-
ces of graphs in F . These results have two implications. First, they yield a general
bound of O

(
ρ−1n3 log n

)
on the hitting time and cover time of a dynamic net-

work (ρ is the rate at which the network is connected); this result improves on the
previous bound of O

(
ρ−1n5 log2 n

)
[3]. Second, the results imply that dynamic

networks with recurring families preserve the properties of random walks in their
static counterparts. This result allows importing the extensive catalogue of re-
sults for static graphs (cliques, expanders, regular graphs, etc.) into the dynamic
setting.

1 Introduction

In this paper we consider dynamic networks that can change over time. These networks
abstract many important systems, such as mobile networks, where nodes may change
neighbors as they move; and peer-to-peer networks, where nodes may connect or dis-
connect due to churn. A dynamic network is modeled as an evolving graph, which is a
sequence of graphs G = {Gi} over n nodes, each graph representing a snapshot of the
system at a given instant.

Much recent work has considered dynamic networks, by proposing and analyzing
new algorithms [11,17,24] and by deriving new complexity bounds [18,26]. Because
of their generality, dynamic networks are not only of theoretical importance, but also
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of practical relevance. At the same time, this generality makes it hard to derive strong
results, which has motivated new properties that constrain the behavior of dynamic
networks. Unfortunately, existing properties are either too restrictive or hard to evaluate
in practice (see Section 2).

We propose a new and intuitive approach to study dynamic networks, by looking
at families of graphs that recur frequently in the dynamic network. Informally, a ρ-
recurring family of an evolving graph G is a family F of (static) graphs such that, with
frequency ρ, some graph in F appears in the sequence G. For example, if ρ = 1/2,
then half of the graphs in the sequence G belong to F ; note that it is possible that
no individual graph in F recurs with frequency 1/2. Also note that the other half of
the graphs in the sequence G may be completely arbitrary and even contain a different
recurring family.

Every evolving graph has a trivial 1-recurring family, the family of all graphs. But
real networks may have other more interesting recurring families because, by their own
nature, these networks tend to preserve certain topological characteristics. For example,
nodes in a peer-to-peer network may keep a constant number of neighbors [28]; such
network has graphs with constant degree as a recurring family. Also, numerous dynamic
networks build and maintain global structures, such as overlay rings [32] or routing
trees [31]; in these examples, the recurring families are graphs with the required ring or
tree structures. Table 1 has more examples of recurring families in various contexts.

In this paper, we focus on the study of random walks. Due to their simplicity, local-
ity, low overhead, and correct operation under topology changes, random walks have
been recently used in different types of dynamic networks for a number of applications:
querying, searching, routing, topology maintenance, etc. [4,13,15,30,27].

We show that recurring families can be used to reduce the analysis of random walks
in dynamic networks—which are complex—to the simpler case of static networks—
which are well understood. Specifically, we give upper bounds on the behavior of ran-
dom walks in dynamic networks based on similar bounds in static networks, given a
recurring family.

In this study, we make two assumptions. First, we assume an oblivious adversary
controlling the dynamic network; that is, the evolution of the graph is independent of the
position of the random walk. Without this assumption, the adversary can degenerate the
random walk, causing it to oscillate forever between two nodes (see Section 3). Second,
we assume a max-degree random walk: at each node, the probability of transitioning to
each neighbor is 1/dmax, where dmax is the maximum degree of the graph. For nodes
with degree d < dmax, there is a probability of 1−d/dmax of remaining at the node.
Max-degree random walks are a well-behaved variant of simple random walks—which
choose each neighbor uniformly at random—but simple random walks can have an
erratic behavior in dynamic networks [3] (e.g., their cover time can be exponential).

Our main result states that, if F is a ρ-recurring family of an evolving graph G, then a
max-degree random walk on G has hitting time and cover time of O

(
ρ−1t̂hit(F) log n

)

and mixing time of O
(
ρ−1(1−λ̂(F))−1 logn

)
, where t̂hit(F) is an upper bound on

the hitting time of graphs in F , and λ̂(F) is an upper bound on the second largest
eigenvalue of the transition matrices of graphs in F . To prove these results, we consider
the homogeneous Markov Chains of the graphs in the recurring family, and relate these
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chains to the time non-homogeneous Markov Chain of the random walk on the dynamic
network. Specifically, using arguments from matrix analysis, we analyze the transition
matrices in the recurring family and obtain bounds on the algebraic properties (eigen-
values, etc.) for each matrix considered as a homogeneous Markov chain. We then relate
the product of the matrices in the recurring family to the product of all matrices in the
non-homogeneous chain, and map the bounds to the original dynamic network.

The obtained bounds are nearly tight and have two important implications. First, they
reduce the known gap between the complexity of random walks in dynamic and static
networks. In particular, in static networks, the cover time has a general upper bound of
O(n3) [2]1, but in dynamic networks, the previously known bound was much higher:
O(ρ−1n5 log2 n) [3], where ρ is the frequency with which the network is connected.
We reduce this gap to just a logn factor: by using the trivial ρ-recurring family of all
connected graphs, we obtain a general bound of O(ρ−1n3 logn).

Second, these results imply that dynamic networks with ρ-recurring families preserve
the random-walk properties of their static counterparts. It is thus possible to import
the extensive catalogue of results for random walks on static graphs to the dynamic
setting. For instance, it is known that random walks are especially efficient on certain
families of graphs, such as expanders. For expanders, hitting time is O (n), cover time
is O (n logn) and mixing time is O (logn). Thus, in evolving graphs where expanders
appear frequently, we can derive stronger bounds. We say that evolving graph G has a
ρ-recurring expander if fraction ρ of the graphs in G are expanders. Then, it follows
that, for G, hitting time is O

(
ρ−1n logn

)
, cover time is O

(
ρ−1n logn

)
, and mixing

time is O
(
ρ−1 logn

)
, respectively.

In summary, this paper makes the following contributions:

• we introduce a novel property of evolving graphs, which we call a ρ-recurring
family;

• using recurring families, we derive new bounds for a random walk on an evolving
graph;

• we show that random walks on evolving graphs with recurring families preserve
the properties of their static counterparts;

• we argue that our bounds are nearly tight and improve upon previously known
bounds.

Paper Organization. The remainder of this paper is organized as follows. Section 2
discusses related work. Section 3 states the model and Section 4 defines the problem
addressed in this paper. In Section 5 we state the main results and in Section 6 we
discuss their implications. In Section 7 we sketch the proofs. Finally, Section 8 presents
the conclusions and outlines directions for future work.

1 More precisely, [2] proves an O(nm) cover time bound of a simple random walk on a graph
with n nodes and m edges. It can be shown that the max-degree random walk on a graph is
equivalent to a simple random walk on the graph, augmented with sufficiently many self-loops,
such that the degree of each node is dmax. In such augmented graph m≤n2; thus, [2] implies
an O(n3) cover time bound for the max-degree random walk (we defer the complete proof to
the full version of the paper).
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2 Related Work

Dynamic Networks. There is a growing interest in the study of graphs that evolve over
time, representing a variety of dynamic networks. Different models of dynamic net-
works have been proposed, each capturing specific features of some concrete scenario.
Random changes of links are considered in [8]. In [9], the authors propose a model of
a dynamic network where the existence of an edge in a round stochastically depends
on its existence in the previous round. Adversarial networks have also received atten-
tion [8,24,16,26], representing a worst-case scenario where link changes are controlled
by an adversary that tries to slow down communication. This last model covers the
widest range of different network behaviors; therefore, we adopt it for our study.

Different properties have been proposed to analyze algorithms in such networks.
For an extensive discussion, we refer the interested reader to [7] and [25]. In [24],
the authors propose an elegant concept of T -interval connectivity and use it to study
token dissemination. Evolving graph G is T -interval connected if, for every T consec-
utive rounds, there exists a connected spanning subgraph of G that does not change.
T -interval connectivity is a strong property and may be too restrictive for some real
world scenarios. Moreover, we focus on random walks, and this property is not well-
suited for this problem, because the behavior of a random walk is not governed by a
stable spanning subgraph. For example, a lollipop graph has cover time of Θ(n3), de-
spite having a line as a spanning subgraph, which has a cover time of Θ(n2). Here, the
existence of the line does not help the cover time of the lollipop. By contrast, we show
that recurring families closely relate to the behavior of random walks in the evolving
graph. In fact, our results imply that T -interval connectivity is not necessary for the ran-
dom walk to make fast progress, as long as the evolving graph forms good topologies
often enough.

Another popular property of the dynamic network is its dynamic diameter [11,24,26],
which is the worst-case number of rounds required to route a piece of information from
any given node to all other nodes. Intuitively, the concept of dynamic diameter is useful
in the study of information spreading. Unfortunately, however, the dynamic diameter is
hard to estimate in a real network, which is a practical drawback.

A number of other papers study information spreading in dynamic networks, e.g.,
[17,18]. Our paper differs from these works because it proposes and uses a different
property to study dynamic networks (recurring families) and it focuses on a different
problem, random walks.

Random Walks. Much work has considered random walks on static graphs, with the
proposal of bounds for many families of graphs. For a comprehensive survey please
refer to [29]. More recently, there has been growing interest in random walks in dynamic
settings. In [10] the authors study random walks on a graph that evolves by adding new
node with random or preferential connections to existing nodes. Since the graph grows,
one never visits all nodes, and so the usual notions of hitting, cover, and mixing times
(which we consider) do not apply.

In [13], the authors consider connected randomly evolving graphs where, in each
round, the set of edges for a node is chosen uniformly at random. The authors show
that the random walk on such evolving graph is essentially a random walk on a clique:
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each transition can be seen as a random choice of a list of neighbors and then a random
choice of an item in the list. Thus, the cover time of such graph is O(n logn). This
result does not apply to adversarial evolving graphs (which we consider). For example,
if an adversary chooses a sparse random graph and never changes it, then the cover time
of such graph is O(n2 log n) [21].

To our knowledge, [3] is the first paper to address randoms walks on adversarial
evolving graphs. The authors show that the behavior of a simple random walk on evolv-
ing graphs can differ significantly from the static case. In particular, the cover time
of a simple random walk can be exponential as demonstrated by an example of a dy-
namic star over nodes 0, . . . , n−1, where in round t the center of the star is node t
mod (n−1), and the remaining nodes are leaves. In addition, all nodes have self-loops,
allowing the random walk to remain at one node for several rounds. Notice that node
n−1 is never at the center of the star. The only way the walk can reach node n−1 is by
staying at some leaf for n−2 rounds until this leaf becomes a center of the star (if the
walk moves to the center too soon, the process starts over, because the center will itself
be a leaf again in the next round). The probability that the random walk stays at a leaf
for n−2 consecutive rounds is 1

2(n−2) ; hence, the cover time is Ω (2n). Additionally,
[3] gives a O

(
ρ−1d2maxn

3 log2 n
)

[3] bound on the cover time of a max-degree random
walk on G, where ρ is the fraction of connected graphs G and dmax is the maximum de-
gree of any graph in G. The result of [3] implies the general bound of O

(
ρ−1n5 log2 n

)

for any evolving graph. We improve this result to the nearly tight O(ρ−1n3 logn). Our
results also give stronger bounds on evolving graphs with structure, as we later explain.

Random walks in dynamic networks are also considered in [11], which studies sim-
ple random walks on connected regular evolving graphs. Note that the results of [11]
also apply to max-degree random walks on any connected evolving graph. The au-
thors formally discuss the notion of mixing time in a dynamic network and give a
O((1 − λ)−1 logn) bound where λ is an upper bound on the second largest (in ab-
solute value) eigenvalue of all transition matrices of graphs in G. This result is weaker
than ours for two reasons. First, it considers only mixing time and not hitting nor cover
times. Second, the bound in [11] is governed by the worst graph appearing in the en-
tire evolving graph, whereas our bounds are governed by the good graphs that appear
frequently. The authors of [11] also propose an algorithm for distributed computation
of a random walk that runs in O(

√
tmixτ) rounds where tmix is the mixing time and τ

is the dynamic diameter of the evolving graph. The analysis of the running time of this
algorithm can benefit from our new results on the mixing time in dynamic networks
with structure (which we explain later).

3 Evolving Graph Model

We consider an undirected network with a fixed set V of n nodes, where edges between
nodes may change over time. Execution proceeds in synchronous rounds, where in each
round an adversary chooses the set of links connecting pairs of nodes. An execution
generates an evolving graph, which is a sequence G = G1, G2, . . . of graphs over nodes
V , where Gt is a snapshot of the evolving graph in round t. We omit reference to V
when it is clear from the context.
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Definition 1 (ρ-Recurring Family). Given an evolving graph G = G1, G2, . . . and a
number 0<ρ≤1, a ρ-recurring family F of G is a family of graphs such that, for every
M≥1, at least �ρM� elements in G1, . . . , GM are in F .

Intuitively, this definition requires that, with frequency at least ρ, the graphs in a ρ-
recurring family appear in G. The definition can be weakened to require the frequency
ρ to hold only for sufficiently large M ; the results in this paper can be easily modified
to work with this weaker definition.

Note that every evolving graph has a 1-recurring family, the family of all (including
disconnected) graphs on V . Also, if F is a ρ-recurring family of G then we can add
any graphs to F and still have a ρ-recurring family of G. Generally, we are interested in
small recurring families, because our bounds are based on the worst graph in the family.

The paper focuses on random walks on G. We assume an oblivious adversary that
determines the evolving graph without knowledge of the random walk. Without this
assumption, an adaptive adversary could degenerate the random walk using a simple
strategy: in odd rounds, the adversary provides the current position vi of the random
walk with a single edge to some fixed node vj . In even rounds the adversary provides
vj with a single edge to vi. Under this strategy, the random walk oscillates between vi
and vj forever. Such a random walk never converges (it has infinite mixing time, hitting
time, etc).

4 Random Walk Definition

We assume that, in round one, a random walk starts at some node of a given evolving
graph and, in each round, it moves from a node to one of its neighbors with certain
probability. We consider a max-degree random walk: at every node, we move to a given
neighbor with fixed probability 1/dmax, where dmax is the maximum degree of the graph
or an upper bound on the maximum degree (if dmax is unknown, we can let dmax = n);
with probability 1−d/dmax we do not move, where d is the node degree. The max-
degree random walk can be seen as a simple random walk on a graph augmented with
self-loops so that every node has the same degree dmax. We further make the standard
assumption of an aperiodic random walk; this can be ensured, for example, by avoiding
bipartite graphs or by assuming that all nodes have self-loops.

Max-degree aperiodic random walks are attractive for two reasons. First, in steady
state, it is easy to show that every node has equal probability; this property is useful
for applications that require fairness, such as fair token circulation [20]. Second, the
random walk avoids the poor exponential behavior that simple random walks may ex-
hibit [3].

We are interested in the following asymptotic properties of the random walk, which
are natural extensions of the properties of random walks on static graphs. Given evolv-
ing graph G:

• Hitting time thit(G) is the maximal expected number of rounds before the random
walk visits some node of G;

• Cover time tcov(G) is the expected number of rounds before the random walk visits
every node of G at least once;
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• Mixing time tmix(G) is the expected number of rounds before reaching the steady
state distribution of the random walk on G (if such distribution exists).

5 Statement of the Main Results

We now state the upper bounds on the hitting time, cover time, and mixing time of
random walks on evolving graphs, based on the properties of a recurring family of that
graph. The graph will generally have many recurring families; the bounds apply to each
of them.

For a family F of graphs, let t̂hit(F) be an upper bound on the hitting time of the
graphs in F and λ̂(F) be an upper bound on the second largest eigenvalue of the tran-
sition matrices of the graphs in F . Our main results are the following:

Theorem 2. Let G be an evolving graph over n nodes and F be a ρ-recurring family
of G. The hitting time and cover time of a max-degree random walk on G are bounded
by

thit(G) ≤ tcov(G) = O
(
ρ−1t̂hit(F) logn

)
.

Theorem 3. Let G be an evolving graph over n nodes and F be a ρ-recurring family
of G. The mixing time of a max-degree random walk on G is bounded by

tmix(G) = O
(
ρ−1(1− λ̂(F))−1 logn

)
.

The bounds on cover time and mixing time are tight in the sense that there is an
evolving graph that matches the bounds; meanwhile, the bounds on hitting time are
within logn factor from the optimal. Specifically, take an evolving graph G that is a
static expander, that is G = G,G, . . . where G is an expander. Then G’s hitting time is

Θ(n), its cover time is Θ(n log n), and its mixing time is O
(
(1− λ̂({G}))−1 logn

)
.

We see that the cover and mixing times match Theorems 2 and 3, while the hitting time
is within a logn factor.

Thus, the behavior of the random walk on evolving graphs can be studied via its
recurring families. Doing so allows importing the results on static graphs to the dynamic
setting. We next give several applications of this idea.

6 Implications

General Bound. In some cases, little is known about the topology of the dynamic
network G; its changes over time can be arbitrary and unpredictable. However, if we
only know that there exists some ρ > 0 such that, for every M ≥ 1, G is connected
in at least ρM rounds, we can apply our results to obtain non-trivial bounds2. For such
G, we can take the ρ-recurring family of all connected graphs and obtain the following
result:

2 If G does not remain connected for any fraction ρ of rounds, its mixing, hitting, and cover
times can be infinite.
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Theorem 4. Let G be an evolving graph such that, for every M ≥ 1, G is connected
in at least ρM rounds. Then, the hitting time and cover time of a max-degree random
walk on G are bounded by

tcov(G) = O
(
ρ−1n3 logn

)
.

This theorem improves on the cover time bound of O
(
ρ−1n5 log2 n

)
in [3]. The proof

is by direct application of Theorem 2.

Relevant ρ-Recurring Families. We can model many dynamic networks by evolv-
ing graphs with structure. For instance, many mobile ad hoc networks have cliques as
recurring families. Cliques have excellent mixing and hitting times of only Θ(1) and
Θ(n). However, unfavorable topologies can emerge frequently, such as lollipop and
barbell graphs, which have poor mixing and hitting times of Θ(n3). If G′ forms a clique
at least a fraction ρ > 0 of the time—we say that G′ has a ρ-recurring clique—then
even if G′ has frequent lollipops and barbell graphs, our results show that its behavior
is governed by the good topologies. Here, the ρ-recurring clique provides an intuitive
example: when the network forms a clique, the random walk can jump to any node,
irrespective of the remaining rounds. It is thus easy to see that the random walk quickly
covers the network. Theorems 2 and 3 yield a bound of O(ρ−1n logn) on the cover and
hitting times of G′ and a bound of O(ρ−1 logn) on the mixing time. By contrast, the
result in [11], which is governed by the worst graphs in G′, yields a much looser bound
of O(n3 log n) on the mixing time (and no results on hitting and cover time). With a
little more work, we can further improve the bounds of Theorems 2 and 3 using the
same proof techniques, to obtain tight bounds for all metrics, as stated in the following
theorem:

Theorem 5. If evolving graph G has a ρ-recurring clique, then the mixing time of a
max-degree random walk on G is O(ρ−1), the hitting time is O(ρ−1n), and the cover
time is O(ρ−1n logn).

Expander graphs are another important recurring family in many dynamic networks.
For instance, some unstructured peer-to-peer overlays seek to maintain good expansion
properties [28]. Our results imply that an evolving graph with ρ-recurring bounded-
degree expander has O(ρ−1n logn) cover time and O(ρ−1 logn) mixing time. Thus,
regardless of arbitrary topologies generated during transition periods, a random walk
on such evolving graph preserves the properties of its good static topologies.

In Table 1 we illustrate more implications of our results. All the graphs in the table
have (dmax−dmin) < c, for some constant c. This property minimizes the difference
between simple and max-degree random walks, allowing us to use the bounds for simple
random walks in static graphs (the intuition is that adding bounded holding probabilities
does not change the asymptotic behavior of the random walk).

Unions as ρ-Recurring Families. We further note that a recurring family F can be
defined as a union of multiple well-known families of graphs. As an example, consider
a network arranged in a ring in which one fixed link is intermittent (e.g., it may be an
unstable link in a radio network). We can model such network as an evolving graph.
When the link is present, the graph is a ring; when the link is absent, the graph is a
chain. We may have no information about what fraction ρ of the time the graph is a ring
or chain, making it impossible to apply our results to either ring or chain. However,
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Table 1. New bounds obtained from Theorems 2, 3, and 5, for a max-degree random walk on
evolving graphs, with the corresponding recurring families
ρ-recurring occurrence static

family in dynamic networks cover time mixing time ref

cliques
mobile ad-hoc networks

mesh networks O(ρ−1n logn) O(ρ−1) [14]
regular and structured overlays(rings)

nearly regular unstructured overlays O(ρ−1n2 logn) O(ρ−1n2 log n) [22]
2-dim grids sensor networks O(ρ−1n log2 n) O(ρ−1n logn) [12]

bound.degree
trees routing overlays O(ρ−1n2 logn) O(ρ−1n2 log n) [5]

d-regular
expanders unstructured overlays O(ρ−1n logn) O(ρ−1 logn) [6]

we can take the ρ-recurring family to contain both the ring and chain, and in this case
ρ = 1. Then, Theorems 2 and 3 give strong bounds of O

(
n2 logn

)
on the hitting and

cover times, and of O
(
n2 logn

)
on the mixing time. In this example, the intermittent

link was fixed, but the example carries through identically even if the intermittent link
varies over time.

7 Proofs

In this section we sketch the proofs of the main results. Due to space constraints, the
complete proofs have been deferred to the full version of the paper.

Preliminaries and Main Technique. Let G = G1, G2, . . . be an evolving graph; in
each round t, AGt denotes the transition probability matrix of the random walk on
Gt. If pt = (p1, p2, . . . , pn) is the probability distribution on the nodes in round t,
then, the probability distribution on the nodes in round t + 1 is calculated by pt+1 =
ptAGt . Hence, the random walk on G can be modeled as a stochastic process that
holds the Markov property, i.e., each transition of the random walk depends only on its
current position and the transition probabilities in a given round. This kind of stochastic
processes is known in the literature as time non-homogeneous Markov chains [23].

We model the random walk on evolving graphs as a time non-homogeneous Markov
chain and work with products of stochastic matrices. For conciseness, we denote by
Gρ,F an evolving graph G with a ρ-recurring family F . In the analysis of Gρ,F , we rely
on the common algebraic properties of the stochastic matrices of graphs in F . We then
use the fact that, for any M > 0, in a set of M matrices, there are at least ρM matrices
with those properties, to obtain the overall bounds.

For the mixing time we use the well known relation to the second largest eigenvalue.
For the hitting and cover times, we bound the spectral radii of principal submatrices
(i.e., matrices resulting from deleting an i-the row and an i-th column). The bound
on the spectral radii of the principal submatrices is related to the hitting time of the
homogeneous Markov chain.
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Below we summarize the notation used in our proofs.

Notation

• ||v||p = p
√∑n

i=1 |vi|p for some vector v = (v1, . . . , vn).
• λ1(A) ≥ λ2(A) ≥ . . . ≥ λn(A) are eigenvalues of square matrix A.
• λ(A) = max{|λ2(A)| , |λn(A)|}.
• λ̂(F) = maxG∈F λ(AG), where AG is the transition matrix of a max-degree ran-

dom walk on G.
• δ(A) = maxi |λi(A)| is spectral radius of matrix A .

•
∥
∥∥v −w

∥
∥∥

TV
= maxX∈Ω |v(X)−w(X)| denotes the total variation of two proba-

bility measures v and w over Ω.
• thit(G) is the hitting time of graph G.
• t̂hit(F) denotes upper bound on the hitting times of all graphs in family F .
• Gρ,F denotes an evolving graph G with a ρ-recurring family F .

Recall that we make the standard aperiodicity assumption. Moreover, as a result of
using the max-degree strategy, the transition probability matrices AGt , in each round
t, are symmetric and doubly stochastic (i.e., every row sums to one and every column
sums to one). Therefore, each AGt has eigenvector i

n =
(
1
n ,

1
n , . . .

)
with a correspond-

ing eigenvalue λ1 (AGt) = 1.
Also, since the matrices AGt are real symmetric with all entries 0 ≤ ai,j ≤ 1, for any

i, j ≤ n, all eigenvalues of AGt are real (see e.g. [19]). In particular, −1 < λn (AGt) ≤
. . . ≤ λ1 (AGt) ≤ 1 (the strict inequality follows from aperiodicity). Also, when Gt

is connected, λ(AGt)=max{|λ2(AGt)| , |λn(AGt)|}<1. Hence, if the evolving graph
is connected in sufficiently many rounds, the resulting time non-homogeneous Markov
chain is ergodic and has unique stationary distribution π = i

n .

Mixing Time. We start by bounding the mixing time. The convergence rate of the
Markov chain is the rate at which the chain approaches stationary distribution. For ho-
mogeneous chains, the spectral gap of the transition matrix, i.e. the difference between
the largest and the second largest eigenvalues in absolute value, defines the convergence
rate to the stationary distribution [1].

The following Lemma 6 bounds the convergence rate of a max-degree random walk
on an evolving graph in any given round t.

Lemma 6. If pt = (p1, . . . , pn) is a probability distribution on nodes of Gt, then
∥
∥
∥pt+1 − i

n

∥
∥
∥
2

2
≤ λ2(AGt)

∥
∥
∥pt − i

n

∥
∥
∥
2

2
.

The following Lemma 7 establishes the monotonicity property of distribution pt:
whenever Gt belongs to F , the random walk on Gρ,F gets closer to the stationary dis-
tribution at a known rate, while never moving away from the stationary distribution in
the remaining rounds.

Lemma 7. Consider a max-degree random walk on Gρ,F . Let λ̂(F) denote an upper
bound on the second largest (in absolute value) eigenvalues of the stochastic matrices
of all graphs in F (i.e., ∀G∈Fλ(AG) ≤ λ̂(F)). It holds that∥

∥
∥pt+1 − i

n

∥
∥
∥
2

2
≤

(
λ̂(F)

)2ρt ∥∥
∥p1 − i

n

∥
∥
∥
2

2
.
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We are now ready to prove the bound on the mixing time in Theorem 3. We use the
standard definition of the mixing time via the total variation distance to the steady state
distribution (e.g., [1]):

tmix=min
{
t:
∥
∥
∥pt−π

∥
∥
∥

TV
<1

4

}
.

This definition gives the expected value of minimal random time at which the random
walk has the stationary distribution.

We use the standard method of bounding the total variation distance via the 2-norm
distance to the steady state distribution.

By taking t=O
(
ρ−1(1 − λ̂(F))−1 logn

)
and applying Lemma 7, we show that after

t rounds, the total variation distance is less than 1
4 .

Hitting Time and Cover Time. We take an arbitrary node j and remove the corre-
sponding row and column from matrix AGt . Let A′ be the resulting matrix. Lemma 8
connects the largest eigenvalue of A′ to the largest eigenvalue of the fundamental matrix
(I−A′)−1.

Lemma 8. Let AGt be the transition probability matrix of a max-degree random walk
on graph Gt. Let A′ be an (n−1)× (n−1) matrix resulting from deleting the j-th row
and j-th column from AGt , for some 1 ≤ j ≤ n. And let I be an (n−1)×(n−1) identity
matrix. Then,

λ1 (A
′) = 1− 1

λ1

(
(I−A′)−1

) .

The following lemma uses Lemma 8 to connect the spectral radius of A′ to the hitting
time of the deleted node j.

Lemma 9. Let AGt be the transition probability matrix of a max-degree random walk
on graph Gt. Let A′ be an (n−1)× (n−1) matrix resulting from deleting the j-th row
and j-th column from AGt , for some 1 ≤ j ≤ n. Then,

δ(A′) ≤
{(

1− 1
thit(Gt)

)
if Gt is connected

1 otherwise.

We now sketch the proof of Theorem 2. We take an arbitrary node i and remove the
corresponding rows and columns from the matrices AG1 , AG2 , . . .. We use the bounds
on the spectral radii of these submatrices, given in Lemma 9, to obtain the bound on the
spectral radius of the product of those submatrices. Then, we relate the spectral radius
of the product to the hitting time of the deleted node i. The cover time is obtained by
the union bound over all n nodes.

8 Conclusions

We have introduced the notion of a ρ-recurring family of evolving graphs, which has
the property that the evolving graph frequently contains a graph in the family. We be-
lieve that recurring families is a natural and powerful concept to understand many real
dynamic networks.
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We have studied max-degree random walks and, using the concept of recurring fam-
ilies, derived bounds on hitting, cover, and mixing times of an evolving graph with a
ρ-recurring family F . These results imply that dynamic networks with recurring fam-
ilies preserve the properties of random walks in their static counterparts. This allows
importing the extensive catalogue of results for static graphs into the dynamic setting.

We believe that ρ-recurring families may be useful to study other problems in dy-
namic networks, such as rumour spreading, information dissemination, and token cir-
culation. We leave this as future work.

Acknowledgements. The authors are grateful to Fabian Kuhn and the anonymous ref-
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