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Abstract. Theoreticians have studied distributed algorithms in the syn-
chronous radio network model for close to three decades. A significant
fraction of this work focuses on lower bounds for basic communication
problems such as wake-up (symmetry breaking among an unknown set of
nodes) and broadcast (message dissemination through an unknown net-
work topology). In this paper, we introduce a new technique for prov-
ing this type of bound, based on reduction from a probabilistic hitting
game, that simplifies and strengthens much of this existing work. In
more detail, in this single paper we prove new expected time and high
probability lower bounds for wake-up and global broadcast in single and
multi-channel versions of the radio network model both with and with-
out collision detection. In doing so, we are able to reproduce results
that previously spanned a half-dozen papers published over a period of
twenty-five years. In addition to simplifying these existing results, our
technique, in many places, also improves the state of the art: of the eight
bounds we prove, four strictly strengthen the best known previous result
(in terms of time complexity and/or generality of the algorithm class for
which it holds), and three provide the first known non-trivial bound for
the case in question. The fact that the same technique can easily gen-
erate this diverse collection of lower bounds indicates a surprising unity
underlying communication tasks in the radio network model—revealing
that deep down, below the specifics of the problem definition and model
assumptions, communication in this setting reduces to finding efficient
strategies for a simple game.

1 Introduction

In this paper, we introduce a new technique for proving lower bounds for basic
communication tasks in the radio network model. We use this technique to unify,
simplify, and in many cases strengthen the best known lower bounds for two
particularly important problems: wake-up and broadcast.

The Radio Network Model. The radio network model represents a wireless
network as a graph G = (V,E), where the nodes in V correspond to the wireless
devices and the edges inE specify links. Executions proceed in synchronous rounds.
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In each round, each node can choose whether or not to broadcast messages to its
neighbors in G. If multiple neighbors of a given node broadcast during the same
round, however, the messages are lost due to collision. This model was first intro-
duced by Chlamtac and Kutten [4], who used it to study centralized algorithms.
Soon after, Bar-Yehuda et al. [2,3] introduced the model to the distributed algo-
rithms community where variations have since been studied in a large number of
subsequent papers; e.g., [1,20,18,21,13,19,6,10,11,17,9,12,8,7,15,14].

Two of the most investigated problems in the radio network model are wake-
up (basic symmetry breaking among an unknown set of participants in a single
hop network) and broadcast (propagating a message from a source to all nodes in
an unknown multihop network). Lower bounds for these problems are important
because wake-up and/or broadcast reduce to most useful communication tasks
in this setting, and therefore capture something fundamental about the cost of
distributed computation over radio links.

Our Results. In this paper, we introduce a new technique (described below)
for proving lower bounds for wake-up and broadcast in the radio network model.
We use this technique to prove new expected time and high probability lower
bounds for these two problems in the single and multiple channel versions of the
radio network model both with and without collision detection. In doing so, we
reproduce in this single paper a set of existing results that spanned a half-dozen
papers [23,20,18,13,9,7] published over a period of twenty-five years. Our tech-
nique simplifies these existing arguments and establishes a (perhaps) surprising
unity among these diverse problems and model assumptions. Our technique also
strengthens the state of the art. All but one of the results proved in this paper
improve the best known existing result by increasing the time complexity and/or
generalizing the class of algorithms for which the bound holds (many existing
bounds for these problems hold only for uniform algorithms that require nodes
to use a pre-determined sequence of independent broadcast probabilities; all of
our lower bounds, by contrast, hold for all randomized algorithms). In several
cases, we prove the first known bound for the considered assumptions.

The full set of our results with comparisons to existing work are described
in Figure 1. Here we briefly mention three highlights (in the following, n is the
network size and D the network diameter). In Section 6, we significantly simplify
Willard’s seminal Ω(log log n) bound for expected time wake-up with collision
detection [23]. In addition, whereas Willard’s result only holds for uniform al-
gorithms, our new version holds for all algorithms. In Section 7, we prove the
first tight bound for high probability wake-up with multiple channels and the
first known expected time bound in this setting. And in Section 9, we prove that
Kushilevitz and Mansour’s oft-cited Ω(D log (n/D)) lower bound for expected
time broadcast [20] still holds even if we assume multiple channels and/or colli-
sion detection—opening an unexpected gap with the wake-up problem for which
these assumptions improve the achievable time complexity.

Our Technique. Consider the following simple game which we call k-hitting. A
referee secretly selects a target set T ⊆ {1, 2, ..., k}. The game proceeds in rounds.
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In each round, a player (represented by a randomized algorithm) generates a
proposal P . If |P ∩ T | = 1, the player wins. Otherwise, it moves on to the next
round. In Section 3, we leverage a useful combinatorial result due to Alon et al. [1]
to prove that this game requires Ω(log2 k) rounds to solve with high probability
(w.r.t. k), and Ω(log k) rounds in expectation. (Notice, you could propose the
sets of a (k, k)-selective family [5] to solve this problem deterministically, but
this would require Ω(k) proposals in the worst-case.)

These lower bounds are important because in this paper we show that this
basic hitting game reduces to solving wake-up and broadcast under all of the
different combinations of model assumptions that we consider. In other words,
whether or not you are solving wake-up or broadcast, assuming multiple channels
or a single channel, and/or assuming collision detection or no collision detection,
if you can solve the problem quickly you can solve this hitting game quickly. Our
lower bounds on the hitting game, therefore, provide a fundamental speed-limit
for basic communication tasks in the radio network model.

The trick in applying this method is identifying the proper reduction argument
for the assumptions in question. Consider, for example, our reduction for wake-
up with a single channel and no collision detection. Assume some algorithm
A solves wake-up with these assumptions in f(n) rounds, in expectation. As
detailed in Section 5, we can use A to define a player that solves the k-hitting
game in f(k) rounds with the same probability—allowing the relevant hitting
game lower bound to apply. Our strategy for this case is to have the player
simulate A running on all k nodes in a network of size k. For each round of the
simulation, it proposes the ids of the nodes that broadcast, then simulates all
nodes receiving nothing. This is not necessarily a valid simulation of A running
on k nodes: but it does not need to be. What we care about are the simulated
nodes with ids in T : the (unknown to the player) target set for this instance of
the hitting game. The key observation is that in the target execution where only
the nodes in T are active, they will receive nothing until the first round where
one node broadcasts alone—solving wake-up. In the player’s simulation, these
same nodes are also receiving nothing (by the the player’s fixed receive rule) so
they will behave the same way. This will lead to a round of the simulation where
only one node from T (and perhaps other nodes outside of T ) broadcast. The
player will propose these ids, winning the hitting game.

These reductions get more tricky as we add additional assumptions. Consider,
for example, what happens when we now assume collision detection. Maintaining
consistency between the nodes in T in the player simulation and the target
execution becomes more complicated, as the player must now correctly simulate
a collision event whenever two or more nodes from T broadcast—even though
the player does not know T . Adding multiple channels only further complicates
this need for consistency. Each bound in this paper, therefore, is built around its
own clever method for a hitting game player to correctly simulate a wake-up or
broadcast algorithm in such a way that it wins the hitting game with the desired
efficiency. These arguments are simple to understand and sometimes surprisingly
elegant once identified, but can also be elusive before they are first pinned down.
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Existing (exp. | high) This Paper (exp. | high)
wake-up Ω(log n) | Ω(log2 n) [18,13] Ω(log n) | Ω(log2 n) (*)

wake-up/cd Ω(log log n) | Ω(log n) [23] Ω(log log n) | Ω(logn) (*)

wake-up/mc ? | Ω( log2 n
C log log n

+ log n) [9,7] Ω( log n
C + 1) | Ω( log

2 n
C + log n) (*)

wake-up/cd/mc Ω(1) | ? Ω(1) | Ω( logn
log C + log log n)

broadcast Ω(D log (n/D)) [20] Ω(D log (n/D))

broadcast/cd/mc ? Ω(D log (n/D)

Fig. 1. This table summarizes the expected time (exp.) and high probability (high)
results for wake-up and broadcast in the existing literature as well as the new bounds
proved in this paper. In these bounds, n is the network size, C the number of channels,
and D the network diameter. In the problem descriptions, “cd” indicates the collision
detection assumption and “mc” indicates the multiple channels assumption. In the
existing results we provide citation for the paper(s) from which the results derive
and use “?” to indicate a previously open problem. In all cases, the new results in
this paper simplify the existing results. We marked some of our results with “(*)” to
indicate that the existing results assumed the restricted uniform class of algorithms.
All our algorithms hold for all randomized algorithms, so any result marked by “(*)” is
strictly stronger than the existing result. We do not separate expected time and high
probability for the broadcast problems as the tight bounds are the same for both cases.

Roadmap. A full description of our results and how they compare to existing
results is provided in Figure 1. In addition, before we prove each bound in the
sections that follow, we first discuss in more detail the relevant related work. In
Section 2, we formalize our model and the two problems we study. In Section 3,
we formalize the hitting games at the core of our technique then bound from
below their complexity. In Section 4, we detail a general simulation strategy that
we adopt in most of our wake-up bounds (by isolating this general strategy in its
own section we reduce redundancy). Sections 5 to 8 contain our wake-up lower
bounds, and Section 9 contains our broadcast lower bound. (We only need one
section for broadcast as we prove that the same result holds for all assumptions
considered in this paper.)

2 Model and Problems

In this paper we consider variants of the standard radio network model. This
model represents a radio network with a connected undirected graph G = (V,E)
of diameterD. The n = |V | nodes in the graph represent the wireless devices and
the edges in E capture communication proximity. In more detail, executions in
this model proceed in synchronous rounds. In each round, each node can choose
to either transmit a message or receive. In a given round, a node u ∈ V can
receive a message from a node v ∈ V , if and only if the following conditions
hold: (1) u is receiving and v is transmitting; (2) v is u’s neighbor in G; and
(3) v is the only neighbor of u transmitting in this round. The first condition
captures the half-duplex nature of the radio channel and the second condition
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captures message collisions. To achieve the strongest possible lower bounds, we
assume nodes are provided unique ids from [n]. In the following, we say an algo-
rithm is uniform if (active) nodes use a predetermined sequence of independent
broadcast probabilities to determine whether or not to broadcast in each round,
up until they first receive a message. A uniform algorithm, for example, cannot
select its broadcast probability in a given round based on the outcome of a coin
flip during a previous round. This prohibits, among other strategies, allowing
nodes to change their behavior based on whether or not they previously chose
to broadcast (e.g., as in [21]).

In the collision detection variant of the radio network model, a receiving node
u can distinguish between silence (no neighbor is transmitting) and collision
(two or more neighbors are transmitting) in a given round. In this paper, to
achieve the strongest possible lower bounds, when studying single hop networks
we also assume that a transmitter can distinguish between broadcasting alone
and broadcasting simultaneously with one or more other nodes. In themultichan-
nel variant of the radio network model, we use a parameter C ≥ 1 to indicate
the number of orthogonal communication channels available to the nodes. When
C > 1, we generalize the model to require each node to choose in each round
a single channel on which to participate. The communication rules above apply
separately to each channel. In other words, a node u receives a message from v
on channel c in a given round, if and only if in this round: (1) u receives on c
and v transmits on c; (2) v is a neighbor of u; and (3) no other neighbor of u
transmits on c.

We study both expected time and high probability results, where we define the
latter to mean probability at least 1− 1

n . We define the notation [i, j], for integers
i ≤ j, to denote the range {i, i + 1, ..., j}, and define [i], for integer i > 0, to
denote [1, i].

Problems. The wake-up problem assumes a single hop network consisting of
inactive nodes. At the beginning of the execution, an arbitrary subset of these
nodes are activated by an adversary. Inactive nodes can only listen, while ac-
tive nodes execute an arbitrary randomized algorithm. We assume that active
nodes have no advance knowledge of the identities of the other active nodes. The
problem is solved in the first round in which an active node broadcasts alone
(therefore waking up the listening inactive nodes). When considering a model
with collision detection, we still require that an active node broadcasts alone to
solve the problem (e.g., to avoid triviality, we assume that the inactive nodes
need to receive a message to wake-up, and that simply detecting a collision is
not sufficient1). When considering multichannel networks, we assume the inac-
tive nodes are all listening on the same known default channel (say, channel 1).
To solve the problem, therefore, now requires that an active node broadcasts
alone on the default channel.

The broadcast problem assumes a connected multihop graph. At the beginning
of the execution, a single source node u is provided a message m. The problem

1 Without this restriction, the problem is trivially solved by just having all active
nodes broadcast in the first round.
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is solved once every node in the network has received m. We assume nodes do
not have any advance knowledge of the network topology. As is standard, we
assume that nodes are inactive (can only listen) until they first receive m. As in
the wake-up problem, detecting a collision alone is not sufficient to activate an
inactive node, and in multichannel networks, we assume inactive nodes all listen
on the default channel.

3 The k-Hitting Game

The k-hitting game, defined for some integer k > 1, assumes a player that faces
off against an referee. At the beginning of the game, the referee secretly selects
a target set T ⊆ {1, ..., k}. The game then proceeds in rounds. In each round,
the player generates a proposal P ⊆ {1, ..., k}. If |P ∩ T | = 1, then the player
wins the game. Otherwise, the player moves on to the next round learning no
information other than the fact that its proposal failed. We formalize both enti-
ties as probabilistic automata and assume the player does not know the referee’s
selection and the referee does not know the player’s random bits. Finally, we
define the restricted k-hitting game to be a variant of the game where the target
set is always of size two.

A Useful Combinatorial Result. Before proving lower bounds for our hitting
game we cite an existing combinatorial result that will aid our arguments. To
simplify the presentation of this result, we first define some useful notation. Fix
some integer � > 0. Consider two sets A ⊆ {1, 2, ..., �} and B ⊆ {1, 2, ...�}. We
say that A hits B if |A ∩ B| = 1. Let an �-family be a family of non-empty
subsets of {1, 2, ..., �}. The size of an �-family A , sometimes noted as |A |, is the
number of sets in A . Fix two �-families A and B. We say A hits B, if for every
B ∈ B there exists an A ∈ A such that A hits B. Using this notation, we can
now present the result:

Lemma 1 ([1,15]). There exists a constant β > 0, such that for any integer
� > 1, these two results hold:

1. There exists an �-family R, where |R| ∈ O(�8), such that for every �-family
H that hits R, |H | ∈ Ω(log2 �).

2. There exists an �-family S , where |S | ∈ O(�8), such that for every H ⊆
{1, 2, ..., �}, H hits at most a ( 1

β log (�) )-fraction of the sets in S .

The first result from this lemma was proved in a 1991 paper by Alon et al. [1].
It was established using the probabilistic method and was then used to prove a
Ω(log2 n) lower bound on centralized broadcast solutions in the radio network
model. The second result is a straightforward consequence of the analysis used
in [1], recently isolated and proved by Ghaffari et al. [15].

Lower Bounds for the k-Hitting Game. We now prove lower bounds on
our general and restricted k-hitting games. These results, which concern proba-
bilities, leverage Lemma 1, which concerns combinatorics, in an interesting way
which depends on the size of R and S being polynomial in �.
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Theorem 1. Fix some player P that guarantees, for all k > 1, to solve the
k-hitting game in f(k) rounds, in expectation. It follows that f(k) ∈ Ω(log k).

Proof. Fix any k > 1. Let β and S be the constant and �-family provided by
the second result of Lemma 1 applied to � = k. The lemma tells us that for any
P ⊆ [k], P hits at most a ( 1

β log k )-fraction of the sets in S . It follows that for

any k-family H , such that |H | < β log k
2 , H hits less than half the sets in S .

We now use these observations to prove our theorem. Let P be a k-hitting
game player. Consider a referee that selects the target set by choosing a set T
from S with uniform randomness. Let H be the first �β log k

2 � − 1 proposals
generated by P in a given instance of the game. By our above observation, this
sequence of proposals hits less than half the sets in S . Because the target set
was chosen from S with randomness that was uniform and independent of the
randomness used by P to generate its proposals, it follows that the probability
that H hits the target is less than 1/2. To conclude, we note that f(k) must
therefore be larger than �β log k

2 � − 1 ∈ Ω(log k), as required by the theorem.

Theorem 2. Fix some player P that guarantees, for all k > 1, to solve the
k-hitting game in f(k) rounds with probability at least 1 − 1

k . It follows that

f(k) ∈ Ω(log2 k).

Proof. Fix any � > 1. Let R be the �-family provided by the first result of
Lemma 1 applied to this value. Let t = |R|. We know from the lemma that
t ∈ O(�8).

To achieve our bound, we will consider the behavior of a player P in the k-
hitting game for k = t+1. As in Theorem 1, we have our referee select its target
set by choosing a set from R with uniform randomness. (Notice, in this case, our
referee is actually making things easier for the player by restricting its choices
to only the values in [�] even though the game is defined for the value set [k],
which is larger. As we will show, this advantage does not help the player much.)

Let c log2 (�), for some constant c > 0, be the exact lower bound from the
first result of Lemma 1. Let H be the first �c log2 (�)� − 1 proposals generated
by P in a given instance of the game. Lemma 1 tells us that there is at least
one set R ∈ R that H does not hit. Because the target set was chosen from R
with randomness that was uniform and independent of the randomness used by
P , it follows that the probability that H misses the target is at least 1/t (recall
that t is the size of R). Inverting this probability, it follows that the probability
that P wins the game with the proposals represented by H is less than or equal
to 1 − 1

t = 1 − 1
k−1 < 1 − 1

k . It follows that f(k) must be larger than |H | and
therefore must be of size at least c log2 (�) ∈ Ω(log2 (�)). To conclude the proof,
we note that k ∈ O(�8), from which it follows that � ∈ Ω(k1/8) and therefore
that log2 (�) ∈ Ω(log2 k), as required by the theorem.

The below theorem is proved similar to Theorem 2. The details can be found in
the full version of this paper [22].
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Theorem 3. Fix some player P that guarantees, for all k > 1, to solve the
restricted k-hitting game in f(k) rounds with probability at least 1− 1

k . It follows
that f(k) ∈ Ω(log k).

4 Simulation Strategy

Most of our bounds for the wake-up problem use a similar simulation strategy. To
reduce redundancy, we define the basics of the strategy and its accompanying
notation in its own section. In more detail, the wake-up simulation strategy,
defined with respect to a wake-up algorithm A, is a general strategy for a k-
hitting game player to generate proposals based on a local simulation of A. The
strategy works as follows. The player simulates A running on all k nodes in
a k-node network satisfying the same assumptions on collision detection and
channels assumed by A. For each simulated round, the player will generate one
or more proposals for the hitting game. In more detail, at the beginning of a
new simulated round, the player simulates the k nodes running A up until the
point that they make a broadcast decision. At this point, the player applies a
proposal rule that transforms these decisions into one or more proposals for the
hitting game. The player then makes these proposals, one by one, in the game.
If none of these proposals wins the hitting game, then the player most complete
the current simulated round by using a receive rule to specify what each node
receives; i.e., silence, a message, or a collision (if collision detection is assumed
by A). In other words, a given application of the wake-up simulation strategy
is defined by two things: a definition of the proposal rule and receive rule used
by the player to generate proposals from the simulation, and specify receive
behavior in the simulation, respectively.

To analyze a wake-up simulation strategy for a given instance of the k-hitting
game with target set T , we define the target execution for this instance to be
the execution that would result if A was run in a network where only the nodes
corresponding to T were active and they used the same random bits as the player
uses on their behalf in the simulation. We say the simulation strategy is consistent
with its target execution through a given round, if the nodes corresponding to
T in the simulation behave the same (e.g., send and receive the same messages)
as the corresponding nodes in the target execution through this round.

5 Lower Bounds for Wake-Up

We begin by proving tight lower bounds for both expected and high probability
solutions to the wake-up problem in the most standard set of assumptions used
with the radio network model: a single channel and no collision detection. As
explained below, our bounds are tight and generalize the best know previous
bounds, which hold only for uniform algorithms, to now apply to all randomized
algorithms. (We note that a preliminary version of our high probability bound
below appeared as an aside in our previous work on structuring multichannel
radio networks [8]).
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In terms of related work, the decay strategy introduced Bar-Yehuda et al. [3]
solves the wake-up problem in this setting with high probability in O(log2 n)
rounds and in expectation in O(log n) rounds. In 2002, Jurdzinski and Sta-

chowiak [18] proved the necessity of Ω
( logn log (1/ε)
log logn+log log (1/ε)

)
rounds to solve wake-

up with probability at least 1− ε, which proves decay optimal within a log logn
factor. Four years later, Farach-Colton et al. [13] removed the log log n factor by
applying linear programming techniques. As mentioned, these existing bounds
only apply to uniform algorithms in which nodes use a predetermined sequence
of broadcast probabilities. (Section 3.1 of [13] claims to extend their result to a
slightly more general class of uniform algorithms in which a node can choose a
uniform algorithm to run based on its unique id.)

Theorem 4. Let A be an algorithm that solves wake-up with high probability in
f(n) rounds in the radio network model with a single channel and no collision
detection. It follows that f(n) ∈ Ω(log2 n).

Proof. Fix some wake-up algorithm A that solves wake-up in f(n) rounds with
high probability in a network with one channel and no collision detection. We
start by defining a wake-up simulation strategy that uses A (see Section 4). In
particular, consider the proposal rule that has the player propose the id of every
node that broadcasts in the current simulated round, and the receive rule that
always has all nodes receive nothing.

Let PA be the k-hitting game player that uses this simulation strategy. We
argue that PA solves the k-hitting game in f(k) rounds with high probability in
k. To see why, notice that for a given instance of the hitting game with target T ,
PA is consistent with the target execution until the receive rule of the first round
in which exactly one node in T broadcasts. (In all previous rounds, PA correctly
simulates the nodes in T receiving nothing, as its receive rule has all nodes always
receive nothing.) Assume A solves wake-up in round r in the target execution.
It follows that r is the first round in which a node in T broadcasts alone in this
execution. By our above assumption, PA is consistent with the target execution
up to the application of the receive rule in r. In particular, it is consistent when
it applies the proposal rule for simulated round r. By assumption, this proposal
will include exactly one node from T—winning the hitting game.

We assumed that A solves wake-up in f(n) rounds with high probability in n.
Combined with our above argument, it follows that PA solves the k-hitting game
in f(k) rounds with high probability in k. To complete our lower bound, we apply
a contradiction argument. In particular, assume for contradiction that there ex-
ists a wake-up algorithm A that solves wake-up in f(n) ∈ o(log2 n) rounds, with
high probability. The hitting game player PA defined above will therefore solve
k-hitting in o(log2 n) rounds with high probability. This contradicts Theorem 2.

Theorem 5. Let A be an algorithm that solves wake-up in f(n) rounds, in
expectation, in the radio network model with a single channel and no collision
detection. It follows that f(n) ∈ Ω(logn).
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Proof (Idea). It is sufficient to apply the same argument as in Theorem 4. The
only change is in the final contradiction argument, where we simply replace
log2 n with logn, and now contradict Theorem 1.

6 Lower Bounds for Wake-Up with Collision Detection

We prove tight lower bounds for expected and high probability bounds on the
wake-up problem in the radio network model with collision detection. In terms
of related work, a seminal paper by Willard [23] describes a wake-up algorithm
(he called the problem “selection resolution,” but the definition in this setting
is functionally identical) which solves the problem in O(log logn) rounds, in ex-
pectation. He also proved the result tight with an Ω(log logn) lower bound for
uniform algorithms. As Willard himself admits, his lower bound proof is mathe-
matically complex. Below, we significantly simplify this bound and generalize it
to hold for all algorithms. From a high-probability perspective, many solutions
exist in folklore for solving wake-up (and related problems) in O(log n) rounds.
Indeed, leveraging collision detection, wake-up can be solved deterministically in
O(log n) rounds (e.g., use the detector to allow the active nodes to move con-
sistently through a binary search tree to identify the smallest active id). The
necessity of Ω(log n) rounds seems also to exist in folklore.

We begin with our high probability result. Our simulation strategy is more
difficult to deploy here because the player must now somehow correctly simu-
late the collision detection among the nodes in the (unknown) target set T . To
overcome this difficulty, we apply our solution to networks in which only two
nodes are activated and then achieve a contradiction with our lower bound on
restricted hitting. The details of this proof are deferred to the full version [22].

Theorem 6. Let A be an algorithm that solves wake-up with high probability
in f(n) rounds in the radio network model with a single channel and collision
detection. It follows that f(n) ∈ Ω(logn).

We now simplify and strengthen Willard’s bound of Ω(log logn) rounds for
expected time wake up. At the core of our result is a pleasingly simple but
surprisingly useful observation: if you can solve wake-up in t rounds with collision
detection, you can then use this strategy to solve the hitting game in 2t rounds by
simulating (carefully) all possible sequences of outcomes for the collision detector
behavior in a t round execution. Solving the problem in o(log logn) rounds (in
expectation) with collision detection, therefore, yields a hitting game solution
that requires only 2o(log log k) = o(log k) rounds (in expectation), contradicting
Theorem 1—our lower bound on expected time solutions to the hitting game.

Theorem 7. Let A be an algorithm that solves wake-up in f(n) rounds, in
expectation, in the radio network model with a single channel and collision de-
tection. It follows that f(n) ∈ Ω(log logn).

Proof. Fix some algorithmA that solves wake-up in f(n) rounds, in expectation,
in this setting. We start by defining a player PA that simulates A to solve k-
hitting in no more than 2f(k)+1 rounds, in expectation. Our player will use a



268 C. Newport

variant of the simulation strategy defined in Section 4 and used in the preceding
proofs, and we will, therefore, adopt much of the terminology of this approach
(with some minor modifications). In more detail, in this variant, PA will run a
different fixed-length simulation of A, starting from round 1, to generate each of
its guesses in the hitting game. Most of these simulations will not be consistent
with the relevant target execution. We will show, however, that in the case that
the target execution solves wake-up, at least one such simulation is consistent
and will therefore win the game.

In more detail, for a given k, let Bf(k) be a full rooted binary tree of depth
f(k). We define a tree node labeling �, such that for every non-root node u,
�(u) = 0 if u is a left child of its parent and �(u) = 1 if u is a right child (by some
consistent orientation). Let d be the depth function (i.e., d(u) is the depth of u
in the tree with d(root) = 0). Finally, let p(u) return the d(u)-bit binary string
defined by the sequence of labels (by �) on the path that descends from the root
to u (including u). For example, if the path from the root to u goes from the
root to its right child v, then from v to its left child u, p(u) = 10.

Our player PA, when playing the k-hitting game, generate one guess for each
node in Bf(k). Fix some such node u. To generate a guess for u, the player
first executes a d(u)-round simulation of A, running on all k nodes in a k-node
network, using p(u) to specify collision detector behavior (in a manner described
below). After it simulates these d(u) full rounds, it then simulates just enough
of round d(u) + 1 to determine the simulated nodes’ broadcast decisions in this
round. The player proposes the id of the nodes that choose to broadcast in this
final partial round. (When generating a guess for the root node, the player simply
proposes the nodes that broadcast in the first round.)

In more detail, for each round r ≤ d(u) of the simulation for tree node u, if
the rth bit of p(u) is 0, the player simulates all nodes detecting silence, and if
the bit is 1, it simulates all nodes detecting a collision. As a final technicality, let
κ be the random bits provided to the player to resolve its random choices. We
assume that for each simulated node i, the players uses the same bits from κ for
i in each of its simulations. We do not, therefore, assume independence between
different simulations.

Consider the target execution of A for a given instance of the hitting game
with target set T and random bits κ. Assume that the target execution defined
for these bits and target set solves wake-up in some round r ≤ f(k). Notice
that in every round r′ < r, there are only two possible behaviors: (1) no nodes
broadcast (and all nodes therefore receive and detect nothing); and (2) two or
more nodes broadcast (and all nodes therefore detect a collision). By definition,
there exists a node u in Bf(k) such that p(u) is a binary string of length r − 1,
where for each bit position i in the string, i = 0 if no nodes broadcast in that
round of the target execution, and i = 1 if two or more nodes broadcast in
that round of the target execution. It follows that the first r − 1 rounds of the
simulation associated with tree node u are consistent with the target execution.
Because exactly one node from T broadcasts in round r of the target execution,
and the u-simulation is consistent through round r − 1, then this same single
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node from T will broadcast in the simulated beginning of round r. The player’s
proposal associated with u will therefore win the hitting game.

Pulling together the pieces, by assumption, the target execution for a given T
and κ solves wake-up in f(k) rounds, in expectation. It follows that our player
solves k-hitting with the same probability. The number of guesses required to
solve the problem in this case is bounded by the number of nodes in Bf(k) (as

there is one guess per node), which is 2f(k)+1−1. We can now conclude with our
standard style of contradiction argument. Assume for contradiction that there
exists an algorithm A that solves wake-up with a single channel and collision
detection in f(n) ∈ o(log logn) rounds, in expectation. It follows that PA wins
the k-hitting game in 2f(k)+1 ∈ o(log k) rounds, in expectation. This contradicts
Theorem 1.

7 Lower Bounds for Wake-Up with Multiple Channels

In recent years, theoreticians have paid increasing attention to multichannel
versions of the radio network model (e.g., [10,11,17,9,12,8,7]). These investiga-
tions are motivated by the reality that most network cards allow the device to
choose its channel from among multiple available channels. From a theoretical
perspective, the interesting question is how to leverage the parallelism inherent
in multiple channels to improve time complexity for basic communication prob-
lems. Daum et al. [7], building on results from Dolev et al. [9], prove a lower

bound of Ω
(

log2 n
C log logn + logn

)
rounds for solving wake-up with high probabil-

ity and uniform algorithms in a network with C channels. A lower bound for
expected-time solutions was left open. The best known upper bound solves the

problem in O
(
log2 n

C + logn
)
rounds with high probability and in O

(
logn
C + 1

)

rounds in expectation [7].
In the theorems that follow, we prove new lower bounds that match the best

known upper bounds. These bounds close the log logn gap that exists with
the best known previous results, establish the first non-trivial expected time
bound, and strengthen the results to hold for all algorithms. To prove our high
probability bound, both terms in the sum are tackled separately. To prove the
first term, we show that a player can simulate an algorithm using C channels by
making C proposals for each simulated round—one for each channel—to test if T
has an isolated broadcast on any channel. The second term uses a reduction from
the restricted hitting game. The expected time result adopts a similar strategy as
the first term. The proofs for these theorems are deferred to the full version [22].

Theorem 8. Let A be an algorithm that solves wake-up with high probability in
f(n, C) rounds in the radio network model with C ≥ 1 channels. It follows that
for every C ≥ 1, f(n, C) ∈ Ω(log2 n/C + logn).

Theorem 9. Let A be an algorithm that solves wake-up in f(n, C) rounds, in
expectation, in the radio network model with C ≥ 1 channels. It follows that for
every C ≥ 1, f(n, C) ∈ Ω(log n/C + 1).
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8 Lower Bound for Wake-Up with Collision Detection
and Multiple Channels

The final combination of model parameters to consider for wake-up is colli-
sion detection and multiple channels. No non-trivial upper or lower bounds are
currently known for this case. We rectify this omission by proving below that
Ω(log n/ log C + log logn) rounds are necessary to solve this problem with high
probability in this setting. Notice, this bound represents an interesting split with
the preceding multichannel results (which assume no collision detection), as the
speed-up is now logarithmic in C instead of linear. On the other hand, the log2 n
term in the previous case is replaced here with a faster logn term. Collision
detection, in other words, seems to be powerful enough on its own that adding
extra channels does not yield much extra complexity gains. We do not consider
an expected time result for this setting. This is because even without collision de-
tection, the best known upper bound for multichannel networks [7] approaches
O(1) time (which is trivially optimal) quickly as the number of channels in-
creases. The proof for the below theorem, which combines techniques from both
Section 6 and Section 7, is deferred to the full version[22].

Theorem 10. Let A be an algorithm that solves wake-up with high probability
in f(n, C) rounds in the radio network model with C ≥ 1 channels and collision
detection. It follows that for every C ≥ 1, f(n, C) ∈ Ω(log n/ log C + log logn).

9 Lower Bound for Global Broadcast

We now turn our attention to proving a lower bound for global broadcast. The
tight bound for this problem is Θ(D log (n/D) + log2 n) rounds for a connected
multihop network of size n with diameter D. The lower bound holds for ex-
pected time solutions and the matching upper bounds hold with high probabil-
ity [3,19,6]. The log2 n term was established in [1], where it was shown to hold
even for centralized algorithms, and the D log (n/D) term was later proved by
Kushilevitz and Mansour [20]. Below, we apply our new technique to reprove
(and significantly simplify) the Ω(D log (n/D)) lower bound for expected time
solutions to global broadcast. (We do not also reprove the Ω(log2 n) term be-
cause this bound is proved using the same combinatorial result from [1] that
provides the mathematical foundation for our technique. To reprove the result
of [1] using [1] is needlessly circular.)

Perhaps surprisingly, we show that this bound holds even if we allow multiple
channels and collision detection, both of which are assumptions that break the
original lower bound from [20]. Notice, this indicates a interesting split with
the wake-up problem for which these assumptions improve the achievable time
complexity.

It is important to remind the reader at this point that the definition of col-
lision detection we consider in this paper does not allow a collision to activate
a node. Instead, activation still requires that a node receive a message. Once
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activated, however, nodes can use collision detection to speed up or otherwise
simplify contention management. The assumption that collisions can activate
nodes (essentially) reduces the problem to the less well-studied synchronous start
variation in which all nodes activate in round 1 (if collisions can activate nodes
then the source can instigate a wave of collisions that activates the entire net-
work quickly). Recent work solved the synchronous start broadcast problem in
O(D+polylog(n)) rounds using collision detection [16]. The problem’s complex-
ity without collision detection remains open.

Returning to our result, the proof details for the theorem below are deferred
to the full version of this paper [22]. The intuition, however, is straightforward
to describe. Given n nodes, we can construct a network consisting of D ordered
layers each containing n/D nodes. Imagine that only a subset of the nodes in
each layer are connected to the next layer. The only way to advance the message
from one layer to the next, therefore, is to isolate a single node from this unknown
set of connected nodes. Accordingly, it is not hard to reduce our hitting game to
this task, reducing the challenge of broadcast to solving D sequential instances
of the (n/D)-hitting game, where each instance requires Ω(log (n/D)) rounds.

Theorem 11. Let A be an algorithm that solves global broadcast in f(n, C, D)
rounds, in expectation, in the radio network model with collision detection, C ≥ 1
channels, and a network topology with diameter D. It follows that for every
C, D ≥ 1, f(n, C, D) ∈ Ω(D log (n/D)).
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