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Abstract. The state machine approach is a well-known technique for
building distributed services requiring high performance and high avail-
ability, by replicating servers, and by coordinating client interactions
with server replicas using consensus. Indulgent consensus algorithms ex-
ist for realistic eventually partially synchronous models, that never vio-
late safety and guarantee liveness once the system becomes synchronous.
Unavoidably, these algorithms may never terminate, even when no pro-
cessor crashes, if the system never becomes synchronous.

This paper proposes a mechanism similar to state machine replication,
called RC-simulation, that can always make progress, even if the system
is never synchronous. Using RC-simulation, the quality of the service will
adjust to the current level of asynchrony of the network — degrading
when the system is very asynchronous, and improving when the system
becomes more synchronous. RC-simulation generalizes the state machine
approach in the following sense: when the system is asynchronous, the
system behaves as if k+1 threads were running concurrently, where k is
a function of the asynchrony.

In order to illustrate how the RC-simulation can be used, we describe a
long-lived renaming implementation. By reducing the concurrency down
to the asynchrony of the system, RC-simulation enables to obtain re-
naming quality that adapts linearly to the asynchrony.

1 Introduction

Problem Statement. The state machine approach (also called active replica-
tion) [33,37] is a well-known technique for building a reliable distributed system
requiring high performance and high availability. In the state machine approach,
a consensus algorithm is used by the replicas to simulate a single centralized
state machine. The role of consensus is to ensure that replicas apply opera-
tions to the state machine in the same order. Paxos [34] is the most widely-used
consensus protocol in this context. It maintains replica consistency even during
highly asynchronous periods of the system, while rapidly making progress as
soon as the system becomes stable.

The state machine approach is limited by the impossibility of solving con-
sensus in an asynchronous system even if only one process can crash [22]. In-
dulgent [26] consensus algorithms such as Paxos, never violate safety (replicas
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never decide different values), and they guarantee liveness (all correct replicas
decide) once the system becomes synchronous [32]. However, while the system
is in an asynchronous period, the state’s machine progress is delayed. Moreover,
any indulgent consensus algorithm has executions that never terminate, even
when no processor crashes, due to the impossibility of [22], in case the system
never becomes synchronous.

One may think that to achieve reliability in distributed systems, and to en-
force cooperation among the replicas enabling the system to function as a whole
despite the failure of some of its components, consensus is essential [23]. This is
true in general, but not always. E.g., consensus is not essential for implementing
replicated storage [7] (the dynamic case is discussed in [3]). Hence, the ques-
tion of whether one can build a reliable distributed system that always makes
progress, for some specific services at least, remains open. This is precisely the
question we are interested in.

Summary of Results. In this paper, we provide a mechanism similar to state
machine replication, but that can always make progress, even if the system is
never synchronous. Using our mechanism, the quality of the service adjusts to
the current level of asynchrony of the system – degrading when the system is
very asynchronous, and improving when the system becomes more synchronous.
The main contribution of this paper is the proof that such a mechanism exists.
We call it the reduced-concurrency simulation (RC-simulation for short).

To be able to design such a mechanism, we had to come up with appropriate
definitions of “quality” of a service, and of the “level of asynchrony” of the
system. In the state machine approach, the service behaves as one single thread
once the system becomes synchronous. This behavior is generalized through
the RC-simulation, so that, when the level of asynchrony is k, then the system
behaves as if k + 1 threads were running concurrently.

In order to illustrate, with a concrete example, how the RC-simulation is used
to obtain a fault-tolerant service that always makes progress, we describe a long-
lived renaming service. In this case, the quality of the service is manifested in
terms of the output name space provided by the long-lived renaming service, the
smaller the better. Thanks to the RC-simulation mechanism, a higher quality of
service is obtained by reducing the concurrency down to the level of asynchrony
of the system. In particular, if the system is synchronous, then the service be-
haves as if names were produced by a single server, giving to the clients names
from a very small (optimal) space. If the system becomes more asynchronous,
then the service behaves as if more servers were running concurrently, and hence
it gives names from a larger space to the clients. Whatever the asynchrony of
the system is, safety is never violated, in the sense that the names concurrently
given to the clients are always pairwise distinct.

The formal setting we consider for deriving our results is the one of an asyn-
chronous read/write shared memory system where any number of processes may
fail by crashing. We are interested in wait-free algorithms [27]. For simplicity, we
assume that snapshot operations are available, since they can be implemented
wait-free [1], and we define level of asynchrony at this granularity. However, the
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definition can be easily adapted to the granularity of read/write operations. We
also stress the fact that we picked this shared memory model, and we picked the
specific renaming textbook algorithm in [9], as a proof of concept. Definitely,
further work is needed to study other, more realistic shared memory and/or
message passing models, as well as other services. Moreover, we have not tried
to optimize the efficiency of our simulation, which is beyond the objective of
this paper. The main outcome of the paper is a proof that it is possible to adapt
the concurrency to the level of asynchrony in a generic way.

Related Work. Various partially synchronous models have been proposed to
model real systems better. For instance, in [19,21], the relative processors speeds
are bounded, and there are bounds on processing times and communication de-
lays. In addition, some of these models allow the system to have an initial period
where the bounds are not respected. However, it is assumed that, eventually, the
system enters a stable period where the bounds do hold. More recently, partially
synchronous systems enabling to study problems that are strictly weaker than
consensus were considered in [2]. Also, there is work on progress conditions that
adapt to the degree of synchrony in each run, e.g. [4] and references herein.

Although RC-simulation tackles different objectives, it is inspired by the BG-
simulation algorithm [12]. The latter is used for deriving reductions between tasks
defined in different models of distributed computing. Indeed, the BG-simulation
allows a set of t+1 processes, with at most t crash failures, to “simulate” a larger
number n of processes, also with at most t failures. The first application of the
BG-simulation algorithmwas that there are no k-fault-tolerant algorithms for the
n-process k-set-agreement problem [17], for any n. Borowsky and Gafni extended
the BG-simulation algorithm to systems including set agreement variables [11].
Chaudhuri and Reiners later formalized this extension in [18], following the tech-
niques of [36]. While the original BG-simulation works only for colorless tasks [12]
(renaming and many other tasks are not colorless [14,29]), it can be extended to
any task [24]. Other variants and extensions of the BG-simulation, together with
additional applications, have appeared in [16,28,30,31,35].

At the core of the BG-simulation, and of our RC-simulation as well, is the
safe-agreement abstraction, a weaker form of consensus that can be solved wait-
free (as opposed to consensus). The safe-agreement abstraction was introduced
in [10] as “non-blocking busy wait.” Several variants are possible, including the
wait-free version we use here (processes are allowed to output a special value
⊥ that has not been proposed), and the variant that was used in the jour-
nal version [12]. Safe-agreement is reminiscent of the crusader problem [20]. A
safe-agreement extension that supports adaptive and long-lived properties is dis-
cussed in [6]. Notice that we can apply our RC-simulation to renaming, which is
not a colorless task (and hence cannot be used with the BG-simulation), because
we use safe-agreement only to simulate threads consistently, as opposed to the
BG-simulation, which uses safe-agreement for reductions between tasks.

A generalization of the state machine approach was presented in [25], where,
instead of using consensus, it uses set agreement. In k-set agreement, instead
of agreeing on a unique decision, the processes may agree on up to k different
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decisions. The paper [25] presents a state machine version with k-set agreement,
where any number of processes can emulate k state machines of which at least
one remains “highly available”. This state machine version is not based on the
BG-simulation, and is not dynamic, as opposed to our RC-simulation mechanism.

Renaming is awidely-studiedproblem that hasmany applications in distributed
computing (see, e.g., the survey [15]). In long-lived renaming, the number of pro-
cesses participating in getting or releasing a name can vary during the execution.
When the number is small, the number of names in use should be small. An f(k)-
renaming algorithm [8] is a renaming algorithm in which a process always gets a
name in the range {1, . . . , f(k)}, where k is the number of processes that partici-
pate in getting names. Notice that f(k)-renaming is impossible unless f(k) ≥ k.
Burns and Peterson [13] proved that long-lived f(k)-renaming is impossible in an
asynchronous shared memory system using only reads and writes unless f(k) ≥
2k−1. They also gave the first long-lived (2k−1)-renaming algorithm in thismodel.
for our example is from [9]. Finally, recall that indulgent algorithms progress only
when synchrony is achieved. We refer to [5] for sensing fast that synchrony is on,
and for solving renaming with an indulgent algorithm.

2 Reducing Concurrency

In this section, we describe the reduced-concurrency simulation, abbreviated in
RC-simulation hereafter. At the core of the RC-simulation is the safe-agreement
mediated simulation, or SA-simulation for short. The SA-simulation is the essen-
tial mechanism on top of which is implicitly built the well known BG-simulation
[12]. We describe the SA-simulation explicitly in Section 2.2, and then explain in
Section 2.3 how the RC-simulation is built on top of the SA-simulation in order
to reduce concurrency. Hence, the contribution of this section is the complete
description of the plain arrow on the left-hand side of Fig. 1, involving the notion
of partial asynchrony, that we define next, in Section 2.1.

2.1 Partial Asynchrony

We are considering a distributed system composed of n crash-prone asynchronous
processes. Each process p has a unique identity Id(p) ∈ {1, . . . , n}. Processes
communicate via a reliable shared memory composed of n multiple-reader single-
writer registers, each process having the exclusive write-access to one of these
n registers. For simplicity, by “read”, we will actually mean an atomic snap-
shot of the entire content of the shared memory (recall that snapshots can be
implemented wait-free using read/write registers [1]).

In the wait-free setting, the efficiency of the system can be altered by the
asynchrony between the processes. To measure the amount of asynchrony expe-
rienced by the system, we introduce the novel notion of partial asynchrony. (See
Fig. 1 for an illustration of the concepts defined hereafter). Let us consider a
potentially infinite execution E of the system, and let p be a process.

A blind interval for p is a maximal time-interval during which p performs no
snapshots. More precisely, let t1 and t2 with t2 > t1 be the times at which two
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Fig. 1. RC- vs. BG-simulations (left), illustration of partial asynchrony (right)

consecutive snapshots performed by p occur in E . The time-interval I = (t1, t2)
is called a blind time-interval for process p. If in addition we assume, w.l.o.g.,
that the first instruction of every process is a write, then the interval [0, t) where
t denotes the time at which process p performs its first snapshot, is also a blind
interval for p. Thus, E can be decomposed into the sequence of consecutive blind
intervals for a process p, where a snapshot by p is performed in between each of
these intervals. In Fig. 1, each process performs four snapshots and five writes.
Hence, there are five blind intervals for every process.

Definition 1. The partial asynchrony experienced by process p in E during a
blind interval for p is the number of processes that do not perform any write
during this time-interval. The partial asynchrony of p in E is the maximum,
taken over all blind intervals I for p, of the partial asynchrony experienced by
process p during I. Finally, the partial asynchrony of the system in E is the
maximum, taken over all processes p, of the partial asynchrony of p in E.

On the right-hand side of Fig. 1, p1 experiences a partial asynchrony of 1
because, p4 is missing in the interval between its first two snapshots. The partial
asynchrony of the whole execution is 2 because p4 experiences a partial asyn-
chrony of 2 in its blind interval (t1, t2) as both p1 and p3 are missing, but no
processes experience a partial asynchrony of 3. For any non-negative integer k,
an execution in which the partial asynchrony of the system is at most k is called
k-partially asynchronous. In particular, an execution is 0-partially asynchronous
if and only if all processes perform in lock steps. As another example, if the
process p is much slower than all the other processes, then p experiences zero
partial asynchrony. However, each of the n − 1 other processes experiences a
partial asynchrony of 1 caused by the slow process p. The general case is when
the processes are subject to arbitrary delays, as illustrated in the example of
Fig. 1. Then the larger the partial asynchrony experienced by a process p, the
more asynchronous the system looks to p, and the more p may suffer from this
asynchrony. Our objective is to limit the penalty incurred by the system because
of asynchrony, by reducing the amount of concurrency.

2.2 The Safe-Agreement Mediated Simulation

The safe-agreement mediated simulation, or SA-simulation for short, is a generic
form of execution of a collection T of threads by a system of n processes. Hence,
let us first define the notion of thread.
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Threads. A thread τ is a triple (Id, A, value) where Id = Id(τ) is the identity
of the thread τ , uniquely defining that thread, A = A(τ) is a set of instructions
to be performed by the thread (typically, this set is the one corresponding to the
code of some process executing a distributed wait-free algorithm), and value =
value(τ) is an input value to this instruction set. The generic form of a thread
code is described in the left-hand side of Fig. 2, where ϕ is a boolean predicate,
and f is a function, both depending on A. In this generic form, a thread is
thus a write, followed by a finite sequence of snapshot-write instructions. In the
sequel, when we refer to an instruction of a thread, we precisely refer to such a
snapshot-write instruction. The SA-simulation is an execution by n processes of
the threads in a collection T of threads.

Thread τ = (Id, A, value)
1: view ← (Id, value)
2: write(view)
3: while ϕ(view) do
4: view ← snapshot()
5: write(view)
6: decide f(view)

SA-simulation of a collection T of threads.
1: while true do
2: view ← snapshot()
3: if there exists an extendable thread τ ∈ T
4: then perform next instruction of τ

Fig. 2. Generic code for threads (left), and code for SA-simulation (right)

For the sake of simplicity of the presentation, we assume that the threads are
resident in memory when the simulation begins. Moreover, we also assume that
each thread is either available or non available. Our simulation is concerned with
simulating available threads. However a thread can be moved from non-available
to available (not vice-versa), but such a move is not under the control of the
system, and can be viewed as under the control of an adversary. This models
the situation in which the system receives requests for executing threads, or for
performing tasks, by abstracting away the input/output interface of the system
with the outside world. Taking once again the example of long-lived renaming, a
thread corresponding to the release of a name by a process can be made available
only if a name has been acquired previously by this process, and two requests
of names by a same process must be separated by a release name by the same
process. Other than that, the adversary is entirely free to decide when processes
request and release names.

SA-Simulation in a Nutshell. In essence, the SA-simulation relies on two
notions: extendability and agreement. Roughly, a thread is extendable if it is not
blocked, that is, if no processes are preventing others from performing the next
instruction of the thread. Indeed, again roughly, performing an instruction of a
thread requires some form of coordination among the processes, in order to decide
which value to write, that is, to decide which view of the memory is consistent
with a view that may have acquired a thread by snapshotting the memory. Since
consensus is not possible to achieve in a wait-free environment [22], we will use
weaker forms of agreement.
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Let us present the general form of SA-simulation. The code of a process p per-
forming SA-simulation of T is presented in Fig. 2. We assume a long-lived sim-
ulation, i.e., an infinite number of threads. Handling a finite number of threads
just requires to change the condition in the while-loop of the SA-simulation, in
order to complete the simulation when all (available) threads have been simu-
lated. In what follows, we precisely explain how a process figures out whether
there exists an extendable thread, and how it performs the next instruction of a
thread. For this purpose, we first recall a core mechanism for performing a weak
form of consensus: safe-agreement.

Safe-Agreement. Consider the following specification of safe-agreement (simi-
lar to [12]). Each process proposes a value, and must decide some output accord-
ing to the following three rules: (1) Termination: every process that does not
crash must decide a proposed value or ⊥; (2) Validity: if not all processes crash,
then at least one process must decide a value different from ⊥; (3) Agreement:
all processes that decide a value different from ⊥ must decide the same value.
The algorithm in Fig. 3 is a wait-free algorithm solving safe agreement, directly
inspired from [6].

Safe-agreement performed by process p proposing v = value(p)
1: write (Id(p), v)
2: snapshot memory, to get view = {(i1, vi1), . . . , (ik, vik)}
3: write (Id(p),view)
4: snapshot memory, to get setofview = {(j1, viewj1), . . . , (j�, viewj�)}
5: minview ←

⋂�
r=1 viewjr

6: if for every i such that (i, vi) ∈ minview we have viewi ∈ setofview
7: then decide minimum value w in minview
8: else decide ⊥

Fig. 3. Safe agreement

Priority Array

Instruction Matrix 

new

open

decided

closed

321 94 5 6 87 10 11

1 2 3 4 5 6 7 8 9 10 11 12

The Instruction Matrix. We
explain now how processes decide
whether there exist extendable threads.
This is achieved thanks to the vir-
tual shared data-structure displayed
beside. Whenever a process p performs
a snapshot of the memory, it gets a
view of the current states of execution
of all the threads. This view can be vir-
tually represented by the instruction
matrix M as displayed in the figure
beside. The cell Mi,j of the instruction
matrix represents the status of the ith
instruction of the jth thread (i.e., the
thread τ such that Id(τ) = j). This status can be one of the following three
states: (1) new: no processes have tried to perform this instruction yet, (2) open:
at least one process is trying to perform this instruction, but the outcome of this
instruction has not yet been decided, or (3) decided: the instruction has been
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performed, that is, an outcome has been decided for this instruction. A thread
for which all cells are decided is said to be fully executed in the sense that all its
instructions have been performed by the system. Of course, the SA-simulation
executes the instructions of every thread in sequential order. That is, the col-
umn j of the instruction matrix corresponding to a thread that is available but
not fully executed, consists in a (possibly empty) sequence of decided cells, im-
mediately followed by a cell that is either open or new, immediately followed by
a (possibly empty) sequence of cells in state new. The cell immediately following
the (possibly empty) sequence of decided cells is called the current instruction
cell of the thread. The instruction matrix enables to define formally the notion
of extendability:

Definition 2. A thread τ is extendable if it is available, not fully executed, and
its current instruction cell is in state new.

Note that the instruction matrix is an abstraction describing the execution
status of the threads. It is not a data structure that is manipulated by the
processes. Indeed, when a process performs the snapshot in SA-simulation, its
view is the content of the whole memory, which contains the way the threads are
progressing, including the number of snapshot-write instructions that have been
already performed by each thread. In the SA-simulation, every process identifies
some extendable thread τ , and aims at performing the next instruction of τ .
Roughly, when a process tests whether there exists an extendable thread in SA-
simulation, it tests all open cells in the instruction matrix using safe-agreement,
and the answer is negative if and only if this process has decided ⊥ for each of
them. This mechanism is detailed next.

Performing Instruction. Recall that what we defined as an “instruction” of
a thread is a snapshot followed by a write. Such a combination of snapshot-write
appears explicitly in the generic form of a thread (cf. Fig. 2). The value written in
memory by a thread is simply the view it gets during the last snapshot preceding
the write. Hence, to simulate an instruction of a thread, the potentially many
processes performing that instruction must agree on this view. This coordination
is performed via safe-agreement.

There is one safe-agreement task associated to each cell (i, j) of the instruc-
tion matrix, i, j ≥ 1. A process p aiming at simulating Instruction i of Thread
j proposes its view to the safe-agreement of cell (i, j). By the specification of
safe-agreement, it is guaranteed that, among all views proposed to this safe-
agreement, only one of them with be outputted. (Not all processes may decide
this view, but those ones decide ⊥). If p outputs ⊥, then p aborts this attempt
to perform the instruction, and completes the while-loop of SA-simulation. Oth-
erwise, i.e., if p outputs some view, then p writes this view for Thread j, to
complete the write of that thread.

Safety and Liveness. We now establish the following lemma, which may have
its interest on its own, but will also be later used to prove the correctness of
our more refined RC-simulation. Let us define two crucial properties that are
expected to be satisfied by a simulation of threads by a system of processes.
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Safety: For every collection T of threads solving task T using a same algorithm
A, the simulation of T by SA-simulation leads T to solve Task T .

Liveness: In any infinite execution of the SA-simulation on a finite collection
T of threads in which t processes crash, with 0 ≤ t < n, all but at most t
threads are fully executed.

Note that, in the definition of safety, the specification of a thread may depend
on other threads: the consistency of the simulation is global. Also, the definition
of liveness states that if t processes crash then at most t threads may be “blocked”
by these t failures. Note however that the SA-simulation does not necessarily guar-
antee that all but t threads will eventually be executed if the collection of threads
is infinite. Indeed, the SA-simulation does not avoid starvation. Starvation is a
property addressed at a higher level of the simulation, depending on the policy for
choosing which threads to execute among all extendable threads on top of the SA-
simulation. For instance, BG-simulation selects the threads in an arbitrary man-
ner, but executes these threads in a specific round-robin manner. Instead, RC-
simulation, described later in this section, executes the threads in an arbitrary
manner, but selects these threads in a specific manner to minimize concurrency.
The following result states the basic properties of the SA-simulation.

Lemma 1. The SA-simulation satisfies both the safety and liveness properties.

2.3 The Reduced-Concurrency Simulation

In the SA-simulation, all available threads are potentially executed concurrently.
We now show how to refine the simulation in order to execute concurrently
as few threads as possible, while still remaining wait-free. For this purpose,
we first refine the notion of available threads, by distinguishing two kinds of
available threads. An available thread is active if it is not fully executed, and
at least one cell of the column corresponding to that thread in the instruction
matrix is either open or decided. An available thread that is not fully executed
and not active is pending. In the SA-simulation, every process tries to make
progress in any available extendable thread, including pending threads. Instead,
in the RC-simulation described below, every process tries to make progress only
for active extendable threads. It is only in the case where there are no more
active extendable threads that the RC-simulation turns a pending thread into
active. In this way, the number of active threads is not blowing up. Reducing
the concurrency as much as possible however requires more work, and will be
explained in detail in this section. One key ingredient in the RC-simulation is
the Priority Array, described below.

The Priority Array. Similarly to the Instruction Matrix, the Priority Array
is a virtual shared data-structure that enables to summarize the status of the
different threads, as well as an instrument used to decide which thread to execute,
and when (see the figure in Section 2.2). It is a linear array, in which the role
of each cell is to point to a thread. As in the instruction matrix, there is a safe-
agreement task associated to each cell of the priority array. This safe-agreement
can be in one of the four following states: new, open, decided, and closed. For
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i ≥ 1, Cell i of the priority array is new if no processes have yet entered the safe-
agreement program i (i.e., no processes have yet performed the first instruction
of the ith Safe-Agreement). A cell is open if at least one process has entered Safe-
Agreement i, but no value has yet been decided (all processes that exited the
safe-agreement decided ⊥). A cell is decided if at least one process has decided
a value (different from ⊥). Such a value is the identity of an available thread.
Hence, a decided cell in the priority array is a pointer to an available thread. By
construction, an active thread is an available thread pointed by a decided cell
of the priority array. Finally, Cell i is closed if it is pointing to a fully executed
thread. Initially, all cells of the priority array are in state new. The head of the
priority array is defined as the cell with smallest index that is still in state new.
We now have all the ingredients to describe the RC-simulation.

The RC-Simulation. The code of the RC-simulation is described in Fig. 4.
The first instructions of RC-simulation are essentially the same as in the SA-
simulation, with the unique modification that thread-instructions are only per-
formed in active threads, while the SA-simulation is willing to advance any
extendable thread.

RC-simulation by processes p of an infinite collection T of threads.
1: while true do
2: view ← snapshot()
3: (M,P) ← extract instruction matrix and priority array from view
4: if there exists an active extendable thread τ ∈ T
5: then perform next instruction of τ
6: else view ← snapshot()
7: (M′,P ′) ← extract instruction matrix and priority array from view
8: if (M′,P ′) = (M,P), and there exists a pending thread
9: then propose a pending thread to the head of the priority-array

Fig. 4. RC-simulation

Significant differences between the SA-simulation and the RC-simulation be-
gin from the “else” Instruction. In particular, Instruction 8 compares the content
of the memory at two different points in time. In the RC-simulation, a process
p is willing to open a new thread, i.e., to move one available thread from the
pending status to the active status, only if the memory has not changed between
two consecutive snapshots of p (i.e., during a blind interval for p). More precisely,
process p may open a new thread only if, in between two consecutive snapshots,
the set of active threads has remained the same, and the instruction counters of
these threads have remained the same. If that is the case, then p selects a thread
τ among the pending threads (e.g., the one with smallest identity), and proposes
τ for being opened. The role of the test in Instruction 8 will appear clearer later
when we will analyze the number of threads that are simulated concurrently.

For opening a new thread τ , process p is proposing Id(τ) to the safe-agreement
task at the head of the priority array. If p decides ⊥ in this safe-agreement, then
p initiates a new loop of RC-simulation. If p decides a value j �= ⊥ in this
safe-agreement, then p tries to perform the first instruction of Thread j, which
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becomes active. Note that we may not have j = Id(τ) as other processes may
have proposed different threads to this safe-agreement of the priority array. This
holds even if the rule for selecting which thread to propose is deterministic (e.g.,
selecting the pending thread with smallest identity) because of the asynchrony
between the processes, and because of the way threads become available. As for
the general case, performing the first instruction of Thread j is mediated by
Safe-Agreement (1, j) of the Instruction Matrix. After this attempt to perform
the first instruction of Thread j, process p starts a new loop of RC-simulation,
independently from whether this attempt succeeded or not.

2.4 The Reduced-Concurrency Theorem

We first note that the RC-simulation satisfies the same safety and liveness con-
ditions as the SA-simulation.

Lemma 2. The RC-simulation satisfies both the safety and liveness properties.

Assume now that all the threads in the collection T simulated by RC-
simulation are performing the same wait-free algorithm A solving some task
T = (I,O, Δ), such as renaming. Hence, the threads differ only in their identi-
ties, and, possibly, in their input data. The performances of Algorithm A, e.g.,
the number of names for renaming, may be affected by point-contention, i.e., by
the maximum number of threads that are executed concurrently. For instance,
a point-contention of 1 (that is, threads go one after the other) ensures perfect-
renaming, while a point-contention of k = |T | may yield up to 2k − 1 names.
In this framework, RC-simulation helps, for it reduces the concurrency of the
threads, down to partial asynchrony.

More specifically, let us consider an n-process system performing RC-
simulation of a collection T of threads, all with same algorithm A solving task
T = (I,O, Δ) wait-free. For every k, 0 ≤ k < n, if the partial asynchrony of the
execution of the RC-simulation is at most k, then the performances of solving Task
T mediated by the RC-simulation are the same as if the threadswere executedwith
point-contention at most k + 1. This result can be summarized as follows.

RC-simulation: k-partial-asynchrony =⇒ (k + 1)-concurrency.

In particular, if the partial asynchrony is 0 then threads are executed sequen-
tially, one after the other. The following theorem formalizes these statements.

Theorem 1. Let k, 0 ≤ k < n. For any execution of the RC-simulation:

– Bounded concurrency: Concurrency is at most partial-asynchrony plus 1.
Specifically, if k+1 threads are executed concurrently by the system at time t,
then at least one process p experienced a partial asynchrony at least k at some
time ≤ t.

– Adaptivity: Concurrency ultimately scales down with partial asynchrony.
Specifically, if the partial asynchrony of the system is at most k after time t,
then, eventually, the system will not execute more than k + 1 threads con-
currently.
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Proof. To establish the theorem, we first observe a crucial property of the al-
gorithm solving safe-agreement. This algorithm includes two write-instructions,
and two snapshot-instructions. These instructions interleave in arbitrary man-
ner among the different processes, but one can still say something interesting
about this interleaving, in certain cases. The following behaviour is a common
argument is the BG-simulation (see, e.g., [6,12]).
Claim. During the execution of the safe-agreement algorithm, if some process p
decides ⊥, then there exists a process q �= p such that q performed its first write
before the first snapshot of p, and pperformed its second snapshot before the second
write of q.

In the situation of the statement of Claim 2.4, we say that q blocked p. Let us first
prove the bounded concurrency property. Assume that k+1 threads are executed
concurrently by the system at time t. At this time t, let i ≥ 1 be the largest index
such that the ith cell of the priority array is not new (that is, the cell just before
the head of the priority array at time t). Let p be the first process that performed
a write instruction in the safe-agreement corresponding to that cell, turning the
status of that cell fromnew to open. Processp did so because the instructionmatrix
as well as the priority array remained in identical states between its two previous
snapshots in the RC-simulation. Let t′ ≤ t be the time at which process p wrote
in the ith cell of the priority array, turning it from new to open. Let t1 and t2,
t1 < t2 < t′ ≤ t, be the respective times at which p performed its two snapshots
in Instructions 2 and 6 of the RC-simulation leading p to access Cell i.

Let us examine the instruction matrix and the priority array between time
t1 and t2 (both did not change in this time interval). Let k′ be the number
of threads concurrently executed at time t2. Between time t2 and t, some new
threads, say x threads, x ≥ 0, may have appeared (i.e., moved from pending
to active), while some of the k′ threads, say y, y ≥ 0, may have disappeared
(i.e., moved from active to fully executed). The former x corresponds to cells
in the priority array that move from open to decided. The latter y corresponds
to cells in the priority array that move from decided to closed. By definition,
we have k′ + x − y = k + 1, and thus k′ + x ≥ k + 1. Among the x threads,
one thread may have been opened by p, when p initiates the safe-agreement of
Cell i in the priority array. Now, since there were no extendable threads at time
t1, each of the k′ threads has the cell of the instruction matrix corresponding
to its current instruction in state open. Therefore, during time interval [t1, t2],
the total number of open cells equals at least k′ + x − 1, where k′ are open in
the instruction matrix, and at least x − 1 are open in the priority array. Thus,
during time interval [t1, t2], the total number of open cells is at least k since
k′ + x ≥ k+ 1. Each of these cells corresponds to a safe-agreement for which no
values are decided. In particular, p decided ⊥ from each of these safe-agreements.

Let us fix one of these at least k safe-agreements. By Claim 2.4, process p
was blocked by some process q which has not yet performed its second write
at time t2. Thus, to each of the at least k open cells in interval [t1, t2] corre-
sponds a distinct process which performed its first write (in the safe agreement
of the cell) before time t1, and had not yet performed its second write at time t2.
Hence, at least k processes performed no writes in the time interval [t1, t2], which
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is the interval between two consecutive snapshots of process p. Therefore, the
asynchrony experienced by process p at time t2 ≤ t is at least k. This completed
the proof of the bounded concurrency property.

Now remains to prove the adaptivity property. LetN be the number of threads
that are concurrently executed at time t. By the same arguments as those ex-
posed above, no threads are opened after time t until their number goes below
k + 1. By the liveness property of Lemma 2, the number of thread concurrently
executed after time t will thus decrease from N down to k+1, which completes
the proof of Theorem 1. �	

3 Application to Long-Lived Renaming

In this section, we use the RC-simulation for improving the performances of
a classical long-lived renaming algorithm. Recall that the performances of an
algorithm achieving renaming are typically measured in terms of the range of
name-space, the tighter the better. In the context of this paper, the specification
of long-lived renaming are rephrased as follows. Users perpetually request names
to an n-process system such as described in Section 2.1, where a name is a non-
negative integer value in the range [1, N ] for some N ≥ n that is aimed to be as
small as possible. Each user’s request is performed by any one of the n processes,
and all processes are eligible to receiving requests from users. Once a user has
acquired a name, the user must eventually release it, and, as soon as a name has
been released, it can be given to another user. At any point in time, all names that
are currently acquired by users, and not yet released, must be pairwise distinct.
We assume that a process p serving the request for a name by a user x does not
serve any other request for names until the requested name has been acquired
by x, and eventually released. The textbook renaming algorithm described in [9]
is an adaptation to shared-memory system of the classical algorithm of [8] for
renaming in message passing systems. It implements renaming with new names
in the range [1, 2n− 1]. We show that, using RC-simulation, this range of names
can be significantly reduced when the partial asynchrony is small, while the
algorithm is shown not to adapt to partial asynchrony by itself.

Long-Lived Renaming in Presence of Bounded Partial-Asynchrony. In
long-lived renaming, each process p requests a newname by invokingReqName(x),
where x denotes the identifier of the user which queried p to get a name. Once p
got a name for x, it can call releaseName for releasing that name. According to
the specification of long-lived renaming stated above, for any process p, a sequence
of such calls is correct if and only if ReqName and releaseName alternate in the
sequence. As mentioned before, the renaming algorithm we use provides names in
the range [1, 2n−1].Wefirst note that this range does not reducemuchas a function
of the asynchrony. For example, Observation 1 below shows that, even in case of
partial asynchrony zero, i.e., evenwhen the systemperforms in lock-steps, the range
of names used by this renaming algorithm is still much larger than the ideal range
[1, n]. We shall show in the next section that, instead, whenever mediated through
the RC-simulation, this renaming algorithm uses a range of names that shrinks as
the partial asynchrony decreases, up to [1, n] for partial asynchrony zero.
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Observation 1. Even if the system is 0-partially asynchronous, there is an ex-
ecution of the renaming algorithm in [9] for which the range of names is [1, 3n2 ].

RC-Simulation Mediated Long-Lived Renaming. In the following, we
show that, through RC-simulation, the renaming algorithm of [9] adapts grace-
fully to partial asynchrony, while Observation 1 shows that the performances
of this algorithm alone do not adapt to partial asynchrony. The result below
is a corollary of Theorem 1. In particular, it shows that when the system is
synchronous, or runs in lock-steps, the renaming algorithm mediated by the
RC-simulation provides perfect renaming, using names in the range [1, n]. More
generally, the mediation through RC-simulation of the renaming algorithm in [9]
produces names in a range that grows linearly with partial asynchrony k.

Theorem 2. If the system is k-partially asynchronous, for 0 ≤ k < n, then
the range of names provided by the renaming algorithm in [9] mediated by the
RC-simulation is [1, n+ k].
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